IBM DB2 10.1
for Linux, UNIX, and Windows

SQL Reference Volume 2
Updated January, 2013

<||I

IBM DB2 10.1
for Linux, UNIX, and Windows

SQL Reference Volume 2
Updated January, 2013

..ll

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 1357.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
¢ To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/
order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book.

Who should use this book

How this book is structured.

How to read the syntax diagrams

Conventions used in this manual
Error conditions . .
Highlighting conventions .

Related documentation .

SQL statements .

How SQL statements are invoked .
Embedding a statement in an application
program .
Dynamlc preparatlon and execut1on .
Static invocation of a select-statement.
Dynamic invocation of a select-statement
Interactive invocation . .

SQL use with other host systems .
Detecting and processing error and warning
conditions in host language applications.
SQL comments .

Conditional compilation in SQL

About SQL control statements .

References to SQL parameters, SQL Varlables

and global variables
References to SQL labels .
References to SQL condition names
References to SQL statement names
References to SQL cursor names .
Function, method, and procedure designators .
ALLOCATE CURSOR .
ALTER AUDIT POLICY .
ALTER BUFFERPOOL.
ALTER DATABASE PARTITION GROUP
ALTER DATABASE.
ALTER EVENT MONITOR .
ALTER FUNCTION .
ALTER HISTOGRAM TEMPLATE
ALTER INDEX
ALTER MASK
ALTER METHOD .
ALTER MODULE
ALTER NICKNAME
ALTER PACKAGE .
ALTER PERMISSION . .
ALTER PROCEDURE (external)
ALTER PROCEDURE (sourced).
ALTER PROCEDURE (SQL) .
ALTER SCHEMA .
ALTER SECURITY LABEL COMPONENT .
ALTER SECURITY POLICY .
ALTER SEQUENCE
ALTER SERVER .
ALTER SERVICE CLASS
ALTER STOGROUP .

© Copyright IBM Corp. 2013

. vii
. vii
. vii

. viii

X X X

-t

. 10
. 10
11
.11
.12

.12
.12

.13
. 14
.17

.17
.18
.18
.18
.19
. 20
.24
. 26
.29
. 32
. 36
.41
. 46
. 50
. 52
. 53
. 54
. 56
. 64
.73
. 76
.77
. 80
. 82
. 84
. 86
. 89
. 93

. 97
. 100

. 110

ALTER TABLE .

ALTER TABLESPACE

ALTER THRESHOLD

ALTER TRIGGER .

ALTER TRUSTED CONTEXT .

ALTER TYPE (structured)

ALTER USAGE LIST .

ALTER USER MAPPING

ALTER VIEW .

ALTER WORK ACTION SET .

ALTER WORK CLASS SET.

ALTER WORKLOAD.

ALTER WRAPPER

ALTER XSROBJECT .

ASSOCIATE LOCATORS

AUDIT .

BEGIN DECLARE SECTION .

CALL .

CASE .

CLOSE

COMMENT .

COMMIT. . .

Compound SQL

Compound SQL (inlined) .

Compound SQL (embedded) .

Compound SQL (compiled)

CONNECT (type 1)

CONNECT (type 2)

CREATE ALIAS

CREATE AUDIT POLICY

CREATE BUFFERPOOL .

CREATE DATABASE PARTITION GROUP
CREATE EVENT MONITOR . .
CREATE EVENT MONITOR (activities)
CREATE EVENT MONITOR (change history)
CREATE EVENT MONITOR (locking) . .
CREATE EVENT MONITOR (package cache)
statement. ..
CREATE EVENT MONITOR (statlstlcs)

CREATE EVENT MONITOR (threshold Vlolatlons)

CREATE EVENT MONITOR (unit of work)
CREATE FUNCTION. .
CREATE FUNCTION (external scalar)

CREATE FUNCTION (external table) .
CREATE FUNCTION (OLE DB external table)
CREATE FUNCTION (sourced or template) .
CREATE FUNCTION (SQL scalar, table, or row)
CREATE FUNCTION MAPPING . .
CREATE GLOBAL TEMPORARY TABLE .
CREATE HISTOGRAM TEMPLATE .

CREATE INDEX

CREATE INDEX EXTENSION

CREATE MASK

CREATE METHOD

CREATE MODULE

CREATE NICKNAME

. 114
. 179
. 194
. 207
. 208
. 216
. 223
. 225
. 227
. 229
. 243
. 249
. 265
. 267
. 268
. 270
. 274
. 276
. 284
. 287
. 289
. 300
. 302
. 303
. 308
. 312
. 329
. 336
. 343
. 347
. 350
. 354
. 356
. 376
. 387
. 394

. 400

. 407
419

. 430
. 435
. 436
. 464
. 484
. 495

509

. 526
. 530
. 543
. 545
. 566
. 572
. 578
. 584
. 586

iii

CREATE PERMISSION .
CREATE PROCEDURE . .
CREATE PROCEDURE (external).
CREATE PROCEDURE (sourced).
CREATE PROCEDURE (SQL)
CREATE ROLE. .
CREATE SCHEMA

CREATE SECURITY LABEL COMPONENT .

CREATE SECURITY LABEL
CREATE SECURITY POLICY .
CREATE SEQUENCE.
CREATE SERVICE CLASS .
CREATE SERVER .

CREATE STOGROUP
CREATE SYNONYM .
CREATE TABLE .
CREATE TABLESPACE .
CREATE THRESHOLD .
CREATE TRANSFORM .
CREATE TRIGGER

CREATE TRUSTED CONTEXT
CREATE TYPE .

CREATE TYPE (array)
CREATE TYPE (cursor) .
CREATE TYPE (distinct).
CREATE TYPE (row) . .
CREATE TYPE (structured).
CREATE TYPE MAPPING .
CREATE USAGE LIST
CREATE USER MAPPING .
CREATE VARIABLE .
CREATE VIEW. .
CREATE WORK ACTION SET
CREATE WORK CLASS SET .
CREATE WORKLOAD .
CREATE WRAPPER .
DECLARE CURSOR . .
DECLARE GLOBAL TEMPORARY TABLE
DELETE .

DESCRIBE

DESCRIBE INPUT.

DESCRIBE OUTPUT .
DISCONNECT .

DROP .

END DECLARE SECTION
EXECUTE . .
EXECUTE IMMEDIATE
EXPLAIN .

FETCH . .

FLUSH BUFFERPOOLS
FLUSH EVENT MONITOR
FLUSH FEDERATED CACHE

FLUSH OPTIMIZATION PROFILE CACHE .

FLUSH PACKAGE CACHE .

FOR . .

FREE LOCATOR

GET DIAGNOSTICS

GOTO

GRANT (database authorltles)
GRANT (exemption)

GRANT (global variable pr1v11eges)

1V SQL Reference Volume 2

. 599
. 603
. 604
. 620
. 626
. 636
. 637
. 640
. 643
. 645
. 647
. 653
. 664
. 668
. 671
. 672
. 752
. 767
. 784
. 788
. 803
. 810
. 811
. 817
. 820
. 828
. 833
. 856
. 863
. 867
. 869
. 879
. 894
. 903
. 908
. 926
. 928
. 934
. 947
. 957
. 958
. 962
. 966
.. 969
. 1002
. 1003
. 1011
. 1014
. 1019
. 1023
. 1024
. 1025
. 1027
. 1029
. 1030
. 1033
. 1034
. 1037
. 1039
. 1044
. 1047

GRANT (index privileges).

GRANT (module privileges) .

GRANT (package pr1v1leges)

GRANT (role) .

GRANT (routine perlleges)

GRANT (schema privileges) .

GRANT (security label)

GRANT (sequence privileges)

GRANT (server privileges)

GRANT (SETSESSIONUSER pr1v1lege)
GRANT (table space privileges) . .
GRANT (table, view, or nickname perlleges)
GRANT (workload privileges)

GRANT (XSR object privileges) .
INCLUDE .

INSERT .

ITERATE

LEAVE .

LOCK TABLE .

LOOP

MERGE .

OPEN

PIPE .

PREPARE

REFRESH TABLE.

RELEASE (connection) .

RELEASE SAVEPOINT .

RENAME

RENAME STOGROUP

RENAME TABLESPACE

REPEAT.

RESIGNAL.

RETURN

REVOKE (database authorltles)
REVOKE (exemption) .

REVOKE (global variable pr1v1leges)
REVOKE (index privileges)
REVOKE (module privileges).
REVOKE (package perlleges)
REVOKE (role)

REVOKE (routine prlvﬂeges)
REVOKE (schema privileges) .
REVOKE (security label)

REVOKE (sequence privileges) .
REVOKE (server privileges) . .
REVOKE (SETSESSIONUSER perllege)
REVOKE (table space privileges)

S~ A~~~ o~~~

REVOKE (table, view, or nickname pr1v11eges)

REVOKE (workload privileges) .
REVOKE (XSR object pr1v1leges)
ROLLBACK .

SAVEPOINT

SELECT .

SELECT INTO.

SET COMPILATION ENVIRONMENT
SET CONNECTION.

SET CURRENT DECFLOAT ROUNDING MODE
SET CURRENT DEFAULT TRANSFORM GROUP

SET CURRENT DEGREE . .
SET CURRENT EXPLAIN MODE .

. 1049
. 1051
. 1053
. 1056
. 1059
. 1063
. 1066
. 1069
. 1072
. 1074
. 1076
. 1078
. 1084
. 1086
. 1087
. 1089
. 1091
. 1102
. 1104
. 1106
. 1108
. 1110
. 1122
. 1128
. 1130
. 1136
. 1140
. 1142
. 1143
. 1145
. 1146
. 1147
. 1149
. 1152
. 1154
. 1158
. 1160
. 1162
. 1164
. 1166
. 1169
. 1171
. 1175
. 1177
. 1179
. 1181
. 1183
. 1185

1187

. 1192
. 1194
. 1195
. 1198
. 1201
. 1202
. 1206

. 1207
1209
1211

. 1212
. 1214

SET CURRENT EXPLAIN SNAPSHOT

SET CURRENT FEDERATED ASYNCHRONY
SET CURRENT IMPLICIT XMLPARSE OPTION
SET CURRENT ISOLATION . .

SET CURRENT LOCALE LC MESSAGES

SET CURRENT LOCALE LC_TIME

SET CURRENT LOCK TIMEOUT . .
SET CURRENT MAINTAINED TABLE TYPES
FOR OPTIMIZATION . .

SET CURRENT MDC ROLLOUT MODE

SET CURRENT OPTIMIZATION PROFILE .
SET CURRENT PACKAGE PATH .

SET CURRENT PACKAGESET . .

SET CURRENT QUERY OPTIMIZATION

SET CURRENT REFRESH AGE .

SET CURRENT SQL_CCFLAGS. .
SET CURRENT TEMPORAL BUSINESS TIME
SET CURRENT TEMPORAL SYSTEM_TIME
SET ENCRYPTION PASSWORD

SET EVENT MONITOR STATE .

SET INTEGRITY .

SET PASSTHRU .

SET PATH .

SET ROLE .

SET SCHEMA. .

SET SERVER OPTION . ..

SET SESSION AUTHORIZATION .

SET USAGE LIST STATE .

SET variable

. 1217

1219
1221

. 1222
. 1223
. 1225
. 1227

. 1229
. 1231
. 1233
. 1236
. 1240
. 1242
. 1245
. 1247

1249

. 1251
. 1253
. 1255
. 1257
. 1276
. 1278
. 1280
. 1281
. 1283
. 1285
. 1288
. 1291

SIGNAL.1303
TRANSFER OWNERSHIP B (1)
TRUNCATE1318
UPDATE1321
VALUES.1337
VALUESINTO1338
WHENEVER1341
WHILE1344

Appendix A. Overview of the DB2
technical information . 1347

DB2 technical library in hardcopy or PDF format 1348
Displaying SQL state help from the command line

processor 1350
Accessing different versions of the DB2

Information Center 1350
Updating the DB2 Informatlon Center 1nstalled on

your computer or intranet server . . . 1351
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 1352
DB2 tutorials 1354
DB2 troubleshooting 1nformat10n oo .. 1354
Terms and conditions 1355
Appendix B. Notices . . 1357
Index . 1361

Contents V

Vi SQL Reference Volume 2

About this book

The SQL Reference in its two volumes defines the SQL language used by DB2®
Database for Linux, UNIX, and Windows.

It includes:

* Information about relational database concepts, language elements, functions,
and the forms of queries (Volume 1)

* Information about the syntax and semantics of SQL statements (Volume 2)

Who should use this book

This book is intended for anyone who wants to use the Structured Query
Language (SQL) to access a database. It is primarily for programmers and database
administrators, but it can also be used by those who access databases through the
command line processor (CLP).

This book is a reference rather than a tutorial. It assumes that you will be writing
application programs and therefore presents the full functions of the database
manager.

How this book is structured

The second volume of the SQL Reference contains information about the syntax and
semantics of SQL statements.

* “Statements” contains syntax diagrams, semantic descriptions, rules, and
examples of all SQL statements, including SQL procedure statements.

© Copyright IBM Corp. 2013 vii

How to read the syntax diagrams

How to read the syntax diagrams

viii

This topic describes the structure of SQL syntax diagrams.

Read the syntax diagrams from left to right and top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a syntax diagram.

The — symbol indicates that the syntax is continued on the next line.

The »— symbol indicates that the syntax is continued from the previous line.
The —>< symbol indicates the end of a syntax diagram.

Syntax fragments start with the |— symbol and end with the — symbol.

Required items appear on the horizontal line (the main path).

»>—required_item ><

Optional items appear below the main path.

Y
A

»>—required_item |_0 _|
ptional_item

If an optional item appears above the main path, that item has no effect on
execution, and is used only for readability.

|—optionaZ_i tem—l

A\
A

»>—required_item

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

v
A

»>—required i tem—[requ ired choicel
requi red_choi(:eZ—|

If choosing one of the items is optional, the entire stack appears below the main
path.

»>—required item ><
i:optional_choice]:‘

optional_choicez

If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

SQL Reference Volume 2

How to read the syntax diagrams

default_choice
»>—required_item rizz _l

ptional_choice:l
ptional choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

v

»>—required_item repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

v

v
A

»>—required_item repeatable_item

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in lowercase (for example, column-name). They
represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For
example, in the following diagram, the variable parameter-block represents the
whole syntax fragment that is labeled parameter-block:

»—r‘equired_item—' parameter-block i ><
parameter-block:

parameterl }
parameter? par‘m77eter3:|J

|:parame terd

Adjacent segments occurring between “large bullets” (@) may be specified in any
sequence.

»>—required_item—iteml—@—item?—@—item3—@—item4 »><

The above diagram shows that item?2 and item3 may be specified in either order.
Both of the following are valid:

required_item iteml item2 item3 item4
required_item iteml item3 item2 item4

About this book 1X

How to read the syntax diagrams

Conventions used in this manual

Error conditions

An error condition is indicated within the text of the manual by listing the
SQLSTATE associated with the error in parentheses.

For example:

A duplicate signature returns an SQL error (SQLSTATE 42723).

Highlighting conventions
This topic covers the conventions used in the SQL Reference.

Bold indicates commands, keywords, and other items whose names are
predefined by the system.

Italics indicates one of the following items:
— Names or values (variables) that must be supplied by the user
— General emphasis

The introduction of a new term

A reference to another source of information

Related documentation

X

The following publications might prove useful when you are preparing
applications:

SQL Reference Volume 2

Getting Started with Database Application Development

— Provides an introduction to DB2 application development, including platform
prerequisites; supported development software; and guidance on the benefits
and limitations of the supported programming APIs.

DB2 for i5/0S SQL Reference

— This book defines SQL as supported by DB2 Query Manager and SQL
Development Kit on System i®. It contains reference information for the tasks
of system administration, database administration, application programming,
and operation. This manual includes syntax, usage notes, keywords, and

examples for each of the SQL statements used on i5/0S® systems running
DB2.

DB2 for z/OS SQL Reference

— This book defines SQL used in DB2 for z/OS®. It provides query forms, SQL
statements, SQL procedure statements, DB2 limits, SQLCA, SQLDA, catalog
tables, and SQL reserved words for z/OS systems running DB2.

DB2 Spatial Extender User's Guide and Reference

— This book discusses how to write applications to create and use a geographic
information system (GIS). Creating and using a GIS involves supplying a
database with resources and then querying the data to obtain information
such as locations, distances, and distributions within areas.

IBM SQL Reference

— This book contains all the common elements of SQL that span IBM's database
products. It provides limits and rules that assist in preparing portable
programs using IBM databases. This manual provides a list of SQL extensions
and incompatibilities among the following standards and products: SQL92E,
XPG4-SQL, IBM-SQL, and the IBM relational database products.

American National Standard X3.135-1992, Database Language SQL

Related documentation

— Contains the ANSI standard definition of SQL.
ISO/IEC 9075:1992, Database Language SQL
— Contains the 1992 ISO standard definition of SQL.

ISO/IEC 9075-2:2003, Information technology -- Database Languages -- SQL -- Part 2:
Foundation (SQL/Foundation)

— Contains a large portion of the 2003 ISO standard definition of SQL.

ISO/IEC 9075-4:2003, Information technology -- Database Languages - SQL -- Part 4:
Persistent Stored Modules (SQL/PSM)

— Contains the 2003 ISO standard definition for SQL procedure control
statements.

About this book X1

Related documentation

xil SQL Reference Volume 2

SQL statements

This topic contains tables that list the SQL statements classified by type.
* SQL schema statements (Table 1)

¢ SQL data change statements (Table 2 on page 6)

* SQL data statements (Table 3 on page 6)

* SQL transaction statements (Table 4 on page 7)

¢ SQL connection statements (Table 5 on page 7)

* SQL dynamic statements (Table 6 on page 7)

* SQL session statements (Table 7 on page 7)

¢ SQL embedded host language statements (Table 8 on page 9)

* SQL control statements (Table 9 on page 9)

Table 1. SQL schema statements

SQL Statement

Purpose

“ALTER AUDIT POLICY” on page 26

Modifies the definition of an audit policy at the current server.

“ALTER BUFFERPOOL” on page 29

Changes the definition of a buffer pool.

“ALTER DATABASE” on page 36

Adds new storage paths to the collection of paths that are used for
automatic storage table spaces.

“ALTER EVENT MONITOR” on page 41

Changes the definition of a TABLE or UNFORMATTED EVENT
TABLE event monitor.

“ALTER DATABASE PARTITION GROUP” on
page 32

Changes the definition of a database partition group.

“ALTER FUNCTION” on page 46

Modifies an existing function by changing the properties of the
function.

“ALTER HISTOGRAM TEMPLATE” on page
50

Modifies the template describing the type of histogram that can be
used to override one or more of the default histograms of a service
class or a work class.

“ALTER INDEX” on page 52

Changes the definition of an index.

“ALTER MASK” on page 53

Changes the definition of a column mask.

“ALTER METHOD” on page 54

Modifies an existing method by changing the method body
associated with the method.

“ALTER MODULE” on page 56

Changes the definition of a module.

“ALTER NICKNAME” on page 64

Changes the definition of a nickname.

“ALTER PACKAGE” on page 73

Alters bind options for a package at the current server without
having to bind or rebind the package.

“ALTER PERMISSION” on page 76

Changes the definition of a row permission.

“ALTER PROCEDURE (external)” on page 77

Modifies an existing external procedure by changing the properties of
the procedure.

“ALTER PROCEDURE (sourced)” on page 80

Modifies an existing sourced procedure by changing the data type of
one or more parameters of the sourced procedure.

“ALTER PROCEDURE (SQL)” on page 82

Modifies an existing SQL procedure by changing the properties of the
procedure.

“ALTER SCHEMA” on page 84

© Copyright IBM Corp. 2013

Modifies an existing schema by changing the data capture attribute
of the schema.

SQL statements

Table 1. SQL schema statements (continued)
SQL Statement

Purpose

“ALTER SECURITY LABEL COMPONENT”
on page 86

Modifies a security label component.

“ALTER SECURITY POLICY” on page 89

Modifies a security policy.

“ALTER SEQUENCE” on page 93

Changes the definition of a sequence.

“ALTER SERVER” on page 97

Changes the definition of a data source in a federated system.

“ALTER SERVICE CLASS” on page 100

Changes the definition of a service class.

“ALTER STOGROUP” on page 110

Changes the definition of a storage group.

“ALTER TABLE” on page 114

Changes the definition of a table.

“ALTER TABLESPACE” on page 179

Changes the definition of a table space.

“ALTER THRESHOLD” on page 194

Changes the definition of a threshold.

“ALTER TRIGGER” on page 207

Changes the definition of a trigger.

“ALTER TRUSTED CONTEXT” on page 208

Changes the definition of a trusted context at the current server.

“ALTER TYPE (structured)” on page 216

Changes the definition of a structured type.

“ALTER USAGE LIST” on page 223

Changes the definition of a usage list.

“ALTER USER MAPPING” on page 225

Changes the definition of a user authorization mapping.

“ALTER VIEW” on page 227

Changes the definition of a view by altering a reference type column
to add a scope.

“ALTER WORK ACTION SET” on page 229

Adds, alters, or drops work actions within a work action set.

“ALTER WORK CLASS SET” on page 243

Adds, alters, or drops work classes within a work class set.

“ALTER WORKLOAD” on page 249

Changes a workload.

“ALTER WRAPPER” on page 265

Updates the options that, along with a wrapper module, are used to
access data sources of a specific type.

“ALTER XSROBJECT” on page 267

Enables or disables decomposition support for a specific XML
schema.

“AUDIT” on page 270

Determines the audit policy that is to be used for a particular
database or database object at the current server.

“COMMENT” on page 289

Replaces or adds a comment to the description of an object.

“CREATE ALIAS” on page 343

Defines an alias for a module, nickname, sequence, table, view, or
another alias.

“CREATE AUDIT POLICY” on page 347

Defines an auditing policy at the current server.

“CREATE BUFFERPOOL” on page 350

Defines a new buffer pool.

“CREATE DATABASE PARTITION GROUP”
on page 354

Defines a database partition group.

“CREATE EVENT MONITOR” on page 356

Specifies events in the database to monitor.

“CREATE EVENT MONITOR (activities)” on
page 376

Specifies activity events in the database to monitor.

“CREATE EVENT MONITOR (change
history)” on page 387

Specifies change history events in the database to monitor.

“CREATE EVENT MONITOR (locking)” on
page 394

Specifies locking events in the database to monitor.

“CREATE EVENT MONITOR (package cache)
statement” on page 400

Specifies package cache statement events in the database to monitor.

“CREATE EVENT MONITOR (statistics)” on
page 407

2 SQL Reference Volume 2

Specifies statistics events in the database to monitor.

Table 1. SQL schema statements (continued)
SQL Statement

SQL statements

Purpose

“CREATE EVENT MONITOR (threshold
violations)” on page 419

Specifies threshold violation events in the database to monitor.

“CREATE EVENT MONITOR (unit of work)”
on page 430

Specifies unit of work events in the database to monitor.

“CREATE FUNCTION” on page 435

Registers a user-defined function.

“CREATE FUNCTION (external scalar)” on
page 436

Registers a user-defined external scalar function.

“CREATE FUNCTION (external table)” on
page 464

Registers a user-defined external table function.

“CREATE FUNCTION (OLE DB external
table)” on page 484

Registers a user-defined OLE DB external table function.

“CREATE FUNCTION (sourced or template)”
on page 495

Registers a user-defined sourced function or a function template.

“CREATE FUNCTION (SQL scalar, table, or
row)” on page 509

Defines a user-defined SQL function.

“CREATE FUNCTION MAPPING” on page
526

Defines a function mapping.

“CREATE GLOBAL TEMPORARY TABLE” on
page 530

Defines a created temporary table.

“CREATE HISTOGRAM TEMPLATE” on page
543

Defines a template describing the type of histogram that can be used
to override one or more of the default histograms of a service class or
a work class.

“CREATE INDEX” on page 545

Defines an index on a table.

“CREATE INDEX EXTENSION” on page 566

Defines an extension object for use with indexes on tables with
structured or distinct type columns.

“CREATE MASK” on page 572

Defines a column mask.

“CREATE METHOD” on page 578

Defines a method body to associate with a previously defined
method specification.

“CREATE MODULE” on page 584

Defines a module.

“CREATE NICKNAME” on page 586

Defines a nickname.

“CREATE PERMISSION” on page 599

Defines a row permission.

“CREATE PROCEDURE” on page 603

Defines a procedure.

“CREATE PROCEDURE (external)” on page
604

Defines an external procedure.

“CREATE PROCEDURE (sourced)” on page
620

Defines a procedure (the sourced procedure) that is based on another
procedure (the source procedure). In a federated system, a federated
procedure is a sourced procedure whose source procedure is at a
supported data source.

“CREATE PROCEDURE (SQL)” on page 626

Defines an SQL procedure.

“CREATE ROLE” on page 636

Defines a role at the current server.

“CREATE SCHEMA” on page 637

Defines a schema.

“CREATE SECURITY LABEL COMPONENT”
on page 640

Defines a component that is to be used as part of a security policy.

“CREATE SECURITY LABEL” on page 643

Defines a security label.

“CREATE SECURITY POLICY” on page 645

Defines a security policy.

Statements 3

SQL statements

Table 1. SQL schema statements (continued)

SQL Statement Purpose

“CREATE SEQUENCE” on page 647 Defines a sequence.

“CREATE SERVER” on page 664 Defines a data source to a federated database.

“CREATE SERVICE CLASS” on page 653 Defines a service class.

“CREATE STOGROUP” on page 668 Defines a new storage group within the database.

“CREATE SYNONYM” on page 671 Defines a synonym for a module, nickname, sequence, table, view, or
another synonym.

“CREATE TABLE” on page 672 Defines a table.

“CREATE TABLESPACE” on page 752 Defines a table space.

“CREATE THRESHOLD” on page 767 Defines a threshold.

“CREATE TRANSFORM” on page 784 Defines transformation functions.

“CREATE TRIGGER” on page 788 Defines a trigger.

“CREATE TRUSTED CONTEXT” on page 803 Defines a trusted context at the current server.

“CREATE TYPE” on page 810 Defines a user-defined data type at the current server.

“CREATE TYPE (array)” on page 811 Defines an array type.

“CREATE TYPE (cursor)” on page 817 Defines a cursor type.

“CREATE TYPE (distinct)” on page 820 Defines a distinct data type.

“CREATE TYPE (row)” on page 828 Defines a row type.

“CREATE TYPE (structured)” on page 833 Defines a structured data type.

“CREATE TYPE MAPPING” on page 856 Defines a mapping between data types.

“CREATE USAGE LIST” on page 863 Defines a usage list in order to monitor all unique sections (DML

statements) that have referenced a particular table or index during
their execution.

“CREATE USER MAPPING” on page 867 Defines a mapping between user authorizations.

“CREATE VARIABLE” on page 869 Defines a global variable.

“CREATE VIEW” on page 879 Defines a view of one or more table, view or nickname.

“CREATE WORK ACTION SET” on page 894 Defines a work action set and work actions within the work action
set.

“CREATE WORK CLASS SET” on page 903 Defines a work class set.

“CREATE WORKLOAD” on page 908 Defines a workload.

“CREATE WRAPPER” on page 926 Registers a wrapper.

“DROP” on page 969 Deletes objects in the database.

“GRANT (database authorities)” on page 1039 Grants authorities on the entire database.

“GRANT (exemption)” on page 1044 Grants an exemption on an access rule for a specified label-based
access control (LBAC) security policy.

“GRANT (global variable privileges)” on page Grants one or more privileges on a created global variable.
1047

“GRANT (index privileges)” on page 1049 Grants the CONTROL privilege on indexes in the database.

“GRANT (module privileges)” on page 1051 Grants privileges on a module.

“GRANT (package privileges)” on page 1053 Grants privileges on packages in the database.

“GRANT (role)” on page 1056 Grants roles to users, groups, or to other roles.

“GRANT (routine privileges)” on page 1059 Grants privileges on a routine (function, method, or procedure).

“GRANT (schema privileges)” on page 1063 Grants privileges on a schema.

4 SQL Reference Volume 2

Table 1. SQL schema statements (continued)
SQL Statement

SQL statements

Purpose

“GRANT (security label)” on page 1066

Grants a label-based access control (LBAC) security label for read
access, write access, or for both read and write access.

“GRANT (sequence privileges)” on page 1069

Grants privileges on a sequence.

“GRANT (server privileges)” on page 1072

Grants privileges to query a specific data source.

“GRANT (SETSESSIONUSER privilege)” on
page 1074

Grants the privilege to use the SET SESSION AUTHORIZATION
statement.

“GRANT (table space privileges)” on page
1076

Grants privileges on a table space.

“GRANT (table, view, or nickname
privileges)” on page 1078

Grants privileges on tables, views and nicknames.

“GRANT (workload privileges)” on page 1084

Grants the USAGE privilege on a workload.

“GRANT (XSR object privileges)” on page
1086

Grants the USAGE privilege on an XSR object.

“REFRESH TABLE” on page 1136

Refreshes the data in a materialized query table.

“RENAME” on page 1143

Renames an existing table.

“RENAME STOGROUP” on page 1145

Renames an existing storage group.

“RENAME TABLESPACE” on page 1146

Renames an existing table space.

“REVOKE (database authorities)” on page
1154

Revokes authorities from the entire database.

“REVOKE (exemption)” on page 1158

Revokes the exemption on an access rule for a specified label-based
access control (LBAC) security policy.

“REVOKE (global variable privileges)” on
page 1160

Revokes one or more privileges on a created global variable.

“REVOKE (index privileges)” on page 1162

Revokes the CONTROL privilege on given indexes.

“REVOKE (module privileges)” on page 1164

Revokes privileges on a module.

“REVOKE (package privileges)” on page 1166

Revokes privileges from given packages in the database.

“REVOKE (role)” on page 1169

Revokes roles from users, groups, or other roles.

“REVOKE (routine privileges)” on page 1171

Revokes privileges on a routine (function, method, or procedure).

“REVOKE (schema privileges)” on page 1175

Revokes privileges on a schema.

“REVOKE (security label)” on page 1177

Revokes a label-based access control (LBAC) security label for read
access, write access, or for both read and write access.

“REVOKE (sequence privileges)” on page
1179

Revokes privileges on a sequence.

“REVOKE (server privileges)” on page 1181

Revokes privileges to query a specific data source.

“REVOKE (SETSESSIONUSER privilege)” on
page 1183

Revokes the privilege to use the SET SESSION AUTHORIZATION
statement.

“REVOKE (table space privileges)” on page
1185

Revokes the USE privilege on a given table space.

“REVOKE (table, view, or nickname
privileges)” on page 1187

Revokes privileges from given tables, views or nicknames.

“REVOKE (workload privileges)” on page
1192

Revokes the USAGE privilege on a workload.

“REVOKE (XSR object privileges)” on page
1194

Revokes the USAGE privilege on an XSR object.

Statements D

SQL statements

Table 1. SQL schema statements (continued)

SQL Statement

Purpose

“SET INTEGRITY” on page 1257

Sets the set integrity pending state and checks data for constraint
violations.

“TRANSFER OWNERSHIP” on page 1306

Table 2. SQL data change statements

SQL Statement

Transfers ownership of a database object.

Purpose

“DELETE” on page 947

Deletes one or more rows from a table.

“INSERT” on page 1091

Inserts one or more rows into a table.

“MERGE” on page 1110

Updates a target (a table or view) using data from a source (result of
a table reference).

“TRUNCATE” on page 1318

Deletes all rows from a table.

“UPDATE"” on page 1321

Table 3. SQL data statements

SQL Statement

Updates the values of one or more columns in one or more rows of a
table.

Purpose

“ALLOCATE CURSOR” on page 24

Allocates a cursor for the result set identified by the result set locator
variable.

“ASSOCIATE LOCATORS” on page 268

Gets the result set locator value for each result set returned by a
procedure.

“CLOSE” on page 287

Closes a cursor.

“DECLARE CURSOR” on page 928

Defines an SQL cursor.

“FETCH” on page 1019

Assigns values of a row to host variables.

“FLUSH BUFFERPOOLS” on page 1023

Writes out the dirty pages in the buffer pools to disk.

“FLUSH EVENT MONITOR” on page 1024

Writes out the active internal buffer of an event monitor.

“FLUSH FEDERATED CACHE” on page 1025

The FLUSH FEDERATED CACHE statement flushes the federated
cache, allowing fresh metadata to be obtained the next time an SQL
statement is issued against the remote table or view using a
federated three part name.

“FLUSH OPTIMIZATION PROFILE CACHE”

on page 1027

Removes the cached optimization profiles.

“FLUSH PACKAGE CACHE” on page 1029

Removes all cached dynamic SQL statements currently in the
package cache.

“FREE LOCATOR” on page 1033

Removes the association between a locator variable and its value.

“LOCK TABLE” on page 1106

Either prevents concurrent processes from changing a table or
prevents concurrent processes from using a table.

“OPEN” on page 1122

Prepares a cursor that will be used to retrieve values when the
FETCH statement is issued.

“SELECT INTO” on page 1202

Specifies a result table of no more than one row and assigns the
values to host variables.

“SET variable” on page 1291

Assigns values to variables.

“VALUES INTO” on page 1338

6

SQL Reference Volume 2

Specifies a result table of no more than one row and assigns the
values to host variables.

Table 4. SQL transaction statements
SQL Statement

SQL statements

Purpose

“COMMIT” on page 300

Terminates a unit of work and commits the database changes made
by that unit of work.

“RELEASE SAVEPOINT” on page 1142

Releases a savepoint within a transaction.

“ROLLBACK” on page 1195

Terminates a unit of work and backs out the database changes made
by that unit of work.

“SAVEPOINT” on page 1198

Table 5. SQL connection statements
SQL Statement

Sets a savepoint within a transaction.

Purpose

“CONNECT (type 1)” on page 329

Connects to an application server according to the rules for remote
unit of work.

“CONNECT (type 2)” on page 336

Connects to an application server according to the rules for
application-directed distributed unit of work.

“DISCONNECT” on page 966

Terminates one or more connections when there is no active unit of
work.

“RELEASE (connection)” on page 1140

Places one or more connections in the release-pending state.

“SET CONNECTION” on page 1207

Table 6. SQL dynamic statements
SQL Statement

Changes the state of a connection from dormant to current, making
the specified location the current server.

Purpose

“DESCRIBE” on page 957

Obtains information about an object.

“DESCRIBE INPUT” on page 958

Obtains information about the input parameter markers of a
prepared statement.

“DESCRIBE OUTPUT” on page 962

Obtains information about a prepared statement or information about
the select list columns in a prepared SELECT statement.

“EXECUTE” on page 1003

Executes a prepared SQL statement.

“EXECUTE IMMEDIATE” on page 1011

Prepares and executes an SQL statement.

“PREPARE” on page 1130

Table 7. SQL session statements
SQL Statement

Prepares an SQL statement (with optional parameters) for execution.

Purpose

“DECLARE GLOBAL TEMPORARY TABLE”
on page 934

Defines a declared temporary table.

“EXPLAIN” on page 1014

Captures information about the chosen access plan.

“SET COMPILATION ENVIRONMENT” on
page 1206

Changes the current compilation environment in the connection to
match the values contained in the compilation environment provided
by a deadlock event monitor.

“SET CURRENT DECFLOAT ROUNDING
MODE” on page 1209

Verifies that the specified rounding mode is the value that is
currently set for the CURRENT DECFLOAT ROUNDING MODE
special register.

“SET CURRENT DEFAULT TRANSFORM
GROUP” on page 1211

Changes the value of the CURRENT DEFAULT TRANSFORM
GROUP special register.

“SET CURRENT DEGREE” on page 1212

Changes the value of the CURRENT DEGREE special register.

Statements 7

SQL statements

Table 7. SQL session statements (continued)

SQL Statement

Purpose

“SET CURRENT EXPLAIN MODE” on page

1214

Changes the value of the CURRENT EXPLAIN MODE special
register.

“SET CURRENT EXPLAIN SNAPSHOT” on

page 1217

Changes the value of the CURRENT EXPLAIN SNAPSHOT special
register.

“SET CURRENT FEDERATED
ASYNCHRONY” on page 1219

Changes the value of the CURRENT FEDERATED ASYNCHRONY
special register.

“SET CURRENT IMPLICIT XMLPARSE

OPTION” on page 1221

Changes the value of the CURRENT IMPLICIT XMLPARSE OPTION
special register.

“SET CURRENT ISOLATION” on page 1222

Changes the value of the CURRENT ISOLATION special register.

“SET CURRENT LOCALE LC_MESSAGES”

on page 1223

Changes the value of the CURRENT LOCALE LC_MESSAGES
special register.

“SET CURRENT LOCALE LC_TIME” on page

1225

Changes the value of the CURRENT LOCALE LC_TIME special
register.

“SET CURRENT LOCK TIMEOUT” on page

1227

Changes the value of the CURRENT LOCK TIMEOUT special
register.

“SET CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION” on page 1229

Changes the value of the CURRENT MAINTAINED TABLE TYPES
FOR OPTIMIZATION special register.

“SET CURRENT MDC ROLLOUT MODE” on

page 1231

Assigns a value to the CURRENT MDC ROLLOUT MODE special
register.

“SET CURRENT OPTIMIZATION PROFILE”

on page 1233

Assigns a value to the CURRENT OPTIMIZATION PROFILE special
register.

“SET CURRENT PACKAGE PATH” on page

1236

Assigns a value to the CURRENT PACKAGE PATH special register.

“SET CURRENT PACKAGESET” on page

1240

Sets the schema name for package selection.

“SET CURRENT QUERY OPTIMIZATION”

on page 1242

Changes the value of the CURRENT QUERY OPTIMIZATION special
register.

“SET CURRENT REFRESH AGE” on page

1245

Changes the value of the CURRENT REFRESH AGE special register.

“SET CURRENT SQL_CCFLAGS” on page

1247

Changes the value of the CURRENT SQL_CCFLAGS special register.

“SET CURRENT TEMPORAL
BUSINESS_TIME” on page 1249

Changes the value of the CURRENT TEMPORAL BUSINESS_TIME
special register.

“SET CURRENT TEMPORAL
SYSTEM_TIME” on page 1251

Changes the value of the CURRENT TEMPORAL SYSTEM_TIME
special register.

“SET ENCRYPTION PASSWORD” on page

1253

Sets the password for encryption.

“SET EVENT MONITOR STATE” on page

1255

Activates or deactivates an event monitor.

“SET PASSTHRU” on page 1276

Opens a session for submitting data source native SQL directly to the
data source.

“SET PATH” on page 1278

Changes the value of the CURRENT PATH special register.

“SET ROLE” on page 1280

Verifies that the authorization ID of the session is a member of a
specific role.

“SET SCHEMA” on page 1281

Changes the value of the CURRENT SCHEMA special register.

“SET SERVER OPTION” on page 1283

8

SQL Reference Volume 2

Sets server option settings.

Table 7. SQL session statements (continued)

SQL Statement

SQL statements

Purpose

“SET SESSION AUTHORIZATION” on page
1285

Changes the value of the SESSION USER special register.

“SET USAGE LIST STATE” on page 1288

Manages the state of a usage list and the associated data and
memory.

Table 8. SQL embedded host language statements

SQL Statement

Purpose

“BEGIN DECLARE SECTION” on page 274

Marks the beginning of a host variable declaration section.

“END DECLARE SECTION” on page 1002

Marks the end of a host variable declaration section.

“GET DIAGNOSTICS” on page 1034

Used to obtain information about the previously executed SQL
statement.

“INCLUDE” on page 1089

Inserts code or declarations into a source program.

“RESIGNAL” on page 1149

Used to resignal an error or warning condition.

“SIGNAL” on page 1303

Used to signal an error or warning condition.

“WHENEVER” on page 1341

Table 9. SQL control statements
SQL Statement

Defines actions to be taken on the basis of SQL return codes.

Purpose

“CALL” on page 276

Calls a procedure.

“CASE” on page 284

Selects an execution path based on multiple conditions.

“Compound SQL” on page 302

Encloses SQL statements with BEGIN and END keywords.

“Compound SQL (inlined)” on page 303

Combines one or more other SQL statements into an dynamic block.

“Compound SQL (embedded)” on page 308

Combines one or more other SQL statements into an executable
block.

“Compound SQL (compiled)” on page 312

Groups other statements together in an SQL procedure.

“FOR” on page 1030

Executes a statement or group of statements for each row of a table.

“GOTO” on page 1037

Used to branch to a user-defined label within an SQL procedure.

“IF” on page 1087

Selects an execution path based on the evaluation of a condition.

“ITERATE” on page 1102

Causes the flow of control to return to the beginning of a labelled
loop.

“LEAVE” on page 1104

Transfers program control out of a loop or a compound statement.

“LOOP” on page 1108

Repeats the execution of a statement or a group of statements.

“PIPE” on page 1128

Returns a row from a compiled table function.

“REPEAT” on page 1147

Executes a statement or group of statements until a search condition
is true.

“RESIGNAL” on page 1149

Used to resignal an error or warning condition.

“RETURN” on page 1152

Used to return from a routine.

“SIGNAL” on page 1303

Used to signal an error or warning condition.

“WHILE” on page 1344

Repeats the execution of a statement or group of statements while a
specified condition is true.

Statements 9

How SQL statements are invoked

How SQL statements are invoked

10

SQL statements are classified as executable or non-executable.

An executable statement can be invoked in four ways. It can be:
* Issued interactively

* Prepared and executed dynamically

* Embedded in an application program

* Embedded in an SQL procedure, trigger, compound SQL (compiled), or
compound SQL (inlined) with some restrictions:

— Refer to “SQL-procedure-statement” in “Compound SQL (compiled)” on page
312 for the set of executable statements supported in SQL procedures and
compound SQL (compiled) statements.

— Refer to “SQL-statement” in “Compound SQL (inlined)” on page 303
statement for the set of executable statements supported in compound SQL
(inlined) statements.

— Refer to “SQL-procedure-statement” in “CREATE TRIGGER” on page 788 for
the set of executable statements supported in a trigger.

Depending on the statement, some or all of these methods can be used. Statements
embedded in REXX are prepared and executed dynamically.

A non-executable statement can only be embedded in an application program.

Another SQL statement construct is the select-statement. A select-statement can be
invoked in three ways. It can be:

* Issued interactively

* Prepared dynamically, referenced in DECLARE CURSOR, and executed
implicitly by OPEN, FETCH and CLOSE (dynamic invocation)

* Included in DECLARE CURSOR, and executed implicitly by OPEN, FETCH and
CLOSE (static invocation)

Embedding a statement in an application program

SQL statements can be included in a source program that will be submitted to a
precompiler. Such statements are said to be embedded in the program.

An embedded statement can be placed anywhere in the program where a host
language statement is allowed. Each embedded statement must be preceded by the
keywords EXEC SQL.

An executable statement embedded in an application program is executed every
time a statement of the host language would be executed if it were specified in the
same place. Thus, a statement within a loop is executed every time the loop is
executed, and a statement within a conditional construct is executed only when the
condition is satisfied.

An embedded statement can contain references to host variables. A host variable
referenced in this way can be used in two ways. It can be used:

* As input (the current value of the host variable is used in the execution of the
statement)

* As output (the variable is assigned a new value as a result of executing the
statement)

SQL Reference Volume 2

Embedding a statement in an application program

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input.

All executable statements should be followed by a test of the SQL return code.
Alternatively, the WHENEVER statement (which is itself non-executable) can be
used to change the flow of control immediately after the execution of an embedded
statement.

All objects referenced in data manipulation language (DML) statements must exist
when the statements are bound to a database.

An embedded non-executable statement is processed only by the precompiler. The
precompiler reports any errors encountered in the statement. The statement is never
processed during program execution; therefore, such statements should not be
followed by a test of the SQL return code.

Statements can be included in the SQL-procedure-body portion of the CREATE
PROCEDURE statement. Such statements are said to be embedded in the SQL
procedure. Whenever an SQL statement description refers to a host-variable, an
SQL-variable can be used if the statement is embedded in an SQL procedure.

Dynamic preparation and execution

An application program can dynamically build an SQL statement in the form of a
character string placed in a host variable.

In general, the statement is built from some data available to the program (for
example, input from a workstation). The statement (not a select-statement)
constructed can be prepared for execution by means of the (embedded) PREPARE
statement, and executed by means of the (embedded) EXECUTE statement.
Alternatively, an (embedded) EXECUTE IMMEDIATE statement can be used to
prepare and execute the statement in one step.

A statement that is going to be dynamically prepared must not contain references
to host variables. It can instead contain parameter markers. (For rules concerning
parameter markers, see “PREPARE”.) When the prepared statement is executed,
the parameter markers are effectively replaced by current values of the host
variables specified in the EXECUTE statement. Once prepared, a statement can be
executed several times with different values for the host variables. Parameter
markers are not allowed in the EXECUTE IMMEDIATE statement.

Successful or unsuccessful execution of the statement is indicated by the setting of
an SQL return code in the SQLCA after the EXECUTE (or EXECUTE IMMEDIATE)
statement completes. The SQL return code should be checked, as previously
described. For more information, see “Detecting and processing error and warning
conditions in host language applications” on page 12.

Static invocation of a select-statement

A select-statement can be included as a part of the (non-executable) DECLARE
CURSOR statement.

Such a statement is executed every time the cursor is opened by means of the

(embedded) OPEN statement. After the cursor is open, the result table can be
retrieved, one row at a time, by successive executions of the FETCH statement.

Statements 11

Static invocation of a select-statement

Used in this way, the select-statement can contain references to host variables.
These references are effectively replaced by the values that the variables have when
the OPEN statement executes.

Dynamic invocation of a select-statement

An application program can dynamically build a select-statement in the form of a
character string placed in a host variable.

In general, the statement is built from some data available to the program (for
example, a query obtained from a workstation). The statement so constructed can
be prepared for execution by means of the (embedded) PREPARE statement, and
referenced by a (non-executable) DECLARE CURSOR statement. The statement is
then executed every time the cursor is opened by means of the (embedded) OPEN
statement. After the cursor is open, the result table can be retrieved, one row at a
time, by successive executions of the FETCH statement.

Used in this way, the select-statement must not contain references to host variables.
It can contain parameter markers instead. The parameter markers are effectively
replaced by the values of the host variables specified in the OPEN statement.

Interactive invocation

A capability for entering SQL statements from a workstation is part of the
architecture of the database manager. A statement entered in this way is said to be
issued interactively.

Such a statement must be an executable statement that does not contain parameter
markers or references to host variables, because these make sense only in the
context of an application program.

SQL use with other host systems

SQL statement syntax exhibits minor variations among different types of host
systems (DB2 for z/OS, DB2 for i, DB2 for Linux, UNIX, and Windows).

Regardless of whether the SQL statements in an application are static or dynamic,
it is important - if the application is meant to access different database host
systems - to ensure that the SQL statements and precompile/bind options are
supported on the database systems that the application will access.

Further information about SQL statements used in other host systems can be found
in the SQL Reference manuals for DB2 for z/OS and DB2 for i.

Detecting and processing error and warning conditions in host
language applications

12

An application program containing executable SQL statements can use either
SQLCODE or SQLSTATE values to handle return codes from SQL statements.

There are two ways in which an application can get access to these values.

* Include a structure named SQLCA. The SQLCA includes an integer variable
named SQLCODE and a character string variable named SQLSTATE. In REXX,
an SQLCA is provided automatically. In other languages, an SQLCA can be
obtained by using the INCLUDE SQLCA statement.

SQL Reference Volume 2

Detecting and processing error and warning conditions in host language applications

» If LANGLEVEL SQLO92E is specified as a precompile option, a variable named
SQLCODE or SQLSTATE can be declared in the SQL declare section of the
program. If neither of these variables is declared in the SQL declare section, it is
assumed that a variable named SQLCODE is declared elsewhere in the program.
With LANGLEVEL SQLI2E, the program should not have an INCLUDE SQLCA
statement.

An SQLCODE is set by the database manager after each SQL statement executes.
All database managers conform to the ISO/ANSI SQL standard, as follows:

* If SQLCODE = 0 and SQLWARNO is blank, execution was successful.

* If SQLCODE = 100, "no data" was found. For example, a FETCH statement
returned no data, because the cursor was positioned after the last row of the
result table.

* If SQLCODE > 0 and not = 100, execution was successful with a warning.

* If SQLCODE = 0 and SQLWARNO = 'W', execution was successful, but one or
more warning indicators were set.

e If SQLCODE < 0, execution was not successful.
The meaning of SQLCODE values other than 0 and 100 is product-specific.

An SQLSTATE is set by the database manager after each SQL statement executes.
Application programs can check the execution of SQL statements by testing
SQLSTATE instead of SQLCODE. SQLSTATE provides common codes for common
error conditions. Application programs can test for specific errors or classes of
errors. The coding scheme is the same for all IBM® database managers, and is
based on the ISO/ANSI SQL92 standard.

SQL comments

Static SQL statements can include host language or SQL comments. Dynamic SQL
statements can include SQL comments.

There are two types of SQL comments:

simple comments
Simple comments are introduced by two consecutive hyphens (--) and end
with the end of line.

bracketed comments
Bracketed comments are introduced by /* and end with */.

The following rules apply to the use of simple comments:

* The two hyphens must be on the same line and must not be separated by a
space.

¢ Simple comments can be started wherever a space is valid (except within a
delimiter token or between 'EXEC' and 'SQL").

¢ Simple comments cannot be continued to the next line.
* In COBOL, the hyphens must be preceded by a space.

The following rules apply to the use of bracketed comments:
* The /* must be on the same line and must not be separated by a space.
e The */ must be on the same line and must not be separated by a space.

* Bracketed comments can be started wherever a space is valid (except within a
delimiter token or between 'EXEC' and 'SQL").

Statements 13

SQL comments

* Bracketed comments can be continued to subsequent lines.

Examples
* Example 1: This example shows how to include simple comments in a statement:
CREATE VIEW PRJ_MAXPER -- PROJECTS WITH MOST SUPPORT PERSONNEL

AS SELECT PROJNO, PROJNAME -- NUMBER AND NAME OF PROJECT
FROM PROJECT
WHERE DEPTNO = 'E21' -- SYSTEMS SUPPORT DEPT CODE
AND PRSTAFF > 1

* Example 2: This example shows how to include bracketed comments in a
statement:

CREATE VIEW PRJ MAXPER /* PROJECTS WITH MOST SUPPORT
PERSONNEL */
AS SELECT PROJNO, PROJNAME /* NUMBER AND NAME OF PROJECT */
FROM PROJECT
WHERE DEPTNO = 'E21' /* SYSTEMS SUPPORT DEPT CODE */
AND PRSTAFF > 1

Conditional compilation in SQL

Conditional compilation allows SQL to include compiler directives which are used
to determine the actual SQL that gets compiled.

There are two types of compiler directives that can be used for conditional
compilation:

Selection directive
A compiler control statement used to determine the selection of a code
fragment. The _IF directive can reference inquiry directives or global
variables that are defined as a constant.

Inquiry directive
A reference to a compiler named constant that is assigned by the system or
specified as a conditional compilation named constant in CURRENT
SQL_CCFLAGS. An inquiry directive can be used directly or in a selection
directive.

These directives can be used in the following contexts:

* SQL procedure definitions

* Compiled SQL function definitions

* Compiled trigger definitions

* Oracle PL/SQL package definitions

A directive can only appear after the object type (FUNCTION, PACKAGE,

PACKAGE BODY, PROCEDURE, or TRIGGER) has been identified in the data
definition language statement.

Selection directive
The selection directive is very similar to the IF statement except there are prefixes

on the keywords to indicate use of conditional compilation and the terminating
keyword is _END.

»»— IF—search-condition—_ THEN—code-fragment >

14 SQL Reference Volume 2

Conditional compilation in SQL

|—_E LSEIF—search-condition—_ THEN—code-fragmen t—l

ND re

- E
l—_E LSE—code- fragmen t—l

search-condition
Specifies the condition that is evaluated to determine what code-fragment, if any,
is included. If the condition is unknown or false, evaluation continues with the
next search condition, until a condition is true, the _ELSE clause is reached, or
the end of the selection directive is reached. The search condition can include
only the following elements (SQLSTATE 428HV):

* Constants of type BOOLEAN, INTEGER, or VARCHAR
* NULL constants
* Inquiry directives

* Global constants, where the defined constant value is a simple literal of type
BOOLEAN, INTEGER, or VARCHAR

* Basic predicates
¢ NULL predicates
* Predicates that are a Boolean constant or a Boolean inquiry directive
* Logical operators (AND, OR, and NOT)
code-fragment
A portion of SQL code that can be included in the context of the SQL

statement where the selection directive appears. There must not be a selection
directive in code-fragment (SQLSTATE 428HYV).

Inquiry directive

An inquiry directive is used to inquire about the compilation environment. An
inquiry directive is specified in an SQL statement as an ordinary identifier prefixed
with two underscore characters. The actual identifier can represent one of the
following values:

* A compilation environment value defined by the system

* A compilation value defined by a user at the database level or at the individual
session level

The only compilation environment variable defined by the system is _ SQL_LINE,
which provides the line number of SQL that is currently being compiled.

A user-defined compilation value can be defined at the database level using the
sql_ccflags database configuration parameter or at a session level by assigning it
to the CURRENT SQL_CCFLAGS special register.

If an inquiry directive is referenced but is not defined, processing continues
assuming that the value for the inquiry directive is the null value.

Notes

* References to global variables defined as constants: A reference to a global
variable (which can also be a reference to a module variable published in a

Statements 15

Conditional compilation in SQL

16

module) in a selection directive is used to provide a value based on a constant at
the time of compilation only. The referenced global variable must meet the
following requirements:

— Exist at the current server (SQLSTATE 42704)

— Have a data type of BOOLEAN, INTEGER, or VARCHAR (SQLSTATE
428HV)

— Be defined using the CONSTANT clause with a single constant value
(SQLSTATE 428HV)

Such a global variable is known as a global constant. Subsequent changes to the
global constant do not have any impact on statements that are already compiled.

* Syntax alternatives: If the data server environment is enabled for PL/SQL
statement execution:

— ELSIF can be specified instead of ELSEIF

— A dollar character ($) can be used instead of an underscore character (_) as
the prefix for the keywords for conditional compilation

— Two dollar characters ($$) can be used instead of two underscore characters
(_) as the prefix for an inquiry directive

The dollar character prefix is intended only to support existing SQL statements
that use inquiry directives and is not recommended for use when writing new
SQL statements.

Example

Specify a database-wide setting for a compilation value called DBV97 that has a
value of TRUE.

UPDATE DATABASE CONFIGURATION USING SQL_CCFLAGS DB2V97:TRUE
The value is available as the default for any subsequent connection to the database.

If a particular session needed a maximum number of years compilation value for
use in defining some routines in the current session, the default SQL_CCFLAGS
can be extended using the SET CURRENT SQL_CCFLAGS statement.
BEGIN
DECLARE CCFLAGS_LIST VARCHAR(1024);
SET CCFLAGS_LIST = CURRENT SQL_CCFLAGS CONCAT ',max_years:50';

SET CURRENT SQL_CCFLAGS = CCFLAGS LIST;
END

The use of CURRENT SQL_CCFLAGS on the right side of the assignment to the
CCFLAGS_LIST variable keeps the existing SOL_CCFLAGS settings, while the
string constant provides the additional compilation values.

Here is an example of a CREATE PROCEDURE statement that uses the contents of
the CURRENT SQL_CCFLAGS.

CREATE PROCEDURE CHECK YEARS (IN YEARS_WORKED INTEGER)
BEGIN
_IF _ DB2V97 _THEN
IF YEARS_WORKED > _ MAX_YEARS THEN
END IF;
_END

SQL Reference Volume 2

Conditional compilation in SQL

The inquiry directive __DB2V97 is used as a Boolean value to determine if the
code can be included. The inquiry directive _ MAX_YEARS is replaced during
compilation by the constant value 50.

About SQL control statements

SQL control statements, also called SQL Procedural Language (SQL PL), are SQL
statements that allow SQL to be used in a manner similar to writing a program in
a structured programming language.

SQL control statements provide the capability to control the logic flow, declare, and
set variables, and handle warnings and exceptions. Some SQL control statements
include other nested SQL statements. SQL control statements can be used in the
body of a routine, trigger or a compound statement.

References to SQL parameters, SQL variables, and global
variables

SQL parameters, SQL variables, and global variables can be referenced anywhere in
an SQL procedure statement where an expression or variable can be specified.

Host variables cannot be specified in SQL routines, SQL triggers or dynamic
compound statements. SQL parameters can be referenced anywhere in the routine
body, and can be qualified with the routine name. SQL variables can be referenced
anywhere in the compound statement in which they are declared, and can be
qualified with the label name specified at the beginning of the compound
statement. If an SQL parameter or SQL variable has a row data type, fields can be
referenced anywhere an SQL parameter or SQL variable can be referenced. Global
variables can be referenced within any expression as long as the expression is not
required to be deterministic. The following scenarios require deterministic
expressions, which preclude the use of global variables:

* Check constraints
* Definitions of generated columns
e Refresh immediate MQTs

All SQL parameters, SQL variables, row variable fields, and global variables are
considered nullable. The name of an SQL parameter, SQL variable, row variable
field, or global variable in an SQL routine can be the same as the name of a
column in a table or view referenced in the routine. The name of an SQL variable
or row variable field can also be the same as the name of another SQL variable or
row variable field declared in the same routine. This can occur when the two SQL
variables are declared in different compound statements. The compound statement
that contains the declaration of an SQL variable determines the scope of that
variable. For more information, see “Compound SQL (Procedure)”.

The name of an SQL variable or SQL parameter in an SQL routine can be the same
as the name of an identifier used in certain SQL statements. If the name is not
qualified, the following rules describe whether the name refers to the identifier or
to the SQL parameter or SQL variable:

e In the SET PATH and SET SCHEMA statements, the name is checked as an SQL
parameter or SQL variable. If not found as an SQL variable or SQL parameter, it
is used as an identifier.

¢ In the CONNECT, DISCONNECT, RELEASE, and SET CONNECTION
statements, the name is used as an identifier.

Statements 17

References to SQL parameters, SQL variables, and global variables

Names that are the same should be explicitly qualified. Qualifying a name clearly
indicates whether the name refers to a column, SQL variable, SQL parameter, row
variable field, or global variable. If the name is not qualified, or qualified but still
ambiguous, the following rules describe whether the name refers to a column, an
SQL variable, an SQL parameter, or a global variable:

e If the tables and views specified in an SQL routine body exist at the time the
routine is created, the name is first checked as a column name. If not found as a
column, it is then checked as an SQL variable in the compound statement, then
checked as an SQL parameter, and then, finally, checked as a global variable.

e If the referenced tables or views do not exist at the time the routine is created,
the name is first checked as an SQL variable in the compound statement, then as
an SQL parameter, and then as a global variable. The variable can be declared
within the compound statement that contains the reference, or within a
compound statement in which that compound statement is nested. If two SQL
variables are within the same scope and have the same name, which can happen
if they are declared in different compound statements, the SQL variable that is
declared in the innermost compound statement is used. If not found, it is
assumed to be a column.

References to SQL labels

Labels can be specified on most SQL procedure statements.

The compound statement that contains the statement that defines a label
determines the scope of that label name. A label name must be unique within the
compound statement in which it is defined, including any labels defined in
compound statements that are nested within that compound statement (SQLSTATE
42734). The label must not be the same as a label specified on the compound
statement itself (SQLSTATE 42734), or the same as the name of the routine that
contains the SQL procedure statement (SQLSTATE 42734).

A label name can only be referenced within the compound statement in which it is
defined, including any compound statements that are nested within that
compound statement. A label can be used to qualify the name of an SQL variable,
or it can be specified as the target of a GOTO, LEAVE, or ITERATE statement.

References to SQL condition names

The name of an SQL condition can be the same as the name of another SQL
condition declared in the same routine.

This can occur when the two SQL conditions are declared in different compound
statements. The compound statement that contains the declaration of an SQL
condition name determines the scope of that condition name. A condition name
must be unique within the compound statement in which it is declared, excluding
any declarations in compound statements that are nested within that compound
statement (SQLSTATE 42734). A condition name can only be referenced within the
compound statement in which it is declared, including any compound statements
that are nested within that compound statement. When there is a reference to a
condition name, the condition that is declared in the innermost compound
statement is the condition that is used. For more information, see “Compound SQL
(inlined)”.

References to SQL statement names

The name of an SQL statement can be the same as the name of another SQL
statement declared in the same routine.

18 SQL Reference Volume 2

References to SQL statement names

This can occur when the two SQL statements are declared in different compound
statements. The compound statement that contains the declaration of an SQL
statement name determines the scope of that statement name. A statement name
must be unique within the compound statement in which it is declared, excluding
any declarations in compound statements that are nested within that compound
statement (SQLSTATE 42734). A statement name can only be referenced within the
compound statement in which it is declared, including any compound statements
that are nested within that compound statement. When there is a reference to a
statement name, the statement that is declared in the innermost compound
statement is the statement that is used. For more information, see “Compound SQL
(inlined)”.

References to SQL cursor names

Cursor names include the names of declared cursors and the names of cursor
variables.

The name of an SQL cursor can be the same as the name of another SQL cursor
declared in the same routine. This can occur when the two SQL cursors are
declared in different compound statements.

The compound statement that contains the declaration of an SQL cursor
determines the scope of that cursor name. A cursor name must be unique within
the compound statement in which it is declared, excluding any declarations in
compound statements that are nested within that compound statement (SQLSTATE
42734). A cursor name can only be referenced within the compound statement in
which it is declared, including any compound statements that are nested within
that compound statement. When there is a reference to a cursor name, the cursor
that is declared in the innermost compound statement is the cursor that is used.
For more information, see “Compound SQL (inlined)”.

If the cursor constructor assigned to a cursor variable contains a reference to a

local SQL variable, then any OPEN statement that uses the cursor variable must be
within the scope where the local SQL variable was declared.

Statements 19

Function, method, and procedure designators

Function, method, and procedure designators

20

This topic describes syntax fragments that are used to uniquely identify a function,
method, or procedure that is not defined in a module.

Function designator

A function designator uniquely identifies a single function. Function designators
typically appear in DDL statements for functions (such as DROP or ALTER). A
function designator must not identify a module function (SQLSTATE 42883).

function-designator:

FUNCTION—function-name B] I
()

Ldata—type

SPECIFIC FUNCTION—specific-name

FUNCTION function-name
Identifies a particular function, and is valid only if there is exactly one function
instance with the name function-name in the schema. The identified function
can have any number of parameters defined for it. In dynamic SQL statements,
the CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified object
names. If no function by this name exists in the named or implied schema, an
error (SQLSTATE 42704) is raised. If there is more than one instance of the
function in the named or implied schema, an error (SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function. The
function resolution algorithm is not used.

function-name
Specifies the name of the function. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names.

(data-type,...)
Values must match the data types that were specified (in the corresponding
position) on the CREATE FUNCTION statement. The number of data
types, and the logical concatenation of the data types, is used to identify
the specific function instance.

If a data type is unqualified, the type name is resolved by searching the
schemas on the SQL path. This also applies to data type names specified
for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking for a
data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

SQL Reference Volume 2

Function, method, and procedure designators

If length, precision, or scale is coded, the value must exactly match that
specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for #,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no function with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name

Identifies a particular user-defined function, using the name that is specified or
defaulted to at function creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements, the QUALIFIER precompile/bind option
implicitly specifies the qualifier for unqualified object names. The specific-name
must identify a specific function instance in the named or implied schema;
otherwise, an error (SQLSTATE 42704) is raised.

Method designator

A method designator uniquely identifies a single method. Method designators
typically appear in DDL statements for methods (such as DROP or ALTER).

method-designator:

|_

—METHOD—me thod-name |_ _| FOR—type-name |
()

Ldata- type

—SPECIFIC METHOD—specific-name

METHOD method-name

Identifies a particular method, and is valid only if there is exactly one method
instance with the name method-name for the type type-name. The identified
method can have any number of parameters defined for it. If no method by
this name exists for the type, an error (SQLSTATE 42704) is raised. If there is
more than one instance of the method for the type, an error (SQLSTATE 42725)
is raised.

METHOD method-name (data-type,...)

Provides the method signature, which uniquely identifies the method. The
method resolution algorithm is not used.

method-name
Specifies the name of the method for the type type-name.

(data-type,...)
Values must match the data types that were specified (in the corresponding
position) on the CREATE TYPE statement. The number of data types, and
the logical concatenation of the data types, is used to identify the specific
method instance.

If a data type is unqualified, the type name is resolved by searching the
schemas on the SQL path. This also applies to data type names specified
for a REFERENCE type.

Statements 21

Function, method, and procedure designators

22

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking for a
data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that
specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for #,
because 0 < 1 < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the type in the named
or implied schema, an error (SQLSTATE 42883) is raised.

FOR type-name
Names the type with which the specified method is to be associated. The
name must identify a type already described in the catalog (SQLSTATE
42704). In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names.

SPECIFIC METHOD specific-name

Identifies a particular method, using the name that is specified or defaulted to
at method creation time. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name. In static
SQL statements, the QUALIFIER precompile/bind option implicitly specifies
the qualifier for unqualified object names. The specific-name must identify a
specific method instance in the named or implied schema; otherwise, an error
(SQLSTATE 42704) is raised.

Procedure designator

A procedure designator uniquely identifies a single procedure. Procedure
designators typically appear in DDL statements for procedures (such as DROP or
ALTER). A procedure designator must not identify a module procedure
(SQLSTATE 42883).

procedure-designator:

PROCEDURE—procedure-name |

L
Ldata-type

SPECIFIC PROCEDURE—specific-name

PROCEDURE procedure-name

SQL Reference Volume 2

Identifies a particular procedure, and is valid only if there is exactly one
procedure instance with the name procedure-name in the schema. The identified
procedure can have any number of parameters defined for it. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier for
an unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified object
names. If no procedure by this name exists in the named or implied schema,

Function, method, and procedure designators

an error (SQLSTATE 42704) is raised. If there is more than one instance of the
procedure in the named or implied schema, an error (SQLSTATE 42725) is
raised.

PROCEDURE procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the procedure. The
procedure resolution algorithm is not used.

procedure-name
Specifies the name of the procedure. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names.

(data-type,...)
Values must match the data types that were specified (in the corresponding
position) on the CREATE PROCEDURE statement. The number of data
types, and the logical concatenation of the data types, is used to identify
the specific procedure instance.

If a data type is unqualified, the type name is resolved by searching the
schemas on the SQL path. This also applies to data type names specified
for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking for a
data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that
specified in the CREATE PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Identifies a particular procedure, using the name that is specified or defaulted
to at procedure creation time. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object name.
In static SQL statements, the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The specific-name must
identify a specific procedure instance in the named or implied schema;
otherwise, an error (SQLSTATE 42704) is raised.

Statements 23

ALLOCATE CURSOR

ALLOCATE CURSOR

The ALLOCATE CURSOR statement allocates a cursor for the result set identified
by the result set locator variable.

For more information about result set locator variables, see the description of the
ASSOCIATE LOCATORS statement.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable
statement and cannot be dynamically prepared.

Authorization
None required.
Syntax

»»>—ALLOCATE—cursor-name—CURSOR FOR RESULT SET—rs-locator-variable———— >«

Description

cursor-name
Names the cursor. The name must not identify a cursor that has already been
declared in the source SQL procedure (SQLSTATE 24502).

CURSOR FOR RESULT SET rs-locator-variable

Names a result set locator variable that has been declared in the source SQL
procedure, according to the rules for declaring result set locator variables. For
more information about declaring SQL variables, see “Compound SQL
(Procedure) statement”.

The result set locator variable must contain a valid result set locator value, as
returned by the ASSOCIATE LOCATORS SQL statement (SQLSTATE 0F001).

Rules
* The following rules apply when using an allocated cursor:

— An allocated cursor cannot be opened with the OPEN statement (SQLSTATE
24502).

— An allocated cursor cannot be used in a positioned UPDATE or DELETE
statement (SQLSTATE 42828).

— An allocated cursor can be closed with the CLOSE statement. Closing an
allocated cursor closes the associated cursor.

— Only one cursor can be allocated to each result set.

* Allocated cursors last until a rollback operation, an implicit close, or an explicit
close.

* A commit operation destroys allocated cursors that are not defined WITH
HOLD.

* Destroying an allocated cursor closes the associated cursor in the SQL procedure.

24 SQL Reference Volume 2

ALLOCATE CURSOR

Example
This SQL procedure example defines and associates cursor C1 with the result set

locator variable LOC1 and the related result set returned by the SQL procedure:
ALLOCATE C1 CURSOR FOR RESULT SET LOCI;

Statements 25

ALTER AUDIT POLICY

ALTER AUDIT POLICY

26

The ALTER AUDIT POLICY statement modifies the definition of an audit policy at
the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax
»»—ALTER AUDIT POLICY—policy-name >
(1) [(@ |
> CATEGORIES—Y ALL: STATUS BOTH »<
—AUDIT FAILURE
—CHECKING NONE:
—CONTEXT——— —————————— SUCCESS
WITHOUT DATA
—EXECUTEH
WITH DATA
—OBJMAIN—————————————
—SECMAINT.
—SYSADMIN
L-VALIDATE

—ERROR TYPE NORMAL.

_[AUDIT—I

Notes:

1 Each of the CATEGORIES and ERROR TYPE clauses can be specified at most
once (SQLSTATE 42614).

2 Each category can be specified at most once (SQLSTATE 42614), and no other
category can be specified if ALL is specified (SQLSTATE 42601).

Description

policy-name
Identifies the audit policy that is to be altered. This is a one-part name. It is an
SQL identifier (either ordinary or delimited). The name must uniquely identify
an existing audit policy at the current server (SQLSTATE 42704).

CATEGORIES
A list of one or more audit categories for which a new status value is specified.
If ALL is not specified, the STATUS of any category that is not explicitly
specified remains unchanged.

ALL
Sets all categories to the same status. The EXECUTE category is WITHOUT
DATA.

SQL Reference Volume 2

ALTER AUDIT POLICY

AUDIT
Generates records when audit settings are changed or when the audit log
is accessed.

CHECKING
Generates records during authorization checking of attempts to access or
manipulate database objects or functions.

CONTEXT
Generates records to show the operation context when a database
operation is performed.

EXECUTE
Generates records to show the execution of SQL statements.

WITHOUT DATA or WITH DATA
Specifies whether or not input data values provided for any host

variables and parameter markers should be logged as part of the
EXECUTE category.

WITHOUT DATA
Input data values provided for any host variables and parameter
markers are not logged as part of the EXECUTE category.

WITH DATA
Input data values provided for any host variables and parameter
markers are logged as part of the EXECUTE category. Not all input
values are logged; specifically, LOB, LONG, XML, and structured
type parameters appear as the null value. Date, time, and
timestamp fields are logged in ISO format. The input data values
are converted to the database code page before being logged. If
code page conversion fails, no errors are returned and the
unconverted data is logged.

OBJMAINT
Generates records when data objects are created or dropped.

SECMAINT
Generates records when object privileges, database privileges, or DBADM
authority is granted or revoked. Records are also generated when the
database manager security configuration parameters sysadm_group,
sysctrl_group, or sysmaint_group are modified.

SYSADMIN
Generates records when operations requiring SYSADM, SYSMAINT, or
SYSCTRL authority are performed.

VALIDATE
Generates records when users are authenticated or when system security
information related to a user is retrieved.

STATUS
Specifies a status for the specified category.

BOTH
Successful and failing events will be audited.

FAILURE
Only failing events will be audited.

SUCCESS
Only successful events will be audited.

Statements 27

ALTER AUDIT POLICY

28

NONE
No events in this category will be audited.

ERROR TYPE

Specifies whether audit errors are to be returned or ignored.

NORMAL
Any errors generated by the audit are ignored and only the SQLCODEs for
errors associated with the operation being performed are returned to the
application.

AUDIT
All errors, including errors occurring within the audit facility itself, are
returned to the application.

Rules
¢ An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:
- AUDIT
— CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)

— DROP (ROLE) or DROP (TRUSTED CONTEXT) if the role or trusted context

is associated with an audit policy

* An AUDIT-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time

across all database partitions. If an uncommitted AUDIT-exclusive SQL
statement is executing, subsequent AUDIT-exclusive SQL statements wait until
the current AUDIT-exclusive SQL statement commits or rolls back.

Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

If the audit policy that is being altered is currently associated with a database
object, the changes do not take effect until the next unit of work for the
application that is affected by the change. For example, if the audit policy is in
use for the database, no current units of work will see the change to the policy
until after a COMMIT or a ROLLBACK statement for that unit of work
completes.

Example

Alter the SECMAINT, CHECKING, and VALIDATE categories of an audit policy
named DBAUDPRF to audit both successes and failures.

SQL Reference Volume 2

ALTER AUDIT POLICY DBAUDPRF
CATEGORIES SECMAINT STATUS BOTH,
CHECKING STATUS BOTH,
VALIDATE STATUS BOTH

ALTER BUFFERPOOL

ALTER BUFFERPOOL

The ALTER BUFFERPOOL statement is used to modify the characteristics or
behavior of a buffer pool.

The ALTER BUFFERPOOL statement can modify a buffer pool in the following
ways:

* Modify the size of the buffer pool on all members or on a single member

* Enable or disable automatic sizing of the buffer pool

* Add this buffer pool definition to a new database partition group

¢ Modify the block area of the buffer pool for block-based 1/0O

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax
»>—ALTER BUFFERPOOL—bufferpool-name >
IMMEDIATE
»>. SIZE—rnumber-of—pages ><
|—DEFERRED—| I—MEMBER—membe.’r—numberJ ,’\UTOMATICJ

I—number-of—pagesJ
ADD DATABASE PARTITION GROUP—db-partition-group-name
NUMBLOCKPAGES—number-of-pages

I—BLOCKSIZE—number-of—pages—I

BLOCKSIZE—number-of-pages:

Description

bufferpool-name
Names the buffer pool. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). It must be a buffer pool described in the catalog.

IMMEDIATE or DEFERRED
Indicates whether or not the buffer pool size will be changed immediately.

IMMEDIATE
The buffer pool size will be changed immediately. If there is not enough

reserved space in the database shared memory to allocate new space
(SQLSTATE 01657), the statement is executed as DEFERRED.

DEFERRED
The buffer pool size will be changed when the database is reactivated (all
applications need to be disconnected from the database). Reserved memory
space is not needed; the DB2 database will allocate the required memory
from the system at activation time.

MEMBER member-number
Specifies the member on which the size of the buffer pool is modified. An
exception entry is created in the SYSCAT.BUFFERPOOLEXCEPTIONS catalog

Statements 29

ALTER BUFFERPOOL

30

view. The member must be in one of the database partition groups for the
buffer pool (SQLSTATE 42729). If this clause is not specified, the size of the
buffer pool is modified on all members except those that have an exception
entry in SYSCAT.BUFFERPOOLEXCEPTIONS.

SIZE

Specifies a new size for the buffer pool, or enables or disables self tuning for
this buffer pool.

number-of-pages
The number of pages for the new buffer pool size. If the buffer pool is
already a self-tuning buffer pool, and the SIZE number-of-pages clause is
specified, the alter operation disables self-tuning for this buffer pool.

AUTOMATIC
Enables self tuning for this buffer pool. The database manager adjusts the
size of the buffer pool in response to workload requirements. If the
number of pages is specified, the current buffer pool size is set to that
value unless the deferred keyword is also specified, in which case the
number of pages will be ignored. Note that the self-tuning memory
manager (STMM) enforces a minimum size for automatic buffer pools, and
that any specified size is a one-time setting - on subsequent database
activations, the buffer pool size is based on the last tuning value. To
determine the current size of buffer pools that are enabled for self tuning,
use the GET SNAPSHOT command and examine the current size of the buffer
pools (the value of the bp_cur_buffsz monitor element). When
AUTOMATIC is specified, the MEMBER clause cannot be specified
(SQLSTATE 42601).

ADD DATABASE PARTITION GROUP db-partition-group-name

Adds this database partition group to the list of database partition groups to
which the buffer pool definition is applicable. For any member in the database
partition group that does not already have the buffer pool defined, the buffer
pool is created on the member using the default size specified for the buffer
pool. Table spaces in db-partition-group-name may specify this buffer pool. The
database partition group must currently exist in the database (SQLSTATE
42704).

NUMBLOCKPAGES number-of-pages

Specifies the number of pages that should exist in the block-based area. The
number of pages must not be greater than 98 percent of the number of pages
for the buffer pool (SQLSTATE 54052). Specifying the value 0 disables block
I/0. The actual value of NUMBLOCKPAGES used will be a multiple of
BLOCKSIZE.

NUMBLOCKPAGES is not supported in a DB2 pureScale® environment
(SQLSTATE 56038).

BLOCKSIZE number-of-pages

Specifies the number of pages in a block. The block size must be a value
between 2 and 256 (SQLSTATE 54053). The default value is 32.

BLOCKSIZE is not supported in a DB2 pureScale environment (SQLSTATE
56038).

Notes

SQL Reference Volume 2

Only the buffer pool size can be changed dynamically (immediately). All other
changes are deferred, and will only come into effect after the database is
reactivated.

ALTER BUFFERPOOL

* If the statement is executed as deferred, although the buffer pool definition is
transactional and the changes to the buffer pool definition will be reflected in
the catalog tables on commit, no changes to the actual buffer pool will take
effect until the next time the database is started. The current attributes of the
buffer pool will exist until then, and there will not be any impact to the buffer
pool in the interim. Tables created in table spaces of new database partition
groups will use the default buffer pool. The statement is IMMEDIATE by default
when that keyword applies.

* There should be enough real memory on the machine for the total of all the
buffer pools, as well as for the rest of the database manager and application
requirements.

* Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.

— DBPARTITIONNUM or NODE can be specified in place of MEMBER except
when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

— NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Statements 31

ALTER DATABASE PARTITION GROUP

ALTER DATABASE PARTITION GROUP

32

The ALTER DATABASE PARTITION GROUP statement is used to add one or more
database partitions to a database partition group, or drop one or more database
partitions from a database partition group.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

Syntax
»»—ALTER DATABASE PARTITION GROUP—db-partition-name >
»Y __ADD DBPARTITIONNUM—_|—| db-partitions-clause } »<
|:DBPARTITIONNUMS ! |—| db-partition-options |J |
DROP—[DBPARTITIONNUM—_|—| db-partitions-clause }
DBPARTITIONNUMS !

db-partitions-clause:

F—(—"—db-partition-numberl

|—TO—db-part it ion-numberZ—|

db-partition-options:

LIKE DBPARTITIONNUM——db-partition-number | I
WITHOUT TABLESPACES

Description

db-partition-name
Names the database partition group. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). It must be a database partition group
described in the catalog. IBMCATGROUP and IBMTEMPGROUP cannot be
specified (SQLSTATE 42832).

ADD DBPARTITIONNUM
Specifies the specific database partition or partitions to add to the database
partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.
Any specified database partition must not already be defined in the database
partition group (SQLSTATE 42728).

DROP DBPARTITIONNUM
Specifies the specific database partition or partitions to drop from the database

SQL Reference Volume 2

ALTER DATABASE PARTITION GROUP

partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.
Any specified database partition must already be defined in the database
partition group (SQLSTATE 42729).

db-partitions-clause
Specifies the database partition or partitions to be added or dropped.

db-partition-numberl
Specify a specific database partition number.

TO0 db-partition-number2
Specify a range of database partition numbers. The value of
db-partition-number2 must be greater than or equal to the value of
db-partition-numberl (SQLSTATE 428A9).

db-partition-options

LIKE DBPARTITIONNUM db-partition-number
Specifies that the containers for the existing table spaces in the database
partition group will be the same as the containers on the specified
db-partition-number. The specified database partition must be a partition
that existed in the database partition group before this statement, and that
is not included in a DROP DBPARTITIONNUM clause of the same
statement.

For table spaces that are defined to use automatic storage (that is, table
spaces that were created with the MANAGED BY AUTOMATIC STORAGE
clause of the CREATE TABLESPACE statement, or for which no
MANAGED BY clause was specified at all), the containers will not
necessarily match those from the specified partition. Instead, containers
will automatically be assigned by the database manager based on the
storage paths that are associated with the database, and this might or
might not result in the same containers being used. The size of each table
space is based on the initial size that was specified when the table space
was created, and might not match the current size of the table space on the
specified partition.

WITHOUT TABLESPACES
Specifies that the containers for existing table spaces in the database
partition group are not created on the newly added database partition or
partitions. The ALTER TABLESPACE statement using the db-partitions-clause
or the MANAGED BY AUTOMATIC STORAGE clause must be used to
define containers for use with the table spaces that are defined on this
database partition group. If this option is not specified, the default
containers are specified on newly added database partitions for each table
space defined on the database partition group.

This option is ignored for table spaces that are defined to use automatic
storage (that is, table spaces that were created with the MANAGED BY
AUTOMATIC STORAGE clause of the CREATE TABLESPACE statement,
or for which no MANAGED BY clause was specified at all). There is no
way to defer container creation for these table spaces. Containers will
automatically be assigned by the database manager based on the storage
paths that are associated with the database. The size of each table space
will be based on the initial size that was specified when the table space
was created.

Rules

* Each database partition specified by number must be defined in the
db2nodes.cfg file (SQLSTATE 42729).

Statements 33

ALTER DATABASE PARTITION GROUP

34

Each db-partition-number listed in the db-partitions-clause must be for a unique
database partition (SQLSTATE 42728).

A valid database partition number is between 0 and 999 inclusive (SQLSTATE
42729).

A database partition cannot appear in both the ADD and DROP clauses
(SQLSTATE 42728).

There must be at least one database partition remaining in the database partition
group. The last database partition cannot be dropped from a database partition
group (SQLSTATE 428CO0).

If neither the LIKE DBPARTITIONNUM clause nor the WITHOUT
TABLESPACES clause is specified when adding a database partition, the default
is to use the lowest database partition number of the existing database partitions
in the database partition group (say it is 2) and proceed as if LIKE
DBPARTITIONNUM 2 had been specified. For an existing database partition to
be used as the default, it must have containers defined for all the table spaces in
the database partition group (column IN_USE of
SYSCAT.DBPARTITIONGROUPDEEF is not 'T").

The ALTER DATABASE PARTITION GROUP statement might fail (SQLSTATE
55071) if an add database partition server request is either pending or in
progress. This statement might also fail (SQLSTATE 55077) if a new database
partition server is added online to the instance and not all applications are
aware of the new database partition server.

Notes

SQL Reference Volume 2

When a database partition is added to a database partition group, a catalog
entry is made for the database partition (see
SYSCAT.DBPARTITIONGROUPDEF). The distribution map is changed
immediately to include the new database partition, along with an indicator
(IN_USE) that the database partition is in the distribution map if either:

— no table spaces are defined in the database partition group or

— no tables are defined in the table spaces defined in the database partition
group and the WITHOUT TABLESPACES clause was not specified.

The distribution map is not changed and the indicator (IN_USE) is set to
indicate that the database partition is not included in the distribution map if
either:

— Tables exist in table spaces in the database partition group or

— Table spaces exist in the database partition group and the WITHOUT
TABLESPACES clause was specified (unless all of the table spaces are defined
to use automatic storage, in which case the WITHOUT TABLESPACES clause
is ignored)

To change the distribution map, the REDISTRIBUTE DATABASE PARTITION

GROUP command must be used. This redistributes any data, changes the

distribution map, and changes the indicator. Table space containers need to be

added before attempting to redistribute data if the WITHOUT TABLESPACES
clause was specified.

When a database partition is dropped from a database partition group, the
catalog entry for the database partition (see SYSCAT.DBPARTITIONGROUPDEF)
is updated. If there are no tables defined in the table spaces defined in the
database partition group, the distribution map is changed immediately to
exclude the dropped database partition and the entry for the database partition
in the database partition group is dropped. If tables exist, the distribution map is
not changed and the indicator (IN_USE) is set to indicate that the database
partition is waiting to be dropped. The REDISTRIBUTE DATABASE PARTITION

ALTER DATABASE PARTITION GROUP

GROUP command must be used to redistribute the data and drop the entry for
the database partition from the database partition group.

* Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.

— NODE can be specified in place of DBPARTITIONNUM
— NODES can be specified in place of DBPARTITIONNUMS

— NODEGROUP can be specified in place of DATABASE PARTITION GROUP
Example

Assume that you have a six-partition database that has the following database
partitions: 0, 1, 2, 5, 7, and 8. Two database partitions (3 and 6) are added to the
system.

e Example 1: Assume that you want to add database partitions 3 and 6 to a
database partition group called MAXGROUP, and have table space containers
like those on database partition 2. The statement is as follows:

ALTER DATABASE PARTITION GROUP MAXGROUP
ADD DBPARTITIONNUMS (3,6)LIKE DBPARTITIONNUM 2

e Example 2: Assume that you want to drop database partition 1 and add database
partition 6 to database partition group MEDGROUP. You will define the table
space containers separately for database partition 6 using ALTER TABLESPACE.
The statement is as follows:

ALTER DATABASE PARTITION GROUP MEDGROUP

ADD DBPARTITIONNUM(6)WITHOUT TABLESPACES
DROP DBPARTITIONNUM(1)

Statements 35

ALTER DATABASE

ALTER DATABASE

The ALTER DATABASE statement adds new storage paths to, or removes existing
storage paths from, the collection of paths that are used for automatic storage table
spaces.

An automatic storage table space is a table space that has been created using
automatic storage; that is, the MANAGED BY AUTOMATIC STORAGE clause has
been specified on the CREATE TABLESPACE statement, or no MANAGED BY
clause has been specified at all. If a database is enabled for automatic storage,
container and space management characteristics of its table spaces can be
completely determined by the database manager. If the database is not currently
enabled for automatic storage then the act of adding storage paths will enable it.

Important: This statement is deprecated and might be removed in a future release.
Use the CREATE STOGROUP or ALTER STOGROUP statements instead.

Invocation

The statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include either
SYSADM or SYSCTRL authority.

Syntax

»—ALTER DATABASE >

I—dmfabase-name—|

B

(1)
@TADD STORAGE ON—Y-'storage-path' <
DROP STORAGE ON—Y ’storage-path’]—|

Notes:

1 Each clause can be specified only once.

Description

database-name
An optional value specifying the name of the database that is to be altered. If
specified, the value must match the name of the database to which the
application is currently connected (not the alias that the client might have
cataloged); otherwise, an error is returned (SQLSTATE 42961).

36 SQL Reference Volume 2

ALTER DATABASE

ADD STORAGE ON
Specifies that one or more new storage paths are to be added to the collection
of storage paths that are used for automatic storage table spaces.

'storage-path’
A string constant that specifies either an absolute path or the letter name of
a drive (Windows operating systems only) on which containers for
automatic storage table spaces are to be created.

DROP STORAGE ON
Specifies that one or more storage paths are to be removed from the collection
of storage paths that are used for automatic storage table spaces. If table spaces
are actively using a storage path being dropped, then the state of the storage
path is changed from “In Use” to “Drop Pending” and future use of the
storage path will be prevented.

'storage-path’
A string constant that specifies either an absolute path or the letter name of
a drive (Windows operating systems only).

Rules

* For a database that is running on Version 10.1 or later, the operations of this
statement are applied to the default storage group for the database. If no storage
group is defined for the database, the name IBMSTOGROUP is used.

* A storage path being added, must be valid according to the naming rules for
paths, and must be accessible (SQLSTATE 57019). Similarly, in a partitioned
database environment, the storage path must exist and be accessible on every
database partition (SQLSTATE 57019).

* A storage path being dropped must currently exist in the database (SQLSTATE
57019) and cannot already be in the “Drop Pending” state (SQLSTATE 55073).

* A database enabled for automatic storage must have at least one storage path.
Dropping all storage paths from the database is not permitted (SQLSTATE
428HH).

¢ The ALTER DATABASE statement cannot be executed while a database partition
server is being added (SQLSTATE 55071).

* DROP STORAGE ON cannot be specified in a DB2 pureScale environment
(SQLSTATE 56038).

Notes
* When adding new storage paths:

— Existing regular and large table spaces using automatic storage will not
initially use these new paths. The database manager might choose to create
new table space containers on these paths only if an out-of-space condition
occurs.

— Existing temporary table spaces managed by automatic storage do not
automatically use new storage paths. The database must be stopped normally
then restarted for containers in these table spaces to use the new storage path
or paths. As an alternative, the temporary table spaces can be dropped and
recreated. When created, these table spaces automatically use all storage paths
that have sufficient free space.

* Adding storage paths to the database to enable automatic storage will not cause
the database to convert existing non-automatic storage enabled table spaces to
use automatic storage.

* Although ADD STORAGE and DROP STORAGE are logged operations, whether
they are redone during a rollforward operation depends on how the database

Statements 37

ALTER DATABASE

38

SQL Reference Volume 2

was restored. If the restore operation does not redefine the storage paths that are
associated with the database, the log record that contains the storage path
change is redone, and the storage paths that are described in the log record are
added or dropped during the rollforward operation. However, if the storage
paths are redefined during the restore operation, the rollforward operation will
not redo ADD STORAGE or DROP STORAGE log records, because it is assumed
that you have already set up the storage paths.

When free space is calculated for a storage path on a database partition, the
database manager checks for the existence of the following directories or mount
points within the storage path, and will use the first one that is found.

<storage path>/<instance name>/NODE####/<database name>

<storage path>/<instance name>/NODE####

<storage path>/<instance name>

<storage path>

Where:
— <storage path> is a storage path associated with the database
— <instance name> is the instance under which the database resides

— NODE#### corresponds to the database partition number (for example,
NODEO0000 or NODE0001)

— <database name> is the name of the database

File systems can be mounted at a point beneath the storage path, and the
database manager will recognize that the actual amount of free space available
for table space containers might not be the same amount that is associated with
the storage path directory itself.

Consider an example in which two logical database partitions exist on one
physical machine, and there is a single storage path (/db2data). Each database
partition will use this storage path, but you might want to isolate the data from
each partition within its own file system. In this case, a separate file system can
be created for each partition and it can be mounted at /db2data/<instance>/
NODE####. When creating containers on the storage path and determining free
space, the database manager will not retrieve free space information for
/db2data, but instead will retrieve it for the corresponding /db2data/
<instance>/NODE#### directory.

In general, the same storage paths must be used for each partition in a
partitioned database environment. One exception to this is the case in which
database partition expressions are used within the storage path. Doing this
allows the database partition number to be reflected in the storage path, such
that the resulting path name is different on each partition.

When dropping a storage path that is in use by one or more table spaces, the
state of the path changes from “In Use” to “Drop Pending”. Future growth on
the path will not occur. Before the path can be fully removed from the database,
each affected table space must be rebalanced (using the REBALANCE clause of
the ALTER TABLESPACE statement) so that its container data is moved off the
storage path. Rebalance is only supported for regular and large table spaces.
Temporary table spaces should be dropped and recreated to have their
containers removed from the dropped path. When the path is no longer in use
by any table space, it will be physically removed from the database.

For a partitioned database, the path is maintained independently on each
partition. When a path is no longer in use on a given database partition, it will
be physically removed from that partition. Other partitions may still show the
path as being in the “Drop Pending” state.

The list of automatic storage table spaces using drop pending storage paths can
be determined by issuing the following SQL statement:

ALTER DATABASE

SELECT DISTINCT A.TBSP_NAME, A.TBSP_ID, A.TBSP_CONTENT_TYPE

FROM SYSIBMADM.SNAPTBSP A, SYSIBMADM.SNAPTBSP_PART B

WHERE A.TBSP_ID = B.TBSP_ID AND B.TBSP_PATHS_DROPPED = 1
When dropping a storage path that was originally specified using a database
partition expression, the same storage path string, including the database
partition expression, must be used in the drop. If a database partition expression
was specified then this path string can be found in the “Path with db partition
expression” element (db_storage_path_with_dpe) of a database snapshot. This
element is not shown if a database partition expression was not included in the
original path specified.
It is possible for a given storage path to be added to a database multiple times.
When using the DROP STORAGE ON clause, specifying that particular path
once will drop all instances of the path from the database.

Examples

Example 1: Add two paths under the /db2 directory (/db2/filesysteml and
/db2/filesystem2) and a third path named /filesystem3 to the space for
automatic storage table spaces that is associated with the currently connected
database.

ALTER DATABASE ADD STORAGE ON '/db2/filesysteml', '/db2/filesystem2',
'/filesystem3'

Example 2: Add drives D and E to the space for automatic storage table spaces
that is associated with the SAMPLE database.
ALTER DATABASE SAMPLE ADD STORAGE ON 'D:', 'E:\'
Example 3: Add directory F:\DB2DATA and drive G to the space for automatic
storage table spaces that is associated with the currently connected database.
ALTER DATABASE ADD STORAGE ON 'F:\DB2DATA', 'G:'
Example 4: Add a storage path that uses a database partition expression to
differentiate the storage paths on each of the database partitions.
ALTER DATABASE ADD STORAGE ON '/dataForPartition $N'

The storage path that would be used on database partition 0 is
/dataForPartition0; on database partition 1, it would be /dataForPartitionl;
and so on.

Example 5: Add storage paths to a database that is not automatic storage
enabled, for the purposes of enabling automatic storage for the database.

CREATE DATABASE MYDB AUTOMATIC STORAGE NO
CONNECT TO MYDB
ALTER DATABASE ADD STORAGE ON '/db2/filesysteml', '/db2/filesystem2’

Database MYDB is now enabled for automatic storage.
Example 6: Remove paths /db2/filesysteml and /db2/filesystem2 from the
currently connected database.

ALTER DATABASE DROP STORAGE ON '/db2/filesysteml', '/db2/filesystem2'

After the storage is dropped successfully, use the ALTER TABLESPACE
statement with the REBALANCE clause for each table space that was using
these storage paths to rebalance the table space.

Example 7: A storage path with a database partition expression
(/dataForPartition $N) was previously added to the database and now it is to be
removed.

ALTER DATABASE DROP STORAGE ON '/dataForPartition $N'

Statements 39

ALTER DATABASE

After the storage is dropped successfully, use the ALTER TABLESPACE
statement with the REBALANCE clause for each table space that was using
these storage paths to rebalance the table space.

40 SQL Reference Volume 2

ALTER EVENT MONITOR

ALTER EVENT MONITOR

The ALTER EVENT MONITOR statement alters the definition of an event monitor
that has a target for the event monitor data of TABLE.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SOLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include one of
the following authorities:

¢ DBADM authority
* SQLADM authority

Syntax

»»>—ALTER EVENT MONITOR—event-monitor-name >
(1)

»—Y_ADD LOGICAL GROUP evm-group |_ ><

(—| target-table-options |—)J

target-table-options:

(2) (3)
— i:TABLE—tabZe—name |

IN—tablespace-name
PCTDEACTIVATE—integer—

Notes:

1 Alogical group can be added only to TABLE event monitors (not
UNFORMATTED EVENT TABLE event monitors).

2 Each clause can be specified only once.

3 Clauses can be separated with a space or a comma.

Description

event-monitor-name
The event-monitor-name must identify an event monitor that exists at the current
server and has a target for the event monitor data of TABLE.

ADD LOGICAL GROUP
Adds a logical group to the event monitor that has a target for the data of
TABLE.

Statements 41

ALTER EVENT MONITOR

evm-group
Identifies the logical data group for which a target table is being added.
The value depends upon the type of event monitor, as shown in the
following table:

Table 10. Values for evm-group based on the type of event monitor

Type of Event Monitor evm-group Value

Database . DB

+ CONTROL'
» DBMEMUSE

Tables « TABLE
* CONTROL!

Deadlocks + CONNHEADER
« DEADLOCK
+ DLCONN
+ CONTROL!

Deadlocks with details « CONNHEADER

* DEADLOCK
+ DLCONN?
« DLLOCK?

+ CONTROL'

Deadlocks with details history « cONNHEADER

* DEADLOCK
« DLCONN?
« DLLOCK?

e STMTHIST
+ CONTROL'

Deadlocks with details history « cONNHEADER

values « DEADLOCK
+ DLCONN?
« DLLOCK?
« STMTHIST
« STMTVALS
+ CONTROL!

Tablespaces « TABLESPACE
« CONTROL'

Bufferpools * BUFFERPOOL
+ CONTROL'

Connections « CONNHEADER
« CONN
« CONTROL!
* CONNMEMUSE

42 SQL Reference Volume 2

ALTER EVENT MONITOR

Table 10. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor

evm-group Value

Statements

CONNHEADER
STMT
SUBSECTION*
CONTROL!

Transactions

CONNHEADER
XACT
CONTROL!

Activities

ACTIVITY
ACTIVITYMETRICS
ACTIVITYSTMT
ACTIVITYVALS
CONTROL!

Statistics

QSTATS
SCSTATS
SCMETRICS
WCSTATS
WLSTATS
WLMETRICS
HISTOGRAMBIN
CONTROL!

Threshold Violations

THRESHOLDVIOLATIONS
CONTROL!

Locking®

LOCK

LOCK_PARTICIPANTS
LOCK_PARTICIPANT_ACTIVITIES
LOCK_ACTIVITY_VALUES

+ CONTROL!

Package Cache® « PKGCACHE
¢ PKGCACHE_METRICS
« CONTROL!

Unit of Work® . UOW

UOW_METRICS
UOW_PACKGE_LIST
UOW_EXECUTABLE_LIST
CONTROL!

Statements

43

ALTER EVENT MONITOR

44

Table 10. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor

evm-group Value

Change History + CHANGESUMMARY

* EVMONSTART

* TXNCOMPLETION
* DDLSTMTEXEC

* DBDBMCFG

* REGVAR

e UTILSTART

» UTILSTOP

» UTILPHASE

* UTILLOCATION

« CONTROL'

! Logical data groups dbheader (conn_time element only), start and overflow, are all written
to the CONTROL group. The overflow group is written if the event monitor is non-blocked
and events were discarded.

% Corresponds to the DETAILED_DLCONN event.

* Corresponds to the LOCK logical data groups that occur within each
DETAILED_DLCONN event.

* Created only for partitioned database environments.

® Refers to the Formatted Event Table version of this event monitor type.

SQL Reference Volume 2

TABLE table-name

Specifies the name of the target table. The target table must be a
non-partitioned table. If the name is unqualified, the table schema defaults
to the value in the CURRENT SCHEMA special register. If no name is
provided, the unqualified name is derived from evm-group and
event-monitor-name as follows:

substring(evm-group CONCAT '_'
CONCAT event-monitor-name,1,128)

IN tablespace-name

Defines the table space in which the table is to be created. If no table space
name is provided, the table space is chosen using the same process as
when a table is created without a table space name using the CREATE
TABLE statement.

When specifying the table space name for an activities, locking, package
cache, or unit of work event monitor, the table space's page size affects the
INLINE LOB lengths used. Therefore, consider specifying a table space
with as large a page size as possible to improve the INSERT performance
of the event monitor.

PCTDEACTIVATE integer

If a table is being created in a DMS table space, PCTDEACTIVATE
specifies how full the table space must be before the event monitor
automatically deactivates. The specified value, which represents a
percentage, can range from 0 to 100. The default value is 100 (meaning that
the event monitor deactivates when the table space becomes completely

ALTER EVENT MONITOR

full). This option is ignored for SMS table spaces. When a target table
space has auto-resize enabled, it is recommended that PCTDEACTIVATE

be set to 100.

Notes

* When system catalog changes take effect: Changes are written to the system
catalog, but do not take effect until they are committed and the event monitor is

reactivated.
Example

The event monitor ACT is missing the ACTIVITYMETRICS group. Alter the event
monitor to add this group and give the table the name "ACTMETRICS".

ALTER EVENT MONITOR ACT
ADD LOGICAL GROUP ACTIVITYMETRICS TABLE ACTMETRICS

Statements 45

ALTER FUNCTION

ALTER FUNCTION

The ALTER FUNCTION statement modifies the properties of an existing function.
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* ALTERIN privilege on the schema of the function

e Owner of the function, as recorded in the OWNER column of the
SYSCAT.ROUTINES catalog view

* DBADM authority

To alter the EXTERNAL NAME of a function, the privileges held by the
authorization ID of the statement must also include at least one of the following
authorities:

* CREATE_EXTERNAL_ROUTINE authority on the database
* DBADM authority

To alter a function to be not fenced, the privileges held by the authorization ID of
the statement must also include at least one of the following authorities:

e CREATE_NOT_FENCED_ROUTINE authority on the database
* DBADM authority

To alter a function to be fenced, no additional authorities or privileges are
required.

To alter a function to be SECURED or NOT SECURED the privileges held by the
authorization ID of the statement must include at least one of the following
authorities:

* SECADM authority
* CREATE_SECURE_OBJECT authority

If no other clauses are specified, then no other privileges are required to process
the statement.

46 SQL Reference Volume 2

ALTER FUNCTION

Syntax
»»—ALTER function-designator Y EXTERNAL NAME—[’string’ »<
_I identifierJ
FENCED _|
NOT FENCED
SECURED

NOT SECUREDJ
THREADSAFE _|
NOT THREADSAFE

function-designator:

FUNCTION—;function-name |
L)] !

Ldata—type

SPECIFIC FUNCTION—specific-name

Description

function-designator
Uniquely identifies the function to be altered. For more information, see
“Function, method, and procedure designators” on page 20.

EXTERNAL NAME 'string' or identifier
Identifies the name of the user-written code that implements the function. This
option can only be specified when altering external functions (SQLSTATE
42849).

FENCED or NOT FENCED
Specifies whether the function is considered safe to run in the database
manager operating environment's process or address space (NOT FENCED), or
not (FENCED). Most functions have the option of running as FENCED or NOT
FENCED.

If a function is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the function. In
general, a function running as FENCED will not perform as well as a similar
one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for functions that were not adequately coded,
reviewed, and tested can compromise the integrity of a DB2 database. DB2
databases take some precautions against many of the common types of
inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED user-defined functions are used.

A function declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a function has any parameters defined AS LOCATOR, and was defined with
the NO SQL option, the function cannot be altered to be FENCED (SQLSTATE
42613).

Statements 47

ALTER FUNCTION

48

SE

TH

This option cannot be altered for LANGUAGE OLE, OLEDB, or CLR functions
(SQLSTATE 42849).

CURED or NOT SECURED
Specifies whether the function is considered secure for row and column access
control.

NOT SECURED
Indicates that the function is not considered secure. When the function is
invoked, the arguments of the function must not reference a column for
which a column mask is enabled and column level access control is
activated for its table (SQLSTATE 428HA). This rule applies to the non
secure user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure.

The function must be secure when it is referenced in a row permission or a
column mask (SQLSTATE 428HS).

The function must be secure when it is referenced in a materialized query
table and the materialized query table references any table that has row or
column level access control activated (SQLSTATE 428H8).

READSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same process as
other routines (THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE and OLEDB:

¢ If the function is defined as THREADSAFE, the database manager can
invoke the function in the same process as other routines. In general, to be
threadsafe, a function should not use any global or static data areas. Most

programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED functions can be THREADSAFE.

¢ If the function is defined as NOT THREADSAFE, the database manager will
never simultaneously invoke the function in the same process as another
routine. Only a fenced function can be NOT THREADSAFE (SQLSTATE
42613).

This option may not be altered for LANGUAGE OLE or OLEDB functions
(SQLSTATE 42849).

Notes

It is not possible to alter a function that is in the SYSIBM, SYSFUN, or SYSPROC
schema (SQLSTATE 42832).

Functions declared as LANGUAGE SQL, sourced functions, or template
functions cannot be altered (SQLSTATE 42917).

* Altering a function from NOT SECURED to SECURED: Normally users with

SQL Reference Volume 2

SECADM authority do not have privileges to alter database objects such as
user-defined functions and triggers. Typically they will examine the actions
taken by a function, ensure it is secure, then grant the
CREATE_SECURE_OBJECT authority to someone who has required privileges to
alter the user-defined function to be secure. After the function is altered, they
will revoke the CREATE_SECURE_OBJECT authority from the user who was
granted this authority.

The function is considered secure. The SECURED attribute is considered to be an
assertion that declares the user has established a change control audit procedure
for all changes to the user-defined function. The database manager assumes that

ALTER FUNCTION

such a control audit procedure is in place for all subsequent ALTER FUNCTION
statements or changes to external packages.

Packages and dynamically cached SQL statements that depend on the function
might be invalidated because the secure attribute affects the access path selection
for statements involving tables for which row or column level access control is
activated and the function being replaced.

 Altering a function from SECURED to NOT SECURED: The function is
considered not secure. Packages and dynamically cached SQL statements that
depend on the function might be invalidated because the secure attribute affects
the access path selection for statements involving tables for which row or
column level access control is activated.

* Invoking other user-defined functions in a secure function: When a secure
user-defined function is referenced in a data manipulation statement where a
row or column access control enforced table is referenced, if the secure
user-defined function invokes other user-defined functions, the database
manager does not validate whether those nested user-defined functions are
secure. If those nested functions can access sensitive data, the user with
SECADM authority needs to ensure those functions are allowed to access those
data and a change control audit procedure has been established for all changes
to those functions.

Example

The function MAIL() has been thoroughly tested. To improve its performance, alter
the function to be not fenced.

ALTER FUNCTION MAIL() NOT FENCED

Statements 49

ALTER HISTOGRAM TEMPLATE

ALTER HISTOGRAM TEMPLATE

50

The ALTER HISTOGRAM TEMPLATE statement is used to modify the template
describing the type of histogram that can be used to override one or more of the
default histograms of a service class or a work class.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
WLMADM or DBADM authority.

Syntax

»»>—ALTER HISTOGRAM TEMPLATE—template-name—HIGH BIN VALUE—bigint-constant——>=

Description

template-name
Names the histogram template. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The name must identify an existing histogram
template at the current server (SQLSTATE 42704). The template name can be
the default system histogram template SYSDEFAULTHISTOGRAM.

HIGH BIN VALUE bigint-constant
Specifies the top value of the second to last bin (the last bin has an unbounded
top value). The units depend on how the histogram is used. The maximum
value is 268 435 456.

Rules

* A workload management (WLM)-exclusive SQL statement must be followed by
a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:

— CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or
DROP (HISTOGRAM TEMPLATE)

— CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE
CLASS)

— CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

— CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP
(WORK ACTION SET)

— CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK
CLASS SET)

— CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
— GRANT (Workload Privileges) or REVOKE (Workload Privileges)

* A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

SQL Reference Volume 2

ALTER HISTOGRAM TEMPLATE

Notes

* Only one uncommitted WLM-exclusive SQL statement at a time is allowed
across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

* Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

Example
Change the high bin value of a histogram template named LIFETIMETEMP.

ALTER HISTOGRAM TEMPLATE LIFETIMETEMP
HIGH BIN VALUE 90000

Statements 51

ALTER INDEX

ALTER INDEX
The ALTER INDEX statement alters the definition of an index.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

e ALTERIN privilege on the schema of the index

* ALTER privilege on the table on which the index is defined
* CONTROL privilege on the index

* DBADM authority

Syntax

»»>—ALTER INDEX—index-name—COMPRESS NO
YES

Y
A

Description

INDEX index-name

Identifies the index to be altered. The name must identify an index that exists
at the current server (SQLSTATE 42704).

COMPRESS
Specifies whether index compression is to be enabled or disabled. The index
must not be an MDC or ITC block index, catalog index, XML path index, index

specification, or an index on a created temporary table or declared temporary
table (SQLSTATE 42995).

NO Specifies that index compression is disabled. A compressed index will
remain compressed until the index is rebuilt via index reorganization or
recreation.

YES
Specifies that index compression is enabled. An uncompressed index will
remain uncompressed until the index is rebuilt via index reorganization or
recreation.

Example
Alter index JOB_BY_DPT to be compressed index.

ALTER INDEX JOB_BY_DPT
COMPRESS YES

52 SQL Reference Volume 2

ALTER MASK

ALTER MASK

The ALTER MASK statement alters a column mask that exists at the current server.
Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

»»>—ALTER MASK—mask—name—[ENABLE >
DISABLE—I

Description

mask-name
Identifies the column mask to be altered. The name must identify a mask that
exists at the current server (SQLSTATE 42704).

ENABLE

Enables the column mask. If column level access control is not currently
activated on the table, the column mask will become effective when column
level access control is activated on the table. If column level access control is
currently activated on the table, the column mask becomes effective
immediately and all packages and dynamically cached statements that
reference the table are invalidated.

ENABLE is ignored if the column mask is already enabled.
DISABLE

Disables the column mask. If column level access control is not currently
activated on the table, the column mask will remain ineffective when column
level access control is activated on the table. If column level access control is
currently activated on the table, the column mask becomes ineffective
immediately and all packages and dynamically cached statements that
reference the table are invalidated.

DISABLE is ignored if the column mask is already disabled.

Examples

* Example 1: Enable column mask M1.
ALTER MASK M1 ENABLE

* Example 2: Disable column mask M1.
ALTER MASK M1 DISABLE

Statements 53

ALTER METHOD

ALTER METHOD

The ALTER METHOD statement modifies an existing method by changing the
method body associated with the method.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* CREATE_EXTERNAL_ROUTINE authority on the database, and at least one of:
— ALTERIN privilege on the schema of the type

— Owner of the type, as recorded in the OWNER column of the
SYSCAT.DATATYPES catalog view

e DBADM authority

Syntax
»»>—ALTER method-designator EXTERNAL NAME—E’str‘ing’ >«
I | identifier—l
method-designator:
ETHOD—method-name |_ _| FOR—type-name——|
()

Ldata— type

SPECIFIC METHOD—specific-name

Description

method-designator
Uniquely identifies the method to be altered. For more information, see
“Function, method, and procedure designators” on page 20.

EXTERNAL NAME 'string' or identifier
Identifies the name of the user-written code that implements the method. This
option can only be specified when altering external methods (SQLSTATE
42849).

Notes

* It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC
schema (SQLSTATE 42832).

* Methods declared as LANGUAGE SQL cannot be altered (SQLSTATE 42917).
* Methods declared as LANGUAGE CLR cannot be altered (SQLSTATE 42849).

54 SQL Reference Volume 2

ALTER METHOD

* The specified method must have a body before it can be altered (SQLSTATE
42704).

Example

Alter the method DISTANCE() in the structured type ADDRESS_T to use the
library newaddressTib.

ALTER METHOD DISTANCE()
FOR ADDRESS_T
EXTERNAL NAME 'newaddresslib!distance2’

Statements 55

ALTER MODULE

ALTER MODULE

The ALTER MODULE statement alters the definition of a module.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
ownership of the module and also include all of the privileges necessary to invoke

the SQL statements that are specified within the ALTER MODULE statement.

Syntax

»»>—ALTER MODULE—module-name——ADD odule-condition-definition ><
odule-function-definition—
odule-procedure-definition—
odule-type-definition
odule-variable-definition—

—DROP BODY

module-object-identification

-PUBLISH odule-condition-definition

odule-function-defintion—
odule-procedure-defintion—
odule-type-defintion
odule-variable-defintion—

module-condition-definition:

[—CONDITION—condition-name >

> |
>

|
VALUE
Ssausmre L1
FOR string-constant

A%

module-object-identification:

module-function-designator |} I
module-procedure-designator '—
ONDITION—condition-name——
TYPE—type-name
VARIABLE—variable-name

module-function-designator:

56 SQL Reference Volume 2

ALTER MODULE

FUNCTION—unqualified-function-name |_ _| |
()

L’ data-type

SPECIFIC FUNCTION—unqualified-specific-name

module-procedure-designator:

PROCEDURE—unqualified-procedure-name I
L,]

Ldata-type

SPECIFIC PROCEDURE—unqualified-specific-name

Description

module-name
Identifies the module to be altered. The module-name must identify a module
that exists at the current server (SQLSTATE 42704).

ADD
Adds an object to the module or adds the body to a routine definition that
already exists in the module without a body. If adding a user-defined type or a
global variable, the object must not identify a user-defined type or global
variable that already exists in the module. If the user-defined type or global
variable did not exist, it is added to the module for use within the module
only.

If adding a routine and the specified routine does not exist, the routine is
added. If adding a routine and the specified routine exists, the existing routine
definition must not include a routine body (SQLSTATE 42723). This routine
prototype is completely replaced by the new routine definition, including the
routine attributes and the routine body, except that the published attribute is
retained. The specified routine is considered to exist if one of the following
conditions is true:

* There is a routine in the module with the same specific name and same
routine name.

* The specified routine is a procedure and there is a procedure in the module
with the same procedure name and the same number of parameters. The
names and data types of the parameters do not need to match.

* The specified routine is a function and there is a function in the module
with the same function name and the same number of parameters with
matching data types. The length, precision, and scale of parameter data
types are not compared and can be different when determining if the
specified routine exists. The names of the parameters do not need to match.

module-condition-definition
Adds a module condition.

condition-name
Name of the condition. The name must not identify an existing
condition in the module. The condition-name must be specified
without any qualification (SQLSTATE 42601). The name of the
condition must be unique within the module.

Statements 57

ALTER MODULE

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The
string-constant must be specified as five characters enclosed in single
quotation marks, and the SQLSTATE class (the first two characters)
must not be '00". This is an optional clause.

module-function-definition

The syntax to add a function is the same as the CREATE FUNCTION
statement excluding the CREATE keyword and both the function-name
and specific-name must be specified without any qualification (SQLSTATE
42601). If the function is unique within the module, a new function is
added. If the function matches an existing function that does not include a
body (SQL-routine-body or EXTERNAL NAME clause), then this function
prototype is replaced by the new definition except that the published
attribute is retained. All SQL functions added to a module are processed as
if a compound SQL (compiled) statement was used.

The module function definition can only specify the RETURNS TABLE
clause when the SQL-routine-body is an compound SQL (compiled)
statement that specifies NOT ATOMIC. The module function definition
must not specify the SOURCE clause, the TEMPLATE clause, or the
LANGUAGE OLEDEB option (SQLSTATE 42613).

module-procedure-definition

The syntax to define the procedure is the same as the CREATE
PROCEDURE statement excluding the CREATE keyword and both the
procedure-name and specific-name must be specified without any
qualification (SQLSTATE 42601). If the procedure signature is unique
within the module, a new procedure is added. If the procedure matches an
existing procedure that does not include a body (SQL-routine-body or
EXTERNAL NAME clause), then this procedure prototype is replaced by
the new definition except that the published attribute is retained. The name
of the procedure can begin with “SYS_" only to add the module
initialization procedure called SYS_INIT. See Notes for details.

module-type-definition

The syntax to define the user-defined type is the same as the CREATE
TYPE statement excluding the CREATE keyword and the type-name must
be specified without any qualification (SQLSTATE 42601). The name of the
user-defined type must be unique within the module. A structured type
cannot be defined in a module. Any generated functions required to
support the type definition are also defined in the module. If the module
user-defined type is published then so are the generated functions.

module-variable-definition

DROP

The syntax to define the variable is the same as the CREATE VARIABLE
statement excluding the CREATE keyword and the variable-name must be
specified without any qualification (SQLSTATE 42601). The name of the
variable must be unique within the module.

Drops a specified part of a module. The module-object-identification syntax is
used to identify the object to be dropped unless the body of the module is
being dropped.

BODY

58 SQL Reference Volume 2

Drops the module body, which includes:
* all objects that are not published.
* the routine body of any published SQL routines

ALTER MODULE

* the EXTERNAL reference for any published external routines.

PUBLISH
Adds a new object to the module and makes it available for use outside the
module. In the case of routines, a routine prototype can be specified that does
not include the executable body of the routine.

module-condition-definition
Adds a module condition that is available for use outside the module.

condition-name
Name of the condition. The name must not identify an existing
condition in the module. The condition-name must be specified
without any qualification (SQLSTATE 42601). The name of the
condition must be unique within the module.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The
string-constant must be specified as five characters enclosed in single
quotation marks, and the SQLSTATE class (the first two characters)
must not be '00". This is an optional clause.

module-function-definition
The syntax to define the function is the same as the CREATE FUNCTION
statement excluding the CREATE keyword and both the function-name
and specific-name must be specified without any qualification (SQLSTATE
42601). The definition of the function must include the function name, full
specification of any parameters and the returns clause. Module
user-defined data types that are not published are not candidates for the
parameter data types or the RETURNS clause data type. Module variables
that are not published are not candidates for the anchor object in an
ANCHOR clause of a parameter data type or a returns data type. A
function prototype can be specified by omitting the LANGUAGE clause (or
specifying LANGUAGE SQL) and the SQL-routine-body. The function
signature must be unique within the module. The name of the function
must not begin with "SYS_" (SQLSTATE 42939). All SQL functions added to
a module are processed as if a compound SQL (compiled) statement was
used.

The module function definition can only specify the RETURNS TABLE
clause when the SQL-routine-body is an compound SQL (compiled)
statement that specifies NOT ATOMIC. The module function definition
must not specify the SOURCE clause, the TEMPLATE clause, or the
LANGUAGE OLEDEB option (SQLSTATE 42613).

module-procedure-definition
The syntax to define the procedure is the same as the CREATE
PROCEDURE statement excluding the CREATE keyword and both the
procedure-name and specific-name must be specified without any
qualification (SQLSTATE 42601). The definition of the procedure must
include the procedure name and full specification of any parameters.
Module user-defined data types that are not published are not candidates
for the parameter data types. Module variables that are not published are
not candidates for the anchor object in an ANCHOR clause of a parameter
definition. A function prototype can be specified by omitting the
LANGUAGE clause (or specifying LANGUAGE SQL) and the
SQL-routine-body. The procedure signature must be unique within the
module. The name of the procedure must not begin with "SYS_"
(SQLSTATE 42939).

Statements 59

ALTER MODULE

60

module-type-definition

The syntax to define the user-defined type is the same as the CREATE
TYPE statement excluding the CREATE keyword and the type-name must
be specified without any qualification (SQLSTATE 42601). Module
user-defined data types that are not published are not candidates for any
data type referenced in the module user-defined data type definition.
Module variables that are not published are not candidates for the anchor
object in an ANCHOR clause. The name of the user-defined type must not
begin with "SYS_" (SQLSTATE 42939) and must be unique within the
module. A structured type cannot be defined in a module. Any generated
functions required to support the type definition are also defined in the
module as published functions.

module-variable-definition

The syntax to define the variable is the same as the CREATE VARIABLE
statement excluding the CREATE keyword and the variable-name must be
specified without any qualification (SQLSTATE 42601). Module
user-defined data types that are not published are not candidates for the
any data type referenced in the variable definition. Module variables that
are not published are not candidates for the anchor object in an ANCHOR
clause. The name of the variable must not begin with "SYS_" (SQLSTATE
42939) and must be unique within the module.

module-object-identification

SQL Reference Volume 2

Identifies a unique module object.

module-function-designator

Uniquely identifies a single module function.

FUNCTION unqualified-function-name
Identifies a particular function, and is valid only if there is exactly one
function instance with the name unqualified-function-name in the
module. The identified function can have any number of parameters
defined for it. If no function by this name exists in the module, an
error (SQLSTATE 42704) is raised. If there is more than one instance of
the function in the module, an error (SQLSTATE 42725) is raised.

FUNCTION unqualified-function-name (data type,...)
Provides the function signature, which uniquely identifies the function.
The function resolution algorithm is not used.

unqualified-function-name
Specifies the name of the function.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) when the function was originally defined. The
number of data types, and the logical concatenation of the data types,
is used to identify the specific function instance.

If a data type is unqualified, the type name is resolved by searching
the schemas on the SQL path. This also applies to data type names
specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking
for a data type match. FLOAT() cannot be used (SQLSTATE 42601),
because the parameter value indicates different data types (REAL or

ALTER MODULE

DOUBLE). If length, precision, or scale is coded, the value must exactly
match that specified when the function was defined.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.
If no function with the specified signature exists in the module, an
error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION unqualified-specific-name
Identifies a particular user-defined function, using the name that is
specified or defaulted to at function definition time. The
unqualified-specific-name must identify a specific function instance in
the module; otherwise, an error is returned (SQLSTATE 42704).

module-procedure-designator
Uniquely identifies a single module procedure.

PROCEDURE unqualified-procedure-name
Identifies a particular procedure, and is valid only if there is exactly
one procedure instance with the name unqualified-procedure-name in
the module. The identified procedure can have any number of
parameters defined for it. If no procedure by this name exists in the
module, an error is returned (SQLSTATE 42704). If there is more than
one instance of the procedure in the module, an error is returned
(SQLSTATE 42725).

PROCEDURE unqualified-procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the
procedure. The procedure resolution algorithm is not used.

unqualified-procedure-name
Specifies the name of the procedure.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) when the procedure was originally
defined. The number of data types, and the logical concatenation
of the data types, is used to identify the specific procedure
instance.

If a data type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can
be coded to indicate that these attributes are to be ignored when
looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE). If length,
precision, or scale is coded, the value must exactly match that
specified in when the procedure was defined.

A type of FLOAT(n) does not need to match the defined value for
n, because 0 < n < 25 means REAL, and 24 < n < 54 means
DOUBLE. Matching occurs on the basis of whether the type is
REAL or DOUBLE.

If no procedure with the specified signature exists in the module,
an error is returned (SQLSTATE 42883).

Statements 61

ALTER MODULE

SPECIFIC PROCEDURE unqualified-specific-name
Identifies a particular procedure, using the name that is specified
or defaulted to at procedure definition time. The
unqualified-specific-name must identify a specific procedure
instance in the module; otherwise, an error is returned (SQLSTATE
42704).

TYPE type-name
Identifies a user-defined type from the module. The type-name must
be specified without any qualification (SQLSTATE 42601) and must
identify a user-defined type that exists in the module (SQLSTATE
42704).

VARIABLE variable-name
Identifies a global variable from the module. The variable-name must
be specified without any qualification (SQLSTATE 42601) and must
identify a global variable that exists in the module (SQLSTATE 42704).

CONDITION condition-name
Identifies a condition from the module. The condition-name must be

specified without any qualification and must identify a condition that
exists in the module (SQLSTATE 42737).

Rules

* Names of objects in the module cannot begin with "SYS_" with the exception of

specifically designated SYS_INIT procedure name (SQLSTATE 42939).

e ALTER MODULE DROP FUNCTION: If the function is referenced in the definition of a

row permission or column mask, the function cannot be dropped (SQLSTATE
42893).

e ALTER MODULE DROP VARIABLE: If the variable is referenced in the definition of a

row permission or column mask, the variable cannot be dropped (SQLSTATE
42893).

e ALTER MODULE DROP BODY: If the module is referenced in the definition of a row

permission or column mask, the module cannot be dropped (SQLSTATE 42893).

Notes

* Module initialization: A module can have a special initialization procedure

called SYS_INIT that is implicitly executed when the first reference is made to a
module routine or module global variable. The SYS_INIT procedure must be
implemented with no parameters, cannot return result sets, and can be an SQL
or external procedure that cannot be published (SQLSTATE 428HP). If the
SYS_INIT procedure fails, an error is returned for the statement that caused the
module initialization (SQLSTATE 56098).

Use of module conditions: A module condition can only be used with a SIGNAL
statement, RESIGNAL statement or a handler declaration that is within a
compound SQL (compiled) statement.

* Invalidation: If a routine prototype is replaced using the ADD action, all objects

that depended on the published module routine are invalidated. If DROP BODY
is issued, all objects dependent on published module routines are invalidated.

* Obfuscation: The ALTER MODULE ADD FUNCTION, ALTER MODULE ADD

PROCEDURE, ALTER MODULE PUBLISH FUNCTION, and ALTER MODULE
PUBLISH PROCEDURE statements can be submitted in obfuscated form. In an
obfuscated statement, only the routine name and its parameters are readable.

62 SQL Reference Volume 2

ALTER MODULE

The rest of the statement is encoded in such a way that is not readable but can
be decoded by the database server. Obfuscated statements can be produced by
calling the DBMS_DDL.WRAP function.

Example

The following statements create a module named INVENTORY containing an
associative array type, a variable of that data type, a procedure that adds elements
to the array and a function that extracts elements from the array. Only the function
and the procedure can be referenced from outside of the module based on the
PUBLISH keyword in the corresponding ALTER MODULE statements. The data
type and the variable can only be referenced by other objects in the module.

CREATE MODULE INVENTORY

ALTER MODULE INVENTORY ADD
TYPE ITEMLIST AS INTEGER ARRAY[VARCHAR(100)]

ALTER MODULE INVENTORY ADD
VARIABLE ITEMS ITEMLIST

ALTER MODULE INVENTORY PUBLISH

PROCEDURE UPDATE_ITEM(NAME VARCHAR(100), QUANTITY INTEGER)
BEGIN

SET ITEMS[NAME] = QUANTITY;

END

ALTER MODULE INVENTORY PUBLISH

FUNCTION CHECK_ITEM(NAME VARCHAR(100)) RETURNS INTEGER
RETURN ITEMS[NAME]

Statements 63

ALTER NICKNAME

ALTER NICKNAME

The ALTER NICKNAME statement modifies the nickname information associated
with a data source object (such as a table, view, or file).

This statement modifies the information that is stored in the federated database in
the following ways:

* Altering the local column names for the columns of the data source object
¢ Altering the local data types for the columns of the data source object

* Adding, setting, or dropping nickname and column options

* Adding or dropping a primary key

* Adding or dropping one or more unique, referential, or check constraints
* Altering one or more referential or check constraint attributes

* Altering the caching of data at a federated server
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* ALTER privilege on the nickname specified in the statement
* CONTROL privilege on the nickname specified in the statement
* ALTERIN privilege on the schema, if the schema name of the nickname exists

¢ Owner of the nickname, as recorded in the OWNER column of the
SYSCAT.TABLES catalog view

* DBADM authority
Syntax

»>—ALTER NICKNAME—nickname

>

o]
\\OPT I ONS—(TH—nickname—opt ion-name—string-constan t%)
SET
DROP—nickname-option-name

64 SQL Reference Volume 2

ALTER NICKNAME

l—COLUMN—l (1)
»Y _ALTER column-name Y LOCAL NAME—column-name

(2)

federated-column-options —

LOCAL TYPE—| local-data-type r
—ADD. unique-constraint |
referential-constraint ’—‘
check-constraint

CHECK:
—DROP: PRIMARY KEY

—ALTER—EFOREI%—construint-name—' constraint-alteration |7

FOREIGN KEY——cons traint-name—l
UNIQUE
CHECK———
CONSTRAINT—

—EALLOW CACHING .
DISALLOW CACHING

local-data-type:

built-in-type i
(3)

distinct-type-name———

built-in-type:

Statements

65

ALTER NICKNAME

} SMALLINT
—[INTEGER
INT
—BIGINT
(5,0)
LDECIMAL |_
DEC L y 0——
—[NUMERIC (integer‘%—)—
NUM ,integer—
(53)
——FLOAT [
(integer)—
—REAL
PRECISION
'—DOUBLE |_ —l
|—(1)—
CHARACTER:
|—CHARQ |—(integer)— J |—FOR BIT DATAJ
VARCHAR J (integer)
CHARACTER VARYING
CHAR
(1m)
CLOB J |_
—E[CHARACTER LARGE OBJECT (integer)
CHAR L K—
M
G
(1)
GRAPHIC [
(integer)—
VARGRAPHIC— (integer)
(1m)
DBCLOB [
(integer)—
L K—
M
G
—(1M)
—[BLOB J
BINARY LARGE OBJECT —(integer)
L K—|
M
G
DATE
TIME
(—6—)
TIMESTAMP. [
(—integer—)—
federated-column-options:
ADD
F—OPTIONS—(— column-option-name—string-constant
SET

66 SQL Reference Volume 2

DROP—-column-option-name

ALTER NICKNAME

unique-constraint:

} B a |_UNIQUE (—Y—column-name——) ——>
CONSTRAINT—constraint-name PRIMARY KEY

> constraint-attributes | }

referential-constraint:

1)

v

} B 7 FOREIGN KEY—(—Y—column-name)
CONSTRAINT—constraint-name

»—I references-clause i |

references-clause:

REFERENCES table-name >
= T fobte-nane] —

nickname s

(—Y—column-name——)

»—I constraint-attributes i I

check-constraint:

| CHECK—(—| check-condition |—)
|
|—CONSTRAINT—(:onstraint-name

> constraint-attributes | }
check-condition:
search-condition }
functional-dependency

functional-dependency:

column-name DETERMINED BY- column-name }

H B

(—Y—column-name——) (—Y—column-name——)

Statements 67

ALTER NICKNAME

68

constraint-attributes:

|—@-NOT ENFORCED

ENABLE QUERY OPTIMIZATION
® [P
L (@)

TRUSTED——
|_

|—NOT TRUSTED—

DISABLE QUERY OPTIMIZATION

constraint-alteration:

A\

(5)

ENABLE_l QUERY OPTIMIZATION |
DISABLE
rTRUSTED——

——NOT ENFORCED

Lyor TRUSTED

Notes:

1

You cannot specify both the ALTER COLUMN clause and an ADD, ALTER,
or DROP informational constraint clause in the same ALTER NICKNAME
statement.

2 If you need to specify the federated-column-options clause in addition to the
LOCAL NAME parameter, the LOCAL TYPE parameter, or both, you must
specify the federated-column-options clause last.

3 The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type (SQLSTATE 428H2).

4 DISABLE QUERY OPTIMIZATION is not supported for a unique or primary
key constraint.

5 The same clause must not be specified more than once.

Description

nickname

Identifies the nickname for the data source object (such as a table, view, or file)
that contains the column being altered. It must be a nickname described in the
catalog.

OPTIONS

SQL Reference Volume 2

Indicates the nickname options that are added, set, or dropped when the
nickname is altered.

ADD
Adds a nickname option.

SET
Changes the setting of a nickname option.

nickname-option-name
Names a nickname option that is to be added or set.

string-constant
Specifies the setting for nickname-option-name as a character string constant.

DROP nickname-option-name
Drops a nickname option.

ALTER NICKNAME

ALTER COLUMN column-name
Names the column to be altered. The column-name is the federated server's
current name for the column of the table or view at the data source. The
column-name must identify an existing column of the nickname (SQLSTATE
42703). You cannot reference the same column name multiple times in the same
ALTER NICKNAME statement (SQLSTATE 42711).

LOCAL NAME column-name
Specifies a new name, column-name, by which the federated server is to
reference the column to be altered. The new name cannot be qualified, and the

same name cannot be used for more than one column of the nickname
(SQLSTATE 42711).

LOCAL TYPE local-data-type
Specifies a new local data type to which the data type of the column that is to
be altered will map. The new type is denoted by local-data-type.

Some wrappers only support a subset of the SQL data types. For descriptions
of specific data types, see the description of the “CREATE TABLE” statement.

OPTIONS
Indicates what column options are to be added, set, or dropped for the column
specified after the COLUMN keyword.

ADD
Adds a column option.

SET
Changes the setting of a column option.

column-option-name
Names a column option that is to be added or set.

string-constant
Specifies the setting for colummn-option-name as a character string constant.

DROP column-option-name
Drops a column option.

ADD unique-constraint
Defines a unique constraint. See the description of the “CREATE NICKNAME”
statement.

ADD referential-constraint
Defines a referential constraint. See the description of the “CREATE
NICKNAME” statement.

ADD check-constraint
Defines a check constraint. See the description of the “CREATE NICKNAME”
statement.

ALTER FOREIGN KEY constraint-name
Alters the constraint attributes of the referential constraint constraint-name. For
a description of the constraint attributes, see the “CREATE NICKNAME”

statement. The constraint-name must identify an existing referential constraint
(SQLSTATE 42704).

ALTER CHECK constraint-name
Alters the constraint attributes of the check constraint constraint-name. The
constraint-name must identify an existing check constraint (SQLSTATE 42704).

Statements 69

ALTER NICKNAME

constraint-alteration
Provides options for changing the attributes associated with referential or
check constraints.

ENABLE QUERY OPTIMIZATION
The constraint can be used for query optimization under appropriate
circumstances.

DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization.

NOT ENFORCED
Specifies that the constraint is not enforced by the database manager
during normal operations such as insert, update, or delete.

TRUSTED
The data can be trusted to conform to the constraint. TRUSTED must
be used only if the data in the table is independently known to
conform to the constraint. Query results might be unpredictable if the
data does not actually conform to the constraint. This is the default
option.

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT
TRUSTED is intended for cases where the data conforms to the
constraint for most rows, but it is not independently known that all the
rows or future additions will conform to the constraint. If a constraint
is NOT TRUSTED and enabled for query optimization, then it will not
be used to perform optimizations that depend on the data conforming
completely to the constraint. NOT TRUSTED can be specified only for
referential integrity constraints (SQLSTATE 42613).

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints that are
dependent upon this primary key. The nickname must have a primary key.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify an existing referential constraint defined on the nickname.

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all referential
constraints that are dependent upon this unique constraint. The constraint-name
must identify an existing unique constraint.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an
existing check constraint defined on the nickname.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint, referential constraint, primary key, or unique
constraint defined on the nickname.

ALLOW CACHING or DISALLOW CACHING
Specifies whether the nickname can be referenced in a query that defines a
materialized query table, which could be used to cache data from the data
source at the federated server.

ALLOW CACHING
Specifies that the nickname can be referenced in a query that defines a
materialized query table, which allows data from the data source to be

70 SQL Reference Volume 2

ALTER NICKNAME

cached in the materialized query table at the federated server. The
refreshable options defined for the materialized query table specify how
the cached data in the materialized query table is maintained.

DISALLOW CACHING
Specifies that the nickname cannot be referenced in a query that defines a
materialized query table. DISALLOW CACHING cannot be specified for a
nickname that is referenced in the fullselect of a materialized query table
definition (SQLSTATE 42917).

Rules

If a nickname is used in a view, SQL method, or SQL function, or informational
constraints are defined on it, the ALTER NICKNAME statement cannot be used
to change the local names or data types for the columns in the nickname
(SQLSTATE 42893). The statement can be used, however, to add, set, or drop
column options, nickname options, or informational constraints.

If a nickname is referenced by a materialized query table definition, the ALTER
NICKNAME statement cannot be used to change the local names, data types,
column options, or nickname options (SQLSTATE 42893). Moreover, the
statement cannot be used to disable caching (SQLSTATE 42917). The statement
can be used, however, to add, alter, or drop informational constraints.

A column option cannot be specified more than once in the same ALTER
NICKNAME statement (SQLSTATE 42853). When a column option is enabled,
reset, or dropped, any other column options that are in use are not affected.
For relational nicknames, the ALTER NICKNAME statement within a given unit
of work (UOW) cannot be processed under either of the following conditions
(SQLSTATE 55007):

— A nickname referenced in this statement has a cursor open on it in the same
UoOwW

— Either an INSERT, DELETE, or UPDATE statement is already issued in the
same UOW against the nickname that is referenced in this statement

For non-relational nicknames, the ALTER NICKNAME statement within a given
unit of work (UOW) cannot be processed under any of the following conditions
(SQLSTATE 55007):

— A nickname referenced in this statement has a cursor open on it in the same
UOW

— A nickname referenced in this statement is already referenced by a SELECT
statement in the same UOW

— Either an INSERT, DELETE, or UPDATE statement has already been issued in
the same UOW against the nickname that is referenced in this statement

Notes

If the ALTER NICKNAME statement is used to change the local name for a
column of a nickname, queries against that column must reference it by its new
name.

When the local specification of a column's data type is changed, the database
manager invalidates any statistics (HIGH2KEY, LOW2KEY, and so on) gathered
for that column.

Caching and protected objects: For nicknames whose data source object is
protected, specify DISALLOW CACHING. This ensures that each time the nickname is
used, data for the appropriate authorization ID is returned from the data source
at query execution time. This is done by restricting the nickname from being

Statements 71

ALTER NICKNAME

used in the definition of a materialized query table at the federated server,
which might be being used to cache the nickname data.

Examples

* Example 1: The nickname NICKI1 references a DB2 for i table called T1. Also,
COL1 is the local name that references this table's first column, C1. Rename the
local name for C1 from COL1 to NEWCOL.

ALTER NICKNAME NICK1
ALTER COLUMN COL1
LOCAL NAME NEWCOL
* Example 2: The nickname EMPLOYEE references a DB2 for z/OS table called
EMP. Also, SALARY is the local name that references EMP_SAL, one of this
table's columns. The column's data type, FLOAT, maps to the local data type,
DOUBLE. Change the mapping so that FLOAT maps to DECIMAL (10, 5).

ALTER NICKNAME EMPLOYEE
ALTER COLUMN SALARY
LOCAL TYPE DECIMAL(10,5)
* Example 3: Indicate that in an Oracle table, a column with the data type of
VARCHAR does not have trailing blanks. The nickname for the table is NICK2,
and the local name for the column is COL1.

ALTER NICKNAME NICK2
ALTER COLUMN COL1
OPTIONS (ADD VARCHAR_NO_TRAILING_BLANKS 'Y')

* Example 4: Alter the fully qualified path for the table-structured file,
drugdatal.txt, for the nickname DRUGDATAL. Use the FILE_PATH nickname
option and change the path from the current value of '/user/pat/drugdatal.txt
to '/usr/kelly/data/drugdatal.txt'.

{

ALTER NICKNAME DRUGDATA1
OPTIONS (SET FILE_PATH '/usr/kelly/data/drugdatal.txt')

72 SQL Reference Volume 2

ALTER PACKAGE

ALTER PACKAGE

The ALTER PACKAGE statement alters bind options for a package at the current
server without having to bind or rebind the package.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

e ALTERIN privilege on the schema
* BIND privilege on the package
* DBADM authority

»»>—ALTER PACKAGE B package-id >

VERSION _J
J_—-I—version—id

|—5 chema-name.

Lo
Y ACCESS PLAN REUSE YES >
[y
OPTIMIZATION PROFILE NONE
_|:opt,‘imization—profiZe—nameJ

KEEP DYNAMIC—EY ES

No—]

Notes:

1 The same clause must not be specified more than once.

Description

schema-name. package-id
Identifies the package that is to be altered. If a schema name is not specified,
the package ID is implicitly qualified by the default schema. The schema name
and package ID, together with the implicitly or explicitly specified version ID,
must identify a package that exists at the current server (SQLSTATE 42704).

VERSION version-id
Identifies which package version is to be altered. If a value is not specified,
the version defaults to the empty string. If multiple packages with the
same package name but different versions exist, only one package version
can be altered in one invocation of the ALTER PACKAGE statement.
Delimit the version identifier with double quotation marks when it:
¢ Is generated by the VERSION(AUTO) precompiler option
* Begins with a digit
* Contains lowercase or mixed-case letters

Statements 73

ALTER PACKAGE

74

If the statement is invoked from an operating system command prompt,
precede each double quotation mark delimiter with a back slash character
to ensure that the operating system does not strip the delimiters.

ACCESS PLAN REUSE

Indicates whether the query compiler should attempt to reuse the access plans
for static statements in the package during future implicit and explicit rebinds.

NO Specifies not to reuse access plans.

YES
Specifies to attempt to reuse access plans.

OPTIMIZATION PROFILE

Indicates what, if any, optimization profile to associate with the package.

NONE
Associates no optimization profile with the package. If an optimization
profile is already associated with the package, the association is removed.

optimization-profile-name
Associates the optimization profile optimization-profile-name with the
package. The optimization profile is a two-part name. If the specified
optimization-profile-name is unqualified, the value of the CURRENT
DEFAULT SCHEMA special register is used as the implicit qualifier. If an
optimization profile is already associated with the package, the association
is replaced with optimization-profile-name.

While the ALTER PACKAGE statement removes the current copy of the
package from the DB2 package cache, it does not invalidate the package and
does not cause an implicit rebind to take place. This means that although
dynamic SQL is affected by the changes made by the statement, query
execution plans for static statements are not be affected until the next implicit
or explicit rebind.

KEEP DYNAMIC

SQL Reference Volume 2

Starting with DB2 for Linux, UNIX, and Windows Version 9.8 Fix Pack 2, you
can modify the value of the KEEPDYNAMIC bind option for a package without
requiring a fresh bind operation, thereby avoiding unnecessary recompilation
until the next bind operation occurs. This option controls how long the
statement text and section associated with a prepared statement are kept in the
SQL context. It takes effect after all applications that are using the package
have completed the transactions that were running when the ALTER PACKAGE
statement was executed.

YES

Instructs the SQL context to keep the statement text and section associated
with prepared statements indefinitely. Dynamic SQL statements are kept
across transactions. All packages bound with KEEPDYNAMIC YES are by
default compatible with the existing package cache behavior.

NO

Instructs the SQL context to remove the statement text and section
associated with prepared statements at the end of each unit of work. The
executable versions of prepared statements and the statement text in
packages bound with the KEEP DYNAMIC NO option are removed from the
SQL context at transaction boundaries. The client, driver, or application
needs to prepare any dynamic SQL statement it wishes to reuse in a new
unit of work again.

ALTER PACKAGE

For remote applications that use an IBM non-embedded API, once you
have ensured that statements will be prepared in new transactions, you can
use this option so that WLB will not be disallowed solely based on the
KEEP DYNAMIC behavior. However even with this option, WLB may be
disallowed for other reasons.

SELECT statements issued by cursors with the WITH HOLD option are
disassociated from the SQL context at the next transaction boundary where
the cursor is closed. As a result, workload balancing is allowed as long as
there are no executable versions of prepared statements associated with the
application in the SQL context.

Note: Workload balancing is not restricted for dynamic SQL applications that

use IBM non-embedded APIs, such as JDBC, .NET, or CLI/ODBC, to run SQL
within the common client packages. These interfaces implicitly re-prepare SQL
statements before executing them in transactions where their connection might
have been moved to a new executable version of prepared statements.

Notes

* Catalog view values may not reflect the settings that were in effect for the
package: Because this statement does not trigger a rebind of the package, the
settings for a package as shown in the SYSCAT.PACKAGES catalog view might
not reflect what was actually in effect during the last BIND or REBIND. If the
ALTER_TIME is greater than the LAST_BIND_TIME, then this might be the case.

* Syntax alternatives: The following syntax alternatives are supported for
compatibility with the BIND and REBIND commands. These alternatives are
non-standard and should not be used.
— APREUSE can be specified in place of ACCESS PLAN REUSE.
— OPTPROFILE can be specified in place of OPTIMIZATION PROFILE.

— KEEPDYNAMIC can be specified in place of KEEP DYNAMIC.
Examples

Example 1: Enable access plan reuse for package TRUUVERT.EMPADMIN.
ALTER PACKAGE TRUUVERT.EMPADMIN ACCESS PLAN REUSE YES

Example 2: Assume access plan reuse has been enabled for package
TRUUVERT.EMPADMIN. Assume also that optimization profile
AYYANG.INDEXHINTS contains a statement profile for a specific statement within
the package. Associate the optimization profile with this package so that it will
override the reuse of the access plan for the statement.

ALTER PACKAGE TRUUVERT.EMPADMIN OPTIMIZATION PROFILE AYYANG.INDEXHINTS

Dynamic statements will be affected after the statement commits; static statements
will be affected at the next rebind. When the package is rebound, the query
compiler will attempt to reuse the access plans for all static statements in the
package, with the exception of the statement identified by the optimization profile.
When recompiling this statement, the query compiler will instead attempt to apply
the statement profile.

Example 3: The following statement will result in no optimization profile being
associated with package TRUUVERT.EMPADMIN.

ALTER PACKAGE TRUUVERT.EMPADMIN OPTIMIZATION PROFILE NONE

Statements 75

ALTER PERMISSION

ALTER PERMISSION

76

The ALTER PERMISSION statement alters a row permission that exists at the
current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

»»>—ALTER PERMISSION—permission—name—[ENABLE ><
DISABLE——|

Description

permission-name
This is the name of the row permission to be altered. The name must identify a
row permission that already exists at the current server (SQLSTATE 42704). The
name must not identify a default row permission that is created implicitly by
the database manager (SQLSTATE 428H09).

ENABLE

Enables the row permission. If row level access control is not currently
activated on the table, the row permission will become effective when row
level access control is activated on the table. If row level access control is
currently activated on the table, the row permission becomes effective
immediately and all packages and dynamic cached statements that reference
the table are invalidated.

ENABLE is ignored if the row permission is already defined as enabled.
DISABLE

Disables the row permission. If row level access control is not currently
activated on the table, the row permission will remain ineffective when row
level access control is activated on the table. If row level access control is
currently activated on the table, the row permission becomes ineffective
immediately and all packages and dynamic cached statements that reference
the table are invalidated.

DISABLE is ignored if the row permission is already defined as disabled.

Examples

¢ Example 1: Enable permission P1.
ALTER PERMISSION P1 ENABLE

e Example 2: Disable permission P1.
ALTER PERMISSION P1 DISABLE

SQL Reference Volume 2

ALTER PROCEDURE (external)

ALTER PROCEDURE (external)

The ALTER PROCEDURE (External) statement modifies an existing external
procedure by changing the properties of the procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* ALTERIN privilege on the schema of the procedure

* Owner of the procedure, as recorded in the OWNER column of the
SYSCAT.ROUTINES catalog view

* DBADM authority

To alter the EXTERNAL NAME of a procedure, the privileges held by the
authorization ID of the statement must also include at least one of the following
authorities:

* CREATE_EXTERNAL_ROUTINE authority on the database
* DBADM authority

To alter a procedure to be not fenced, the privileges held by the authorization ID of
the statement must also include at least one of the following authorities:

¢ CREATE_NOT_FENCED_ROUTINE authority on the database
* DBADM authority

To alter a procedure to be fenced, no additional authorities or privileges are
required.

Syntax

A\
A

»—ALTER—| procedure-designator i Y —EXTERNAL NAME—E'string’ _|

identifier
FENCED
—[NOT FENCED—|
—[EXTERNAL ACTION
NO EXTERNAL ACTION
—[THREADSAFE J
NOT THREADSAFE
—NEW SAVEPOINT LEVEL

procedure-designator:

Statements 77

ALTER PROCEDURE (external)

78

PROCEDURE—procedure-name |
L)] !

Ldata-type

SPECIFIC PROCEDURE—specific-name

Description

procedure-designator

Identifies the procedure to alter. The procedure-designator must identify a
procedure that exists at the current server. The owner of the procedure and all
privileges on the procedure are preserved. For more information, see
“Function, method, and procedure designators” on page 20.

EXTERNAL NAME 'string' or identifier

Identifies the name of the user-written code that implements the procedure.

FENCED or NOT FENCED

Specifies whether the procedure is considered safe to run in the database
manager operating environment's process or address space (NOT FENCED), or
not (FENCED). Most procedures have the option of running as FENCED or
NOT FENCED.

If a procedure is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the procedure. In
general, a procedure running as FENCED will not perform as well as a similar
one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for procedures that were not adequately coded,
reviewed, and tested can compromise the integrity of a DB2 database. DB2
databases take some precautions against many of the common types of
inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED stored procedures are used.

A procedure declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a procedure has any parameters defined AS LOCATOR, and was defined
with the NO SQL option, the procedure cannot be altered to be FENCED
(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE or CLR procedures
(SQLSTATE 42849).

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the procedure takes some action that changes the state of an
object not managed by the database manager (EXTERNAL ACTION), or not
(NO EXTERNAL ACTION). If NO EXTERNAL ACTION is specified, the
system can use certain optimizations that assume the procedure has no
external impact.

THREADSAFE or NOT THREADSAFE

SQL Reference Volume 2

Specifies whether the procedure is considered safe to run in the same process
as other routines (THREADSAFE), or not (NOT THREADSAFE).
If the procedure is defined with LANGUAGE other than OLE:

* If the procedure is defined as THREADSAFE, the database manager can
invoke the procedure in the same process as other routines. In general, to be

ALTER PROCEDURE (external)

threadsafe, a procedure should not use any global or static data areas. Most
programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED procedures can be THREADSAFE.

¢ If the procedure is defined as NOT THREADSAFE, the database manager
will never invoke the procedure in the same process as another routine.
Only a fenced procedure can be NOT THREADSAFE (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE procedures (SQLSTATE
42849).

NEW SAVEPOINT LEVEL
Specifies that a new savepoint level is to be created for the procedure. A
savepoint level refers to the scope of reference for any savepoint-related
statement, as well as to the name space used for comparison and reference of
any savepoint names.

The savepoint level for a procedure can only be altered to NEW SAVEPOINT
LEVEL.

Rules

* It is not possible to alter a procedure that is in the SYSIBM, SYSFUN, or
SYSPROC schema (SQLSTATE 42832).

Example

Alter the procedure PARTS_ON_HAND() to be not fenced.
ALTER PROCEDURE PARTS_ON_HAND() NOT FENCED

Statements 79

ALTER PROCEDURE (sourced)

ALTER PROCEDURE (sourced)

80

The ALTER PROCEDURE (Sourced) statement modifies an existing sourced
procedure by changing the data type of one or more parameters of the sourced
procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* ALTERIN privilege on the schema of the procedure

* Owner of the procedure, as recorded in the OWNER column of the
SYSCAT.ROUTINES catalog view

* DBADM authority

Syntax

v

»—ALTER—| procedure-designator i

»—Y ALTER PARAMETER— parameter-alteration | ><

procedure-designator:

PROCEDURE—procedure-name |
L)] !

Lduta—type

SPECIFIC PROCEDURE—specific-name

parameter-alteration:

|—parameter-name—SET DATA TYPE—data-type I

Description

procedure-designator
Uniquely identifies the procedure to be altered. The identified procedure must
be a sourced procedure (SQLSTATE 42849). For more information, see
“Function, method, and procedure designators” on page 20.

parameter-name
Identifies the parameter to be altered. The parameter-name must identify an

SQL Reference Volume 2

ALTER PROCEDURE (sourced)

existing parameter of the procedure (SQLSTATE 42703). The name must not
identify a parameter that is otherwise being altered in the same ALTER
PROCEDURE statement (SQLSTATE 42713).

data-type
Specifies the new local data type of the parameter. SQL data type specifications
and abbreviations that are valid for the data-type definition of a CREATE
TABLE statement can be specified. BLOB, CLOB, DBCLOB, DECFLOAT, XML,
REFERENCE, and user-defined types are not supported (SQLSTATE 42815).

Example

Assume that federated procedure FEDEMPLOYEE has been created for a remote
Oracle procedure named 'EMPLOYEE'. The data type of an input parameter named
SALARY maps to a DOUBLE(8) in DB2. Alter the data type of this parameter to
DECIMAL(5,2).

ALTER PROCEDURE FEDEMPLOYEE

ALTER PARAMETER SALARY
SET DATA TYPE DECIMAL(5,2)

Statements 81

ALTER PROCEDURE (SQL)

ALTER PROCEDURE (SQL)

82

The ALTER PROCEDURE (SQL) statement modifies an existing SQL procedure by
changing the properties of the procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* ALTERIN privilege on the schema of the procedure

* Owner of the procedure, as recorded in the OWNER column of the
SYSCAT.ROUTINES catalog view

* DBADM authority

Syntax

»—ALTER—| procedure-designator A EXTERNAL ACTION ><
|:NO EXTERNAL ACTION

NEW SAVEPOINT LEVEL——

procedure-designator:

PROCEDURE—procedure-name |
L)] !

Ldatu-type

SPECIFIC PROCEDURE—specific-name

Description

procedure-designator
Identifies the procedure to alter. The procedure-designator must identify a
procedure that exists at the current server. The owner of the procedure and all
privileges on the procedure are preserved. For more information, see
“Function, method, and procedure designators” on page 20.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an
object not managed by the database manager (EXTERNAL ACTION), or not
(NO EXTERNAL ACTION). If NO EXTERNAL ACTION is specified, the
system can use certain optimizations that assume the procedure has no
external impact.

NEW SAVEPOINT LEVEL
Specifies that a new savepoint level is to be created for the procedure. A

SQL Reference Volume 2

ALTER PROCEDURE (SQL)

savepoint level refers to the scope of reference for any savepoint-related
statement, as well as to the name space used for comparison and reference of
any savepoint names.

The savepoint level for a procedure can only be altered to NEW SAVEPOINT
LEVEL.

Rules

* It is not possible to alter a procedure that is in the SYSIBM, SYSFUN, or
SYSPROC schema (SQLSTATE 42832).

Example

Alter the procedure MEDIAN_RESULT_SET to indicate that it has no external
action.

ALTER PROCEDURE MEDIAN_RESULT SET(DOUBLE)
NO EXTERNAL ACTION

Statements 83

ALTER SCHEMA

ALTER SCHEMA

The ALTER SCHEMA statement modifies the data capture attribute of an existing
schema.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* Owner of the schema, as recorded in the OWNER column of
SYSCAT.SCHEMATA catalog view

* DBADM authority

Syntax

A\
A

»»—ALTER SCHEMA—schema-name—DATA CAPTU RE—ENON E
CHANGES—|

Description

schema-name
Identifies the schema to be altered. The schema-name must identify a schema
that exists at the current server (SQLSTATE 42704).

DATA CAPTURE
Indicates whether extra information for data replication is to be written to the
log.

NONE
Indicates that no extra information for data replication will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this schema will
be written to the log. This option is required if this schema will be
replicated and a replication capture program is used to capture changes for
this schema from the log.

Notes

* Altering the DATA CAPTURE attribute at the schema level causes newly created
tables to inherit the DATA CAPTURE attribute from the schema if one is not
specified at the table level. Altering the DATA CAPTURE attribute at the schema
level does not affect the DATA CAPTURE attribute of existing tables within that
schema. If the DATA CAPTURE attribute is changed and any existing tables do
not match the new attribute, a warning is returned (SQLSTATE 01696).

* To find the list of tables that have the DATA CAPTURE attribute set to
CHANGES, issue the following query:

SELECT TABNAME, TABSCHEMA FROM SYSCAT.TABLES
WHERE TYPE IN ('T','S','L")
AND DATACAPTURE <> 'N'

84 SQL Reference Volume 2

ALTER SCHEMA

e To find the list of tables that have the DATA CAPTURE attribute set to NONE,
issue the following query:

SELECT TABNAME, TABSCHEMA FROM SYSCAT.TABLES
WHERE TYPE IN ('T','S','L")
AND DATACAPTURE = 'N'

Statements 85

ALTER SECURITY LABEL COMPONENT

ALTER SECURITY LABEL COMPONENT

86

The ALTER SECURITY LABEL COMPONENT statement modifies a security label
component.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

»»>—ALTER SECURITY LABEL COMPONENT—component—name—| add-element-clause |-—><

add-element-clause:

|—ADD ELEMENT—string-constant I
i:l array-e1ement-c1ause’;‘

tree-element-clause

array-element-clause:

BEFORE——string-constant |
AFTER

tree-element-clause:

ROOT | |
UNDER—string-constant L
Al OVER—string-constant—\J
Description

component-name
Specifies the name of the security label component to be altered. The named
component must exist at the current server (SQLSTATE 42704).

ADD ELEMENT
Specifies the element to be added to the security label component. If
array-element-clause and tree-element-clause are not specified, the element is
added to a set component.

string-constant
The string constant value to be added to the set of valid values for the

SQL Reference Volume 2

ALTER SECURITY LABEL COMPONENT

security label component. The value cannot be the same as any other value
in the set of valid values for the security label component (SQLSTATE
42713).

BEFORE or AFTER

For an array component, specifies where the element is to be added in the
ordered set of element values for the security label component.

BEFORE
The element to be added is to be ranked immediately before the identified
existing element.

AFTER
The element to be added is to be ranked immediately after the identified
existing element.

string-constant
Specifies a string constant value of an existing element in the array
component (SQLSTATE 42704).

ROOT or UNDER

For a tree component, specifies where the element is to be added in the tree
structure of node element values for the security label component.

ROOT
The element to be added is to be considered the root node of the tree.

UNDER string-constant
The element to be added is an immediate child of the element identified by
the string-constant. The string-constant value must be an existing element in
the tree component (SQLSTATE 42704).

OVER string-constant,...
The element to be added is an immediate child of every element
identified by the list of string-constant values. Each string-constant value
must be an existing element in the tree component (SQLSTATE 42704).

Rules

Element names cannot contain any of these characters (SQLSTATE 42601):
Opening parenthesis - (

Closing parenthesis -)

- Comma -,

— Colon -:

An element name can have no more than 32 bytes (SQLSTATE 42622).

If a security label component is a set or a tree, no more than 64 elements can be
part of that component.

If the component is an array, it might or might not be possible to arrive at an
array whose total number of elements matches the total number of elements that
could be specified when creating a security label component of type array

(65 535). DB2 assigns an encoded value to the new element from within the
interval into which the new element is added. Depending on the pattern
followed when adding elements to an array component, the number of possible
values that can be assigned from within a particular interval might be quickly
exhausted if several elements are inserted into that interval.

BEFORE and AFTER must only be specified for a security label component that
is an array (SQLSTATE 42613).

Statements 87

ALTER SECURITY LABEL COMPONENT

* ROOT and UNDER must only be specified for a security label component that is
a tree (SQLSTATE 42613).

Notes
* For a set component, there is no order to the elements in the set.

Examples
e Example 1: Add the element 'High classified' to the LEVEL security label array
component between the elements 'Secret' and 'Classified'.

ALTER SECURITY LABEL COMPONENT LEVEL
ADD ELEMENT 'High classified' BEFORE 'Classified'

e Example 2: Add the element 'Funding' to the COMPARTMENTS security label set
component.

ALTER SECURITY LABEL COMPONENT COMPARTMENTS
ADD ELEMENT 'Funding'

* Example 3: Add the elements 'ENGINE' and 'TOOLS' to the GROUPS security
label array component. The following diagram shows where these new elements
are to be placed.

PROJECT

ENGINE TOOLS

TEST DEVELOPMENT

CURRENT FIELD
ALTER SECURITY LABEL COMPONENT GROUPS
ADD ELEMENT 'TOOLS' UNDER 'PROJECT'
ALTER SECURITY LABEL COMPONENT GROUPS

ADD ELEMENT 'ENGINE' UNDER 'PROJECT'
OVER 'TEST', 'DEVELOPMENT'

88 SQL Reference Volume 2

ALTER SECURITY POLICY

ALTER SECURITY POLICY
The ALTER SECURITY POLICY statement modifies a security policy.
Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SOLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

»»>—ALTER SECURITY POLICY—security-policy-name >

(1)

A\
A

> ADD SECURITY LABEL COMPONENT—component-name
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
USE GROUP AUTHORIZATIONS
IGNORE GROUP AUTHORIZATIONS—-|
USE ROLE AUTHORIZATIONS
IGNORE ROLE AUTHORIZATIONS—-|

Notes:

1 Only the ADD SECURITY LABEL COMPONENT clause can be specified
more than once.

Description

security-policy-name
Specifies the name of the security policy to be altered. The name must identify
an existing security policy at the current server (SQLSTATE 42710).

ADD SECURITY LABEL COMPONENT component-name
Adds a security label component to the security policy. The same security
component must not be specified more than once for the security policy
(SQLSTATE 42713). The security policy cannot currently be in use by a table
(SQLSTATE 42893).

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT NOT AUTHORIZED
WRITE SECURITY LABEL
Specifies the action taken when a user is not authorized to write the explicitly
specified security label that is provided in the INSERT or UPDATE statement
issued against a table that is protected with this security policy. A user's
security label and exemption credentials determine the user's authorization to
write an explicitly provided security label.

Statements 89

ALTER SECURITY POLICY

90

us

us

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the value of the user's security label, rather than the
explicitly specified security label, is used for write access during an insert
or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the insert or update operation will fail if the user is not

authorized to write the explicitly specified security label that is provided in
the INSERT or UPDATE statement (SQLSTATE 42519).

E GROUP AUTHORIZATION or IGNORE GROUP AUTHORIZATION
Specifies whether or not security labels and exemptions granted to groups,
directly or indirectly, are considered for any access attempt.

USE GROUP AUTHORIZATION
Indicates that any security labels or exemptions granted to groups, directly
or indirectly, are considered.

IGNORE GROUP AUTHORIZATION
Indicates that any security labels or exemptions granted to groups are not
considered.

E ROLE AUTHORIZATION or IGNORE ROLE AUTHORIZATION
Specifies whether or not security labels and exemptions granted to roles,
directly or indirectly, are considered for any access attempt.

USE ROLE AUTHORIZATION
Indicates that any security labels or exemptions granted to roles, directly or
indirectly, are considered.

IGNORE ROLE AUTHORIZATION
Indicates that any security labels or exemptions granted to roles are not
considered.

Rules

If a user does not directly hold a security label for write access, an error is
returned in the following situations (SQLSTATE 42519):

— A value for the row security label column is not explicitly provided as part of
the SQL statement

— The OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option is in
effect for the security policy, and the user is not allowed to write a data object
with the provided security label

Notes

SQL Reference Volume 2

New components are logically added at the end of the existing security label
definition contained by the modified policy. Existing security labels defined for
this security policy are modified to contain the new component as part of their
definition with no element in their value for this component.

Cache invalidation when changing NOT AUTHORIZED WRITE SECURITY
LABEL: Changing the NOT AUTHORIZED WRITE SECURITY LABEL to a new
value will cause the invalidation of any cached dynamic or static SQL statements
that are dependent on any table that is protected by the security policy being
altered.

Because the session authorization ID is the focus authorization ID for label-based
access control, security labels granted to groups or to roles that are accessible
through groups are eligible for consideration for all types of SQL statements,
including static SQL.

ALTER SECURITY POLICY

* If more than one security label or exemption is available to a user with
associated groups or roles at the time of a read or write access attempt, those
security labels and exemptions will be evaluated for eligibility based on the
following rules:

— If the security policy enables only role authorizations for consideration, all
security labels and exemptions granted to roles of which the user
authorization ID is a direct or indirect member will be considered. Security
labels and exemptions granted to roles for which membership is only
accessible through the groups associated with the user authorization ID will
not be considered.

— If the security policy enables only group authorizations for consideration, all
security labels and exemptions granted to groups associated with the user
authorization ID will be considered. Security labels and exemptions granted
to roles for which membership is only accessible through the groups
associated with the user authorization ID will not be considered.

— If the security policy enables both group and role authorizations for
consideration, any security labels and exemptions granted to roles accessible
to the user indirectly through groups associated with the user authorization
ID will be considered.

— Role authorizations that are accessible to the user only through PUBLIC will
not be considered at any time.

¢ If more than one security label is eligible for consideration during an access
attempt, the values provided for each security label are merged at the individual
component level to form a security label that reflects the combination of all
available values at each component piece of the security policy. This is the
security label value that will be used for the access attempt.

The mechanisms for combining security labels vary by component type. The

components of the resultant security label are as follows:

— Set components contain the union of all unique values encountered in the
eligible security labels

— Array components contain the highest order element encountered in the
eligible security labels

— Tree components contain the union of all unique values encountered in the
eligible security labels

* If more than one exemption is eligible for consideration during an access
attempt, all found exemptions are applied to the access attempt.

Examples
e Example 1: Alter a security policy named DATA_ACCESS to add a new
component named REGION.

ALTER SECURITY POLICY DATA_ACCESS
ADD COMPONENT REGION

e Example 2: Alter a security policy named DATA_ACCESS to allow access
through security labels granted to roles.

ALTER SECURITY POLICY DATA_ACCESS
USE ROLE AUTHORIZATIONS

* Example 3: Show the eligible security labels that would be considered depending
on the settings for group or role authorizations in a security policy. The security
policy SECUR_POL has an array component and a set component, consisting of
the following elements:

Array = (TS, S, C, U}
Set = {A, B, X, Y}

Statements 91

ALTER SECURITY POLICY

The following security labels are defined for SECUR_POL:

Security label L1 = C:A

Security label L2 = S:B

Security label L3 = TS:X

Security label L4 = U:Y
User Paul is a member of role R1 and group G1. Group Gl is a member of role
R2. Security label L1 is granted to Paul. Security label L2 is granted to role R1.
Security label L3 is granted to group G1. Security label L4 is granted to role R2.
The following table shows what security labels would be considered for any

access attempt by Paul, depending on the different possible settings of the
security policy SECUR_POL.

Table 11. Security labels considered as a function of security policy settings

Roles Enabled

Roles Disabled

Groups Enabled

L1, L2, L3, L4

L1, L3

Groups Disabled

L1, L2

L1

The following table shows the value of the combined security label for any
access attempt by Paul, depending on the different settings of the security policy

SECUR_POL.
Table 12. Combined security labels as a function of security policy settings
Roles Enabled Roles Disabled
Groups Enabled TS:(A, B, X, Y) TS:(A, X)
Groups Disabled S:(A, B) CA

92 SQL Reference Volume 2

ALTER SEQUENCE

ALTER SEQUENCE
The ALTER SEQUENCE statement can be used to change a sequence.

A sequence can be changed in the following ways:

* Restarting the sequence

* Changing the increment between future sequence values

* Setting or eliminating the minimum or maximum values

¢ Changing the number of cached sequence numbers

» Changing the attribute that determines whether the sequence can cycle or not

* Changing whether sequence numbers must be generated in order of request
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

e ALTER privilege on the sequence to be altered
¢ ALTERIN privilege on the schema implicitly or explicitly specified
* DBADM authority

Syntax
»»—ALTER SEQUENCE—sequence-name >
(1)
> RESTART |_ _| >«
WITH—numeric-constant
—INCREMENT BY—numeric-constant
INVALUE—numeric-constant—li
NO MINVALUE
AXVALUE—numeric-constant
NO MAXVALUE
CYCLE
—[NO CYCLE—|
CACHE—integer—constant—li
NO CACHE
ORDER
—[NO ORDER—|
Notes:

1 The same clause must not be specified more than once.

Statements 93

ALTER SEQUENCE

94

Description

sequence-name

Identifies the sequence that is to be changed. The name, including the implicit
or explicit schema qualifier, must uniquely identify an existing sequence at the
current server. If no sequence by this name exists in the explicitly or implicitly
specified schema, an error (SQLSTATE 42704) is returned. sequence-name must
not be a sequence generated by the system for an identity column (SQLSTATE
428FB).

RESTART

Restarts the sequence. If numeric-constant is not specified, the sequence is
restarted at the value specified implicitly or explicitly as the starting value on
the CREATE SEQUENCE statement that originally created the sequence.

WITH numeric-constant
Restarts the sequence with the specified value. This value can be any
positive or negative value that could be assigned to a column of the data
type associated with the sequence (SQLSTATE 42815), without nonzero
digits existing to the right of the decimal point (SQLSTATE 428FA).

INCREMENT BY numeric-constant

Specifies the interval between consecutive values of the sequence. This value
can be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815). The value must not
exceed the value of a large integer constant (SQLSTATE 42820) and must not
contain nonzero digits to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, then this is a descending sequence. If this value is 0 or
positive, this is an ascending sequence after the ALTER statement.

MINVALUE or NO MINVALUE

Specifies the minimum value at which a descending sequence either cycles or
stops generating values, or an ascending sequence cycles to after reaching the
maximum value.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value can
be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be less than or equal to the maximum value
(SQLSTATE 42815).

NO MINVALUE
For an ascending sequence, the value is the original starting value. For a
descending sequence, the value is the minimum value of the data type
associated with the sequence.

MAXVALUE or NO MAXVALUE

SQL Reference Volume 2

Specifies the maximum value at which an ascending sequence either cycles or
stops generating values, or a descending sequence cycles to after reaching the
minimum value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value can
be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be greater than or equal to the minimum value
(SQLSTATE 42815).

ALTER SEQUENCE

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the data
type associated with the sequence. For a descending sequence, the value is
the original starting value.

CYCLE or NO CYCLE
Specifies whether the sequence should continue to generate values after
reaching either its maximum or minimum value. The boundary of the sequence
can be reached either with the next value landing exactly on the boundary
condition, or by overshooting the value.

CYCLE
Specifies that values continue to be generated for this sequence after the
maximum or minimum value has been reached. If this option is used, after
an ascending sequence reaches its maximum value, it generates its
minimum value; or after a descending sequence reaches its minimum
value, it generates its maximum value. The maximum and minimum
values for the sequence determine the range that is used for cycling.

When CYCLE is in effect, then duplicate values can be generated by DB2
for the sequence.

NO CYCLE
Specifies that values will not be generated for the sequence once the
maximum or minimum value for the sequence has been reached.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory for faster
access. This is a performance and tuning option.

CACHE integer-constant
Specifies the maximum number of sequence values that are preallocated
and kept in memory. Preallocating and storing values in the cache reduces
synchronous I/O to the log when values are generated for the sequence.

In the event of a system failure, all cached sequence values that have not
been used in committed statements are lost (that is, they will never be
used). The value specified for the CACHE option is the maximum number
of sequence values that could be lost in case of system failure.

The minimum value is 2 (SQLSTATE 42815).

NO CACHE
Specifies that values of the sequence are not to be preallocated. It ensures
that there is not a loss of values in the case of a system failure, shutdown
or database deactivation. When this option is specified, the values of the
sequence are not stored in the cache. In this case, every request for a new
value for the sequence results in synchronous I/O to the log.

ORDER or NO ORDER
Specifies whether the sequence numbers must be generated in order of request.

ORDER
Specifies that the sequence numbers are generated in order of request.

NO ORDER
Specifies that the sequence numbers do not need to be generated in order
of request.

Notes

* Only future sequence numbers are affected by the ALTER SEQUENCE
statement.

Statements 95

ALTER SEQUENCE

* The data type of a sequence cannot be changed. Instead, drop and re-create the
sequence specifying the required data type for the new sequence.

* All cached values are lost when a sequence is altered.

 After restarting a sequence or changing to CYCLE, it is possible for sequence
numbers to be duplicate values of ones generated by the sequence previously.

e Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.

— A comma can be used to separate multiple sequence options.

- NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER
can be specified in place of NO MINVALUE, NO MAXVALUE, NO CYCLE,
NO CACHE, and NO ORDER, respectively

Example

A possible reason for specifying RESTART without a numeric value would be to
reset the sequence to the START WITH value. In this example, the goal is to
generate the numbers from 1 up to the number of rows in the table and then
inserting the numbers into a column added to the table using temporary tables.
Another use would be to get results back where all the resulting rows are
numbered:

ALTER SEQUENCE ORG_SEQ RESTART
SELECT NEXT VALUE FOR ORG_SEQ, ORG.* FROM ORG

96 SQL Reference Volume 2

ALTER SERVER

ALTER SERVER

The ALTER SERVER statement is used to modify the definition or configuration of
a data source.

This statement can be used to make the following changes:
* Modify the definition of a specific data source, or the definition of a category of
data sources.

¢ Make changes in the configuration of a specific data source, or the configuration
of a category of data sources-changes that will persist over multiple connections
to the federated database.

In this statement, the word SERVER and the parameter names that start with
server- refer only to data sources in a federated system. They do not refer to the
federated server in such a system, or to DRDA® application servers.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

authority.
Syntax
»>—ALTER SERVER >
»——Sserver-name >

I—VERSION—I server-version 'J

TYPE—server-type

|—VERSION—| server-version i |_ J |
WRAPPER—wrapper-name:

M]
—OPTIONS—("[[—:'—server—apt ion-name—string-constant)
SET
DROP—server-option-name

server-version:

} version |_ I
.—rel easeﬁrglJ
.—mod-

version-string-constant

Description

server-name
Identifies the federated server's name for the data source to which the changes
being requested are to apply. The data source must be one that is described in
the catalog.

Statements 97

ALTER SERVER

VERSION
After server-name, VERSION and its parameter specify a new version of the
data source that server-name denotes.

version
Specifies the version number. The value must be an integer.

release
Specifies the number of the release of the version denoted by version. The
value must be an integer.

mod
Specifies the number of the modification of the release denoted by release.
The value must be an integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant
can be a single value (for example, '8i'); or it can be the concatenated
values of version, release and, if applicable, mod (for example, '8.0.3").

TYPE server-type
Specifies the type of data source to which the changes being requested are to
apply.

VERSION
After server-type, VERSION and its parameter specify the version of the data
sources for which server options are to be enabled, reset, or dropped.

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to interact
with data sources of the type and version denoted by server-type and
server-version. The wrapper must be listed in the catalog.

OPTIONS
Indicates what server options are to be enabled, reset, or dropped for the data
source denoted by server-name, or for the category of data sources denoted by
server-type and its associated parameters.

ADD
Enables a server option.

SET
Changes the setting of a server option.

server-option-name
Names a server option that is to be enabled or reset.

string-constant
Specifies the setting for server-option-name as a character string constant.

DROP server-option-name
Drops a server option.

Notes

* A server option cannot be specified more than once in the same ALTER SERVER
statement (SQLSTATE 42853). When a server option is enabled, reset, or
dropped, any other server options that are in use are not affected.

* An ALTER SERVER statement within a given unit of work (UOW) cannot be
processed (SQLSTATE 55007) under either of the following conditions:

— The statement references a single data source, and the UOW already includes
one of the following;:

98 SQL Reference Volume 2

ALTER SERVER

- A SELECT statement that references a nickname for a table or view within
this data source

- An open cursor on a nickname for a table or view within this data source

- Either an INSERT, DELETE, or UPDATE statement issued against a
nickname for a table or view within this data source

— The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes one of
the following:

- A SELECT statement that references a nickname for a table or view within
one of these data sources

- An open cursor on a nickname for a table or view within one of these data
sources

- Either an INSERT, DELETE, or UPDATE statement issued against a
nickname for a table or view within one of these data sources

e If the server option is set to one value for a type of data source, and set to
another value for an instance of this type, the second value overrides the first
one for the instance. For example, assume that PLAN_HINTS is set to "Y' for
server type ORACLE, and to 'N' for an Oracle data source named DELPHI. This
configuration causes plan hints to be enabled at all Oracle data sources except
DELPHI.

* You can only alter set or alter drop server options for a category of data sources
that was enabled by a prior alter add server option operation (SQLSTATE
42704).

* When altering the server version, DB2 does not verify that the specified server
version matches the remote server version. Specifying an incorrect server version
can result in SQL errors when you access nicknames that belong to the DB2
server definition. This is most likely when you specify a server version that is
later than the remote server version. In that case, when you access nicknames
that belong to the server definition, DB2 might send SQL that the remote server
does not recognize.

Examples

¢ Example 1: Ensure that when authorization IDs are sent to your Oracle 8.0.3 data
sources, the case of the IDs will remain unchanged. Also, assume that the local
federated server CPU is twice as fast as the data source CPU. Inform the
optimizer of this statistic.
ALTER SERVER
TYPE ORACLE
VERSION 8.0.3
OPTIONS
(ADD FOLD_ID 'N',
SET CPU_RATIO '2.0')
* Example 2: Indicate that the Documentum data source called DCTM_SVR_ASIA
has been changed to Version 4.

ALTER SERVER DCTM_SVR_ASIA
VERSION 4

Statements 99

ALTER SERVICE CLASS

ALTER SERVICE CLASS
The ALTER SERVICE CLASS statement alters the definition of a service class.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* SQLADM authority, only if every alteration clause is a COLLECT clause
* WLMADM authority
* DBADM authority

Syntax

»»>—ALTER SERVICE CLASS—service-class-name

I—UNDER—service-supercluss-nameJ

100 SQL Reference Volume 2

ALTER SERVICE CLASS

|

>«

HARD:
»>. |_ —l CPU SHARES—integer-constant
|—SOFTJ

—CPU LIMIT—Einteger-cons tant
NONE4I

—AGENT PRIORITY—EDEFAULT
integer-cons ifani&—I

—PREFETCH PRIORITY DEFAULT
HIGH——
EDIUM—
LOW——

—OUTBOUND CORRELATOR—ENONE
string-constan t—l

—BUFFERPOOL PRIORITY DEFAULT
EHIGH—

MEDIUM—
LOW——
(2)
COLLECT ACTIVITY DATA_EJ\ alter-collect-activity-data-clause
ONE: '—l_
|—BASE—
—COLLECT AGGREGATE ACTIVITY DATA
EXTENDED—
NONE——
|—BASE—|
—COLLECT AGGREGATE REQUEST DATA
|—NONEJ
l—BASE—l
—COLLECT AGGREGATE UNIT OF WORK DATA
I—NONE—I
(3) l—BASE—

NONE———

COLLECT REQUEST METRICS
|:EXTENDED—

(4)
————ACTIVITY LIFETIME HISTOGRAM TEMPLATE—template-name
—ACTIVITY QUEUETIME HISTOGRAM TEMPLATE—template-name

—ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE—template-name

—REQUEST EXECUTETIME HISTOGRAM TEMPLATE—template-name:
—ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE—template-name:

—ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE—template-name
—UOW LIFETIME HISTOGRAM TEMPLATE—template-name

ENABLE
—EDISABLE—l

alter-collect-activity-data-clause:

MEMBER

}—|:ON COORDINATOR: |_ —l
EMBERS
ON ALL |_M —l

»——WITHOUT DETAILS

(5)

WITH—Y——DETAILS

SECTION | |—AND VALUESJ

|—I NCLUDE ACTUALS BAS E—|

Notes:

1 The same clause must not be specified more than once.

2 All COLLECT clauses except for COLLECT REQUEST METRICS are only

valid for a service subclass.

3 The COLLECT REQUEST METRICS clause is only valid for a service

superclass.

Statements

101

ALTER SERVICE CLASS

102

4 The HISTOGRAM TEMPLATE clauses are only valid for a service subclass.

5 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

Description

service-class-name

Identifies the service class that is to be altered. This is a one-part name. It is an
SQL identifier (either ordinary or delimited).The service-class-name must
identify a service class that exists in the database (SQLSTATE 42704). To alter a
service subclass, the service-superclass-name must be specified using the UNDER
clause.

UNDER service-superclass-name

This clause is used only for altering a service subclass. The
service-superclass-name identifies the service superclass of the service subclass
and must identify a service superclass that exists in the database (SQLSTATE
42704).

SOFT CPU SHARES integer-constant or HARD CPU SHARES integer-constant

CPU

Specifies the number of shares of CPU resources that the WLM dispatcher
allocates to this service class when work is executing within this service class.
Valid values for the integer-constant are integers between 1 and 65535.
Qualifying CPU SHARES with the keyword HARD, or specifying CPU SHARES
without qualifying it with the keyword HARD or SOFT, indicates that hard CPU
shares are to be allocated to this service class. Specifying the keyword SOFT
indicates that soft CPU shares are to be allocated to this service class. To use
hard and soft CPU shares with DB2 workload manager dispatcher, you must
enable the wim_disp_cpu_shares database manager configuration parameter.

LIMIT integer-constant or CPU LIMIT NONE

Specifies the maximum percentage of the CPU resources that the WLM
dispatcher can assign to this service class. Valid values for the integer-constant
are integers between 1 and 100. You can also specify CPU LIMIT NONE to
indicate that there is no CPU limit.

AGENT PRIORITY DEFAULT or AGENT PRIORITY integer-constant

SQL Reference Volume 2

Specifies the relative (delta) operating system priority of agents running in the
service class or the normal priority of threads running in DB2. The default
value is DEFAULT.

Important: The agentpri database manager configuration is deprecated since
Version 9.5. It can still be used in pre-Version 9.5 data servers and clients. Also,
agent priority for the WLM service class has been deprecated in Version 10.1
and might be removed in a future release. Start to use the WLM dispatcher
capability instead of agent priority. For more information, see “Agent priority
of service classes has been deprecated” in What's New for DB2 Version 10.1.

When set to DEFAULT, no special action is taken, and agents in the service
class are scheduled according to the normal priority that the operating system
schedules all DB2 threads. When this parameter is set to a value other than
DEFAULT, agents are set to a priority that is equal to the normal priority plus
AGENT PRIORITY when the next activity begins. For example, if the normal
priority is 20 and AGENT PRIORITY is set to -10, the priority of agents in the
service class is set to 20 - 10 = 10.

Note: Agent priority and WLM dispatcher shares cannot be used together.
When the dispatcher is enabled by setting the value of the wim_dispatcher

ALTER SERVICE CLASS

database manager configuration parameter to ON, the specified agent priority
setting is ignored and agent priority is set to the default value until the
dispatcher is disabled.

DB2 workload manager (WLM) does not assign service class agent priority to
work being done within a fenced mode process (FMP). Fenced procedures do
not run their logic within a service class. These fenced procedures run within
the DB2 FMP and this work is not done by DB2 agents. As a reminder, DB2
WLM controls DB2 agents.

On UNIX operating systems and Linux, valid values are DEFAULT and -20 to
20 (SQLSTATE 42615). Negative values denote a higher relative priority.
Positive values denote a lower relative priority.

On Windows operating systems, valid values are DEFAULT and -6 to 6
(SQLSTATE 42615). Negative values denote a lower relative priority. Positive
values denote a higher relative priority.

If AGENT PRIORITY is DEFAULT for a service subclass, it inherits the AGENT
PRIORITY value of its parent superclass. AGENT PRIORITY cannot be altered
for a default subclass (SQLSTATE 5U032). AGENT PRIORITY must be set to
DEFAULT if OUTBOUND CORRELATOR is set (SQLSTATE 42613).

Note: On AIX® the instance owner must have CAP_NUMA_ATTACH and
CAP_PROPAGATE capabilities to set a higher relative priority for agents in a
service class using AGENT PRIORITY. To grant these capabilities, logon as root
and run the following command:

chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

On Solaris 10 or higher, the instance owner must have the proc_priocntl
privilege to set a higher relative priority for agents in a service class using
AGENT PRIORITY. To grant this privilege, logon as root and run the
following command:

usermod -K defaultpriv=basic,proc_priocntl db2user

In this example, proc_priocntl is added to the default privilege set of user
db2user.

Moreover, when DB2 is running in a non-global zone of Solaris, the
proc_priocntl privilege must be added to the zone's limit privilege set. To grant
this privilege to the zone, logon as root and run the following command:

global# zonecfg -z db2zone
zonecfg:db2zone> set Timitpriv="default,proc_priocntl"

In this example, proc_priocntl is added to the limit privilege set of zone
db2zone.

On Solaris 9, there is no facility for DB2 to raise the relative priority of agents.
Upgrade to Solaris 10 or higher to use the service class agent priority.

PREFETCH PRIORITY DEFAULT | HIGH | MEDIUM | LOW
This parameter controls the priority with which agents in the service class can
submit their prefetch requests. Valid values are HIGH, MEDIUM, LOW, or
DEFAULT (SQLSTATE 42615). HIGH, MEDIUM, and LOW mean that prefetch
requests will be submitted to the high, medium, and low priority queues,
respectively. Prefetchers empty the priority queue in order from high to low.
Agents in the service class submit their prefetch requests at the PREFETCH
PRIORITY level when the next activity begins. If PREFETCH PRIORITY is
altered after a prefetch request is submitted, the request priority does not
change. The default value is DEFAULT, which is internally mapped to

Statements 103

ALTER SERVICE CLASS

104

MEDIUM for service superclasses. If DEFAULT is specified for a service
subclass, it inherits the PREFETCH PRIORITY of its parent superclass.

PREFETCH PRIORITY cannot be altered for a default subclass (SQLSTATE
5U032).

OUTBOUND CORRELATOR NONE or OUTBOUND CORRELATOR string-constant

Specifies whether or not to associate threads from this service class to an
external workload manager service class.

If OUTBOUND CORRELATOR is set to a string-constant for the service
superclass and OUTBOUND CORRELATOR NONE is set for a service
subclass, the service subclass inherits the OUTBOUND CORRELATOR of its
parent. OUTBOUND CORRELATOR must be set to NONE if the AGENT
PRIORITY is not set to DEFAULT (SQLSTATE 42613).

OUTBOUND CORRELATOR NONE
For a service superclass, specifies that there is no external workload
manager service class association with this service class, and for a service
subclass, specifies that the external workload manager service class
association is the same as its parent.

OUTBOUND CORRELATOR string-constant
Specifies the string-constant that is to be used as a correlator to associate
threads from this service class to an external workload manager service
class. The external workload manager must be active (SQLSTATE 5U030).
The external workload manager should be set up to recognize the value of
string-constant.

BUFFERPOOL PRIORITY DEFAULT | HIGH | MEDIUM | LOW

This parameter controls the bufferpool priority of pages fetched by activities in
this service class. Valid values are HIGH, MEDIUM, LOW or DEFAULT
(SQLSTATE 42615). Pages fetched by activities in a service class with higher
bufferpool priority are less likely to be swapped out than pages fetched by
activities in a service class with lower bufferpool priority. If DEFAULT is
specified for a service subclass, it inherits the BUFFERPOOL PRIORITY from
its parent superclass.

BUFFERPOOL PRIORITY cannot be altered for a default subclass (SQLSTATE
50032).

COLLECT ACTIVITY DATA

SQL Reference Volume 2

Specifies that information about each activity that executes in this service class
is to be sent to any active activities event monitor when the activity completes.
The COLLECT ACTIVITY DATA clause is only valid for a service subclass.

alter-collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that activity data is to be collected only at the coordinator
member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the
activity is processed. On remote members, a record for the activity may
be captured multiple times as the activity comes and goes on those
members. If the AND VALUES clause is specified, activity input values
will be collected only for the members of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that executes in the service class
is to be sent to any active activities event monitor, when the activity

ALTER SERVICE CLASS

completes execution. Details about statement, compilation
environment, and section environment data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to be
sent to any active activities event monitor, for those activities that
have them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment, section
environment data, and section actuals are to be sent to any active
activities event monitor for those activities that have them.
DETAILS must be specified if SECTION is specified. Section
actuals will be collected on any partition where the activity data is
collected.

INCLUDE ACTUALS BASE
Specifies that section actuals should also be collected on any
partition where the activity data is collected. For section actuals
to be collected, either INCLUDE ACTUALS clause must be
specified or the section_actuals database configuration
parameter must be set.

The effective setting for the collection of section actuals is the
combination of the INCLUDE ACTUALS clause (specified on
the WORK ACTION, SERVICE CLASS, or WORKLOAD), the
section_actuals database configuration parameter, and the
<collectsectionactuals> setting specified on the
WLM_SET_CONN_ENV routine. For example, if INCLUDE
ACTUALS BASE is specified, yet the section_actuals database
configuration parameter value is NONE and
<collectsectionactuals> is set to NONE, then the effective
setting for the collection of section actuals is BASE.

BASE specifies that the following actuals should be enabled
and collected during the activity's execution:

* Basic operator cardinality counts

* Statistics for each object referenced (DML statements only)

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that
executes in this service class.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data should be captured for this service class
and sent to the statistics event monitor, if one is active. This information is
collected periodically on an interval that is specified by the wim_collect_int
database configuration parameter. The default is COLLECT AGGREGATE
ACTIVITY DATA BASE. The COLLECT AGGREGATE ACTIVITY DATA clause
is only valid for a service subclass.

Statements 105

ALTER SERVICE CLASS

106

BASE
Specifies that basic aggregate activity data should be captured for this
service class and sent to the statistics event monitor, if one is active. Basic
aggregate activity data includes:

 Estimated activity cost high watermark
* Rows returned high watermark

¢ Temporary table space usage high watermark

Note: Only activities that have an SQLTEMPSPACE threshold applied to
them participate in this high watermark.

* Activity life time histogram
¢ Activity queue time histogram
* Activity execution time histogram
EXTENDED
Specifies that all aggregate activity data should be captured for this service

class and sent to the statistics event monitor, if one is active. This includes
all basic aggregate activity data plus:

* Activity data manipulation language (DML) estimated cost histogram
* Activity DML inter-arrival time histogram
NONE

Specifies that no aggregate activity data should be captured for this service
class.

COLLECT AGGREGATE REQUEST DATA

Specifies that aggregate request data should be captured for this service class
and sent to the statistics event monitor, if one is active. This information is
collected periodically on an interval specified by the wim_collect_int database
configuration parameter. The default is COLLECT AGGREGATE REQUEST
DATA NONE. The COLLECT AGGREGATE REQUEST DATA clause is valid
only for a service subclass.

BASE
Specifies that basic aggregate request data should be captured for this
service class and sent to the statistics event monitor, if one is active.

NONE
Specifies that no aggregate request data should be captured for this service
class.

COLLECT AGGREGATE UNIT OF WORK DATA

SQL Reference Volume 2

Specifies that aggregate unit of work data is to be captured for this service
class and sent to the statistics event monitor, if one is active. This information
is collected periodically on an interval that is specified by the wim_collect_int
database configuration parameter. The default, when COLLECT AGGREGATE
UNIT OF WORK DATA is specified, is COLLECT AGGREGATE UNIT OF
WORK DATA BASE.

BASE
Specifies that basic aggregate unit of work data is to be captured for this
service class and sent to the statistics event monitor, if one is active. Basic
aggregate unit of work data includes:

* Unit of work lifetime histogram
NONE

Specifies that no aggregate unit of work data is to be collected for this
service class.

ALTER SERVICE CLASS

COLLECT REQUEST METRICS
Specifies that monitor metrics should be collected for any request submitted by
a connection that is associated with the specified service superclass and sent to
the statistics and unit of work event monitors, if active. The default is
COLLECT REQUEST METRICS NONE. The COLLECT REQUEST METRICS
clause is only valid for a service superclass (SQLSTATE 50U44).

Note: The effective request metrics collection setting is the combination of the
attribute specified by the COLLECT REQUEST METRICS clause on the service
superclass associated with the connection submitting the request, and the
mon_req_metrics database configuration parameter. If either the service
superclass attribute or the configuration parameter has a value other than
NONE, metrics will be collected for the request.

BASE
Specifies that basic metrics will be collected for any request submitted by a
connection associated with the service superclass.

EXTENDED
Specifies that basic metrics will be collected for any request submitted by a
connection associated with the service superclass. In addition, specifies that
the values for the following monitor elements should be determined with
additional granularity:

* total_section_time

* total_section_proc_time

* total_routine_user_code_time

* total_routine_user_code_proc_time
e total_routine_time

NONE
Specifies that no metrics will be collected for any request submitted by a
connection associated with the service superclass.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of DB2 activities running in the
service class during a specific interval. This time includes both time queued
and time executing. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or
EXTENDED option. This clause is only valid for a service subclass.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that DB2 activities running in
the service class are queued during a specific interval. This information is only
collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified, with either the BASE or EXTENDED option. This clause is only valid
for a service subclass.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that DB2 activities running in
the service class are executing during a specific interval. This time does not
include the time spent queued. Activity execution time is collected in this
histogram at the coordinator member only. The time does not include idle
time. Idle time is the time between the execution of requests belonging to the
same activity when no work is being done. An example of idle time is the time
between the end of opening a cursor and the start of fetching from that cursor.

Statements 107

ALTER SERVICE CLASS

This information is only collected when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or EXTENDED
option. This clause is only valid for a service subclass.

REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, that DB2 requests running in the
service class are executing during a specific interval. This time does not
include the time spent queued. Request execution time is collected in this
histogram on each member where the request executes. This information is
only collected when the COLLECT AGGREGATE REQUEST DATA clause is
specified with the BASE option. This clause is only valid for a service subclass.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the estimated cost, in timerons, of DML activities running in the
service class. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED
option. This clause is only valid for a service subclass.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in milliseconds, between the arrival of one DML
activity and the arrival of the next DML activity. This information is only
collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified with the EXTENDED option. This clause is only valid for a service
subclass.

UOW LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in milliseconds, of units of work running in the
service class during a specific interval. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the
COLLECT AGGREGATE UNIT OF WORK DATA clause is specified with the
BASE option.

ENABLE or DISABLE
Specifies whether or not connections and activities can be mapped to the
service class.

ENABLE
Connections and activities can be mapped to the service class.

DISABLE
Connections and activities cannot be mapped to the service class. New
connections or activities that are mapped to a disabled service class will be
rejected (SQLSTATE 5U028). When a service superclass is disabled, its
service subclasses are also disabled. When the service superclass is
re-enabled, its service subclasses return to states that are defined in the
system catalog. A default service class cannot be disabled (SQLSTATE
50032).

Rules

* A workload management (WLM)-exclusive SQL statement must be followed by
a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:

— CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or
DROP (histogram template)

— CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (service class)

108 SQL Reference Volume 2

ALTER SERVICE CLASS

— CREATE THRESHOLD, ALTER THRESHOLD, or DROP (threshold)

— CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (work
action set)

— CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (work
class set)

— CREATE WORKLOAD, ALTER WORKLOAD, or DROP (workload)

— GRANT (workload privileges) or REVOKE (workload privileges)

* A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

* Only one uncommitted WLM-exclusive SQL statement at a time is allowed
across all members. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

* Changes are written to the system catalog, but do not take effect until after a
COMMIT statement, even for the connection that issues the statement.

 After the ALTER SERVICE CLASS statement is committed, changes to AGENT
PRIORITY, PREFETCH PRIORITY, OUTBOUND CORRELATOR, and COLLECT
take effect for the next new activity in the service class. Existing activities in the
service class continue to complete their work using the old settings.

e Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.

— o DATABASE PARTITION can be specified in place of MEMBER, except
when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

— o DATABASE PARTITIONS can be specified in place of MEMBERS, except
when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples

* Example 1: Alter the agent priority of agents in service superclass PETSALES to
raise it from DEFAULT to the highest possible value (shown for UNIX and
Linux operating systems; on Windows operating systems, substitute 6).

ALTER SERVICE CLASS PETSALES AGENT PRIORITY -20

* Example 2: Alter service superclass BARNSALES and add an outbound correlator
‘osLowPriority'. Threads running in the service superclass and its service
subclasses will have the outbound correlator 'osLowPriority' associated with
them.

ALTER SERVICE CLASS BARNSALES OUTBOUND CORRELATOR 'osLowPriority'

Statements 109

ALTER STOGROUP

ALTER STOGROUP

110

The ALTER STOGROUP statement is used to alter the definition of a storage
group.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

»»—ALTER—STOGROUP—s toragegroup-name >
‘ r (1)

»Y —ADD—Y-'storage-path’ ><

DROP—Y—'storage-path’

—OVERHEAD—number-of-milliseconds

—DEVICE READ RATE—number-megabytes-per-second—

—DATA TAG integer-constant
|:NONE

—SET AS DEFAULT

Notes:

1 Each clause can be specified only once.

Description

storagegroup-name
Identifies the storage group to be altered; storagegroup-name must identify a
storage group that exists at the current server (SQLSTATE 42704). This is a
one-part name.

ADD
Specifies that one or more new storage paths are to be added to the specified
storage group.

storage-path
A string constant that specifies either an absolute path or the letter name of
a drive (Windows operating systems only) on which containers for
automatic storage table spaces are to be created. The string can include
database partition expressions to specify database partition number
information in the storage path. For predictable performance, ensure the
storage paths added to a storage group have similar media characteristics.

SQL Reference Volume 2

ALTER STOGROUP

The maximum length of a storage path is 175 characters (SQLSTATE
54036). A storage path being added must be valid according to the naming
rules for paths, and must be accessible (SQLSTATE 57019). Similarly, in a
partitioned database environment, the storage path must exist and be
accessible on every database partition (SQLSTATE 57019).

DROP
Specifies that one or more storage paths are to be removed from the given
storage group. If table spaces are actively using a storage path being dropped,
then the state of the storage path is changed from "In Use" to "Drop Pending"
and future use of the storage path will be prevented.

The DROP storage-path clause is not supported in a DB2 pureScale environment
(SQLSTATE 56038).

storage-path
A string constant that specifies either an absolute path or the letter name of
a drive (Windows operating systems only). The string can include database
partition expressions to specify database partition number information in
the storage path.

A storage path being dropped must currently exist in the storage group
(SQLSTATE 57019) and cannot already be in the "Drop Pending" state
(SQLSTATE 55073).

OVERHEAD number-of-milliseconds
Specifies the I/O controller usage and disk seek and latency time. This value is
used to determine the cost of I/O during query optimization. The value of
number-of-milliseconds is any numeric literal (integer, decimal, or floating point).
If this value is not the same for all storage paths, set the value to a numeric
literal which represents the average for all storage paths that belong to the
storage group.

DEVICE READ RATE number-megabytes-per-second
Represents the device specification for the read transfer rate in megabytes per
second. This value is used to determine the cost of 1/O during query
optimization. The value of number-megabytes-per-second is any numeric literal
(integer, decimal, or floating point). If this value is not the same for all storage
paths, set the value to a numeric literal which represents the average for all
storage paths that belong to the storage group.

DATA TAG integer-constant or DATA TAG NONE
Specifies a tag for the data in a given storage group. This value can be used as
part of a WLM configuration in a work class definition or referenced within a
threshold definition. For more information, see the CREATE WORK CLASS
SET, ALTER WORK CLASS SET, CREATE THRESHOLD, and ALTER
THRESHOLD statements.

integer-constant
Valid values for integer-constant are integers from 1 to 9.

NONE
If NONE is specified, there is no data tag.

SET AS DEFAULT
Specifies that the storage group being altered is designated as the default
storage group. There can be only one storage group designated as the default
storage group. There is no affect to the existing table spaces using that storage
group. The designated default storage group is used by automatic storage table

Statements 111

ALTER STOGROUP

spaces when no storage group is specified at table space creation and a
database managed table space is converted to automatic storage managed
during redirected restore.

Rules

* A storage group must have at least one storage path. Dropping all storage paths

from the storage group is not permitted (SQLSTATE 428HH).

The ALTER STOGROUP statement cannot be executed while a database partition
server is being added (SQLSTATE 55071).

A storage group can have up to 128 defined storage paths (SQLSTATE 5U009).

A transaction can have at most one ALTER STOGROUP statement per storage
group. In the case of the default storage group, there can be at most one ALTER
DATABAGSE statement or one ALTER STOGROUP statement on the default
storage group (SQLSTATE 25502).

Notes

* Adding new storage paths: When adding new storage paths:

— Existing REGULAR and LARGE table spaces using this storage group will not
initially use these new paths. The database manager might choose to create
new table space containers on these paths only if an out-of-space condition
occurs. You can issue ALTER TABLESPACE REBALANCE statements for
existing table spaces to stripe them over the newly added storage paths.

— Existing temporary table spaces managed by automatic storage do not
automatically use new storage paths. The database must be stopped normally
then restarted for containers in these table spaces to use the new storage path
or paths. As an alternative, the temporary table spaces can be dropped and
re-created. When created, these table spaces automatically use all storage
paths that have sufficient free space.

* Calculation of free space: When free space is calculated for a storage path on a

database partition, the database manager checks for the existence of the
following directories or mount points within the storage path, and will use the
first one that is found.

<storage path>/<instance name>/NODE####/<database name>

<storage path>/<instance name>/NODE####

<storage path>/<instance name>

<storage path>

Where:
— <storage path> is a storage path associated with the database.
— <instance name> is the instance under which the database resides.

— NODE#### corresponds to the database partition number (for example,
NODEO0000 or NODE0001).

— <database name> is the name of the database.

Isolating multiple database partitions under one storage path: File systems can
be mounted at a point beneath the storage path, and the database manager will
recognize that the actual amount of free space available for table space
containers might not be the same amount that is associated with the storage
path directory itself.

Consider an example in which two logical database partitions exist on one
physical computer, and there is a single storage path (/db2data). Each database
partition will use this storage path, but you might want to isolate the data from
each partition within its own file system. In this case, a separate file system can
be created for each partition and it can be mounted at /db2data/<instance>/

112 SQL Reference Volume 2

ALTER STOGROUP

NODE####. When creating containers on the storage path and determining free
space, the database manager will not retrieve free space information for
/db2data, but instead will retrieve it for the corresponding /db2data/
<instance>/NODE#### directory.

* Dropping a storage path that is in use by one or more table spaces: When
dropping a storage path that is in use by one or more table spaces, the state of
the path changes from "In Use" to "Drop Pending". Future growth on the path
will not occur. Before the path can be fully removed from the storage group,
each affected table space must be rebalanced (using the REBALANCE clause of
the ALTER TABLESPACE statement) so that its container data is moved off the
storage path. Rebalance is supported only for REGULAR and LARGE table
spaces. Drop and re-create temporary table spaces to have their containers
removed from the dropped path. When the path is no longer in use by any table
space, it will be physically removed from the database.

For a partitioned database environment, the path is maintained independently
on each partition. When a path is no longer in use on a given database partition,
it will be physically removed from that partition. Other partitions might still
show the path as being in the "Drop Pending" state. The list of automatic storage
table spaces using drop pending storage paths can be determined by issuing the
following SQL statement:

SELECT DISTINCT TBSP_NAME, TBSP_ID, TBSP_CONTENT_TYPE
FROM TABLE(MON_GET_TABLESPACE(NULL,-2)) AS T
WHERE TBSP_PATHS_DROPPED = 1

* Dropping a storage path that was added to a storage group multiple times: It is
possible for a given storage path to be added to a storage group multiple times.
When using the DROP clause, specifying that particular path once will drop all
instances of the path from the storage group.

Examples
* Example 1: Add drives D and E to the storage group named COMPLIANCE.
ALTER STOGROUP COMPLIANCE ADD 'D:\', 'E:\'

e Example 2: Change the data tag for the OPERATIONAL storage group and
designate it as the default storage group.

ALTER STOGROUP OPERATIONAL DATA TAG 3 SET AS DEFAULT

* Example 3: Add a storage path that uses a database partition expression to
differentiate the storage paths on each of the database partitions.

ALTER STOGROUP TESTDATA ADD '/dataForPartition $N'

* Example 4: Remove paths /db2/filesysteml and /db2/filesystem? from storage
group TESTDATA.

ALTER STOGROUP TESTDATA DROP '/db2/filesysteml', '/db2/filesystem2'

Statements 113

ALTER TABLE

ALTER TABLE

The ALTER TABLE statement alters the definition of a table.
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

e ALTER privilege on the table to be altered

* CONTROL privilege on the table to be altered
* ALTERIN privilege on the schema of the table
* DBADM authority

To create or drop a foreign key, the privileges held by the authorization ID of the
statement must include one of the following authorities on the parent table:

* REFERENCES privilege on the table

* REFERENCES privilege on each column of the specified parent key
* CONTROL privilege on the table

¢ DBADM authority

To drop the primary key or a unique constraint on table T, the privileges held by
the authorization ID of the statement must include at least one of the following
authorities on every table that is a dependent of this parent key of T:

* ALTER privilege on the table

* CONTROL privilege on the table

* ALTERIN privilege on the schema of the table
¢ DBADM authority

To alter a table to become a materialized query table (using a fullselect), the
privileges held by the authorization ID of the statement must include at least one
of the following authorities:

* CONTROL privilege on the table

* DBADM authority

and at least one of the following authorities on each table or view identified in the

fullselect (excluding group privileges):

* SELECT privilege and ALTER privilege (including group privileges) on the table
or view

e CONTROL privilege on the table or view

e SELECT privilege on the table or view, and ALTERIN privilege (including group
privileges) on the schema of the table or view

* DATAACCESS authority

114 SQL Reference Volume 2

ALTER TABLE

To alter a table so that it is no longer a materialized query table, the privileges held
by the authorization ID of the statement must include at least one of the following
authorities on each table or view identified in the fullselect used to define the
materialized query table:

e ALTER privilege on the table or view

* CONTROL privilege on the table or view

* ALTERIN privilege on the schema of the table or view
* DBADM authority

To add a column of type DB2SECURITYLABEL to a table, the privileges held by
the authorization ID of the statement must include at least a security label from the
security policy associated with the table.

To remove the security policy from a table, the privileges held by the authorization
ID of the statement must include SECADM authority.

To alter a table to attach a data partition, the privileges held by the authorization
ID of the statement must also include at least one of the following authorities on
the source table:

¢ SELECT privilege on the table and DROPIN privilege on the schema of the table
* CONTROL privilege on the table
¢ DATAACCESS authority

and at least one of the following authorities on the target table:
¢ ALTER and INSERT privileges on the table

* CONTROL privilege on the table

¢ DATAACCESS authority

To alter a table to detach a data partition, the privileges held by the authorization
ID of the statement must also include at least one of the following authorities on
the target table of the detached partition:

* CREATETAB authority on the database, and USE privilege on the table spaces
used by the table, as well as one of:

— IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the new table does not exist

— CREATEIN privilege on the schema, if the schema name of the new table
refers to an existing schema

* DBADM authority

and at least one of the following authorities on the source table:
e SELECT, ALTER, and DELETE privileges on the table

* CONTROL privilege on the table

* DATAACCESS authority

To alter a table to activate not logged initially with empty table, the privileges held
by the authorization ID of the statement must include at least one of the following
authorities:

* ALTER and DELETE privileges on the table
* CONTROL privilege on the table
* DBADM authority

Statements 115

ALTER TABLE

To alter a table that is protected by a security policy to activate not logged initially
with empty table, the privileges held by the authorization ID of the statement must
include at least one of the following authorities:

* CONTROL privilege on the table
* DBADM authority

To alter a table to ACTIVATE and DEACTIVATE row and column access control,
the privileges held by the authorization ID of the statement must include the
SECADM authority.

To alter a table with ACTIVATE NOT LOGGED INITIALLY WITH EMPTY TABLE,
if that table has row access control activated, the privileges held by the
authorization ID of the statement must include at least one of the following
authorities:

e CONTROL privilege on the table
* DBADM authority

To alter a table to become a system-period temporal table (with the ADD
VERSIONING clause) or alter a system-period temporal table when one or more of
the changes also result in changes to the associated history table, the privileges that
are held by the authorization ID of the statement must also include at least one of
the following authorities:

e ALTER privilege on the history table

* CONTROL privilege on the history table

* ALTERIN privilege on the schema of the history table
* DBADM authority

Syntax

»»>—ALTER TABLE—table-name >

116 SQL Reference Volume 2

ALTER TABLE

| COLUMN
>. S ADD- [1 column-definition }

>4

. X |
unique-constraint

referential-constraint '7

check-constraint

|7
distribution-clause |7

ESTRICT ON DROP:

ATERIALIZED
ru—QUERY
LADD 1

CHECK

| materialized-query-definition

—ALTER: FOREIGN KEY. onstraint-name—| constraint-alteration |—

COLUMN
—ALTER—I_——|—| column-alteration i

(2)
ACTIVATE ROW ACCESS CONTROL

DEACTIVATE
(3)

ACTIVATE—J—COLUMN ACCESS CONTROL:
—[DEACTIVATE

—RENAME COLUMN—source-column-name—T0—target-column-name
-DROP——PRIMARY KEY.

FOREIGN KEY——constraint-name
—EUNIQUE

CHECK——
CONSTRAINT—
COLUMN CASCADE
l— —l o Lumn-nam |— _l
|—RESTRICTJ

RESTRICT ON DROP-
—DROP DISTRIBUTION

MATERIALIZE
—DROP: [D—l QUERY:

—ADD PERIOD—I period-definition I

—DROP PERIOD—period-name
—DATA CAPTURE NONE-

CHANGES l
|—INCLUDE LONGVAR COLUMNSJ

—ACTIVATE NOT LOGGED INITIALLY
|—WITH EMPTY TABLE—I
—PCTFREE—integer-

L-LOCKSIZE——ROM
BLOCKINSERT—I
TABLE——
|- APPEND——ON
Lorr]
CARDINALITY.
L il

—EVOLATI LE
NOT VOLATILE—I
ADAPTIVE

—COMPRESS YES
Lsmnc_l |

ACTIVATE VALUE COMPRESSION:

DEACTIVATE

LLOG INDEX BUILD——NULL
EOFF—|
oN—

—ADD PARTITION. add-partition i

—ATTACH PARTITIO —| attach-partition }

—DETACH PARTITION—partition—name—INT&—tabZe-namel
—ADD SECURITY POLICY—policy-name

—DROP SECURITY POLICY

—ADD VERSIONING—USE HISTORY TABLE—history-table-name
'-DROP VERSIONING

add-partition:

v

| | boundary-spec |
[
|—par‘titz’on—nameJ !

|—IN—tablespace—nameJ

|—INDEX IN—tablespace-name

|—LONG IN—t‘ablespace—nameJ

Statements

117

ALTER TABLE

118

boundary-spec:

starting-clause '—| ending-clause i |
ending-clause i

starting-clause:

INCLUSIVE
[il

INVALUE |-—EXCLUSIVE——I
AXVALUE

constant

MINVALUE

MAXVALUE

FROI
[—STARTING |_ M—l (onstont:‘)

ending-clause:

o |—AT—| ’7, |—INCLUSIVE—|

MINVALUE |—EXCLUSIVE—|

MAXVALUE

constant
MINVALUE}
MAXVALUE

[—ENDING (—Y i:..onst‘ant:‘)

attach-partition:

| | boundary-spec |—FROM—tabZe—name
[
|—par‘7.‘ition-nameJ !

|—BUILD MISSING INDEXES——

|—REQU IRE MATCHING INDEXES—

column-definition:

f—column-name
(4) L‘ column-options ’J
data-type |7

column-options:

SQL Reference Volume 2

ALTER TABLE

—NOT NULL

(5)

—| lob-options i

—SCOPE—Etyped-tab le-name?2-
ifyped-view-namez—I

(6)

(7)

NOT HIDDEN—l
J:IMPLICITLV HIDDEN

I—CONSTRAINT—constmint-name—l ELPRIMARY KEY—I

default-clause i
I:l generated-clause 'J
—COMPRESS SYSTEM DEFAULT:

I:COLUMN:I
SECURED WITH—security-label-nai

UNIQUE:

references-clause }
HECK—(—check-condztion—)—| constraint-attributes '—

lob-options:

LOGGED——— NOT COMPACT—
|_ . |_ ' |
L L !
NOT LOGGED- COMPACT——
references-clause:
[—REFERENCES table-name >
|:nicknameJ —————————
(—Y—column-name——)

»—I rule-clause '—|

rule-clause:

|—0N DELETE NO

constraint-attributes i |

ACTION——— |—ON UPDATE NO ACTION—l

@

|—ON DELETE—E

CASCADE
SET NUL

®
RESTRICT{|7 |—ON UPDATE RESTRICTJ
L

constraint-attributes:

ENFORCED
|_

l—ENABLE QUERY OPTIMIZATION—|

I—OL

NOT ENFORCED

B e I
|—TRUSTED— DISABLE QUERY OPTIMIZATION

default-clause:

NOT TRUSTED—

Statements 119

ALTER TABLE

WITH
|—|_——|—DEFAULT

—constant

—datetime-special-register

—user-special-register
—CURRENT SCHEMA

—CURRENT MEMBER

—NULL

user-special-register
CURRENT SCHEMA

—cast-function—(constant
Edatet ime-special-register—

EMPTY_CLOB()
L _EMPTY DBCLOB()

L_EMPTY_BLOB()

generated-clause:

ALWAYS———
|_

GENERATED i as-row-change-timestamp-clause i

|—BY DEFAULT—

|—ALWAYS—|
GENERATED | as-generated-expression-clause
as-row-transaction-timestamp-clause
as-row-transaction-start-id-clause

as-row-change-timestamp-clause:

(8)
|7FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-generated-expression-clause:

|—AS—(—generation-expression—)

as-row-transaction-timestamp-clause:

AS—ROW BEGIN
|_ _[ENDJ

as-row-transaction-start-id-clause:

|—AS—TRANSACTION START ID

unique-constraint:

I |_ J |_UNIQUE
CONSTRAINT—constraint-name PRIMARY KEY

120 SQL Reference Volume 2

ALTER TABLE

»—(—Y—column-name

) I
l—,—BUS INESS_TIME—WITHOUT OVERLAPS—|

referential-constraint:

s

} B B FOREIGN KEY—(—Ycolumn-name) >
CONSTRAINT—constraint-name

> references-clause | }

check-constraint:

' CHECK—(—| check-condition |—)
|
|—CONSTRAINT—constraimt—name—|

>—| constraint-attributes i |
check-condition:
search-condition i
functional-dependency

functional-dependency:

column-name

DETERMINED BY——column-name }

H B

(—Y—column-name——) (—Y—column-name——)

distribution-clause:

——

HASH
[—DISTRIBUTE BY [(—Y—column-name) |

materialized-query-definition:

|—(—fullselect—)—| refreshable-table-options i }

refreshable-table-options:

v

|—.—DATA INITIALLY DEFERRED—.—REFRESH—[DEFERRED _| @
IMMEDIATE

Statements 121

ALTER TABLE

|—ENABLE QUERY OPTIMIZATION

| 2

constraint-alteration:

B 19T,
DISABLE QUERY OPTIMIZATION AINTAINED BY i:SYSTEM

USER
FEDERATED_TOOL—

| ©
— ENABLE

ENFORCED

_| QUERY OPTIMIZATION

DISABLE

NOT ENFORCED

TRUSTED——
|_

column-alteration:

b—column-name——SET

NOT NULL

|—NOT TRUSTED-

DATA TYPE—I altered-data-type i

INLINE LENGTH—intege
default-clause }

r

NOT HIDDEN

XPRESSION—| as-generated-expression-clause -

IMPLICITLY HIDDEN—I
—SET—| generation-alteration

I—SET—| generation-alterati
—SET—| generation-attribute
ALWAYS
—SET GENERATED.

i identity-alteration |7
dF

as-identity-clause

'—

as-generated-expression-clause
as-row-transacton-start-id-clause
as-row-transaction-timestamp-clause

—DROP DEFAULT
EGENERATED
NOT NULL

e.

—ADD SCOPE—Etyped- table-nam
typed-view-name

]

COMPRESS—-SYSTEM DEFAULT
oFF— |

—DROP COLUMN SECURITY

—SECURED WITH—security-label-name

altered-data-type:

built-in-type i
(10)
istinct-type-name

T

built-in-type:

122 SQL Reference Volume 2

ALTER TABLE

' INTEGER |
| |
L-INT

L BIGINT

DECIMAL
|—DECJ L O——
NUMERIC (integer%_)_
NUM——| integer—

(53) ’

——FLOAT

|—(imteger')—
—REAL

PRECISTON
[1

—DOUBLE

—DECFLOAT
L (16)

|_ -
CHARACTER
|—CHARQ |—(z'mfeger)— J |—FOR BIT DATAJ

VARCHAR J (integer)
—E[CHARACTER VARYING
CHAR

(1M)

CLOB J |_
CHARACTER LARGE OBJECT (integer)—
CHAR L

~
|

<

o

(1)
GRAPHIC [
(integer)—
VARGRAPHIC— (integer)
|—(1M)

DBCLOB

|—(in1.‘eger')

M
1V

—(1M)

—[BLOB J
BINARY LARGE OBJECT —(integer)—

<

[<p}

as-identity-clause:

Statements 123

ALTER TABLE

124

F—AS IDENTITY

| (9) 1 |
(—X————START WITH numeric-constant
1
—INCREMENT BY numeric-constant
NO MINVALUE |
INVALUE—numeric-constant
NO MAXVALUE |
AXVALUE—numeric-constant
NO CYCLE
CYCLE —l

CACHE 20
~ENO CACHE
CACHE—integer-constant—

generation-alteration:

|—SET GENERATED——ALWAYS
BY DEFAULT-]

identity-alteration:

| (9)

—————SET INCREMENT BY—numeric-constant
—SET——NO MINVALUE
MINVALUE—numeric-constant

—SET—[NO MAXVALUE:
MAXVALUE—numeric-constant—|
—SET—[NO CYCLE
CYCLEJ
—SET—[NO CACHE
CACHE—integer—constant—l

—SET NO ORDE.\
ORDER

—RESTART

I—WITH—numeric—cons tan t—l

generation-attribute:

[ALIAYS—
|—GENERATED

|—BY DEFAULT-

period-definition:

SYSTEM_TIME (—begin-column-name— ,—end-column-name—)
BUSINESS_TIME

Notes:
1 The same clause must not be specified more than once (SQLSTATE 42614).
2 If an ACTIVATE or DEACTIVATE clause is specified for row access control,

SQL Reference Volume 2

9
10

ALTER TABLE

no other clause except ACTIVATE or DEACTIVATE column access control can
be specified in the same ALTER TABLE statement (SQLSTATE 42613).

If an ACTIVATE or DEACTIVATE clause is specified for column access
control, no other clause except ACTIVATE or DEACTIVATE row access
control can be specified in the same ALTER TABLE statement (SQLSTATE
42613).

If the first column option chosen is generated-clause, data-type can be omitted;
it will be computed by the generation expression.

The lob-options clause only applies to large object types (CLOB, DBCLOB, and
BLOB), and to distinct types that are based on large object types.

The SCOPE clause only applies to the REF type.

The default-clause and generated-clause cannot both be specified for the same
column definition (SQLSTATE 42614).

Data type is optional for a row change timestamp column if the first
column-option specified is a generated-clause; the data type default is
TIMESTAMP(6). Data type is optional for row-begin, row-end, and
transaction-start-ID columns if the first column-option is a generated-clause;
the data type default is TIMESTAMP(12)

The same clause must not be specified more than once.

The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type (SQLSTATE 428H2).

Description

table-name

ADD

The table-name must identify a table that exists at the current server. It cannot
be a nickname (SQLSTATE 42809) and must not be a view, a catalog table, a
created temporary table, or a declared temporary table (SQLSTATE 42995).

If table-name identifies a materialized query table, alterations are limited to
adding or dropping the materialized query, invoking the ACTIVATING NOT
LOGGED INITIALLY clause, adding or dropping RESTRICT ON DROP,
modifying data capture, pctfree, locksize, append, volatile, data row
compression, value compression, and activating or deactivating row and
column access control.

If table-name identifies a range-clustered table, alterations are limited to adding,
changing, or dropping constraints, activating not logged initially, adding or
dropping RESTRICT ON DROP, changing locksize, data capture, or volatile,
and setting column default values.

column-definition

Adds a column to the table. The table must not be a history table for a
system-period temporal table (SQLSTATE 428HZ) or a typed table (SQLSTATE
428DH). For all existing rows in the table, the value of the new column is set
to its default value. The new column is the last column of the table; that is, if
initially there are n columns, the added column is column n+1.

Adding the new column must not make the total byte count of all columns
exceed the maximum record size.

If the table is a system-period temporal table, the column is added to the
associated history table as well.

Statements 125

ALTER TABLE

126

SQL Reference Volume 2

If the added column is a generated column that is based on an expression, the
expression must not reference a column for which a column mask is defined
(SQLSTATE 42621).

If a column is added to a table on which a mask or a permission is defined, or
to a table that is referenced in the definition of a mask or a permission, that
mask or permission is invalidated. Access to a table that has column access
control activated and an invalid mask defined on it is blocked until the invalid
mask is either disabled, dropped, or recreated (SQLSTATE 560D0). Access to a
table that has row access control activated and an invalid row permission
defined on it is blocked until the invalid permission is either disabled,
dropped, or recreated (SQLSTATE 560D0).

column-name
Is the name of the column to be added to the table. The name cannot be
qualified. Existing column names or period names in the table cannot be
used (SQLSTATE 42711).

data-type
Is one of the data types listed under “CREATE TABLE”.

NOT NULL
Prevents the column from containing null values. The default-clause must
also be specified (SQLSTATE 42601).

lob-options
Specifies options for LOB data types. See lob-options in “CREATE TABLE”.

SCOPE
Specify a scope for a reference type column.

typed-table-name2
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name2 (SQLSTATE 428DM).
No checking is done of the default value for column-name to ensure
that the value actually references an existing row in typed-table-name2.

typed-view-name2
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name2 (SQLSTATE 428DM).
No checking is done of the default value for column-name to ensure
that the values actually references an existing row in typed-view-name2.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint that
was already specified within the same ALTER TABLE statement, or as the
name of any other existing constraint on the table (SQLSTATE 42710).

If the constraint name is not specified by the user, an 18 byte long
identifier unique within the identifiers of the existing constraints defined
on the table is generated by the system. (The identifier consists of "SQL"
followed by a sequence of 15 numeric characters that are generated by a
timestamp-based function.)

When used with a PRIMARY KEY or UNIQUE constraint, the
constraint-name may be used as the name of an index that is created to
support the constraint. See Notes for details on index names associated
with unique constraints.

PRIMARY KEY
This provides a shorthand method of defining a primary key
composed of a single column. Thus, if PRIMARY KEY is specified in

ALTER TABLE

the definition of column C, the effect is the same as if the PRIMARY
KEY(C) clause were specified as a separate clause. The column cannot
contain null values, so the NOT NULL attribute must also be specified
(SQLSTATE 42831).

See PRIMARY KEY within the unique-constraint description.

UNIQUE

This provides a shorthand method of defining a unique key composed
of a single column. Thus, if UNIQUE is specified in the definition of
column C, the effect is the same as if the UNIQUE(C) clause were
specified as a separate clause.

See UNIQUE within the unique-constraint description.

references-clause

This provides a shorthand method of defining a foreign key composed
of a single column. Thus, if a references-clause is specified in the
definition of column C, the effect is the same as if that
references-clause were specified as part of a FOREIGN KEY clause in
which C is the only identified column.

See references-clause in “CREATE TABLE”.

CHECK (check-condition)

This provides a shorthand method of defining a check constraint that
applies to a single column. See check-condition in “CREATE TABLE”.

default-clause
Specifies a default value for the column.

WITH

An optional keyword.

DEFAULT

Provides a default value in the event a value is not supplied on
INSERT or is specified as DEFAULT on INSERT or UPDATE. If a
specific default value is not specified following the DEFAULT
keyword, the default value depends on the data type of the column as
shown in Table 13. If a column is defined as an XML or structured
type, then a DEFAULT clause cannot be specified.

If a column is defined using a distinct type, then the default value of
the column is the default value of the source data type cast to the
distinct type.

Table 13. Default Values (when no value specified)

Data Type Default Value

Numeric 0

Fixed-length character string Blanks

Varying-length character string A string of length 0

Fixed-length graphic string Double-byte blanks

Varying-length graphic string A string of length 0

Date For existing rows, a date corresponding to
January 1, 0001. For added rows, the current
date.

Time For existing rows, a time corresponding to 0
hours, 0 minutes, and 0 seconds. For added
rows, the current time.

Statements 127

ALTER TABLE

128

Table 13. Default Values (when no value specified) (continued)

Data Type

Default Value

Timestamp

For existing rows, a date corresponding to
January 1, 0001, and a time corresponding to
0 hours, 0 minutes, 0 seconds and 0
microseconds. For added rows, the current
timestamp.

Binary string (blob) A string of length 0

SQL Reference Volume 2

Omission of DEFAULT from a column-definition results in the use of the
null value as the default for the column.

Specific types of values that can be specified with the DEFAULT
keyword are as follows.

constant
Specifies the constant as the default value for the column. The
specified constant must:

* represent a value that could be assigned to the column in
accordance with the rules of assignment as described in Chapter
3

* not be a floating-point constant unless the column is defined
with a floating-point data type

* be a numeric constant or a decimal floating-point special value if
the data type of the column is decimal floating-point.
Floating-point constants are first interpreted as DOUBLE and
then converted to decimal floating-point. For DECFLOAT(16)
columns, decimal constants must have a precision less than or
equal to 16.

* not have nonzero digits beyond the scale of the column data
type if the constant is a decimal constant (for example, 1.234
cannot be the default for a DECIMAL(5,2) column)

* be expressed with no more than 254 bytes including the quote
characters, any introducer character such as the X for a
hexadecimal constant, and characters from the fully qualified
function name and parentheses when the constant is the
argument of a cast-function.

datetime-special-register
Specifies the value of the datetime special register (CURRENT
DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the time
of INSERT, UPDATE, or LOAD as the default for the column. The
data type of the column must be the data type that corresponds to
the special register specified (for example, data type must be DATE
when CURRENT DATE is specified). For existing rows, the value is
the current date, current time or current timestamp when the
ALTER TABLE statement is processed.

user-special-register
Specifies the value of the user special register (CURRENT USER,
SESSION_USER, SYSTEM_USER) at the time of INSERT, UPDATE,
or LOAD as the default for the column. The data type of the
column must be a character string with a length not less than the
length attribute of a user special register. Note that USER can be
specified in place of SESSION_USER and CURRENT_USER can be

ALTER TABLE

specified in place of CURRENT USER. For existing rows, the value
is the CURRENT USER, SESSION_USER, or SYSTEM_USER of the
ALTER TABLE statement.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register at
the time of INSERT, UPDATE, or LOAD as the default for the
column. If CURRENT SCHEMA is specified, the data type of the
column must be a character string with a length greater than or
equal to the length attribute of the CURRENT SCHEMA special
register. For existing rows, the value of the CURRENT SCHEMA
special register at the time the ALTER TABLE statement is
processed.

CURRENT MEMBER
Specifies the value of the CURRENT MEMBER special register at
the time of INSERT, UPDATE, or LOAD as the default for the
column. If CURRENT MEMBER is specified, the data type of the
column must allow assignment from an integer. For existing rows,
the value of the CURRENT MEMBER special register at the time
the ALTER TABLE statement is processed.

NULL
Specifies NULL as the default for the column. If NOT NULL was
specified, DEFAULT NULL must not be specified within the same
column definition.

cast-function
This form of a default value can only be used with columns
defined as a distinct type, BLOB or datetime (DATE, TIME or
TIMESTAMP) data type. For distinct type, with the exception of
distinct types based on BLOB or datetime types, the name of the
function must match the name of the distinct type for the column.
If qualified with a schema name, it must be the same as the
schema name for the distinct type. If not qualified, the schema
name from function resolution must be the same as the schema
name for the distinct type. For a distinct type based on a datetime
type, where the default value is a constant, a function must be
used and the name of the function must match the name of the
source type of the distinct type with an implicit or explicit schema
name of SYSIBM. For other datetime columns, the corresponding
datetime function may also be used. For a BLOB or a distinct type
based on BLOB, a function must be used and the name of the

function must be BLOB with an implicit or explicit schema name of
SYSIBM.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of the
distinct type or for the data type if not a distinct type. If the
cast-function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP. The source type of the distinct type of the
column must be the data type that corresponds to the specified
special register.

Statements 129

ALTER TABLE

130

SQL Reference Volume 2

user-special-register
Specifies CURRENT USER, SESSION_USER, or
SYSTEM_USER. The data type of the source type of the distinct
type of the column must be a string data type with a length of
at least 8 bytes. If the cast-function is BLOB, the length attribute
must be at least 8 bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register.
The data type of the source type of the distinct type of the
column must be a character string with a length greater than
or equal to the length attribute of the CURRENT SCHEMA
special register. If the cast-function is BLOB, the length attribute
must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()

Specifies a zero-length string as the default for the column. The
column must have the data type that corresponds to the result data
type of the function.

If the value specified is not valid, an error (SQLSTATE 42894) is
returned.

generated-clause
Specifies a generated value for the column. This clause must not be
specified with default-clause in a column definition (SQLSTATE 42623). A
generated column cannot be added to a system-period temporal table
(SQLSTATE 428HZ). For details on column generation, see “CREATE
TABLE”.

GENERATED

Specifies that the database manager generates values for the column.
GENERATED must be specified if the column is to be considered an
identity column, row change timestamp column, row-begin column,
row-end column, transaction start-ID column, or generated expression
column.

If the column is nullable, the null value is assigned as the value for the
column in existing rows. Otherwise, the value for the column in
existing rows depends on the definition of the column:

ROW CHANGE TIMESTAMP uses a value that corresponds to the
timestamp of the ALTER TABLE statement

ROW BEGIN uses a date that corresponds to January 1, 0001 and a
time that corresponds to 0 hours, 0 minutes, 0 seconds, and 0
fractional seconds

ROW END uses a date that corresponds to December 30, 9999, and a
time that corresponds to 0 hours, 0 minutes, 0 seconds, and 0
fractional seconds

TRANSACTION START ID uses a date that corresponds to January
1, 0001, and a time that corresponds to 0 hours, 0 minutes, 0
seconds, and 0 fractional seconds

Expressions use the value derived from the expression

ALWAYS

Specifies that the database manager will always generate a value
for the column when a row is inserted or updated and a value
must be generated. The result of the expression is stored in the

ALTER TABLE

table. GENERATED ALWAYS is the recommended option unless
data propagation or unload and reload operations are being
performed. GENERATED ALWAYS is the default for generated
columns.

BY DEFAULT
Specifies that the database manager will generate a value for the
column when a row is inserted into the table, or updated,
specifying DEFAULT for the column, unless an explicit value is
specified. BY DEFAULT can only be specified with
as-row-change-timestamp-clause. BY DEFAULT is the recommended
option when using data propagation or performing unload and
reload operations.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp column with values
generated by the database manager. A value is generated for the
column in each row that is inserted, and for any row in which any
column is updated. The value that is generated for a ROW
CHANGE TIMESTAMP column is a timestamp that corresponds to
the insert or update time for that row. If multiple rows are inserted
or updated with a single statement, the value of the ROW
CHANGE TIMESTAMP column might be different for each row.

A table can only have one ROW CHANGE TIMESTAMP column
(SQLSTATE 428C1). If data-type is specified, it must be
TIMESTAMP or TIMESTAMP(6) (SQLSTATE 42842). A ROW
CHANGE TIMESTAMP column cannot have a DEFAULT clause
(SQLSTATE 42623). NOT NULL must be specified for a ROW
CHANGE TIMESTAMP column (SQLSTATE 42831).

AS (generation-expression)
Specifies that the definition of the column is based on an
expression. Requires that the table be put in set integrity pending
no access state, using the SET INTEGRITY statement with the OFF
NO ACCESS option. After the ALTER TABLE statement, the SET
INTEGRITY statement with the IMMEDIATE CHECKED and
FORCE GENERATED options must be used to update and check
all the values in that column against the new expression. For
details on specifying a column with a generation-expression, see
“CREATE TABLE”.

AS ROW BEGIN

Specifies that the value is assigned by the database manager
whenever a row is inserted into the table or any column in the row
is updated. The value is generated using a reading of the
time-of-day clock during execution of the first of the following
events in the transaction:

* A data change statement that requires a value to be assigned to
the row-begin or transaction start-ID column in a table

* A deletion of a row in a system-period temporal table

For a system-period temporal table, the database manager ensures
uniqueness of the generated values for a row-begin column across
transactions. The timestamp value might be adjusted to ensure that
rows inserted into an associated history table have the end
timestamp value greater than the begin timestamp value
(SQLSTATE 01695). This can happen when a conflicting transaction

Statements 131

ALTER TABLE

132

SQL Reference Volume 2

is updating the same row in the system-period temporal table. The
database configuration parameter systime_period_adj must be set
to Yes for this adjustment to the timestamp value to occur
otherwise an error is returned (SQLSTATE 57062). If multiple rows
are inserted or updated within a single SQL transaction and an
adjustment is not needed, the values for the row-begin column are
the same for all the rows and are unique from the values generated
for the column for another transaction. A row-begin column is
required as the begin column of a SYSTEM_TIME period, which is
the intended use for this type of generated column.

A table can have only one row-begin column (SQLSTATE 428C1). If
data-type is not specified the column is defined as a
TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12) (SQLSTATE 42842). The column must be defined
as NOT NULL (SQLSTATE 42831). A row-begin column is not
updatable.

AS ROW END

Specifies that the maximum value for the data type of the column
is assigned by the database manager whenever a row is inserted or
any column in the row is updated.

A row-end column is required as the second column of a
SYSTEM_TIME period, which is the intended use for this type of
generated column.

A table can have only one row-end column (SQLSTATE 428C1). If
data-type is not specified, the column is defined as
TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12) (SQLSTATE 42842). The column must be defined
as NOT NULL (SQLSTATE 42831). A row-end column is not
updatable.

AS TRANSACTION START ID

Specifies that the value is assigned by the database manager
whenever a row is inserted into the table or any column in the row
is updated. The database manager assigns a unique timestamp
value per transaction or the null value. The null value is assigned
to the transaction start-ID column if the column is nullable and if
there is a row-begin column in the table for which the value did
not need to be adjusted. Otherwise the value is generated using a
reading of the time-of-day clock during execution of the first of the
following events in the transaction:

* A data change statement that requires a value to be assigned to
the row-begin or transaction start-ID column in a table

* A deletion of a row in a system-period temporal table

If multiple rows are inserted or updated within a single SQL
transaction, the values for the transaction start-ID column are the
same for all the rows and are unique from the values generated for
the column for another transaction.

A transaction start-ID column is required for a system-period
temporal table, which is the intended use for this type of generated
column.

ALTER TABLE

A table can have only one transaction start-ID column (SQLSTATE
428C1). If data-type is not specified, the column is defined as
TIMESTAMP(12). If data-type is specified it must be
TIMESTAMP(12). A transaction start-ID column is not updatable.

COMPRESS SYSTEM DEFAULT
Specifies that system default values (that is, the default values used for the
data types when no specific values are specified) are to be stored using
minimal space. If the VALUE COMPRESSION clause is not specified, a
warning is returned (SQLSTATE 01648) and system default values are not
stored using minimal space.

Allowing system default values to be stored in this manner causes a slight
performance penalty during insert and update operations on the column
because of extra checking that is done.

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or
structured data type (SQLSTATE 42842). If the base data type is a
varying-length string, this clause is ignored. String values of length 0 are
automatically compressed if a table has been set with VALUE
COMPRESSION.

COLUMN SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is
associated with the table. The name must not be qualified (SQLSTATE
42601). The table must have a security policy associated with it (SQLSTATE
55064). The table must not be a system-period temporal table.

NOT HIDDEN or IMPLICITLY HIDDEN
Specifies whether the column is to be defined as hidden. The hidden
attribute determines whether the column is included in an implicit
reference to the table, or whether it can be explicitly referenced in SQL
statements. The default is NOT HIDDEN.

NOT HIDDEN
Specifies that the column is included in implicit references to the table,
and that the column can be explicitly referenced.

IMPLICITLY HIDDEN
Specifies that the column is not visible in SQL statements unless the
column is explicitly referenced by name. For example, assuming that a
table includes a column defined with the IMPLICITLY HIDDEN clause,
the result of a SELECT * does not include the implicitly hidden column.
However, the result of a SELECT that explicitly refers to the name of
an implicitly hidden column will include that column in the result
table.

ADD unique-constraint
Defines a unique or primary key constraint. A primary key or unique
constraint cannot be added to a table that is a subtable (SQLSTATE 429B3). If
the table is a supertable at the top of the hierarchy, the constraint applies to the
table and all its subtables.

CONSTRAINT constraint-name
Names the primary key or unique constraint. For more information, see
constraint-name in “CREATE TABLE”.

UNIQUE (column-name, ... BUSINESS_TIME WITHOUT OVERLAPS)
Defines a unique key composed of the identified columns and periods. The
identified columns must be defined as NOT NULL. Each column-name must
identify a column of the table and the same column must not be identified

Statements 133

ALTER TABLE

134 SQL Reference Volume 2

more than once. The name cannot be qualified. The number of identified
columns plus two times the number of identified periods must not exceed
64, and the sum of their stored lengths must not exceed the index key
length limit for the page size. For column stored lengths, see “Byte
Counts” in “CREATE TABLE”. For key length limits, see “SQL and XML
limits”. No LOB, distinct type based on any of these types, or structured
type can be used as part of a unique key, even if the length attribute of the
column is small enough to fit within the index key length limit for the
page size (SQLSTATE 54008). The set of columns in the unique key cannot
be the same as the set of columns of the primary key or another unique
key (SQLSTATE 01543). If LANGLEVEL is SQL92E or MIA, an error is
returned, SQLSTATE 42891. Any existing values in the set of identified
columns must be unique (SQLSTATE 23515).

A check is performed to determine whether an existing index matches the
unique key definition (ignoring any INCLUDE columns in the index). An
index definition matches if it identifies the same set of columns without
regard to the order of the columns or the direction (ASC/DESC)
specifications. However, for partitioned tables, non-unique partitioned
indexes whose columns are not a superset of the table-partitioning key
columns are not considered matching indexes.

When a partition is attached to a range partitioned application-period
temporal table that has a partitioned BUSINESS_TIME WITHOUT
OVERLAPS index, the source table must have an index that matches the
partitioned BUSINESS_TIME WITHOUT OVERLAPS index. Additionally,
the PERIODNAME and PERIODPOLICY attributes on the indexes must
also match.

If a matching index definition is found, the description of the index is
changed to indicate that it is required by the system and it is changed to
unique (after ensuring uniqueness) if it was a non-unique index. If the
table has more than one matching index, an existing unique index is
selected. If there are multiple unique indexes, the selection is arbitrary with
one exception:

* For partitioned tables, matching unique partitioned indexes are favored
over matching unique nonpartitioned indexes or matching non-unique
indexes (partitioned or nonpartitioned).

If no matching index is found, a unique bidirectional index will
automatically be created for the columns, as described in CREATE TABLE.
See Notes for details on index names associated with unique constraints.

BUSINESS TIME WITHOUT OVERLAPS
For a constraint, BUSINESS_TIME indicates the period name in this
table. The period must exist in the table (SQLSTATE 42727).

BUSINESS_TIME WITHOUT OVERLAPS specifies that overlapping
periods for BUSINESS_TIME are not allowed, and that values for the
rest of the keys must be unique with respect to any period of
BUSINESS_TIME. When BUSINESS_TIME WITHOUT OVERLAPS is
specified, the end column and begin column of the period
BUSINESS_TIME (in this order of the columns) will automatically be
added to the index key in ascending order and enforce that there are
no overlaps in time. The columns used to defined BUSINESS_TIME
must not be specified as part of the constraint (SQLSTATE 428HW).

PRIMARY KEY (column-name, ... BUSINESS_TIME WITHOUT OVERLAPS)

Defines a primary key composed of the identified columns. Each

ALTER TABLE

column-name must identify a column of the table, and the same column
must not be identified more than once. The name cannot be qualified. The
number of identified columns must not exceed 64, and the sum of their
stored lengths must not exceed the index key length limit for the page size.
For column stored lengths, see “Byte Counts” in “CREATE TABLE”. For
key length limits, see “SQL limits”. The table must not have a primary key
and the identified columns must be defined as NOT NULL. No LOB,
distinct type based on any of these types, or structured type may be used
as part of a primary key, even if the length attribute of the column is small
enough to fit within the index key length limit for the page size
(SQLSTATE 54008). The set of columns in the primary key cannot be the
same as the set of columns in a unique key (SQLSTATE 01543). (If
LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)
Any existing values in the set of identified columns must be unique
(SQLSTATE 23515). column-name must not be the name of a row change
timestamp, or a begin or end column of the period (SQLSTATE 428HW).

A check is performed to determine if an existing index matches the
primary key definition (ignoring any INCLUDE columns in the index). An
index definition matches if it identifies the same set of columns without
regard to the order of the columns or the direction (ASC/DESC)
specifications. However, for partitioned tables, non-unique partitioned
indexes whose columns are not a superset of the table-partitioning key
columns are not considered matching indexes.

When a partition is attached to a range partitioned application-period
temporal table that has a partitioned BUSINESS_TIME WITHOUT
OVERLAPS index, the source table must have an index that matches the
partitioned BUSINESS_TIME WITHOUT OVERLAPS index. Additionally,
the PERIODNAME and PERIODPOLICY attributes on the indexes must
also match.

If a matching index definition is found, the description of the index is
changed to indicate that it is the primary index, as required by the system,
and it is changed to unique (after ensuring uniqueness) if it was a
non-unique index. If the table has more than one matching index, an
existing unique index is selected. If there are multiple unique indexes, the
selection is arbitrary with one exception:

* For partitioned tables, matching unique partitioned indexes are favored
over matching unique nonpartitioned indexes or matching non-unique
indexes (partitioned or nonpartitioned).

If no matching index is found, a unique bidirectional index will
automatically be created for the columns, as described in CREATE TABLE.
See Notes for details on index names associated with unique constraints.

Only one primary key can be defined on a table.

BUSINESS_TIME WITHOUT OVERLAPS
For a constraint, BUSINESS_TIME indicates the period name in this
table. The period must exist in the table (SQLSTATE 42727).

BUSINESS_TIME WITHOUT OVERLAPS specifies that overlapping
periods for BUSINESS_TIME are not allowed, and that values for the
rest of the keys must be unique with respect to any period of
BUSINESS_TIME. When BUSINESS_TIME WITHOUT OVERLAPS is
specified, the end column and begin column of the period
BUSINESS_TIME (in this order of the columns) will automatically be
added to the index key in ascending order and enforce that there are

Statements 135

ALTER TABLE

136

ADD

ADD

ADD

ADD

ADD

SQL Reference Volume 2

no overlaps in time. The columns used to defined BUSINESS_TIME
must not be specified as part of the constraint (SQLSTATE 428HW).

referential-constraint
Defines a referential constraint. See referential-constraint in “CREATE TABLE”.

check-constraint
Defines a check constraint or functional dependency. See check-constraint in
“CREATE TABLE”.

distribution-clause

Defines a distribution key. The table must be defined in a table space on a
single-partition database partition group (SQLSTATE 55037) and must not
already have a distribution key (SQLSTATE 42889). If a distribution key
already exists for the table, the existing key must be dropped before adding the
new distribution key. A distribution key cannot be added to a table that is a
subtable (SQLSTATE 428DH) .

DISTRIBUTE BY HASH (column-name...)
Defines a distribution key using the specified columns. Each column-name
must identify a column of the table, and the same column must not be
identified more than once. The name cannot be qualified. A column cannot
be used as part of a distribution key if the data type of the column is a
BLOB, CLOB, DBCLOB, XML, distinct type on any of these types, or
structured type.

RESTRICT ON DROP
Specifies that the table cannot be dropped, and that the table space that
contains the table cannot be dropped.

MATERIALIZED QUERY

materialized-query-definition
Changes a regular table to a materialized query table for use during query
optimization. The table specified by table-name must not:

* Be previously defined as a materialized query table

* Be a typed table

* Have any constraints, unique indexes, or triggers defined

* Reference a nickname that is marked with caching disabled

* Be referenced in the definition of another materialized query table

* Be referenced in the definition of a view that is enabled for query
optimization

If table-name does not meet these criteria, an error is returned (SQLSTATE
428EW).

If row level or column level access control is activated for any table that is
directly or indirectly referenced in the fullselect of materizalized-query-
definition, and row level access control is not activated for the table being
altered, row level access control is implicitly activated for the altered table.
This restricts direct access to the contents of the materialized query table. A
query that explicitly references the table before such a row permission is
defined returns a warning that there is no data in the table (SQLSTATE
02000). To provide access to the materialized query table, an appropriate
row permission can be created, or an ALTER TABLE DEACTIVATE ROW ACCESS
CONTROL on the materialized query table can be issued to remove the row
level protection if that is appropriate.

ALTER TABLE

If the materialized query table references any table that has row level or
column level access control activated, the functions referenced in the
fullselect of materizalized-query-definition must be defined with the SECURED
attribute (SQLSTATE 428EC).

If the table being altered to a materialized query table has any permissions
(excluding the system generated default permission) or masks defined on
it, ALTER fails (SQLSTATE 428EW).

fullselect
Defines the query in which the table is based. The columns of the
existing table must:

* have the same number of columns
* have exactly the same data types

* have the same column names in the same ordinal positions

as the result columns of fullselect (SQLSTATE 428EW). For details about
specifying the fullselect for a materialized query table, see “CREATE
TABLE”. One additional restriction is that table-name cannot be directly
or indirectly referenced in the fullselect.

refreshable-table-options
Specifies the refreshable options for altering a materialized query table.

DATA INITIALLY DEFERRED
The data in the table must be validated using the REFRESH TABLE
or SET INTEGRITY statement.

REFRESH
Indicates how the data in the table is maintained.

DEFERRED
The data in the table can be refreshed at any time using the
REFRESH TABLE statement. The data in the table only reflects
the result of the query as a snapshot at the time the REFRESH
TABLE statement is processed. Materialized query tables
defined with this attribute do not allow INSERT, UPDATE, or
DELETE statements (SQLSTATE 42807).

IMMEDIATE

The changes made to the underlying tables as part of a
DELETE, INSERT, or UPDATE are cascaded to the materialized
query table. In this case, the content of the table, at any
point-in-time, is the same as if the specified subselect is
processed. Materialized query tables defined with this attribute
do not allow INSERT, UPDATE, or DELETE statements
(SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION
The materialized query table can be used for query optimization.

DISABLE QUERY OPTIMIZATION
The materialized query table will not be used for query
optimization. The table can still be queried directly.

MAINTAINED BY
Specifies whether the data in the materialized query table is
maintained by the system, user, or replication tool.

Statements 137

ALTER TABLE

SYSTEM
Specifies that the data in the materialized query table is
maintained by the system.

USER
Specifies that the data in the materialized query table is
maintained by the user. The user is allowed to perform update,
delete, or insert operations against user-maintained
materialized query tables. The REFRESH TABLE statement,
used for system-maintained materialized query tables, cannot
be invoked against user-maintained materialized query tables.
Only a REFRESH DEFERRED materialized query table can be
defined as MAINTAINED BY USER.

FEDERATED_TOOL
Specifies that the data in the materialized query table is
maintained by the replication tool. The REFRESH TABLE
statement, used for system-maintained materialized query
tables, cannot be invoked against federated_tool-maintained
materialized query tables. Only a REFRESH DEFERRED
materialized query table can be defined as MAINTAINED BY
FEDERATED_TOOL.

ALTER FOREIGN KEY constraint-name
Alters the constraint attributes of the referential constraint constraint-name. The
constraint-name must identify an existing referential constraint (SQLSTATE
42704).

ALTER CHECK constraint-name
Alters the constraint attributes of the check constraint or functional
dependency constraint-name. The constraint-name must identify an existing
check constraint or functional dependency (SQLSTATE 42704).

constraint-alteration
Options for changing attributes associated with referential or check constraints.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether the constraint or functional dependency can be used for
query optimization under appropriate circumstances.

ENABLE QUERY OPTIMIZATION
The constraint is assumed to be true and can be used for query
optimization.

DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization.

ENFORCED or NOT ENFORCED
Specifies whether the constraint is enforced by the database manager
during normal operations such as insert, update, or delete.

ENFORCED
Change the constraint to ENFORCED. ENFORCED cannot be specified
for a functional dependency (SQLSTATE 42621).

NOT ENFORCED
Change the constraint to NOT ENFORCED.

TRUSTED
The data can be trusted to conform to the constraint. TRUSTED
must be used only if the data in the table is independently known

138 SQL Reference Volume 2

ALTER TABLE

to conform to the constraint. Query results might be unpredictable
if the data does not actually conform to the constraint. This is the
default option.

Informational constraints must not be violated at any time.
Informational constraints are used in query optimization, as well as
the incremental processing of REFRESH IMMEDIATE MQT and
staging tables. These processes might produce unpredictable results
or incorrect MQT and staging table content if the constraints are
violated. For example, the order in which parent-child tables are
maintained is important. When you want to add rows to a
parent-child table, you must insert rows into the parent table first.
To remove rows from a parent-child table, you must delete rows
from the child table first. This ensures that there are no orphan
rows in the child table at any time. If informational constraints are
violated, the incremental maintenance of dependent MQT data and
staging table data might be optimized based on the violated
informational constraints, producing incorrect data.

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT
TRUSTED is intended for cases where the data conforms to the
constraint for most rows, but it is not independently known that
all the rows or future additions will conform to the constraint. If a
constraint is NOT TRUSTED and enabled for query optimization,
then it will not be used to perform optimizations that depend on
the data conforming completely to the constraint. NOT TRUSTED
can be specified only for referential integrity constraints
(SQLSTATE 42613).

ALTER column-alteration
Alters the definition of a column. Only the specified attributes will be altered;
others will remain unchanged. Columns of a typed table cannot be altered
(SQLSTATE 428DH). The table must not be defined as a history table
(SQLSTATE 428FR).

column-name
Specifies the name of the column that is to be altered. The column-name
must identify an existing column of the table (SQLSTATE 42703). The name
must not be qualified. The name must not identify a column that is
otherwise being added, altered, or dropped in the same ALTER TABLE
statement (SQLSTATE 42711).

SET DATA TYPE altered-data-type
Specifies the new data type of the column. The new data type must be
castable from the existing data type of the column (SQLSTATE 42837)
except when one of the data types is a distinct type, in which case the
source data type of the distinct type is used in determining if the data
types are castable.

Altering a string data type that results in the truncation of non-blank
characters from existing data is not allowed (SQLSTATE 42837).

Data type alterations require a table reorganization before the table can be
fully accessed (SQLSTATE 57016), except in the following situations:
* Increasing the length of a VARCHAR or VARGRAPHIC column

* Decreasing the length of a VARCHAR or VARGRAPHIC column without
truncating trailing blanks from existing data

Statements 139

ALTER TABLE

140

SQL Reference Volume 2

The administrative routine SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS
can be called to do table reorganization as required. A data type alteration
that requires a table reorganization cannot be specified if the table is in
SET INTEGRITY PENDING state (SQLSTATE 57007).

A string data type cannot be altered if the column is a column of a
table-partitioning key.

If the column is a column of a distribution key, then the new data type
must meet the following requirements (SQLSTATE 42997):

* Be the same data type as the current column type

¢ Have the same length of the current column type, except in the case of
increasing column length of VARCHAR and VARGRAPHIC data type
columns

e Cannot be modified to FOR BIT DATA or vice-versa in the cases of
CHAR and VARCHAR data types

The specified length cannot be less than the existing length if the data type
is a LOB (SQLSTATE 42837).

The data type of an identity column cannot be altered (SQLSTATE 42997).

The data type of a column defined as ROW BEGIN, ROW END, or
TRANSACTION START ID cannot be altered (SQLSTATE 428FR).

The data type and nullability of BUSINESS_TIME period columns cannot
be altered (SQLSTATE 428FR).

The table cannot have data capture enabled (SQLSTATE 42997).

The data type of a column cannot be altered if any of the following
conditions are true (SQLSTATE 42893):

* The column is a generated expression column and the data of the
generated expression column will change if the column is altered

* The column is referenced in an expression of a generated expression
column and the data of the generated expression column will change if
the column is altered

e The column is referenced in a check constraint and the check constraint
will not be satisfied if the column is altered

* The column is used in a referential integrity constraint and the
referential integrity constraint will not be satisfied if the column is
altered

Altering a column must not make the total byte count of all columns
exceed the maximum record size (SQLSTATE 54010). If the column is used
in a unique constraint or an index, the new length must not cause the sum
of the stored lengths for the unique constraint or index to exceed the index
key length limit for the page size (SQLSTATE 54008). For column stored
lengths, see “Byte Counts” in “CREATE TABLE”. For key length limits, see
“SQL and XML limits”.

If auto_reval is set to DISABLED, the cascaded effects of altering a column
is shown in Table 14 on page 141.

If either a row permission or a column mask is dependent on the column
being altered (as recorded in the SYSCAT.CONTROLDEP catalog view), an
error is returned (SQLSTATE 42917).

ALTER TABLE

Table 14. Cascaded effects of altering a column

Operation

Effect

Altering a column that is referenced by a
view or check constraint

The object is regenerated during alter
processing. In the case of a view, function or
method resolution for the object might be
different after the alter operation, changing
the semantics of the object. In the case of a
check constraint, if the semantics of the
object will change as a result of the alter
operation, the operation fails.

Altering a column in a table that has a
dependent package, trigger, or SQL routine

The object is marked invalid, and is
revalidated on next use.

Altering the type of a column in a table that
is referenced by an XSROBJECT enabled for
decomposition

The XSROBJECT is marked inoperative for
decomposition. Re-enabling the XSROBJECT
might require readjustment of its mappings;
following this, issue an ALTER XSROBJECT
ENABLE DECOMPOSITION statement
against the XSROBJECT.

Altering a column that is referenced in the
default expression of a global variable

The default expression of the global variable
is validated during alter processing. If a
user-defined function used in the default
expression cannot be resolved, the operation
fails.

If the table is a system-period temporal table, the column is also changed
in any associated history table. If the table is a system-period temporal
table, string data type columns cannot be altered to a length that requires
data truncation, and numeric data type columns cannot be altered to lower
precision data types (SQLSTATE 42837).

SET NOT NULL

Specifies that the column cannot contain null values. No value for this
column in existing rows of the table can be the null value (SQLSTATE

23502). This clause is not allowed if the column is specified in the foreign
key of a referential constraint with a DELETE rule of SET NULL, and no
other nullable columns exist in the foreign key (SQLSTATE 42831). Altering
this attribute for a column requires table reorganization before further table
access is allowed (SQLSTATE 57016). Note that because this operation
requires validation of table data, it cannot be performed when the table is
in reorg pending state (SQLSTATE 57016). The table cannot have data
capture enabled (SQLSTATE 42997).

If a row permission or column mask exists, which depends on the column
to be altered, an error will be issued (SQLSTATE 42917).

If the table is a system-period temporal table, the column is also changed
in any associated history table.

SET INLINE LENGTH integer

Changes the inline length of an existing structured type, XML, or LOB data
type column. The inline length indicates the maximum size in bytes of an
instance of a structured type, XML, or LOB data type to store in the base
table row. Instances of a structured type or XML data type that cannot be
stored inline in the base table row are stored separately, similar to the way
that LOB values are stored.

The data type of column-name must be a structured type, XML, or LOB
data type (SQLSTATE 42842).

141

Statements

ALTER TABLE

142

SQL Reference Volume 2

The default inline length for a structured type column is the inline length
of its data type (specified explicitly or by default in the CREATE TYPE
statement). If the inline length of a structured type is less than 292, the
value 292 is used for the inline length of the column.

The explicit inline length value can only be increased (SQLSTATE 429B2); it
cannot exceed 32673 (SQLSTATE 54010). For a structured type or XML data
type column, it must be at least 292. For a LOB data type column, the
INLINE LENGTH must not be less than the maximum LOB descriptor
size.

Altering the column must not make the total byte count of all columns
exceed the row size limit (SQLSTATE 54010).

Data that is already stored separately from the rest of the row will not be
moved inline into the base table row by this statement. To take advantage
of the altered inline length of a structured type column, invoke the REORG
command against the specified table after altering the inline length of its
column. To take advantage of the altered inline length of an XML data type
column in an existing table, update all rows with an UPDATE statement.
The REORG command has no effect on the row storage of XML
documents. To take advantage of the altered inline length of a LOB data
type column, use the REORG command with the LONGLOBDATA option
or UPDATE the corresponding LOB column. For example:

UPDATE table-name SET lob-column = lob-column
WHERE LENGTH(lob-column) <= chosen-inline-length - 4

where table-name is the table that had the inline length of the LOB data
type column altered, lob-column is the LOB data type column that was

altered, and chosen-inline-length is the new value that was chosen for the
INLINE LENGTH.

If a row permission or column mask exists, which depends on the column
to be altered, an error will be returned (SQLSTATE 42917).

If the table is a system-period temporal table, inline length changes are
propagated to the history table.

SET default-clause

Specifies a new default value for the column that is to be altered. The
column must not already be defined as a generated column (SQLSTATE
42623). The specified default value must represent a value that could be
assigned to the column in accordance with the rules for assignment as
described in “Assignments and comparisons”. Altering the default value
does not change the value that is associated with this column for existing
rows.

SET EXPRESSION AS (generation-expression)

Changes the expression for the column to the specified
generation-expression. SET EXPRESSION requires the table to be put in set
integrity pending state, using the SET INTEGRITY statement with the OFF
option. After the ALTER TABLE statement, the SET INTEGRITY statement
with the IMMEDIATE CHECKED and FORCE GENERATED options must
be used to update and check all the values in that column against the new
expression. The column must already be defined as a generated column
based on an expression (SQLSTATE 42837), and must not have appeared in
the PARTITIONING KEY, DIMENSIONS, or KEY SEQUENCE clauses of
the table (SQLSTATE 42997). The generation-expression must conform to

ALTER TABLE

the same rules that apply when defining a generated column. The result
data type of the generation-expression must be assignable to the data type
of the column (SQLSTATE 42821).

The generation-expression must not reference a column for which a column
mask is defined (SQLSTATE 42621).

SET NOT HIDDEN or SET IMPLICITLY HIDDEN
Specifies the hidden attribute for the column.

If the table is a system-period temporal table, the column is also changed
in any associated history table.

NOT HIDDEN
Specifies that the column is included in implicit references to the table,
and that the column can be explicitly referenced.

IMPLICITLY HIDDEN
Specifies that the column is not visible in SQL statements unless the
column is explicitly referenced by name. For example, assuming that a
table includes a column defined with the IMPLICITLY HIDDEN clause,
the result of a SELECT * does not include the implicitly hidden column.
However, the result of a SELECT that explicitly refers to the name of
an implicitly hidden column will include that column in the result
table.

IMPLICITLY HIDDEN must not be specified for the last column of the
table that is not hidden (SQLSTATE 428GU).

SET generation-alteration
Specifies that the generation attribute for the column is to be changed.
GENERATED may be specified if the column is an identity column or a
row change timestamp column (SQLSTATE 42837). If the table is a
system-period temporal table, the column in the associated history table is
not affected by the change. If there is an existing default for the column,
that default must be dropped, which can be done in the same
column-alteration using one of the DROP DEFAULT clause. SET
GENERATED must not be specified for a column of a temporal history
table (SQLSTATE 428FR).

GENERATED ALWAYS
Specifies that the database manager will always generate a value for
the column when a row is inserted or updated and a value must be
generated. GENERATED ALWAYS is the recommended option unless
data propagation or unload and reload operations are being
performed. ALWAYS is the default for generated columns.

GENERATED BY DEFAULT
Specifies that the database manager will generate a value for the
column when a row is inserted into the table, or updated, specifying
DEFAULT for the column, unless an explicit value is specified.
GENERATED BY DEFAULT can only be specified with
as-row-change-timestamp-clause. GENERATED BY DEFAULT is the
recommended option when using data propagation or performing
unload and reload operations.

identity-alteration
Alters the identity attributes of the column. The column must be an
identity column.

Statements 143

ALTER TABLE

SET INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity
column. The next value to be generated for the identity column will be
determined from the last assigned value with the increment applied.
The column must already be defined with the IDENTITY attribute
(SQLSTATE 42837).

This value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), and does not exceed the value of a
large integer constant (SQLSTATE 42820), without nonzero digits
existing to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, this is a descending sequence after the ALTER
statement. If this value is 0 or positive, this is an ascending sequence
after the ALTER statement.

SET NO MINVALUE or MINVALUE numeric-constant
Specifies the minimum value at which a descending identity column
either cycles or stops generating values, or the value to which an
ascending identity column cycles after reaching the maximum value.
The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO MINVALUE
For an ascending sequence, the value is the original starting value.
For a descending sequence, the value is the minimum value of the
data type of the column.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This
value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), without nonzero digits existing
to the right of the decimal point (SQLSTATE 428FA), but the value
must be less than or equal to the maximum value (SQLSTATE
42815).

SET NO MAXVALUE or MAXVALUE numeric-constant
Specifies the maximum value at which an ascending identity column
either cycles or stops generating values, or the value to which a
descending identity column cycles after reaching the minimum value.
The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the
data type of the column. For a descending sequence, the value is
the original starting value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This
value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), without nonzero digits existing
to the right of the decimal point (SQLSTATE 428FA), but the value
must be greater than or equal to the minimum value (SQLSTATE
42815).

SET NO CYCLE or CYCLE
Specifies whether this identity column should continue to generate

144 sQL Reference Volume 2

ALTER TABLE

values after generating either its maximum or minimum value. The
column must exist in the specified table (SQLSTATE 42703), and must
already be defined with the IDENTITY attribute (SQLSTATE 42837).

NO CYCLE
Specifies that values will not be generated for the identity column
once the maximum or minimum value has been reached.

CYCLE
Specifies that values continue to be generated for this column after
the maximum or minimum value has been reached. If this option
is used, then after an ascending identity column reaches the
maximum value, it generates its minimum value; or after a
descending sequence reaches the minimum value, it generates its
maximum value. The maximum and minimum values for the
identity column determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated for an
identity column. Although not required, if unique values are
desired, a single-column unique index defined using the identity
column will ensure uniqueness. If a unique index exists on such an
identity column and a non-unique value is generated, an error
occurs (SQLSTATE 23505).

SET NO CACHE or CACHE integer-constant
Specifies whether to keep some pre-allocated values in memory for
faster access. This is a performance and tuning option. The column
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO CACHE
Specifies that values for the identity column are not to be
pre-allocated. In a DB2 pureScale environment, if the identity
values must be generated in order of request, the NO CACHE
option must be used.

When this option is specified, the values of the identity column are
not stored in the cache. In this case, every request for a new
identity value results in synchronous I/O to the log.

CACHE integer-constant
Specifies how many values of the identity sequence are
pre-allocated and kept in memory. When values are generated for
the identity column, pre-allocating and storing values in the cache
reduces synchronous 1/0 to the log.

If a new value is needed for the identity column and there are no
unused values available in the cache, the allocation of the value
requires waiting for I/O to the log. However, when a new value is
needed for the identity column and there is an unused value in the
cache, the allocation of that identity value can happen more
quickly by avoiding the I/O to the log.

In the event of a database deactivation, either normally or due to a
system failure, all cached sequence values that have not been used
in committed statements are lost (that is, they will never be used).
The value specified for the CACHE option is the maximum
number of values for the identity column that could be lost in case
of system failure.

The minimum value is 2 (SQLSTATE 42815).

Statements 145

ALTER TABLE

146

SQL Reference Volume 2

In a DB2 pureScale environment, if both CACHE and ORDER are
specified, the specification of ORDER overrides the specification of
CACHE and instead NO CACHE will be in effect.

SET NO ORDER or ORDER
Specifies whether the identity column values must be generated in
order of request. The column must exist in the specified table
(SQLSTATE 42703), and must already be defined with the IDENTITY
attribute (SQLSTATE 42837).

NO ORDER
Specifies that the identity column values do not need to be
generated in order of request.

ORDER
Specifies that the identity column values must be generated in
order of request.

RESTART or RESTART WITH numeric-constant
Resets the state of the sequence associated with the identity column. If
WITH numeric-constant is not specified, the sequence for the identity
column is restarted at the value that was specified, either implicitly or
explicitly, as the starting value when the identity column was
originally created.

The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837). RESTART does not change the original START WITH value.

The numeric-constant is an exact numeric constant that can be any
positive or negative value that could be assigned to this column
(SQLSTATE 42815), without nonzero digits existing to the right of the
decimal point (SQLSTATE 428FA). The numeric-constant will be used as
the next value for the column.

SET generation-attribute as-identity-clause
Changes the column to an identity column. This column alteration must
not be specified if the column has a default or is already a generated
column (SQLSTATE 42837). If the table is a system-period temporal table,
the column in the associated history table is not affected by the change.

GENERATED ALWAYS
Specifies that the database manager will always generate a value for
the column when a row is inserted or updated and a value must be
generated. ALWAYS is the default for generated columns.

GENERATED BY DEFAULT
Specifies that the database manager generates a value for the column
when a row is inserted or updated and a default value must be
generated, unless an explicit value is specified.

as-identity-clause
Specifies that the column is the identity column for the table. A table
can only have a single identity column (SQLSTATE 428C1). The
column must be specified as not nullable (SQLSTATE 42997), and the
data type associated with the column must be an exact numeric data
type with a scale of zero (SQLSTATE 42815). An exact numeric data
type is one of: SMALLINT, INTEGER, BIGINT, DECIMAL, or
NUMERIC with a scale of zero, or a distinct type based on one of
these types. For details on identity options, see “CREATE TABLE”.

ALTER TABLE

SET GENERATED ALWAYS
Changes the column to a generated expression column, a row-begin
column, a row-end column, or a transaction-start-ID column. GENERATED
ALWAYS specifies that the database manager will always generate a value
for the column when a row is inserted or updated and a value must be
generated.

AS (generation-expression)
Specifies that the definition of the column is based on an expression.
The column must not already be defined with a generation expression,
cannot be the identity column, or cannot have an explicit default
(SQLSTATE 42837). The generation-expression must conform to the same
rules that apply when defining a generated column. The result data
type of the generation-expression must be assignable to the data type of
the column (SQLSTATE 42821). The column must not be referenced in
the distribution key column or in the ORGANIZE BY clause
(SQLSTATE 42997).

The generation-expression must not reference a column for which a
column mask is defined (SQLSTATE 42621).

AS ROW BEGIN

Specifies that the value is assigned by the database manager whenever
a row is inserted into the table or any column in the row is updated.
The value is generated using a reading of the time-of-day clock during
execution of the first of the following events in the transaction:

* A data change statement that requires a value to be assigned to the
row-begin or transaction start-ID column in a table

* A deletion of a row in a system-period temporal table

For a system-period temporal table, the database manager ensures
uniqueness of the generated values for a row-begin column across
transactions. The timestamp value might be adjusted to ensure that
rows inserted into an associated history table have the end timestamp
value greater than the begin timestamp value (SQLSTATE 01695). This
can happen when a conflicting transaction is updating the same row in
the system-period temporal table. The database configuration
parameter systime_period_adj must be set to Yes for this adjustment
to the timestamp value to occur otherwise an error is returned
(SQLSTATE 57062). If multiple rows are inserted or updated within a
single SQL transaction and an adjustment is not needed, the values for
the row-begin column are the same for all the rows and are unique
from the values generated for the column for another transaction. A
row-begin column is required as the begin column of a SYSTEM_TIME
period, which is the intended use for this type of generated column.

A table can have only one row-begin column (SQLSTATE 428C1). If
data-type is not specified the column is defined as a TIMESTAMP(12). If
data-type is specified, it must be TIMESTAMP(12) (SQLSTATE 42842).
The column must be defined as NOT NULL (SQLSTATE 42831). A
row-begin column is not updatable.

AS ROW END

Specifies that the maximum value for the data type of the column is
assigned by the database manager whenever a row is inserted or any
column in the row is updated.

Statements 147

ALTER TABLE

148

SQL Reference Volume 2

A row-end column is required as the second column of a
SYSTEM_TIME period, which is the intended use for this type of
generated column.

A table can have only one row-end column (SQLSTATE 428C1). If
data-type is not specified, the column is defined as TIMESTAMP(12). If
data-type is specified, it must be TIMESTAMP(12) (SQLSTATE 42842).
The column must be defined as NOT NULL (SQLSTATE 42831). A
row-end column is not updatable.

AS TRANSACTION START ID

Specifies that the value is assigned by the database manager whenever
a row is inserted into the table or any column in the row is updated.
The database manager assigns a unique timestamp value per
transaction or the null value. The null value is assigned to the
transaction start-ID column if the column is nullable and if there is a
row-begin column in the table for which the value did not need to be
adjusted. Otherwise the value is generated using a reading of the
time-of-day clock during execution of the first of the following events
in the transaction:

* A data change statement that requires a value to be assigned to the
row-begin or transaction start-ID column in a table

* A deletion of a row in a system-period temporal table

If multiple rows are inserted or updated within a single SQL
transaction, the values for the transaction start-ID column are the same
for all the rows and are unique from the values generated for the
column for another transaction.

A transaction start-ID column is required for a system-period temporal
table, which is the intended use for this type of generated column.

A table can have only one transaction start-ID column (SQLSTATE
428C1). If data-type is not specified, the column is defined as
TIMESTAMP(12). If data-type is specified it must be TIMESTAMP(12). A
transaction start-ID column is not updatable.

DROP DEFAULT
Drops the current default for the column. The specified column must have
a default value (SQLSTATE 42837). This action is propagated to the history
table for a system-period temporal table.

DROP GENERATED
Drops the generated attributes of the column. The column must be defined
as a generated column (SQLSTATE 42837). The column must not be
defined as a row-begin column, row-end column, or a transaction-start-ID
column in a system-period temporal table (SQLSTATE 428FR).

DROP NOT NULL
Drops the NOT NULL attribute of the column, allowing the column to
have the null value. This clause is not allowed if the column is specified in
the primary key, in a unique constraint of the table (SQLSTATE 42831), a
row-begin column, or a row-end column (SQLSTATE 42837). Altering this
attribute for a column requires table reorganization before further table
access is allowed (SQLSTATE 57016). The table cannot have data capture
enabled (SQLSTATE 42997). DROP NOT NULL is blocked for columns
belonging to the BUSINESS_TIME period (SQLSTATE 428FR).

ALTER TABLE

If the table is a system-period temporal table, the NOT NULL attribute is
also dropped from the corresponding column in any associated history
table.

If either a row permission or column mask exists, which depends on the
column to be altered, an error will be issued (SQLSTATE 42917).

ADD SCOPE
Add a scope to an existing reference type column that does not already
have a scope defined (SQLSTATE 428DK). If the table being altered is a
typed table, the column must not be inherited from a supertable
(SQLSTATE 428D]).

typed-table-name
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No
checking is done of any existing values in column-name to ensure that
the values actually reference existing rows in typed-table-name.

typed-view-name
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name (SQLSTATE 428DM). No
checking is done of any existing values in column-name to ensure that
the values actually reference existing rows in typed-view-name.

COMPRESS
Specifies whether or not default values for this column are to be stored
more efficiently.

SYSTEM DEFAULT
Specifies that system default values (that is, the default values used for
the data types when no specific values are specified) are to be stored
using minimal space. If the table is not already set with the VALUE
COMPRESSION attribute activated, a warning is returned (SQLSTATE
01648), and system default values are not stored using minimal space.

Allowing system default values to be stored in this manner causes a
slight performance penalty during insert and update operations on the
column because of the extra checking that is done.

Existing data in the column is not changed. Consider offline table
reorganization to enable existing data to take advantage of storing
system default values using minimal space.

OFF
Specifies that system default values are to be stored in the column as
regular values. Existing data in the column is not changed. Offline
reorganization is recommended to change existing data.

The base data type must not be DATE, TIME or TIMESTAMP (SQLSTATE
42842). If the base data type is a varying-length string, this clause is

ignored. String values of length 0 are automatically compressed if a table
has been set with VALUE COMPRESSION.

If the table being altered is a typed table, the column must not be inherited
from a supertable (SQLSTATE 428D]).

SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is
associated with the table. The name must not be qualified (SQLSTATE

Statements 149

ALTER TABLE

150

42601). The table must have a security policy associated with it (SQLSTATE
55064). The table must not be a system-period temporal table.

DROP COLUMN SECURITY
Alters a column to make it a non-protected column.

ACTIVATE ROW ACCESS CONTROL

Activates row level access control on the table. The table must not be a typed
table, a catalog table (SQLSTATE 55019), a created temporary table, a declared
temporary table (SQLSTATE 42995), a nickname (SQLSTATE 42809), or a view
(SQLSTATE 42809).

A default row permission is implicitly created and allows no access to any
rows of the table, unless permitted by a row permission explicitly created by a
user with SECADM authority.

When the table is referenced in a data manipulation statement, all enabled row
permissions that have been created for the table, including the default row
permission, are applied implicitly by the DB2 database to control the set of
rows in the table that are accessible.

If a trigger exists for the table, the trigger must be defined with the SECURED
attribute (SQLSTATE 55019).

The table must not be referenced in the definition of a view if an INSTEAD OF
trigger that is defined with the NOT SECURED attribute exists for the view
(SQLSTATE 55019).

If a materialized query table references the table, the functions referenced in
the fullselect of materizalized-query-definition must be defined with the SECURED
attribute (SQLSTATE 55019).

If a materialized query table (or a staging table) that depends on the table
(directly or indirectly through a view) for which row level access control is
being activated and that materialized query table (or a staging table) does not
already have row level access control activated, row level access control is
implicitly activated for the materialized query table (or a staging table). This
restricts direct access to the contents of the materialized query table (or a
staging table). A query that explicitly references the table before such a row
permission is defined will return a warning that there is no data in the table
(SQLSTATE 02000). To provide access to the materialized query table (or a
staging table), an appropriate row permission can be created, or an ALTER
TABLE DEACTIVATE ROW ACCESS CONTROL statement on the materialized
query table (or a staging table) can be issued to remove the row level
protection if that is appropriate.

ACTIVATE ROW ACCESS CONTROL is ignored if row access control is
already defined as activated for the table.

If the table is a system-period temporal table, the database manager
automatically activates row access control on the history table and creates a
default row permission for the history table.

ACTIVATE COLUMN ACCESS CONTROL

SQL Reference Volume 2

Activates column level access control on the table. The table must not be a
typed table, a catalog table (SQLSTATE 55019), a created temporary table, a
declared temporary table (SQLSTATE 42995), a nickname (SQLSTATE 42809) or
a view (SQLSTATE 42809).

The access to the table is not restricted but when the table is referenced in a
data manipulation statement, all enabled column masks that have been created

ALTER TABLE

for the table are applied implicitly by the database manager to mask the values
returned for the columns referenced in the final result table of the queries.

If a trigger exists for the table, the trigger must be defined with the SECURED
attribute (SQLSTATE 55019).

If a materialized query table references the table, the functions referenced in
the fullselect of materizalized-query-definition must be defined with the SECURED
attribute (SQLSTATE 55019).

The table must not be referenced in the definition of a view if an INSTEAD OF
trigger that is defined with the NOT SECURED attribute exists for the view
(SQLSTATE 55019). If a materialized query table that depends on the table
(directly or indirectly through a view) for which column level access control is
being activated and that materialized query table does not already have row
level access control activated, row level access control is implicitly activated for
the materialized query table. This restricts direct access to the contents of the
materialized query table. A query that explicitly references the table before
such a row permission is defined returns a warning that there is no data in the
table (SQLSTATE 02000). To provide access to the materialized query table, an
appropriate row permission can be created, or an ALTER TABLE DEACTIVATE
ROW ACCESS CONTROL statement on the materialized query table can be
issued to remove the row level protection if that is appropriate.

ACTIVATE COLUMN ACCESS CONTROL is ignored if column level access control is
already defined as activated for the table.

If the table is a system-period temporal table, the database manager
automatically activates row access control on the history table and creates a
default row permission for the history table.

DEACTIVATE ROW ACCESS CONTROL

Deactivates row level access control on the table. When the table is referenced
in a data manipulation statement, any existing enabled row permissions
defined on the table are not applied by the database manager to control the set
of rows in the table that are accessible.

DEACTIVATE ROW ACCESS CONTROL is ignored if row access control is not
activated for the table.

DEACTIVATE COLUMN ACCESS CONTROL

Deactivates column level access control on the table. When the table is
referenced in a data manipulation statement, any existing enabled column
masks defined on the table are not applied by the database manager to control
the values returned for the columns referenced in the final result table of the
queries.

DEACTIVATE COLUMN ACCESS CONTROL is ignored if column access control is not
activated for the table.

RENAME COLUMN source-column-name TO target-column-name
Renames the column that is specified in source-column-name to the name that is
specified in target-column-name. If the auto_reval database configuration
parameter is set to DISABLED, the RENAME COLUMN option of the ALTER
TABLE statement behaves like it is under the control of revalidation immediate
semantics.

The table must not be defined as a history table (SQLSTATE 42986). If the table
is a system-period temporal table, the column is also renamed in any
associated history table.

Statements 151

ALTER TABLE

RENAME COLUMN must not rename a column that is referenced in the definition of
a row permission or a column mask. Also, It must not rename a column for
which a column mask is defined (SQLSTATE 42917). If you rename a column
that belongs to a table on which a mask or a permission is defined, or to a
table that is referenced in the definition of a mask or a permission, that mask
or permission is invalidated. Access to a table that has column access control
activated and an invalid mask defined on it is blocked until the invalid mask is
either disabled, dropped, or recreated (SQLSTATE 560D0). Access to a table
that has row access control activated and an invalid row permission defined on
it is blocked until the invalid permission is either disabled, dropped, or
recreated (SQLSTATE 560DO0).

source-column-name
Specifies the name of the column that is to be renamed. The
source-column-name must identify an existing column of the table
(SQLSTATE 42703). The name must not be qualified. The name must not
identify a column that is otherwise being added, altered, or dropped in the
same ALTER TABLE statement (SQLSTATE 42711).

target-column-name
The new name for the column. The name must not be qualified. Existing

column names or period names in the table must not be used (SQLSTATE
42711).

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints
dependent on this primary key. The table must have a primary key (SQLSTATE
42888).

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint (SQLSTATE 42704). For information about
implications of dropping a referential constraint see Notes.

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all referential
constraints dependent on this unique constraint. The constraint-name must
identify an existing UNIQUE constraint (SQLSTATE 42704). For information on
implications of dropping a unique constraint, see Notes.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an
existing check constraint defined on the table (SQLSTATE 42704).

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint, referential constraint, primary key, or unique
constraint defined on the table (SQLSTATE 42704). For information about
implications of dropping a constraint, see Notes.

DROP COLUMN
Drops the identified column from the table. The table must not be a typed
table (SQLSTATE 428DH). The table cannot have data capture enabled
(SQLSTATE 42997). If a column is dropped, the table must be reorganized
before an update, insert, or delete operation or an index scan can be performed
on the table (SQLSTATE 57016). An XML column can only be dropped only if
all of the other XML columns in the table are dropped at the same time.

DROP COLUMN must not drop a column that is referenced in the definition of a
row permission or a column mask (SQLSTATE 42917). However, a column for

152 SQL Reference Volume 2

ALTER TABLE

which a column mask is defined can be dropped. When the column is
dropped, any column mask defined on that column is also dropped.

column-name

Identifies the column that is to be dropped. The column name must not be
qualified. The name must identify a column of the specified table
(SQLSTATE 42703). The name must not identify the only column of the
table (SQLSTATE 42814), or a column referenced in the definition of a
period (SQLSTATE 42817). The name must not identify the last column of
the table that is not hidden (SQLSTATE 428GU). The name must not
identify a column in a table that is defined as a system-period temporal
table or history table (SQLSTATE 428FR). The name must not identify a
column that is part of the distribution key, table-partitioning key, or
organizing dimensions (SQLSTATE 42997).

CASCADE

Specifies the following actions, based on the object:

* Any views that are dependent on the column being dropped are marked

inoperative

¢ Any indexes, triggers, SQL functions, constraints, or global variables that
are dependent on the column being dropped are also dropped

* Any decomposition-enabled XSROBJECTs that are dependent on the
table containing the column are made inoperative for decomposition.

A trigger is dependent on the column if it is referenced in the UPDATE OF
column list, or anywhere in the triggered action. A decomposition-enabled
XSROBJECT is dependent on a table if it contains a mapping of an XML
element or attribute to the table. If an SQL function or global variable is
dependent on another database object, it might not be possible to drop the
function or global variable by means of the CASCADE option. CASCADE

is the default.
RESTRICT

Specifies that the column cannot be dropped if any views, indexes,
triggers, constraints, or global variables are dependent on the column, or if
any decomposition-enabled XSROBJECT is dependent on the table that
contains the column (SQLSTATE 42893). A trigger is dependent on the
column if it is referenced in the UPDATE OF column list, or anywhere in
the triggered action. A decomposition-enabled XSROBJECT is dependent
on a table if it contains a mapping of an XML element or attribute to the
table. The first dependent object that is detected is identified in the

administration log.

Table 15. Cascaded Effects of Dropping a Column

Operation

RESTRICT Effect

CASCADE Effect

Dropping a column that is
referenced by a view or a
trigger

Dropping the column is not
allowed.

The object and all objects that
are dependent on that object
are dropped.

Dropping a column that is
referenced in the key of an
index

If all columns that are
referenced in the index are
dropped in the same ALTER
TABLE statement, dropping
the index is allowed.
Otherwise, dropping the
column is not allowed.

The index is dropped.

153

Statements

ALTER TABLE

Table 15. Cascaded Effects of Dropping a Column (continued)

Operation

RESTRICT Effect

CASCADE Effect

Dropping a column that is
referenced in a unique
constraint

If all columns that are
referenced in the unique
constraint are dropped in the
same ALTER TABLE
statement, and the unique
constraint is not referenced
by a referential constraint, the
columns and the constraint
are dropped. (The index that
is used to satisfy the
constraint is also dropped.)
Otherwise, dropping the
column is not allowed.

The unique constraint and
any referential constraints
that reference that unique
constraint are dropped. (Any
indexes that are used by
those constraints are also
dropped).

Dropping a column that is
referenced in a referential
constraint

If all columns that are
referenced in the referential
constraint are dropped in the
same ALTER TABLE
statement, the columns and
the constraint are dropped.
Otherwise, dropping the
column is not allowed.

The referential constraint is
dropped.

Dropping a column that is
referenced by a
system-generated column
that is not being dropped.

Dropping the column is not
allowed.

Dropping the column is not
allowed.

Dropping a column that is
referenced in a check
constraint

Dropping the column is not
allowed.

The check constraint is
dropped.

Dropping a column that is
referenced in a
decomposition-enabled
XSROBJECT

Dropping the column is not
allowed.

The XSROBJECT is marked
inoperative for
decomposition. Re-enabling
the XSROBJECT might
require readjustment of its
mappings; following this,
issue an ALTER XSROBJECT
ENABLE DECOMPOSITION
statement against the
XSROBJECT.

Dropping a column that is
referenced in the default
expression of a global
variable

Dropping the column is not
allowed.

The global variable is
dropped, unless the dropping
of the global variable is
disallowed because there are
other objects, which do not
allow the cascade, that
depend on the global
variable.

DROP RESTRICT ON DROP

Removes the restriction, if there is one, on dropping the table and the table
space that contains the table.

DROP DISTRIBUTION

Drops the distribution definition for the table. The table must have a
distribution definition (SQLSTATE 428FT). The table space for the table must
be defined on a single partition database partition group.

154 SQL Reference Volume 2

ALTER TABLE

DROP MATERIALIZED QUERY
Changes a materialized query table so that it is no longer considered to be a
materialized query table. The table specified by table-name must be defined as a
materialized query table that is not replicated (SQLSTATE 428EW). The
definition of the columns of table-name is not changed, but the table can no
longer be used for query optimization, and the REFRESH TABLE statement
can no longer be used.

If row level access control or column level access control is in effect for the
table, this control remains after the table is no longer a materialized query
table.

ADD PERIOD period-definition
Adds a period definition to the table.

SYSTEM_TIME (begin-column-name, end-column-name)

Defines a system period with the name SYSTEM_TIME. There must not be
a column in the table with the name SYSTEM_TIME (SQLSTATE 42711). A
table can have only one SYSTEM_TIME period (SQLSTATE 42711).
begin-column-name must be defined as ROW BEGIN and end-column-name
must be defined as ROW END (SQLSTATE 428HN).

BUSINESS_TIME (begin-column-name, end-column-name)

Defines an application period with the name BUSINESS_TIME. There must
not be a column in the table with the name BUSINESS_TIME (SQLSTATE
42711). A table can have only one BUSINESS_TIME period (SQLSTATE
42711). begin-column-name and end-column-name must both be defined as
DATE or TIMESTAMP(p) where p is from 0 to 12 (SQLSTATE 42842), and
the columns must be defined as NOT NULL (SQLSTATE 42831).
begin-column-name and end-column-name must not identify a column that is
defined with a GENERATED clause (SQLSTATE 428HZ). Business time
period columns cannot be added to a table that is in set integrity pending
state.

An implicit check constraint is generated to ensure that the value of
end-column-name is greater than the value of begin-column-name. The name
of the implicitly created check constraint is
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME and
must not be the name of an existing check constraint (SQLSTATE 42710).

DROP PERIOD period-name
Drops the identified period from the table. The name must not identify a
period that was already added or altered in this ALTER TABLE statement
(SQLSTATE 42711). Any implicitly generated check constraints for the period
(created when the period was defined) and any indexes that reference the
period are also dropped.

period-name
Identifies the period. Valid period names are BUSINESS_TIME or
SYSTEM_TIME. The period must exist in the table (SQLSTATE 4274M).

When a BUSINESS_TIME period is dropped, all packages with the
application-period temporal table dependency type on that table are
invalidated. Other dependent objects like views and triggers that record a
dependency on the table are also marked as invalid.

SYSTEM_TIME period cannot be dropped if the table is a system-period
temporal table (SQLSTATE 428HZ).

Statements 155

ALTER TABLE

156

DATA CAPTURE

Indicates whether extra information for data replication is to be written to the
log.

If the table is a typed table, then this option is not supported (SQLSTATE
428DH for root tables or 428DR for other subtables).

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this table will be
written to the log. This option is required if this table will be replicated
and the Capture program is used to capture changes for this table from the
log.

If the schema name (implicit or explicit) of the table is longer than 18
bytes, this option is not supported (SQLSTATE 42997).

INCLUDE LONGVAR COLUMNS
Allows data replication utilities to capture changes made to LONG
VARCHAR or LONG VARGRAPHIC columns. The clause may be
specified for tables that do not have any LONG VARCHAR or LONG
VARGRAPHIC columns since it is possible to ALTER the table to
include such columns.

ACTIVATE NOT LOGGED INITIALLY

SQL Reference Volume 2

Activates the NOT LOGGED INITIALLY attribute of the table for this current
unit of work.

Any changes made to the table by an INSERT, DELETE, UPDATE, CREATE
INDEX, DROP INDEX, or ALTER TABLE in the same unit of work after the
table is altered by this statement are not logged. Any changes made to the
system catalog by the ALTER statement in which the NOT LOGGED
INITIALLY attribute is activated are logged. Any subsequent changes made in
the same unit of work to the system catalog information are logged.

At the completion of the current unit of work, the NOT LOGGED INITIALLY
attribute is deactivated and all operations that are done on the table in
subsequent units of work are logged.

If using this feature to avoid locks on the catalog tables while inserting data, it
is important that only this clause be specified on the ALTER TABLE statement.
Use of any other clause in the ALTER TABLE statement will result in catalog
locks. If no other clauses are specified for the ALTER TABLE statement, then
only a SHARE lock will be acquired on the system catalog tables. This can
greatly reduce the possibility of concurrency conflicts for the duration of time
between when this statement is executed and when the unit of work in which
it was executed is ended.

If the table is a typed table, this option is only supported on the root table of
the typed table hierarchy (SQLSTATE 428DR).

If the table is a system-period temporal table or a history table, this option is
not supported

For more information about the NOT LOGGED INITIALLY attribute, see the
description of this attribute in “CREATE TABLE".

Note: If non-logged activity occurs against a table that has the NOT LOGGED
INITIALLY attribute activated, and if a statement fails (causing a rollback), or a
ROLLBACK TO SAVEPOINT is executed, the entire unit of work is rolled back

ALTER TABLE

(SQL1476N). Furthermore, the table for which the NOT LOGGED INITIALLY
attribute was activated is marked inaccessible after the rollback has occurred
and can only be dropped. Therefore, the opportunity for errors within the unit
of work in which the NOT LOGGED INITIALLY attribute is activated should
be minimized.

WITH EMPTY TABLE
Causes all data currently in table to be removed. Once the data has been
removed, it cannot be recovered except through use of the RESTORE
facility. If the unit of work in which this alter statement was issued is
rolled back, the table data will not be returned to its original state.

When this action is requested, no DELETE triggers defined on the affected
table are fired. The index data is also deleted for all indexes that exist on
the table.

A partitioned table with attached data partitions or logically detached
partitions cannot be emptied (SQLSTATE 42928).

PCTFREE integer
Specifies the percentage of each page that is to be left as free space during a
load or a table reorganization operation. The first row on each page is added
without restriction. When additional rows are added to a page, at least integer
percent of the page is left as free space. The PCTFREE value is considered only
by the load and table reorg utilities. The value of integer can range from 0 to
99. A PCTEFREE value of -1 in the system catalog (SYSCAT.TABLES) is
interpreted as the default value. The default PCTFREE value for a table page is
0. If the table is a typed table, this option is only supported on the root table of
the typed table hierarchy (SQLSTATE 428DR).

LOCKSIZE
Indicates the size (granularity) of locks used when the table is accessed. Use of
this option in the table definition will not prevent normal lock escalation from
occurring. If the table is a typed table, this option is only supported on the root
table of the typed table hierarchy (SQLSTATE 428DR).

ROW
Indicates the use of row locks. This is the default lock size when a table is
created.

BLOCKINSERT
Indicates the use of block locks during insert operations. This means that
the appropriate exclusive lock is acquired on the block before insertion,
and row locking is not done on the inserted row. This option is useful
when separate transactions are inserting into separate cells in the table.
Transactions inserting into the same cells can still do so concurrently, but
will insert into distinct blocks, and this can impact the size of the cell if
more blocks are needed. This option is only valid for MDC tables
(SQLSTATE 42613).

TABLE
Indicates the use of table locks. This means that the appropriate share or
exclusive lock is acquired on the table, and that intent locks (except intent
none) are not used. For partitioned tables, this lock strategy is applied to
both the table lock and the data partition locks for any data partitions that
are accessed. Use of this value can improve the performance of queries by
limiting the number of locks that need to be acquired. However,
concurrency is also reduced, because all locks are held over the complete
table.

Statements 157

ALTER TABLE

APPEND
Indicates whether data is appended to the end of the table data or placed
where free space is available in data pages. If the table is a typed table, this

option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

ON Indicates that table data will be appended and information about free
space on pages will not be kept. The table must not have a clustered index
(SQLSTATE 428CA).

OFF

Indicates that table data will be placed where there is available space. This
is the default when a table is created.

The table should be reorganized after setting APPEND OFF since the
information about available free space is not accurate and may result in
poor performance during insert.

VOLATILE CARDINALITY or NOT VOLATILE CARDINALITY
Indicates to the optimizer whether or not the cardinality of table table-name can
vary significantly at run time. Volatility applies to the number of rows in the
table, not to the table itself. CARDINALITY is an optional keyword. The
default is NOT VOLATILE.

VOLATILE
Specifies that the cardinality of table table-name can vary significantly at
run time, from empty to large. To access the table, the optimizer will use
an index scan (rather than a table scan, regardless of the statistics) if that
index is index-only (all referenced columns are in the index), or that index
is able to apply a predicate in the index scan. The list prefetch access
method will not be used to access the table. If the table is a typed table,
this option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

NOT VOLATILE
Specifies that the cardinality of table-name is not volatile. Access plans to
this table will continue to be based on existing statistics and on the current
optimization level.

COMPRESS
Specifies whether or not data compression applies to the rows of the table.

YES
Specifies that row and XML compression are enabled. Insert and update
operations on the table will be subject to compression. Index compression
will be enabled for new indexes unless explicitly disabled in the CREATE
INDEX statement. Existing indexes can be compressed by using the ALTER
INDEX statement.

After a table has been altered to enable row compression, all rows in the
table can be compressed immediately by performing one of the following
actions:

* REORG command
* Online table move
¢ Data unload and reload
ADAPTIVE
Enables adaptive compression for the table. Data rows are subject to

compression with both table-level and page-level compression
dictionaries. XML documents in the XML storage object are subject to

158 SQL Reference Volume 2

ALTER TABLE

compression with a table-level XML compression dictionary. Page-level
compression dictionaries are created automatically as rows are inserted
or updated. Table-level compression dictionaries are created for both
row and XML data automatically after sufficient data is added, unless
they already exist.

STATIC
Enables classic row compression for the table. Data rows are subject to
compression with a table-level compression dictionary, and XML
documents in the XML storage object are subject to compression using
a table-level XML compression dictionary. If no table-level compression
dictionaries exists for either row or XML data, they will be created
automatically after sufficient data is added.

If neither of the preceding two options are specified along with the
COMPRESS YES clause, ADAPTIVE is used implicitly.

NO Specifies that data row and XML compression are disabled. Inserted and
updated data rows and XML documents in the table will no longer be
subject to compression. Any rows and XML documents in the table that are
already in compressed format remain in compressed format until they are
converted to non-compressed format when they are updated. An offline
reorganization of the table decompresses any rows that are remain
compressed. If table-level or page-level compression dictionaries exist, they
are discarded during table reorganization or truncation (such as, for
example, a LOAD REPLACE operation). Index compression is disabled for
new indexes created on that table unless explicitly enabled in the CREATE
INDEX statement. Index compression for existing indexes can be explicitly
disabled by using the ALTER INDEX statement.

VALUE COMPRESSION
This determines the row format that is to be used. Each data type has a
different byte count depending on the row format that is used. For more
information, see “Byte Counts” in “CREATE TABLE”. An update operation
causes an existing row to be changed to the new row format. Offline table
reorganization is recommended to improve the performance of update
operations on existing rows. This can also result in the table taking up less
space. If the row size, calculated using the appropriate column in the table
named “Byte Counts of Columns by Data Type” (see “CREATE TABLE”),
would no longer fit within the row size limit, as indicated in the table named
“Limits for Number of Columns and Row Size In Each Table Space Page Size”,
an error is returned (SQLSTATE 54010). If the table is a typed table, this option
is only supported on the root table of the typed table hierarchy (SQLSTATE
428DR).

ACTIVATE
The NULL value is stored using three bytes. This is the same or less space
than when VALUE COMPRESSION is not active for columns of all data
types, with the exception of CHAR(1). Whether or not a column is defined
as nullable has no affect on the row size calculation. The zero-length data
values for columns whose data type is VARCHAR, VARGRAPHIC, CLOB,
DBCLOB, or BLOB are to be stored using two bytes only, which is less
than the storage required when VALUE COMPRESSION is not active.
When a column is defined using the COMPRESS SYSTEM DEFAULT
option, this also allows the system default value for the column to be
stored using three bytes of total storage. The row format that is used to

Statements 159

ALTER TABLE

support this determines the byte counts for each data type, and tends to
cause data fragmentation when updating to or from NULL, a zero-length
value, or the system default value.

DEACTIVATE
The null value is stored with space set aside for possible future updates.
This space is not set aside for varying-length columns. It also does not
support efficient storage of system default values for a column. If columns
already exist with the COMPRESS SYSTEM DEFAULT attribute, a warning
is returned (SQLSTATE 01648).

LOG INDEX BUILD
Specifies the level of logging that is to be performed during create, re-create, or
reorganize index operations on this table.

NULL
Specifies that the value of the Tegindexbuild database configuration
parameter will be used to determine whether or not index build operations
are to be completely logged. This is the default when the table is created.

OFF
Specifies that any index build operations on this table will be logged
minimally. This value overrides the setting of the Togindexbuild database
configuration parameter.

ON Specifies that any index build operations on this table will be logged
completely. This value overrides the setting of the Togindexbuild database
configuration parameter.

ADD PARTITION add-partition
Adds one or more data partitions to a partitioned table. If the specified table is
not a partitioned table, an error is returned (SQLSTATE 428FT). The number of
data partitions must not exceed 32 767.

partition-name
Names the data partition. The name must not be the same as any other
data partition for the table (SQLSTATE 42710). If this clause is not
specified, the name will be 'PART" followed by the character form of an
integer value to make the name unique for the table.

boundary-spec
Specifies the range of values for the new data partition. This range must
not overlap that of an existing data partition (SQLSTATE 56016). For a
description of the starting-clause and the ending-clause, see “CREATE
TABLE”.

If the starting-clause is omitted, the new data partition is assumed to be at
the end of the table. If the ending-clause is omitted, the new data partition
is assumed to be at the start of the table.

IN tablespace-name
Specifies the table space where the data partition is to be stored. The
named table space must have the same page size, be in the same database
partition group, and manage space in the same way as the other table
spaces of the partitioned table (SQLSTATE 42838). This can be a table space
that is already being used for another data partition of the same table, or a
table space that is currently not being used by this table, but it must be a
table space on which the authorization ID of the statement holds the USE
privilege (SQLSTATE 42727). If this clause is not specified, the table space
of the first visible or attached data partition of the table is used.

160 SQL Reference Volume 2

ALTER TABLE

INDEX IN tablespace-name
Specifies the table space where partitioned indexes on the data partition
are stored. If the INDEX IN clause is not specified, partitioned indexes on
the data partition are stored in the same table space as the data partition.

The table space used by the new index partition, whether default or
specified by the INDEX IN clause, must match the type (SMS or DMS),
page size, and extent size of the table spaces used by all other index
partitions (SQLSTATE 42838).

LONG IN tablespace-name
Specifies the table space where the data partition containing long column
data is to be stored. The named table space must have the same page size,
be in the same database partition group, and manage space in the same
way as the other table spaces and data partitions of the partitioned table
(SQLSTATE 42838); it must be a table space on which the authorization ID
of the statement holds the USE privilege. The page size and extent size for
the named table space can be different from the page size and extent size
of the other data partitions of the partitioned table.

For rules governing the use of the LONG IN clause with partitioned tables,
see “Large object behavior in partitioned tables”.

ATTACH PARTITION attach-partition
Attaches another table as a new data partition. The data object of the table
being attached becomes a new partition of the table being attached to. There is
no data movement involved. The table is placed in set integrity pending state,
and referential integrity checking is deferred until execution of a SET
INTEGRITY statement. The ALTER TABLE ATTACH operation does not allow
the use of the IN or LONG IN clause. The placement of LOBs for that data
partition is determined at the time the source table is created. For rules
governing the use of the LONG IN clause with partitioned tables, see “Large
object behavior in partitioned tables”.

If the table being attached has either row level access control or column level
access control activated then the table to attach to must have the same controls
activated. No row permissions or column masks are automatically carried over
from the table being attached to the target table. The column masks and row
permissions do not necessarily need to be exactly the same on both tables,
although this would be best from a security perspective. But if the table being
attached has row level access control activated then the table to attach to must
also have row level access control activated (SQLSTATE 428GE). Similarly, if
the table being attached has column level access control activated and at least
one column mask object enabled then the table to attach to must also have
column level access control activated and a column mask object enabled for the
corresponding columns (SQLSTATE 428GE).

partition-name
Names the data partition. The name must not be the same as any other
data partition for the table (SQLSTATE 42710). If this clause is not
specified, the name will be PART' followed by the character form of an
integer value to make the name unique for the table.

boundary-spec
Specifies the range of values for the new data partition. This range must
not overlap that of an existing data partition (SQLSTATE 56016). For a
description of the starting-clause and the ending-clause, see “CREATE
TABLE”.

Statements 161

ALTER TABLE

162

SQL Reference Volume 2

If the starting-clause is omitted, the new data partition is assumed to be at
the end of the table. If the ending-clause is omitted, the new data partition
is assumed to be at the start of the table.

FROM table-namel
Specifies the table that is to be used as the source of data for the new
partition. The table definition of table-namel cannot have multiple data
partitions, and it must match the altered table in the following ways
(SQLSTATE 428GE):

The number of columns must be the same.

The data types of the columns in the same ordinal position in the table
must be the same.

The nullability characteristic of the columns in the same ordinal position
in the table must be the same.

If the target table has a row change timestamp column, the
corresponding column of the source table must be a row change
timestamp column.

If the data is also distributed, it must be distributed over the same
database partition group using the same distribution method.

If the data in either table is organized, the organization must match.
For structured, XML, or LOB data type, the value for INLINE LENGTH
must be the same.

If the target table has a BUSINESS_TIME period defined, the source
table must have a BUSINESS_TIME period defined on the corresponding
columns.

After the data from table-namel is successfully attached, an operation
equivalent to DROP TABLE table-namel is performed to remove this table,
which no longer has data, from the database.

BUILD MISSING INDEXES

Specifies that if the source table does not have indexes that correspond to
the partitioned indexes on the target table, a SET INTEGRITY operation
builds partitioned indexes on the new data partition to correspond to the
partitioned indexes on the existing data partitions. Indexes on the source
table that do not match the partitioned indexes on the target table are
dropped during attach processing.

REQUIRE MATCHING INDEXES

Specifies that the source table must have indexes to match the partitioned
indexes on the target table; otherwise, an error is returned (SQLSTATE
428GE) and information is written to the administration log about the
indexes that do not match.

If the REQUIRE MATCHING INDEXES clause is not specified and the
indexes on the source table do not match all the partitioned indexes on the
target table, the following behavior occurs:

1. For indexes on the target table that do not have a match on the source
table and are either unique indexes or XML indexes that are defined
with REJECT INVALID VALUES, the ATTACH operation fails
(SQLSTATE 428GE).

2. For all other indexes on the target table that do not have a match on
the source table, the index object on the source table is marked invalid
during the attach operation. If the source table does not have any
indexes, an empty index object is created and marked as invalid. The
ATTACH operation will succeed, but the index object on the new data

ALTER TABLE

partition is marked as invalid. Typically, SET INTEGRITY is the next
operation to run against the data partition. SET INTEGRITY will force a
rebuild, if required, of the index object on data partitions that were
recently attached. The index rebuild can increase the time required to
bring the new data online.

3. Information is written to the administration log about the indexes that
do not match.

DETACH PARTITION partition-name INTO table-namel

ADD

Detaches the data partition partition-name from the altered table, and uses the
data partition to create a new table named table-namel. The data partition is
detached from the altered table and is used to create the new table without
any data movement. The specified data partition cannot be the last remaining
partition of the table being altered (SQLSTATE 428G2). The table being altered
to detach a partition must not be a system-period temporal table (SQLSTATE
428H7Z).

When a partition is detached from a table for which either row level access
control or column level access control is defined, the new table that is created
for the detached data will automatically have row level access control (though
not column level access control) activated to protect the detached data. Direct
access to this new table will return no rows until appropriate row permissions
are defined for the table or row level access control is deactivated for this table.

SECURITY POLICY policy-name

Adds a security policy to the table. The security policy must exist at the
current server (SQLSTATE 42704). The table must not already have a security
policy (SQLSTATE 55065), and must not be a typed table (SQLSTATE 428DH),
materialized query table (MQT), or staging table (SQLSTATE 428FG).

DROP SECURITY POLICY

ADD

Removes the security policy and all LBAC protection from the table. The table
specified by table-name must be protected by a security policy (SQLSTATE
428GT). If the table has a column with data type DB2SECURITYLABEL, the
data type is changed to VARCHAR (128) FOR BIT DATA. If the table has one
or more protected columns, those columns become unprotected.

VERSIONING USE HISTORY TABLE history-table-name

Specifies that the table is a system-period temporal table. The table must not
already be defined as a system-period temporal table or a history table
(SQLSTATE 428HM). A SYSTEM_TIME period and a transaction-start-ID
column must be defined in the table (SQLSTATE 428HM). The table must not
be a materialized query table (SQLSTATE 428HM).

Historical versions of the rows in the table are retained by the database
manager. The database manager records extra information that indicates when
a row was inserted into the table, and when it was updated or deleted. When
a row in a system-period temporal table is updated, a previous version of the
row is kept. When data in a system-period temporal table is deleted, the old
version of the row is inserted as a historical record. An associated history table
is used to store the historical rows of the table.

References to the table can include a time period search condition to indicate
which system versions of the data are to be returned.history-table-name
identifies a history table where historical rows of the system-period temporal
table are kept. history-table-name must identify a table that exists at the current
server (SQLSTATE 42704), and is not a catalog table (SQLSTATE 42832), an

Statements 163

ALTER TABLE

existing system-period temporal table, an existing history table, a declared
global temporary table, a created global temporary table, a materialized query
table, or a view, (SQLSTATE 428HX).

The identified history table must not contain an identity column, row change
timestamp column, row-begin column, row-end column, transaction start-ID
column, generated expression column, or include a period (SQLSTATE 428HX).

The system-period temporal table and the identified history table must have
the same number and order of columns (SQLSTATE 428HX). The following
attributes for the corresponding columns of the two tables must be the same
(SQLSTATE 428HX):

* Column name

e Column data type

¢ Column length (including inline LOB lengths), precision, and scale
* Column FOR BIT attribute for character string columns

e Column null attribute

* Column hidden attribute

If row access control or column access control is activated for the
system-period temporal table and row access control is not activated on the
history table, the database manager automatically activates row access control
on the history table and creates a default row permission for the history table.

DROP VERSIONING
Specifies that the table is no longer a system-period temporal table. The table
must be a system-period temporal table (SQLSTATE 428HZ). Historical data is
no longer recorded and maintained for the table. The definition of the columns
and data of the table are not changed, but the table is no longer treated as a
system-period temporal table. The SYSTEM_TIME period is retained.
Subsequent queries that reference the table must not specify a SYSTEM_TIME
period specification for the table. The relationship between the system-period
temporal table and the associated history table is removed. The history table is
not dropped and the contents of the history table are not affected.

When a table is altered with DROP VERSIONING, all packages with the
system-period temporal table dependency type on that table are invalidated.
Other dependent objects like views and triggers that record a dependency on
the table are also marked as invalid.

Rules

* Any unique or primary key constraint defined on the table must be a superset of
the distribution key, if there is one (SQLSTATE 42997).

* Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).

* A column can only be referenced in one ADD, ALTER, or DROP COLUMN
clause in a single ALTER TABLE statement (SQLSTATE 42711).

* A column length, data type, or hidden attribute cannot be altered, nor can the
column be dropped, if the table has any materialized query tables that are
dependent on the table (SQLSTATE 42997).

* VARCHAR and VARGRAPHIC columns that have been altered to be greater
than 4000 and 2000, respectively, must not be used as input parameters in
functions in the SYSFUN schema (SQLSTATE 22001).

* A column length cannot be altered if the table has any views enabled for query
optimization that are dependent on the table (SQLSTATE 42997).

164 SQL Reference Volume 2

ALTER TABLE

¢ The table must be put in set integrity pending state, using the SET INTEGRITY
statement with the OFF option (SQLSTATE 55019), before:

- Adding a column with a generation expression
— Altering the generated expression of a column
— Changing a column to have a generated expression

* An existing column cannot be altered to become of type DB2SECURITYLABEL
(SQLSTATE 42837).

* Defining a column of type DB2SECURITYLABEL fails if the table does not have
a security policy associated with it (SQLSTATE 55064).

* A column of type DB2SECURITYLABEL cannot be altered or dropped
(SQLSTATE 42817).

* An ALTER TABLE operation to mark a table as protected fails if there exists an
MQT that depends on that table (SQLSTATE 55067).

* Attaching a partition to a protected partitioned table fails if the source table and
the target table are not protected using the same security policy, do not have the
same row security label column, and do not have the same set of protected
columns (SQLSTATE 428GE).

* If a generated column is referenced in a table-partitioning key, the generated
column expression cannot be altered (SQLSTATE 42837).

* The isolation-clause cannot be specified in the fullselect of the
materialized-query-definition (SQLSTATE 42601).

* Adding or attaching a data partition to a partitioned table fails with SQL0612N
after detaching the same partition name, if asynchronous index cleanup has not
finished to delete index entries for the partition (SQLSTATE 42711).

Notes

* A REORG-recommended operation has occurred when changes resulting from an
ALTER TABLE statement affect the row format of the data. When this occurs,
most subsequent operations on the table are restricted until a table
reorganization operation completes successfully. Up to three ALTER TABLE
statements of this type can execute against a table before reorganization must be
done (SQLSTATE 57016). Multiple alterations that would constitute a
REORG-recommended operation can be made as part of a single ALTER TABLE
statement (one per column); this is considered to be a single
REORG-recommended operation. For example, dropping two columns in a
single ALTER TABLE statement is not considered to be two
REORG-recommended operations. Dropping two columns in two separate
ALTER TABLE statements, however, would be regarded as two statements that
contain REORG-recommended operations.

* The following table operations are allowed after a successful
REORG-recommended operation has occurred:

— ALTER TABLE, where no row data validation is required. However, the
following operations are not allowed (SQLSTATE 57007):

- ADD CHECK CONSTRAINT
- ADD REFERENTIAL CONSTRAINT
- ADD UNIQUE CONSTRAINT
- ALTER COLUMN SET NOT NULL
— DROP TABLE
- RENAME TABLE
— REORG TABLE

Statements 165

ALTER TABLE

— TRUNCATE TABLE
— Table scan access of table data

Altering a table to make it a materialized query table will put the table in set
integrity pending state. If the table is defined as REFRESH IMMEDIATE, the
table must be taken out of set integrity pending state before INSERT, DELETE,
or UPDATE commands can be invoked on the table referenced by the fullselect.
The table can be taken out of set integrity pending state by using REFRESH
TABLE or SET INTEGRITY, with the IMMEDIATE CHECKED option, to
completely refresh the data in the table based on the fullselect. If the data in the
table accurately reflects the result of the fullselect, the IMMEDIATE
UNCHECKED option of SET INTEGRITY can be used to take the table out of set
integrity pending state.

Altering a table to change it to a REFRESH IMMEDIATE materialized query
table will cause any packages with INSERT, DELETE, or UPDATE usage on the
table referenced by the fullselect to be invalidated.

Altering a table to change from a materialized query table to a regular table will
cause any packages dependent on the table to be invalidated.

Altering a table to change from a MAINTAINED BY FEDERATED_TOOL
materialized query table to a regular table will not cause any change in the
subscription setup of the replication tool. Because a subsequent change to a
MAINTAINED BY SYSTEM materialized query table will cause the replication
tool to fail, you must change the subscription setting when changing a
MAINTAINED BY FEDERATED_TOOL materialized query table.

If a deferred materialized query table is associated with a staging table, the
staging table will be dropped if the materialized query table is altered to a
regular table.

ADD column clauses are processed before all other clauses. Other clauses are
processed in the order that they are specified.

Any columns added through an alter table operation will not automatically be
added to any existing view of the table.

Adding or attaching a data partition to a partitioned table, or detaching a data
partition from a partitioned table, causes any packages that are dependent on
that table to be invalidated.

For DB2 Version 9.7 Fix Pack 1 and later releases, after detaching a data partition
from a data partitioned table, the STATUS of the detached partition in the
SYSCAT.DATAPARTITIONS catalog can be 'L' when the partition is logically
detached and the detach operation has not completed. If the STATUS of the
detached partition is 'L', the following operations cannot be performed on the
source table (SQLSTATE 55057):

— Adding a unique or primary key constraint that attempts to create a
nonpartitioned index

— Adding, dropping, or renaming a column
— Activating value compression or compression
— Deactivating value compression or compression

To drop the partitioning for a table, the table must be dropped and then
recreated.

To drop the organization for a table, the table must be dropped and then
recreated.

When an index is automatically created for a unique or primary key constraint,
the database manager will try to use the specified constraint name as the index
name with a schema name that matches the schema name of the table. If this
matches an existing index name or no name for the constraint was specified, the

166 SQL Reference Volume 2

ALTER TABLE

index is created in the SYSIBM schema with a system-generated name formed of
"SQL" followed by a sequence of 15 numeric characters generated by a
timestamp based function.

When a nonpartitioned index is created on a partitioned table with attached data
partitions, the index will not include the data in the attached data partitions. Use
the SET INTEGRITY statement to maintain all indexes for all attached data
partitions.

When creating a partitioned index in the presence of attached data partitions
(STATUS of 'A" in SYSCAT.DATAPARTITIONS), an index partition for each
attached data partition will also be created. If the partitioned index is being
created as unique, or is an XML index being created with REJECT INVALID
VALUES, then the index creation can fail if an attached data partition contains
any violations (duplicates for a unique index, or invalid values for the XML
index).

If a table has a nonpartitioned index, you cannot access a new data partition in
that table within the same transaction as the add or attach operation that created

the partition, if the transaction does not have the table locked in exclusive mode
(SQLSTATE 57007).

Any table that may be involved in a DELETE operation on table T is said to be
delete-connected to T. Thus, a table is delete-connected to T if it is a dependent of
T or it is a dependent of a table in which deletes from T cascade.

A package has an insert (update/delete) usage on table T if records are inserted
into (updated in/deleted from) T either directly by a statement in the package,
or indirectly through constraints or triggers executed by the package on behalf
of one of its statements. Similarly, a package has an update usage on a column if
the column is modified directly by a statement in the package, or indirectly
through constraints or triggers executed by the package on behalf of one of its
statements.

In a federated system, a remote base table that was created using transparent
DDL can be altered. However, transparent DDL does impose some limitations on
the modifications that can be made:

— A remote base table can only be altered by adding new columns or specifying
a primary key.
— Specific clauses supported by transparent DDL include:
- ADD COLUMN column-definition
- NOT NULL and PRIMARY KEY in the column-options clause
- ADD unique-constraint (PRIMARY KEY only)
— You cannot specify a comment on an existing column in a remote base table.
— An existing primary key in a remote base table cannot be altered or dropped.

— Altering a remote base table invalidates any packages that are dependent on
the nickname associated with that remote base table.

— The remote data source must support the changes being requested through
the ALTER TABLE statement. Depending on how the data source responds to
requests it does not support, an error might be returned or the request might
be ignored.

— An attempt to alter a remote base table that was not created using transparent
DDL returns an error.

Any changes, whether implicit or explicit, to primary key, unique keys, or
foreign keys might have the following effects on packages, indexes, and other
foreign keys.

— If a primary key or unique key is added:

Statements 167

ALTER TABLE

- There is no effect on packages, foreign keys, or existing unique keys. (If the
primary or unique key uses an existing unique index that was created in a
previous version and has not been converted to support deferred
uniqueness, the index is converted, and packages with update usage on the
associated table are invalidated.)

— If a primary key or unique key is dropped:

- The index is dropped if it was automatically created for the constraint. Any
packages dependent on the index are invalidated.

- The index is set back to non-unique if it was converted to unique for the
constraint and it is no longer system-required. Any packages dependent on
the index are invalidated.

- The index is set to no longer system required if it was an existing unique
index used for the constraint. There is no effect on packages.

- All dependent foreign keys are dropped. Further action is taken for each
dependent foreign key, as specified in the next item.

— If a foreign key is added, dropped, or altered from NOT ENFORCED to
ENFORCED (or ENFORCED to NOT ENFORCED):

- All packages with an insert usage on the object table are invalidated.

- All packages with an update usage on at least one column in the foreign
key are invalidated.

- All packages with a delete usage on the parent table are invalidated.

- All packages with an update usage on at least one column in the parent
key are invalidated.
— If a foreign key or a functional dependency is altered from ENABLE QUERY
OPTIMIZATION to DISABLE QUERY OPTIMIZATION:

- All packages with dependencies on the constraint for optimization
purposes are invalidated.

* Adding a column to a table will result in invalidation of all packages with insert

usage on the altered table. If the added column is the first user-defined
structured type column in the table, packages with DELETE usage on the altered
table will also be invalidated.

Adding a check or referential constraint to a table that already exists and that is
not in set integrity pending state, or altering the existing check or referential
constraint from NOT ENFORCED to ENFORCED on an existing table that is not
in set integrity pending state will cause the existing rows in the table to be
immediately evaluated against the constraint. If the verification fails, an error is
returned (SQLSTATE 23512). If a table is in set integrity pending state, adding a
check or referential constraint, or altering a constraint from NOT ENFORCED to
ENFORCED will not immediately lead to the enforcement of the constraint.
Issue the SET INTEGRITY statement with the IMMEDIATE CHECKED option to
begin enforcing the constraint.

Adding, altering, or dropping a check constraint will result in invalidation of all
packages with either an insert usage on the object table, an update usage on at
least one of the columns involved in the constraint, or a select usage exploiting
the constraint to improve performance.

Adding a distribution key invalidates all packages with an update usage on at
least one of the columns of the distribution key.

A distribution key that was defined by default as the first column of the primary
key is not affected by dropping the primary key and adding a different primary
key.

168 SQL Reference Volume 2

ALTER TABLE

Dropping a column or changing its data type removes all runstats information
from the table being altered. Runstats should be performed on the table after it
is again accessible. The statistical profile of the table is preserved if the table
does not contain a column that was explicitly dropped.

Altering a column (to change its length, data type, nullability, or hidden
attribute) or dropping a column invalidates all packages that reference (directly
or indirectly through a referential constraint or trigger) its table.

Altering a column (to change its length, data type, nullability, or hidden
attribute) regenerates views (except typed views) that are dependent on its table.
If a problem occurs while regenerating such a view, an error is returned
(SQLSTATE 56098). Any typed views that are dependent on the table are marked
inoperative.

Altering a column (to change its length, data type, or hidden attribute) marks all
dependent triggers and SQL functions as invalid; they are implicitly recompiled
on next use. If a problem occurs while regenerating such an object, an error is
returned (SQLSTATE 56098).

Altering a column (to change its length, data type, or nullability attribute) might
cause errors (SQLSTATE 54010) while processing a trigger or an SQL function
when a statement involving the trigger or SQL function is prepared or bound.
This can occur if the row size based on the sum of the lengths of the transition
variables and transition table columns is too long. If such a trigger or SQL
function is dropped, a subsequent attempt to re-create it returns an error
(SQLSTATE 54040).

Starting with DB2 Version 9.7 Fix Pack 1, a WLM activity event monitor created
in an earlier version must be dropped and re-created to add new table columns
introduced by this fix pack and any subsequent fix packs or releases.

Altering a structured or XML type column to increase the inline length will
invalidate all packages that reference the table, either directly or indirectly
through a referential constraint or trigger.

Altering a structured or XML type column to increase the inline length will
regenerate views that are dependent on the table.

A compression dictionary can be created for the XML storage object of a table
only if the XML columns are added to the table in DB2 Version 9.7 or later, or if
the table is migrated the using an online table move.

Changing the LOCKSIZE for a table will result in invalidation of all packages
that have a dependency on the altered table.

Changing VOLATILE or NOT VOLATILE CARDINALITY will result in
invalidation of all packages that have a dependency on the altered table.

Replication: Exercise caution when increasing the length or changing the data
type of a column. The change data table that is associated with an application
table might already be at or near the DB2 row size limit. The change data table
should be altered before the application table, or the two tables should be
altered within the same unit of work, to ensure that the alteration can be
completed for both tables. Consideration should be given to copies, which might
also be at or near the row size limit, or reside on platforms which lack the
ability to increase the length of an existing column.

If the change data table is not altered before the Capture program processes log
records with the altered attributes, the Capture program will likely fail. If a copy
containing the altered column is not altered before the subscription maintaining
the copy runs, the subscription will likely fail.

When detaching a partition from a protected table, the target table automatically
created by DB2 will be protected in exactly the same way the source table is
protected.

Statements 169

ALTER TABLE

When a table is altered such that it becomes protected with row level
granularity, any cached dynamic SQL sections that depend on such a table are
invalidated. Similarly, any packages that depend on such a table are also
invalidated.

When a column of a table, T, is altered such that it becomes a protected column,
any cached dynamic SQL sections that depend on table T are invalidated.
Similarly, any packages that depend on table T are also invalidated.

When a column of a table, T, is altered such that it becomes a non protected
column, any cached dynamic SQL sections that depend on table T are
invalidated. Similarly, any packages that depend on table T are also invalidated.

For existing rows in the table, the value of the security label column defaults to
the security label for write access of the session authorization ID at the time the
ALTER statement that adds a row security label column is executed.

Add materialized query: When a base table is altered to become a materialized
query table, the label-based access control security attributes (security policy,
column security labels, row security label column) are derived in the same way
when creating a new materialized query table. If the base table that is altered
already has label-based access control security attributes, these attributes are
factored in the derivation process as follows:

— Column access control: The existing security label for a column is aggregated
with the corresponding security label derived from the query defining the
materialized query table.

— Row access control: The row access control attributes are setup exactly in the
same way as for a new materialized query table.

In DB2 Version 9.7 Fix Pack 1 or later releases, new multidimensional clustering
(MDC) table block indexes are partitioned. Adding a data partition to a data
partitioned multidimensional clustering (MDC) table creates the corresponding
empty index partitions for the new partition, including the MDC block indexes.
Also, a new index partition entry is added to SYSCAT.SYSINDEXPARTITIONS
for each MDC block index, as well as for each partitioned index.

When attaching a data partition to a partitioned MDC table created with DB2
V9.7 Fix Pack 1 or later releases, the source table specified by attach-partition can
be a nonpartitioned MDC table or a single-partition partitioned MDC table.

— If the source table is nonpartitioned: MDC block indexes on the source table
will be inherited and become the partitioned MDC indexes for the new
partition after the ATTACH operation completes.

— If the source table is partitioned: If the source table is a partitioned MDC
table created with DB2 V9.7 Fix Pack 1 or later releases, the block indexes are
partitioned. The block indexes become the new block indexes on the partition.

— If the source partitioned MDC table is created at a level lower than DB2 V9.7
Fix Pack 1, the block indexes on the table are nonpartitioned. During the
ATTACH operation, the block indexes are dropped and created as partitioned
indexes similar to the other partitioned indexes on the source table.

Issuing the SET INTEGRITY statement on the target table is required to bring
the attached partition online.

If the REQUIRE MATCHING INDEXES clause is specified, and the target
table is a partitioned MDC table created in DB2 V9.7 Fix Pack 1 or later
releases, the ALTER TABLE ... ATTACH PARTITION statement fails and
returns SQL20307N (SQLSTATE 428GE). Removing the REQUIRE
MATCHING INDEXES clause allows the attach process to proceed.

If the target partitioned MDC table was created at a level lower than DB2 V9.7
Fix Pack 1, the block indexes are nonpartitioned. The block indexes on the

170 SQL Reference Volume 2

ALTER TABLE

source MDC table are dropped during the ATTACH operation. Issuing a SET
INTEGRITY statement on the target table is required to bring the attached
partition online. New rows from the attached partition are added to existing
nonpartitioned block indexes.

When detaching a data partition from a data partitioned MDC table created at a
level lower than DB2 V9.7 Fix Pack 1, the block indexes are nonpartitioned. The
following restrictions apply:

— Access to the newly detached table is not allowed in the same unit of work as
the detach operation.

— Block indexes on the target table, created as part of the detach operation, are
rebuilt upon the first access to the table after the detach operation is
committed. If the source table had any partitioned indexes before the detach
operation then the index object for the target table will be marked invalid to
allow for recreation of the block indexes. As a result, access time is increased
while the block indexes and all other partitioned indexes are re-created.

When detaching a partition from a partitioned MDC table created using DB2
V9.7 Fix Pack 1 or later releases, the block indexes are partitioned, and the
previous restrictions do not apply. Assuming that no other dependent objects
such as dependent MQTs exist, access to the newly detached table is allowed in
the same unit of work. All the partitioned indexes, including block indexes,
become indexes on the target table without the need to be re-created.

Considerations for implicitly hidden columns: A column that is defined as
implicitly hidden can be explicitly referenced in an ALTER TABLE statement. For
example, an implicitly hidden column can be altered or specified as part of a
referential constraint, check constraint, or materialized query table definition.

Altering a table to make some of its columns implicitly hidden can impact the
behavior of data movement utilities that are working with the table. When a
table contains implicitly hidden columns, utilities like IMPORT, INGEST, and
LOAD require that you specify whether data for the hidden columns is included
in the operation. For example, this might mean that a load operation that ran
successfully before the table was altered, now fails (SQLCODE SQL2437N).
Similarly, EXPORT requires that you specify whether data for the hidden
columns is included in the operation.

Data movement utilities must use the DB2_DMU_DEFAULT registry variable, or
the implicitlyhiddeninclude or implicitlyhiddenmissing file type modifiers
when working with tables that contain implicitly hidden columns.

Row access control that is activated explicitly: The ACTIVATE ROW ACCESS
CONTROL clause is used to activate row access control for a table. When this
happens, a default row permission is implicitly created and allows no access to
any rows of the table, unless permitted by a row permission explicitly created by
the security administrator. The default row permission is always enabled.

When the table is referenced in a data manipulation statement, all enabled row
permissions that have been created for the table, including the default row
permission, are implicitly applied by the database manager to control which
rows in the table are accessible. A row access control search condition is derived
by application of the logical OR operator to the search condition in each enabled
row permission. This derived search condition acts as a filter to the table before
any user specified operations, such as predicates, grouping, ordering, and so on,
are processed. This derived search condition permits the authorization IDs that
are specified in the permission definitions to access certain rows in the table.

When the ACTIVATE ROW ACCESS CONTROL clause is used, all the packages
and dynamically cached statements that reference the table are invalidated.

Statements 171

ALTER TABLE

Row access control remains enforced until the DEACTIVATE ROW ACCESS
CONTROL clause is used to stop enforcing it.

Implicit object that is created when row access control is activated for a table:
When the ACTIVATE ROW ACCESS CONTROL clause is used to activate row
access control for a table, the database manager implicitly creates a default row
permission for the table. The default row permission prevents all access to the
table. The implicitly created row permission resides in the same schema of the
base table and has a name in the form of
SYS_DEFAULT_ROW_PERMISSION__table-name ... up to 128 characters. Notice
two underscores after "PERMISSION". If this name is not unique, the last 4
characters are reserved for a unique number nnnn’, where nnnn’ is a four
alphanumeric character string starting at '0000" and is incremented by 1 value
each time until a unique name is found.

The owner of the default row permission is SYSIBM. The default row permission
is always enabled. The default row permission is dropped when row access
control is deactivated or when the table is dropped.

Activating column access control: The ACTIVATE COLUMN ACCESS
CONTROL clause is used to activate column level access control for a table. The
access to the table is not restricted but when the table is referenced in a data
manipulation statement, all enabled column masks that have been created for
the table are applied to mask the column values referenced in the final result
table.

When column masks are used to mask the column values, they determine the
values in the final result table. If a column has a column mask and the column
(specifically a simple reference to a column name or a column embedded in an
expression) appears in the outermost select list, the column mask is applied to
the column to produce the values for the final result table. If the column does
not appear in the outermost select list but it participates in the final result table,
for example, it appears in a materialized table expression or view, the column
mask is applied to the column in such a way that the masked value is included
in the result table of the materialized table expression or view so that it can be
used in the final result table.

The application of column masks does not interfere with the operations of other
clauses within the statement such as the WHERE, GROUP BY, HAVING,
SELECT DISTINCT, and ORDER BY. The rows returned in the final result table
remain the same, except that the values in the resulting rows may have been
masked by the column masks. As such, if the masked column also appears in an
ORDER BY sort-key, the order is based on the original column values and the
masked values in the final result table may not reflect that order. Similarly, the
masked values may not reflect the uniqueness enforced by SELECT DISTINCT.

A column mask is applied in the following contexts:

— The outermost SELECT clause or clauses of a SELECT or SELECT INTO
statement, or if the column does not appear in the outermost select list butit
participates in the final result table, the outermost SELECT clause(s) of the
corresponding materialized table expression or view where the column
appears.

— The outermost SELECT clause or clauses of a SELECT FROM INSERT,
SELECT FROM UPDATE, or SELECT FROM DELETE operation.

— The outermost SELECT clause or clauses that are used to derive the new
values for an INSERT, UPDATE, or MERGE statement, or a SET
transition-variable-name assignment statement. The same masking applies to a
scalar fullselect expression that appears in the outermost SELECT clause or

172 SQL Reference Volume 2

ALTER TABLE

clauses of the previously mentioned statements, the right side of a SET
host-variable assignment statement, the VALUES INTO statement, or the
VALUES statement.

Column masks are not applied when the masked column appears in the
following contexts:

— WHERE clauses.
— GROUP BY clauses.
— HAVING clauses.
— SELECT DISTINCT.
— ORDER BY clauses.

Row and column access control are not enforced when EXPLAIN tables are
populated: Row and column access control can be enforced for EXPLAIN tables.
However, the enabled row permissions and column masks are not applied when
the database manager inserts rows into those tables.

Row and column access control are not enforced when event monitor tables are
populated: Row and column access control can be enforced for event monitor
tables. However, the enabled row permissions and column masks are not
applied when the database manager inserts rows into those tables.

Row and column access control are not enforced when temporal history tables
are populated: Row and column access control can be enforced for temporal
history tables. However, the enabled row permissions and column masks are not
applied when the database manager accesses those tables for operations on the
system-period temporal tables.

Stop enforcing row or column access control: The DEACTIVATE ROW ACCESS
CONTROL clause is used to stop enforcing row access control for a table. The

default row permission is dropped. Thereafter, when the table is referenced in a
data manipulation statement, explicitly created row permissions are not applied.

The DEACTIVATE COLUMN ACCESS CONTROL clause is used to stop
enforcing column access control for a table. Thereafter, when the table is
referenced in a data manipulation statement, the column masks are not applied.

The explicitly created row permissions or column masks, if any, remain but have
no effect.

All the packages and dynamically cached statements that reference the table are
invalidated when row or column access control is deactivated.

Secure triggers for row and column access control: Triggers are used for database
integrity, and as such, a balance between row and column access control
(security) and database integrity is needed. Enabled row permissions and
column masks are not applied to the initial values of transition variables and
transition tables. Row and column access control enforced for the triggering
table is also ignored for any transition variables or transition tables referenced in
the trigger body. To ensure there is no security concern for SQL statements in the
trigger action to access sensitive data in transition variables and transition tables,
the trigger must be created or altered with the SECURED option. If a trigger is
not secure, row and column access control cannot be enforced for the triggering
table (SQLSTATE 55019).

Secure user-defined functions for row and column access control: If a row
permission or column mask definition references a user-defined function, the
function must be altered with the SECURED option because the sensitive data
may be passed as arguments to the function. When a user-defined function is
referenced in a data manipulation statement where a table that enforces row or
column access control is referenced, and the function arguments reference the
columns from such a table, if the function is not secure, this impacts the access

Statements 173

ALTER TABLE

plan selection and may yield poor performance. The database manager considers
the SECURED option an assertion that declares the user has established a
change control audit procedure for all changes to the user-defined function. It is
assumed that such a control audit procedure is in place and that all subsequent
ALTER FUNCTION statements or changes to external packages are being
reviewed by this audit process.

Database operations where row and column access control is not applicable:
Row and column access control must not compromise database integrity.
Columns involved in primary keys, unique keys, indexes, check constraints, and
referential integrity must not be subject to row and column access control.
Column masks can be defined for those columns but they are not applied during
the process of key building or constraint or RI enforcement.

Defining a system-period temporal table: A system-period temporal table
definition includes the following aspects:

— A system period named SYSTEM_TIME which is defined using a row-begin
column and a row-end column. See the descriptions of AS ROW BEGIN, AS
ROW END, and period-definition.

— A transaction-start-ID column. See the description of AS TRANSACTION
START ID.

— A system-period data versioning definition specified on a subsequent ALTER
TABLE statement using the ADD VERSIONING action which includes the
name of the associated history table. See the description of the ADD
VERSIONING clause under ALTER TABLE.

To ensure that the history table cannot be implicitly dropped when a
system-period temporal table is dropped, use the WITH RESTRICT ON DROP
clause in the definition of the history table.

Defining an application-period temporal table: An application-period temporal
table definition includes an application period with the name BUSINESS_TIME.
The application period is defined using a begin column and an end column with
both columns having the same data type that is either DATE or TIMESTAMP(p).
See the description of period-definition.

Data change operations on an application-period temporal table may result in an
automatic insert of one or two additional rows when a row is updated or
deleted. When an update or delete of a row in an application-period temporal
table is specified for a portion of the period represented by that row, the row is
updated or deleted and one or two rows are automatically inserted to represent
the portion of the row that is not changed. New values are generated for each
generated column in an application-period temporal table for each row that is
automatically inserted as a result of an update or delete operation on the table.
If a generated column is defined as part of a unique or primary key, parent key
in a referential constraint, or unique index, it is possible that an automatic insert
will violate a constraint or index in which case an error is returned.

Considerations for transaction-start-ID columns: A transaction-start-ID column
contains a null value if the column allows null values, and there is a row-begin
column and the value of the row-begin column is unique from values of
row-begin columns generated for other transactions. Given that the column may
contain null values, it is recommended that one of the following methods be
used when retrieving a value from the column:

— COALESCE (transaction_start_id_col, row_begin_col)

— CASE WHEN transaction_start_id_col IS NOT NULL THEN
transaction_start_id_col ELSE row_begin_col END

174 SQL Reference Volume 2

ALTER TABLE

Considerations for system-period temporal tables and row and column access
control: Row and column access control can be defined on both the
system-period temporal table and the associated history table.

When a system-period temporal table is accessed, any row and column access
rules defined on the system-period temporal table are applied to all of the
rows returned from the system-period temporal table, regardless of whether
the rows are stored in the system-period temporal table or the history table.
The row and column access rules defined on the history table are not applied.

When the history table is accessed directly, the row and column access rules
defined on the history table are applied.

When a system-period temporal table is defined and row access control or
column access control is activated for the system-period temporal table, the
database manager automatically activates row access control on the history table
and creates a default row permission for the history table.

Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.

The ADD keyword is optional for:

- Unnamed PRIMARY KEY constraints

- Unnamed referential constraints

- Referential constraints whose name follows the phrase FOREIGN KEY

The CONSTRAINT keyword can be omitted from a column-definition defining
a references-clause

constraint-name can be specified following FOREIGN KEY (without the
CONSTRAINT keyword)

SET SUMMARY AS can be specified in place of SET MATERIALIZED QUERY
AS

SET MATERIALIZED QUERY AS DEFINITION ONLY can be specified in
place of DROP MATERIALIZED QUERY

SET MATERIALIZED QUERY AS (fullselect) can be specified in place of ADD
MATERIALIZED QUERY (fullselect)

ADD PARTITIONING KEY can be specified in place of ADD DISTRIBUTE BY
HASH; the optional USING HASHING clause can also still be specified in
this case

DROP PARTITIONING KEY can be specified in place of DROP
DISTRIBUTION

The LONG VARCHAR and LONG VARGRAPHIC data types continue to be
supported but are deprecated and not recommended, especially for portable
applications

A comma can be used to separate multiple options in the identity-alteration
clause

PART can be specified in place of PARTITION
VALUES can be specified in place of ENDING AT

NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER
can be specified in place of NO MINVALUE, NO MAXVALUE, NO CYCLE,
NO CACHE, and NO ORDER, respectively

DROP EXPRESSION can be specified in place of DROP GENERATED to drop
the generated expression attribute for a column.

DROP IDENTITY can be specified in place of DROP GENERATED to drop
the identity attribute for a column.

Statements 175

ALTER TABLE

Examples
* Example 1: Add a new column named RATING, which is one character long, to

the DEPARTMENT table.

ALTER TABLE DEPARTMENT
ADD RATING CHAR(1)

* Example 2: Add a new column named SITE_NOTES to the PROJECT table.

Create SITE_NOTES as a varying-length column with a maximum length of 1000
bytes. The values of the column do not have an associated character set and
therefore should not be converted.
ALTER TABLE PROJECT
ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA
Example 3: Assume a table called EQUIPMENT exists defined with the
following columns:

Column Name Data Type
EQUIP_NO INT
EQUIP_DESC VARCHAR (50)
LOCATION VARCHAR (50)
EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner
(EQUIP_OWNER) must be a department number (DEPTNO) that is present in
the DEPARTMENT table. DEPTNO is the primary key of the DEPARTMENT
table. If a department is removed from the DEPARTMENT table, the owner
(EQUIP_OWNER) values for all equipment owned by that department should
become unassigned (or set to null). Give the constraint the name DEPTQUIP.
ALTER TABLE EQUIPMENT
ADD CONSTRAINT DEPTQUIP
FOREIGN KEY (EQUIP_OWNER)
REFERENCES DEPARTMENT
ON DELETE SET NULL
Also, an additional column is needed to allow the recording of the quantity
associated with this equipment record. Unless otherwise specified, the
EQUIP_QTY column should have a value of 1 and must never be null.
ALTER TABLE EQUIPMENT
ADD COLUMN EQUIP_QTY
SMALLINT NOT NULL DEFAULT 1
Example 4: Alter table EMPLOYEE. Add the check constraint named REVENUE
defined so that each employee must make a total of salary and commission
greater than $30,000.
ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE
CHECK (SALARY + COMM > 30000)
Example 5: Alter table EMPLOYEE. Drop the constraint REVENUE which was
previously defined.

ALTER TABLE EMPLOYEE
DROP CONSTRAINT REVENUE

Example 6: Alter a table to log SQL changes in the default format.

ALTER TABLE SALARY1
DATA CAPTURE NONE

Example 7: Alter a table to log SQL changes in an expanded format.

ALTER TABLE SALARYZ
DATA CAPTURE CHANGES

Example 8: Alter the EMPLOYEE table to add 4 new columns with default
values.

176 SQL Reference Volume 2

ALTER TABLE

ALTER TABLE EMPLOYEE
ADD COLUMN HEIGHT MEASURE DEFAULT MEASURE(1)
ADD COLUMN BIRTHDAY BIRTHDATE DEFAULT DATE('01-01-1850')
ADD COLUMN FLAGS BLOB(1M) DEFAULT BLOB(X'01')
ADD COLUMN PHOTO PICTURE DEFAULT BLOB(X'00')

The default values use various function names when specifying the default.
Since MEASURE is a distinct type based on INTEGER, the MEASURE function
is used. The HEIGHT column default could have been specified without the
function since the source type of MEASURE is not BLOB or a datetime data
type. Since BIRTHDATE is a distinct type based on DATE, the DATE function is
used (BIRTHDATE cannot be used here). For the FLAGS and PHOTO columns
the default is specified using the BLOB function even though PHOTO is a
distinct type. To specify a default for BIRTHDAY, FLAGS and PHOTO columns,
a function must be used because the type is a BLOB or a distinct type sourced
on a BLOB or datetime data type.

Example 9: A table called CUSTOMERS is defined with the following columns:

Column Name Data Type
BRANCH_NO SMALLINT
CUSTOMER_NO DECIMAL(7)
CUSTOMER_NAME VARCHAR (50)

In this table, the primary key is made up of the BRANCH_NO and
CUSTOMER_NO columns. To distribute the table, you will need to create a
distribution key for the table. The table must be defined in a table space on a
single-node database partition group. The primary key must be a superset of the
distribution key columns: at least one of the columns of the primary key must
be used as the distribution key. Make BRANCH_NO the distribution key as
follows:
ALTER TABLE CUSTOMERS
ADD DISTRIBUTE BY HASH (BRANCH_NO)
Example 10: A remote table EMPLOYEE was created in a federated system using
transparent DDL. Alter the remote table EMPLOYEE to add the columns
PHONE_NO and WORK_DEPT; also add a primary key on the existing column
EMP_NO and the new column WORK_DEPT.
ALTER TABLE EMPLOYEE
ADD COLUMN PHONE_NO CHAR(4) NOT NULL
ADD COLUMN WORK_DEPT CHAR(3)
ADD PRIMARY KEY (EMP_NO, WORK_DEPT)
Example 11: Alter the DEPARTMENT table to add a functional dependency FD1,
then drop the functional dependency FD1 from the DEPARTMENT table.
ALTER TABLE DEPARTMENT

ADD CONSTRAINT FD1
CHECK (DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED

ALTER TABLE DEPARTMENT
DROP CHECK FD1

Example 12: Change the default value for the WORKDEPT column in the
EMPLOYEE table to 123.

ALTER TABLE EMPLOYEE
ALTER COLUMN WORKDEPT
SET DEFAULT '123'

Example 13: Associate the security policy DATA_ACCESS with the table
EMPLOYEE.

ALTER TABLE EMPLOYEE
ADD SECURITY POLICY DATA_ACCESS

Example 14: Alter the table EMPLOYEE to protect the SALARY column.

Statements 177

ALTER TABLE

ALTER TABLE EMPLOYEE
ALTER COLUMN SALARY
SECURED WITH EMPLOYEESECLABEL
* Example 15: Assume that you have a table named SALARY_DATA that is defined
with the following columns:

Column Name Data Type

EMP_NAME VARCHAR(50) NOT NULL
EMP_ID SMALLINT NOT NULL
EMP_POSITION VARCHAR(100) NOT NULL
SALARY DECIMAL(5,2)
PROMOTION_DATE DATE NOT NULL

Change this table to allow salaries to be stored in a DECIMAL(6,2) column,
make PROMOTION_DATE an optional field that can be set to the null value,
and remove the EMP_POSITION column.
ALTER TABLE SALARY_DATA
ALTER COLUMN SALARY SET DATA TYPE DECIMAL(6,2)
ALTER COLUMN PROMOTION_DATE DROP NOT NULL
DROP COLUMN EMP_POSITION
e Example 16: Add a column named DATE_ADDED to the table BOOKS. The
default value for this column is the current timestamp.
ALTER TABLE BO0OKS
ADD COLUMN DATE_ADDED TIMESTAMP
WITH DEFAULT CURRENT TIMESTAMP
* Example 17: Alter table with label-based access control security attributes into a
materialized query table. Base tables tt1 and tt2 exist and were created with the
following SQL:
CREATE TABLE ttl
(c1 INT SECURED WITH C, c2 DB2SECURITYLABEL) SECURITY POLICY P;

CREATE TABLE tt2
(c3 INT SECURED WITH B, c4 DB2SECURITYLABEL) SECURITY POLICY P;

Table tt2 can be altered to be a materialized query table with the following SQL.:

ALTER TABLE tt2 ADD (SELECT * FROM ttl WHERE cl > 10)
DATA INITIALLY DEFERRED REFRESH DEFERRED;

Table tt2 becomes a materialized query table with the secure policy P. tt2.c3 has

security label P.B. tt2.c4 has security label P.C and it is also
DB2SECURITYLABEL.

178 SQL Reference Volume 2

ALTER TABLESPACE

ALTER TABLES

PACE

The ALTER TABLESPACE statement is used to modify an existing table space

A table space can be modified in the following ways:

Add a container to, or drop a container from a DMS table space; that is, a table
space created with the MANAGED BY DATABASE option.

Modify the size of a container in a DMS table space.
Lower the high water mark for a DMS table space through extent movement.

Add a container to an SMS table space on a database partition that currently has
no containers.

Modify the PREFETCHSIZE setting for a table space.

Modify the BUFFERPOOL used for tables in the table space.

Modify the OVERHEAD setting for a table space.

Modify the TRANSFERRATE setting for a table space.

Modify the file system caching policy for a table space.

Enable or disable auto-resize for a DMS or automatic storage table space.
Rebalance a regular or large automatic storage table space.

Modify the DATA TAG setting for a table space.

Alter a DMS table space to an automatic storage table space.

Modify the STOGROUP setting associated with a table space.

nvocation

This statement can be embedded in an application program or issued interactively.

I

t is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

»»—ALTER TABLESPACE—tablespace-name: >

Statements 179

ALTER TABLESPACE

>L—ADD—| add-clause } |
BEGIN NEW STRIPE S&T—| db-container-clause }
|—| on-db-partitions-clause 'J

—DROP—| drop-container-clause i
|—| on-db-partitions-clause 'J
—REDUCE:

db-container-clause — |—| on-db-partitions-clause 'J
all-containers-clause i
AX:
STOP.
integer:

K
M

—PERCENT—
EXTEND db-container-clause |
RESIZE:I_El all-containers-clause 'J |—| on-db-partitions-clause 'J

I—REBALANCE
I:SUSPEND:I
RESUME

—PREFETCHSIZE: AUTOMATIC
number-of-pages
integer K:

—BUFFERPOOL—bufferpool-name

—OVERHEAD—Enumber-of-mi lliseconds
INHERIT4I
—TRANSFERRATE—Enumber-of-mi lliseconds
INHERIT4I
—EFILE SYSTEM CACHING:]
NO FILE SYSTEM CACHING
—DROPPED TABLE RECOVERY—[O!\I

oFF

—SWITCH ONLINE

—AUTORESIZE—[NO
YESJ
—INCREASESIZE—integer: PERCENT.
K
—MAXSIZE: integer- K
T
G
NONE———-
—CONVERT TO LARGE:
—LOWER HIGH WATER MARK
I—STOP—I

—USING STOGROUP—storagegroup-name:
—DATA TAG—Einteger-constant

INHERIT
NONE:
—MANAGED BY AUTOMATIC STORAGE

add-clause:

|_ J | db-container-clause f
TO STRIPE SET—stripeset |—|

on-db-partitions-clause |J |
system-container-clause — on-db-partitions-clause f

db-container-clause:

|—(Y __FILE J ’container-string’—[number—of—pages|)
DEVICE integer K

180 SQL Reference Volume 2

ALTER TABLESPACE

drop-container-clause:

—(— |_FILE 7 ‘container-string') |
DEVICE

system-container-clause:

—(—""'container-string') |

on-db-partitions-clause:

ON DBPARTITIONNUM >
o]

DBPARTITIONNUMS

»—(—Y

db-partition-numberl |_ _|
TO—db-partition-number?2

all-containers-clause:

CONTAINERS
[1

f—(—ALL |_number'—of—pages—l—) }

integer K

<

[p)

Description

tablespace-name
Names the table space. This is a one-part name. It is a long SQL identifier
(either ordinary or delimited).

ADD
Specifies that one or more new containers are to be added to the table space.

TO STRIPE SET stripeset
Specifies that one or more new containers are to be added to the table space,
and that they will be placed into the given stripe set.

BEGIN NEW STRIPE SET
Specifies that a new stripe set is to be created in the table space, and that one
or more containers are to be added to this new stripe set. Containers that are
subsequently added using the ADD option will be added to this new stripe set
unless TO STRIPE SET is specified.

DROP
Specifies that one or more containers are to be dropped from the table space.

REDUCE
For non-automatic storage table spaces, specifies that existing containers are to

Statements 181

ALTER TABLESPACE

182

SQL Reference Volume 2

be reduced in size. The size specified is the size by which the existing
container is decreased. If the all-containers-clause is specified, all containers in
the table space will decrease by this size. If the reduction in size will result in a
table space size that is smaller than the current high water mark, an attempt
will be made to reduce the high water mark before attempting to reduce the
containers. For non-automatic storage table spaces, the REDUCE clause must
be followed by a db-container-clause or an all-containers-clause.

For automatic storage table spaces, specifies that the current high water mark
is to be reduced, if possible, and that the size of the table space is to be
reduced to the new high water mark. For automatic storage table spaces, the
REDUCE clause must not be followed by a db-container-clause, an
all-containers-clause or an on-db-partitions-clause.

Note: The REDUCE option with the MAX, numeric value, PERCENT, or STOP
clauses, and the LOWER HIGH WATER MARK option including the STOP
clause, are only available for database managed, and automatic storage
managed, table spaces with the reclaimable storage attribute. Moreover, these
options must be specified and run without any other options, including each
other.

The MAX, STOP, integer [K | M | G], or integer PERCENT clause takes effect when
the statement is processed and is not rolled back if the unit of work, in which
the statement is executed, is rolled back.

db-container-clause
Adds one or more containers to a DMS table space. The table space must
identify a DMS table space that already exists at the application server.

all-containers-clause
Extends, reduces, or resizes all of the containers in a DMS table space. The
table space must identify a DMS table space that already exists at the
application server.

MAX
For automatic storage table spaces with reclaimable storage, specifies that
the maximum number of extents should be moved to the beginning of the
table space to lower the high water mark. Additionally, the size of the table
space will be reduced to the new high water mark. This does not apply to
non-automatic storage table spaces.

sTOP
For automatic storage table spaces with reclaimable storage, interrupts the
extent movement operation if in progress. This option is not available for
non-automatic storage table spaces.

integer [K | M | G] or integer PERCENT
For automatic storage table spaces with reclaimable storage, specifies the
numeric value by which the table space is to be reduced through extent
movement. The value can be expressed in several ways:

* An integer specified without K, M, G, or PERCENT indicates that the
numeric value is the number of pages by which the table space is to be
reduced.

* An integer specified with K, M, or G indicates the reduction size in
kilobytes, megabytes, or gigabytes, respectively. The value is first
converted from bytes to number of pages based on the page size of the
table space.

* An integer specified with PERCENT indicates the number of extents to
move, as a percentage of the current size of the table space.

ALTER TABLESPACE

Once extent movement is complete, the table space size is reduced to the
new high water mark. This option is not available for non-automatic
storage table spaces.

on-db-partitions-clause
Specifies one or more database partitions for the corresponding container
operations.

EXTEND
Specifies that existing containers are to be increased in size. The size specified
is the size by which the existing container is increased. If the
all-containers-clause is specified, all containers in the table space will increase by
this size.

RESIZE
Specifies that the size of existing containers is to be changed. The size specified
is the new size for the container. If the all-containers-clause is specified, all
containers in the table space will be changed to this size. If the operation
affects more than one container, these containers must all either increase in

size, or decrease in size. It is not possible to increase some while decreasing
others (SQLSTATE 429BC).

db-container-clause
Adds one or more containers to a DMS table space. The table space must
identify a DMS table space that already exists at the application server.

drop-container-clause
Drops one or more containers from a DMS table space. The table space must
identify a DMS table space that already exists at the application server.

system-container-clause
Adds one or more containers to an SMS table space on the specified database
partitions. The table space must identify an SMS table space that already exists
at the application server. There must not be any containers on the specified
database partitions for the table space (SQLSTATE 42921).

on-db-partitions-clause
Specifies one or more database partitions for the corresponding container
operations.

all-containers-clause
Extends, reduces, or resizes all of the containers in a DMS table space. The
table space must identify a DMS table space that already exists at the
application server.

REBALANCE
For regular and large automatic storage table spaces, initiates the creation of
containers on recently added storage paths, the drop of containers from storage
paths that are in the “Drop Pending” state, or both. During the rebalance, data
is moved into containers on new paths, and moved out of containers on
dropped paths. The rebalance runs asynchronously in the background and
does not affect the availability of data.

Note: The SUSPEND or RESUME clause takes effect when the statement is
processed and is not rolled back if the unit of work, in which the statement is
executed, is rolled back.

SUSPEND
Suspends the active rebalance operation on the specified table space. If
there is no active rebalance operation, no action is taken and success is
returned. The suspend state is persistent and if the database is deactivated

Statements 183

ALTER TABLESPACE

while the rebalance is suspended, then upon database activation the
rebalance operation is restarted from the suspended state. Suspending a
rebalance operation when it is already suspended has no effect and success
is returned.

RESUME
Resumes a previously suspended rebalance operation. If there is no active
rebalance operation, no action is taken and success is returned. If the
rebalance is PAUSED because of an online backup operation, then the table
space rebalance is taken out of the suspended state but remains paused
until the online backup is completed.

PREFETCHSIZE
Specifies to read in data needed by a query before it being referenced by the
query, so that the query need not wait for I/O to be performed.

AUTOMATIC
Specifies that the prefetch size of a table space is to be updated
automatically; that is, the prefetch size will be managed by DB2 database
manager.

A DB2 database will update the prefetch size automatically whenever the
number of containers in a table space changes (following successful
execution of an ALTER TABLESPACE statement that adds or drops one or
more containers). The prefetch size is also automatically updated at
database startup.

Automatic updating of the prefetch size can be turned off by specifying a
numeric value in the PREFETCHSIZE clause.

number-of-pages
Specifies the number of PAGESIZE pages that will be read from the table
space when data prefetching is being performed. The maximum value is
32767.

integer K | M
Specifies the prefetch size value as an integer value followed by K (for
kilobytes) or M (for megabytes). If specified in this way, the floor of the
number of bytes divided by the page size is used to determine the number
of pages value for prefetch size.

BUFFERPOOL bufferpool-name
The name of the buffer pool used for tables in this table space. The buffer pool
must currently exist in the database (SQLSTATE 42704). The database partition
group of the table space must be defined for the bufferpool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds or OVERHEAD INHERIT
Specifies the I/O controller overhead and disk seek and latency time. This
value is used to determine the cost of I/O during query optimization.

number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the
I/0O controller overhead and disk seek and latency time, in milliseconds.
The number should be an average for all containers that belong to the
table space, if not the same for all containers.

INHERIT
If INHERIT is specified, the table space must be defined using automatic
storage and the OVERHEAD is dynamically inherited from the storage
group. INHERIT cannot be specified if the table space is not defined using
automatic storage (SQLSTATE 42858). If the OVERHEAD is set to

184 SQL Reference Volume 2

ALTER TABLESPACE

undefined for the storage group and you set OVERHEAD to INHERIT, the
database creation default will be used.

For a database that was created in DB2 V10.1 or later, the default I/O
controller overhead and disk seek and latency time is 6.725 milliseconds.

For a database that was upgraded from a previous version of DB2 to DB2
V10.1 or later, the default I/O controller overhead and disk seek and
latency time is as follows:

* 7.5 milliseconds for a database created in DB2 version 9.1 or higher

e 12.67 milliseconds for databases created between DB2 version 8.2 and
DB2 version 9.1

* 24.1 milliseconds for DB2 versions previous to 8.2

TRANSFERRATE number-of-milliseconds or TRANSFERRATE INHERIT
Specifies the time to read one page into memory. This value is used to
determine the cost of I/O during query optimization.

number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the
time to read one page (4K or 8K) into memory, in milliseconds. The
number should be an average for all containers that belong to the table
space, if not the same for all containers.

INHERIT
If INHERIT is specified, the table space must be defined using automatic
storage and the TRANSFERRATE is dynamically inherited from the storage
group. INHERIT cannot be specified if the table space is not defined using
automatic storage (SQLSTATE 42858). If the DEVICE READ RATE of the
storage group is set to undefined and the user sets TRANSFERRATE to
INHERIT, the database creation default will be used.

When an automatic storage table space inherits the TRANSFERRATE
setting from the storage group it is using, the DEVICE READ RATE of the
storage group, which is in megabytes per second, is converted into
milliseconds per page read accounting for the table space's PAGESIZE
setting of the table space. The conversion formula follows:

TRANSFERRATE = (1 / DEVICE READ RATE) * 1000 / 1024000 *
PAGESIZE

For a database that was created in DB2 V10.1 or later, the default time to read
one page into memory for 4 KB PAGESIZE table space is 0.04 milliseconds.

For a database that was upgraded from a previous version of DB2 to DB2
V10.1 or later, the default time to read one page into memory is as follows:
* 0.06 milliseconds for a database created in DB2 version 9.1 or higher

¢ (.18 milliseconds for databases created between DB2 version 8.2 or version
9.1

* 0.9 milliseconds for DB2 versions previous to 8.2

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING
Specifies whether or not I/O operations will be cached at the file system level.
Connections to the database must be terminated before a new caching policy

takes effect. Note that I/O access to long or LOB data is buffered for both SMS
and DMS containers.

Statements 185

ALTER TABLESPACE

FILE SYSTEM CACHING
All I/0O operations in the target table space will be cached at the file
system level.

NO FILE SYSTEM CACHING
All I/0 operations will bypass the file system level cache.

DROPPED TABLE RECOVERY
Specifies whether or not tables that have been dropped from fablespace-name
can be recovered using the RECOVER DROPPED TABLE ON option of the
ROLLFORWARD DATABASE command. For partitioned tables, dropped table
recovery is always on, even if dropped table recovery is turned off for
non-partitioned tables in one or more table spaces.

ON Specifies that dropped tables can be recovered.

OFF
Specifies that dropped tables cannot be recovered.

SWITCH ONLINE
Specifies that table spaces in OFFLINE state are to be brought online if their

containers have become accessible. If the containers are not accessible, an error
is returned (SQLSTATE 57048).

AUTORESIZE
Specifies whether or not the auto-resize capability of a database managed
space (DMS) table space or an automatic storage table space is to be enabled.

Auto-resizable table spaces automatically increase in size when they become
full.

NO Specifies that the auto-resize capability of a DMS table space or an
automatic storage table space is to be disabled. If the auto-resize capability
is disabled, any values that have been previously specified for
INCREASESIZE or MAXSIZE will not be kept.

YES
Specifies that the auto-resize capability of a DMS table space or an
automatic storage table space is to be enabled.

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G
Specifies the amount, per database partition, by which a table space that is
enabled for auto-resize will automatically be increased when the table space is
full, and a request for space has been made. The integer value must be
followed by:

* PERCENT to specify the amount as a percentage of the table space size at
the time that a request for space is made. When PERCENT is specified, the
integer value must be between 0 and 100 (SQLSTATE 42615).

* K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the
amount in bytes

Note that the actual value used might be slightly smaller or larger than what
was specified, because the database manager strives to maintain consistent
growth across containers in the table space.

MAXSIZE integer K | M | G or MAXSIZE NONE
Specifies the maximum size to which a table space that is enabled for
auto-resize can automatically be increased.

integer
Specifies a hard limit on the size, per database partition, to which a DMS
table space or an automatic storage table space can automatically be

186 SQL Reference Volume 2

ALTER TABLESPACE

increased. The integer value must be followed by K (for kilobytes), M (for
megabytes), or G (for gigabytes). Note that the actual value used might be
slightly smaller than what was specified, because the database manager
strives to maintain consistent growth across containers in the table space.

NONE
Specifies that the table space is to be allowed to grow to file system
capacity, or to the maximum table space size (described in “SQL and XML
limits”).
CONVERT TO LARGE
Modifies an existing regular DMS table space to be a large DMS table space.
The table space and its contents are locked during conversion. This option can
only be used on regular DMS table spaces. If an SMS table space, a temporary
table space, or the system catalog table space is specified, an error is returned
(SQLSTATE 560CF). You cannot convert a table space that contains a data
partition of a partitioned table that has data partitions in another table space
(SQLSTATE 560CF). Conversion cannot be reversed after being committed. If
tables in the table space are defined with DATA CAPTURE CHANGES,
consider the storage and capacity limits of the target table and table space.

LOWER HIGH WATER MARK
For both automatic storage and non-automatic storage table spaces with
reclaimable storage, triggers the extent movement operation to move the
maximum number of extents lower in the table space. Although the high water
mark is lowered, the size of the table space is not reduced. This must be
followed by an ALTER TABLESPACE REDUCE for automatic storage table
spaces or ALTER TABLESPACE REDUCE with the db-container-clause or
all-containers-clause for non-automatic storage table spaces.

Note: The LOWER HIGH WATER MARK option including the STOP clause,
and the REDUCE option with the MAX, numeric value, PERCENT, or STOP
clauses, are only available for database managed and automatic storage
managed table spaces with the reclaimable storage attribute. Moreover, these
options must be specified and run without any other options, including each
other.

Note: This clause takes effect when the statement is processed and is not

rolled back if the unit of work, in which the statement is executed, is rolled
back.

STOP
For both automatic storage and non-automatic storage table spaces with
reclaimable storage, interrupts the extent movement operation if in
progress.

USING STOGROUP
Associates a table space with a different storage group. The data associated
with the table space will be moved from its current storage group to the
specified storage group. This clause only applies to automatic storage table
spaces unless specified with the MANAGED BY AUTOMATIC STORAGE
clause (SQLSTATE 42858).

For automatic storage table spaces, an implicit REBALANCE is started at
commit time. For a database managed table space being converted to
automatic storage managed, an explicit REBALANCE statement is required.

In a partitioned database environment, to alter the storage group association of
a table space, the table space must be defined using automatic storage on all

Statements 187

ALTER TABLESPACE

database partitions. If the table space on any database partition is not defined
using automatic storage, this command will fail unless specified with the
MANAGED BY AUTOMATIC STORAGE clause (SQLSTATE 42858). However,
it is not required that a table space have the same storage group association on
all database partitions for this command to succeed in moving the table space
on all database partitions.

storagegroup-name
Identifies the storage group in which table space data will be stored.
storagegroup-name must identify a storage group that exists at the current
server (SQLSTATE 42704). This is a one-part name.

DATA TAG integer-constant, DATA TAG INHERIT or DATA TAG NONE

Specifies a tag for the data in the table space. This value can be used as part of
a WLM configuration in a work class definition or referenced within a
threshold definition; for more information refer to the CREATE WORK CLASS
SET, ALTER WORK CLASS SET, CREATE THRESHOLD, and ALTER
THRESHOLD statements. This clause cannot be specified for USER or SYSTEM
TEMPORARY table spaces or for the catalog table space (SQLSTATE 42858).

integer-constant
Valid values for integer-constant are integers from 1 to 9. If an
integer-constant is specified and there is an associated storage group, the
data tag specified for the table space will override any data tag value
specified for the associated storage group.

INHERIT
If INHERIT is specified, the table space must be defined using automatic
storage and the DATA TAG is dynamically inherited from the storage
group. INHERIT cannot be specified if the table space is not defined using
automatic storage (SQLSTATE 42858).

NONE
If NONE is specified, there is no data tag.

MANAGED BY AUTOMATIC STORAGE

Enables automatic storage for a database managed (DMS) table space. Once
automatic storage is enabled, no further container operations can be executed
on the table space. The table space being converted cannot be using RAW
(DEVICE) containers.

If the USING STOGROUP clause is not included when converting from a DMS
table space to an automatic storage table space then the default storage group
is specified.

Rules
e The BEGIN NEW STRIPE SET clause cannot be specified in the same statement

as ADD, DROP, EXTEND, REDUCE, and RESIZE, unless those clauses are being
directed to different database partitions (SQLSTATE 429BC).

* The stripe set value specified with the TO STRIPE SET clause must be within the

valid range for the table space being altered (SQLSTATE 42615).

* When adding or removing space from the table space, the following rules must

188 SQL Reference Volume 2

be followed:
— EXTEND and RESIZE can be used in the same statement, provided that the

size of each container is increasing (SQLSTATE 429BC).

— REDUCE and RESIZE can be used in the same statement, provided that the

size of each container is decreasing (SQLSTATE 429BC).

ALTER TABLESPACE

— EXTEND and REDUCE cannot be used in the same statement, unless they are
being directed to different database partitions (SQLSTATE 429BC).

— ADD cannot be used with REDUCE or DROP in the same statement, unless
they are being directed to different database partitions (SQLSTATE 429BC).

— DROP cannot be used with EXTEND or ADD in the same statement, unless
they are being directed to different database partitions (SQLSTATE 429BC).

The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified for
system managed space (SMS) table spaces, temporary table spaces that were

created using automatic storage, or DMS table spaces that are defined to use raw
device containers (SQLSTATE 42601).

The INCREASESIZE or MAXSIZE clause cannot be specified if the table space is
not auto-resizable (SQLSTATE 42601).

When specifying a new maximum size for a table space, the value must be
larger than the current size on each database partition (SQLSTATE 560B0).

Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE
SET) cannot be performed on automatic storage table spaces, because the
database manager is controlling the space management of such table spaces
(SQLSTATE 42858).

Raw device containers cannot be added to an auto-resizable DMS table space
(SQLSTATE 42601).

The CONVERT TO LARGE clause cannot be specified in the same statement as
any other clause (SQLSTATE 429BC).

The REBALANCE clause cannot be specified with any other clause (SQLSTATE
429BC).

The REBALANCE clause is only valid for regular and large automatic storage
table spaces (SQLSTATE 42601). Temporary automatic storage table spaces

should be dropped and recreated to take advantage of recently added storage
paths or to have their containers removed from storage paths being dropped.

Container operations and the REBALANCE clause cannot be specified if the
table space is in the “DMS rebalancer is active” state (SQLSTATE 55041).

The USING STOGROUP clause cannot be specified for temporary table spaces
(SQLSTATE 42858).

The following clauses are not supported in DB2 pureScale environments:
— ADD db-container-clause

— BEGIN NEW STRIPE SET db-container-clause

— DROP db-container-clause

- LOWER HIGH WATER MARK

- LOWER HIGH WATER MARK STOP

— REDUCE, unless it is specified without any of its optional elements

— RESIZE db-container-clause

USING STOGROUP

The ADD, DROP, RESIZE, EXTEND, REDUCE, LOWER HIGH WATER MARK,
and BEGIN_STRIPE_SET clauses cannot be used in conjunction with the
MANAGED BY AUTOMATIC STORAGE clause or the USING STOGROUP
clause (SQLSTATE 429BC).

The USING STOGROUP clause cannot be specified if the table space is in the
"rebalancer is active" state (SQLSTATE 55041).

Container size limit: In DMS table spaces, a container must be at least two times
the extent size pages in length (SQLSTATE 54039). The maximum size of a
container is operating system dependent.

Statements 189

ALTER TABLESPACE

* Container definition length limit: Each container definition requires 53 bytes
plus the number of bytes necessary to store the container name. The combined
length of all container definitions for the table space cannot exceed 208 kilobytes
(SQLSTATE 54034).

Notes

¢ Default container operations are container operations that are specified in the
ALTER TABLESPACE statement, but that are not explicitly directed to a specific
database partition. These container operations are sent to any database partition
that is not listed in the statement. If these default container operations are not
sent to any database partition, because all database partitions are explicitly
mentioned for a container operation, a warning is returned (SQLSTATE 01589).

* Once space has been added or removed from a table space, and the transaction
is committed, the contents of the table space may be rebalanced across the
containers. Access to the table space is not restricted during rebalancing.

* If the table space is in OFFLINE state and the containers have become accessible,
the user can disconnect all applications and connect to the database again to
bring the table space out of OFFLINE state. Alternatively, SWITCH ONLINE
option can bring the table space up (out of OFFLINE) while the rest of the
database is still up and being used.

* If adding more than one container to a table space, it is recommended that they
be added in the same statement so that the cost of rebalancing is incurred only
once. An attempt to add containers to the same table space in separate ALTER
TABLESPACE statements within a single transaction will result in an error
(SQLSTATE 55041).

* Any attempts to extend, reduce, resize, or drop containers that do not exist will
raise an error (SQLSTATE 428B2).

* When extending, reducing, or resizing a container, the container type must
match the type that was used when the container was created (SQLSTATE
428B2).

* An attempt to change container sizes in the same table space, using separate
ALTER TABLESPACE statements but within a single transaction, will raise an
error (SQLSTATE 55041).

* In a partitioned database if more than one database partition resides on the
same physical node, the same device or specific path cannot be specified for
such database partitions (SQLSTATE 42730). For this environment, either specify
a unique container-string for each database partition or use a relative path name.

* Although the table space definition is transactional and the changes to the table
space definition are reflected in the catalog tables on commit, the buffer pool
with the new definition cannot be used until the next time the database is
started. The buffer pool in use, when the ALTER TABLESPACE statement was
issued, will continue to be used in the interim.

* The REDUCE, RESIZE, or DROP option attempts to free unused extents, if
necessary, for DMS table spaces, and the REDUCE option attempts to free
unused extents for automatic storage table spaces. The removal of unused
extents allows the table space high water mark to be reduced to a value that
accurately represents the amount of space used, which, in turn, enables larger
reductions in table space size.

* Conversion to large DMS table spaces: After conversion, it is recommended that
you issue the COMMIT statement and then increase the storage capacity of the
table space.

— If the table space is enabled for auto-resize, the MAXSIZE table space
attribute should be increased, unless it is already set to NONE.

190 SQL Reference Volume 2

ALTER TABLESPACE

— If the table space is not enabled for auto-resize:

- Enable auto-resize by issuing the ALTER TABLESPACE statement with the
AUTORESIZE YES option, or

- Add more storage by adding stripe sets, extending the size of existing
containers, or both

Indexes for tables in a converted table space must be reorganized or rebuilt
before they can support large record identifiers (RIDs).

— The indexes can be rebuilt using the REORG INDEXES ALL command with the
REBUILD option. Specify the ALLOW NO ACCESS option for partitioned tables.

— Alternatively, the tables can be reorganized (not INPLACE), which will
rebuild all indexes and enable the tables to support more than 255 rows per

page.
To determine which tables do not yet support large RIDs, use the
ADMIN_GET_TAB_INFO table function.

The rebalance of an automatic storage table space that has containers on a
storage path in the “Drop Pending” state will drop those containers. New
containers may need to be created to hold the data being moved off the dropped
containers. There must be sufficient free space on the other storage paths in the
database to allow those containers to be created, otherwise an error is returned
SQLSTATE 57011. The actual amount of free space required depends on many
factors, including the location of the high-water mark extent and the stripe sets
being altered. However, to ensure that the operation will be successful, there
should be at least enough free space on the remaining storage paths as there is
space being consumed by the containers being dropped.

If the REBALANCE clause is specified but the data server determines that there
is no need to create new containers or drop existing ones, a rebalance does not
occur and the statement succeeds with a warning (SQLSTATE 01690).

In addition to adding containers on recently added paths, the REBALANCE
operation may also be used to add containers on existing storage paths. Each
stripe set in the table space is examined and storage paths that are not in use by
a particular stripe set are identified. For each storage path identified, if there is
sufficient free space on it then a new container will be created. The container
will have the same size as the other containers in the stripe set. This would be
beneficial if a given storage path ran out of space, table spaces stopped using it
(by creating stripe sets on the other paths), and more storage was given to the
path. In this case, no new paths have been added, but the rebalance will attempt
to include that storage path in stripe sets where it wasn't included before.

Auto-resize can still occur while a rebalance of an automatic storage table space
is in progress.

When a DMS table space is enabled for automatic storage by the MANAGED BY
AUTOMATIC STORAGE clause, that table space will have one or more stripe
sets of user-defined (non-automatic storage) containers and one or more stripe
sets of automatic storage containers. Rebalancing the table space (using the
REBALANCE clause) removes all of the user-defined containers. The database
manager might extend existing automatic storage containers or create new
automatic storage containers to hold the data being moved from the
user-defined containers.

Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.

— NODE can be specified in place of DBPARTITIONNUM
— NODES can be specified in place of DBPARTITIONNUMS

Statements 191

ALTER TABLESPACE

Examples
* Example 1: Add a device to the PAYROLL table space.

ALTER TABLESPACE PAYROLL
ADD (DEVICE '/dev/rhdisk9' 10000)
* Example 2: Change the prefetch size and 1/O overhead for the ACCOUNTING
table space.

ALTER TABLESPACE ACCOUNTING
PREFETCHSIZE 64
OVERHEAD 19.3
* Example 3: Create a table space TS1, then resize the containers so that all of the
containers have 2000 pages. (Three different ALTER TABLESPACE statements
that will accomplish this resizing are shown.)
CREATE TABLESPACE TS1
MANAGED BY DATABASE
USING (FILE '/conts/cont0' 1000,
DEVICE '/dev/rcontl' 500,
FILE 'cont2' 700)
ALTER TABLESPACE TS1
RESIZE (FILE '/conts/cont0' 2000,
DEVICE '/dev/rcontl' 2000,
FILE 'cont2' 2000)

OR

ALTER TABLESPACE TS1
RESIZE (ALL 2000)

OR

ALTER TABLESPACE TS1
EXTEND (FILE '/conts/contO' 1000,
DEVICE '/dev/rcontl' 1500,
FILE 'cont2' 1300)

* Example 4: Extend all of the containers in the DATA_TS table space by 1000
pages.

ALTER TABLESPACE DATA_TS
EXTEND (ALL 1000)

* Example 5: Resize all of the containers in the INDEX_TS table space to 100
megabytes (MB).

ALTER TABLESPACE INDEX_TS
RESIZE (ALL 100 M)
* Example 6: Add three new containers. Extend the first container, and resize the
second.
ALTER TABLESPACE TS0
ADD (FILE 'cont2' 2000, FILE 'cont3' 2000)
ADD (FILE 'cont4' 2000)
EXTEND (FILE 'cont0' 160)
RESIZE (FILE 'contl' 3000)

* Example 7: Table space TSO exists on database partitions 0, 1 and 2. Add a new
container to database partition 0. Extend all of the containers on database
partition 1. Resize a container on all database partitions other than the ones that
were explicitly specified (that is, database partitions 0 and 1).

ALTER TABLESPACE TSO
ADD (FILE 'A' 200) ON DBPARTITIONNUM (0)

EXTEND (ALL 200) ON DBPARTITIONNUM (1)
RESIZE (FILE 'B' 500)

192 SQL Reference Volume 2

ALTER TABLESPACE

The RESIZE clause is the default container clause in this example, and will be
executed on database partition 2, because other operations are being explicitly
sent to database partitions 0 and 1. If, however, there had only been these two
database partitions, the statement would have succeeded, but returned a

warning (SQL1758W) that default containers had been specified but not used.

Example 8: Enable the auto-resize option for table space DMS_TS1, and set its
maximum size to 256 megabytes.
ALTER TABLESPACE DMS_TS1
AUTORESIZE YES MAXSIZE 256 M
Example 9: Enable the auto-resize option for table space AUTOSTORE]1, and
change its growth rate to 5%.
ALTER TABLESPACE AUTOSTOREI
AUTORESIZE YES INCREASESIZE 5 PERCENT
Example 10: Change the growth rate for an auto-resizable table space named
MY_TS to 512 kilobytes, and set its maximum size to be as large as possible.
ALTER TABLESPACE MY_TS
INCREASESIZE 512 K MAXSIZE NONE
Example 11: Enable automatic storage for database managed table space
DMS_TS10 and have it use storage group sg_3.
ALTER TABLESPACE DMS_TS10
MANAGED BY AUTOMATIC STORAGE
USING STOGROUP sg_3
Example 12: An ALTER DATABASE statement removed the paths
/db2/filesysteml and /db2/filesystem? from the currently connected database.
The table spaces named PRODTS1, PRODTS2, and PRODTS3 were the only table
spaces using the removed paths. Rebalance these table spaces. Three ALTER
TABLESPACE statements must be used.
ALTER TABLESPACE PRODTS1 REBALANCE
ALTER TABLESPACE PRODTSZ2 REBALANCE
ALTER TABLESPACE PRODTS3 REBALANCE
Example 13: Enable automatic storage for database managed table space DATA1
and remove all of the existing non-automatic storage containers from the table
space. The first statement must be committed before the second statement can be
run.
ALTER TABLESPACE DATA1 MANAGED BY AUTOMATIC STORAGE
ALTER TABLESPACE DATA1 REBALANCE
Example 14: Trigger extent movement for an automatic storage table space with
reclaimable storage attribute, to reduce the size of the containers by 10MB.

ALTER TABLESPACE DMS_TS1 REDUCE 10 M

Example 15: Trigger extent movement for a non-automatic storage table space
with reclaimable storage attribute and subsequently reduce the size of each
container by 10MB.

ALTER TABLESPACE TBSP1 LOWER HIGH WATER MARK
ALTER TABLESPACE TBSP1 REDUCE (ALL CONTAINERS 10 M)

Statements 193

ALTER THRESHOLD

ALTER THRESHOLD

194

The ALTER THRESHOLD statement alters the definition of a threshold.
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* SQLADM authority, only if every alteration clause is a COLLECT clause
* WLMADM authority
* DBADM authority

Syntax

»»—ALTER THRESHOLD—threshold-name: >

| o
A4 WHEN alter-threshold-predicate PERFORM ACTION ><
Ecl alter-threshold-exceeded-actions |J |
E

XCEEDED—| alter-threshold-exceeded-actions i
ENABLE:

DISABLE—I

alter-threshold-predicate:

SQL Reference Volume 2

ALTER THRESHOLD

I——TOTALMEMBERCONNECTIONS—>—integer-vaZL

AND

—TOTALSCMEMBERCONNECTIONS—>—integer-value
|:AND

QUEUEDCONNECTIONS—>—integer—value:|
QUEUEDCONNECTIONS UNBOUNDED:

DAY
DAYS——
HOUR—
HOURS—
MINUTE—
MINUTES-
I—CONCURRENTWORKLOADOCCURRENCES—>—integer-value

—CONNECTIONIDLETIME—>—integer-valu

—CONCURRENTWORKLOADACTIVITIES—>—integer-value

I—CONCURRENTDBCOORDACTIVITIES—>—integer-value |:

AND QUEUEDACTIVITIES—>—integer—value:|
AND QUEUEDACTIVITIES UNBOUNDE

—ESTIMATEDSQLCOST—>—bigint-value
—SQLROWSRETURNED—>—integer-value

HACTIVITYTOTALTIME—>—integer-value DAY:

DAYS——
HOUR—
HOURS—
MINUTE—
MINUTES—
SECONDS-

—UOWTOTALTIME—>—integer-value DAY

DAYS——
HOUR—
HOURS—
INUTE—
INUTES—
SECONDS-

—SQLTEMPSPACE—>—integer-value K:
i

—AGGSQLTEMPSPACE—>—integer-value IZEV:I

—SQLROWSREAD—>—bigint-value

|—CHECKING EVERY—i

—-SQLROWSREADINSC—>—bigint-valu

nteger-value—ESECOND |
SECONDS:I

|—CHECKING EVERY—integer-value—ESECOND—J—l
SECONDS

HOUR
HOURS:
INUTE
INUTES
SECON
SECONDS
—CPUTIMEINSC—>—integer-value HOUR

—CPUTIME—>—integer-value N
CHECKIN

G EVERY—integer-value

SECOND—’I—I
SECONDS

INUT

INUTES
SECOND:-
SECONDS

(2)
L DATATAGINSC——IN (——i
Chor]

alter-threshold-exceeded-actions:

HOURS |—CHECKING EVERY—integer-value
E

nteger-constantl)

SECOND—|—I
SECONDS-

(1)

|_V

NE

COLLECT ACTIVITY DATA_E;L alter-collect-activity-data-clause i I
0

STOP EXECUTION

CONTINUE
FORCE APPLICATION
remap-activity-action |—

alter-collect-activity-data-clause:

MEMBER
ON COORDINATOR |_ —l

EMBERS
ON ALL l_M —l

Statements

195

ALTER THRESHOLD

WITHOUT DETAILS I

(3)
WITH———DETAILS

|—SECTION—I |—AND VALUES—|

remap-activity-action:

|—NO EVENT MONITOR RECORD—|

|—REMAP ACTIVITY TO—service-subclass-name |_ _|
LOG EVENT MONITOR RECORD

Notes:
1 The same clause must not be specified more than once.
2 Each data tag value can be specified only once.

3 The DETAILS keyword is the minimum to be specified, followed by the
option separated by a comma.

Description

threshold-name
Identifies the threshold to be altered. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). The name must uniquely identify an
existing threshold at the current server (SQLSTATE 42704).

WHEN alter-threshold-predicate or WHEN EXCEEDED
Replaces the existing upper bound value in the threshold predicate condition
with a new upper bound value. The condition of the threshold cannot be
changed to a different one.

PERFORM ACTION
When altering the value of the threshold predicate condition, specifies that
the threshold exceeded action is not changed.

EXCEEDED
Specifies to keep the same threshold predicate that was specified originally
for this altered threshold.

alter-threshold-predicate

TOTALMEMBERCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator
connections that can run concurrently on a member. This value can be zero
or any positive integer (SQLSTATE 42820). A value of zero means that any
new coordinator connection will be prevented from connecting. All
currently running or queued connections will continue.

TOTALSCMEMBERCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator
connections that can run concurrently on a member in a specific service
superclass. This value can be zero or any positive integer (SQLSTATE
42820). A value of zero means that any new connection will be prevented
from joining the service class. All currently running or queued connections
will continue.

196 SQL Reference Volume 2

ALTER THRESHOLD

AND QUEUEDCONNECTIONS > integer-value or AND QUEUEDCONNECTIONS

UNBOUNDED
Specifies a queue size for when the maximum number of coordinator
connections is exceeded. This value can be zero or any positive integer
(SQLSTATE 42820). A value of zero means that no coordinator
connections are queued. Specifying UNBOUNDED will queue every
connection that exceeds the specified maximum number of coordinator
connections, and the threshold-exceeded-actions will never be executed.

CONNECTIONIDLETIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |
MINUTES
This condition defines an upper bound for the amount of time the
database manager will allow a connection to remain idle. This value can be
any positive integer (not zero) (SQLSTATE 42820). Use a valid duration
keyword to specify an appropriate unit of time for integer-value. This
condition is enforced at the coordinator member.

If you specify the STOP EXECUTION action with
CONNECTIONIDLETIME thresholds, the connection for the application is
dropped when the threshold is exceeded. Any subsequent attempt by the
application to access the data server will not receive SQLSTATE 5U026
since the application is no longer connected to the data server..

The maximum value for this threshold is 2 147 483 640 seconds. Any value
specified that has a seconds equivalent larger than 2 147 483 640 seconds
will be set to this number of seconds.

CONCURRENTWORKLOADOCCURRENCES > integer-value
This condition defines an upper bound on the number of concurrent
occurrences for the workload on each member. This value can be any
positive integer (not zero) (SQLSTATE 42820).

CONCURRENTWORKLOADACTIVITIES > integer-value
This condition defines an upper bound on the number of concurrent
coordinator activities and nested activities for the workload on each
member. This value can be any positive integer (not zero) (SQLSTATE
42820).

Each nested activity must satisfy the following conditions:

* It must be a recognized coordinator activity. Any nested coordinator
activity that does not fall within the recognized types of activities will
not be counted. Similarly, nested subagent activities, such as remote
node requests, are not counted.

* It must be directly invoked from user logic, such as a user-written
procedure issuing SQL statements.

Consequently, nested coordinator activities that were automatically started
under the invocation of a DB2 utility or routines in the SYSIBM, SYSFUN,
or SYSPROC schemas are not counted toward the upper bound specified
by this threshold.

Internal SQL activities, such as those generated by the setting of a
constraint or the refreshing of a materialized query table, are also not
counted by this threshold, because they are initiated by the database
manager and not directly invoked by user logic.

CONCURRENTDBCOORDACTIVITIES > integer-value
This condition defines an upper bound on the number of recognized
database coordinator activities that can run concurrently on all members in
the specified domain. This value can be zero or any positive integer

Statements 197

ALTER THRESHOLD

198

SQL Reference Volume 2

(SQLSTATE 42820). A value of zero means that any new database
coordinator activities will be prevented from executing. All currently
running or queued database coordinator activities will continue. All
activities are tracked by this condition, except for the following items:

¢ CALL statements are not controlled by this threshold, but all nested
child activities started within the called routine are under this
threshold's control. Anonymous blocks and autonomous routines are
classified as CALL statements.

* User-defined functions are controlled by this threshold, but child
activities nested in a user-defined function are not controlled. If an
autonomous routine is called from within a user defined function,
neither the autonomous routine nor any child activities of the
autonomous routine are under threshold control.

* Trigger actions that invoke CALL statements and the child activities of
these CALL statements are not controlled by this threshold. INSERT,
UPDATE, or DELETE statements that can cause a trigger to activate
continue to be under threshold control.

Important: Before using CONCURRENTDBCOORDACTIVITIES
thresholds, be sure to become familiar with the effects that they can have
on the database system. For more information, see the
"CONCURRENTDBCOORDACTIVITIES threshold" topic.

AND QUEUEDACTIVITIES > integer-value or AND QUEUEDACTIVITIES

UNBOUNDED
Specifies a queue size for when the maximum number of database
coordinator activities is exceeded. This value can be zero or any
positive integer (SQLSTATE 42820). A value of zero means that no
database coordinator activities are queued. Specifying UNBOUNDED
will queue every database coordinator activity that exceeds the
specified maximum number of database coordinator activities, and the
threshold-exceeded-actions will never be executed.

Note: If a threshold action of CONTINUE is specified for a queuing
threshold, it effectively makes the size of the queue unbounded,
regardless of any hard value specified for the queue size.

ESTIMATEDSQLCOST > bigint-value

This condition defines an upper bound for the optimizer-assigned cost (in
timerons) of an activity. This value can be any positive big integer (not
zero) (SQLSTATE 42820). This condition is enforced at the coordinator
member. Activities tracked by this condition are:

* Coordinator activities of type data manipulation language (DML).

* Nested DML activities that are invoked from user logic. Consequently,
DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition
(unless their cost is included in the parent's estimate, in which case they
are indirectly tracked).

SQLROWSRETURNED > integer-value

This condition defines an upper bound for the number of rows returned to
a client application from the application server. This value can be any
positive integer (not zero) (SQLSTATE 42820).This condition is enforced at
the coordinator member. Activities tracked by this condition are:

* Coordinator activities of type DML.

ALTER THRESHOLD

* Nested DML activities that are derived from user logic. Activities that
are initiated by the database manager through a utility, procedure, or
internal SQL are not affected by this condition.

Result sets returned from within a procedure are treated separately as
individual activities. There is no aggregation of the rows that are returned
by the procedure itself.

ACTIVITYTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |

MINUTES | SECONDS
This condition defines an upper bound for the amount of time the
database manager will allow an activity to execute, including the time the
activity was queued. The activities that are covered by this threshold
include the execution of SQL statements, not including compilation time,
and the load utility. This value can be any positive integer (not zero)
(SQLSTATE 42820). Use a valid duration keyword to specify an
appropriate unit of time for integer-value. This condition is enforced at the
coordinator member.

If the specified time unit is SECONDS, the value must be a multiple of 10
(SQLSTATE 42615). The maximum value that can be specified for this
threshold is 2 147 483 640 seconds. Any value specified (using the DAY,
HOUR, MINUTE, or SECONDS time unit) that has a seconds equivalent
larger than 2 147 483 640 seconds will be truncated to this number of
seconds.

UOWTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |

MINUTES | SECONDS
This condition defines an upper bound for the amount of time the
database manager will allow a unit of work to execute. This value can be
any non-zero positive integer (SQLSTATE 42820). Use a valid duration
keyword to specify an appropriate unit of time for integer-value. If the
specified time unit is SECONDS, the value must be a multiple of 10
(SQLSTATE 42615). This condition is enforced at the coordinator member.

The maximum value that can be specified for this threshold is 2 147 483
640 seconds. If any value (using the DAY, HOUR, MINUTE, or SECONDS
time unit) has a seconds equivalent larger than the maximum value, an
error is returned (SQLSTATE 42615).

SQLTEMPSPACE > integer-value K | M | G
This condition defines the maximum amount of system temporary space
that can be consumed by an SQL statement on a member. This value can
be any positive integer (not zero) (SQLSTATE 42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum
size is 1024 times integer-value. If integer-value M is specified, the maximum
size is 1 048 576 times integer-value. If integer-value G is specified, the
maximum size is 1 073 741 824 times integer-value.

Activities tracked by this condition are:

* Coordinator activities of type DML and corresponding subagent work
(subsection execution).

* Nested DML activities that are derived from user logic and their
corresponding subagent work (subsection execution). Activities that are
initiated by the database manager through a utility, procedure, or
internal SQL are not affected by this condition.

AGGSQLTEMPSPACE > integer-value K | M | G

Statements 199

ALTER THRESHOLD

200

SQL Reference Volume 2

This condition defines the maximum amount of system temporary space
that can be consumed by a set of statements in a service class on a
member. This value can be any positive integer (not zero) (SQLSTATE
42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum
size is 1024 times integer-value. If integer-value M is specified, the maximum
size is 1 048 576 times integer-value. If integer-value G is specified, the
maximum size is 1 073 741 824 times integer-value.

Activities contributing to the aggregate that is tracked by this condition
are:

* Coordinator activities of type DML and corresponding subagent work
like subsection execution.

* Nested DML activities that are derived from user logic and their
corresponding subagent work like subsection execution. Activities
initiated by the database manager through a utility, procedure, or
internal SQL statement are not affected by this condition.

SQLROWSREAD > bigint-value

This condition defines an upper bound on the number of rows that may be
read by an activity during its lifetime on a particular member. This value
can be any positive big integer (not zero) (SQLSTATE 42820). Note that the
number of rows read is different from the number of rows returned, which
is controlled by the SQLROWSRETURNED condition.

Activities tracked by this condition are:

* Coordinator activities of type DML and corresponding subagent work
(like subsection execution).

* Nested DML activities that are derived from user logic and their
corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

¢ Internal SQL activities like those initiated by the setting of a constraint,
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an
activity. The threshold is checked at the end of each request (like a
fetch operation, for example) and on the interval defined by the
CHECKING clause. The CHECKING clause defines an upper
bound on how long a threshold violation may go undetected. The
value can be any positive integer (not zero) with a maximum value
of 86400 seconds (SQLSTATE 42820). Setting a low value may
impact system performance negatively.

SQLROWSREADINSC > bigint-value

This condition defines an upper bound on the number of rows that may be
read by an activity on a particular member while it is executing in a
service subclass. Rows read before executing in the service subclass
specified are not counted. This value can be any positive big integer (not
zero) (SQLSTATE 42820). Note that the number of rows read is different
from the number of rows returned, which is controlled by the
SQLROWSRETURNED condition.

ALTER THRESHOLD

Activities tracked by this condition are:

Coordinator activities of type DML and corresponding subagent work
(like subsection execution).

Nested DML activities that are derived from user logic and their
corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

Internal SQL activities like those initiated by the setting of a constraint,
or the refreshing of a materialized query table, are also not tracked by

this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

CHECKING EVERY integer-value SECOND | SECONDS

Specifies how frequently the threshold condition is checked for an
activity. The threshold is checked at the end of each request (like a
fetch operation, for example) and on the interval defined by the
CHECKING clause. The CHECKING clause defines an upper
bound on how long a threshold violation may go undetected. The
value can be any positive integer (not zero) with a maximum value
of 86400 seconds (SQLSTATE 42820). Setting a low value may
impact system performance negatively.

CPUTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES |
SECOND | SECONDS
This condition defines an upper bound for the amount of processor time
that an activity may consume during its lifetime on a particular member.
The processor time tracked by this threshold is measured from the time
that the activity starts executing. This value can be any positive integer
(not zero) (SQLSTATE 42820).

Activities tracked by this condition are:

Coordinator activities of type DML and corresponding subagent work
(like subsection execution).

Nested DML activities that are derived from user logic and their
corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

Internal SQL activities, like those initiated by the setting of a constraint
or the refreshing of a materialized query table, are also not tracked by

this threshold, because they are initiated by the database manager and

not directly invoked by user logic.

Activities of type CALL. For CALL activities, the processor time tracked
for the procedure does not include the processor time used by any child
activity or by any fenced mode processes. The threshold condition will
be checked only upon return from user logic to the database engine. For
example: During execution of a trusted routine, the threshold condition
will be checked only when the routine issues a request to the database
engine.

CHECKING EVERY integer-value SECOND | SECONDS

Specifies how frequently the threshold condition is checked for an
activity. The granularity of the CPUTIME threshold is
approximately this number multiplied by the degree of parallelism
for the activity. For example: If the threshold is checked every 60

Statements 201

ALTER THRESHOLD

202

SQL Reference Volume 2

seconds and the degree of parallelism is 2, the activity might use
an extra 2 minutes of processor time instead of 1 minute before the
threshold violation is detected. The value can be any positive
integer (not zero) with a maximum value of 86400 seconds
(SQLSTATE 42820). Setting a low value may impact system
performance negatively.

CPUTIMEINSC > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES
| SECOND | SECONDS

This condition defines an upper bound for the amount of processor time
that an activity may consume on a particular member while it is executing
in a service subclass. The processor time tracked by this threshold is
measured from the time that the activity starts executing in the service
subclass identified in the threshold domain. Any processor time used
before that point is not counted toward the limit imposed by this
threshold. This value can be any positive integer (not zero) (SQLSTATE
42820).

Activities tracked by this condition are:

* Coordinator activities of type DML and corresponding subagent work
(like subsection execution).

* Nested DML activities that are derived from user logic and their
corresponding subagent work (like subsection execution). Activities that
are initiated by the database manager through a utility or procedure
(with the exception of the ADMIN_CMD procedure) are not counted for
this condition.

* Internal SQL activities, like those initiated by the setting of a constraint
or the refreshing of a materialized query table, are also not tracked by
this threshold, because they are initiated by the database manager and
not directly invoked by user logic.

* Activities of type CALL. For CALL activities, the processor time tracked
for the procedure does not include the processor time used by any child
activity or by any fenced mode processes. The threshold condition will
be checked only upon return from user logic to the database engine. For
example: During execution of a trusted routine, the threshold condition
will be checked only when the routine issues a request to the database
engine.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an
activity. The granularity of the CPUTIMEINSC threshold is
approximately this number multiplied by the degree of parallelism
for the activity. For example: If the threshold is checked every 60
seconds and the degree of parallelism is 2, the activity might use
an extra 2 minutes of processor time instead of 1 minute before the
threshold violation is detected. The value can be any positive
integer (not zero) with a maximum value of 86400 seconds
(SQLSTATE 42820). Setting a low value may impact system
performance negatively.

DATATAGINSC IN (integer-constant, ...)

This condition defines one or more data tag values specified on a table
space that the activity touches. The data tag on a table space, or its
underlying storage group (where applicable), can be either not be set or set
to a value from 1 to 9. If the activity touches a table space that has no data
tag set (either at the table space or storage group level), this threshold will
not have any affect on that activity. The definition domain for this

ALTER THRESHOLD

condition must be a service subclass (SERVICE CLASS specifying the
UNDER clause), and the enforcement scope must be DATABASE
PARTITION (SQLSTATE 5U037). This condition is enforced independently
at each database partition.

Activities tracked by this condition are:
¢ Coordinator activities of type data manipulation language (DML).
* Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition.

This threshold is only checked when a scan is opened on a table or when
an insert is performed into a table. Fetching data from a table after a scan
has been opened will not violate the threshold.

DATATAGINSC NOT IN (integer-constant, ...)
This condition defines one or more data tag values not specified on a table
space that the activity touches. The data tag on a table space, or its
underlying storage group (where applicable), can be either not be set or set
to a value from 1 to 9. If the activity touches a table space that has no data
tag set (either at the table space or storage group level), this threshold will
not have any affect on that activity. The definition domain for this
condition must be a service subclass (SERVICE CLASS specifying the
UNDER clause), and the enforcement scope must be DATABASE
PARTITION (SQLSTATE 5U037). This condition is enforced independently
at each database partition.

Activities tracked by this condition are:
* Coordinator activities of type data manipulation language (DML).
* Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition.

This threshold is only checked when a scan is opened on a table or when
an insert is performed into a table. Fetching data from a table after a scan
has been opened will not violate the threshold.

alter-threshold-exceeded-actions
Specifies what action is to be taken when a condition is exceeded. Each time
that a condition is exceeded, an event is recorded in all active threshold
violations event monitors.

COLLECT ACTIVITY DATA
Specifies that data about each activity that exceeded the threshold is to be
sent to any active activities event monitor when the activity completes. The
COLLECT ACTIVITY DATA setting does not apply to non-activity
thresholds, such as CONNECTIONIDLETIME,
TOTALDBPARTITIONCONNECTIONS,
TOTALSCPARTITIONCONNECTIONS,
CONCURRENTWORKLOADOCCURRENCES, or UOWTOTALTIME.

alter-collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected only at the
coordinator member of the activity.

ON ALL MEMBERS
Specifies that the activity data is to be collected at all members on

Statements 203

ALTER THRESHOLD

which the activity is processed. On remote members, a record for
the activity may be captured multiple times as the activity comes
and goes on those members. For predictive thresholds, activity
information is collected at all members only if you also specify the
CONTINUE action for exceeded thresholds. For reactive
thresholds, the ON ALL MEMBERS clause has no effect and
activity information is always collected only at the coordinator
member. For both predictive and reactive thresholds, any input
data values, section information, or values will be collected only at
the coordinator member.

WITHOUT DETAILS
Specifies that data about each activity associated with the work
class for which this work action is defined should be sent to any
active activities event monitor, when the activity completes
execution. Details about statement, compilation environment, and
section environment data are not sent.

WITH

DETAILS
Specifies that statement and compilation environment data is to
be sent to any active activities event monitor, for those
activities that have them. Section environment data is not sent.

SECTION
Specifies that statement, compilation environment, section
environment data, and section actuals are to be sent to any
active activities event monitor for those activities that have
them. DETAILS must be specified if SECTION is specified. For
predictive thresholds, section actuals will be collected on any
member where the activity data is collected. For reactive
thresholds, section actuals will be collected only on the
coordinator member.

AND VALUES
Specifies that input data values are to be sent to any active
activities event monitor, for those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that
exceeds the threshold.

STOP EXECUTION
The execution of the activity is stopped and an error is returned
(SQLSTATE 5U026). In the case of the UOWTOTALTIME threshold, the
unit of work is rolled back.

CONTINUE
The execution of the activity is not stopped. When the condition also has a
queue, this option causes queuing to extend beyond the size of the queue.

FORCE APPLICATION
The application is forced off the system (SQLSTATE 55032). This action can
only be specified for the UOWTOTALTIME threshold.
remap-activity-action

REMAP ACTIVITY TO service-subclass-name
The activity is mapped to service-subclass-name. The execution of the activity
is not stopped. This action is valid only for in-service-class thresholds like

204 SQL Reference Volume 2

ALTER THRESHOLD

CPUTIMEINSC, SQLROWSREADINSC, DATATAGINSC IN and
DATATAGINSC NOT IN thresholds (SQLSTATE 5U037). The
service-subclass-name must identify an existing service subclass under the
same superclass associated with the threshold (SQLSTATE 5U037). The
service-subclass-name cannot be the same as the associated service subclass
of the threshold (SQLSTATE 5U037).

NO EVENT MONITOR RECORD
Specifies that no threshold violation record will be written.

LOG EVENT MONITOR RECORD
Specifies that if a THRESHOLD VIOLATIONS event monitor exists and
is active, a threshold violation record is written to it.

ENABLE or DISABLE

Specifies whether or not the threshold is enabled for use by the database
manager.

ENABLE
The threshold is used by the database manager to restrict the execution of
database activities. Currently running database activities will continue to
execute without the restriction of this threshold.

DISABLE
The threshold is not used by the database manager to restrict the execution
of database activities. New database activities will not be restricted by this
threshold. Thresholds with a queue, for example
TOTALSCMEMBERCONNECTIONS or
CONCURRENTDBCOORDACTIVITIES, must be disabled before they can
be dropped.

Notes

Thresholds can be defined on different aspects of database behavior to monitor
and control that behavior. When a threshold is defined on activities, unless
otherwise specified, it will be enforced only during the actual execution of SQL
statements, not including compilation time, and the load utility.

The CONCURRENTWORKLOADOCCURRENCES threshold and the
CONCURRENTWORKLOADACTIVITIES threshold differ in scope.
CONCURRENTWORKLOADOCCURRENCES controls how many connections
can map to a workload definition simultaneously, and
CONCURRENTWORKLOADACTIVITIES controls how many activities each
connection that is mapped to the workload definition can submit concurrently.

Changes are written to the system catalog, but do not take effect until after a
COMMIT statement, even for the connection that issues the statement.

Only one uncommitted WLM-exclusive SQL statement at a time is allowed
across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

The new value for a threshold affects only DB2 activities that start executing
after the alter operation commits.

Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.

— DATABASE PARTITION can be specified in place of MEMBER, except when
the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Statements 205

ALTER THRESHOLD

— DATABASE PARTITIONS can be specified in place of MEMBERS, except
when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

— TOTALDBPARTITIONCONNECTIONS can be specified in place of
TOTALMEMBERCONNECTIONS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

— TOTALSCPARTITIONCONNECTIONS can be specified in place of
TOTALSCMEMBERCONNECTIONS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Example

Alter the threshold MAXBIGQUERIESCONCURRENCY to a maximum of three
activities rather than two.

ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY
WHEN CONCURRENTDBCOORDACTIVITIES > 3
STOP EXECUTION

Because this is a threshold with a queue, the threshold cannot be dropped unless it
is disabled, as follows:

ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY DISABLE

206 SQL Reference Volume 2

ALTER TRIGGER

ALTER TRIGGER

The ALTER TRIGGER statement changes the description of a trigger at the current
server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is implicitly or explicitly specified.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following privileges:

¢ SECADM authority
¢ CREATE_SECURE_OBJECT authority

Syntax

v
A

»»—ALTER TRIGGER—trigger-name—[S ECURED
NOT SECURED—-|

Description

trigger-name
Identifies the trigger to be altered. The trigger-name must identify a trigger that
exists at the current server (SQLSTATE 42704).

NOT SECURED or SECURED
Specifies whether the trigger is considered secure.

SECURED
Specifies the trigger is considered secure. SECURED must be specified for a
trigger whose subject table is a table on which row level or column level
access control has been activated (SQLSTATE 428HS8). Similarly, SECURED
must be specified for a trigger that is created on a view and one or more of

the underlying tables in that view definition has row level or column level
access control activated (SQLSTATE 428HS).

NOT SECURED
Specifies the trigger is considered not secure. Altering a trigger from
secured to not secured fails if the trigger is defined on a table for which
row or column level access control is activated (SQLSTATE 428H8).
Similarly, altering a trigger from secured to not secured fails if the trigger
is defined on a view and one or more of the underlying tables in that view
definition has row or column level access control activated (SQLSTATE
428H8).

Examples

e Example 1: Alter trigger TRIGGER1 to SECURED.
ALTER TRIGGER TRIGGER1 SECURED

e Example 2: Alter trigger TRIGGER1 to NOT SECURED.
ALTER TRIGGER TRIGGER1 NOT SECURED

Statements 207

ALTER TRUSTED CONTEXT

ALTER TRUSTED CONTEXT

The ALTER TRUSTED CONTEXT statement modifies the definition of a trusted
context at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

»»—ALTER TRUSTED CONTEXT—context-nam: >

(1) | |
»>. ALTER—Y——SYSTEM AUTHID—authorization-name
|)

@ |
ATTRIBUTES (Tss-c]ause i —
3) J
ENCRYPTION—encryption-value

NO DEFAULT ROLE
DEFAULT ROLE—rale—nameJ
DISABLE

ENABLE—I

>

(2)

—ADD ATTRIBUTES

(—" address-clause)

(2)
DROP ATTRIBUTES
—| user-clause i

(—l_ADDRESS—address-val“ |)

address-clause:

|—ADDRESS—address-value B 7 |
WITH ENCRYPTION—encryption-value

user-clause:

|_ rNITHOUT AUTHENTICATION—I |
}——ADD USE FOR———authorization-nam B TT L | |
ROLE—role-name | WITH AUTHENTICATION
PUBLIC:
|_ |—WITHOUT AUTHENTICATIONW |
-REPLACE USE FOR—Y uthorization-nam

I—ROLE—role-nmneJ | |—WITH AUTHENTICATION

PUBLIC.

DROP USE FOR—l_Eauthorization-nc'n
PUBLIC4I

208 SQL Reference Volume 2

ALTER TRUSTED CONTEXT

Notes:

1 Each of the ATTRIBUTES, DEFAULT ROLE, ENABLE, and WITH USE clauses
can be specified at most once (SQLSTATE 42614).

2 Each attribute name and corresponding value must be unique (SQLSTATE
4274D).

3 ENCRYPTION cannot be specified more than once (SQLSTATE 42614);
however, WITH ENCRYPTION can be specified for each ADDRESS that is
specified.

Description

context-name
Identifies the trusted context that is to be altered. This is a one-part name. It is
an SQL identifier (either ordinary or delimited). The context-name must identify
a trusted context that exists at the current server (SQLSTATE 42704).

ALTER
Alters the options and attributes of a trusted context.

SYSTEM AUTHID authorization-name
Specifies that the context is a connection established by system
authorization ID authorization-name, which must not be associated with an
existing trusted context (SQLSTATE 428GL). It cannot be the authorization
ID of the statement (SQLSTATE 42502).

ATTRIBUTES (...)
Specifies a list of one or more connection trust attributes, upon which the
trusted context is defined, that are to be modified. Existing values for the
specified attributes are replaced with the new values. If an attribute is not
currently part of the trusted context definition, an error is returned
(SQLSTATE 4274C). Attributes that are not specified retain their previous
values.

ADDRESS address-value
Specifies the actual communication address used by the client to
communicate with the database server. The only protocol supported is
TCP/IP. Previous ADDRESS values for the specified trusted context are
removed. The ADDRESS attribute can be specified multiple times, but
each address-value pair must be unique for the set of attributes
(SQLSTATE 4274D).

When establishing a trusted connection, if multiple values are defined
for the ADDRESS attribute of a trusted context, a candidate connection
is considered to match this attribute if the address used by the
connection matches any of the defined values for the ADDRESS
attribute of the trusted context.

address-value
Specifies a string constant that contains the value to be associated
with the ADDRESS trust attribute. The address-value must be an
IPv4 address, an IPv6 address, or a secure domain name.

* An IPv4 address must not contain leading spaces and is
represented as a dotted decimal address. An example of an IPv4
address is 9.112.46.111. The value 'localhost' or its equivalent
representation '127.0.0.1' will not result in a match; the real IPv4
address of the host must be specified instead.

Statements 209

ALTER TRUSTED CONTEXT

* An IPv6 address must not contain leading spaces and is
represented as a colon hexadecimal address. An example of an
IPv6 address is 2001:0DB8:0000:0000:0008:0800:200C:417A.
IPv4-mapped IPv6 addresses (for example, :ffff:192.0.2.128) will
not result in a match. Similarly, 'localhost’ or its IPv6 short
representation ":1' will not result in a match.

* A domain name is converted to an IP address by the domain
name server where a resulting IPv4 or IPv6 address is
determined. An example of a domain name is
corona.torolab.ibm.com. When a domain name is converted to an
IP address, the result of this conversion could be a set of one or
more IP addresses. In this case, an incoming connection is said
to match the ADDRESS attribute of a trusted context object if the
IP address from which the connection originates matches any of
the IP addresses to which the domain name was converted.
When creating a trusted context object, it is advantageous to
provide domain name values for the ADDRESS attribute instead
of static IP addresses, particularly in Dynamic Host
Configuration Protocol (DHCP) environments. With DHCP, a
device can have a different IP address each time it connects to
the network. So, if a static IP address is provided for the
ADDRESS attribute of a trusted context object, some device
might acquire a trusted connection unintentionally. Providing
domain names for the ADDRESS attribute of a trusted context
object avoids this problem in DHCP environments.

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream
or network encryption for this specific address-value. This
encryption-value overrides the global ENCRYPTION attribute
setting for this specific address-value.

encryption-value
Specifies a string constant that contains the value to be
associated with the ENCRYPTION trust attribute for this
specific address-value. The encryption-value must be one of
the following values (SQLSTATE 42615):

* NONE, no specific level of encryption is required

* LOW, a minimum of light encryption is required; the
authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match
the encryption setting for this specific address

* HIGH, Secure Sockets Layer (SSL) encryption must be
used for data communication between the DB2 client
and the DB2 server if an incoming connection is to
match the encryption setting for this specific address

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or
network encryption. The default is NONE.

encryption-value
Specifies a string constant that contains the value to be associated
with the ENCRYPTION trust attribute for this specific address-value.
The encryption-value must be one of the following values
(SQLSTATE 42615):

210 SQL Reference Volume 2

ALTER TRUSTED CONTEXT

* NONE, no specific level of encryption is required for an
incoming connection to match the ENCRYPTION attribute of
this trusted context object

* LOW, a minimum of light encryption is required; the
authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match the
ENCRYPTION attribute of this trusted context object

* HIGH, Secure Sockets Layer (SSL) encryption must be used for
data communication between the DB2 client and the DB2 server
if an incoming connection is to match the ENCRYPTION
attribute of this trusted context object

For details about the ENCRYPTION trust attribute, see “CREATE
TRUSTED CONTEXT"”.

NO DEFAULT ROLE or DEFAULT ROLE role-name
Specifies whether or not a default role is associated with a trusted connection
that is based on this trusted context. If a trusted connection for this context is
active, the change comes into effect on the next switch user request or a new
connection request.

NO DEFAULT ROLE
Specifies that the trusted context does not have a default role.

DEFAULT ROLE role-name
Specifies that role-name is the default role for the trusted context. The
role-name must identify a role that exists at the current server (SQLSTATE
42704). This role is used with the user in a trusted connection, based on
this trusted context, when the user does not have a user-specific role
defined as part of the definition of the trusted context.

ENABLE or DISABLE
Specifies whether the trusted context is enabled or disabled.

ENABLE
Specifies that the trusted context is enabled.

DISABLE
Specifies that the trusted context is disabled. A trusted context that is
disabled is not considered when a trusted connection is established.

ADD ATTRIBUTES
Specifies a list of one or more additional trust attributes on which the trusted
context is defined.

ADDRESS address-value
Specifies the actual communication address used by the client to
communicate with the database server. The only protocol supported is
TCP/IP. The ADDRESS attribute can be specified multiple times, but each
address-value pair must be unique for the set of attributes (SQLSTATE
4274D).

When establishing a trusted connection, if multiple values are defined for
the ADDRESS attribute of a trusted context, a candidate connection is
considered to match this attribute if the address used by the connection
matches any of the defined values for the ADDRESS attribute of the
trusted context.

address-value
Specifies a string constant that contains the value to be associated with

Statements 211

ALTER TRUSTED CONTEXT

212

the ADDRESS trust attribute. The address-value must be an 1Pv4
address, an IPv6 address, or a secure domain name.

* An IPv4 address must not contain leading spaces and is represented
as a dotted decimal address. An example of an IPv4 address is
9.112.46.111. The value 'localhost’ or its equivalent representation
'127.0.0.1" will not result in a match; the real IPv4 address of the host
must be specified instead.

* An IPv6 address must not contain leading spaces and is represented
as a colon hexadecimal address. An example of an IPv6 address is
2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6
addresses (for example, ::ffff:192.0.2.128) will not result in a match.
Similarly, 'localhost' or its IPv6 short representation "::1' will not
result in a match.

¢ A domain name is converted to an IP address by the domain name
server, where a resulting IPv4 or IPv6 address is determined. An
example of a domain name is corona.torolab.ibm.com.

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or
network encryption for this specific address-value. This
encryption-value overrides the global ENCRYPTION attribute setting
for this specific address-value.

encryption-value
Specifies a string constant that contains the value to be
associated with the ENCRYPTION trust attribute for this
specific address-value. The encryption-value must be one of the
following values (SQLSTATE 42615):

* NONE, no specific level of encryption is required

* LOW, a minimum of light encryption is required; the
authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match the
encryption setting for this specific address

* HIGH, Secure Sockets Layer (SSL) encryption must be used
for data communication between the DB2 client and the DB2
server if an incoming connection is to match the
ENCRYPTION attribute of this trusted context object

DROP ATTRIBUTES

ADD

SQL Reference Volume 2

Specifies that one or more attributes are to be dropped from the definition of
the trusted context. If the attribute and attribute value pair is not currently part
of the trusted context definition, an error is returned (SQLSTATE 4274C).

ADDRESS address-value
Specifies that the identified communication address is to be removed from
the definition of the trusted context. The address-value specifies a string
constant that contains the value of an existing ADDRESS trust attribute.

USE FOR

Specifies additional users who can use a trusted connection based on this
trusted context. If the definition of a trusted context allows access by PUBLIC
and a list of users, the specifications for a user override the specifications for
PUBLIC.

authorization-name
Specifies that the trusted connection can be used by the specified
authorization-name. The authorization-name must not identify an

ALTER TRUSTED CONTEXT

authorization ID that is already defined to use the trusted context, and
must not be specified more than once in the ADD USE FOR clause
(SQLSTATE 428GM). It must also not be the authorization ID of the
statement (SQLSTATE 42502).

ROLE role-name
Specifies that role-name is the role to be used for the user. The role-name
must identify a role that exists at the current server (SQLSTATE 42704).
The role explicitly specified for the user overrides any default role
associated with the trusted context.

PUBLIC
Specifies that a trusted connection that is based on this trusted context can
be used by any user. PUBLIC must not already be defined to use the
trusted context, and PUBLIC must not be specified more than once in the
ADD USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the current user on a trusted connection
based on this trusted context requires authentication.

WITHOUT AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user does not require authentication.

WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user requires authentication.

REPLACE USE FOR
Specifies that the way in which a particular user or PUBLIC uses the trusted
context is to change.

authorization-name
Specifies the authorization-name of the user whose use of the trusted
connection is to change. The trusted context must already be defined to
allow use by the authorization-name (SQLSTATE 428GN), and
authorization-name must not be specified more than once in the REPLACE
USE FOR clause (SQLSTATE 428GM). It must also not be the authorization
ID of the statement (SQLSTATE 42502).

ROLE role-name
Specifies that role-name is the role for the user. The role-name must
identify a role that exists at the current server (SQLSTATE 42704). The
role explicitly specified for the user overrides any default role
associated with the trusted context.

PUBLIC
Specifies that the attributes for use of the trusted connection by PUBLIC
are to change. The trusted context must already be defined to allow use by
PUBLIC (SQLSTATE 428GN), and PUBLIC must not be specified more than
once in the REPLACE USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the current user on a trusted connection
based on this trusted context requires authentication.

WITHOUT AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user does not require authentication.

Statements 213

ALTER TRUSTED CONTEXT

214

WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user requires authentication.

DROP USE FOR

Specifies who can no longer use the trusted context. The users who are
removed from the definition of the trusted context are those users who are
currently allowed to use the trusted context. If one or more, but not all, users
can be removed from the definition of the trusted context, the specified users
are removed and a warning is returned (SQLSTATE 01682). If none of the
specified users can be removed from the definition of the trusted context, an
error is returned (SQLSTATE 428GN).

authorization-name
Removes the ability of the specified authorization ID to use this trusted
context.

PUBLIC
Removes the ability of all users (except the system authorization ID and
individual authorization IDs that have been explicitly enabled) to use this
trusted context.

Rules
* A trusted context-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). Trusted context-exclusive SQL
statements are:

- CREATE TRUSTED CONTEXT, ALTER TRUSTED CONTEXT, or DROP
(TRUSTED CONTEXT)

A trusted context-exclusive SQL statement cannot be issued within a global
transaction; for example, an XA transaction or a global transaction that is
initiated as part of two-phase commit for federated transactions (SQLSTATE
51041).

Notes
* When providing an IP address as part of a trusted context definition, the address

must be in the format that is in effect for the network. For example, providing
an address in an IPv6 format when the network is IPv4 will not result in a
match. In a mixed environment, it is advantageous to specify both the IPv4 and
the IPv6 representations of the address, or better yet, to specify a secure domain
name (for example, corona.torolab.ibm.com), which hides the address format
details.

Only one uncommitted trusted context-exclusive SQL statement is allowed at a
time across all database partitions. If an uncommitted trusted context-exclusive
SQL statement is executing, subsequent trusted context-exclusive SQL statements
will wait until the current trusted context-exclusive SQL statement commits or
rolls back.

Changes are written to the system catalog but do not take effect until they are
committed, even for the connection that issues the statement.

Order of operations: The order of operations within an ALTER TRUSTED
CONTEXT statement is:

- DROP

— ALTER

ADD ATTRIBUTES
ADD USE FOR

SQL Reference Volume 2

ALTER TRUSTED CONTEXT

— REPLACE USE FOR

* Effect of changes on existing trusted connections: If trusted connections exist for
the trusted context being altered, the connections remain trusted with the
definition in effect before the ALTER TRUSTED CONTEXT statement until the
next switch user request or the connection terminates. If the trusted context is
disabled while trusted connections for this context are active, the connections
remain trusted until the next switch user request or the connection terminates. If
trust attributes are changed with the ALTER TRUSTED CONTEXT statement,
trusted connections that exist at the time of the ALTER TRUSTED CONTEXT
statement that use the trusted context are allowed to continue.

* Role privileges: If there is no role associated with the user or the trusted context,
only the privileges associated with the user are applicable. This is the same as
not being in a trusted context.

Examples

* Example 1: Assume that trusted context APPSERVER exists and that it is enabled.
Issue an ALTER TRUSTED CONTEXT statement to allow Bill to use the trusted
context APPSERVER, but put the trusted context in the disabled state.

ALTER TRUSTED CONTEXT APPSERVER
DISABLE
ADD USE FOR BILL

e Example 2: Assume that trusted context SECUREROLE exists. Issue an ALTER
TRUSTED CONTEXT statement to modify the existing user Joe to use the
trusted context with authentication and to add everyone else to use the trusted
context without authentication.

ALTER TRUSTED CONTEXT SECUREROLE
REPLACE USE FOR JOE WITH AUTHENTICATION
ADD USE FOR PUBLIC WITHOUT AUTHENTICATION

e Example 3: Assume that trusted context SECUREROLEENCRYPT exists with
ADDRESS attribute values '9.13.55.100" and '9.12.30.112', and ENCRYPTION
attribute value NONE'. Issue an ALTER statement to modify the ADDRESS
attribute values and the encryption attribute to 'LOW'.

ALTER TRUSTED CONTEXT SECUREROLEENCRYPT

ALTER ATTRIBUTES (ADDRESS '9.12.155.200',
ENCRYPTION 'LOW')

Statements 215

ALTER TYPE (structured)

ALTER TYPE (structured)

216

The ALTER TYPE statement is used to add or drop attributes or method
specifications of a user-defined structured type. Properties of existing methods can
also be altered.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

* ALTERIN privilege on the schema of the type

* Owner of the type, as recorded in the OWNER column of the
SYSCAT.DATATYPES catalog view

* DBADM authority

To alter a method to be not fenced, the privileges held by the authorization ID of
the statement must also include at least one of the following authorities:

* CREATE_NOT_FENCED_ROUTINE authority on the database
* DBADM authority

To alter a method to be fenced, no additional authorities or privileges are required.
Syntax

»»—ALTER TYPE—type-name >

>~ ADD ATTRIBUTE—| attribute-definition |
|—REST&ICT—l

—DROP ATTRIBUTE—attribute-name

—ADD METHOD—| method-specification i

—ALTER—| method-identifier |—‘ method-options |

|—R STRICT—l
—DROP—| method-identifier i

SQL Reference Volume 2

ALTER TYPE (structured)

method-identifier:

METHOD—method-name B] |
()

\\(y data-type——)J

SPECIFIC METHOD—specific-name

method-options:

} [FENCED |
NOT FENCED
THREADSAFE

NOT THREADSAFE

Description

type-name
Identifies the structured type to be changed. It must be an existing type
defined in the catalog (SQOLSTATE 42704), and the type must be a structured
type (SQLSTATE 428DP). In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name. In static
SQL statements, the QUALIFIER precompile/bind option implicitly specifies
the qualifier for unqualified object names.

ADD ATTRIBUTE
Adds an attribute after the last attribute of the existing structured type.

attribute-definition
Defines the attributes of the structured type.

attribute-name
Specifies a name for the attribute. The name cannot be the same as any
other attribute of this structured type (including inherited attributes) or
any subtype of this structured type (SQLSTATE 42711).

A number of names used as keywords in predicates are reserved for
system use, and may not be used as an attribute-name (SQLSTATE
42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,
NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH
and the comparison operators.

data-type 1
Specifies the data type of the attribute. It is one of the data types listed
under CREATE TABLE, other than XML (SQLSTATE 42601). The data
type must identify an existing data type (SQLSTATE 42704). If data-type
is specified without a schema name, the type is resolved by searching
the schemas on the SQL path. The description of various data types is
given in “CREATE TABLE”. If the attribute data type is a reference
type, the target type of the reference must be a structured type that
exists (SQLSTATE 42704).

To prevent type definitions that, at run time, would permit an instance
of the type to directly, or indirectly, contain another instance of the
same type or one of its subtypes, there is a restriction that a type may
not be defined such that one of its attribute types directly or indirectly
uses itself (SQLSTATE 428EP).

Statements 217

ALTER TYPE (structured)

lob-options
Specifies the options associated with LOB types (or distinct types based
on LOB types). For a detailed description of lob-options, see “CREATE
TABLE”.

DROP ATTRIBUTE
Drops an attribute of the existing structured type.

attribute-name
The name of the attribute. The attribute must exist as an attribute of the
type (SQLSTATE 42703).

RESTRICT
Enforces the rule that no attribute can be dropped if type-name is used as
the type of an existing table, view, column, attribute nested inside the type
of a column, or an index extension.

ADD METHOD method-specification
Adds a method specification to the type identified by type-name. The method
cannot be used until a separate CREATE METHOD statement is used to give
the method a body. For more information about method-specification, see
“CREATE TYPE (Structured)”.

ALTER method-identifier
Uniquely identifies an instance of a method that is to be altered. The specified
method may or may not have an existing method body. Methods declared as
LANGUAGE SQL cannot be altered (SQLSTATE 42917).

method-identifier

METHOD method-name
Identifies a particular method, and is valid only if there is exactly one
method instance with the name method-name for the type type-name.
The identified method can have any number of parameters defined for
it. If no method by this name exists for the type, an error (SQLSTATE
42704) is raised. If there is more than one instance of the method for
the type, an error (SQLSTATE 42725) is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method.
The method resolution algorithm is not used.

method-name
Specifies the name of the method for the type type-name.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE TYPE statement. The
number of data types, and the logical concatenation of the data
types, is used to identify the specific method instance.

If a data type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can
be coded to indicate that these attributes are to be ignored when
looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

218 SQL Reference Volume 2

ALTER TYPE (structured)

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for
n, because 0 < n < 25 means REAL, and 24 < n < 54 means
DOUBLE. Matching occurs on the basis of whether the type is
REAL or DOUBLE.

If no method with the specified signature exists for the type in the
named or implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or
defaulted to at method creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names. The specific-name must identify a specific
method instance in the named or implied schema; otherwise, an error
(SQLSTATE 42704) is raised.

method-options
Specifies the options that are to be altered for the method.

FENCED or NOT FENCED
Specifies whether the method is considered safe to run in the database
manager operating environment's process or address space (NOT
FENCED), or not (FENCED). Most methods have the option of running as
FENCED or NOT FENCED.

If a method is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the method. In

general, a method running as FENCED will not perform as well as a
similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for methods that were not adequately coded,
reviewed, and tested can compromise the integrity of a DB2 database.
DB2 databases take some precautions against many of the common types
of inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED methods are used.

A method declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a method has any parameters defined AS LOCATOR, and was defined
with the NO SQL option, the method cannot be altered to be FENCED
(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE methods (SQLSTATE
42849).

THREADSAFE or NOT THREADSAFE
Specifies whether a method is considered safe to run in the same process
as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the method is defined with LANGUAGE other than OLE:

¢ If the method is defined as THREADSAFE, the database manager can
invoke the method in the same process as other routines. In general, to
be threadsafe, a method should not use any global or static data areas.
Most programming references include a discussion of writing threadsafe

Statements 219

ALTER TYPE (structured)

220

routines. Both FENCED and NOT FENCED methods can be
THREADSAFE. If the method is defined with LANGUAGE OLE,
THREADSAFE may not be specified (SQLSTATE 42613).

¢ If the method is defined as NOT THREADSAFE, the database manager
will never invoke the method in the same process as another routine.
Only a fenced method can be NOT THREADSAFE (SQLSTATE 42613).

DROP method-identifier

Uniquely identifies an instance of a method that is to be dropped. The
specified method must not have an existing method body (SQLSTATE 428ER).
Use the DROP METHOD statement to drop the method body before using
ALTER TYPE DROP METHOD. Methods implicitly generated by the CREATE
TYPE statement (such as mutators and observers) cannot be dropped
(SQLSTATE 42917).

RESTRICT

Indicates that the specified method is restricted from having an existing
method body. Use the DROP METHOD statement to drop the method body
before using ALTER TYPE DROP METHOD.

Rules

* Adding or dropping an attribute is not allowed for type type-name (SQLSTATE
55043) if either:

The type or one of its subtypes is the type of an existing table or view.

There exists a column of a table whose type directly or indirectly uses
type-name. The terms directly uses and indirectly uses are defined in “Structured
types”.

The type or one of its subtypes is used in an index extension.

* A type may not be altered by adding attributes so that the total number of
attributes for the type, or any of its subtypes, exceeds 4082 (SQLSTATE 54050).

* ADD ATTRIBUTE option:

ADD ATTRIBUTE generates observer and mutator methods for the new
attribute. These methods are similar to those generated when a structured
type is created (see “CREATE TYPE (Structured)”). If these methods conflict
with or override any existing methods or functions, the ALTER TYPE
statement fails (SQLSTATE 42745).

If the INLINE LENGTH for the type (or any of its subtypes) was explicitly
specified by the user with a value less than 292, and the attributes added
cause the specified inline length to be less than the size of the result of the
constructor function for the altered type (32 bytes plus 10 bytes per attribute),
then an error results (SQLSTATE 42611).

* DROP ATTRIBUTE option:

An attribute that is inherited from an existing supertype cannot be dropped
(SQLSTATE 428D]).

DROP ATTRIBUTE drops the mutator and observer methods of the dropped
attributes, and checks dependencies on those dropped methods.

* DROP METHOD option:

An original method that is overridden by other methods cannot be dropped
(SQLSTATE 42893).

Notes

* It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC
schema (SQLSTATE 42832).

SQL Reference Volume 2

ALTER TYPE (structured)

* When a type is altered by adding or dropping an attribute, all packages are
invalidated that depend on functions or methods that use this type or a subtype
of this type as a parameter or a result.

* When an attribute is added to or dropped from a structured type:

— If the INLINE LENGTH of the type was calculated by the system when the
type was created, the INLINE LENGTH values are automatically modified for
the altered type, and all of its subtypes to account for the change. The
INLINE LENGTH values are also automatically (recursively) modified for all
structured types where the INLINE LENGTH was calculated by the system
and the type includes an attribute of any type with a changed INLINE
LENGTH.

— If the INLINE LENGTH of any type affected by adding or dropping
attributes was explicitly specified by a user, then the INLINE LENGTH for
that particular type is not changed. Special care must be taken for explicitly
specified inline lengths. If it is likely that a type will have attributes added
later on, then the inline length, for any uses of that type or one of its
subtypes in a column definition, should be large enough to account for the
possible increase in length of the instantiated object.

— If new attributes are to be made visible to application programs, existing
transform functions must be modified to match the new structure of the data

type.
* In a partitioned database environment, the use of SQL in external user-defined
functions or methods is not supported (SQLSTATE 42997).

* Privileges: The EXECUTE privilege is not given for any methods explicitly
specified in the ALTER TYPE statement until a method body is defined using
the CREATE METHOD statement. The owner of the user-defined type has the
ability to drop the method specification using the ALTER TYPE statement.

Examples

e Example 1: The ALTER TYPE statement can be used to permit a cycle of
mutually referencing types and tables. Consider mutually referencing tables
named EMPLOYEE and DEPARTMENT.

The following sequence would allow the types and tables to be created.

CREATE TYPE DEPT ...

CREATE TYPE EMP ... (including attribute named DEPTREF of type REF(DEPT))
ALTER TYPE DEPT ADD ATTRIBUTE MANAGER REF (EMP)

CREATE TABLE DEPARTMENT OF DEPT ...

CREATE TABLE EMPLOYEE OF EMP (DEPTREF WITH OPTIONS SCOPE DEPARTMENT)
ALTER TABLE DEPARTMENT ALTER COLUMN MANAGER ADD SCOPE EMPLOYEE

The following sequence would allow these tables and types to be dropped.

DROP TABLE EMPLOYEE (the MANAGER column in DEPARTMENT becomes unscoped)
DROP TABLE DEPARTMENT

ALTER TYPE DEPT DROP ATTRIBUTE MANAGER

DROP TYPE EMP

DROP TYPE DEPT

* Example 2: The ALTER TYPE statement can be used to create a type with an

attribute that references a subtype.
CREATE TYPE EMP ...
CREATE TYPE MGR UNDER EMP ...
ALTER TYPE EMP ADD ATTRIBUTE MANAGER REF(MGR)

* Example 3: The ALTER TYPE statement can be used to add an attribute. The
following statement adds the SPECIAL attribute to the EMP type. Because the
inline length was not specified on the original CREATE TYPE statement, the DB2
database recalculates the inline length by adding 13 (10 bytes for the new
attribute + attribute length + 2 bytes for a non-LOB attribute).

Statements 221

ALTER TYPE (structured)

ALTER TYPE EMP ...
ADD ATTRIBUTE SPECIAL CHAR(1)
* Example 4: The ALTER TYPE statement can be used to add a method associated
with a type. The following statement adds a method called BONUS.
ALTER TYPE EMP ...
ADD METHOD BONUS (RATE DOUBLE)
RETURNS INTEGER
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
Note that the BONUS method cannot be used until a CREATE METHOD
statement is issued to create the method body. If it is assumed that type EMP
includes an attribute called SALARY, then the following example shows a
method body definition.

CREATE METHOD BONUS(RATE DOU