
IBM DB2 10.1
for Linux, UNIX, and Windows

Preparation Guide for DB2 10.1
Fundamentals Exam 610

SC27-4540-00

���

IBM DB2 10.1
for Linux, UNIX, and Windows

Preparation Guide for DB2 10.1
Fundamentals Exam 610

SC27-4540-00

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 457.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book vii
Who should use this book vii

Part 1. DB2 Database for Linux,
UNIX, and Windows. 1

Chapter 1. DB2 database product
editions 3

Chapter 2. Functionality in DB2 features
and DB2 product editions 7

Chapter 3. IBM DB2 pureScale Feature 11
Extreme capacity 11
Continuous availability 13
Application transparency 14
How does a DB2 pureScale environment compare to
a multi-partition database environment? 16

Chapter 4. IBM DB2 Storage
Optimization Feature. 17

Part 2. Security 19

Chapter 5. DB2 security model 21

Chapter 6. Authentication methods for
your server 23

Chapter 7. Authorization, privileges,
and object ownership 29

Chapter 8. Default privileges granted
on creating a database 35

Chapter 9. Granting privileges. 37

Chapter 10. Revoking privileges 39

Chapter 11. Controlling access to data
with views 41

Chapter 12. Roles 45
Roles compared to groups 46

Chapter 13. Trusted contexts and
trusted connections 49
Using trusted contexts and trusted connections . . 51

Chapter 14. Row and column access
control (RCAC) 55
Row and column access control (RCAC) rules . . . 56
Scenario: ExampleHMO using row and column
access control. 56

Security policies 56
Database users and roles 57
Database tables 58
Security administration 60
Row permissions 61
Column masks 62
Inserting data. 63
Updating data 63
Reading data 64
Revoking authority 66

Part 3. Working with Databases and
Database Objects 67

Chapter 15. Instances 69

Chapter 16. Databases 71
Database directories and files 71

Node directory 74
Local database directory 75
Directory structure for your installed DB2
database product (Windows) 75
Directory structure for your installed DB2
database product (Linux) 81
System database directory 85

Creating databases 86
Viewing the local or system database directory files 89
Client-to-server connectivity 90

IBM data server client and driver types 92
Cataloging a database 94
Connecting to a database 95

Chapter 17. Table spaces 97
Table spaces for system, user and temporary data 99
Types of table spaces 100
Automatic storage table spaces 101
Comparison of automatic storage, SMS, and DMS
table spaces 101
Defining initial table spaces on database creation 103

Chapter 18. Schemas 105
Schema name restrictions and recommendations 106
Creating schemas 106
Dropping schemas. 107

Chapter 19. Tables 109
Types of tables 109

Data organization schemes 111

© Copyright IBM Corp. 2012 iii

Data types and table columns 116
Numbers 118
Character strings 120
Datetime values 123
Large objects (LOBs) 126
XML data type 127
Generated columns 127
Hidden columns 128
Auto numbering and identifier columns . . . 130
Default column and data type definitions . . . 131

Creating tables 132
Creating tables like existing tables 132
Declaring temporary tables 133
Creating and connecting to created temporary
tables 133
Distinctions between DB2 base tables and
temporary tables 135

Creating tables with XML columns 138
Adding XML columns to existing tables . . . 139

Creating partitioned tables 140
Defining ranges on partitioned tables 140

Renaming tables and columns 144
Viewing table definitions 144
Dropping application-period temporal tables . . . 145

Chapter 20. Temporal tables 147
System-period temporal tables. 148

History tables 148
SYSTEM_TIME period 149
Creating a system-period temporal table . . . 151
Dropping a system-period temporal table . . . 153

Application-period temporal tables 155
BUSINESS_TIME period. 155
Creating an application-period temporal table 155
Dropping application-period temporal tables 157

Bitemporal tables 158
Creating a bitemporal table. 158

Chapter 21. User-defined types. . . . 161
Distinct types 163

Creating distinct types 164
Creating tables with columns based on distinct
types 165
Creating currency-based distinct types 166
Casting between distinct types 166
Dropping user-defined types 167

Structured types 168
Structured type hierarchies 168
Creating structured types 169
Creating a structured type hierarchy. 170

Chapter 22. Constraints 173
Types of constraints 173
NOT NULL constraints 174
Unique constraints 174
Primary key constraints 175
(Table) Check constraints 175

Designing check constraints 175
Comparison of check constraints and BEFORE
triggers 176

Foreign key (referential) constraints 177
Examples of interaction between triggers and
referential constraints. 182

Informational constraints 183
Designing informational constraints 184

Creating and modifying constraints 186
Table constraint implications for utility operations 188

Checking for integrity violations following a
load operation 189

Statement dependencies when changing objects 191
Viewing constraint definitions for a table 192
Dropping constraints 192

Chapter 23. Views 195
Views with the check option 196
Creating views 198
Dropping views 199

Chapter 24. Indexes 201
Types of indexes 202
Clustering of nonpartitioned indexes on partitioned
tables 204
Creating indexes 207
Dropping indexes 208

Chapter 25. Triggers 209
Types of triggers 210
Designing triggers 211

Accessing old and new column values in
triggers using transition variables 213

Creating triggers 214
Modifying and dropping triggers. 215

Chapter 26. Sequences 217
Creating sequences 217
Dropping sequences 218

Chapter 27. Aliases 221
Creating database object aliases 221
Dropping aliases 222

Chapter 28. User-defined routines . . 223
External routines 224

Supported routine programming languages . . 224
External routine parameter styles 226
Creating external routines 228

SQL routines 230
Creating SQL procedures from the command
line. 230

Procedures 231
Functions. 233
Methods 234

Chapter 29. DB2 compatibility features 237
DATE data type based on TIMESTAMP(0). . . . 238
NUMBER data type 241
VARCHAR2 and NVARCHAR2 data types . . . 243

iv Preparation Guide for DB2 10.1 Fundamentals Exam 610

Part 4. Working with DB2 Data
using SQL 247

Chapter 30. INSERT statement 249

Chapter 31. UPDATE statement. . . . 257

Chapter 32. DELETE statement 269

Chapter 33. SQL queries 277
select-statement 277
Examples of select-statement queries 278
fullselect 279
Examples of fullselect queries 283
subselect 284

select-clause 285
from-clause 289
where-clause 309
group-by-clause 309
having-clause 315
order-by-clause 316
fetch-first-clause 319
isolation-clause (subselect query) 319

Examples of subselect queries 321
Examples of subselect queries with joins 323
Examples of subselect queries with grouping sets,
cube, and rollup queries 325

Chapter 34. Cursors 333
Using a cursor to retrieve multiple rows 333
DECLARE CURSOR 333
OPEN 337
FETCH 341
CLOSE 344

Chapter 35. Transactions 347
COMMIT. 347
ROLLBACK 349
SAVEPOINT. 351

Chapter 36. Invoking user-defined
functions 355
Invoking scalar functions or methods 356
Invoking user-defined table functions 357

Chapter 37. Calling procedures. . . . 359
Calling procedures from the Command Line
Processor (CLP) 360

Chapter 38. Working with XML data 363
Inserting XML columns 363
Querying XML data 364

Comparison of methods for querying XML data 364
Indexing XML data 365
Updating XML data 367

Chapter 39. Working with temporal
tables and time travel queries 369
Inserting data into a system-period temporal table 369
Updating data in a system-period temporal table 370
Deleting data from a system-period temporal table 374
Querying system-period temporal data 376
Setting the system time for a session 378
Inserting data into an application-period temporal
table 381
Updating data in an application-period temporal
table 382
Deleting data from an application-period temporal
table 386
Querying application-period temporal data . . . 387
Setting the application time for a session 389
Inserting data into a bitemporal table 391
Updating data in a bitemporal table 393
Deleting data from a bitemporal table 396
Querying bitemporal data 399

Part 5. Data concurrency 403

Chapter 40. Isolation levels 405
Specifying the isolation level 410
Currently committed semantics 412
Option to disregard uncommitted insertions . . . 413
Evaluate uncommitted data through lock deferral 414

Chapter 41. Locks and concurrency
control 417
Lock granularity 418
Lock attributes 419
Factors that affect locking 420

Locks and types of application processing . . . 420
Locks and data-access methods 421

Lock type compatibility 421
Next-key locking 422
Lock modes and access plans for standard tables 423
Lock modes for MDC and ITC tables and RID
index scans 426
Lock modes for MDC block index scans 431
Locking behavior on partitioned tables 434
Lock conversion 436
Lock escalation 437

Resolving lock escalation problems 438
Lock waits and timeouts 440

Specifying a lock wait mode strategy 441
Deadlocks 441

Part 6. Appendixes 445

Appendix A. Overview of the DB2
technical information 447
DB2 technical library in hardcopy or PDF format 447
Displaying SQL state help from the command line
processor 450
Accessing different versions of the DB2
Information Center 450

Contents v

Updating the DB2 Information Center installed on
your computer or intranet server 450
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 452
DB2 tutorials 453
DB2 troubleshooting information 454

Terms and conditions. 454

Appendix B. Notices 457

Index 461

vi Preparation Guide for DB2 10.1 Fundamentals Exam 610

About this book

This book provides information from the DB2® for Linux, UNIX, and Windows
documentation to cover all the objectives that are described in the DB2 10.1
Fundamentals Exam 610.
v Part 1, “DB2 Database for Linux, UNIX, and Windows,” on page 1 provides

information about DB2 products, editions, and features.
v Part 2, “Security,” on page 19 provides information about the DB2 security

model, authorization, authorities, privileges, roles, trusted context, and Row and
Column Access Control (RCAC).

v Part 3, “Working with Databases and Database Objects,” on page 67 provides
information about DB2 servers, DB2 databases, database connectivity, database
objects, data concepts, data types, and DDL statements to create database objects
such as schemas, tables, constraints, views, triggers, and routines.

v Part 4, “Working with DB2 Data using SQL,” on page 247 provides information
about SQL statements to manage data and retrieve data, including tables with
XML columns and temporal tables. Also, it provides information about how to
invoke user-defined functions and call procedures.

v Part 5, “Data concurrency,” on page 403 provides information about data
concurrency, isolation levels, lock characteristics, locks that can be obtained in
database objects, and factors that influence locking.

You must pass DB2 10.1 Fundamentals Exam 610 to obtain the IBM® Certified
Database Associate - DB2 10.1 Fundamentals certification. For complete details about
this certification, visit http://www.ibm.com/certify/certs/08003504.shtml.

Who should use this book
This book is for users of DB2 for Linux, UNIX, and Windows who want to prepare
for the certification Exam 610. For complete details about the exam, visit
http://www.ibm.com/certify/tests/ovr610.shtml.

© Copyright IBM Corp. 2012 vii

http://www.ibm.com/certify/certs/08003504.shtml
http://www.ibm.com/certify/tests/ovr610.shtml

viii Preparation Guide for DB2 10.1 Fundamentals Exam 610

Part 1. DB2 Database for Linux, UNIX, and Windows

DB2 for Linux, UNIX, and Windows is optimized to deliver industry-leading
performance across multiple workloads, while lowering administration, storage,
development, and server costs.

DB2 for Linux, UNIX, and Windows offers numerous features that help lower the
cost of managing data by automating administration, reduce the cost of storage
with industry leading data compression technologies, optimize workload
execution, deliver scalability and high availability, secure data access, reduce the
cost of developing and maintaining applications, and licensing terms for
virtualized environments.

DB2 for Linux, UNIX, and Windows offers multiple editions designed to meet the
needs of different business environments
Related information:

DB2 database product page

© Copyright IBM Corp. 2012 1

http://www-01.ibm.com/software/data/db2/linux-unix-windows/

2 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 1. DB2 database product editions

There are multiple DB2 database product editions, each with a unique combination
of features and functionality.

DB2 Advanced Enterprise Server Edition and DB2 Enterprise Server Edition
Ideal for high-performing, robust, on-demand enterprise solutions.

DB2 Enterprise Server Edition is designed to meet the data server needs of
mid-size to large-size businesses. It can be deployed on Linux, UNIX, or
Windows servers of any size, from one processor to hundreds of
processors, and from physical to virtual servers. DB2 Enterprise Server
Edition is an ideal foundation for building on demand enterprise-wide
solutions such as high-performing 24 x 7 available high-volume transaction
processing business solutions or Web-based solutions. It is the data server
backend of choice for industry-leading ISVs building enterprise solutions
such as business intelligence, content management, e-commerce, Enterprise
Resource Planning, Customer Relationship Management, or Supply Chain
Management. Additionally, DB2 Enterprise Server Edition offers
connectivity, compatibility, and integration with other enterprise DB2 and
IDS data sources.

Program charges: DB2 Enterprise Server Edition includes table partitioning,
high availability disaster recovery (HADR), online reorganization,
materialized query tables (MQTs), multidimensional clustering (MDC),
query parallelism, connection concentrator, the governor, pureXML®,
backup compression, and Tivoli® System Automation for Multiplatforms
(SA MP). The product also includes DB2 Homogeneous Federation and
Homogeneous SQL Replication allowing federated data access and
replication between DB2 servers as well as Web services federation. DB2
Enterprise Server Edition is available on either a Processor Value Unit or
per Authorized User pricing model. You must acquire a separate user
license for each Authorized User of this product with a minimum purchase
of 25 users per 100 Processor Value Units.

For more information, refer to www.ibm.com/software/data/db2/linux-
unix-windows/edition-enterprise.html.

DB2 Workgroup Server Edition
Ideal for departmental, workgroup, or medium-sized business
environments.

DB2 Workgroup Server Edition is the data server of choice for deployment
in a departmental, workgroup, or medium-sized business environment. It
is offered in per Authorized User, Value Unit, or limited use socket pricing
models to provide an attractive price point for medium-size installations
while providing a full-function data server.

Program charges: DB2 Workgroup Server Edition includes high availability
disaster recovery (HADR), online reorganization, pureXML, Web services
federation support, DB2 Homogeneous Federation, Homogeneous SQL
Replication, backup compression, and Tivoli System Automation for
Multiplatforms (SA MP). DB2 Workgroup Server Edition can be deployed
in Linux, UNIX, and Windows server environments and will use up to 16
cores and 64 GB of memory. DB2 Workgroup Server Edition is restricted to
a stand-alone physical server with a specified maximum number of
Processor Value Units based on the total number and type of processor

© Copyright IBM Corp. 2012 3

http://www.ibm.com/software/data/db2/linux-unix-windows/edition-enterprise.html
http://www.ibm.com/software/data/db2/linux-unix-windows/edition-enterprise.html

cores, as determined in accordance with the IBM Express Middleware™

Licensing Guide available at ftp://ftp.software.ibm.com/software/smb/
pdfs/LicensingGuide.pdf. If licensed using per Limited Use Socket
licensing you can deploy on servers up to 4 sockets. You must acquire a
separate user license for each authorized user of this product, with a
minimum purchase of five users per server.

For more information, refer to www.ibm.com/software/data/db2/linux-
unix-windows/edition-workgroup.html

DB2 Express-C
Provides all the core capabilities of DB2 at no charge. Easy to use and
embed.

DB2 Express-C is a free, entry-level edition of the DB2 data server for the
developer and partner community. It is designed to be up and running in
minutes, is easy-to-use and embed, includes self-management features, and
embodies all of the core capabilities of DB2 for Linux, UNIX, and Windows
such as pureXML. Solutions developed using DB2 Express-C can be
seamlessly deployed using more scalable DB2 editions without
modifications to the application code.

Program charges: DB2 Express-C can be used for development and
deployment at no charge, and can also be distributed with third-party
solutions without any royalties to IBM. It can be installed on physical or
virtual systems with any amount of CPU and RAM, and is optimized to
utilize up to a maximum of two processor cores and 4 GB of memory. DB2
Express-C is refreshed at major release milestones and comes with online
community-based assistance. Users requiring more formal support, access
to fix packs, or additional capabilities such as high availability clustering
and replication features, can purchase optional yearly subscription for DB2
Express® Edition (FTL) or upgrade to other DB2 editions.

For more information, refer to www.ibm.com/software/data/db2/
express/.

DB2 Express Edition
Fully-functional edition of DB2 at an attractive entry-level price for small
and medium businesses.

DB2 Express Edition is a full-function DB2 data server, which provides
very attractive entry-level pricing for the small and medium business
(SMB) market. It is offered in per Authorized User, Value Unit, or Limited
Use Virtual Server based pricing models to provide choices to match SMB
customer needs. It comes with simplified packaging and is easy to
transparently install within an application. DB2 Express Edition can also be
licensed on a yearly fixed term Limited Use Virtual Server license. While it
is easy to upgrade to the other editions of DB2 database products, DB2
Express Edition includes the same autonomic manageability features of the
more scalable editions. You never have to change your application code to
upgrade; simply install the license certificate to upgrade.

Program charges: DB2 Express Edition can be deployed on pervasive SMB
operating systems, such as Linux, Windows or Solaris and includes
pureXML, web services federation, DB2 Homogeneous Federation,
Homogeneous SQL Replication, and backup compression. If licensed as a
yearly subscription (DB2 Express Edition FTL) it also includes High
Availability feature as long as both primary and secondary servers in the
high availability cluster are licensed. If licensed under the Limited Use
Virtual Server metric, DB2 Express Edition will use up to four cores on the

4 Preparation Guide for DB2 10.1 Fundamentals Exam 610

ftp://ftp.software.ibm.com/software/smb/pdfs/LicensingGuide.pdf
ftp://ftp.software.ibm.com/software/smb/pdfs/LicensingGuide.pdf
http://www.ibm.com/software/data/db2/linux-unix-windows/edition-workgroup.html
http://www.ibm.com/software/data/db2/linux-unix-windows/edition-workgroup.html
http://www.ibm.com/software/data/db2/express/
http://www.ibm.com/software/data/db2/express/

server. The DB2 data server cannot use more than 8 GB of memory per
server. You must acquire a separate user license for each authorized user of
this product with a minimum purchase of five users per server.

For more information, refer to www.ibm.com/software/data/db2/linux-
unix-windows/edition-express.html.

IBM Database Enterprise Developer Edition

This edition offers a package for a single application developer to design,
build, and prototype applications for deployment on any of the IBM
Information Management client or server platforms. This comprehensive
developer offering includes DB2 Workgroup Server Edition, DB2 Enterprise
Server Edition, IDS Enterprise Edition, IBM Database Enterprise Developer
Edition, DB2 Connect™ Unlimited Edition for System z®, and all the DB2
Version 10.1 features, allowing you to build solutions that utilize the latest
data server technologies.

Program charges: The software in this package cannot be used for
production systems. You must acquire a separate user license for each
Authorized User of this product.

Chapter 1. DB2 database product editions 5

http://www.ibm.com/software/data/db2/linux-unix-windows/edition-express.html
http://www.ibm.com/software/data/db2/linux-unix-windows/edition-express.html

6 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 2. Functionality in DB2 features and DB2 product
editions

Some functionality is available in only certain DB2 database product editions. In
some cases, the functionality is associated with a particular DB2 feature.

The table indicates which functionality is included in a DB2 product edition. If the
functionality is not included but it is available in a DB2 feature, the name of the
feature is specified. You must obtain a license for that DB2 feature as well as for
the DB2 database product edition.

Note: This table is for informational purposes only. For details of entitlement,
rights and obligations, refer to the license agreement for your DB2 product.

Table 1. Functionality in DB2 features and DB2 database product editions

Functionality
DB2
Express-C

DB2 Express
Edition1

DB2
Workgroup
Server Edition

DB2
Enterprise
Server
Edition2

DB2
Advanced
Enterprise
Server
Edition2

IBM Database
Enterprise
Developer
Edition

Adaptive
Compression and
classic row
compression

No No No DB2 Storage
Optimization
Feature4

Yes Yes

Compression:
backup

Yes Yes Yes Yes Yes Yes

Connection
concentrator

No No No Yes Yes Yes

Continuous Data
Ingest

No No No No Yes Yes

DB2 Advanced
Copy Services

No Yes Yes Yes Yes Yes

functionality No No No No No Yes

DB2 Governor No No No Yes Yes Yes

DB2 pureScale®

functionality
No No You are entitled

to use DB2
pureScale
Feature in a
maximum of 16
cores and 64
GB total cluster
size.

DB2 pureScale
Feature4

DB2 pureScale
Feature4

Yes

Federation with
DB2 LUW and
Informix® Data
Server data sources

Yes Yes Yes Yes Yes Yes

Federation with
DB2 LUW and
Oracle data sources

No No No No Yes Yes

High availability
disaster recovery

No Yes Yes Yes Yes Yes

IBM Data Studio Yes Yes Yes Yes Yes Yes

IBM InfoSphere®

Data Architect
No No No No Yes5 Yes

IBM InfoSphere
Optim™

Configuration
Manager

No No No No Yes Yes

© Copyright IBM Corp. 2012 7

Table 1. Functionality in DB2 features and DB2 database product editions (continued)

Functionality
DB2
Express-C

DB2 Express
Edition1

DB2
Workgroup
Server Edition

DB2
Enterprise
Server
Edition2

DB2
Advanced
Enterprise
Server
Edition2

IBM Database
Enterprise
Developer
Edition

IBM InfoSphere
Optim Performance
Manager Extended
Edition3

No No No No Yes Yes

IBM InfoSphere
Optim pureQuery
Runtime

No No No No Yes Yes

IBM InfoSphere
Optim Query
Workload Tuner

No No No No Yes Yes

Label-based access
control (LBAC)

No Yes Yes Yes Yes Yes

Materialized query
tables (MQTs)

No No No Yes Yes Yes

Multidimensio- nal
clustering (MDC)
tables

No No No Yes Yes Yes

Multi-Temperature
Storage

No No No Yes Yes Yes

Net Search
Extender

Yes Yes Yes Yes Yes Yes

Online
reorganization

No Yes Yes Yes Yes Yes

Oracle
Compatibility

Yes Yes Yes Yes Yes Yes

Partitioning -
partitioned
database
environment 3

No No No No No Yes

Partitioning - Table
partitioning

No No No Yes Yes Yes

pureXML storage Yes Yes Yes Yes Yes Yes

Q Replication with
two other DB2
LUW servers

No No No No Yes Yes

Query parallelism No No No Yes Yes Yes

Replication tools Yes6 Yes6 Yes6 Yes6 Yes6 Yes

Row and column
access control
(RCAC)

No Yes Yes Yes Yes Yes

Spatial Extender Yes Yes Yes Yes Yes Yes

SQL Replication
between DB2 LUW
and Informix Data
Server

No Yes Yes Yes Yes Yes

Sybase
Compatibility

No No No No No No

Time Travel Query Yes Yes Yes Yes Yes Yes

Tivoli Storage
FlashCopy
Manager

No Yes Yes Yes Yes Yes

IBM Tivoli System
Automation for
Multiplatforms

No Yes Yes Yes Yes Yes

Workload
management

No No No No Yes Yes

Note:

8 Preparation Guide for DB2 10.1 Fundamentals Exam 610

1. DB2 Express Edition including DB2 Express Edition Fixed Term License
2. You can purchase all of the DB2 features that are listed in this column for use

with IBM InfoSphere Warehouse Enterprise Base and Enterprise Edition
products.

3. Partitioned database environment is also bundled with all editions of IBM
InfoSphere Warehouse.

4. Separately priced feature.
5. DB2 Advanced Enterprise Server Edition includes 10 InfoSphere Data Architect

user licenses.
6. Replication tools except the Replication Center are available on all supported

operating systems. The Replication Center is available only on Linux and
Windows operating systems.

Chapter 2. Functionality in DB2 features and DB2 product editions 9

10 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 3. IBM DB2 pureScale Feature

In a competitive, ever-changing global business environment, you cannot afford to
let your IT infrastructure slow you down. This reality demands IT systems that
provide capacity as needed, exceptional levels of availability, and transparency
toward your existing applications.

When workloads grow, does your distributed database system require you to
change your applications or change how data is distributed? If so, your system
does not scale transparently. Even simple application changes incur time and cost
penalties and can pose risks to system availability. The stakes are always high:
Every second lost in system availability can have a direct bearing on customer
retention, compliance with service level agreements, and your bottom line.

The IBM DB2 pureScale Feature might help reduce the risk and cost associated
with growing your distributed database solution by providing extreme capacity
and application transparency. Designed for continuous availability-high availability
capable of exceeding even the strictest industry standard-this feature tolerates both
planned maintenance and component failure with ease.

With the DB2 pureScale Feature, scaling your database solution is simple. Multiple
database servers, known as members, process incoming database requests; these
members operate in a clustered system and share data. You can transparently add
more members to scale out to meet even the most demanding business needs.
There are no application changes to make, data to redistribute, or performance
tuning to do.

To deliver on a design capable of exceptional levels of database availability, the
DB2 pureScale Feature builds on familiar and proven design features from DB2 for
z/OS® database software. By also integrating several advanced hardware and
software technologies, the DB2 pureScale Feature supports the strictest
requirements for high fault tolerance and can sustain processing of database
requests even under extreme circumstances.

In the sections that follow, you can learn more about these design features and
benefits of the DB2 pureScale Feature:

Extreme capacity
The IBM DB2 pureScale Feature can scale with near-linear efficiency and high
predictability. Adding capacity is as simple as adding new members to the
instance.

High scalability

During testing with typical web commerce and OLTP workloads, the DB2
pureScale Feature demonstrated that it can scale to different levels with exceptional
efficiency; the maximum supported configuration provides extreme capacity. To
scale out, your existing applications do not have to be aware of the topology of

© Copyright IBM Corp. 2012 11

your DB2 pureScale environment.1

When two more members join the instance, they immediately begin processing

incoming database requests. Overall throughput almost doubles as the number of
members doubles. For more information about scalability, see the DB2 pureScale
Feature road map.

Scalability by design

Why does the DB2 pureScale Feature scale so well? The answer lies in the highly
efficient design, which tightly integrates several advanced hardware and software
technologies.

For example, the cluster caching facility (CF) handles instance-wide lock
management and global caching with great efficiency. Without the equivalent of
such a dedicated component to handle locking and caching, the database servers in
a cluster must communicate with each other to maintain vital locking and data
consistency information. Each time that a database server is added, the amount of
communication "chatter" increases, reducing scale-out efficiency.

Even in the maximum supported configuration, your DB2 pureScale environment
communicates efficiently. Data pages in the group buffer pool (global cache) are
shared between members and the cluster caching facility through Remote Direct

1. During testing, database requests were workload balanced across members by the DB2 pureScale Feature, not routed. Update and
select operations were randomized to ensure that the location of data on the shared disk storage had no effect on scalability.

Application

DB2 client

Client workstations

Application

DB2 client

Shared disk

Members

Primary CF Secondary CF

DB2 data server

High Speed
Interconnect

Legend

Corporate
Network

Client application throughput

Elapsed time

A
ve

ra
g

e
tr

an
sa

ct
io

n
s

Figure 1. Scalability of a DB2 pureScale environment. Additional members begin processing
incoming database requests as soon as they join the instance. Overall throughput almost
doubles as the number of members doubles.

12 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Memory Access (RDMA), without requiring any processor time or I/O cycles on
members. All operations are performed over the InfiniBand high-speed
interconnect and do not require context switching or routing through a slower IP
network stack. Round-trip communication times between cluster components are
typically measured in the low tens of microseconds. The end result is an instance
that is always aware of what data is in flight and where, but without the
performance penalty.

Continuous availability
Whether it is planned system maintenance or an extreme circumstance, such as
when multiple components fail simultaneously, the IBM DB2 pureScale Feature is
designed to continue processing incoming database requests without interruption.
Automatic load balancing across all active members means optimal resource
utilization at all times, which helps to keep application response times low.

Unplanned events

A sudden software or hardware failure can be highly disruptive, even in a system
that employs redundant components. The DB2 pureScale Feature incorporates
several design features to deliver fault tolerance that not only can keep your
instance available but also minimizes the effect of component failures on the rest of
the database system.

Robust heartbeat detection ensures that failed components are identified and
isolated rapidly. Recovery from component failures is fully automatic and requires
no intervention.

If a member fails while processing database requests, it is immediately fenced off
from the rest of the system. During the failure, most of your data on the shared
disk storage remains available to active members processing database requests.
Only the data that was inflight on the failed member is temporarily held by a
retained lock until the DB2 pureScale Feature completes the automated member
crash recovery.

Application

DB2 client

Client workstations

Application

DB2 client

Shared disk

Members

DB2 data server

High Speed
Interconnect

Legend

Corporate
Network

Primary CF Secondary CF
Primary CF

Figure 2. Component failures in a DB2 pureScale environment; database requests continue
to be processed.

Chapter 3. DB2 pureScale Feature 13

After a software failure, the member is restarted on its home host, and recovery is
performed. The member resumes transaction processing as soon as recovery is
complete. After a hardware failure, the member restarts on another host (a process
known as restart light) so that the data can be recovered. As soon as its home host
is available again, the member fails back to that host, restarts, and resumes
processing.

After a software or hardware failure on the primary cluster caching facility, a
secondary, duplexed cluster caching facility automatically takes over the primary
role. This takeover is transparent to applications and causes only minimal delay
because of the continuous duplexing of locking and caching information between
cluster caching facilities. The instance remains available.

Planned events

System maintenance in a DB2 pureScale environment is designed to cause as little
disruption as possible. You can roll out system upgrades without stopping the DB2
pureScale instance or affecting database availability.

To perform system maintenance on a member, you quiesce it. After existing
transactions on the member are completed (drained), you take the member offline
and perform the system maintenance. During the maintenance period, new
transaction requests are automatically directed to other, active members, a process
that is transparent to applications.

After the maintenance is complete and you restart the member, it begins processing
database transactions again as soon as it rejoins the instance.

Application transparency
Getting started with the IBM DB2 pureScale Feature is quick and simple:
Applications do not have to be aware of the topology of your database
environment when you deploy the feature. This means that applications work just
as they did before, yet they can benefit

from the extreme capacity and continuous availability from the moment that you
start your DB2 pureScale instance for the first time.

Increasing capacity

Capacity planning with the DB2 pureScale Feature is simple. You can start small
and add members to your database environment as your needs grow, scaling out
from the most basic highly available configuration all the way to the maximum
supported configuration, which provides extreme processing capacity. Scaling is
near linear in efficiency and highly predictable.

When you scale out, no application changes or repartitioning of your data is
required. No performance tuning is required to scale efficiently. If you need more
capacity, you simply add more members.

Maintaining availability

Maintaining database availability means both compliance with service level
agreements (SLAs) and high tolerance to component failures. To maximize
hardware utilization rates and help keep response times consistent for your
applications, incoming database requests are automatically load balanced across all

14 Preparation Guide for DB2 10.1 Fundamentals Exam 610

active members in your DB2 pureScale instance. To minimize the impact of
component failures, the automated restart and recovery process of the DB2
pureScale Feature runs quickly and without affecting most database requests. Only
those database requests that were being processed by a failed member must be
resubmitted by the originating application; the resubmitted requests are then
processed by the next available member.

In the example in the following diagram, several events take place in short
succession. Multiple component failures require automated, internal recovery, and
a scale-out operation increases the capacity of the DB2 pureScale instance. None of
these events requires any application awareness. The box containing the
components of the DB2 pureScale Feature is shaded to indicate application
transparency.

Planning made simple

The ability to easily add and remove resources helps you to manage challenges
such as the following ones:
v Cyclical workloads. If some of your workloads are cyclical (for example,

seasonal), you can add resources before they are required, and then move the
extra capacity somewhere else later on.

v Sudden increases in workloads. An SLA might dictate minimum response times
for completing database requests. If you discover sudden workload surges from
some applications that are threatening response times, you can help meet your
SLA by quickly moving additional members to the database that is experiencing
the peak demand.

v Maintenance-related slowdowns. To help negate the effect of system
maintenance on the overall throughput of your DB2 pureScale environment, you

Application perspective

DB2
data server

Client workstations

Shared disk

Members

Database administrator perspective

High Speed
Interconnect

Legend

Corporate
Network

Primary CF Secondary CF
Primary CF

Application

DB2 client

Figure 3. A DB2 pureScale environment encountering multiple component failures and being
scaled out. Applications connecting to the database need not be aware of these events.

Chapter 3. DB2 pureScale Feature 15

can add amember to your environment before commencing maintenance on an
existing member. After you complete the system maintenance and the original
member rejoins the instance, you can remove the additional resource or perform
maintenance on other members.

How does a DB2 pureScale environment compare to a multi-partition
database environment?

The IBM DB2 pureScale Feature, much like a multi-partition database environment,
provides a scalable and highly available database solution. However, the instance
type and data layout of a DB2 pureScale environment and a multi-partition
database environment are different.

Each environment has unique advantages and is tailored for specific types of
database processing. Which environment you use depends on your specific
business requirements. The following table outlines some of the key differences
between a multi-partition database environment and a DB2 pureScale environment.

Table 2. Comparison of a multi-partition database environment and a DB2 pureScale
environment

Multi-partition database
environment DB2 pureScale environment

Provides A multi-partition database
environment provides
members working in parallel
in a shared-nothing
environment. Data is
distributed across partitions,
with local access to a subset
of data by each member.
Typically, a query is
processed by multiple
members simultaneously.

A DB2 pureScale
environment provides DB2
members that independently
process database requests but
access data stored on a
shared disk. Each SQL
request is executed by a
single member.

Designed for v Faster response time of
long-running or complex
queries

v Management of very large
data sets

v I/O spread across many
computers

v A continuously available
database solution

v Increased throughput of
many concurrent short
queries

v Easy scalability

Transaction size and type The ideal scenario for a
multi-partition database
environment is lengthy
workloads that can be
subdivided and directed to
specific partitions to run in
parallel.

A multi-partition database
environment is ideal for
applications that are part of a
decision support system
(DSS), for business
intelligence applications, and
for data warehousing.

A DB2 pureScale
environment is ideal for
short transactions where
there is little need to
parallelize each query.
Queries are automatically
routed to different members,
based on member workload.

The ideal scenario for a DB2
pureScale environment
includes workloads that
handle online transaction
processing (OLTP) or
enterprise resource planning
(ERP).

16 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 4. IBM DB2 Storage Optimization Feature

This feature includes data row compression and other compression types to help
maximize the use of existing storage.

Data row compression uses a table-level compression dictionary to compress data by
row. Compressing data at the row level is advantageous because it allows
repeating patterns that span multiple column values within a row to be replaced
with shorter symbol strings, allowing for improved performance. In I/O-bound
systems, it will not only reduce storage requirements but may improve overall
performance.

Index compression utilizes multiple algorithms to reduce the storage requirements
for indexes and reduces the total storage footprint of your DB2 database.

Temp compression will automatically compress the amount of space used for temp
tables. This automated compression will help to both improve performance of
business intelligence workloads using large temp tables as well as reducing the
total storage needed by DB2 database systems.

This feature is available as an option for DB2 Enterprise Server Edition only and
can only be acquired if the underlying DB2 data server is licensed with the
Processor Value Unit charge metric.

For more information, refer to www.ibm.com/software/data/db2/linux-unix-
windows/editions_features_storage.html.

© Copyright IBM Corp. 2012 17

http://www.ibm.com/software/data/db2/linux-unix-windows/editions_features_storage.html
http://www.ibm.com/software/data/db2/linux-unix-windows/editions_features_storage.html

18 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Part 2. Security

DB2 database products provide security features that you can use to protect your
sensitive data. With the number of both internal and external security threats
growing, it is important to separate the tasks of keeping data secure from the
management tasks of administering critical systems.

© Copyright IBM Corp. 2012 19

20 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 5. DB2 security model

Two modes of security control access to the DB2 database system data and
functions. Access to the DB2 database system is managed by facilities that reside
outside the DB2 database system (authentication), whereas access within the DB2
database system is managed by the database manager (authorization).

Authentication

Authentication is the process by which a system verifies a user's identity. User
authentication is completed by a security facility outside the DB2 database system,
through an authentication security plug-in module. A default authentication
security plug-in module that relies on operating-system-based authentication is
included when you install the DB2 database system. For your convenience, the
DB2 database manager also ships with authentication plug-in modules for
Kerberos and lightweight directory access protocol (LDAP). To provide even
greater flexibility in accommodating your specific authentication needs, you can
build your own authentication security plug-in module.

The authentication process produces a DB2 authorization ID. Group membership
information for the user is also acquired during authentication. Default acquisition
of group information relies on an operating-system based group-membership
plug-in module that is included when you install the DB2 database system. If you
prefer, you can acquire group membership information by using a specific
group-membership plug-in module, such as LDAP.

Authorization

After a user is authenticated, the database manager determines if that user is
allowed to access DB2 data or resources. Authorization is the process whereby the
DB2 database manager obtains information about the authenticated user, indicating
which database operations that user can perform, and which data objects that user
can access.

The different sources of permissions available to an authorization ID are as follows:
1. Primary permissions: those granted to the authorization ID directly.
2. Secondary permissions: those granted to the groups and roles in which the

authorization ID is a member.
3. Public permissions: those granted to PUBLIC.
4. Context-sensitive permissions: those granted to a trusted context role.

Authorization can be given to users in the following categories:
v System-level authorization

The system administrator (SYSADM), system control (SYSCTRL), system
maintenance (SYSMAINT), and system monitor (SYSMON) authorities provide
varying degrees of control over instance-level functions. Authorities provide a
way both to group privileges and to control maintenance and utility operations
for instances, databases, and database objects.

v Database-level authorization
The security administrator (SECADM), database administrator (DBADM), access
control (ACCESSCTRL), data access (DATAACCESS), SQL administrator

© Copyright IBM Corp. 2012 21

(SQLADM), workload management administrator (WLMADM), and explain
(EXPLAIN) authorities provide control within the database. Other database
authorities include LOAD (ability to load data into a table), and CONNECT
(ability to connect to a database).

v Object-level authorization
Object level authorization involves checking privileges when an operation is
performed on an object. For example, to select from a table a user must have
SELECT privilege on a table (as a minimum).

v Content-based authorization
Views provide a way to control which columns or rows of a table specific users
can read. Label-based access control (LBAC) determines which users have read
and write access to individual rows and individual columns.

You can use these features, in conjunction with the DB2 audit facility for
monitoring access, to define and manage the level of security your database
installation requires.

22 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 6. Authentication methods for your server

Access to an instance or a database first requires that the user be authenticated. The
authentication type for each instance determines how and where a user will be
verified.

The authentication type is stored in the configuration file at the server. It is initially
set when the instance is created. There is one authentication type per instance,
which covers access to that database server and all the databases under its control.

If you intend to access data sources from a federated database, you must consider
data source authentication processing and definitions for federated authentication
types.

Note: You can check the following website for certification information about the
cryptographic routines used by the DB2 database management system to perform
encryption of the user ID and password when using SERVER_ENCRYPT
authentication, and of the user ID, password, and user data when using
DATA_ENCRYPT authentication: http://www.ibm.com/security/standards/
st_evaluations.shtml.

Switching User on an Explicit Trusted Connection

For CLI/ODBC and XA CLI/ODBC applications, the authentication mechanism
used when processing a switch user request that requires authentication is the
same as the mechanism used to originally establish the trusted connection itself.
Therefore, any other negotiated security attributes (for example, encryption
algorithm, encryption keys, and plug-in names) used during the establishment of
the explicit trusted connection are assumed to be the same for any authentication
required for a switch user request on that trusted connection. Java™ applications
allow the authentication method to be changed on a switch user request (by use of
a datasource property).

Because a trusted context object can be defined such that switching user on a
trusted connection does not require authentication, in order to take full advantage
of the switch user on an explicit trusted connection feature, user-written security
plug-ins must be able to:
v Accept a user ID-only token
v Return a valid DB2 authorization ID for that user ID

Note: An explicit trusted connection cannot be established if the CLIENT type of
authentication is in effect.

Authentication types provided

The following authentication types are provided:

SERVER
Specifies that authentication occurs on the server through the security
mechanism in effect for that configuration, for example, through a security
plug-in module. The default security mechanism is that if a user ID and
password are specified during the connection or attachment attempt, they

© Copyright IBM Corp. 2012 23

http://www.ibm.com/security/standards/st_evaluations.shtml
http://www.ibm.com/security/standards/st_evaluations.shtml

are sent to the server and compared to the valid user ID and password
combinations at the server to determine if the user is permitted to access
the instance.

Note: The server code detects whether a connection is local or remote. For
local connections, when authentication is SERVER, a user ID and password
are not required for authentication to be successful.

SERVER_ENCRYPT
Specifies that the server accepts encrypted SERVER authentication schemes.
If the client authentication is not specified, the client is authenticated using
the method selected at the server. The user ID and password are encrypted
when they are sent over the network from the client to the server.

When the resulting authentication method negotiated between the client
and server is SERVER_ENCRYPT, you can choose to encrypt the user ID
and password using an AES (Advanced Encryption Standard) 256-bit
algorithm. To do this, set the alternate_auth_enc database manager
configuration parameter. This configuration parameter has three settings:
v NOT_SPECIFIED (default) means that the server accepts the encryption

algorithm that the client proposes, including an AES 256-bit algorithm.
v AES_CMP means that if the connecting client proposes DES but supports

AES encryption, the server renegotiates for AES encryption.
v AES_ONLY means that the server accepts only AES encryption. If the client

does not support AES encryption, the connection is rejected.

AES encryption can be used only when the authentication method
negotiated between the client and server is SERVER_ENCRYPT.

CLIENT
Specifies that authentication occurs on the database partition where the
application is invoked using operating system security. The user ID and
password specified during a connection or attachment attempt are
compared with the valid user ID and password combinations on the client
node to determine whether the user ID is permitted access to the instance.
No further authentication will take place on the database server. This is
sometimes called single signon.

If the user performs a local or client login, the user is known only to that
local client workstation.

If the remote instance has CLIENT authentication, two other parameters
determine the final authentication type: trust_allclnts and
trust_clntauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.

When the authentication type of CLIENT has been selected, an
additional option might be selected to protect against clients whose
operating environment has no inherent security.

To protect against unsecured clients, the administrator can select
Trusted Client Authentication by setting the trust_allclnts
parameter to NO. This implies that all trusted platforms can
authenticate the user on behalf of the server. Untrusted clients are
authenticated on the Server and must provide a user ID and

24 Preparation Guide for DB2 10.1 Fundamentals Exam 610

password. You use the trust_allclnts configuration parameter to
indicate whether you are trusting clients. The default for this
parameter is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet
have some of those clients as those who do not have a native safe
security system for authentication.

You might also want to complete authentication at the server even
for trusted clients. To indicate where to validate trusted clients, you
use the trust_clntauth configuration parameter. The default for
this parameter is CLIENT.

Note: For trusted clients only, if no user ID or password is
explicitly provided when attempting to CONNECT or ATTACH, then
validation of the user takes place at the client. The trust_clntauth
parameter is only used to determine where to validate the
information provided on the USER or USING clauses.

To protect against all clients, including JCC type 4 clients on z/OS
and System i® but excluding native DB2 clients on z/OS, OS/390®,
VM, VSE, and System i, set the trust_allclnts parameter to
DRDAONLY. Only these clients can be trusted to perform client-side
authentication. All other clients must provide a user ID and
password to be authenticated by the server.

The trust_clntauth parameter is used to determine where the
clients mentioned previously are authenticated: if trust_clntauth
is CLIENT, authentication takes place at the client. If trust_clntauth
is SERVER, authentication takes place at the client when no user ID
and password are provided and at the server when a user ID and
password are provided.

Table 3. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter Combinations.

trust_ allclnts trust_ clntauth

Untrusted
non-
DRDA®

Client
Authen-
tication (no
user ID &
password)

Untrusted
non-
DRDA
Client
Authen-
tication
(with user
ID &
password)

Trusted
non-
DRDA
Client
Authen-
tication (no
user ID &
password)

Trusted
non-
DRDA
Client
Authen-
tication
(with user
ID &
password)

DRDA
Client
Authen-
tication (no
user ID &
password)

DRDA
Client
Authen-
tication
(with user
ID &
password)

YES CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT

YES SERVER CLIENT SERVER CLIENT SERVER CLIENT SERVER

NO CLIENT SERVER SERVER CLIENT CLIENT CLIENT CLIENT

NO SERVER SERVER SERVER CLIENT SERVER CLIENT SERVER

DRDAONLY CLIENT SERVER SERVER SERVER SERVER CLIENT CLIENT

DRDAONLY SERVER SERVER SERVER SERVER SERVER CLIENT SERVER

DATA_ENCRYPT
The server accepts encrypted SERVER authentication schemes and the
encryption of user data. The authentication works the same way as that
shown with SERVER_ENCRYPT. The user ID and password are encrypted
when they are sent over the network from the client to the server.

Chapter 6. Authentication methods for servers 25

The following user data are encrypted when using this authentication type:
v SQL and XQuery statements.
v SQL program variable data.
v Output data from the server processing of an SQL or XQuery statement

and including a description of the data.
v Some or all of the answer set data resulting from a query.
v Large object (LOB) data streaming.
v SQLDA descriptors.

DATA_ENCRYPT_CMP
The server accepts encrypted SERVER authentication schemes and the
encryption of user data. In addition, this authentication type allows
compatibility with down level products not supporting DATA_ENCRYPT
authentication type. These products are permitted to connect with the
SERVER_ENCRYPT authentication type and without encrypting user data.
Products supporting the new authentication type must use it. This
authentication type is only valid in the server's database manager
configuration file and is not valid when used on the CATALOG DATABASE
command.

KERBEROS
Used when both the DB2 client and server are on operating systems that
support the Kerberos security protocol. The Kerberos security protocol
performs authentication as a third party authentication service by using
conventional cryptography to create a shared secret key. This key becomes
a user's credential and is used to verify the identity of users during all
occasions when local or network services are requested. The key eliminates
the need to pass the user name and password across the network as clear
text. Using the Kerberos security protocol enables the use of a single
sign-on to a remote DB2 database server. The KERBEROS authentication
type is supported on various operating systems.

Kerberos authentication works as follows:
1. A user logging on to the client machine using a domain account

authenticates to the Kerberos key distribution center (KDC) at the
domain controller. The key distribution center issues a ticket-granting
ticket (TGT) to the client.

2. During the first phase of the connection the server sends the target
principal name, which is the service account name for the DB2 database
server service, to the client. Using the server's target principal name
and the target-granting ticket, the client requests a service ticket from
the ticket-granting service (TGS) which also resides at the domain
controller. If both the client's ticket-granting ticket and the server's
target principal name are valid, the TGS issues a service ticket to the
client. The principal name recorded in the database directory can be
specified as name/instance@REALM. (This is in addition to
DOMAIN\userID and userID@xxx.xxx.xxx.com formats accepted on
Windows.)

3. The client sends this service ticket to the server using the
communication channel (which can be, as an example, TCP/IP).

4. The server validates the client's server ticket. If the client's service ticket
is valid, then the authentication is completed.

26 Preparation Guide for DB2 10.1 Fundamentals Exam 610

It is possible to catalog the databases on the client machine and explicitly
specify the Kerberos authentication type with the server's target principal
name. In this way, the first phase of the connection can be bypassed.

If a user ID and a password are specified, the client will request the
ticket-granting ticket for that user account and use it for authentication.

KRB_SERVER_ENCRYPT
Specifies that the server accepts KERBEROS authentication or encrypted
SERVER authentication schemes. If the client authentication is KERBEROS,
the client is authenticated using the Kerberos security system. If the client
authentication is SERVER_ENCRYPT, the client is authenticated using a
user ID and encryption password. If the client authentication is not
specified, then the client will use Kerberos if available, otherwise it will use
password encryption. For other client authentication types, an
authentication error is returned. The authentication type of the client
cannot be specified as KRB_SERVER_ENCRYPT

Note: The Kerberos authentication types are supported on clients and
servers running on specific operating systems. For Windows operating
systems, both client and server machines must either belong to the same
Windows domain or belong to trusted domains. This authentication type
should be used when the server supports Kerberos and some, but not all,
of the client machines support Kerberos authentication.

GSSPLUGIN
Specifies that the server uses a GSS-API plug-in to perform authentication.
If the client authentication is not specified, the server returns a list of
server-supported plug-ins, including any Kerberos plug-in that is listed in
the srvcon_gssplugin_list database manager configuration parameter, to
the client. The client selects the first plug-in found in the client plug-in
directory from the list. If the client does not support any plug-in in the list,
the client is authenticated using the Kerberos authentication scheme (if it is
returned). If the client authentication is the GSSPLUGIN authentication
scheme, the client is authenticated using the first supported plug-in in the
list.

GSS_SERVER_ENCRYPT
Specifies that the server accepts plug-in authentication or encrypted server
authentication schemes. If client authentication occurs through a plug-in,
the client is authenticated using the first client-supported plug-in in the list
of server-supported plug-ins.

If the client authentication is not specified and an implicit connect is being
performed (that is, the client does not supply a user ID and password
when making the connection), the server returns a list of server-supported
plug-ins, the Kerberos authentication scheme (if one of the plug-ins in the
list is Kerberos-based), and the encrypted server authentication scheme.
The client is authenticated using the first supported plug-in found in the
client plug-in directory. If the client does not support any of the plug-ins
that are in the list, the client is authenticated using the Kerberos
authentication scheme. If the client does not support the Kerberos
authentication scheme, the client is authenticated using the encrypted
server authentication scheme, and the connection will fail because of a
missing password. A client supports the Kerberos authentication scheme if
a DB2 supplied Kerberos plug-in exists for the operating system, or a
Kerberos-based plug-in is specified for the srvcon_gssplugin_list database
manager configuration parameter.

Chapter 6. Authentication methods for servers 27

If the client authentication is not specified and an explicit connection is
being performed (that is, both the user ID and password are supplied), the
authentication type is equivalent to SERVER_ENCRYPT. In this case, the
choice of the encryption algorithm used to encrypt the user ID and
password depends on the setting of the alternate_auth_enc database
manager configuration parameter.

Note:

1. Do not inadvertently lock yourself out of your instance when you are changing
the authentication information, since access to the configuration file itself is
protected by information in the configuration file. The following database
manager configuration file parameters control access to the instance:
v authentication *
v sysadm_group *
v trust_allclnts

v trust_clntauth

v sysctrl_group

v sysmaint_group

* Indicates the two most important parameters.
There are some things that can be done to ensure this does not happen: If you
do accidentally lock yourself out of the DB2 database system, you have a
fail-safe option available on all platforms that will allow you to override the
usual DB2 database security checks to update the database manager
configuration file using a highly privileged local operating system security user.
This user always has the privilege to update the database manager
configuration file and thereby correct the problem. However, this security
bypass is restricted to a local update of the database manager configuration file.
You cannot use a fail-safe user remotely or for any other DB2 database
command. This special user is identified as follows:
v UNIX platforms: the instance owner
v Windows platform: someone belonging to the local “Administrators” group
v Other platforms: there is no local security on the other platforms, so all users

pass local security checks anyway

28 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 7. Authorization, privileges, and object ownership

Users (identified by an authorization ID) can successfully execute operations only
if they have the authority to perform the specified function. To create a table, a
user must be authorized to create tables; to alter a table, a user must be authorized
to alter the table; and so forth.

The database manager requires that each user be specifically authorized to use
each database function needed to perform a specific task. A user can acquire the
necessary authorization through a grant of that authorization to their user ID or
through membership in a role or a group that holds that authorization.

There are three forms of authorization, administrative authority, privileges, and LBAC
credentials. In addition, ownership of objects brings with it a degree of
authorization on the objects created. These forms of authorization are discussed in
the following section.

Administrative authority

The person or persons holding administrative authority are charged with the task
of controlling the database manager and are responsible for the safety and integrity
of the data.

System-level authorization

The system-level authorities provide varying degrees of control over
instance-level functions:
v SYSADM (system administrator) authority

The SYSADM (system administrator) authority provides control over all
the resources created and maintained by the database manager. The
system administrator possesses all the authorities of SYSCTRL,
SYSMAINT, and SYSMON authority. The user who has SYSADM
authority is responsible both for controlling the database manager, and
for ensuring the safety and integrity of the data.

v SYSCTRL authority
The SYSCTRL authority provides control over operations that affect
system resources. For example, a user with SYSCTRL authority can
create, update, start, stop, or drop a database. This user can also start or
stop an instance, but cannot access table data. Users with SYSCTRL
authority also have SYSMON authority.

v SYSMAINT authority
The SYSMAINT authority provides the authority required to perform
maintenance operations on all databases associated with an instance. A
user with SYSMAINT authority can update the database configuration,
backup a database or table space, restore an existing database, and
monitor a database. Like SYSCTRL, SYSMAINT does not provide access
to table data. Users with SYSMAINT authority also have SYSMON
authority.

v SYSMON (system monitor) authority
The SYSMON (system monitor) authority provides the authority
required to use the database system monitor.

Database-level authorization

© Copyright IBM Corp. 2012 29

The database level authorities provide control within the database:
v DBADM (database administrator)

The DBADM authority level provides administrative authority over a
single database. This database administrator possesses the privileges
required to create objects and issue database commands.
The DBADM authority can be granted only by a user with SECADM
authority. The DBADM authority cannot be granted to PUBLIC.

v SECADM (security administrator)
The SECADM authority level provides administrative authority for
security over a single database. The security administrator authority
possesses the ability to manage database security objects (database roles,
audit policies, trusted contexts, security label components, and security
labels) and grant and revoke all database privileges and authorities. A
user with SECADM authority can transfer the ownership of objects that
they do not own. They can also use the AUDIT statement to associate an
audit policy with a particular database or database object at the server.
The SECADM authority has no inherent privilege to access data stored
in tables. It can only be granted by a user with SECADM authority. The
SECADM authority cannot be granted to PUBLIC.

v SQLADM (SQL administrator)
The SQLADM authority level provides administrative authority to
monitor and tune SQL statements within a single database. It can be
granted by a user with ACCESSCTRL or SECADM authority.

v WLMADM (workload management administrator)
The WLMADM authority provides administrative authority to manage
workload management objects, such as service classes, work action sets,
work class sets, and workloads. It can be granted by a user with
ACCESSCTRL or SECADM authority.

v EXPLAIN (explain authority)
The EXPLAIN authority level provides administrative authority to
explain query plans without gaining access to data. It can only be
granted by a user with ACCESSCTRL or SECADM authority.

v ACCESSCTRL (access control authority)
The ACCESSCTRL authority level provides administrative authority to
issue the following GRANT (and REVOKE) statements.
– GRANT (Database Authorities)

ACCESSCTRL authority does not give the holder the ability to grant
ACCESSCTRL, DATAACCESS, DBADM, or SECADM authority. Only
a user who has SECADM authority can grant these authorities.

– GRANT (Global Variable Privileges)
– GRANT (Index Privileges)
– GRANT (Module Privileges)
– GRANT (Package Privileges)
– GRANT (Routine Privileges)
– GRANT (Schema Privileges)
– GRANT (Sequence Privileges)
– GRANT (Server Privileges)
– GRANT (Table, View, or Nickname Privileges)
– GRANT (Table Space Privileges)

30 Preparation Guide for DB2 10.1 Fundamentals Exam 610

– GRANT (Workload Privileges)
– GRANT (XSR Object Privileges)

ACCESSCTRL authority can only be granted by a user with SECADM
authority. The ACCESSCTRL authority cannot be granted to PUBLIC.

v DATAACCESS (data access authority)
The DATAACCESS authority level provides the following privileges and
authorities.
– LOAD authority
– SELECT, INSERT, UPDATE, DELETE privilege on tables, views,

nicknames, and materialized query tables
– EXECUTE privilege on packages
– EXECUTE privilege on modules
– EXECUTE privilege on routines

Except on the audit routines: AUDIT_ARCHIVE, AUDIT_LIST_LOGS,
AUDIT_DELIM_EXTRACT.

– READ privilege on all global variables and WRITE privilege on all
global variables except variables which are read-only

– USAGE privilege on all XSR objects
– USAGE privilege on all sequences

It can be granted only by a user who holds SECADM authority. The
DATAACCESS authority cannot be granted to PUBLIC.

v Database authorities (non-administrative)
To perform activities such as creating a table or a routine, or for loading
data into a table, specific database authorities are required. For example,
the LOAD database authority is required for use of the load utility to
load data into tables (a user must also have INSERT privilege on the
table).

Privileges

A privilege is a permission to perform an action or a task. Authorized users can
create objects, have access to objects they own, and can pass on privileges on their
own objects to other users by using the GRANT statement.

Privileges may be granted to individual users, to groups, or to PUBLIC. PUBLIC is
a special group that consists of all users, including future users. Users that are
members of a group will indirectly take advantage of the privileges granted to the
group, where groups are supported.

The CONTROL privilege: Possessing the CONTROL privilege on an object allows a
user to access that database object, and to grant and revoke privileges to or from
other users on that object.

Note: The CONTROL privilege only apples to tables, views, nicknames, indexes,
and packages.

If a different user requires the CONTROL privilege to that object, a user with
SECADM or ACCESSCTRL authority could grant the CONTROL privilege to that
object. The CONTROL privilege cannot be revoked from the object owner,
however, the object owner can be changed by using the TRANSFER OWNERSHIP
statement.

Chapter 7. Authorization, privileges, and object ownership 31

Individual privileges: Individual privileges can be granted to allow a user to carry
out specific tasks on specific objects. Users with the administrative authorities
ACCESSCTRL or SECADM, or with the CONTROL privilege, can grant and revoke
privileges to and from users.

Individual privileges and database authorities allow a specific function, but do not
include the right to grant the same privileges or authorities to other users. The
right to grant table, view, schema, package, routine, and sequence privileges to
others can be extended to other users through the WITH GRANT OPTION on the
GRANT statement. However, the WITH GRANT OPTION does not allow the
person granting the privilege to revoke the privilege once granted. You must have
SECADM authority, ACCESSCTRL authority, or the CONTROL privilege to revoke
the privilege.

Privileges on objects in a package or routine: When a user has the privilege to execute
a package or routine, they do not necessarily require specific privileges on the
objects used in the package or routine. If the package or routine contains static
SQL or XQuery statements, the privileges of the owner of the package are used for
those statements. If the package or routine contains dynamic SQL or XQuery
statements, the authorization ID used for privilege checking depends on the setting
of the DYNAMICRULES BIND option of the package issuing the dynamic query
statements, and whether those statements are issued when the package is being
used in the context of a routine (except on the audit routines: AUDIT_ARCHIVE,
AUDIT_LIST_LOGS, AUDIT_DELIM_EXTRACT).

A user or group can be authorized for any combination of individual privileges or
authorities. When a privilege is associated with an object, that object must exist.
For example, a user cannot be given the SELECT privilege on a table unless that
table has previously been created.

Note: Care must be taken when an authorization name representing a user or a
group is granted authorities and privileges and there is no user, or group created
with that name. At some later time, a user or a group can be created with that
name and automatically receive all of the authorities and privileges associated with
that authorization name.

The REVOKE statement is used to revoke previously granted privileges. The
revoking of a privilege from an authorization name revokes the privilege granted
by all authorization names.

Revoking a privilege from an authorization name does not revoke that same
privilege from any other authorization names that were granted the privilege by
that authorization name. For example, assume that CLAIRE grants SELECT WITH
GRANT OPTION to RICK, then RICK grants SELECT to BOBBY and CHRIS. If
CLAIRE revokes the SELECT privilege from RICK, BOBBY and CHRIS still retain
the SELECT privilege.

LBAC credentials

Label-based access control (LBAC) lets the security administrator decide exactly
who has write access and who has read access to individual rows and individual
columns. The security administrator configures the LBAC system by creating
security policies. A security policy describes the criteria used to decide who has
access to what data. Only one security policy can be used to protect any one table
but different tables can be protected by different security policies.

32 Preparation Guide for DB2 10.1 Fundamentals Exam 610

After creating a security policy, the security administrator creates database objects,
called security labels and exemptions that are part of that policy. A security label
describes a certain set of security criteria. An exemption allows a rule for
comparing security labels not to be enforced for the user who holds the exemption,
when they access data protected by that security policy.

Once created, a security label can be associated with individual columns and rows
in a table to protect the data held there. Data that is protected by a security label is
called protected data. A security administrator allows users access to protected
data by granting them security labels. When a user tries to access protected data,
that user's security label is compared to the security label protecting the data. The
protecting label blocks some security labels and does not block others.

Object ownership

When an object is created, one authorization ID is assigned ownership of the object.
Ownership means the user is authorized to reference the object in any applicable
SQL or XQuery statement.

When an object is created within a schema, the authorization ID of the statement
must have the required privilege to create objects in the implicitly or explicitly
specified schema. That is, the authorization name must either be the owner of the
schema, or possess the CREATEIN privilege on the schema.

Note: This requirement is not applicable when creating table spaces, buffer pools
or database partition groups. These objects are not created in schemas.

When an object is created, the authorization ID of the statement is the definer of
that object and by default becomes the owner of the object after it is created.

Note: One exception exists. If the AUTHORIZATION option is specified for the
CREATE SCHEMA statement, any other object that is created as part of the
CREATE SCHEMA operation is owned by the authorization ID specified by the
AUTHORIZATION option. Any objects that are created in the schema after the
initial CREATE SCHEMA operation, however, are owned by the authorization ID
associated with the specific CREATE statement.

For example, the statement CREATE SCHEMA SCOTTSTUFF AUTHORIZATION SCOTT
CREATE TABLE T1 (C1 INT) creates the schema SCOTTSTUFF and the table
SCOTTSTUFF.T1, which are both owned by SCOTT. Assume that the user BOBBY is
granted the CREATEIN privilege on the SCOTTSTUFF schema and creates an index
on the SCOTTSTUFF.T1 table. Because the index is created after the schema, BOBBY
owns the index on SCOTTSTUFF.T1.

Privileges are assigned to the object owner based on the type of object being
created:
v The CONTROL privilege is implicitly granted on newly created tables, indexes,

and packages. This privilege allows the object creator to access the database
object, and to grant and revoke privileges to or from other users on that object.
If a different user requires the CONTROL privilege to that object, a user with
ACCESSCTRL or SECADM authority must grant the CONTROL privilege to that
object. The CONTROL privilege cannot be revoked by the object owner.

v The CONTROL privilege is implicitly granted on newly created views if the
object owner has the CONTROL privilege on all the tables, views, and
nicknames referenced by the view definition.

Chapter 7. Authorization, privileges, and object ownership 33

v Other objects like triggers, routines, sequences, table spaces, and buffer pools do
not have a CONTROL privilege associated with them. The object owner does,
however, automatically receive each of the privileges associated with the object
and those privileges are with the WITH GRANT OPTION, where supported.
Therefore the object owner can provide these privileges to other users by using
the GRANT statement. For example, if USER1 creates a table space, USER1
automatically has the USEAUTH privilege with the WITH GRANT OPTION on
this table space and can grant the USEAUTH privilege to other users. In
addition, the object owner can alter, add a comment on, or drop the object.
These authorizations are implicit for the object owner and cannot be revoked.

Certain privileges on the object, such as altering a table, can be granted by the
owner, and can be revoked from the owner by a user who has ACCESSCTRL or
SECADM authority. Certain privileges on the object, such as commenting on a
table, cannot be granted by the owner and cannot be revoked from the owner. Use
the TRANSFER OWNERSHIP statement to move these privileges to another user.
When an object is created, the authorization ID of the statement is the definer of
that object and by default becomes the owner of the object after it is created.
However, when you use the BIND command to create a package and you specify
the OWNER authorization id option, the owner of objects created by the static SQL
statements in the package is the value of authorization id. In addition, if the
AUTHORIZATION clause is specified on a CREATE SCHEMA statement, the
authorization name specified after the AUTHORIZATION keyword is the owner of
the schema.

A security administrator or the object owner can use the TRANSFER OWNERSHIP
statement to change the ownership of a database object. An administrator can
therefore create an object on behalf of an authorization ID, by creating the object
using the authorization ID as the qualifier, and then using the TRANSFER
OWNERSHIP statement to transfer the ownership that the administrator has on the
object to the authorization ID.

34 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 8. Default privileges granted on creating a database

When you create a database, default database level authorities and default object
level privileges are granted to you within that database.

The authorities and privileges that you are granted are listed according to the
system catalog views where they are recorded:
1. SYSCAT.DBAUTH

v The database creator is granted the following authorities:
– ACCESSCTRL
– DATAACCESS
– DBADM
– SECADM

v In a non-restrictive database, the special group PUBLIC is granted the
following authorities:
– CREATETAB
– BINDADD
– CONNECT
– IMPLICIT_SCHEMA

2. SYSCAT.TABAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v SELECT on all SYSCAT and SYSIBM tables
v SELECT and UPDATE on all SYSSTAT tables
v SELECT on the following views in schema SYSIBMADM:

– ALL_*
– USER_*
– ROLE_*
– SESSION_*
– DICTIONARY
– TAB

3. SYSCAT.ROUTINEAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v EXECUTE with GRANT on all procedures in schema SQLJ
v EXECUTE with GRANT on all functions and procedures in schema SYSFUN
v EXECUTE with GRANT on all functions and procedures in schema

SYSPROC (except audit routines)
v EXECUTE on all table functions in schema SYSIBM
v EXECUTE on all other procedures in schema SYSIBM

4. SYSCAT.MODULEAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v EXECUTE on the following modules in schema SYSIBMADM:

– DBMS_DDL

© Copyright IBM Corp. 2012 35

– DBMS_JOB
– DBMS_LOB
– DBMS_OUTPUT
– DBMS_SQL
– DBMS_STANDARD
– DBMS_UTILITY

5. SYSCAT.PACKAGEAUTH
v The database creator is granted the following privileges:

– CONTROL on all packages created in the NULLID schema
– BIND with GRANT on all packages created in the NULLID schema
– EXECUTE with GRANT on all packages created in the NULLID schema

v In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
– BIND on all packages created in the NULLID schema
– EXECUTE on all packages created in the NULLID schema

6. SYSCAT.SCHEMAAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v CREATEIN on schema SQLJ
v CREATEIN on schema NULLID

7. SYSCAT.TBSPACEAUTH
In a non-restrictive database, the special group PUBLIC is granted the USE
privilege on table space USERSPACE1.

8. SYSCAT.WORKLOADAUTH
In a non-restrictive database, the special group PUBLIC is granted the USAGE
privilege on SYSDEFAULTUSERWORKLOAD.

9. SYSCAT.VARIABLEAUTH
In a non-restrictive database, the special group PUBLIC is granted the READ
privilege on schema global variables in the SYSIBM schema, execpt for the
following variables:
v SYSIBM.CLIENT_ORIGUSERID
v SYSIBM.CLIENT_USRSECTOKEN

A non-restrictive database is a database created without the RESTRICTIVE option
on the CREATE DATABASE command.

36 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 9. Granting privileges

To grant privileges on most database objects, you must have ACCESSCTRL
authority, SECADM authority, or CONTROL privilege on that object; or, you must
hold the privilege WITH GRANT OPTION. Additionally, users with SYSADM or
SYSCTRL authority can grant table space privileges. You can grant privileges only
on existing objects.

About this task

To grant CONTROL privilege to someone else, you must have ACCESSCTRL or
SECADM authority. To grant ACCESSCTRL, DATAACCESS, DBADM or SECADM
authority, you must have SECADM authority.

The GRANT statement allows an authorized user to grant privileges. A privilege
can be granted to one or more authorization names in one statement; or to
PUBLIC, which makes the privileges available to all users. Note that an
authorization name can be either an individual user or a group.

On operating systems where users and groups exist with the same name, you
should specify whether you are granting the privilege to the user or group. Both
the GRANT and REVOKE statements support the keywords USER, GROUP, and
ROLE. If these optional keywords are not used, the database manager checks the
operating system security facility to determine whether the authorization name
identifies a user or a group; it also checks whether an authorization ID of type role
with the same name exists. If the database manager cannot determine whether the
authorization name refers to a user, a group, or a role, an error is returned. The
following example grants SELECT privileges on the EMPLOYEE table to the user
HERON:

GRANT SELECT
ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to the
group HERON:

GRANT SELECT
ON EMPLOYEE TO GROUP HERON

© Copyright IBM Corp. 2012 37

38 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 10. Revoking privileges

The REVOKE statement allows authorized users to revoke privileges previously
granted to other users.

About this task

To revoke privileges on database objects, you must have ACCESSCTRL authority,
SECADM authority, or CONTROL privilege on that object. Table space privileges
can also be revoked by users with SYSADM and SYSCTRL authority. Note that
holding a privilege WITH GRANT OPTION is not sufficient to revoke that
privilege. To revoke CONTROL privilege from another user, you must have
ACCESSCTRL, or SECADM authority. To revoke ACCESSCTRL, DATAACCESS,
DBADM or SECADM authority, you must have SECADM authority. Table space
privileges can be revoked only by a user who holds SYSADM, or SYSCTRL
authority. Privileges can only be revoked on existing objects.

Note: A user without ACCESSCTRL authority, SECADM authority, or CONTROL
privilege is not able to revoke a privilege that they granted through their use of the
WITH GRANT OPTION. Also, there is no cascade on the revoke to those who
have received privileges granted by the person being revoked.
If an explicitly granted table (or view) privilege is revoked from a user with
DBADM authority, privileges will not be revoked from other views defined on that
table. This is because the view privileges are available through the DBADM
authority and are not dependent on explicit privileges on the underlying tables.

If a privilege has been granted to a user, a group, or a role with the same name,
you must specify the GROUP, USER, or ROLE keyword when revoking the
privilege. The following example revokes the SELECT privilege on the EMPLOYEE
table from the user HERON:

REVOKE SELECT
ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table
from the group HERON:

REVOKE SELECT
ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all members
of that group. If an individual name has been directly granted a privilege, it will
keep it until that privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only
the privileges implicitly granted by the system are revoked. If a privilege on the
view was granted directly by another user, the privilege is still held.

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only
the privileges implicitly granted by the system are revoked. If a privilege on the
view was granted directly by another user, the privilege is still held.

© Copyright IBM Corp. 2012 39

You may have a situation where you want to GRANT a privilege to a group and
then REVOKE the privilege from just one member of the group. There are only a
couple of ways to do that without receiving the error message SQL0556N:
v You can remove the member from the group; or, create a new group with fewer

members and GRANT the privilege to the new group.
v You can REVOKE the privilege from the group and then GRANT it to individual

users (authorization IDs).

Note: When CONTROL privilege is revoked from a user on a table or a view, the
user continues to have the ability to grant privileges to others. When given
CONTROL privilege, the user also receives all other privileges WITH GRANT
OPTION. Once CONTROL is revoked, all of the other privileges remain WITH
GRANT OPTION until they are explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid, but can
be validated if rebound by a user with appropriate authority. Packages can also be
rebuilt if the privileges are subsequently granted again to the binder of the
application; running the application will trigger a successful implicit rebind. If
privileges are revoked from PUBLIC, all packages bound by users having only
been able to bind based on PUBLIC privileges are invalidated. If DBADM
authority is revoked from a user, all packages bound by that user are invalidated
including those associated with database utilities. Attempting to use a package that
has been marked invalid causes the system to attempt to rebind the package. If
this rebind attempt fails, an error occurs (SQLCODE -727). In this case, the
packages must be explicitly rebound by a user with:
v Authority to rebind the packages
v Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked.

If you define a trigger or SQL function based on one or more privileges and you
lose one or more of these privileges, the trigger or SQL function cannot be used.

40 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 11. Controlling access to data with views

A view provides a means of controlling access or extending privileges to a table.

Using a view allows the following kinds of control over access to a table:
v Access only to designated columns of the table.

For users and application programs that require access only to specific columns
of a table, an authorized user can create a view to limit the columns addressed
only to those required.

v Access only to a subset of the rows of the table.
By specifying a WHERE clause in the subquery of a view definition, an
authorized user can limit the rows addressed through a view.

v Access only to a subset of the rows or columns in data source tables or views. If
you are accessing data sources through nicknames, you can create local DB2
database views that reference nicknames. These views can reference nicknames
from one or many data sources.

Note: Because you can create a view that contains nickname references for more
than one data source, your users can access data in multiple data sources from
one view. These views are called multi-location views. Such views are useful when
joining information in columns of sensitive tables across a distributed
environment or when individual users lack the privileges needed at data sources
for specific objects.

To create a view, a user must have DATAACCESS authority, or CONTROL or
SELECT privilege for each table, view, or nickname referenced in the view
definition. The user must also be able to create an object in the schema specified
for the view. That is, DBADM authority, CREATEIN privilege for an existing
schema, or IMPLICIT_SCHEMA authority on the database if the schema does not
already exist.

If you are creating views that reference nicknames, you do not need additional
authority on the data source objects (tables and views) referenced by nicknames in
the view; however, users of the view must have SELECT authority or the
equivalent authorization level for the underlying data source objects when they
access the view.

If your users do not have the proper authority at the data source for underlying
objects (tables and views), you can:
1. Create a data source view over those columns in the data source table that are

OK for the user to access
2. Grant the SELECT privilege on this view to users
3. Create a nickname to reference the view

Users can then access the columns by issuing a SELECT statement that references
the new nickname.

The following scenario provides a more detailed example of how views can be
used to restrict access to information.

Many people might require access to information in the STAFF table, for different
reasons. For example:

© Copyright IBM Corp. 2012 41

v The personnel department needs to be able to update and look at the entire
table.
This requirement can be easily met by granting SELECT and UPDATE privileges
on the STAFF table to the group PERSONNL:

GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

v Individual department managers need to look at the salary information for their
employees.
This requirement can be met by creating a view for each department manager.
For example, the following view can be created for the manager of department
number 51:

CREATE VIEW EMP051 AS
SELECT NAME,SALARY,JOB FROM STAFF
WHERE DEPT=51

GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051 view
just like the STAFF table. When accessing the EMP051 view of the STAFF table,
this manager views the following information:

NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

v All users need to be able to locate other employees. This requirement can be met
by creating a view on the NAME column of the STAFF table and the
LOCATION column of the ORG table, and by joining the two tables on their
corresponding DEPT and DEPTNUMB columns:

CREATE VIEW EMPLOCS AS
SELECT NAME, LOCATION FROM STAFF, ORG
WHERE STAFF.DEPT=ORG.DEPTNUMB

GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following information:

NAME LOCATION

Molinare New York

Lu New York

Daniels New York

Jones New York

Hanes Boston

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

42 Preparation Guide for DB2 10.1 Fundamentals Exam 610

NAME LOCATION

O'Brien Atlanta

Quigley Atlanta

Naughton Atlanta

Abrahams Atlanta

Koonitz Chicago

Plotz Chicago

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

Chapter 11. Controlling access to data with views 43

44 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 12. Roles

Roles simplify the administration and management of privileges by offering an
equivalent capability as groups but without the same restrictions.

A role is a database object that groups together one or more privileges and can be
assigned to users, groups, PUBLIC, or other roles by using a GRANT statement, or
can be assigned to a trusted context by using a CREATE TRUSTED CONTEXT or
ALTER TRUSTED CONTEXT statement. A role can be specified for the
SESSION_USER ROLE connection attribute in a workload definition.

Roles provide several advantages that make it easier to manage privileges in a
database system:
v Security administrators can control access to their databases in a way that

mirrors the structure of their organizations (they can create roles in the database
that map directly to the job functions in their organizations).

v Users are granted membership in the roles that reflect their job responsibilities.
As their job responsibilities change, their membership in roles can be easily
granted and revoked.

v The assignment of privileges is simplified. Instead of granting the same set of
privileges to each individual user in a particular job function, the administrator
can grant this set of privileges to a role representing that job function and then
grant that role to each user in that job function.

v A role's privileges can be updated and all users who have been granted that role
receive the update; the administrator does not need to update the privileges for
every user on an individual basis.

v The privileges and authorities granted to roles are always used when you create
views, triggers, materialized query tables (MQTs), static SQL and SQL routines,
whereas privileges and authorities granted to groups (directly or indirectly) are
not used.
This is because the DB2 database system cannot determine when membership in
a group changes, as the group is managed by third-party software (for example,
the operating system or an LDAP directory). Because roles are managed inside
the database, the DB2 database system can determine when authorization
changes and act accordingly. Roles granted to groups are not considered, due to
the same reason groups are not considered.

v All the roles assigned to a user are enabled when that user establishes a
connection, so all privileges and authorities granted to roles are taken into
account when a user connects. Roles cannot be explicitly enabled or disabled.

v The security administrator can delegate management of a role to others.

All DB2 privileges and authorities that can be granted within a database can be
granted to a role. For example, a role can be granted any of the following
authorities and privileges:
v DBADM, SECADM, DATAACCESS, ACCESSCTRL, SQLADM, WLMADM,

LOAD, and IMPLICIT_SCHEMA database authorities
v CONNECT, CREATETAB, CREATE_NOT_FENCED, BINDADD,

CREATE_EXTERNAL_ROUTINE, or QUIESCE_CONNECT database authorities
v Any database object privilege (including CONTROL)

© Copyright IBM Corp. 2012 45

A user's roles are automatically enabled and considered for authorization when a
user connects to a database; you do not need to activate a role by using the SET
ROLE statement. For example, when you create a view, a materialized query table
(MQT), a trigger, a package, or an SQL routine, the privileges that you gain
through roles apply. However, privileges that you gain through roles granted to
groups of which you are a member do not apply.

A role does not have an owner. The security administrator can use the WITH
ADMIN OPTION clause of the GRANT statement to delegate management of the
role to another user, so that the other user can control the role membership.

Restrictions

There are a few restrictions in the use of roles:
v A role cannot own database objects.
v Permissions and roles granted to groups are not considered when you create the

following database objects:
– Packages containing static SQL
– Views
– Materialized query tables (MQT)
– Triggers
– SQL Routines

Only roles granted to the user creating the object or to PUBLIC, directly or
indirectly (such as through a role hierarchy), are considered when creating these
objects.

Roles compared to groups
Privileges and authorities granted to groups are not considered when creating
views, materialized query tables (MQTs), SQL routines, triggers, and packages
containing static SQL. Avoid this restriction by using roles instead of groups.

Roles allow users to create database objects using their privileges acquired through
roles, which are controlled by the DB2 database system. Groups and users are
controlled externally from the DB2 database system, for example, by an operating
system or an LDAP server.

Example of replacing the use of groups with roles

This example shows how you can replace groups by using roles.

Assume that there are three groups, DEVELOPER_G, TESTER_G and SALES_G.
The users BOB, ALICE, and TOM are members of these groups, as shown in the
following table:

Table 4. Example groups and users

Group Users belonging to this group

DEVELOPER_G BOB

TESTER_G ALICE, TOM

SALES_G ALICE, BOB

1. The security administrator creates the roles DEVELOPER, TESTER, and SALES
to be used instead of the groups.

46 Preparation Guide for DB2 10.1 Fundamentals Exam 610

CREATE ROLE DEVELOPER
CREATE ROLE TESTER
CREATE ROLE SALES

2. The security administrator grants membership in these roles to users (setting
the membership of users in groups was the responsibility of the system
administrator):
GRANT ROLE DEVELOPER TO USER BOB
GRANT ROLE TESTER TO USER ALICE, USER TOM
GRANT ROLE SALES TO USER BOB, USER ALICE

3. The database administrator can grant to the roles similar privileges or
authorities as were held by the groups, for example:
GRANT privilege ON object TO ROLE DEVELOPER

The database administrator can then revoke these privileges from the groups,
as well as ask the system administrator to remove the groups from the system.

Example of creating a trigger using privileges acquired through a
role

This example shows that user BOB can successfully create a trigger, TRG1, when
he holds the necessary privilege through the role DEVELOPER.
1. First, user ALICE creates the table, WORKITEM:

CREATE TABLE WORKITEM (x int)

2. Then, the privilege to alter ALICE's table is granted to role DEVELOPER by the
database administrator.
GRANT ALTER ON ALICE.WORKITEM TO ROLE DEVELOPER

3. User BOB successfully creates the trigger, TRG1, because he is a member of the
role, DEVELOPER.
CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM

FOR EACH STATEMENT MODE DB2SQL INSERT INTO ALICE.WORKITEM VALUES (1)

Chapter 12. Roles 47

48 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 13. Trusted contexts and trusted connections

A trusted context is a database object that defines a trust relationship for a
connection between the database and an external entity such as an application
server.

The trust relationship is based upon the following set of attributes:
v System authorization ID: Represents the user that establishes a database

connection
v IP address (or domain name): Represents the host from which a database

connection is established
v Data stream encryption: Represents the encryption setting (if any) for the data

communication between the database server and the database client

When a user establishes a database connection, the DB2 database system checks
whether the connection matches the definition of a trusted context object in the
database. When a match occurs, the database connection is said to be trusted.

A trusted connection allows the initiator of this trusted connection to acquire
additional capabilities that may not be available outside the scope of the trusted
connection. The additional capabilities vary depending on whether the trusted
connection is explicit or implicit.

The initiator of an explicit trusted connection has the ability to:
v Switch the current user ID on the connection to a different user ID with or

without authentication
v Acquire additional privileges via the role inheritance feature of trusted contexts

An implicit trusted connection is a trusted connection that is not explicitly
requested; the implicit trusted connection results from a normal connection request
rather than an explicit trusted connection request. No application code changes are
needed to obtain an implicit connection. Also, whether you obtain an implicit
trusted connection or not has no effect on the connect return code (when you
request an explicit trusted connection, the connect return code indicates whether
the request succeeds or not). The initiator of an implicit trusted connection can
only acquire additional privileges via the role inheritance feature of trusted
contexts; they cannot switch the user ID.

How using trusted contexts enhances security

The three-tiered application model extends the standard two-tiered client and
server model by placing a middle tier between the client application and the
database server. It has gained great popularity in recent years particularly with the
emergence of web-based technologies and the Java 2 Enterprise Edition (J2EE)
platform. An example of a software product that supports the three-tier application
model is IBM WebSphere® Application Server (WAS).

In a three-tiered application model, the middle tier is responsible for authenticating
the users running the client applications and for managing the interactions with
the database server. Traditionally, all the interactions with the database server
occur through a database connection established by the middle tier using a
combination of a user ID and a credential that identify that middle tier to the
database server. This means that the database server uses the database privileges

© Copyright IBM Corp. 2012 49

associated with the middle tier's user ID for all authorization checking and
auditing that must occur for any database access, including access performed by
the middle tier on behalf of a user.

While the three-tiered application model has many benefits, having all interactions
with the database server (for example, a user request) occur under the middle tier's
authorization ID raises several security concerns, which can be summarized as
follows:
v Loss of user identity

Some enterprises prefer to know the identity of the actual user accessing the
database for access control purposes.

v Diminished user accountability
Accountability through auditing is a basic principle in database security. Not
knowing the user's identity makes it difficult to distinguish the transactions
performed by the middle tier for its own purpose from those performed by the
middle tier on behalf of a user.

v Over granting of privileges to the middle tier's authorization ID
The middle tier's authorization ID must have all the privileges necessary to
execute all the requests from all the users. This has the security issue of enabling
users who do not need access to certain information to obtain access anyway.

v Weakened security
In addition to the privilege issue raised in the previous point, the current
approach requires that the authorization ID used by the middle tier to connect
must be granted privileges on all resources that might be accessed by user
requests. If that middle-tier authorization ID is ever compromised, then all those
resources will be exposed.

v "Spill over" between users of the same connection
Changes by a previous user can affect the current user.

Clearly, there is a need for a mechanism whereby the actual user's identity and
database privileges are used for database requests performed by the middle tier on
behalf of that user. The most straightforward approach of achieving this goal
would be for the middle-tier to establish a new connection using the user's ID and
password, and then direct the user's requests through that connection. Although
simple, this approach suffers from several drawbacks which include the following:
v Inapplicability for certain middle tiers. Many middle-tier servers do not have

the user authentication credentials needed to establish a connection.
v Performance overhead. There is an obvious performance overhead associated

with creating a new physical connection and re-authenticating the user at the
database server.

v Maintenance overhead. In situations where you are not using a centralized
security set up or are not using single sign-on, there is maintenance overhead in
having two user definitions (one on the middle tier and one at the server). This
requires changing passwords at different places.

The trusted contexts capability addresses this problem. The security administrator
can create a trusted context object in the database that defines a trust relationship
between the database and the middle-tier. The middle-tier can then establish an
explicit trusted connection to the database, which gives the middle tier the ability
to switch the current user ID on the connection to a different user ID, with or
without authentication. In addition to solving the end-user identity assertion
problem, trusted contexts offer another advantage. This is the ability to control
when a privilege is made available to a database user. The lack of control on when
privileges are available to a user can weaken overall security. For example,

50 Preparation Guide for DB2 10.1 Fundamentals Exam 610

privileges may be used for purposes other than they were originally intended. The
security administrator can assign one or more privileges to a role and assign that
role to a trusted context object. Only trusted database connections (explicit or
implicit) that match the definition of that trusted context can take advantage of the
privileges associated with that role.

Enhancing performance

When you use trusted connections, you can maximize performance because of the
following advantages:
v No new connection is established when the current user ID of the connection is

switched.
v If the trusted context definition does not require authentication of the user ID to

switch to, then the overhead associated with authenticating a new user at the
database server is not incurred.

Example of creating a trusted context

Suppose that the security administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1

BASED UPON CONNECTION USING SYSTEM AUTHID USER2
ATTRIBUTES (ADDRESS ’192.0.2.1’)
DEFAULT ROLE managerRole
ENABLE

If user user1 requests a trusted connection from IP address 192.0.2.1, the DB2
database system returns a warning (SQLSTATE 01679, SQLCODE +20360) to
indicate that a trusted connection could not be established, and that user user1
simply got a non-trusted connection. However, if user user2 requests a trusted
connection from IP address 192.0.2.1, the request is honored because the connection
attributes are satisfied by the trusted context CTX1. Now that use user2 has
established a trusted connection, he or she can now acquire all the privileges and
authorities associated with the trusted context role managerRole. These privileges
and authorities may not be available to user user2 outside the scope of this trusted
connection

Using trusted contexts and trusted connections
You can establish an explicit trusted connection by making a request within an
application when a connection to a DB2 database is established. The security
administrator must have previously defined a trusted context, using the CREATE
TRUSTED CONTEXT statement, with attributes matching those of the connection
you are establishing (see Step 1, later).

Before you begin

The API you use to request an explicit trusted connection when you establish a
connection depends on the type of application you are using (see the table in Step
2).

After you have established an explicit trusted connection, the application can
switch the user ID of the connection to a different user ID using the appropriate
API for the type of application (see the table in Step 3).

Chapter 13. Trusted contexts and trusted connections 51

Procedure
1. The security administrator defines a trusted context in the server by using the

CREATE TRUSTED CONTEXT statement. For example:
CREATE TRUSTED CONTEXT MYTCX

BASED UPON CONNECTION USING SYSTEM AUTHID NEWTON
ATTRIBUTES (ADDRESS ’192.0.2.1’)
WITH USE FOR PUBLIC WITHOUT AUTHENTICATION
ENABLE

2. To establish a trusted connection, use one of the following APIs in your
application:

Option Description

Application API

CLI/ODBC SQLConnect, SQLSetConnectAttr

XA CLI/ODBC Xa_open

JAVA getDB2TrustedPooledConnection,
getDB2TrustedXAConnection

3. To switch to a different user, with or without authentication, use one of the
following APIs in your application:

Option Description

Application API

CLI/ODBC SQLSetConnectAttr

XA CLI/ODBC SQLSetConnectAttr

JAVA getDB2Connection, reuseDB2Connection

.NET DB2Connection.ConnectionString keywords:
TrustedContextSystemUserID and
TrustedContextSystemPassword

The switching can be done either with or without authenticating the new user
ID, depending on the definition of the trusted context object associated with the
explicit trusted connection. For example, suppose that the security
administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID USER1
ATTRIBUTES (ADDRESS ’192.0.2.1’)
WITH USE FOR USER2 WITH AUTHENTICATION,

USER3 WITHOUT AUTHENTICATION
ENABLE

Further, suppose that an explicit trusted connection is established. A request to
switch the user ID on the trusted connection to USER3 without providing
authentication information is allowed because USER3 is defined as a user of
trusted context CTX1 for whom authentication is not required. However, a
request to switch the user ID on the trusted connection to USER2 without
providing authentication information will fail because USER2 is defined as a
user of trusted context CTX1 for whom authentication information must be
provided.

52 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Example of establishing an explicit trusted connection and
switching the user

In the following example, a middle-tier server needs to issue some database
requests on behalf of an end-user, but does not have access to the end-user's
credentials to establish a database connection on behalf of that end-user.

You can create a trusted context object on the database server that allows the
middle-tier server to establish an explicit trusted connection to the database. After
establishing an explicit trusted connection, the middle-tier server can switch the
current user ID of the connection to a new user ID without the need to
authenticate the new user ID at the database server. The following CLI code
snippet demonstrates how to establish a trusted connection using the trusted
context, MYTCX, defined in Step 1, earlier, and how to switch the user on the
trusted connection without authentication.
int main(int argc, char *argv[])
{
SQLHANDLE henv; /* environment handle */
SQLHANDLE hdbc1; /* connection handle */
char origUserid[10] = "newton";
char password[10] = "test";
char switchUserid[10] = "zurbie";

char dbName[10] = "testdb";

// Allocate the handles
SQLAllocHandle(SQL_HANDLE_ENV, &henv);
SQLAllocHandle(SQL_HANDLE_DBC, &hdbc1);

// Set the trusted connection attribute
SQLSetConnectAttr(hdbc1, SQL_ATTR_USE_TRUSTED_CONTEXT,
SQL_TRUE, SQL_IS_INTEGER);

// Establish a trusted connection
SQLConnect(hdbc1, dbName, SQL_NTS, origUserid, SQL_NTS,
password, SQL_NTS);

//Perform some work under user ID "newton"
.

// Commit the work
SQLEndTran(SQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Switch the user ID on the trusted connection
SQLSetConnectAttr(hdbc1,
SQL_ATTR_TRUSTED_CONTEXT_USERID, switchUserid,
SQL_IS_POINTER
);

//Perform new work using user ID "zurbie"
.

//Commit the work
SQLEndTranSQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Disconnect from database
SQLDisconnect(hdbc1);

return 0;

} /* end of main */

Chapter 13. Trusted contexts and trusted connections 53

What to do next

When does the user ID actually get switched?
After the command to switch the user on the trusted connection is issued,
the switch user request is not performed until the next statement is sent to
the server. This is demonstrated by the following example where the list
applications command shows the original user ID until the next statement
is issued.
1. Establish an explicit trusted connection with USERID1.
2. Issue the switch user command, such as getDB2Connection for

USERID2.
3. Run db2 list applications. It still shows that USERID1 is connected.
4. Issue a statement on the trusted connection, such as

executeQuery("values current sqlid"), to perform the switch user
request at the server.

5. Run db2 list applications again. It now shows that USERID2 is
connected.

54 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 14. Row and column access control (RCAC)

DB2 Version 10.1 introduces row and column access control (RCAC), as an
additional layer of data security. Row and column access control is sometimes
referred to as fine-grained access control or FGAC. RCAC controls access to a table
at the row level, column level, or both. RCAC can be used to complement the table
privileges model.

To comply with various government regulations, you might implement procedures
and methods to ensure that information is adequately protected. Individuals in
your organization are permitted access to only the subset of data that is required to
perform their job tasks. For example, government regulations in your area might
state that a doctor is authorized to view the medical records of their own patients,
but not of other patients. The same regulations might also state that, unless a
patient gives their consent, a healthcare provider is not permitted access to patient
personal information, such as the patients home phone number.

You can use row and column access control to ensure that your users have access
to only the data that is required for their work. For example, a hospital system
running DB2 for Linux, UNIX, and Windows and RCAC can filter patient
information and data to include only that data which a particular doctor requires.
Other patients do not exist as far as the doctor is concerned. Similarly, when a
patient service representative queries the patient table at the same hospital, they
are able to view the patient name and telephone number columns, but the medical
history column is masked for them. If data is masked, a NULL, or an alternate
value is displayed, instead of the actual medical history.

Row and column access control, or RCAC, has the following advantages:
v No database user is inherently exempted from the row and column access

control rules.
Even higher level authorities such as users with DATAACCESS authority are not
exempt from these rules. Only users with security administrator (SECADM)
authority can manage row and column access controls within a database.
Therefore, you can use RCAC to prevent users with DATAACCESS authority
from freely accessing all data in a database.

v Table data is protected regardless of how a table is accessed via SQL.
Applications, improvised query tools, and report generation tools are all subject
to RCAC rules. The enforcement is data-centric.

v No application changes are required to take advantage of this additional layer of
data security.
That is, row and column level access controls are established and defined in a
way that is not apparent to existing applications. However, RCAC represents an
important shift in paradigm in the sense that it is no longer what is being asked
but rather who is asking what. Result sets for the same query change based on
the context in which the query was asked and there is no warning or error
returned. This behavior is the exact intent of the solution. It means that
application designers and DBAs must be conscious that queries do not see the
whole picture in terms of the data in the table, unless granted specific
permissions to do so.

© Copyright IBM Corp. 2012 55

Row and column access control (RCAC) rules
Row and column access control (RCAC) places access control at the table level
around the data itself. SQL rules created on rows and columns are the basis of the
implementation of this capability.

Row and column access control is an access control model in which a security
administrator manages privacy and security policies. RCAC permits all users to
access the same table, as opposed to alternative views of a table. RCAC does
however, restrict access to the table based upon individual user permissions or
rules as specified by a policy associated with the table. There are two sets of rules,
one set operates on rows, and the other on columns.
v Row permission

– A row permission is a database object that expresses a row access control rule
for a specific table.

– A row access control rule is an SQL search condition that describes what set
of rows a user has access to.

v Column mask
– A column mask is a database object that expresses a column access control

rule for a specific column in a table.
– A column access control rule is an SQL CASE expression that describes what

column values a user is permitted to see and under what conditions.

Scenario: ExampleHMO using row and column access control
This scenario presents ExampleHMO, a national organization with a large and
active list of patients, as a user of row and column access control. ExampleHMO
uses row and column access control to ensure that their database policies reflect
government regulatory requirements for privacy and security, as well as
management business objectives.

Organizations that handle patient health information and their personal
information, like ExampleHMO, must comply with government privacy and data
protection regulations, for example the Health Insurance Portability and
Accountability Act (HIPAA). These privacy and data protection regulations ensure
that any sensitive patient medical or personal information is shared, viewed, and
modified only by authorities who are privileged to do so. Any violation of the act
results in huge penalties including civil and criminal suits.

ExampleHMO must ensure that the data stored in their database systems is secure
and only privileged users have access to the data. According to typical privacy
regulations, certain patient information can be accessed and modified by only
privileged users.

Security policies
ExampleHMO implements a security strategy where data access to DB2 databases
are made available according to certain security policies.

The security policies conform to government privacy and data protection
regulations. The first column outlines the policies and the challenges faced by the
organization, the second column outlines the DB2 row and column access control
feature which addresses the challenge.

56 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Security challenge
Row and column access control feature
which addresses the security challenge

Limiting column access to only privileged
users.

For example, Jane, who is a drug researcher
at a partner company, is not permitted to
view sensitive patient medical information
or personal data like their insurance number.

Column masks can be used to filter or hide
sensitive data from Jane.

Limiting row access to only privileged users.
Dr. Lee is only permitted to view patient
information for his own patients, not all
patients in the ExampleHMO system.

Row permissions can be implemented to
control which user can view any particular
row.

Restricting data on a need-to-know basis. Row permissions can help with this
challenge as well by restricting table level
data at the user level.

Restricting other database objects like UDFs,
triggers, views on RCAC secured data.

Row and column access control protects data
at the data level. It is this data-centric nature
of the row and column access control
solution that enforces security policies on
even database objects like UDFs, triggers,
and views.

Database users and roles
In this scenario, a number of different people create, secure, and use ExampleHMO
data. These people have different user rights and database authorities.

ExampleHMO implemented their security strategy to classify the way data is
accessed from the database. Internal and external access to data is based on the
separation of duties to users who access the data and their data access privileges.
ExampleHMO created the following database roles to separate these duties:

PCP
For primary care physicians.

DRUG_RESEARCH
For researchers.

ACCOUNTING
For accountants.

MEMBERSHIP
For members who add patients for opt-in and opt-out.

PATIENT
For patients.

The following people create, secure, and use ExampleHMO data:

Alex
ExampleHMO Chief Security Administrator. He holds the SECADM authority.

Peter
ExampleHMO Database Administrator. He holds the DBADM authority.

Paul
ExampleHMO Database Developer. He has the privileges to create triggers and
user-defined functions.

Chapter 14. Row and column access control (RCAC) 57

Dr. Lee
ExampleHMO Physician. He belongs to the PCP role.

Jane
Drug researcher at Innovative Pharmaceutical Company, a ExampleHMO
partner. She belongs to the DRUG_RESEARCH role.

John
ExampleHMO Accounting Department. He belongs to the ACCOUNTING role.

Tom
ExampleHMO Membership Officer. He belongs to the MEMBERSHIP role.

Bob
ExampleHMO Patient. He belongs to the PATIENT role.

If you want to try any of the example SQL statements and commands presented in
this scenario, create these user IDs with their listed authorities.

The following example SQL statements assume that the users have been created on
the system. The SQL statements create each role and grant SELECT and INSERT
permissions to the various tables in the ExampleHMO database to the users:
--Creating roles and granting authority

CREATE ROLE PCP;

CREATE ROLE DRUG_RESEARCH;

CREATE ROLE ACCOUNTING;

CREATE ROLE MEMBERSHIP;

CREATE ROLE PATIENT;

GRANT ROLE PCP TO USER LEE;
GRANT ROLE DRUG_RESEARCH TO USER JANE;
GRANT ROLE ACCOUNTING TO USER JOHN;
GRANT ROLE MEMBERSHIP TO USER TOM;
GRANT ROLE PATIENT TO USER BOB;

Database tables
This scenario focuses on two tables in the ExampleHMO database: the PATIENT
table and the PATIENTCHOICE table.

The PATIENT table stores basic patient information and health information. This
scenario considers the following columns within the PATIENT table:

SSN
The patient's insurance number. A patient's insurance number is considered
personal information.

NAME
The patient's name. A patient's name is considered personal information.

ADDRESS
The patient's address. A patient's address is considered personal information.

USERID
The patient's database ID.

PHARMACY
The patient's medical information.

58 Preparation Guide for DB2 10.1 Fundamentals Exam 610

ACCT_BALANCE
The patient's billing information.

PCP_ID
The patient's primary care physician database ID

The PATIENTCHOICE table stores individual patient opt-in and opt-out
information which decides whether a patient wants to expose his health
information to outsiders for research purposes in this table. This scenario considers
the following columns within the PATIENTCHOICE table:

SSN
The patient's insurance number is used to match patients with their choices.

CHOICE
The name of a choice a patient can make.

VALUE
The decision made by the patients about the choice.

For example, the row 123-45-6789, drug_research, opt-in says that patient with SSN
123-45-6789 agrees to disclose their information for medical research purposes.

The following example SQL statements create the PATIENT, PATIENTCHOICE,
and ACCT_HISTORY tables. Authority is granted on the tables and data is
inserted:
--Patient table storing information regarding patient
CREATE TABLE PATIENT (
SSN CHAR(11),
USERID VARCHAR(18),
NAME VARCHAR(128),
ADDRESS VARCHAR(128),
PHARMACY VARCHAR(250),
ACCT_BALANCE DECIMAL(12,2) WITH DEFAULT,
PCP_ID VARCHAR(18)
);

--Patientchoice table which stores what patient opts
--to expose regarding his health information

CREATE TABLE PATIENTCHOICE (
SSN CHAR(11),
CHOICE VARCHAR(128),
VALUE VARCHAR(128)
);

--Log table to track account balance
CREATE TABLE ACCT_HISTORY(
SSN CHAR(11),
BEFORE_BALANCE DECIMAL(12,2),
AFTER_BALANCE DECIMAL(12,2),
WHEN DATE,
BY_WHO VARCHAR(20)
);

--Grant authority

GRANT SELECT, UPDATE ON TABLE PATIENT TO ROLE PCP;

GRANT SELECT ON TABLE PATIENT TO ROLE DRUG_RESEARCH;

GRANT SELECT, UPDATE ON TABLE PATIENT TO ROLE ACCOUNTING;

Chapter 14. Row and column access control (RCAC) 59

GRANT SELECT ON TABLE ACCT_HISTORY TO ROLE ACCOUNTING;

GRANT SELECT, UPDATE, INSERT ON TABLE PATIENT TO ROLE MEMBERSHIP;
GRANT INSERT ON TABLE PATIENTCHOICE TO ROLE MEMBERSHIP;

GRANT SELECT ON TABLE PATIENT TO ROLE PATIENT;

GRANT SELECT, ALTER ON TABLE PATIENT TO USER ALEX;

GRANT ALTER, SELECT ON TABLE PATIENT TO USER PAUL;
GRANT INSERT ON TABLE ACCT_HISTORY TO USER PAUL;

--Insert patient data

INSERT INTO PATIENT
VALUES(’123-55-1234’, ’MAX’, ’Max’, ’First Strt’, ’hypertension’, 89.70,’LEE’);

INSERT INTO PATIENTCHOICE
VALUES(’123-55-1234’, ’drug-research’, ’opt-out’);

INSERT INTO PATIENT
VALUES(’123-58-9812’, ’MIKE’, ’Mike’, ’Long Strt’, null, 8.30,’JAMES’);

INSERT INTO PATIENTCHOICE
VALUES(’123-58-9812’, ’drug-research’, ’opt-out’);

INSERT INTO PATIENT
VALUES(’123-11-9856’, ’SAM’, ’Sam’, ’Big Strt’, null, 0.00,’LEE’);

INSERT INTO PATIENTCHOICE
VALUES(’123-11-9856’, ’drug-research’, ’opt-in’);

INSERT INTO PATIENT
VALUES(’123-19-1454’, ’DUG’, ’Dug’, ’Good Strt’, null, 0.00,’JAMES’);

INSERT INTO PATIENTCHOICE
VALUES(’123-19-1454’, ’drug-research’, ’opt-in’);

Security administration
Security administration and the security administrator (SECADM) role play
important parts in securing patient and company data at ExampleHMO. At
ExampleHMO, management decided that different people hold database
administration authority and security administration authority.

The management team at ExampleHMO decides to create a role for administering
access to their data. The team also decides that even users with DATAACCESS
authority are not able to view protected health and personal data by default.

The management team selects Alex to be the sole security administrator for
ExampleHMO. From now on, Alex controls all data access authority. With this
authority, Alex defines security rules such as row permissions, column masks, and
whether functions and triggers are secure or not. These rules control which users
have access to any given data under his control.

After Peter, the database administrator, creates the required tables and sets up the
required roles, duties are separated. The database administration and security
administration duties are separated by making Alex the security administrator.

Peter connects to the database and grants Alex SECADM authority. Peter can grant
SECADM authority since he currently holds the DBADM, DATAACCESS, and
SECADM authorities.

60 Preparation Guide for DB2 10.1 Fundamentals Exam 610

-- To seperate duties of security administrator from system administrator,
-- the SECADMN Peter grants SECADM authority to user Alex.

GRANT SECADM ON DATABASE TO USER ALEX;

Alex, after receiving the SECADM authority, connects to the database and revokes
the security administrator privilege from Peter. The duties are now separated and
Alex becomes the sole authority to grant data access to others within and outside
ExampleHMO. The following SQL statement shows how Alex revoked SECADM
authority from Peter:
--revokes the SECADMIN authority for Peter

REVOKE SECADM ON DATABASE FROM USER PETER;

Row permissions
Alex, the security administrator, starts to restrict data access on the ExampleHMO
database by using row permissions, a part of row and column access control. Row
permissions filter the data returned to users by row.

Patients are permitted to view their own data. A physician is permitted to view the
data of all his patients, but not the data of patients who see other physicians. Users
belonging to the MEMBERSHIP, ACCOUNTING, or DRUG_RESEARCH roles can
access all patient information. Alex, the security administrator, is asked to
implement these permissions to restrict who can see any given row on a
need-to-know basis.

Row permissions restrict or filter rows based on the user who has logged on to the
database. At ExampleHMO, the row permissions create a horizontal data restriction
on the table named PATIENT.

Alex implements the following row permissions so that a user in each role is
restricted to view a result set that they are privileged to view:
CREATE PERMISSION ROW_ACCESS ON PATIENT

-- Accounting information:
-- ROLE PATIENT is allowed to access his or her own row
-- ROLE PCP is allowed to access his or her patients’ rows
-- ROLE MEMBERSHIP, ACCOUNTING, and DRUG_RESEARCH are
-- allowed to access all rows
--
FOR ROWS WHERE(VERIFY_ROLE_FOR_USER(SESSION_USER,’PATIENT’) = 1
AND
PATIENT.USERID = SESSION_USER) OR
(VERIFY_ROLE_FOR_USER(SESSION_USER,’PCP’) = 1
AND
PATIENT.PCP_ID = SESSION_USER) OR
(VERIFY_ROLE_FOR_USER(SESSION_USER,’MEMBERSHIP’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER, ’DRUG_RESEARCH’) = 1)
ENFORCED FOR ALL ACCESS
ENABLE;

Alex observes that even after creating a row permission, all data can still be
viewed by the other employees. A row permission is not applied until it is
activated on the table for which it was defined. Alex must now activate the
permission:
--Activate row access control to implement row permissions

ALTER TABLE PATIENT ACTIVATE ROW ACCESS CONTROL;

Chapter 14. Row and column access control (RCAC) 61

Column masks
Alex, the security administrator, further restricts data access on the ExampleHMO
database by using column masks, a part of row and column access control.
Column masks hide data returned to users by column unless they are permitted to
view the data.

Patient payment details must only be accessible to the users in the accounts
department. The account balance must not be seen by any other database users.
Alex is asked to prevent access by anyone other than users belonging to the
ACCOUNTING role.

Alex implements the following column mask so that a user in each role is
restricted to view a result set that they are privileged to view:
--Create a Column MASK ON ACCT_BALANCE column on the PATIENT table

CREATE MASK ACCT_BALANCE_MASK ON PATIENT FOR
--
-- Accounting information:
-- Role ACCOUNTING is allowed to access the full information
-- on column ACCT_BALANCE.
-- Other roles accessing this column will strictly view a
-- zero value.
--
COLUMN ACCT_BALANCE RETURN
CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1

THEN ACCT_BALANCE
ELSE 0.00
END
ENABLE;

Alex observes that even after creating a column mask, the data can still be viewed
by the other employees. A column mask is not applied until it is activated on the
table for which it was defined. Alex must now activate the mask:
--Activate column access control to implement column masks

ALTER TABLE PATIENT ACTIVATE COLUMN ACCESS CONTROL;

Alex is asked by management to hide the insurance number of the patients. Only a
patient, physician, accountant, or people in the MEMBERSHIP role can view the
SSN column.

Also, to protect the PHARMACY detail of a patient, the information in the
PHARMACY column must only be viewed by a drug researcher or a physician.
Drug researchers can see the data only if the patient has agreed to disclose the
information.

Alex implements the following column masks so that a user in each role is
restricted to view a result set that they are privileged to view:
CREATE MASK SSN_MASK ON PATIENT FOR
--
-- Personal contact information:
-- Roles PATIENT, PCP, MEMBERSHIP, and ACCOUNTING are allowed
-- to access the full information on columns SSN, USERID, NAME,
-- and ADDRESS. Other roles accessing these columns will
-- strictly view a masked value.

COLUMN SSN RETURN
CASE WHEN
VERIFY_ROLE_FOR_USER(SESSION_USER,’PATIENT’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’PCP’) = 1 OR

62 Preparation Guide for DB2 10.1 Fundamentals Exam 610

VERIFY_ROLE_FOR_USER(SESSION_USER,’MEMBERSHIP’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1
THEN SSN
ELSE CHAR(’XXX-XX-’ || SUBSTR(SSN,8,4)) END

ENABLE;

CREATE MASK PHARMACY_MASK ON PATIENT FOR
--
-- Medical information:
-- Role PCP is allowed to access the full information on
-- column PHARMACY.
-- For the purposes of drug research, Role DRUG_RESEARCH can
-- conditionally see a patient’s medical information
-- provided that the patient has opted-in.
-- In all other cases, null values are rendered as column
-- values.
--
COLUMN PHARMACY RETURN

CASE WHEN
VERIFY_ROLE_FOR_USER(SESSION_USER,’PCP’) = 1 OR
(VERIFY_ROLE_FOR_USER(SESSION_USER,’DRUG_RESEARCH’)=1
AND
EXISTS (SELECT 1 FROM PATIENTCHOICE C

WHERE PATIENT.SSN = C.SSN AND C.CHOICE = ’drug-research’ AND C.VALUE = ’opt-in’))
THEN PHARMACY
ELSE NULL

END
ENABLE;

Alex observes that after creating these two column masks that the data is only
viewable to the intended users. The PATIENT table already had column access
control activated.

Inserting data
When a new patient is admitted for treatment in the hospital, the new patient
record must be added to the ExampleHMO database.

Bob is a new patient, and his records must be added to the ExampleHMO
database. A user with the required security authority must create the new record
for Bob. Tom, from the ExampleHMO membership department, with the
MEMBERSHIP role, enrolls Bob as a new member. After connecting to the
ExampleHMO database, Tom runs the following SQL statements to add Bob to the
ExampleHMO database:
INSERT INTO PATIENT

VALUES(’123-45-6789’, ’BOB’, ’Bob’, ’123 Some St.’, ’hypertension’, 9.00,’LEE’);
INSERT INTO PATIENTCHOICE

VALUES(’123-45-6789’, ’drug-research’, ’opt-in’);

Tom confirmed that Bob was added to the database by querying the same from the
PATIENT table in the ExampleHMO database:
Select * FROM PATIENT WHERE NAME = ’Bob’;

SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID

----------- --------- ------- ------------- ------------ ------------- ------
123-45-6789 BOB Bob 123 Some St. XXXXXXXXXXX 0.00 LEE

Updating data
While in the hospital, Bob gets his treatment changed. As a result his records in the
ExampleHMO database need updating.

Chapter 14. Row and column access control (RCAC) 63

Dr. Lee, who is Bob's physician, advises a treatment change and changes Bob's
medicine. Bob's record in the ExampleHMO systems must be updated. The row
permission rules set in the ExampleHMO database specify that anyone who cannot
view the data in a row cannot update the data in that row. Since Bob's PCPID
contains Dr. Lee's ID, and the row permission is set, Dr. Lee can both view, and
update Bob's record using the following example SQL statement:
UPDATE PATIENT SET PHARMACY = ’codeine’ WHERE NAME = ’Bob’;

Dr. Lee checks the update:
Select * FROM PATIENT WHERE NAME = ’Bob’;

SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID

----------- --------- ------- ------------ ----------- -------------- ------
123-45-6789 BOB Bob 123 Some St. codeine 0.00 LEE

Dug is a patient who is under the care of Dr. James, one of Dr. Lee's colleagues. Dr.
Lee attempts the same update on the record for Dug:
UPDATE PATIENT SET PHARMACY = ’codeine’ WHERE NAME = ’Dug’;
SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a query
is an empty table. SQLSTATE=02000

Since Dug's PCPID does not contain Dr. Lee's ID, and the row permission is set,
Dr. Lee cannot view, or update Dug's record.

Reading data
With row and column access control, people in different roles can have different
result sets from the same database queries. For example, Peter, the database
administrator with DATAACCESS authority, cannot see any data on the PATIENT
table.

Peter, Bob, Dr. Lee, Tom, Jane, and John each connect to the database and try the
following SQL query:
SELECT SSN, USERID, NAME, ADDRESS, PHARMACY, ACCT_BALANCE, PCP_ID FROM PATIENT;

Results of the query vary according to who runs the query. The row and column
access control rules created by Alex are applied on these queries.

Here is the result set Peter sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- --------- --------- ----------- ----------- ----------- -----------

0 record(s) selected.

Even though there is data in the table and Peter is the database administrator, he
lacks the authority to see all data.

Here is the result set Bob sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- --------- --------- ----------- ----------- ----------- ------
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 0.00 LEE

1 record(s) selected.

64 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Bob, being a patient, can only see his own data. Bob belongs to the PATIENT role.
The PHARMACY and ACC_BALANCE column data have been hidden from him.

Here is the result set Dr. Lee sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ------------------- ----------- ------
123-55-1234 MAX Max First Strt hypertension 0.00 LEE
123-11-9856 SAM Sam Big Strt High blood pressure 0.00 LEE
123-45-6789 BOB Bob 123 Some St.codeine 0.00 LEE

3 record(s) selected.

Dr. Lee can see only the data for patients under his care. Dr. Lee belongs to the
PCP role. The ACC_BALANCE column data is hidden from him.

Here is the result set Tom sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ----------- ----------- -----------
123-55-1234 MAX Max First Strt XXXXXXXXXXX 0.00 LEE
123-58-9812 MIKE Mike Long Strt XXXXXXXXXXX 0.00 JAMES
123-11-9856 SAM Sam Big Strt XXXXXXXXXXX 0.00 LEE
123-19-1454 DUG Dug Good Strt XXXXXXXXXXX 0.00 JAMES
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 0.00 LEE

5 record(s) selected.

Tom can see all members. Tom belongs to the membership role. He is not
privileged to see any data in the PHARMACY and ACC_BALANCE columns.

Here is the result set Jane sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ------------------- ----------- -------
XXX-XX-1234 MAX Max First Strt XXXXXXXXXXX 0.00 LEE
XXX-XX-9812 MIKE Mike Long Strt XXXXXXXXXXX 0.00 JAMES
XXX-XX-9856 SAM Sam Big Strt High blood pressure 0.00 LEE
XXX-XX-1454 DUG Dug Good Strt Influenza 0.00 JAMES
XXX-XX-6789 BOB Bob 123 Some St.codeine 0.00 LEE

5 record(s) selected.

Jane can see all members. She belongs to the DRUG_RESEARCH role. The SSN
and ACC_BALANCE column data are hidden from her. The PHARMACY data is
only available if the patients have opted-in to share their data with drug research
companies.

Here is the result set John sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ----------- ----------- --------
123-55-1234 MAX Max First Strt XXXXXXXXXXX 89.70 LEE
123-58-9812 MIKE Mike Long Strt XXXXXXXXXXX 8.30 JAMES
123-11-9856 SAM Sam Big Strt XXXXXXXXXXX 0.00 LEE
123-19-1454 DUG Dug Good Strt XXXXXXXXXXX 0.00 JAMES
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 9.00 LEE

5 record(s) selected.

Chapter 14. Row and column access control (RCAC) 65

John can see all members. He belongs to the ACCOUNTING role. The
PHARMACY column data is hidden from him.

Revoking authority
Alex, as security administrator, is responsible for controlling who can create secure
objects. When developers are done creating secure objects, Alex revokes their
authority on the database.

Paul, the database developer, is done with development activities. Alex
immediately revokes the create authority from Paul:
REVOKE CREATE_SECURE_OBJECT ON DATABASE FROM USER PAUL;

If Paul must create secure objects in the future, he must speak to Alex to have the
create authority granted again.

66 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Part 3. Working with Databases and Database Objects

To start working with DB2 databases, you must create instances, databases, and
database objects.

You can create the following database objects in a DB2 database:
v Tables
v Constraints
v Indexes
v Triggers
v Sequences
v Views
v Usage lists

You ca use Data Definition Language (DDL) statements or tools such as IBM Data
Studio to create these database objects. The DDL statements are generally prefixed
by the keywords CREATE or ALTER.

Understanding the features and functionality that each of these database objects
provides is important to implement a good database design that meets your
current business's data storage needs while remaining flexible enough to
accommodate expansion and growth over time.

© Copyright IBM Corp. 2012 67

68 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 15. Instances

DB2 databases are created within DB2 instances on the database server. The
creation of multiple instances on the same physical server provides a unique
database server environment for each instance.

For example, you can maintain a test environment and a production environment
on the same computer, or you can create an instance for each application and then
fine-tune each instance specifically for the application it will service, or, to protect
sensitive data, you can have your payroll database stored in its own instance so
that owners of other instances (on the same server) cannot see payroll data.

The installation process creates a default DB2 instance, which is defined by the
DB2INSTANCE environment variable. This is the instance that is used for most
operations. However, instances can be created (or dropped) after installation.

When determining and designing the instances for your environment, note that
each instance controls access to one or more databases. Every database within an
instance is assigned a unique name, has its own set of system catalog tables (which
are used to keep track of objects that are created within the database), and has its
own configuration file. Each database also has its own set of grantable authorities
and privileges that govern how users interact with the data and database objects
stored in it. Figure 4 shows the hierarchical relationship among systems, instances,
and databases.

Data server (DB_SERVER)

Database 2
(RECEIVABLE)

Instance 1 (DB2_DEV)

Database manager
Configuration file 1

Database 1
(PAYABLE)

Database 2
(RECEIVABLE)

Instance 2 (DB2_PROD)

Database manager
Configuration file 2

Database 1
(PAYABLE)

Database manager
program files

Figure 4. Hierarchical relationship among DB2 systems, instances, and databases

© Copyright IBM Corp. 2012 69

You also must be aware of another particular type of instance called the DB2
administration server (DAS). The DAS is a special DB2 administration control point
used to assist with the administration tasks only on other DB2 servers. A DAS
must be running if you want to use the Client Configuration Assistant to discover
the remote databases or the graphical tools that come with the DB2 product, for
example, the IBM Data Studio. There is only one DAS in a DB2 database server,
even when there are multiple instances.

Important: The DB2 Administration Server (DAS) has been deprecated in Version
9.7 and might be removed in a future release. The DAS is not supported in DB2
pureScale environments. Use software programs that use the Secure Shell protocol
for remote administration. For more information, see “ DB2 administration server
(DAS) has been deprecated” at .

Once your instances are created, you can attach to any other instance available
(including instances on other systems). Once attached, you can perform
maintenance and utility tasks that can only be done at the instance level, for
example, create a database, force applications off a database, monitor database
activity, or change the contents of the database manager configuration file that is
associated with that particular instance.

70 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 16. Databases

A DB2 database is a relational database. The database stores all data in tables that are
related to one another. Relationships are established between tables such that data
is shared and duplication is minimized.

A relational database is a database that is treated as a set of tables and manipulated
in accordance with the relational model of data. It contains a set of objects used to
store, manage, and access data. Examples of such objects are tables, views, indexes,
functions, triggers, and packages. Objects can be either defined by the system
(built-in objects) or defined by the user (user-defined objects).

A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer
system has a relational database manager to manage the tables in its environment.
The database managers communicate and cooperate with each other in a way that
allows a given database manager to execute SQL statements on another computer
system.

A partitioned relational database is a relational database whose data is managed
across multiple database partitions. This separation of data across database
partitions is transparent to most SQL statements. However, some data definition
language (DDL) statements take database partition information into consideration
(for example, CREATE DATABASE PARTITION GROUP). DDL is the subset of SQL
statements used to describe data relationships in a database.

A federated database is a relational database whose data is stored in multiple data
sources (such as separate relational databases). The data appears as if it were all in
a single large database and can be accessed through traditional SQL queries.
Changes to the data can be explicitly directed to the appropriate data source.

Database directories and files
When you create a database, information about the database including default
information is stored in a directory hierarchy.

The hierarchical directory structure is created for you. You can specify the location
of the structure by specifying a directory path or drive for the CREATE DATABASE
command; if you do not specify a location, a default location is used.

In the directory that you specify as the database path in the CREATE DATABASE
command, a subdirectory that uses the name of the instance is created.

Within the instance-name subdirectory, the partition-global directory is created. The
partition-global directory contains global information associated with your new
database. The partition-global directory is named NODExxxx/SQLyyyyy, where xxxx is
the data partition number and yyyyy is the database token (numbered >=1).

Under the partition-global directory, the member-specific directory is created. The
member-specific directory contains local database information. The member-specific
directory is named MEMBERxxxx where xxxx is the member number.
v In a DB2 pureScale environment, there is a member-specific directory for each

member, called MEMBER0000, MEMBER0001, and so on.

© Copyright IBM Corp. 2012 71

v In a partitioned database environment, member numbers have a one-to-one
mapping with their corresponding partition number, therefore there is one
NODExxxx directory per member and partition. Member-specific directories are
always named MEMBERxxxx and they always reside under the partition-global
directory.

v An Enterprise Server Edition environment runs on a single member, and has one
member-specific directory, called MEMBER0000.

Partition-global directory

The partition-global directory has the path: your_instance/NODExxxx/SQLxxxxx.

The partition-global directory contains the following files:
v Global deadlock write-to-file event monitor files that specify either a relative

path or no path at all.
v Table space information files.

The files SQLSPCS.1 and SQLSPCS.2 contain table space information. These files
are duplicates of each other for backup purposes.

v Storage group control files.
The files SQLSGF.1 and SQLSGF.2 contain storage group information associated
with the automatic storage feature of a database. These files are duplicates of
each other for maintenance and backup purposes. The files are created for a
database when you create the database using the CREATE DATABASE command or
when you upgrade a nonautomatic storage database to DB2 Version 10.1 or later.

v Temporary table space container files.
The default directory for new containers is instance/NODExxxx/<db-name>. The
files are managed locally by each member. The table space file names are made
unique for each member by inserting the member number into the file name, for
example: /storage path/SAMPLEDB/T0000011/C0000000.TMP/
SQL00002.MEMBER0001.TDA

v The global configuration file.
The global configuration file, SQLDBCONF, contains database configuration
parameters that refer to single, shared resources that must remain consistent
across the database. Do not edit this file. To change configuration parameters,
use the UPDATE DATABASE CONFIGURATION and RESET DATABASE CONFIGURATION
commands.

v History files.
The DB2RHIST.ASC history file and its backup DB2RHIST.BAK contain history
information about backups, restores, loading of tables, reorganization of tables,
altering of a table space, and other changes to a database.
The DB2TSCHG.HIS file contains a history of table space changes at a log-file level.
For each log file, DB2TSCHG.HIS contains information that helps to identify which
table spaces are affected by the log file. Table space recovery uses information
from this file to determine which log files to process during table space recovery.
You can examine the contents of history files in a text editor.

v Logging-related files.
The global log control files, SQLOGCTL.GLFH.1, SQLOGCTL.GLFH.2, contain
recovery information at the database level, for example, information related to
the addition of new members while the database is offline and maintaining a
common log chain across members. The log files themselves are stored in the
LOGSTREAMxxxx directories (one for each member) in the partition-global
directory.

72 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v Locking files.
The instance database lock files, SQLINSLK,and SQLTMPLK, help to ensure that a
database is used by only one instance of the database manager.

v Automatic storage containers

Member-specific directory

The member-specific directory has the path: /NODExxxx/SQLxxxx/MEMBERxxxx

This directory contains objects associated with the first database created, and
subsequent databases are given higher numbers: SQL00002, and so on. These
subdirectories differentiate databases created in this instance on the directory that
you specified in the CREATE DATABASE command.

The database directory contains the following files:
v Buffer pool information files.

The files SQLBP.1 and SQLBP.2 contain buffer pool information. These files are
duplicates of each other for backup purposes.

v Local event monitor files.
v Logging-related files.

The log control files, SQLOGCTL.LFH.1, its mirror copy SQLOGCTL.LFH.2, and
SQLOGMIR.LFH, contain information about the active logs. In a DB2 pureScale
environment, each member has its own log stream and set of local LFH files,
which are stored in each member-specific directory.

Tip: Map the log subdirectory to disks that you are not using for your data. By
doing so, you might restrict disk problems to your data or the logs, instead of
having disk problems for both your data and the logs. Mapping the log
subdirectory to disks that you are not using for your data can provide a
substantial performance benefit because the log files and database containers do
not compete for movement of the same disk heads. To change the location of the
log subdirectory, use the newlogpath database configuration parameter.

v The local configuration file.
The local SQLDBCONF file contains database configuration information. Do not edit
this file. To change configuration parameters, use the UPDATE DATABASE
CONFIGURATION and RESET DATABASE CONFIGURATION commands.

At the same time a database is created, a detailed deadlocks event monitor is also
created. In an Enterprise Server Edition environment and in partitioned database
environments, the detailed deadlocks event monitor files are stored in the database
directory of the catalog node. In a DB2 pureScale environment, the detailed
deadlocks event monitor files are stored in the partition-global directory. When the
event monitor reaches its maximum number of files to output, it will deactivate
and a message is written to the notification log. This prevents the event monitor
from using too much disk space. Removing output files that are no longer needed
allows the event monitor to activate again on the next database activation.

Additional information for SMS database directories in
non-automatic storage databases

In non-automatic storage databases, the SQLT* subdirectories contain the default
System Managed Space (SMS) table spaces:

Chapter 16. Databases 73

v SQLT0000.0 subdirectory contains the catalog table space with the system catalog
tables.

v SQLT0001.0 subdirectory contains the default temporary table space.
v SQLT0002.0 subdirectory contains the default user data table space.

Each subdirectory or container has a file created in it called SQLTAG.NAM. This file
marks the subdirectory as being in use so that subsequent table space creation does
not attempt to use these subdirectories.

In addition, a file called SQL*.DAT stores information about each table that the
subdirectory or container contains. The asterisk (*) is replaced by a unique set of
digits that identifies each table. For each SQL*.DAT file there might be one or more
of the following files, depending on the table type, the reorganization status of the
table, or whether indexes, LOB, or LONG fields exist for the table:
v SQL*.BKM (contains block allocation information if it is an MDC or ITC table)
v SQL*.LF (contains LONG VARCHAR or LONG VARGRAPHIC data)
v SQL*.LB (contains BLOB, CLOB, or DBCLOB data)
v SQL*.XDA (contains XML data)
v SQL*.LBA (contains allocation and free space information about SQL*.LB files)
v SQL*.INX (contains index table data)
v SQL*.IN1 (contains index table data)
v SQL*.DTR (contains temporary data for a reorganization of an SQL*.DAT file)
v SQL*.LFR (contains temporary data for a reorganization of an SQL*.LF file)
v SQL*.RLB (contains temporary data for a reorganization of an SQL*.LB file)
v SQL*.RBA (contains temporary data for a reorganization of an SQL*.LBA file)

Node directory
The database manager creates the node directory when the first database partition is
cataloged.

To catalog a database partition, use the CATALOG NODE command.

Note: In a DB2 pureScale environment, it is not necessary to run the CATALOG
NODE command, because the DB2 pureScale Feature acts as a single partition.

To list the contents of the local node directory, use the LIST NODE DIRECTORY
command.

The node directory is created and maintained on each database client. The
directory contains an entry for each remote database partition server having one or
more databases that the client can access. The DB2 client uses the communication
end point information in the node directory whenever a database connection or
instance attachment is requested.

The entries in the directory also contain information about the type of
communication protocol to be used to communicate from the client to the remote
database partition. Cataloging a local database partition creates an alias for an
instance that resides on the same computer.

74 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Local database directory
A local database directory file exists in each path (or “drive” for Windows operating
systems) in which a database has been defined. This directory contains one entry
for each database accessible from that location.

Each entry contains:
v The database name provided with the CREATE DATABASE command
v The database alias name (which is the same as the database name, if an alias

name is not specified)
v A comment describing the database, as provided with the CREATE DATABASE

command
v The name of the root directory for the database
v Other system information.

Directory structure for your installed DB2 database product
(Windows)

When you install DB2 database products, you can specify a DB2 database product
installation path or else use the default path. After installation, DB2 objects are
created in these directories.

Follow these steps to verify the DB2 product you have installed on Windows.
1. From a command prompt, type the regedit command. The Registry Editor

window opens.
2. Expand HKEY_LOCAL_MACHINE > Software > IBM > DB2

The DB2 product you have installed will be displayed.

The following table shows the location of DB2 objects after a default installation.

Table 5. DB2 objects and their locations

DB2 Object Location

DAS information v For Windows XP and Windows 2003
operating systems: C:\Documents and
Settings\All Users\Application
Data\IBM\DB2\DB2COPY1

v For Windows Vista and later operating
systems: C:\ProgramData\IBM\DB2\
DB2COPY1

Database configuration file SQLDBCON C:\DB2\NODE0000\SQL00001

Database directory

Contains files needed for:

v buffer pool information

v history information

v log control files

v storage path information

v table space information

C:\DB2\NODE0000\SQL00001

Chapter 16. Databases 75

Table 5. DB2 objects and their locations (continued)

DB2 Object Location

Database manager configuration file
db2systm

v For Windows XP and Windows 2003
operating systems: C:\Documents and
Settings\All Users\Application
Data\IBM\DB2\DB2COPY1\DB2

v For Windows Vista and later operating
systems: C:\ProgramData\IBM\DB2\
DB2COPY1\DB2

DB2 commands C:\Program Files\IBM\SQLLIB\BIN

DB2 error messages file db2diag log files v For Windows XP and Windows 2003
operating systems: C:\Documents and
Settings\All Users\Application
Data\IBM\DB2\DB2COPY1\DB2

v For Windows Vista and later operating
systems: C:\ProgramData\IBM\DB2\
DB2COPY1\DB2

DB2 installation path C:\Program Files\IBM\SQLLIB

Directory for event monitor data C:\DB2\NODE0000\SQL00001\DB2EVENT

Directory for transaction log files C:\DB2\NODE0000\SQL00001\LOGSTREAM0000

Installation log file v For Windows XP and Windows 2003
operating systems: C:\Documents and
Settings\Administrator\My
Documents\DB2LOG

v For Windows Vista and later operating
systems: C:\Users\USER_NAME\Documents\
DB2LOG

Instance v For Windows XP and Windows 2003
operating systems: C:\Documents and
Settings\All Users\Application
Data\IBM\DB2\DB2COPY1\DB2

v For Windows Vista and later operating
systems: C:\ProgramData\IBM\DB2\
DB2COPY1\DB2

Instance information v For Windows XP and Windows 2003
operating systems: C:\Documents and
Settings\All Users\Application
Data\IBM\DB2\DB2COPY1\DB2

v For Windows Vista and later operating
systems: C:\ProgramData\IBM\DB2\
DB2COPY1\DB2

Node directory v For Windows XP and Windows 2003
operating systems: C:\Documents and
Settings\All Users\Application
Data\IBM\DB2\DB2COPY1\DB2\SQLNODIR

v For Windows Vista and later operating
systems: C:\ProgramData\IBM\DB2\
DB2COPY1\DB2\SQLNODIR

Local database directory for the instance
called DB2

C:\DB2\NODE0000\SQLDBDIR

76 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 5. DB2 objects and their locations (continued)

DB2 Object Location

Partitioned database environment file
db2nodes.cfg

v For Windows XP and Windows 2003
operating systems: C:\Documents and
Settings\All Users\Application
Data\IBM\DB2\DB2COPY1\DB2

v For Windows Vista and later operating
systems: C:\ProgramData\IBM\DB2\
DB2COPY1\DB2

System database directory v For Windows XP and Windows 2003
operating systems: C:\Documents and
Settings\All Users\Application
Data\IBM\DB2\DB2COPY1\DB2\SQLDBDIR

v For Windows Vista and later operating
systems: C:\ProgramData\IBM\DB2\
DB2COPY1\DB2\SQLDBDIR

The following figures illustrate an example of the DB2 directory structure after
installation on Windows XP or Windows 2003 operating systems using the default
options. In these figures, there are two instances, DB2 and MYINST. The directories
DB2 and MYINST under the local disk C: will only appear if a database has been
created under the appropriate instance.

Chapter 16. Databases 77

Directory structure - instance information

1. Contains the databases created under the C: drive for the instance named DB2.
2. Contains the information for the DAS.
3. Contains the instance information for the instance named DB2.
4. Contains the instance information for the instance named MYINST.
5. Contains the databases created under the C: drive for the instance named

MYINST.

78 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Directory structure - directory information

Chapter 16. Databases 79

1. System database directory
2. Node directory
3. The db2diag log files DB2 error messages.
4. The db2nodes.cfg file is used in a partitioned database environment.
5. Database manager configuration file

80 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Directory structure - local directory information

1. Local database directory for the instance DB2
2. Local database directory for the instance MYINST
3. Database configuration file

Directory structure - installation log file location

Directory structure for your installed DB2 database product
(Linux)

During a root installation, you can specify where the subdirectories and files for
the DB2 database product will be created. For non-root installations, you cannot
choose where DB2 products are installed; you must use the default locations.

Chapter 16. Databases 81

Note: For non-root installations, all DB2 files (program files and instance files) are
located in or beneath the $HOME/sqllib directory, where $HOME represents the
non-root user's home directory.

After installation, the DB2 objects are created in various directories. The following
table shows the location of DB2 objects after a default root installation.

Table 6. Location of DB2 objects after a default root installation

DB2 Object Location

DAS home directory home/dasusr1

DAS information home/dasusr1/das

Database configuration file SQLDBCON home/db2inst1/db2inst1/NODE0000/SQL00001

Database directory

Contains files needed for:

v buffer pool information

v history information

v log control files

v storage path information

v table space information

home/db2inst1/db2inst1/NODE0000/SQL00001

Database manager configuration file
db2systm

home/db2inst1/sqllib

DB2 commands /opt/IBM/db2/V10.1/bin

DB2 error messages file (db2diag log file) home/db2inst1/sqllib/db2dump

DB2 installation path default is /opt/IBM/db2/V10.1

Directory for event monitor data home/db2inst1/db2inst1/NODE0000/
SQL00001/db2event

Directory for transaction log files home/db2inst1/db2inst1/NODE0000/
SQL00001/LOGSTREAM0000

Installation log file db2install.history /opt/IBM/db2/V10.1/install/logs

Instance home directory home/db2inst1

Instance information home/db2inst1/sqllib

Local database directory for the instance home/db2inst1/db2inst1/NODE0000/sqldbdir

Partitioned database environment file
db2nodes.cfg

home/db2inst1/sqllib

System database directory home/db2inst1/sqllib/sqldbdir

The following figures illustrate an example of the DB2 directory structure after a
root installation. In these examples, there are two instances, db2inst1 and db2inst2.

82 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Directory structure - default local database directory information
for the DB2 instance db2inst1

1. Local database directories.
2. Database configuration file

Chapter 16. Databases 83

Directory structure - directory information for the DB2 instance
db2inst1

1. The db2diag log files in this directory logs DB2 error messages.
2. System database directory
3. The db2nodes.cfg file is used in a partitioned database environment.
4. Database manager configuration file

The dasusr1 directory contains the DB2 administration server (DAS) configuration
files and the symbolic links to DB2 core files.

84 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Directory structure - install log file location

This figure illustrates the location of your install log file. If there were multiple
installations under the same installation path, the db2install.history file will be
indexed as db2install.history.n where n represents a four digit number, for
example, 0000, or 0001.

The DB2 installation directory /opt/IBM/db2/V10.1 contains the installed DB2 files.

System database directory
A system database directory file exists for each instance of the database manager, and
contains one entry for each database that has been cataloged for this instance.

Databases are implicitly cataloged when the CREATE DATABASE command is issued
and can also be explicitly cataloged with the CATALOG DATABASE command.

For each database created, an entry is added to the directory containing the
following information:
v The database name provided with the CREATE DATABASE command

Chapter 16. Databases 85

v The database alias name (which is the same as the database name, if an alias
name is not specified)

v The database comment provided with the CREATE DATABASE command
v The location of the local database directory

v An indicator that the database is indirect, which means that it resides on the
current database manager instance

v Other system information.

On Linux and UNIX platforms and in a partitioned database environment, you
must ensure that all database partitions always access the same system database
directory file, sqldbdir, in the sqldbdir subdirectory of the home directory for the
instance. Unpredictable errors can occur if either the system database directory or
the system intention file sqldbins in the same sqldbdir subdirectory are symbolic
links to another file that is on a shared file system.

Creating databases
You create a database using the CREATE DATABASE command. To create a database
from a client application, call the sqlecrea API. All databases are created with the
default storage group IBMSTOGROUP, unless you specify otherwise. Automatic
storage managed table spaces use storage groups for their storage definitions.

Before you begin

The DB2 database manager must be running. Use the db2start command to start
the database manager.

It is important to plan your database, keeping in mind the contents, layout,
potential growth, and how it will be used before you create it. After it has been
created and populated with data, changes can be made.

The following database privileges are automatically granted to PUBLIC:
CREATETAB, BINDADD, CONNECT, IMPLICIT_SCHEMA, and SELECT on the
system catalog views. However, if the RESTRICTIVE option is present, no privileges
are automatically granted to PUBLIC. For more information about the RESTRICTIVE
option, see the CREATE DATABASE command.

Restrictions
v Storage paths cannot be specified using relative path names; you must use

absolute path names. The storage path can be up to 175 characters long.
v On Windows operating systems, the database path must be a drive letter only,

unless the DB2_CREATE_DB_ON_PATH registry variable is set to YES.
v If you do not specify a database path using the DBPATH ON clause of the CREATE

DATABASE command, the database manager uses the first storage path specified
for the ON clause for the database path. (On Windows operating systems, if this
clause is specified as a path, and if the DB2_CREATE_DB_ON_PATH registry variable
is not set to YES, you receive a SQL1052N error message.) If no ON clause is
specified, the database is created on the default database path that is specified in
the database manager configuration file (dftdbpath parameter). The path is also
used as the location for the single storage path associated with the database.

v For partitioned databases, you must use the same set of storage paths on each
database partition (unless you use database partition expressions).

86 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v Database partition expressions are not valid in database paths, whether you
specify them explicitly by using the DBPATH ON clause of the CREATE DATABASE
command, or implicitly by using a database partition expression in the first
storage path.

v A storage group must have at least one storage path associated with it.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE NO
clause, the AUTOMATIC STORAGE clause is deprecated and might be removed from a
future release.

About this task

When you create a database, each of the following tasks are done for you:
v Setting up of all the system catalog tables that are needed by the database
v Allocation of the database recovery log
v Creation of the database configuration file and the default values are set
v Binding of the database utilities to the database

Procedure
v To create a database from a client application, call the sqlecrea API.
v To create a database using the command line processor, issue the CREATE

DATABASE command.
For example, the following command creates a database called PERSON1, in the
default location, with the associated comment "Personnel DB for BSchiefer Co".
CREATE DATABASE person1

WITH "Personnel DB for BSchiefer Co"

v To create a database using IBM Data Studio, right-click the instance on which
you want to create the database and select the task assistant to the create it. For
more information, see IBM Data Studio: Administering databases with task
assistants.

Example

Example 1: Creating a database on a UNIX or Linux operating system:

To create a database named TESTDB1 on path /DPATH1 using /DATA1 and /DATA2 as
the storage paths defined to the default storage group IBMSTOGROUP, use the
following command:

CREATE DATABASE TESTDB1 ON ’/DATA1’,’/DATA2’ DBPATH ON ’/DPATH1’

Example 2: Creating a database on a Windows operating system, specifying both storage
and database paths:

To create a database named TESTDB2 on drive D:, with storage on E:\DATA, use the
following command:

CREATE DATABASE TESTDB2 ON ’E:\DATA’ DBPATH ON ’D:’

In this example, E:\DATA is used as both the storage path defined to the default
storage group IBMSTOGROUP and the database path.

Example 3: Creating a database on a Windows operating system, specifying only a storage
path:

Chapter 16. Databases 87

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

To create a database named TESTDB3 with storage on drive F:, use the following
command:

CREATE DATABASE TESTDB3 ON ’F:’

In this example, F: is used as both the storage path defined to the default storage
group IBMSTOGROUP and the database path.

If you specify a directory name such as F:\DATA for the storage path, the command
fails, because:
1. When DBPATH is not specified, the storage path -- in this case, F:\DATA -- is used

as the database path
2. On Windows, the database path can only be a drive letter (unless you change

the default for the DB2_CREATE_DB_ON_PATH registry variable from NO to YES).

If you want to specify a directory as the storage path on Windows operating
systems, you must also include the DBPATH ON drive clause, as shown in Example
2.

Example 4: Creating a database on a UNIX or Linux operating system without specifying
a database path:

To create a database named TESTDB4 with storage on /DATA1 and /DATA2, use the
following command:

CREATE DATABASE TESTDB4 ON ’/DATA1’,’/DATA2’

In this example, /DATA1 and /DATA2 are used as the storage paths defined to the
default storage group IBMSTOGROUP and /DATA1 is the database path.

What to do next

Configuration Advisor
The Configuration Advisor helps you to tune performance and to balance
memory requirements for a single database per instance by suggesting
which configuration parameters to modify and providing suggested values
for them. The Configuration Advisor is automatically invoked by default
when you create a database.

You can override this default so that the configuration advisor is not
automatically invoked by using one of the following methods:
v Issue the CREATE DATABASE command with the AUTOCONFIGURE APPLY NONE

parameter.
v Set the DB2_ENABLE_AUTOCONFIG_DEFAULT registry variable to NO:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

However, if you specify the AUTOCONFIGURE parameter with the CREATE
DATABASE command, the setting of this registry variable is ignored.

Also, the following automatic features are enabled by default when you
create a database:
v Automatic storage
v Automatic background statistics collection
v Automatic real-time statistics collection
v Self-tuning memory (single-partition environments)

Event Monitor
At the same time a database is created, a detailed deadlocks event monitor

88 Preparation Guide for DB2 10.1 Fundamentals Exam 610

is also created. As with any monitor, there is extra processing time and
resources associated with this event monitor. If you do not want the
detailed deadlocks event monitor, then the event monitor can be dropped
by using the command:
DROP EVENT MONITOR db2detaildeadlock

To limit the amount of disk space that this event monitor consumes, the
event monitor deactivates, and a message is written to the administration
notification log, once it has reached its maximum number of output files.
Removing output files that are no longer needed allows the event monitor
to activate again on the next database activation.

Remote databases

You can create a database in a different, possibly remote, instance. To
create a database at another (remote) database partition server, you must
first attach to that server. A database connection is temporarily established
by the following command during processing:
CREATE DATABASE database_name AT DBPARTITIONNUM options

In this type of environment, you can perform instance-level administration
against an instance other than your default instance, including remote
instances. For instructions on how to do this, see the db2iupdt (update
instance) command.

Database code pages

By default, databases are created in the UTF-8 (Unicode) code set.

To override the default code page for the database, it is necessary to
specify the required code set and territory when creating the database. See
the CREATE DATABASE command or the sqlecrea API for information about
setting the code set and territory.

Viewing the local or system database directory files
Use the LIST DATABASE DIRECTORY command to view the information associated
with the databases that you have on your system.

Before you begin

Before viewing either the local or system database directory files, you must have
previously created an instance and a database.

Procedure
v To see the contents of the local database directory file, issue the following

command:
LIST DATABASE DIRECTORY ON location

where location specifies the location of the database.
v To see the contents of the system database directory file, issue the LIST DATABASE

DIRECTORY command without specifying the location of the database directory
file.

Chapter 16. Databases 89

Client-to-server connectivity
Configuring client-to-server communications for the IBM data server client and
DB2 database server products requires and understanding of the components and
type of connections.

Components and scenarios

The basic components involved in client-to-server communications are described in
the following section:
v Client. This refers to the initiator of the communications. This role can be filled

by any of the following DB2 products or components:
– IBM Data Server Driver Package
– IBM Data Server Client or IBM Data Server Runtime Client.
– DB2 Connect Personal Edition: This product is a superset of the IBM Data

Server Client.
– a DB2 server product: A DB2 server is a superset of the Data Server Client.

v Server. This refers to the receiver of the communications request from the client.
This role is normally filled by a DB2 for Linux, UNIX, and Windows server
product. When DB2 Connect products are present, the term server can also mean
a DB2 server on a midrange or mainframe platform.

v Communications protocol. This refers to the protocol used to send data between
the client and server. The DB2 product supports several protocols:
– TCP/IP. A further distinction can be made between the version: TCP/IPv4 or

TCP/IPv6.
– Named Pipes. This option is available on Windows only.
– IPC (interprocess communications). This protocol is used for local

connections.

There are also some additional components encountered in some environments:
v DB2 Connect gateway. This refers to a DB2 Connect server product that

provides a gateway by which IBM data server client can connect to DB2 servers
on midrange and mainframe products.

v LDAP (Lightweight Directory Access Protocol). In an LDAP-enabled
environment, it is not necessary to configure client-to-server communications.
When a client attempts to connect to a database, if the database does not exist in
the database directory on the local machine then the LDAP directory is searched
for information required to connect to the database.

The following scenarios illustrate examples of situations covered by client-to-server
communications:
v Data Server Client establishes communications with a DB2 server using TCP/IP.
v Data Server Runtime Client establishes communications with a DB2 server using

Named Pipes on a Windows network.
v DB2 server establishes communications with another DB2 server via some

communications protocol.
v Data Server Client establishes communications with a mainframe DB2 server via

a DB2 Connect server using TCP/IP.

When setting up a server to work with development environments (such as IBM
Data Studio), you might encounter error message SQL30081N at the initial DB2
connection. A possible root cause is that the firewall at the remote database server

90 Preparation Guide for DB2 10.1 Fundamentals Exam 610

has prevented the connection from being established. In this case, verify the
firewall is properly configured to accept connection requests from the client.

Types of connections

Generally speaking, references to setting up client-to-server communications refer
to remote connections, rather than local connections.

A local connection is a connection between a database manager instance and a
database managed by that instance. In other words, the CONNECT statement is
issued from the database manager instance to itself. Local connections are
distinctive because no communications setup is required and IPC (interprocess
communications) is used.

A remote connection is one where the client issuing the CONNECT statement to a
database is in a different location from the database server. Commonly, the client
and server are on different machines. However, remote connections are possible
within the same machine if the client and server are in different instances.

Another less common type of connection is a loopback connection. This is a type of
remote connection where the connection is configured from a DB2 instance (the
client) to the same DB2 instance (the server).

Configuration of client-to-server communications

You can configure client-to-server communications by using the command line
tools which consist of the Command Line Processor (CLP), the db2cfexp
(configuration export) command, and the db2cfimp (configuration import)
command.

Use the following table to identify the appropriate configuration method.

Table 7. Tools and methods for configuring a client-to-server connection

Type of configuration task CLP

Configure a client by entering information
manually

Configure client-to-server connections by
using the CATALOG TCPIP/TCPIP4/TCPIP6
NODE command and the CATALOG DATABASE
command.

Use the connection settings for one client as
the basis for configuring additional clients

1. Create a client profile by issuing the
db2cfexp command.

2. Configure database connections using a
client profile by issuing the db2cfimp
command.

Note: Use Profiles to configure client-to-server communications. The types of
profiles are:
v A client profile is a file that contains settings for a client. Settings can include:

– Database connection information (including CLI or ODBC settings).
– Client settings (including database manager configuration parameters and

DB2 registry variables).
– CLI or ODBC common parameters.

v A server profile is similar to a client profile but contains settings for a server.

Chapter 16. Databases 91

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
configuring automatic maintenance. Task assistants can guide you through the
process of setting options, reviewing the automatically generated commands to
perform the task, and running these commands. For more details, see
Administering databases with task assistants.

IBM data server client and driver types
There are several types of IBM data server clients and drivers available. Each
provides a particular type of support.

The IBM data server client and driver types are as follows:
v IBM Data Server Driver Package
v IBM Data Server Driver for JDBC and SQLJ
v IBM Data Server Driver for ODBC and CLI
v IBM Data Server Runtime Client
v IBM Data Server Client

The DB2 Connect Personal Edition product includes all the functionality of IBM
Data Server Client and connects to midrange and mainframe databases. DB2
Connect capability can be added to any client or driver and the recommended
approach is to use the DS driver.

Each IBM data server client and driver provides a particular type of support:
v For Java applications only, use IBM Data Server Driver for JDBC and SQLJ.
v For applications using ODBC or CLI only, use IBM Data Server Driver for ODBC

and CLI. (Also referred to as cli driver.)
v For applications using ODBC, CLI, .NET, OLE DB, PHP, Ruby, JDBC, or SQLJ,

use IBM Data Server Driver Package.
v For applications using DB2CI, use IBM Data Server Client.
v If you need DB2 Command Line Processor Plus (CLPPlus) support, use IBM

Data Server Driver Package.
v To have command line processor (CLP) support and basic client support for

running and deploying applications, use IBM Data Server Runtime Client.
Alternatively use CLPPlus,which is a component of the recommended IBM Data
Server Driver Package.

v To have support for database administration, and application development using
an application programming interface (API), such as ODBC, CLI, .NET, or JDBC,
use IBM Data Server Client.

IBM Data Server Driver Package

IBM Data Server Driver Package is a lightweight deployment solution that
provides runtime support for applications using ODBC, CLI, .NET, OLE DB, PHP,
Ruby, JDBC, or SQLJ, without the need to install the Data Server Runtime Client or
Data Server Client. This driver has a small footprint and is designed to be
redistributed by independent software vendors (ISVs), and to be used for
application distribution in mass deployment scenarios typical of large enterprises.

The IBM Data Server Driver Packageinclude the following capabilities:
v DB2 Command Line Processor Plus (CLPPlus), for dynamically creating, editing,

and running SQL statements and scripts.
v Support for applications that use ODBC, CLI, PHP, or Ruby to access databases.

92 Preparation Guide for DB2 10.1 Fundamentals Exam 610

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

v On Windows operating systems, IBM Data Server Driver Package also provides
support for applications that use .NET or OLE DB to access databases. In
addition, this driver package is available as an installable image. Merge modules
are available to allow you to easily embed the driver in a Windows
Installer-based installation.

v Support for client applications and applets that are written in the Java language
using JDBC and for embedded SQL for Java (SQLJ).

v Support for running embedded SQL applications. No precompiler or bind
capabilities are provided.

v Application header files to rebuild the PHP, Ruby, Python, and Perl drivers. The
Python and Perl drivers are not available in IBM Data Server Driver Package;
however, you can download and build these drivers by using the header files.

v Support for DB2 Interactive CLI through the db2cli command.
v Support for DRDA traces through the db2drdat command.
v This client package also supports IBM Informix servers.

IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ is the default driver for Java stored
procedures and user-defined functions. This driver provides support for client
applications and applets that are written in Java using JDBC to access local or
remote servers, and SQLJ for embedded static SQL in Java applications. This driver
is a prerequisite for IBM InfoSphere Optim pureQuery Runtime, which provides
static support for Java, enables optimized data access using the pureQuery API,
and is supported by a full integrated development environment (IDE) for Java
database application development using IBM InfoSphere Optim Development
Studio. (Both Optim products are available separately.)

IBM Data Server Driver for ODBC and CLI

Data Server Driver for ODBC and CLI is a lightweight deployment solution
designed for independent software vendors (ISV) deployments. This driver, also
referred to as cli driver, provides runtime support for applications using ODBC
API, or CLI API without need of installing the Data Server Client or the Data
Server Runtime Client. This driver is available only as a tar file, not as an
installable image. Messages are reported only in English.

IBM Data Server Runtime Client

The IBM Data Server Runtime Client provides a way to run applications on remote
databases. GUI tools are not shipped with the IBM Data Server Runtime Client.

Capabilities include the following ones:
v All the functionality from IBM Data Server Driver.
v The DB2 command line processor (CLP) for issuing commands. The CLP also

provides a basic way to remotely administer servers.
v The ASNCLP command-line program to set up and administer all replication

programs for Q replication and SQL replication.
v Support for common network communication protocols: TCP/IP, and Named

Pipe.
v Smaller deployment footprint compared to that of the full IBM Data Server

Client in terms of installation image size and disk space required.
v A catalog that stores information for connecting to databases and servers.

Chapter 16. Databases 93

IBM Data Server Client

IBM Data Server Client includes all the functionality of IBM Data Server Runtime
Client, plus functionality for database administration, application development,
and client/server configuration.

Capabilities include the following ones:
v The ability to prune the IBM Data Server Client image to reduce the installation

image size on the Windows operating system.
v Replication tools to set up and administer all replication programs for Q

replication and SQL replication. These tools are the Replication Center, the
ASNCLP command-line program, and the Replication Alert Monitor tool. The
Replication Center is available only on Linux and Windows operating systems.

v First Steps documentation for new users.
v Visual Studio tools.
v Application header files.
v Precompilers for various programming languages.
v Bind support.
v Samples and tutorials.

Cataloging a database
This task describes how to catalog a database from a client by using the command
line processor (CLP).

Before you begin

Before a client application can access a remote database, the database must be
cataloged on the client. When you create a database, the database is automatically
cataloged on the server with a database alias that is the same as the database
name, unless a different database alias was specified.

The information in the database directory, along with the information in the node
directory (unless you are cataloging a local database where a node is not needed),
is used on the IBM data server client to establish a connection to the remote
database.
v You require a valid DB2 user ID. DB2 does not support using root authority to

catalog a database.
v You must have System Administrative (SYSADM) or System Controller

(SYSCTRL) authority, or have the catalog_noauth option set to ON.
v You need the following information when cataloging a remote database:

– Database name
– Database alias
– Node name
– Authentication type (optional)
– Comment (optional)

Refer to the parameter values worksheet for cataloging a database for more
information about these parameters and to record the values that you use.

v The following parameter values are applicable when cataloging a local database:
– Database name
– Drive

94 Preparation Guide for DB2 10.1 Fundamentals Exam 610

– Database alias
– Authentication type (optional)
– Comment (optional)

Local databases can be uncataloged and recataloged at any time.

Procedure

To catalog a database on the client:
1. Log on to the system with a valid DB2 user ID.
2. If you are using the DB2 database on a Linux or UNIX platform, set up the

instance environment. Run the startup script:

For bash, Bourne or Korn shell
. INSTHOME/sqllib/db2profile

For C shell
source INSTHOME/sqllib/db2cshrc

where: INSTHOME represents the home directory of the instance.
3. Start the DB2 command line processor. On Windows operating systems, issue

the db2cmd command from a command prompt. On Linux or UNIX, issue the
db2 command from a command prompt.

4. Catalog the database by entering the following commands in the command line
processor:
db2 => catalog database database_name as database_alias at

node node_name [authentication auth_value]

where:
v database_name represents the name of the database you want to catalog.
v database_alias represents a local nickname for the database you want to

catalog.
v node_name represents a nickname you can set for the computer that has the

database you want to catalog.
v auth_value specifies the type of authentication that takes place when

connecting to the database. This parameter defaults to the authentication
type specified on the server. Specifying an authentication type can result in a
performance benefit. Examples of valid values include: SERVER, CLIENT,
SERVER_ENCRYPT, KERBEROS, DATA_ENCRYPT, GSSPLUGIN and SERVER_ENCRYPT_AES.

Example

To catalog a remote database called SAMPLE so that it has the local database alias
MYSAMPLE, on the node DB2NODE using authentication SERVER, enter the
following commands:
db2 => catalog database sample as mysample at node db2node

authentication server
db2 => terminate

Connecting to a database
Before you begin

After cataloging the node and the database, connect to the database to test the
connection. Before testing the connection:

Chapter 16. Databases 95

v The database node and database must be cataloged.
v The values for userid and password must be valid for the system on which they

are authenticated. The authentication parameter on the client is be set to match
the value on the server or it can be left unspecified. If an authentication
parameter is not specified, the client will default to SERVER_ENCRYPT. If the
server does not accept SERVER_ENCRYPT, then the client retries using the value
returned from the server. If the client specifies an authentication parameter value
that doesn't match what is configured on the server, you will receive an error.

v The database manager must be started with the correct protocol defined in the
DB2COMM registry variable. If it is not started, then you can start the database
manager by entering the db2start command on the database server.

Procedure

To test the client to server connection:
1. If you are using a Linux or UNIX platform, set up the instance environment.

Run the startup script:

For bash, Bourne or Korn shell
. INSTHOME/sqllib/db2profile

For C shell
source INSTHOME/sqllib/db2cshrc

where: INSTHOME represents the home directory of the instance.
2. Start the DB2 command line processor. On Windows, issue the db2cmd

command from a command prompt. On Linux or UNIX, issue the db2
command from a command prompt.

3. Type the following command on the client to connect to the remote database:
db2 => connect to database_alias user userid

For example, enter the following command:
connect to mysample user jtris

You will be prompted to enter your password.

Example

If the connection is successful, you receive a message showing the name of the
database to which you have connected. A message similar to the following is
given:
Database Connection Information
Database server = DB2 9.1.0
SQL authorization ID = JTRIS
Local database alias = mysample

You can now work with the database. For example, to retrieve a list of all the table
names listed in the system catalog table, enter the following SQL statement:
select tabname from syscat.tables

What to do next

When you are finished using the database connection, enter the connect reset
command to end the database connection.

96 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 17. Table spaces

A table space is a storage structure containing tables, indexes, large objects, and long
data. They are used to organize data in a database into logical storage groupings
that relate to where data is stored on a system. Table spaces are stored in database
partition groups.

Using table spaces to organize storage offers a number of benefits:

Recoverability
Putting objects that must be backed up or restored together into the same
table space makes backup and restore operations more convenient, since
you can backup or restore all the objects in table spaces with a single
command. If you have partitioned tables and indexes that are distributed
across table spaces, you can backup or restore only the data and index
partitions that reside in a given table space.

More tables
There are limits to the number of tables that can be stored in any one table
space; if you have a need for more tables than can be contained in a table
space, you need only to create additional table spaces for them.

Automatic storage management
With automatic storage table spaces table spaces, storage is managed
automatically. The database manager creates and extends containers as
needed.

Ability to isolate data in buffer pools for improved performance or memory
utilization

If you have a set of objects (for example, tables, indexes) that are queried
frequently, you can assign the table space in which they reside a buffer
pool with a single CREATE or ALTER TABLESPACE statement. You can
assign temporary table spaces to their own buffer pool to increase the
performance of activities such as sorts or joins. In some cases, it might
make sense to define smaller buffer pools for seldom-accessed data, or for
applications that require very random access into a very large table; in
such cases, data need not be kept in the buffer pool for longer than a
single query

Table spaces consist of one or more containers. A container can be a directory name,
a device name, or a file name. A single table space can have several containers. It
is possible for multiple containers (from one or more table spaces) to be created on
the same physical storage device (although you will get the best performance if
each container you create uses a different storage device). If you are using
automatic storage table spaces, the creation and management of containers is
handled automatically by the database manager. If you are not using automatic
storage table spaces, you must define and manage containers yourself.

Figure 5 on page 98 illustrates the relationship between tables and table spaces
within a database, and the containers associated with that database.

© Copyright IBM Corp. 2012 97

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,
which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table
space in container 4. This example shows each container existing on a separate
disk.

The database manager attempts to balance the data load across containers. As a
result, all containers are used to store data. The number of pages that the database
manager writes to a container before using a different container is called the extent
size. The database manager does not always start storing table data in the first
container.

Figure 6 on page 99 shows the HUMANRES table space with an extent size of two
4 KB pages, and four containers, each with a small number of allocated extents.
The DEPARTMENT and EMPLOYEE tables both have seven pages, and span all
four containers.

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

Figure 5. Table spaces and tables in a database

98 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table spaces for system, user and temporary data
Each database must have a minimal set of table spaces that are used for storing
system, user and temporary data.

A database must contain at least three table spaces:
v A catalog table space

v One or more user table spaces

v One or more temporary table spaces.

Catalog table spaces

A catalog table space contains all of the system catalog tables for the database. This
table space is called SYSCATSPACE, and it cannot be dropped.

User table spaces

A user table space contains user-defined tables. By default, one user table space,
USERSPACE1, is created.

If you do not specify a table space for a table at the time you create it, the database
manager will choose one for you. Refer to the documentation for the IN
tablespace-name clause of the CREATE TABLE statement for more information.

The page size of a table space determines the maximum row length or number of
columns that you can have in a table. The documentation for the CREATE TABLE
statement shows the relationship between page size, and the maximum row size
and column count. Before Version 9.1, the default page size was 4 KB. In Version
9.1 and following, the default page size can be one of the other supported values.
The default page size is declared when creating a new database. Once the default
page size has been declared, you are still free to create a table space with one page
size for the table, and a different table space with a different page size for long or
LOB data. If the number of columns or the row size exceeds the limits for a table

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

Figure 6. Containers and extents in a table space

Chapter 17. Table spaces 99

space's page size, an error is returned (SQLSTATE 42997).

Temporary table spaces

A temporary table space contains temporary tables. Temporary table spaces can be
system temporary table spaces or user temporary table spaces.

System temporary table spaces hold temporary data required by the database
manager while performing operations such as sorts or joins. These types of
operations require extra space to process the results set. A database must have at
least one system temporary table space; by default, one system temporary table
space called TEMPSPACE1 is created at database creation.

When processing queries, the database manager might need access to a system
temporary table space with a page size large enough to manipulate data related to
your query. For example, if your query returns data with rows that are 8KB long,
and there are no system temporary table spaces with page sizes of at least 8KB, the
query might fail. You might need to create a system temporary table space with a
larger page size. Defining a temporary table space with a page size equal to that of
the largest page size of your user table spaces will help you avoid these kinds of
problems.

User temporary table spaces hold temporary data from tables created with a
DECLARE GLOBAL TEMPORARY TABLE or CREATE GLOBAL TEMPORARY
TABLE statement. They are not created by default at the time of database creation.
They also hold instantiated versions of created temporary tables. To allow the
definition of declared or created temporary tables, at least one user temporary
table space should be created with the appropriate USE privileges. USE privileges
are granted using the GRANT statement.

If a database uses more than one temporary table space and a new temporary
object is needed, the optimizer will choose an appropriate page size for this object.
That object will then be allocated to the temporary table space with the
corresponding page size. If there is more than one temporary table space with that
page size, then the table space will be chosen in a round-robin fashion, starting
with one table space with that page size, and then proceeding to the next for the
next object to be allocated, and so, returning to the first table space after all
suitable table spaces have been used. In most circumstances, though, it is not
recommended to have more than one temporary table space with the same page
size.

Types of table spaces
Table spaces can be set up in different ways depeding on the how you choose to
manage their storage.

The three types of table spaces are known as:
v System managed space (SMS), in which the operating system's file manager

controls the storage space once you have defined the location for storing
database files

v Database managed space (DMS), in which the database manager controls the
usage of storage space one you have allocated storage containers.

v Automatic storage table spaces, in which the database manager controls the
creation of containers as needed.

Each can be used together in any combination within a database

100 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Automatic storage table spaces
With automatic storage table spaces, storage is managed automatically. The
database manager creates and extends containers as needed.

Note: Although you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

Any table spaces that you create are managed as automatic storage table spaces
unless you specify otherwise or the database was created using the AUTOMATIC
STORAGE NO clause. With automatic storage table spaces, you are not required to
provide container definitions; the database manager looks after creating and
extending containers to make use of the storage allocated to the database. If you
add storage to a storage group, new containers are automatically created when the
existing containers reach their maximum capacity. If you want to make use of the
newly-added storage immediately, you can rebalance the table space, reallocating
the data across the new, expanded set of containers and stripe sets. Or, if you are
less concerned about I/O parallelism, and just want to add capacity to your table
space, you can forego rebalancing; in this case, as new storage is required, new
stripe sets will be created.

Automatic storage table spaces can be created in a database using the CREATE
TABLESPACE statement. By default, new tables spaces in a database are automatic
storage table spaces, so the MANAGED BY AUTOMATIC STORAGE clause is
optional. You can also specify options when creating the automatic storage table
space, such as its initial size, the amount that the table space size will be increased
when the table space is full, the maximum size that the table space can grow to,
and the storage group it uses. Following are some examples of statements that
create automatic storage table spaces:
CREATE TABLESPACE TS1
CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE
CREATE TEMPORARY TABLESPACE TEMPTS
CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE
CREATE LARGE TABLESPACE LONGTS
CREATE TABLESPACE TS3 INITIALSIZE 8K INCREASESIZE 20 PERCENT MANAGED BY AUTOMATIC STORAGE
CREATE TABLESPACE TS4 MAXSIZE 2G
CREATE TABLESPACE TS5 USING STOGROUP SG_HOT

Each of these examples assumes that the database for which these table spaces are
being created has one or more defined storage groups. When you create a table
space in a database that has no storage groups defined, you cannot use the
MANAGED BY AUTOMATIC STORAGE clause; you must create a storage group,
then try again to create your automatic storage table space.

Comparison of automatic storage, SMS, and DMS table spaces
Automatic storage, SMS, and DMS table spaces offer different capabilities that can
be advantageous in different circumstances.

Important: The SMS table space type has been deprecated in Version 10.1 for
user-defined permanent table spaces and might be removed in a future release. The
SMS table space type is not deprecated for catalog and temporary table spaces. For
more information, see “SMS permanent table spaces have been deprecated” in
What's New for DB2 Version 10.1

Chapter 17. Table spaces 101

Important: Starting with Version 10.1 Fix Pack 1, the DMS table space type is
deprecated for user-defined permanent table spaces and might be removed in a
future release. The DMS table space type is not deprecated for catalog and
temporary table spaces. For more information, see “DMS permanent table spaces
have been deprecated” in What's New for DB2 Version 10.1.

Table 8. Comparison of SMS, DMS and automatic storage table spaces

Automatic storage table
spaces SMS table spaces DMS table spaces

How they are
created

Created using the MANAGED
BY AUTOMATIC STORAGE
clause of the CREATE
TABLESPACE statement, or by
omitting the MANAGED BY
clause entirely. If the
automatic storage was enabled
when the database was
created, the default for any
table space you create is to
create it as an automatic
storage table space unless you
specify otherwise.

Created using the MANAGED
BY SYSTEM clause of the
CREATE TABLESPACE
statement

Created using the MANAGED
BY DATABASE clause of the
CREATE TABLESPACE
statement

Initial container
definition and
location

You do not provide a list of
containers when creating an
automatic storage table space.
Instead, the database manager
automatically creates
containers on all of the storage
paths associated with the
database. Data is striped
evenly across all containers so
that the storage paths are used
equally.

Requires that containers be
defined as a directory name.

v Requires that containers be
defined as files or devices.

v Must specify the initial size
for each container.

Initial allocation of
space

v For nontemporary
automatic storage table
spaces:

– Space is allocated when
the table space is created

– You can specify the initial
size for table space

v For temporary automatic
storage table spaces, space
is allocated as needed.

Done as needed. Because the
file system controls the
allocation of storage, there is
less likelihood that pages will
be contiguous, which could
have an impact on the
performance of some types of
queries.

Done when table space
created.

v Extents are more likely to
be contiguous than they
would be with SMS table
spaces.

v Pages within extents are
always contiguous for
device containers.

Changes to table
space containers

v Containers can dropped or
reduced if the table space
size is reduced.

v Table space can be
rebalanced to distribute data
evenly across containers
when new storage is added
to or dropped from the
database.

No changes once created,
other than to add containers
for new data partitions as they
are added.

v Containers can be extended
or added. A rebalance of the
table space data will occur
if the new space is added
below the high water mark
for the table space.

v Containers can be reduced
or dropped. A rebalance
will occur if there is data in
the space being dropped

102 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 8. Comparison of SMS, DMS and automatic storage table spaces (continued)

Automatic storage table
spaces SMS table spaces DMS table spaces

Handling of
demands for
increased storage

v Containers are extended
automatically up to
constraints imposed by file
system.

v If storage paths are added
to the database, containers
are extended or created
automatically.

Containers will grow until
they reach the capacity
imposed by the file system.
The table space is considered
to be full when any one
container reaches its
maximum capacity.

Containers can be extended
beyond the initially-allocated
size manually or automatically
(if auto-resize is enabled) up
to constraints imposed by file
system.

Ability to place
different types of
objects in different
table spaces

Tables, storage for related
large objects (LOBs) and
indexes can each reside in
separate table spaces.

For partitioned tables only,
indexes and index partitions
can reside in a table space
separate from the one
containing table data.

Tables, storage for related
large objects (LOBs) and
indexes can each reside in
separate table spaces.

Ongoing
maintenance
requirements

v Reducing size of table space

v Lowering high water mark

v Rebalancing

None v Adding or extending
containers

v Dropping or reducing
containers

v Lowering high water mark

v Rebalancing

Use of restore to
redefine containers

You cannot use a redirected
restore operation to redefine
the containers associated with
the table space because the
database manager manages
space.

You can use a redirected
restore operation to redefine
the containers associated with
the table space

You can use a redirected
restore operation to redefine
the containers associated with
the table space

Performance Similar to DMS Generally slower than DMS
and automatic storage,
especially for larger tables.

Generally superior to SMS

Automatic storage table spaces are the easiest table spaces to set up and maintain,
and are recommended for most applications. They are particularly beneficial when:
v You have larger tables or tables that are likely to grow quickly
v You do not want to have to make regular decisions about how to manage

container growth.
v You want to be able to store different types of related objects (for example,

tables, LOBs, indexes) in different table spaces to enhance performance.

Defining initial table spaces on database creation
When a database is created, three table spaces are defined by default. The
SYSCATSPACE for the system catalog tables. The TEMPSPACE1 for system
temporary tables created during database processing. The USERSPACE1 for
user-defined tables and indexes. You can also specify additional user table spaces
or characteristics for the default table spaces to be created at the database creation.

About this task

Note: When you first create a database no user temporary table space is created.

Chapter 17. Table spaces 103

Unless otherwise specified, the three default table spaces are managed by
automatic storage.

Using the CREATE DATABASE command, you can specify the page size for the default
buffer pool and the initial table spaces. This default also represents the default
page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE
statements. If you do not specify the page size when creating the database, the
default page size is 4 KB.

To define initial table spaces using the command line, enter:
CREATE DATABASE name

PAGESIZE page size
CATALOG TABLESPACE

MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE value PREFETCHSIZE value

USER TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE value PREFETCHSIZE value

TEMPORARY TABLESPACE
MANAGED BY AUTOMATIC STORAGE

WITH "comment"

If you do not want to use the default definition for these table spaces, you might
specify their characteristics on the CREATE DATABASE command. For example, the
following command could be used to create your database on Windows:

CREATE DATABASE PERSONL
PAGESIZE 16384
CATALOG TABLESPACE

MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE 16 PREFETCHSIZE 32

USER TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE 32 PREFETCHSIZE 64

TEMPORARY TABLESPACE
MANAGED BY AUTOMATIC STORAGE

WITH "Personnel DB for BSchiefer Co"

In this example, the default page size is set to 16 384 bytes, and the definition for
each of the initial table spaces is explicitly provided. You only need to specify the
table space definitions for those table spaces for which you do not want to use the
default definition.

Note: When working in a partitioned database environment, you cannot create or
assign containers to specific database partitions. First, you must create the database
with default user and temporary table spaces. Then you should use the CREATE
TABLESPACE statement to create the required table spaces. Finally, you can drop
the default table spaces.

The coding of the MANAGED BY phrase on the CREATE DATABASE command
follows the same format as the MANAGED BY phrase on the CREATE
TABLESPACE statement.

You can add additional user and temporary table spaces if you want. You cannot
drop the catalog table space SYSCATSPACE, or create another one; and there must
always be at least one system temporary table space with a page size of 4 KB. You
can create other system temporary table spaces. You also cannot change the page
size or the extent size of a table space after it has been created.

104 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 18. Schemas

A schema is a collection of named objects; it provides a way to group those objects
logically. A schema is also a name qualifier; it provides a way to use the same
natural name for several objects, and to prevent ambiguous references to those
objects.

For example, the schema names 'INTERNAL' and 'EXTERNAL' make it easy to
distinguish two different SALES tables (INTERNAL.SALES, EXTERNAL.SALES).

Schemas also enable multiple applications to store data in a single database
without encountering namespace collisions.

A schema is distinct from, and should not be confused with, an XML schema,
which is a standard that describes the structure and validates the content of XML
documents.

A schema can contain tables, views, nicknames, triggers, functions, packages, and
other objects. A schema is itself a database object. It is explicitly created using the
CREATE SCHEMA statement, with the current user or a specified authorization ID
recorded as the schema owner. It can also be implicitly created when another
object is created, if the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the
object is specifically qualified with a schema name when created, the object is
assigned to that schema. If no schema name is specified when the object is created,
the default schema name is used (specified in the CURRENT SCHEMA special
register).

For example, a user with DBADM authority creates a schema called C for user A:
CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in schema
C (provided that user A has the CREATETAB database authority):

CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to the
SYSIBM schema, and the pre-installed user-defined functions belong to the
SYSFUN schema.

When a database is created, if it is not created with the RESTRICTIVE option, all
users have IMPLICIT_SCHEMA authority. With this authority, users implicitly
create a schema whenever they create an object with a schema name that does not
already exist. When schemas are implicitly created, CREATEIN privileges are
granted which allows any user to create other objects in this schema. The ability to
create objects such as aliases, distinct types, functions, and triggers is extended to
implicitly created schemas. The default privileges on an implicitly created schema
provide backward compatibility with previous versions.

The owner of an implicitly created schema is SYSIBM. When the database is
restrictive, PUBLIC does not have the CREATEIN privilege on the schema. The

© Copyright IBM Corp. 2012 105

user who implicitly creates the schema has CREATEIN privilege on the schema.
When the database is not restrictive, PUBLIC has the CREATEIN privilege on the
schema.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be
explicitly created using the CREATE SCHEMA statement, or implicitly created by
users (such as those with DBADM authority) who have been granted
IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA authority
from PUBLIC increases control over the use of schema names, it can result in
authorization errors when existing applications attempt to create objects.

Schemas also have privileges, allowing the schema owner to control which users
have the privilege to create, alter, and drop objects in the schema. This ability
provides a way to control the manipulation of a subset of objects in the database.
A schema owner is initially given all of these privileges on the schema, with the
ability to grant the privileges to others. An implicitly created schema is owned by
the system, and all users are initially given the privilege to create objects in such a
schema, except in a restrictive database environment. A user with ACCESSCTRL or
SECADM authority can change the privileges that are held by users on any
schema. Therefore, access to create, alter, and drop objects in any schema (even one
that was implicitly created) can be controlled.

Schema name restrictions and recommendations
There are some restrictions and recommendations that you must be aware of when
naming schemas.
v User-defined types (UDTs) cannot have schema names longer than the schema

length listed in “SQL and XML limits” in the SQL Reference.
v The following schema names are reserved words and must not be used:

SYSCAT, SYSFUN, SYSIBM, SYSSTAT, SYSPROC.
v To avoid potential problems upgrading databases in the future, do not use

schema names that begin with SYS. The database manager will not allow you to
create modules, procedures, triggers, user-defined types or user-defined
functions using a schema name beginning with SYS.

v It is recommended that you not use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION. It is therefore possible to have
an application declare a temporary table with a name identical to that of a
persistent table, in which case the application logic can become overly
complicated. Avoid the use of the schema SESSION, except when dealing with
declared temporary tables.

Creating schemas
You can use schemas to group objects as you create those objects. An object can
belong to only one schema. Use the CREATE SCHEMA statement to create
schemas.

Information about the schemas is kept in the system catalog tables of the database
to which you are connected.

Before you begin

To create a schema and optionally make another user the owner of the schema,
you need DBADM authority. If you do not hold DBADM authority, you can still
create a schema using your own authorization ID. The definer of any objects

106 Preparation Guide for DB2 10.1 Fundamentals Exam 610

created as part of the CREATE SCHEMA statement is the schema owner. This
owner can GRANT and REVOKE schema privileges to other users.

Procedure

To create a schema from the command line, enter the following statement:
CREATE SCHEMA schema-name [AUTHORIZATION schema-owner-name]

Where schema-name is the name of the schema. This name must be unique within
the schemas already recorded in the catalog, and the name cannot begin with SYS.
If the optional AUTHORIZATION clause is specified, the schema-owner-name
becomes the owner of the schema. If this clause is not specified, the authorization
ID that issued this statement becomes the owner of the schema.
For more information, see the CREATE SCHEMA statement. See also “Schema
name restrictions and recommendations” on page 106.

Dropping schemas
To delete a schema, use the DROP statement.

Before you begin

Before dropping a schema, all objects that were in that schema must be dropped or
moved to another schema.

The schema name must be in the catalog when attempting the DROP statement;
otherwise an error is returned.

Procedure

To drop a schema by using the command line, enter:
DROP SCHEMA name RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the
specified schema for the schema to be deleted from the database. The RESTRICT
keyword is not optional.

Example

In the following example, the schema "joeschma" is dropped:
DROP SCHEMA joeschma RESTRICT

Chapter 18. Schemas 107

108 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 19. Tables

Tables are logical structures maintained by the database manager. Tables are made
up of columns and rows.

At the intersection of every column and row is a specific data item called a value.
A column is a set of values of the same type or one of its subtypes. A row is a
sequence of values arranged so that the nth value is a value of the nth column of
the table.

An application program can determine the order in which the rows are populated
into the table, but the actual order of rows is determined by the database manager,
and typically cannot be controlled. Multidimensional clustering (MDC) provides
some sense of clustering, but not actual ordering between the rows.

Types of tables
DB2 databases store data in tables. In addition to tables used to store persistent
data, there are also tables that are used for presenting results, summary tables and
temporary tables; multidimensional clustering tables offer specific advantages in a
warehouse environment.

Base tables
These types of tables hold persistent data. There are different kinds of base
tables, including

Regular tables
Regular tables with indexes are the "general purpose" table choice.

Multidimensional clustering (MDC) tables
These types of tables are implemented as tables that are physically
clustered on more than one key, or dimension, at the same time.
MDC tables are used in data warehousing and large database
environments. Clustering indexes on regular tables support
single-dimensional clustering of data. MDC tables provide the
benefits of data clustering across more than one dimension. MDC
tables provide guaranteed clustering within the composite
dimensions. By contrast, although you can have a clustered index
with regular tables, clustering in this case is attempted by the
database manager, but not guaranteed and it typically degrades
over time. MDC tables can coexist with partitioned tables and can
themselves be partitioned tables.

Multidimensional clustering tables are not supported in a DB2
pureScale environment.

Insert time clustering (ITC) tables
These types of tables are conceptually, and physically similar to
MDC tables, but rather than being clustered by one or more user
specified dimensions, rows are clustered by the time they are
inserted into the table. ITC tables can be partitioned tables.

ITC tables are not supported in a DB2 pureScale environment.

Range-clustered tables (RCT)
These types of tables are implemented as sequential clusters of
data that provide fast, direct access. Each record in the table has a

© Copyright IBM Corp. 2012 109

predetermined record ID (RID) which is an internal identifier used
to locate a record in a table. RCT tables are used where the data is
tightly clustered across one or more columns in the table. The
largest and smallest values in the columns define the range of
possible values. You use these columns to access records in the
table; this is the most optimal method of using the predetermined
record identifier (RID) aspect of RCT tables.

Range-clustered tables are not supported in a DB2 pureScale
environment.

Partitioned tables
These types of tables use a data organization scheme in which
table data is divided across multiple storage objects, called data
partitions or ranges, according to values in one or more table
partitioning key columns of the table. Data partitions can be added
to, attached to, and detached from a partitioned table, and you can
store multiple data partition ranges from a table in one table space.
Partitioned tables can contain large amounts of data and simplify
the rolling in and rolling out of table data.

Temporal tables
These types of tables are used to associate time-based state
information to your data. Data in tables that do not use temporal
support represents the present, while data in temporal tables is
valid for a period defined by the database system, customer
applications, or both. For example, a database can store the history
of a table (deleted rows or the original values of rows that have
been updated) so you can query the past state of your data. You
can also assign a date range to a row of data to indicate when it is
deemed to be valid by your application or business rules.

Temporary tables
These types of tables are used as temporary work tables for various
database operations. Declared temporary tables (DGTTs) do not appear in the
system catalog, which makes them not persistent for use by, and not able
to be shared with other applications. When the application using this table
terminates or disconnects from the database, any data in the table is
deleted and the table is dropped. By contrast, created temporary tables
(CGTTs) do appear in the system catalog and are not required to be
defined in every session where they are used. As a result, they are
persistent and able to be shared with other applications across different
connections.

Neither type of temporary table supports
v User-defined reference or user-defined structured type columns
v LONG VARCHAR columns

In addition XML columns cannot be used in created temporary tables.

Materialized query tables
These types of tables are defined by a query that is also used to determine
the data in the table. Materialized query tables can be used to improve the
performance of queries. If the database manager determines that a portion
of a query can be resolved using a summary table, the database manager
can rewrite the query to use the summary table. This decision is based on
database configuration settings, such as the CURRENT REFRESH AGE and
the CURRENT QUERY OPTIMIZATION special registers. A summary table
is a specialized type of materialized query table.

110 Preparation Guide for DB2 10.1 Fundamentals Exam 610

You can create all of the preceding types of tables using the CREATE TABLE
statement.

Depending on what your data is going to look like, you might find one table type
offers specific capabilities that can optimize storage and query performance. For
example, if you have data records that are loosely clustered (not monotonically
increasing), consider using a regular table and indexes. If you have data records
that have duplicate (but not unique) values in the key, do not use a range-clustered
table. Also, if you cannot afford to preallocate a fixed amount of storage on disk
for the range-clustered tables you might want, do not use this type of table. If you
have data that has the potential for being clustered along multiple dimensions,
such as a table tracking retail sales by geographic region, division and supplier, a
multidimensional clustering table might suit your purposes.

In addition to the various table types described previously, you also have options
for such characteristics as partitioning, which can improve performance for tasks
such as rolling in table data. Partitioned tables can also hold much more
information than a regular, nonpartitioned table. You can also use capabilities such
as compression, which can help you significantly reduce your data storage costs.

Data organization schemes
With the introduction of table partitioning, a DB2 database offers a three-level data
organization scheme. There are three clauses of the CREATE TABLE statement that
include an algorithm to indicate how the data is to be organized.

The following three clauses demonstrate the levels of data organization that can be
used together in any combination:
v DISTRIBUTE BY to spread data evenly across database partitions (to enable

intraquery parallelism and to balance the load across each database partition)
(database partitioning)

v PARTITION BY to group rows with similar values of a single dimension in the
same data partition (table partitioning)

v ORGANIZE BY to group rows with similar values on multiple dimensions in the
same table extent (multidimensional clustering) or to group rows according to
the time of the insert operation (insert time clustering table).

This syntax allows consistency between the clauses and allows for future
algorithms of data organization. Each of these clauses can be used in isolation or in
combination with one another. By combining the DISTRIBUTE BY and PARTITION
BY clauses of the CREATE TABLE statement data can be spread across database
partitions spanning multiple table spaces. This approach allows for similar
behavior to the Informix Dynamic Server and Informix Extended Parallel Server
hybrid.

In a single table, you can combined the clauses used in each data organization
scheme to create more sophisticated partitioning schemes. For example, partitioned
database environments are not only compatible, but also complementary to table
partitioning.

Chapter 19. Tables 111

Figure 7. Demonstrating the table partitioning organization scheme where a table
representing monthly sales data is partitioned into multiple data partitions. The table also
spans two table spaces (ts1 and ts2).

112 Preparation Guide for DB2 10.1 Fundamentals Exam 610

The salient distinction between multidimensional clustering (MDC) and table
partitioning is multi-dimension versus single dimension. MDC is suitable to cubes
(that is, tables with multiple dimensions), and table partitioning works well if there
is a single dimension which is central to the database design, such as a DATE
column. MDC and table partitioning are complementary when both of these
conditions are met. This is demonstrated in Figure 9 on page 114.

Figure 8. Demonstrating the complementary organization schemes of database partitioning
and table partitioning. A table representing monthly sales data is partitioned into multiple data
partitions, spanning two table spaces (ts1 and ts2) that are distributed across multiple
database partitions (dbpart1, dbpart2, dbpart3) of a database partition group (dbgroup1).

Chapter 19. Tables 113

There is another data organization scheme which cannot be used with any of the
schemes that were listed previously. This scheme is ORGANIZE BY KEY
SEQUENCE. It is used to insert each record into a row that was reserved for that
record at the time of table creation (Range-clustered table).

Data organization terminology

Database partitioning
A data organization scheme in which table data is divided across multiple
database partitions based on the hash values in one or more distribution
key columns of the table, and based on the use of a distribution map of the
database partitions. Data from a given table is distributed based on the
specifications provided in the DISTRIBUTE BY HASH clause of the
CREATE TABLE statement.

Figure 9. A representation of the database partitioning, table partitioning and multidimensional
organization schemes where data from table SALES is not only distributed across multiple
database partitions, partitioned across table spaces ts1 and ts2, but also groups rows with
similar values on both the date and region dimensions.

114 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Database partition
A portion of a database on a database partition server consisting of its own
user data, indexes, configuration file, and transaction logs. Database
partitions can be logical or physical.

Table partitioning
A data organization scheme in which table data is divided across multiple
data partitions according to values in one or more partitioning columns of
the table. Data from a given table is partitioned into multiple storage
objects based on the specifications provided in the PARTITION BY clause
of the CREATE TABLE statement. These storage objects can be in different
table spaces.

Data partition
A set of table rows, stored separately from other sets of rows, grouped by
the specifications provided in the PARTITION BY RANGE clause of the
CREATE TABLE statement.

Multidimensional clustering (MDC)
A table whose data is physically organized into blocks along one or more
dimensions, or clustering keys, specified in the ORGANIZE BY
DIMENSIONS clause.

Insert time clustering (ITC)
A table whose data is physically clustered based on row insert time,
specified by the ORGANIZE BY INSERT TIME clause.

Benefits of each data organization scheme

Understanding the benefits of each data organization scheme can help you to
determine the best approach when planning, designing, or reassessing your
database system requirements. Table 9 provides a high-level view of common
customer requirements and shows how the various data organization schemes can
help you to meet those requirements.

Table 9. Using table partitioning with the Database Partitioning Feature

Issue Recommended scheme Explanation

Data roll-out Table partitioning Uses detach to roll out large
amounts of data with
minimal disruption

Parallel query execution
(query performance)

Database Partitioning Feature Provides query parallelism
for improved query
performance

Data partition elimination
(query performance)

Table partitioning Provides data partition
elimination for improved
query performance

Maximization of query
performance

Both Maximum query performance
when used together: query
parallelism and data partition
elimination are
complementary

Heavy administrator
workload

Database Partitioning Feature Execute many tasks for each
database partition

Chapter 19. Tables 115

Table 10. Using table partitioning with MDC tables

Issue Recommended scheme Explanation

Data availability during
roll-out

Table partitioning Use the DETACH
PARTITION clause to roll out
large amounts of data with
minimal disruption.

Query performance Both MDC is best for querying
multiple dimensions. Table
partitioning helps through
data partition elimination.

Minimal reorganization MDC MDC maintains clustering,
which reduces the need to
reorganize.

Note: Table partitioning is now recommended over UNION ALL views.

Data types and table columns
When you create your table, you must indicate what type of data each column will
store. By thinking carefully about the nature of the data you are going to be
managing, you can set your tables up in a way that will give you optimal query
performance, minimize physical storage requirements, and provide you with
specialized capabilities for manipulating different kinds of data, such as arithmetic
operations for numeric data, or comparing date or time values to one another.

Figure 10 on page 117 shows the data types that are supported by DB2 databases.

116 Preparation Guide for DB2 10.1 Fundamentals Exam 610

When you declare your database columns all of these data tyoes are available for
you to choose from. In addition to the built-in types, you can also create your own
user-defined data types that are based on the built-in types. For example, if you
might choose to represent an employee with name, job title, job level, hire date and
salary attributes with a user-defined structured type that incorporates VARCHAR
(name, job title), SMALLINT (job level), DATE (hire date) and DECIMAL (salary)
data.

VARCHAR

SMALLINT INTEGER BIGINT DECIMAL

CLOB VARGRAPHIC DBCLOB

stringdatetime

character graphic floating pointbinary

varying length

boolean

BOOLEAN

fixed
length

varying
length

fixed
length

varying
length

timestamptime date

DATE DECFLOAT

BLOB

TIME

CHAR

single
precision

double
precision

binary integer decimal

64 bit32 bit16 bit packed

REAL DOUBLEGRAPHIC

TIMESTAMP

decimal
floating pointexact approximate

XML

signed
numeric

extensible
markup language

built-in data types

Figure 10. Built-in data types

Chapter 19. Tables 117

Numbers
The numeric data types are integer, decimal, floating-point, and decimal
floating-point.

The numeric data types are categorized as follows:
v Exact numerics: integer and decimal
v Decimal floating-point
v Approximate numerics: floating-point

Integer includes small integer, large integer, and big integer. Integer numbers are
exact representations of integers. Decimal numbers are exact representations of
numbers with a fixed precision and scale. Integer and decimal numbers are
considered exact numeric types.

Decimal floating-point numbers can have a precision of 16 or 34. Decimal
floating-point supports both exact representations of real numbers and
approximation of real numbers and so is not considered either an exact numeric
type or an approximate numeric type.

Floating-point includes single precision and double precision. Floating-point
numbers are approximations of real numbers and are considered approximate
numeric types.

All numbers have a sign, a precision, and a scale. For all numbers except decimal
floating-point, if a column value is zero, the sign is positive. Decimal floating-point
numbers include negative and positive zeros. Decimal floating-point has distinct
values for a number and the same number with various exponents (for example:
0.0, 0.00, 0.0E5, 1.0, 1.00, 1.0000). The precision is the total number of decimal
digits, excluding the sign. The scale is the total number of decimal digits to the
right of the decimal point. If there is no decimal point, the scale is zero.

See also the data type section in the description of the CREATE TABLE statement.

Small integer (SMALLINT)

A small integer is a two-byte integer with a precision of 5 digits. The range of small
integers is -32 768 to 32 767.

Large integer (INTEGER)

A large integer is a four-byte integer with a precision of 10 digits. The range of large
integers is -2 147 483 648 to +2 147 483 647.

Big integer (BIGINT)

A big integer is an eight-byte integer with a precision of 19 digits. The range of big
integers is -9 223 372 036 854 775 808 to +9 223 372 036 854 775 807.

Decimal (DECIMAL or NUMERIC)

A decimal value is a packed decimal number with an implicit decimal point. The
position of the decimal point is determined by the precision and the scale of the
number. The scale, which is the number of digits in the fractional part of the
number, cannot be negative or greater than the precision. The maximum precision
is 31 digits.

118 Preparation Guide for DB2 10.1 Fundamentals Exam 610

All values in a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is -n to +n, where the
absolute value of n is the largest number that can be represented with the
applicable precision and scale. The maximum range is -1031+1 to 1031-1.

Single-precision floating-point (REAL)

A single-precision floating-point number is a 32-bit approximation of a real number.
The number can be zero or can range from -3.4028234663852886e+38 to
-1.1754943508222875e-38, or from 1.1754943508222875e-38 to
3.4028234663852886e+38.

Double-precision floating-point (DOUBLE or FLOAT)

A double-precision floating-point number is a 64-bit approximation of a real number.
The number can be zero or can range from -1.7976931348623158e+308 to
-2.2250738585072014e-308, or from 2.2250738585072014e-308 to
1.7976931348623158e+308.

Decimal floating-point (DECFLOAT)

A decimal floating-point value is an IEEE 754r number with a decimal point. The
position of the decimal point is stored in each decimal floating-point value. The
maximum precision is 34 digits. The range of a decimal floating-point number is
either 16 or 34 digits of precision, and an exponent range of 10-383 to 10+384 or 10-6143

to 10+6144, respectively. The minimum exponent, Emin, for DECFLOAT values is -383
for DECFLOAT(16) and -6143 for DECFLOAT(34). The maximum exponent, Emax,
for DECFLOAT values is 384 for DECFLOAT(16) and 6144 for DECFLOAT(34).

In addition to finite numbers, decimal floating-point numbers are able to represent
one of the following named decimal floating-point special values:
v Infinity - a value that represents a number whose magnitude is infinitely large
v Quiet NaN - a value that represents undefined results and that does not cause

an invalid number warning
v Signalling NaN - a value that represents undefined results and that causes an

invalid number warning if used in any numeric operation

When a number has one of these special values, its coefficient and exponent are
undefined. The sign of an infinity value is significant, because it is possible to have
positive or negative infinity. The sign of a NaN value has no meaning for
arithmetic operations.

Subnormal numbers and underflow

Nonzero numbers whose adjusted exponents are less than Emin are called
subnormal numbers. These subnormal numbers are accepted as operands for all
operations and can result from any operation.

For a subnormal result, the minimum values of the exponent become Emin -
(precision-1), called Etiny, where precision is the working precision. If necessary, the
result is rounded to ensure that the exponent is no smaller than Etiny. If the result
becomes inexact during rounding, an underflow warning is returned. A subnormal
result does not always return the underflow warning.

When a number underflows to zero during a calculation, its exponent will be Etiny.
The maximum value of the exponent is unaffected.

Chapter 19. Tables 119

The maximum value of the exponent for subnormal numbers is the same as the
minimum value of the exponent that can arise during operations that do not result
in subnormal numbers. This occurs when the length of the coefficient in decimal
digits is equal to the precision.

Character strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string. This
value should not be confused with the null value.

Fixed-length character string (CHAR)

All values in a fixed-length string column have the same length, which is
determined by the length attribute of the column. The length attribute must be
between 1 and 254, inclusive.

Varying-length character strings

There are two types of varying-length character strings:
v A VARCHAR value can be up to 32 672 bytes long.
v A CLOB (character large object) value can be up to 2 gigabytes minus 1 byte

(2 147 483 647 bytes) long. A CLOB is used to store large SBCS or mixed (SBCS
and MBCS) character-based data (such as documents written with a single
character set) and, therefore, has an SBCS or mixed code page associated with it.

Special restrictions apply to expressions resulting in a CLOB data type, and to
structured type columns; such expressions and columns are not permitted in:
v A SELECT list preceded by the DISTINCT clause
v A GROUP BY clause
v An ORDER BY clause
v A subselect of a set operator other than UNION ALL
v A basic, quantified, BETWEEN, or IN predicate
v An aggregate function
v VARGRAPHIC, TRANSLATE, and datetime scalar functions
v The pattern operand in a LIKE predicate, or the search string operand in a

POSSTR function
v The string representation of a datetime value.

The functions in the SYSFUN schema taking a VARCHAR as an argument will not
accept VARCHARs greater than 4 000 bytes long as an argument. However, many
of these functions also have an alternative signature accepting a CLOB(1M). For
these functions, the user can explicitly cast the greater than 4 000 VARCHAR
strings into CLOBs and then recast the result back into VARCHARs of the required
length.

NUL-terminated character strings found in C are handled differently, depending on
the standards level of the precompile option.

Each character string is further defined as one of:

Bit data
Data that is not associated with a code page.

120 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Single-byte character set (SBCS) data
Data in which every character is represented by a single byte.

Mixed data
Data that may contain a mixture of characters from a single-byte character
set and a multi-byte character set (MBCS).

Note: The LONG VARCHAR data type continues to be supported but is
deprecated, not recommended, and might be removed in a future release.

String units in built-in functions

The ability to specify string units for certain built-in functions allows you to
process string data in a more "character-based manner" than a "byte-based
manner". The string unit determines the length in which an operation is to occur.
You can specify CODEUNITS16, CODEUNITS32, or OCTETS as the string unit for
an operation.

CODEUNITS16
Specifies that Unicode UTF-16 is the unit for the operation. CODEUNITS16
is useful when an application is processing data in code units that are two
bytes in width. Note that some characters, known as supplementary
characters, require two UTF-16 code units to be encoded. For example, the
musical symbol G clef requires two UTF-16 code units (X'D834' and
X'DD1E' in UTF-16BE).

CODEUNITS32
Specifies that Unicode UTF-32 is the unit for the operation. CODEUNITS32
is useful for applications that process data in a simple, fixed-length format,
and that must return the same answer regardless of the storage format of
the data (ASCII, UTF-8, or UTF-16).

OCTETS
Specifies that bytes are the units for the operation. OCTETS is often used
when an application is interested in allocating buffer space or when
operations need to use simple byte processing.

The calculated length of a string computed using OCTETS (bytes) might differ
from that computed using CODEUNITS16 or CODEUNITS32. When using
OCTETS, the length of the string is determined by simply counting the number of
bytes in the string. When using CODEUNITS16 or CODEUNITS32, the length of
the string is determined by counting the number of 16-bit or 32-bit code units
necessary to represent the string in UTF-16 or UTF-32, respectively. The length
determined using CODEUNITS16 and CODEUNITS32 will be identical unless the
data contains supplementary characters.

For example, assume that NAME, a VARCHAR(128) column encoded in Unicode
UTF-8, contains the value 'Jürgen'. The following two queries, which count the
length of the string in CODEUNITS16 and CODEUNITS32, respectively, return the
same value (6).

SELECT CHARACTER_LENGTH(NAME,CODEUNITS16) FROM T1
WHERE NAME = ’Jürgen’

SELECT CHARACTER_LENGTH(NAME,CODEUNITS32) FROM T1
WHERE NAME = ’Jürgen’

The next query, which counts the length of the string in OCTETS, returns the value
7.

Chapter 19. Tables 121

SELECT CHARACTER_LENGTH(NAME,OCTETS) FROM T1
WHERE NAME = ’Jürgen’

These values represent the length of the string expressed in the specified string
unit.

The following table shows the UTF-8, UTF-16BE (big-endian), and UTF-32BE
(big-endian) representations of the name 'Jürgen':
Format Representation of the name ’Jürgen’
-------- --------------------------------------
UTF-8 X’4AC3BC7267656E’
UTF-16BE X’004A00FC007200670065006E’
UTF-32BE X’0000004A000000FC0000007200000067000000650000006E’

The representation of the character 'ü' differs among the three string units:
v The UTF-8 representation of the character 'ü' is X'C3BC'.
v The UTF-16BE representation of the character 'ü' is X'00FC'.
v The UTF-32BE representation of the character 'ü' is X'000000FC'.

Specifying string units for a built-in function does not affect the data type or the
code page of the result of the function. If necessary, DB2 converts the data to
Unicode for evaluation when CODEUNITS16 or CODEUNITS32 is specified.

When OCTETS is specified for the LOCATE or POSITION function, and the code
pages of the string arguments differ, DB2 converts the data to the code page of the
source-string argument. In this case, the result of the function is in the code page of
the source-string argument. When OCTETS is specified for functions that take a
single string argument, the data is evaluated in the code page of the string
argument, and the result of the function is in the code page of the string argument.

Difference between CODEUNITS16 and CODEUNITS32

When CODEUNITS16 or CODEUNITS32 is specified, the result is the same except
when the data contains Unicode supplementary characters. This is because a
supplementary character is represented by two UTF-16 code units or one UTF-32
code unit. In UTF-8, a non-supplementary character is represented by 1 to 3 bytes,
and a supplementary character is represented by 4 bytes. In UTF-16, a
non-supplementary character is represented by one CODEUNITS16 code unit or 2
bytes, and a supplementary character is represented by two CODEUNITS16 code
units or 4 bytes. In UTF-32, a character is represented by one CODEUNITS32 code
unit or 4 bytes.

For example, the following table shows the hexadecimal values for the
mathematical bold capital A and the Latin capital letter A. The mathematical bold
capital A is a supplementary character that is represented by 4 bytes in UTF-8,
UTF-16, and UTF-32.

Character UTF-8 representation
UTF-16BE
representation

UTF-32BE
representation

Unicode value
X'1D400' - 'A';
mathematical bold
capital A

X'F09D9080' X'D835DC00' X'0001D400'

Unicode value X'0041'
- 'A'; latin capital
letter A

X'41' X'0041' X'00000041'

122 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Assume that C1 is a VARCHAR(128) column, encoded in Unicode UTF-8, and that
table T1 contains one row with the value of the mathematical bold capital A
(X'F09D9080'). The following queries return different results:
Query Returns
----- -------
SELECT CHARACTER_LENGTH(C1,CODEUNITS16) FROM T1 2

SELECT CHARACTER_LENGTH(C1,CODEUNITS32) FROM T1 1

SELECT CHARACTER_LENGTH(C1,OCTETS) FROM T1 4

Datetime values
The datetime data types include DATE, TIME, and TIMESTAMP. Although
datetime values can be used in certain arithmetic and string operations, and are
compatible with certain strings, they are neither strings nor numbers.

Date

A date is a three-part value (year, month, and day). The range of the year part is
0001 to 9999. The range of the month part is 1 to 12. The range of the day part is 1
to x, where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists of 2
packed decimal digits. The first 2 bytes represent the year, the third byte the
month, and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which is
the appropriate length for a character string representation of the value.

Time

A time is a three-part value (hour, minute, and second) designating a time of day
under a 24-hour clock. The range of the hour part is 0 to 24. The range of the other
parts is 0 to 59. If the hour is 24, the minute and second specifications are zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of 2
packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is the
appropriate length for a character string representation of the value.

Timestamp

A timestamp is a six or seven-part value (year, month, day, hour, minute, second,
and optional fractional seconds) designating a date and time as defined in the
previous sections, except that the time could also include an additional part
designating a fraction of a second. The number of digits in the fractional seconds is
specified using an attribute in the range from 0 to 12 with a default of 6.

The internal representation of a timestamp is a string of between 7 and 13 bytes.
Each byte consists of 2 packed decimal digits. The first 4 bytes represent the date,
the next 3 bytes the time, and the last 0 to 6 bytes the fractional seconds.

Chapter 19. Tables 123

The length of a TIMESTAMP column, as described in the SQLDA, is between 19
and 32 bytes, which is the appropriate length for the character string
representation of the value.

String representations of datetime values

Values whose data types are DATE, TIME, or TIMESTAMP are represented in an
internal form that is transparent to the user. Date, time, and timestamp values can,
however, also be represented by strings. This is useful because there are no
constants or variables whose data types are DATE, TIME, or TIMESTAMP. Before it
can be retrieved, a datetime value must be assigned to a string variable. The
CHAR function or the GRAPHIC function (for Unicode databases only) can be
used to change a datetime value to a string representation. The string
representation is normally the default format of datetime values associated with
the territory code of the application, unless overridden by specification of the
DATETIME option when the program is precompiled or bound to the database.

No matter what its length, a large object string cannot be used as a string
representation of a datetime value (SQLSTATE 42884).

When a valid string representation of a datetime value is used in an operation with
an internal datetime value, the string representation is converted to the internal
form of the date, time, or timestamp value before the operation is performed.

Date, time and timestamp strings must contain only characters and digits.

Date strings

A string representation of a date is a string that starts with a digit and has a length
of at least 8 characters. Trailing blanks may be included; leading zeros may be
omitted from the month and day portions.

Valid string formats for dates are listed in the following table. Each format is
identified by name and associated abbreviation.

Table 11. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards
Organization

ISO yyyy-mm-dd 1991-10-27

IBM USA standard USA mm/dd/yyyy 10/27/1991

IBM European standard EUR dd.mm.yyyy 27.10.1991

Japanese Industrial Standard
Christian Era

JIS yyyy-mm-dd 1991-10-27

Site-defined LOC Depends on the
territory code of
the application

-

Time strings

A string representation of a time is a string that starts with a digit and has a length
of at least 4 characters. Trailing blanks can be included; a leading zero can be
omitted from the hour part of the time, and seconds can be omitted entirely. If
seconds are omitted, an implicit specification of 0 seconds is assumed. Thus, 13:30
is equivalent to 13:30:00.

124 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Valid string formats for times are listed in the following table. Each format is
identified by name and associated abbreviation.

Table 12. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards
Organization

ISO hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or
PM

1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese Industrial Standard
Christian Era

JIS hh:mm:ss 13:30:05

Site-defined LOC Depends on the
territory code of
the application

-

Note:

1. In ISO, EUR, or JIS format, .ss (or :ss) is optional.
2. The International Standards Organization changed the time format so that it is

identical to the Japanese Industrial Standard Christian Era format. Therefore,
use the JIS format if an application requires the current International Standards
Organization format.

3. In the USA time string format, the minutes specification can be omitted,
indicating an implicit specification of 00 minutes. Thus, 1 PM is equivalent to
1:00 PM.

4. In the USA time string format, the hour must not be greater than 12 and cannot
be 0, except in the special case of 00:00 AM. There is a single space before 'AM'
or 'PM'. 'AM' and 'PM' can be represented in lowercase or uppercase characters.
Using the JIS format of the 24-hour clock, the correspondence between the USA
format and the 24-hour clock is as follows:
v 12:01 AM through 12:59 AM corresponds to 00:01:00 through 00:59:00.
v 01:00 AM through 11:59 AM corresponds to 01:00:00 through 11:59:00.
v 12:00 PM (noon) through 11:59 PM corresponds to 12:00:00 through 23:59:00.
v 12:00 AM (midnight) corresponds to 24:00:00 and 00:00 AM (midnight)

corresponds to 00:00:00.

Timestamp strings

A string representation of a timestamp is a string that starts with a digit and has a
length of at least 16 characters. The complete string representation of a timestamp
has the form yyyy-mm-dd-hh.mm.ss or yyyy-mm-dd-hh.mm.ss.nnnnnnnnnnnn, where
the number of digits for fractional seconds can range from 0 to 12. Trailing blanks
may be included. Leading zeros may be omitted from the month, day, and hour
part of the timestamp. Trailing zeros can be truncated or entirely omitted from the
fractional seconds. If a string representation of a timestamp is implicitly cast to a
value with a TIMESTAMP data type, the timestamp precision of the result of the
cast is determined by the precision of the TIMESTAMP operand in an expression
or the precision of the TIMESTAMP target in an assignment. Digits in the string
beyond the timestamp precision of the cast are truncated or any missing digits to
reach the timestamp precision of the cast are assumed to be zeros. For example,
1991-3-2-8.30.00 is equivalent to 1991-03-02-08.30.00.000000000000.

Chapter 19. Tables 125

A string representation of a timestamp can be given a different timestamp
precision by explicitly casting the value to a timestamp with a specified precision.
If the string is a constant, an alternative is to precede the string constant with the
TIMESTAMP keyword. For example, TIMESTAMP '2007-03-28 14:50:35.123' has the
TIMESTAMP(3) data type.

SQL statements also support the ODBC string representation of a timestamp, but
as an input value only. The ODBC string representation of a timestamp has the
form yyyy-mm-dd hh:mm:ss.nnnnnnnnnnnn, where the number of digits for
fractional seconds can range from 0 to 12..

Large objects (LOBs)
The term large object and the generic acronym LOB refer to the BLOB, CLOB, or
DBCLOB data type. In a Unicode database, NCLOB can be used as a synonym for
DBCLOB.

LOB values are subject to restrictions, as described in “Varying-length character
strings” on page 120. These restrictions apply even if the length attribute of the
LOB string is 254 bytes or less.

LOB values can be very large, and the transfer of these values from the database
server to client application program host variables can be time consuming. Because
application programs typically process LOB values one piece at a time, rather than
as a whole, applications can reference a LOB value by using a large object locator.

A large object locator, or LOB locator, is a host variable whose value represents a
single LOB value on the database server.

An application program can select a LOB value into a LOB locator. Then, using the
LOB locator, the application program can request database operations on the LOB
value (such as applying the scalar functions SUBSTR, CONCAT, VALUE, or
LENGTH; performing an assignment; searching the LOB with LIKE or POSSTR; or
applying user-defined functions against the LOB) by supplying the locator value as
input. The resulting output (data assigned to a client host variable) would typically
be a small subset of the input LOB value.

LOB locators can represent more than just base values; they can also represent the
value associated with a LOB expression. For example, a LOB locator might
represent the value associated with:

SUBSTR(<lob 1> CONCAT <lob 2> CONCAT <lob 3>, <start>, <length>)

When a null value is selected into a normal host variable, the indicator variable is
set to -1, signifying that the value is null. In the case of LOB locators, however, the
meaning of indicator variables is slightly different. Because a locator host variable
can itself never be null, a negative indicator variable value indicates that the LOB
value represented by the LOB locator is null. The null information is kept local to
the client by virtue of the indicator variable value - the server does not track null
values with valid locators.

It is important to understand that a LOB locator represents a value, not a row or a
location in the database. Once a value is selected into a locator, there is no
operation that one can perform on the original row or table that will affect the
value which is referenced by the locator. The value associated with a locator is
valid until the transaction ends, or until the locator is explicitly freed, whichever
comes first. Locators do not force extra copies of the data to provide this function.

126 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Instead, the locator mechanism stores a description of the base LOB value. The
materialization of the LOB value (or expression, as shown previously) is deferred
until it is actually assigned to some location - either a user buffer in the form of a
host variable, or another record in the database.

A LOB locator is only a mechanism used to refer to a LOB value during a
transaction; it does not persist beyond the transaction in which it was created. It is
not a database type; it is never stored in the database and, as a result, cannot
participate in views or check constraints. However, because a LOB locator is a
client representation of a LOB type, there are SQLTYPEs for LOB locators so that
they can be described within an SQLDA structure used by FETCH, OPEN, or
EXECUTE statements.

XML data type
Use the XML data type to define columns of a table and store XML values. All
XML values must be well-formed XML documents. You can use this native data
type to store well-formed XML documents in their native hierarchical format in the
database alongside other relational data.

XML values are processed in an internal representation that is not a string and not
directly comparable to string values. An XML value can be transformed into a
serialized string value representing the XML document using the XMLSERIALIZE
function or by binding the value to an application variable of an XML, string, or
binary type. Similarly, a string value that represents an XML document can be
transformed to an XML value using the XMLPARSE function or by binding an
application string, binary, or XML application type to an XML value. In SQL data
change statements (such as INSERT) involving XML columns, a string or binary
value that represents an XML document is transformed into an XML value using
an injected XMLPARSE function. An XML value can be implicitly parsed or
serialized when exchanged with application string and binary data types.

There is no architectural limit on the size of an XML value in a database. However,
note that serialized XML data exchanged with DB2 database server is effectively
limited to 2 GB.

XML documents can be inserted, updated and deleted using SQL data
manipulation statements. Validation of an XML document against an XML schema,
typically performed during insert or update, is supported by the XML schema
repository (XSR). The DB2 database system also provides mechanisms for
constructing and querying XML values, as well as exporting and importing XML
data. An index over XML data can be defined on an XML column, providing
improved search performance of XML data. The XML data in table or view
columns can be retrieved as serialized string data through various application
interfaces.

Generated columns
A generated column is defined in a table where the stored value is computed using
an expression, rather than being specified through an insert or update operation.

When creating a table where it is known that certain expressions or predicates will
be used all the time, you can add one or more generated columns to that table. By
using a generated column there is opportunity for performance improvements
when querying the table data.

Chapter 19. Tables 127

For example, there are two ways in which the evaluation of expressions can be
costly when performance is important:
1. The evaluation of the expression must be done many times during a query.
2. The computation is complex.

To improve the performance of the query, you can define an additional column
that would contain the results of the expression. Then, when issuing a query that
includes the same expression, the generated column can be used directly; or, the
query rewrite component of the optimizer can replace the expression with the
generated column.

Where queries involve the joining of data from two or more tables, the addition of
a generated column can allow the optimizer a choice of possibly better join
strategies.

Generated columns will be used to improve performance of queries. As a result,
generated columns will likely be added after the table has been created and
populated.

Examples

The following is an example of defining a generated column on the CREATE
TABLE statement:

CREATE TABLE t1 (c1 INT,
c2 DOUBLE,
c3 DOUBLE GENERATED ALWAYS AS (c1 + c2)
c4 GENERATED ALWAYS AS

(CASE WHEN c1 > c2 THEN 1 ELSE NULL END))

After creating this table, indexes can be created using the generated columns. For
example,
CREATE INDEX i1 ON t1(c4)

Queries can take advantage of the generated columns. For example,
SELECT COUNT(*) FROM t1 WHERE c1 > c2

can be written as:
SELECT COUNT(*) FROM t1 WHERE c4 IS NOT NULL

Another example:
SELECT c1 + c2 FROM t1 WHERE (c1 + c2) * c1 > 100

can be written as:
SELECT c3 FROM t1 WHERE c3 * c1 > 100

Hidden columns
When a table column is defined with the implicitly hidden attribute, that column is
unavailable unless it is explicitly referenced. For example, if a SELECT * query is
run against a table, implicitly hidden columns are not returned in the result table.
An implicitly hidden column can always be referenced explicitly wherever a
column name can be specified.

In cases where columns and their entries are generated by the database manager,
defining such columns as IMPLICITLY HIDDEN can minimize any potential
negative impact on your applications. For example, a system-period temporal table

128 Preparation Guide for DB2 10.1 Fundamentals Exam 610

has three columns whose values are generated by the database manager. The
database manager uses these columns to preserve historical versions of each table
row. Most business applications would work with the historical data, but would
rarely work with these three generated columns. Hiding these columns from your
applications could reduce application processing time.

When inserting data into a table, an INSERT statement without a column list does
not expect values for any implicitly hidden columns. In such cases, if the input
includes a value for an implicitly hidden column, that value does not have a
corresponding target column and an error is returned (SQLSTATE 42802). Because
an INSERT statement without a column list does not include values for implicitly
hidden columns, any columns that are defined as implicitly hidden and NOT
NULL must have a defined default value

When populating a table with data from an input file, utilities like IMPORT,
INGEST, and LOAD require that you specify whether data for the hidden columns
is included in the operation. If a column list is not specified, data movement
utilities must use the implicitlyhiddeninclude or implicitlyhiddenmissing file type
modifiers when working with tables that contain implicitly hidden columns. You
can also use the DB2_DMU_DEFAULT registry variable to set the default behavior
when data movement utilities encounter tables with implicitly hidden columns.
Similarly, EXPORT requires that you specify whether data for the hidden columns
is included in the operation.

The implicitly hidden attribute can be defined on a table column using the
CREATE TABLE statement for new tables, or the ALTER TABLE statement for
existing tables. If a table is created using a CREATE TABLE statement with the
LIKE clause, any implicitly hidden columns in the source table are inherited by the
new table. The ALTER TABLE statement can be used to change hidden columns to
not hidden or to change not hidden columns to hidden. Altering a table to change
the hidden attribute of some columns can impact the behavior of data movement
utilities that are working with the table. For example, this might mean that a load
operation that ran successfully before the table was altered to define some hidden
columns, now returns an error (SQLCODE -2437).

The list of names identifying the columns of a result table from a SELECT query
run with the exposed-name.* option does not include any implicitly hidden columns.
A SELECT query run with the order-by-clause can include implicitly hidden
columns in the simple-column-name.

If an implicitly hidden column is explicitly referenced in a materialized query table
definition, that column will be a part of the materialized query table. However the
column in the materialized query table does not inherit the implicitly hidden
attribute. This same behaviour applies to views and tables created with the
as-result-table clause.

An implicitly hidden column can be explicitly referenced in a CREATE INDEX
statement, ALTER TABLE statement, or in a referential constraint.

A transition variable exists for any column defined as implicitly hidden. In the
body of a trigger, a transition variable that corresponds to an implicitly hidden
column can be referenced.

Implicitly hidden columns are not supported in created temporary tables and
declared temporary tables.

Chapter 19. Tables 129

Hidden columns for a table can be displayed using the DESCRIBE command.
DESCRIBE TABLE tablename SHOW DETAIL

Example
v Example 1: In the following statement, a table is created with an implicitly

hidden column.
CREATE TABLE CUSTOMER
(
CUSTOMERNO INTEGER NOT NULL,
CUSTOMERNAME VARCHAR(80),
PHONENO CHAR(8) IMPLICITLY HIDDEN
);

A SELECT * only returns the column entries for CUSTOMERNO and CUSTOMERNAME.
For example:
A123, ACME
B567, First Choice
C345, National Chain

Entries for the PHONENO column are hidden unless explicitly referenced.
SELECT CUSTOMERNO, CUSTOMERNAME, PHONENO

FROM CUSTOMER

v Example 2: If the database table contains implicitly hidden columns, you must
specify whether data for the hidden columns is included in data movement
operations. The following example uses LOAD to show the different methods to
indicate if data for hidden columns is included:
– Use insert-column to explicitly specify the columns into which data is to be

inserted.
db2 load from delfile1 of del

insert into table1 (c1, c2, c3,...)

– Use one of the hidden column file type modifiers: specify
implicitlyhiddeninclude when the input file contains data for the hidden
columns, or implicitlyhiddenmissing when the input file does not.
db2 load from delfile1 of del modified by implicitlyhiddeninclude

insert into table1

– Use the DB2_DMU_DEFAULT registry variable on the server-side to set the
behavior when data movement utilities encounter tables with implicitly
hidden columns.
db2set DB2_DMU_DEFAULT=IMPLICITLYHIDDENINCLUDE
db2 load from delfile1 of del insert into table1

Auto numbering and identifier columns
An identity column provides a way for DB2 to automatically generate a unique
numeric value for each row that is added to the table.

When creating a table in which you must uniquely identify each row that will be
added to the table, you can add an identity column to the table. To guarantee a
unique numeric value for each row that is added to a table, you should define a
unique index on the identity column or declare it a primary key.

Other uses of an identity column are an order number, an employee number, a
stock number, or an incident number. The values for an identity column can be
generated by the DB2 database manager: ALWAYS or BY DEFAULT.

130 Preparation Guide for DB2 10.1 Fundamentals Exam 610

An identity column defined as GENERATED ALWAYS is given values that are
always generated by the DB2 database manager. Applications are not allowed to
provide an explicit value. An identity column defined as GENERATED BY
DEFAULT gives applications a way to explicitly provide a value for the identity
column. If the application does not provide a value, then DB2 will generate one.
Since the application controls the value, DB2 cannot guarantee the uniqueness of
the value. The GENERATED BY DEFAULT clause is meant for use for data
propagation where the intent is to copy the contents of an existing table; or, for the
unload and reloading of a table.

Once created, you first have to add the column with the DEFAULT option to get
the existing default value. Then you can ALTER the default to become an identity
column.

If rows are inserted into a table with explicit identity column values specified, the
next internally generated value is not updated, and might conflict with existing
values in the table. Duplicate values will generate an error message if the
uniqueness of the values in the identity column is being enforced by a primary-key
or a unique index that has been defined on the identity column.

To define an identity column on a new table, use the AS IDENTITY clause on the
CREATE TABLE statement.

Example

The following is an example of defining an identity column on the CREATE
TABLE statement:

CREATE TABLE table (col1 INT,
col2 DOUBLE,
col3 INT NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 100, INCREMENT BY 5))

In this example the third column is the identity column. You can also specify the
value used in the column to uniquely identify each row when added. Here the first
row entered has the value of “100” placed in the column; every subsequent row
added to the table has the associated value increased by five.

Default column and data type definitions
Certain columns and data types have predefined or assigned default values.

For example, default column values for the various data types are as follows:
v NULL

v 0 Used for small integer, integer, decimal, single-precision floating point,
double-precision floating point, and decimal floating point data type.

v Blank: Used for fixed-length and fixed-length double-byte character strings.
v Zero-length string: Used for varying-length character strings, binary large objects,

character large objects, and double-byte character large objects.
v Date: This the system date at the time the row is inserted (obtained from the

CURRENT_DATE special register). When a date column is added to an existing
table, existing rows are assigned the date January, 01, 0001.

v Time or Timestamp: This is the system time or system date/time of the at the time
the statement is inserted (obtained from the CURRENT_TIME special register).

Chapter 19. Tables 131

When a time column is added to an existing table, existing rows are assigned
the time 00:00:00 or a timestamp that contains the date January, 01, 0001 and the
time 00:00:00.

Note: All the rows get the same default time/timestamp value for a given
statement.

v Distinct user-defined data type: This is the built-in default value for the base data
type of the distinct user-defined data type (cast to the distinct user-defined data
type.

Creating tables
The database manager controls changes and access to the data stored in the tables.
You can create tables by using the CREATE TABLE statement.

Complex statements can be used to define all the attributes and qualities of tables.
However, if all the defaults are used, the statement to create a table is simple.

Creating tables like existing tables
Creating a new source table might be necessary when the characteristics of the
target table do not sufficiently match the characteristics of the source when issuing
the ALTER TABLE statement with the ATTACH PARTITION clause.

Before creating a new source table, you can attempt to correct the mismatch
between the existing source table and the target table.

Before you begin

To create a table, the privileges held by the authorization ID of the statement must
include at least one of the following authorities and privileges:
v CREATETAB authority on the database and USE privilege on the table space, as

well as one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema
v DBADM authority

About this task

If attempts to correct the mismatch fail, error SQL20408N or SQL20307N is
returned.

Procedure

To create a new source table:
1. Use the db2look command to produce the CREATE TABLE statement to create

a table identical to the target table:
db2look -d source_database_name -t source_table_name -e

2. Remove the partitioning clause from the db2look output and change the name
of the table created to a new name (for example, “sourceC”).

3. Next, load all of the data from the original source table to the newly created
source table, sourceC using a LOAD FROM CURSOR command:

132 Preparation Guide for DB2 10.1 Fundamentals Exam 610

DECLARE mycurs CURSOR FOR SELECT * FROM source

LOAD FROM mycurs OF CURSOR REPLACE INTO sourceC

If this command fails because the original data is incompatible with the
definition of table sourceC, you must transform the data in the original table as
it is being transferred to sourceC.

4. After the data is successfully copied to sourceC, submit the ALTER TABLE
target ...ATTACH sourceC statement.

Declaring temporary tables
To define temporary tables from within your applications, use the DECLARE
GLOBAL TEMPORARY TABLE statement.

About this task

Temporary tables, also referred to as user-defined temporary tables, are used by
applications that work with data in the database. Results from manipulation of the
data need to be stored temporarily in a table. A user temporary table space must
exist before declaring temporary tables.

Note: The description of temporary tables does not appear in the system catalog
thus making it not persistent for, and not able to be shared with, other
applications. When the application using this table terminates or disconnects from
the database, any data in the table is deleted and the table is implicitly dropped.
Temporary tables do not support:
v User-defined type columns
v LONG VARCHAR columns
v XML columns for created global temporary tables

Example
DECLARE GLOBAL TEMPORARY TABLE temptbl

LIKE empltabl
ON COMMIT DELETE ROWS
NOT LOGGED
IN usr_tbsp

This statement defines a temporary table called temptbl. This table is defined with
columns that have exactly the same name and description as the columns of the
empltabl. The implicit definition only includes the column name, data type,
nullability characteristic, and column default value attributes. All other column
attributes including unique constraints, foreign key constraints, triggers, and
indexes are not defined. With ON COMMIT DELETE ROWS (any DELETE ROWS
option), the database manager always deletes rows whether there's a cursor with a
HOLD open on the table or not. The database manager optimizes a NOT LOGGED
delete by implementing an internal TRUNCATE, if no WITH HOLD cursors are
open, otherwise, the database manager deletes the rows one at a time.

The table is dropped implicitly when the application disconnects from the
database. For more information, see the DECLARE GLOBAL TEMPORARY TABLE
statement.

Creating and connecting to created temporary tables
Created temporary tables are created using the CREATE GLOBAL TEMPORARY
TABLE statement. The first time an application refers to a created temporary table

Chapter 19. Tables 133

using a connection, a private version of the created temporary table is instantiated
for use by the application using the connection.

About this task

Similar to declared temporary tables, created temporary tables are used by
applications that work with data in the database, where the results from
manipulation of the data need to be stored temporarily in a table. Whereas
declared temporary table information is not saved in the system catalog tables, and
must be defined in every session where it is used, created temporary table
information is saved in the system catalog and is not required to be defined in
every session where it is used, thus making it persistent and able to be shared with
other applications, across different connections. A user temporary table space must
exist before created temporary tables can be created.

Note: The first implicit or explicit reference to the created temporary table that is
executed by any program using the connection creates an empty instance of the
given created temporary table. Each connection that references this created
temporary table has its own unique instance of the created temporary table, and
the instance is not persistent beyond the life of the connection.

References to the created temporary table name in multiple connections refer to the
same, single, persistent created temporary table definition, and to a distinct
instance of the created temporary table for each connection at the current server. If
the created temporary table name that is being referenced is not qualified, it is
implicitly qualified using the standard qualification rules that apply to SQL
statements.

The owner implicitly has all table privileges on the created temporary table,
including the authority to drop it. The owner's table privileges can be granted and
revoked, either individually or with the ALL clause. Another authorization ID can
access the created temporary table only if it has been granted appropriate
privileges.

Indexes and SQL statements that modify data (such as INSERT, UPDATE, and
DELETE) are supported. Indexes can only be created in the same table space as the
created temporary table.

For the CREATE GLOBAL TEMPORARY TABLE statement: locking and recovery
do not apply; logging applies only when the LOGGED clause is specified. For
more options, see the CREATE GLOBAL TEMPORARY statement.

Created temporary tables cannot be:
v Associated with security policies
v Table partitioned
v Multidimensional clustering (MDC) tables
v Insert time clustering (ITC) tables
v Range-clustered (RCT)
v Distributed by replication

Materialized query tables (MQTs) cannot be created on created temporary tables.

Created temporary tables do not support the following column types, object types,
and table or index operations:

134 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v XML columns
v Structured types
v Referenced types
v Constraints
v Index extensions
v LOAD
v LOAD TABLE
v ALTER TABLE
v RENAME TABLE
v RENAME INDEX
v REORG TABLE
v REORG INDEX
v LOCK TABLE

For more information, see the CREATE GLOBAL TEMPORARY TABLE statement.

Example
CREATE GLOBAL TEMPORARY TABLE temptbl

LIKE empltabl
ON COMMIT DELETE ROWS
NOT LOGGED
IN usr_tbsp

This statement creates a temporary table called temptbl. This table is defined with
columns that have exactly the same name and description as the columns of the
empltabl. The implicit definition only includes the column name, data type,
nullability characteristic, and column default value attributes of the columns in
empltab1. All other column attributes including unique constraints, foreign key
constraints, triggers, and indexes are not implicitly defined.

A COMMIT always deletes the rows from the table. If there are any HOLD cursors
open on the table, they can be deleted using TRUNCATE statement, which is
faster, but will “normally” have to be deleted row by row. Changes made to the
temporary table are not logged. The temporary table is placed in the specified user
temporary table space, usr tbsp. This table space must exist or the creation of this
table will fail.

When an application that instantiated a created temporary table disconnects from
the database, the application's instance of the created temporary table is dropped.

Distinctions between DB2 base tables and temporary tables
DB2 base tables and the two types of temporary tables have several distinctions.

The following table summarizes important distinctions between base tables, created
temporary tables, and declared temporary tables.

Chapter 19. Tables 135

Table 13. Important distinctions between DB2 base tables and DB2 temporary tables

Area of distinction Distinction

Creation, persistence,
and ability to share
table descriptions

Base tables: The CREATE TABLE statement puts a description of
the table in the catalog view SYSCAT.TABLES. The table description
is persistent and is shareable across different connections. The name
of the table in the CREATE TABLE statement can be qualified. If the
table name is not qualified, it is implicitly qualified using the
standard qualification rules applied to SQL statements.

Created temporary tables: The CREATE GLOBAL TEMPORARY
TABLE statement puts a description of the table in the catalog view
SYSCAT.TABLES. The table description is persistent and is
shareable across different connections. The name of the table in the
CREATE GLOBAL TEMPORARY TABLE statement can be qualified.
If the table name is not qualified, it is implicitly qualified using the
standard qualification rules applied to SQL statements.

Declared temporary tables: The DECLARE GLOBAL TEMPORARY
TABLE statement does not put a description of the table in the
catalog. The table description is not persistent beyond the life of the
connection that issued the DECLARE GLOBAL TEMPORARY
TABLE statement and the description is known only to that
connection.

Thus, each connection could have its own possibly unique
description of the same declared temporary table. The name of the
table in the DECLARE GLOBAL TEMPORARY TABLE statement
can be qualified. If the table name is qualified, SESSION must be
used as the schema qualifier. If the table name is not qualified,
SESSION is implicitly used as the qualifier.

Table instantiation
and ability to share
data

Base tables: The CREATE TABLE statement creates one empty
instance of the table, and all connections use that one instance of
the table. The table and data are persistent.

Created temporary tables: The CREATE GLOBAL TEMPORARY
TABLE statement does not create an instance of the table. The first
implicit or explicit reference to the table in an open, select, insert,
update, or delete operation that is executed by any program using
the connection creates an empty instance of the given table. Each
connection that references the table has its own unique instance of
the table, and the instance is not persistent beyond the life of the
connection.

Declared temporary tables: The DECLARE GLOBAL TEMPORARY
TABLE statement creates an empty instance of the table for the
connection. Each connection that declares the table has its own
unique instance of the table, and the instance is not persistent
beyond the life of the connection.

136 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 13. Important distinctions between DB2 base tables and DB2 temporary
tables (continued)

Area of distinction Distinction

References to the
table during the
connection

Base tables: References to the table name in multiple connections
refer to the same single persistent table description and to the same
instance at the current server. If the table name that is being
referenced is not qualified, it is implicitly qualified using the
standard qualification rules that apply to SQL statements.

Created temporary tables: References to the table name in multiple
connections refer to the same single persistent table description but
to a distinct instance of the table for each connection at the current
server. If the table name that is being referenced is not qualified, it
is implicitly qualified using the standard qualification rules that
apply to SQL statements.

Declared temporary tables: References to the table name in
multiple connections refer to a distinct description and instance of
the table for each connection at the current server. References to the
table name in an SQL statement (other than the DECLARE
GLOBAL TEMPORARY TABLE statement) must include SESSION
as the schema qualifier. If the table name is not qualified with
SESSION, the reference is assumed to be to a base table.

Table privileges and
authorization

Base tables: The owner implicitly has all table privileges on the
table and the authority to drop the table. The owner's table
privileges can be granted and revoked, either individually or with
the ALL clause.

Another authorization ID can access the table only if it has been
granted appropriate privileges for the table.

Created temporary tables: The owner implicitly has all table
privileges on the table and the authority to drop the table. The
owner's table privileges can be granted and revoked, either
individually or with the ALL clause.

Another authorization ID can access the table only if it has been
granted appropriate privileges for the table.

Declared temporary tables: PUBLIC implicitly has all table
privileges on the table without GRANT authority and also has the
authority to drop the table. These table privileges cannot be granted
or revoked.

Any authorization ID can access the table without requiring a grant
of any privileges for the table.

Indexes and other
SQL statement
support

Base tables: Indexes and SQL statements that modify data (INSERT,
UPDATE, DELETE, and so on) are supported. Indexes can be in
different table spaces.

Created temporary tables: Indexes and SQL statements that modify
data (INSERT, UPDATE, DELETE, and so on) are supported.
Indexes can only be in the same table space as the table.

Declared temporary tables: Indexes and SQL statements that
modify data (INSERT, UPDATE, DELETE, and so on) are
supported. Indexes can only be in the same table space as the table.

Chapter 19. Tables 137

Table 13. Important distinctions between DB2 base tables and DB2 temporary
tables (continued)

Area of distinction Distinction

Locking, logging, and
recovery

Base tables: Locking, logging, and recovery do apply.

Created temporary tables: Locking and recovery do not apply,
however logging does apply when LOGGED is explicitly specified.
Undo recovery (rolling back changes to a savepoint or the most
recent commit point) is supported when only when LOGGED is
explicitly specified.

Declared temporary tables: Locking and recovery do not apply,
however logging only applies when LOGGED is explicitly or
implicitly specified. Undo recovery (rolling back changes to a
savepoint or the most recent commit point) is supported when
LOGGED is explicitly or implicitly specified.

Creating tables with XML columns
To create tables with XML columns, you specify columns with the XML data type
in the CREATE TABLE statement. A table can have one or more XML columns.

You do not specify a length when you define an XML column. However, serialized
XML data that is exchanged with a DB2 database is limited to 2 GB per value of
type XML, so the effective limit of an XML document is 2 GB.

Like a LOB column, an XML column holds only a descriptor of the column. The
data is stored separately.

Note:

v If you enable data row compression for the table, XML documents require less
storage space.

v You can optionally store smaller and medium-size XML documents in the row of
the base table instead of storing them in the default XML storage object.

Example: The sample database contains a table for customer data that contains two
XML columns. The definition looks like this:
CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY,

Info XML,
History XML)

Example: The VALIDATED predicate checks whether the value in the specified
XML column has been validated. You can define a table check constraint on XML
columns, using the VALIDATED predicate, to ensure that all documents inserted or
updated in a table are valid.
CREATE TABLE TableValid (id BIGINT,

xmlcol XML,
CONSTRAINT valid_check CHECK (xmlcol IS VALIDATED))

Example: Setting the COMPRESS attribute to YES enables data row compression.
XML documents stored in XML columns are subject to row compression.
Compressing data at the row level allows repeating patterns to be replaced with
shorter symbol strings.
CREATE TABLE TableXmlCol (id BIGINT,

xmlcol XML) COMPRESS YES

138 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Example: The following CREATE TABLE statement creates a patient table
partitioned by visit date. All records between January 01, 2000 and December 31,
2006 are in the first partition. The more recent data are partitioned every 6 months.
CREATE TABLE Patients (patientID BIGINT, visit_date DATE, diagInfo XML,

prescription XML)
INDEX IN indexTbsp LONG IN ltbsp
PARTITION BY (visit_date)

(STARTING ’1/1/2000’ ENDING ’12/31/2006’,
STARTING ’1/1/2007’ ENDING ’6/30/2007’,

ENDING ’12/31/2007’,
ENDING ’6/30/2008’,
ENDING ’12/31/2008’,
ENDING ’6/30/2009’);

Adding XML columns to existing tables
To add XML columns to existing tables, you specify columns with the XML data
type in the ALTER TABLE statement with the ADD clause. A table can have one or
more XML columns.

Example The sample database contains a table for customer data that contains two
XML columns. The definition looks like this:
CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY,

Info XML,
History XML)

Create a table named MyCustomer that is a copy of Customer, and add an XML
column to describe customer preferences:
CREATE TABLE MyCustomer LIKE Customer;
ALTER TABLE MyCustomer ADD COLUMN Preferences XML;

Example: Setting the COMPRESS attribute to YES enables data row compression.
XML documents stored in XML columns are subject to row compression.
Compressing data at the row level allows repeating patterns to be replaced with
shorter symbol strings.
ALTER TABLE MyCustomer ADD COLUMN Preferences XML COMPRESS YES;

Example: The following CREATE TABLE statement creates a patient table
partitioned by visit date. All records between January 01, 2000 and December 31,
2006 are in the first partition. The more recent data are partitioned every 6 months.
CREATE TABLE Patients (patientID INT, Name Varchar(20), visit_date DATE,

diagInfo XML)
PARTITION BY (visit_date)

(STARTING ’1/1/2000’ ENDING ’12/31/2006’,
STARTING ’1/1/2007’ ENDING ’6/30/2007’,

ENDING ’12/31/2007’,
ENDING ’6/30/2008’,
ENDING ’12/31/2008’,
ENDING ’6/30/2009’);

The following ALTER table statement adds another XML column for patient
prescription information:
ALTER TABLE Patients ADD COLUMN prescription XML ;

Chapter 19. Tables 139

Creating partitioned tables
Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table. Data from a given table
is partitioned into multiple storage objects based on the specifications provided in
the PARTITION BY clause of the CREATE TABLE statement. These storage objects
can be in different table spaces, in the same table space, or a combination of both.

Before you begin

To create a table, the privileges held by the authorization ID of the statement must
include at least one of the following authorities or privileges:
v CREATETAB authority on the database and USE privilege on all the table spaces

used by the table, as well as one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema
v DBADM authority

About this task

You can create a partitioned table by using the CREATE TABLE statement.

Procedure

To create a partitioned table from the command line, issue the CREATE TABLE
statement:
CREATE TABLE NAME (column_name data_type null_attribute) IN
table_space_list PARTITION BY RANGE (column_expression)
STARTING FROM constant ENDING constant EVERY constant

For example, the following statement creates a table where rows with a ≥ 1 and a ≤
20 are in PART0 (the first data partition), rows with 21 ≤ a ≤ 40 are in PART1 (the
second data partition), up to 81 ≤ a ≤ 100 are in PART4 (the last data partition).
CREATE TABLE foo(a INT)
PARTITION BY RANGE (a) (STARTING FROM (1)
ENDING AT (100) EVERY (20))

Defining ranges on partitioned tables
You can specify a range for each data partition when you create a partitioned table.
A partitioned table uses a data organization scheme in which table data is divided
across multiple data partitions according to the values of the table partitioning key
columns of the table.

About this task

Data from a given table is partitioned into multiple storage objects based on the
specifications provided in the PARTITION BY clause of the CREATE TABLE
statement. A range is specified by the STARTING FROM and ENDING AT values
of the PARTITION BY clause.

140 Preparation Guide for DB2 10.1 Fundamentals Exam 610

To completely define the range for each data partition, you must specify sufficient
boundaries. The following is a list of guidelines to consider when defining ranges
on a partitioned table:
v The STARTING clause specifies a low boundary for the data partition range.

This clause is mandatory for the lowest data partition range (although you can
define the boundary as MINVALUE). The lowest data partition range is the data
partition with the lowest specified bound.

v The ENDING (or VALUES) clause specifies a high boundary for the data
partition range. This clause is mandatory for the highest data partition range
(although you can define the boundary as MAXVALUE). The highest data
partition range is the data partition with the highest specified bound.

v If you do not specify an ENDING clause for a data partition, then the next
greater data partition must specify a STARTING clause. Likewise, if you do not
specify a STARTING clause, then the previous data partition must specify an
ENDING clause.

v MINVALUE specifies a value that is smaller than any possible value for the
column type being used. MINVALUE and INCLUSIVE or EXCLUSIVE cannot be
specified together.

v MAXVALUE specifies a value that is larger than any possible value for the
column type being used. MAXVALUE and INCLUSIVE or EXCLUSIVE cannot
be specified together.

v INCLUSIVE indicates that all values equal to the specified value are to be
included in the data partition containing this boundary.

v EXCLUSIVE indicates that all values equal to the specified value are NOT to be
included in the data partition containing this boundary.

v The NULL clause of the CREATE TABLE statement specifies whether null values
are to be sorted high or low when considering data partition placement. By
default, null values are sorted high. Null values in the table partitioning key
columns are treated as positive infinity, and are placed in a range ending at
MAXVALUE. If no such data partition is defined, null values are considered to
be out-of-range values. Use the NOT NULL constraint if you want to exclude
null values from table partitioning key columns. LAST specifies that null values
are to appear last in a sorted list of values. FIRST specifies that null values are to
appear first in a sorted list of values.

v When using the long form of the syntax, each data partition must have at least
one bound specified.

Tip: Before you begin defining data partitions on a table it is important to
understand how tables benefit from table partitioning and what factors influence
the columns you choose as partitioning columns.

The ranges specified for each data partition can be generated automatically or
manually.

Automatically generated

Automatic generation is a simple method of creating many data partitions quickly
and easily. This method is appropriate for equal sized ranges based on dates or
numbers.

Examples 1 and 2 demonstrate how to use the CREATE TABLE statement to define
and generate automatically the ranges specified for each data partition.

Example 1:

Chapter 19. Tables 141

Issue a create table statement with the following ranges defined:
CREATE TABLE lineitem (

l_orderkey DECIMAL(10,0) NOT NULL,
l_quantity DECIMAL(12,2),
l_shipdate DATE,
l_year_month INT GENERATED ALWAYS AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate)))

PARTITION BY RANGE(l_shipdate)
(STARTING (’1/1/1992’) ENDING (’12/31/1992’) EVERY 1 MONTH);

This statement results in 12 data partitions each with 1 key value (l_shipdate) >=
('1/1/1992'), (l_shipdate) < ('3/1/1992'), (l_shipdate) < ('4/1/1992'), (l_shipdate) <
('5/1/1992'), ..., (l_shipdate) < ('12/1/1992'), (l_shipdate) < ('12/31/1992').

The starting value of the first data partition is inclusive because the overall starting
bound ('1/1/1992') is inclusive (default). Similarly, the ending bound of the last
data partition is inclusive because the overall ending bound ('12/31/1992') is
inclusive (default). The remaining STARTING values are inclusive and the
remaining ENDING values are all exclusive. Each data partition holds n key values
where n is given by the EVERY clause. Use the formula (start + every) to find the
end of the range for each data partition. The last data partition might have fewer
key values if the EVERY value does not divide evenly into the START and END
range.

Example 2:

Issue a create table statement with the following ranges defined:
CREATE TABLE t(a INT, b INT)
PARTITION BY RANGE(b) (STARTING FROM (1)
EXCLUSIVE ENDING AT (1000) EVERY (100))

This statement results in 10 data partitions each with 100 key values (1 < b <= 101,
101 < b <= 201, ..., 901 < b <= 1000).

The starting value of the first data partition (b > 1 and b <= 101) is exclusive
because the overall starting bound (1) is exclusive. Similarly the ending bound of
the last data partition (b > 901 b <= 1000) is inclusive because the overall ending
bound (1000) is inclusive. The remaining STARTING values are all exclusive and
the remaining ENDING values are all inclusive. Each data partition holds n key
values where n is given by the EVERY clause. Finally, if both the starting and
ending bound of the overall clause are exclusive, the starting value of the first data
partition is exclusive because the overall starting bound (1) is exclusive. Similarly
the ending bound of the last data partition is exclusive because the overall ending
bound (1000) is exclusive. The remaining STARTING values are all exclusive and
the ENDING values are all inclusive. Each data partition (except the last) holds n
key values where n is given by the EVERY clause.

Manually generated

Manual generation creates a new data partition for each range listed in the
PARTITION BY clause. This form of the syntax allows for greater flexibility when
defining ranges thereby increasing your data and LOB placement options.
Examples 3 and 4 demonstrate how to use the CREATE TABLE statement to define
and generate manually the ranges specified for a data partition.

Example 3:

142 Preparation Guide for DB2 10.1 Fundamentals Exam 610

This statement partitions on two date columns both of which are generated. Notice
the use of the automatically generated form of the CREATE TABLE syntax and that
only one end of each range is specified. The other end is implied from the adjacent
data partition and the use of the INCLUSIVE option:
CREATE TABLE sales(invoice_date date, inv_month int NOT NULL
GENERATED ALWAYS AS (month(invoice_date)), inv_year INT NOT
NULL GENERATED ALWAYS AS (year(invoice_date)),
item_id int NOT NULL,
cust_id int NOT NULL) PARTITION BY RANGE (inv_year,
inv_month)
(PART Q1_02 STARTING (2002,1) ENDING (2002, 3) INCLUSIVE,
PART Q2_02 ENDING (2002, 6) INCLUSIVE,
PART Q3_02 ENDING (2002, 9) INCLUSIVE,
PART Q4_02 ENDING (2002,12) INCLUSIVE,
PART CURRENT ENDING (MAXVALUE, MAXVALUE));

Gaps in the ranges are permitted. The CREATE TABLE syntax supports gaps by
allowing you to specify a STARTING value for a range that does not line up
against the ENDING value of the previous data partition.

Example 4:

Creates a table with a gap between values 101 and 200.
CREATE TABLE foo(a INT)
PARTITION BY RANGE(a)

(STARTING FROM (1) ENDING AT (100),
STARTING FROM (201) ENDING AT (300))

Use of the ALTER TABLE statement, which allows data partitions to be added or
removed, can also cause gaps in the ranges.

When you insert a row into a partitioned table, it is automatically placed into the
proper data partition based on its key value and the range it falls within. If it falls
outside of any ranges defined for the table, the insert fails and the following error
is returned to the application:
SQL0327N The row cannot be inserted into table <tablename>
because it is outside the bounds of the defined data partition ranges.

SQLSTATE=22525

Restrictions

v Table level restrictions:
– Tables created using the automatically generated form of the syntax

(containing the EVERY clause) are constrained to use a numeric or date time
type in the table partitioning key.

v Statement level restrictions:
– MINVALUE and MAXVALUE are not supported in the automatically

generated form of the syntax.
– Ranges are ascending.
– Only one column can be specified in the automatically generated form of the

syntax.
– The increment in the EVERY clause must be greater than zero.
– The ENDING value must be greater than or equal to the STARTING value.

Chapter 19. Tables 143

Renaming tables and columns
You can use the RENAME statement to rename an existing table. To rename
columns, use the ALTER TABLE statement.

About this task

When renaming tables, the source table must not be referenced in any existing
definitions (view or materialized query table), triggers, SQL functions, or
constraints. It must also not have any generated columns (other than identity
columns), or be a parent or dependent table. Catalog entries are updated to reflect
the new table name. For more information and examples, see the RENAME
statement.

The RENAME COLUMN clause is an option on the ALTER TABLE statement. You
can rename an existing column in a base table to a new name without losing
stored data or affecting any privileges or label-based access control (LBAC) policies
that are associated with the table.

Only the renaming of base table columns is supported. Renaming columns in
views, materialized query tables (MQTs), declared and created temporary tables,
and other table-like objects is not supported.

Invalidation and revalidation semantics for the rename column operation are
similar to those for the drop column operation; that is, all dependent objects are
invalidated. Revalidation of all dependent objects following a rename column
operation is always done immediately after the invalidation, even if the auto_reval
database configuration parameter is set to DISABLED.

The following example shows the renaming of a column using the ALTER TABLE
statement:

ALTER TABLE org RENAME COLUMN deptnumb TO deptnum

To change the definition of existing columns, see the "Changing column properties"
topic or the ALTER TABLE statement.

Viewing table definitions
You can use the SYSCAT.TABLES and SYSCAT.COLUMNS catalog views to view
table definitions. For SYSCAT.COLUMNS, each row represents a column defined
for a table, view, or nickname. To see the data in the columns, use the SELECT
statement.

About this task

You can also use the following views and table functions to view table definitions:
v ADMINTEMPCOLUMNS administrative view
v ADMINTEMPTABLES administrative view
v ADMIN_GET_TEMP_COLUMNS table function - Retrieve column information

for temporary tables
v ADMIN_GET_TEMP_TABLES table function - Retrieve information for

temporary tables

144 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Dropping application-period temporal tables
Use the DROP TABLE statement to drop application-period temporal tables.

About this task

When a table is dropped, the row in the SYSCAT.TABLES system catalog view that
contains information about that table is dropped, and any other objects that
depend on the table are affected. For example:
v All column names are dropped.
v Indexes created on any columns of the table are dropped.
v All views based on the table are marked inoperative.
v All privileges on the dropped table and dependent views are implicitly revoked.
v All referential constraints in which the table is a parent or dependent are

dropped.
v All packages and cached dynamic SQL and XQuery statements dependent on

the dropped table are marked invalid, and remain so until the dependent objects
are re-created. This includes packages dependent on any supertable above the
subtable in the hierarchy that is being dropped.

v Any reference columns for which the dropped table is defined as the scope of
the reference become “unscoped”.

v An alias definition on the table is not affected, because an alias can be undefined
v All triggers dependent on the dropped table are marked inoperative.

Restrictions

An individual table cannot be dropped if it has a subtable.

Procedure
v To drop a table, use a DROP TABLE statement.

The following statement drops the table called DEPARTMENT:
DROP TABLE DEPARTMENT

v To drop all the tables in a table hierarchy, use a DROP TABLE HIERARCHY
statement.
The DROP TABLE HIERARCHY statement must name the root table of the
hierarchy to be dropped. For example:

DROP TABLE HIERARCHY person

Results

There are differences when dropping a table hierarchy compared to dropping a
specific table:
v DROP TABLE HIERARCHY does not activate deletion-triggers that would be

activated by individual DROP TABLE statements. For example, dropping an
individual subtable would activate deletion-triggers on its supertables.

v DROP TABLE HIERARCHY does not make log entries for the individual rows of
the dropped tables. Instead, the dropping of the hierarchy is logged as a single
event.

Chapter 19. Tables 145

146 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 20. Temporal tables

You can use temporal tables to associate time-based state information with your
data. Data in tables that do not use temporal support are deemed to be applicable
to the present, while data in temporal tables can be valid for a period defined by
the database system, user applications, or both.

There are many business needs requiring the storage and maintenance of
time-based data. Without this capability in a database, it is expensive and complex
to maintain a time-focused data support infrastructure. With temporal tables, the
database can store and retrieve time-based data without additional application
logic. For example, a database can store the history of a table (deleted rows or the
original values of rows that have been updated) so you can query the past state of
your data. You can also assign a date range to a row of data to indicate when it is
deemed to be valid by your applications or business rules.

A temporal table records the period when a row is valid. A period is an interval of
time that is defined by two date or time columns in the temporal table. A period
contains a begin column and an end column. The begin column indicates the
beginning of the period, and the end column indicates the end of the period. The
beginning value of a period is inclusive, while the ending value of a period is
exclusive. For example, a row with a period from January 1 to February 1 is valid
from January 1, until January 31 at midnight.

Two period types are supported:

System periods
A system period consists of a pair of columns with database
manager-maintained values that indicate the period when a row is current.
The begin column contains a timestamp value for when a row was created.
The end column contains a timestamp value for when a row was updated
or deleted. When a system-period temporal table is created, it contains the
currently active rows. Each system-period temporal table is associated with
a history table that contains any changed rows.

Application periods
An application period consists of a pair of columns with user or
application-supplied values that indicate the period when a row is valid.
The begin column indicates the time when a row is valid from. The end
column indicates the time when a row stops being valid. A table with an
application period is called an application-period temporal table.

You can check whether a table has temporal support by querying the
SYSCAT.TABLES system catalog view. For example:
SELECT TABSCHEMA, TABNAME, TEMPORALTYPE FROM SYSCAT.TABLES

The returned values for TEMPORALTYPE are defined as follows:

A Application-period temporal table

B Bitemporal table

N Not a temporal table

S System-period temporal table

© Copyright IBM Corp. 2012 147

System-period temporal tables
A system-period temporal table is a table that maintains historical versions of its
rows. Use a system-period temporal table to store current versions of your data
and use its associated history table to transparently store your updated and
deleted data rows.

A system-period temporal table includes a SYSTEM_TIME period with columns
that capture the begin and end times when the data in a row is current. The
database manager also uses the SYSTEM_TIME period to preserve historical
versions of each table row whenever updates or deletes occur. The database
manager stores these rows in a history table that is exclusively associated with a
system-period temporal table. Adding versioning establishes the link between the
system-period temporal table and the history table. With a system-period temporal
table, your queries have access to your data at the current point in time and the
ability to retrieve data from past points in time.

A system-period temporal table also includes a transaction start-ID column. This
column captures the time when execution started for a transaction that impacts the
row. If multiple rows are inserted or updated within a single SQL transaction, then
the values for the transaction start-ID column are the same for all the rows and are
unique from the values generated for this column by other transactions. This
common start-ID column value means you can use the transaction start-ID column
to identify all the rows in the tables that were written by the same transaction.

History tables
Each system-period temporal table requires a history table. When a row is updated
or deleted from a system-period temporal table, the database manager inserts a
copy of the old row into its associated history table. This storage of old
system-period temporal table data gives you the ability to retrieve data from past
points in time.

In order to store row data, the history table columns and system-period temporal
table columns must have the same names, order, and data types. You can create a
history table with the same names and descriptions as the columns of the
system-period temporal table by using the LIKE clause of the CREATE TABLE
statement, for example:
CREATE TABLE employees_history LIKE employees IN hist_space;

An existing table can be used as a history table if it avoids the restrictions listed in
the description of the ALTER TABLE statement USE HISTORY clause.

After you create a history table, you add versioning to establish the link between
the system-period temporal table and the history table.
ALTER TABLE employees ADD VERSIONING USE HISTORY TABLE employees_history;

A history table is subject to the following rules and restrictions when versioning is
enabled:
v A history table cannot explicitly be dropped. It can only implicitly be dropped

when the associated system-period temporal table is dropped.
v History table columns cannot explicitly be added, dropped, or changed.
v A history table must not be defined as parent, child, or self-referencing in a

referential constraint. Access to the history table is restricted to prevent cascaded
actions to the history table.

148 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v A table space that contains a history table, but not its associated system-period
temporal table, cannot be dropped.

You should rarely need to explicitly change a history table. Doing so might
jeopardize your ability to audit a system-period temporal table data history. You
should restrict access to a history table to protect its data.

Under normal operations, a history table experiences mostly insert and read
activities. Updates and deletes are rare. The absence of updates and deletes means
that history tables typically do not have free space that can be reused for the
inserting of new rows. If row inserts into the history table are negatively impacting
workload performance, you can eliminate the search for free space by altering the
definition of the history table by using the APPEND ON option. This option
avoids the processing associated with free space searches and directly appends
new rows to the end of the table.
ALTER TABLE employees_history APPEND ON;

When a system-period temporal table is dropped, the associated history table and
any indexes defined on the history table are implicitly dropped. To avoid losing
historical data when a system-period temporal table is dropped, you can either
create the history table with the RESTRICT ON DROP attribute or alter the history
table by adding the RESTRICT ON DROP attribute.
CREATE TABLE employees_history LIKE employees WITH RESTRICT ON DROP;

Because history tables experience more inserts than deletes, your history tables are
always growing and so are consuming an increasing amount of storage. Deciding
how to prune your history tables to get rid of the rows that you no longer need
can be a complex task. You need to understand the value of your individual
records. Some content, like customer contracts, might be untouchable and can
never be deleted. While other records, like website visitor information, can be
pruned without concern. Often it is not the age of a row that determines when it
can be pruned and archived, but rather it is some business logic that is the
deciding factor. The following list contains some possible rules for pruning:
v Prune rows selected by a user-supplied query that reflects business rules.
v Prune rows older than a certain age.
v Prune history rows when more than N versions exist for that record (retain only

the latest N versions).
v Prune history rows when the record is deleted from the associated

system-period temporal table (when there are no current versions).

There are several ways to periodically prune old data from a history table:
v Use range partitioning and detach old partitions from the history table.
v Use DELETE statements to remove rows from the table. If using DELETE

statements, you might observe the following guidelines:
– Periodically reorganize the history table to release the free space left behind

by the delete operations.
– Ensure that the history table was not altered to use the APPEND ON option,

allowing inserts to search for free space.

SYSTEM_TIME period
The SYSTEM_TIME period columns for a system-period temporal table indicate
when the version of a row is current.

Chapter 20. Time Travel Query using temporal tables 149

The SYSTEM_TIME period contains a pair of TIMESTAMP(12) columns whose
values are generated by the database manager. The columns must be defined as
NOT NULL with an applicable GENERATED ALWAYS AS option. The begin
column of the period must be a row-begin column and the end column of the
period must be a row-end column.
CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD SYSTEM_TIME (sys_start, sys_end)
) IN policy_space;

Row-begin column
This column represents the time when the row data became current. The
database manager generates a value for this column by using a reading of
the system clock at the moment it executes the first data change statement
in the transaction that generates the row. If multiple rows are inserted or
updated within a single SQL transaction, the values for the row-begin
column are the same for all the impacted rows. The values for these
row-begin columns are unique from the values generated for the row-begin
columns for other transactions. A row-begin column is required as the
begin column of a SYSTEM_TIME period, which must be defined for each
system-period temporal table.

When an existing regular table is altered to make it a system-period
temporal table, a row-begin column is added to the table. The row-begin
column is populated with a default of 0001-01-01-00.00.00.000000000000
for the TIMESTAMP(12) data type value for any existing rows.

Row-end column
This column represents the time when the row data was no longer current.
For rows in a history table, the value in the row-end column represents
when the row was added to the history table. The rows in the
system-period temporal table are by definition current, so the row-end
column is populated with a default value for the TIMESTAMP(12) data
type (for example: 9999-12-30-00.00.00.000000000000). A row-end column
is required as the end column of a SYSTEM_TIME period, which must be
defined for each system-period temporal table.

When an existing regular table is altered to make it a system-period
temporal table, a row-end column is added to the table. The row-end
column is populated with the maximum value for the TIMESTAMP(12)
data type (default value: 9999-12-30-00.00.00.000000000000) for any
existing rows.

Since row-begin and row-end are generated columns, there is no implicit check
constraint generated for SYSTEM_TIME that ensures that the value for an end
column is greater than the value for its begin column in a system-period temporal
table. This lack of a check constraint differs from an application-period temporal
table where there is a check constraint associated with its BUSINESS_TIME. A row
where the value for the end column is less than the value for the begin column
cannot be returned when a period-specification is used to query the table. You can
define a constraint to guarantee that the value for end column is greater than the
value for begin column. This guarantee is useful when supporting operations that
explicitly input data into these generated columns, such as a load operation.

150 Preparation Guide for DB2 10.1 Fundamentals Exam 610

The systime_period_adj database configuration parameter is used to specify what
action to take when a history row for a system-period temporal table is generated
with an end column value that is less than the value for begin column.

Creating a system-period temporal table
Creating a system-period temporal table results in a table that tracks when data
changes occur and preserves historical versions of that data.

About this task

When creating a system-period temporal table, include attributes that indicate
when data in a row is current and when transactions affected the data:
v Include row-begin and row-end columns that are used by the SYSTEM_TIME

period to track when a row is current.
v Include a transaction start-ID column that captures the start times for

transactions that affect rows.
v Create a history table to receive old rows from the system-period temporal table.
v Add versioning to establish the link between the system-period temporal table

and the history table.

The row-begin, row-end, and transaction start-ID columns can be defined as
IMPLICITLY HIDDEN. Since these columns and their entries are generated by the
database manager, hiding them can minimize any potential negative affects on
your applications. These columns are then unavailable unless referenced, for
example:
v A SELECT * query run against a table does not return any implicitly hidden

columns in the result table.
v An INSERT statement does not expect a value for any implicitly hidden

columns.
v The LOAD, IMPORT, and EXPORT commands can use the includeimplicitlyhidden

modifier to work with implicitly hidden columns.

A system-period temporal table can be defined as a parent or a child in a
referential constraint. However, the referential constraints are applied only to the
current data, that is the data in the system-period temporal table. The constraints
are not applied to the associated history table. In order to minimize inconsistencies
when a system-period temporal table is a child table in a referential constraint, the
parent table should also be a system-period temporal table.

Note: While the row-begin, row-end, and transaction start-ID generated columns
are required when creating a system-period temporal table, you can also create a
regular table with these generated columns.

The example in the following section shows the creation of a table that stores
policy information for the customers of an insurance company.

Procedure

To create a system-period temporal table.
1. Create a table with a SYSTEM_TIME attribute. For example:

CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,

Chapter 20. Time Travel Query using temporal tables 151

sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD SYSTEM_TIME (sys_start, sys_end)
) IN policy_space;

2. Create a history table. For example:
CREATE TABLE hist_policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
ts_id TIMESTAMP(12) NOT NULL
) IN hist_space;

You can also create a history table with the same names and descriptions as the
columns of the system-period temporal table by using the LIKE clause of the
CREATE TABLE statement. For example:
CREATE TABLE hist_policy_info LIKE policy_info IN hist_space;

3. Add versioning to the system-period temporal table to establish a link to the
history table. For example:
ALTER TABLE policy_info ADD VERSIONING USE HISTORY TABLE hist_policy_info;

Results

The policy_info table stores the insurance coverage level for a customer. The
SYSTEM_TIME period related columns (sys_start and sys_end) show when a
coverage level row is current. The ts_id column lists the time when execution
started for a transaction that impacted the row.

Table 14. Created system-period temporal table (policy_info)

policy_id coverage sys_start sys_end ts_id

The hist_policy_info history table receives the old rows from the policy_info
table.

Table 15. Created history table (hist_policy_info)

policy_id coverage sys_start sys_end ts_id

Example

This section contains more creating system-period temporal table examples.

Hiding columns
The following example creates the policy_info table with the
TIMESTAMP(12) columns (sys_start, sys_end and ts_id) marked as
implicitly hidden.
CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN IMPLICITLY HIDDEN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END IMPLICITLY HIDDEN,
ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID IMPLICITLY HIDDEN,
PERIOD SYSTEM_TIME (sys_start, sys_end)
) in policy_space;

152 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Creating the hist_policy_info history table using the LIKE clause of the
CREATE TABLE statement results in the history table inheriting the
implicitly hidden attribute from the policy_info table. If you do not use
the LIKE clause when creating the history table, then any columns marked
as hidden in the system-period temporal table must also be marked as
hidden in the associated history table.

Changing an existing table into a system-period temporal table
The following example adds timestamp columns and a SYSTEM_TIME
period to an existing table (employees) enabling system-period temporal
table functions.
ALTER TABLE employees

ADD COLUMN sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN;
ALTER TABLE employees

ADD COLUMN sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END;
ALTER TABLE employees

ADD COLUMN ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID;
ALTER TABLE employees ADD PERIOD SYSTEM_TIME(sys_start, sys_end);

These new columns can be hidden by including the IMPLICITLY HIDDEN
clause in the ALTER TABLE statement

A history table must be created and versioning added to finish this task.

Dropping a system-period temporal table
Dropping a system-period temporal table also drops its associated history table
and any indexes defined on the history table.

Before you begin

To drop a system-period temporal table, you must be authorized to drop its history
table.

About this task

A history table is implicitly dropped when its associated system-period temporal
table is dropped. A history table cannot be explicitly dropped by using the DROP
statement.

To avoid losing historical data when a system-period temporal table is dropped,
you can either create the history table with the RESTRICT ON DROP attribute or
alter the history table by adding the RESTRICT ON DROP attribute. If you try to
drop a system-period temporal table and its history table has the RESTRICT ON
DROP attribute, the drop of the system-period temporal table fails (SQLSTATE
42893). In such cases, you must break the link between the system-period temporal
table and the history table by removing the VERSIONING attribute and then rerun
the DROP statement.

When a table is altered to drop VERSIONING, all packages with the versioning
dependency on the table are invalidated. Other dependent objects, for example,
views or triggers are marked invalid 'N' in the system catalog. Auto-revalidation is
done. Any objects failing revalidation are left as invalid in the catalog. Some
objects can become valid after only explicit user action.

Chapter 20. Time Travel Query using temporal tables 153

Procedure

To drop a system-period temporal table and its associated history table:
1. Optional: Protect historical data from deletion:

a. If the history table was not created with the RESTRICT ON DROP attribute,
alter the history table to set the RESTRICT ON DROP attribute. For
example, if audit requirements made it necessary to preserve the history of
insurance policies then the history table must be protected.
ALTER TABLE hist_policy_info ADD RESTRICT ON DROP;

b. Break the link between the system-period temporal table and a history table
with RESTRICT ON DROP attribute by removing the VERSIONING
attribute. For example:
ALTER TABLE policy_info DROP VERSIONING;

2. Drop the system-period temporal table with the DROP statement. For example,
the insurance policy tables created in the example in the Creating a
system-period temporal table topic are no longer required.
DROP TABLE policy_info;

Results

The preceding commands affect the policy_info and hist_policy_info tables as
follows:
v The DROP statement explicitly drops the system-period temporal table and

implicitly drops the associated history table. The policy_info and
hist_policy_info tables are deleted. Any objects that are directly or indirectly
dependent on those tables are either deleted or made inoperative.

v After the RESTRICT ON DROP attribute is associated with the history table, any
attempt to drop the policy_info table would fail (SQLSTATE 42893). A
system-period temporal table can also be created or altered to use the RESTRICT
ON DROP attribute.

v After the link between the system-period temporal table and its history table is
broken, the policy_info table can be dropped and the hist_policy_info history
table would remain.

Dropping table spaces

If a table space contains a history table, but does not contain the associated
system-period temporal table, that table space cannot be explicitly dropped. For
example, using the insurance policy tables that were created in the policy_space
and hist_space table spaces, the following statement is blocked:
DROP TABLESPACE hist_space;

If table space that contains a history table and the table space containing the
associated system-period temporal table are included together, then the statement
is allowed. For example, the following statement would succeed:
DROP TABLESPACE policy_space hist_space;

A history table is implicitly dropped when the table space for its associated
system-period temporal table is dropped. For example, the following statement
would drop the hist_policy_info history table:
DROP TABLESPACE policy_space;

154 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Application-period temporal tables
An application-period temporal table is a table that stores the in effect aspect of
application data. Use an application-period temporal table to manage data based
on time criteria by defining the time periods when data is valid.

Similar to a system-period temporal table, an application-period temporal table
includes a BUSINESS_TIME period with columns that indicate the time period
when the data in that row is valid or in effect. You provide the begin time and end
time for the BUSINESS_TIME period associated with each row. However, unlike a
system time-period temporal table, there is no separate history table. Past, present,
and future effective dates and their associated business data are maintained in a
single table. You can control data values by BUSINESS_TIME period and use
application-period temporal tables for modeling data in the past, present, and
future.

BUSINESS_TIME period
The BUSINESS_TIME period columns for an application-period temporal table
record when the version of a row is valid from a user or business application
perspective.

The BUSINESS_TIME period contains a pair of DATE or TIMESTAMP(p) columns
where p can be from 0 to 12. These columns are populated by you or a business
application. The two columns in a BUSINESS_TIME period denote the start and
end of the validity period. These columns differs from SYSTEM_TIME period
columns where the time period values are generated by the database manager. The
BUSINESS_TIME period columns must be defined as NOT NULL and must not be
generated columns.

A BUSINESS_TIME period is inclusive-exclusive. The start of the validity period is
included in the BUSINESS_TIME, while the end is excluded.

Whenever a BUSINESS_TIME period is defined on a table, an implicit check
constraint named
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME is generated to
ensure that the value for the end of the validity period is greater than the value for
the start of the validity period. If a constraint with the same name exists, then an
error is returned. This constraint is useful when supporting operations that
explicitly input data into these columns, such as an insert or load operation.

An application-period temporal table can be defined so that rows with the same
key do not have any overlapping periods of BUSINESS_TIME. For example, this
restriction would prevent two versions of an insurance policy from being in effect
at any point in time. These controls can be achieved by adding a BUSINESS_TIME
WITHOUT OVERLAPS clause to a primary key, unique constraint specification, or
create unique index statement. The enforcement is handled by the database
manager. This control is optional.

Creating an application-period temporal table
Creating an application-period temporal table results in a table that manages data
based on when its data is valid or in effect.

Chapter 20. Time Travel Query using temporal tables 155

About this task

When creating an application-period temporal table, include a BUSINESS_TIME
period that indicates when the data in a row is valid. You can optionally define
that overlapping periods of BUSINESS_TIME are not allowed and that values are
unique with respect to any period. The example in the following section shows the
creation of a table that stores policy information for the customers of an insurance
company.

Procedure

To create an application-period temporal table:
1. Create a table with a BUSINESS_TIME period. For example:

CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME (bus_start, bus_end)
);

2. Optional: Create a unique index that prevents overlapping periods of
BUSINESS_TIME for the same policy_id. For example:
CREATE UNIQUE INDEX ix_policy

ON policy_info (policy_id, BUSINESS_TIME WITHOUT OVERLAPS);

Results

The policy_info table stores the insurance coverage level for a customer. The
BUSINESS_TIME period-related columns (bus_start and bus_end) indicate when
an insurance coverage level is valid.

Table 16. Created application-period temporal table (policy_info)

policy_id coverage bus_start bus_end

The ix_policy index, with BUSINESS_TIME WITHOUT OVERLAPS as the final
column in the index key column list, ensures that there are no overlapping time
periods for customer insurance coverage levels.

Example

This section contains more examples of creating application-period temporal tables.

Changing an existing table into an application-period temporal table
The following example adds time columns and a BUSINESS_TIME period
to an existing table (employees) enabling application-period temporal table
functionality. Adding the BUSINESS_TIME WITHOUT OVERLAPS clause
ensures that an employee is listed only once in any time period.
ALTER TABLE employees ADD COLUMN bus_start DATE NOT NULL;
ALTER TABLE employees ADD COLUMN bus_end DATE NOT NULL;
ALTER TABLE employees ADD PERIOD BUSINESS_TIME(bus_start, bus_end);
ALTER TABLE employees ADD CONSTRAINT uniq

UNIQUE(employee_id, BUSINESS_TIME WITHOUT OVERLAPS);

Preventing overlapping periods of time
In the “Procedure” section, an index ensures that there are no overlapping

156 Preparation Guide for DB2 10.1 Fundamentals Exam 610

BUSINESS_TIME periods. In the following alternative example, a
PRIMARY KEY declaration is used when creating the policy_info table,
ensuring that overlapping periods of BUSINESS_TIME are not allowed.
This means that there cannot be two versions of the same policy that are
valid at the same time.
CREATE TABLE policy_info
(

policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME(bus_start, bus_end),
PRIMARY KEY(policy_id, BUSINESS_TIME WITHOUT OVERLAPS)

);

Ensuring uniqueness for periods of time
The following example creates a product_availability table where a
company tracks the products it distributes, the suppliers of those products,
and the prices the suppliers charge. Multiple suppliers can provide the
same product at the same time, but a PRIMARY KEY declaration ensures
that a single supplier can only charge one price at any given point in time.
CREATE TABLE product_availability
(

product_id CHAR(4) NOT NULL,
supplier_id INT NOT NULL,
product_price DECIMAL NOT NULL
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME(bus_start, bus_end),
PRIMARY KEY(product_id, supplier_id, BUSINESS_TIME WITHOUT OVERLAPS)

);

If the PRIMARY KEY was defined as
PRIMARY KEY(product_id, BUSINESS_TIME WITHOUT OVERLAPS)

then no two suppliers could deliver the same product at the same time.

Dropping application-period temporal tables
Use the DROP TABLE statement to drop application-period temporal tables.

About this task

When a table is dropped, the row in the SYSCAT.TABLES system catalog view that
contains information about that table is dropped, and any other objects that
depend on the table are affected. For example:
v All column names are dropped.
v Indexes created on any columns of the table are dropped.
v All views based on the table are marked inoperative.
v All privileges on the dropped table and dependent views are implicitly revoked.
v All referential constraints in which the table is a parent or dependent are

dropped.
v All packages and cached dynamic SQL and XQuery statements dependent on

the dropped table are marked invalid, and remain so until the dependent objects
are re-created. This includes packages dependent on any supertable above the
subtable in the hierarchy that is being dropped.

v Any reference columns for which the dropped table is defined as the scope of
the reference become “unscoped”.

Chapter 20. Time Travel Query using temporal tables 157

v An alias definition on the table is not affected, because an alias can be undefined
v All triggers dependent on the dropped table are marked inoperative.

Restrictions

An individual table cannot be dropped if it has a subtable.

Procedure
v To drop a table, use a DROP TABLE statement.

The following statement drops the table called DEPARTMENT:
DROP TABLE DEPARTMENT

v To drop all the tables in a table hierarchy, use a DROP TABLE HIERARCHY
statement.
The DROP TABLE HIERARCHY statement must name the root table of the
hierarchy to be dropped. For example:

DROP TABLE HIERARCHY person

Results

There are differences when dropping a table hierarchy compared to dropping a
specific table:
v DROP TABLE HIERARCHY does not activate deletion-triggers that would be

activated by individual DROP TABLE statements. For example, dropping an
individual subtable would activate deletion-triggers on its supertables.

v DROP TABLE HIERARCHY does not make log entries for the individual rows of
the dropped tables. Instead, the dropping of the hierarchy is logged as a single
event.

Bitemporal tables
A bitemporal table is a table that combines the historical tracking of a
system-period temporal table with the time-specific data storage capabilities of an
application-period temporal table. Use bitemporal tables to keep user-based period
information as well as system-based historical information.

Bitemporal tables behave as a combination of system-period temporal tables and
application-period temporal tables. All the restrictions that apply to system-period
temporal tables and application temporal tables also apply to bitemporal tables.

Creating a bitemporal table
Creating a bitemporal table results in a table that combines the historical tracking
of a system-period temporal table with the time-specific data storage capabilities of
an application-period temporal table.

About this task

When creating a bitemporal table, you combine the steps used to create a
system-period temporal table with the steps used to create an application-period
temporal table.
v Include both a SYSTEM_TIME period and a BUSINESS_TIME period in the

CREATE TABLE statement.
v Create a history table to receive old rows from the bitemporal table.

158 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v Add versioning to establish the link between the bitemporal table and the
history table.

v Optionally, define that overlapping periods of BUSINESS_TIME are not allowed
and that values are unique with respect to any period.

The examples in the following section show the creation of a table that stores
policy information for the customers of an insurance company.

Procedure

To create a bitemporal table:
1. Create a table with both a SYSTEM_TIME attribute and a BUSINESS_TIME

attribute. For example:
CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
sys_start TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW END,
ts_id TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD BUSINESS_TIME (bus_start, bus_end),
PERIOD SYSTEM_TIME (sys_start, sys_end)
) in policy_space;

2. Create a history table. For example:
CREATE TABLE hist_policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
ts_id TIMESTAMP(12)
) in hist_space;

You can also create a history table with the same names and descriptions as the
columns of the system-period temporal table using the LIKE clause of the
CREATE TABLE statement. For example:
CREATE TABLE hist_policy_info LIKE policy_info in hist_space;

3. Add versioning to the bitemporal table. For example:
ALTER TABLE policy_info ADD VERSIONING USE HISTORY TABLE hist_policy_info;

4. Optional: Create a unique index that includes the BUSINESS_TIME period. For
example:
CREATE UNIQUE INDEX ix_policy

ON policy_info (policy_id, BUSINESS_TIME WITHOUT OVERLAPS);

Results

The policy_info table stores the insurance coverage level for a customer. The
BUSINESS_TIME period-related columns (bus_start and bus_end) indicate when
an insurance coverage level is valid. The SYSTEM_TIME period-related columns
(sys_start and sys_end) show when a coverage level row is current. The ts_id
column lists the time when execution started for a transaction that impacted the
row.

Chapter 20. Time Travel Query using temporal tables 159

Table 17. Created bitemporal table (policy_info)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

The hist_policy_info history table receives the old rows from the policy_info
table.

Table 18. Created history table (hist_policy_info)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

The ix_policy index, with BUSINESS_TIME WITHOUT OVERLAPS as the final
column in the index key column list, ensures that there are no overlapping time
periods for customer insurance coverage levels.

Example

This section contains more creating bitemporal table examples.

Hiding columns
The following example creates the policy_info table with the
TIMESTAMP(12) columns (sys_start, sys_end and ts_id) marked as
implicitly hidden.
CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
sys_start TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW BEGIN IMPLICITLY HIDDEN,
sys_end TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW END IMPLICITLY HIDDEN,
ts_id TIMESTAMP(12)

GENERATED ALWAYS AS TRANSACTION START ID IMPLICITLY HIDDEN,
PERIOD BUSINESS_TIME (bus_start, bus_end),
PERIOD SYSTEM_TIME (sys_start, sys_end)
) in policy_space;

Creating the hist_policy_info history table using the LIKE clause of the
CREATE TABLE statement results in the history table inheriting the
implicitly hidden attribute from the policy_info table.

160 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 21. User-defined types

There are six types of user-defined data type.
v Distinct type
v Structured type
v Reference type
v Array type
v Row type
v Cursor type

Each of these types is described in the following sections.

Distinct type

A distinct type is a user-defined data type that shares its internal representation
with an existing type (its "source" type), but is considered to be a separate and
incompatible type for most operations. For example, one might want to define a
picture type, a text type, and an audio type, all of which have quite different
semantics, but which use the built-in data type BLOB for their internal
representation.

The following example illustrates the creation of a distinct type named AUDIO:
CREATE TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB, it is
considered to be a separate type; this allows the creation of functions written
specifically for AUDIO, and assures that these functions will not be applied to
values of any other data type (pictures, text, and so on).

Distinct types have qualified identifiers. If the schema name is not used to qualify
the distinct type name when used in other than the CREATE TYPE (Distinct),
DROP, or COMMENT statements, the SQL path is searched in sequence for the
first schema with a distinct type that matches.

Distinct types support strong typing by ensuring that only those functions and
operators explicitly defined on a distinct type can be applied to its instances. For
this reason, a distinct type does not automatically acquire the functions and
operators of its source type, because these may not be meaningful. (For example,
the LENGTH function of the AUDIO type might return the length of its object in
seconds rather than in bytes.)

Distinct types sourced on LOB types are subject to the same restrictions as their
source type.

However, certain functions and operators of the source type can be explicitly
specified to apply to the distinct type. This can be done by creating user-defined
functions that are sourced on functions defined on the source type of the distinct
type. The comparison operators are automatically generated for user-defined
distinct types, except those using BLOB, CLOB, or DBCLOB as the source type. In
addition, functions are generated to support casting from the source type to the
distinct type, and from the distinct type to the source type.

© Copyright IBM Corp. 2012 161

Structured type

A structured type is a user-defined data type that has a structure that is defined in
the database. It contains a sequence of named attributes, each of which has a data
type. A structured type also includes a set of method specifications.

A structured type may be used as the type of a table, view, or column. When used
as a type for a table or view, that table or view is known as a typed table or typed
view, respectively. For typed tables and typed views, the names and data types of
the attributes of the structured type become the names and data types of the
columns of this typed table or typed view. Rows of the typed table or typed view
can be thought of as a representation of instances of the structured type. When
used as a data type for a column, the column contains values of that structured
type (or values of any of that type's subtypes, as defined later in this section).
Methods are used to retrieve or manipulate attributes of a structured column
object.

Terminology: A supertype is a structured type for which other structured types,
called subtypes, have been defined. A subtype inherits all the attributes and
methods of its supertype and may have additional attributes and methods defined.
The set of structured types that are related to a common supertype is called a type
hierarchy and the type that does not have any supertype is called the root type of
the type hierarchy.

The term subtype applies to a user-defined structured type and all user-defined
structured types that are below it in the type hierarchy. Therefore, a subtype of a
structured type T is T and all structured types below T in the hierarchy. A proper
subtype of a structured type T is a structured type below T in the type hierarchy.

There are restrictions on having recursive type definitions in a type hierarchy. For
this reason, it is necessary to develop a shorthand way of referring to the specific
type of recursive definitions that are allowed. The following definitions are used:
v Directly uses: A type A is said to directly use another type B, if and only if one of

the following is true:
1. type A has an attribute of type B

2. type B is a subtype of A, or a supertype of A

v Indirectly uses: A type A is said to indirectly use a type B, if one of the following
is true:
1. type A directly uses type B

2. type A directly uses some type C, and type C indirectly uses type B

A type may not be defined so that one of its attribute types directly or indirectly
uses itself. If it is necessary to have such a configuration, consider using a
reference as the attribute. For example, with structured type attributes, there
cannot be an instance of "employee" with an attribute of "manager" when
"manager" is of type "employee". There can, however, be an attribute of "manager"
with a type of REF(employee).

A type cannot be dropped if certain other objects use the type, either directly or
indirectly. For example, a type cannot be dropped if a table or view column makes
direct or indirect use of the type.

162 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Reference type

A reference type is a companion type to a structured type. Similar to a distinct type,
a reference type is a scalar type that shares a common representation with one of
the built-in data types. This same representation is shared for all types in the type
hierarchy. The reference type representation is defined when the root type of a type
hierarchy is created. When using a reference type, a structured type is specified as
a parameter of the type. This parameter is called the target type of the reference.

The target of a reference is always a row in a typed table or a typed view. When a
reference type is used, it may have a scope defined. The scope identifies a table
(called the target table) or view (called the target view) that contains the target row
of a reference value. The target table or view must have the same type as the target
type of the reference type. An instance of a scoped reference type uniquely
identifies a row in a typed table or typed view, called the target row.

Array type

A user-defined array type is a data type that is defined as an array with elements of
another data type. Every ordinary array type has an index with the data type of
INTEGER and has a defined maximum cardinality. Every associative array has an
index with the data type of INTEGER or VARCHAR and does not have a defined
maximum cardinality.

Row type

A row type is a data type that is defined as an ordered sequence of named fields,
each with an associated data type, which effectively represents a row. A row type
can be used as the data type for variables and parameters in SQL PL to provide
simple manipulation of a row of data.

Cursor type

A user-defined cursor type is a user-defined data type defined with the keyword
CURSOR and optionally with an associated row type. A user-defined cursor type
with an associated row type is a strongly-typed cursor type; otherwise, it is a
weakly-typed cursor type. A value of a user-defined cursor type represents a
reference to an underlying cursor.

Distinct types
Distinct types are user-defined data types that are based on existing DB2 built-in
data types. Internally, a distinct type shares its representation with an existing data
type (the source data type), but is considered to be a separate and incompatible
data type.

For example, distinct types can represent various currencies, such as US_Dollar or
Canadian_Dollar. Both of these types are represented internally (and in your host
language program) as the built-in data type upon which you defined these
currencies. For example, if you define both currencies as DECIMAL, they are
represented as decimal data types in the system.

DB2 also has built-in data types for storing and manipulating large objects. Your
distinct type could be based on one of these large object (LOB) data types, which
you might want to use for something like an audio or video stream. The following
example illustrates the creation of a distinct type named AUDIO:

Chapter 21. User-defined types 163

CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB, it is
considered to be a separate data type that is not comparable to a BLOB or to any
other data type. This allows the creation of functions written specifically for
AUDIO and assures that these functions will not be applied to any other data type.

Restriction: Not all built-in data types can be used to define distinct types. For
example, neither the Boolean nor XML data types can be used to define a distinct
type, nor can the array, row or cursor types. For more information, refer the
documentation for the CREATE TYPE (Distinct) statement.

There are several benefits associated with distinct types:
1. Extensibility: By defining new data types, you can increase the set of types

provided by DB2 to support your applications.
2. Flexibility: You can specify any semantics and behavior for your new data type

by using user-defined functions (UDFs) to augment the diversity of the data
types available in the system.

3. Consistent behavior: Strong typing insures that your distinct types will behave
appropriately. It guarantees that only functions defined on your distinct type
can be applied to instances of the distinct type.

4. Encapsulation: The set of functions and operators that you can apply to distinct
types defines the behavior of your distinct types. This provides flexibility in the
implementation since running applications do not depend on the internal
representation that you choose for your data type.

5. Performance: Distinct types are highly integrated into the database manager.
Because distinct types are internally represented the same way as built-in data
types, they share the same efficient code used to implement components such
as built-in functions, comparison operators, and indexes for built-in data types.

Distinct types are identified by qualified identifiers. If the schema name is not used
to qualify the distinct type name when used in statements other than CREATE
DISTINCT TYPE, DROP DISTINCT TYPE, or COMMENT ON DISTINCT TYPE,
the SQL path is searched in sequence for the first schema with a distinct type that
matches.

Distinct types sourced on LONG VARCHAR, LONG VARGRAPHIC, or LOB data
types are subject to the same restrictions as their source type. However, certain
functions and operators of the source data type can be explicitly specified to apply
to the distinct type by defining user-defined functions. (These functions are
sourced on functions defined on the source data type of the distinct type.) The
comparison operators are automatically generated for user-defined distinct types,
except those using LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or
DBCLOB as the source type. In addition, functions are generated to support casting
from the source data type to the distinct type, and from the distinct type to the
source data type.

Creating distinct types
A user-defined distinct type is a data type derived from an existing type, such as
an integer, decimal, or character type. To define a distinct type, you use the
CREATE DISTINCT TYPE statement.

164 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Before you begin

Instances of the same distinct type can be compared to each other, if the WITH
COMPARISONS clause is specified on the CREATE DISTINCT TYPE statement (as
in the example in the procedure). If the source data type is a large object, LONG
VARCHAR, or LONG VARGRAPHIC type, the WITH COMPARISONS clause
cannot be specified.

For the list of privileges required to define distinct types, see the CREATE
DISTINCT TYPE statement.

About this task

When you create distinct types, the database manager generates cast functions to
cast from the distinct type to the source type, and to cast from the source type to
the distinct type. These functions are essential for the manipulation of distinct
types in queries. The source type of the distinct type is the data type used by the
database manager to internally represent the distinct type. For this reason, it must
be a built-in data type. Previously defined distinct types cannot be used as source
types of other distinct types.

Procedure

To define a distinct type, issue the CREATE DISTINCT TYPE statement, specifying
a type name and the source type.
For example, the following statement defines a new distinct type called T_EDUC
that contains SMALLINT values:

CREATE DISTINCT TYPE T_EDUC AS SMALLINT WITH COMPARISONS

Because the distinct type defined in the preceding statement is based on
SMALLINT, the WITH COMPARISONS parameters must be specified.

Results

After you create a distinct type, you can use it to define columns in a CREATE
TABLE statement:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL,
EDLEVEL T_EDUC)

IN RESOURCE

Creating tables with columns based on distinct types
After you define distinct types, you can start creating tables with columns based
on distinct types.

Before you begin

For the list of privileges required to define distinct types, see the CREATE
DISTINCT TYPE statement.

Chapter 21. User-defined types 165

For the list of privileges required to create tables, see the CREATE TABLE
statement.

Procedure

To create a table with columns based on distinct types:
1. Define a distinct type:

CREATE DISTINCT TYPE t_educ AS SMALLINT WITH COMPARISONS

2. Create the table, naming the distinct type, T_EDUC as a column type.
CREATE TABLE employee

(empno CHAR(6) NOT NULL,
firstnme VARCHAR(12) NOT NULL,
lastname VARCHAR(15) NOT NULL,
workdept CHAR(3),
phoneno CHAR(4),
photo BLOB(10M) NOT NULL,
edlevel T_EDUC)
IN RESOURCE

Creating currency-based distinct types
This topic describes how to create currency-based distinct types.

Suppose that you are writing applications that must handle different currencies.
Given that conversions are necessary whenever you want to compare values of
different currencies, you want to ensure that DB2 for Linux, UNIX, and Windows
does not allow these currencies to be compared or manipulated directly with one
another. Because distinct types are only compatible with themselves, you must
define one for each currency that you need to represent.

Before you begin

For the list of privileges required to define distinct types, see the CREATE
DISTINCT TYPE statement.

Procedure

To define distinct types representing the euro and the American and Canadian
currencies, issue the following statements:

CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,3) WITH COMPARISONS
CREATE DISTINCT TYPE CANADIAN_DOLLAR AS DECIMAL (9,3) WITH COMPARISONS
CREATE DISTINCT TYPE EURO AS DECIMAL (9,3) WITH COMPARISONS

Note that you must specify the WITH COMPARISONS clause because comparison
operators are supported on DECIMAL (9,3).

Casting between distinct types
This topic describes casting between distinct types.

About this task

Suppose you want to define a UDF that converts another currency into U.S.
dollars. For the purposes of this example, you can obtain the current exchange rate
from a table such as the following query:
CREATE TABLE

exchange_rates(source CHAR(3), target CHAR(3), rate DECIMAL(9,3))

166 Preparation Guide for DB2 10.1 Fundamentals Exam 610

The following function can be used to directly access the values in the
exchange_rates table:
CREATE FUNCTION exchange_rate(src VARCHAR(3), trg VARCHAR(3))

RETURNS DECIMAL(9,3)
RETURN SELECT rate FROM exchange_rates

WHERE source = src AND target = trg

The currency exchange rates in the preceding function are based on the DECIMAL
type, not distinct types. To represent some different currencies, use the following
distinct type definitions:
CREATE DISTINCT TYPE CANADIAN_DOLLAR AS DECIMAL (9,3) WITH COMPARISONS
CREATE DISTINCT TYPE EURO AS DECIMAL(9,3) WITH COMPARISONS
CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,3) WITH COMPARISONS

To create a UDF that converts CANADIAN_DOLLAR or EURO to US_DOLLAR
you must cast the values involved. Note that the exchange_rate function returns an
exchange rate as a DECIMAL. For example, a function that converts values of
CANADIAN_DOLLAR to US_DOLLAR performs the following steps:

Procedure
v cast the CANADIAN_DOLLAR value to DECIMAL
v get the exchange rate for converting the Canadian dollar to the U.S. dollar from

the exchange_rate function, which returns the exchange rate as a DECIMAL
value

v multiply the Canadian dollar DECIMAL value to the DECIMAL exchange rate
v cast this DECIMAL value to US_DOLLAR
v return the US_DOLLAR value

What to do next

The following are instances of the US_DOLLAR function (for both the Canadian
dollar and the euro), which follow the preceding steps.
CREATE FUNCTION US_DOLLAR(amount CANADIAN_DOLLAR)

RETURNS US_DOLLAR
RETURN US_DOLLAR(DECIMAL(amount) * exchange_rate(’CAN’, ’USD’))

CREATE FUNCTION US_DOLLAR(amount EURO)
RETURNS US_DOLLAR
RETURN US_DOLLAR(DECIMAL(amount) * exchange_rate(’EUR’, ’USD’))

Dropping user-defined types
If you no longer need a user-defined type, you can drop it.

About this task

You can drop a user-defined type (UDT) using the DROP statement. You cannot
drop a UDT if it is used:
v In a column definition for an existing table or view.
v As the type of an existing typed table or typed view.
v As the supertype of another structured type.

The database manager attempts to drop every routine that is dependent on this
UDT. A routine cannot be dropped if a view, trigger, table check constraint, or

Chapter 21. User-defined types 167

another routine is dependent on it. If DB2 cannot drop a dependent routine, DB2
does not drop the UDT. Dropping a UDT invalidates any packages or cached
dynamic SQL statements that used it.

If you have created a transform for a UDT, and you plan to drop that UDT,
consider dropping the associated transform. To drop a transform, issue a DROP
TRANSFORM statement. Note that you can only drop user-defined transforms.
You cannot drop built-in transforms or their associated group definitions.

Structured types
A structured type is a user-defined data type containing one or more named
attributes, each of which has a data type. Attributes are properties that describe an
instance of a type.

A structured type is a user-defined data type containing one or more named
attributes, each of which has a data type. Attributes are properties that describe an
instance of a type. A geometric shape, for example, might have attributes such as
its list of Cartesian coordinates. A person might have attributes of name, address,
and so on. A department might have attributes of a name or some other kind of
ID.

A structured type also includes a set of method specifications. Methods enable you
to define behaviors for structured types. Like user-defined functions (UDFs),
methods are routines that extend SQL. In the case of methods, however, the
behavior is integrated solely with a particular structured type.

A structured type can be used as the type of a table, view, or column. When used
as the type for a table, that table is known as a typed table and when used as the
type for a view, that view is known as a typed view. For typed tables and typed
views, the names and data types of the attributes of the structured type become
the names and data types of the columns of the typed table or typed view. Rows
of the typed table or typed view can be thought of as a representation of instances
of the structured type.

A type cannot be dropped when certain other objects use the type, either directly
or indirectly. For example, a type cannot be dropped if a table or view column
makes a direct or indirect use of the type.

Structured type hierarchies
This section provides information about the structured type hierarchies.

It is certainly possible to model objects such as people using traditional relational
tables and columns. However, structured types offer an additional property of
inheritance. That is, a structured type can have subtypes that reuse all of its
attributes and contain additional attributes specific to the subtype. The original
type is the supertype. For example, the structured type Person_t might contain
attributes for Name, Age, and Address. A subtype of Person_t might be Employee_t
that contains all of the attributes Name, Age, and Address and, in addition, contains
attributes for SerialNum, Salary, and BusinessUnit.

168 Preparation Guide for DB2 10.1 Fundamentals Exam 610

A set of subtypes based (at some level) on the same supertype is known as a type
hierarchy. For example, a data model might need to represent a special type of
employee called a manager. Managers have more attributes than employees who
are not managers. The Manager_t type inherits the attributes defined for an
employee, but also is defined with some additional attributes of its own, such as a
special bonus attribute that is only available to managers.

The following figure presents an illustration of the various subtypes that might be
derived from person and employee types:

In Figure 12, the person type Person_t is the root type of the hierarchy. Person_t is
also the supertype of the types below it--in this case, the type named Employee_t
and the type named Student_t. The relationships among subtypes and supertypes
are transitive; this means that the relationship between subtype and supertype
exists throughout the entire type hierarchy. So, Person_t is also a supertype of
types Manager_t and Architect_t.

The department type, BusinessUnit_t is considered a trivial type hierarchy. It is
the root of a hierarchy with no subtypes.

Creating structured types
This topic describes how to create structured types.

A structured type is a user-defined type that contains one or more attributes, each
of which has a name and a data type of its own. A structured type can serve as the
type of a table or view in which each column of the table derives its name and
data type from one of the attributes of the structured type. A structured type can
also serve as a type of a column or a type for an argument to a routine.

Employee_t (SerialNum, Salary, Dept)Name, Age, Address,

Person_t (Name, Age, Address)

Figure 11. Structured type Employee_t inherits attributes from supertype Person_t

Person_t

BusinessUnit_t

Employee_t

Manager_t

Student_t

Architect_t

Figure 12. Type hierarchies (BusinessUnit_t and Person_t)

Chapter 21. User-defined types 169

Before you begin

For the list of privileges required to define structured types, see the CREATE TYPE
statement.

About this task

To define a structured type to represent a person, with age and address attributes,
issue the following statement:

CREATE TYPE Person_t AS
(Name VARCHAR(20),
Age INT,
Address Address_t)
INSTANTIABLE
REF USING VARCHAR(13) FOR BIT DATA
MODE DB2SQL;

Unlike distinct types, the attributes of structured types can be composed of types
other than the built-in DB2 data types. The preceding type declaration includes an
attribute called Address whose source type is another structured type, Address_t.

Creating a structured type hierarchy
This topic describes how to create a structured type hierarchy.

About this task

The following figure presents an illustration of a structured type hierarchy:

To create the BusinessUnit_t type, issue the following CREATE TYPE SQL
statement:

CREATE TYPE BusinessUnit_t AS
(Name VARCHAR(20),
Headcount INT)
MODE DB2SQL;

To create the Person_t type hierarchy, issue the following SQL statements:
CREATE TYPE Person_t AS

(Name VARCHAR(20),
Age INT,
Address Address_t)
REF USING VARCHAR(13) FOR BIT DATA
MODE DB2SQL;

CREATE TYPE Employee_t UNDER Person_t AS

Person_t

BusinessUnit_t

Employee_t

Manager_t

Student_t

Architect_t

Figure 13. Type hierarchies (BusinessUnit_t and Person_t)

170 Preparation Guide for DB2 10.1 Fundamentals Exam 610

(SerialNum INT,
Salary DECIMAL(9,2),
Dept REF(BusinessUnit_t))
MODE DB2SQL;

CREATE TYPE Student_t UNDER Person_t AS
(SerialNum CHAR(6),
GPA DOUBLE)
MODE DB2SQL;

CREATE TYPE Manager_t UNDER Employee_t AS
(Bonus DECIMAL(7,2))
MODE DB2SQL;

CREATE TYPE Architect_t UNDER Employee_t AS
(StockOption INTEGER)
MODE DB2SQL;

Person_t has three attributes: Name, Age and Address. Its two subtypes, Employee_t
and Student_t, each inherit the attributes of Person_t and also have several
additional attributes that are specific to their particular types. For example,
although both employees and students have serial numbers, the format used for
student serial numbers is different from the format used for employee serial
numbers.

Finally, Manager_t and Architect_t are both subtypes of Employee_t; they inherit
all the attributes of Employee_t and extend them further as appropriate for their
types. Thus, an instance of type Manager_t will have a total of seven attributes:
Name, Age, Address, SerialNum, Salary, Dept, and Bonus.

Chapter 21. User-defined types 171

172 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 22. Constraints

Within any business, data must often adhere to certain restrictions or rules. For
example, an employee number must be unique. The database manager provides
constraints as a way to enforce such rules.

The following types of constraints are available:
v NOT NULL constraints
v Unique (or unique key) constraints
v Primary key constraints
v Foreign key (or referential integrity) constraints
v (Table) Check constraints
v Informational constraints

Constraints are only associated with tables and are either defined as part of the
table creation process (using the CREATE TABLE statement) or are added to a
table's definition after the table has been created (using the ALTER TABLE
statement). You can use the ALTER TABLE statement to modify constraints. In
most cases, existing constraints can be dropped at any time; this action does not
affect the table's structure or the data stored in it.

Note: Unique and primary constraints are only associated with table objects, they
are often enforced through the use of one or more unique or primary key indexes.

Types of constraints
A constraint is a rule that is used for optimization purposes.

There are five types of constraints:
v A NOT NULL constraint is a rule that prevents null values from being entered

into one or more columns within a table.
v A unique constraint (also referred to as a unique key constraint) is a rule that

forbids duplicate values in one or more columns within a table. Unique and
primary keys are the supported unique constraints. For example, a unique
constraint can be defined on the supplier identifier in the supplier table to
ensure that the same supplier identifier is not given to two suppliers.

v A primary key constraint is a column or combination of columns that has the
same properties as a unique constraint. You can use a primary key and foreign
key constraints to define relationships between tables.

v A foreign key constraint (also referred to as a referential constraint or a referential
integrity constraint) is a logical rule about values in one or more columns in one
or more tables. For example, a set of tables shares information about a
corporation's suppliers. Occasionally, a supplier's name changes. You can define
a referential constraint stating that the ID of the supplier in a table must match a
supplier ID in the supplier information. This constraint prevents insert, update,
or delete operations that would otherwise result in missing supplier information.

v A (table) check constraint (also called a check constraint) sets restrictions on data
added to a specific table. For example, a table check constraint can ensure that
the salary level for an employee is at least $20 000 whenever salary data is
added or updated in a table containing personnel information.

© Copyright IBM Corp. 2012 173

An informational constraint is an attribute of a certain type of constraint, but one
that is not enforced by the database manager.

NOT NULL constraints
NOT NULL constraints prevent null values from being entered into a column.

The null value is used in databases to represent an unknown state. By default, all
of the built-in data types provided with the database manager support the
presence of null values. However, some business rules might dictate that a value
must always be provided (for example, every employee is required to provide
emergency contact information). The NOT NULL constraint is used to ensure that
a given column of a table is never assigned the null value. Once a NOT NULL
constraint has been defined for a particular column, any insert or update operation
that attempts to place a null value in that column will fail.

Because constraints only apply to a particular table, they are usually defined along
with a table's attributes, during the table creation process. The following CREATE
TABLE statement shows how the NOT NULL constraint would be defined for a
particular column:

CREATE TABLE EMPLOYEES (. . .
EMERGENCY_PHONE CHAR(14) NOT NULL,
. . .
);

Unique constraints
Unique constraints ensure that the values in a set of columns are unique and not
null for all rows in the table. The columns specified in a unique constraint must be
defined as NOT NULL. The database manager uses a unique index to enforce the
uniqueness of the key during changes to the columns of the unique constraint.

Unique constraints can be defined in the CREATE TABLE or ALTER TABLE
statement using the UNIQUE clause. For example, a typical unique constraint in a
DEPARTMENT table might be that the department number is unique and not null.

Figure 14 shows that a duplicate record is prevented from being added to a table
when a unique constraint exists for the table:

The database manager enforces the constraint during insert and update operations,
ensuring data integrity.

Department
number

001

003

002

003

004

005

Invalid record

Figure 14. Unique constraints prevent duplicate data

174 Preparation Guide for DB2 10.1 Fundamentals Exam 610

A table can have an arbitrary number of unique constraints, with at most one
unique constraint defined as the primary key. A table cannot have more than one
unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint
is called the parent key.
v When a unique constraint is defined in a CREATE TABLE statement, a unique

index is automatically created by the database manager and designated as a
primary or unique system-required index.

v When a unique constraint is defined in an ALTER TABLE statement and an
index exists on the same columns, that index is designated as unique and
system-required. If such an index does not exist, the unique index is
automatically created by the database manager and designated as a primary or
unique system-required index.

Note: There is a distinction between defining a unique constraint and creating a
unique index. Although both enforce uniqueness, a unique index allows nullable
columns and generally cannot be used as a parent key.

Primary key constraints
You can use primary key and foreign key constraints to define relationships
between tables.

A primary key is a column or combination of columns that has the same properties
as a unique constraint. Because the primary key is used to identify a row in a
table, it must be unique, and must have the NOT NULL attribute. A table cannot
have more than one primary key, but it can have multiple unique keys. Primary
keys are optional, and can be defined when a table is created or altered. They are
also beneficial, because they order the data when data is exported or reorganized.

(Table) Check constraints
A check constraint (also referred to as a table check constraint) is a database rule that
specifies the values allowed in one or more columns of every row of a table.
Specifying check constraints is done through a restricted form of a search
condition.

Designing check constraints
When creating check constraints, one of two things can happen: (i) all the rows
meet the check constraint, or (ii) some or all the rows do not meet the check
constraint.

About this task

All the rows meet the check constraint
When all the rows meet the check constraint, the check constraint will be
created successfully. Future attempts to insert or update data that does not
meet the constraint business rule will be rejected.

Some or all the rows do not meet the check constraint
When there are some rows that do not meet the check constraint, the check
constraint will not be created (that is, the ALTER TABLE statement will
fail). The ALTER TABLE statement, which adds a new constraint to the
EMPLOYEE table, is shown in the following example. The check constraint
is named CHECK_JOB. The database manager will use this name to inform

Chapter 22. Constraints 175

you about which constraint was violated if an INSERT or UPDATE
statement fails. The CHECK clause is used to define a table-check
constraint.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT check_job
CHECK (JOB IN (’Engineer’, ’Sales’, ’Manager’));

An ALTER TABLE statement was used because the table had already been
defined. If there are values in the EMPLOYEE table that conflict with the
constraint being defined, the ALTER STATEMENT will not be completed
successfully.

As check constraints and other types of constraints are used to implement business
rules, you might need to change them from time to time. This could happen when
the business rules change in your organization. Whenever a check constraint needs
to be changed, you must drop it and re-create a new one. Check constraints can be
dropped at any time, and this action will not affect your table or the data within it.
When you drop a check constraint, you must be aware that data validation
performed by the constraint will no longer be in effect.

Comparison of check constraints and BEFORE triggers
You must consider the difference between check constraints when considering
whether to use triggers or check constraints to preserve the integrity of your data.

The integrity of the data in a relational database must be maintained as multiple
users access and change the data. Whenever data is shared, there is a need to
ensure the accuracy of the values within databases.

Check constraints
A (table) check constraint sets restrictions on data added to a specific table.
You can use a table check constraint to define restrictions, beyond those of
the data type, on the values that are allowed for a column in the table.
Table check constraints take the form of range checks or checks against
other values in the same row of the same table.

If the rule applies for all applications that use the data, use a table check
constraint to enforce your restriction on the data allowed in the table. Table
check constraints make the restriction generally applicable and easier to
maintain.

The enforcement of check constraints is important for maintaining data
integrity, but it also carries a certain amount of system activity that can
impact performance whenever large volumes of data are modified.

BEFORE triggers
By using triggers that run before an update or insert, values that are being
updated or inserted can be modified before the database is actually
modified. These can be used to transform input from the application (user
view of the data) to an internal database format where desired. BEFORE
triggers can also be used to cause other non-database operations to be
activated through user-defined functions.

In addition to modification, a common use of the BEFORE triggers is for
data verification using the SIGNAL clause.

There are two differences between BEFORE triggers and check constraints
when used for data verification:

176 Preparation Guide for DB2 10.1 Fundamentals Exam 610

1. BEFORE triggers, unlike check constraints, are not restricted to access
other values in the same row of the same table.

2. During a SET INTEGRITY operation on a table after a LOAD operation,
triggers (including BEFORE triggers) are not executed. Check
constraints, however, are verified.

Foreign key (referential) constraints
Foreign key constraints (also known as referential constraints or referential integrity
constraints) enable you to define required relationships between and within tables.

For example, a typical foreign key constraint might state that every employee in
the EMPLOYEE table must be a member of an existing department, as defined in
the DEPARTMENT table.

Referential integrity is the state of a database in which all values of all foreign keys
are valid. A foreign key is a column or a set of columns in a table whose values are
required to match at least one primary key or unique key value of a row in its
parent table. A referential constraint is the rule that the values of the foreign key are
valid only if one of the following conditions is true:
v They appear as values of a parent key.
v Some component of the foreign key is null.

To establish this relationship, you would define the department number in the
EMPLOYEE table as the foreign key, and the department number in the
DEPARTMENT table as the primary key.

Figure 15 on page 178 shows how a record with an invalid key is prevented from
being added to a table when a foreign key constraint exists between two tables:

Chapter 22. Constraints 177

The table containing the parent key is called the parent table of the referential
constraint, and the table containing the foreign key is said to be a dependent of that
table.

Referential constraints can be defined in the CREATE TABLE statement or the
ALTER TABLE statement. Referential constraints are enforced by the database
manager during the execution of INSERT, UPDATE, DELETE, ALTER TABLE,
MERGE, ADD CONSTRAINT, and SET INTEGRITY statements.

Referential integrity rules involve the following terms:

Table 19. Referential integrity terms

Concept Terms

Parent key A primary key or a unique key of a referential constraint.

Parent row A row that has at least one dependent row.

Parent table A table that contains the parent key of a referential constraint. A table can
be a parent in an arbitrary number of referential constraints. A table that
is the parent in a referential constraint can also be the dependent in a
referential constraint.

Employee table

Department table

Department
number

001

002

003

Invalid
record

Employee
name

John Doe

Barb Smith

Fred Vickers

Jane Doe

Department
number

Department
name

001 Sales

002 Training

003

015

Communications

...

Program
development

Foreign
key

Primary
key

...

027

Figure 15. Foreign and primary key constraints

178 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 19. Referential integrity terms (continued)

Concept Terms

Dependent table A table that contains at least one referential constraint in its definition. A
table can be a dependent in an arbitrary number of referential constraints.
A table that is the dependent in a referential constraint can also be the
parent in a referential constraint.

Descendent
table

A table is a descendent of table T if it is a dependent of T or a descendent
of a dependent of T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row r if it is a dependent of r or a descendent of
a dependent of r.

Referential cycle A set of referential constraints such that each table in the set is a
descendent of itself.

Self-referencing
table

A table that is a parent and a dependent in the same referential constraint.
The constraint is called a self-referencing constraint.

Self-referencing
row

A row that is a parent of itself.

The purpose of a referential constraint is to guarantee that table relationships are
maintained and that data entry rules are followed. This means that as long as a
referential constraint is in effect, the database manager guarantees that for each
row in a child table that has a non-null value in its foreign key columns, a row
exists in a corresponding parent table that has a matching value in its parent key.

When an SQL operation attempts to change data in such a way that referential
integrity will be compromised, a foreign key (or referential) constraint could be
violated. The database manager handles these types of situations by enforcing a set
of rules that are associated with each referential constraint. This set of rules consist
of:
v An insert rule
v An update rule
v A delete rule

When an SQL operation attempts to change data in such a way that referential
integrity will be compromised, a referential constraint could be violated. For
example,
v An insert operation could attempt to add a row of data to a child table that has

a value in its foreign key columns that does not match a value in the
corresponding parent table's parent key.

v An update operation could attempt to change the value in a child table's foreign
key columns to a value that has no matching value in the corresponding parent
table's parent key.

v An update operation could attempt to change the value in a parent table's
parent key to a value that does not have a matching value in a child table's
foreign key columns.

v A delete operation could attempt to remove a record from a parent table that has
a matching value in a child table's foreign key columns.

The database manager handles these types of situations by enforcing a set of rules
that are associated with each referential constraint. This set of rules consists of:
v An insert rule

Chapter 22. Constraints 179

v An update rule
v A delete rule

Insert rule

The insert rule of a referential constraint is that a non-null insert value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null. This
rule is implicit when a foreign key is specified.

Update rule

The update rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION and RESTRICT. The update rule
applies when a row of the parent or a row of the dependent table is updated.

In the case of a parent row, when a value in a column of the parent key is
updated, the following rules apply:
v If any row in the dependent table matches the original value of the key, the

update is rejected when the update rule is RESTRICT.
v If any row in the dependent table does not have a corresponding parent key

when the update statement is completed (excluding AFTER triggers), the update
is rejected when the update rule is NO ACTION.

The value of the parent unique keys cannot be changed if the update rule is
RESTRICT and there are one or more dependent rows. However, if the update rule
is NO ACTION, parent unique keys can be updated as long as every child has a
parent key by the time the update statement completes. A non-null update value of
a foreign key must be equal to a value of the primary key of the parent table of the
relationship.

Also, the use of NO ACTION or RESTRICT as update rules for referential
constraints determines when the constraint is enforced. An update rule of
RESTRICT is enforced before all other constraints, including those referential
constraints with modifying rules such as CASCADE or SET NULL. An update rule
of NO ACTION is enforced after other referential constraints. Note that the
SQLSTATE returned is different depending on whether the update rule is
RESTRICT or NO ACTION.

In the case of a dependent row, the NO ACTION update rule is implicit when a
foreign key is specified. NO ACTION means that a non-null update value of a
foreign key must match some value of the parent key of the parent table when the
update statement is completed.

The value of a composite foreign key is null if any component of the value is null.

Delete rule

The delete rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, or SET
NULL. SET NULL can be specified only if some column of the foreign key allows
null values.

If the identified table or the base table of the identified view is a parent, the rows
selected for delete must not have any dependents in a relationship with a delete

180 Preparation Guide for DB2 10.1 Fundamentals Exam 610

rule of RESTRICT, and the DELETE must not cascade to descendent rows that
have dependents in a relationship with a delete rule of RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected
rows are deleted. Any rows that are dependents of the selected rows are also
affected:
v The nullable columns of the foreign keys of any rows that are their dependents

in a relationship with a delete rule of SET NULL are set to the null value.
v Any rows that are their dependents in a relationship with a delete rule of

CASCADE are also deleted, and the rules mentioned previously apply, in turn,
to those rows.

The delete rule of NO ACTION is checked to enforce that any non-null foreign key
refers to an existing parent row after the other referential constraints have been
enforced.

The delete rule of a referential constraint applies only when a row of the parent
table is deleted. More precisely, the rule applies only when a row of the parent
table is the object of a delete or propagated delete operation (defined in the
following section), and that row has dependents in the dependent table of the
referential constraint. Consider an example where P is the parent table, D is the
dependent table, and p is a parent row that is the object of a delete or propagated
delete operation. The delete rule works as follows:
v With RESTRICT or NO ACTION, an error occurs and no rows are deleted.
v With CASCADE, the delete operation is propagated to the dependents of p in

table D.
v With SET NULL, each nullable column of the foreign key of each dependent of p

in table D is set to null.

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent
of P, or a dependent of a table to which delete operations from P cascade.

The following restrictions apply to delete-connected relationships:
v When a table is delete-connected to itself in a referential cycle of more than one

table, the cycle must not contain a delete rule of either RESTRICT or SET NULL.
v A table must not both be a dependent table in a CASCADE relationship

(self-referencing or referencing another table) and have a self-referencing
relationship with a delete rule of either RESTRICT or SET NULL.

v When a table is delete-connected to another table through multiple relationships
where such relationships have overlapping foreign keys, these relationships must
have the same delete rule and none of these can be SET NULL.

v When a table is delete-connected to another table through multiple relationships
where one of the relationships is specified with delete rule SET NULL, the
foreign key definition of this relationship must not contain any distribution key
or MDC key column, a table-partitioning key column, or RCT key column.

v When two tables are delete-connected to the same table through CASCADE
relationships, the two tables must not be delete-connected to each other where
the delete connected paths end with delete rule RESTRICT or SET NULL.

Chapter 22. Constraints 181

Examples of interaction between triggers and referential
constraints

Update operations can cause the interaction of triggers with referential constraints
and check constraints.

Figure 16 and the associated description are representative of the processing that is
performed for an statement that updates data in the database.

Figure 16 shows the general order of processing for an statement that updates a
table. It assumes a situation where the table includes BEFORE triggers, referential
constraints, check constraints and AFTER triggers that cascade. The following is a
description of the boxes and other items found in Figure 16.
v statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process. The
statement S1 identifies a table (or an updatable view over some table) referred to
as the subject table throughout this description.

v Determine set of affected rows
This step is the starting point for a process that repeats for referential constraint
delete rules of CASCADE and SET NULL and for cascaded statements from
AFTER triggers.
The purpose of this step is to determine the set of affected rows for the statement.
The set of rows included is based on the statement:
– for DELETE, all rows that satisfy the search condition of the statement (or the

current row for a positioned DELETE)
– for INSERT, the rows identified by the VALUES clause or the fullselect
– for UPDATE, all rows that satisfy the search condition (or the current row for

a positioned UPDATE).
If the set of affected rows is empty, there will be no BEFORE triggers, changes to
apply to the subject table, or constraints to process for the statement.

v Process BEFORE triggers

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 16. Processing an statement with associated triggers and constraints

182 Preparation Guide for DB2 10.1 Fundamentals Exam 610

All BEFORE triggers are processed in ascending order of creation. Each BEFORE
trigger will process the triggered action once for each row in the set of affected
rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original statement S1 (so far) are rolled back.
If there are no BEFORE triggers or the set of affected is empty, this step is
skipped.

v Apply the set of affected rows to the subject table
The actual delete, insert, or update is applied using the set of affected rows to
the subject table in the database.
An error can occur when applying the set of affected rows (such as attempting
to insert a row with a duplicate key where a unique index exists) in which case
all changes made as a result of the original statement S1 (so far) are rolled back.

v Apply Constraints
The constraints associated with the subject table are applied if set of affected
rows is not empty. This includes unique constraints, unique indexes, referential
constraints, check constraints and checks related to the WITH CHECK OPTION
on views. Referential constraints with delete rules of cascade or set null might
cause additional triggers to be activated.
A violation of any constraint or WITH CHECK OPTION results in an error and
all changes made as a result of S1 (so far) are rolled back.

v Process AFTER triggers
All AFTER triggers activated by S1 are processed in ascending order of creation.
FOR EACH STATEMENT triggers will process the triggered action exactly once,
even if the set of affected rows is empty. FOR EACH ROW triggers will process
the triggered action once for each row in the set of affected rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original S1 (so far) are rolled back.
The triggered action of a trigger can include triggered statements that are
DELETE, INSERT or UPDATE statements. For the purposes of this description,
each such statement is considered a cascaded statement.
A cascaded statement is a DELETE, INSERT, or UPDATE statement that is
processed as part of the triggered action of an AFTER trigger. This statement
starts a cascaded level of trigger processing. This can be thought of as assigning
the triggered statement as a new S1 and performing all of the steps described
here recursively.
Once all triggered statements from all AFTER triggers activated by each S1 have
been processed to completion, the processing of the original S1 is completed.

v R = roll back changes to before S1

Any error (including constraint violations) that occurs during processing results
in a roll back of all the changes made directly or indirectly as a result of the
original statement S1. The database is therefore back in the same state as
immediately before the execution of the original statement S1

Informational constraints
An informational constraint is a constraint attribute that can be used by the SQL
compiler to improve the access to data. Informational constraints are not enforced
by the database manager, and are not used for additional verification of data;
rather, they are used to improve query performance.

Chapter 22. Constraints 183

Informational constraints are defined using the CREATE TABLE or ALTER TABLE
statements. You first add referential integrity or check constraints and then
associate constraint attributes to them specifying whether the database manager is
to enforce the constraint or not. For check constraints you can further specify that
the constraint can be trusted. For referential integrity constraints, if the constraint is
not enforced, you can further specify whether the constraint can be trusted or not.
A not enforced and not trusted constraint is also known as a statistical referential
integrity constraint. After you have specified the constraint you can then specify
whether the constraint is to be used for query optimization or not.

Informational RI (referential integrity) constraints are used to optimize query
performance, the incremental processing of REFRESH IMMEDIATE MQT, and
staging tables. Query results, MQT data, and staging tables might be incorrect if
informational constraints are violated.

For example, the order in which parent-child tables are maintained is important.
When you want to add rows to a parent-child table, you must insert rows into the
parent table first. To remove rows from a parent-child table, you must delete rows
from the child table first. This ensures that there are no orphan rows in the child
table at any time. Otherwise the informational constraint violation might affect the
correctness of queries being executed during table maintenance, as well as the
correctness of the incremental maintenance of dependent MQT data and staging
tables.

Designing informational constraints
Constraints that are enforced by the database manager when records are inserted
or updated can lead to high amounts of system activity, especially when loading
large quantities of records that have referential integrity constraints. If an
application has already verified information before inserting a record into the table,
it might be more efficient to use informational constraints, rather than normal
constraints.

Informational constraints tell the database manager what rules the data conforms
to, but the rules are not enforced by the database manager. However, this
information can be used by the DB2 optimizer and could result in better
performance of SQL queries.

The following example illustrates the use of information constraints and how they
work. This simple table contains information about applicants' age and gender:

CREATE TABLE APPLICANTS
(
AP_NO INT NOT NULL,

GENDER CHAR(1) NOT NULL,
CONSTRAINT GENDEROK

CHECK (GENDER IN (’M’, ’F’))
NOT ENFORCED
ENABLE QUERY OPTIMIZATION,

AGE INT NOT NULL,
CONSTRAINT AGEOK

CHECK (AGE BETWEEN 1 AND 80)
NOT ENFORCED
ENABLE QUERY OPTIMIZATION,

);

This example contains two options that change the behavior of the column
constraints. The first option is NOT ENFORCED, which instructs the database
manager not to enforce the checking of this column when data is inserted or

184 Preparation Guide for DB2 10.1 Fundamentals Exam 610

updated. This option can be further specified to be either TRUSTED or NOT
TRUSTED. If the informational constraint is specified to be TRUSTED then the
database manager can trust that the data will conform to the constraint. This is the
default option. If NOT TRUSTED is specified then the database manager knows
that most of the data, but not all, will not conform to the constraint. In this
example, the option is NOT ENFORCED TRUSTED by default since the option of
trusted or not trusted was not specified.

The second option is ENABLE QUERY OPTIMIZATION which is used by the
database manager when SELECT statements are run against this table. When this
value is specified, the database manager will use the information in the constraint
when optimizing the SQL.

If the table contains the NOT ENFORCED option, the behavior of insert statements
might appear odd. The following SQL will not result in any errors when run
against the APPLICANTS table:

INSERT INTO APPLICANTS VALUES
(1, ’M’, 54),
(2, ’F’, 38),
(3, ’M’, 21),
(4, ’F’, 89),
(5, ’C’, 10),
(6, ’S’,100),

Applicant number five has a gender (C), for child, and applicant number six has
both an unusual gender and exceeds the age limits of the AGE column. In both
cases the database manager will allow the insert to occur since the constraints are
NOT ENFORCED and TRUSTED. The result of a select statement against the table
is shown in the following example:

SELECT * FROM APPLICANTS
WHERE GENDER = ’C’;

APPLICANT GENDER AGE
--------- ------ ---

0 record(s) selected.

The database manager returned the incorrect answer to the query, even though the
value 'C' is found within the table, but the constraint on this column tells the
database manager that the only valid values are either 'M' or 'F'. The ENABLE
QUERY OPTIMIZATION keyword also allowed the database manager to use this
constraint information when optimizing the statement. If this is not the behavior
that you want, then the constraint needs to be changed through the use of the
ALTER TABLE statement, as shown in the following example:

ALTER TABLE APPLICANTS
ALTER CHECK AGEOK DISABLE QUERY OPTIMIZATION

If the query is reissued, the database manager will return the following correct
results:

SELECT * FROM APPLICANTS
WHERE SEC = ’C’;

APPLICANT GENDER AGE
--------- ------ ---

5 C 10

1 record(s) selected.

Chapter 22. Constraints 185

Note: If the constraint attributes NOT ENFORCED NOT TRUSTED and ENABLE
QUERY OPTIMIZATION were specified from the beginning for the table
APPLICANTS, then the correct results shown previously would have been
returned after the first SELECT statement was issued.

The best scenario for using NOT ENFORCED TRUSTED informational constraints
occurs when you can guarantee that the application program is the only
application inserting and updating the data. If the application already checks all of
the information beforehand (such as gender and age in the previous example) then
using informational constraints can result in faster performance and no duplication
of effort. Another possible use of informational constraints is in the design of data
warehouses. Also, if you cannot guarantee that the data in the table will always
conform to the constraint you can set the constraints to be NOT ENFORCED and
NOT TRUSTED. This type of constraint can be used when strict matching between
the values in the foreign keys and the primary keys are not needed. This constraint
can also still be used as part of a statistical view enabling the optimization of
certain SQL queries.

Creating and modifying constraints
Constraints can be added to existing tables with the ALTER TABLE statement.

About this task

The constraint name cannot be the same as any other constraint specified within an
ALTER TABLE statement, and must be unique within the table (this includes the
names of any referential integrity constraints that are defined). Existing data is
checked against the new condition before the statement succeeds.

Creating and modifying unique constraints
Unique constraints can be added to an existing table. The constraint name
cannot be the same as any other constraint specified within the ALTER
TABLE statement, and must be unique within the table (this includes the
names of any referential integrity constraints that are defined). Existing
data is checked against the new condition before the statement succeeds.

To define unique constraints using the command line, use the ADD
CONSTRAINT option of the ALTER TABLE statement. For example, the
following statement adds a unique constraint to the EMPLOYEE table that
represents a new way to uniquely identify employees in the table:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

To modify this constraint, you would have to drop it, and then re-create it.

Creating and modifying primary key constraints
A primary key constraint can be added to an existing table. The constraint
name must be unique within the table (this includes the names of any
referential integrity constraints that are defined). Existing data is checked
against the new condition before the statement succeeds.

To add primary keys using the command line, enter:
ALTER TABLE <name>

ADD CONSTRAINT <column_name>
PRIMARY KEY <column_name>

186 Preparation Guide for DB2 10.1 Fundamentals Exam 610

An existing constraint cannot be modified. To define another column, or
set of columns, as the primary key, the existing primary key definition
must first be dropped, and then re-created.

Creating and modifying check constraints
When a table check constraint is added, packages and cached dynamic
SQL that insert or update the table might be marked as invalid.

To add a table check constraint using the command line, enter:
ALTER TABLE EMPLOYEE

ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

To modify this constraint, you would have to drop it, and then re-create it.

Creating and modifying foreign key (referential) constraints
A foreign key is a reference to the data values in another table. There are
different types of foreign key constraints.

When a foreign key is added to a table, packages and cached dynamic SQL
containing the following statements might be marked as invalid:
v Statements that insert or update the table containing the foreign key
v Statements that update or delete the parent table.

To add foreign keys using the command line, enter:
ALTER TABLE <name>

ADD CONSTRAINT <column_name>
FOREIGN KEY <column_name>
ON DELETE <action_type>
ON UPDATE <action_type>

The following examples show the ALTER TABLE statement to add primary
keys and foreign keys to a table:

ALTER TABLE PROJECT
ADD CONSTRAINT PROJECT_KEY

PRIMARY KEY (PROJNO)
ALTER TABLE EMP_ACT

ADD CONSTRAINT ACTIVITY_KEY
PRIMARY KEY (EMPNO, PROJNO, ACTNO)

ADD CONSTRAINT ACT_EMP_REF
FOREIGN KEY (EMPNO)
REFERENCES EMPLOYEE
ON DELETE RESTRICT

ADD CONSTRAINT ACT_PROJ_REF
FOREIGN KEY (PROJNO)
REFERENCES PROJECT
ON DELETE CASCADE

To modify this constraint, you would have to drop it and then re-create it.

Creating and modifying informational constraints
To improve the performance of queries, you can add informational
constraints to your tables. You add informational constraints using the
CREATE TABLE or ALTER TABLE statement when you specify the NOT
ENFORCED option on the DDL. Along with the NOT ENFORCED option you
can further specify the constraint to be either TRUSTED or NOT
TRUSTED.

Restriction: After you define informational constraints on a table, you can
only alter the column names for that table after you remove the
informational constraints.

Chapter 22. Constraints 187

To specify informational constraints on a table using the command line,
enter one of the following commands for a new table:

ALTER TABLE <name> <constraint attributes> NOT ENFORCED

ALTER TABLE <name> <constraint attributes> NOT ENFORCED TRUSTED

ALTER TABLE <name> <constraint attributes> NOT ENFORCED NOT TRUSTED

ENFORCED or NOT ENFORCED: Specifies whether the constraint is
enforced by the database manager during normal operations such as insert,
update, or delete.
v ENFORCED cannot be specified for a functional dependency (SQLSTATE

42621).
v NOT ENFORCED should only be specified if the table data is

independently known to conform to the constraint. Query results might
be unpredictable if the data does not actually conform to the constraint.
You can also specify if the NOT ENFORCED constraint is to be
TRUSTED or NOT TRUSTED.
– TRUSTED: Informs the database manager that the data can be trusted

to conform to the constraint. This is the default option. This option
must only be used if the data is independently known to conform to
the constraint

– NOT TRUSTED: Informs the database manager that the data cannot
be trusted to conform to the constraint. This option is intended for
cases where the data conforms to the constraint for most rows, but it
is not independently known to conform to the constraint. NOT
TRUSTED can be specified only for referential integrity constraints
(SQLSTATE 42613).

To modify this constraint, you would have to drop it and then re-create it.

Table constraint implications for utility operations
If the table being loaded into has referential integrity constraints, the load utility
places the table into the set integrity pending state to inform you that the SET
INTEGRITY statement is required to be run on the table, in order to verify the
referential integrity of the loaded rows. After the load utility has completed, you
will need to issue the SET INTEGRITY statement to carry out the referential
integrity checking on the loaded rows and to bring the table out of the set integrity
pending state.

For example, if the DEPARTMENT and EMPLOYEE tables are the only tables that
have been placed in set integrity pending state, you can execute the following
statement:

SET INTEGRITY FOR DEPARTMENT ALLOW WRITE ACCESS,
EMPLOYEE ALLOW WRITE ACCESS,
IMMEDIATE CHECKED FOR EXCEPTION IN DEPARTMENT,
USE DEPARTMENT_EX,
IN EMPLOYEE USE EMPLOYEE_EX

The import utility is affected by referential constraints in the following ways:
v The REPLACE and REPLACE CREATE functions are not allowed if the object

table has any dependents other than itself.
To use these functions, first drop all foreign keys in which the table is a parent.
When the import is complete, re-create the foreign keys with the ALTER TABLE
statement.

188 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v The success of importing into a table with self-referencing constraints depends
on the order in which the rows are imported.

Checking for integrity violations following a load operation
Following a load operation, the loaded table might be in set integrity pending state
in either READ or NO ACCESS mode if any of the following conditions exist:
v The table has table check constraints or referential integrity constraints defined

on it.
v The table has generated columns and a V7 or earlier client was used to initiate

the load operation.
v The table has descendent immediate materialized query tables or descendent

immediate staging tables referencing it.
v The table is a staging table or a materialized query table.

The STATUS flag of the SYSCAT.TABLES entry corresponding to the loaded table
indicates the set integrity pending state of the table. For the loaded table to be
fully usable, the STATUS must have a value of N and the ACCESS MODE must have a
value of F, indicating that the table is fully accessible and in normal state.

If the loaded table has descendent tables, the SET INTEGRITY PENDING
CASCADE parameter can be specified to indicate whether or not the set integrity
pending state of the loaded table should be immediately cascaded to the
descendent tables.

If the loaded table has constraints as well as descendent foreign key tables,
dependent materialized query tables and dependent staging tables, and if all of the
tables are in normal state before the load operation, the following will result based
on the load parameters specified:

INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE
IMMEDIATE

The loaded table, its dependent materialized query tables and dependent
staging tables are placed in set integrity pending state with read access.

INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE
DEFERRED

Only the loaded table is placed in set integrity pending with read access.
Descendent foreign key tables, descendent materialized query tables and
descendent staging tables remain in their original states.

INSERT, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE
IMMEDIATE

The loaded table, its dependent materialized query tables and dependent
staging tables are placed in set integrity pending state with no access.

INSERT or REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING
CASCADE DEFERRED

Only the loaded table is placed in set integrity pending state with no
access. Descendent foreign key tables, descendent immediate materialized
query tables and descendent immediate staging tables remain in their
original states.

REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE
IMMEDIATE

The table and all its descendent foreign key tables, descendent immediate
materialized query tables, and descendent immediate staging tables are
placed in set integrity pending state with no access.

Chapter 22. Constraints 189

Note: Specifying the ALLOW READ ACCESS option in a load replace operation
results in an error.

To remove the set integrity pending state, use the SET INTEGRITY statement. The
SET INTEGRITY statement checks a table for constraints violations, and takes the
table out of set integrity pending state. If all the load operations are performed in
INSERT mode, the SET INTEGRITY statement can be used to incrementally process
the constraints (that is, it checks only the appended portion of the table for
constraints violations). For example:

db2 load from infile1.ixf of ixf insert into table1
db2 set integrity for table1 immediate checked

Only the appended portion of TABLE1 is checked for constraint violations.
Checking only the appended portion for constraints violations is faster than
checking the entire table, especially in the case of a large table with small amounts
of appended data.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for setting
integrity. Task assistants can guide you through the process of setting options,
reviewing the automatically generated commands to perform the task, and running
these commands. For more details, see Administering databases with task
assistants.

If a table is loaded with the SET INTEGRITY PENDING CASCADE DEFERRED
option specified, and the SET INTEGRITY statement is used to check for integrity
violations, the descendent tables are placed in set integrity pending state with no
access. To take the tables out of this state, you must issue an explicit request.

If a table with dependent materialized query tables or dependent staging tables is
loaded using the INSERT option, and the SET INTEGRITY statement is used to
check for integrity violations, the table is taken out of set integrity pending state
and placed in No Data Movement state. This is done to facilitate the subsequent
incremental refreshes of the dependent materialized query tables and the
incremental propagation of the dependent staging tables. In the No Data
Movement state, operations that might cause the movement of rows within the
table are not allowed.

You can override the No Data Movement state by specifying the FULL ACCESS
option when you issue the SET INTEGRITY statement. The table is fully accessible,
however a full re-computation of the dependent materialized query tables takes
place in subsequent REFRESH TABLE statements and the dependent staging tables
are forced into an incomplete state.

If the ALLOW READ ACCESS option is specified for a load operation, the table
remains in read access state until the SET INTEGRITY statement is used to check
for constraints violations. Applications can query the table for data that existed
before the load operation once it has been committed, but will not be able to view
the newly loaded data until the SET INTEGRITY statement is issued.

Several load operations can take place on a table before checking for constraints
violations. If all of the load operations are completed in ALLOW READ ACCESS
mode, only the data that existed in the table before the first load operation is
available for queries.

One or more tables can be checked in a single invocation of this statement. If a
dependent table is to be checked on its own, the parent table can not be in set

190 Preparation Guide for DB2 10.1 Fundamentals Exam 610

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

integrity pending state. Otherwise, both the parent table and the dependent table
must be checked at the same time. In the case of a referential integrity cycle, all the
tables involved in the cycle must be included in a single invocation of the SET
INTEGRITY statement. It might be convenient to check the parent table for
constraints violations while a dependent table is being loaded. This can only occur
if the two tables are not in the same table space.

When issuing the SET INTEGRITY statement, you can specify the INCREMENTAL
option to explicitly request incremental processing. In most cases, this option is not
needed, because the DB2 database selects incremental processing. If incremental
processing is not possible, full processing is used automatically. When the
INCREMENTAL option is specified, but incremental processing is not possible, an
error is returned if:
v New constraints are added to the table while it is in set integrity pending state.
v A load replace operation takes place, or the NOT LOGGED INITIALLY WITH

EMPTY TABLE option is activated, after the last integrity check on the table.
v A parent table is load replaced or checked for integrity non-incrementally.
v The table is in set integrity pending state before an upgrade. Full processing is

required the first time the table is checked for integrity after an upgrade.
v The table space containing the table or its parent is rolled forward to a point in

time and the table and its parent reside in different table spaces.

If a table has one or more W values in the CONST_CHECKED column of the
SYSCAT.TABLES catalog, and if the NOT INCREMENTAL option is not specified
in the SET INTEGRITY statement, the table is incrementally processed and the
CONST_CHECKED column of SYSCAT.TABLES is marked as U to indicate that not
all data has been verified by the system.

The SET INTEGRITY statement does not activate any DELETE triggers as a result
of deleting rows that violate constraints, but once the table is removed from set
integrity pending state, triggers are active. Thus, if you correct data and insert
rows from the exception table into the loaded table, any INSERT triggers defined
on the table are activated. The implications of this should be considered. One
option is to drop the INSERT trigger, insert rows from the exception table, and
then re-create the INSERT trigger.

Statement dependencies when changing objects
Statement dependencies include package and cached dynamic SQL and XQuery
statements. A package is a database object that contains the information needed by
the database manager to access data in the most efficient way for a particular
application program. Binding is the process that creates the package the database
manager needs in order to access the database when the application is executed.

Packages and cached dynamic SQL and XQuery statements can be dependent on
many types of objects.

These objects could be explicitly referenced, for example, a table or user-defined
function that is involved in an SQL SELECT statement. The objects could also be
implicitly referenced, for example, a dependent table that needs to be checked to
ensure that referential constraints are not violated when a row in a parent table is
deleted. Packages are also dependent on the privileges which have been granted to
the package creator.

Chapter 22. Constraints 191

If a package or cached dynamic query statement depends on an object and that
object is dropped, the package or cached dynamic query statement is placed in an
“invalid” state. If a package depends on a user-defined function and that function
is dropped, the package is placed in an “inoperative” state, with the following
conditions:
v A cached dynamic SQL or XQuery statement that is in an invalid state is

automatically re-optimized on its next use. If an object required by the statement
has been dropped, execution of the dynamic SQL or XQuery statement might
fail with an error message.

v A package that is in an invalid state is implicitly rebound on its next use. Such a
package can also be explicitly rebound. If a package was marked as being not
valid because a trigger was dropped, the rebound package no longer invokes the
trigger.

v A package that is in an inoperative state must be explicitly rebound before it can
be used.

Federated database objects have similar dependencies. For example, dropping a
server or altering a server definition invalidates any packages or cached dynamic
SQL referencing nicknames associated with that server.

In some cases, it is not possible to rebind the package. For example, if a table has
been dropped and not re-created, the package cannot be rebound. In this case, you
must either re-create the object or change the application so it does not use the
dropped object.

In many other cases, for example if one of the constraints was dropped, it is
possible to rebind the package.

The following system catalog views help you to determine the state of a package
and the package's dependencies:
v SYSCAT.PACKAGEAUTH
v SYSCAT.PACKAGEDEP
v SYSCAT.PACKAGES

Viewing constraint definitions for a table
Constraint definitions on a table can be found in the SYSCAT.INDEXES and
SYSCAT.REFERENCES catalog views.

About this task

The UNIQUERULE column of the SYSCAT.INDEXES view indicates the
characteristic of the index. If the value of this column is P, the index is a primary
key, and if it is U, the index is a unique index (but not a primary key).

The SYSCAT.REFERENCES catalog view contains referential integrity (foreign key)
constraint information.

Dropping constraints
You can explicitly drop a table check constraint using the ALTER TABLE statement,
or implicitly drop it as the result of a DROP TABLE statement.

192 Preparation Guide for DB2 10.1 Fundamentals Exam 610

About this task

To drop constraints, use the ALTER TABLE statement with the DROP or DROP
CONSTRAINT clauses. This allows you to BIND and continue accessing the tables
that contain the affected columns. The name of all unique constraints on a table
can be found in the SYSCAT.INDEXES system catalog view.

Procedure
v To explicitly drop unique constraints, use the DROP UNIQUE clause of the

ALTER TABLE statement.
The DROP UNIQUE clause of the ALTER TABLE statement drops the definition
of the unique constraint constraint-name and all referential constraints that are
dependent upon this unique constraint. The constraint-name must identify an
existing unique constraint.

ALTER TABLE table-name
DROP UNIQUE constraint-name

Dropping this unique constraint invalidates any packages or cached dynamic
SQL that used the constraint.

v To drop primary key constraints, use the DROP PRIMARY KEY clause of the
ALTER TABLE statement.
The DROP PRIMARY KEY clause of the ALTER TABLE statement drops the
definition of the primary key and all referential constraints that are dependent
upon this primary key. The table must have a primary key. To drop a primary
key using the command line, enter:

ALTER TABLE table-name
DROP PRIMARY KEY

v To drop (table) check constraints, use the DROP CHECK clause of the ALTER
TABLE statement.
When you drop a check constraint, all packages and cached dynamic statements
with INSERT or UPDATE dependencies on the table are invalidated. The name
of all check constraints on a table can be found in the SYSCAT.CHECKS catalog
view. Before attempting to drop a table check constraint having a
system-generated name, look for the name in the SYSCAT.CHECKS catalog view.
The following statement drops the check constraint constraint-name. The
constraint-name must identify an existing check constraint defined on the table.
To drop a table check constraint using the command line:

ALTER TABLE table_name
DROP CHECK check_constraint_name

Alternatively, you can use the ALTER TABLE statement with the DROP
CONSTRAINT option.

v To drop foreign key (referential) constraints, use the DROP CONSTRAINT clause
of the ALTER TABLE statement.
The DROP CONSTRAINT clause of the ALTER TABLE statement drops the
constraint constraint-name. The constraint-name must identify an existing foreign
key constraint, primary key, or unique constraint defined on the table. To drop
foreign keys using the command line, enter:

ALTER TABLE table-name
DROP FOREIGN KEY foreign_key_name

When a foreign key constraint is dropped, packages or cached dynamic
statements containing the following might be marked as invalid:
– Statements that insert or update the table containing the foreign key

Chapter 22. Constraints 193

– Statements that update or delete the parent table.

Example

The following examples use the DROP PRIMARY KEY and DROP FOREIGN KEY
clauses in the ALTER TABLE statement to drop primary keys and foreign keys on
a table:

ALTER TABLE EMP_ACT
DROP PRIMARY KEY
DROP FOREIGN KEY ACT_EMP_REF
DROP FOREIGN KEY ACT_PROJ_REF

ALTER TABLE PROJECT
DROP PRIMARY KEY

194 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 23. Views

A view is an efficient way of representing data without the need to maintain it. A
view is not an actual table and requires no permanent storage. A “virtual table” is
created and used.

A view provides a different way of looking at the data in one or more tables; it is a
named specification of a result table. The specification is a SELECT statement that
is run whenever the view is referenced in an SQL statement. A view has columns
and rows just like a table. All views can be used just like tables for data retrieval.
Whether a view can be used in an insert, update, or delete operation depends on
its definition.

A view can include all or some of the columns or rows contained in the tables on
which it is based. For example, you can join a department table and an employee
table in a view, so that you can list all employees in a particular department.

Figure 17 shows the relationship between tables and views.

You can use views to control access to sensitive data, because views allow multiple
users to see different presentations of the same data. For example, several users
might be accessing a table of data about employees. A manager sees data about his
or her employees but not employees in another department. A recruitment officer
sees the hire dates of all employees, but not their salaries; a financial officer sees
the salaries, but not the hire dates. Each of these users works with a view derived
from the table. Each view appears to be a table and has its own name.

When the column of a view is directly derived from the column of a base table,
that view column inherits any constraints that apply to the table column. For

Column

Row

Database

Table B

19

81

87

93

47

17

85

ABS

QRS

FCP

MLI

CJP

DJS

KMP

Table A

View AB

CREATE VIEW_AB
AS SELECT. . .

FROM TABLE_A, TABLE_B
WHERE. . .

View A

CREATE VIEW_A
AS SELECT. . .

FROM TABLE_A
WHERE. . .

Figure 17. Relationship between tables and views

© Copyright IBM Corp. 2012 195

example, if a view includes a foreign key of its table, insert and update operations
using that view are subject to the same referential constraints as is the table. Also,
if the table of a view is a parent table, delete and update operations using that
view are subject to the same rules as are delete and update operations on the table.

A view can derive the data type of each column from the result table, or base the
types on the attributes of a user-defined structured type. This is called a typed view.
Similar to a typed table, a typed view can be part of a view hierarchy. A subview
inherits columns from its superview. The term subview applies to a typed view and
to all typed views that are below it in the view hierarchy. A proper subview of a
view V is a view below V in the typed view hierarchy.

A view can become inoperative (for example, if the table is dropped); if this occurs,
the view is no longer available for SQL operations.

Views with the check option
A view that is defined WITH CHECK OPTION enforces any rows that are
modified or inserted against the SELECT statement for that view. Views with the
check option are also called symmetric views. For example, a symmetric view that
only returns only employees in department 10 will not allow insertion of
employees in other departments. This option, therefore, ensures the integrity of the
data being modified in the database, returning an error if the condition is violated
during an INSERT or UPDATE operation.

If your application cannot define the required rules as table check constraints, or
the rules do not apply to all uses of the data, there is another alternative to placing
the rules in the application logic. You can consider creating a view of the table
with the conditions on the data as part of the WHERE clause and the WITH
CHECK OPTION clause specified. This view definition restricts the retrieval of
data to the set that is valid for your application. Additionally, if you can update
the view, the WITH CHECK OPTION clause restricts updates, inserts, and deletes
to the rows applicable to your application.

The WITH CHECK OPTION must not be specified for the following views:
v Views defined with the read-only option (a read-only view)
v View that reference the NODENUMBER or PARTITION function, a

nondeterministic function (for example, RAND), or a function with external
action

v Typed views

Example 1

Following is an example of a view definition using the WITH CHECK OPTION.
This option is required to ensure that the condition is always checked. The view
ensures that the DEPT is always 10. This will restrict the input values for the DEPT
column. When a view is used to insert a new value, the WITH CHECK OPTION is
always enforced:

CREATE VIEW EMP_VIEW2
(EMPNO, EMPNAME, DEPTNO, JOBTITLE, HIREDATE)

AS SELECT ID, NAME, DEPT, JOB, HIREDATE FROM EMPLOYEE
WHERE DEPT=10

WITH CHECK OPTION;

196 Preparation Guide for DB2 10.1 Fundamentals Exam 610

If this view is used in an INSERT statement, the row will be rejected if the
DEPTNO column is not the value 10. It is important to remember that there is no
data validation during modification if the WITH CHECK OPTION is not specified.

If this view is used in a SELECT statement, the conditional (WHERE clause) would
be invoked and the resulting table would only contain the matching rows of data.
In other words, the WITH CHECK OPTION does not affect the result of a SELECT
statement.

Example 2

With a view, you can make a subset of table data available to an application
program and validate data that is to be inserted or updated. A view can have
column names that are different from the names of corresponding columns in the
original tables. For example:

CREATE VIEW <name> (<column>, <column>, <column>)
SELECT <column_name> FROM <table_name>
WITH CHECK OPTION

Example 3

The use of views provides flexibility in the way your programs and end-user
queries can look at the table data.

The following SQL statement creates a view on the EMPLOYEE table that lists all
employees in Department A00 with their employee and telephone numbers:

CREATE VIEW EMP_VIEW (DA00NAME, DA00NUM, PHONENO)
AS SELECT LASTNAME, EMPNO, PHONENO FROM EMPLOYEE
WHERE WORKDEPT = ’A00’
WITH CHECK OPTION

The first line of this statement names the view and defines its columns. The name
EMP_VIEW must be unique within its schema in SYSCAT.TABLES. The view name
appears as a table name although it contains no data. The view will have three
columns called DA00NAME, DA00NUM, and PHONENO, which correspond to
the columns LASTNAME, EMPNO, and PHONENO from the EMPLOYEE table.
The column names listed apply one-to-one to the select list of the SELECT
statement. If column names are not specified, the view uses the same names as the
columns of the result table of the SELECT statement.

The second line is a SELECT statement that describes which values are to be
selected from the database. It might include the clauses ALL, DISTINCT, FROM,
WHERE, GROUP BY, and HAVING. The name or names of the data objects from
which to select columns for the view must follow the FROM clause.

Example 4

The WITH CHECK OPTION clause indicates that any updated or inserted row to
the view must be checked against the view definition, and rejected if it does not
conform. This enhances data integrity but requires additional processing. If this
clause is omitted, inserts and updates are not checked against the view definition.

The following SQL statement creates the same view on the EMPLOYEE table using
the SELECT AS clause:

CREATE VIEW EMP_VIEW
SELECT LASTNAME AS DA00NAME,

EMPNO AS DA00NUM,

Chapter 23. Views 197

PHONENO
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’
WITH CHECK OPTION

For this example, the EMPLOYEE table might have salary information in it, which
should not be made available to everyone. The employee's phone number,
however, should be generally accessible. In this case, a view could be created from
the LASTNAME and PHONENO columns only. Access to the view could be
granted to PUBLIC, while access to the entire EMPLOYEE table could be restricted
to those who have the authorization to see salary information.

Creating views
Views are derived from one or more tables, nicknames, or views, and can be used
interchangeably with tables when retrieving data. When changes are made to the
data shown in a view, the data is changed in the table itself. The table, nickname,
or view on which the view is to be based must already exist before the view can
be created.

About this task

A view can be created to limit access to sensitive data, while allowing more
general access to other data.

When inserting into a view where the select list of the view definition directly or
indirectly includes the name of an identity column of a table, the same rules apply
as if the INSERT statement directly referenced the identity column of the table.

In addition to using views as described previously, a view can also be used to:
v Alter a table without affecting application programs. This can happen by

creating a view based on an underlying table. Applications that use the
underlying table are not affected by the creation of the new view. New
applications can use the created view for different purposes than those
applications that use the underlying table.

v Sum the values in a column, select the maximum values, or average the values.
v Provide access to information in one or more data sources. You can reference

nicknames within the CREATE VIEW statement and create multi-location/global
views (the view could join information in multiple data sources located on
different systems).
When you create a view that references nicknames using standard CREATE
VIEW syntax, you will see a warning alerting you to the fact that the
authentication ID of view users will be used to access the underlying object or
objects at data sources instead of the view creator authentication ID. Use the
FEDERATED keyword to suppress this warning.

A typed view is based on a predefined structured type. You can create a typed
view using the CREATE VIEW statement.

An alternative to creating a view is to use a nested or common table expression to
reduce catalog lookup and improve performance.

A sample CREATE VIEW statement is shown in the following example. The
underlying table, EMPLOYEE, has columns named SALARY and COMM. For
security reasons this view is created from the ID, NAME, DEPT, JOB, and

198 Preparation Guide for DB2 10.1 Fundamentals Exam 610

HIREDATE columns. In addition, access on the DEPT column is restricted. This
definition will only show the information of employees who belong to the
department whose DEPTNO is 10.

CREATE VIEW EMP_VIEW1
(EMPID, EMPNAME, DEPTNO, JOBTITLE, HIREDATE)
AS SELECT ID, NAME, DEPT, JOB, HIREDATE FROM EMPLOYEE

WHERE DEPT=10;

After the view has been defined, the access privileges can be specified. This
provides data security since a restricted view of the table is accessible. As shown in
the previous example, a view can contain a WHERE clause to restrict access to
certain rows or can contain a subset of the columns to restrict access to certain
columns of data.

The column names in the view do not have to match the column names of the
base table. The table name has an associated schema as does the view name.

Once the view has been defined, it can be used in statements such as SELECT,
INSERT, UPDATE, and DELETE (with restrictions). The DBA can decide to provide
a group of users with a higher level privilege on the view than the table.

Dropping views
Use the DROP VIEW statement to drop views. Any views that are dependent on
the view being dropped are made inoperative.

Procedure

To drop a view by using the command line, enter:
DROP VIEW view_name

Example

The following example shows how to drop a view named EMP_VIEW:
DROP VIEW EMP_VIEW

As in the case of a table hierarchy, it is possible to drop an entire view hierarchy in
one statement by naming the root view of the hierarchy, as in the following
example:

DROP VIEW HIERARCHY VPerson

Chapter 23. Views 199

200 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 24. Indexes

An index is a set of pointers that are logically ordered by the values of one or more
keys. The pointers can refer to rows in a table, blocks in an MDC or ITC table,
XML data in an XML storage object, and so on.

Indexes are used to:
v Improve performance. In most cases, access to data is faster with an index.

Although an index cannot be created for a view, an index created for the table
on which a view is based can sometimes improve the performance of operations
on that view.

v Ensure uniqueness. A table with a unique index cannot have rows with identical
keys.

As data is added to a table, it is appended to the bottom (unless other actions have
been carried out on the table or the data being added). There is no inherent order
to the data. When searching for a particular row of data, each row of the table
from first to last must be checked. Indexes are used as a means to access the data
within the table in an order that might otherwise not be available.

Typically, when you search for data in a table, you are looking for rows with
columns that have specific values. A column value in a row of data can be used to
identify the entire row. For example, an employee number would probably
uniquely define a specific individual employee. Or, more than one column might
be needed to identify the row. For example, a combination of customer name and
telephone number. Columns in an index used to identify data rows are known as
keys. A column can be used in more than one key.

An index is ordered by the values within a key. Keys can be unique or non-unique.
Each table should have at least one unique key; but can also have other,
non-unique keys. Each index has exactly one key. For example, you might use the
employee ID number (unique) as the key for one index and the department
number (non-unique) as the key for a different index.

Not all indexes point to rows in a table. MDC and ITC block indexes point to
extents (or blocks) of the data. XML indexes for XML data use particular XML
pattern expressions to index paths and values in XML documents stored within a
single column. The data type of that column must be XML. Both MDC and ITC
block indexes and XML indexes are system generated indexes.

Example

Table A in Figure 18 on page 202 has an index based on the employee numbers in
the table. This key value provides a pointer to the rows in the table. For example,
employee number 19 points to employee KMP. An index allows efficient access to
rows in a table by creating a path to the data through pointers.

Unique indexes can be created to ensure uniqueness of the index key. An index key
is a column or an ordered collection of columns on which an index is defined.
Using a unique index will ensure that the value of each index key in the indexed
column or columns is unique.

© Copyright IBM Corp. 2012 201

Figure 18 shows the relationship between an index and a table.

Figure 19 illustrates the relationships among some database objects. It also shows
that tables, indexes, and long data are stored in table spaces.

Types of indexes
There are different types of indexes that can be created for different purposes. For
example, unique indexes enforce the constraint of uniqueness in your index keys;
bidirectional indexes allow for scans in both the forward and reverse directions;
clustered indexes can help improve the performance of queries that traverse the
table in key order.

Unique and non-unique indexes

Unique indexes are indexes that help maintain data integrity by ensuring that no
two rows of data in a table have identical key values.

17

19

19

47

81 81

85

87 87

93

93

47

17

85

ABC

QRS

FCP

MLI

CJP

DJS

KMP

Column

Row

Table AIndex A

Database

Figure 18. Relationship between an index and a table

Instance

System

Database

Database partition group

Table spaces
• Tables
• Indexes
• Long data

Figure 19. Relationships among selected database objects

202 Preparation Guide for DB2 10.1 Fundamentals Exam 610

When attempting to create a unique index for a table that already contains data,
values in the column or columns that comprise the index are checked for
uniqueness; if the table contains rows with duplicate key values, the index creation
process fails. Once a unique index has been defined for a table, uniqueness is
enforced whenever keys are added or changed within the index. (This includes
insert, update, load, import, and set integrity, to name a few.) In addition to
enforcing the uniqueness of data values, a unique index can also be used to
improve data retrieval performance during query processing.

Non-unique indexes, are not used to enforce constraints on the tables with which
they are associated. Instead, non-unique indexes are used solely to improve query
performance by maintaining a sorted order of data values that are used frequently.

Clustered and non-clustered indexes

Index architectures are classified as clustered or non-clustered. Clustered indexes
are indexes whose order of the rows in the data pages correspond to the order of
the rows in the index. This is why only one clustered index can exist in a given
table, whereas, many non-clustered indexes can exist in the table. In some
relational database management systems, the leaf node of the clustered index
corresponds to the actual data, not a pointer to data that resides elsewhere.

Both clustered and non-clustered indexes contain only keys and record IDs in the
index structure. The record IDs always point to rows in the data pages. The only
difference between clustered and non-clustered indexes is that the database
manager attempts to keep the data in the data pages in the same order as the
corresponding keys appear in the index pages. Thus the database manager will
attempt to insert rows with similar keys onto the same pages. If the table is
reorganized, it will be inserted into the data pages in the order of the index keys.

Reorganizing a table with respect to a chosen index re-clusters the data. A
clustered index is most useful for columns that have range predicates because it
allows better sequential access of data in the table. This results in fewer page
fetches, since like values are on the same data page.

In general, only one of the indexes in a table can have a high degree of clustering.

Clustering indexes can improve the performance of most query operations because
they provide a more linear access path to data, which has been stored in pages. In
addition, because rows with similar index key values are stored together,
sequential detection prefetching is usually more efficient when clustering indexes
are used.

However, clustering indexes cannot be specified as part of the table definition used
with the CREATE TABLE statement. Instead, clustering indexes are only created by
executing the CREATE INDEX statement with the CLUSTER option specified. Then
the ALTER TABLE statement should be used to add a primary key that
corresponds to the clustering index created to the table. This clustering index will
then be used as the table's primary key index.

Note: Setting PCTFREE in the table to an appropriate value using the ALTER
TABLE statement can help the table remain clustered by leaving adequate free
space to insert rows in the pages with similar values. For more information, see
“ALTER TABLE statement” in the SQL Reference and “Reducing the need to
reorganize tables and indexes” in Troubleshooting and Tuning Database Performance.

Chapter 24. Indexes 203

Improving performance with clustering indexes

Generally, clustering is more effectively maintained if the clustering index is
unique.

Differences between primary key or unique key constraints and
unique indexes

It is important to understand that there is no significant difference between a
primary unique key constraint and a unique index. The database manager uses a
combination of a unique index and the NOT NULL constraint to implement the
relational database concept of primary and unique key constraints. Therefore,
unique indexes do not enforce primary key constraints by themselves because they
allow null values. (Although null values represent unknown values, when it comes
to indexing, a null value is treated as being equal to other null values.)

Therefore, if a unique index consists of a single column, only one null value is
allowed-more than one null value would violate the unique constraint. Similarly, if
a unique index consists of multiple columns, a specific combination of values and
nulls can be used only once.

Bidirectional indexes

By default, bidirectional indexes allow scans in both the forward and reverse
directions. The ALLOW REVERSE SCANS clause of the CREATE INDEX statement
enables both forward and reverse index scans, that is, in the order defined at index
creation time and in the opposite (or reverse) order. This option allows you to:
v Facilitate MIN and MAX functions
v Fetch previous keys
v Eliminate the need for the database manager to create a temporary table for the

reverse scan
v Eliminate redundant reverse order indexes

If DISALLOW REVERSE SCANS is specified then the index cannot be scanned in
reverse order. (But physically it will be exactly the same as an ALLOW REVERSE
SCANS index.)

Partitioned and nonpartitioned indexes

Partitioned data can have indexes that are nonpartitioned, existing in a single table
space within a database partition, indexes that are themselves partitioned across
one or more table spaces within a database partition, or a combination of the two.
Partitioned indexes are particularly beneficial when performing roll-in operations
with partitioned tables (attaching a data partition to another table using the
ATTACH PARTITION clause on the ALTER table statement.)

Clustering of nonpartitioned indexes on partitioned tables
Clustering indexes offer the same benefits for partitioned tables as they do for
regular tables. However, care must be taken with the table partitioning key
definitions when choosing a clustering index.

You can create a clustering index on a partitioned table using any clustering key.
The database server attempts to use the clustering index to cluster data locally
within each data partition. During a clustered insert operation, an index lookup is

204 Preparation Guide for DB2 10.1 Fundamentals Exam 610

performed to find a suitable record identifier (RID). This RID is used as a starting
point in the table when looking for space in which to insert the record. To achieve
optimal clustering with good performance, there should be a correlation between
the index columns and the table partitioning key columns. One way to ensure such
correlation is to prefix the index columns with the table partitioning key columns,
as shown in the following example:

partition by range (month, region)
create index...(month, region, department) cluster

Although the database server does not enforce this correlation, there is an
expectation that all keys in the index will be grouped together by partition IDs to
achieve good clustering. For example, suppose that a table is partitioned on
QUARTER and a clustering index is defined on DATE. There is a relationship
between QUARTER and DATE, and optimal clustering of the data with good
performance can be achieved because all keys of any data partition are grouped
together within the index. Figure 20 on page 206 shows that optimal scan
performance is achieved only when clustering correlates with the table partitioning
key.

Chapter 24. Indexes 205

Benefits of clustering include:
v Rows are in key order within each data partition.
v Clustering indexes improve the performance of scans that traverse the table in

key order, because the scanner fetches the first row of the first page, then each
row in that same page before moving on to the next page. This means that only
one page of the table needs to be in the buffer pool at any given time. In

Figure 20. The possible effects of a clustered index on a partitioned table.

206 Preparation Guide for DB2 10.1 Fundamentals Exam 610

contrast, if the table is not clustered, rows are likely fetched from different
pages. Unless the buffer pool can hold the entire table, most pages will likely be
fetched more than once, greatly slowing down the scan.

If the clustering key is not correlated with the table partitioning key, but the data is
locally clustered, you can still achieve the full benefit of the clustered index if there
is enough space in the buffer pool to hold one page of each data partition. This is
because each fetched row from a particular data partition is near the row that was
previously fetched from that same partition (see the second example in Figure 20
on page 206).

Creating indexes
Indexes can be created for many reasons, including: to allow queries to run more
efficiently; to order the rows of a table in ascending or descending sequence
according to the values in a column; to enforce constraints such as uniqueness on
index keys. You can use the CREATE INDEX statement, the DB2 Design Advisor ,
or the db2advis Design Advisor command to create the indexes.

Before you begin

On Solaris platforms, patch 122300-11 on Solaris 9 or 125100-07 on Solaris 10 is
required to create indexes with RAW devices. Without this patch, the CREATE
INDEX statement hangs if a RAW device is used.

About this task

This task assumes that you are creating an index on a nonpartitioned table.

Procedure

To create an index from the command line, use the CREATE INDEX statement.
For example:

CREATE UNIQUE INDEX EMP_IX
ON EMPLOYEE(EMPNO)
INCLUDE(FIRSTNAME, JOB)

The INCLUDE clause, applicable only on unique indexes, specifies additional
columns to be appended to the set of index key columns. Any columns included
with this clause are not used to enforce uniqueness. These included columns can
improve the performance of some queries through index only access. This option
might:
v Eliminate the need to access data pages for more queries
v Eliminate redundant indexes

If SELECT EMPNO, FIRSTNAME, JOB FROM EMPLOYEE is issued to the table on
which this index resides, all of the required data can be retrieved from the index
without reading data pages. This improves performance.

What to do next

When a row is deleted or updated, the index keys are marked as deleted and are
not physically removed from a page until cleanup is done some time after the
deletion or update is committed. These keys are referred to as pseudo-deleted
keys. Such a cleanup might be done by a subsequent transaction which is changing
the page where the key is marked deleted. Clean up of pseudo-deleted keys can be

Chapter 24. Indexes 207

explicitly triggered by using the CLEANUP ONLY ALL parameter in the REORG INDEXES
command.

Dropping indexes
To delete an index, use the DROP statement.

About this task

Other than changing the COMPRESSION attribute of an index, you cannot change
any clause of an index definition; you must drop the index and create it again.
Dropping an index does not cause any other objects to be dropped but might cause
some packages to be invalidated.

Restrictions

A primary key or unique key index cannot be explicitly dropped. You must use
one of the following methods to drop it:
v If the primary index or unique constraint was created automatically for the

primary key or unique key, dropping the primary key or unique key causes the
index to be dropped. Dropping is done through the ALTER TABLE statement.

v If the primary index or the unique constraint was user-defined, the primary key
or unique key must be dropped first, through the ALTER TABLE statement.
After the primary key or unique key is dropped, the index is no longer
considered the primary index or unique index, and it can be explicitly dropped.

Procedure

To drop an index by using the command line, enter:
DROP INDEX index_name

Results

Any packages and cached dynamic SQL and XQuery statements that depend on
the dropped indexes are marked invalid. The application program is not affected
by changes resulting from adding or dropping indexes.

208 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 25. Triggers

A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation is
executed, the trigger is said to have been activated. Triggers are optional and are
defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to
enforce data integrity rules. Triggers can also be used to cause updates to other
tables, automatically generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

Triggers are a useful mechanism for defining and enforcing transitional business
rules, which are rules that involve different states of the data (for example, a salary
that cannot be increased by more than 10 percent).

Using triggers places the logic that enforces business rules inside the database. This
means that applications are not responsible for enforcing these rules. Centralized
logic that is enforced on all of the tables means easier maintenance, because
changes to application programs are not required when the logic changes.

The following are specified when creating a trigger:
v The subject table specifies the table for which the trigger is defined.
v The trigger event defines a specific SQL operation that modifies the subject table.

The event can be an insert, update, or delete operation.
v The trigger activation time specifies whether the trigger should be activated before

or after the trigger event occurs.

The statement that causes a trigger to be activated includes a set of affected rows.
These are the rows of the subject table that are being inserted, updated, or deleted.
The trigger granularity specifies whether the actions of the trigger are performed
once for the statement or once for each of the affected rows.

The triggered action consists of an optional search condition and a set of statements
that are executed whenever the trigger is activated. The statements are only
executed if the search condition evaluates to true. If the trigger activation time is
before the trigger event, triggered actions can include statements that select, set
transition variables, or signal SQL states. If the trigger activation time is after the
trigger event, triggered actions can include statements that select, insert, update,
delete, or signal SQL states.

The triggered action can refer to the values in the set of affected rows using
transition variables. Transition variables use the names of the columns in the subject
table, qualified by a specified name that identifies whether the reference is to the
old value (before the update) or the new value (after the update). The new value
can also be changed using the SET Variable statement in before, insert, or update
triggers.

Another means of referring to the values in the set of affected rows is to use
transition tables. Transition tables also use the names of the columns in the subject
table, but specify a name to allow the complete set of affected rows to be treated as

© Copyright IBM Corp. 2012 209

a table. Transition tables can only be used in AFTER triggers (that is, not with
BEFORE and INSTEAD OF triggers), and separate transition tables can be defined
for old and new values.

Multiple triggers can be specified for a combination of table, event (INSERT,
UPDATE, DELETE), or activation time (BEFORE, AFTER, INSTEAD OF). When
more than one trigger exists for a particular table, event, and activation time, the
order in which the triggers are activated is the same as the order in which they
were created. Thus, the most recently created trigger is the last trigger to be
activated.

The activation of a trigger might cause trigger cascading, which is the result of the
activation of one trigger that executes statements that cause the activation of other
triggers or even the same trigger again. The triggered actions might also cause
updates resulting from the application of referential integrity rules for deletions
that can, in turn, result in the activation of additional triggers. With trigger
cascading, a chain of triggers and referential integrity delete rules can be activated,
causing significant change to the database as a result of a single INSERT, UPDATE,
or DELETE statement.

When multiple triggers have insert, update, or delete actions against the same
object, conflict resolution mechanism, like temporary tables, are used to resolve
access conflicts, and this can have a noticeable impact on performance, particularly
in partitioned database environments.

Types of triggers
A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation is
executed, the trigger is said to have been activated. Triggers are optional and are
defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to
enforce data integrity rules. Triggers can also be used to cause updates to other
tables, automatically generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

The following types of triggers are supported:

BEFORE triggers
Run before an update, or insert. Values that are being updated or inserted
can be modified before the database is actually modified. You can use
triggers that run before an update or insert in several ways:
v To check or modify values before they are actually updated or inserted

in the database. This is useful if you must transform data from the way
the user sees it to some internal database format.

v To run other non-database operations coded in user-defined functions.

BEFORE DELETE triggers
Run before a delete. Checks values (a raises an error, if necessary).

AFTER triggers
Run after an update, insert, or delete. You can use triggers that run after an
update or insert in several ways:
v To update data in other tables. This capability is useful for maintaining

relationships between data or in keeping audit trail information.

210 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v To check against other data in the table or in other tables. This capability
is useful to ensure data integrity when referential integrity constraints
aren't appropriate, or when table check constraints limit checking to the
current table only.

v To run non-database operations coded in user-defined functions. This
capability is useful when issuing alerts or to update information outside
the database.

INSTEAD OF triggers
Describe how to perform insert, update, and delete operations against
views that are too complex to support these operations natively. They
allow applications to use a view as the sole interface for all SQL operations
(insert, delete, update and select).

Designing triggers
When creating a trigger, you must associate it with a table; when creating an
INSTEAD OF trigger, you must associate it with a view. This table or view is
called the target table of the trigger. The term modify operation refers to any change
in the state of the target table.

About this task

A modify operation is initiated by:
v an INSERT statement
v an UPDATE statement, or a referential constraint which performs an UPDATE
v a DELETE statement, or a referential constraint which performs a DELETE
v a MERGE statement

You must associate each trigger with one of these three types of modify operations.
The association is called the trigger event for that particular trigger.

You must also define the action, called the triggered action, that the trigger performs
when its trigger event occurs. The triggered action consists of one or more
statements which can execute either before or after the database manager performs
the trigger event. Once a trigger event occurs, the database manager determines
the set of rows in the subject table that the modify operation affects and executes
the trigger.

Guidelines when creating triggers:
When creating a trigger, you must declare the following attributes and
behavior:
v The name of the trigger.
v The name of the subject table.
v The trigger activation time (BEFORE or AFTER the modify operation

executes).
v The trigger event (INSERT, DELETE, or UPDATE).
v The old transition variable value, if any.
v The new transition variable value, if any.
v The old transition table value, if any.
v The new transition table value, if any.
v The granularity (FOR EACH STATEMENT or FOR EACH ROW).

Chapter 25. Triggers 211

v The triggered action of the trigger (including a triggered action condition
and triggered statement(s)).

v If the trigger event is UPDATE a trigger-column list if the trigger should
only fire when specific columns are specified in the update statement.

Designing multiple triggers:
When triggers are defined using the CREATE TRIGGER statement, their
creation time is registered in the database in form of a timestamp. The
value of this timestamp is subsequently used to order the activation of
triggers when there is more than one trigger that should be run at the
same time. For example, the timestamp is used when there is more than
one trigger on the same subject table with the same event and the same
activation time. The timestamp is also used when there are one or more
AFTER or INSTEAD OF triggers that are activated by the trigger event and
referential constraint actions caused directly or indirectly (that is,
recursively by other referential constraints) by the triggered action.

Consider the following two triggers:
CREATE TRIGGER NEW_HIRED

AFTER INSERT ON EMPLOYEE
FOR EACH ROW
BEGIN ATOMIC

UPDATE COMPANY_STATS
SET NBEMP = NBEMP + 1;

END

CREATE TRIGGER NEW_HIRED_DEPT
AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS EMP
FOR EACH ROW

BEGIN ATOMIC
UPDATE DEPTS
SET NBEMP = NBEMP + 1
WHERE DEPT_ID = EMP.DEPT_ID;

END

The preceding triggers are activated when you run an INSERT operation
on the employee table. In this case, the timestamp of their creation defines
which of the preceding two triggers is activated first.

The activation of the triggers is conducted in ascending order of the
timestamp value. Thus, a trigger that is newly added to a database runs
after all the other triggers that are previously defined.

Old triggers are activated before new triggers to ensure that new triggers
can be used as incremental additions to the changes that affect the database.
For example, if a triggered statement of trigger T1 inserts a new row into a
table T, a triggered statement of trigger T2 that is run after T1 can be used
to update the same row in T with specific values. Because the activation
order of triggers is predictable, you can have multiple triggers on a table
and still know that the newer ones will be acting on a table that has
already been modified by the older ones.

Trigger interactions with referential constraints:
A trigger event can occur as a result of changes due to referential
constraint enforcement. For example, given two tables DEPT and EMP, if
deleting or updating DEPT causes propagated deletes or updates to EMP
by means of referential integrity constraints, then delete or update triggers
defined on EMP become activated as a result of the referential constraint
defined on DEPT. The triggers on EMP are run either BEFORE or AFTER

212 Preparation Guide for DB2 10.1 Fundamentals Exam 610

the deletion (in the case of ON DELETE CASCADE) or update of rows in
EMP (in the case of ON DELETE SET NULL), depending on their
activation time.

Accessing old and new column values in triggers using
transition variables

When you implement a FOR EACH ROW trigger, it might be necessary to refer to
the value of columns of the row in the set of affected rows, for which the trigger is
currently executing. Note that to refer to columns in tables in the database
(including the subject table), you can use regular SELECT statements.

About this task

A FOR EACH ROW trigger can refer to the columns of the row for which it is
currently executing by using two transition variables that you can specify in the
REFERENCING clause of a CREATE TRIGGER statement. There are two kinds of
transition variables, which are specified as OLD and NEW, together with a
correlation-name. They have the following semantics:

OLD AS correlation-name
Specifies a correlation name which captures the original state of the row,
that is, before the triggered action is applied to the database.

NEW AS correlation-name
Specifies a correlation name which captures the value that is, or was, used
to update the row in the database when the triggered action is applied to
the database.

Example

Consider the following example:
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED
AND N_ROW.ORDER_PENDING = ’N’)
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO));

UPDATE PARTS SET PARTS.ORDER_PENDING = ’Y’
WHERE PARTS.PARTNO = N_ROW.PARTNO;

END

What to do next

Based on the definition of the OLD and NEW transition variables given previously,
it is clear that not every transition variable can be defined for every trigger.
Transition variables can be defined depending on the kind of trigger event:

UPDATE
An UPDATE trigger can refer to both OLD and NEW transition variables.

INSERT
An INSERT trigger can only refer to a NEW transition variable because
before the activation of the INSERT operation, the affected row does not

Chapter 25. Triggers 213

exist in the database. That is, there is no original state of the row that
would define old values before the triggered action is applied to the
database.

DELETE
A DELETE trigger can only refer to an OLD transition variable because
there are no new values specified in the delete operation.

Note: Transition variables can only be specified for FOR EACH ROW triggers. In a
FOR EACH STATEMENT trigger, a reference to a transition variable is not
sufficient to specify to which of the several rows in the set of affected rows the
transition variable is referring. Instead, refer to the set of new and old rows by
using the OLD TABLE and NEW TABLE clauses of the CREATE TRIGGER
statement. For more information about these clauses, see the CREATE TRIGGER
statement.

Creating triggers
A trigger defines a set of actions that are executed with, or triggered by, an
INSERT, UPDATE, or DELETE clause on a specified table or a typed table.

About this task

Use triggers to:
v Validate input data
v Generate a value for a newly inserted row
v Read from other tables for cross-referencing purposes
v Write to other tables for audit-trail purposes

You can use triggers to support general forms of integrity or business rules. For
example, a trigger can check a customer's credit limit before an order is accepted
or update a summary data table.

Benefits:

v Faster application development: Because a trigger is stored in the
database, you do not have to code the actions that it performs in every
application.

v Easier maintenance: After a trigger is defined, it is automatically invoked
when the table that it is created on is accessed.

v Global enforcement of business rules: If a business policy changes, you
only need to change the trigger and not each application program.

When creating an atomic trigger, care must be taken with the end-of-statement
character. The command line processor, by default, considers a “;” the
end-of-statement marker. You should manually edit the end-of-statement character
in your script to create the atomic trigger so that you are using a character other
than “;”. For example, the “;” can be replaced by another special character like “#”.
You can also precede the CREATE TRIGGER DDL with:

--#SET TERMINATOR @

To change the terminator in the CLP on the fly, the following syntax sets it back:
--#SET TERMINATOR

To create a trigger from the command line, enter:
db2 -td delimiter -vf script

214 Preparation Guide for DB2 10.1 Fundamentals Exam 610

where the delimiter is the alternative end-of-statement character and the script is the
modified script with the new delimiter in it.

A trigger body can include one or more of the following statements: INSERT,
searched UPDATE, searched DELETE, fullselect, SET Variable, and SIGNAL
SQLSTATE. The trigger can be activated before or after the INSERT, UPDATE, or
DELETE statement to which it refers.

Restrictions
v You cannot use triggers with nicknames.
v If the trigger is a BEFORE trigger, the column name specified by the triggered

action must not be a generated column other than an identity column. That is,
the generated identity value is visible to BEFORE triggers.

Procedure

To create a trigger from the command line, enter:
CREATE TRIGGER name

action ON table_name
operation
triggered_action

Example

The following statement creates a trigger that increases the number of employees
each time a new person is hired, by adding 1 to the number of employees
(NBEMP) column in the COMPANY_STATS table each time a row is added to the
EMPLOYEE table.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

Modifying and dropping triggers
Triggers cannot be modified. They must be dropped and then created again
according to the new definitions you require.

Before you begin

Trigger dependencies

v All dependencies of a trigger on some other object are recorded in the
SYSCAT.TRIGDEP system catalog view. A trigger can depend on many
objects.

v If an object that a trigger is dependent on is dropped, the trigger
becomes inoperative but its definition is retained in the system catalog
view. To re-validate this trigger, you must retrieve its definition from the
system catalog view and submit a new CREATE TRIGGER statement.

v If a trigger is dropped, its description is deleted from the
SYSCAT.TRIGGERS system catalog view and all of its dependencies are
deleted from the SYSCAT.TRIGDEP system catalog view. All packages
having UPDATE, INSERT, or DELETE dependencies on the trigger are
invalidated.

v If the view is dependent on the trigger and it is made inoperative, the
trigger is also marked inoperative. Any packages dependent on triggers
that have been marked inoperative are invalidated.

Chapter 25. Triggers 215

About this task

A trigger object can be dropped using the DROP TRIGGER statement, but this
procedure will cause dependent packages to be marked invalid, as follows:
v If an update trigger without an explicit column list is dropped, then packages

with an update usage on the target table are invalidated.
v If an update trigger with a column list is dropped, then packages with update

usage on the target table are only invalidated if the package also had an update
usage on at least one column in the column-name list of the CREATE TRIGGER
statement.

v If an insert trigger is dropped, packages that have an insert usage on the target
table are invalidated.

v If a delete trigger is dropped, packages that have a delete usage on the target
table are invalidated.

A package remains invalid until the application program is explicitly bound or
rebound, or it is run and the database manager automatically rebinds it.

216 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 26. Sequences

A sequence is a database object that allows the automatic generation of values, such
as cheque numbers. Sequences are ideally suited to the task of generating unique
key values. Applications can use sequences to avoid possible concurrency and
performance problems resulting from column values used to track numbers. The
advantage that sequences have over numbers created outside the database is that
the database server keeps track of the numbers generated. A crash and restart will
not cause duplicate numbers from being generated.

The sequence numbers generated have the following properties:
v Values can be any exact numeric data type with a scale of zero. Such data types

include: SMALLINT, BIGINT, INTEGER, and DECIMAL.
v Consecutive values can differ by any specified integer increment. The default

increment value is 1.
v Counter value is recoverable. The counter value is reconstructed from logs when

recovery is required.
v Values can be cached to improve performance. Pre-allocating and storing values

in the cache reduces synchronous I/O to the log when values are generated for
the sequence. In the event of a system failure, all cached values that have not
been used are considered lost. The value specified for CACHE is the maximum
number of sequence values that could be lost.

There are two expressions that can used with sequences:
v NEXT VALUE expression: returns the next value for the specified sequence. A

new sequence number is generated when a NEXT VALUE expression specifies
the name of the sequence. However, if there are multiple instances of a NEXT
VALUE expression specifying the same sequence name within a query, the
counter for the sequence is incremented only once for each row of the result,
and all instances of NEXT VALUE return the same value for each row of the
result.

v PREVIOUS VALUE expression: returns the most recently generated value for
the specified sequence for a previous statement within the current application
process. That is, for any given connection, the PREVIOUS VALUE remains
constant even if another connection invokes NEXT VALUE.

For complete details and examples of these expressions, see “Sequence reference”
in SQL Reference Volume 1.

Creating sequences
To create sequences, use the CREATE SEQUENCE statement. Unlike an identity
column attribute, a sequence is not tied to a particular table column nor is it bound
to a unique table column and only accessible through that table column.

About this task

There are several restrictions on where NEXT VALUE or PREVIOUS VALUE
expressions can be used. A sequence can be created, or altered, so that it generates
values in one of these ways:

© Copyright IBM Corp. 2012 217

v Increment or decrement monotonically (changing by a constant amount) without
bound

v Increment or decrement monotonically to a user-defined limit and stop
v Increment or decrement monotonically to a user-defined limit and cycle back to

the beginning and start again

Note: Use caution when recovering databases that use sequences: For sequence
values that are used outside the database, for example sequence numbers used for
bank checkes, if the database is recovered to a point in time before the database
failure, then this could cause the generation of duplicate values for some
sequences. To avoid possible duplicate values, databases that use sequence values
outside the database should not be recovered to a prior point in time.

To create a sequence called order_seq using defaults for all the options, issue the
following statement in an application program or through the use of dynamic SQL
statements:

CREATE SEQUENCE order_seq

This sequence starts at 1 and increases by 1 with no upper limit.

This example could represent processing for a batch of bank checks starting from
101 to 200. The first order would have been from 1 to 100. The sequence starts at
101 and increase by 1 with an upper limit of 200. NOCYCLE is specified so that
duplicate cheque numbers are not produced. The number associated with the
CACHE parameter specifies the maximum number of sequence values that the
database manager preallocates and keeps in memory.

CREATE SEQUENCE order_seq
START WITH 101
INCREMENT BY 1
MAXVALUE 200
NOCYCLE
CACHE 25

For more information about these and other options, and authorization
requirements, see the CREATE SEQUENCE statement.

Dropping sequences
To delete a sequence, use the DROP statement.

Before you begin

When dropping sequences, the authorization ID of the statement must have
DBADM authority.

Restrictions

Sequences that are system-created for IDENTITY columns cannot be dropped by
using the DROP SEQUENCE statement.

Procedure

To drop a specific sequence, enter:
DROP SEQUENCE sequence_name

218 Preparation Guide for DB2 10.1 Fundamentals Exam 610

where the sequence_name is the name of the sequence to be dropped and includes
the implicit or explicit schema name to exactly identify an existing sequence.

Results

Once a sequence is dropped, all privileges on the sequence are also dropped.

Chapter 26. Sequences 219

220 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 27. Aliases

An alias is an alternative name for an object such as a module, table or another
alias. It can be used to reference an object wherever that object can be referenced
directly.

An alias cannot be used in all contexts; for example, it cannot be used in the check
condition of a check constraint. An alias cannot reference a declared temporary
table but it can reference a created temporary table.

Like other objects, an alias can be created, dropped, and have comments associated
with it. Aliases can refer to other aliases in a process called chaining as long as
there are no circular references. Aliases do not require any special authority or
privilege to use them. Access to the object referred to by an alias, however, does
require the authorization associated with that object.

If an alias is defined as a public alias, it can be referenced by its unqualified name
without any impact from the current default schema name. It can also be
referenced using the qualifier SYSPUBLIC.

Synonym is an alternative name for alias.

For more information, refer to "Aliases in identifiers" in the SQL Reference Volume 1.

Creating database object aliases
An alias is an indirect method of referencing a table, nickname, or view, so that an
SQL or XQuery statement can be independent of the qualified name of that table
or view.

About this task

Only the alias definition must be changed if the table or view name changes. An
alias can be created on another alias. An alias can be used in a view or trigger
definition and in any SQL or XQuery statement, except for table check-constraint
definitions, in which an existing table or view name can be referenced.

An alias can be defined for a table, view, or alias that does not exist at the time of
definition. However, it must exist when the SQL or XQuery statement containing
the alias is compiled.

An alias name can be used wherever an existing table name can be used, and can
refer to another alias if no circular or repetitive references are made along the
chain of aliases.

The alias name cannot be the same as an existing table, view, or alias, and can only
refer to a table within the same database. The name of a table or view used in a
CREATE TABLE or CREATE VIEW statement cannot be the same as an alias name
in the same schema.

You do not require special authority to create an alias, unless the alias is in a
schema other than the one owned by your current authorization ID, in which case
DBADM authority is required.

© Copyright IBM Corp. 2012 221

When an alias, or the object to which an alias refers, is dropped, all packages
dependent on the alias are marked as being not valid and all views and triggers
dependent on the alias are marked inoperative.

Note: DB2 for z/OS employs two distinct concepts of aliases: ALIAS and
SYNONYM. These two concepts differ from DB2 for Linux, UNIX, and Windows
as follows:
v ALIASes in DB2 for z/OS:

– Require their creator to have special authority or privilege
– Cannot reference other aliases

v SYNONYMs in DB2 for z/OS:
– Can only be used by their creator
– Are always unqualified
– Are dropped when a referenced table is dropped
– Do not share namespace with tables or views

Procedure

To create an alias using the command line, enter:
CREATE ALIAS alias_name FOR table_name

The following SQL statement creates an alias WORKERS for the EMPLOYEE table:
CREATE ALIAS WORKERS FOR EMPLOYEE

The alias is replaced at statement compilation time by the table or view name. If
the alias or alias chain cannot be resolved to a table or view name, an error results.
For example, if WORKERS is an alias for EMPLOYEE, then at compilation time:

SELECT * FROM WORKERS

becomes in effect
SELECT * FROM EMPLOYEE

Dropping aliases
When you drop an alias, its description is deleted from the catalog, any packages,
and cached dynamic queries that reference the alias are invalidated. All views and
triggers dependent on the alias are marked inoperative.

Procedure

To drop aliases, from the command line, issue the DROP statement:
DROP ALIAS employee-alias

222 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 28. User-defined routines

DB2 database systems provide routines that capture the functionality of most
commonly used arithmetic, string, and casting functions. However, DB2 database
systems also allow you to create routines to encapsulate logic of your own. These
routines are called user-defined routines.

You can create your own procedures, functions and methods in any of the
supported implementation styles for the routine type. Generally the prefix
'user-defined' is not used when referring to procedures and methods. User-defined
functions are also commonly called UDFs.

User-defined routine creation

User-defined procedures, functions and methods are created in the database by
executing the appropriate CREATE statement for the routine type. These routine
creation statements include:
v CREATE PROCEDURE
v CREATE FUNCTION
v CREATE METHOD

The clauses specific to each of the CREATE statements define characteristics of the
routine, such as the routine name, the number and type of routine arguments, and
details about the routine logic. DB2 database systems use the information provided
by the clauses to identify and run the routine when it is invoked. Upon successful
execution of the CREATE statement for a routine, the routine is created in the
database. The characteristics of the routine are stored in the DB2 catalog views that
users can query. Executing the CREATE statement to create a routine is also
referred to as defining a routine or registering a routine.

User-defined routine definitions are stored in the SYSTOOLS system catalog table
schema.

User-defined routine logic implementation

There are three implementation styles that can be used to specify the logic of a
routine:
v Sourced: user-defined routines can be sourced from the logic of existing built-in

routines.
v SQL: user-defined routines can be implemented using only SQL statements.
v External: user-defined routines can be implemented using one of a set of

supported programming languages.
When routines are created in a non-SQL programming language, the library or
class built from the code is associated with the routine definition by the value
specified in the EXTERNAL NAME clause. When the routine is invoked the
library or class associated with the routine is run.

User-defined routines can include a variety of SQL statements, but not all SQL
statements.

User-defined routines are strongly typed, but type handling and error-handling
mechanisms must be developed or enhanced by routine developers.

© Copyright IBM Corp. 2012 223

After a database upgrade, it may be necessary to verify or update routine
implementations.

In general, user-defined routines perform well, but not as well as built-in routines.

User-defined routines can invoke built-in routines and other user-defined routines
implemented in any of the supported formats. This flexibility allows users to
essentially have the freedom to build a complete library of routine modules that
can be re-used.

In general, user-defined routines provide a means for extending the SQL language
and for modularizing logic that will be re-used by multiple queries or database
applications where built-in routines do not exist.

External routines
External routines are routines that have their logic implemented in a programming
language application that resides outside of the database, in the file system of the
database server.

The association of the routine with the external code application is asserted by the
specification of the EXTERNAL clause in the CREATE statement of the routine.

You can create external procedures, external functions, and external methods.
Although they are all implemented in external programming languages, each
routine functional type has different features. Before deciding to implement an
external routine, it is important that you first understand what external routines
are, and how they are implemented and used, by reading the topic, "Overview of
external routines". With that knowledge you can then learn more about external
routines from the topics targeted by the related links so that you can make
informed decisions about when and how to use them in your database
environment.

Supported routine programming languages
In general, routines are used to improve overall performance of the database
management system by enabling application functionality to be performed on the
database server. The amount of gain realized by these efforts is limited, to some
degree, by the language chosen to write a routine.

Some of the issues you should consider before implementing routines in a certain
language are:
v The available skills for developing a routine in a particular language and

environment.
v The reliability and safety of a language's implemented code.
v The scalability of routines written in a particular language.

To help assess the preceding criteria, here are some characteristics of various
supported languages:

SQL

v SQL routines are faster than Java routines, and roughly equivalent in
performance to NOT FENCED C/C++ routines.

v SQL routines are written completely in SQL, and can include elements of
SQL Procedural Language (SQL PL), which contains SQL
control-statements that can be used to implement logic.

224 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v SQL routines are considered 'safe' by DB2 database systems, as they
consist entirely of SQL statements. SQL routines always run directly in
the database engine, giving them good performance, and scalability.

C/C++

v Both C/C++ embedded SQL and DB2 CLI routines are faster than Java
routines. They are roughly equivalent in performance to SQL routines
when run in NOT FENCED mode.

v C/C++ routines are prone to error. It is recommended that you register
C/C++ routines as FENCED NOT THREADSAFE, because routines in
these languages are the most likely to disrupt the functioning of DB2's
database engine by causing memory corruption. Running in FENCED
NOT THREADSAFE mode, while safer, incurs performance overhead.
For information on assessing and mitigating the risks of registering
C/C++ routines as NOT FENCED or FENCED THREADSAFE, see the
topic, "Security considerations for routines".

v By default, C/C++ routines run in FENCED NOT THREADSAFE mode
to isolate them from damaging the execution of other routines. Because
of this, you will have one db2fmp process per concurrently executing
C/C++ routine on the database server. This can result in scalability
problems on some systems.

Java

v Java routines are slower than C/C++ or SQL routines.
v Java routines are safer than C/C++ routines because control of

dangerous operations is handled by the JVM. Because of this, reliability
is increased, as it is difficult for a Java routine to damage another
routine running in the same process.

Note: To avoid potentially dangerous operations, Java Native Interface
(JNI) calls from Java routines are not permitted. If you need to invoke
C/C++ code from a Java routine, you can do so by invoking a separately
cataloged C/C++ routine.

v When run in FENCED THREADSAFE mode (the default), Java routines
scale well. All FENCED Java routines will share a few JVMs (more than
one JVM might be in use on the system if the Java heap of a particular
db2fmp process is approaching exhaustion).

v NOT FENCED Java routines are currently not supported. A Java routine
defined as NOT FENCED will be invoked as if it had been defined as
FENCED THREADSAFE.

.NET common language runtime languages

v .NET common language runtime (CLR) routines are routines that are
compiled into intermediate language (IL) byte code that can be
interpreted by the CLR of the .NET Framework. The source code for a
CLR routine can be written in any .NET Framework supported
language.

v Working with .NET CLR routines allows the user the flexibility to code
in the .NET CLR supported programming language of their choice.

v CLR assemblies can be built up from sub-assemblies that were compiled
from different .NET programming language source code, which allows
the user to re-use and integrate code modules written in various
languages.

Chapter 28. User-defined 225

v CLR routines can only be created as FENCED NOT THREADSAFE
routines. This minimizes the possibility of engine corruption, but also
means that these routines cannot benefit from the performance
opportunity that can be had with NOT FENCED routines.

OLE

v OLE routines can be implemented in Visual C++, Visual Basic and other
languages supported by OLE.

v The speed of OLE automated routines depends on the language used to
implement them. In general, they are slower than non-OLE C/C++
routines.

v OLE routines can only run in FENCED NOT THREADSAFE mode. This
minimizes the chance of engine corruption. This also means that OLE
automated routines do not scale well.

OLE DB

v OLE DB can only be used to define table functions.
v OLE DB table functions connect to a external OLE DB data source.
v Depending on the OLE DB provider, OLE DB table functions are

generally faster than Java table functions, but slower than C/C++ or
SQL-bodied table functions. However, some predicates from the query
where the function is invoked might be evaluated at the OLE DB
provider, therefore reducing the number of rows that the DB2 database
system has to process. This frequently results in improved performance.

v OLE DB routines can only run in FENCED NOT THREADSAFE mode.
This minimizes the chance of engine corruption. This also means that
OLE DB automated table functions do not scale well.

External routine parameter styles
External routine implementations must conform to a particular convention for the
exchange of routine parameter values. These conventions are known as parameter
styles.

An external routine parameter style is specified when the routine is created by
specifying the PARAMETER STYLE clause. Parameter styles characterize the
specification and order in which parameter values will be passed to the external
routine implementation. They also specify what if any additional values will be
passed to the external routine implementation. For example, some parameter styles
specify that for each routine parameter value that an additional separate
null-indicator value be passed to the routine implementation to provide
information about the parameters nullability which cannot otherwise be easily
determined with a native programming language data type.

The following table provides a list of the available parameter styles, the routine
implementations that support each parameter style, the functional routine types
that support each parameter style, and a description of the parameter style:

226 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 20. Parameter styles

Parameter
style

Supported
language

Supported
routine type Description

SQL 1
v C/C++

v OLE

v .NET
common
language
runtime
languages

v COBOL 2

v UDFs

v stored
procedures

v methods

In addition to the parameters passed during invocation, the
following arguments are passed to the routine in the following
order:

v A null indicator for each parameter or result declared in the
CREATE statement.

v The SQLSTATE to be returned to the DB2 database system.

v The qualified name of the routine.

v The specific name of the routine.

v The SQL diagnostic string to be returned to the DB2 database
system.

Depending on options specified in the CREATE statement and the
routine type, the following arguments can be passed to the routine
in the following order:

v A buffer for the scratchpad.

v The call type of the routine.

v The dbinfo structure (contains information about the database).

DB2SQL 1
v C/C++

v OLE

v .NET
common
language
runtime
languages

v COBOL

v stored
procedures

In addition to the parameters passed during invocation, the
following arguments are passed to the stored procedure in the
following order:

v A vector containing a null indicator for each parameter on the
CALL statement.

v The SQLSTATE to be returned to the DB2 database system.

v The qualified name of the stored procedure.

v The specific name of the stored procedure.

v The SQL diagnostic string to be returned to the DB2 database
system.

If the DBINFO clause is specified in the CREATE PROCEDURE
statement, a dbinfo structure (it contains information about the
database) is passed to the stored procedure.

JAVA v Java v UDFs

v stored
procedures

PARAMETER STYLE JAVA routines use a parameter passing
convention that conforms to the Java language and SQLJ Routines
specification.

For stored procedures, INOUT and OUT parameters will be passed
as single entry arrays to facilitate the returning of values. In
addition to the IN, OUT, and INOUT parameters, Java method
signatures for stored procedures include a parameter of type
ResultSet[] for each result set specified in the DYNAMIC RESULT
SETS clause of the CREATE PROCEDURE statement.

For PARAMETER STYLE JAVA UDFs and methods, no additional
arguments to those specified in the routine invocation are passed.

PARAMETER STYLE JAVA routines do not support the DBINFO
or PROGRAM TYPE clauses. For UDFs, PARAMETER STYLE
JAVA can only be specified when there are no structured data
types specified as parameters and no structured type, CLOB,
DBCLOB, or BLOB data types specified as return types
(SQLSTATE 429B8). Also, PARAMETER STYLE JAVA UDFs do not
support table functions, call types, or scratchpads.

Chapter 28. User-defined 227

Table 20. Parameter styles (continued)

Parameter
style

Supported
language

Supported
routine type Description

DB2GENERAL v Java v UDFs

v stored
procedures

v methods

This type of routine will use a parameter passing convention that
is defined for use with Java methods. Unless you are developing
table UDFs, UDFs with scratchpads, or need access to the dbinfo
structure, it is recommended that you use PARAMETER STYLE
JAVA.

For PARAMETER STYLE DB2GENERAL routines, no additional
arguments to those specified in the routine invocation are passed.

GENERAL v C/C++

v .NET
common
language
runtime
languages

v COBOL

v stored
procedures

A PARAMETER STYLE GENERAL stored procedure receives
parameters from the CALL statement in the invoking application
or routine. If the DBINFO clause is specified in the CREATE
PROCEDURE statement, a dbinfo structure (it contains information
about the database) is passed to the stored procedure.

GENERAL is the equivalent of SIMPLE stored procedures for DB2
for z/OS.

GENERAL
WITH NULLS

v C/C++

v .NET
common
language
runtime
languages

v COBOL

v stored
procedures

A PARAMETER STYLE GENERAL WITH NULLS stored
procedure receives parameters from the CALL statement in the
invoking application or routine. Also included is a vector
containing a null indicator for each parameter on the CALL
statement. If the DBINFO clause is specified in the CREATE
PROCEDURE statement, a dbinfo structure (it contains information
about the database) is passed to the stored procedure.

GENERAL WITH NULLS is the equivalent of SIMPLE WITH
NULLS stored procedures for DB2 for z/OS.

Note:

1. For UDFs and methods, PARAMETER STYLE SQL is equivalent to
PARAMETER STYLE DB2SQL.

2. COBOL can only be used to develop stored procedures.
3. .NET common language runtime methods are not supported.

Creating external routines
External routines including procedures and functions are created in a similar way
as routines with other implementations, however there are a few more steps
required, because the routine implementation requires the coding, compilation, and
deployment of source code.

Before you begin
v The IBM Data Server Client must be installed.
v The database server must be running an operating system that supports the

chosen implementation programming language compilers and development
software.

v The required compilers and runtime support for the chosen programming
language must be installed on the database server

v Authority to execute the CREATE PROCEDURE, CREATE FUNCTION, or
CREATE METHOD statement.

228 Preparation Guide for DB2 10.1 Fundamentals Exam 610

About this task

You would choose to implement an external routine if:
v You want to encapsulate complex logic into a routine that accesses the database

or that performs an action outside of the database.
v You require the encapsulated logic to be invoked from any of: multiple

applications, the CLP, another routine (procedure, function (UDF), or method),
or a trigger.

v You are most comfortable coding this logic in a programming language rather
than using SQL and SQL PL statements.

v You require the routine logic to perform operations external to the database such
as writing or reading to a file on the database server, the running of another
application, or logic that cannot be represented with SQL and SQL PL
statements.

Procedure
1. Code the routine logic in the chosen programming language.

v For general information about external routines, routine features, and routine
feature implementation, see the topics referenced in the Prerequisites section.

v Use or import any required header files required to support the execution of
SQL statements.

v Declare variables and parameters correctly using programming language
data types that map to DB2 SQL data types.

2. Parameters must be declared in accordance with the format required by the
parameter style for the chosen programming language. For more on parameters
and prototype declarations see:
v “External routine parameter styles” on page 226

3. Build your code into a library or class file.
4. Copy the library or class file into the DB2 function directory on the database

server. It is recommended that you store assemblies or libraries associated with
DB2 routines in the function directory. To find out more about the function
directory, see the EXTERNAL clause of either of the following statements:
CREATE PROCEDURE or CREATE FUNCTION.
You can copy the assembly to another directory on the server if you wish, but
to successfully invoke the routine you must note the fully qualified path name
of your assembly as you will require it for the next step.

5. Execute either dynamically or statically the appropriate SQL language CREATE
statement for the routine type: CREATE PROCEDURE or CREATE FUNCTION.
v Specify the LANGUAGE clause with the appropriate value for the chosen API or

programming language. Examples include: CLR, C, JAVA.
v Specify the PARAMETER STYLE clause with the name of the supported

parameter style that was implemented in the routine code.
v Specify the EXTERNAL clause with the name of the library, class, or assembly

file to be associated with the routine using one of the following values:
– the fully qualified path name of the routine library, class, or assembly file .
– the relative path name of the routine library, class, or assembly file relative

to the function directory.
By default DB2 will look for the library, class, or assembly file by name in
the function directory unless a fully qualified or relative path name for it is
specified in the EXTERNAL clause.

Chapter 28. User-defined 229

v Specify DYNAMIC RESULT SETS with a numeric value if your routine is a
procedure and it will return one or more result sets to the caller.

v Specify any other clauses required to characterize the routine.

What to do next

To invoke your external routine, see Routine invocation

SQL routines
SQL routines are routines that have logic implemented with only SQL statements,
including SQL Procedural Language (SQL PL) statements.

SQL routines are characterized by having their routine-body logic contained within
the CREATE statement that is used to create them. You can create SQL procedures,
SQL functions, and SQL methods. Although they are all implemented in SQL, each
routine functional type has different features.

Before deciding to implement a SQL routine, it is important that you first
understand what SQL routines are, how they are implemented, and used by
reading an "Overview of routines". With that knowledge you can then learn more
about SQL routine from the following concept topics so that you can make
informed decisions about when and how to use them in your database
environment:
v SQL procedures
v SQL functions
v Tools for developing SQL routines
v SQL Procedural Language (SQL PL)
v Comparison of SQL PL and inline SQL PL
v SQL PL statements and features
v Supported inline SQL PL statements and features
v Determining when to use SQL procedures or SQL functions
v Restrictions on SQL routines

After having learned about SQL routines, you might want to do one of the
following tasks:
v Develop SQL procedures
v Develop SQL functions
v Develop SQL methods

Creating SQL procedures from the command line
Before you begin, the user must have the privileges required to execute the
CREATE PROCEDURE statement for an SQL procedure.

Before you begin
v The user must have the privileges required to execute the CREATE

PROCEDURE statement for an SQL procedure.
v Privileges to execute all of the SQL statements included within the

SQL-procedure-body of the procedure.
v Any database objects referenced in the CREATE PROCEDURE statement for the

SQL procedure must exist prior to the execution of the statement.

230 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Procedure
v Select an alternate terminating character for the Command Line Processor (DB2

CLP) other than the default terminating character, which is a semicolon (';'), to
use in the script that you will prepare in the next step.
This is required so that the CLP can distinguish the end of SQL statements that
appear within the body of a routine's CREATE statement from the end of the
CREATE PROCEDURE statement itself. The semicolon character must be used to
terminate SQL statements within the SQL routine body and the chosen alternate
terminating character should be used to terminate the CREATE statement and
any other SQL statements that you might contain within your CLP script.
For example, in the following CREATE PROCEDURE statement, the 'at;' sign
('@') is used as the terminating character for a DB2 CLP script named
myCLPscript.db2:

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6), IN rating SMALLINT)
LANGUAGE SQL
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE EXIT HANDLER FOR not_found

SIGNAL SQLSTATE ’20000’ SET MESSAGE_TEXT = ’Employee not found’;

IF (rating = 1)
THEN UPDATE employee

SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

ELSEIF (rating = 2)
THEN UPDATE employee

SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END

@

v Run the DB2 CLP script containing the CREATE PROCEDURE statement for the
procedure from the command line, using the following CLP command:

db2 -td terminating-character -vf CLP-script-name

where terminating-character is the terminating character used in the CLP script
file CLP-script-name that is to be run.
The DB2 CLP option -td indicates that the CLP terminator default is to be reset
with terminating-character. The -vf indicates that the CLP's optional verbose (-v)
option is to be used, which will cause each SQL statement or command in the
script to be displayed to the screen as it is run, along with any output that
results from its execution. The -f option indicates that the target of the
command is a file.
To run the specific script shown in the first step, issue the following command
from the system command prompt:

db2 -td@ -vf myCLPscript.db2

Procedures
Procedures, also called stored procedures, are database objects created by executing
the CREATE PROCEDURE statement. Procedures can encapsulate logic and SQL
statement and can serve as sub-routine extensions to client applications, routines,
triggers, and dynamic compound statements.

Chapter 28. User-defined 231

Procedures are invoked by executing the CALL statement with a reference to a
procedure. Procedures can take input, output, and input-output parameters,
execute a wide variety of SQL statements, and return multiple result sets to the
caller.

Features

v Enable the encapsulation of logic elements and SQL statements that
formulate a particular subroutine module

v Can be called from client applications, other routines, triggers, and
dynamic compound statements - from anywhere that the CALL
statement can be executed.

v Return multiple result-sets
v Support the execution of a large set of SQL statements including SQL

statements that read or modify table data in both single and multiple
partition databases

v Parameter support for input, output, and input-output parameters
v Nested procedure calls and function invocations are supported
v Recursive calls to procedures are supported
v Savepoints and transaction control are supported within procedures

Limitations

v Procedures cannot be invoked from within SQL statements other than
the CALL statement. As an alternative, functions can be used to express
logic that transforms column values.

v Output parameter values and result sets of procedure calls cannot be
directly used by another SQL statement. Application logic must be used
to assign these to variables that can be used in subsequent SQL
statements.

v Procedures cannot preserve state between invocations.

Common uses

v Standardization of application logic
– If multiple applications must similarly access or modify the database,

a procedure can provide a single interface for the logic. The procedure
is then available for re-use. Should the interface need to change to
accommodate a change in business logic, only the single procedure
must be modified.

v Isolation of database operations from non-database logic within
applications
– Procedures facilitate the implementation of sub-routines that

encapsulate the logic and database accesses associated with a
particular task that can be reused in multiple instances. For example,
an employee management application can encapsulate the database
operations specific to the task of hiring an employee. Such a
procedure might insert employee information into multiple tables,
calculate the employee's weekly pay based on an input parameter,
and return the weekly pay value as an output parameter. Another
procedure could do statistical analysis of data in a table and return
result sets that contain the results of the analysis.

v Simplification of the management of privileges for a group of SQL
statements
– By allowing a grouping of multiple SQL statements to be

encapsulated into one named database object, procedures allow

232 Preparation Guide for DB2 10.1 Fundamentals Exam 610

database administrators to manage fewer privileges. Instead of having
to grant the privileges required to execute each of the SQL statements
in the routine, they must only manage the privilege to invoke the
routine.

Supported implementations

v There are built-in procedures that are ready-to-use, or users can create
user-defined procedures. The following user-defined implementations
are supported for procedures:
– SQL implementation
– External implementation

Functions
Functions are relationships between sets of input data values and a set of result
values. They enable you to extend and customize SQL. Functions are invoked from
within elements of SQL statements such as a select-list or a FROM clause.

There are four types of functions:
v Aggregate functions
v Scalar functions
v Row functions
v Table functions

Aggregate functions
Also called a column function, this type of function returns a scalar value
that is the result of an evaluation over a set of like input values. The
similar input values can, for example, be specified by a column within a
table, or by tuples in a VALUES clause. This set of values is called the
argument set. For example, the following query finds the total quantity of
bolts that are in stock or on order by using the SUM aggregate function:

SELECT SUM (qinstock + qonorder)
FROM inventory
WHERE description LIKE ’%Bolt%’

Scalar functions
A scalar function is a function that, for each set of one or more scalar
parameters, returns a single scalar value. Examples of scalar functions
include the LENGTH function, and the SUBSTR function. Scalar functions
can also be created that do complex mathematical calculations on function
input parameters. Scalar functions can be referenced anywhere that an
expression is valid within an SQL statement, such as in a select-list, or in a
FROM clause. The following example shows a query that references the
built-in LENGTH scalar function:

SELECT lastname, LENGTH(lastname)
FROM employee

Row functions
A row function is a function that for each set of one or more scalar
parameters returns a single row. Row functions can only be used as a
transform function mapping attributes of a structured type into built-in
data type values in a row.

Table functions
Table functions are functions that for a group of sets of one or more
parameters, return a table to the SQL statement that references it. Table
functions can only be referenced in the FROM clause of a SELECT

Chapter 28. User-defined 233

statement. The table that is returned by a table function can participate in
joins, grouping operations, set operations such as UNION, and any
operation that could be applied to a read-only view. The following
example demonstrates an SQL table function that updates an inventory
table and returns the result set of a query on the updated inventory table:
CREATE FUNCTION updateInv(itemNo VARCHAR(20), amount INTEGER)

RETURNS TABLE (productName VARCHAR(20),
quantity INTEGER)

LANGUAGE SQL
MODIFIES SQL DATA
BEGIN ATOMIC

UPDATE Inventory as I
SET quantity = quantity + amount

WHERE I.itemID = itemNo;

RETURN
SELECT I.itemName, I.quantity

FROM Inventory as I
WHERE I.itemID = itemNo;

END

Functions provide support for the following features:
v Functions are supported across the DB2 brand database products including,

among others, DB2, DB2 for z/OS, and DB2 Database for System i
v Moderate support for SQL statement execution
v Parameter support for input parameters and scalar or aggregate function return

values
v Efficient compilation of function logic into queries that reference functions
v External functions provide support for storing intermediate values between the

individual function sub-invocations for each row or value

There are built-in functions that are ready-to-use, or users can create user-defined
functions. Functions can be implemented as SQL functions or as external functions.
SQL functions can be either compiled or inlined. Inlined functions perform faster
than compiled functions, but can execute only a subset of the SQL PL language.
See the CREATE FUNCTION statement for more information.

Methods
Methods allow you to access structured type attributes as well as to define
additional behaviors for structured types.

A structured type is a user-defined data type containing one or more named
attributes, each of which has a data type. Attributes are properties that describe an
instance of a type. A geometric shape, for example, might have attributes such as
its list of Cartesian coordinates.

Methods are generally implemented for a structured type to represent operations
on the attributes of the structured type. For a geometric shape a method might
calculate the volume of the shape. Methods share all of the features of scalar
functions.

Features

v Ability to access structured type attributes
v Ability to set structured type attributes

234 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v Ability to create operations on structured type attributes and return a
function value

v Sensitive to the dynamic type of the subject type

Limitations

v Can only return a scalar value
v Can only be used with structured types
v Cannot be invoked for typed tables

Common uses

v Create operations on structured types
v Encapsulate the structured type

Supported implementations
There are no built-in methods. Users can create user-defined methods for
existing user-defined structured types. Methods can be implemented using
one of the following implementations:
v SQL routines
v External routines in C, C++, Java, C# (using OLE API), or Visual Basic

(using OLE API)

SQL methods are easy to implement, but are generally designed in conjunction
with the design of a structured type. External methods provide greater support for
flexible logic implementation and allow a user to develop method logic in their
preferred programming language.

Chapter 28. User-defined 235

236 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 29. DB2 compatibility features

The DB2 product provides a number of features that reduce the time and
complexity of enabling some applications that were written for relational database
products other than the DB2 product to run on a DB2 system.

Some of these features, including the following ones, are enabled by default.
v Implicit casting (weak typing), which reduces the number of SQL statements that

you must modify to enable applications to run on the DB2 product.
v New built-in scalar functions. For details, see Built-in functions (see SQL

Reference Volume 1).
v Improvements to the TIMESTAMP_FORMAT and VARCHAR_FORMAT scalar

functions. The TIMESTAMP_FORMAT function returns a timestamp for an input
string, using a specified format. The VARCHAR_FORMAT function returns a
string representation of an input expression that has been formatted according to
a specified character template. TO_DATE and TO_TIMESTAMP are synonyms
for TIMESTAMP_FORMAT, and TO_CHAR is a synonym for
VARCHAR_FORMAT.

v The lifting of several SQL restrictions, resulting in more compatible syntax
between products. For example, the use of correlation names in subqueries and
table functions is now optional.

v Synonyms for syntax that is used by other database products. Examples are as
follows:
– UNIQUE is a synonym for DISTINCT in the column functions and the select

list of a query.
– MINUS is a synonym for the EXCEPT set operator
– You can use seqname.NEXTVAL in place of the SQL standard syntax NEXT

VALUE FOR seqname. You can also use seqname.CURRVAL in place of the SQL
standard syntax PREVIOUS VALUE FOR seqname.

v Global variables, which you can use to easily map package variables, emulate
@@nested, @@level or @errorlevel global variables, or pass information from
DB2 applications to triggers, functions, or procedures.

v An ARRAY collection data type that you use to easily map to VARRAY
constructs in SQL procedures.

v Increased identifier length limits.
v The pseudocolumn ROWID, which you can use to refer to the RID. An

unqualified ROWID reference is equivalent to RID_BIT(), and a qualified
ROWID reference, such as EMPLOYEE.ROWID, is equivalent to
RID_BIT(EMPLOYEE).

You can optionally enable the following other features by setting the
DB2_COMPATIBILITY_VECTOR registry variable. These features are disabled by default.
v An implementation of hierarchical queries using CONNECT BY PRIOR syntax.
v Support for outer joins using the outer join operator, which is the plus sign (+).
v Use of the DATE data type as TIMESTAMP(0), a combined date and time value.
v Syntax and semantics to support the NUMBER data type.
v Syntax and semantics to support the VARCHAR2 data type.

© Copyright IBM Corp. 2012 237

v The ROWNUM pseudocolumn, which is a synonym for ROW_NUMBER()
OVER(). However, the ROWNUM pseudocolumn is allowed in the SELECT list
and in the WHERE clause of the SELECT statement.

v A dummy table named DUAL, which provides a capability that is similar to that
of the SYSIBM.SYSDUMMY1 table.

v Alternative semantics for the TRUNCATE statement, such that IMMEDIATE is
an optional keyword that is assumed to be the default if not specified. An
implicit commit operation is performed before the TRUNCATE statement
executes if the TRUNCATE statement is not the first statement in the logical unit
of work.

v Support for assigning the CHAR or GRAPHIC data type instead of the
VARCHAR or VARGRAPHIC data type to character and graphic string constants
whose byte lengths are less than or equal to 254.

v Use of collection methods to perform operations on arrays, such as FIRST, LAST,
NEXT, and previous.

v Support for creating Oracle data dictionary-compatible views.
v Support for compiling and executing PL/SQL statements and other language

elements.
v Support for making cursors insensitive to subsequent statements by

materializing the cursors at OPEN time.
v Support for INOUT parameters in procedures that you define with defaults and

can invoke without specifying the arguments for those parameters.

Additional resources

For more information about compatibility features, see DB2 Viper 2 compatibility
features.

For information about the IBM Migration Toolkit (MTK), see Migrate Now!.

For information about the DB2 Oracle database compatibility features, see Oracle
to DB2 Conversion Guide: Compatibility Made Easy.

DATE data type based on TIMESTAMP(0)
The DATE data type supports applications that use the Oracle DATE data type and
expect that the DATE values include time information (for example,
'2009-04-01-09.43.05').

Enablement

You enable DATE as TIMESTAMP(0) support at the database level, before creating
the database where you require the support. To enable the support, set the
DB2_COMPATIBILITY_VECTOR registry variable to hexadecimal value 0x40 (bit position
7), and then stop and restart the instance to have the new setting take effect.
db2set DB2_COMPATIBILITY_VECTOR=40
db2stop
db2start

To take full advantage of the DB2 compatibility features for Oracle applications,
the recommended setting for the DB2_COMPATIBILITY_VECTOR is ORA, which
sets all of the compatibility bits.

238 Preparation Guide for DB2 10.1 Fundamentals Exam 610

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0707rielau/index.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0707rielau/index.html
http://www.ibm.com/software/data/db2/migration/mtk/
http://www.redbooks.ibm.com/abstracts/sg247736.html?Open
http://www.redbooks.ibm.com/abstracts/sg247736.html?Open

After you create a database with DATE as TIMESTAMP(0) support enabled, the
date_compat database configuration parameter is set to ON.

If you create a database with DATE as TIMESTAMP(0) support enabled, you
cannot disable that support for that database, even if you reset the
DB2_COMPATIBILITY_VECTOR registry variable. Similarly, if you create a database with
DATE as TIMESTAMP(0) support disabled, you cannot enable that support for that
database later, even by setting the DB2_COMPATIBILITY_VECTOR registry variable.

Effects

The date_compat database configuration parameter indicates whether the DATE
compatibility semantics associated with the TIMESTAMP(0) data type are applied
to the connected database. The effects of setting date_compat to ON are as follows.

When the DATE data type is explicitly encountered in SQL statements, it is
implicitly mapped to TIMESTAMP(0) in most cases. An exception is the
specification of SQL DATE in the xml-index-specification clause of a CREATE INDEX
statement. As a result of the implicit mapping, messages refer to the TIMESTAMP
data type instead of DATE, and any operations that describe data types for
columns or routines return TIMESTAMP instead of DATE.

Datetime literal support is changed as follows:
v The value of an explicit DATE literal is a TIMESTAMP(0) value in which the

time portion is all zeros. For example, DATE ’2008-04-28’ represents the
timestamp value '2008-04-28-00.00.00'.

v The database manager supports two additional formats for the string
representation of a date, which correspond to 'DD-MON-YYYY' and
'DD-MON-RR'. Only English abbreviations of the month are supported. For
example, '28-APR-2008' or '28-APR-08' can be used as string representations of a
date, which represents the TIMESTAMP(0) value '2008-04-28-00.00.00'.
Starting from Version 9.7 Fix Pack 6, the database manager also supports the
following formats for the string representation of a date in English only:
– 'DDMONYYYY' or 'DDMONRR'
– 'DD-MONYYYY' or 'DD-MONRR'
– 'DDMON-YYYY' or 'DDMON-RR'

For example, the following strings all represent the TIMESTAMP(0) value
'2008-04-28-00.00.00':
– '28APR2008' or '28APR08'
– '28-APR2008' or '28-APR08'
– '28APR-2008' or '28APR-08'

For a description of the format elements, see TIMESTAMP_FORMAT scalar
function (see SQL Reference Volume 1).

The CURRENT_DATE (also known as CURRENT DATE) special register returns a
TIMESTAMP(0) value that is the same as the CURRENT_TIMESTAMP(0) value.

When you add a numeric value to a TIMESTAMP value or subtract a numeric
value from a TIMESTAMP value, it is assumed that the numeric value represents a
number of days. The numeric value can have any numeric data type, and any
fractional value is considered to be a fractional portion of a day. For example,
TIMESTAMP ’2008-03-28 12:00:00’ + 1.3 adds 1 day, 7 hours, and 12 minutes to
the TIMESTAMP value, resulting in '2008-03-29 19:12:00'. If you are using

Chapter 29. DB2 compatibility features introduction 239

expressions for partial days, such as 1/24 (1 hour) or 1/24/60 (1 minute), ensure
that the number_compat database configuration parameter is set to ON so that the
division is performed using DECFLOAT arithmetic.

The results of some functions change:
v If you pass a string argument to the ADD_MONTHS scalar function, it returns a

TIMESTAMP(0) value.
v The DATE scalar function returns a TIMESTAMP(0) value for all input types.
v If you pass a string argument to the LAST_DAY scalar function, it returns a

TIMESTAMP(0) value.
v If you pass a DATE() argument to the ADD_MONTHS, LAST_DAY, NEXT_DAY,

ROUND, or TRUNCATE scalar function, the function returns a TIMESTAMP(0)
value.

v The adding of one date value to another returns TIMESTAMP(0) value.
v The subtracting of one timestamp value from another returns DECFLOAT(34),

representing the difference as a number of days. Similarly, subtracting one date
value from another returns DECFLOAT(34), that represents a number of days.

v The second parameter in the TIMESTAMPDIFF scalar function does not
represent a timestamp duration. Rather it represents the difference between two
timestamps as a number of days. The returned estimate may vary by a number
of days. For example, if the number of months (interval 64) is requested for the
difference between '2010-03-31-00.00.00.000000' and '2010-03-01-00.00.00.000000',
the result is 1. This is because the difference between the timestamps is 30 days,
and the assumption of 30 days in a month applies. The following table shows
how the returned value is determined for each interval.

Table 21. TIMESTAMPDIFF computations

Result interval
Computation using the difference between
two timestamps as a number of days

Years integer value of (days/365)

Quarters integer value of (days/90)

Months integer value of (days/30)

Weeks integer value of (days/7)

Days integer value of days

Hours integer value of (days*24)

Minutes (the absolute value of the number
of days must not exceed
1491308.0888888888888882)

integer value of (days*24*60)

Seconds (the absolute value of the number
of days must be less than
24855.1348148148148148)

integer value of (days*24*60*60)

Microseconds (the absolute value of the
number of days must be less than
0.02485513481481481)

integer value of (days*24*60*60*1000000)

If you use the import or load utility to input data into a DATE column, you must
use the timestampformat file type modifier instead of the dateformat file type
modifier.

240 Preparation Guide for DB2 10.1 Fundamentals Exam 610

NUMBER data type
The NUMBER data type supports applications that use the Oracle NUMBER data
type.

Enablement

You enable NUMBER support at the database level, before creating the database
where you require the support. To enable the support, set the
DB2_COMPATIBILITY_VECTOR registry variable to hexadecimal value 0x10 (bit position
5), and then stop and restart the instance to have the new setting take effect.
db2set DB2_COMPATIBILITY_VECTOR=10
db2stop
db2start

To take full advantage of the DB2 compatibility features for Oracle applications,
the recommended setting for the DB2_COMPATIBILITY_VECTOR is ORA, which
sets all of the compatibility bits.

When you create a database with NUMBER support enabled, the number_compat
database configuration parameter is set to ON.

If you create a database with NUMBER support enabled, you cannot disable
NUMBER support for that database, even if you reset the
DB2_COMPATIBILITY_VECTOR registry variable. Similarly, if you create a database with
NUMBER support disabled, you cannot enable NUMBER support for that database
later, even by setting the DB2_COMPATIBILITY_VECTOR registry variable.

Effects

The effects of setting the number_compat database configuration parameter to ON are
as follows.

When the NUMBER data type is explicitly encountered in SQL statements, the data
type is implicitly mapped as follows:
v If you specify NUMBER without precision and scale attributes, it is mapped to

DECFLOAT(16).
v If you specify NUMBER(p), it is mapped to DECIMAL(p).
v If you specify NUMBER(p,s), it is mapped to DECIMAL(p,s).

The maximum supported precision is 31, and the scale must be a positive value
that is no greater than the precision. Also, a result of the implicit mapping,
messages refer to data types DECFLOAT and DECIMAL instead of NUMBER. In
addition, any operations that describe data types for columns or routines return
either DECIMAL or DECFLOAT instead of NUMBER.

Tip: The DECFLOAT(16) data type provides a lower maximum precision than that
of the Oracle NUMBER data type. If you need more than 16 digits of precision for
storing numbers in columns, then explicitly define those columns as
DECFLOAT(34).

Numeric literal support is unchanged: the rules for integer, decimal, and
floating-point constants continue to apply. These rules limit decimal literals to 31
digits and floating-point literals to the range of binary double-precision
floating-point values. If necessary, you can use a string-to-DECFLOAT(34) cast,
using the CAST specification or the DECFLOAT function, for values beyond the

Chapter 29. DB2 compatibility features introduction 241

range of DECIMAL or DOUBLE up to the range of DECFLOAT(34). There is
currently no support for a numeric literal that ends in either D, representing 64-bit
binary floating-point values, or F, representing 32-bit binary floating-point values.
A numeric literal that includes an E has the data type of DOUBLE, which you can
cast to REAL using the CAST specification or the cast function REAL

If you cast NUMBER data values to character strings, using either the CAST
specification or the VARCHAR or CHAR scalar function, all leading zeros are
stripped from the result.

The default data type that is used for a sequence value in the CREATE
SEQUENCE statement is DECIMAL(27) instead of INTEGER.

All arithmetic operations and arithmetic or mathematical functions involving
DECIMAL or DECFLOAT data types are effectively performed using decimal
floating-point arithmetic and return a value with a data type of DECFLOAT(34).
This type of performance also applies to arithmetic operations where both
operands have a DECIMAL or DECFLOAT(16) data type, which differs from the
description of decimal arithmetic in the “Expressions with arithmetic operators”
section of Expressions (see SQL Reference Volume 1). Additionally, all division
operations involving only integer data types (SMALLINT, INTEGER, or BIGINT)
are effectively performed using decimal floating-point arithmetic. These operations
return a value with a data type of DECFLOAT(34) instead of an integer data type.
Division by zero with integer operands returns infinity and a warning instead of
an error.

In some cases function resolution is also changed, such that an argument of data
type DECIMAL is considered to be a DECFLOAT value during the resolution
process. Also functions with arguments that correspond to the NUMBER(p[,s]) data
type are effectively treated as if the argument data types were NUMBER. However,
this change in function resolution does not apply to the set of functions that have a
variable number of arguments and base their result data types on the set of data
types of the arguments. The functions included in this set are as follows:
v COALESCE
v DECODE
v GREATEST
v LEAST
v MAX (scalar)
v MIN (scalar)
v NVL
v VALUE

The rules for result data types (see SQL Reference Volume 1) are extended to make
DECFLOAT(34) the result data type if the precision of a DECIMAL result data type
would have exceeded 31. These rules also apply to the following items:
v Corresponding columns in set operations: UNION, EXCEPT(MINUS), and

INTERSECT
v Expression values in the IN list of an IN predicate
v Corresponding expressions of a multiple row VALUES clause

The rounding mode that is used for assignments and casts depends on the data
types that are involved. In some cases, truncation is used. In cases where the target
is a binary floating-point (REAL or DOUBLE) value, round-half-even is used, as
usual. In other cases, usually involving a DECIMAL or DECFLOAT value, the

242 Preparation Guide for DB2 10.1 Fundamentals Exam 610

rounding is based on the value of the decflt_rounding database configuration
parameter. The value of this parameter defaults to round-half-even, but you can set
it to round-half-up to match the Oracle rounding mode. The following table
summarizes the rounding that is used for various numeric assignments and casts.

Table 22. Rounding for numeric assignments and casts

Source data type

Target data type

Integer types DECIMAL DECFLOAT REAL/DOUBLE

Integer types not applicable not applicable decflt_rounding round_half_even

DECIMAL decflt_rounding decflt_rounding decflt_rounding round_half_even

DECFLOAT decflt_rounding decflt_rounding decflt_rounding round_half_even

REAL/DOUBLE truncate decflt_rounding decflt_rounding round_half_even

String (cast
only)

not applicable decflt_rounding decflt_rounding round_half_even

The DB2 decimal floating-point values are based on the IEEE 754R standard.
Retrieval of DECFLOAT data and casting of DECFLOAT data to character strings
removes any trailing zeros after the decimal point.

Client-server compatibility

Client applications working with a DB2 database server that you enable for
NUMBER data type support never receive a NUMBER data type from the server.
Any column or expression that would report NUMBER from an Oracle server
report either DECIMAL or DECFLOAT from a DB2 server.

Because an Oracle environment expects the rounding mode to be round-half-up, it
is important that the client rounding mode match the server rounding mode. This
means that the db2cli.ini file setting must match the value of the
decflt_rounding database configuration parameter. To most closely match the
Oracle rounding mode, you should specify ROUND_HALF_UP for the database
configuration parameter.

Restrictions

NUMBER data type support has the following restrictions:
v There is no support for the following items:

– A precision attribute greater than 31
– A precision attribute of asterisk (*)
– A scale attribute that exceeds the precision attribute
– A negative scale attribute

There is no corresponding DECIMAL precision and scale support for NUMBER
data type specifications.

v You cannot invoke the trigonometric functions or the DIGITS scalar function
with arguments of data type NUMBER without a precision (DECFLOAT).

v You cannot create a distinct type with the name NUMBER.

VARCHAR2 and NVARCHAR2 data types
The VARCHAR2 and NVARCHAR2 data types support applications that use the
Oracle VARCHAR2 and NVARCHAR2 data types.

Chapter 29. DB2 compatibility features introduction 243

Enablement

You enable VARCHAR2 and NVARCHAR2 (subsequently jointly referred to as
VARCHAR2) support at the database level, before creating the database where you
require support. To enable the support, set the DB2_COMPATIBILITY_VECTOR registry
variable to hexadecimal value 0x20 (bit position 6), and then stop and restart the
instance to have the new setting take effect.
db2set DB2_COMPATIBILITY_VECTOR=20
db2stop
db2start

To take full advantage of the DB2 compatibility features for Oracle applications,
the recommended setting for the DB2_COMPATIBILITY_VECTOR is ORA, which
sets all of the compatibility bits.

When you create a database with VARCHAR2 support enabled, the
varchar2_compat database configuration parameter is set to ON.

If you create a database with VARCHAR2 support enabled, you cannot disable
VARCHAR2 support for that database, even if you reset the
DB2_COMPATIBILITY_VECTOR registry variable. Similarly, if you create a database with
VARCHAR2 support disabled, you cannot enable VARCHAR2 support for that
database later, even by setting the DB2_COMPATIBILITY_VECTOR registry variable.

To use the NVARCHAR2 data type, a database must be a Unicode database.

Effects

The effects of setting the varchar2_compat database configuration parameter to ON
are as follows.

When the VARCHAR2 data type is explicitly encountered in SQL statements, it is
implicitly mapped to the VARCHAR data type. The maximum length for
VARCHAR2 is the same as the maximum length for VARCHAR: 32, 672.Similarly,
when the NVARCHAR2 data type is explicitly encountered in SQL statements, it is
implicitly mapped to the VARGRAPHIC data type. The maximum length for
NVARCHAR2 is the same as the maximum length for VARGRAPHIC: 16, 336.

Character string literals up to 254 bytes in length have a data type of CHAR.
Character string literals longer than 254 bytes have a data type of VARCHAR.

Comparisons involving varying-length string types use non-padded comparison
semantics, and comparisons with only fixed-length string types continue to use
blank-padded comparison semantics, with two exceptions:
v Comparisons involving string column information from catalog views always

use the IDENTITY collation with blank-padded comparison semantics,
regardless of the database collation.

v String comparisons involving a data type with the FOR BIT DATA attribute
always use the IDENTITY collation with blank-padded comparison semantics.

IN list expressions are treated as having a varying-length string data type if both
of the following conditions are true:
v The result type for the IN list of an IN predicate would resolve to a fixed-length

string data type
v The left operand of the IN predicate is a varying-length string data type

244 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Character string values (other than LOB values) with a length of zero are generally
treated as null values. An assignment or cast of an empty string value to CHAR,
NCHAR, VARCHAR, or NVARCHAR produces a null value.

Functions that return character string arguments, or that are based on parameters
with character string data types, also treat empty string CHAR, NCHAR,
VARCHAR, or NVARCHAR values as null values. Special considerations apply for
some functions when the varchar2_compat database configuration parameter is set
to ON, as follows:
v CONCAT function and the concatenation operator. A null or empty string value

is ignored in the concatenated result. The result type of the concatenation is
shown in the following table.

Table 23. Data Type and lengths of concatenated operands

Operands

Combined
length
attributes Result

CHAR(A) CHAR(B) <255 CHAR(A+B)

CHAR(A) CHAR(B) >254 VARCHAR(A+B)

CHAR(A) VARCHAR(B) - VARCHAR(MIN(A+B,32672))

VARCHAR(A) VARCHAR(B) - VARCHAR(MIN(A+B,32672))

CLOB(A) CHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) VARCHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) CLOB(B) CLOB(MIN(A+B, 2G))

GRAPHIC(A) GRAPHIC(B) <128 GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B) >128 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) - VARGRAPHIC(MIN(A+B,16336))

VARGRAPHIC(A)
VARGRAPHIC(B)

- VARGRAPHIC(MIN(A+B,16336))

DBCLOB(A) CHAR(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) VARCHAR(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) CLOB(B) DBCLOB(MIN(A+B, 1G))

BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2G))

v INSERT function. A null value or empty string as the fourth argument results in
deletion of the number of bytes indicated by the third argument, beginning at
the byte position indicated by the second argument from the first argument.

v LENGTH function. The value returned by the LENGTH function is the number
of bytes in the character string. An empty string value returns the null value.

v REPLACE function. If all of the argument values have a data type of CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC, then:
– A null value or empty string as the second argument is treated as an empty

string, and consequently the first argument is returned as the result
– A null value or empty string as the third argument is treated as an empty

string, and nothing replaces the string that is removed from the source string
by the second argument.

If any argument value has a data type of CLOB or BLOB and any argument is
the null value, the result is the null value. All three arguments of the REPLACE
function must be specified.

Chapter 29. DB2 compatibility features introduction 245

v SUBSTR function. References to SUBSTR which have a character string input for
the first argument will be replaced with an invocation to SUBSTRB. References
to SUBSTR which have a national character (graphic) string input for the first
argument will be replaced with an invocation to SUBSTR2.

v TRANSLATE function. The from-string-exp is the second argument, and the
to-string-exp is the third argument. If the to-string-exp is shorter than the
from-string-exp, the extra characters in the from-string-exp that are found in the
char-string-exp (the first argument) are removed; that is, the default pad-char
argument is effectively an empty string, unless a different pad character is
specified in the fourth argument.

v TRIM function. If the trim character argument of a TRIM function invocation is a
null value or an empty string, the function returns a null value.

In the ALTER TABLE statement or the CREATE TABLE statement, when a
DEFAULT clause is specified without an explicit value for a column defined with
the VARCHAR or the VARGRAPHIC data type, the default value is a blank
character.

Empty strings are converted to a blank character when the database configuration
parameter varchar2_compat is set to ON. For example:
v SYSCAT.DATAPARTITIONS.STATUS has a single blank character when the data

partition is visible.
v SYSCAT.PACKAGES.PKGVERSION has a single blank character when the

package version has not been explicitly set.
v SYSCAT.ROUTINES.COMPILE_OPTIONS has a null value when compile

options have not been set.

If SQL statements use parameter markers, a data type conversion that affects
VARCHAR2 usage can occur. For example, if the input value is a VARCHAR of
length zero and it is converted to a LOB, the result will be a null value. However,
if the input value is a LOB of length zero and it is converted to a LOB, the result
will be a LOB of length zero. The data type of the input value can be affected by
deferred prepare.

Restrictions

The VARCHAR2 data type and associated character string processing support have
the following restrictions:
v The VARCHAR2 length attribute qualifier CHAR is not accepted.
v The LONG VARCHAR and LONG VARGRAPHIC data types are not supported

(but are not explicitly blocked) when the varchar2_compat database
configuration parameter is set to ON.

246 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Part 4. Working with DB2 Data using SQL

Structured Query Language (SQL) is a standardized language for defining and
manipulating data in a relational database.

In accordance with the relational model of data, the database is treated as a set of
tables, relationships are represented by values in tables, and data is retrieved by
specifying a result table that can be derived from one or more base tables.

SQL statements are executed by a database manager. One of the functions of the
database manager is to transform the specification of a result table into a sequence
of internal operations that optimize data retrieval. The transformation occurs in
two phases: preparation and binding.

All executable SQL statements must be prepared before they can be executed. The
result of preparation is the executable or operational form of the statement. The
method of preparing an SQL statement and the persistence of its operational form
distinguish static SQL from dynamic SQL.

© Copyright IBM Corp. 2012 247

248 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 30. INSERT statement

The INSERT statement inserts rows into a table, nickname, or view, or the
underlying tables, nicknames, or views of the specified fullselect.

Inserting a row into a nickname inserts the row into the data source object to
which the nickname refers. Inserting a row into a view also inserts the row into the
table on which the view is based, if no INSTEAD OF trigger is defined for the
insert operation on this view. If such a trigger is defined, the trigger will be
executed instead.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v INSERT privilege on the target table, view, or nickname
v CONTROL privilege on the target table, view, or nickname
v DATAACCESS authority

In addition, for each table, view, or nickname referenced in any fullselect used in
the INSERT statement, the privileges held by the authorization ID of the statement
must include at least one of the following authorities:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

GROUP privileges are not checked for static INSERT statements.

If the target of the insert operation is a nickname, the privileges on the object at
the data source are not considered until the statement is executed at the data
source. At this time, the authorization ID that is used to connect to the data source
must have the privileges required for the operation on the object at the data
source. The authorization ID of the statement can be mapped to a different
authorization ID at the data source.

Syntax

�� INSERT INTO table-name
view-name
nickname
(fullselect) �

,

(column-name)

�

© Copyright IBM Corp. 2012 249

�
include-columns

�

� �

�

�

,

VALUES expression
NULL
DEFAULT

,

(expression)
NULL
DEFAULT

row-expression
fullselect

,

WITH common-table-expression

WITH RR
RS
CS
UR

��

include-columns:

INCLUDE �

,

(column-name data-type)

Description

INTO table-name, view-name, nickname, or (fullselect)
Identifies the object of the insert operation. The name must identify one of the
following objects:
v A table, view or nickname that exists at the application server
v A table or view at a remote server specified using a remote-object-name

The object must not be a catalog table, a system-maintained materialized query
table, a view of a catalog table, or a read-only view, unless an INSTEAD OF
trigger is defined for the insert operation on the subject view. Rows inserted
into a nickname are placed in the data source object to which the nickname
refers.

If the object of the insert operation is a fullselect, the fullselect must be
insertable, as defined in the “Insertable views” Notes item in the description of
the CREATE VIEW statement.

If the object of the insert operation is a nickname, the extended indicator
variable values of DEFAULT and UNASSIGNED must not be used (SQLSTATE
22539).

If no INSTEAD OF trigger exists for the insert operation on this view, a value
cannot be inserted into a view column that is derived from the following
elements:
v A constant, expression, or scalar function
v The same base table column as some other column of the view

If the object of the insert operation is a view with such columns, a list of
column names must be specified, and the list must not identify these columns.

250 Preparation Guide for DB2 10.1 Fundamentals Exam 610

A row can be inserted into a view or a fullselect that is defined using a
UNION ALL if the row satisfies the check constraints of exactly one of the
underlying base tables. If a row satisfies the check constraints of more than one
table, or no table at all, an error is returned (SQLSTATE 23513).

A row cannot be inserted into a view or a fullselect that is defined using a
UNION ALL if any base table of the view contains a before trigger and the
before trigger contains an UPDATE, a DELETE, or an INSERT operation, or
invokes any routine containing such operations (SQLSTATE 42987).

(column-name,...)
Specifies the columns for which insert values are provided. Each name must
identify a column of the specified table, view, or nickname, or a column in the
fullselect. The same column must not be identified more than once. If extended
indicator variables are not enabled, a column that cannot accept inserted
values (for example, a column based on an expression) must not be identified.

Omission of the column list is an implicit specification of a list in which every
column of the table (that is not implicitly hidden) or view, or every item in the
select-list of the fullselect is identified in left-to-right order. This list is
established when the statement is prepared and, therefore, does not include
columns that were added to a table after the statement was prepared.

include-columns
Specifies a set of columns that are included, along with the columns of
table-name or view-name, in the intermediate result table of the INSERT
statement when it is nested in the FROM clause of a fullselect. The
include-columns are appended at the end of the list of columns that are
specified for table-name or view-name.

INCLUDE
Specifies a list of columns to be included in the intermediate result table of
the INSERT statement. This clause can only be specified if the INSERT
statement is nested in the FROM clause of a fullselect.

column-name
Specifies a column of the intermediate result table of the INSERT
statement. The name cannot be the same as the name of another include
column or a column in table-name or view-name (SQLSTATE 42711).

data-type
Specifies the data type of the include column. The data type must be one
that is supported by the CREATE TABLE statement.

VALUES
Introduces one or more rows of values to be inserted.

Each row specified in the VALUES clause must be assignable to the implicit or
explicit column list and the columns identified in the INCLUDE clause, unless
a row variable is used. When a row value list in parentheses is specified, the
first value is inserted into the first column in the list, the second value into the
second column, and so on. When a row expression is specified, the number of
fields in the row type must match the number of names in the implicit or
explicit column list.

expression
An expression can be any expression defined in the “Expressions” topic. If
expression is a row type, it must not appear in parentheses. If expression is a
variable, the host variable can include an indicator variable or in the case
of a host structure, an indicator array, enabled for extended indicator
variables. If extended indicator variables are enabled, the extended

Chapter 30. INSERT 251

indicator variable values of default (-5) or unassigned (-7) must not be
used (SQLSTATE 22539) if either of the following statements is true:
v The expression is more complex than a single host variable with explicit

casts
v The target column has data type of structured type

NULL
Specifies the null value and should only be specified for nullable columns.

DEFAULT
Specifies that the default value is to be used. The result of specifying
DEFAULT depends on how the column was defined, as follows:
v If the column was defined as a generated column based on an

expression, the column value is generated by the system, based on that
expression.

v If the IDENTITY clause is used, the value is generated by the database
manager.

v If the ROW CHANGE TIMESTAMP clause is used, the value for each
inserted row is generated by the database manager as a timestamp that
is unique for the table partition within the database partition.

v If the WITH DEFAULT clause is used, the value inserted is as defined
for the column (see default-clause in “CREATE TABLE”).

v If the NOT NULL clause is used and the GENERATED clause is not
used, or the WITH DEFAULT clause is not used or DEFAULT NULL is
used, the DEFAULT keyword cannot be specified for that column
(SQLSTATE 23502).

v When inserting into a nickname, the DEFAULT keyword will be passed
through the INSERT statement to the data source only if the data source
supports the DEFAULT keyword in its query language syntax.

row-expression
Specifies any row expression of the type described in "Row expressions"
that does not include a column name. The number of fields in the row
must match the target of the insert and each field must be assignable to the
corresponding column.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows.

fullselect
Specifies a set of new rows in the form of the result table of a fullselect. There
may be one, more than one, or none. If the result table is empty, SQLCODE is
set to +100 and SQLSTATE is set to '02000'.

When the base object of the INSERT and the base object of the fullselect or any
subquery of the fullselect, are the same table, the fullselect is completely
evaluated before any rows are inserted.

The number of columns in the result table must equal the number of names in
the column list. The value of the first column of the result is inserted in the
first column in the list, the second value in the second column, and so on.

If the expression that specifies the value of a result column is a variable, the
host variable can include an indicator variable enabled for extended indicator
variables. If extended indicator variables are enabled, and the expression is
more than a single host variable, or a host variable being explicitly cast, then
the extended indicator variable values of default or unassigned must not be

252 Preparation Guide for DB2 10.1 Fundamentals Exam 610

used (SQLSTATE 22539). The effects of default or unassigned values apply to
the corresponding target columns of the fullselect.

WITH
Specifies the isolation level at which the fullselect is executed.

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

The default isolation level of the statement is the isolation level of the package
in which the statement is bound. The WITH clause has no effect on nicknames,
which always use the default isolation level of the statement.

Rules
v Triggers: INSERT statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on
the inserted values. If an insert operation into a view causes an INSTEAD OF
trigger to fire, validity, referential integrity, and constraints will be checked
against the updates that are performed in the trigger, and not against the view
that caused the trigger to fire, or its underlying tables.

v Default values: The value inserted in any column that is not in the column list is
either the default value of the column or null. Columns that do not allow null
values and are not defined with NOT NULL WITH DEFAULT must be included
in the column list. Similarly, if you insert into a view, the value inserted into any
column of the base table that is not in the view is either the default value of the
column or null. Hence, all columns of the base table that are not in the view
must have either a default value or allow null values. The only value that can be
inserted into a generated column defined with the GENERATED ALWAYS clause
is DEFAULT (SQLSTATE 428C9).

v Length: If the insert value of a column is a number, the column must be a
numeric column with the capacity to represent the integral part of the number. If
the insert value of a column is a string, the column must either be a string
column with a length attribute at least as great as the length of the string, or a
datetime column if the string represents a date, time, or timestamp.

v Assignment: Insert values are assigned to columns in accordance with specific
assignment rules.

v Validity: If the table named, or the base table of the view named, has one or
more unique indexes, each row inserted into the table must conform to the
constraints imposed by those indexes. If a view whose definition includes WITH
CHECK OPTION is named, each row inserted into the view must conform to
the definition of the view. For an explanation of the rules governing this
situation, see “CREATE VIEW”.

v Referential integrity: For each constraint defined on a table, each non-null insert
value of the foreign key must be equal to a primary key value of the parent
table.

v Check constraint: Insert values must satisfy the check conditions of the check
constraints defined on the table. An INSERT to a table with check constraints
defined has the constraint conditions evaluated once for each row that is
inserted.

v XML values: A value that is inserted into an XML column must be a
well-formed XML document (SQLSTATE 2200M).

Chapter 30. INSERT 253

v Security policy: If the identified table or the base table of the identified view is
protected with a security policy, the session authorization ID must have the
label-based access control (LBAC) credentials that allow:
– Write access to all protected columns for which a data value is explicitly

provided (SQLSTATE 42512)
– Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

The session authorization ID must also have been granted a security label for
write access for the security policy if an implicit value is used for a
DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:
– A value for the DB2SECURITYLABEL column is not explicitly provided
– A value for the DB2SECURITYLABEL column is explicitly provided but the

session authorization ID does not have write access for that value, and the
security policy is created with the OVERRIDE NOT AUTHORIZED WRITE
SECURITY LABEL option

v Extended indicator variable usage: If enabled, negative indicator variable values
outside the range of -1 through -7 must not be input (SQLSTATE 22010). Also, if
enabled, the default and unassigned extended indicator variable values must not
appear in contexts in which they are not supported (SQLSTATE 22539).

v Extended indicator variables: In an INSERT statement, a value of unassigned
has the effect of setting the column to its default value.
If the target column is a column defined as GENERATED ALWAYS, then it must
be assigned the DEFAULT keyword, or the extended indicator variable-based
values of default or unassigned (SQLSTATE 428C9).

Examples
v Example 1: Insert a new department with the following specifications into the

DEPARTMENT table:
– Department number (DEPTNO) is 'E31'
– Department name (DEPTNAME) is 'ARCHITECTURE'
– Managed by (MGRNO) a person with number '00390'
– Reports to (ADMRDEPT) department 'E01'.

INSERT INTO DEPARTMENT
VALUES (’E31’, ’ARCHITECTURE’, ’00390’, ’E01’)

v Example 2: Insert a new department into the DEPARTMENT table as in example
1, but do not assign a manager to the new department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
VALUES (’E31’, ’ARCHITECTURE’, ’E01’)

v Example 3: Insert two new departments using one statement into the
DEPARTMENT table as in example 2, but do not assign a manager to the new
department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
VALUES (’B11’, ’PURCHASING’, ’B01’),

(’E41’, ’DATABASE ADMINISTRATION’, ’E01’)

v Example 4: Create a temporary table MA_EMP_ACT with the same columns as
the EMP_ACT table. Load MA_EMP_ACT with the rows from the EMP_ACT
table with a project number (PROJNO) starting with the letters 'MA'.

CREATE TABLE MA_EMP_ACT
(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DEC(5,2),

254 Preparation Guide for DB2 10.1 Fundamentals Exam 610

EMSTDATE DATE,
EMENDATE DATE)

INSERT INTO MA_EMP_ACT
SELECT * FROM EMP_ACT

WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

v Example 5: Use a C program statement to add a skeleton project to the
PROJECT table. Obtain the project number (PROJNO), project name
(PROJNAME), department number (DEPTNO), and responsible employee
(RESPEMP) from host variables. Use the current date as the project start date
(PRSTDATE). Assign a null value to the remaining columns in the table.

EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)
VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE);

v Example 6: Specify an INSERT statement as the data-change-table-reference within
a SELECT statement. Define an extra include column whose values are specified
in the VALUES clause, which is then used as an ordering column for the
inserted rows.

SELECT INORDER.ORDERNUM
FROM NEW TABLE (INSERT INTO ORDERS(CUSTNO)INCLUDE (INSERTNUM INTEGER)
VALUES(:CNUM1, 1), (:CNUM2, 2)) InsertedOrders

ORDER BY INSERTNUM;

v Example 7: Use a C program statement to add a document to the DOCUMENTS
table. Obtain values for the document ID (DOCID) column and the document
data (XMLDOC) column from a host variable that binds to an SQL TYPE IS
XML AS BLOB_FILE.

EXEC SQL INSERT INTO DOCUMENTS
(DOCID, XMLDOC) VALUES (:docid, :xmldoc)

v Example 8: For the following INSERT statements, assume that table
SALARY_INFO is defined with three columns, and that the last column is an
implicitly hidden ROW CHANGE TIMESTAMP column. In the following
statement, the implicitly hidden column is explicitly referenced in the column
list and a value is provided for it in the VALUES clause.

INSERT INTO SALARY_INFO (LEVEL, SALARY, UPDATE_TIME)
VALUES (2, 30000, CURRENT TIMESTAMP)

The following INSERT statement uses an implicit column list. An implicit
column list does not include implicitly hidden columns, so the VALUES clause
only contains values for the other two columns.

INSERT INTO SALARY_INFO VALUES (2, 30000)

In this case, the UPDATE_TIME column must be defined to have a default
value, and that default value is used for the row that is inserted.

Chapter 30. INSERT 255

256 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 31. UPDATE statement

The UPDATE statement updates the values of specified columns in rows of a table,
view or nickname, or the underlying tables, nicknames, or views of the specified
fullselect.

Updating a row of a view updates a row of its base table, if no INSTEAD OF
trigger is defined for the update operation on this view. If such a trigger is defined,
the trigger will be executed instead. Updating a row using a nickname updates a
row in the data source object to which the nickname refers.

The forms of this statement are:
v The Searched UPDATE form is used to update one or more rows (optionally

determined by a search condition).
v The Positioned UPDATE form is used to update exactly one row (as determined

by the current position of a cursor).

Invocation

An UPDATE statement can be embedded in an application program or issued
through the use of dynamic SQL statements. It is an executable statement that can
be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v UPDATE privilege on the target table, view, or nickname
v UPDATE privilege on each of the columns that are to be updated, including the

columns of the BUSINESS_TIME period if a period-clause is specified
v CONTROL privilege on the target table, view, or nickname
v DATAACCESS authority

If a row-fullselect is included in the assignment, the privileges held by the
authorization ID of the statement must include at least one of the following
authorities for each referenced table, view, or nickname:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

For each table, view, or nickname referenced by a subquery, the privileges held by
the authorization ID of the statement must also include at least one of the
following authorities:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

If the package used to process the statement is precompiled with SQL92 rules
(option LANGLEVEL with a value of SQL92E or MIA), and the searched form of
an UPDATE statement includes a reference to a column of the table, view, or

© Copyright IBM Corp. 2012 257

nickname in the right side of the assignment-clause, or anywhere in the
search-condition, the privileges held by the authorization ID of the statement must
also include at least one of the following authorities:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

If the specified table or view is preceded by the ONLY keyword, the privileges
held by the authorization ID of the statement must also include the SELECT
privilege for every subtable or subview of the specified table or view.

GROUP privileges are not checked for static UPDATE statements.

If the target of the update operation is a nickname, privileges on the object at the
data source are not considered until the statement is executed at the data source.
At this time, the authorization ID that is used to connect to the data source must
have the privileges that are required for the operation on the object at the data
source. The authorization ID of the statement can be mapped to a different
authorization ID at the data source.

Syntax (searched-update)

�� UPDATE table-name
view-name period-clause

nickname
ONLY (table-name)

view-name
(fullselect)

�

�
correlation-clause include-columns

�

� SET assignment-clause
WHERE search-condition WITH RR

RS
CS
UR

��

period-clause:

FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

Syntax (positioned-update)

�� UPDATE table-name
view-name
nickname
ONLY (table-name)

view-name

correlation-clause
�

� SET assignment-clause WHERE CURRENT OF cursor-name ��

258 Preparation Guide for DB2 10.1 Fundamentals Exam 610

correlation-clause:

AS
correlation-name

�

,

(column-name)

include-columns:

INCLUDE �

,

(column-name data-type)

assignment-clause:

�

�

� �

�

,

column-name = expression
NULL
DEFAULT

..attribute-name
, ,

(1)
(column-name) = (expression)

NULL
DEFAULT

..attribute-name (2)
row-fullselect

Notes:

1 The number of expressions, NULLs and DEFAULTs must match the number
of column names.

2 The number of columns in the select list must match the number of column
names.

Description

table-name, view-name, nickname, or (fullselect)
Identifies the object of the update operation. The name must identify one of
the following objects:
v A table, view, or nickname described in the catalog at the current server
v A table or view at a remote server specified using a remote-object-name

The object must not be a catalog table, a view of a catalog table (unless it is
one of the updatable SYSSTAT views), a system-maintained materialized query
table, or a read-only view that has no INSTEAD OF trigger defined for its
update operations.

If table-name is a typed table, rows of the table or any of its proper subtables
may get updated by the statement. Only the columns of the specified table
may be set or referenced in the WHERE clause. For a positioned UPDATE, the
associated cursor must also have specified the same table, view or nickname in
the FROM clause without using ONLY.

If the object of the update operation is a fullselect, the fullselect must be
updatable, as defined in the “Updatable views” Notes item in the description
of the CREATE VIEW statement.

Chapter 31. UPDATE 259

If the object of the update operation is a nickname, the extended indicator
variable values of DEFAULT and UNASSIGNED must not be used (SQLSTATE
22539).

ONLY (table-name)
Applicable to typed tables, the ONLY keyword specifies that the statement
should apply only to data of the specified table and rows of proper subtables
cannot be updated by the statement. For a positioned UPDATE, the associated
cursor must also have specified the table in the FROM clause using ONLY. If
table-name is not a typed table, the ONLY keyword has no effect on the
statement.

ONLY (view-name)
Applicable to typed views, the ONLY keyword specifies that the statement
should apply only to data of the specified view and rows of proper subviews
cannot be updated by the statement. For a positioned UPDATE, the associated
cursor must also have specified the view in the FROM clause using ONLY. If
view-name is not a typed view, the ONLY keyword has no effect on the
statement.

period-clause
Specifies that a period clause applies to the target of the update operation. If
the target of the update operation is a view, the following conditions apply to
the view:
v The FROM clause of the outer fullselect of the view definition must include

a reference, directly or indirectly, to an application-period temporal table
(SQLSTATE 42724M).

v An INSTEAD OF UPDATE trigger must not be defined for the view
(SQLSTATE 428HY).

FOR PORTION OF BUSINESS_TIME
Specifies that the update only applies to row values for the portion of the
period in the row that is specified by the period clause. The
BUSINESS_TIME period must exist in the table (SQLSTATE 4274M).

FROM value1 TO value2
Specifies that the update applies to rows for the period specified from
value1 up to value2. No rows are updated if value1 is greater than or
equal to value2, or if value1 or value2 is the null value (SQLSTATE
02000).

For the period specified with FROM value1 TO value2, the
BUSINESS_TIME period in a row in the target of the update is in any
of the following states:
v Overlaps the beginning of the specified period if the value of the

begin column is less than value1 and the value of the end column is
greater than value1.

v Overlaps the end of the specified period if the value of the end
column is greater than or equal to value2 and the value of the begin
column is less than value2.

v Is fully contained within the specified period if the value for the
begin column for BUSINESS_TIME is greater than or equal to value1
and the value for the corresponding end column is less than or
equal to value2.

v Is partially contained in the specified period if the row overlaps the
beginning of the specified period or the end of the specified period,
but not both.

260 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v Fully overlaps the specified period if the period in the row overlaps
the beginning and end of the specified period.

v Is not contained in the period if both columns of BUSINESS_TIME
are less than or equal to value1 or greater than or equal to value2.

If the BUSINESS_TIME period in a row is not contained in the
specified period, the row is not updated. Otherwise, the update is
applied based on how the values in the columns of the
BUSINESS_TIME period overlap the specified period as follows:
v If the BUSINESS_TIME period in a row is fully contained within the

specified period, the row is updated and the values of the begin
column and end column of BUSINESS_TIME are unchanged.

v If the BUSINESS_TIME period in a row is partially contained in the
specified period and overlaps the beginning of the specified period:
– The row is updated. In the updated row, the value of the begin

column is set to value1 and the value of the end column is the
original value of the end column.

– A row is inserted using the original values from the row, except
that the end column is set to value1.

v If the BUSINESS_TIME period in a row is partially contained in the
specified period and overlaps the end of the specified period:
– The row is updated. In the updated row, the value of the begin

column is the original value of the begin column and the end
column is set to value2.

– A row is inserted using the original values from the row, except
that the begin column is set to value2.

v If the BUSINESS_TIME period in a row fully overlaps the specified
period:
– The row is updated. In the updated row the value of the begin

column is set to value1 and the value of the end column is set to
value2.

– A row is inserted using the original values from the row, except
that the end column is set to value1.

– An additional row is inserted using the original values from the
row, except that the begin column is set to value2.

value1 and value2
Each expression must return a value that has a date data type,
timestamp data type, or a valid data type for a string
representation of a date or timestamp (SQLSTATE 428HY). The
result of each expression must be comparable to the data type of
the columns of the specified period (SQLSTATE 42884). See the
comparison rules described in “Assignments and comparisons”.

Each expression can contain any of the following supported
operands (SQLSTATE 428HY):
v Constant
v Special register
v Variable
v Scalar function whose arguments are supported operands

(though user-defined functions and non-deterministic functions
cannot be used)

Chapter 31. UPDATE 261

v CAST specification where the cast operand is a supported
operand

v Expression using arithmetic operators and operands

correlation-clause
Can be used within search-condition or assignment-clause to designate a table,
view, nickname, or fullselect. For a description of correlation-clause, see
“table-reference” in the description of “Subselect”.

include-columns
Specifies a set of columns that are included, along with the columns of
table-name or view-name, in the intermediate result table of the UPDATE
statement when it is nested in the FROM clause of a fullselect. The
include-columns are appended at the end of the list of columns that are
specified for table-name or view-name.

INCLUDE
Specifies a list of columns to be included in the intermediate result table of
the UPDATE statement.

column-name
Specifies a column of the intermediate result table of the UPDATE
statement. The name cannot be the same as the name of another include
column or a column in table-name or view-name (SQLSTATE 42711).

data-type
Specifies the data type of the include column. The data type must be one
that is supported by the CREATE TABLE statement.

SET
Introduces the assignment of values to column names.

assignment-clause

column-name
Identifies a column to be updated. If extended indicator variables are not
enabled, the column-name must identify an updatable column of the
specified table, view, or nickname, or identify an INCLUDE column. The
object ID column of a typed table is not updatable (SQLSTATE 428DZ). A
column must not be specified more than once, unless it is followed by
..attribute-name (SQLSTATE 42701).

If it specifies an INCLUDE column, the column name cannot be qualified.

For a Positioned UPDATE:
v If the update-clause was specified in the select-statement of the cursor, each

column name in the assignment-clause must also appear in the
update-clause.

v If the update-clause was not specified in the select-statement of the cursor
and LANGLEVEL MIA or SQL92E was specified when the application
was precompiled, the name of any updatable column may be specified.

v If the update-clause was not specified in the select-statement of the cursor
and LANGLEVEL SAA1 was specified either explicitly or by default
when the application was precompiled, no columns may be updated.

..attribute-name
Specifies the attribute of a structured type that is set (referred to as an
attribute assignment. The column-name specified must be defined with a
user-defined structured type (SQLSTATE 428DP). The attribute-name must

262 Preparation Guide for DB2 10.1 Fundamentals Exam 610

be an attribute of the structured type of column-name (SQLSTATE 42703).
An assignment that does not involve the ..attribute-name clause is referred
to as a conventional assignment.

expression
Indicates the new value of the column. The expression is any expression of
the type described in “Expressions”. The expression cannot include an
aggregate function except when it occurs within a scalar fullselect
(SQLSTATE 42903).

An expression may contain references to columns of the target table of the
UPDATE statement. For each row that is updated, the value of such a
column in an expression is the value of the column in the row before the
row is updated.

An expression cannot contain references to an INCLUDE column. If
expression is a single host variable, the host variable can include an
indicator variable that is enabled for extended indicator variables. If
extended indicator variables are enabled, the extended indicator variable
values of default (-5) or unassigned (-7) must not be used (SQLSTATE
22539) if either of the following statements is true:
v The expression is more complex than a single host variable with explicit

casts
v The target column has data type of structured type

NULL
Specifies the null value and can only be specified for nullable columns
(SQLSTATE 23502). NULL cannot be the value in an attribute assignment
(SQLSTATE 429B9) unless it is specifically cast to the data type of the
attribute.

DEFAULT
Specifies that the default value should be used based on how the
corresponding column is defined in the table. The value that is inserted
depends on how the column was defined.
v If the column was defined as a generated column based on an

expression, the column value will be generated by the system, based on
the expression.

v If the column was defined using the IDENTITY clause, the value is
generated by the database manager.

v If the column was defined using the WITH DEFAULT clause, the value
is set to the default defined for the column (see default-clause in “ALTER
TABLE”).

v If the column was defined using the NOT NULL clause and the
GENERATED clause was not used, or the WITH DEFAULT clause was
not used, or DEFAULT NULL was used, the DEFAULT keyword cannot
be specified for that column (SQLSTATE 23502).

v If the column was defined using the ROW CHANGE TIMESTAMP
clause, the value is generated by the database manager.

The only value that a generated column defined with the GENERATED
ALWAYS clause can be set to is DEFAULT (SQLSTATE 428C9).

The DEFAULT keyword cannot be used as the value in an attribute
assignment (SQLSTATE 429B9).

Chapter 31. UPDATE 263

The DEFAULT keyword cannot be used as the value in an assignment for
update on a nickname where the data source does not support DEFAULT
syntax.

row-fullselect
A fullselect that returns a single row with the number of columns
corresponding to the number of column-names specified for assignment. The
values are assigned to each corresponding column-name. If the result of the
row-fullselect is no rows, then null values are assigned.

A row-fullselect may contain references to columns of the target table of the
UPDATE statement. For each row that is updated, the value of such a
column in an expression is the value of the column in the row before the
row is updated. An error is returned if there is more than one row in the
result (SQLSTATE 21000).

WHERE
Introduces a condition that indicates what rows are updated. You can omit the
clause, give a search condition, or name a cursor. If the clause is omitted, all
rows of the table, view or nickname are updated.

search-condition
Each column-name in the search condition, other than in a subquery, must
name a column of the table, view or nickname. When the search condition
includes a subquery in which the same table is the base object of both the
UPDATE and the subquery, the subquery is completely evaluated before
any rows are updated.

The search-condition is applied to each row of the table, view or nickname
and the updated rows are those for which the result of the
search-condition is true.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and
the results used in applying the search condition. In actuality, a subquery
with no correlated references is executed only once, whereas a subquery
with a correlated reference may have to be executed once for each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor-name
must identify a declared cursor, explained in “DECLARE CURSOR”. The
DECLARE CURSOR statement must precede the UPDATE statement in the
program.

The specified table, view, or nickname must also be named in the FROM
clause of the SELECT statement of the cursor, and the result table of the
cursor must not be read-only. (For an explanation of read-only result
tables, see “DECLARE CURSOR”.)

When the UPDATE statement is executed, the cursor must be positioned
on a row; that row is updated.

This form of UPDATE cannot be used (SQLSTATE 42828) if the cursor
references:
v A view on which an INSTEAD OF UPDATE trigger is defined
v A view that includes an OLAP function in the select list of the fullselect

that defines the view
v A view that is defined, either directly or indirectly, using the WITH

ROW MOVEMENT clause

264 Preparation Guide for DB2 10.1 Fundamentals Exam 610

WITH
Specifies the isolation level at which the UPDATE statement is executed.

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

The default isolation level of the statement is the isolation level of the package
in which the statement is bound. The WITH clause has no effect on nicknames,
which always use the default isolation level of the statement.

Rules
v Triggers: UPDATE statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on
the update values. If an update operation on a view causes an INSTEAD OF
trigger to fire, validity, referential integrity, and constraints will be checked
against the updates that are performed in the trigger, and not against the view
that caused the trigger to fire, or its underlying tables.

v Assignment: Update values are assigned to columns according to specific
assignment rules.

v Validity: The updated row must conform to any constraints imposed on the
table (or on the base table of the view) by any unique index on an updated
column.
If a view is used that is not defined using WITH CHECK OPTION, rows can be
changed so that they no longer conform to the definition of the view. Such rows
are updated in the base table of the view and no longer appear in the view.
If a view is used that is defined using WITH CHECK OPTION, an updated row
must conform to the definition of the view. For an explanation of the rules
governing this situation, see “CREATE VIEW”.

v Check constraint: Update value must satisfy the check-conditions of the check
constraints defined on the table.
An UPDATE to a table with check constraints defined has the constraint
conditions for each column updated evaluated once for each row that is
updated. When processing an UPDATE statement, only the check constraints
referring to the updated columns are checked.

v Referential integrity: The value of the parent unique keys cannot be changed if
the update rule is RESTRICT and there are one or more dependent rows.
However, if the update rule is NO ACTION, parent unique keys can be updated
as long as every child has a parent key by the time the update statement
completes. A non-null update value of a foreign key must be equal to a value of
the primary key of the parent table of the relationship.

v XML values: When an XML column value is updated, the new value must be a
well-formed XML document (SQLSTATE 2200M).

v Security policy: If the identified table or the base table of the identified view is
protected with a security policy, the session authorization ID must have the
label-based access control (LBAC) credentials that allow:
– Write access to all protected columns that are being updated (SQLSTATE

42512)
– Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

Chapter 31. UPDATE 265

– Read and write access to all rows that are being updated (SQLSTATE 42519)
The session authorization ID must also have been granted a security label for
write access for the security policy if an implicit value is used for a
DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:
– The DB2SECURITYLABEL column is not included in the list of columns that

are to be updated (and so it will be implicitly updated to the security label
for write access of the session authorization ID)

– A value for the DB2SECURITYLABEL column is explicitly provided but the
session authorization ID does not have write access for that value, and the
security policy is created with the OVERRIDE NOT AUTHORIZED WRITE
SECURITY LABEL option

v Extended indicator variable usage: If enabled, indicator variable values other
than 0 (zero) through -7 must not be input (SQLSTATE 22010). Also, if enabled,
the default and unassigned extended indicator variable values must not appear
in contexts in which they are not supported (SQLSTATE 22539).

v Extended indicator variables: In the assignment-clause of an UPDATE statement,
an expression that is a reference to a single host variable, or a host variable being
explicitly cast can result in assigning an extended indicator variable value.
Assigning an extended indicator variable-based value of unassigned has the
effect of leaving the target column set to its current value, as if it had not been
specified in the statement. Assigning an extended indicator variable-based value
of default assigns the default value of the column. For information about default
values of data types, see the description of the DEFAULT clause in the "CREATE
TABLE" statement.
If a target column is not updatable (for example, a column in a view that is
defined as an expression), then it must be assigned the extended indicator
variable-based value of unassigned (SQLSTATE 42808).
If the target column is a column defined as GENERATED ALWAYS, then it must
be assigned the DEFAULT keyword, or the extended indicator variable-based
values of default or unassigned (SQLSTATE 428C9).
The UPDATE statement must not assign all target columns to an extended
indicator variable-based value of unassigned (SQLSTATE 22540).

Examples
v Example 1: Change the job (JOB) of employee number (EMPNO) '000290' in the

EMPLOYEE table to 'LABORER'.
UPDATE EMPLOYEE

SET JOB = ’LABORER’
WHERE EMPNO = ’000290’

v Example 2: Increase the project staffing (PRSTAFF) by 1.5 for all projects that
department (DEPTNO) 'D21' is responsible for in the PROJECT table.

UPDATE PROJECT
SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = ’D21’

v Example 3: All the employees except the manager of department (WORKDEPT)
'E21' have been temporarily reassigned. Indicate this by changing their job (JOB)
to the null value and their pay (SALARY, BONUS, COMM) values to zero in the
EMPLOYEE table.

UPDATE EMPLOYEE
SET JOB=NULL, SALARY=0, BONUS=0, COMM=0
WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

This statement could also be written as follows.

266 Preparation Guide for DB2 10.1 Fundamentals Exam 610

UPDATE EMPLOYEE
SET (JOB, SALARY, BONUS, COMM) = (NULL, 0, 0, 0)
WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

v Example 4: Update the salary and the commission column of the employee with
employee number 000120 to the average of the salary and of the commission of
the employees of the updated row's department, respectively.

UPDATE (SELECT EMPNO, SALARY, COMM,
AVG(SALARY) OVER (PARTITION BY WORKDEPT),
AVG(COMM) OVER (PARTITION BY WORKDEPT)
FROM EMPLOYEE E) AS E(EMPNO, SALARY, COMM, AVGSAL, AVGCOMM)

SET (SALARY, COMM) = (AVGSAL, AVGCOMM)
WHERE EMPNO = ’000120’

The previous statement is semantically equivalent to the following statement,
but requires only one access to the EMPLOYEE table, whereas the following
statement specifies the EMPLOYEE table twice.

UPDATE EMPLOYEE EU
SET (EU.SALARY, EU.COMM)
=

(SELECT AVG(ES.SALARY), AVG(ES.COMM)
FROM EMPLOYEE ES
WHERE ES.WORKDEPT = EU.WORKDEPT)
WHERE EU.EMPNO = ’000120’

v Example 5: In a C program display the rows from the EMPLOYEE table and
then, if requested to do so, change the job (JOB) of certain employees to the new
job keyed in.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT *

FROM EMPLOYEE
FOR UPDATE OF JOB;

EXEC SQL OPEN C1;

EXEC SQL FETCH C1 INTO ... ;
if (strcmp (change, "YES") == 0)

EXEC SQL UPDATE EMPLOYEE
SET JOB = :newjob
WHERE CURRENT OF C1;

EXEC SQL CLOSE C1;

v Example 6: These examples mutate attributes of column objects.
Assume that the following types and tables exist:

CREATE TYPE POINT AS (X INTEGER, Y INTEGER)
NOT FINAL WITHOUT COMPARISONS
MODE DB2SQL

CREATE TYPE CIRCLE AS (RADIUS INTEGER, CENTER POINT)
NOT FINAL WITHOUT COMPARISONS
MODE DB2SQL

CREATE TABLE CIRCLES (ID INTEGER, OWNER VARCHAR(50), C CIRCLE

The following example updates the CIRCLES table by changing the OWNER
column and the RADIUS attribute of the CIRCLE column where the ID is 999:

UPDATE CIRCLES
SET OWNER = ’Bruce’

C..RADIUS = 5
WHERE ID = 999

The following example transposes the X and Y coordinates of the center of the
circle identified by 999:

Chapter 31. UPDATE 267

UPDATE CIRCLES
SET C..CENTER..X = C..CENTER..Y,

C..CENTER..Y = C..CENTER..X
WHERE ID = 999

The following example is another way of writing both of the previous
statements. This example combines the effects of both of the previous examples:

UPDATE CIRCLES
SET (OWNER,C..RADIUS,C..CENTER..X,C..CENTER..Y) =

(’Bruce’,5,C..CENTER..Y,C..CENTER..X)
WHERE ID = 999

v Example 7: Update the XMLDOC column of the DOCUMENTS table with
DOCID '001' to the character string that is selected and parsed from the
XMLTEXT table.

UPDATE DOCUMENTS SET XMLDOC =
(SELECT XMLPARSE(DOCUMENT C1 STRIP WHITESPACE)
FROM XMLTEXT WHERE TEXTID = ’001’)

WHERE DOCID = ’001’

268 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 32. DELETE statement

The DELETE statement deletes rows from a table, nickname, or view, or the
underlying tables, nicknames, or views of the specified fullselect.

Deleting a row from a nickname deletes the row from the data source object to
which the nickname refers. Deleting a row from a view deletes the row from the
table on which the view is based if no INSTEAD OF trigger is defined for the
delete operation on this view. If such a trigger is defined, the trigger will be
executed instead.

There are two forms of this statement:
v The Searched DELETE form is used to delete one or more rows (optionally

determined by a search condition).
v The Positioned DELETE form is used to delete exactly one row (as determined by

the current position of a cursor).

Invocation

A DELETE statement can be embedded in an application program or issued
through the use of dynamic SQL statements. It is an executable statement that can
be dynamically prepared.

Authorization

To execute either form of this statement, the privileges held by the authorization
ID of the statement must include at least one of the following authorities:
v DELETE privilege on the table, view, or nickname from which rows are to be

deleted
v CONTROL privilege on the table, view, or nickname from which rows are to be

deleted
v DATAACCESS authority

To execute a Searched DELETE statement, the privileges held by the authorization
ID of the statement must also include at least one of the following authorities for
each table, view, or nickname referenced by a subquery:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

If the package used to process the statement is precompiled with SQL92 rules
(option LANGLEVEL with a value of SQL92E or MIA), and the searched form of a
DELETE statement includes a reference to a column of the table or view in the
search-condition, the privileges held by the authorization ID of the statement must
also include at least one of the following authorities:
v SELECT privilege
v CONTROL privilege
v DATAACCESS authority

© Copyright IBM Corp. 2012 269

If the specified table or view is preceded by the ONLY keyword, the privileges
held by the authorization ID of the statement must also include the SELECT
privilege for every subtable or subview of the specified table or view.

Group privileges are not checked for static DELETE statements.

If the target of the delete operation is a nickname, the privileges on the object at
the data source are not considered until the statement is executed at the data
source. At this time, the authorization ID that is used to connect to the data source
must have the privileges required for the operation on the object at the data
source. The authorization ID of the statement can be mapped to a different
authorization ID at the data source.

Syntax (searched-delete)

�� DELETE FROM table-name
view-name period-clause

nickname
ONLY (table-name)

view-name
(fullselect)

�

�
correlation-clause include-columns

�

�
assignment-clause WHERE search-condition WITH RR

RS
CS
UR

��

period-clause:

FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

include-columns:

INCLUDE �

,

(column-name data-type)

Syntax (positioned-delete)

�� DELETE FROM table-name
view-name
nickname
ONLY (table-name)

view-name

correlation-clause
�

� WHERE CURRENT OF cursor-name ��

270 Preparation Guide for DB2 10.1 Fundamentals Exam 610

correlation-clause:

AS
correlation-name

(column-name)

Description

FROM table-name, view-name, nickname, or (fullselect)
Identifies the object of the delete operation. The name must identify one of the
following objects:
v A table or view that exists in the catalog at the current server
v A table or view at a remote server specified using a remote-object-name

The object must not be a catalog table, a catalog view, a system-maintained
materialized query table, or a read-only view.

If table-name is a typed table, rows of the table or any of its proper subtables
may get deleted by the statement.

If view-name is a typed view, rows of the underlying table or underlying tables
of the view's proper subviews may get deleted by the statement. If view-name is
a regular view with an underlying table that is a typed table, rows of the
typed table or any of its proper subtables may get deleted by the statement.

If the object of the delete operation is a fullselect, the fullselect must be
deletable, as defined in the “Deletable views” Notes item in the description of
the CREATE VIEW statement.

For additional restrictions related to temporal tables and use of a view or
fullselect as the target of the delete operation, see "Considerations for a
system-period temporal table" and "Considerations for an application-period
temporal table" in the Notes section.

Only the columns of the specified table can be referenced in the WHERE
clause. For a positioned DELETE, the associated cursor must also have
specified the table or view in the FROM clause without using ONLY.

FROM ONLY (table-name)
Applicable to typed tables, the ONLY keyword specifies that the statement
should apply only to data of the specified table and rows of proper subtables
cannot be deleted by the statement. For a positioned DELETE, the associated
cursor must also have specified the table in the FROM clause using ONLY. If
table-name is not a typed table, the ONLY keyword has no effect on the
statement.

FROM ONLY (view-name)
Applicable to typed views, the ONLY keyword specifies that the statement
should apply only to data of the specified view and rows of proper subviews
cannot be deleted by the statement. For a positioned DELETE, the associated
cursor must also have specified the view in the FROM clause using ONLY. If
view-name is not a typed view, the ONLY keyword has no effect on the
statement.

period-clause
Specifies that a period clause applies to the target of the delete operation.

If the target of the delete operation is a view, the following conditions apply to
the view:

Chapter 32. DELETE 271

v The FROM clause of the outer fullselect of the view definition must include
a reference, directly or indirectly, to an application-period temporal table
(SQLSTATE 42724M).

v An INSTEAD OF DELETE trigger must not be defined for the view
(SQLSTATE 428HY).

FOR PORTION OF BUSINESS_TIME
Specifies that the delete only applies to row values for the portion of the
period in the row that is specified by the period clause. The
BUSINESS_TIME period must exist in the table (SQLSTATE 4274M). FOR
PORTION OF BUSINESS_TIME must not be specified if the value of the
CURRENT TEMPORAL BUSINESS_TIME special register is not NULL
when the BUSTIMESENSITIVE bind option is set to YES (SQLSTATE
428HY).

FROM value1 TO value2
Specifies that the delete applies to rows for the period specified from
value1 up to value2. No rows are deleted if value1 is greater than or
equal to value2, or if value1 or value2 is the null value (SQLSTATE
02000).

For the period specified with FROM value1 TO value2, the
BUSINESS_TIME period in a row in the target of the delete is in any of
the following states:
v Overlaps the beginning of the specified period if the value of the

begin column is less than value1 and the value of the end column is
greater than value1.

v Overlaps the endof the specified period if the value of the end
column is greater than or equal to value2 and the value of the begin
column is less than value2.

v Is fully contained within the specified period if the value for the
begin column for BUSINESS_TIME is greater than or equal to value1
and the value for the corresponding end column is less than or
equal to value2.

v Is partially contained in the specified period if the row overlaps the
beginning of the specified period or the end of the specified period,
but not both.

v Fully overlaps the specified period if the period in the row overlaps
the beginning and end of the specified period.

v Is not contained in the period if both columns of BUSINESS_TIME
are less than or equal to value1 or greater than or equal to value2.

If the BUSINESS_TIME period in a row is not contained in the
specified period, the row is not deleted. Otherwise, the delete is
applied based on how the values in the columns of the
BUSINESS_TIME period overlap the specified period as follows:
v If the BUSINESS_TIME period in a row is fully contained within the

specified period, the row is deleted.
v If the BUSINESS_TIME period in a row is partially contained in the

specified period and overlaps the beginning of the specified period:
– The row is deleted.
– A row is inserted using the original values from the row, except

that the end column is set to value1.
v If the BUSINESS_TIME period in a row is partially contained in the

specified period and overlaps the end of the specified period:

272 Preparation Guide for DB2 10.1 Fundamentals Exam 610

– The row is deleted.
– A row is inserted using the original values from the row, except

that the begin column is set to value2.
v If the BUSINESS_TIME period in a row fully overlaps the specified

period:
– The row is deleted.
– A row is inserted using the original values from the row, except

that the end column is set to value1.
– An additional row is inserted using the original values from the

row, except that the begin column is set to value2.

value1 and value2
Each expression must return a value that has a date data type,
timestamp data type, or a valid data type for a string
representation of a date or timestamp (SQLSTATE 428HY). The
result of each expression must be comparable to the data type of
the columns of the specified period (SQLSTATE 42884). See the
comparison rules described in “Assignments and comparisons”.

Each expression can contain any of the following supported
operands (SQLSTATE 428HY):
v Constant
v Special register
v Variable
v Scalar function whose arguments are supported operands

(though user-defined functions and non-deterministic functions
cannot be used)

v CAST specification where the cast operand is a supported
operand

v Expression using arithmetic operators and operands

correlation-clause
Can be used within the search-condition to designate a table, view, nickname, or
fullselect. For a description of correlation-clause, see “table-reference” in the
description of “Subselect”.

include-columns
Specifies a set of columns that are included, along with the columns of
table-name or view-name, in the intermediate result table of the DELETE
statement when it is nested in the FROM clause of a fullselect. The
include-columns are appended at the end of the list of columns that are
specified for table-name or view-name.

INCLUDE
Specifies a list of columns to be included in the intermediate result table of
the DELETE statement.

column-name
Specifies a column of the intermediate result table of the DELETE
statement. The name cannot be the same as the name of another include
column or a column in table-name or view-name (SQLSTATE 42711).

data-type
Specifies the data type of the include column. The data type must be one
that is supported by the CREATE TABLE statement.

Chapter 32. DELETE 273

assignment-clause
See the description of assignment-clause under the UPDATE statement. The
same rules apply. The include-columns are the only columns that can be set
using the assignment-clause (SQLSTATE 42703).

WHERE
Specifies a condition that selects the rows to be deleted. The clause can be
omitted, a search condition specified, or a cursor named. If the clause is
omitted, all rows of the table or view are deleted.

search-condition
Each column-name in the search condition, other than in a subquery must
identify a column of the table or view.

The search-condition is applied to each row of the table, view, or nickname,
and the deleted rows are those for which the result of the search-condition is
true.

If the search condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and the
results used in applying the search condition. In actuality, a subquery with
no correlated references is executed once, whereas a subquery with a
correlated reference may have to be executed once for each row. If a
subquery refers to the object table of a DELETE statement or a dependent
table with a delete rule of CASCADE or SET NULL, the subquery is
completely evaluated before any rows are deleted.

CURRENT OF cursor-name
Identifies a cursor that is defined in a DECLARE CURSOR statement of the
program. The DECLARE CURSOR statement must precede the DELETE
statement.

The table, view, or nickname named must also be named in the FROM
clause of the SELECT statement of the cursor, and the result table of the
cursor must not be read-only. (For an explanation of read-only result
tables, see “DECLARE CURSOR”.)

When the DELETE statement is executed, the cursor must be positioned on
a row: that row is the one deleted. After the deletion, the cursor is
positioned before the next row of its result table. If there is no next row,
the cursor is positioned after the last row.

WITH
Specifies the isolation level used when locating the rows to be deleted.

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

The default isolation level of the statement is the isolation level of the package
in which the statement is bound. The WITH clause has no effect on nicknames,
which always use the default isolation level of the statement.

Rules
v Triggers: DELETE statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on
the deleted rows. If a DELETE statement on a view causes an INSTEAD OF

274 Preparation Guide for DB2 10.1 Fundamentals Exam 610

trigger to fire, referential integrity will be checked against the updates
performed in the trigger, and not against the underlying tables of the view that
caused the trigger to fire.

v Referential integrity: If the identified table or the base table of the identified
view is a parent, the rows selected for delete must not have any dependents in a
relationship with a delete rule of RESTRICT, and the DELETE must not cascade
to descendent rows that have dependents in a relationship with a delete rule of
RESTRICT.
If the delete operation is not prevented by a RESTRICT delete rule, the selected
rows are deleted. Any rows that are dependents of the selected rows are also
affected:
– The nullable columns of the foreign keys of any rows that are their

dependents in a relationship with a delete rule of SET NULL are set to the
null value.

– Any rows that are their dependents in a relationship with a delete rule of
CASCADE are also deleted, and the preceding rules apply, in turn, to those
rows.

The delete rule of NO ACTION is checked to enforce that any non-null foreign
key refers to an existing parent row after the other referential constraints have
been enforced.

v Security policy: If the identified table or the base table of the identified view is
protected with a security policy, the session authorization ID must have the
label-based access control (LBAC) credentials that allow:
– Write access to all protected columns (SQLSTATE 42512)
– Read and write access to all of the rows that are selected for deletion

(SQLSTATE 42519)

Examples
v Example 1: Delete department (DEPTNO) 'D11' from the DEPARTMENT table.

DELETE FROM DEPARTMENT
WHERE DEPTNO = ’D11’

v Example 2: Delete all the departments from the DEPARTMENT table (that is,
empty the table).

DELETE FROM DEPARTMENT

v Example 3: Delete from the EMPLOYEE table any sales rep or field rep who
didn't make a sale in 1995.

DELETE FROM EMPLOYEE
WHERE LASTNAME NOT IN

(SELECT SALES_PERSON
FROM SALES
WHERE YEAR(SALES_DATE)=1995)
AND JOB IN (’SALESREP’,’FIELDREP’)

v

v Example 4: Delete all the duplicate employee rows from the EMPLOYEE table.
An employee row is considered to be a duplicate if the last names match. Keep
the employee row with the smallest first name in lexical order.

DELETE FROM
(SELECT ROWNUMBER() OVER (PARTITION BY LASTNAME ORDER BY FIRSTNME)

FROM EMPLOYEE) AS E(RN)
WHERE RN > 1

Chapter 32. DELETE 275

276 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 33. SQL queries

A query specifies a result table. A query is a component of certain SQL statements.

The three forms of a query are:
v subselect
v fullselect
v select-statement.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v For each table or view identified in the query, one of the following authorities:

– SELECT privilege on the table or view
– CONTROL privilege on the table or view

v DATAACCESS authority

For each global variable used as an expression in the query, the privileges held by
the authorization ID of the statement must include one of the following authorities:
v READ privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

If the query contains an SQL data change statement, the authorization
requirements of that statement also apply to the query.

Group privileges, with the exception of PUBLIC, are not checked for queries that
are contained in static SQL statements or DDL statements.

For nicknames, authorization requirements of the data source for the object
referenced by the nickname are applied when the query is processed. The
authorization ID of the statement may be mapped to a different authorization ID at
the data source.

select-statement
The select-statement is the form of a query that can be specified in a DECLARE
CURSOR statement, either directly, or prepared and then referenced. It can also be
issued through the use of dynamic SQL statements, causing a result table to be
displayed on the user's screen. The table specified by a select-statement is the result
of the fullselect.

��

�

,

WITH common-table-expression

fullselect *

read-only-clause
update-clause

�

� *

optimize-for-clause
* *

isolation-clause
�

© Copyright IBM Corp. 2012 277

� *

concurrent-access-resolution-clause
��

The authorization for a select-statement is described in the Authorization section in
"SQL queries".

Examples of select-statement queries
The following examples illustrate the select-statement query.
v Example 1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

v Example 2: Select the project name (PROJNAME), start date (PRSTDATE), and
end date (PRENDATE) from the PROJECT table. Order the result table by the
end date with the most recent dates appearing first.

SELECT PROJNAME, PRSTDATE, PRENDATE
FROM PROJECT
ORDER BY PRENDATE DESC

v Example 3: Select the department number (WORKDEPT) and average
departmental salary (SALARY) for all departments in the EMPLOYEE table.
Arrange the result table in ascending order by average departmental salary.

SELECT WORKDEPT, AVG(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY 2

v Example 4: Declare a cursor named UP_CUR to be used in a C program to
update the start date (PRSTDATE) and the end date (PRENDATE) columns in
the PROJECT table. The program must receive both of these values together
with the project number (PROJNO) value for each row.

EXEC SQL DECLARE UP_CUR CURSOR FOR
SELECT PROJNO, PRSTDATE, PRENDATE

FROM PROJECT
FOR UPDATE OF PRSTDATE, PRENDATE;

v Example 5: This example names the expression SAL+BONUS+COMM as
TOTAL_PAY

SELECT SALARY+BONUS+COMM AS TOTAL_PAY
FROM EMPLOYEE
ORDER BY TOTAL_PAY

v Example 6: Determine the employee number and salary of sales representatives
along with the average salary and head count of their departments. Also, list the
average salary of the department with the highest average salary.
Using a common table expression for this case saves the processing resources of
creating the DINFO view as a regular view. During statement preparation,
accessing the catalog for the view is avoided and, because of the context of the
rest of the fullselect, only the rows for the department of the sales
representatives are considered by the view.
WITH

DINFO (DEPTNO, AVGSALARY, EMPCOUNT) AS
(SELECT OTHERS.WORKDEPT, AVG(OTHERS.SALARY), COUNT(*)

FROM EMPLOYEE OTHERS
GROUP BY OTHERS.WORKDEPT

),
DINFOMAX AS

(SELECT MAX(AVGSALARY) AS AVGMAX FROM DINFO)
SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY,

278 Preparation Guide for DB2 10.1 Fundamentals Exam 610

DINFO.AVGSALARY, DINFO.EMPCOUNT, DINFOMAX.AVGMAX
FROM EMPLOYEE THIS_EMP, DINFO, DINFOMAX
WHERE THIS_EMP.JOB = ’SALESREP’
AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

v Example 7: Given two tables, EMPLOYEE and PROJECT, replace employee
SALLY with a new employee GEORGE, assign all projects lead by SALLY to
GEORGE, and return the names of the updated projects.

WITH
NEWEMP AS (SELECT EMPNO FROM NEW TABLE

(INSERT INTO EMPLOYEE(EMPNO, FIRSTNME)
VALUES(NEXT VALUE FOR EMPNO_SEQ, ’GEORGE’))),

OLDEMP AS (SELECT EMPNO FROM EMPLOYEE WHERE FIRSTNME = ’SALLY’),
UPPROJ AS (SELECT PROJNAME FROM NEW TABLE

(UPDATE PROJECT
SET RESPEMP = (SELECT EMPNO FROM NEWEMP)
WHERE RESPEMP = (SELECT EMPNO FROM OLDEMP))),

DELEMP AS (SELECT EMPNO FROM OLD TABLE
(DELETE FROM EMPLOYEE

WHERE EMPNO = (SELECT EMPNO FROM OLDEMP)))
SELECT PROJNAME FROM UPPROJ;

v Example 8: Retrieve data from the DEPT table. That data will later be updated
with a searched update, and will be locked when the query executes.

SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPT
WHERE ADMRDEPT =’A00’
FOR READ ONLY WITH RS USE AND KEEP EXCLUSIVE LOCKS

v Example 9: Select all columns and rows from the EMPLOYEE table. If another
transaction is concurrently updating, deleting, or inserting data in the
EMPLOYEE table, the select operation will wait to get the data until after the
other transaction is completed.

SELECT * FROM EMPLOYEE WAIT FOR OUTCOME

fullselect
The fullselect is a component of the select-statement, the INSERT statement, and the
CREATE VIEW statement. It is also a component of certain predicates which, in
turn, are components of a statement. A fullselect that is a component of a predicate
is called a subquery, and a fullselect that is enclosed in parentheses is sometimes
called a subquery.

�� subselect
(fullselect)

values-clause

�

UNION subselect
UNION ALL (fullselect)
EXCEPT values-clause
EXCEPT ALL
INTERSECT
INTERSECT ALL

�

�
order-by-clause fetch-first-clause isolation-clause

��

Chapter 33. Queries 279

values-clause:

VALUES �

,

values-row

values-row:

�

expression
NULL
row-expression

,

(expression)
NULL

The set operators UNION, EXCEPT, and INTERSECT correspond to the relational
operators union, difference, and intersection.

A fullselect specifies a result table. If a set operator is not used, the result of the
fullselect is the result of the specified subselect or values-clause.

The authorization for a fullselect is described in the Authorization section in "SQL
queries".

values-clause
Derives a result table by specifying the actual values, using expressions or row
expressions, for each column of a row in the result table. Multiple rows may be
specified. If multiple rows are specified, the extended indicator variable values
of DEFAULT and UNASSIGNED must not be used (SQLSTATE 22539). The
result type of any expression in the values-clause cannot be a row type
(SQLSTATE 428H2).

NULL can only be used with multiple specifications of values-row, either as the
column value of a single column result table or within a row-expression, and at
least one row in the same column must not be NULL (SQLSTATE 42608).

A values-row is specified by:
v A single expression for a single column result table
v n expressions (or NULL) separated by commas and enclosed in parentheses,

where n is the number of columns in the result table or, a row expression for
a multiple column result table.

A multiple row VALUES clause must have the same number of columns in
each values-row (SQLSTATE 42826).

The following examples show values-clause and their meaning.
VALUES (1),(2),(3) - 3 rows of 1 column
VALUES 1, 2, 3 - 3 rows of 1 column
VALUES (1, 2, 3) - 1 row of 3 columns
VALUES (1,21),(2,22),(3,23) - 3 rows of 2 columns

A values-clause that is composed of n specifications of values-row, RE1 to REn,
where n is greater than 1, is equivalent to:

RE1 UNION ALL RE2 ... UNION ALL REn

This means that the corresponding columns of each values-row must be
comparable (SQLSTATE 42825).

280 Preparation Guide for DB2 10.1 Fundamentals Exam 610

UNION or UNION ALL
Derives a result table by combining two other result tables (R1 and R2). If
UNION ALL is specified, the result consists of all rows in R1 and R2. If
UNION is specified without the ALL option, the result is the set of all rows in
either R1 or R2, with the duplicate rows eliminated. In either case, however,
each row of the UNION table is either a row from R1 or a row from R2.

EXCEPT or EXCEPT ALL
Derives a result table by combining two other result tables (R1 and R2). If
EXCEPT ALL is specified, the result consists of all rows that do not have a
corresponding row in R2, where duplicate rows are significant. If EXCEPT is
specified without the ALL option, the result consists of all rows that are only in
R1, with duplicate rows in the result of this operation eliminated.

For compatibility with other SQL implementations, MINUS can be specified as
a synonym for EXCEPT.

INTERSECT or INTERSECT ALL
Derives a result table by combining two other result tables (R1 and R2). If
INTERSECT ALL is specified, the result consists of all rows that are in both R1
and R2. If INTERSECT is specified without the ALL option, the result consists
of all rows that are in both R1 and R2, with the duplicate rows eliminated.

order-by-clause
See “subselect” for details of the order-by-clause. A fullselect that contains an
ORDER BY clause cannot be specified in (SQLSTATE 428FJ):
v A materialized query table
v The outermost fullselect of a view

Note: An ORDER BY clause in a fullselect does not affect the order of the rows
returned by a query. An ORDER BY clause only affects the order of the rows
returned if it is specified in the outermost fullselect.

fetch-first-clause
See “subselect” for details of the fetch-first-clause. A fullselect that contains a
FETCH FIRST clause cannot be specified in (SQLSTATE 428FJ):
v A materialized query table
v The outermost fullselect of a view

Note: A FETCH FIRST clause in a fullselect does not affect the number of rows
returned by a query. A FETCH FIRST clause only affects the number of rows
returned if it is specified in the outermost fullselect.

isolation-clause
See “subselect” for details of the isolation-clause. If isolation-clause is specified for
a fullselect and it could apply equally to a subselect of the fullselect,
isolation-clause is applied to the fullselect. For example, consider the following
query.

SELECT NAME FROM PRODUCT
UNION
SELECT NAME FROM CATALOG
WITH UR

Even though the isolation clause WITH UR could apply only to the subselect
SELECT NAME FROM CATALOG, it is applied to the whole fullselect.

The number of columns in the result tables R1 and R2 must be the same
(SQLSTATE 42826). If the ALL keyword is not specified, R1 and R2 must not

Chapter 33. Queries 281

include any columns having a data type of CLOB, DBCLOB, BLOB, distinct type
on any of these types, or structured type (SQLSTATE 42907).

The column name of the nth column of the result table is the name of the nth
column of R1 if it is named. Otherwise, the nth column of the result table is
unnamed. If the fullselect is used as a select-statement, a generated name is
provided when the statement is described. The generated name cannot be used in
other parts of the SQL statement such as the ORDER BY clause or the UPDATE
clause. The generated name can be determined by performing a DESCRIBE of the
SQL statement and consulting the SQLNAME field.

The generated name can be determined by performing a DESCRIBE of the SQL
statement and consulting the SQLNAME field.

Duplicate rows: Two rows are duplicates if each value in the first is equal to the
corresponding value of the second. For determining duplicates, two null values are
considered equal, and two decimal floating-point representations of the same
number are considered equal. For example, 2.00 and 2.0 have the same value (2.00
and 2.0 compare as equal) but have different exponents, which allows you to
represent both 2.00 and 2.0. So, for example, if the result table of a UNION
operation contains a decimal floating-point column and multiple representations of
the same number exist, the one that is returned (for example, 2.00 or 2.0) is
unpredictable.

When multiple operations are combined in an expression, operations within
parentheses are performed first. If there are no parentheses, the operations are
performed from left to right with the exception that all INTERSECT operations are
performed before UNION or EXCEPT operations.

In the following example, the values of tables R1 and R2 are shown on the left.
The other headings listed show the values as a result of various set operations on
R1 and R2.

R1 R2
UNION
ALL UNION

EXCEPT
ALL EXCEPT

INTER-
SECT
ALL

INTER-
SECT

1 1 1 1 1 2 1 1

1 1 1 2 2 5 1 3

1 3 1 3 2 3 4

2 3 1 4 2 4

2 3 1 5 4

2 3 2 5

3 4 2

4 2

4 3

5 3

3

3

3

4

4

282 Preparation Guide for DB2 10.1 Fundamentals Exam 610

R1 R2
UNION
ALL UNION

EXCEPT
ALL EXCEPT

INTER-
SECT
ALL

INTER-
SECT

4

5

Examples of fullselect queries
The following examples illustrate fullselect queries.
v Example 1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

v Example 2: List the employee numbers (EMPNO) of all employees in the
EMPLOYEE table whose department number (WORKDEPT) either begins with
'E' or who are assigned to projects in the EMP_ACT table whose project number
(PROJNO) equals 'MA2100', 'MA2110', or 'MA2112'.

SELECT EMPNO
FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION
SELECT EMPNO

FROM EMP_ACT
WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

v Example 3: Make the same query as in example 2, and, in addition, "tag" the
rows from the EMPLOYEE table with 'emp' and the rows from the EMP_ACT
table with 'emp_act'. Unlike the result from example 2, this query might return
the same EMPNO more than once, identifying which table it came from by the
associated "tag".

SELECT EMPNO, ’emp’
FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION
SELECT EMPNO, ’emp_act’ FROM EMP_ACT

WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

v Example 4: Make the same query as in example 2, only use UNION ALL so that
no duplicate rows are eliminated.

SELECT EMPNO
FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION ALL
SELECT EMPNO

FROM EMP_ACT
WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

v Example 5: Make the same query as in Example 3, only include an additional
two employees currently not in any table and tag these rows as "new".

SELECT EMPNO, ’emp’
FROM EMPLOYEE
WHEREWORKDEPTLIKE ’E%’

UNION
SELECT EMPNO, ’emp_act’

FROM EMP_ACT
WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

UNION
VALUES (’NEWAAA’, ’new’), (’NEWBBB’, ’new’)

v Example 6: This example of EXCEPT produces all rows that are in T1 but not in
T2.

Chapter 33. Queries 283

(SELECT * FROM T1)
EXCEPT ALL
(SELECT * FROM T2)

If no null values are involved, this example returns the same results as
SELECT ALL *

FROM T1
WHERE NOT EXISTS (SELECT * FROM T2

WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

v Example 7: This example of INTERSECT produces all rows that are in both
tables T1 and T2, removing duplicates.

(SELECT * FROM T1)
INTERSECT
(SELECT * FROM T2)

If no null values are involved, this example returns the same result as
SELECT DISTINCT * FROM T1

WHERE EXISTS (SELECT * FROM T2
WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

where C1, C2, and so on represent the columns of T1 and T2.

subselect
The subselect is a component of the fullselect.

�� select-clause from-clause
where-clause group-by-clause

�

�
having-clause order-by-clause fetch-first-clause

�

�
isolation-clause

��

A subselect specifies a result table derived from the tables, views or nicknames
identified in the FROM clause. The derivation can be described as a sequence of
operations in which the result of each operation is input for the next. (This is only
a way of describing the subselect. The method used to perform the derivation can
be quite different from this description. If portions of the subselect do not actually
need to be executed for the correct result to be obtained, they might or might not
be executed.)

The authorization for a subselect is described in the Authorization section in "SQL
queries".

The clauses of the subselect are processed in the following sequence:
1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause
6. ORDER BY clause
7. FETCH FIRST clause

284 Preparation Guide for DB2 10.1 Fundamentals Exam 610

A subselect that contains an ORDER BY or FETCH FIRST clause cannot be
specified:
v In the outermost fullselect of a view.
v In the outer fullselect of a materialized query table.
v Unless the subselect is enclosed in parenthesis.

For example, the following is not valid (SQLSTATE 428FJ):
SELECT * FROM T1

ORDER BY C1
UNION
SELECT * FROM T2

ORDER BY C1

The following example is valid:
(SELECT * FROM T1

ORDER BY C1)
UNION
(SELECT * FROM T2

ORDER BY C1)

Note: An ORDER BY clause in a subselect does not affect the order of the rows
returned by a query. An ORDER BY clause only affects the order of the rows
returned if it is specified in the outermost fullselect.

For details about the clauses in the subselect query, refer to the following topics:
v “select-clause”
v “from-clause” on page 289
v “where-clause” on page 309
v “group-by-clause” on page 309
v “having-clause” on page 315
v “order-by-clause” on page 316
v “fetch-first-clause” on page 319
v “isolation-clause (subselect query)” on page 319

select-clause
The SELECT clause specifies the columns of the final result table.

�� SELECT
ALL

DISTINCT

�

*
,

expression
AS

new-column-name
exposed-name.*

��

The column values are produced by the application of the select list to the final
result table, R. The select list is the names or expressions specified in the SELECT
clause, and R is the result of the previous operation of the subselect. For example,
if the only clauses specified are SELECT, FROM, and WHERE, R is the result of
that WHERE clause.

Chapter 33. Queries 285

ALL
Retains all rows of the final result table, and does not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table. If
DISTINCT is used, no string column of the result table can be a LOB type,
distinct type based on LOB, or structured type. DISTINCT can be used more
than once in a subselect. This includes SELECT DISTINCT, the use of
DISTINCT in an aggregate function of the select list or HAVING clause, and
subqueries of the subselect.

Two rows are duplicates of one another only if each value in the first is equal
to the corresponding value in the second. For determining duplicates, two null
values are considered equal, and two different decimal floating-point
representations of the same number are considered equal. For example, -0 is
equal to +0 and 2.0 is equal to 2.00. Each of the decimal floating-point special
values are also considered equal: -NAN equals -NAN, -SNAN equals -SNAN,
-INFINITY equals -INFINITY, INFINITY equals INFINITY, SNAN equals
SNAN, and NAN equals NAN.

When the data type of a column is decimal floating-point, and multiple
representations of the same number exist in the column, the particular value
that is returned for a SELECT DISTINCT can be any one of the representations
in the column.

For compatibility with other SQL implementations, UNIQUE can be specified
as a synonym for DISTINCT.

Select list notation

* Represents a list of names that identify the columns of table R, excluding any
columns defined as IMPLICITLY HIDDEN. The first name in the list identifies
the first column of R, the second name identifies the second column of R, and
so on.

The list of names is established when the program containing the SELECT
clause is bound. Hence * (the asterisk) does not identify any columns that have
been added to a table after the statement containing the table reference has
been bound.

expression
Specifies the values of a result column. Can be any expression that is a valid
SQL language element, but commonly includes column names. Each column
name used in the select list must unambiguously identify a column of R. The
result type of the expression cannot be a row type (SQLSTATE 428H2).

new-column-name or AS new-column-name
Names or renames the result column. The name must not be qualified and
does not have to be unique. Subsequent usage of column-name is limited
as follows:
v A new-column-name specified in the AS clause can be used in the

order-by-clause, provided the name is unique.
v A new-column-name specified in the AS clause of the select list cannot be

used in any other clause within the subselect (where-clause,
group-by-clause or having-clause).

v A new-column-name specified in the AS clause cannot be used in the
update-clause.

286 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v A new-column-name specified in the AS clause is known outside the
fullselect of nested table expressions, common table expressions and
CREATE VIEW.

exposed-name.*
Represents the list of names that identify the columns of the result table
identified by exposed-name, excluding any columns defined as IMPLICITLY
HIDDEN. The exposed-name can be a table name, view name, nickname, or
correlation name, and must designate a table, view or nickname named in the
FROM clause. The first name in the list identifies the first column of the table,
view or nickname, the second name in the list identifies the second column of
the table, view or nickname, and so on.

The list of names is established when the statement containing the SELECT
clause is bound. Therefore, * does not identify any columns that have been
added to a table after the statement has been bound.

The number of columns in the result of SELECT is the same as the number of
expressions in the operational form of the select list (that is, the list established
when the statement is prepared), and cannot exceed 500 for a 4K page size or
1012 for an 8K, 16K, or 32K page size.

Limitations on string columns

For restrictions using varying-length character strings on the select list, see
“Character strings” on page 120.

Applying the select list

Some of the results of applying the select list to R depend on whether GROUP BY
or HAVING is used. The results are described in two separate lists.

If GROUP BY or HAVING is used
v An expression X (not an aggregate function) used in the select list must have a

GROUP BY clause with:
– a grouping-expression in which each expression or column-name

unambiguously identifies a column of R (see “group-by-clause” on page 309)
or

– each column of R referenced in X as a separate grouping-expression.
v The select list is applied to each group of R, and the result contains as many

rows as there are groups in R. When the select list is applied to a group of R,
that group is the source of the arguments of the aggregate functions in the select
list.

If neither GROUP BY nor HAVING is used
v Either the select list must not include any aggregate functions, or each

column-name in the select list must be specified within an aggregate function or
must be a correlated column reference.

v If the select does not include aggregate functions, then the select list is applied
to each row of R and the result contains as many rows as there are rows in R.

v If the select list is a list of aggregate functions, then R is the source of the
arguments of the functions and the result of applying the select list is one row.

In either case the nth column of the result contains the values specified by
applying the nth expression in the operational form of the select list.

Chapter 33. Queries 287

Null attributes of result columns

Result columns do not allow null values if they are derived from:
v A column that does not allow null values
v A constant
v The COUNT or COUNT_BIG function
v A host variable that does not have an indicator variable
v A scalar function or expression that does not include an operand where nulls are

allowed

Result columns allow null values if they are derived from:
v Any aggregate function except COUNT or COUNT_BIG
v A column where null values are allowed
v A scalar function or expression that includes an operand where nulls are

allowed
v A NULLIF function with arguments containing equal values
v A host variable that has an indicator variable, an SQL parameter, an SQL

variable, or a global variable
v A result of a set operation if at least one of the corresponding items in the select

list is nullable
v An arithmetic expression or view column that is derived from an arithmetic

expression and the database is configured with dft_sqlmathwarn set to Yes
v A scalar subselect
v A dereference operation
v A GROUPING SETS grouping-expression

Names of result columns
v If the AS clause is specified, the name of the result column is the name specified

on the AS clause.
v If the AS clause is not specified and a column list is specified in the correlation

clause, the name of the result column is the corresponding name in the
correlation column list.

v If neither an AS clause nor a column list in the correlation clause is specified
and the result column is derived only from a single column (without any
functions or operators), then the result column name is the unqualified name of
that column.

v If neither an AS clause nor a column list in the correlation clause is specified
and the result column is derived only from a single SQL variable or SQL
parameter (without any functions or operators), then the result column name is
the unqualified name of that SQL variable or SQL parameter.

v If neither an AS clause nor a column list in the correlation clause is specified
and the result column is derived using a dereference operation, then the result
column name is the unqualified name of the target column of the dereference
operation.

v All other result column names are unnamed. The system assigns temporary
numbers (as character strings) to these columns.

Data types of result columns

Each column of the result of SELECT acquires a data type from the expression
from which it is derived.

288 Preparation Guide for DB2 10.1 Fundamentals Exam 610

When the expression is ... The data type of the result column is ...

the name of any numeric column the same as the data type of the column,
with the same precision and scale for
DECIMAL columns, or the same precision for
DECFLOAT columns.

a constant the same as the data type of the constant.

the name of any numeric variable the same as the data type of the variable,
with the same precision and scale for
DECIMAL variables, or the same precision
for DECFLOAT variables.

the name of any string column the same as the data type of the column,
with the same length attribute.

the name of any string variable the same as the data type of the variable,
with the same length attribute; if the data
type of the variable is not identical to an SQL
data type (for example, a NUL-terminated
string in C), the result column is a
varying-length string.

the name of a datetime column the same as the data type of the column.

the name of a user-defined type column the same as the data type of the column.

the name of a reference type column the same as the data type of the column.

from-clause
The FROM clause specifies an intermediate result table.

�� �

,

FROM table-reference ��

If only one table-reference is specified, the intermediate result table is the result of
that table-reference. If more than one table-reference is specified, the intermediate
result table consists of all possible combinations of the rows of the specified
table-reference (the Cartesian product). Each row of the result is a row from the first
table-reference concatenated with a row from the second table-reference, concatenated
in turn with a row from the third, and so on. The number of rows in the result is
the product of the number of rows in all the individual table references. For a
description of table-reference, see “table-reference.”

table-reference
A table-reference specifies an intermediate result table.

Chapter 33. Queries 289

�� single-table-reference
single-view-reference
single-nickname-reference
only-table-reference
outer-table-reference
analyze_table-expression
nested-table-expression
data-change-table-reference
table-function-reference
collection-derived-table
xmltable-expression

(1)
joined-table

��

single-table-reference:

�table-name
period-specification correlation-clause

�

�
tablesample-clause

single-view-reference:

�view-name
period-specification correlation-clause

single-nickname-reference:

nickname
correlation-clause

only-table-reference:

ONLY (table-name)
view-name correlation-clause

outer-table-reference:

OUTER (table-name)
view-name correlation-clause

analyze_table-expression:

table-name
view-name

ANALYZE_TABLE (implementation-clause)

290 Preparation Guide for DB2 10.1 Fundamentals Exam 610

implementation-clause:

IMPLEMENTATION ' string '

nested-table-expression:

(fullselect)
(2) correlation-clause

LATERAL
continue-handler WITHIN

data-change-table-reference:

FINAL TABLE (insert-statement)
NEW correlation-clause
FINAL TABLE (searched-update-statement)
NEW
OLD

OLD TABLE (searched-delete-statement)

table-function-reference:

�

TABLE (function-name ())
, correlation-clause

(3)
expression typed-correlation-clause

collection-derived-table:

UNNEST-table-function
(4) correlation-clause

WITH ORDINALITY

xmltable-expression:

(5)
xmltable-function

correlation-clause

period-specification:

FOR SYSTEM_TIME AS OF value
BUSINESS_TIME FROM value1 TO value2

BETWEEN value1 AND value2

correlation-clause:

�

AS
correlation-name

,

(column-name)

Chapter 33. Queries 291

tablesample-clause:

TABLESAMPLE BERNOULLI
SYSTEM

(numeric-expression1) �

�
REPEATABLE (numeric-expression2)

typed-correlation-clause:

�

AS
correlation-name

,

(column-name data-type)

continue-handler:

�

,

RETURN DATA UNTIL specific-condition-value

specific-condition-value:

�

VALUE
FEDERATED SQLSTATE string-constant

,

SQLCODE integer-constant

Notes:

1 The syntax for joined-table is covered in a separate topic; refer to
“joined-table” on page 307.

2 TABLE can be specified in place of LATERAL.

3 The typed-correlation-clause is required for generic table functions. This
clause cannot be specified for any other table functions.

4 WITH ORDINALITY can be specified only if the argument to the UNNEST
table function is one or more ordinary array variables or functions with
ordinary array return types; an associative array variable or function with an
associative array return type cannot be specified (SQLSTATE 428HT).

5 An XMLTABLE function can be part of a table-reference. In this case,
subexpressions within the XMLTABLE expression are in-scope of prior range
variables in the FROM clause. For more information, see the description of
“XMLTABLE”.

A table-reference specifies an intermediate result table.
v If a single-table-reference is specified without a period-specification or a

tablesample-clause, the intermediate result table is the rows of the table. If a
period-specification is specified, the intermediate result table consists of the rows
of the temporal table where the period matches the specification. If a
tablesample-clause is specified, the intermediate result table consists of a
sampled subset of the rows of the table.

292 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v If a single-view-reference is specified without a period-specification, the
intermediate result table is that view. If a period-specification is specified,
temporal table references in the view consider only the rows where the period
matches the specification.

v If a single-nickname-reference is specified, the intermediate result table is the
data from the data source for that nickname.

v If an only-table-reference is specified, the intermediate result table consists of
only the rows of the specified table or view without considering the applicable
subtables or subviews.

v If an outer-table-reference is specified, the intermediate result table represents a
virtual table based on all the subtables of a typed table or the subviews of a
typed view.

v If an analyze_table-expression is specified, the result table contains the result of
executing a specific data mining model by using an in-database analytics
provider, a named model implementation, and input data.

v If a nested-table-expression is specified, the result table is the result of the
specified fullselect.

v If a data-change-table-reference is specified, the intermediate result table is the
set of rows that are directly changed by the searched UPDATE, searched
DELETE, or INSERT statement that is included in the clause.

v If a table-function-reference is specified, the intermediate result table is the set of
rows that are returned by the table function.

v If a collection-derived-table is specified, the intermediate result table is the set of
rows that are returned by the UNNEST function.

v If an xmltable-expression is specified, the intermediate result table is the set of
rows that are returned by the XMLTABLE function.

v If a joined-table is specified, the intermediate result table is the result of one or
more join operations. For more information, see “joined-table” on page 307.

single-table-reference

Each table-name specified as a table-reference must identify an existing table at
the application server or an existing table at a remote server specified using a
remote-object-name. The intermediate result table is the result of the table. If
the table-name references a typed table, the intermediate result table is the
UNION ALL of the table with all its subtables, with only the columns of the
table-name. A period-specification can be used with a temporal table to specify
the period from which the rows are returned as the intermediate result table. A
tablesample-clause can be used to specify that a sample of the rows be
returned as the intermediate result table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a
non-null value CTST and table-name identifies a system-period temporal table,
the table reference is executed as if it contained the following specification with
the special register set to the null value:

table-name FOR SYSTEM_TIME AS OF CTST

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a
non-null value CTBT and table-name identifies an application-period temporal
table, the table reference is executed as if it contained the following
specification with the special register set to the null value:

table-name FOR BUSINESS_TIME AS OF CTBT

single-view-reference

Chapter 33. Queries 293

Each view-name specified as a table-reference must identify one of the following
objects:
v An existing view at the application server
v A view at a remote server specified using a remote-object-name
v The table-name of a common table expression

The intermediate result table is the result of the view or common table
expression. If the view-name references a typed view, the intermediate result
table is the UNION ALL of the view with all its subviews, with only the
columns of the view-name. A period-specification can be used with a view
defined over a temporal table to specify the period from which the rows are
returned as the intermediate result table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a
non-null value CTST, and view-name identifies a system-period temporal table,
the table reference is executed as if it contained the following specification with
the special register set to the null value:

view-name FOR SYSTEM_TIME AS OF CTST

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a
non-null value CTBT, and view-name identifies an application-period temporal
table, the table reference is executed as if it contained the following
specification with the special register set to the null value:

view-name FOR BUSINESS_TIME AS OF CTBT

single-nickname-reference

Each nickname specified as a table-reference must identify an existing nickname
at the application server. The intermediate result table is the result of the
nickname.

only-table-reference

The use of ONLY(table-name) or ONLY(view-name) means that the rows of the
applicable subtables or subviews are not included in the intermediate result
table. If the table-name used with ONLY does not have subtables, then
ONLY(table-name) is equivalent to specifying table-name. If the view-name used
with ONLY does not have subviews, then ONLY(view-name) is equivalent to
specifying view-name.

The use of ONLY requires the SELECT privilege on every subtable of
table-name or subview of view-name.

outer-table-reference

The use of OUTER(table-name) or OUTER(view-name) represents a virtual table.
If the table-name or view-name used with OUTER does not have subtables or
subviews, then specifying OUTER is equivalent to not specifying OUTER. If
the table-name does have subtables, the intermediate result table from
OUTER(table-name) is derived from table-name as follows:
v The columns include the columns of table-name followed by the additional

columns introduced by each of its subtables, if any. The additional columns
are added on the right, traversing the subtable hierarchy in depth-first order.
Subtables that have a common parent are traversed in creation order of their
types.

v The rows include all the rows of table-name and all the rows of its subtables.
Null values are returned for columns that are not in the subtable for the row.

If the view-name does have subviews, the intermediate result table from
OUTER(view-name) is derived from view-name as follows:

294 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v The columns include the columns of view-name followed by the additional
columns introduced by each of its subviews, if any. The additional columns
are added on the right, traversing the subview hierarchy in depth-first order.
Subviews that have a common parent are traversed in creation order of their
types.

v The rows include all the rows of view-name and all the rows of its subviews.
Null values are returned for columns that are not in the subview for the row.

The use of OUTER requires the SELECT privilege on every subtable of
table-name or subview of view-name.

analyze_table-expression

table-name | view-name
The table-name or view-name variable must identify an existing table or view
or identify the table-name of a common table expression that you define
preceding the fullselect containing the table-reference. You can specify a
nickname. However, in-database analytics are intended for local data, and
retrieving the data for a nickname from another data source does not take
advantage of the intended performance benefits.

ANALYZE_TABLE
Returns the result of executing a specific data mining model by using an
in-database analytics provider, a named model implementation, and input
data. A query referencing the ANALYZE_TABLE parameter cannot be a
static SQL statement or a data definition language (DDL) statement. Input
or output values cannot be of type CHAR FOR BIT DATA, VARCHAR
FOR BIT DATA, BLOB, CLOB, DBCLOB, NCLOB, XML, or
DB2SECURITYLABEL.

IMPLEMENTATION ’string’
Specifies how the expression is to be evaluated. The string parameter is a
string constant whose maximum length is 1024 bytes. The specified value
is used to establish a session with an in-database analytic provider. When
you specify SAS as the provider, you must specify values for the following
case-insensitive parameters:

PROVIDER
Currently, the only supported provider value is SAS.

ROUTINE_SOURCE_TABLE
Specifies a user table containing the DS2 code (and, optionally, any
required format or metadata) to implement the algorithm that is
specified by the ROUTINE_SOURCE_NAME parameter. DS2 is a
procedural language processor for SAS, designed for data modeling,
stored procedures, and data extraction, transformation, and load (ETL)
processing.

The routine source table has a defined structure (see the examples at
the end of the “analyze_table-expression” section) and, in a partitioned
database environment, must be on the catalog database partition. The
table cannot be a global temporary table. The MODELDS2 column for
a particular row must not be empty or contain the null value. If the
value of the MODELFORMATS or MODELMETADATA column is not
null, the value must have a length greater than 0. If you do not specify
a table schema name, the value of the CURRENT SCHEMA special
register is used.

ROUTINE_SOURCE_NAME
Specifies the name of the algorithm to use.

Chapter 33. Queries 295

For example:
IMPLEMENTATION

’PROVIDER=SAS;
ROUTINE_SOURCE_TABLE=ETLIN.SOURCE_TABLE;
ROUTINE_SOURCE_NAME=SCORING_FUN1;’

If the table name, schema name, or algorithm name contains lowercase or
mixed-case letters, specify delimited identifiers, as shown in the following
example:
IMPLEMENTATION

’PROVIDER=SAS;
ROUTINE_SOURCE_TABLE="ETLin"."Source_Table";
ROUTINE_SOURCE_NAME="Scoring_Fun1";’

The following examples show you how to use the ANALYZE_TABLE
expression.

SAS tooling helps you to define a table to store model implementations for
scoring functions. A row in this table stores an algorithm that is written in DS2,
with any required SAS format information and metadata. The MODELNAME
column serves as the primary key. For a particular value of the
ROUTINE_SOURCE_NAME parameter, at most one row is retrieved from the
table that the ROUTINE_SOURCE_TABLE parameter specifies. For example:

CREATE TABLE ETLIN.SOURCE_TABLE (
MODELNAME VARCHAR(128) NOT NULL PRIMARY KEY,
MODELDS2 BLOB(4M) NOT NULL,
MODELFORMATS BLOB(4M),
MODELMETADATA BLOB(4M)

);

The MODELNAME column contains the name of the algorithm. The
MODELDS2 column contains the DS2 source code that implements the
algorithm. The MODELFORMATS column contains the aggregated SAS format
definition that the algorithm requires. If the algorithm does not require a SAS
format, this column contains the null value. The MODELMETADATA column
contains any additional metadata that the algorithm requires. If the algorithm
does not require any additional metadata, this column contains the null value.
If the SAS EP installer creates the table, it might include additional columns.
v Use the data in columns C1 and C2 in table T1 as input data with the

scoring model SCORING_FUN1, whose implementation is stored in
ETLIN.SOURCE_TABLE:

WITH sas_score_in (c1,c2) AS
(SELECT c1,c2 FROM t1)
SELECT *

FROM sas_score_in ANALYZE_TABLE(
IMPLEMENTATION

’PROVIDER=SAS;
ROUTINE_SOURCE_TABLE=ETLIN.SOURCE_TABLE;
ROUTINE_SOURCE_NAME=SCORING_FUN1;’);

v Use all the data in the table T2 with the scoring model SCORING_FUN2,
whose implementation is stored in ETLIN.SOURCE_TABLE:

SELECT *
FROM t2 ANALYZE_TABLE(

IMPLEMENTATION
’PROVIDER=SAS;
ROUTINE_SOURCE_TABLE=ETLIN.SOURCE_TABLE;
ROUTINE_SOURCE_NAME=SCORING_FUN2;’);

296 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v Use all the data in view V1 with the scoring model SCORING_FUN3, whose
implementation is stored in ETLIN.SOURCE_TABLE, and return the output
in ascending order of the first output column:

SELECT *
FROM v1 ANALYZE_TABLE(

IMPLEMENTATION
’PROVIDER=SAS;
ROUTINE_SOURCE_TABLE=ETLIN.SOURCE_TABLE;
ROUTINE_SOURCE_NAME=SCORING_FUN3;’)

ORDER BY 1;

nested-table-expression

A fullselect in parentheses is called a nested table expression. The intermediate
result table is the result of that fullselect. The columns of the result do not
need unique names, but a column with a non-unique name cannot be explicitly
referenced. If LATERAL is specified, the fullselect can include correlated
references to results columns of table references specified to the left of the
nested table expression. If the nested table expression involves data from a
federated data source, a continue-handler can be specified to tolerate certain
error conditions from the data source.

An expression in the select list of a nested table expression that is referenced
within, or is the target of, a data change statement within a fullselect is valid
only when it does not include:
v A function that reads or modifies SQL data
v A function that is non-deterministic
v A function that has external action
v An OLAP function

If a view is referenced directly in, or as the target of a nested table expression
in a data change statement within a FROM clause, the view must meet either
of the following conditions:
v Be symmetric (have WITH CHECK OPTION specified)
v Satisfy the restriction for a WITH CHECK OPTION view

If the target of a data change statement within a FROM clause is a nested table
expression, the following restrictions apply:
v Modified rows are not requalified
v WHERE clause predicates are not reevaluated
v ORDER BY or FETCH FIRST operations are not redone

A nested table expression can be used in the following situations:
v In place of a view to avoid creating the view (when general use of the view

is not required)
v When the required intermediate result table is based on host variables

data-change-table-reference

A data-change-table-reference clause specifies an intermediate result table. This
table is based on the rows that are directly changed by the searched UPDATE,
searched DELETE, or INSERT statement that is included in the clause. A
data-change-table-reference can be specified as the only table-reference in the
FROM clause of the outer fullselect that is used in a select-statement, a SELECT
INTO statement, or a common table expression. A data-change-table-reference can
be specified as the only table reference in the only fullselect in a SET Variable
statement (SQLSTATE 428FL). The target table or view of the data change
statement is considered to be a table or view that is referenced in the query;

Chapter 33. Queries 297

therefore, the authorization ID of the query must have SELECT privilege on
that target table or view. A data-change-table-reference clause cannot be specified
in a view definition, materialized query table definition, or FOR statement
(SQLSTATE 428FL).

The target of the UPDATE, DELETE, or INSERT statement cannot be a
temporary view defined in a common table expression (SQLSTATE 42807) or a
nickname (SQLSTATE 25000).

Expressions in the select list of a view or fullselect as target of a data change
statement in a table-reference can be selected only if OLD TABLE is specified or
the expression does not include the following elements (SQLSTATE 428G6):
v A subquery
v A function that reads or modifies SQL data
v A function is that is non-deterministic or has an external action
v An OLAP function
v A NEXT VALUE FOR sequence reference

FINAL TABLE
Specifies that the rows of the intermediate result table represent the set of
rows that are changed by the SQL data change statement as they exist at
the completion of the data change statement. If there are AFTER triggers or
referential constraints that result in further operations on the table that is
the target of the SQL data change statement, an error is returned
(SQLSTATE 560C6). If the target of the SQL data change statement is a
view that is defined with an INSTEAD OF trigger for the type of data
change, an error is returned (SQLSTATE 428G3).

NEW TABLE
Specifies that the rows of the intermediate result table represent the set of
rows that are changed by the SQL data change statement before the
application of referential constraints and AFTER triggers. Data in the target
table at the completion of the statement might not match the data in the
intermediate result table because of additional processing for referential
constraints and AFTER triggers.

OLD TABLE
Specifies that the rows of the intermediate result table represent the set of
rows that are changed by the SQL data change statement as they existed
before the application of the data change statement.

(searched-update-statement)
Specifies a searched UPDATE statement. A WHERE clause or a SET clause
in the UPDATE statement cannot contain correlated references to columns
outside of the UPDATE statement.

(searched-delete-statement)
Specifies a searched DELETE statement. A WHERE clause in the DELETE
statement cannot contain correlated references to columns outside of the
DELETE statement.

(insert-statement)
Specifies an INSERT statement. A fullselect in the INSERT statement cannot
contain correlated references to columns outside of the fullselect of the
INSERT statement.

The content of the intermediate result table for a data-change-table-reference is
determined when the cursor opens. The intermediate result table contains all
manipulated rows, including all the columns in the specified target table or

298 Preparation Guide for DB2 10.1 Fundamentals Exam 610

view. All the columns of the target table or view for an SQL data change
statement are accessible using the column names from the target table or view.
If an INCLUDE clause was specified within a data change statement, the
intermediate result table will contain these additional columns.

table-function-reference

In general, a table function, together with its argument values, can be
referenced in the FROM clause of a SELECT in exactly the same way as a table
or view. Each function-name together with the types of its arguments, specified
as a table reference must resolve to an existing table function at the application
server. There are, however, some special considerations which apply.
v Table function column names: Unless alternative column names are

provided following the correlation-name, the column names for the table
function are those specified in the RETURNS or RETURNS GENERIC
TABLE clause of the CREATE FUNCTION statement. This is analogous to
the names of the columns of a table, which are defined in the CREATE
TABLE statement.

v Table function resolution: The arguments specified in a table function
reference, together with the function name, are used by an algorithm called
function resolution to determine the exact function to be used. This is no
different from what happens with other functions (such as scalar functions)
that are used in a statement.

v Table function arguments: As with scalar function arguments, table function
arguments can generally be any valid SQL expression. The following
examples are valid syntax:

Example 1: SELECT c1
FROM TABLE(tf1(’Zachary’)) AS z
WHERE c2 = ’FLORIDA’;

Example 2: SELECT c1
FROM TABLE(tf2 (:hostvar1, CURRENT DATE)) AS z;

Example 3: SELECT c1
FROM t
WHERE c2 IN

(SELECT c3 FROM
TABLE(tf5(t.c4)) AS z -- correlated reference
) -- to previous FROM clause

Example 4: SELECT c1
FROM TABLE(tf6(’abcd’)) -- tf6 is a generic

AS z (c1 int, c2 varchar(100)) -- java table function

v Table functions that modify SQL data: Table functions that are specified
with the MODIFIES SQL DATA option can be used only as the last table
reference in a select-statement, common-table-expression, or RETURN statement
that is a subselect, a SELECT INTO, or a row-fullselect in a SET statement.
Only one table function is allowed in one FROM clause, and the table
function arguments must be correlated to all other table references in the
subselect (SQLSTATE 429BL). The following examples have valid syntax for
a table function with the MODIFIES SQL DATA property:

Example 1: SELECT c1
FROM TABLE(tfmod(’Jones’)) AS z

Example 2: SELECT c1
FROM t1, t2, TABLE(tfmod(t1.c1, t2.c1)) AS z

Example 3: SET var =
(SELECT c1
FROM TABLE(tfmod(’Jones’)) AS z

Chapter 33. Queries 299

Example 4: RETURN SELECT c1
FROM TABLE(tfmod(’Jones’)) AS z

Example 5: WITH v1(c1) AS
(SELECT c1
FROM TABLE(tfmod(:hostvar1)) AS z)
SELECT c1
FROM v1, t1 WHERE v1.c1 = t1.c1

Example 6: SELECT z.*
FROM t1, t2, TABLE(tfmod(t1.c1, t2.c1))
AS z (col1 int)

collection-derived-table

A collection-derived-table can be used to convert the elements of an array into
values of a column in separate rows. If WITH ORDINALITY is specified, an
extra column of data type INTEGER is appended. This column contains the
position of the element in the array. The columns can be referenced in the
select list and the in rest of the subselect by using the names specified for the
columns in the correlation-clause. The collection-derived-table clause can be used
only in a context where arrays are supported (SQLSTATE 42887). See the
“UNNEST table function” for details.

xmltable-expression
An xmltable-expression specifies an invocation of the built-in XMLTABLE
function which determines the intermediate result table. See XMLTABLE for
more information.

joined-table

A joined-table specifies an intermediate result set that is the result of one or
more join operations. For more information, see “joined-table” on page 307.

period-specification

A period-specification identifies an intermediate result table consisting of the
rows of the referenced table where the period matches the specification. A
period-specification can be specified following the name of a temporal table or
the name of a view. The same period name must not be specified more than
once for the same table reference (SQLSTATE 428HY). The rows of the table
reference are derived by application of the period specifications.

If the table is a system-period temporal table and a period-specification for the
SYSTEM_TIME period is not specified, the table reference includes all current
rows and does not include any historical rows of the table. If the table is an
application-period temporal table and a period-specification for the
BUSINESS_TIME period is not specified, the table reference includes all rows
of the table. If the table is a bitemporal table and a period-specification is not
specified for both SYSTEM_TIME and BUSINESS_TIME, the table reference
includes all current rows of the table and does not include any historical rows
of the table.

If the table reference is a single-view-reference, the rows of the view reference
are derived by application of the period specifications to all of the temporal
tables accessed when computing the result table of the view. If the view does
not access any temporal table, then the period-specification has no effect on the
result table of the view. If period-specification is used, the view definition or any
view definitions referenced when computing the result table of the view must
not include any references to compiled SQL functions or external functions
with a data access indication other than NO SQL (SQLSTATE 428HY).

300 Preparation Guide for DB2 10.1 Fundamentals Exam 610

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a value
other than the null value, then a period-specification that references
SYSTEM_TIME must not be specified for the table reference or view reference,
unless the value in effect for the SYSTIMESENSITIVE bind option is NO
(SQLSTATE 428HY).

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a
value other than the null value, then a period specification that references
BUSINESS_TIME must not be specified for the table reference or view
reference, unless the value in effect for the BUSTIMESENSITIVE bind option is
NO (SQLSTATE 428HY).

FOR SYSTEM_TIME

Specifies that the SYSTEM_TIME period is used for the period-specification.
If the clause is specified following a table-name, the table must be a
system-period temporal table (SQLSTATE 428HY). FOR SYSTEM_TIME
must not be specified if the value of the CURRENT TEMPORAL
SYSTEM_TIME special register is not the null value and the
SYSTIMESENSITIVE bind option is set to YES (SQLSTATE 428HY).

FOR BUSINESS_TIME

Specifies that the BUSINESS_TIME period is used for the
period-specification. If the clause is specified following a table-name,
BUSINESS_TIME must be a period defined in the table (SQLSTATE
4274M). FOR BUSINESS_TIME must not be specified if the value of the
CURRENT TEMPORAL BUSINESS_TIME special register is not the null
value and the BUSTIMESENSITIVE bind option is set to YES (SQLSTATE
428HY).

value, value1, and value2

The value, value1, and value2 expressions return the null value or a value of
one of the following built-in data types (SQLSTATE 428HY): a DATE, a
TIMESTAMP, or a character string that is not a CLOB or DBCLOB. If the
argument is a character string, it must be a valid character string
representation of a timestamp or a date (SQLSTATE 22007). For the valid
formats of string representations of timestamp values, see the section
"String representations of datetime values" in the topic "Datetime values".

Each expression can contain any of the following supported operands
(SQLSTATE 428HY):
v Constant
v Special register
v Variable (host-variable, SQL parameter, SQL variable, transition variable)
v Parameter marker
v Scalar function whose arguments are supported operands (user-defined

functions and non-deterministic functions cannot be used)
v CAST specification where the cast operand is a supported operand
v Expression using arithmetic operators and operands

AS OF value

Specifies that the table reference includes each row for which the value of
the begin column for the specified period is less than or equal to value, and
the value of the end column for the period is greater than value. If value is
the null value, the table reference is an empty table.

Chapter 33. Queries 301

Example: The following query returns the insurance coverage information
for insurance policy number 100 on August 31, 2010.
SELECT coverage FROM policy_info FOR BUSINESS_TIME

AS OF ’2010-08-31’ WHERE policy_id = ’100’

FROM value1 TO value2

Specifies that the table reference includes rows that exist for the period
specified from value1 to value2. A row is included in the table reference if
the value of the begin column for the specified period in the row is less
than value2, and the value of the end column for the specified period in the
row is greater than value1. The table reference contains zero rows if value1
is greater than or equal to value2. If value1 or value2 is the null value, the
table reference is an empty table.

Example: The following query returns the insurance coverage information
for insurance policy 100, during the year 2009 (from January 1, 2009 at
12:00 AM until before January 1, 2010).
SELECT coverage FROM policy_info FOR BUSINESS_TIME

FROM ’2009-01-01’ TO ’2010-01-01’ WHERE policy_id = ’100’

BETWEEN value1 AND value2

Specifies that the table reference includes rows in which the specified
period overlaps at any point in time between value1 and value2. A row is
included in the table reference if the value of the begin column for the
specified period in the row is less than or equal to value2 and the value of
the end column for the specified period in the row is greater than value1.
The table reference contains zero rows if value1 is greater than value2. If
value1 is equal to value2, the expression is equivalent to AS OF value1. If
value1 or value2 is the null value, the table reference is an empty table.

Example: The following query returns the insurance coverage information
for insurance policy number 100, during the year 2008 (between January 1,
2008 and December 31, 2008 inclusive).
SELECT coverage FROM policy_info FOR BUSINESS_TIME

BETWEEN ’2008-01-01’ AND ’2008-12-31’ WHERE policy_id = ’100’

Following are syntax alternatives for period-specification clauses:
v AS OF TIMESTAMP can be specified in place of FOR SYSTEM_TIME AS OF
v VERSIONS BETWEEN TIMESTAMP can be specified in place of FOR

SYSTEM_TIME BETWEEN

correlation-clause

The exposed names of all table references must be unique. An exposed name
is:
v A correlation-name

v A table-name that is not followed by a correlation-name

v A view-name that is not followed by a correlation-name

v A nickname that is not followed by a correlation-name

v An alias-name that is not followed by a correlation-name

If a correlation-clause clause does not follow a function-name reference,
xmltable-expression expression, nested table expression, or data-change-table-
reference reference, or if a typed-correlation-clause clause does not follow a
function-name reference, then there is no exposed name for that table reference.

302 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Each correlation-name is defined as a designator of the immediately preceding
table-name, view-name, nickname, function-name reference, xmltable-expression,
nested table expression, or data-change-table-reference. Any qualified reference to
a column must use the exposed name. If the same table name, view, or
nickname is specified twice, at least one specification must be followed by a
correlation-name. The correlation-name is used to qualify references to the
columns of the table, view or nickname. When a correlation-name is specified,
column-names can also be specified to give names to the columns of the table
reference. If the correlation-clause does not include column-names, the exposed
column names are determined as follows:
v Column names of the referenced table, view, or nickname when the

table-reference is a table-name, view-name, nickname, or alias-name

v Column names specified in the RETURNS clause of the CREATE
FUNCTION statement when the table-reference is a function-name reference

v Column names specified in the COLUMNS clause of the xmltable-expression
when the table-reference is an xmltable-expression

v Column names exposed by the fullselect when the table-reference is a
nested-table-expression

v Column names from the target table of the data change statement, along
with any defined INCLUDE columns when the table-reference is a
data-change-table-reference

typed-correlation-clause

A typed-correlation-clause clause defines the appearance and contents of the table
generated by a generic table function. This clause must be specified when the
table-function-references is a generic table function and cannot be specified for
any other table reference. The following data-type values are supported in
generic table functions:

Table 24. Data types supported in generic table functions

SQL column data type Equivalent Java data type

SMALLINT short

INTEGER int

BIGINT long

REAL float

DOUBLE double

DECIMAL(p,s) java.math.BigDecimal

NUMERIC(p,s) java.math.BigDecimal

CHAR(n) java.lang.String

CHAR(n) FOR BIT DATA COM.ibm.db2.app.Blob

VARCHAR(n) java.lang.String

VARCHAR(n) FOR BIT DATA COM.ibm.db2.app.Blob

GRAPHIC(n) java.lang.String

VARGRAPHIC(n) String

BLOB(n) COM.ibm.db2.app.Blob

CLOB(n) COM.ibm.db2.app.Clob

DBCLOB(n) COM.ibm.db2.app.Clob

DATE String

Chapter 33. Queries 303

Table 24. Data types supported in generic table functions (continued)

SQL column data type Equivalent Java data type

TIME String

TIMESTAMP String

XML AS CLOB(n) COM.ibm.db2.jcc.DB2Xml

tablesample-clause

The optional tablesample-clause can be used to obtain a random subset (a
sample) of the rows from the specified table-name, rather than the entire
contents of that table-name, for this query. This sampling is in addition to any
predicates that are specified in the where-clause. Unless the optional
REPEATABLE clause is specified, each execution of the query will usually yield
a different sample, except in degenerate cases where the table is so small
relative to the sample size that any sample must return the same rows. The
size of the sample is controlled by the numeric-expression1 in parentheses,
representing an approximate percentage (P) of the table to be returned.

TABLESAMPLE

The method by which the sample is obtained is specified after the
TABLESAMPLE keyword, and can be either BERNOULLI or SYSTEM. For
both methods, the exact number of rows in the sample might be different
for each execution of the query, but on average is approximately P percent
of the table, before any predicates further reduce the number of rows.

The table-name must be a stored table. It can be a materialized query table
(MQT) name, but not a subselect or table expression for which an MQT
has been defined, because there is no guarantee that the database manager
will route to the MQT for that subselect.

Semantically, sampling of a table occurs before any other query processing,
such as applying predicates or performing joins. Repeated accesses of a
sampled table within a single execution of a query (such as in a
nested-loop join or a correlated subquery) will return the same sample.
More than one table can be sampled in a query.

BERNOULLI

BERNOULLI sampling considers each row individually. It includes each
row in the sample with probability P/100 (where P is the value of
numeric-expression1), and excludes each row with probability 1 - P/100,
independently of the other rows. So if the numeric-expression1 evaluated to
the value 10, representing a ten percent sample, each row would be
included with probability 0.1, and excluded with probability 0.9.

SYSTEM

SYSTEM sampling permits the database manager to determine the most
efficient manner in which to perform the sampling. In most cases, SYSTEM
sampling applied to a table-name means that each page of table-name is
included in the sample with probability P/100, and excluded with
probability 1 - P/100. All rows on each page that is included qualify for
the sample. SYSTEM sampling of a table-name generally executes much
faster than BERNOULLI sampling, because fewer data pages are retrieved.
However, SYSTEM sampling can often yield less accurate estimates for
aggregate functions, such as SUM(SALES), especially if the rows of
table-name are clustered on any columns referenced in that query. The
optimizer might in certain circumstances decide that it is more efficient to

304 Preparation Guide for DB2 10.1 Fundamentals Exam 610

perform SYSTEM sampling as if it were BERNOULLI sampling. An
example is when a predicate on table-name can be applied by an index and
is much more selective than the sampling rate P.

numeric-expression1

The numeric-expression1 specifies the size of the sample to be obtained from
table-name, expressed as a percentage. It must be a constant numeric
expression that cannot contain columns. The expression must evaluate to a
positive number that is less than or equal to 100, but can be between 1 and
0. For example, a value of 0.01 represents one one-hundredth of a percent,
meaning that 1 row in 10 000 is sampled, on average. A numeric-expression1
that evaluates to 100 is handled as if the tablesample-clause were not
specified. If numeric-expression1 evaluates to the null value, or to a value
that is greater than 100 or less than 0, an error is returned (SQLSTATE
2202H).

REPEATABLE (numeric-expression2)

It is sometimes desirable for sampling to be repeatable from one execution
of the query to the next; for example, during regression testing or query
debugging. This can be accomplished by specifying the REPEATABLE
clause. The REPEATABLE clause requires the specification of a
numeric-expression2 in parentheses, which serves the same role as the seed
in a random number generator. Adding the REPEATABLE clause to the
tablesample-clause of any table-name ensures that repeated executions of
that query (using the same value for numeric-expression2) return the same
sample, assuming that the data itself has not been updated, reorganized, or
repartitioned. To guarantee that the same sample of table-name is used
across multiple queries, use of a global temporary table is recommended.
Alternatively, the multiple queries can be combined into one query, with
multiple references to a sample that is defined using the WITH clause.

v Example 1: Request a 10% Bernoulli sample of the Sales table for auditing
purposes.

SELECT * FROM Sales
TABLESAMPLE BERNOULLI(10)

v Example 2: Compute the total sales revenue in the Northeast region for each
product category, using a random 1% SYSTEM sample of the Sales table. The
semantics of SUM are for the sample itself, so to extrapolate the sales to the
entire Sales table, the query must divide that SUM by the sampling rate
(0.01).
SELECT SUM(Sales.Revenue) / (0.01)

FROM Sales TABLESAMPLE SYSTEM(1)
WHERE Sales.RegionName = ’Northeast’
GROUP BY Sales.ProductCategory

v Example 3: Using the REPEATABLE clause, modify the previous query to
ensure that the same (yet random) result is obtained each time the query is
executed. The value of the constant enclosed by parentheses is arbitrary.
SELECT SUM(Sales.Revenue) / (0.01)

FROM Sales TABLESAMPLE SYSTEM(1) REPEATABLE(3578231)
WHERE Sales.RegionName = ’Northeast’
GROUP BY Sales.ProductCategory

continue-handler

Certain errors that occur within a nested-table-expression can be tolerated, and
instead of returning an error, the query can continue and return a result. This
is referred to as an error tolerant nested-table-expression.

Chapter 33. Queries 305

Specifying the RETURN DATA UNTIL clause will cause any rows that are
returned from the fullselect before the indicated condition is encountered to
make up the result set from the fullselect. This means that a partial result set
(which can also be an empty result set) from the fullselect is acceptable as the
result for the nested-table-expression.

The FEDERATED keyword restricts the condition to handle only errors that
occur at a remote data source.

The condition can be specified as an SQLSTATE value, with a string-constant
length of 5. You can optionally specify an SQLCODE value for each specified
SQLSTATE value. For portable applications, specify SQLSTATE values as much
as possible, because SQLCODE values are generally not portable across
platforms and are not part of the SQL standard.

Only certain conditions can be tolerated. Errors that do not allow the rest of
the query to be executed cannot be tolerated, and an error is returned for the
whole query. The specific-condition-value might specify conditions that cannot
actually be tolerated by the database manager, even if a specific SQLSTATE or
SQLCODE value is specified, and for these cases, an error is returned.

A query or view containing an error tolerant nested-table-expression is read-only.

The fullselect of an error tolerant nested-table-expression is not optimized using
materialized query tables.

specific-condition-value

The following SQLSTATE values and SQLCODE values have the potential,
when specified, to be tolerated by the database manager:
v SQLSTATE 08001; SQLCODEs -1336, -30080, -30081, -30082
v SQLSTATE 08004
v SQLSTATE 42501
v SQLSTATE 42704; SQLCODE -204
v SQLSTATE 42720
v SQLSTATE 28000

Correlated references in table-references

Correlated references can be used in nested table expressions or as arguments to
table functions. The basic rule that applies for both of these cases is that the
correlated reference must be from a table-reference at a higher level in the hierarchy
of subqueries. This hierarchy includes the table-references that have already been
resolved in the left-to-right processing of the FROM clause. For nested table
expressions, the LATERAL keyword must exist before the fullselect. The following
examples have valid syntax:

Example 1: SELECT t.c1, z.c5
FROM t, TABLE(tf3(t.c2)) AS z -- t precedes tf3
WHERE t.c3 = z.c4; -- in FROM, so t.c2

-- is known

Example 2: SELECT t.c1, z.c5
FROM t, TABLE(tf4(2 * t.c2)) AS z -- t precedes tf4
WHERE t.c3 = z.c4; -- in FROM, so t.c2

-- is known

Example 3: SELECT d.deptno, d.deptname,
empinfo.avgsal, empinfo.empcount

FROM department d,
LATERAL (SELECT AVG(e.salary) AS avgsal,

306 Preparation Guide for DB2 10.1 Fundamentals Exam 610

COUNT(*) AS empcount
FROM employee e -- department precedes nested
WHERE e.workdept=d.deptno -- table expression and

) AS empinfo; -- LATERAL is specified,
-- so d.deptno is known

But the following examples are not valid:
Example 4: SELECT t.c1, z.c5

FROM TABLE(tf6(t.c2)) AS z, t -- cannot resolve t in t.c2!
WHERE t.c3 = z.c4; -- compare to Example 1 above.

Example 5: SELECT a.c1, b.c5
FROM TABLE(tf7a(b.c2)) AS a, TABLE(tf7b(a.c6)) AS b
WHERE a.c3 = b.c4; -- cannot resolve b in b.c2!

Example 6: SELECT d.deptno, d.deptname,
empinfo.avgsal, empinfo.empcount

FROM department d,
(SELECT AVG(e.salary) AS avgsal,

COUNT(*) AS empcount
FROM employee e -- department precedes nested
WHERE e.workdept=d.deptno -- table expression but

) AS empinfo; -- LATERAL is not specified,
-- so d.deptno is unknown

joined-table
A joined table specifies an intermediate result table that is the result of either an
inner join or an outer join. The table is derived by applying one of the join
operators: CROSS, INNER, LEFT OUTER, RIGHT OUTER, or FULL OUTER to its
operands.

��
INNER

table-reference JOIN table-reference ON join-condition
outer

table-reference CROSS JOIN table-reference
(joined-table)

��

outer:

OUTER
LEFT
RIGHT
FULL

Cross joins represent the cross product of the tables, where each row of the left
table is combined with every row of the right table. Inner joins can be thought of
as the cross product of the tables, keeping only the rows where the join condition
is true. The result table might be missing rows from either or both of the joined
tables. Outer joins include the inner join and preserve these missing rows. There
are three types of outer joins:
v Left outer join includes rows from the left table that were missing from the

inner join.
v Right outer join includes rows from the right table that were missing from the

inner join.
v Full outer join includes rows from both the left and right tables that were

missing from the inner join.

Chapter 33. Queries 307

If a join-operator is not specified, INNER is implicit. The order in which multiple
joins are performed can affect the result. Joins can be nested within other joins. The
order of processing for joins is generally from left to right, but based on the
position of the required join-condition. Parentheses are recommended to make the
order of nested joins more readable. For example:

TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1
RIGHT JOIN TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1
ON TB1.C1=TB3.C1

is the same as:
(TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1)

RIGHT JOIN (TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1)
ON TB1.C1=TB3.C1

A joined table can be used in any context in which any form of the SELECT
statement is used. A view or a cursor is read-only if its SELECT statement includes
a joined table.

A join-condition is a search-condition, except that:
v It cannot include any dereference operations or the DEREF function, where the

reference value is other than the object identifier column
v Any column referenced in an expression of the join-condition must be a column

of one of the operand tables of the associated join (in the scope of the same
joined-table clause)

v Any function referenced in an expression of the join-condition of a full outer join
must be deterministic and have no external action

v It cannot include an XMLQUERY or XMLEXISTS expression

An error occurs if the join condition does not comply with these rules (SQLSTATE
42972).

Column references are resolved using the rules for resolution of column name
qualifiers. The same rules that apply to predicates apply to join conditions.

Join operations

A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left and
right operand tables of the JOIN operator of the join-condition. For all possible
combinations of rows of T1 and T2, a row of T1 is paired with a row of T2 if the
join-condition is true. When a row of T1 is joined with a row of T2, a row in the
result consists of the values of that row of T1 concatenated with the values of that
row of T2. The execution might involve the generation of a null row. The null row
of a table consists of a null value for each column of the table, regardless of
whether the null values are allowed in the columns.

The following list summarizes the result of the join operations:
v The result of T1 CROSS JOIN T2 consists of all possible pairings of their rows.
v The result of T1 INNER JOIN T2 consists of their paired rows where the

join-condition is true.
v The result of T1 LEFT OUTER JOIN T2 consists of their paired rows where the

join-condition is true and, for each unpaired row of T1, the concatenation of that
row with the null row of T2. Null values are allowed in all columns derived
from T2.

308 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows where the
join-condition is true and, for each unpaired row of T2, the concatenation of that
row with the null row of T1. Null values are allowed in all columns derived
from T1.

v The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T2, the concatenation of that row with the null row of T1
and, for each unpaired row of T1, the concatenation of that row with the null
row of T2. Null values are allowed in all columns derived from T1 and T2.

where-clause
The WHERE clause specifies an intermediate result table that consists of those
rows of R for which the search-condition is true. R is the result of the FROM clause
of the subselect.

�� WHERE search-condition ��

The search-condition must conform to the following rules:
v Each column-name must unambiguously identify a column of R or be a correlated

reference. A column-name is a correlated reference if it identifies a column of a
table-reference in an outer subselect.

v An aggregate function must not be specified unless the WHERE clause is
specified in a subquery of a HAVING clause and the argument of the function is
a correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R, and
the results are used in the application of the search-condition to the given row of R.
A subquery is actually executed for each row of R only if it includes a correlated
reference. In fact, a subquery with no correlated references might be executed just
once, whereas a subquery with a correlated reference might be executed once for
each row.

group-by-clause
The GROUP BY clause specifies an intermediate result table that consists of a
grouping of the rows of R. R is the result of the previous clause of the subselect.

�� �

,

GROUP BY grouping-expression
grouping-sets
super-groups

��

In its simplest form, a GROUP BY clause contains a grouping expression. A grouping
expression is an expression used in defining the grouping of R. Each expression or
column name included in grouping-expression must unambiguously identify a
column of R (SQLSTATE 42702 or 42703). A grouping expression cannot include a
scalar fullselect or an XMLQUERY or XMLEXISTS expression (SQLSTATE 42822),
or any expression or function that is not deterministic or has an external action
(SQLSTATE 42845).

Note: The following expressions, which do not contain an explicit column
reference, can be used in a grouping-expression to identify a column of R:
v ROW CHANGE TIMESTAMP FOR table-designator

Chapter 33. Queries 309

v ROW CHANGE TOKEN FOR table-designator

v RID_BIT or RID scalar function

More complex forms of the GROUP BY clause include grouping-sets and
super-groups. For a description of grouping-sets, see “grouping-sets.” For a
description of super-groups, see “super-groups” on page 311.

The result of GROUP BY is a set of groups of rows. Each row in this result
represents the set of rows for which the grouping-expression is equal. For grouping,
all null values from a grouping-expression are considered equal.

If a grouping-expression contains decimal floating-point columns, and multiple
representations of the same number exist in these columns, the number that is
returned can be any of the representations of the number.

A grouping-expression can be used in a search condition in a HAVING clause, in an
expression in a SELECT clause or in a sort-key-expression of an ORDER BY clause
(see “order-by-clause” on page 316 for details). In each case, the reference specifies
only one value for each group. For example, if the grouping-expression is col1+col2,
then an allowed expression in the select list is col1+col2+3. Associativity rules for
expressions disallow the similar expression, 3+col1+col2, unless parentheses are
used to ensure that the corresponding expression is evaluated in the same order.
Thus, 3+(col1+col2) is also allowed in the select list. If the concatenation operator is
used, the grouping-expression must be used exactly as the expression was specified
in the select list.

If the grouping-expression contains varying-length strings with trailing blanks, the
values in the group can differ in the number of trailing blanks and might not all
have the same length. In that case, a reference to the grouping-expression still
specifies only one value for each group, but the value for a group is chosen
arbitrarily from the available set of values. Thus, the actual length of the result
value is unpredictable.

As noted, there are some cases where the GROUP BY clause cannot refer directly
to a column that is specified in the SELECT clause as an expression
(scalar-fullselect, not deterministic or external action functions). To group using
such an expression, use a nested table expression or a common table expression to
first provide a result table with the expression as a column of the result. For an
example using nested table expressions, see Example 9 in “Examples of subselect
queries” on page 321.

grouping-sets

�� �

�

,

GROUPING SETS (grouping-expression)
super-groups

,

(grouping-expression)
super-groups

��

A grouping-sets specification can be used to specify multiple grouping clauses in a
single statement. This can be thought of as the union of two or more groups of
rows into a single result set. It is logically equivalent to the union of multiple

310 Preparation Guide for DB2 10.1 Fundamentals Exam 610

subselects with the group by clause in each subselect corresponding to one
grouping set. A grouping set can be a single element or can be a list of elements
delimited by parentheses, where an element is either a grouping-expression or a
super-group. The groups can be computed with a single pass over the base table
using grouping-sets.

A simple grouping-expression or the more complex forms of super-groups are
supported by the grouping-sets specification. For a description of super-groups, see
“super-groups.”

Note that grouping sets are the fundamental building blocks for GROUP BY
operations. A simple GROUP BY with a single column can be considered a
grouping set with one element. For example:

GROUP BY a

is the same as
GROUP BY GROUPING SETS((a))

and
GROUP BY a,b,c

is the same as
GROUP BY GROUPING SETS((a,b,c))

Non-aggregation columns from the select list of the subselect that are excluded
from a grouping set will return a null for such columns for each row generated for
that grouping set. This reflects the fact that aggregation was done without
considering the values for those columns.

The use of grouping sets is illustrated in Example 2 through Example 7 in
“Examples of subselect queries with grouping sets, cube, and rollup queries” on
page 325.

super-groups

��
(1)

ROLLUP (grouping-expression-list)
(2)

CUBE (grouping-expression-list)
grand-total

��

grouping-expression-list:

�

�

,

grouping-expression
,

(grouping-expression)

grand-total:

()

Chapter 33. Queries 311

Notes:

1 Alternate specification when used alone in group-by-clause is:
grouping-expression-list WITH ROLLUP.

2 Alternate specification when used alone in group-by-clause is:
grouping-expression-list WITH CUBE.

ROLLUP (grouping-expression-list)
A ROLLUP grouping is an extension to the GROUP BY clause that produces a
result set containing sub-total rows in addition to the “regular” grouped rows.
Sub-total rows are “super-aggregate” rows that contain further aggregates
whose values are derived by applying the same aggregate functions that were
used to obtain the grouped rows. These rows are called sub-total rows, because
that is their most common use; however, any aggregate function can be used
for the aggregation. For instance, MAX and AVG are used in Example 8 in
“Examples of subselect queries with grouping sets, cube, and rollup queries”
on page 325. The GROUPING aggregate function can be used to indicate if a
row was generated by the super-group.

A ROLLUP grouping is a series of grouping-sets. The general specification of a
ROLLUP with n elements

GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

is equivalent to
GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn)

(C1,C2,...,Cn-1)
...
(C1,C2)
(C1)
())

Note that the n elements of the ROLLUP translate to n+1 grouping sets. Note
also that the order in which the grouping-expressions is specified is significant
for ROLLUP. For example, the following clause:
GROUP BY ROLLUP(a,b)

is equivalent to:
GROUP BY GROUPING SETS((a,b)

(a)
())

Similarly, the following clause:
GROUP BY ROLLUP(b,a)

is equivalent to:
GROUP BY GROUPING SETS((b,a)

(b)
())

The ORDER BY clause is the only way to guarantee the order of the rows in
the result set. Example 3 in “Examples of subselect queries with grouping sets,
cube, and rollup queries” on page 325 illustrates the use of ROLLUP.

CUBE (grouping-expression-list)
A CUBE grouping is an extension to the GROUP BY clause that produces a
result set that contains all the rows of a ROLLUP aggregation and, in addition,
contains "cross-tabulation" rows. Cross-tabulation rows are additional

312 Preparation Guide for DB2 10.1 Fundamentals Exam 610

"super-aggregate" rows that are not part of an aggregation with sub-totals. The
GROUPING aggregate function can be used to indicate if a row was generated
by the super-group.

Similar to a ROLLUP, a CUBE grouping can also be thought of as a series of
grouping-sets. In the case of a CUBE, all permutations of the cubed
grouping-expression-list are computed along with the grand total. Therefore, the
n elements of a CUBE translate to 2**n (2 to the power n) grouping-sets. For
example, a specification of:

GROUP BY CUBE(a,b,c)

is equivalent to:
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a,c)
(b,c)
(a)
(b)
(c)
())

Note that the three elements of the CUBE translate into eight grouping sets.

The order of specification of elements does not matter for CUBE. 'CUBE
(DayOfYear, Sales_Person)' and 'CUBE (Sales_Person, DayOfYear)' yield the
same result sets. The use of the word 'same' applies to content of the result set,
not to its order. The ORDER BY clause is the only way to guarantee the order
of the rows in the result set. The use of CUBE is illustrated in Example 4 in
“Examples of subselect queries with grouping sets, cube, and rollup queries”
on page 325.

grouping-expression-list
A grouping-expression-list is used within a CUBE or ROLLUP clause to define
the number of elements in the CUBE or ROLLUP operation. This is controlled
by using parentheses to delimit elements with multiple grouping-expressions.

For example, suppose that a query is to return the total expenses for the
ROLLUP of City within a Province but not within a County. However, the
clause:

GROUP BY ROLLUP(Province, County, City)

results in unwanted subtotal rows for the County. In the clause:
GROUP BY ROLLUP(Province, (County, City))

the composite (County, City) forms one element in the ROLLUP and, therefore,
a query that uses this clause will yield the required result. In other words, the
two-element ROLLUP:

GROUP BY ROLLUP(Province, (County, City))

generates:
GROUP BY GROUPING SETS((Province, County, City)

(Province)
())

and the three-element ROLLUP generates:
GROUP BY GROUPING SETS((Province, County, City)

(Province, County)
(Province)
())

Chapter 33. Queries 313

Example 2 in “Examples of subselect queries with grouping sets, cube, and
rollup queries” on page 325 also utilizes composite column values.

grand-total
Both CUBE and ROLLUP return a row which is the overall (grand total)
aggregation. This can be separately specified with empty parentheses within
the GROUPING SET clause. It can also be specified directly in the GROUP BY
clause, although there is no effect on the result of the query. Example 4 in
“Examples of subselect queries with grouping sets, cube, and rollup queries”
on page 325 uses the grand-total syntax.

Combining grouping sets

This can be used to combine any of the types of GROUP BY clauses. When simple
grouping-expression fields are combined with other groups, they are "appended" to
the beginning of the resulting grouping sets. When ROLLUP or CUBE expressions
are combined, they operate similarly to "multipliers" on the remaining expression,
forming additional grouping set entries according to the definition of either
ROLLUP or CUBE.

For instance, combining grouping-expression elements acts as follows:
GROUP BY a, ROLLUP(b,c)

is equivalent to
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a))

Or similarly,
GROUP BY a, b, ROLLUP(c,d)

is equivalent to
GROUP BY GROUPING SETS((a,b,c,d)

(a,b,c)
(a,b))

Combining of ROLLUP elements acts as follows:
GROUP BY ROLLUP(a), ROLLUP(b,c)

is equivalent to
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a)
(b,c)
(b)
())

Similarly,
GROUP BY ROLLUP(a), CUBE(b,c)

is equivalent to
GROUP BY GROUPING SETS((a,b,c)

(a,b)
(a,c)
(a)

314 Preparation Guide for DB2 10.1 Fundamentals Exam 610

(b,c)
(b)
(c)
())

Combining of CUBE and ROLLUP elements acts as follows:
GROUP BY CUBE(a,b), ROLLUP(c,d)

is equivalent to
GROUP BY GROUPING SETS((a,b,c,d)

(a,b,c)
(a,b)
(a,c,d)
(a,c)
(a)
(b,c,d)
(b,c)
(b)
(c,d)
(c)
())

Similar to a simple grouping-expression, combining grouping sets also eliminates
duplicates within each grouping set. For instance,

GROUP BY a, ROLLUP(a,b)

is equivalent to
GROUP BY GROUPING SETS((a,b)

(a))

A more complete example of combining grouping sets is to construct a result set
that eliminates certain rows that might be returned for a full CUBE aggregation.

For example, consider the following GROUP BY clause:
GROUP BY Region,

ROLLUP(Sales_Person, WEEK(Sales_Date)),
CUBE(YEAR(Sales_Date), MONTH (Sales_Date))

The column listed immediately to the right of GROUP BY is grouped, those within
the parenthesis following ROLLUP are rolled up, and those within the parenthesis
following CUBE are cubed. Thus, the GROUP BY clause results in a cube of
MONTH within YEAR which is then rolled up within WEEK within Sales_Person
within the Region aggregation. It does not result in any grand total row or any
cross-tabulation rows on Region, Sales_Person or WEEK(Sales_Date) so produces
fewer rows than the clause:

GROUP BY ROLLUP (Region, Sales_Person, WEEK(Sales_Date),
YEAR(Sales_Date), MONTH(Sales_Date))

having-clause
The HAVING clause specifies an intermediate result table that consists of those
groups of R for which the search-condition is true. R is the result of the previous
clause of the subselect. If this clause is not GROUP BY, R is considered to be a
single group with no grouping columns.

�� HAVING search-condition ��

Chapter 33. Queries 315

Each column-name in the search condition must satisfy one of the following
conditions:
v Unambiguously identify a grouping column of R.
v Be specified within an aggregate function.
v Be a correlated reference. A column-name is a correlated reference if it identifies a

column of a table-reference in an outer subselect.

A group of R to which the search condition is applied supplies the argument for
each aggregate function in the search condition, except for any function whose
argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a group of R, and the
results used in applying the search condition. In actuality, the subquery is executed
for each group only if it contains a correlated reference. For an illustration of the
difference, see Example 6 and Example 7 in “Examples of subselect queries” on
page 321.

A correlated reference to a group of R must either identify a grouping column or
be contained within an aggregate function.

When HAVING is used without GROUP BY, the select list can only include column
names when they are arguments to an aggregate function, correlated column
references, global variables, host variables, literals, special registers, SQL variables,
or SQL parameters.

Note: The following expressions can only be specified in a HAVING clause if they
are contained within an aggregate function (SQLSTATE 42803):
v ROW CHANGE TIMESTAMP FOR table-designator

v ROW CHANGE TOKEN FOR table-designator

v RID_BIT or RID scalar function

order-by-clause
The ORDER BY clause specifies an ordering of the rows of the result table.

�� ORDER BY �

,
NULLS LAST

ASC
sort-key

NULLS FIRST
DESC

ORDER OF table-designator
INPUT SEQUENCE

��

sort-key:

simple-column-name
simple-integer
sort-key-expression

If a single sort specification (one sort-key with associated direction) is identified, the
rows are ordered by the values of that sort specification. If more than one sort
specification is identified, the rows are ordered by the values of the first identified

316 Preparation Guide for DB2 10.1 Fundamentals Exam 610

sort specification, then by the values of the second identified sort specification, and
so on. Each sort-key cannot have a data type of CLOB, DBCLOB, BLOB, XML,
distinct type on any of these types, or structured type (SQLSTATE 42907).

A named column in the select list can be identified by a sort-key that is a
simple-integer or a simple-column-name. An unnamed column in the select list must
be identified by an simple-integer or, in some cases, by a sort-key-expression that
matches the expression in the select list (see details of sort-key-expression). A column
is unnamed if the AS clause is not specified and it is derived from a constant, an
expression with operators, or a function.

Ordering is performed in accordance with comparison rules. If an ORDER BY
clause contains decimal floating-point columns, and multiple representations of the
same number exist in these columns, the ordering of the multiple representations
of the same number is unspecified. The null value is higher than all other values. If
the ORDER BY clause does not completely order the rows, rows with duplicate
values of all identified columns are displayed in an arbitrary order.

simple-column-name
Usually identifies a column of the result table. In this case, simple-column-name
must be the column name of a named column in the select list.

The simple-column-name can also identify a column name of a table, view, or
nested table identified in the FROM clause if the query is a subselect. This
includes columns defined as implicitly hidden. An error occurs in the
following situations:
v If the subselect specifies DISTINCT in the select-clause (SQLSTATE 42822)
v If the subselect produces a grouped result and the simple-column-name is not

a grouping-expression (SQLSTATE 42803)

Determining which column is used for ordering the result is described under
“Column names in sort keys” in the “Notes” section.

simple-integer
Must be greater than 0 and not greater than the number of columns in the
result table (SQLSTATE 42805). The integer n identifies the nth column of the
result table.

sort-key-expression
An expression that is not simply a column name or an unsigned integer
constant. The query to which ordering is applied must be a subselect to use this
form of sort-key. The sort-key-expression cannot include a correlated scalar
fullselect (SQLSTATE 42703) or a function with an external action (SQLSTATE
42845).

Any column-name within a sort-key-expression must conform to the rules
described under “Column names in sort keys” in the “Notes” section.

There are a number of special cases that further restrict the expressions that
can be specified.
v DISTINCT is specified in the SELECT clause of the subselect (SQLSTATE

42822).
The sort-key-expression must match exactly with an expression in the select
list of the subselect (scalar-fullselects are never matched).

v The subselect is grouped (SQLSTATE 42803).
The sort-key-expression can:
– be an expression in the select list of the subselect,

Chapter 33. Queries 317

– include a grouping-expression from the GROUP BY clause of the subselect
– include an aggregate function, constant or host variable.

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

ORDER OF table-designator
Specifies that the same ordering used in table-designator applies to the result
table of the subselect. There must be a table reference matching table-designator
in the FROM clause of the subselect that specifies this clause (SQLSTATE
42703). The ordering that is applied is the same as if the columns of the
ORDER BY clause in the nested subselect (or fullselect) were included in the
outer subselect (or fullselect), and these columns were specified in place of the
ORDER OF clause.

Note that this form is not allowed in a fullselect (other than the degenerative
form of a fullselect). For example, the following is not valid:
(SELECT C1 FROM T1

ORDER BY C1)
UNION
SELECT C1 FROM T2

ORDER BY ORDER OF T1

The following example is valid:
SELECT C1 FROM

(SELECT C1 FROM T1
UNION

SELECT C1 FROM T2
ORDER BY C1) AS UTABLE

ORDER BY ORDER OF UTABLE

INPUT SEQUENCE
Specifies that, for an INSERT statement, the result table will reflect the input
order of ordered data rows. INPUT SEQUENCE ordering can only be specified
if an INSERT statement is used in a FROM clause (SQLSTATE 428G4). See
“table-reference” on page 289. If INPUT SEQUENCE is specified and the input
data is not ordered, the INPUT SEQUENCE clause is ignored.

Notes
v Column names in sort keys:

– The column name is qualified.
The query must be a subselect (SQLSTATE 42877). The column name must
unambiguously identify a column of some table, view or nested table in the
FROM clause of the subselect (SQLSTATE 42702). The value of the column is
used to compute the value of the sort specification.

– The column name is unqualified.
- The query is a subselect.

If the column name is identical to the name of more than one column of
the result table, the column name must unambiguously identify a column
of some table, view or nested table in the FROM clause of the ordering
subselect (SQLSTATE 42702). If the column name is identical to one
column, that column is used to compute the value of the sort specification.
If the column name is not identical to a column of the result table, then it

318 Preparation Guide for DB2 10.1 Fundamentals Exam 610

must unambiguously identify a column of some table, view or nested table
in the FROM clause of the fullselect in the select-statement (SQLSTATE
42702).

- The query is not a subselect (it includes set operations such as union,
except or intersect).
The column name must not be identical to the name of more than one
column of the result table (SQLSTATE 42702). The column name must be
identical to exactly one column of the result table (SQLSTATE 42707), and
this column is used to compute the value of the sort specification.

v Limits: The use of a sort-key-expression or a simple-column-name where the column
is not in the select list might result in the addition of the column or expression
to the temporary table used for sorting. This might result in reaching the limit of
the number of columns in a table or the limit on the size of a row in a table.
Exceeding these limits will result in an error if a temporary table is required to
perform the sorting operation.

fetch-first-clause
The fetch-first-clause sets a maximum number of rows that can be retrieved.

��
1

FETCH FIRST
integer

ROW
ROWS

ONLY ��

The fetch-first-clause lets the database manager know that the application does not
want to retrieve more than integer rows, regardless of how many rows there might
be in the result table when this clause is not specified. An attempt to fetch beyond
integer rows is handled the same way as normal end of data (SQLSTATE 02000).
The value of integer must be a positive integer (not zero).

Use of the fetch-first-clause influences query optimization of the subselect or
fullselect, based on the fact that at most integer rows will be retrieved. If both the
fetch-first-clause is specified in the outermost fullselect and the optimize-for-clause
is specified for the select statement, the database manager will use the integer from
the optimize-for-clause to influence query optimization of the outermost fullselect.

Limiting the result table to the first integer rows can improve performance. The
database manager will cease processing the query when it has determined the first
integer rows. If both the fetch-first-clause and the optimize-for-clause are specified, the
lower of the integer values from these clauses is used to influence the
communications buffer size.

If the fullselect contains an SQL data change statement in the FROM clause, all the
rows are modified regardless of the limit on the number of rows to fetch.

isolation-clause (subselect query)
The optional isolation-clause specifies the isolation level at which the subselect or
fullselect is run, and whether a specific type of lock is to be acquired.

Chapter 33. Queries 319

�� WITH RR
lock-request-clause

RS
lock-request-clause

CS
UR

��

v RR - Repeatable-Read
v RS - Read Stability
v CS - Cursor Stability
v UR - Uncommitted Read

lock-request-clause

�� USE AND KEEP SHARE LOCKS
UPDATE
EXCLUSIVE

��

The lock-request-clause applies only to queries and to positioning read operations
within an insert, update, or delete operation. The insert, update, and delete
operations themselves will run using locking determined by the database manager.

The optional lock-request-clause specifies the type of lock that the database manager
is to acquire and hold:

SHARE
Concurrent processes can acquire SHARE or UPDATE locks on the data.

UPDATE
Concurrent processes can acquire SHARE locks on the data, but no
concurrent process can acquire an UPDATE or EXCLUSIVE lock.

EXCLUSIVE
Concurrent processes cannot acquire a lock on the data.

isolation-clause restrictions:
v The isolation-clause is not supported for a CREATE TABLE, CREATE VIEW, or

ALTER TABLE statement (SQLSTATE 42601).
v The isolation-clause cannot be specified for a subselect or fullselect that will cause

trigger invocation, referential integrity scans, or MQT maintenance (SQLSTATE
42601).

v A subselect or fullselect cannot include a lock-request-clause if that subselect or
fullselect references any SQL functions that are not declared with the option
INHERIT ISOLATION LEVEL WITH LOCK REQUEST (SQLSTATE 42601).

v A subselect or fullselect that contains a lock-request-clause are not be eligible for
MQT routing.

v If an isolation-clause is specified for a subselect or fullselect within the body of an
SQL function, SQL method, or trigger, the clause is ignored and a warning is
returned.

v If an isolation-clause is specified for a subselect or fullselect that is used by a
scrollable cursor, the clause is ignored and a warning is returned.

v Neither isolation-clause nor lock-request-clause can be specified in the context
where they will cause conflict isolation or lock intent on a common table

320 Preparation Guide for DB2 10.1 Fundamentals Exam 610

expression (SQLSTATE 42601). This restriction does not apply to aliases or base
tables. The following examples create an isolation conflict on a and returns an
error:
– View:

create view a as (...);
(select * from a with RR USE AND KEEP SHARE LOCKS)
UNION ALL
(select * from a with UR);

– Common table expression:
WITH a as (...)
(select * from a with RR USE AND KEEP SHARE LOCKS)
UNION ALL
(select * from a with UR);

v An isolation-clause cannot be specified in an XML context (SQLSTATE 2200M).

Examples of subselect queries
The following examples illustrate the susbelect query.
v Example 1: Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

v Example 2: Join the EMP_ACT and EMPLOYEE tables, select all the columns
from the EMP_ACT table and add the employee's surname (LASTNAME) from
the EMPLOYEE table to each row of the result.

SELECT EMP_ACT.*, LASTNAME
FROM EMP_ACT, EMPLOYEE
WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO

v Example 3: Join the EMPLOYEE and DEPARTMENT tables, select the employee
number (EMPNO), employee surname (LASTNAME), department number
(WORKDEPT in the EMPLOYEE table and DEPTNO in the DEPARTMENT
table) and department name (DEPTNAME) of all employees who were born
(BIRTHDATE) earlier than 1930.

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
FROM EMPLOYEE, DEPARTMENT
WHERE WORKDEPT = DEPTNO
AND YEAR(BIRTHDATE) < 1930

v Example 4: Select the job (JOB) and the minimum and maximum salaries
(SALARY) for each group of rows with the same job code in the EMPLOYEE
table, but only for groups with more than one row and with a maximum salary
greater than or equal to 27000.

SELECT JOB, MIN(SALARY), MAX(SALARY)
FROM EMPLOYEE
GROUP BY JOB
HAVING COUNT(*) > 1
AND MAX(SALARY) >= 27000

v Example 5: Select all the rows of EMP_ACT table for employees (EMPNO) in
department (WORKDEPT) 'E11'. (Employee department numbers are shown in
the EMPLOYEE table.)

SELECT *
FROM EMP_ACT
WHERE EMPNO IN

(SELECT EMPNO
FROM EMPLOYEE
WHERE WORKDEPT = ’E11’)

v Example 6: From the EMPLOYEE table, select the department number
(WORKDEPT) and maximum departmental salary (SALARY) for all departments
whose maximum salary is less than the average salary for all employees.

Chapter 33. Queries 321

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM EMPLOYEE)

The subquery in the HAVING clause is executed once in this example.
v Example 7: Using the EMPLOYEE table, select the department number

(WORKDEPT) and maximum departmental salary (SALARY) for all departments
whose maximum salary is less than the average salary in all other departments.

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE EMP_COR
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM EMPLOYEE
WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to Example 6, the subquery in the HAVING clause is executed for
each group.

v Example 8: Determine the employee number and salary of sales representatives
along with the average salary and head count of their departments.
This query must first create a nested table expression (DINFO) to get the
AVGSALARY and EMPCOUNT columns, and the DEPTNO column that is used
in the WHERE clause.
SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT
FROM EMPLOYEE THIS_EMP,

(SELECT OTHERS.WORKDEPT AS DEPTNO,
AVG(OTHERS.SALARY) AS AVGSALARY,
COUNT(*) AS EMPCOUNT

FROM EMPLOYEE OTHERS
GROUP BY OTHERS.WORKDEPT

) AS DINFO
WHERE THIS_EMP.JOB = ’SALESREP’
AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Using a nested table expression for this case saves the processing resources of
creating the DINFO view as a regular view. During statement preparation,
accessing the catalog for the view is avoided and, because of the context of the
rest of the query, only the rows for the department of the sales representatives
are considered by the view.

v Example 9: Display the average education level and salary for 5 random groups
of employees.
This query requires the use of a nested table expression to set a random value
for each employee so that it can subsequently be used in the GROUP BY clause.

SELECT RANDID , AVG(EDLEVEL), AVG(SALARY)
FROM (SELECT EDLEVEL, SALARY, INTEGER(RAND()*5) AS RANDID

FROM EMPLOYEE
) AS EMPRAND

GROUP BY RANDID

v Example 10: Query the EMP_ACT table and return those project numbers that
have an employee whose salary is in the top 10 of all employees.

SELECT EMP_ACT.EMPNO,PROJNO
FROM EMP_ACT
WHERE EMP_ACT.EMPNO IN

(SELECT EMPLOYEE.EMPNO
FROM EMPLOYEE
ORDER BY SALARY DESC
FETCH FIRST 10 ROWS ONLY)

322 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v Example 11: Assuming that PHONES and IDS are two SQL variables with array
values of the same cardinality, turn these arrays into a table with three columns
(one for each array and one for the position), and one row per array element.

SELECT T.PHONE, T.ID, T.INDEX FROM UNNEST(PHONES, IDS)
WITH ORDINALITY AS T(PHONE, ID, INDEX)
ORDER BY T.INDEX

Examples of subselect queries with joins
The following examples illustrate the use of joins in a subselect query.
v Example 1: This example illustrates the results of the various joins using tables

J1 and J2. These tables contain rows as shown.
SELECT * FROM J1

W X
--- ------
A 11
B 12
C 13

SELECT * FROM J2

Y Z
--- ------
A 21
C 22
D 23

The following query does an inner join of J1 and J2 matching the first column of
both tables.

SELECT * FROM J1 INNER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
C 13 C 22

In this inner join example the row with column W='C' from J1 and the row with
column Y='D' from J2 are not included in the result because they do not have a
match in the other table. Note that the following alternative form of an inner
join query produces the same result.

SELECT * FROM J1, J2 WHERE W=Y

The following left outer join will get back the missing row from J1 with nulls for
the columns of J2. Every row from J1 is included.

SELECT * FROM J1 LEFT OUTER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
B 12 - -
C 13 C 22

The following right outer join will get back the missing row from J2 with nulls
for the columns of J1. Every row from J2 is included.

SELECT * FROM J1 RIGHT OUTER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
C 13 C 22
- - D 23

Chapter 33. Queries 323

The following full outer join will get back the missing rows from both J1 and J2
with nulls where appropriate. Every row from both J1 and J2 is included.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

W X Y Z
--- ------ --- ------
A 11 A 21
C 13 C 22
- - D 23
B 12 - -

v Example 2: Using the tables J1 and J2 from the previous example, examine what
happens when and additional predicate is added to the search condition.

SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=13

W X Y Z
--- ------ --- ------
C 13 C 22

The additional condition caused the inner join to select only 1 row compared to
the inner join in Example 1.
Notice what the affect of this is on the full outer join.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=13

W X Y Z
--- ------ --- ------
- - A 21
C 13 C 22
- - D 23
A 11 - -
B 12 - -

The result now has 5 rows (compared to 4 without the additional predicate)
because there was only 1 row in the inner join and all rows of both tables must
be returned.
The following query illustrates that placing the same additional predicate in
WHERE clause has completely different results.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y
WHERE X=13

W X Y Z
--- ------ --- ------
C 13 C 22

The WHERE clause is applied after the intermediate result of the full outer join.
This intermediate result is the same as the result of the full outer join query in
Example 1. The WHERE clause is applied to this intermediate result and
eliminates all but the row that has X=13. Choosing the location of a predicate
when performing outer joins can have a significant affect on the results.
Consider what happens if the predicate was X=12 instead of X=13. The
following inner join returns no rows.

SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=12

Hence, the full outer join returns 6 rows, 3 from J1 with nulls for the columns of
J2 and 3 from J2 with nulls for the columns of J1.

SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=12

W X Y Z
--- ------ --- ------
- - A 21
- - C 22

324 Preparation Guide for DB2 10.1 Fundamentals Exam 610

- - D 23
A 11 - -
B 12 - -
C 13 - -

If the additional predicate is in the WHERE clause instead, 1 row is returned.
SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

WHERE X=12

W X Y Z
--- ------ --- ------
B 12 - -

v Example 3: List every department with the employee number and last name of
the manager, including departments without a manager.

SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE

ON MGRNO = EMPNO

v Example 4: List every employee number and last name with the employee
number and last name of their manager, including employees without a
manager.

SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
FROM EMPLOYEE E LEFT OUTER JOIN

DEPARTMENT INNER JOIN EMPLOYEE M
ON MGRNO = M.EMPNO
ON E.WORKDEPT = DEPTNO

The inner join determines the last name for any manager identified in the
DEPARTMENT table and the left outer join guarantees that each employee is
listed even if a corresponding department is not found in DEPARTMENT.

Examples of subselect queries with grouping sets, cube, and rollup
queries

The following examples illustrate the grouping, cube, and rollup forms of subselect
queries.

The queries in Example 1 through Example 4 use a subset of the rows in the
SALES tables based on the predicate 'WEEK(SALES_DATE) = 13'.

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SALES AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13

which results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 LUCCHESSI 3
13 6 LUCCHESSI 1
13 6 LEE 2
13 6 LEE 2
13 6 LEE 3
13 6 LEE 5
13 6 GOUNOT 3
13 6 GOUNOT 1
13 6 GOUNOT 7
13 7 LUCCHESSI 1
13 7 LUCCHESSI 2
13 7 LUCCHESSI 1
13 7 LEE 7
13 7 LEE 3

Chapter 33. Queries 325

13 7 LEE 7
13 7 LEE 4
13 7 GOUNOT 2
13 7 GOUNOT 18
13 7 GOUNOT 1

v Example 1: Here is a query with a basic GROUP BY clause over 3 columns:
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 GOUNOT 11
13 6 LEE 12
13 6 LUCCHESSI 4
13 7 GOUNOT 21
13 7 LEE 21
13 7 LUCCHESSI 4

v Example 2: Produce the result based on two different grouping sets of rows
from the SALES table.

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY GROUPING SETS ((WEEK(SALES_DATE), SALES_PERSON),

(DAYOFWEEK(SALES_DATE), SALES_PERSON))
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 - GOUNOT 32
13 - LEE 33
13 - LUCCHESSI 8
- 6 GOUNOT 11
- 6 LEE 12
- 6 LUCCHESSI 4
- 7 GOUNOT 21
- 7 LEE 21
- 7 LUCCHESSI 4

The rows with WEEK 13 are from the first grouping set and the other rows are
from the second grouping set.

v Example 3: If you use the 3 distinct columns involved in the grouping sets of
Example 2 and perform a ROLLUP, you can see grouping sets for
(WEEK,DAY_WEEK,SALES_PERSON), (WEEK, DAY_WEEK), (WEEK) and
grand total.
SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

326 Preparation Guide for DB2 10.1 Fundamentals Exam 610

WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 GOUNOT 11
13 6 LEE 12
13 6 LUCCHESSI 4
13 6 - 27
13 7 GOUNOT 21
13 7 LEE 21
13 7 LUCCHESSI 4
13 7 - 46
13 - - 73
- - - 73

v Example 4: If you run the same query as Example 3 only replace ROLLUP with
CUBE, you can see additional grouping sets for (WEEK,SALES_PERSON),
(DAY_WEEK,SALES_PERSON), (DAY_WEEK), (SALES_PERSON) in the result.

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES
WHERE WEEK(SALES_DATE) = 13
GROUP BY CUBE (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:
WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
----------- ----------- --------------- -----------

13 6 GOUNOT 11
13 6 LEE 12
13 6 LUCCHESSI 4
13 6 - 27
13 7 GOUNOT 21
13 7 LEE 21
13 7 LUCCHESSI 4
13 7 - 46
13 - GOUNOT 32
13 - LEE 33
13 - LUCCHESSI 8
13 - - 73
- 6 GOUNOT 11
- 6 LEE 12
- 6 LUCCHESSI 4
- 6 - 27
- 7 GOUNOT 21
- 7 LEE 21
- 7 LUCCHESSI 4
- 7 - 46
- - GOUNOT 32
- - LEE 33
- - LUCCHESSI 8
- - - 73

v Example 5: Obtain a result set which includes a grand-total of selected rows
from the SALES table together with a group of rows aggregated by
SALES_PERSON and MONTH.

SELECT SALES_PERSON,
MONTH(SALES_DATE) AS MONTH,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY GROUPING SETS ((SALES_PERSON, MONTH(SALES_DATE)),

()
)

ORDER BY SALES_PERSON, MONTH

This results in:

Chapter 33. Queries 327

SALES_PERSON MONTH UNITS_SOLD
--------------- ----------- -----------
GOUNOT 3 35
GOUNOT 4 14
GOUNOT 12 1
LEE 3 60
LEE 4 25
LEE 12 6
LUCCHESSI 3 9
LUCCHESSI 4 4
LUCCHESSI 12 1
- - 155

v Example 6: This example shows two simple ROLLUP queries followed by a
query which treats the two ROLLUPs as grouping sets in a single result set and
specifies row ordering for each column involved in the grouping sets.
– Example 6-1:

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))
ORDER BY WEEK, DAY_WEEK

results in:
WEEK DAY_WEEK UNITS_SOLD
----------- ----------- -----------

13 6 27
13 7 46
13 - 73
14 1 31
14 2 43
14 - 74
53 1 8
53 - 8
- - 155

– Example 6-2:
SELECT MONTH(SALES_DATE) AS MONTH,

REGION,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY ROLLUP (MONTH(SALES_DATE), REGION);
ORDER BY MONTH, REGION

results in:
MONTH REGION UNITS_SOLD
----------- --------------- -----------

3 Manitoba 22
3 Ontario-North 8
3 Ontario-South 34
3 Quebec 40
3 - 104
4 Manitoba 17
4 Ontario-North 1
4 Ontario-South 14
4 Quebec 11
4 - 43
12 Manitoba 2
12 Ontario-South 4
12 Quebec 2
12 - 8
- - 155

– Example 6-3:

328 Preparation Guide for DB2 10.1 Fundamentals Exam 610

SELECT WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION,
SUM(SALES) AS UNITS_SOLD

FROM SALES
GROUP BY GROUPING SETS (ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE)),

ROLLUP(MONTH(SALES_DATE), REGION))
ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:
WEEK DAY_WEEK MONTH REGION UNITS_SOLD
----------- ----------- ----------- --------------- -----------

13 6 - - 27
13 7 - - 46
13 - - - 73
14 1 - - 31
14 2 - - 43
14 - - - 74
53 1 - - 8
53 - - - 8
- - 3 Manitoba 22
- - 3 Ontario-North 8
- - 3 Ontario-South 34
- - 3 Quebec 40
- - 3 - 104
- - 4 Manitoba 17
- - 4 Ontario-North 1
- - 4 Ontario-South 14
- - 4 Quebec 11
- - 4 - 43
- - 12 Manitoba 2
- - 12 Ontario-South 4
- - 12 Quebec 2
- - 12 - 8
- - - - 155
- - - - 155

Using the two ROLLUPs as grouping sets causes the result to include
duplicate rows. There are even two grand total rows.
Observe how the use of ORDER BY has affected the results:
- In the first grouped set, week 53 has been repositioned to the end.
- In the second grouped set, month 12 has now been positioned to the end

and the regions now display in alphabetic order.
- Null values are sorted high.

v Example 7: In queries that perform multiple ROLLUPs in a single pass (such as
Example 6-3) you might want to be able to indicate which grouping set
produced each row. The following steps demonstrate how to provide a column
(called GROUP) which indicates the origin of each row in the result set. Origin
means which one of the two grouping sets produced the row in the result set.
Step 1: Introduce a way of "generating" new data values, using a query which
selects from a VALUES clause (which is an alternative form of a fullselect). This
query shows how a table can be derived called "X" having 2 columns "R1" and
"R2" and 1 row of data.

SELECT R1,R2
FROM (VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2);

results in:
R1 R2
------- -------
GROUP 1 GROUP 2

Chapter 33. Queries 329

Step 2: Form the cross product of this table "X" with the SALES table. This add
columns "R1" and "R2" to every row.

SELECT R1, R2, WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION,
SALES AS UNITS_SOLD

FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)

This add columns "R1" and "R2" to every row.
Step 3: Now these columns can be combined with the grouping sets to include
these columns in the rollup analysis.

SELECT R1, R2,
WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION, SUM(SALES) AS UNITS_SOLD

FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)
GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE))),
(R2,ROLLUP(MONTH(SALES_DATE), REGION)))

ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:
R1 R2 WEEK DAY_WEEK MONTH REGION UNITS_SOLD
------- ------- -------- --------- --------- --------------- -----------
GROUP 1 - 13 6 - - 27
GROUP 1 - 13 7 - - 46
GROUP 1 - 13 - - - 73
GROUP 1 - 14 1 - - 31
GROUP 1 - 14 2 - - 43
GROUP 1 - 14 - - - 74
GROUP 1 - 53 1 - - 8
GROUP 1 - 53 - - - 8
- GROUP 2 - - 3 Manitoba 22
- GROUP 2 - - 3 Ontario-North 8
- GROUP 2 - - 3 Ontario-South 34
- GROUP 2 - - 3 Quebec 40
- GROUP 2 - - 3 - 104
- GROUP 2 - - 4 Manitoba 17
- GROUP 2 - - 4 Ontario-North 1
- GROUP 2 - - 4 Ontario-South 14
- GROUP 2 - - 4 Quebec 11
- GROUP 2 - - 4 - 43
- GROUP 2 - - 12 Manitoba 2
- GROUP 2 - - 12 Ontario-South 4
- GROUP 2 - - 12 Quebec 2
- GROUP 2 - - 12 - 8
- GROUP 2 - - - - 155
GROUP 1 - - - - - 155

Step 4: Notice that because R1 and R2 are used in different grouping sets,
whenever R1 is non-null in the result, R2 is null and whenever R2 is non-null in
the result, R1 is null. That means you can consolidate these columns into a
single column using the COALESCE function. You can also use this column in
the ORDER BY clause to keep the results of the two grouping sets together.

SELECT COALESCE(R1,R2) AS GROUP,
WEEK(SALES_DATE) AS WEEK,
DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
MONTH(SALES_DATE) AS MONTH,
REGION, SUM(SALES) AS UNITS_SOLD

FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)
GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),

330 Preparation Guide for DB2 10.1 Fundamentals Exam 610

DAYOFWEEK(SALES_DATE))),
(R2,ROLLUP(MONTH(SALES_DATE), REGION)))

ORDER BY GROUP, WEEK, DAY_WEEK, MONTH, REGION;

results in:
GROUP WEEK DAY_WEEK MONTH REGION UNITS_SOLD
------- ----------- ----------- ----------- --------------- -----------
GROUP 1 13 6 - - 27
GROUP 1 13 7 - - 46
GROUP 1 13 - - - 73
GROUP 1 14 1 - - 31
GROUP 1 14 2 - - 43
GROUP 1 14 - - - 74
GROUP 1 53 1 - - 8
GROUP 1 53 - - - 8
GROUP 1 - - - - 155
GROUP 2 - - 3 Manitoba 22
GROUP 2 - - 3 Ontario-North 8
GROUP 2 - - 3 Ontario-South 34
GROUP 2 - - 3 Quebec 40
GROUP 2 - - 3 - 104
GROUP 2 - - 4 Manitoba 17
GROUP 2 - - 4 Ontario-North 1
GROUP 2 - - 4 Ontario-South 14
GROUP 2 - - 4 Quebec 11
GROUP 2 - - 4 - 43
GROUP 2 - - 12 Manitoba 2
GROUP 2 - - 12 Ontario-South 4
GROUP 2 - - 12 Quebec 2
GROUP 2 - - 12 - 8
GROUP 2 - - - - 155

v Example 8: The following example illustrates the use of various aggregate
functions when performing a CUBE. The example also makes use of cast
functions and rounding to produce a decimal result with reasonable precision
and scale.

SELECT MONTH(SALES_DATE) AS MONTH,
REGION,
SUM(SALES) AS UNITS_SOLD,
MAX(SALES) AS BEST_SALE,
CAST(ROUND(AVG(DECIMAL(SALES)),2) AS DECIMAL(5,2)) AS AVG_UNITS_SOLD

FROM SALES
GROUP BY CUBE(MONTH(SALES_DATE),REGION)
ORDER BY MONTH, REGION

This results in:
MONTH REGION UNITS_SOLD BEST_SALE AVG_UNITS_SOLD
----------- --------------- ----------- ----------- --------------

3 Manitoba 22 7 3.14
3 Ontario-North 8 3 2.67
3 Ontario-South 34 14 4.25
3 Quebec 40 18 5.00
3 - 104 18 4.00
4 Manitoba 17 9 5.67
4 Ontario-North 1 1 1.00
4 Ontario-South 14 8 4.67
4 Quebec 11 8 5.50
4 - 43 9 4.78
12 Manitoba 2 2 2.00
12 Ontario-South 4 3 2.00
12 Quebec 2 1 1.00
12 - 8 3 1.60
- Manitoba 41 9 3.73
- Ontario-North 9 3 2.25
- Ontario-South 52 14 4.00
- Quebec 53 18 4.42
- - 155 18 3.87

Chapter 33. Queries 331

332 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 34. Cursors

To allow applications to retrieve a set of rows, SQL uses a mechanism called a
cursor.

Using a cursor to retrieve multiple rows
Using cursors in your applications to retrieve a set of rows requires that you issue
SQL statements to declare cursors, open cursors, fetch cursors, and close cursors.

About this task

To help understand the concept of a cursor, assume that the database manager
builds a result table to hold all the rows retrieved by executing a SELECT
statement. A cursor makes rows from the result table available to an application by
identifying or pointing to a current row of this table. When a cursor is used, an
application can retrieve each row sequentially from the result table until an end of
data condition, that is, the NOT FOUND condition, SQLCODE +100 (SQLSTATE
02000) is reached. The set of rows obtained as a result of executing the SELECT
statement can consist of zero, one, or more rows, depending on the number of
rows that satisfy the search condition.

Procedure

To process a cursor:
1. Specify the cursor using a DECLARE CURSOR statement.
2. Perform the query and build the result table using the OPEN statement.
3. Retrieve rows one at a time using the FETCH statement.
4. Process rows with the DELETE or UPDATE statements (if required).
5. Terminate the cursor using the CLOSE statement.

What to do next

An application can use several cursors concurrently. Each cursor requires its own
set of DECLARE CURSOR, OPEN, CLOSE, and FETCH statements.

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is not an executable statement and cannot be
dynamically prepared. When invoked using the command line processor,
additional options can be specified. For more information, refer to “Using
command line SQL statements and XQuery statements”.

© Copyright IBM Corp. 2012 333

Authorization

The term “SELECT statement of the cursor” is used to specify the authorization
rules. The SELECT statement of the cursor is one of the following statements:
v The prepared select-statement identified by statement-name

v The specified select-statement

The privileges held by the authorization ID of the statement must include the
privileges necessary to execute the select-statement. See the Authorization section in
"SQL queries".

If statement-name is specified:
v The authorization ID of the statement is the runtime authorization ID.
v The authorization check is performed when the SELECT-statement is prepared.
v The cursor cannot be opened unless the SELECT-statement is in a prepared state.

If select-statement is specified:
v GROUP privileges are not checked.
v The authorization ID of the statement is the authorization ID specified during

program preparation.

Syntax

�� DECLARE cursor-name CURSOR * holdability * returnability * �

� FOR select-statement
statement-name

��

holdability:

WITHOUT HOLD

WITH HOLD

returnability:

WITHOUT RETURN

TO CALLER
WITH RETURN

TO CLIENT

Description

cursor-name
Specifies the name of the cursor created when the source program is run. The
name must not be the same as the name of another cursor declared in the
source program. The cursor must be opened before use.

WITHOUT HOLD or WITH HOLD
Specifies whether or not the cursor should be prevented from being closed as a
consequence of a commit operation.

334 Preparation Guide for DB2 10.1 Fundamentals Exam 610

WITHOUT HOLD
Does not prevent the cursor from being closed as a consequence of a
commit operation. This is the default.

WITH HOLD
Maintains resources across multiple units of work. The effect of the WITH
HOLD cursor attribute is as follows:
v For units of work ending with COMMIT:

– Open cursors defined WITH HOLD remain open. The cursor is
positioned before the next logical row of the results table.
If a DISCONNECT statement is issued after a COMMIT statement for
a connection with WITH HOLD cursors, the held cursors must be
explicitly closed or the connection will be assumed to have performed
work (simply by having open WITH HELD cursors even though no
SQL statements were issued) and the DISCONNECT statement will
fail.

– All locks are released, except locks protecting the current cursor
position of open WITH HOLD cursors. The locks held include the
locks on the table, and for parallel environments, the locks on rows
where the cursors are currently positioned. Locks on packages and
dynamic SQL sections (if any) are held.

– Valid operations on cursors defined WITH HOLD immediately
following a COMMIT request are:
- FETCH: Fetches the next row of the cursor.
- CLOSE: Closes the cursor.

– UPDATE and DELETE CURRENT OF CURSOR are valid only for
rows that are fetched within the same unit of work.

– LOB locators are freed.
– The set of rows modified by:

- A data change statement
- Routines that modify SQL data embedded within open WITH

HOLD cursors

is committed.
v For units of work ending with ROLLBACK:

– All open cursors are closed.
– All locks acquired during the unit of work are released.
– LOB locators are freed.

v For special COMMIT case:
– Packages can be recreated either explicitly, by binding the package, or

implicitly, because the package has been invalidated and then
dynamically recreated the first time it is referenced. All held cursors
are closed during package rebind. This might result in errors during
subsequent execution.

WITHOUT RETURN or WITH RETURN
Specifies whether or not the result table of the cursor is intended to be used as
a result set that will be returned from a procedure.

WITHOUT RETURN
Specifies that the result table of the cursor is not intended to be used as a
result set that will be returned from a procedure.

Chapter 34. Cursors 335

WITH RETURN
Specifies that the result table of the cursor is intended to be used as a
result set that will be returned from a procedure. WITH RETURN is
relevant only if the DECLARE CURSOR statement is contained with the
source code for a procedure. In other cases, the precompiler might accept
the clause, but it has no effect.

Within an SQL procedure, cursors declared using the WITH RETURN
clause that are still open when the SQL procedure ends, define the result
sets from the SQL procedure. All other open cursors in an SQL procedure
are closed when the SQL procedure ends. Within an external procedure
(one not defined using LANGUAGE SQL), the default for all cursors is
WITH RETURN TO CALLER. Therefore, all cursors that are open when
the procedure ends will be considered result sets. Cursors that are returned
from a procedure cannot be declared as scrollable cursors.

TO CALLER
Specifies that the cursor can return a result set to the caller. For
example, if the caller is another procedure, the result set is
returned to that procedure. If the caller is a client application, the
result set is returned to the client application.

TO CLIENT
Specifies that the cursor can return a result set to the client
application. This cursor is invisible to any intermediate nested
procedures. If a function, method, or trigger called the procedure
either directly or indirectly, result sets cannot be returned to the
client and the cursor will be closed after the procedure finishes.

select-statement
Identifies the SELECT statement of the cursor. The select-statement must not
include parameter markers, but can include references to host variables. The
declarations of the host variables must precede the DECLARE CURSOR
statement in the source program.

statement-name
The SELECT statement of the cursor is the prepared SELECT statement
identified by the statement-name when the cursor is opened. The statement-name
must not be identical to a statement-name specified in another DECLARE
CURSOR statement of the source program.

For an explanation of prepared SELECT statements, see “PREPARE”.

Examples

Example 1: The DECLARE CURSOR statement associates the cursor name C1 with
the results of the SELECT.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPARTMENT
WHERE ADMRDEPT = ’A00’;

Example 2: Assume that the EMPLOYEE table has been altered to add a generated
column, WEEKLYPAY, that calculates the weekly pay based on the yearly salary.
Declare a cursor to retrieve the system-generated column value from a row to be
inserted.

EXEC SQL DECLARE C2 CURSOR FOR
SELECT E.WEEKLYPAY
FROM NEW TABLE

336 Preparation Guide for DB2 10.1 Fundamentals Exam 610

(INSERT INTO EMPLOYEE
(EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL, SALARY)
VALUES(’000420’, ’Peter’, ’U’, ’Bender’, 16, 31842) AS E;

OPEN
The OPEN statement opens a cursor so that it can be used to fetch rows from its
result table.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. When invoked using the command line processor, some options cannot
be specified. For more information, refer to “Using command line SQL statements
and XQuery statements”.

Authorization

If a global variable is referenced, the privileges held by the authorization ID of the
statement must include one of the following authorities:
v READ privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

Group privileges are not considered because this statement cannot be dynamically
prepared.

Syntax

��

�

OPEN cursor-name
cursor-variable-name

()
expression

�

�

�

,

USING variable
(1)

expression
USING DESCRIPTOR descriptor-name

��

Notes:

1 An expression other than a variable can only be used in compiled compound
statements.

Description

cursor-name
Names a cursor that is defined in a DECLARE CURSOR statement that was
stated earlier in the program. If cursor-name identifies a cursor in an SQL
procedure declared as WITH RETURN TO CLIENT that is already in the open

Chapter 34. Cursors 337

state, the existing open cursor becomes a result set cursor that is no longer
accessible using cursor-name and a new cursor is opened that becomes
accessible using cursor-name. Otherwise, when the OPEN statement is
executed, the cursor identified by cursor-name must be in the closed state.

The DECLARE CURSOR statement must identify a SELECT statement, in one
of the following ways:
v Including the SELECT statement in the DECLARE CURSOR statement
v Including a statement-name that names a prepared SELECT statement.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any special registers, global variables,
or PREVIOUS VALUE expressions specified in the SELECT statement, and the
current values of any host variables specified in the SELECT statement or the
USING clause of the OPEN statement. The rows of the result table may be
derived during the execution of the OPEN statement, and a temporary table
may be created to hold them; or they may be derived during the execution of
subsequent FETCH statements. In either case, the cursor is placed in the open
state and positioned before the first row of its result table. If the table is empty,
the state of the cursor is effectively "after the last row".

cursor-variable-name

Names a cursor variable. The value of the cursor variable must not be null
(SQLSTATE 34000). A cursor variable that is directly or indirectly assigned a
cursor value constructor can be used only in an OPEN statement that is in the
same scope as the assignment (SQLSTATE 51044). If the cursor value
constructor assigned to the cursor variable specified a statement-name, the
OPEN statement must be in the same scope where that statement-name was
explicitly or implicitly declared (SQLSTATE 51044).

When the OPEN statement is executed, the underlying cursor of the cursor
variable must be in the closed state. The result table of the underlying cursor is
derived by evaluating the SELECT statement or dynamic statement associated
with the cursor variable. The evaluation uses the current values of any special
registers, global variables, or PREVIOUS VALUE expressions specified in the
SELECT statement, and the current values of any variables specified in the
SELECT statement or the USING clause of the OPEN statement. The rows of
the result table may be derived during the execution of the OPEN statement,
and a temporary table may be created to hold them; or they may be derived
during the execution of subsequent FETCH statements. In either case, the
cursor is placed in the open state and positioned before the first row of its
result table. If the table is empty, the state of the cursor is effectively "after the
last row".

An OPEN statement using a cursor-variable-name can only be used within a
compound SQL (compiled) statement.

(expression, ...)
Specifies the arguments associated with the named parameters of a
parameterized cursor variable. The cursor-value-constructor assigned to the
cursor variable must include a list of parameters with the same number of
parameters as the number of arguments specified (SQLSTATE 07006 or 07004).
The data type and value of the nth expression must be assignable to the nth
parameter (SQLSTATE 07006 or 22018).

USING

338 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Introduces the values that are substituted for the parameter markers or
variables in the statement of the cursor. For an explanation of parameter
markers, see “PREPARE”.

If a statement-name is specified in the DECLARE CURSOR statement or the
cursor value constructor associated with the cursor variable that includes
parameter markers, USING must be used. If the prepared statement does not
include parameter markers, USING is ignored.

If a select-statement is specified in the DECLARE CURSOR statement or the
non-parameterized cursor value constructor associated with the cursor
variable, USING may be used to override the variable values.

variable

Identifies a variable or a host structure declared in the program in accordance
with the rules for declaring variables and host variables. The number of
variables must be the same as the number of parameter markers in the
prepared statement. The nth variable corresponds to the nth parameter marker
in the prepared statement. Where appropriate, locator variables and file
reference variables can be provided as the source of values for parameter
markers.

expression
Specifies values to associate with parameter markers using expressions. An
OPEN statement that specifies expressions in the USING clause can only be
used within a compound SQL (compiled) statement (SQLSTATE 42601). The
number of expressions must be the same as the number of parameter markers
in the prepared statement (SQLSTATE 07001). The nth expression corresponds
to the nth parameter marker in the prepared statement. The data type and
value of the nth expression must be assignable to the type associated with the
nth parameter marker (SQLSTATE 07006).

Rules
v When the SELECT statement of the cursor is evaluated, each parameter marker

in the statement is effectively replaced by its corresponding host variable. For a
typed parameter marker, the attributes of the target variable are those specified
by the CAST specification. For an untyped parameter marker, the attributes of
the target variable are determined according to the context of the parameter
marker.

v Let V denote a host variable that corresponds to parameter marker P. The value
of V is assigned to the target variable for P in accordance with the rules for
assigning a value to a column. Thus:
– V must be compatible with the target.
– If V is a string, its length (excluding trailing blanks for strings that are not

long strings) must not be greater than the length attribute of the target.
– If V is a number, the absolute value of its integral part must not be greater

than the maximum absolute value of the integral part of the target.
– If the attributes of V are not identical to the attributes of the target, the value

is converted to conform to the attributes of the target.
When the SELECT statement of the cursor is evaluated, the value used in place
of P is the value of the target variable for P. For example, if V is CHAR(6), and
the target is CHAR(8), the value used in place of P is the value of V padded
with two blanks.

v The USING clause is intended for a prepared SELECT statement that contains
parameter markers. However, it can also be used when the SELECT statement of

Chapter 34. Cursors 339

the cursor is part of the DECLARE CURSOR statement or the non-parameterized
cursor value constructor associated with the cursor variable. In this case the
OPEN statement is executed as if each host variable in the SELECT statement
were a parameter marker, except that the attributes of the target variables are the
same as the attributes of the host variables in the SELECT statement. The effect
is to override the values of the host variables in the SELECT statement of the
cursor with the values of the host variables specified in the USING clause. A
variable value override must not be used when opening a parameterized cursor
variable since the SELECT statement will not include any other variables.

v SQL data change statements and routines that modify SQL data embedded in
the cursor definition are completely executed, and the result set is stored in a
temporary table when the cursor opens. If statement execution is successful, the
SQLERRD(3) field contains the sum of the number of rows that qualified for
insert, update, and delete operations. If an error occurs during execution of an
OPEN statement involving a cursor that contains a data change statement within
a fullselect, the results of that data change statement are rolled back.
Explicit rollback of an OPEN statement, or rollback to a savepoint before an
OPEN statement, closes the cursor. If the cursor definition contains a data
change statement within the FROM clause of a fullselect, the results of the data
change statement are rolled back.
Changes to rows in a table that is targeted by a data change statement nested
within a SELECT statement or a SELECT INTO statement are processed when
the cursor opens, and are not undone if an error occurs during a fetch operation
against that cursor.

Examples

Example 1: Write the embedded statements in a COBOL program that will:
1. Define a cursor C1 that is to be used to retrieve all rows from the

DEPARTMENT table for departments that are administered by (ADMRDEPT)
department 'A00'.

2. Place the cursor C1 before the first row to be fetched.
EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO
FROM DEPARTMENT
WHERE ADMRDEPT = ’A00’

END-EXEC.

EXEC SQL OPEN C1
END-EXEC.

Example 2: Code an OPEN statement to associate a cursor DYN_CURSOR with a
dynamically defined select-statement in a C program. Assuming two parameter
markers are used in the predicate of the select-statement, two host variable
references are supplied with the OPEN statement to pass integer and varchar(64)
values between the application and the database. (The related host variable
definitions, PREPARE statement, and DECLARE CURSOR statement are also
shown in this example.)

EXEC SQL BEGIN DECLARE SECTION;
static short hv_int;
char hv_vchar64[65];
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

340 Preparation Guide for DB2 10.1 Fundamentals Exam 610

EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING :hv_int, :hv_vchar64;

Example 3: Code an OPEN statement as in example 2, but in this case the number
and data types of the parameter markers in the WHERE clause are not known.

EXEC SQL BEGIN DECLARE SECTION;
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :sqlda;

Example 4: Create a procedure that does the following operations:
1. Assigns a cursor to the output cursor variable
2. Opens the cursor
CREATE PROCEDURE PROC1 (OUT P1 CURSOR)LANGUAGE SQL
BEGIN
SET P1=CURSOR FOR SELECT DEPTNO, DEPTNAME, MGRNO FROM DEPARTMENT WHERE ADMRDEPT=’A00’; --
OPEN P1; --
END;

FETCH
The FETCH statement positions a cursor on the next row of its result table and
assigns the values of that row to target variables.

Invocation

Although an interactive SQL facility might provide an interface that gives the
appearance of interactive execution, this statement can only be embedded within
an application program. It is an executable statement that cannot be dynamically
prepared. When invoked using the command line processor, the syntax following
cursor-name is optional and different from the SQL syntax. For more information,
refer to “Using command line SQL statements and XQuery statements”.

Authorization

For each global variable used as a cursor-variable-name or in the expression for an
array-index, the privileges held by the authorization ID of the statement must
include one of the following:
v READ privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

For each global variable used as an assignment-target, the privileges held by the
authorization ID of the statement must include one of the following:
v WRITE privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

For the authorization required to use a cursor, see “DECLARE CURSOR”.

Chapter 34. Cursors 341

Syntax

�� FETCH cursor-name
FROM cursor-variable-name

�

� �

,

INTO assignment-target
USING DESCRIPTOR descriptor-name

��

assignment-target

�� global-variable-name
host-variable-name
SQL-parameter-name
SQL-variable-name
transition-variable-name
array-variable-name [array-index]
field-reference

��

Description

cursor-variable-name
Identifies the cursor to be used in the fetch operation. The
cursor-variable-name must identify a cursor variable that is in scope. When the
FETCH statement is executed, the underlying cursor of the cursor-variable-name
must be in the open state. A FETCH statement using a cursor-variable-name can
only be used within a compound SQL (compiled) statement.

INTO assignment-target

Identifies one or more targets for the assignment of output values. The first
value in the result row is assigned to the first target in the list, the second
value to the second target, and so on. Each assignment to an assignment-target
is made in sequence through the list. If an error occurs on any assignment, the
value is not assigned to the target, and no more values are assigned to targets.
Any values that have already been assigned to targets remain assigned.

When the data type of every assignment-target is not a row type, then the value
'W' is assigned to the SQLWARN3 field of the SQLCA if the number of
assignment-targets is less than the number of result column values.

If the data type of an assignment-target is a row type, then there must be exactly
one assignment-target specified (SQLSTATE 428HR), the number of columns
must match the number of fields in the row type, and the data types of the
columns of the fetched row must be assignable to the corresponding fields of
the row type (SQLSTATE 42821).

If the data type of an assignment-target is an array element, then there must be
exactly one assignment-target specified.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output

342 Preparation Guide for DB2 10.1 Fundamentals Exam 610

values, the target can be a regular host variable (if it is large enough), a
LOB locator variable, or a LOB file reference variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables
must be declared before they are used.

transition-variable-name
Identifies the column to be updated in the transition row. A
transition-variable-name must identify a column in the subject table of a
trigger, optionally qualified by a correlation name that identifies the new
value.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array
type.

[array-index]
An expression that specifies which element in the array will be the
target of the assignment. For an ordinary array, the array-index
expression must be assignable to INTEGER (SQLSTATE 428H1) and
cannot be the null value. Its value must be between 1 and the
maximum cardinality defined for the array (SQLSTATE 2202E). For an
associative array, the array-index expression must be assignable to the
index data type of the associative array (SQLSTATE 428H1) and cannot
be the null value.

field-reference
Identifies the field within a row type value that is the assignment target.
The field-reference must be specified as a qualified field-name where the
qualifier identifies the row value in which the field is defined.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more host
variables.

Before the FETCH statement is processed, the user must set the following
fields in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA.
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA.
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement.
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB or structured type result columns need to be accommodated, there must
be two SQLVAR entries for every select-list item (or column of the result table).

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN.

Chapter 34. Cursors 343

The nth variable described in the SQLDA corresponds to the nth column of the
result table of the cursor. The data type of each variable must be compatible with
its corresponding column.

Each assignment to a variable is made according to specific rules. If the number of
variables is less than the number of values in the row, the SQLWARN3 field of the
SQLDA is set to 'W'. Note that there is no warning if there are more variables than
the number of result columns. If an assignment error occurs, the value is not
assigned to the variable, and no more values are assigned to variables. Any values
that have already been assigned to variables remain assigned.

Examples
v Example 1: In this C example, the FETCH statement fetches the results of the

SELECT statement into the program variables dnum, dname, and mnum. When no
more rows remain to be fetched, the not found condition is returned.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT

WHERE ADMRDEPT = ’A00’;

EXEC SQL OPEN C1;

while (SQLCODE==0) {
EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

}

EXEC SQL CLOSE C1;

v Example 2: This FETCH statement uses an SQLDA.
FETCH CURS USING DESCRIPTOR :sqlda3

CLOSE
The CLOSE statement closes a cursor. If a result table was created when the cursor
was opened, that table is destroyed.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that cannot be dynamically prepared. When invoked
using the command line processor, some options cannot be specified. For more
information, refer to “Using command line SQL statements and XQuery
statements”.

Authorization

If a global variable is referenced, the privileges held by the authorization ID of the
statement must include one of the following authorities:
v READ privilege on the global variable that is not defined in a module
v EXECUTE privilege on the module of the global variable that is defined in a

module

For the authorization required to use a cursor, see “DECLARE CURSOR”.

Syntax

�� CLOSE cursor-name
cursor-variable-name WITH RELEASE

��

344 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Description

cursor-name
Identifies the cursor to be closed. The cursor-name must identify a declared
cursor as explained in the DECLARE CURSOR statement. When the CLOSE
statement is executed, the cursor must be in the open state.

cursor-variable-name
Identifies the cursor to be closed. The cursor-variable-name must identify a
cursor variable. When the CLOSE statement is executed, the underlying cursor
of cursor-variable-name must be in the open state (SQLSTATE 24501). A CLOSE
statement using cursor-variable-name can only be used within a compound SQL
(compiled) statement.

WITH RELEASE
The release of all locks that have been held for the cursor is attempted. Note
that not all of the locks are necessarily released; these locks may be held for
other operations or activities.

Example

A cursor is used to fetch one row at a time into the C program variables dnum,
dname, and mnum. Finally, the cursor is closed. If the cursor is reopened, it is again
located at the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM TDEPT
WHERE ADMRDEPT = ’A00’;

EXEC SQL OPEN C1;

while (SQLCODE==0) { .
EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

.

.
}
EXEC SQL CLOSE C1;

Chapter 34. Cursors 345

346 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 35. Transactions

A transaction is a recoverable unit of work, or a group of SQL statements that can
be treated as one atomic operation. This means that all the operations within the
group are guaranteed to be completed (committed) or undone (rolled back), as if
they were a single operation.

COMMIT
The COMMIT statement terminates a unit of work and commits the database
changes that were made by that unit of work.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
WORK

COMMIT ��

Description

The unit of work in which the COMMIT statement is executed is terminated and a
new unit of work is initiated. All changes made by the following statements
executed during the unit of work are committed: ALTER, COMMENT, CREATE,
DROP, GRANT, LOCK TABLE, REVOKE, SET INTEGRITY, SET Variable, and the
data change statements (INSERT, DELETE, MERGE, UPDATE), including those
nested in a query.

The following statements, however, are not under transaction control and changes
made by them are independent of the COMMIT statement:
v SET CONNECTION
v SET PASSTHRU

Note: Although the SET PASSTHRU statement is not under transaction control,
the passthru session initiated by the statement is under transaction control.

v SET SERVER OPTION
v Assignments to updatable special registers

All locks acquired by the unit of work subsequent to its initiation are released,
except necessary locks for open cursors that are declared WITH HOLD. All open
cursors not defined WITH HOLD are closed. Open cursors defined WITH HOLD
remain open, and the cursor is positioned before the next logical row of the result
table. (A FETCH must be performed before a positioned UPDATE or DELETE

© Copyright IBM Corp. 2012 347

statement is issued.) All LOB locators are freed. Note that this is true even when
the locators are associated with LOB values retrieved via a cursor that has the
WITH HOLD property.

Dynamic SQL statements prepared in a package bound with the KEEPDYNAMIC YES
option are kept in the SQL context after a COMMIT statement. This is the default
behavior. The statement might be implicitly prepared again, as a result of DDL
operations that are rolled back within the unit of work. Inactive dynamic SQL
statements prepared in a package bound with KEEPDYNAMIC NO are removed from
the SQL context after a COMMIT. The statement must be prepared again before it
can be executed in a new transaction.

All savepoints set within the transaction are released.

The following statements behave differently than other data definition language
(DDL) and data control language (DCL) statements. Changes made by these
statements do not take effect until the statement is committed, even for the current
connection that issues the statement. Only one of these statements can be issued by
any application at a time, and only one of these statements is allowed within any
one unit of work. Each statement must be followed by a COMMIT or a
ROLLBACK statement before another one of these statements can be issued.
v CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)
v CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
v CREATE WORK ACTION, ALTER WORK ACTION, or DROP (WORK ACTION)
v CREATE WORK CLASS, ALTER WORK CLASS, or DROP (WORK CLASS)
v CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
v GRANT (Workload Privileges) or REVOKE (Workload Privileges)

Notes
v It is strongly recommended that each application process explicitly ends its unit

of work before terminating. If the application program ends normally without a
COMMIT or ROLLBACK statement then the database manager attempts a
commit or rollback depending on the application environment.

v For information about the impact of COMMIT on cached dynamic SQL
statements, see “EXECUTE”.

v For information about potential impacts of COMMIT on created temporary
tables, see “CREATE GLOBAL TEMPORARY TABLE”.

v For information about potential impacts of COMMIT on declared temporary
tables, see “DECLARE GLOBAL TEMPORARY TABLE”.

v The following dynamic SQL statements may be active during COMMIT:
– Open WITH HOLD cursor
– COMMIT statement
– CALL statements under which the COMMIT statement was executed

Example

Commit alterations to the database made since the last commit point.
COMMIT WORK

348 Preparation Guide for DB2 10.1 Fundamentals Exam 610

ROLLBACK
The ROLLBACK statement is used to back out of the database changes that were
made within a unit of work or a savepoint.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

None required.

Syntax

��
WORK

ROLLBACK
TO SAVEPOINT

savepoint-name

��

Description

The unit of work in which the ROLLBACK statement is executed is terminated and
a new unit of work is initiated. All changes made to the database during the unit
of work are backed out.

The following statements, however, are not under transaction control, and changes
made by them are independent of the ROLLBACK statement:
v SET CONNECTION
v SET ENCRYPTION PASSWORD
v SET EVENT MONITOR STATE
v SET PASSTHRU (Although the SET PASSTHRU statement is not under

transaction control, the passthru session initiated by the statement is under
transaction control.)

v SET SERVER OPTION
v A SET statement that sets an updatable special register

The generation of sequence and identity values is not under transaction control.
Values generated and consumed by the nextval-expression or by inserting rows into
a table that has an identity column are independent of issuing the ROLLBACK
statement. Also, issuing the ROLLBACK statement does not affect the value
returned by the prevval-expression, nor the IDENTITY_VAL_LOCAL function.

Modification of the values of global variables is not under transaction control.
ROLLBACK statements do not affect the values assigned to global variables.

TO SAVEPOINT
Specifies that a partial rollback (ROLLBACK TO SAVEPOINT) is to be
performed. If no savepoint is active in the current savepoint level (see the
“Rules” section in the description of the SAVEPOINT statement), an error is
returned (SQLSTATE 3B502). After a successful rollback, the savepoint
continues to exist, but any nested savepoints are released and no longer exist.

Chapter 35. Transactions 349

The nested savepoints, if any, are considered to have been rolled back and then
released as part of the rollback to the current savepoint. If a savepoint-name is
not provided, rollback occurs to the most recently set savepoint within the
current savepoint level.

If this clause is omitted, the ROLLBACK statement rolls back the entire
transaction. Furthermore, savepoints within the transaction are released.

savepoint-name
Specifies the savepoint that is to be used in the rollback operation. The
specified savepoint-name cannot begin with 'SYS' (SQLSTATE 42939). After a
successful rollback operation, the named savepoint continues to exist. If the
savepoint name does not exist, an error (SQLSTATE 3B001) is returned. Data
and schema changes made since the savepoint was set are undone.

Notes
v All locks held are released on a ROLLBACK of the unit of work. All open

cursors are closed. All LOB locators are freed.
v Executing a ROLLBACK statement does not affect either the SET statements that

change special register values or the RELEASE statement.
v If the program terminates abnormally, the unit of work is implicitly rolled back.
v Statement caching is affected by the rollback operation.
v The impact on cursors resulting from a ROLLBACK TO SAVEPOINT depends

on the statements within the savepoint
– If the savepoint contains DDL on which a cursor is dependent, the cursor is

marked invalid. Attempts to use such a cursor results in an error (SQLSTATE
57007).

– Otherwise:
- If the cursor is referenced in the savepoint, the cursor remains open and is

positioned before the next logical row of the result table. (A FETCH must
be performed before a positioned UPDATE or DELETE statement is issued.)

- Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it
remains open and positioned).

v Dynamic SQL statements prepared in a package bound with the KEEPDYNAMIC
YES option are kept in the SQL context after a ROLLBACK statement. The
statement might be implicitly prepared again, as a result of DDL operations that
are rolled back within the unit of work.

v Inactive dynamic SQL statements prepared in a package bound with
KEEPDYNAMIC NO are removed from the SQL context after a rollback operation.
The statement must be prepared again before it can be executed in a new
transaction.

v The following dynamic SQL statements may be active during ROLLBACK:
– ROLLBACK statement
– CALL statements under which the ROLLBACK statement was executed

v A ROLLBACK TO SAVEPOINT operation will drop any created temporary
tables created within the savepoint. If a created temporary table is modified
within the savepoint and that table has been defined as not logged, then all
rows in the table are deleted.

v A ROLLBACK TO SAVEPOINT operation will drop any declared temporary
tables declared within the savepoint. If a declared temporary table is modified
within the savepoint and that table has been defined as not logged, then all
rows in the table are deleted.

v All locks are retained after a ROLLBACK TO SAVEPOINT statement.

350 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v All LOB locators are preserved following a ROLLBACK TO SAVEPOINT
operation.

Example

Delete the alterations made since the last commit point or rollback.
ROLLBACK WORK

SAVEPOINT
Use the SAVEPOINT statement to set a savepoint within a transaction.

Invocation

This statement can be imbedded in an application program (including a procedure)
or issued interactively. It is an executable statement that can be dynamically
prepared.

Authorization

None required.

Syntax

�� SAVEPOINT savepoint-name
UNIQUE

ON ROLLBACK RETAIN CURSORS �

�
ON ROLLBACK RETAIN LOCKS

��

Description

savepoint-name
Specifies the name of a savepoint. The specified savepoint-name cannot begin
with 'SYS' (SQLSTATE 42939). If a savepoint by this name has already been
defined as UNIQUE within this savepoint level, an error is returned
(SQLSTATE 3B501).

UNIQUE
Specifies that the application does not intend to reuse this savepoint name
while the savepoint is active within the current savepoint level. If
savepoint-name already exists within this savepoint level, an error is returned
(SQLSTATE 3B501).

ON ROLLBACK RETAIN CURSORS
Specifies system behavior upon rollback to this savepoint with respect to open
cursor statements processed after the SAVEPOINT statement. This clause
indicates that, whenever possible, the cursors are unaffected by a rollback to
savepoint operation. For situations where the cursors are affected by the
rollback to savepoint, see “ROLLBACK”.

ON ROLLBACK RETAIN LOCKS
Specifies system behavior upon rollback to this savepoint with respect to locks
acquired after the setting of the savepoint. Locks acquired since the savepoint
are not tracked, and are not rolled back (released) upon rollback to the
savepoint.

Chapter 35. Transactions 351

Rules
v Savepoint-related statements must not be used within trigger definitions

(SQLSTATE 42987).
v A new savepoint level starts when one of the following events occurs:

– A new unit of work (UOW) starts.
– A procedure defined with the NEW SAVEPOINT LEVEL clause is called.
– An atomic compound SQL statement starts.

v A savepoint level ends when the event that caused its creation is finished or
removed. When a savepoint level ends, all savepoints contained within it are
released. Any open cursors, DDL actions, or data modifications are inherited by
the parent savepoint level (that is, the savepoint level within which the one that
just ended was created), and are subject to any savepoint-related statements
issued against the parent savepoint level.

v The following rules apply to actions within a savepoint level:
– Savepoints can only be referenced within the savepoint level in which they

are established. You cannot release, destroy, or roll back to a savepoint
established outside of the current savepoint level.

– All active savepoints established within the current savepoint level are
automatically released when the savepoint level ends.

– The uniqueness of savepoint names is only enforced within the current
savepoint level. The names of savepoints that are active in other savepoint
levels can be reused in the current savepoint level without affecting those
savepoints in other savepoint levels.

Notes
v Once a SAVEPOINT statement has been issued, insert, update, or delete

operations on nicknames are not allowed.
v Omitting the UNIQUE clause specifies that savepoint-name can be reused within

the savepoint level by another savepoint. If a savepoint of the same name
already exists within the savepoint level, the existing savepoint is destroyed and
a new savepoint with the same name is created at the current point in
processing. The new savepoint is considered to be the last savepoint established
by the application. Note that the destruction of a savepoint through the reuse of
its name by another savepoint simply destroys that one savepoint and does not
release any savepoints established after the destroyed savepoint. These
subsequent savepoints can only be released by means of the RELEASE
SAVEPOINT statement, which releases the named savepoint and all savepoints
established after the named savepoint.

v If the UNIQUE clause is specified, savepoint-name can only be reused after an
existing savepoint with the same name has been released.

v Within a savepoint, if a utility, SQL statement, or DB2 command performs
intermittent commits during processing, the savepoint will be implicitly released.

v If the SET INTEGRITY statement is rolled back within the savepoint,
dynamically prepared statement names are still valid, although the statement
might be implicitly prepared again.

v If inserts are buffered (that is, the application was precompiled with the INSERT
BUF option), the buffer will be flushed when SAVEPOINT, ROLLBACK, or
RELEASE TO SAVEPOINT statements are issued.

352 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Example

Perform a rollback operation for nested savepoints. First, create a table named
DEPARTMENT. Insert a row before starting SAVEPOINT1; insert another row and
start SAVEPOINT2; then, insert a third row and start SAVEPOINT3.

CREATE TABLE DEPARTMENT (
DEPTNO CHAR(6),
DEPTNAME VARCHAR(20),
MGRNO INTEGER)

INSERT INTO DEPARTMENT VALUES (’A20’, ’MARKETING’, 301)

SAVEPOINT SAVEPOINT1 ON ROLLBACK RETAIN CURSORS

INSERT INTO DEPARTMENT VALUES (’B30’, ’FINANCE’, 520)

SAVEPOINT SAVEPOINT2 ON ROLLBACK RETAIN CURSORS

INSERT INTO DEPARTMENT VALUES (’C40’, ’IT SUPPORT’, 430)

SAVEPOINT SAVEPOINT3 ON ROLLBACK RETAIN CURSORS

INSERT INTO DEPARTMENT VALUES (’R50’, ’RESEARCH’, 150)

At this point, the DEPARTMENT table exists with rows A20, B30, C40, and R50. If
you now issue:

ROLLBACK TO SAVEPOINT SAVEPOINT3

row R50 is no longer in the DEPARTMENT table. If you then issue:
ROLLBACK TO SAVEPOINT SAVEPOINT1

the DEPARTMENT table still exists, but the rows inserted since SAVEPOINT1 was
established (B30 and C40) are no longer in the table.

Chapter 35. Transactions 353

354 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 36. Invoking user-defined functions

Use the proper syntax to invoke user-defined functions so that the proper function
is selected.

Each reference to a function, whether it is a UDF, or a built-in function, contains
the following syntax:

��

�

function_name ()
,

expression

��

In the preceding syntax diagram, function_name can be either an unqualified or a
qualified function name. The arguments can number from 0 to 90 and are
expressions. Examples of some components that can compose expressions are the
following:
v a column name, qualified or unqualified
v a constant
v a host variable
v a special register
v a parameter marker

The position of the arguments is important and must conform to the function
definition for the semantics to be correct. Both the position of the arguments and
the function definition must conform to the function body itself. DB2 database
systems do not attempt to shuffle arguments to better match a function definition,
and do not understand the semantics of the individual function parameters.

Use of column names in UDF argument expressions requires that the table
references that contain the columns have proper scope. For table functions
referenced in a join and using any argument involving columns from another table
or table function, the referenced table or table function must precede the table
function containing the reference in the FROM clause.

In order to use parameter markers in functions you cannot simply code the
following:
BLOOP(?)

Because the function selection logic does not know what data type the argument
might turn out to be, it cannot resolve the reference. You can use the CAST
specification to provide a type for the parameter marker. For example, INTEGER,
and then the function selection logic can proceed:
BLOOP(CAST(? AS INTEGER))

Some valid examples of function invocations are:
AVG(FLOAT_COLUMN)
BLOOP(COLUMN1)
BLOOP(FLOAT_COLUMN + CAST(? AS INTEGER))
BLOOP(:hostvar :indicvar)
BRIAN.PARSE(CHAR_COLUMN CONCAT USER, 1, 0, 0, 1)

© Copyright IBM Corp. 2012 355

CTR()
FLOOR(FLOAT_COLUMN)
PABLO.BLOOP(A+B)
PABLO.BLOOP(:hostvar)
"search_schema"(CURRENT FUNCTION PATH, ’GENE’)
SUBSTR(COLUMN2,8,3)
SYSFUN.FLOOR(AVG(EMP.SALARY))
SYSFUN.AVG(SYSFUN.FLOOR(EMP.SALARY))
SYSIBM.SUBSTR(COLUMN2,11,LENGTH(COLUMN3))
SQRT((SELECT SUM(length*length)

FROM triangles
WHERE id= ’J522’
AND legtype <> ’HYP’))

If any of these functions are table functions, the syntax to reference them is slightly
different than presented previously. For example, if PABLO.BLOOP is a table function,
to properly reference it, use:
TABLE(PABLO.BLOOP(A+B)) AS Q

Invoking scalar functions or methods
The invocation of built-in scalar functions, user-defined scalar-functions and
methods is very similar. Scalar functions and methods can only be invoked where
expressions are supported within an SQL statement.

Before you begin
v For built-in functions, SYSIBM must be in the CURRENT PATH special register.

SYSIBM is in CURRENT PATH by default.
v For user-defined scalar functions, the function must have been created in the

database using either the CREATE FUNCTION or CREATE METHOD statement.
v For external user-defined scalar functions, the library or class file associated with

the function must be in the location specified by the EXTERNAL clause of the
CREATE FUNCTION or CREATE METHOD statement.

v To invoke a user-defined function or method, a user must have EXECUTE
privilege on the function or method. If the function or method is to be used by
all users, the EXECUTE privilege on the function or method can be granted to
PUBLIC.

Procedure

To invoke a scalar UDF or method:

Include a reference to it within an expression contained in an SQL statement where
it is to process one or more input values. Functions and methods can be invoked
anywhere that an expression is valid. Examples of where a scalar UDF or method
can be referenced include the select-list of a query or in a VALUES clause.

Example

For example, suppose that you have created a user-defined scalar function called
TOTAL_SAL that adds the base salary and bonus together for each employee row
in the EMPLOYEE table.

CREATE FUNCTION TOTAL_SAL
(SALARY DECIMAL(9,2), BONUS DECIMAL(9,2))
RETURNS DECIMAL(9,2)
LANGUAGE SQL

356 Preparation Guide for DB2 10.1 Fundamentals Exam 610

CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SALARY+BONUS

The following is a SELECT statement that makes use of TOTAL_SAL:
SELECT LASTNAME, TOTAL_SAL(SALARY, BONUS) AS TOTAL

FROM EMPLOYEE

Invoking user-defined table functions
Once the user-defined table function is written and registered with the database,
you can invoke it in the FROM clause of a SELECT statement.

Before you begin
v The table function must have been created in the database by executing the

CREATE FUNCTION.
v For external user-defined table functions, the library or class file associated with

the function must be in the location specified by the EXTERNAL clause of the
CREATE FUNCTION.

v To invoke a user-defined table function a user must have EXECUTE privilege on
the function.

Procedure

To invoke a user-defined table function, reference the function in the FROM clause
of an SQL statement where it is to process a set of input values. The reference to
the table function must be preceded by the TABLE clause and be contained in
brackets.
For example, the following CREATE FUNCTION statement defines a table function
that returns the employees in a specified department number.

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO VARCHAR(3))
RETURNS TABLE (EMPNO CHAR(6),

LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))

LANGUAGE SQL
READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
RETURN

SELECT EMPNO, LASTNAME, FIRSTNME FROM EMPLOYEE
WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

The following is a SELECT statement that makes use of DEPTEMPLOYEES:
SELECT EMPNO, LASTNAME, FIRSTNAME FROM TABLE(DEPTEMPLOYEES(’A00’)) AS D

Chapter 36. References to functions 357

358 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 37. Calling procedures

Once the activities required to create a procedure (also called a stored procedure)
have been completed, a procedure can be invoked by using the CALL statement.
The CALL statement is an SQL statement that enables the procedure invocation,
the passing of parameters to the procedure, and the receiving of parameters
returned from the procedure.

About this task

Any accessible result sets returned from a procedure can be processed once the
procedure has successfully returned. Procedures can be invoked from anywhere
that the CALL statement is supported including:
v an embedded SQL client application
v an external routine (procedure, UDF, or method)
v an SQL routine (procedure, UDF, or method)
v an SQL trigger (BEFORE TRIGGER, AFTER TRIGGER, or INSTEAD OF

TRIGGER)
v an SQL dynamic compound statement
v from the Command Line Processor (CLP)

If you choose to invoke a procedure from a client application or from an external
routine, the client application or external routine can be written in a language
other than that of the procedure. For example, a client application written in C++
can use the CALL statement to invoke a procedure written in Java. This provides
programmers with great flexibility to program in their language of choice and to
integrate code pieces written in different languages.

In addition, the client application that invokes the procedure can be executed on a
different platform than the one where the procedure resides. For example a client
application running on a Windows operating system can use the CALL statement
to invoke a procedure residing on a Linux database server.

An autonomous procedure is a procedure that, when called, executes inside a new
transaction independent of the original transaction. When the autonomous
procedure successfully completes, it will commit the work performed within the
procedure, but if it is unsuccessful, the procedure rolls back any work it
performed. Whatever the result of the autonomic procedure, the transaction which
called the autonomic procedure is unaffected. To specify a procedure as
autonomous, specify the AUTONOMOUS keyword on the CREATE PROCEDURE
statement.

When you call a procedure, certain rules apply about exactly which procedure is
selected. Procedure selection depends partly on whether you qualify the procedure
by specifying the schema name. The DB2 database manager also performs checks
based on the number of arguments and any argument names specified in the call
to the procedure. See information about the CALL statement for more details about
procedure selection.

© Copyright IBM Corp. 2012 359

Calling procedures from the Command Line Processor (CLP)
You can call stored procedures by using the CALL statement from the DB2
command line processor interface. The stored procedure being called must be
defined in the DB2 database system catalog tables.

Procedure

To call the stored procedure, first connect to the database:
db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance where the
sample database is located.
To use the CALL statement, enter the stored procedure name plus any IN or
INOUT parameter values, as well as '?' as a place-holder for each OUT parameter
value.
The parameters for a stored procedure are given in the CREATE PROCEDURE
statement for the stored procedure in the program source file.

Example

SQL procedure examples
Example 1.

In the whiles.db2 file, the CREATE PROCEDURE statement for the
DEPT_MEDIAN procedure signature is as follows:

CREATE PROCEDURE DEPT_MEDIAN
(IN deptNumber SMALLINT, OUT medianSalary DOUBLE)

To invoke this procedure, use the CALL statement in which you must
specify the procedure name and appropriate parameter arguments, which
in this case are the value for the IN parameter, and a question mark, '?', for
the value of the OUT parameter. The procedure's SELECT statement uses
the deptNumber value on the DEPT column of the STAFF table, so to get
meaningful output the IN parameter needs to be a valid value from the
DEPT column; for example, the value "51":

db2 call dept_median (51, ?)

Note: On UNIX operating systems, the parentheses have special meaning
to the command shell, so they must be preceded with a "\" character or
surrounded with quotation marks, as follows:

db2 "call dept_median (51, ?)"

You do not use quotation marks if you are using the interactive mode of
the command line processor.
After running this command, you should receive the following result:

Value of output parameters

Parameter Name : MEDIANSALARY
Parameter Value : +1.76545000000000E+004

Return Status = 0

Example 2.

This example illustrates how to call a procedure with array parameters.
Type phonenumbers is defined as:

360 Preparation Guide for DB2 10.1 Fundamentals Exam 610

CREATE TYPE phonenumbers AS VARCHAR(12) ARRAY[1000]

Procedure find_customers, defined in the following example, has an IN
and an OUT parameter of type phonenumbers. The procedure searches for
numbers in numbers_in that begin with the given area_code, and reports
them in numbers_out.
CREATE PROCEDURE find_customers(
IN numbers_in phonenumbers,
IN area_code CHAR(3),
OUT numbers_out phonenumbers)
BEGIN
DECLARE i, j, max INTEGER;

SET i = 1;
SET j = 1;
SET numbers_out = NULL;
SET max = CARDINALITY(numbers_in);

WHILE i <= max DO
IF substr(numbers_in[i], 1, 3) = area_code THEN
SET numbers_out[j] = numbers_in[i];
SET j = j + 1;
END IF;
SET i = i + 1;
END WHILE;
END

To invoke the procedure, you can use the following CALL statement:
db2 CALL find_customers(ARRAY[’416-305-3745’,

’905-414-4565’,
’416-305-3746’],
’416’,
?)

As shown in the CALL statement, when a procedure has an input
parameter of an array data type, the input argument can be specified with
an array constructor containing a list of literal values.

After running the command, you should receive a result like this:
Value of output parameters

Parameter Name : OUT_PHONENUMBERS
Parameter Value : [’416-305-3745’,

’416-305-3746’]

Return Status = 0

C stored procedure example

You can also call stored procedures created from supported host languages
with the Command Line Processor. In the samples/c directory on UNIX,
and the samples\c directory on Windows, the DB2 database system
provides files for creating stored procedures. The spserver shared library
contains a number of stored procedures that can be created from the source
file, spserver.sqc. The spcreate.db2 file catalogs the stored procedures.

In the spcreate.db2 file, the CREATE PROCEDURE statement for the
MAIN_EXAMPLE procedure begins:
CREATE PROCEDURE MAIN_EXAMPLE (IN job CHAR(8),

OUT salary DOUBLE,
OUT errorcode INTEGER)

To call this stored procedure, you need to put in a CHAR value for the IN
parameter, job, and a question mark, '?', for each of the OUT parameters.

Chapter 37. Calling procedures 361

The procedure's SELECT statement uses the job value on the JOB column
of the EMPLOYEE table, so to get meaningful output the IN parameter
needs to be a valid value from the JOB column. The C sample program,
spclient, that calls the stored procedure, uses ’DESIGNER’ for the JOB
value. We can do the same, as follows:

db2 "call MAIN_EXAMPLE (’DESIGNER’, ?, ?)"

After running this command, you should receive the following result:
Value of output parameters

Parameter Name : SALARY
Parameter Value : +2.37312500000000E+004

Parameter Name : ERRORCODE
Parameter Value : 0

Return Status = 0

An ERRORCODE of zero indicates a successful result.

362 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 38. Working with XML data

Inserting XML columns
To insert data into an XML column, use the SQL INSERT statement. The input to
the XML column must be a well-formed XML document, as defined in the XML 1.0
specification. The application data type can be an XML, character, or binary type.

It is recommended that XML data be inserted from host variables, rather than
literals, so that the DB2 database server can use the host variable data type to
determine some of the encoding information.

XML data in an application is in its serialized string format. When you insert the
data into an XML column, it must be converted to its XML hierarchical format. If
the application data type is an XML data type, the DB2 database server performs
this operation implicitly. If the application data type is not an XML type, you can
invoke the XMLPARSE function explicitly when you perform the insert operation,
to convert the data from its serialized string format to the XML hierarchical format.

During document insertion, you might also want to validate the XML document
against a registered XML schema. You can do that with the XMLVALIDATE
function.

The following examples demonstrate how XML data can be inserted into XML
columns. The examples use table MyCustomer, which is a copy of the sample
Customer table. The XML data that is to be inserted is in file c6.xml, and looks like
this:
<customerinfo Cid="1015">

<name>Christine Haas</name>
<addr country="Canada">

<street>12 Topgrove</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X-7F8</pcode-zip>

</addr>
<phone type="work">905-555-5238</phone>
<phone type="home">416-555-2934</phone>

</customerinfo>

Example: In a JDBC application, read XML data from file c6.xml as binary data,
and insert the data into an XML column:
PreparedStatement insertStmt = null;
String sqls = null;
int cid = 1015;
sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
File file = new File("c6.xml");
insertStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());
insertStmt.executeUpdate();

Example: In a static embedded C application, insert data from a binary XML host
variable into an XML column:
EXEC SQL BEGIN DECLARE SECTION;

sqlint64 cid;
SQL TYPE IS XML AS BLOB (10K) xml_hostvar;

© Copyright IBM Corp. 2012 363

EXEC SQL END DECLARE SECTION;
...
cid=1015;
/* Read data from file c6.xml into xml_hostvar */
...
EXEC SQL INSERT INTO MyCustomer (Cid,Info) VALUES (:cid, :xml_hostvar);

Querying XML data
You can query or retrieve XML data stored in the database through two main
query languages, either by using each language on its own or by using a
combination of the two.

The following options are available to you:
v XQuery expressions only
v XQuery expressions that invoke SQL statements
v SQL statements only
v SQL statements that executes XQuery expressions

These various methods allow you to query or retrieve XML and other relational
data from either an SQL or XQuery context.

Pieces of or entire XML documents can be queried and retrieved using these
methods. Queries can return fragments or entire XML documents, and results
returned from queries can be limited by using predicates. Because queries on XML
data return XML sequences, a query's result can be used in the construction of
XML data as well.

Comparison of methods for querying XML data
Because XML data can be queried in a number of ways, using XQuery, SQL, or a
combination of these, the method to choose can differ depending on your situation.
The following sections describe conditions that are advantageous for a particular
query method.

XQuery only

Querying with XQuery alone can be a suitable choice when:
v applications access only XML data, without the need to query non-XML

relational data
v migrating queries previously written in XQuery to DB2 for Linux, UNIX, and

Windows
v returning query results to be used as values for constructing XML documents
v the query author is more familiar with XQuery than SQL

XQuery that invokes SQL

Querying with XQuery that invokes SQL can be a suitable choice when (in
addition to the scenarios identified in the previous section on using XQuery only):
v queries involve XML data and relational data; SQL predicates and indexes

defined on the relational columns can be leveraged in the query
v you want to apply XQuery expressions to the results of:

– UDF calls, as these cannot be invoked directly from XQuery

364 Preparation Guide for DB2 10.1 Fundamentals Exam 610

– XML values constructed from relational data using SQL/XML publishing
functions

– queries that use DB2 Net Search Extender which offers full text search of
XML documents but which must be used with SQL

SQL only

When retrieving XML data using only SQL, without any XQuery, you can query
only at the XML column level. For this reason, only entire XML documents can be
returned from the query. This usage is suitable when:
v you want to retrieve entire XML documents
v you do not need to query based on values within the stored documents, or

where the predicates of your query are on other non-XML columns of the table

SQL/XML functions that execute XQuery expressions

The SQL/XML functions XMLQUERY and XMLTABLE, as well as the XMLEXISTS
predicate, enable XQuery expressions to be executed from within the SQL context.
Executing XQuery within SQL can be a suitable choice when:
v existing SQL applications need to be enabled for querying within XML

documents. To query within XML documents, XQuery expressions need to be
executed, which can be done using SQL/XML

v applications querying XML data need to pass parameter markers to the XQuery
expression. (The parameter markers are first bound to XQuery variables in
XMLQUERY or XMLTABLE.)

v the query author is more familiar with SQL than XQuery
v both relational and XML data needs to be returned in a single query
v you need to join XML and relational data
v you want to group or aggregate XML data. You can apply the GROUP BY or

ORDER BY clauses of a subselect to the XML data (for example, after the XML
data has been retrieved and collected in table format by using the XMLTABLE
function)

Indexing XML data
An index over XML data can be used to improve the efficiency of queries on XML
documents that are stored in an XML column.

In contrast to traditional relational indexes, where index keys are composed of one
or more table columns you specify, an index over XML data uses a particular XML
pattern expression to index paths and values in XML documents stored within a
single column. The data type of that column must be XML.

Instead of providing access to the beginning of a document, index entries in an
index over XML data provide access to nodes within the document by creating
index keys based on XML pattern expressions. Because multiple parts of a XML
document can satisfy an XML pattern, multiple index keys may be inserted into
the index for a single document.

You create an index over XML data using the CREATE INDEX statement, and drop
an index over XML data using the DROP INDEX statement. The GENERATE KEY
USING XMLPATTERN clause you include with the CREATE INDEX statement
specifies what you want to index.

Chapter 38. Working with XML data 365

Some of the keywords used with the CREATE INDEX statement for indexes on
non-XML columns do not apply to indexes over XML data. The UNIQUE keyword
also has a different meaning for indexes over XML data.

Example: Creating an index over XML data

Suppose that table companyinfo has an XML column named companydocs, which
contains XML document fragments like these:

Document for Company1
<company name="Company1">

<emp id="31201" salary="60000" gender="Female">
<name>

<first>Laura</first>
<last>Brown</last>

</name>
<dept id="M25">

Finance
</dept>

</emp>
</company>

Document for Company2
<company name="Company2">

<emp id="31664" salary="60000" gender="Male">
<name>

<first>Chris</first>
<last>Murphy</last>

</name>
<dept id="M55">

Marketing
</dept>

</emp>
<emp id="42366" salary="50000" gender="Female">

<name>
<first>Nicole</first>
<last>Murphy</last>

</name>
<dept id="K55">

Sales
</dept>

</emp>
</company>

Users of the companyinfo table often retrieve employee information using the
employee ID. You might use an index like this one to make that retrieval more
efficient:

Notes to Figure 21:

�1� The index over XML data is defined on the companydocs column of the
companyinfo table. companydocs must be of the XML data type.

�2� The GENERATE KEY USING XMLPATTERN clause provides information
about what you want to index. This clause is called an XML index
specification. The XML index specification contains an XML pattern clause.
The XML pattern clause in this example indicates that you want to index
the values of the id attribute of each employee element.

CREATE INDEX empindex on companyinfo(companydocs) �1�
GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ �2�
AS SQL DOUBLE �3�

Figure 21. Example of an index over XML data

366 Preparation Guide for DB2 10.1 Fundamentals Exam 610

�3� AS SQL DOUBLE indicates that indexed values are stored as DOUBLE
values.

Updating XML data
To update data in an XML column, use the SQL UPDATE statement. Include a
WHERE clause when you want to update specific rows.

The entire column value will be replaced. The input to the XML column must be a
well-formed XML document. The application data type can be an XML, character,
or binary type.

When you update an XML column, you might also want to validate the input XML
document against a registered XML schema. You can do that with the
XMLVALIDATE function.

You can use XML column values to specify which rows are to be updated. To find
values within XML documents, you need to use XQuery expressions. One way of
specifying XQuery expressions is the XMLEXISTS predicate, which allows you to
specify an XQuery expression and determine if the expression results in an empty
sequence. When XMLEXISTS is specified in the WHERE clause, rows will be
updated if the XQuery expression returns a non-empty sequence.

The following examples demonstrate how XML data can be updated in XML
columns. The examples use table MYCUSTOMER, which is a copy of the sample
CUSTOMER table. The examples assume that MYCUSTOMER already contains a
row with a customer ID value of 1004. The XML data that updates existing column
data is assumed to be stored in a file c7.xml, whose contents look like this:
<customerinfo Cid="1004">

<name>Christine Haas</name>
<addr country="Canada">

<street>12 Topgrove</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9Y-8G9</pcode-zip>

</addr>
<phone type="work">905-555-5238</phone>
<phone type="home">416-555-2934</phone>

</customerinfo>

Example: In a JDBC application, read XML data from file c7.xml as binary data,
and use it to update the data in an XML column:
PreparedStatement updateStmt = null;
String sqls = null;
int cid = 1004;
sqls = "UPDATE MyCustomer SET Info=? WHERE Cid=?";
updateStmt = conn.prepareStatement(sqls);
updateStmt.setInt(1, cid);
File file = new File("c7.xml");
updateStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());
updateStmt.executeUpdate();

Example: In an embedded C application, update data in an XML column from a
binary XML host variable:
EXEC SQL BEGIN DECLARE SECTION;

sqlint64 cid;
SQL TYPE IS XML AS BLOB (10K) xml_hostvar;

EXEC SQL END DECLARE SECTION;
...

Chapter 38. Working with XML data 367

cid=1004;
/* Read data from file c7.xml into xml_hostvar */
...
EXEC SQL UPDATE MyCustomer SET Info=:xml_hostvar WHERE Cid=:cid;

In these examples, the value of the Cid attribute within the <customerinfo>
element happens to be stored in the CID relational column as well. Because of this,
the WHERE clause in the UPDATE statements used the relational column CID to
specify the rows to update. In the case where the values that determine which
rows are chosen for update are found only within the XML documents themselves,
the XMLEXISTS predicate can be used. For example, the UPDATE statement in the
previous embedded C application example can be changed to use XMLEXISTS as
follows:
EXEC SQL UPDATE MyCustomer SET Info=:xml_hostvar

WHERE XMLEXISTS (’$doc/customerinfo[@Cid = $c]’
passing INFO as "doc", cast(:cid as integer) as "c");

Example: The following example updates existing XML data from the
MYCUSTOMER table. The SQL UPDATE statement operates on a row of the
MYCUSTOMER table and replaces the document in the INFO column of the row
with the logical snapshot of the document modified by the transform expression:
UPDATE MyCustomer
SET info = XMLQUERY(

’transform
copy $newinfo := $info
modify do insert <status>Current</status>

as last into $newinfo/customerinfo
return $newinfo’ passing info as "info")

WHERE cid = 1004

368 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 39. Working with temporal tables and time travel
queries

Use SQL statements to store and retrieve time-based data in temporal tables.

Inserting data into a system-period temporal table
For a user, inserting data into a system-period temporal table is similar to inserting
data into a regular table.

About this task

When inserting data into a system-period temporal table, the database manager
automatically generates the values for the row-begin and row-end timestamp
columns. The database manager also generates the transaction start-ID value that
uniquely identifies the transaction that is inserting the row.

Procedure

To insert data into a system-period temporal table, use the INSERT statement to
add data to the table. For example, the following data was inserted on January 31,
2010 (2010-01-31) to the table created in the example in “ Creating a system-period
temporal table.”
INSERT INTO policy_info(policy_id, coverage)

VALUES(’A123’,12000);

INSERT INTO policy_info(policy_id, coverage)
VALUES(’B345’,18000);

INSERT INTO policy_info(policy_id, coverage)
VALUES(’C567’,20000);

Results

The policy_info table now contains the following insurance coverage data. The
sys_start, sys_end, and ts_id column entries were generated by the database
manager.

Table 25. Data added to a system-period temporal table (policy_info)

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

B345 18000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

C567 20000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

The his_policy_info history table remains empty because no history rows are
generated by an insert.

© Copyright IBM Corp. 2012 369

Table 26. History table (hist_policy_info) after insert

policy_id coverage sys_start sys_end ts_id

Note: The row-begin column, sys_start, represents the time when the row data
became current. The database manager generates this value by using a reading of
the system clock at the moment it executes the first data change statement in the
transaction that generates the row. The database manager also generates the
transaction start-ID column, ts_id, which captures the time when execution started
for a transaction that impacts the row. In many cases the timestamp values for
both these columns are the same because they result from the execution of the
same transaction.

When multiple transactions are updating the same row, timestamp conflicts can
occur. The database manager can resolve these conflicts by making adjustments to
row-begin column timestamp values. In such cases, the values in row-begin
column and transaction start-ID column would differ. The Example section in “
Updating a system-period temporal table” provides more details on timestamp
adjustments.

Updating data in a system-period temporal table
Updating data in a system-period temporal table results in rows that are added to
its associated history table.

About this task

In addition to updating the values of specified columns in rows of the
system-period temporal table, the UPDATE statement inserts a copy of the existing
row into the associated history table. The history row is generated as part of the
same transaction that updates the row. If a single transactions make multiple
updates to the same row, only one history row is generated and that row reflects
the state of the record before any changes were made by the transaction.

Note: Timestamp value conflicts can occur when multiple transactions are
updating the same row. When these conflicts occur, the setting for the
“systime_period_adj” database configuration parameter determines whether
timestamp adjustments are made or if transactions should fail. The Multiple
changes to a row by different transactions example in the More examples section
provides more details. Application programmers might consider using SQLCODE
or SQLSTATE values to handle potential timestamp value adjustment-related
return codes from SQL statements.

Procedure

To update data in a system-period temporal table, use the UPDATE statement. For
example, it was discovered that were some errors in the insurance coverage levels
for a customer and the following data was updated on February 28, 2011
(2011-02-28) in the example table that had data added in the “ Inserting data into a
system-period temporal table” topic.
The following table contains the original policy_info table data.

370 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 27. Original data in the system-period temporal table (policy_info)

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

v The coverage for policy C567 should be 25000.
UPDATE policy_info

SET coverage = 25000
WHERE policy_id = ’C567’;

The update to policy C567 affects the system-period temporal table and its
history table, causing the following things to occur:
1. The coverage value for the row with policy C567 is updated to 25000.
2. In the system-period temporal table, the database manager updates the

sys_start and ts_id values to the date of the update.
3. The original row is moved to the history table. The database manager

updates the sys_end value to the date of the update. This row can be
interpreted as the valid coverage for policy C567 from 2010-01-31-
22.31.33.495925000000 to 2011-02-28-09.10.12.649592000000.

Table 28. Updated data in the system-period temporal table (policy_info)

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

C567 25000 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 29. History table (hist_policy_info) after update

policy_id coverage sys_start sys_end ts_id

C567 20000 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

More examples

This section contains more examples of updating system-period temporal tables.

Time specifications
In the following example, a time period is specified as part of the table
update. The following update is run after the update in the preceding
Procedure section.

Chapter 39. Working with temporal tables and time travel queries 371

UPDATE (SELECT * FROM policy_info
FOR SYSTEM_TIME AS OF ’2010-01-31-22.31.33.495925000000’)
SET coverage = coverage + 1000;

This update returns an error because it implicitly attempts to update
history rows. The SELECT explicitly queries the policy_info table and
implicitly queries its associated history table (hist_policy_info). The C567
row in hist_policy_info would be returned by the SELECT, but rows in a
history table that were accessed implicitly cannot be updated.

Multiple changes to a row by different transactions
In the following example, two transactions are executing SQL statements
against the policy_info table at the same time. In this example, the
timestamps are simplified to a placeholder instead of a sample system
clock value. For example, instead of 2010-01-31-22.31.33.495925000000, the
example uses T1. Higher numbered placeholders indicate later actions
within the transaction. For example, T5 is later than T4.

When you insert or update multiple rows within a single SQL transaction,
the values for the row-begin column are the same for all the impacted
rows. That value comes from a reading of the system clock at the moment
the first data change statement in the transaction is executed. For example,
all times associated with transaction ABC will have a time of T1.

Transaction ABC Transaction XYZ
T1: INSERT INTO policy_info

(policy_id, coverage)
VALUES (’S777’,7000);

T2: INSERT INTO policy_info
(policy_id, coverage)
VALUES (’T888’,8000);

T3: COMMIT;
T4: UPDATE policy_info

SET policy_id = ’X999’
WHERE policy_id = ’T888’;

T5: INSERT INTO policy_info
(policy_id, coverage)
VALUES (’Y555’,9000);

T6: COMMIT;

After the inserts at T1 and T2, the policy_info table would look like this
and the history table would be empty (hist_policy_info). The value max
in the sys_end column is populated with the maximum default value for
the TIMESTAMP(12) data type.

Table 30. Different transaction inserts to the policy_info table

policy_id coverage sys_start sys_end ts_id

S777 7000 T1 max T1

T888 8000 T2 max T2

After the update by transaction ABC at time T4, the policy information
looks like the following tables. All the rows in the policy_info table reflect
the insert and update activities from transaction ABC. The sys_start and
ts_id columns for these rows are populated with time T1, which is the
time of the first data change statement in transaction ABC. The policy
information inserted by transaction XYZ was updated and the original row
is moved to the history table.

372 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 31. Different transactions after update to the policy_info table

policy_id coverage sys_start sys_end ts_id

S777 7000 T1 max T1

X999 8000 T1 max T1

Table 32. History table after different transactions update (hist_policy_info)

policy_id coverage sys_start sys_end ts_id

T888 8000 T2 T1 T2

The history table shows a sys_end time that is less than the sys_start. In
this situation, the update at time T4 could not execute and transaction ABC
would fail (SQLSTATE 57062, SQLCODE SQL20528N). To avoid such
failures, the systime_period_adj database configuration parameter can be
set to YES which allows the database manager to adjust the row-begin
timestamp (SQLSTATE 01695, SQLCODE SQL5191W). The sys_start
timestamp for the time T4 update in transaction ABC is set to time T2 plus
a delta (T2+delta). This adjustment only applies to the time T4 update, all
other changes made by transaction ABC would continue to use the time T1
timestamp (for example, the insert of the policy with policy_id Y555).
After this adjustment and the completion of transaction ABC, the insurance
policy tables would contain the following data:

Table 33. Different transactions after time adjustment (policy_info)

policy_id coverage sys_start sys_end ts_id

S777 7000 T1 max T1

X999 8000 T2+delta max T1

Y555 9000 T1 max T1

Table 34. History table after time adjustment (hist_policy_info)

policy_id coverage sys_start sys_end ts_id

T888 8000 T2 T2+delta T2

Multiple changes to a row in the same transaction
In the following example, a transaction makes multiple changes to a row.
Using the insurance policy tables from the previous example, transaction
ABC continues and updates the policy with policy_id X999 at time T6
(originally T6 was a COMMIT statement).

Transaction ABC
T6: UPDATE policy_info SET policy_id = ’R111’ WHERE policy_id = ’X999’;
T7: COMMIT;

This row has now experienced the following changes:
1. Created as policy T888 by transaction XYZ at time T2.
2. Updated to policy X999 by transaction ABC at time T4.
3. Updated to policy R111 by transaction ABC at time T6.

When a transaction makes multiple updates to the same row, the database
manager generates a history row only for the first change. This, results in
the following tables:

Chapter 39. Working with temporal tables and time travel queries 373

Table 35. Same transaction after updates (policy_info)

policy_id coverage sys_start sys_end ts_id

S777 7000 T1 max T1

R111 8000 T1 max T1

Y555 9000 T1 max T1

Table 36. History table after same transaction update (hist_policy_info)

policy_id coverage sys_start sys_end ts_id

T888 8000 T2 T2+delta T2

The database manager uses the transaction-start-ID (ts_id) to uniquely
identify the transaction that changes the row. When multiple rows are
inserted or updated within a single SQL transaction, then the values for
the transaction start-ID column are the same for all the rows and are
unique from the values generated for this column by other transactions.
Before generating a history row, the database manager determines that the
last update to the row was for the transaction that started at time T1
(ts_id is T1), which is the same transaction start time for the transaction
that makes the current change and so no history row is generated. The
sys_start value for the row in the policy_info table is changed to time
T1.

Updating a view
A view that references a system-period temporal table or a bitemporal
table can be updated only if the view definition does not contain a FOR
SYSTEM_TIME clause. The following UPDATE statement updates the
policy_info table and generates history rows.
CREATE VIEW viewA AS SELECT * FROM policy_info;
UPDATE viewA SET col2 = col2 + 1000;

A view that references a system-period temporal table or a bitemporal
table with a view definition containing a FOR SYSTEM_TIME clause can
be made updatable by defining an INSTEAD OF trigger. The following
example updates the regular_table table.
CREATE VIEW viewB AS SELECT * FROM policy_info;

FOR SYSTEM_TIME BETWEEN
TIMESTAMP ’2010-01-01 10:00:00’ AND TIMESTAMP ’2011-01-01 10:00:00’;

CREATE TRIGGER update INSTEAD OF UPDATE ON viewB
REFERENCING NEW AS n FOR EACH ROW
UPDATE regular_table SET col1 = n.id;

UPDATE viewB set id = 500;

Deleting data from a system-period temporal table
Deleting data from a system-period temporal table removes rows from the table
and adds rows to the associated history table. The rows are added with the
appropriate system timestamps.

About this task

In addition to deleting the specified rows of the system-period temporal table, the
DELETE FROM statement moves a copy of the existing row into the associated
history table before the row is deleted from the system-period temporal table.

374 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Procedure

To delete data from a system-period temporal table, use the DELETE FROM
statement. For example, the owner of policy B345 decides to cancel insurance
coverage. The data was deleted on September 1, 2011 (2011-09-01) from the table
that was updated in the “ Updating data in a bitemporal table” topic.
DELETE FROM policy_info WHERE policy_id = ’B345’;

Results

The original policy_info table data is as follows:

Table 37. Data in the system-period temporal table (policy_info) before the DELETE
statement

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

B345 18000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

C567 25000 2011-02-28-
09.10.12.649592000000

9999-12-30-
00.00.00.000000000000

2011-02-28-
09.10.12.649592000000

The deletion of policy B345 affects the system-period temporal table and its history
table, causing the following things to occur:
1. The row where the policy_id column value is B345 is deleted from the

system-period temporal table.
2. The original row is moved to the history table. The database manager updates

the sys_end column value to the date of the delete.

Table 38. Data in the system-period temporal table (policy_info) after the DELETE statement

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

C567 25000 2011-02-28-
09.10.12.649592000000

9999-12-30-
00.00.00.000000000000

2011-02-28-
09.10.12.649592000000

Table 39. History table (hist_policy_info) after delete

policy_id coverage sys_start sys_end ts_id

C567 20000 2010-01-31-
22.31.33.495925000000

2011-02-28-
09.10.12.649592000000

2010-01-31-
22.31.33.495925000000

B345 18000 2010-01-31-
22.31.33.495925000000

2011-09-01-
12.18.22.959254000000

2010-01-31-
22.31.33.495925000000

Example

This section contains more examples of delete operations on system-period
temporal tables.

Time specifications
In the following example, a time period is specified as part of the DELETE
statement. The following delete is run after the delete in the preceding
Procedure section.

Chapter 39. Working with temporal tables and time travel queries 375

DELETE FROM (SELECT * FROM policy_info
FOR SYSTEM_TIME AS OF ’2010-01-31-22.31.33.495925000000’)
WHERE policy_id = C567;

This DELETE statement returns an error. The SELECT statement explicitly
queries the policy_info table and implicitly queries its associated history
table (hist_policy_info). The row with a policy_id column value of C567
in the hist_policy_info table would be returned by the SELECT
statement, but rows in a history table that were accessed implicitly cannot
be deleted.

Querying system-period temporal data
Querying a system-period temporal table can return results for a specified point or
period in time. Those results can include current values and previous historic
values.

About this task

When querying a system-period temporal table, you can include FOR
SYSTEM_TIME in the FROM clause. Using FOR SYSTEM_TIME specifications, you
can query the current and past state of your data. Time periods are specified as
follows:

AS OF value1
Includes all the rows where the begin value for the period is less than or
equal to value1 and the end value for the period is greater than value1. This
enables you to query your data as of a certain point in time.

FROM value1 TO value2
Includes all the rows where the begin value for the period is equal to or
greater than value1 and the end value for the period is less than value2.
This means that the begin time is included in the period, but the end time
is not.

BETWEEN value1 AND value2
Includes all the rows where any time period overlaps any point in time
between value1 and value2. A row is returned if the begin value for the
period is less than or equal to value2 and the end value for the period is
greater than value1.

See the following section for some sample queries.

Procedure

To query a system-period temporal table, use the SELECT statement. For example,
each of the following queries requests policy information from the result tables in
the Deleting data from a system-period temporal table topic. Each query uses a
variation of the FOR SYSTEM_TIME specification.
The policy_info table and its associated history table are as follows:

Table 40. System-period temporal table: policy_info

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

376 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 40. System-period temporal table: policy_info (continued)

policy_id coverage sys_start sys_end ts_id

C567 25000 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 41. History table: hist_policy_info

policy_id coverage sys_start sys_end ts_id

C567 20000 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2010-01-31-
22.31.33.

495925000000

2011-09-01-
12.18.22.

959254000000

2010-01-31-
22.31.33.

495925000000

v Query with no time period specification. For example:
SELECT policy_id, coverage

FROM policy_info
where policy_id = ’C567’

This query returns one row. The SELECT queries only the policy_info table.
The history table is not queried because FOR SYSTEM_TIME was not specified.
C567, 25000

v Query with FOR SYSTEM_TIME AS OF specified. For example:
SELECT policy_id, coverage

FROM policy_info
FOR SYSTEM_TIME AS OF

’2011-02-28-09.10.12.649592000000’

This query returns three rows. The SELECT queries both the policy_info and
the hist_policy_info tables. The begin column of a period is inclusive, while
the end column is exclusive. The history table row with a sys_end column value
of 2011-02-28-22.31.33.495925000000 equals value1, but it must be less than value1
in order to be returned.
A123, 12000
C567, 25000
B345, 18000

v Query with FOR SYSTEM_TIME FROM..TO specified. For example:
SELECT policy_id, coverage, sys_start, sys_end

FROM policy_info
FOR SYSTEM_TIME FROM

’0001-01-01-00.00.00.000000’ TO ’9999-12-30-00.00.00.000000000000’
where policy_id = ’C567’

This query returns two rows. The SELECT queries both the policy_info and the
hist_policy_info tables.
C567, 25000, 2011-02-28-09.10.12.649592000000, 9999-12-30-00.00.00.000000000000
C567, 20000, 2010-01-31-22.31.33.495925000000, 2011-02-28-09.10.12.649592000000

v Query with FOR SYSTEM_TIME BETWEEN..AND specified. For example:
SELECT policy_id, coverage

FROM policy_info
FOR SYSTEM_TIME BETWEEN

’2011-02-28-09.10.12.649592000000’ AND ’9999-12-30-00.00.00.000000000000’

Chapter 39. Working with temporal tables and time travel queries 377

This query returns three rows. The SELECT queries both the policy_info and
the hist_policy_info tables. The rows with a sys_start column value of
2011-02-28-09.10.12.649592000000 are equal to value1 and are returned because
the begin time of a period is included. The rows with a sys_end column value of
2011-02-28-09.10.12.649592000000 are equal to value1 and are not returned
because the end time of a period is not included.
A123, 12000
C567, 25000
B345, 18000

More examples

This section contains more querying system-period temporal table examples.

Query using other valid date or timestamp values
The policy_info table was created with its time-related columns declared
as TIMESTAMP(12), so queries using any other valid date or timestamp
value are converted to use TIMESTAMP(12) before execution. For example:
SELECT policy_id, coverage

FROM policy_info
FOR SYSTEM_TIME AS OF ’2011-02-28’

is converted and executed as:
SELECT policy_id, coverage

FROM policy_info
FOR SYSTEM_TIME AS OF ’2011-02-28-00.00.00.000000000000’

Querying a view
A view can be queried as if it were a system-period temporal table. FOR
SYSTEM_TIME specifications can be specified after the view reference.
CREATE VIEW policy_2011(policy, start_date)

AS SELECT policy_id, sys_start FROM policy_info;

SELECT * FROM policy_2011 FOR SYSTEM_TIME BETWEEN
’2011-01-01-00.00.00.000000’ AND ’2011-12-31-23.59.59.999999999999’;

The SELECT on the view policy_2011 queries both the policy_info and
the hist_policy_info tables. Returned are all policies that were active at
anytime in 2011 and includes the date the policies were started.
A123, 2010-01-31-22.31.33.495925000000
C567, 2011-02-28-09.10.12.649592000000
C567, 2010-01-31-22.31.33.495925000000
B345, 2010-01-31-22.31.33.495925000000

If a view definition contains a period specification, then queries against the
view cannot contain period specifications. The following statements return
an error due to multiple period specifications:
CREATE VIEW all_policies AS SELECT * FROM policy_info;

FOR SYSTEM_TIME AS OF ’2011-02-28-09.10.12.649592000000’;

SELECT * FROM all_policies FOR SYSTEM_TIME BETWEEN
’2011-01-01-00.00.00.000000’ AND ’2011-12-31-23.59.59.999999999999’;

Setting the system time for a session
Setting the system time with the CURRENT TEMPORAL SYSTEM_TIME special
register can reduce or eliminate the changes required when running an application
against different points in time.

378 Preparation Guide for DB2 10.1 Fundamentals Exam 610

About this task

When you have an application that you want to run against a system-period
temporal table to query the state of your business for a number of different dates,
you can set the date in a special register. If you need to query your data as of
today, as of the end of the last quarter, and as of the same date from last year, it
might not be possible to change the application and add AS OF specifications to
each SQL statement. This restriction is likely the case when you are using
packaged applications. To address such scenarios, you can use the CURRENT
TEMPORAL SYSTEM_TIME special register to set the date or timestamp at the
session level.

Setting the CURRENT TEMPORAL SYSTEM_TIME special register does not affect
regular tables. Only queries on temporal tables with versioning enabled
(system-period temporal tables and bitemporal tables) use the time set in the
special register. There is also no affect on DDL statements. The special register does
not apply to any scans run for referential integrity processing. .

Important: When the CURRENT TEMPORAL SYSTEM_TIME special register is set
to a non-null value, data modification statements like INSERT, UPDATE, and
DELETE against system-period temporal tables are blocked. If the special register
was set to some time in the past, for example five years ago, then allowing data
modification operations might result in changes to your historical data records.
Utilities like IMPORT and LOAD are also blocked against system-period temporal
tables when the CURRENT TEMPORAL SYSTEM_TIME special register is set to a
non-null value.

The BIND command contains the SYSTIMESENSITIVE option that indicates
whether references to system-period temporal tables in static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME
special register. For SQL procedures, use the SET_ROUTINE_OPTS procedure to
set the bind-like options, called query compiler variables.

Procedure

When this special register is set to a non-null value, applications that issue a query
will return data as of that date or timestamp. The following examples request
information from the result tables in the Deleting data from a system-period
temporal table topic.
v Set the special register to the current timestamp and query data from one year

ago. Assuming a current timestamp of 2011-05-17-14.45.31.434235000000:
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 YEAR;
SELECT policy_id, coverage FROM policy_info;

v Set the special register to a timestamp and reference a system-period temporal
table in view definitions.
CREATE VIEW view1 AS SELECT policy_id, coverage FROM policy_info;
CREATE VIEW view2 AS SELECT * FROM regular_table

WHERE col1 IN (SELECT coverage FROM policy_info);
SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP ’2011-02-28-09.10.12.649592000000’;
SELECT * FROM view1;
SELECT * FROM view2;

v Set the special register to the current timestamp and issue a query that contains
a time period specification. Assuming a current timestamp of
2011-05-17-14.45.31.434235000000:

Chapter 39. Working with temporal tables and time travel queries 379

SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 YEAR;
SELECT *

FROM policy_info FOR SYSTEM_TIME AS OF ’2011-02-28-09.10.12.649592000000’;

Results

The policy_info table and its associated history table are as follows:

Table 42. Data in the system-period temporal table (policy_info) after the DELETE statement

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

C567 25000 2011-02-28-
09.10.12.649592000000

9999-12-30-
00.00.00.000000000000

2011-02-28-
09.10.12.649592000000

Table 43. History table (hist_policy_info) after delete

policy_id coverage sys_start sys_end ts_id

C567 20000 2010-01-31-
22.31.33.495925000000

2011-02-28-
09.10.12.649592000000

2010-01-31-
22.31.33.495925000000

B345 18000 2010-01-31-
22.31.33.495925000000

2011-09-01-
12.18.22.959254000000

2010-01-31-
22.31.33.495925000000

v The request for data from one year ago queries the policy_info table as of
2010-05-17-14.45.31.434235000000. The query is implicitly rewritten to:
SELECT policy_id, coverage FROM policy_info

FOR SYSTEM_TIME AS OF TIMESTAMP ’2010-05-17-14.45.31.434235000000’;

The SELECT queries both the policy_info and the hist_policy_info tables and
returns:
A123, 12000
C567, 20000
B345, 18000

v The query on view1 is implicitly rewritten to:
SELECT * FROM view1 FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME;

The query is then rewritten to:
SELECT policy_id, coverage FROM policy_info

FOR SYSTEM_TIME AS OF TIMESTAMP ’2011-02-28-09.10.12.649592000000’;

The SELECT queries both the policy_info and the hist_policy_info tables and
returns:
A123, 12000
C567, 25000
B345, 18000

The query on view2 involves a view on a regular table that references a
system-period temporal table, causing an implicit relationship between a regular
table and the special register. The query is implicitly rewritten to:
SELECT * FROM view2 FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME;

The query is then rewritten to:
SELECT * FROM regular_table WHERE col1 in (SELECT coverage FROM policy_info

FOR SYSTEM_TIME AS OF TIMESTAMP ’2011-02-28-09.10.12.649592000000’);

380 Preparation Guide for DB2 10.1 Fundamentals Exam 610

The SELECT returns rows where col1 values match values in coverage.
v An error is returned because there are multiple time period specifications. The

special register was set to a non-null value and the query also specified a time.

Inserting data into an application-period temporal table
Inserting data into an application-period temporal table is similar to inserting data
into a regular table.

About this task

When inserting data into an application-period temporal table, the only special
consideration is the need to include the row-begin and row-end columns that
capture when the row is valid from the perspective of the associated business
applications. This valid period is called the BUSINESS_TIME period. The database
manager automatically generates an implicit check constraint that ensures that the
begin column of the BUSINESS_TIME period is less than its end column. If a
unique constraint or index with BUSINESS_TIME WITHOUT OVERLAPS was
created for the table, you must ensure that no BUSINESS_TIME periods overlap.

Procedure

To insert data into an application-period temporal table, use the INSERT statement
to add data to the table. For example, the following data was inserted to the table
created in the example in Creating an application-period temporal table topic.
INSERT INTO policy_info VALUES(’A123’,12000,’2008-01-01’,’2008-07-01’);

INSERT INTO policy_info VALUES(’A123’,16000,’2008-07-01’,’2009-01-01’);

INSERT INTO policy_info VALUES(’A123’,16000,’2008-06-01’,’2008-08-01’);

INSERT INTO policy_info VALUES(’B345’,18000,’2008-01-01’,’2009-01-01’);

INSERT INTO policy_info VALUES(’C567’,20000,’2008-01-01’,’2009-01-01’);

Results

There were five INSERT statements issued, but only four rows were added to the
table. The second and third INSERT statements are attempting to add rows for
policy A123, but their BUSINESS_TIME periods overlap which results in the
following:
v The second insert adds a row for policy_id A123 with a bus_start value of

2008-07-01 and a bus_end value of 2009-01-01.
v The third insert attempts to add a row for policy_id A123, but it fails because

its BUSINESS_TIME period overlaps that of the previous insert. The policy_info
table was created with a BUSINESS_TIME WITHOUT OVERLAPS index and the
third insert has a bus_end value of 2008-08-01, which is within the time period of
the earlier insert.

The begin column of a period is inclusive, while the end column is exclusive,
meaning that the row with a bus_end value of 2008-07-01 does not have a
BUSINESS_TIME period overlap with the row that contains a bus_start value of
2008-07-01. As a result, the policy_info table now contains the following insurance
coverage data:

Chapter 39. Working with temporal tables and time travel queries 381

Table 44. Data added to an application-period temporal table (policy_info)

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-07-01

A123 16000 2008-07-01 2009-01-01

B345 18000 2008-01-01 2009-01-01

C567 20000 2008-01-01 2009-01-01

Updating data in an application-period temporal table
Updating data in an application-period temporal table can be similar to updating
data in a regular table, but data can also be updated for specified points of time in
the past, present, or future. Point in time updates can result in rows being split
and new rows being inserted automatically into the table.

About this task

In addition to the regular UPDATE statement, application-period temporal tables
also support time range updates where the UPDATE statement includes the FOR
PORTION OF BUSINESS_TIME clause. A row is a candidate for updating if its
period-begin column, period-end column, or both fall within the range specified in
the FOR PORTION OF BUSINESS_TIME clause.

Procedure

To update data in an application-period temporal table, use the UPDATE
statement. For example, you discovered some errors in the insurance coverage
information for some customers and the following updates are performed on the
sample table that was introduced in the “ Inserting data into an application-period
temporal table” topic.
The following table contains the original policy_info table data.

Table 45. Original data in the application-period temporal table (policy_info)

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-07-01

A123 16000 2008-07-01 2009-01-01

B345 18000 2008-01-01 2009-01-01

C567 20000 2008-01-01 2009-01-01

The policy_info table was created with a BUSINESS_TIME WITHOUT
OVERLAPS index. When using the regular UPDATE statement, you must ensure
that no BUSINESS_TIME periods overlap. Updating an application-period
temporal table by using the FOR PORTION OF BUSINESS_TIME clause avoids
period overlap problems. This clause causes rows to be changed and can result in
rows that are inserted when the existing time period for a row that is being
updated is not fully contained within the range specified in the UPDATE
statement.
v The coverage for policy B345 actually started on March 1, 2008 (2008-03-01) and

the coverage should be 18500:
UPDATE policy_info

SET coverage = 18500, bus_start = ’2008-03-01’
WHERE policy_id = ’B345’
AND coverage=18000

382 Preparation Guide for DB2 10.1 Fundamentals Exam 610

The update to policy B345 uses a regular UPDATE statement. There is only one
row in the policy_info table for policy_id B345, so there are no potential
BUSINESS_TIME periods overlaps. As a result, the bus_start column value is
updated to 2008-03-01 and the coverage value is updated to 18500. Note that
updates to a BUSINESS_TIME period column cannot include the FOR PORTION
OF BUSINESS_TIME clause.

Table 46. Policy B345 updated

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-07-01

A123 16000 2008-07-01 2009-01-01

B345 18500 2008-03-01 2009-01-01

C567 20000 2008-01-01 2009-01-01

v The coverage for policy C567 should be 25000 for the year 2008:
UPDATE policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-01-01’ TO ’2009-01-01’
SET coverage = 25000
WHERE policy_id = ’C567’;

The update to policy C567 applies to the BUSINESS_TIME period from
2008-01-01 to 2009-01-01. There is only one row in the policy_info table for
policy_id C567 that includes this time period. The BUSINESS_TIME period is
fully contained within the bus_start and bus_end column values for that row. As
a result, the coverage value is updated to 25000. The bus_start and bus_end
column values are unchanged.

Table 47. Policy C567 updated

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-07-01

A123 16000 2008-07-01 2009-01-01

B345 18500 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

v The coverage for policy A123 shows an increase from 12000 to 16000 on July 1
(2008-07-01), but an earlier increase to 14000 is missing:
UPDATE policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-06-01’ TO ’2008-08-01’
SET coverage = 14000
WHERE policy_id = ’A123’;

The update to policy A123 applies to the BUSINESS_TIME period from
2008-06-01 to 2008-08-01. There are two rows in the policy_info table for
policy_id A123 that include part of this time period.
1. The BUSINESS_TIME period is partially contained in the row that has a

bus_start value of 2008-01-01 and a bus_end value of 2008-07-01. This row
overlaps the beginning of the specified period because the earliest time value
in the BUSINESS_TIME period is greater than the rows bus_start value, but
less than its bus_end value.

2. The BUSINESS_TIME period is partially contained in the row that has a
bus_start value of 2008-07-01 and a bus_end value of 2009-01-01. This row

Chapter 39. Working with temporal tables and time travel queries 383

overlaps the end of the specified period because the latest time value in the
BUSINESS_TIME period is greater than the rows bus_start value, but less
than its bus_end value.

As a result, the update causes the following things to occur:
1. When the bus_end value overlaps the beginning of the specified period, the

row is updated to the new coverage value of 14000. In this updated row, the
bus_start value is set to 2008-06-01 which is the begin value of the UPDATE
specified period, and the bus_end value is unchanged. An additional row is
inserted with the original values from the row, except that the bus_end value
is set to 2008-06-01. This new row reflects the BUSINESS_TIME period when
coverage was 12000.

2. When the bus_start value overlaps the end of the specified period, the row
is updated to the new coverage value of 14000. In this updated row, the
bus_start value is unchanged and the bus_end value is set to 2008-08-01
which is the end value of the UPDATE specified period. An additional row is
inserted with the original values from the row, except that the bus_start
value is set to 2008-08-01. This new row reflects the BUSINESS_TIME period
when coverage was 16000.

Table 48. Policy A123 updated

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-07-01

A123 14000 2008-07-01 2008-08-01

A123 16000 2008-08-01 2009-01-01

B345 18500 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

More examples

This section contains more updating application-period temporal table examples.

Merging content
In the following example, a MERGE statement uses the FOR PORTION OF
clause to update the policy_info table with the contents of another table
(merge_policy).

Table 49. Content of the merge_policy table

policy_id coverage bus_start bus_end

C567 30000 2008-10-01 2010-05-01

H789 16000 2008-10-01 2010-05-01

1. Create global variables to hold the FROM and TO dates for the FOR
PORTION OF clause.
CREATE VARIABLE sdate DATE default ’2008-10-01’;
CREATE VARIABLE edate DATE default ’2010-05-01’;

2. Issue a MERGE statement that merges the content of merge_policy into
the policy_info table that resulted from the updates in the preceding
“Procedure” section.
MERGE INTO policy_info pi1

USING (SELECT policy_id, coverage, bus_start, bus_end
FROM merge_policy) mp2

384 Preparation Guide for DB2 10.1 Fundamentals Exam 610

ON (pi1.policy_id = mp2.policy_id)
WHEN MATCHED THEN

UPDATE FOR PORTION OF BUSINESS_TIME FROM sdate TO edate
SET pi1_coverage = mp2.coverage

WHEN NOT MATCHED THEN
INSERT (policy_id, coverage, bus_start, bus_end)
VALUES (mp2.policy_id, mp2.coverage, mp2.bus_start, mp2.bus_end)

The policy_id C567 is common to both tables. The C567 bus_start value
in merge_policy overlaps the C567 bus_end value in policy_info. This
statement results in the following items:
v The bus_end value for coverage of 25000 is set to 2008-10-01.
v A new row is inserted for coverage of 30000 with the bus_start and

bus_end values from merge_policy.

The policy_id H789 exists only in merge_policy and so a new row is
added to policy_info.

Table 50. Merged updated data in an application-period temporal table (policy_info)

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-07-01

A123 14000 2008-07-01 2008-08-01

A123 16000 2008-08-01 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2008-10-01

C567 30000 2008-10-01 2010-05-01

H789 16000 2008-10-01 2010-05-01

Update targets
The FOR PORTION OF BUSINESS_TIME clause can be used only when
the target of the update statement is a table or a view. The following
updates return errors.
UPDATE (SELECT * FROM policy_info) FOR PORTION OF BUSINESS_TIME

FROM ’2008-01-01’ TO ’06-15-2008’ SET policy_id = policy_id + 1;

UPDATE (SELECT * FROM policy_info FOR BUSINESS_TIME AS OF ’2008-01-01’)
FOR PORTION OF BUSINESS_TIME FROM ’2008-01-01’ TO ’06-15-2008’
SET policy_id = policy_id + 1;

Updating a view
A view with references to an application-period temporal table is
updatable. The following UPDATE would update the policy_info table.
CREATE VIEW viewC AS SELECT * FROM policy_info;
UPDATE viewC SET coverage = coverage + 5000;

A view with an application-period temporal table in its FROM clause that
contains a period specification is also updatable. This condition differs
from views on system-period temporal tables and bitemporal tables.
CREATE VIEW viewD AS SELECT * FROM policy_info

FOR BUSINESS_TIME AS OF CURRENT DATE;
UPDATE viewD SET coverage = coverage - 1000;

Chapter 39. Working with temporal tables and time travel queries 385

A FOR PORTION OF update clause can be included against views with
references to application-period temporal tables or bitemporal tables. Such
updates are propagated to the temporal tables referenced in the FROM
clause of the view definition.
CREATE VIEW viewE AS SELECT * FROM policy_info;
UPDATE viewE FOR PORTION OF BUSINESS_TIME

FROM ’2009-01-01’ TO ’2009-06-01’ SET coverage = coverage + 500;

Deleting data from an application-period temporal table
Deleting data from an application-period temporal table removes rows from the
table and can potentially result in new rows that are inserted into the
application-period temporal table itself.

About this task

In addition to the regular DELETE statement, application-period temporal tables
also support time range deletes where the DELETE statement includes the FOR
PORTION OF BUSINESS_TIME clause. A row is a candidate for deletion if its
period-begin column, period-end column, or both fall within the range specified in
the FOR PORTION OF BUSINESS_TIME clause.

Procedure

To delete data from an application-period temporal table, use the DELETE FROM
statement to delete data. For example, it was discovered that policy A123 should
not provide coverage from June 15, 2008 to August 15, 2008 and therefore that data
should be deleted from the table that was updated in the Updating data in an
application-period temporal table topic.
DELETE FROM policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-06-15’ TO ’2008-08-15’
WHERE policy_id = ’A123’;

Results

The original policy_info table data is as follows:

Table 51. Data in the application-period temporal table (policy_info) before the DELETE
statement

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-07-01

A123 14000 2008-07-01 2008-08-01

A123 16000 2008-08-01 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

Deleting data from an application-period temporal table by using the FOR
PORTION OF BUSINESS_TIME clause causes rows to be deleted and can result in
rows that are inserted when the time period for a row covers a portion of the
range specified in the DELETE FROM statement. Deleting data related to policy

386 Preparation Guide for DB2 10.1 Fundamentals Exam 610

A123 applies to the BUSINESS_TIME period from 2008-06-15 to 2008-08-15. There
are three rows in the policy_info table for policy_id A123 that include all or part
of that time period.

The update to policy A123 affects the system-period temporal table and its history
table, causing the following the things to occur:
v There is one row where the BUSINESS_TIME period in the DELETE FROM

statement covers the entire time period for a row. The row with a bus_start
value of 2008-07-01 and a bus_end value of 2008-08-01 is deleted.

v When only the bus_end value falls into the specified period, the row is deleted.
A new row is inserted with the original values from the deleted row, except that
the bus_end value is set to 2008-06-15.

v When only the bus_start value falls into the specified period, the row is
deleted. A new row is inserted with the original values from the deleted row,
except that the bus_start value is set to 2008-08-15.

Table 52. Data in the application-period temporal table (policy_info) after the DELETE
statement

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-06-15

A123 16000 2008-08-15 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

Example

This section contains more deleting application-period temporal table examples.

Delete targets
The FOR PORTION OF BUSINESS_TIME clause can be used only when
the target of the delete statement is a table or a view. The following
DELETE statement returns an error:
DELETE FROM (SELECT * FROM policy_info) FOR PORTION OF BUSINESS_TIME

FROM ’2008-01-01’ TO ’2008-06-15’;

Querying application-period temporal data
Querying an application-period temporal table can return results for a specified
time period.

About this task

When querying an application-period temporal table, you can include FOR
BUSINESS_TIME in the FROM clause. Using FOR BUSINESS_TIME specifications,
you can query the current, past, and future state of your data. Time periods are
specified as follows:

AS OF value1
Includes all the rows where the begin value for the period is less than or
equal to value1 and the end value for the period is greater than value1.

FROM value1 TO value2
Includes all the rows where the begin value for the period is greater than

Chapter 39. Working with temporal tables and time travel queries 387

or equal to value1 and the end value for the period is less than value2. This
means that the begin time is included in the period, but the end time is
not.

BETWEEN value1 AND value2
Includes all the rows where any time period overlaps any point in time
between value1 and value2. A row is returned if the begin value for the
period is less than or equal to value2 and the end value for the period is
greater than value1.

See the following section for some sample queries.

Procedure

To query an application-period temporal table, use the SELECT statement. For
example, each of the following queries requests policy information for policy_id
A123 from the result table in the “ Updating data in an application-period
temporal table” topic. Each query uses a variation of the time period specification.
The policy_info table is as follows:

Table 53. Application-period temporal table: policy_info

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-06-15

A123 16000 2008-08-15 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

v Query with no time period specification. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
where policy_id = ’A123’

This query returns all three rows for policy A123.
A123, 12000, 2008-01-01, 2008-06-01
A123, 14000, 2008-06-01, 2008-06-15
A123, 16000, 2008-08-15, 2009-01-01

v Query with FOR BUSINESS_TIME AS OF specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR BUSINESS_TIME AS OF ’2008-07-15’
where policy_id = ’A123’

This query does not return any rows. There are no rows for A123 where the
begin value for the period is less than or equal to 2008-07-15 and the end value
for the period is greater than 2008-07-15. Policy A123 had no coverage on
2008-07-15.

v Query with FOR BUSINESS_TIME FROM...TO specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR BUSINESS_TIME FROM

’2008-01-01’ TO ’2008-06-15’
where policy_id = ’A123’

388 Preparation Guide for DB2 10.1 Fundamentals Exam 610

This query returns two rows. The begin-column of a period is inclusive, while
the end-column is exclusive. The row with a bus_end value of 2008-06-15 is
valid until 06-14-2008 at midnight and so is less than value2.
A123, 12000, 2008-01-01, 2008-06-01
A123, 14000, 2008-06-01, 2008-06-15

v Query with FOR BUSINESS_TIME BETWEEN...AND specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR BUSINESS_TIME BETWEEN

’0001-01-01’ AND ’2008-01-01’

This query returns two rows. The rows with a bus_start value of 2008-01-01 are
equal to value1 and are returned because the begin time of a period is included.
Note that if a row had a bus_end column value of 2008-01-01, that row would
be returned because its end time is equal to value1 and the end time of a period
is included.
A123, 12000, 2008-01-01, 2008-06-01
C567, 25000, 2008-01-01, 2009-01-01

More examples

This section contains more querying application-period temporal table examples.

Querying a view
A view can be queried as if it were an application-period temporal table.
Time period specifications (FOR BUSINESS_TIME) can be specified after
the view reference.
CREATE VIEW policy_year_end(policy, amount, start_date, end_date)

AS SELECT * FROM policy_info;

SELECT * FROM policy_year_end FOR BUSINESS_TIME AS OF ’2008-12-31’;

The SELECT on the view policy_year_end queries the policy_info table
and returns all policies that were in effect at the end of 2008.
A123, 16000, 2008-08-15, 2009-01-01
B345, 18000, 2008-03-01, 2009-01-01
C567, 25000, 2008-01-01, 2009-01-01

If a view definition contains a period specification, then queries against the
view cannot contain period specifications. The following statements return
an error due to multiple period specifications:
CREATE VIEW all_policies AS SELECT * FROM policy_info;

FOR BUSINESS_TIME AS OF ’2008-02-28’;

SELECT * FROM all_policies FOR BUSINESS_TIME BETWEEN
FOR BUSINESS_TIME AS OF ’2008-10-01’;

Setting the application time for a session
Setting the application time in the CURRENT TEMPORAL BUSINESS_TIME
special register can reduce or eliminate the changes required when running an
application against different points in time.

About this task

When you have an application that you want to run against an application-period
temporal table to query the state of your business for a number of different dates,

Chapter 39. Working with temporal tables and time travel queries 389

you can set the date in a special register. If you need to query your data AS OF
today, AS OF the end of the last quarter, or if you are simulating future events, AS
OF some future date, it might not be possible to change the application and add
AS OF specifications to each SQL statement. This restriction is likely the case when
you are using packaged applications. To address such scenarios, you can use the
CURRENT TEMPORAL BUSINESS_TIME special register to set the date at the
session level.

Setting the CURRENT TEMPORAL BUSINESS_TIME special register does not
affect regular tables. Only queries on temporal tables with a BUSINESS_TIME
period enabled (application-period temporal tables and bitemporal tables) use the
time set in the special register. There is also no affect on DDL statements.

Note: When the CURRENT TEMPORAL BUSINESS_TIME special register is set to
a non-null value, data modification statements like INSERT, UPDATE, DELETE,
and MERGE against application-period temporal tables are supported. This
behavior differs from the CURRENT TEMPORAL SYSTEM_TIME special register
which blocks data modification statements against system-period temporal table
and bitemporal tables.

The setting for the BUSTIMESENSITIVE bind option determines whether
references to application-period temporal tables and bitemporal tables in both static
SQL statements and dynamic SQL statements in a package are affected by the
value of the CURRENT TEMPORAL BUSINESS_TIME special register. The bind
option can be set to YES or NO. For SQL procedures, use the
SET_ROUTINE_OPTS procedure to set the bind-like options, called query compiler
variables.

Procedure

When this special register is set to a non-null value, applications that issue a query
returns data as of that date. The following examples request information from the
result tables in the “ Deleting data from an application-period temporal table
”topic.
v Set the special register to a non-null value and query data as of that date. For

example:
SET CURRENT TEMPORAL BUSINESS_TIME = ’2008-01-01’;
SELECT * FROM policy_info;

v Set the special register to a time and reference an application-period temporal
table in view definitions.
CREATE VIEW view1 AS SELECT policy_id, coverage FROM policy_info;
CREATE VIEW view2 AS SELECT * FROM regular_table

WHERE col1 IN (SELECT coverage FROM policy_info);
SET CURRENT TEMPORAL BUSINESS_TIME = ’2008-01-01’;
SELECT * FROM view1;
SELECT * FROM view2;

v Set the special register to a past date and issue a query that contains a time
period specification. For example:
SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT DATE - 1 YEAR;
SELECT * FROM policy_info FOR BUSINESS_TIME AS OF ’2008-01-01’;

390 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Results

The policy_info table is as follows:

Table 54. Data in the application-period temporal table (policy_info) after the DELETE
statement

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-06-15

A123 16000 2008-08-15 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

v The request for data as of 2008-01-01 queries the policy_info table. The query is
implicitly rewritten to:
SELECT * FROM policy_info FOR BUSINESS_TIME AS OF ’2008-01-01’;

The query returns:
A123, 12000, 2008-01-01, 2008-06-01
C567, 25000, 2008-01-01, 2009-01-01

v The query on view1 is implicitly rewritten to:
SELECT * FROM view1 FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME;

and then to:
SELECT policy_id, coverage FROM policy_info

FOR BUSINESS_TIME AS OF ’2008-01-01’;

The query returns:
A123, 12000
C567, 25000

The query on view2 involves a view on a regular table that references an
application-period temporal table, causing an implicit relationship between a
regular table and the special register. The query is implicitly rewritten to:
SELECT * FROM view2 FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME;

and then to:
SELECT * FROM regular_table WHERE col1 in (SELECT coverage FROM policy_info

FOR BUSINESS_TIME AS OF ’2008-01-01’);

The SELECT returns rows where col1 values match values in coverage.
v An error is returned because there are multiple time period specifications. The

special register was set to a non-null value and the query also specified a time.

Inserting data into a bitemporal table
Inserting data into a bitemporal table is similar to inserting data into an
application-period temporal table.

About this task

When inserting data into a bitemporal table, include begin and end columns that
capture when the row is valid from the perspective of the associated business

Chapter 39. Working with temporal tables and time travel queries 391

applications. This valid period is called the BUSINESS_TIME period. The database
manager automatically generates an implicit check constraint that ensures that the
begin column of the BUSINESS_TIME period is less than its end column. If a
unique constraint or index with BUSINESS_TIME WITHOUT OVERLAPS was
created for the table, this ensures that no BUSINESS_TIME periods overlap.

Procedure

To insert data into a bitemporal table, use the INSERT statement to add data to the
table. For example, the following data was inserted on January 31, 2010
(2010-01-31) to the table created in the example in “ Creating a bitemporal table”.
INSERT INTO policy_info(policy_id, coverage, bus_start, bus_end)

VALUES(’A123’,12000,’2008-01-01’,’2008-07-01’);

INSERT INTO policy_info(policy_id, coverage, bus_start, bus_end)
VALUES(’A123’,16000,’2008-07-01’,’2009-01-01’);

INSERT INTO policy_info(policy_id, coverage, bus_start, bus_end)
VALUES(’B345’,18000,’2008-01-01’,’2009-01-01’);

INSERT INTO policy_info(policy_id, coverage, bus_start, bus_end)
VALUES(’C567’,20000,’2008-01-01’,’2009-01-01’);

Results

The policy_info table now contains the following insurance coverage data. The
sys_start, sys_end, and ts_id column entries are generated by the database
manager. The begin-column of a period is inclusive, while the end-column is
exclusive, meaning that the row with a bus_end value of 2008-07-01 does not have
a BUSINESS_TIME period overlap with the row that contains a bus_start value of
2008-07-01.

Table 55. Data added to a bitemporal table (policy_info)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00

.000000000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

The hist_policy_info history table remains empty because no history rows are
generated by an insert.

Table 56. History table (hist_policy_info) after insert

policy_id coverage bus_start bus_end sys_start sys_end ts_id

392 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Updating data in a bitemporal table
Updating data in a bitemporal table results in rows that are added to its associated
history table and can potentially result in rows that are added to the bitemporal
table itself.

About this task

In addition to the regular UPDATE statement, bitemporal tables also support time
range updates where the UPDATE statement includes the FOR PORTION OF
BUSINESS_TIME clause. A row is a candidate for updating if its period-begin
column, period-end column, or both fall within the range specified in the FOR
PORTION OF BUSINESS_TIME clause. Any existing impacted rows are copied to
the history table before they are updated.

Procedure

To update data in a bitemporal table, use the UPDATE statement to change data
rows. For example, it was discovered that there are some errors in the insurance
coverage levels for two customers and the following data was updated on
February 28, 2011 (2011-02-28) in the example table that had data added in the “
Inserting data into a bitemporal table” topic.
The following table is the original policy_info table data.

Table 57. Original data in the bitemporal table (policy_info)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

Updating a bitemporal table by using the FOR PORTION OF BUSINESS_TIME
clause causes rows to be changed and can result in rows that are inserted when the
existing time period for rows that are updated is not fully contained within the
range specified in the UPDATE statement.
v The coverage for policy B345 actually started on March 1, 2008 (2008-03-01):

UPDATE policy_info
SET bus_start=’2008-03-01’
WHERE policy_id = ’B345’
AND coverage = 18000;

The update to policy B345 uses a regular UPDATE statement. There is only one
row in the policy_info table for policy_id B345, so there are no potential
BUSINESS_TIME periods overlaps. As a result the following things occur:
1. The bus_start column value is updated to 2008-03-01. Note that updates to a

BUSINESS_TIME period column cannot include the FOR PORTION OF
BUSINESS_TIME clause.

Chapter 39. Working with temporal tables and time travel queries 393

2. The database manager updates the sys_start and ts_id values to the date of
the update.

3. The original row is moved to the history table. The database manager
updates the sys_end value to the date of the update.

The following tables show the update for policy B345.

Table 58. Bitemporal table (policy_info) after policy B345 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

Table 59. History table (hist_policy_info) after policy B345 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

v The coverage for policy C567 should be 25000 for the year 2008:
UPDATE policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-01-01’ TO ’2009-01-01’
SET coverage = 25000
WHERE policy_id = ’C567’;

The update to policy C567 applies to the BUSINESS_TIME period from
2008-01-01 to 2009-01-01. There is only one row in the policy_info table for
policy_id C567 that includes that time period. The BUSINESS_TIME period is
fully contained within the bus_start and bus_end column values for that row. As
a result the following things occur:
1. The coverage value for the row with policy_id C567 is updated to 25000.
2. The bus_start and bus_end column values are unchanged.
3. The database manager updates the sys_start and ts_id values to the date of

the update.
4. The original row is moved to the history table. The database manager

updates the sys_end value to the date of the update.

The following tables show the update for policy C567.

Table 60. Bitemporal table (policy_info) after policy C567 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

394 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 60. Bitemporal table (policy_info) after policy C567 update (continued)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 61. History table (hist_policy_info) after policy C567 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

v The coverage for policy A123 shows an increase from 12000 to 16000 on July 7
(2008-07-01), but an earlier increase to 14000 is missing:
UPDATE policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-06-01’ TO ’2008-08-01’
SET coverage = 14000
WHERE policy_id = ’A123’;

The update to policy A123 applies to the BUSINESS_TIME period from
2008-06-01 to 2008-08-01. There are two rows in the policy_info table for
policy_id A123 that include part of the update time period.
1. The BUSINESS_TIME period is partially contained in the row that has a

bus_start value of 2008-01-01 and a bus_end value of 2008-07-01. This row
overlaps the beginning of the specified period because the earliest time value
in the BUSINESS_TIME period is greater than the rows bus_start value, but
less than its bus_end value.

2. The BUSINESS_TIME period is partially contained in the row that has a
bus_start value of 2008-07-01 and a bus_end value of 2009-01-01. This row
overlaps the end of the specified period because the latest time value in the
BUSINESS_TIME period is greater than the rows bus_start value, but less
than its bus_end value.

As a result the following things occur:
1. When the bus_end value overlaps the beginning of the specified period, the

row is updated to the new coverage value of 14000. In this updated row, the
bus_start value is set to 2008-06-01 which is the begin value of the UPDATE
specified period, and the bus_end value is unchanged. An additional row is
inserted with the original values from the row, except that the bus_end value
is set to 2008-06-01. This new row reflects the BUSINESS_TIME period when
coverage was 12000. The sys_start, sys_end, and ts_id column entries are
generated by the database manager.

2. When the bus_start value overlaps the end of the specified period, the row
is updated to the new coverage value of 14000. In this updated row, the
bus_start value is unchanged and the bus_end value is set to 2008-08-01

Chapter 39. Working with temporal tables and time travel queries 395

which is the end value of the UPDATE specified period. An additional row is
inserted with the original values from the row, except that the bus_start
value is set to 2008-08-01. This new row reflects the BUSINESS_TIME period
when coverage was 16000. The sys_start, sys_end, and ts_id column entries
are generated by the database manager.

3. The original rows are moved to the history table. The database manager
updates the sys_end value to the date of the update.

The following tables show the update for policy A123.

Table 62. Bitemporal table (policy_info) after policy A123 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-06-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 14000 2008-06-01 2008-07-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 14000 2008-07-01 2008-08-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 16000 2008-08-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 63. History table (hist_policy_info) after policy A123 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

Deleting data from a bitemporal table
Deleting data from a bitemporal table results in rows that are deleted from the
table, rows that are added to its associated history table and can potentially result
in new rows that are inserted into the bitemporal table itself.

396 Preparation Guide for DB2 10.1 Fundamentals Exam 610

About this task

In addition to the regular DELETE statement, bitemporal tables also support time
range deletes where the DELETE statement includes the FOR PORTION OF
BUSINESS_TIME clause. A row is a candidate for deletion if its period-begin
column, period-end column, or both falls within the range specified in the FOR
PORTION OF BUSINESS_TIME clause. Any existing impacted rows are copied to
the history table before they are deleted.

Procedure

To delete data from a bitemporal table, use the DELETE FROM statement. For
example, it was discovered that policy A123 did not have coverage from June 15,
2008 to August 15, 2008. The data was deleted on September 1, 2011 (2011-09-01)
from the table that was updated in the “ Updating data in a bitemporal table”
topic.
DELETE FROM policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-06-15’ TO ’2008-08-15’
WHERE policy_id = ’A123’;

Results

The original policy_info table and hist_policy_info table data is as follows:

Table 64. Data in the bitemporal table (policy_info) before the DELETE statement

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-06-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 14000 2008-06-01 2008-07-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 14000 2008-07-01 2008-08-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 16000 2008-08-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 65. Data in the history table (hist_policy_info) before the DELETE statement

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

Chapter 39. Working with temporal tables and time travel queries 397

Table 65. Data in the history table (hist_policy_info) before the DELETE
statement (continued)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

Deleting data from a bitemporal table by using the FOR PORTION OF
BUSINESS_TIME clause causes rows to be deleted and can result in rows that are
inserted when the time period for a row covers a portion of the range specified in
the DELETE FROM statement. Deleting data related to policy A123 applies to the
BUSINESS_TIME period from 2008-06-15 to 2008-08-15. There are three rows in the
policy_info table for policy_id A123 that include all or part of that time period.

As a result, the following things occur:
v There is one row where the BUSINESS_TIME period in the DELETE FROM

statement covers the entire time period for a row. The row with a bus_start
value of 2008-07-01 and a bus_end value of 2008-08-01 is deleted.

v When only the bus_end value falls into the specified period, the row is deleted.
A new row is inserted with the original values from the deleted row, except that
the bus_end value is set to 2008-06-15. The sys_start, sys_end, and ts_id
column entries are generated by the database manager.

v When only the bus_start value falls into the specified period, the row is
deleted. A new row is inserted with the original values from the deleted row,
except that the bus_start value is set to 2008-08-15. The sys_start, sys_end, and
ts_id column entries are generated by the database manager.

v The original rows are moved to the history table. The database manager updates
the sys_end value to the date of the delete.

Table 66. Data in the bitemporal table (policy_info) after the DELETE statement

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-06-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 14000 2008-06-01 2008-06-15 2011-09-01-
12.18.22.

959254000000

9999-12-30-
00.00.00.

000000000000

2011-09-01-
12.18.22.

959254000000

A123 16000 2008-08-15 2009-01-01 2011-09-01-
12.18.22.

959254000000

9999-12-30-
00.00.00.

000000000000

2011-09-01-
12.18.22.

959254000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

398 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 67. History table (hist_policy_info) after DELETE statement

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

A123 14000 2008-06-01 2008-07-01 2011-02-28-
09.10.12.

649592000000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

A123 14000 2008-07-01 2008-08-01 2011-02-28-
09.10.12.

649592000000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

A123 16000 2008-08-01 2009-01-01 2011-02-28-
09.10.12

.649592000000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

Querying bitemporal data
Querying a bitemporal table can return results for a specified time period. Those
results can include current values, previous historic values, and future values.

About this task

When querying a bitemporal table, you can include FOR BUSINESS_TIME, FOR
SYSTEM_TIME, or both in the FROM clause. Using these time period
specifications, you can query the current, past, and future state of your data. Time
periods are specified as follows:

AS OF value1
Includes all the rows where the begin value for the period is less than or
equal to value1 and the end value for the period is greater than value1. This
enables you to query your data as of a certain point in time.

FROM value1 TO value2
Includes all the rows where the begin value for the period is equal to or
greater than value1 and the end value for the period is less than value2.
This means that the begin time is included in the period, but the end time
is not.

BETWEEN value1 AND value2
Includes all the rows where any time period overlaps any point in time
between value1 and value2. A row is returned if the begin value for the
period is less than or equal to value2 and the end value for the period is
greater than value1.

See the following section for some sample queries.

Chapter 39. Working with temporal tables and time travel queries 399

Procedure

To query a bitemporal table, use the SELECT statement. For example, each of the
following queries requests policy information for policy_id A123 from the result
tables in the “ Deleting data from a bitemporal table” topic. Each query uses a
variation of the time period specification.
The policy_info table and its associated history table are as follows:

Table 68. Bitemporal table: policy_info

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-06-01 2011-02-28-
09.10.12.

64959200000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

64959200000

A123 14000 2008-06-01 2008-06-15 2011-09-01-
12.18.22.

959254000000

9999-12-30-
00.00.00.

000000000000

2011-09-01-
12.18.22.

959254000000

A123 16000 2008-08-15 2009-01-01 2011-09-01-
12.18.22.

959254000000

9999-12-30-
00.00.00.

000000000000

2011-09-01-
12.18.22.

959254000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

64959200000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

64959200000

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

64959200000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

64959200000

Table 69. History table: hist_policy_info

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

64959200000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

64959200000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

64959200000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

64959200000

2010-01-31-
22.31.33.

495925000000

A123 14000 2008-06-01 2008-07-01 2011-02-28-
09.10.12.

64959200000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

A123 14000 2008-07-01 2008-08-01 2011-02-28-
09.10.12

.64959200000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

A123 16000 2008-08-01 2009-01-01 2011-02-28-
09.10.12

.64959200000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

v Query with no time period specification. For example:

400 Preparation Guide for DB2 10.1 Fundamentals Exam 610

SELECT policy_id, coverage, bus_start, bus_end
FROM policy_info
where policy_id = ’A123’

This query returns three rows. The SELECT statement queries only the
policy_info table. The history table is not queried because FOR SYSTEM_TIME
was not specified.
A123, 12000, 2008-01-01, 2008-06-01
A123, 14000, 2008-06-01, 2008-06-15
A123, 16000, 2008-08-15, 2009-01-01

v Query with FOR SYSTEM_TIME FROM...TO specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR SYSTEM_TIME FROM

’0001-01-01-00.00.00.000000’ TO ’9999-12-30-00.00.00.000000000000’
where policy_id = ’A123’

This query returns eight rows. The SELECT statement queries both the
policy_info and the hist_policy_info tables.
A123, 12000, 2008-01-01, 2008-06-01
A123, 14000, 2008-06-01, 2008-06-15
A123, 16000, 2008-08-15, 2009-01-01
A123, 12000, 2008-01-01, 2008-07-01
A123, 16000, 2008-07-01, 2009-01-01
A123, 14000, 2008-06-01, 2008-07-01
A123, 14000, 2008-07-01, 2008-08-01
A123, 16000, 2008-08-01, 2009-01-01

v Query with FOR BUSINESS_TIME AS OF specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR BUSINESS_TIME AS OF ’2008-07-15’
where policy_id = ’A123’

This query does not return any rows. The SELECT statement queries only the
policy_info table and there are no rows for A123 where the begin value for the
period is less than or equal to 2008-07-15 and the end value for the period is
greater than 2008-07-15. Policy A123 had no coverage on 2008-07-15. The history
table is not queried because FOR SYSTEM_TIME was not specified.

v Query with FOR BUSINESS_TIME AS OF and FOR SYSTEM_TIME FROM...TO
specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR BUSINESS_TIME AS OF ’2008-07-15’
FOR SYSTEM_TIME FROM

’0001-01-01-00.00.00.000000’ TO ’9999-12-30-00.00.00.000000000000’
where policy_id = ’A123’

This query returns two rows. The SELECT queries both the policy_info and the
hist_policy_info tables. The returned rows are found in the history table.
A123, 16000, 2008-07-01, 2009-01-01
A123, 14000, 2008-07-01, 2008-08-01

Chapter 39. Working with temporal tables and time travel queries 401

402 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Part 5. Data concurrency

Because many users access and change data in a relational database, the database
manager must allow users to make these changes while ensuring that data
integrity is preserved.

Concurrency refers to the sharing of resources by multiple interactive users or
application programs at the same time. The database manager controls this access
to prevent undesirable effects, such as:
v Lost updates. Two applications, A and B, might both read the same row and

calculate new values for one of the columns based on the data that these
applications read. If A updates the row and then B also updates the row, A's
update lost.

v Access to uncommitted data. Application A might update a value, and B might
read that value before it is committed. Then, if A backs out of that update, the
calculations performed by B might be based on invalid data.

v Non-repeatable reads. Application A might read a row before processing other
requests. In the meantime, B modifies or deletes the row and commits the
change. Later, if A attempts to read the original row again, it sees the modified
row or discovers that the original row has been deleted.

v Phantom reads. Application A might execute a query that reads a set of rows
based on some search criterion. Application B inserts new data or updates
existing data that would satisfy application A's query. Application A executes its
query again, within the same unit of work, and some additional (“phantom”)
values are returned.

Concurrency is not an issue for global temporary tables, because they are available
only to the application that declares or creates them.

© Copyright IBM Corp. 2012 403

404 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 40. Isolation levels

The isolation level that is associated with an application process determines the
degree to which the data that is being accessed by that process is locked or
isolated from other concurrently executing processes. The isolation level is in effect
for the duration of a unit of work.

The isolation level of an application process therefore specifies:
v The degree to which rows that are read or updated by the application are

available to other concurrently executing application processes
v The degree to which the update activity of other concurrently executing

application processes can affect the application

The isolation level for static SQL statements is specified as an attribute of a
package and applies to the application processes that use that package. The
isolation level is specified during the program preparation process by setting the
ISOLATION bind or precompile option. For dynamic SQL statements, the default
isolation level is the isolation level that was specified for the package preparing the
statement. Use the SET CURRENT ISOLATION statement to specify a different
isolation level for dynamic SQL statements that are issued within a session. For
more information, see “CURRENT ISOLATION special register”. For both static
SQL statements and dynamic SQL statements, the isolation-clause in a
select-statement overrides both the special register (if set) and the bind option value.
For more information, see “Select-statement”.

Isolation levels are enforced by locks, and the type of lock that is used limits or
prevents access to the data by concurrent application processes. Declared
temporary tables and their rows cannot be locked because they are only accessible
to the application that declared them.

The database manager supports three general categories of locks:

Share (S)
Under an S lock, concurrent application processes are limited to read-only
operations on the data.

Update (U)
Under a U lock, concurrent application processes are limited to read-only
operations on the data, if these processes have not declared that they might
update a row. The database manager assumes that the process currently
looking at a row might update it.

Exclusive (X)
Under an X lock, concurrent application processes are prevented from
accessing the data in any way. This does not apply to application processes
with an isolation level of uncommitted read (UR), which can read but not
modify the data.

Regardless of the isolation level, the database manager places exclusive locks on
every row that is inserted, updated, or deleted. Thus, all isolation levels ensure
that any row that is changed by an application process during a unit of work is
not changed by any other application process until the unit of work is complete.

The database manager supports four isolation levels.

© Copyright IBM Corp. 2012 405

v “Repeatable read (RR)”
v “Read stability (RS)”
v “Cursor stability (CS)” on page 407
v “Uncommitted read (UR)” on page 408

Note: Some host database servers support the no commit (NC) isolation level. On
other database servers, this isolation level behaves like the uncommitted read
isolation level.

A detailed description of each isolation level follows, in decreasing order of
performance impact, but in increasing order of the care that is required when
accessing or updating data.

Repeatable read (RR)

The repeatable read isolation level locks all the rows that an application references
during a unit of work (UOW). If an application issues a SELECT statement twice
within the same unit of work, the same result is returned each time. Under RR,
lost updates, access to uncommitted data, non-repeatable reads, and phantom
reads are not possible.

Under RR, an application can retrieve and operate on the rows as many times as
necessary until the UOW completes. However, no other application can update,
delete, or insert a row that would affect the result set until the UOW completes.
Applications running under the RR isolation level cannot see the uncommitted
changes of other applications. This isolation level ensures that all returned data
remains unchanged until the time the application sees the data, even when
temporary tables or row blocking is used.

Every referenced row is locked, not just the rows that are retrieved. For example, if
you scan 10 000 rows and apply predicates to them, locks are held on all 10 000
rows, even if, say, only 10 rows qualify. Another application cannot insert or
update a row that would be added to the list of rows referenced by a query if that
query were to be executed again. This prevents phantom reads.

Because RR can acquire a considerable number of locks, this number might exceed
limits specified by the locklist and maxlocks database configuration parameters.
To avoid lock escalation, the optimizer might elect to acquire a single table-level
lock for an index scan, if it appears that lock escalation is likely. If you do not want
table-level locking, use the read stability isolation level.

While evaluating referential constraints, the DB2 server might occasionally upgrade
the isolation level used on scans of the foreign table to RR, regardless of the
isolation level that was previously set by the user. This results in additional locks
being held until commit time, which increases the likelihood of a deadlock or a
lock timeout. To avoid these problems, create an index that contains only the
foreign key columns, which the referential integrity scan can use instead.

Read stability (RS)

The read stability isolation level locks only those rows that an application retrieves
during a unit of work. RS ensures that any qualifying row read during a UOW
cannot be changed by other application processes until the UOW completes, and
that any change to a row made by another application process cannot be read until
the change is committed by that process. Under RS, access to uncommitted data

406 Preparation Guide for DB2 10.1 Fundamentals Exam 610

and non-repeatable reads are not possible. However, phantom reads are possible.
Phantom reads might also be introduced by concurrent updates to rows where the
old value did not satisfy the search condition of the original application but the
new updated value does.

For example, a phantom row can occur in the following situation:
1. Application process P1 reads the set of rows n that satisfy some search

condition.
2. Application process P2 then inserts one or more rows that satisfy the search

condition and commits those new inserts.
3. P1 reads the set of rows again with the same search condition and obtains both

the original rows and the rows inserted by P2.

In a DB2 pureScale environment, an application running at this isolation level
might reject a previously committed row value if the row is updated concurrently
on a different member. To override this behavior, specify the WAIT_FOR_OUTCOME
option.

This isolation level ensures that all returned data remains unchanged until the time
the application sees the data, even when temporary tables or row blocking is used.

The RS isolation level provides both a high degree of concurrency and a stable
view of the data. To that end, the optimizer ensures that table-level locks are not
obtained until lock escalation occurs.

The RS isolation level is suitable for an application that:
v Operates in a concurrent environment
v Requires qualifying rows to remain stable for the duration of a unit of work
v Does not issue the same query more than once during a unit of work, or does

not require the same result set when a query is issued more than once during a
unit of work

Cursor stability (CS)

The cursor stability isolation level locks any row being accessed during a
transaction while the cursor is positioned on that row. This lock remains in effect
until the next row is fetched or the transaction terminates. However, if any data in
the row was changed, the lock is held until the change is committed.

Under this isolation level, no other application can update or delete a row while an
updatable cursor is positioned on that row. Under CS, access to the uncommitted
data of other applications is not possible. However, non-repeatable reads and
phantom reads are possible.

CS is the default isolation level. It is suitable when you want maximum
concurrency and need to see only committed data.

In a DB2 pureScale environment, an application running at this isolation level may
return or reject a previously committed row value if the row is concurrently
updated on a different member. The WAIT FOR OUTCOME option of the concurrent
access resolution setting can be used to override this behavior.

Note: Under the currently committed semantics introduced in Version 9.7, only
committed data is returned, as was the case previously, but now readers do not

Chapter 40. Isolation levels 407

wait for updaters to release row locks. Instead, readers return data that is based on
the currently committed version; that is, data prior to the start of the write
operation.

Uncommitted read (UR)

The uncommitted read isolation level allows an application to access the
uncommitted changes of other transactions. Moreover, UR does not prevent
another application from accessing a row that is being read, unless that application
is attempting to alter or drop the table.

Under UR, access to uncommitted data, non-repeatable reads, and phantom reads
are possible. This isolation level is suitable if you run queries against read-only
tables, or if you issue SELECT statements only, and seeing data that has not been
committed by other applications is not a problem.

UR works differently for read-only and updatable cursors.
v Read-only cursors can access most of the uncommitted changes of other

transactions.
v Tables, views, and indexes that are being created or dropped by other

transactions are not available while the transaction is processing. Any other
changes by other transactions can be read before they are committed or rolled
back. Updatable cursors operating under UR behave as though the isolation
level were CS.

If an uncommitted read application uses ambiguous cursors, it might use the CS
isolation level when it runs. The ambiguous cursors can be escalated to CS if the
value of the BLOCKING option on the PREP or BIND command is UNAMBIG (the
default). To prevent this escalation:
v Modify the cursors in the application program to be unambiguous. Change the

SELECT statements to include the FOR READ ONLY clause.
v Let the cursors in the application program remain ambiguous, but precompile

the program or bind it with the BLOCKING ALL and STATICREADONLY YES
options to enable the ambiguous cursors to be treated as read-only when the
program runs.

Comparison of isolation levels

Table 70 summarizes the supported isolation levels.

Table 70. Comparison of isolation levels

UR CS RS RR

Can an application see uncommitted changes
made by other application processes?

Yes No No No

Can an application update uncommitted
changes made by other application processes?

No No No No

Can the re-execution of a statement be affected
by other application processes? 1

Yes Yes Yes No 2

Can updated rows be updated by other
application processes? 3

No No No No

Can updated rows be read by other application
processes that are running at an isolation level
other than UR?

No No No No

408 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 70. Comparison of isolation levels (continued)

UR CS RS RR

Can updated rows be read by other application
processes that are running at the UR isolation
level?

Yes Yes Yes Yes

Can accessed rows be updated by other
application processes? 4

Yes Yes No No

Can accessed rows be read by other application
processes?

Yes Yes Yes Yes

Can the current row be updated or deleted by
other application processes? 5

Yes/No 6 Yes/No 6 No No

Note:

1. An example of the phantom read phenomenon is as follows: Unit of work UW1 reads the
set of n rows that satisfies some search condition. Unit of work UW2 inserts one or more
rows that satisfy the same search condition and then commits. If UW1 subsequently
repeats its read with the same search condition, it sees a different result set: the rows
that were read originally plus the rows that were inserted by UW2.

2. If your label-based access control (LBAC) credentials change between reads, results for
the second read might be different because you have access to different rows.

3. The isolation level offers no protection to the application if the application is both
reading from and writing to a table. For example, an application opens a cursor on a
table and then performs an insert, update, or delete operation on the same table. The
application might see inconsistent data when more rows are fetched from the open
cursor.

4. An example of the non-repeatable read phenomenon is as follows: Unit of work UW1 reads
a row. Unit of work UW2 modifies that row and commits. If UW1 subsequently reads
that row again, it might see a different value.

5. An example of the dirty read phenomenon is as follows: Unit of work UW1 modifies a row.
Unit of work UW2 reads that row before UW1 commits. If UW1 subsequently rolls the
changes back, UW2 has read nonexisting data.

6. Under UR or CS, if the cursor is not updatable, the current row can be updated or
deleted by other application processes in some cases. For example, buffering might cause
the current row at the client to be different from the current row at the server. Moreover,
when using currently committed semantics under CS, a row that is being read might
have uncommitted updates pending. In this case, the currently committed version of the
row is always returned to the application.

Summary of isolation levels

Table 71 lists the concurrency issues that are associated with different isolation
levels.

Table 71. Summary of isolation levels

Isolation level
Access to
uncommitted data

Non-repeatable
reads Phantom reads

Repeatable read (RR) Not possible Not possible Not possible

Read stability (RS) Not possible Not possible Possible

Cursor stability (CS) Not possible Possible Possible

Uncommitted read (UR) Possible Possible Possible

The isolation level affects not only the degree of isolation among applications but
also the performance characteristics of an individual application, because the

Chapter 40. Isolation levels 409

processing and memory resources that are required to obtain and free locks vary
with the isolation level. The potential for deadlocks also varies with the isolation
level. Table 72 provides a simple heuristic to help you choose an initial isolation
level for your application.

Table 72. Guidelines for choosing an isolation level

Application type High data stability required
High data stability not
required

Read-write transactions RS CS

Read-only transactions RR or RS UR

Specifying the isolation level
Because the isolation level determines how data is isolated from other processes
while the data is being accessed, you should select an isolation level that balances
the requirements of concurrency and data integrity.

About this task

The isolation level that you specify is in effect for the duration of the unit of work
(UOW). The following heuristics are used to determine which isolation level will
be used when compiling an SQL or XQuery statement:
v For static SQL:

– If an isolation-clause is specified in the statement, the value of that clause is
used.

– If an isolation-clause is not specified in the statement, the isolation level that
was specified for the package when the package was bound to the database is
used.

v For dynamic SQL:
– If an isolation-clause is specified in the statement, the value of that clause is

used.
– If an isolation-clause is not specified in the statement, and a SET CURRENT

ISOLATION statement has been issued within the current session, the value
of the CURRENT ISOLATION special register is used.

– If an isolation-clause is not specified in the statement, and a SET CURRENT
ISOLATION statement has not been issued within the current session, the
isolation level that was specified for the package when the package was
bound to the database is used.

v For static or dynamic XQuery statements, the isolation level of the environment
determines the isolation level that is used when the XQuery expression is
evaluated.

Note: Many commercially-written applications provide a method for choosing the
isolation level. Refer to the application documentation for information.

The isolation level can be specified in several different ways.

Procedure
v At the statement level:

Note: Isolation levels for XQuery statements cannot be specified at the statement
level.

410 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Use the WITH clause. The WITH clause cannot be used on subqueries. The
WITH UR option applies to read-only operations only. In other cases, the
statement is automatically changed from UR to CS.
This isolation level overrides the isolation level that is specified for the package
in which the statement appears. You can specify an isolation level for the
following SQL statements:
– DECLARE CURSOR
– Searched DELETE
– INSERT
– SELECT
– SELECT INTO
– Searched UPDATE

v For dynamic SQL within the current session:

Use the SET CURRENT ISOLATION statement to set the isolation level for
dynamic SQL issued within a session. Issuing this statement sets the CURRENT
ISOLATION special register to a value that specifies the isolation level for any
dynamic SQL statements that are issued within the current session. Once set, the
CURRENT ISOLATION special register provides the isolation level for any
subsequent dynamic SQL statement that is compiled within the session,
regardless of which package issued the statement. This isolation level is in effect
until the session ends or until the SET CURRENT ISOLATION...RESET
statement is issued.

v At precompile or bind time:

For an application written in a supported compiled language, use the
ISOLATION option of the PREP or BIND commands. You can also use the
sqlaprep or sqlabndx API to specify the isolation level.
– If you create a bind file at precompile time, the isolation level is stored in the

bind file. If you do not specify an isolation level at bind time, the default is
the isolation level that was used during precompilation.

– If you do not specify an isolation level, the default level of cursor stability
(CS) is used.

To determine the isolation level of a package, execute the following query:
select isolation from syscat.packages

where pkgname = ’pkgname’
and pkgschema = ’pkgschema’

where pkgname is the unqualified name of the package and pkgschema is the
schema name of the package. Both of these names must be specified in
uppercase characters.

v When working with JDBC or SQLJ at run time:

Note: JDBC and SQLJ are implemented with CLI on DB2 servers, which means
that the db2cli.ini settings might affect what is written and run using JDBC
and SQLJ.
To create a package (and specify its isolation level) in SQLJ, use the SQLJ profile
customizer (db2sqljcustomize command).

v From CLI or ODBC at run time:

Use the CHANGE ISOLATION LEVEL command. With DB2 Call-level Interface (CLI),
you can change the isolation level as part of the CLI configuration. At run time,
use the SQLSetConnectAttr function with the SQL_ATTR_TXN_ISOLATION
attribute to set the transaction isolation level for the current connection

Chapter 40. Isolation levels 411

referenced by the ConnectionHandle argument. You can also use the
TXNISOLATION keyword in the db2cli.ini file.

v On database servers that support REXX:

When a database is created, multiple bind files that support the different
isolation levels for SQL in REXX are bound to the database. Other command line
processor (CLP) packages are also bound to the database when a database is
created.
REXX and the CLP connect to a database using the default CS isolation level.
Changing this isolation level does not change the connection state.
To determine the isolation level that is being used by a REXX application, check
the value of the SQLISL predefined REXX variable. The value is updated each
time that the CHANGE ISOLATION LEVEL command executes.

Results

Currently committed semantics
Under currently committed semantics, only committed data is returned to readers.
However, readers do not wait for writers to release row locks. Instead, readers
return data that is based on the currently committed version of data: that is, the
version of the data before the start of the write operation.

Lock timeouts and deadlocks can occur under the cursor stability (CS) isolation
level with row-level locking, especially with applications that are not designed to
prevent such problems. Some high-throughput database applications cannot
tolerate waiting on locks that are issued during transaction processing. Also, some
applications cannot tolerate processing uncommitted data but still require
non-blocking behavior for read transactions.

Currently committed semantics are turned on by default for new databases. You do
not have to make application changes to take advantage of the new behavior. To
override the default behavior, Set the cur_commit database configuration parameter
to DISABLED. Overriding the behavior might be useful, for example, if applications
require the blocking of writers to synchronize internal logic. During database
upgrade from V9.5 or earlier, the cur_commit configuration parameter is set to
DISABLED to maintain the same behavior as in previous releases. If you want to use
currently committed on cursor stability scans, you need to set the cur_commit
configuration parameter to ON after the upgrade.

Currently committed semantics apply only to read-only scans that do not involve
catalog tables and internal scans that are used to evaluate or enforce constraints.
Because currently committed semantics are decided at the scan level, the access
plan of a writer might include currently committed scans. For example, the scan
for a read-only subquery can involve currently committed semantics.

Because currently committed semantics obey isolation level semantics, applications
running under currently committed semantics continue to respect isolation levels.

Currently committed semantics require increased log space for writers. Additional
space is required for logging the first update of a data row during a transaction.
This data is required for retrieving the currently committed image of the row.
Depending on the workload, this can have an insignificant or measurable impact
on the total log space used. The requirement for additional log space does not
apply when cur_commit database configuration parameter is set to DISABLED.

412 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Restrictions

The following restrictions apply to currently committed semantics:
v The target table object in a section that is to be used for data update or deletion

operations does not use currently committed semantics. Rows that are to be
modified must be lock protected to ensure that they do not change after they
have satisfied any query predicates that are part of the update operation.

v A transaction that makes an uncommitted modification to a row forces the
currently committed reader to access appropriate log records to determine the
currently committed version of the row. Although log records that are no longer
in the log buffer can be physically read, currently committed semantics do not
support the retrieval of log files from the log archive. This affects only databases
that you configure to use infinite logging.

v The following scans do not use currently committed semantics:
– Catalog table scans
– Scans that are used to enforce referential integrity constraints
– Scans that reference LONG VARCHAR or LONG VARGRAPHIC columns
– Range-clustered table (RCT) scans
– Scans that use spatial or extended indexes

Example

Consider the following scenario, in which deadlocks are avoided by using
currently committed semantics. In this scenario, two applications update two
separate tables, as shown in step 1, but do not yet commit. Each application then
attempts to use a read-only cursor to read from the table that the other application
updated, as shown in step 2. These applications are running under the CS isolation
level.

Step Application A Application B

1 update T1 set col1 = ? where
col2 = ?

update T2 set col1 = ? where
col2 = ?

2 select col1, col3, col4 from T2
where col2 >= ?

select col1, col5, from T1
where col5 = ? and col2 = ?

3 commit commit

Without currently committed semantics, these applications running under the
cursor stability isolation level might create a deadlock, causing one of the
applications to fail. This happens when each application must read data that is
being updated by the other application.

Under currently committed semantics, if one of the applications that is running a
query in step 2 requires the data that is being updated by the other application, the
first application does not wait for the lock to be released. As a result, a deadlock is
impossible. The first application locates and uses the previously committed version
of the data instead.

Option to disregard uncommitted insertions
The DB2_SKIPINSERTED registry variable controls whether or not uncommitted data
insertions can be ignored for statements that use the cursor stability (CS) or the
read stability (RS) isolation level.

Chapter 40. Isolation levels 413

Uncommitted insertions are handled in one of two ways, depending on the value
of the DB2_SKIPINSERTED registry variable.
v When the value is ON, the DB2 server ignores uncommitted insertions, which in

many cases can improve concurrency and is the preferred behavior for most
applications. Uncommitted insertions are treated as though they had not yet
occurred.

v When the value is OFF (the default), the DB2 server waits until the insert
operation completes (commits or rolls back) and then processes the data
accordingly. This is appropriate in certain cases. For example:
– Suppose that two applications use a table to pass data between themselves,

with the first application inserting data into the table and the second one
reading it. The data must be processed by the second application in the order
presented, such that if the next row to be read is being inserted by the first
application, the second application must wait until the insert operation
commits.

– An application avoids UPDATE statements by deleting data and then
inserting a new image of the data.

Evaluate uncommitted data through lock deferral
To improve concurrency, the database manager in some situations permits the
deferral of row locks for CS or RS isolation scans until a row is known to satisfy
the predicates of a query.

By default, when row-level locking is performed during a table or index scan, the
database manager locks each scanned row whose commitment status is unknown
before determining whether the row satisfies the predicates of the query.

To improve the concurrency of such scans, enable the DB2_EVALUNCOMMITTED registry
variable so that predicate evaluation can occur on uncommitted data. A row that
contains an uncommitted update might not satisfy the query, but if predicate
evaluation is deferred until after the transaction completes, the row might indeed
satisfy the query.

Uncommitted deleted rows are skipped during table scans, and the database
manager skips deleted keys during index scans if the DB2_SKIPDELETED registry
variable is enabled.

The DB2_EVALUNCOMMITTED registry variable setting applies at compile time for
dynamic SQL or XQuery statements, and at bind time for static SQL or XQuery
statements. This means that even if the registry variable is enabled at run time, the
lock avoidance strategy is not deployed unless DB2_EVALUNCOMMITTED was enabled
at bind time. If the registry variable is enabled at bind time but not enabled at run
time, the lock avoidance strategy is still in effect. For static SQL or XQuery
statements, if a package is rebound, the registry variable setting that is in effect at
bind time is the setting that applies. An implicit rebind of static SQL or XQuery
statements will use the current setting of the DB2_EVALUNCOMMITTED registry
variable.

Applicability of evaluate uncommitted for different access plans

Table 73. RID Index Only Access

Predicates Evaluate Uncommitted

None No

414 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 73. RID Index Only Access (continued)

Predicates Evaluate Uncommitted

SARGable Yes

Table 74. Data Only Access (relational or deferred RID list)

Predicates Evaluate Uncommitted

None No

SARGable Yes

Table 75. RID Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No No

SARGable None Yes No

SARGable SARGable Yes No

Table 76. Block Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No Yes

SARGable None Yes No

SARGable SARGable Yes Yes

Example

The following example provides a comparison between the default locking
behavior and the evaluate uncommitted behavior. The table is the ORG table from
the SAMPLE database.
DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
-------- -------------- ------- ---------- -------------

10 Head Office 160 Corporate New York
15 New England 50 Eastern Boston
20 Mid Atlantic 10 Eastern Washington
38 South Atlantic 30 Eastern Atlanta
42 Great Lakes 100 Midwest Chicago
51 Plains 140 Midwest Dallas
66 Pacific 270 Western San Francisco
84 Mountain 290 Western Denver

The following transactions occur under the default cursor stability (CS) isolation
level.

Table 77. Transactions against the ORG table under the CS isolation level

SESSION 1 SESSION 2

connect to sample connect to sample

Chapter 40. Isolation levels 415

Table 77. Transactions against the ORG table under the CS isolation level (continued)

SESSION 1 SESSION 2

+c update org set deptnumb=5 where
manager=160

select * from org where deptnumb >= 10

The uncommitted UPDATE statement in Session 1 holds an exclusive lock on the
first row in the table, preventing the query in Session 2 from returning a result set,
even though the row being updated in Session 1 does not currently satisfy the
query in Session 2. The CS isolation level specifies that any row that is accessed by
a query must be locked while the cursor is positioned on that row. Session 2
cannot obtain a lock on the first row until Session 1 releases its lock.

Waiting for a lock in Session 2 can be avoided by using the evaluate uncommitted
feature, which first evaluates the predicate and then locks the row. As such, the
query in Session 2 would not attempt to lock the first row in the table, thereby
increasing application concurrency. Note that this also means that predicate
evaluation in Session 2 would occur with respect to the uncommitted value of
deptnumb=5 in Session 1. The query in Session 2 would omit the first row in its
result set, despite the fact that a rollback of the update in Session 1 would satisfy
the query in Session 2.

If the order of operations were reversed, concurrency could still be improved with
the evaluate uncommitted feature. Under default locking behavior, Session 2 would
first acquire a row lock prohibiting the searched UPDATE in Session 1 from
executing, even though the Session 1 UPDATE statement would not change the
row that is locked by the Session 2 query. If the searched UPDATE in Session 1
first attempted to examine rows and then locked them only if they qualified, the
Session 1 query would be non-blocking.

Restrictions
v The DB2_EVALUNCOMMITTED registry variable must be enabled.
v The isolation level must be CS or RS.
v Row-level locking is in effect.
v SARGable evaluation predicates exist.
v Evaluate uncommitted is not applicable to scans on the system catalog tables.
v For multidimensional clustering (MDC) or insert time clustering (ITC) tables,

block-level locking can be deferred for an index scan; however, block-level
locking cannot be deferred for table scans.

v Lock deferral will not occur on a table that is executing an inplace table
reorganization.

v For Iscan-Fetch plans, row-level locking is not deferred to the data access; rather,
the row is locked during index access before moving to the row in the table.

v Deleted rows are unconditionally skipped during table scans, but deleted index
keys are skipped only if the DB2_SKIPDELETED registry variable is enabled.

416 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Chapter 41. Locks and concurrency control

To provide concurrency control and prevent uncontrolled data access, the database
manager places locks on buffer pools, tables, data partitions, table blocks, or table
rows.

A lock associates a database manager resource with an application, called the lock
owner, to control how other applications access the same resource.

The database manager uses row-level locking or table-level locking, as appropriate,
based on:
v The isolation level specified at precompile time or when an application is bound

to the database. The isolation level can be one of the following:
– Uncommitted read (UR)
– Cursor stability (CS)
– Read stability (RS)
– Repeatable read (RR)

The different isolation levels are used to control access to uncommitted data,
prevent lost updates, allow non-repeatable reads of data, and prevent phantom
reads. To minimize performance impact, use the minimum isolation level that
satisfies your application needs.

v The access plan selected by the optimizer. Table scans, index scans, and other
methods of data access each require different types of access to the data.

v The LOCKSIZE attribute for the table. The LOCKSIZE clause on the ALTER
TABLE statement indicates the granularity of the locks that are used when the
table is accessed. The choices are: ROW for row locks, TABLE for table locks, or
BLOCKINSERT for block locks on multidimensional clustering (MDC) tables
only. When the BLOCKINSERT clause is used on an MDC table, row-level
locking is performed, except during an insert operation, when block-level
locking is done instead. Use the ALTER TABLE...LOCKSIZE BLOCKINSERT
statement for MDC tables when transactions will be performing large inserts
into disjointed cells. Use the ALTER TABLE...LOCKSIZE TABLE statement for
read-only tables. This reduces the number of locks that are required for database
activity. For partitioned tables, table locks are first acquired and then data
partition locks are acquired, as dictated by the data that will be accessed.

v The amount of memory devoted to locking, which is controlled by the locklist
database configuration parameter. If the lock list fills up, performance can
degrade because of lock escalations and reduced concurrency among shared
objects in the database. If lock escalations occur frequently, increase the value of
locklist, maxlocks, or both. To reduce the number of locks that are held at one
time, ensure that transactions commit frequently.

A buffer pool lock (exclusive) is set whenever a buffer pool is created, altered, or
dropped. You might encounter this type of lock when collecting system monitoring
data. The name of the lock is the identifier (ID) for the buffer pool itself.

In general, row-level locking is used unless one of the following is true:
v The isolation level is uncommitted read
v The isolation level is repeatable read and the access plan requires a scan with no

index range predicates

© Copyright IBM Corp. 2012 417

v The table LOCKSIZE attribute is TABLE
v The lock list fills up, causing lock escalation
v An explicit table lock has been acquired through the LOCK TABLE statement,

which prevents concurrent application processes from changing or using a table

In the case of an MDC table, block-level locking is used instead of row-level
locking when:
v The table LOCKSIZE attribute is BLOCKINSERT
v The isolation level is repeatable read and the access plan involves predicates
v A searched update or delete operation involves predicates on dimension

columns only

The duration of row locking varies with the isolation level being used:
v UR scans: No row locks are held unless row data is changing.
v CS scans: Row locks are generally held only while the cursor is positioned on

the row. Note that in some cases, locks might not be held at all during a CS
scan.

v RS scans: Qualifying row locks are held only for the duration of the transaction.
v RR scans: All row locks are held for the duration of the transaction.

Lock granularity
If one application holds a lock on a database object, another application might not
be able to access that object. For this reason, row-level locks, which minimize the
amount of data that is locked and therefore inaccessible, are better for maximum
concurrency than block-level, data partition-level, or table-level locks.

However, locks require storage and processing time, so a single table lock
minimizes lock overhead.

The LOCKSIZE clause of the ALTER TABLE statement specifies the granularity of
locks at the row, data partition, block, or table level. Row locks are used by default.
Use of this option in the table definition does not prevent normal lock escalation
from occurring.

The ALTER TABLE statement specifies locks globally, affecting all applications and
users that access that table. Individual applications might use the LOCK TABLE
statement to specify table locks at an application level instead.

A permanent table lock defined by the ALTER TABLE statement might be
preferable to a single-transaction table lock using the LOCK TABLE statement if:
v The table is read-only, and will always need only S locks. Other users can also

obtain S locks on the table.
v The table is usually accessed by read-only applications, but is sometimes

accessed by a single user for brief maintenance, and that user requires an X lock.
While the maintenance program is running, read-only applications are locked
out, but in other circumstances, read-only applications can access the table
concurrently with a minimum of locking overhead.

For a multidimensional clustering (MDC) table, you can specify BLOCKINSERT
with the LOCKSIZE clause in order to use block-level locking during insert
operations only. When BLOCKINSERT is specified, row-level locking is performed
for all other operations, but only minimally for insert operations. That is,

418 Preparation Guide for DB2 10.1 Fundamentals Exam 610

block-level locking is used during the insertion of rows, but row-level locking is
used to lock the next key if repeatable read (RR) scans are encountered in the
record ID (RID) indexes as they are being updated. BLOCKINSERT locking might
be beneficial when:
v There are multiple transactions doing mass insertions into separate cells
v Concurrent insertions into the same cell by multiple transactions is not

occurring, or it is occurring with enough data inserted per cell by each of the
transactions that the user is not concerned that each transaction will insert into
separate blocks

Lock attributes
Database manager locks have several basic attributes.

These attributes include the following:

Mode The type of access allowed for the lock owner, as well as the type of access
allowed for concurrent users of the locked object. It is sometimes referred
to as the state of the lock.

Object
The resource being locked. The only type of object that you can lock
explicitly is a table. The database manager also sets locks on other types of
resources, such as rows and table spaces. Block locks can also be set for
multidimensional clustering (MDC) or insert time clustering (ITC) tables,
and data partition locks can be set for partitioned tables. The object being
locked determines the granularity of the lock.

Lock count
The length of time during which a lock is held. The isolation level under
which a query runs affects the lock count.

Table 78 lists the lock modes and describes their effects, in order of increasing
control over resources.

Table 78. Lock Mode Summary

Lock Mode
Applicable Object
Type Description

IN (Intent None) Table spaces, blocks,
tables, data partitions

The lock owner can read any data in the object, including
uncommitted data, but cannot update any of it. Other concurrent
applications can read or update the table.

IS (Intent Share) Table spaces, blocks,
tables, data partitions

The lock owner can read data in the locked table, but cannot update
this data. Other applications can read or update the table.

IX (Intent Exclusive) Table spaces, blocks,
tables, data partitions

The lock owner and concurrent applications can read and update
data. Other concurrent applications can both read and update the
table.

NS (Scan Share) Rows The lock owner and all concurrent applications can read, but not
update, the locked row. This lock is acquired on rows of a table,
instead of an S lock, where the isolation level of the application is
either RS or CS.

NW (Next Key Weak
Exclusive)

Rows When a row is inserted into an index, an NW lock is acquired on
the next row. This occurs only if the next row is currently locked by
an RR scan. The lock owner can read but not update the locked row.
This lock mode is similar to an X lock, except that it is also
compatible with NS locks.

Chapter 41. Locks and concurrency control 419

Table 78. Lock Mode Summary (continued)

Lock Mode
Applicable Object
Type Description

S (Share) Rows, blocks, tables,
data partitions

The lock owner and all concurrent applications can read, but not
update, the locked data.

SIX (Share with
Intent Exclusive)

Tables, blocks, data
partitions

The lock owner can read and update data. Other concurrent
applications can read the table.

U (Update) Rows, blocks, tables,
data partitions

The lock owner can update data. Other units of work can read the
data in the locked object, but cannot update it.

X (Exclusive) Rows, blocks, tables,
buffer pools, data
partitions

The lock owner can both read and update data in the locked object.
Only uncommitted read (UR) applications can access the locked
object.

Z (Super Exclusive) Table spaces, tables,
data partitions, blocks

This lock is acquired on a table under certain conditions, such as
when the table is altered or dropped, an index on the table is
created or dropped, or for some types of table reorganization. No
other concurrent application can read or update the table.

Factors that affect locking
Several factors affect the mode and granularity of database manager locks.

These factors include:
v The type of processing that the application performs
v The data access method
v The values of various configuration parameters

Locks and types of application processing
For the purpose of determining lock attributes, application processing can be
classified as one of the following types: read-only, intent to change, change, and
cursor controlled.
v Read-only

This processing type includes all SELECT statements that are intrinsically
read-only, have an explicit FOR READ ONLY clause, or are ambiguous, but the
query compiler assumes that they are read-only because of the BLOCKING
option value that the PREP or BIND command specifies. This type requires only
share locks (IS, NS, or S).

v Intent to change
This processing type includes all SELECT statements that have a FOR UPDATE
clause, a USE AND KEEP UPDATE LOCKS clause, a USE AND KEEP
EXCLUSIVE LOCKS clause, or are ambiguous, but the query compiler assumes
that change is intended. This type uses share and update locks (S, U, or X for
rows; IX, S, U, or X for blocks; and IX, U, or X for tables).

v Change
This processing type includes UPDATE, INSERT, and DELETE statements, but
not UPDATE WHERE CURRENT OF or DELETE WHERE CURRENT OF. This
type requires exclusive locks (IX or X).

v Cursor controlled
This processing type includes UPDATE WHERE CURRENT OF and DELETE
WHERE CURRENT OF. This type requires exclusive locks (IX or X).

420 Preparation Guide for DB2 10.1 Fundamentals Exam 610

A statement that inserts, updates, or deletes data in a target table, based on the
result from a subselect statement, does two types of processing. The rules for
read-only processing determine the locks for the tables that return data in the
subselect statement. The rules for change processing determine the locks for the
target table.

Locks and data-access methods
An access plan is the method that the optimizer selects to retrieve data from a
specific table. The access plan can have a significant effect on lock modes.

If an index scan is used to locate a specific row, the optimizer will usually choose
row-level locking (IS) for the table. For example, if the EMPLOYEE table has an
index on employee number (EMPNO), access through that index might be used to
select information for a single employee:

select * from employee
where empno = ’000310’

If an index is not used, the entire table must be scanned in sequence to find the
required rows, and the optimizer will likely choose a single table-level lock (S). For
example, if there is no index on the column SEX, a table scan might be used to
select all male employees, as follows:

select * from employee
where sex = ’M’

Note: Cursor-controlled processing uses the lock mode of the underlying cursor
until the application finds a row to update or delete. For this type of processing,
no matter what the lock mode of the cursor might be, an exclusive lock is always
obtained to perform the update or delete operation.

Locking in range-clustered tables works slightly differently from standard key
locking. When accessing a range of rows in a range-clustered table, all rows in the
range are locked, even when some of those rows are empty. In standard key
locking, only rows with existing data are locked.

Deferred access to data pages implies that access to a row occurs in two steps,
which results in more complex locking scenarios. The timing of lock acquisition
and the persistence of locks depend on the isolation level. Because the repeatable
read (RR) isolation level retains all locks until the end of a transaction, the locks
acquired in the first step are held, and there is no need to acquire further locks
during the second step. For the read stability (RS) and cursor stability (CS)
isolation levels, locks must be acquired during the second step. To maximize
concurrency, locks are not acquired during the first step, and the reapplication of
all predicates ensures that only qualifying rows are returned.

Lock type compatibility
Lock compatibility becomes an issue when one application holds a lock on an
object and another application requests a lock on the same object. When the two
lock modes are compatible, the request for a second lock on the object can be
granted.

If the lock mode of the requested lock is not compatible with the lock that is
already held, the lock request cannot be granted. Instead, the request must wait
until the first application releases its lock, and all other existing incompatible locks
are released.

Chapter 41. Locks and concurrency control 421

Table 79 shows which lock types are compatible (indicated by a yes) and which
types are not (indicated by a no). Note that a timeout can occur when a requestor
is waiting for a lock.

Table 79. Lock Type Compatibility

State of Held Resource

State Being
Requested None IN IS NS S IX SIX U X Z NW

None yes yes yes yes yes yes yes yes yes yes yes

IN (Intent None) yes yes yes yes yes yes yes yes yes no yes

IS (Intent Share) yes yes yes yes yes yes yes yes no no no

NS (Scan Share) yes yes yes yes yes no no yes no no yes

S (Share) yes yes yes yes yes no no yes no no no

IX (Intent Exclusive) yes yes yes no no yes no no no no no

SIX (Share with
Intent Exclusive)

yes yes yes no no no no no no no no

U (Update) yes yes yes yes yes no no no no no no

X (Exclusive) yes yes no no no no no no no no no

Z (Super Exclusive) yes no no no no no no no no no no

NW (Next Key Weak
Exclusive)

yes yes no yes no no no no no no no

Next-key locking
During insertion of a key into an index, the row that corresponds to the key that
will follow the new key in the index is locked only if that row is currently locked
by a repeatable read (RR) index scan. When this occurs, insertion of the new index
key is deferred until the transaction that performed the RR scan completes.

The lock mode that is used for the next-key lock is NW (next key weak exclusive).
This next-key lock is released before key insertion occurs; that is, before a row is
inserted into the table.

Key insertion also occurs when updates to a row result in a change to the value of
the index key for that row, because the original key value is marked deleted and
the new key value is inserted into the index. For updates that affect only the
include columns of an index, the key can be updated in place, and no next-key
locking occurs.

During RR scans, the row that corresponds to the key that follows the end of the
scan range is locked in S mode. If no keys follow the end of the scan range, an
end-of-table lock is acquired to lock the end of the index. In the case of partitioned
indexes for partitioned tables, locks are acquired to lock the end of each index
partition, instead of just one lock for the end of the index. If the key that follows
the end of the scan range is marked deleted, one of the following actions occurs:
v The scan continues to lock the corresponding rows until it finds a key that is not

marked deleted
v The scan locks the corresponding row for that key
v The scan locks the end of the index

422 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Lock modes and access plans for standard tables
The type of lock that a standard table obtains depends on the isolation level that is
in effect and on the data access plan that is being used.

The following tables show the types of locks that are obtained for standard tables
under each isolation level for different access plans. Each entry has two parts: the
table lock and the row lock. A hyphen indicates that a particular lock granularity is
not available.

Tables 7-12 show the types of locks that are obtained when the reading of data
pages is deferred to allow the list of rows to be further qualified using multiple
indexes, or sorted for efficient prefetching.
v Table 1. Lock Modes for Table Scans with No Predicates
v Table 2. Lock Modes for Table Scans with Predicates
v Table 3. Lock Modes for RID Index Scans with No Predicates
v Table 4. Lock Modes for RID Index Scans with a Single Qualifying Row
v Table 5. Lock Modes for RID Index Scans with Start and Stop Predicates Only
v Table 6. Lock Modes for RID Index Scans with Index and Other Predicates

(sargs, resids) Only
v Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with No Predicates
v Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with No Predicates
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Predicates (sargs, resids)
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Predicates (sargs, resids)
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Start and Stop Predicates Only
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Start and Stop Predicates Only

Note:

1. Block-level locks are also available for multidimensional clustering (MDC) and
insert time clustering (ITC) tables.

2. Lock modes can be changed explicitly with the lock-request-clause of a SELECT
statement.

Table 80. Lock Modes for Table Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/- U/- SIX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Chapter 41. Locks and concurrency control 423

Table 81. Lock Modes for Table Scans with Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/- U/- SIX/X U/- SIX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Note: Under the UR isolation level, if there are predicates on include columns in the index,
the isolation level is upgraded to CS and the locks are upgraded to an IS table lock or NS
row locks.

Table 82. Lock Modes for RID Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Table 83. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/U IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Table 84. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

424 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 85. Lock Modes for RID Index Scans with Index and Other Predicates (sargs, resids)
Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Table 86. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S X/-

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

Table 87. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Table 88. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/S

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

Chapter 41. Locks and concurrency control 425

Table 89. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/- IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Table 90. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/X

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

Table 91. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/- IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IS/- IX/U IX/X IX/U IX/X

Lock modes for MDC and ITC tables and RID index scans
The type of lock that a multidimensional clustering (MDC) or insert time clustering
(ITC) table obtains during a table or RID index scan depends on the isolation level
that is in effect and on the data access plan that is being used.

The following tables show the types of locks that are obtained for MDC and ITC
tables under each isolation level for different access plans. Each entry has three
parts: the table lock, the block lock, and the row lock. A hyphen indicates that a
particular lock granularity is not available.

Tables 9-14 show the types of locks that are obtained for RID index scans when the
reading of data pages is deferred. Under the UR isolation level, if there are
predicates on include columns in the index, the isolation level is upgraded to CS
and the locks are upgraded to an IS table lock, an IS block lock, or NS row locks.

426 Preparation Guide for DB2 10.1 Fundamentals Exam 610

v Table 1. Lock Modes for Table Scans with No Predicates
v Table 2. Lock Modes for Table Scans with Predicates on Dimension Columns

Only
v Table 3. Lock Modes for Table Scans with Other Predicates (sargs, resids)
v Table 4. Lock Modes for RID Index Scans with No Predicates
v Table 5. Lock Modes for RID Index Scans with a Single Qualifying Row
v Table 6. Lock Modes for RID Index Scans with Start and Stop Predicates Only
v Table 7. Lock Modes for RID Index Scans with Index Predicates Only
v Table 8. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with No Predicates
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with No Predicates
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Predicates (sargs, resids)
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Predicates (sargs, resids)
v Table 13. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Start and Stop Predicates Only
v Table 14. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Start and Stop Predicates Only

Note: Lock modes can be changed explicitly with the lock-request-clause of a
SELECT statement.

Table 92. Lock Modes for Table Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/U IX/X/- IX/I/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 93. Lock Modes for Table Scans with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/X/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/U/- X/X/-

Chapter 41. Locks and concurrency control 427

Table 94. Lock Modes for Table Scans with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 95. Lock Modes for RID Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

Table 96. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/U IX/IX/X X/X/X X/X/X

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

Table 97. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Table 98. Lock Modes for RID Index Scans with Index Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

428 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 98. Lock Modes for RID Index Scans with Index Predicates Only (continued)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 99. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 100. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index
Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S X/-/-

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 101. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Chapter 41. Locks and concurrency control 429

Table 102. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index
Scan with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/S

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 103. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 104. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index
Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/S IX/IX/X

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 105. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IS/-/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

430 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Lock modes for MDC block index scans
The type of lock that a multidimensional clustering (MDC) table obtains during a
block index scan depends on the isolation level that is in effect and on the data
access plan that is being used.

The following tables show the types of locks that are obtained for MDC tables
under each isolation level for different access plans. Each entry has three parts: the
table lock, the block lock, and the row lock. A hyphen indicates that a particular
lock granularity is not available.

Tables 5-12 show the types of locks that are obtained for block index scans when
the reading of data pages is deferred.
v Table 1. Lock Modes for Index Scans with No Predicates
v Table 2. Lock Modes for Index Scans with Predicates on Dimension Columns

Only
v Table 3. Lock Modes for Index Scans with Start and Stop Predicates Only
v Table 4. Lock Modes for Index Scans with Predicates
v Table 5. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with No Predicates
v Table 6. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with No Predicates
v Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Predicates on Dimension Columns Only
v Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Predicates on Dimension Columns Only
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Start and Stop Predicates Only
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Start and Stop Predicates Only
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Other Predicates (sargs, resids)
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Other Predicates (sargs, resids)

Note: Lock modes can be changed explicitly with the lock-request-clause of a
SELECT statement.

Table 106. Lock Modes for Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/--/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/- IX/IX/U IX/IX/X X/X/-- X/X/--

Chapter 41. Locks and concurrency control 431

Table 107. Lock Modes for Index Scans with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 108. Lock Modes for Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/S IX/IX/S IX/IX/S

RS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

CS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/- IX/IX/-

Table 109. Lock Modes for Index Scans with Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 110. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/S X/--/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

432 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 111. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/-- IX/IX/U IX/IX/X X/X/-- X/X/--

Table 112. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/S/--

RS IS/IS/NS IX/--/-- IX/--/--

CS IS/IS/NS IX/--/-- IX/--/--

UR IN/IN/-- IX/--/-- IX/--/--

Table 113. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/S/-- IX/X/--

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

UR IN/IN/-- IX/IX/U IX/IX/X IX/U/-- IX/X/--

Table 114. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/X/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

Chapter 41. Locks and concurrency control 433

Table 115. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/X IX/X/--

RS IS/IS/NS IN/IN/-- IN/IN/--

CS IS/IS/NS IN/IN/-- IN/IN/--

UR IS/--/-- IN/IN/-- IN/IN/--

Table 116. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/IX/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

Table 117. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/-- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Locking behavior on partitioned tables
In addition to an overall table lock, there is a lock for each data partition of a
partitioned table.

This allows for finer granularity and increased concurrency compared to a
nonpartitioned table. The data partition lock is identified in output from the db2pd
command, event monitors, administrative views, and table functions.

When a table is accessed, a table lock is obtained first, and then data partition
locks are obtained as required. Access methods and isolation levels might require
the locking of data partitions that are not represented in the result set. After these
data partition locks are acquired, they might be held as long as the table lock. For
example, a cursor stability (CS) scan over an index might keep the locks on
previously accessed data partitions to reduce the cost of reacquiring data partition
locks later.

434 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Data partition locks also carry the cost of ensuring access to table spaces. For
nonpartitioned tables, table space access is handled by table locks. Data partition
locking occurs even if there is an exclusive or share lock at the table level.

Finer granularity allows one transaction to have exclusive access to a specific data
partition and to avoid row locking while other transactions are accessing other
data partitions. This can be the result of the plan that is chosen for a mass update,
or because of the escalation of locks to the data partition level. The table lock for
many access methods is normally an intent lock, even if the data partitions are
locked in share or exclusive mode. This allows for increased concurrency. However,
if non-intent locks are required at the data partition level, and the plan indicates
that all data partitions might be accessed, then a non-intent lock might be chosen
at the table level to prevent data partition deadlocks between concurrent
transactions.

LOCK TABLE statements

For partitioned tables, the only lock acquired by the LOCK TABLE statement is a
table-level lock. This prevents row locking by subsequent data manipulation
language (DML) statements, and avoids deadlocks at the row, block, or data
partition level. The IN EXCLUSIVE MODE option can be used to guarantee
exclusive access when updating indexes, which is useful in limiting the growth of
indexes during a large update.

Effect of the LOCKSIZE TABLE option on the ALTER TABLE
statement

The LOCKSIZE TABLE option ensures that a table is locked in share or exclusive
mode with no intent locks. For a partitioned table, this locking strategy is applied
to both the table lock and to data partition locks.

Row- and block-level lock escalation

Row- and block-level locks in partitioned tables can be escalated to the data
partition level. When this occurs, a table is more accessible to other transactions,
even if a data partition is escalated to share, exclusive, or super exclusive mode,
because other data partitions remain unaffected. The notification log entry for an
escalation includes the impacted data partition and the name of the table.

Exclusive access to a nonpartitioned index cannot be ensured by lock escalation.
For exclusive access, one of the following conditions must be true:
v The statement must use an exclusive table-level lock
v An explicit LOCK TABLE IN EXCLUSIVE MODE statement must be issued
v The table must have the LOCKSIZE TABLE attribute

In the case of partitioned indexes, exclusive access to an index partition is ensured
by lock escalation of the data partition to an exclusive or super exclusive access
mode.

Interpreting lock information

The SNAPLOCK administrative view can help you to interpret lock information
that is returned for a partitioned table. The following SNAPLOCK administrative
view was captured during an offline index reorganization.

Chapter 41. Locks and concurrency control 435

SELECT SUBSTR(TABNAME, 1, 15) TABNAME, TAB_FILE_ID, SUBSTR(TBSP_NAME, 1, 15) TBSP_NAME,
DATA_PARTITION_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_ESCALATION L_ESCALATION

FROM SYSIBMADM.SNAPLOCK
WHERE TABNAME like ’TP1’ and LOCK_OBJECT_TYPE like ’TABLE_%’
ORDER BY TABNAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE, TAB_FILE_ID, LOCK_MODE

TABNAME TAB_FILE_ID TBSP_NAME DATA_PARTITION_ID LOCK_OBJECT_TYPE LOCK_MODE L_ESCALATION
------- ----------- ---------- ----------------- ---------------- --------- ------------
TP1 32768 - -1 TABLE_LOCK Z 0
TP1 4 USERSPACE1 0 TABLE_PART_LOCK Z 0
TP1 5 USERSPACE1 1 TABLE_PART_LOCK Z 0
TP1 6 USERSPACE1 2 TABLE_PART_LOCK Z 0
TP1 7 USERSPACE1 3 TABLE_PART_LOCK Z 0
TP1 8 USERSPACE1 4 TABLE_PART_LOCK Z 0
TP1 9 USERSPACE1 5 TABLE_PART_LOCK Z 0
TP1 10 USERSPACE1 6 TABLE_PART_LOCK Z 0
TP1 11 USERSPACE1 7 TABLE_PART_LOCK Z 0
TP1 12 USERSPACE1 8 TABLE_PART_LOCK Z 0
TP1 13 USERSPACE1 9 TABLE_PART_LOCK Z 0
TP1 14 USERSPACE1 10 TABLE_PART_LOCK Z 0
TP1 15 USERSPACE1 11 TABLE_PART_LOCK Z 0
TP1 4 USERSPACE1 - TABLE_LOCK Z 0
TP1 5 USERSPACE1 - TABLE_LOCK Z 0
TP1 6 USERSPACE1 - TABLE_LOCK Z 0
TP1 7 USERSPACE1 - TABLE_LOCK Z 0
TP1 8 USERSPACE1 - TABLE_LOCK Z 0
TP1 9 USERSPACE1 - TABLE_LOCK Z 0
TP1 10 USERSPACE1 - TABLE_LOCK Z 0
TP1 11 USERSPACE1 - TABLE_LOCK Z 0
TP1 12 USERSPACE1 - TABLE_LOCK Z 0
TP1 13 USERSPACE1 - TABLE_LOCK Z 0
TP1 14 USERSPACE1 - TABLE_LOCK Z 0
TP1 15 USERSPACE1 - TABLE_LOCK Z 0
TP1 16 USERSPACE1 - TABLE_LOCK Z 0

26 record(s) selected.

In this example, a lock object of type TABLE_LOCK and a DATA_PARTITION_ID
of -1 are used to control access to and concurrency on the partitioned table TP1.
The lock objects of type TABLE_PART_LOCK are used to control most access to
and concurrency on each data partition.

There are additional lock objects of type TABLE_LOCK captured in this output
(TAB_FILE_ID 4 through 16) that do not have a value for DATA_PARTITION_ID.
A lock of this type, where an object with a TAB_FILE_ID and a TBSP_NAME
correspond to a data partition or index on the partitioned table, might be used to
control concurrency with the online backup utility.

Lock conversion
Changing the mode of a lock that is already held is called lock conversion.

Lock conversion occurs when a process accesses a data object on which it already
holds a lock, and the access mode requires a more restrictive lock than the one
already held. A process can hold only one lock on a data object at any given time,
although it can request a lock on the same data object many times indirectly
through a query.

Some lock modes apply only to tables, others only to rows, blocks, or data
partitions. For rows or blocks, conversion usually occurs if an X lock is needed and
an S or U lock is held.

436 Preparation Guide for DB2 10.1 Fundamentals Exam 610

IX and S locks are special cases with regard to lock conversion. Neither is
considered to be more restrictive than the other, so if one of these locks is held and
the other is required, the conversion results in a SIX (Share with Intent Exclusive)
lock. All other conversions result in the requested lock mode becoming the held
lock mode if the requested mode is more restrictive.

A dual conversion might also occur when a query updates a row. If the row is read
through index access and locked as S, the table that contains the row has a
covering intention lock. But if the lock type is IS instead of IX, and the row is
subsequently changed, the table lock is converted to an IX and the row lock is
converted to an X.

Lock conversion usually takes place implicitly as a query executes. The system
monitor elements lock_current_mode and lock_mode can provide information about
lock conversions occurring in your database.

Lock escalation
A lock escalation occurs when, in the interest of reducing memory that is allocated
to locks (lock space), numerous row-level locks are escalated into a single,
memory-saving table lock. This situation, although automated and saves memory
space devoted to locks, can reduce concurrency to an unacceptable level. You likely
have a lock escalation problem if you are experiencing a higher than typical
number of lock waits and the administration notification log entries indicate that
lock escalations are occurring.

In general, to be able to objectively assess that your system is demonstrating
abnormal behavior which can include processing delays and poor performance,
you must have information that describes the typical behavior (baseline) of your
system. A comparison can then be made between your observations of suspected
abnormal behavior and the baseline. Collecting baseline data, by scheduling
periodic operational monitoring tasks, is a key component of the troubleshooting
process.

Diagnosis
Lock escalation from multiple row-level locks to a single table-level lock
can occur for the following reasons:
v The total amount of memory consumed by many row-level locks held

against a table exceeds the percentage of total memory allocated for
storing locks

v The lock list runs out of space. The application that caused the lock list
to be exhausted will have its locks forced through the lock escalation
process, even though the application is not the holder of the most locks.

The threshold percentage of total memory allocated for storing locks, that
has to be exceeded by an application for a lock escalation to occur, is
defined by the maxlocks database configuration parameter and the
allocated memory for locks is defined by the locklist database
configuration parameter. In a well-configured database, lock escalation is
rare. If lock escalation reduces concurrency to an unacceptable level, you
can analyze the problem and decide on the best course of action.

Lock escalation is less of an issue, from the memory space perspective, if
self tuning memory manager (STMM) is managing the memory for locks
that is otherwise only allocated by the locklist database configuration

Chapter 41. Locks and concurrency control 437

parameter. STMM will automatically adjust the memory space for locks if
it ever runs out of free memory space.

Indicative signs
Look for the following indicative signs of lock escalations:
v Lock escalation message entries in the administration notification

log

What to monitor
Due to the relatively transient nature of locking events, lock event
data is most valuable if collected periodically over a period of
time, so that the evolving picture can be better understood.

Check this monitoring element for indications that lock escalations
might be a contributing factor in the SQL query performance slow
down:
v lock_escals

If you have observed one or more of the indicative signs listed here, then
you are likely experiencing a problem with lock escalations. Follow the
link in the “What to do next” section to resolve this issue.

Resolving lock escalation problems
After diagnosing a lock escalation problem, the next step is to attempt to resolve
the issue resulting from the database manager automatically escalating locks from
row level to table level. The guidelines provided here can help you to resolve the
lock escalation problem you are experiencing and help you to prevent such future
incidents.

Before you begin

Confirm that you are experiencing a lock escalation problem by taking the
necessary diagnostic steps for locking problems. For more details, see “Lock
escalation” on page 437.

About this task

The guidelines provided here can help you to resolve the lock escalation problem
you are experiencing and help you to prevent such future incidents.

The objective is to minimize lock escalations, or eliminate them, if possible. A
combination of good application design and database configuration for lock
handling can minimize or eliminate lock escalations. Lock escalations can lead to
reduced concurrency and potential lock timeouts, so addressing lock escalations is
an important task. The lock_escals monitor element and messages written to the
administration notification log can be used to identify and correct lock escalations.

First, ensure that lock escalation information is being recorded. Set the value of the
mon_lck_msg_lvl database configuration parameter to 1. This is the default setting.
When a lock escalation event occurs, information regarding the lock, workload,
application, table, and error SQLCODEs are recorded. The query is also logged if it
is a currently executing dynamic SQL statement.

438 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Procedure

Use the following steps to diagnose the cause of the unacceptable lock escalation
problem and to apply a remedy:
1. Gather information from the administration notification log about all tables

whose locks have been escalated and the applications involved. This log file
includes the following information:
v The number of locks currently held
v The number of locks needed before lock escalation is completed
v The table identifier and table name of each table being escalated
v The number of non-table locks currently held
v The new table-level lock to be acquired as part of the escalation. Usually, an

S or X lock is acquired.
v The internal return code that is associated with the acquisition of the new

table-level lock
2. Use the administration notification log information about the applications

involved in the lock escalations to decide how to resolve the escalation
problems. Consider the following options:
v Check and possibly adjust either the maxlocks or locklist database

configuration parameters, or both. In a partitioned database system, make
this change on all database partitions. The value of the locklist
configuration parameter may be too small for your current workload. If
multiple applications are experiencing lock escalation, this could be an
indication that the lock list size needs to be increased. Growth in workloads
or the addition of new applications could cause the lock list to be too small.
If only one application is experiencing lock escalations, then adjusting the
maxlocks configuration parameter could resolve this. However, you may
want to consider increasing locklist at the same time you increase maxlocks
- if one application is allowed to use more of the lock list, all the other
applications could now exhaust the remaining locks available in the lock list
and experience escalations.

v You might want to consider the isolation level at which the application and
the SQL statements are being run, for example RR, RS, CS, or UR. RR and RS
isolation levels tend to cause more escalations because locks are held until a
COMMIT is issued. CS and UR isolation levels do not hold locks until a
COMMIT is issued, and therefore lock escalations are less likely. Use the
lowest possible isolation level that can be tolerated by the application.

v Increase the frequency of commits in the application, if business needs and
the design of the application allow this. Increasing the frequency of commits
reduces the number of locks that are held at any given time. This helps to
prevent the application from reaching the maxlocks value, which triggers a
lock escalation, and helps to prevent all the applications from exhausting the
lock list.

v You can modify the application to acquire table locks using the LOCK
TABLE statement. This is a good strategy for tables where concurrent access
by many applications and users is not critical; for example, when the
application uses a permanent work table (for example, not a DGTT) that is
uniquely named for this instance of the application. Acquiring table locks
would be a good strategy in this case as it will reduce the number of locks
being held by the application and increase the performance because row
locks no longer need to be acquired and released on the rows that are
accessed in the work table.

Chapter 41. Locks and concurrency control 439

If the application does not have work tables and you cannot increase the
values for locklist or maxlocks configuration parameters, then you can have
the application acquire a table lock. However, care must be taken in choosing
the table or tables to lock. Avoid tables that are accessed by many
applications and users because locking these tables will lead to concurrency
problems which can affect response time, and, in the worst case, can lead to
applications experiencing lock timeouts.

What to do next

Rerun the application or applications to ensure that the locking problem has been
eliminated by checking the administration notification log for lock-related entries.

Lock waits and timeouts
Lock timeout detection is a database manager feature that prevents applications
from waiting indefinitely for a lock to be released.

For example, a transaction might be waiting for a lock that is held by another
user's application, but the other user has left the workstation without allowing the
application to commit the transaction, which would release the lock. To avoid
stalling an application in such a case, set the locktimeout database configuration
parameter to the maximum time that any application should have to wait to obtain
a lock.

Setting this parameter helps to avoid global deadlocks, especially in distributed
unit of work (DUOW) applications. If the time during which a lock request is
pending is greater than the locktimeout value, an error is returned to the
requesting application and its transaction is rolled back. For example, if APPL1
tries to acquire a lock that is already held by APPL2, APPL1 receives SQLCODE
-911 (SQLSTATE 40001) with reason code 68 if the timeout period expires. The
default value for locktimeout is -1, which means that lock timeout detection is
disabled.

For table, row, data partition, and multidimensional clustering (MDC) block locks,
an application can override the locktimeout value by changing the value of the
CURRENT LOCK TIMEOUT special register.

To generate a report file about lock timeouts, set the DB2_CAPTURE_LOCKTIMEOUT
registry variable to ON. The lock timeout report includes information about the
key applications that were involved in lock contentions that resulted in lock
timeouts, as well as details about the locks, such as lock name, lock type, row ID,
table space ID, and table ID. Note that this variable is deprecated and might be
removed in a future release because there are new methods to collect lock timeout
events using the CREATE EVENT MONITOR FOR LOCKING statement.

To log more information about lock-request timeouts in the db2diag log files, set
the value of the diaglevel database manager configuration parameter to 4. The
logged information includes the name of the locked object, the lock mode, and the
application that is holding the lock. The current dynamic SQL or XQuery statement
or static package name might also be logged. A dynamic SQL or XQuery statement
is logged only at diaglevel 4.

You can get additional information about lock waits and lock timeouts from the
lock wait information system monitor elements, or from the
db.apps_waiting_locks health indicator.

440 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Specifying a lock wait mode strategy
An session can specify a lock wait mode strategy, which is used when the session
requires a lock that it cannot obtain immediately.

The strategy indicates whether the session will:
v Return an SQLCODE and SQLSTATE when it cannot obtain a lock
v Wait indefinitely for a lock
v Wait a specified amount of time for a lock
v Use the value of the locktimeout database configuration parameter when

waiting for a lock

The lock wait mode strategy is specified through the SET CURRENT LOCK
TIMEOUT statement, which changes the value of the CURRENT LOCK TIMEOUT
special register. This special register specifies the number of seconds to wait for a
lock before returning an error indicating that a lock cannot be obtained.

Traditional locking approaches can result in applications blocking each other. This
happens when one application must wait for another application to release its lock.
Strategies to deal with the impact of such blocking usually provide a mechanism to
specify the maximum acceptable duration of the block. That is the amount of time
that an application will wait prior to returning without a lock. Previously, this was
only possible at the database level by changing the value of the locktimeout
database configuration parameter.

The value of locktimeout applies to all locks, but the lock types that are impacted
by the lock wait mode strategy include row, table, index key, and multidimensional
clustering (MDC) block locks.

Deadlocks
A deadlock is created when two applications lock data that is needed by the other,
resulting in a situation in which neither application can continue executing.

For example, in Figure 22 on page 442, there are two applications running
concurrently: Application A and Application B. The first transaction for Application
A is to update the first row in Table 1, and the second transaction is to update the
second row in Table 2. Application B updates the second row in Table 2 first, and
then the first row in Table 1. At time T1, Application A locks the first row in Table
1. At the same time, Application B locks the second row in Table 2. At time T2,
Application A requests a lock on the second row in Table 2. However, at the same
time, Application B tries to lock the first row in Table 1. Because Application A will
not release its lock on the first row in Table 1 until it can complete an update to
the second row in Table 2, and Application B will not release its lock on the second
row in Table 2 until it can complete an update to the first row in Table 1, a
deadlock occurs. The applications wait until one of them releases its lock on the
data.

Chapter 41. Locks and concurrency control 441

Because applications do not voluntarily release locks on data that they need, a
deadlock detector process is required to break deadlocks. The deadlock detector
monitors information about agents that are waiting on locks, and awakens at
intervals that are specified by the dlchktime database configuration parameter.

If it finds a deadlock, the deadlock detector arbitrarily selects one deadlocked
process as the victim process to roll back. The victim process is awakened, and
returns SQLCODE -911 (SQLSTATE 40001), with reason code 2, to the calling
application. The database manager rolls back uncommitted transactions from the
selected process automatically. When the rollback operation is complete, locks that
belonged to the victim process are released, and the other processes involved in
the deadlock can continue.

To ensure good performance, select an appropriate value for dlchktime. An interval
that is too short causes unnecessary overhead, and an interval that is too long
allows deadlocks to linger.

In a partitioned database environment, the value of dlchktime is applied only at
the catalog database partition. If a large number of deadlocks are occurring,
increase the value of dlchktime to account for lock waits and communication
waits.

To avoid deadlocks when applications read data that they intend to subsequently
update:
v Use the FOR UPDATE clause when performing a select operation. This clause

ensures that a U lock is set when a process attempts to read data, and it does
not allow row blocking.

v Use the WITH RR or WITH RS and USE AND KEEP UPDATE LOCKS clauses
in queries. These clauses ensure that a U lock is set when a process attempts to
read data, and they allow row blocking.

In a federated system, the data that is requested by an application might not be
available because of a deadlock at the data source. When this happens, the DB2
server relies on the deadlock handling facilities at the data source. If deadlocks
occur across more than one data source, the DB2 server relies on data source
timeout mechanisms to break the deadlocks.

x

x

Deadlock concept
Table 1

Table 2

Row 1

Row 1

Row 2

Row 2

T : update row 1 of table 11
T : update row 2 of table 2
T : deadlock

2

3

Application A
T : update row 2 of table 21
T : update row 1 of table 1
T : deadlock

2

3

Application B

...

...

...

...

...

...

Figure 22. Deadlock between applications

442 Preparation Guide for DB2 10.1 Fundamentals Exam 610

To log more information about deadlocks, set the value of the diaglevel database
manager configuration parameter to 4. The logged information includes the name
of the locked object, the lock mode, and the application that is holding the lock.
The current dynamic SQL and XQuery statement or static package name might
also be logged.

Chapter 41. Locks and concurrency control 443

444 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Part 6. Appendixes

© Copyright IBM Corp. 2012 445

446 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Appendix A. Overview of the DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command-line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2
technical issue that the documentation does not resolve, contact your local IBM
service center for assistance.

DB2 technical library in hardcopy or PDF format
The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 10.1 manuals in PDF format can be
downloaded from www.ibm.com/support/docview.wss?rs=71&uid=swg27009474.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2012 447

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474#manuals

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 118. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-3864-00 Yes April, 2012

Administrative Routines
and Views

SC27-3865-00 No January, 2013

Call Level Interface
Guide and Reference
Volume 1

SC27-3866-00 Yes January, 2013

Call Level Interface
Guide and Reference
Volume 2

SC27-3867-00 Yes January, 2013

Command Reference SC27-3868-00 Yes January, 2013

Database Administration
Concepts and
Configuration Reference

SC27-3871-00 Yes January, 2013

Data Movement Utilities
Guide and Reference

SC27-3869-00 Yes January, 2013

Database Monitoring
Guide and Reference

SC27-3887-00 Yes January, 2013

Data Recovery and High
Availability Guide and
Reference

SC27-3870-00 Yes January, 2013

Database Security Guide SC27-3872-00 Yes January, 2013

DB2 Workload
Management Guide and
Reference

SC27-3891-00 Yes January, 2013

Developing ADO.NET
and OLE DB
Applications

SC27-3873-00 Yes January, 2013

Developing Embedded
SQL Applications

SC27-3874-00 Yes January, 2013

Developing Java
Applications

SC27-3875-00 Yes January, 2013

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-3876-00 No April, 2012

Developing RDF
Applications for IBM
Data Servers

Yes January, 2013

Developing User-defined
Routines (SQL and
External)

SC27-3877-00 Yes January, 2013

Getting Started with
Database Application
Development

GI13-2046-00 Yes January, 2013

448 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Table 118. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2047-00 Yes April, 2012

Globalization Guide SC27-3878-00 Yes April, 2012

Installing DB2 Servers GC27-3884-00 Yes January, 2013

Installing IBM Data
Server Clients

GC27-3883-00 No April, 2012

Message Reference
Volume 1

SC27-3879-00 No January, 2013

Message Reference
Volume 2

SC27-3880-00 No January, 2013

Net Search Extender
Administration and
User's Guide

SC27-3895-00 No January, 2013

Partitioning and
Clustering Guide

SC27-3882-00 Yes January, 2013

pureXML Guide SC27-3892-00 Yes January, 2013

Spatial Extender User's
Guide and Reference

SC27-3894-00 No April, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-3896-00 Yes January, 2013

SQL Reference Volume 1 SC27-3885-00 Yes January, 2013

SQL Reference Volume 2 SC27-3886-00 Yes January, 2013

Text Search Guide SC27-3888-00 Yes January, 2013

Troubleshooting and
Tuning Database
Performance

SC27-3889-00 Yes January, 2013

Upgrading to DB2
Version 10.1

SC27-3881-00 Yes January, 2013

What's New for DB2
Version 10.1

SC27-3890-00 Yes January, 2013

XQuery Reference SC27-3893-00 No January, 2013

Table 119. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Personal Edition

SC27-3861-00 Yes April, 2012

DB2 Connect Installing
and Configuring DB2
Connect Servers

SC27-3862-00 Yes January, 2013

DB2 Connect User's
Guide

SC27-3863-00 Yes January, 2013

Appendix A. Overview of the DB2 technical information 449

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
Documentation for other versions of DB2 products is found in separate information
centers on ibm.com®.

About this task

For DB2 Version 10.1 topics, the DB2 Information Center URL is
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1.

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 10.1 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

450 Preparation Guide for DB2 10.1 Fundamentals Exam 610

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates update existing Information Center features and languages.

One benefit of automatic updates is that the Information Center is unavailable
for a shorter time compared to during a manual update. In addition, automatic
updates can be set to run as part of other batch jobs that run periodically.

v Manual updates can be used to update existing Information Center features and
languages. Automatic updates reduce the downtime during the update process,
however you must use the manual process when you want to add features or
languages. For example, a local Information Center was originally installed with
both English and French languages, and now you want to also install the
German language; a manual update will install German, as well as, update the
existing Information Center features and languages. However, a manual update
requires you to manually stop, update, and restart the Information Center. The
Information Center is unavailable during the entire update process. In the
automatic update process the Information Center incurs an outage to restart the
Information Center after the update only.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V10.1
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 10.1 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Appendix A. Overview of the DB2 technical information 451

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system by using a machine that is connected to the internet
and has the DB2 Information Center installed. If many users on your network
will be installing the documentation updates, you can reduce the time required
for individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv10 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 10.1 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

452 Preparation Guide for DB2 10.1 Fundamentals Exam 610

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
/opt/ibm/db2ic/V10.1 directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check that the selections you want to install,
then click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the doc\bin directory within the installation
directory, and run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the doc/bin directory within the installation directory,
and run the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv10 start

Results

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 database products.
Lessons provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/.

Appendix A. Overview of the DB2 technical information 453

http://publib.boulder.ibm.com/infocenter/db2luw/10r1/

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center, which contains:
v Information about how to isolate and identify problems with DB2

diagnostic tools and utilities.
v Solutions to some of the most common problem.
v Advice to help solve other problems you might encounter with your

DB2 database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

454 Preparation Guide for DB2 10.1 Fundamentals Exam 610

http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Appendix A. Overview of the DB2 technical information 455

http://www.ibm.com/legal/copytrade.shtml

456 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2012 457

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

458 Preparation Guide for DB2 10.1 Fundamentals Exam 610

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 459

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

460 Preparation Guide for DB2 10.1 Fundamentals Exam 610

Index

A
access control

authentication 23
fine-grained row and column

see RCAC 55
tables 41
views 41

access plans
locks

granularity 417
modes 421
modes for standard tables 423

aliases
chaining process 221
creating 221
details 221
dropping 222

ALL clause
SELECT statement 285

ALTER triggers
details 210

alternate_auth_enc configuration parameter
encrypting using AES 256–bit algorithm 23

ambiguous cursors 333
analytics

in-database 289
application processes

effect on locks 420
application-period temporal tables

creating 156
deleting data 386
inserting data 381
overview 155
querying 387
setting application time 389
special register 389
updating data 382

AS clause
ORDER BY clause 316
SELECT clause 285

authentication
methods 23
overview 21
types

CLIENT 23
DATA_ENCRYPT 23
DATA_ENCRYPT_CMP 23
GSS_SERVER_ENCRYPT 23
GSSPLUGIN 23
KERBEROS 23
KRB_SERVER_ENCRYPT 23
SERVER 23
SERVER_ENCRYPT 23

authorities
overview 29

authorization IDs
security model overview 21
trusted client 23

automatic storage table spaces
details 101

B
base tables

comparison with other table types 109
BEFORE DELETE triggers

overview 210
BEFORE triggers

comparison with check constraints 176
overview 210

bidirectional indexes 202
BIGINT data type

overview 118
precision 118
sign 118

binding
isolation levels 410
rebinding invalid packages 39

bit data 120
bitemporal tables

creating 158
deleting data 397
inserting data 391
overview 158
querying 399
updating data 393

blank data type 131
built-in functions

string units 120

C
CALL statement

CLP 360
overview 359

cataloging
databases 94
host databases 94

CHAR data type
details 120

character strings
data types 120

character subtypes 120
check constraints

BEFORE triggers comparison 176
designing 175
INSERT statement 249
overview 173

CLI
isolation levels 410

CLIENT authentication type
details 23

client-to-server communications
connections

configuring 90
testing using CLP 95

CLOB data type
details 120

CLOSE statement
details 344

closed state
cursors 337

© Copyright IBM Corp. 2012 461

clustered indexes
overview 202
see also clustering indexes 202

clustering indexes
partitioned tables 204

columns
GROUP BY clause 309
grouping column names in GROUP BY clause 309
HAVING clause 307
hidden 128
names

INSERT statement 249
ORDER BY clause 316

null values
result columns 285

renaming 144
result data 285, 289
searching using WHERE clause 309
SELECT clause 285
updating 257
values

inserting 249
command line processor (CLP)

cataloging
databases 94

terminating character 230
commands

catalog database 94
COMMIT statement

details 347
common table expressions

select-statement 277
compatibility

features summary 237
composite column values 309
concurrency

federated databases 403
improving 412
issues 403
locks 417

configuration parameters
date_compat 238
number_compat 241
varchar2_compat 244

constraints
BEFORE triggers comparison 176
check 175
checking

after load operations 189
creating

overview 186
definitions

viewing 192
designing 175
details 173
dropping 193
informational 177, 184
modifying 186
NOT NULL 174
primary key

details 175
referential 177
table 175
types 173
unique 177, 202
unique key

details 174

correlated references
subselect 289

correlation names
FROM clause 289
SELECT clause 285

CREATE DATABASE command
example 86

CREATE GLOBAL TEMPORARY TABLE statement
creating created temporary tables 134

CREATE TYPE statement
structured type 170

created temporary tables
comparison between table types 135

cross-tabulation rows 309
CUBE grouping

examples 309
query description 309

cur_commit database configuration parameter
overview 412

currency
creating distinct types 166

CURRENT LOCK TIMEOUT special register
lock wait mode strategy 441

cursor stability (CS)
details 405

cursors
active set association 337
ambiguous 333
closed state 337
current row 341
DECLARE CURSOR statement 333
declaring

SQL statement syntax 333
deleting 269
embedded SQL applications 333
location in table as result of FETCH statement 341
moving position using FETCH 341
multiple in application 333
opening 337
preparing for application use 337
processing

summary 333
read-only

conditions 333
result table relationship 333
rows

retrieving 333
units of work

conditional states 333
terminating for 349

updatable
determining 333

WITH HOLD
lock clause of COMMIT statement 347

D
data

distribution
organization schemes 111

inserting
disregarding uncommitted insertions 414
XML 363

mixed
overview 120

organization
overview 111

462 Preparation Guide for DB2 10.1 Fundamentals Exam 610

data (continued)
security

overview 21
data partitions

creating 132, 140
overview 111
range definition 140

data types
BIGINT 118
CHAR 120
character string 120
CLOB 120
columns 116
DATE 123, 238
datetime 123
DECIMAL

overview 118
default values 131
distinct

creating 165
DOUBLE 118
floating-point

overview 118
INTEGER

overview 118
NUMBER 241
numeric

overview 118
NVARCHAR2 244
REAL 118
result columns 285
SMALLINT 118
structured

creating 170
user-defined 168

TIME 123
TIMESTAMP 123
user-defined

overview 161
VARCHAR

overview 120
VARCHAR2 244
XML

overview 127
database directories

structure 71
database objects

overview 67
roles 45
statement dependencies when modifying 191

database partitions
cataloging 74
node directory 74

databases
accessing

default authorities 35
default privileges 35

aliases
creating 221

cataloging
command line processor (CLP) 94

distributed 71
package dependencies 191
partitioned 71

DATE data type
based on TIMESTAMP(0) 238
default value 131

DATE data type (continued)
overview 123

date_compat database configuration parameter
DATE based on TIMESTAMP(0) 238

dates
string representation formats 123

DB2 for Linux, UNIX, and Windows
functionality by edition 7
overview 1

DB2 Information Center
updating 450, 452
versions 450

DB2 pureScale environments
multi-partition database environment comparison 16

DB2 pureScale Feature
application transparency 14
capacity 11
continuous availability 13
overview 11
scaling 11

DB2_EVALUNCOMMITTED registry variable
deferral of row locks 414

DB2_SKIPINSERTED registry variable
details 414

DB2GENERAL parameter style 226
DB2SQL parameter style for external routines 226
DDL

details 71
statements

details 71
deadlock detector 441
deadlocks

avoiding 412
overview 441

DECIMAL data type
precision 118
sign 118

DECLARE CURSOR statement
details 333

DECLARE GLOBAL TEMPORARY TABLE statement
declaring temporary tables 133

declared temporary tables
comparison to other table types 135

default privileges 35
delete rule

details 177
DELETE statement

details 269
dependent rows

overview 177
dependent tables

overview 177
descendent row

overview 177
descendent table

overview 177
directories

local database
details 75
viewing 89

node
cataloguing database partition 74
viewing 74

system database
details 85
viewing 89

Index 463

directory structures
Linux 82
Windows 75

dirty read 405
DISTINCT keyword

subselect statement 285
distinct types

comparisons
constant values 166

creating 165
currency-based 166
overview 161
tables with columns based on distinct types 165
user-defined 131, 163

documentation
overview 447
PDF files 447
printed 447
terms and conditions of use 454

DOUBLE data type
precision 118
sign 118

double-precision floating-point data type
overview 118

dynamic SQL
FETCH statement

details 341
isolation levels 410

E
editions

overview 3
empty strings

character 120
errors

cursors 337
FETCH statement 341
UPDATE statement 257

ExampleHMO RCAC scenario
column masks 62
data queries 64
data updates 64
database tables 58
database users and roles 57
inserting data 63
introduction 56
revoke authority 66
row permissions 61
security administration 60
security policy 56

examples
connecting to a remote database 95
distinct types

comparing with constant values 166
EXCEPT operator of fullselect 279
explicit trusted connections

establishing 51
user ID switching 51

expressions
GROUP BY clause 309
NEXT VALUE 217
ORDER BY clause 316
PREVIOUS VALUE 217
SELECT clause 285
subselect 285

external routines
creating 228
overview 224
parameter styles 226

F
federated databases

concurrency control 403
FETCH FIRST clause 319
FETCH statement

cursor prerequisites for executing 341
details 341

FGAC
see RCAC 55

fine-grained access control
see RCAC 55

fixed-length character string 120
FLOAT data type

precision 118
sign 118

FOR FETCH ONLY clause
SELECT statement 277

FOR READ ONLY clause
SELECT statement 277

foreign keys
details 177
overview 173
utility implications 188

FROM clause
DELETE statement 269
subselect 289

fullselect
detailed syntax 279
examples 279, 283
initializing 277
iterative 277
multiple operations 279
ORDER BY clause 316
queries 283
table references 289

functions
aggregate

overview 233
calling 355
invoking 355
overview 233
references 355
row 233
scalar

CONCAT 244
INSERT 244
LENGTH 244
overview 233
REPLACE 244
SUBSTR 244
TRANSLATE 244
TRIM 244

table
overview 233

G
GENERAL parameter style for external routines 226
GENERAL WITH NULLS parameter style for external

routines 226

464 Preparation Guide for DB2 10.1 Fundamentals Exam 610

generated columns
defining 127
examples 127

GRANT statement
example 37
overview 37

GROUP BY clause 309
grouping sets 309
grouping-expression 309
groups

roles comparison 46

H
HAVING clause 315
help

SQL statements 450
hidden columns

overview 128
host variables

declaring
cursors 333

FETCH statement 341
inserting in rows 249
linking active set with cursor 337

I
IBM data server clients

IBM Data Server Client 92
IBM Data Server Runtime Client 92
types 92

IBM data server drivers
types 92

IBM DB2 Storage Optimization Feature 17
identity columns

defining on new tables 130
example 130

IMPLICIT_SCHEMA (implicit schema) authority
details 105

IN (Intent None) lock mode 419
in-database analytics

SAS embedded process 289
index over XML data

overview 365
index scans

lock modes 423
indexes

bidirectional 202
clustered 202
clustering

details 204
correspondence to inserted row values 249
creating

nonpartitioned tables 207
details 201
dropping 208
improving performance 202
non-clustered 202
non-unique 202
unique 202

informational constraints
designing 184
details 177, 184
overview 173

insert rule 177

INSERT statement 249
insert time clustering (ITC) tables

comparison with other table types 109
lock modes 426

instances
designing 69

INSTEAD OF triggers
overview 210

INTEGER data type
precision 118
sign 118

integers
ORDER BY clause 316

integrity checking 189
intermediate result tables 289, 307, 309, 315
INTERSECT operator 279
IS (Intent Share) lock mode 419
isolation clause 320
isolation levels

comparison 405
cursor stability (CS) 405
DELETE statement 269
INSERT statement 249
lock granularity 417
performance 405
read stability (RS) 405
repeatable read (RR) 405
select-statement 277
specifying 410
uncommitted read (UR) 405
UPDATE statement 257

iterative fullselect 277
IX (Intent Exclusive) lock mode 419

J
Java

routines
parameter styles 226

JDBC
isolation levels 410

joins
subselect component of fullselect 307
tables 307
types 307

K
Kerberos authentication protocol

server 23
keys

foreign
details 177

parent 177
KRB_SERVER_ENCRYPT authentication type 23

L
large integers 118
large objects (LOBs)

details 126
locators

details 126
overview 126

lateral correlation 307

Index 465

LBAC
overview 29

local database directory
details 75
viewing 89

locators
LOBs 126

lock granularity
factors affecting 420
overview 418

lock modes
compatibility 421
details 419
IN (Intent None) 419
insert time clustering (ITC) tables

RID index scans 426
table scans 426

IS (Intent Share) 419
IX (Intent Exclusive) 419
multidimensional clustering (MDC) tables

block index scans 431
RID index scans 426
table scans 426

NS (Scan Share) 419
NW (Next Key Weak Exclusive) 419
S (Share) 419
SIX (Share with Intent Exclusive) 419
U (Update) 419
X (Exclusive) 419
Z (Super Exclusive) 419

lock problems
lock escalations 437

lock waits
overview 440
resolving 441

locklist configuration parameter
lock granularity 417

locks
application type effect 420
COMMIT statement 347
concurrency control 417
conversion 436
data-access plan effect 421
deadlocks 441
deferral 414
granting simultaneously 421
INSERT statement 249
isolation levels 405
lock count 419
next-key locking 422
objects 419
partitioned tables 434
standard tables 423
terminating for unit of work 349
timeouts

avoiding 412
overview 440

UPDATE statement 257

M
materialized query tables

See MQTs 109
MDC tables

block-level locking 417
comparison to other table types 109

MDC tables (continued)
lock modes

block index scans 431
RID index scans 426
table scans 426

methods
overview 234

modules
features 7

MQTs
overview 109

N
naming conventions

schema name restrictions 106
nested table expressions

subselect 285, 289, 309, 316
NEXT VALUE expression

sequences 217
next-key locks 422
nicknames

FROM clause
subselect 285

SELECT clause 285
node directories

cataloguing database partitions 74
details 74
viewing 74

non-clustered indexes 202
non-repeatable reads

concurrency control 403
isolation levels 405

non-unique indexes 202
nonpartitioned tables

creating indexes 207
NOT NULL constraints

overview 174
types 173

notices 457
NS (Scan Share) lock mode 419
NUL-terminated character strings 120
NULL

data type 131
SQL value

grouping-expressions 309
occurrences in duplicate rows 285
result columns 285

NUMBER data type
details 241

number_compat database configuration parameter
effect 241

NUMERIC data type
precision 118
sign 118

numeric data types
summary 118

NVARCHAR2 data type
details 244

NW (Next Key Weak Exclusive) lock mode 419

O
objects

ownership 29

466 Preparation Guide for DB2 10.1 Fundamentals Exam 610

ODBC
specifying isolation level 410

OPEN statement
details 337

ORDER BY clause
SELECT statement 316

outer joins
joined tables 307

ownership
database objects 29

P
packages

COMMIT statement effect on cursors 347
inoperative 191
privileges

revoking (overview) 39
parameter markers

OPEN statement 337
parameter styles

overview 226
parent keys

overview 177
parent rows

overview 177
parent tables

overview 177
partitioned tables

clustering indexes 204
comparison with other table types 109
creating 132, 140
data ranges 140
locking 434

performance
improving with indexes 202
isolation level effect 405

periods
BUSINESS_TIME 155
SYSTEM_TIME 150

phantom reads
concurrency control 403
isolation levels 405

positional updating of columns by row 257
precompilation

specifying isolation level 410
PREPARE statement

variable substitution in OPEN statement 337
PREVIOUS VALUE expression

overview 217
primary keys

details 175
overview 173

privileges
GRANT statement 37
granting

roles 46
hierarchy 29
individual 29
overview 29
ownership 29
packages

implicit 29
revoking

overview 39
roles 45

problem determination
information available 454
tutorials 454

procedures
calling

overview 359
overview 232

Q
queries

authorization IDs 277
examples

SELECT statement 277
fullselect 279
overview 277
recursive 277
select-statement 277
subselect 284

querying XML data
methods

comparison 364
overview 364

R
range-clustered tables

comparison with other table types 109
ranges

defining for data partitions 140
restrictions 140

RCAC
ExampleHMO

see ExampleHMO RCAC scenario 56
overview 55
rules 56
scenario

see ExampleHMO RCAC scenario 56
read stability (RS)

details 405
read-only cursors

ambiguous 333
REAL SQL data type

precision 118
sign 118

records
locks on row data 249

recursion queries 277
recursive common table expressions 277
reference types

details 161
referential constraints

details 177
referential integrity

constraints 177
delete rule 177
insert rule 177
update rule 177

regular tables
comparison with other table types 109

repeatable read (RR)
details 405

result columns
subselect 285

result tables
comparison with other table types 109

Index 467

result tables (continued)
queries 277

retrieving data
XML

overview 364
REVOKE statement

example 39
overview 39

REXX language
specifying isolation level 410

roles
details 45
versus groups 46

ROLLBACK statement
details 349

ROLLBACK TO SAVEPOINT statement 349
ROLLUP grouping of GROUP BY clause 309
root types 168
rounding 241
routines

creating
external 228

external
creating 228
overview 224
parameter styles 226

functions
overview 233

issuing CREATE statements 230
methods

details 234
procedures

details 232
SQL

overview 230
supported programming languages 224
user-defined

creating 223
details 223

row and column access control
see RCAC 55

row fullselect
UPDATE statement 257

rows
cursors

effect of closing on FETCH statement 344
FETCH statement 337
location in result tables 333

deleting
DELETE statement 269

dependent 177
descendent 177
FETCH request 333
GROUP BY clause 309
HAVING clause 307
inserting

INSERT statement 249
locks

effect on cursor of WITH HOLD 333
INSERT statement 249

parent 177
restrictions leading to failure 249
retrieving

multiple 333
SELECT clause 285
self-referencing 177

rows (continued)
updating

column values by using UPDATE statement 257

S
S (Share) lock mode

details 419
sampling

subselect tablesample-clauses 289
SAVEPOINT statement 351
savepoints

ROLLBACK statement with TO SAVEPOINT clause 349
schemas

creating 106
details 105
dropping 107
names

restrictions 106
naming rules

recommendations 106
restrictions 106

scope
overview 161

search conditions
DELETE statement 269
HAVING clause 307
UPDATE statement 257
WHERE clause 309

security
CLIENT level 23
data 21
enhancements summary 21
establishing explicit trusted connections 51
row and column access controlfine-grained access control

see RCACsee RCAC 55
trusted contexts 49

SELECT clause
DISTINCT keyword 285
list notation 285

select list
details 285

SELECT statement
cursors 333
details 277
evaluating for result table of OPEN statement cursor 337
examples 277
fullselect detailed syntax 279
retrieving

multiple rows 333
subselects 285
VALUES clause 279

select-statement query
examples 278

self-referencing rows 177
self-referencing tables 177
sequences

creating 217
dropping 218
generating 217
recovering databases that use 217

SERVER authentication type
overview 23

SERVER_ENCRYPT authentication type
overview 23

set integrity pending state
enforcement of referential constraints 177

468 Preparation Guide for DB2 10.1 Fundamentals Exam 610

set operators
EXCEPT 279
INTERSECT 279
UNION 279

SET PASSTHRU statement
independence from COMMIT statement 347
independence from ROLLBACK statement 349

SET SERVER OPTION statement
independence from COMMIT statement 347
independence from ROLLBACK statement 349

single-byte character set (SBCS) data
overview 120

single-precision floating-point data type 118
SIX (Share with Intent Exclusive) lock mode 419
small integers

see SMALLINT data type 118
SMALLINT data type

precision 118
sign 118

SMS
directories

in nonautomatic storage databases 71
source tables

creating 132
SQL

overview 247
parameter style for external routines 226

SQL procedures
CALL statement 360

SQL routines
overview 230

SQL statements
CLOSE 344
COMMIT 347
DECLARE CURSOR 333
DELETE 269
FETCH 341
help

displaying 450
inoperative 191
INSERT 249
isolation levels 410
OPEN 337
ROLLBACK 349
ROLLBACK TO SAVEPOINT 349
SAVEPOINT 351
UPDATE 257
WITH HOLD cursor attribute 333

SQL subqueries
WHERE clause 309

SQL syntax
GROUP BY clause 309
order of execution for multiple operations 279
SELECT clause 285
WHERE clause search conditions 309

SQLCA
UPDATE statement 257

SQLDA
FETCH statement 341
host variable details 337
OPEN statement 337

SQLJ
isolation levels 410

states
lock modes 419

static SQL
isolation levels 410

storage
automatic

table spaces 101
stored procedures

CALL statement 360
calling

general approach 359
overview 232

storing XML data
inserting

columns 363
updating 367

string units
built-in functions 120

strings
data types

zero-length 131
semantics 244

structured types
attributes

accessing using methods 234
creating 170
details 161
dropping 167
hierarchies

creating 170
overview 168

inheritance
overview 168

methods
overview 234

user-defined 168
sub-total rows 309
subqueries

HAVING clause 307
WHERE clause 309

subselect
details 284
HAVING clause 315, 319
isolation clause 320

subselect query 319, 320
examples 321
joins

examples 325
with joins

examples 323
subtypes

example 170
inheriting attributes 168

summary tables
comparison with other table types 109

super-aggregate rows 309
super-groups 309
supertypes

columns 170
structured type hierarchies 168

switching
user IDs 51

symmetric super-aggregate rows 309
synonyms

aliases 221
SYSCAT.INDEXES view

viewing constraint definitions for table 192
SYSCATSPACE table spaces 103
system database directory

details 85
viewing 89

Index 469

system-period temporal tables
creating 151
deleting data 374
dropping 153
history tables 148
inserting data 369
overview 148
pruning history tables 148
querying 376
setting system time 379
special register 379
updating data 370

T
TABLE clause

subselect 289
table expressions

common 277
table spaces

automatic storage
overview 101

designing 99
details 97
initial 103
storage management 100
type comparison 101
types

overview 100
tables

access control 41
aliases 221
append mode 109
base 109, 135
check constraints

overview 175
types 177

created temporary 135
creating

distinct type columns 165
like existing tables 132
overview 132
XML columns 138

data type definitions 131
declared temporary 135
default columns 131
dependent 177
descendent 177
dropping 145, 157
FROM clause 289
generated columns 127
identity columns 130
insert time clustering (ITC) 109
inserting rows 249
lock modes 423
materialized query

overview 109
multidimensional clustering (MDC) 109
names

FROM clause 289
overview 109
parent 177
partitioned

clustering indexes 204
overview 109

privileges 39
range-clustered 109

tables (continued)
reference 289
regular

overview 109
renaming 144
result 109
revoking privileges 39
self-referencing 177
source 132
summary 109
target 132
temporal 147

application-period temporal tables 155
bitemporal tables 158
creating application-period temporal tables 156
creating bitemporal tables 158
creating system-period temporal tables 151
deleting bitemporal tables 397
deleting from application-period temporal tables 386
deleting system-period temporal tables 374
dropping system-period temporal tables 153
inserting into application-period temporal tables 381
inserting into bitemporal tables 391
inserting into system-period temporal tables 369
querying application-period temporal tables 387
querying bitemporal tables 399
querying system-period temporal tables 376
setting application time 389
setting system time 379
system-period temporal tables 148
updating application-period temporal tables 382
updating bitemporal tables 393
updating system-period temporal tables 370

temporary
OPEN statement 337
overview 109

updating by row and column 257
viewing definitions 144

temporal tables
application-period temporal tables 155

BUSINESS_TIME period 155
BUSINESS_TIME WITHOUT OVERLAPS 155
creating 156
deleting data 386
inserting data 381
querying 387
setting application time 389
special register 389
updating data 382

bitemporal tables 158
creating 158
deleting data 397
inserting data 391
querying 399
updating data 393

overview 147
system-period temporal tables 148

creating 151
deleting data 374
dropping 153
history tables 148
inserting data 369
querying 376
setting system time 379
special register 379
SYSTEM_TIME period 150
updating data 370

470 Preparation Guide for DB2 10.1 Fundamentals Exam 610

temporal tables (continued)
Time Travel Query 147

temporary tables
comparison with other table types 109
OPEN statement 337
user-defined 133, 134

TEMPSPACE1 table space 103
termination

units of work 347, 349
terms and conditions

publications 454
testing

client-to-server connections 95
time

string representation formats 123
TIME data types

overview 123
time stamps

string representation formats 123
Time Travel Query

temporal tables 147
timeouts

lock 440
TIMESTAMP data type

default value 131
details 123

TIMESTAMP(0) data type
DATE data type based on 238

transition variables
accessing old and new column values 213

triggers
accessing old and new column values 213
cascading 209
comparison with check constraints 176
constraint interactions 182
creating 214
designing 211
details 209
dropping 215
INSERT statement 249
interactions 182
modifying 215
types 210
UPDATE statement 257

troubleshooting
lock problems

lock escalations 438
online information 454
tutorials 454

trusted clients
CLIENT level security 23

trusted connections
establishing explicit trusted connections 51
overview 49

trusted contexts
overview 49

tutorials
list 453
problem determination 454
pureXML 453
troubleshooting 454

typed tables
comparison with other table types 109

typed views
overview 195

U
U (Update) lock mode 419
UDFs

invoking 356
table

invoking 357
UDTs

details 161
distinct types

benefits 163
details 161, 163

dropping 167
reference types 161
structured types 161

uncommitted data
concurrency control 403

uncommitted read (UR) isolation level
details 405

UNION operator
role in comparison of fullselect 279

unique constraints
details 174, 177
overview 173

unique indexes 202
unique keys

details 177
generating using sequences 217

UNIQUERULE column 192
units of work

canceling 349
COMMIT statement 347
initiation closes cursors 337
ROLLBACK statement 349
terminating

commits 347
without saving changes 349

update rule
referential integrity 177

UPDATE statement
details 257

updates
DB2 Information Center 450, 452
lost 403
XML columns 367

user-defined routines
overview 223

user-defined temporary tables
creating 134
defining 133

USERSPACE1 table space 103
utility operations

constraint implications 188

V
VALUES clause

fullselect 279
loading one row 249
rules for number of values 249

VARCHAR data type
details 120

VARCHAR2 data type
details 244

varchar2_compat database configuration parameter
VARCHAR2 data type 244

varying-length character string 120

Index 471

views
access privileges examples 41
column access 41
creating 198
dropping 199
FROM clause 285
inserting rows 249
names in FROM clause 289
names in SELECT clause 285
overview 195
preventing view definition loss with WITH CHECK

OPTION 257
row access 41
table access control 41
updating rows by columns 257
WITH CHECK OPTION 257
WITH CHECK OPTION examples 196

W
WHERE clause

DELETE statement 269
subselect component of fullselect 309
UPDATE statement 257

WITH CHECK OPTION for views 196
WITH common table expression

select-statement 277

X
X (Exclusive) lock mode 419
XML

table creation 138
XML columns

adding 139
defining 138
inserting into 363
updating 367
XML data type 127

XML data
creating tables 138
indexing 365
inserting

details 363
querying

methods 364
overview 364

updating
overview 367

XML data retrieval
overview 364

XML data type
indexing 365

XML documents
adding to database

columns 363
XQuery statements

comparison to SQL statements 364
inoperative 191
isolation levels 410

Z
Z (Super Exclusive) lock mode 419

472 Preparation Guide for DB2 10.1 Fundamentals Exam 610

����

Printed in USA

SC27-4540-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.1

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Pr
ep

ar
at

io
n

Gu
id

e
fo

rD
B2

10
.1

Fu
nd

am
en

ta
ls

Ex
am

61
0

�
�

�

	Contents
	About this book
	Who should use this book

	Part 1. DB2 Database for Linux, UNIX, and Windows
	Chapter 1. DB2 database product editions
	Chapter 2. Functionality in DB2 features and DB2 product editions
	Chapter 3. IBM DB2 pureScale Feature
	Extreme capacity
	Continuous availability
	Application transparency
	How does a DB2 pureScale environment compare to a multi-partition database environment?

	Chapter 4. IBM DB2 Storage Optimization Feature
	Part 2. Security
	Chapter 5. DB2 security model
	Chapter 6. Authentication methods for your server
	Chapter 7. Authorization, privileges, and object ownership
	Chapter 8. Default privileges granted on creating a database
	Chapter 9. Granting privileges
	Chapter 10. Revoking privileges
	Chapter 11. Controlling access to data with views
	Chapter 12. Roles
	Roles compared to groups

	Chapter 13. Trusted contexts and trusted connections
	Using trusted contexts and trusted connections

	Chapter 14. Row and column access control (RCAC)
	Row and column access control (RCAC) rules
	Scenario: ExampleHMO using row and column access control
	Security policies
	Database users and roles
	Database tables
	Security administration
	Row permissions
	Column masks
	Inserting data
	Updating data
	Reading data
	Revoking authority

	Part 3. Working with Databases and Database Objects
	Chapter 15. Instances
	Chapter 16. Databases
	Database directories and files
	Node directory
	Local database directory
	Directory structure for your installed DB2 database product (Windows)
	Directory structure for your installed DB2 database product (Linux)
	System database directory

	Creating databases
	Viewing the local or system database directory files
	Client-to-server connectivity
	IBM data server client and driver types

	Cataloging a database
	Connecting to a database

	Chapter 17. Table spaces
	Table spaces for system, user and temporary data
	Types of table spaces
	Automatic storage table spaces
	Comparison of automatic storage, SMS, and DMS table spaces
	Defining initial table spaces on database creation

	Chapter 18. Schemas
	Schema name restrictions and recommendations
	Creating schemas
	Dropping schemas

	Chapter 19. Tables
	Types of tables
	Data organization schemes

	Data types and table columns
	Numbers
	Character strings
	Datetime values
	Large objects (LOBs)
	XML data type
	Generated columns
	Hidden columns
	Auto numbering and identifier columns
	Default column and data type definitions

	Creating tables
	Creating tables like existing tables
	Declaring temporary tables
	Creating and connecting to created temporary tables
	Distinctions between DB2 base tables and temporary tables

	Creating tables with XML columns
	Adding XML columns to existing tables

	Creating partitioned tables
	Defining ranges on partitioned tables

	Renaming tables and columns
	Viewing table definitions
	Dropping application-period temporal tables

	Chapter 20. Temporal tables
	System-period temporal tables
	History tables
	SYSTEM_TIME period
	Creating a system-period temporal table
	Dropping a system-period temporal table

	Application-period temporal tables
	BUSINESS_TIME period
	Creating an application-period temporal table
	Dropping application-period temporal tables

	Bitemporal tables
	Creating a bitemporal table

	Chapter 21. User-defined types
	Distinct types
	Creating distinct types
	Creating tables with columns based on distinct types
	Creating currency-based distinct types
	Casting between distinct types
	Dropping user-defined types

	Structured types
	Structured type hierarchies
	Creating structured types
	Creating a structured type hierarchy

	Chapter 22. Constraints
	Types of constraints
	NOT NULL constraints
	Unique constraints
	Primary key constraints
	(Table) Check constraints
	Designing check constraints
	Comparison of check constraints and BEFORE triggers

	Foreign key (referential) constraints
	Examples of interaction between triggers and referential constraints

	Informational constraints
	Designing informational constraints

	Creating and modifying constraints
	Table constraint implications for utility operations
	Checking for integrity violations following a load operation

	Statement dependencies when changing objects
	Viewing constraint definitions for a table
	Dropping constraints

	Chapter 23. Views
	Views with the check option
	Creating views
	Dropping views

	Chapter 24. Indexes
	Types of indexes
	Clustering of nonpartitioned indexes on partitioned tables
	Creating indexes
	Dropping indexes

	Chapter 25. Triggers
	Types of triggers
	Designing triggers
	Accessing old and new column values in triggers using transition variables

	Creating triggers
	Modifying and dropping triggers

	Chapter 26. Sequences
	Creating sequences
	Dropping sequences

	Chapter 27. Aliases
	Creating database object aliases
	Dropping aliases

	Chapter 28. User-defined routines
	External routines
	Supported routine programming languages
	External routine parameter styles
	Creating external routines

	SQL routines
	Creating SQL procedures from the command line

	Procedures
	Functions
	Methods

	Chapter 29. DB2 compatibility features
	DATE data type based on TIMESTAMP(0)
	NUMBER data type
	VARCHAR2 and NVARCHAR2 data types

	Part 4. Working with DB2 Data using SQL
	Chapter 30. INSERT statement
	Chapter 31. UPDATE statement
	Chapter 32. DELETE statement
	Chapter 33. SQL queries
	select-statement
	Examples of select-statement queries
	fullselect
	Examples of fullselect queries
	subselect
	select-clause
	from-clause
	table-reference
	joined-table

	where-clause
	group-by-clause
	having-clause
	order-by-clause
	fetch-first-clause
	isolation-clause (subselect query)

	Examples of subselect queries
	Examples of subselect queries with joins
	Examples of subselect queries with grouping sets, cube, and rollup queries

	Chapter 34. Cursors
	Using a cursor to retrieve multiple rows
	DECLARE CURSOR
	OPEN
	FETCH
	CLOSE

	Chapter 35. Transactions
	COMMIT
	ROLLBACK
	SAVEPOINT

	Chapter 36. Invoking user-defined functions
	Invoking scalar functions or methods
	Invoking user-defined table functions

	Chapter 37. Calling procedures
	Calling procedures from the Command Line Processor (CLP)

	Chapter 38. Working with XML data
	Inserting XML columns
	Querying XML data
	Comparison of methods for querying XML data

	Indexing XML data
	Updating XML data

	Chapter 39. Working with temporal tables and time travel queries
	Inserting data into a system-period temporal table
	Updating data in a system-period temporal table
	Deleting data from a system-period temporal table
	Querying system-period temporal data
	Setting the system time for a session
	Inserting data into an application-period temporal table
	Updating data in an application-period temporal table
	Deleting data from an application-period temporal table
	Querying application-period temporal data
	Setting the application time for a session
	Inserting data into a bitemporal table
	Updating data in a bitemporal table
	Deleting data from a bitemporal table
	Querying bitemporal data

	Part 5. Data concurrency
	Chapter 40. Isolation levels
	Specifying the isolation level
	Currently committed semantics
	Option to disregard uncommitted insertions
	Evaluate uncommitted data through lock deferral

	Chapter 41. Locks and concurrency control
	Lock granularity
	Lock attributes
	Factors that affect locking
	Locks and types of application processing
	Locks and data-access methods

	Lock type compatibility
	Next-key locking
	Lock modes and access plans for standard tables
	Lock modes for MDC and ITC tables and RID index scans
	Lock modes for MDC block index scans
	Locking behavior on partitioned tables
	Lock conversion
	Lock escalation
	Resolving lock escalation problems

	Lock waits and timeouts
	Specifying a lock wait mode strategy

	Deadlocks

	Part 6. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

