
IBM DB2 10.1
for Linux, UNIX, and Windows

XQuery Reference
Updated January, 2013

SC27-3893-01

���

IBM DB2 10.1
for Linux, UNIX, and Windows

XQuery Reference
Updated January, 2013

SC27-3893-01

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 231.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book vii

Chapter 1. DB2 XQuery concepts 1
Introduction to XQuery 1
Comparison of XQuery to SQL 2
Retrieving DB2 data with XQuery functions 3
XQuery and XPath data model 4

Sequences and items. 5
Atomic values 5
Node hierarchies 6
Node properties 7
Node kinds 8
Document order of nodes. 10
Node identity. 11
Typed values and string values of nodes. . . . 11

Serialization of the XDM 11
XML namespaces and QNames 12

Qualified names (QNames) 12
Statically known namespaces 13

Language conventions 14
Case sensitivity 14
Whitespace 14
Comments. 14

Where to find more information about XQuery . . 15

Chapter 2. Type system 17
The type hierarchy 17
Types by category 18
Constructor functions for built-in data types . . . 23
Type casting 24
anyAtomicType data type 27
anySimpleType data type 27
anyType data type 27
anyURI data type 27
base64Binary data type 27
boolean data type 27
byte data type 28
date data type 28
dateTime data type 28
dayTimeDuration data type 30
decimal data type 31
double data type 31
duration data type 32
ENTITY data type 33
float data type 33
gDay data type 34
gMonth data type 34
gMonthDay data type 34
gYear data type 35
gYearMonth data type 35
hexBinary data type 36
ID data type 36
IDREF data type. 36
int data type 36
integer data type 36

language data type 36
long data type 37
Name data type 37
NCName data type 37
negativeInteger data type. 37
NMTOKEN data type 37
nonNegativeInteger data type 37
nonPositiveInteger data type 38
normalizedString data type 38
NOTATION data type 38
positiveInteger data type 38
QName data type 38
short data type 39
string data type 39
time data type 39
token data type 40
unsignedByte data type 40
unsignedInt data type 40
unsignedLong data type 40
unsignedShort data type 40
untyped data type 41
untypedAtomic data type 41
yearMonthDuration data type 41

Chapter 3. Prolog 43
Version declaration 43
Boundary-space declaration 44
Construction declaration 45
Copy-namespaces declaration 45
Default element/type namespace declaration . . . 46
Default function namespace declaration 47
Empty order declaration 47
Ordering mode declaration 48
Namespace declaration 48

Chapter 4. Expressions 51
Expression evaluation and processing 51

Dynamic context and focus 51
Precedence 51
Order of results in XQuery expressions 52
Atomization 55
Subtype substitution 55
Type promotion 56
Effective Boolean value 56

Primary expressions 57
Literals 57
Variable references 59
Parenthesized expression 60
Context item expressions 60
Function calls. 60

Path expressions. 61
Syntax of path expressions 62
Axis steps 63
Abbreviated syntax for path expressions. . . . 66

Predicates 68

© Copyright IBM Corp. 2006, 2013 iii

Sequence expressions 69
Expressions that construct sequences 69
Filter expressions 70
Expressions for combining sequences of nodes . 71

Arithmetic expressions 72
Comparison expressions 74

Value comparisons 74
General comparisons 76
Node comparisons 78

Logical expressions 79
Constructors 80

Enclosed expressions in constructors 81
Direct element constructors 82
Computed element constructors 89
Computed attribute constructors 90
Document node constructors 91
Text node constructors. 92
Processing instruction constructors 92
Comment constructors. 94

FLWOR expressions 95
Syntax of FLWOR expressions 95
for and let clauses. 96
where clauses 100
order by clauses 100
return clauses 102
FLWOR examples 103

Conditional expressions 106
Quantified expressions 107
Cast expressions 108
Castable expressions 109
Transform expression and updating expressions . . 111

Use of updating expressions in a transform
expression 111
Transform expression 114
Basic updating expressions 117

Chapter 5. Built-in functions 127
DB2 XQuery functions by category 127
adjust-date-to-timezone function 133
adjust-dateTime-to-timezone function 135
adjust-time-to-timezone function 137
abs function 139
avg function. 139
boolean function 140
ceiling function. 141
codepoints-to-string function 142
compare function 143
concat function 143
contains function 144
count function 145
current-date function 145
current-dateTime function 146
current-local-date function 146
current-local-dateTime function 146
current-local-time function 147
current-time function 147
data function 147
dateTime function 148
day-from-date function 149
day-from-dateTime function 149
days-from-duration function 150

deep-equal function 151
default-collation function 152
distinct-values function 153
empty function 154
ends-with function 154
exactly-one function 155
exists function 155
false function 156
floor function 157
hours-from-dateTime function 157
hours-from-duration function 158
hours-from-time function 159
implicit-timezone function 159
in-scope-prefixes function 160
index-of function 160
insert-before function 161
last function 162
local-name function 162
local-name-from-QName function 163
local-timezone function 163
lower-case function 164
matches function 165
max function 166
min function 167
minutes-from-dateTime function 168
minutes-from-duration function 169
minutes-from-time function. 170
month-from-date function 170
month-from-dateTime function 171
months-from-duration function 171
name function 172
namespace-uri function 173
namespace-uri-for-prefix function. 174
namespace-uri-from-QName function 175
node-name function 175
normalize-space function 176
normalize-unicode function. 176
not function 177
number function 178
one-or-more function 178
position function 179
QName function 179
remove function 180
replace function 181
resolve-QName function. 182
reverse function 183
root function 184
round function 184
round-half-to-even function 185
seconds-from-dateTime function 187
seconds-from-duration function 187
seconds-from-time function. 188
sqlquery function 189
starts-with function 192
string function 192
string-join function 193
string-length function 194
string-to-codepoints function 194
subsequence function. 195
substring function 196
substring-after function 196

iv XQuery Reference

substring-before function 197
sum function 198
timezone-from-date function 199
timezone-from-dateTime function. 200
timezone-from-time function 200
tokenize function 201
translate function 202
true function 203
unordered function 204
upper-case function 204
xmlcolumn function 205
year-from-date function 207
year-from-dateTime function 207
years-from-duration function 208
zero-or-one function 208

Chapter 6. Regular expressions . . . 211

Chapter 7. Limits 219
Limits for XQuery data types 219
Size limits 220

Appendix A. Overview of the DB2
technical information 221
DB2 technical library in hardcopy or PDF format 221
Displaying SQL state help from the command line
processor 224
Accessing different versions of the DB2
Information Center 224
Updating the DB2 Information Center installed on
your computer or intranet server 224
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 226
DB2 tutorials 228
DB2 troubleshooting information 228
Terms and conditions. 228

Appendix B. Notices 231

Index 235

Contents v

vi XQuery Reference

About this book

The XQuery Reference describes the XQuery language used by a DB2® database to
work with XML data.

It includes information about XQuery concepts, data types, language elements,
XQuery-defined functions, and DB2 built-in functions. The reference also includes
information about DB2 XQuery size limits and limits for XQuery data types.

© Copyright IBM Corp. 2006, 2013 vii

viii XQuery Reference

Chapter 1. DB2 XQuery concepts

The following topics introduce basic XQuery concepts and describe how XQuery
works with a DB2 database.

Introduction to XQuery
XQuery is a functional programming language that was designed by the World
Wide Web Consortium (W3C) to meet specific requirements for querying and
modifying XML data.

Unlike relational data, which is predictable and has a regular structure, XML data
is highly variable. XML data is often unpredictable, sparse, and self-describing.

Because the structure of XML data is unpredictable, the queries that you need to
perform on XML data often differ from typical relational queries. The XQuery
language provides the flexibility required to perform these kinds of operations. For
example, you might need to use the XQuery language to perform the following
operations:
v Search XML data for objects that are at unknown levels of the hierarchy.
v Perform structural transformations on the data (for example, you might want to

invert a hierarchy).
v Return results that have mixed types.
v Update existing XML data.

Components of an XQuery query

In XQuery, expressions are the main building blocks of a query. Expressions can be
nested and form the body of a query. A query can also have a prolog before this
body. The prolog contains a series of declarations that define the processing
environment for the query. The query body consists of an expression that defines the
result of the query. This expression can be composed of multiple XQuery
expressions that are combined using operators or keywords.

Figure 1 on page 2 illustrates the structure of a typical query. In this example, the
prolog contains two declarations: a version declaration, which specifies the version
of the XQuery syntax to use to process the query, and a default namespace
declaration that specifies the namespace URI to use for unprefixed element and
type names. The query body contains an expression that constructs a price_list
element. The content of the price_list element is a list of product elements that
are sorted in descending order by price.

© Copyright IBM Corp. 2006, 2013 1

Comparison of XQuery to SQL
DB2 databases support storing well-formed XML data in a column of a table and
retrieving the XML data from the database by using SQL, XQuery, or a
combination of SQL and XQuery. Both languages are supported as primary query
languages, and both languages provide functions for invoking the other language.

XQuery
A query that invokes XQuery directly begins with the keyword XQUERY.
This keyword indicates that XQuery is being used and that the DB2 server
must therefore use case sensitivity rules that apply to the XQuery
language. Error handling is based on the interfaces that are used to process
XQuery expressions. XQuery errors are reported with an SQLCODE and
SQLSTATE in the same way that SQL error errors are reported. No
warnings are returned from processing XQuery expressions. XQuery
obtains data by calling functions that extract XML data from DB2 tables
and views. XQuery can also be invoked from an SQL query. In this case,
the SQL query can pass XML data to XQuery in the form of bound
variables. XQuery supports various expressions for processing XML data
and for constructing new XML objects such as elements and attributes. The
programming interface to XQuery provides facilities similar to those of
SQL to prepare queries and retrieve query results.

SQL SQL provides capabilities to define and instantiate values of the XML data
type. Strings that contain well-formed XML documents can be parsed into
XML values, optionally validated against an XML schema, and inserted or
updated in tables. Alternatively, XML values can be constructed by using
SQL constructor functions, which convert other relational data into XML
values. Functions are also provided to query XML data by using XQuery
and to convert XML data into a relational table for use within an SQL
query. Data can be cast between SQL and XML data types in addition to
serializing XML values into string data.

SQL/XML provides the following functions and predicates for calling
XQuery from SQL:

xquery version "1.0";
declare default element namespace "http://posample.org";

<price_list>{for $prod in db2-fn:xmlcolumn("PRODUCT.DESCRIPTION")/product/description
order by xs:decimal($prod/price) descending
return <product>{$prod/name, $prod/price}</product>}

</price_list>

Prolog

Query body

Figure 1. Structure of a typical query in XQuery

2 XQuery Reference

XMLQUERY
XMLQUERY is a scalar function that takes an XQuery expression
as an argument and returns an XML sequence. The function
includes optional parameters that can be used to pass SQL values
to the XQuery expression as XQuery variables. The XML values
that are returned by XMLQUERY can be further processed within
the context of the SQL query.

XMLTABLE
XMLTABLE is a table function that uses XQuery expressions to
generate an SQL table from XML data, which can be further
processed by SQL.

XMLEXISTS
XMLEXISTS is an SQL predicate that determines if an XQuery
expression returns a sequence of one or more items (and not an
empty sequence).

Retrieving DB2 data with XQuery functions
In XQuery, a query can call one of the following functions to obtain input XML
data from a DB2 database: db2-fn:sqlquery and db2-fn:xmlcolumn.

The function db2-fn:xmlcolumn retrieves an entire XML column, whereas
db2-fn:sqlquery retrieves XML values that are based on an SQL fullselect.

db2-fn:xmlcolumn
The db2-fn:xmlcolumn function takes a string literal argument that
identifies an XML column in a table or a view and returns a sequence of
XML values that are in that column. The argument of this function is case
sensitive. The string literal argument must be a qualified column name of
type XML. This function allows you to extract a whole column of XML
data without applying a search condition.

In the following example, the query uses the db2-fn:xmlcolumn function to
get all of the purchase orders in the PURCHASE_ORDER column of the
BUSINESS.ORDERS table. The query then operates on this input data to
extract the cities from the shipping address in these purchase orders. The
result of the query is a list of all cities to which orders are shipped:
db2-fn:xmlcolumn(’BUSINESS.ORDERS.PURCHASE_ORDER’)/shipping_address/city

db2-fn:sqlquery
The db2-fn:sqlquery function takes a string argument that represents a
fullselect and returns an XML sequence that is a concatenation of the XML
values that are returned by the fullselect. The fullselect must specify a
single-column result set, and the column must have a data type of XML.
Specifying a fullselect allows you to use the power of SQL to present XML
data to XQuery. The function supports using parameters to pass values to
the SQL statement.

In the following example, a table called BUSINESS.ORDERS contains an
XML column called PURCHASE_ORDER. The query in the example uses
the db2-fn:sqlquery function to call SQL to get all of the purchase orders
where the ship date is June 15, 2005. The query then operates on this input
data to extract the cities from the shipping addresses in these purchase
orders. The result of the query is a list of all of the cities to which orders
are shipped on June 15:

Chapter 1. DB2 XQuery concepts 3

db2-fn:sqlquery("
SELECT purchase_order FROM business.orders
WHERE ship_date = ’2005-06-15’ ")/shipping_address/city

Important: An XML sequence that is returned by the db2-fn:sqlquery or
db2-fn:xmlcolumn function can contain any XML values, including atomic values
and nodes. These functions do not always return a sequence of well-formed
documents. For example, the function might return a single atomic value, like 36,
as an instance of the XML data type.

SQL and XQuery have different conventions for case-sensitivity of names. You
should be aware of these differences when using the db2-fn:sqlquery and
db2-fn:xmlcolumn functions.

SQL is not a case-sensitive language
By default, all ordinary identifiers, which are used in SQL statements, are
automatically converted to uppercase. Therefore, the names of SQL tables
and columns are customarily uppercase names, such as
BUSINESS.ORDERS and PURCHASE_ORDER in the previous examples. In
an SQL statement, these columns can be referenced by using lowercase
names, such as business.orders and purchase_order, which are
automatically converted to uppercase during processing of the SQL
statement. (You can also create a case-sensitive name that is called a
delimited identifier in SQL by enclosing the name in double quotation
marks.)

XQuery is a case-sensitive language
XQuery does not convert lowercase names to uppercase. This difference
can lead to some confusion when XQuery and SQL are used together. The
string that is passed to db2-fn:sqlquery is interpreted as an SQL query and
is parsed by the SQL parser, which converts all names to uppercase. Thus,
in the db2-fn:sqlquery example, the table name business.orders and the
column names purchase_order and ship_date can appear in either
uppercase or lowercase. The operand of db2-fn:xmlcolumn, however, is not
an SQL query. The operand is a case-sensitive XQuery string literal that
represents the name of a column. Because the actual name of the column is
BUSINESS.ORDERS.PURCHASE_ORDER, this name must be specified in
uppercase in the operand of db2-fn:xmlcolumn.

XQuery and XPath data model
XQuery expressions operate on instances of the XQuery and XPath data model
(XDM) and return instances of the data model.

The XDM provides an abstract representation of one or more XML documents or
fragments. The data model defines all permissible values of expressions in XQuery,
including values that are used during intermediate calculations.

Parsing of XML data into the XDM and validating the data against a schema occur
before data is processed by XQuery. During data model generation, the input XML
document is parsed and converted into an instance of the XDM. The document can
be parsed with or without validation.

The XDM is described in terms of sequences of atomic values and nodes.

4 XQuery Reference

Sequences and items
An instance of the XQuery and XPath data model (XDM) is a sequence. A sequence
is an ordered collection of zero or more items. An item is either an atomic value or
a node.

A sequence can contain nodes, atomic values, or any mixture of nodes and atomic
values. For example, each entry in the following list is a sequence:
v 36

v <dog/>

v (2, 3, 4)

v (36, <dog/>, "cat")

v ()

In addition the entries in the list, an XML document stored in an XML column in a
DB2 database is a sequence.

The examples use a notation to represent sequences that is consistent with the
syntax that is used to construct sequences in XQuery:
v Each item in the sequence is separated by a comma.
v An entire sequence is enclosed in parentheses.
v A pair of empty parentheses represents an empty sequence.
v A single item that appears on its own is equivalent to a sequence that contains

one item.
For example, there is no distinction between the sequence (36) and the atomic
value 36.

Sequences cannot be nested. When two sequences are combined, the result is
always a flattened sequence of nodes and atomic values. For example, appending
the sequence (2, 3) to the sequence (3, 5, 6) results in the single sequence (3, 5, 6, 2,
3). Combining these sequences does not produce the sequence (3, 5, 6, (2, 3))
because nested sequences never occur.

A sequence that contains zero items is called an empty sequence. Empty sequences
can be used to represent missing or unknown information.

Atomic values
An atomic value is an instance of one of the built-in atomic data types that are
defined by XML Schema. These data types include strings, integers, decimals,
dates, and other atomic types. These types are described as atomic because they
cannot be subdivided.

Unlike nodes, atomic values do not have an identity. Every instance of an atomic
value (for example, the integer 7) is identical to every other instance of that value.

The following examples are some of ways that atomic values are made:
v Extracted from nodes through a process called atomization. Atomization is used

by expressions whenever a sequence of atomic values is required.
v Specified as a numeric or string literal. Literals are interpreted by XQuery as

atomic values. For example, the following literals are interpreted as atomic
values:
– "this is a string" (type is xs:string)

Chapter 1. DB2 XQuery concepts 5

– 45 (type is xs:integer)
– 1.44 (type is xs:decimal)

v Computed by constructor functions. For example, the following constructor
function builds a value of type xs:date out of the string "2005-01-01":
xs:date("2005-01-01")

v Returned by the built-in functions fn:true() and fn:false(). These functions return
the boolean values true and false. These values cannot be expressed as literals.

v Returned by many kinds of expressions, such as arithmetic expressions and
logical expressions.

Node hierarchies
The nodes of a sequence form one or more hierarchies, or trees, that consist of a root
node and all of the nodes that are reachable directly or indirectly from the root
node.

Every node belongs to exactly one hierarchy, and every hierarchy has exactly one
root node. DB2 supports six node kinds: document, element, attribute, text,
processing instruction, and comment.

The following XML document, products.xml, includes a root element, named
products, which contains product elements. Each product element has an attribute
named pid (product ID) and a child element named description. The description
element contains child elements named name and price.
<products>

<product pid="10">
<description>

<name>Fleece jacket</name>
<price>19.99</price>

</description>
</product>
<product pid="11">

<description>
<name>Nylon pants</name>
<price>9.99</price>

</description>
</product>

</products>

Figure 2 on page 7 shows a simplified representation of the data model for
products.xml. The figure includes a document node (D), element nodes (E),
attribute nodes (A), and text nodes (T).

6 XQuery Reference

As the example illustrates, a node can have other nodes as children, thus forming
one or more node hierarchies. In the example, the element product is a child of
products. The element description is a child of product. The elements name and
price are children of the element description. The text node with the value Fleece
Jacket is a child of the element name, and the text node 19.99 is a child of the
element price.

Node properties
Each node has properties that describe characteristics of that node. For example, a
node's properties might include the name of the node, its children, its parent, its
attributes, and other information that describes the node. The node kind
determines which properties are present for specific nodes.

A node can have one or more of the following properties:

node-name
The name of the node, expressed as a QName.

pid

<name>

Fleece jacket Nylon pants19.99 9.99

<name><price> <price>

<product> <product>

products.xml

<description> <description>

pid

<products>

E

E

D

A A

E

E

T T T T

EE E

E

E

Figure 2. Data model diagram for products.xml document

Chapter 1. DB2 XQuery concepts 7

parent The node that is the parent of the current node.

type-name
The dynamic (run-time) type of the node (also known as the type
annotation).

children
The sequence of nodes that are children of the current node.

attributes
The set of attribute nodes that belong to the current node.

string-value
A string value that can be extracted from the node.

typed-value
A sequence of zero or more atomic values that can be extracted from the
node.

in-scope namespaces
The in-scope namespaces that are associated with the node.

content
The content of the node.

Node kinds
DB2 supports six node kinds: document, element, attribute, text, processing
instruction, and comment.

Document nodes
A document node encapsulates an XML document.

A document node can have zero or more children. The children can include
element nodes, processing instruction nodes, comment nodes, and text nodes.

The string value of a document node is equal to the concatenated contents of all its
descendant text nodes in document order. The type of the string value is xs:string.
The typed value of a document node is the same as its string value, except that the
type of the typed value is xdt:untypedAtomic.

A document node has the following node properties:
v children, possibly empty
v string-value
v typed-value

Document nodes can be constructed in XQuery expressions by using computed
constructors. A sequence of document nodes can also be returned by the
db2-fn:xmlcolumn function.

Element nodes
An element node encapsulates an XML element.

An element can have zero or one parent and zero or more children. The children
can include element nodes, processing instruction nodes, comment nodes, and text
nodes. Document and attribute nodes are never children of element nodes.
However, an element node is considered to be the parent of its attributes. The
attributes of an element node must have unique QNames.

8 XQuery Reference

An element node has the following node properties:
v node-name
v parent, possibly empty
v type-name
v children, possibly empty
v attributes, possibly empty
v string-value
v typed-value
v in-scope-namespaces

Element nodes can be constructed in XQuery expressions by using direct or
computed constructors.

The type-name property of an element node indicates the relationship between its
typed value and its string value. For example, if an element node has the
type-name property xs:decimal and the string value "47.5", the typed value is the
decimal value 47.5. If the type-name property of an element node is xdt:untyped,
the element's typed value is equal to its string value and has the type
xdt:untypedAtomic.

Attribute nodes
An attribute node represents an XML attribute.

An attribute node can have zero or one parent. The element node that owns an
attribute is considered to be its parent, even though an attribute node is not a child
of its parent element.

An attribute node has the following node properties:
v node-name
v parent, possibly empty
v type-name
v string-value
v typed-value

Attribute nodes can be constructed in XQuery expressions by using direct or
computed constructors.

The type-name property of an attribute node indicates the relationship between its
typed value and its string value. For example, if an attribute node has the
type-name property xs:decimal and the string value "47.5", its typed value is the
decimal value 47.5.

Text nodes
A text node encapsulates XML character content.

A text node can have zero or one parent. Text nodes that are children of a
document or element node never appear as adjacent siblings. When a document or
element node is constructed, any adjacent text node siblings are combined into a
single text node. If the resulting text node is empty, it is discarded.

Text nodes have the following node properties:
v content, possibly empty

Chapter 1. DB2 XQuery concepts 9

v parent, possibly empty

Text nodes can be constructed in XQuery expressions by computed constructors or
by the action of a direct element constructor.

Processing instruction nodes
A processing instruction node encapsulates an XML processing instruction.

A processing instruction node can have zero or one parent. The content of a
processing instruction cannot include the string ?>. The target of a processing
instruction must be an NCName. The target is used to identify the application to
which the instruction is directed.

A processing instruction node has the following node properties:
v target
v content
v parent, possibly empty

Processing instruction nodes can be constructed in XQuery expressions by using
direct or computed constructors.

Comment nodes
A comment node encapsulates an XML comment.

A comment node can have zero or one parent. The content of a comment node
cannot include the string "--" (two hyphens) or contain the hyphen character (-) as
the last character.

A comment node has the following node properties:
v content
v parent, possibly empty

Comment nodes can be constructed in XQuery expressions by using direct or
computed constructors.

Document order of nodes
All of the nodes in a hierarchy conform to an order, called document order, in which
each node appears before its children. Document order corresponds to the order in
which the nodes would appear if the node hierarchy were represented in serialized
XML.

Nodes in a hierarchy appear in the following order:
v The root node is the first node.
v Element nodes occur before their children.
v Attribute nodes immediately follow the element node with which they are

associated. The relative order of attribute nodes is arbitrary, but this order does
not change during the processing of a query.

v The relative order of siblings is determined by their order in the node hierarchy.
v Children and descendants of a node occur before siblings that follow the node.

10 XQuery Reference

Node identity
Each node has a unique identity. Two nodes are distinguishable even though their
names and values might be the same. In contrast, atomic values do not have an
identity.

Node identity is not the same as an ID-type attribute. An element in an XML
document can be given an ID-type attribute by the document author. A node
identity, however, is automatically assigned to every node by the system but is not
directly visible to users.

Node identity is used to process the following types of expressions:
v Node comparisons. Node identity is used by the is operator to determine if two

nodes have the same identity.
v Path expressions. Node identity is used by path expressions to eliminate

duplicate nodes.
v Sequence expressions. Node identity is used by the union, intersect, or except

operators to eliminate duplicate nodes.

Typed values and string values of nodes
Each node has both a typed value and a string value. These two node properties are
used in the definitions of certain XQuery operations (such as atomization) and
functions (such as fn:data, fn:string, and fn:deep-equal).

Table 1. String values and typed values of nodes

Node kind String value Typed value

Document An instance of the xs:string data type that is the
concatenated contents of all its descendant text
nodes, in document order.

An instance of the xdt:untypedAtomic data type
that is the concatenated contents of all its
descendant text nodes, in document order.

Element in an
XML
document

An instance of the xs:string data type that is the
concatenated contents of all its text node
descendants in document order.

An instance of the xdt:untypedAtomic data type
that is the concatenated contents of all its text
node descendants in document order.

Attribute in
an XML
document

An instance of the xs:string data type that
represents the attribute value in the original XML
document.

An instance of the xdt:untypedAtomic data type
that represents the attribute value in the original
XML document.

Text The content as an instance of the xs:string data
type.

The content as an instance of the
xdt:untypedAtomic data type.

Comment The content as an instance of the xs:string data
type.

The content as an instance of the xs:string data
type.

Processing
instruction

The content as an instance of the xs:string data
type.

The content as an instance of the xs:string data
type.

Serialization of the XDM
The result of an XQuery expression, which is an instance of the XDM, can be
transformed into an XML representation through a process called serialization.

During serialization, the sequence of nodes and atomic values (the instance of the
XDM) is converted into an XML representation. The result of serialization does not
always represent a well-formed document. In fact, serialization can result in a
single atomic value (for example, 17) or a sequence of elements that do not have a
common parent.

Chapter 1. DB2 XQuery concepts 11

XQuery does not provide a function to serialize the XDM. How the XDM is
serialized into XML data depends on the environment in which the query is
executing. For example, the CLP (command-line processor) returns a sequence of
serialized items with each serialized item returned as a row in the result. For
example, the query XQUERY (1, 2, 3), when entered from the CLP, returns the
following result:
1
2
3

Serialization can also be performed by the SQL/XML function XMLSERIALIZE.

XML namespaces and QNames
An XML namespace is a collection of names that is identified by a namespace URI.
Namespaces provide a way of qualifying names that are used for elements,
attributes, data types, and functions in XQuery. A name that is qualified with a
namespace prefix is a qualified name (QName).

XML namespaces prevent naming collisions.

Qualified names (QNames)
A QName consists of an optional namespace prefix and a local name. The
namespace prefix and the local name are separated by a colon. The namespace
prefix, if present, is bound to a URI (Universal Resource Identifier) and provides a
shortened form of the URI.

During query processing, XQuery expands the QName and resolves the URI that is
bound to the namespace prefix. The expanded QName includes the namespace
URI and a local name. Two QNames are equal if they have the same namespace
URI and local name. This means that two QNames can match even if they have
different prefixes provided that the prefixes are bound to the same namespace URI.

The following example includes the QNames:
v ns1:name

v ns2:name

v name

In this example, ns1 is a prefix that is bound to the URI http://posample.org. The
prefix ns2 is bound to the URI http://mycompany.com. The default element
namespace is another URI that is different from the URIs that are associated with
ns1 and ns2. The local name for all three elements is name.
<ns1:name>This text is in an element named "name" that is qualified
by the prefix "ns1".</ns1:name>

<ns2:name>This text is in an element named "name" that is qualified
by the prefix "ns2".</ns2:name>

<name>This text is in an element named "name" that is in the default
element namespace.</name>

The elements in this example share the same local name, name, but naming conflicts
do not occur because the elements exist in different namespaces. During expression
processing, the name ns1:name is expanded into a name that includes the URI that
is bound to ns1 and the local name, name. Likewise, the name ns2:name is
expanded into a name that includes the URI that is bound to ns2 and the local

12 XQuery Reference

name, name. The element name, which has an empty prefix, is bound to the default
element namespace because no prefix is specified. An error is returned if a name
uses a prefix that is not bound to a URI.

QNames (qualified names) conform to the syntax that is defined in the W3C
recommendation Namespaces in XML.

Statically known namespaces
Namespace prefixes are bound to URIs by namespace declarations. The set of these
namespace bindings that control the interpretation of QNames in a query
expression is called the statically known namespaces.

Statically known namespaces are properties of a query expression and are
independent of the data that is processed by the expression.

Some namespace prefixes are predeclared; others can be added through
declarations in either the query prolog or an element constructor. DB2 XQuery
includes the predeclared namespace prefixes that are described in the following
table.

Table 2. Predeclared namespaces in DB2 XQuery

Prefix URI Description

xml http://www.w3.org/XML/1998/namespace XML reserved namespace

xs http://www.w3.org/2001/XMLSchema XML Schema namespace

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema instance
namespace

fn http://www.w3.org/2005/xpath-functions Default function namespace

xdt http://www.w3.org/2005/xpath-datatypes XQuery type namespace

db2-fn http://www.ibm.com/xmlns/prod/db2/functions DB2 function namespace

In addition to the predeclared namespaces, a set of statically known namespaces
can be provided in the following ways:
v Declared in the query prolog, using either a namespace declaration or a default

namespace declaration. The following example namespace declaration associates
the namespace prefix ns1 with the URI http://mycompany.com:
declare namespace ns1 = "http://mycompany.com";

The following example default element/type namespace declaration sets the URI
for element names in the query that do not have prefixes:
declare default element namespace "http://posample.org";

v Declared by a namespace declaration attribute in an element constructor. The
following example is an element constructor that contains a namespace
declaration attribute that binds the prefix ns2 to the URI http://mycompany.com
within the scope of the constructed element:
<ns2:price xmlns:ns2="http://mycompany.com">14.99</ns2:price>

v Provided by SQL/XML. SQL/XML can provide the following set of namespaces:
– SQL/XML predeclared namespaces.
– Namespaces that are declared within SQL/XML constructors and other

SQL/XML expressions.

Chapter 1. DB2 XQuery concepts 13

Namespaces that are provided by SQL/XML can be overridden by namespace
declarations in the prolog, or subsequent namespace declaration attributes in
element constructors. Namespaces that are declared in the prolog can be
overridden by namespace declaration attributes in element constructors.

Language conventions
XQuery language conventions are described in the following topics.

Case sensitivity
XQuery is a case-sensitive language.

Keywords in XQuery use lowercase characters and are not reserved. Names in
XQuery expressions can be the same as language keywords.

Whitespace
Whitespace is allowed in most XQuery expressions to improve readability even if
whitespace is not part of the syntax for the expression. Whitespace consists of
space characters (X'20'), carriage returns (X'0D'), line feeds (X'0A'), and tabs (X'09').

In general, whitespace is not significant in a query, except in the following
situations where whitespace is preserved:
v The whitespace is in a string literal.
v The whitespace clarifies an expression by preventing the parser from recognizing

two adjacent tokens as one.
v The whitespace is in an element constructor. The boundary-space declaration in

the prolog determines whether to preserve or strip whitespace in element
constructors.

For example, the following expressions require whitespace for clarity:
v name- name results in an error. The parser recognizes name- as a single QName

(qualified name) and returns an error when no operator is found.
v name -name does not result in an error. The parser recognizes the first name as a

QName, the minus sign (-) as an operator, and then the second name as another
QName.

v name-name does not result in an error. However, the expression is parsed as a
single QName because a hyphen (-) is a valid character in a QName.

v The following expressions all result in errors:
– 10 div3

– 10div3

In these expressions, whitespace is required for the parser to recognize each
token separately.

Comments
Comments are allowed in the prolog or query body. Comments do not affect query
processing.

A comment is composed of a string that is delimited by the symbols (:and :). The
following example is a comment in XQuery:
(: A comment. You can use comments to make your code easier to understand. :)

14 XQuery Reference

The following general rules apply to using comments in DB2 XQuery:
v Comments can be used wherever ignorable whitespace is allowed. Ignorable

whitespace is whitespace that is not significant to the expression results.
v Comments are not allowed in constructor content.
v Comments can nest within each other, but each nested comment must have open

and close delimiters, (: and :).

The following examples illustrate legal comments and comments that result in
errors:
v (: is this a comment? ::) is a legal comment.
v (: is this a comment? ::) or an error? :) results in an error because there is

an unbalanced nesting of the symbols (: and :).
v (: commenting out a (: comment :) might be confusing, but is often

helpful :) is a legal comment because a balanced nesting of comments is
allowed.

v "this is just a string :)" is a legal expression.
v (: "this is just a string :)" :) results in an error. Likewise, "this is

another string (:" is a legal expression, but (: "this is another string (:"
:) results in an error. Literal content can result in an unbalanced nesting of
comments.

Where to find more information about XQuery
See these resources for more information about the specifications on which DB2
XQuery is based.
v XQuery 1.0

World Wide Web Consortium. XQuery 1.0: An XML Query Language. W3C
Recommendation, 23 January 2007. See www.w3.org/TR/2007/REC-xquery-
20070123/.

v XQuery 1.0 and XPath 2.0 Functions and Operators

World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Recommendation, 23 January 2007. See www.w3.org/TR/2007/REC-xpath-
functions-20070123/.

v XQuery 1.0 and XPath 2.0 Data Model

World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model. W3C
Recommendation, 23 January 2007. See www.w3.org/TR/2007/REC-xpath-
datamodel-20070123/.

v XML Query Use Cases

World Wide Web Consortium. XML Query Use Cases. W3C Working Group Note,
23 March 2007. See www.w3.org/TR/2007/NOTE-xquery-use-cases-20070323/.

v XML Schema

World Wide Web Consortium. XML Schema, Parts 0, 1, and 2. W3C
Recommendation, 28 October 2004. See www.w3.org/TR/2004/REC-xmlschema-
0-20041028/, www.w3.org/TR/2004/REC-xmlschema-1-20041028/, and
www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

v XML Names

World Wide Web Consortium. Namespaces in XML 1.0 (Second Edition). W3C
Recommendation, 16 August 2006. See www.w3.org/TR/2006/REC-xml-names-
20060816/.

v Updating XML

Chapter 1. DB2 XQuery concepts 15

World Wide Web Consortium. XQuery Update Facility. W3C Working Draft, 11
July 2006. See www.w3.org/TR/2006/WD-xqupdate-20060711/.

16 XQuery Reference

Chapter 2. Type system

XQuery is a strongly-typed language in which the operands of various expressions,
operators, and functions must conform to expected types. The type system for DB2
XQuery includes the built-in types of XML Schema and the predefined types of
XQuery.

The built-in types of XML Schema are in the namespace http://www.w3.org/2001/
XMLSchema, which has the predeclared namespace prefix xs. Some examples of
built-in schema types include xs:integer, xs:string, and xs:date.

The predefined types of XQuery are in the namespace http://www.w3.org/2005/
xpath-datatypes, which has the predeclared namespace prefix xdt. Some examples
of predefined types of XQuery include xdt:untypedAtomic,
xdt:yearMonthDuration, and xdt:dayTimeDuration.

Each data type has a lexical form, which is a string that can be cast into the given
type or that can be used to represent a value of the given type after serialization.

The type hierarchy
The DB2 XQuery type hierarchy shows all of the types that can be used in XQuery
expressions.

The hierarchy in Figure 3 on page 18 includes abstract base types and derived
types. All atomic types derive from the data type xdt:anyAtomicType. Solid lines
connect each derived data type to the base types from which it is derived.

© Copyright IBM Corp. 2006, 2013 17

Types by category
DB2 XQuery has the following categories of types: generic, untyped, string,
numeric, date, time, duration, and other.

xs:NOTATION

xs:QName

xs:anyURI

xs:base64Binary

xs:hexBinary

xs:boolean

xs:positiveInteger

xs:unsignedByte

xs:unsignedShort

xs:unsignedInt

xs:unsignedLong

xs:float

xs:double

xs:decimal

xs:integer

xs:string

xs:anySimpleType xdt:untyped

xdt:untypedAtomicxdt:anyAtomicType

xs:anyType

xs:nonNegativeInteger

xs:byte

xs:short

xs:int

xs:long

xs:negativeInteger

xs:nonPositiveInteger

xs:gMonth

xs:gDay

xs:gMonthDay

xs:gYear

xs:gYearMonth

xdt:dayTimeDuration

xdt:yearMonthDuration

xs:token

xs:normalizedString

xs:NCName

xs:Name

xs:NMTOKEN

xs:language

xs:ENTITY

xs:IDREF

xs:ID

xs:duration

xs:time

xs:date

xs:dateTime

Figure 3. DB2 XQuery type hierarchy

18 XQuery Reference

Generic data types

Table 3. Generic data types

Type Description

“anyType data type” on page 27 The xs:anyType data type encompasses any
sequence of zero or more nodes and zero or
more atomic values.

“anySimpleType data type” on page 27 The xs:anySimpleType data type denotes a
context where any simple type can be used.
This data type serves as the base type for all
simple types. An instance of a simple type
can be any sequence of atomic values.
Derived from the xs:anyType data type.

“anyAtomicType data type” on page 27 The xdt:anyAtomicType data type denotes a
context where any atomic type can be used.
This data type serves as the base type for all
atomic types. An instance of an atomic type
is a single nondecomposable value such as
an integer, a string, or a date.

Untyped data types

Table 4. Untyped data types

Type Description

“untyped data type” on page 41 The xdt:untyped data type denotes a node
that has not been validated by an XML
schema. Derived from data type xs:anyType.

“untypedAtomic data type” on page 41 The xdt:untypedAtomic data type denotes
an atomic value that has not been validated
by an XML schema. Derived from data type
xdt:anyAtomicType.

String data types

Table 5. String data types

Type Description

“string data type” on page 39 The xs:string data type represents a
character string. Derived from data type
xdt:anyAtomicType.

“normalizedString data type” on page 38 The xs:normalizedString data type
represents a white space-normalized string.
Derived from data type xs:string.

“token data type” on page 40 The xs:token data type represents a
tokenized string. Derived from the
xs:normalizedString data type.

“language data type” on page 36 The xs:language data type represents a
natural language identifier as defined by
RFC 3066. Derived from data type xs:token.

“NMTOKEN data type” on page 37 The xs:NMTOKEN data type represents the
NMTOKEN attribute type from XML 1.0
(Third Edition). Derived from the xs:token
data type.

Chapter 2. Type system 19

Table 5. String data types (continued)

Type Description

“Name data type” on page 37 The xs:Name data type represents an XML
Name. Derived from the xs:token data type.

“NCName data type” on page 37 The xs:NCName data type represents an
XML noncolonized name. Derived from the
xs:Name data type.

“ID data type” on page 36 The xs:ID data type represents the ID
attribute type from XML 1.0 (Third Edition).
Derived from xs:NCName data type.

“IDREF data type” on page 36 The xs:IDREF data type represents the
IDREF attribute type from XML 1.0 (Third
Edition). Derived from the xs:NCName data
type.

“ENTITY data type” on page 33 The xs:ENTITY data type represents the
ENTITY attribute type from XML 1.0 (Third
Edition). Derived from the xs:NCName data
type.

Numeric data types

Table 6. Numeric data types

Type Description

“decimal data type” on page 31 The xs:decimal data type represents a subset
of the real numbers that can be represented
by decimal numerals. Derived from data
type xdt:anyAtomicType.

“float data type” on page 33 The xs:float data type is patterned after the
IEEE single-precision 32-bit floating point
type. Derived from data type
xdt:anyAtomicType.

“double data type” on page 31 The xs:double data type is patterned after
the IEEE double-precision 64-bit floating
point type. Derived from data type
xdt:anyAtomicType.

“int data type” on page 36 The xs:int data type represents an integer
that is less than or equal to 2 147 483 647
and greater than or equal to -2 147 483 648.
Derived from the xs:long data type.

“nonPositiveInteger data type” on page 38 The xs:nonPositiveInteger data type
represents an integer that is less than or
equal to zero. Derived from the xs:integer
data type.

“negativeInteger data type” on page 37 The xs:negativeInteger data type represents
an integer that is less than zero. Derived
from data type xs:nonPositiveInteger.

“nonNegativeInteger data type” on page 37 The xs:nonNegativeInteger data type
represents an integer that is greater than or
equal to zero. Derived from the xs:integer
data type.

20 XQuery Reference

Table 6. Numeric data types (continued)

Type Description

“long data type” on page 37 The xs:long data type represents an integer
that is less than or equal to 9 223 372 036
854 775 807 and greater than or equal to -9
223 372 036 854 775 808. Derived from data
type xs:integer.

“integer data type” on page 36 The xs:integer data type represents a
number that is less than or equal to 9 223
372 036 854 775 807 and greater than or
equal to -9 223 372 036 854 775 808. Derived
from xs:decimal data type.

“short data type” on page 39 The xs:short data type represents an integer
that is less than or equal to 32 767 and
greater than or equal to -32 768. Derived
from the xs:int data type.

“byte data type” on page 28 The xs:byte data type represents an integer
that is less than or equal to 127 and greater
than or equal to -128. Derived from the
xs:short data type.

“unsignedLong data type” on page 40 The xs:unsignedLong data type represents
an unsigned integer that is less than or
equal to 9 223 372 036 854 775 807. Derived
from the xs:nonNegativeInteger data type.

“unsignedInt data type” on page 40 The xs:unsignedInt data type represents an
unsigned integer that is less than or equal to
4 294 967 295. Derived from
xs:unsignedLong data type.

“unsignedShort data type” on page 40 The xs:unsignedShort data type represents
an unsigned integer that is less than or
equal to 65 535. Derived from the
xs:unsignedInt data type.

“unsignedByte data type” on page 40 The xs:unsignedByte data type represents an
unsigned integer that is less than or equal to
255. Derived from xs:unsignedShort data
type.

“positiveInteger data type” on page 38 The xs:positiveInteger data type represents a
positive integer that is greater than or equal
to 1. Derived from the
xs:nonNegativeInteger data type.

Date, time, and duration data types

Table 7. Date, time, and duration data types

Type Description

“duration data type” on page 32 The xs:duration data type represents a
duration of time that is expressed by the
Gregorian year, month, day, hour, minute,
and second components. Derived from data
type xdt:anyAtomicType.

Chapter 2. Type system 21

Table 7. Date, time, and duration data types (continued)

Type Description

“yearMonthDuration data type” on page 41 The xdt:yearMonthDuration data type
represents a duration of time that is
expressed by the Gregorian year and month
components. Derived from the xs:duration
data type.

“dayTimeDuration data type” on page 30 The xdt:dayTimeDuration data type
represents a duration of time that is
expressed by days, hours, minutes, and
seconds components. Derived from the
xs:duration data type.

“dateTime data type” on page 28 The xs:dateTime data type represents an
instant that has the following properties:
year, month, day, hour, and minute
properties that are expressed as integer
values; a second property that is expressed
as a decimal value; and an optional time
zone indicator. Derived from data type
xdt:anyAtomicType.

“date data type” on page 28 The xs:date data type represents an interval
of exactly one day in duration that begins
on the first moment of a specific day. The
xs:date data type consists of year, month,
and day properties that are expressed as
integer values and an optional time zone
indicator. Derived from the
xdt:anyAtomicType data type.

“time data type” on page 39 The xs:time data type represents an instant
of time that recurs every day. Derived from
data type xdt:anyAtomicType.

“gYearMonth data type” on page 35 The xs:gYearMonth data type represents a
specific Gregorian month in a specific
Gregorian year. Gregorian calendar months
are defined in ISO 8601. Derived from data
type xdt:anyAtomicType.

“gYear data type” on page 35 The xs:gYear data type represents a
Gregorian calendar year. Gregorian calendar
years are defined in ISO 8601. Derived from
data type xdt:anyAtomicType.

“gMonthDay data type” on page 34 The xs:gMonthDay data type represents a
Gregorian date that recurs. Gregorian
calendar dates are defined in ISO 8601.
Derived from data type xdt:anyAtomicType.

“gDay data type” on page 34 The xs:gDay data type represents a
Gregorian day that recurs. Gregorian
calendar days are defined in ISO 8601.
Derived from data type xdt:anyAtomicType.

“gMonth data type” on page 34 The xs:gMonth data type represents a
Gregorian month that recurs every year.
Gregorian calendar months are defined in
ISO 8601. Derived from data type
xdt:anyAtomicType.

22 XQuery Reference

Other data types

Table 8. Other data types

Type Description

“boolean data type” on page 27 The xs:boolean data type supports the
mathematical concept of binary-valued logic:
true or false. Derived from data type
xdt:anyAtomicType.

“anyURI data type” on page 27 The xs:anyURI data type represents a
Uniform Resource Identifier (URI). Derived
from data type xdt:anyAtomicType.

“QName data type” on page 38 The xs:QName data type represents an XML
qualified name (QName). A QName includes
an optional namespace prefix, a URI that
identifies the XML namespace, and a local
part, which is an NCName. Derived from
data type xdt:anyAtomicType.

“NOTATION data type” on page 38 The xs:NOTATION data type represents the
NOTATION attribute type from XML 1.0
(Third Edition). Derived from data type
xdt:anyAtomicType.

“hexBinary data type” on page 36 The xs:hexBinary data type represents
hex-encoded binary data. Derived from data
type xdt:anyAtomicType.

“base64Binary data type” on page 27 The xs:base64Binary data type represents
base64-encoded binary data. Derived from
data type xdt:anyAtomicType.

Constructor functions for built-in data types
Constructor functions convert an instance of one atomic type into an instance of a
different atomic type. An implicitly-defined constructor function exists for each of
the built-in atomic types that are defined in XML Schema.

Constructor functions also exist for the data type xdt:untypedAtomic and the two
derived data types xdt:yearMonthDuration and xdt:dayTimeDuration.

Constructor functions are not available for xs:NOTATION, xs:anyType,
xs:anySimpleType, or xdt:anyAtomicType.

All constructor functions for built-in types share the following generic syntax:

�� type-name(value) ��

Note: The semantics of the constructor function type-name(value) are defined to be
equivalent to the expression (value cast as type-name?).

type-name
The QName of the target data type.

value
The value to be constructed as an instance of the target data type. Atomization
is applied to the value. If the result of atomization is an empty sequence, the
empty sequence is returned. If the result of atomization is a sequence of more

Chapter 2. Type system 23

than one item, an error is raised. Otherwise, the resulting atomic value is cast
to the target type. For information about which types can be cast to which
other types, see “Type casting.”

For example, the following diagram represents the syntax of the constructor
function for the XML Schema data type xs:unsignedInt:

�� xs:unsignedInt(value) ��

The value that can be passed to this constructor function is any atomic value that
can be validly cast into the target data type. For example, the following invocations
of this function return the same result, the xs:unsignedInt value 12:
xs:unsignedInt(12)
xs:unsignedInt("12")

In the first example, the numeric literal 12 is passed to the constructor function.
Because the literal does not contain a decimal point, it is parsed as an xs:integer,
and the xs:integer value is cast to the type xs:unsignedInt. In the second example,
the string literal "12" is passed to the constructor function. The string literal is
parsed as an xs:string, and the xs:string value is cast to the type xs:unsignedInt.

A constructor function can also be invoked with a node as its argument. In this
case, DB2 XQuery atomizes the node to extract its typed value and then calls the
constructor with that value. If the value that is passed to a constructor cannot be
cast to the target data type, an error is returned.

The constructor function for xs:QName differs from the generic syntax for
constructor functions in that the constructor function is constrained to take a string
literal as its argument.

When casting a value to a data type, you can use the castable expression to test
whether the value can be cast to the data type.

Type casting
Type conversions are supported between xdt:untypedAtomic, xs:integer, the two
derived types of xs:duration (xdt:yearMonthDuration and xdt:dayTimeDuration),
and the nineteen primitive types that are defined in XML Schema. Type
conversions are used in cast expressions and type constructors.

The type conversions that are supported are indicated in the following tables. Each
table shows the primitive types that are the source of the type conversion on the
left side and the primitive types that are the target of the type conversion on the
top. The first table contains the targets from xdt:untypedAtomic to xs:dateTime,
and the second table contains the targets from xs:time to xs:NOTATION.

The cells in the tables contain one of three characters:

Y Yes. Indicates that a conversion from values of the source type to the target
type is supported.

N No. Indicates that a conversion from values of the source type to the target
type is not supported.

M Maybe. Indicates that a conversion from values of the source type to the
target type might succeed for some values and fail for other values.

24 XQuery Reference

Casting is not supported to or from xs:anySimpleType or to or from
xdt:anyAtomicType.

If an unsupported casting is attempted, an error is returned.

Table 9. Primitive type casting, part 1 (targets from xdt:untypedAtomic to xs:dateTime)

Source data
type

Target
uA

Target
string

Target
float

Target
double

Target
decimal

Target
integer

Target
dur

Target
yMD

Target
dTD

Target
dT

uA Y Y M M M M M M M M

string Y Y M M M M M M M M

float Y Y Y Y M M N N N N

double Y Y M Y M M N N N N

decimal Y Y Y Y Y M N N N N

integer Y Y Y Y Y Y N N N N

dur Y Y N N N N Y Y Y N

yMD Y Y N N N N Y Y N N

dTD Y Y N N N N Y N Y N

dT Y Y N N N N N N N Y

time Y Y N N N N N N N N

date Y Y N N N N N N N Y

gYM Y Y N N N N N N N N

gYr Y Y N N N N N N N N

gMD Y Y N N N N N N N N

gDay Y Y N N N N N N N N

gMon Y Y N N N N N N N N

bool Y Y Y Y Y Y N N N N

b64 Y Y N N N N N N N N

hxB Y Y N N N N N N N N

aURI Y Y N N N N N N N N

QN Y Y N N N N N N N N

NOT Y Y N N N N N N N N

Table 10. Primitive type casting, part 2 (targets from xs:time to xs:NOTATION)

Source
data
type

Target
time

Target
date

Target
gYM

Target
gYr

Target
gMD

Target
gDay

Target
gMon

Target
bool

Target
b64

Target
hxB

Target
aURI

Target
QN

Target
NOT

uA M M M M M M M M M M M N N

string M M M M M M M M M M M M M

float N N N N N N N Y N N N N N

double N N N N N N N Y N N N N N

decimal N N N N N N N Y N N N N N

integer N N N N N N N Y N N N N N

dur N N N N N N N N N N N N N

yMD N N N N N N N N N N N N N

Chapter 2. Type system 25

Table 10. Primitive type casting, part 2 (targets from xs:time to xs:NOTATION) (continued)

Source
data
type

Target
time

Target
date

Target
gYM

Target
gYr

Target
gMD

Target
gDay

Target
gMon

Target
bool

Target
b64

Target
hxB

Target
aURI

Target
QN

Target
NOT

dTD N N N N N N N N N N N N N

dT Y Y Y Y Y Y Y N N N N N N

time Y N N N N N N N N N N N N

date N Y Y Y Y Y Y N N N N N N

gYM N N Y N N N N N N N N N N

gYr N N N Y N N N N N N N N N

gMD N N N N Y N N N N N N N N

gDay N N N N N Y N N N N N N N

gMon N N N N N N Y N N N N N N

bool N N N N N N N Y N N N N N

b64 N N N N N N N N Y Y N N N

hxB N N N N N N N N Y Y N N N

aURI N N N N N N N N N N Y N N

QN N N N N N N N N N N N N N

NOT N N N N N N N N N N N N M

The columns and rows are identified by short codes that identify the following
types:
v uA = xdt:untypedAtomic
v string = xs:string
v float = xs:float
v double = xs:double
v decimal = xs:decimal
v integer = xs:integer
v dur = xs:duration
v yMD = xdt:yearMonthDuration
v dTD = xdt:dayTimeDuration
v dT = xs:dateTime
v time = xs:time
v date = xs:date
v gYM = xs:gYearMonth
v gYr = xs:gYear
v gMD = xs:gMonthDay
v gDay = xs:gDay
v gMon = xs:gMonth
v bool = xs:boolean
v b64 = xs:base64Binary
v hxB = xs:hexBinary
v aURI = xs:anyURI
v QN = xs:QName

26 XQuery Reference

v NOT = xs:NOTATION

anyAtomicType data type
The xdt:anyAtomicType data type denotes a context where any atomic type can be
used. This data type serves as the base type for all atomic types. An instance of an
atomic type is a single nondecomposable value such as an integer, a string, or a
date. Derived from the xs:anySimpleType data type.

The data type xdt:anyAtomicType has an unconstrained lexical form.

Casting is not supported to or from the xdt:anyAtomicType data type.

anySimpleType data type
The xs:anySimpleType data type denotes a context where any simple type can be
used. This data type serves as the base type for all simple types. An instance of a
simple type can be any sequence of atomic values. Derived from the xs:anyType
data type.

The xs:anySimpleType data type has an unconstrained lexical form.

Casting is not supported to or from the xs:anySimpleType data type.

anyType data type
The xs:anyType data type encompasses any sequence of zero or more nodes and
zero or more atomic values.

anyURI data type
The xs:anyURI data type represents a Uniform Resource Identifier (URI). Derived
from data type xdt:anyAtomicType.

The lexical form of The xs:anyURI data type is a string that is a legal URI as
defined by RFC 2396 and amended by RFC 2732. Avoid using spaces in values of
this type unless the spaces are encoded by %20.

base64Binary data type
The xs:base64Binary data type represents base64-encoded binary data. Derived
from data type xdt:anyAtomicType.

For base64-encoded binary data, the entire binary stream is encoded by using the
base64 alphabet. The base64 alphabet is described in RFC 2045.

The lexical form of xs:base64Binary is limited to the 65 characters of the base64
alphabet that is defined in RFC 2045. Valid characters include a-z, A-Z, 0-9, the
plus sign (+), the forward slash (/), the equal sign (=), and the characters defined
in XML 1.0 (Third Edition) as white space. No other characters are allowed.

boolean data type
The xs:boolean data type supports the mathematical concept of binary-valued
logic: true or false. Derived from data type xdt:anyAtomicType.

Chapter 2. Type system 27

The lexical form of The xs:boolean data type is constrained to the following values:
true, false, 1, and 0.

byte data type
The xs:byte data type represents an integer that is less than or equal to 127 and
greater than or equal to -128. Derived from the xs:short data type.

The lexical form of xs:byte is an optional sign that is followed by a finite-length
sequence of decimal digits. If the sign is omitted, a positive sign (+) is assumed.
The following numbers are valid examples of this data type: -1, 0, 126, and
+100.

date data type
The xs:date data type represents an interval of exactly one day in duration that
begins on the first moment of a specific day. The xs:date data type consists of year,
month, and day properties that are expressed as integer values and an optional
time zone indicator. Derived from the xdt:anyAtomicType data type.

Time-zoned values of type xs:date track the starting moment of the day, as
determined by the timezone. The first moment of the day begins at 00:00:00, and
the day continues until, but does not include, 24:00:00, which is the first moment
of the following day. For example, the first moment of the date 2002-10-10+13:00 is
the value 2002-10-10T00:00:00+13:00. This value is equivalent to
2002-10-09T11:00:00Z, which is also the first moment of 2002-10-09-11:00. Therefore,
the values 2002-10-10+13:00 and 2002-10-09-11:00 represent the same interval.

The lexical form of xs:date is a finite-length sequence of characters of the following
form: yyyy-mm-ddzzzzzz. Negative dates are not allowed. The following
abbreviations are used to describe this form:

yyyy
A 4-digit numeral that represents the year. Valid values are from 0001 through
9999. A plus sign (+) is not allowed.

mm A 2-digit numeral that represents the month.

dd A 2-digit numeral that represents the day.

zzzzzz
Optional. If present, represents the timezone. See “Timezone indicator” on
page 29 for more information about the format for this property.

dateTime data type
The xs:dateTime data type represents an instant that has the following properties:
year, month, day, hour, and minute properties that are expressed as integer values;
a second property that is expressed as a decimal value; and an optional time zone
indicator. Derived from data type xdt:anyAtomicType.

Valid lexical representations of xs:dateTime might not have an explicit time zone.
For representations that do not have an explicit time zone, an implicit time zone of
UTC (Coordinated Universal Time, also called Greenwich Mean Time) is used.
Each property expressed as a numeric value is constrained to the maximum value
within the interval that is determined by the next-higher property. For example,
the day value can never be 32 and cannot even be 29 for month 02 and year 2002
(February 2002).

28 XQuery Reference

The lexical form of xs:dateTime is a finite-length sequence of characters of the
following form: yyyy-mm-ddThh:mm:ss.sssssszzzzzz. Negative dates are not allowed.
The following abbreviations describe this form:

yyyy
A 4-digit numeral that represents the year. Valid values are from 0001 through
9999. A plus sign (+) is not allowed.

- Separators between parts of the date portion

mm A 2-digit numeral that represents the month.

dd A 2-digit numeral that represents the day.

T A separator to indicate that the time of day follows.

hh A 2-digit numeral that represents the hour. A value of 24 is allowed only when
the minutes and seconds that are represented are zero. A query that includes
the time of 24:00:00 is treated as 00:00:00 of the next day.

: A separator between parts of the time portion.

mm A 2-digit numeral that represents the minute.

ss A 2-digit numeral that represents the whole seconds.

.ssssss
Optional. If present, a 1-to-6 digit numeral that represents the fractional
seconds.

zzzzzz
Optional. If present, represents the timezone. See “Timezone indicator” for
more information about the format for this property.

For example, the following form indicates noon on 10 October 2005, Eastern
Standard Time in the United States:
2005-10-10T12:00:00-05:00

This time is expressed in UTC as 2002-10-10T17:00:00Z.

Timezone indicator

The lexical form for the timezone indicator is a string that includes one of the
following forms:
v A positive (+) or negative (-) sign that is followed by hh:mm, where the following

abbreviations are used:

hh A 2-digit numeral (with leading zeros as required) that represents the hours.
Currently, no legally prescribed time zones have durations greater than 24
hours. Therefore, a value of 24 for the hours property is allowed only when
the value of the minutes property is zero.

mm A 2-digit numeral that represents the minutes. The value of the minutes
property must be zero when the hours property is equal to 14.

+ Indicates that the specified time instant is in a time zone that is ahead of the
UTC time by hh hours and mm minutes.

- Indicates that the specified time instant is in a time zone that is behind UTC
time by hh hours and mm minutes.

v The literal Z, which represents the time in UTC (Z represents Zulu time, which is
equivalent to UTC). Specifying Z for the time zone is equivalent to specifying
+00:00 or -00:00.

Chapter 2. Type system 29

dayTimeDuration data type
The xdt:dayTimeDuration data type represents a duration of time that is expressed
by days, hours, minutes, and seconds components. Derived from the xs:duration
data type.

The range that can be represented by this data type is from
-P83333333333333Y3M11574074074DT1H46M39.999999S to
P83333333333333Y3M11574074074DT1H46M39.999999S (or -999999999999999
months and -999999999999999.999999 seconds to 999999999999999 months and
999999999999999.999999 seconds).

The lexical form of xdt:dayTimeDuration is PnDTnHnMnS, which is a reduced form of
the ISO 8601 format. The following abbreviations describe this form:

P The duration designator.

nD n is an unsigned integer that represents the number of days.

T The date and time separator.

nH n is an unsigned integer that represents the number of hours.

nM n is an unsigned integer that represents the number of minutes.

nS n is an unsigned decimal that represents the number of seconds. If a decimal
point appears, it must be followed by one to six digits that represent fractional
seconds.

For example, the following form indicates a duration of 3 days, 10 hours, and 30
minutes:
P3DT10H30M

The following form indicates a duration of negative 120 days:
-P120D

An optional preceding minus sign (-) indicates a negative duration. If the sign is
omitted, a positive duration is assumed.

Reduced precision and truncated representations of this format are allowed, but
they must conform to the following requirements:
v If the number of days, hours, minutes, or seconds in any expression equals zero,

the number and its corresponding designator can be omitted. However, at least
one number and its designator must be present.

v The seconds part can have a decimal fraction.
v The designator T must be absent if and only if all of the time items are absent.

The designator P must always be present.

For example, the following forms are allowed:
P13D
PT47H
P3DT2H
-PT35.89S
P4DT251M

The form P-134D is not allowed, but the form -P1347D is allowed.

30 XQuery Reference

DB2 database system stores xdt:dayTimeDuration values in a normalized form. In
the normalized form, the seconds and minutes components are less than 60, and
the hours component is less than 24. Each multiple of 60 seconds is converted to
one minute, each multiple of 60 minutes to one hour, and each multiple of 24
hours to one day. For example, the following XQuery expression invokes a
constructor function specifying a dayTimeDuration of 63 days, 55 hours, and 81
seconds:
xquery
xdt:dayTimeDuration("P63DT55H81S")

In the duration, 55 hours is converted to 2 days and 7 hours, and 81 seconds is
converted to 1 minute and 21 seconds. The expression returns the normalized
dayTimeDuration value P65DT7H1M21S.

decimal data type
The xs:decimal data type represents a subset of the real numbers that can be
represented by decimal numerals. Derived from data type xdt:anyAtomicType.

The lexical form of xs:decimal is a finite-length sequence of decimal digits that are
separated by a period as a decimal indicator. An optional leading sign is allowed.
If the sign is omitted, a positive sign (+) is assumed. Leading and trailing zeros are
optional. If the fractional part is zero, the period and any following zeros can be
omitted. The following numbers are valid examples of this data type:
-1.23
12678967.543233
+100000.00
210

double data type
The xs:double data type is patterned after the IEEE double-precision 64-bit floating
point type. Derived from data type xdt:anyAtomicType.

The basic value space of xs:double consists of values that range from
-1.7976931348623158e+308 to -2.2250738585072014e-308 and from
+2.2250738585072014e-308 to +1.7976931348623158e+308. The value space of
xs:double also includes the following special values: positive infinity, negative
infinity, positive zero, negative zero, and not-a-number (NaN).

The lexical form of xs:double is a mantissa followed, optionally, by the character E
or e, followed by an exponent. The exponent must be an integer. The mantissa
must be a decimal number. The representations for the exponent and the mantissa
must follow the lexical rules for xs:integer and xs:decimal. If the E or e and the
exponent that follows are omitted, an exponent value of 0 is assumed.

Lexical forms for zero can take a positive or negative sign. The following literals
are valid examples of this data type: -1E4, 1267.43233E12, 12.78e-2, 12 , -0,
and 0.

The special values positive infinity, negative infinity, and not-a-number have the
lexical forms INF, -INF and NaN, respectively. The lexical form for positive infinity
cannot take a positive sign.

Chapter 2. Type system 31

Tip: There is no literal for the special values INF, -INF and NaN. Construct the
values INF, -INF, and NaN from strings by using the xs:double type constructor.
For example: xs:double("INF").

duration data type
The xs:duration data type represents a duration of time that is expressed by the
Gregorian year, month, day, hour, minute, and second components. Derived from
data type xdt:anyAtomicType.

The range that can be represented by this data type is from
-P83333333333333Y3M11574074074DT1H46M39.999999S to
P83333333333333Y3M11574074074DT1H46M39.999999S (or -999999999999999
months and -999999999999999.999999 seconds to 999999999999999 months and
999999999999999.999999 seconds).

The lexical form of xs:duration is the ISO 8601 extended format PnYnMnDTnHnMnS.
The following abbreviations describe the extended format:

P The duration designator.

nY n is an unsigned integer that represents the number of years.

nM n is an unsigned integer that represents the number of months.

nD n is an unsigned integer that represents the number of days.

T The date and time separator.

nH n is an unsigned integer that represents the number of hours.

nM n is an unsigned integer that represents the number of minutes.

nS n is an unsigned decimal that represents the number of seconds. If a decimal
point appears, it must be followed by one to six digits that represent fractional
seconds.

For example, the following form indicates a duration of 1 year, 2 months, 3 days,
10 hours, and 30 minutes:
P1Y2M3DT10H30M

The following form indicates a duration of negative 120 days:
-P120D

An optional preceding minus sign (-) indicates a negative duration. If the sign is
omitted, a positive duration is assumed.

Reduced precision and truncated representations of this format are allowed, but
they must conform to the following requirements:
v If the number of years, months, days, hours, minutes, or seconds in any

expression equals zero, the number and its corresponding designator can be
omitted. However, at least one number and its designator must be present.

v The seconds part can have a decimal fraction.
v The designator T must be absent if and only if all of the time items are absent.
v The designator P must always be present.

For example, the following forms are allowed:

32 XQuery Reference

P1347Y
P1347M
P1Y2MT2H
P0Y1347M
P0Y1347M0D

The form P1Y2MT is not allowed because no time items are present. The form
P-1347M is not allowed, but the form -P1347M is allowed.

The DB2 database system stores xs:duration values in a normalized form. In the
normalized form, the seconds and minutes components are less than 60, the hours
component is less than 24, and the months component is less than 12. Each
multiple of 60 seconds is converted to one minute, each multiple of 60 minutes to
one hour, each multiple of 24 hours to one day, and each multiple of 12 months to
one year. For example, the following XQuery expression invokes a constructor
function specifying a duration of 2 months, 63 days, 55 hours, and 91 minutes:
xquery
xs:duration("P2M63DT55H91M")

In the duration, 55 hours is converted to 2 days and 7 hours, and 91 minutes is
converted to 1 hour and 31 minutes. The expression returns the normalized
duration value P2M65DT8H31M.

ENTITY data type
The xs:ENTITY data type represents the ENTITY attribute type from XML 1.0
(Third Edition). Derived from the xs:NCName data type.

The lexical form of xs:ENTITY is an XML name that does not contain a colon
(NCName).

float data type
The xs:float data type is patterned after the IEEE single-precision 32-bit floating
point type. Derived from data type xdt:anyAtomicType.

The basic value space of xs:float consists of values that range from
-3.4028234663852886e+38 to -1.1754943508222875e-38 and from
+1.1754943508222875e-38 to +3.4028234663852886e+38. The value space of xs:float
also includes the following special values: positive infinity, negative infinity,
positive zero, negative zero, and not-a-number (NaN).

The lexical form of xs:float is a mantissa followed, optionally, by the character E or
e, followed by an exponent. The exponent must be an integer. The mantissa must
be a decimal number. The representations for the exponent and the mantissa must
follow the lexical rules for xs:integer and xs:decimal. If the E or e and the exponent
that follows are omitted, an exponent value of 0 is assumed.

Lexical forms for zero can take a positive or negative sign. The following literals
are valid examples of this data type: -1E4, 1267.43233E12, 12.78e-2, 12 , -0,
and 0.

The special values positive infinity, negative infinity, and not-a-number have the
lexical forms INF, -INF and NaN, respectively. The lexical form for positive infinity
cannot take a positive sign.

Chapter 2. Type system 33

Tip: There is no literal for the special values INF, -INF and NaN. Construct the
values INF, -INF, and NaN from strings by using the xs:float type constructor. For
example: xs:float("INF").

gDay data type
The xs:gDay data type represents a Gregorian day that recurs. Gregorian calendar
days are defined in ISO 8601. Derived from data type xdt:anyAtomicType.

This data type represents a specific day of the month. For example, this data type
might be used to indicate that payday is the 15th of each month.

The lexical form of xs:gDay is ---ddzzzzzz, which is a truncated representation of
xs:date that does not include the month or year properties. No preceding sign is
allowed. No other formats are allowed. The following abbreviations describe this
form:

dd A 2-digit numeral that represents the day.

zzzzzz
Optional. If present, represents the timezone. See “Timezone indicator” on
page 29 for more information about the format for this property.

For example, the following form indicates the sixteenth of the month, which is a
day that recurs every month:
---16

gMonth data type
The xs:gMonth data type represents a Gregorian month that recurs every year.
Gregorian calendar months are defined in ISO 8601. Derived from data type
xdt:anyAtomicType.

This data type represents a specific month of the year. For example, this data type
might be used to indicate that Christmas is celebrated in the month of December.

The lexical form of xs:gMonth is --mmzzzzzz, which is a truncated representation of
xs:date that does not include the year or day properties. No preceding sign is
allowed. No other formats are allowed. The following abbreviations describe this
form:

mm A 2-digit numeral that represents the month.

zzzzzz
Optional. If present, represents the timezone. See “Timezone indicator” on
page 29 for more information about the format for this property.

For example, the following form indicates December, a specific month that recurs
every year:
--12

gMonthDay data type
The xs:gMonthDay data type represents a Gregorian date that recurs. Gregorian
calendar dates are defined in ISO 8601. Derived from data type
xdt:anyAtomicType.

34 XQuery Reference

This data type represents a specific day of the year. For example, this data type
might be used to indicate a birthday that occurs on the 16th of April every year.

The lexical form of xs:gMonthDay is --mm-ddzzzzzz, which is a truncated
representation of xs:date that does not include the year property. No preceding
sign is allowed. No other formats are allowed. The following abbreviations are
used to describe this form:

mm A 2-digit numeral that represents the month.

dd A 2-digit numeral that represents the day.

zzzzzz
Optional. If present, represents the timezone. See “Timezone indicator” on
page 29 for more information about the format for this property.

For example, the following form indicates April 16, a specific day that recurs every
year:
--04-16

gYear data type
The xs:gYear data type represents a Gregorian calendar year. Gregorian calendar
years are defined in ISO 8601. Derived from data type xdt:anyAtomicType.

The lexical form of xs:gYear is yyyyzzzzzz. This form is a truncated representation
of xs:dateTime that does not include the month, day, or time of day properties.
Negative dates are not allowed. The following abbreviations describe this form:

yyyy
A 4-digit numeral that represents the year. Valid values are from 0001 through
9999. A plus sign (+) is not allowed.

zzzzzz
Optional. If present, represents the timezone. See “Timezone indicator” on
page 29 for more information about the format for this property.

For example, the following form represents the Gregorian year 2005: 2005.

gYearMonth data type
The xs:gYearMonth data type represents a specific Gregorian month in a specific
Gregorian year. Gregorian calendar months are defined in ISO 8601. Derived from
data type xdt:anyAtomicType.

The lexical form of xs:gYearMonth is yyyy-mmzzzzzz. This form is a truncated
representation of xs:dateTime that does not include the time of day properties.
Negative dates are not allowed. The following abbreviations describe this form:

yyyy
A 4-digit numeral that represents the year. Valid values are from 0001 through
9999. A plus sign (+) is not allowed.

mm A 2-digit numeral that represents the month.

zzzzzz
Optional. If present, represents the timezone. See “Timezone indicator” on
page 29 for more information about the format for this property.

Chapter 2. Type system 35

For example, the following form, which does not include an optional timezone
indicator, indicates the month of October in 2005:
2005-10

hexBinary data type
The xs:hexBinary data type represents hex-encoded binary data. Derived from data
type xdt:anyAtomicType.

The lexical form of xs:hexBinary is a sequence of characters in which each binary
octet is represented by two hexadecimal digits. For example, the following form is
a hex encoding for the 16-bit integer 4023, which has a binary representation of
111110110111: 0FB7.

ID data type
The xs:ID data type represents the ID attribute type from XML 1.0 (Third Edition).
Derived from xs:NCName data type.

The lexical form of xs:ID is an XML name that does not contain a colon
(NCName).

IDREF data type
The xs:IDREF data type represents the IDREF attribute type from XML 1.0 (Third
Edition). Derived from the xs:NCName data type.

The lexical form of xs:IDREF is an XML name that does not contain a colon
(NCName).

int data type
The xs:int data type represents an integer that is less than or equal to 2 147 483 647
and greater than or equal to -2 147 483 648. Derived from the xs:long data type.

The lexical form of xs:int is an optional sign that is followed by a finite-length
sequence of decimal digits. If the sign is omitted, a positive sign (+) is assumed.
The following numbers are valid examples of this data type: -1, 0, 126789675,
and +100000.

integer data type
The xs:integer data type represents a number that is less than or equal to 9 223 372
036 854 775 807 and greater than or equal to -9 223 372 036 854 775 808. Derived
from xs:decimal data type.

The lexical form of xs:integer is a finite-length sequence of decimal digits with an
optional leading sign. If the sign is omitted, a positive sign (+) is assumed. The
following numbers are valid examples of this data type: -1, 0, 12678967543233,
and +100000.

language data type
The xs:language data type represents a natural language identifier as defined by
RFC 3066. Derived from data type xs:token.

36 XQuery Reference

The lexical form of xs:language consists of strings of tags connected by hyphens.
Each tag contains no more than eight characters. The first tag can contain only
alphabetic characters, and subsequent tags can contain alphabetic and numeric
characters. For example, the value en-US represents the English language as used
in the United States. The string conforms to the pattern [a-zA-Z]{1,8}(-[a-zA-Z0-
9]{1,8})*.

long data type
The xs:long data type represents an integer that is less than or equal to 9 223 372
036 854 775 807 and greater than or equal to -9 223 372 036 854 775 808. Derived
from data type xs:integer.

The lexical form of xs:long is an optional sign that is followed by a finite-length
sequence of decimal digits. If the sign is omitted, a positive sign (+) is assumed.
The following numbers are valid examples of this data type: -1, 0,
12678967543233, and +100000.

Name data type
The xs:Name data type represents an XML Name. Derived from the xs:token data
type.

The lexical form of xs:Name is a string that matches the Name production of XML
1.0 (Third Edition).

NCName data type
The xs:NCName data type represents an XML noncolonized name. Derived from
the xs:Name data type.

The lexical form of xs:NCName is an XML name that does not contain a colon.

negativeInteger data type
The xs:negativeInteger data type represents an integer that is less than zero.
Derived from data type xs:nonPositiveInteger.

The lexical form of xs:negativeInteger is negative sign (-) that is followed by a
finite-length sequence of decimal digits. The range that can be represented by this
data type is from -9223372036854775808 to -1. The following numbers are valid
examples of this data type: -1, -12678967543233, and -100000.

NMTOKEN data type
The xs:NMTOKEN data type represents the NMTOKEN attribute type from XML
1.0 (Third Edition). Derived from the xs:token data type.

The lexical form of xs:NMTOKEN is a string that matches the Nmtoken production
of XML 1.0 (Third Edition).

nonNegativeInteger data type
The xs:nonNegativeInteger data type represents an integer that is greater than or
equal to zero. Derived from the xs:integer data type.

Chapter 2. Type system 37

The lexical form of xs:nonNegativeInteger is an optional sign that is followed by a
finite-length sequence of decimal digits. If the sign is omitted, a positive sign (+) is
assumed. For lexical forms that denote zero, the sign can be positive (+) or
negative (-). In all other lexical forms, the sign, if present, must be positive (+). The
range that can be represented by this data type is from 0 to +9223372036854775807.
The following numbers are valid examples of this data type: 1, 0,
12678967543233, and +100000.

nonPositiveInteger data type
The xs:nonPositiveInteger data type represents an integer that is less than or equal
to zero. Derived from the xs:integer data type.

The lexical form of xs:nonPositiveInteger is an optional preceding sign that is
followed by a finite-length sequence of decimal digits. For lexical forms that
denote zero, the sign can be negative (-) or can be omitted; in all other lexical
forms, the negative sign (-) must be present. The range that can be represented by
this data type is from -9223372036854775808 to 0. The following numbers are valid
examples of this data type: -1, 0, -12678967543233, and -100000.

normalizedString data type
The xs:normalizedString data type represents a white space-normalized string.
Derived from data type xs:string.

The lexical form of xs:normalizedString is a string that does not contain the
carriage return (X'0D'), line feed (X'0A'), or tab (X'09') characters.

NOTATION data type
The xs:NOTATION data type represents the NOTATION attribute type from XML
1.0 (Third Edition). Derived from data type xdt:anyAtomicType.

The lexical form of The xs:NOTATION data type is the lexical form of the type
xs:QName.

positiveInteger data type
The xs:positiveInteger data type represents a positive integer that is greater than or
equal to 1. Derived from the xs:nonNegativeInteger data type.

The lexical form of xs:positiveInteger is an optional positive sign (+) that is
followed by a finite-length sequence of decimal digits. The range that can be
represented by this data type is from +1 to +9223372036854775807. The following
numbers are valid examples of this data type: 1, 12678967543233, and +100000.

QName data type
The xs:QName data type represents an XML qualified name (QName). A QName
includes an optional namespace prefix, a URI that identifies the XML namespace,
and a local part, which is an NCName. Derived from data type
xdt:anyAtomicType.

The lexical form of The xs:QName data type is a string of the following format:
prefix:localName. The following abbreviations are used to describe this form:

38 XQuery Reference

prefix
Optional. A namespace prefix. The namespace prefix must be bound to a URI
reference by a namespace declaration. The prefix functions only as a
placeholder for a namespace name. If no prefix is specified, the URI for the
default element/type namespace is used.

localName
An NCName that is the local part of the qualified name. An NCName is an
XML name without a colon.

For example, the following string is a valid lexical form of a QName that includes
a prefix:
ns1:emp

short data type
The xs:short data type represents an integer that is less than or equal to 32 767 and
greater than or equal to -32 768. Derived from the xs:int data type.

The lexical form of xs:short is an optional sign that is followed by a finite-length
sequence of decimal digits. If the sign is omitted, a positive sign (+) is assumed.
The following numbers are valid examples of this data type: -1, 0, 12678, and
+10000.

string data type
The xs:string data type represents a character string. Derived from data type
xdt:anyAtomicType.

The lexical form of xs:string is a sequence of characters that can include any
character that is in the range of legal characters for XML.

time data type
The xs:time data type represents an instant of time that recurs every day. Derived
from data type xdt:anyAtomicType.

The lexical form of xs:time is hh:mm:ss.sssssszzzzzz. This form is a truncated
representation of xs:dateTime that does not include the year, day, or month
properties. The following abbreviations describe this form:

hh A 2-digit numeral that represents the hour. A value of 24 is allowed only when
the minutes and seconds that are represented are zero. A query that includes
the time of 24:00:00 is treated as 00:00:00 of the next day.

: A separator between parts of the time portion.

mm A 2-digit numeral that represents the minute.

ss A 2-digit numeral that represents the whole seconds.

.ssssss
Optional. If present, a 1-to-6 digit numeral that represents the fractional
seconds.

zzzzzz
Optional. If present, represents the timezone. See “Timezone indicator” on
page 29 for more information about the format for this property.

Chapter 2. Type system 39

For example, the following form, which includes an optional timezone indicator,
represents 1:20 pm Eastern Standard Time, which is 5 hours earlier than
Coordinated Universal Time (UTC):
13:20:00-05:00

token data type
The xs:token data type represents a tokenized string. Derived from the
xs:normalizedString data type.

The lexical form of xs:token is a string that does not contain any of the following
characters:
v carriage return (X'0D')
v line feed (X'0A')
v tab (X'09')
v leading or trailing spaces (X'20')
v internal sequences of two or more spaces

unsignedByte data type
The xs:unsignedByte data type represents an unsigned integer that is less than or
equal to 255. Derived from xs:unsignedShort data type.

The lexical form of xs:unsignedByte is a finite-length sequence of decimal digits.
The following numbers are valid examples of this data type: 0, 126, and 100.

unsignedInt data type
The xs:unsignedInt data type represents an unsigned integer that is less than or
equal to 4 294 967 295. Derived from xs:unsignedLong data type.

The lexical form of xs:unsignedInt is a finite-length sequence of decimal digits. The
following numbers are valid examples of this data type: 0, 1267896754, and
100000.

unsignedLong data type
The xs:unsignedLong data type represents an unsigned integer that is less than or
equal to 9 223 372 036 854 775 807. Derived from the xs:nonNegativeInteger data
type.

The lexical form of xs:unsignedLong is a finite-length sequence of decimal digits.
The following numbers are valid examples of this data type: 0, 12678967543233,
and 100000.

unsignedShort data type
The xs:unsignedShort data type represents an unsigned integer that is less than or
equal to 65 535. Derived from the xs:unsignedInt data type.

The lexical form of xs:unsignedShort is a finite-length sequence of decimal digits.
The following numbers are valid examples of this data type: 0, 12678, and 10000.

40 XQuery Reference

untyped data type
The xdt:untyped data type denotes a node that has not been validated by an XML
schema. Derived from data type xs:anyType.

If an element node is annotated as xdt:untyped, then all of its descendant element
nodes are also annotated as xdt:untyped.

untypedAtomic data type
The xdt:untypedAtomic data type denotes an atomic value that has not been
validated by an XML schema. Derived from data type xdt:anyAtomicType.

The data type xdt:untypedAtomic has an unconstrained lexical form.

yearMonthDuration data type
The xdt:yearMonthDuration data type represents a duration of time that is
expressed by the Gregorian year and month components. Derived from the
xs:duration data type.

The range that can be represented by this data type is from -P83333333333333Y3M
to P83333333333333Y3M (or -999999999999999 to 999999999999999 months).

The lexical form of xdt:yearMonthDuration is PnYnM, which is a reduced form of
the ISO 8601 format. The following abbreviations describe this form:

nY n is an unsigned integer that represents the number of years.

nM n is an unsigned integer that represents the number of months.

An optional preceding minus sign (-) indicates a negative duration. If the sign is
omitted, a positive duration is assumed.

For example, the following form indicates a duration of 1 year and 2 months:
P1Y2M

The following form indicates a duration of negative 13 months:
-P13M

Reduced precision and truncated representations of this format are allowed, but
they must conform to the following requirements:
v The designator P must always be present.
v If the number of years or months in any expression equals zero, the number and

its corresponding designator can be omitted. However, at least one number and
its designator (Y or M) must be present.

For example, the following forms are allowed:
P1347Y
P1347M

The form P-1347M is not allowed, but the form -P1347M is allowed. The forms P24YM
and PY43M are not allowed because Y must have at least one preceding digit and M
must have one preceding digit.

Chapter 2. Type system 41

The DB2 database system stores xdt:yearMonthDuration values in a normalized
form. In the normalized form, the months component is less than 12. Each multiple
of 12 months is converted to one year. For example, the following XQuery
expression invokes a constructor function specifying a yearMonthDuration of 20
years and 30 months:
xquery
xdt:yearMonthDuration("P20Y30M")

In the duration, 30 months is converted to 2 years and 6 months. The expression
returns the normalized yearMonthDuration value P22Y6M.

42 XQuery Reference

Chapter 3. Prolog

The prolog is series of declarations that define the processing environment for a
query. Each declaration in the prolog is followed by a semicolon (;). The prolog is
an optional part of the query; a valid query can consist of a query body with no
prolog.

The prolog includes an optional version declaration, namespace declarations, and
setters, which are optional declarations that set the values of properties that affect
query processing.

DB2 XQuery supports the boundary-space declaration that can be used to change
how the query is processed. The prolog also consists of namespace declarations
and default namespace declarations.

DB2 XQuery also supports the following setters. However, they do not change the
processing environment because DB2 XQuery supports only one option in each
case:
v Construction declaration
v Copy-namespaces declaration
v Empty order declaration
v Ordering mode declaration

The version declaration, if present, must be first in the prolog. Setters and other
declarations can appear in any order in the prolog after the version declaration.

Syntax

�� �
(1)

Version declaration Boundary-space declaration
Construction declaration
Copy-namespaces declaration
Empty order declaration
Default element/type namespace declaration
Default function namespace declaration
Namespace declaration
Ordering mode declaration

��

Notes:

1 Each declaration can be specified only once, except for the namespace
declaration.

Version declaration
A version declaration appears at the beginning of a query to identify the version of
the XQuery syntax and semantics that are needed to process the query. The version
declaration can include an encoding declaration, but the encoding declaration is
ignored by DB2 XQuery.

If present, the version declaration must be at the beginning of the prolog. The only
version that is supported by DB2 XQuery is "1.0".

© Copyright IBM Corp. 2006, 2013 43

Syntax

�� xquery version "1.0" ;
encoding StringLiteral

��

1.0
Specifies that version 1.0 of the XQuery syntax and semantics is needed to
process the query.

StringLiteral
Specifies a string literal that represents the encoding name. Specifying an
encoding declaration has no effect on the query because the value of
StringLiteral is ignored. DB2 XQuery always assumes the encoding is UTF-8.

Example

The following version declaration indicates that the query must be processed by an
implementation that supports XQuery Version 1.0:
xquery version "1.0";

Boundary-space declaration
A boundary-space declaration in the query prolog sets the boundary-space policy
for the query. The boundary-space policy controls how boundary whitespace is
processed by element constructors.

Boundary whitespace includes all whitespace characters that occur by themselves in
the boundaries between tags or enclosed expressions in element constructors.

The boundary-space policy can specify that boundary whitespace is either
preserved or stripped (removed) when elements are constructed. If no
boundary-space declaration is specified, the default behavior is to strip boundary
whitespace when elements are constructed.

The prolog can contain only one boundary-space declaration for a query.

Syntax

�� declare boundary-space strip ;
preserve

��

strip
Specifies that boundary whitespace is removed when elements are constructed.

preserve
Specifies that boundary whitespace is preserved when elements are
constructed.

Example

The following boundary-space declaration specifies that boundary whitespace is
preserved when elements are constructed:
declare boundary-space preserve;

44 XQuery Reference

Construction declaration
A construction declaration in the query prolog sets the construction mode for the
query. The construction mode controls how type annotations are assigned to element
and attribute nodes that are copied to form the content of a newly constructed
node.

In DB2 XQuery, the construction mode for constructed element nodes is always
strip. For DB2 XQuery, when the construction mode is strip, the type of a
constructed element node is xdt:untypedAtomic; all element nodes copied during
node construction receive the type xdt:untypedAtomic, and all attribute nodes
copied during node construction receive the type xdt:untypedAtomic.

A construction declaration that specifies a value other than strip results in an
error. The prolog can contain only one construction declaration for a query.

Syntax

�� declare construction strip ; ��

strip
For DB2 XQuery, specifies the type of a constructed element node is
xdt:untypedAtomic; all element nodes copied during node construction receive
the type xdt:untypedAtomic, and all attribute nodes copied during node
construction receive the type xdt:untypedAtomic.

Example

The following construction declaration is valid, but does not change the default
behavior for element construction:
declare construction strip;

Copy-namespaces declaration
The copy-namespaces mode controls the namespace bindings that are assigned
when an existing element node is copied by an element constructor.

In DB2 XQuery, the copy-namespaces mode is always preserve and inherit. The
setting preserve specifies that all in-scope-namespaces of the original element are
retained in the new copy. The default namespace is treated like any other
namespace binding: the copied node preserves its default namespace or absence of
a default namespace. The setting inherit specifies that the copied node inherits
in-scope namespaces from the constructed node. In case of a conflict, the
namespace bindings that were preserved from the original node take precedence.

A copy-namespaces declaration that specifies values other than preserve and
inherit results in an error. The prolog can contain only one copy-namespaces
declaration for a query.

Syntax

�� declare copy-namespaces preserve , inherit ; ��

Chapter 3. Prolog 45

preserve
Specifies that all in-scope namespaces of the original element are retained in
the new copy.

inherit
Specifies that the copied node inherits in-scope namespaces from the
constructed node.

Example

The following copy-namespace declaration is valid, but does not change the
default behavior for element construction:
declare copy-namespaces preserve, inherit;

Default element/type namespace declaration
The default element/type namespace declaration in the query prolog specifies the
namespace to use for the unprefixed QNames (qualified names) of element and
type names.

The query prolog can contain one default element/type namespace declaration
only. This declaration is in scope throughout the query in which it is declared,
unless the declaration is overridden by a namespace declaration attribute in a
direct element constructor. If no default element/type namespace is declared, then
unprefixed element and type names are not in any namespace.

The default element/type namespace does not apply to unqualified attribute
names. Unprefixed attribute names and variable names are in no namespace.

Syntax

�� declare default element namespace URILiteral ; ��

element
Specifies that the declaration is a default element/type namespace declaration.

URILiteral
Specifies a string literal that represents the URI for the namespace. The string
literal must be a valid URI or a zero-length string. If the string literal in a
default element/type namespace declaration is a zero-length string, then
unprefixed element and type names are not in any namespace.

Example

The following declaration specifies that the default namespace for element and
type names is the namespace that is associated with the URI http://posample.org:
declare default element namespace "http://posample.org";
<name>Snow boots</name>

When the query in the example executes, the newly created node (an element node
called name) is in the namespace that is associated with the namespace URI
http://posample.org.

46 XQuery Reference

Default function namespace declaration
The default function namespace declaration in the query prolog specifies a
namespace URI that is used for unprefixed function names in function calls.

The query prolog can contain one default function namespace declaration only. If
no default function namespace is declared, the default function namespace is the
namespace of XPath and XQuery functions, http://www.w3.org/2005/xpath-
functions. If you declare a default function namespace, you can invoke any
function in the default function namespace without specifying a prefix.

DB2 XQuery returns an error if the local name for an unprefixed function call does
not match a function in the default function namespace.

Syntax

�� declare default function namespace URILiteral ; ��

function
Specifies that the declaration is a default function namespace declaration

URILiteral
Specifies a string literal that represents the URI for the namespace. The string
literal must be a valid URI or a zero-length string. If the string literal in a
default function namespace declaration is a zero-length string, all function calls
must use prefixed function names because every function is in some
namespace.

Example

The following declaration specifies that the default function namespace is
associated with the URI http://www.ibm.com/xmlns/prod/db2/functions:
declare default function namespace "http://www.ibm.com/xmlns/prod/db2/functions";

Within the query body for this example, you could refer to any function in the
default function namespace without including a prefix in the function name. This
default function namespace includes the function xmlcolumn, so you can type
xmlcolumn(’T1.MYDOC’) instead of typing db2-fn:xmlcolumn(’T1.MYDOC’). However,
because the default function namespace in this example is no longer associated
with the namespace for XQuery functions, you would need to specify a prefix
when you call XQuery built-in functions. For example, you must type
fn:current-date() instead of typing current-date().

Empty order declaration
An empty order declaration in the query prolog controls whether an empty
sequence or a NaN value is interpreted as the greatest value or as the least value
when an order by clause in a FLWOR expression is processed.

In DB2 XQuery, an empty sequence is always interpreted as the greatest value
during processing of an order by clause in a FLWOR expression. A NaN value is
interpreted as greater than all other values except an empty sequence. This setting
cannot be overridden. An empty order declaration that specifies a value other than
empty greatest results in an error. The query prolog can contain only one empty
order declaration for a query.

Chapter 3. Prolog 47

Syntax

�� declare default order empty greatest ; ��

greatest
Specifies that an empty sequence is always interpreted as the greatest value
during processing of an order by clause in a FLWOR expression. A NaN value
is interpreted as greater than all other values except an empty sequence.

Example

The following empty order declaration is valid:
declare default order empty greatest;

Ordering mode declaration
An ordering mode declaration in the query prolog sets the ordering mode for the
query. The ordering mode defines the ordering of nodes in the query result.

Because DB2 XQuery does not support ordered mode as defined in XQuery 1.0: An
XML Query Language, the ordering mode declaration, if present, must specify
unordered. For the rules that govern the order of query results in DB2 XQuery, see
“Order of results in XQuery expressions” on page 52.

The query prolog can contain only one ordering mode declaration. An ordering
mode declaration that specifies a value other than unordered results in an error.

Syntax

�� declare ordering unordered ; ��

unordered
Specifies that the rules for ordered mode in XQuery 1.0: An XML Query
Language are not in effect. For the rules that govern the order of query results
in DB2 XQuery, see “Order of results in XQuery expressions” on page 52.

Example

The following declaration is valid, but it does not change the default behavior of
ordering because DB2 XQuery supports only unordered mode:
declare ordering unordered;

Namespace declaration
A namespace declaration in the query prolog declares a namespace prefix and
associates the prefix with a namespace URI.

An association between a prefix and a namespace URI is called a namespace binding.
A namespace that is bound in a namespace declaration is added to the statically
known namespaces. The statically known namespaces consist of all of the namespace
bindings that can be used to resolve namespace prefixes during the processing of a
query.

48 XQuery Reference

The namespace declaration is in scope throughout the query in which it is
declared, unless the declaration is overridden by a namespace declaration attribute
in a direct element constructor. Multiple declarations of the same namespace prefix
in the query prolog result in an error.

Syntax

�� declare namespace prefix = URILiteral ; ��

prefix
Specifies a namespace prefix that is bound to the URI that is specified by
URILiteral. The namespace prefix is used in qualified names (QNames) to
identify the namespace for an element, attribute, data type, or function.

The prefixes xmlns and xml are reserved and cannot be specified as prefixes in
namespace declarations.

URILiteral
Specifies the URI to which the prefix is bound. URILiteral must be a
non-zero-length literal string that contains a valid URI.

Example

The following query includes a namespace declaration that declares the namespace
prefix ns1 and associates it with the namespace URI http://posample.org:
declare namespace ns1 = "http://posample.org";
<ns1:name>Thermal gloves</ns1:name>

When the query in the example executes, the newly created node (an element node
called name) is in the namespace that is associated with the namespace URI
http://posample.org.

Predeclared namespace prefixes

XQuery has several predeclared namespace prefixes that are present in the
statically known namespaces before each query is processed. You can use any of
the predeclared prefixes without an explicit declaration. The predeclared
namespace prefixes for DB2 XQuery include the prefix and URI pairs that are
shown in the following table:

Table 11. Predeclared namespaces in DB2 XQuery

Prefix URI Description

xml http://www.w3.org/XML/1998/namespace XML reserved namespace

xs http://www.w3.org/2001/XMLSchema XML Schema namespace

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema instance
namespace

fn http://www.w3.org/2005/xpath-functions Default function namespace

xdt http://www.w3.org/2005/xpath-datatypes XQuery type namespace

db2-fn http://www.ibm.com/xmlns/prod/db2/functions DB2 function namespace

You can override predeclared namespace prefixes by specifying a namespace
declaration in a query prolog. However, you cannot override the URI that is
associated with the prefix xml.

Chapter 3. Prolog 49

50 XQuery Reference

Chapter 4. Expressions

Expressions are the basic building blocks of a query. Expressions can be used alone
or in combination with other expressions to form complex queries. DB2 XQuery
supports several kinds of expressions for working with XML data.

Expression evaluation and processing
A number of operations are often included in the processing of expressions. These
operations include extracting atomic values from nodes, using type promotion and
subtype substitution to obtain values of an expected type, and computing the
Boolean value of a sequence.

In DB2 XQuery, updating expressions can be used only within the modify clause of
a transform expression. For information about the XQuery transform expression,
and updating expression processing, see “Transform expression” on page 114 and
“Use of updating expressions in a transform expression” on page 111.

Dynamic context and focus
The dynamic context of an expression is the information that is available at the
time that the expression is evaluated. The focus, which consists of the context item,
context position, and context size, is an important part of the dynamic context.

The focus changes as DB2 XQuery processes each item in a sequence. The focus
consists of the following information:

Context item
The atomic value or node that is currently being processed. The context
item can be retrieved by the context item expression, which consists of a
single dot (.).

Context position
The position of the context item in the sequence that is currently being
processed. The context item can be retrieved by the fn:position() function.

Context size
The number of items in the sequence that is currently being processed. The
context size can be retrieved by the fn:last() function.

Precedence
The XQuery grammar defines a built-in precedence among operators and
expressions. If an expression that has a lower precedence is used as an operand of
an expression that has a higher precedence, the expression that has a lower
precedence must be enclosed in parentheses.

The following table lists XQuery operators and expressions in order of their
precedence from lowest to highest. The associativity column indicates the order in
which operators or expressions of equal precedence are applied.

Table 12. Precedence in DB2 XQuery

Operator or expression Associativity

, (comma) left-to-right

:= (assignment) right-to-left

© Copyright IBM Corp. 2006, 2013 51

Table 12. Precedence in DB2 XQuery (continued)

Operator or expression Associativity

FLWOR, some, every, if left-to-right

or left-to-right

and left-to-right

eq, ne, lt, le, gt, ge, =, !=, <, <=, >, >=, is, <<, >> left-to-right

to left-to-right

+, - left-to-right

*, div, idiv, mod left-to-right

union, | left-to-right

intersect, except left-to-right

castable left to right

cast left-to-right

-(unary), +(unary) right-to-left

? left-to-right

/, // left-to-right

[], (), {} left-to-right

Order of results in XQuery expressions
When using DB2 XQuery, some kinds of XQuery expressions return sequences in a
deterministic order while other kinds of expressions return sequences in a
non-deterministic order.

The following kinds of expressions return sequences in a deterministic order:
v FLWOR expressions that contain an explicit order by clause return results in the

order specified. For example, the following expression returns a sequence of
product elements in ascending order by price:
for $p in /product
order by $p/price
return $p

v Updating expressions that add elements and use explicit position keywords
return results with the added elements in the position specified. For example,
the following updating expression uses the as first into keywords and inserts
the element <status>current</status> as the first item element in the
customerinfo element:
xquery
transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1001’)
modify

do insert <status>current</status> as first into $mycust/customerinfo
return $mycust

v Expressions that combine sequences with the union, intersect, or except
operator return results in document order.

v Path expressions that satisfy the following conditions return results in document
order:
– The path expression contains only forward-axis steps.
– The path expression has its origin in a single node, such as might result from

a function call or a variable reference.

52 XQuery Reference

– No step in the path expression contains more than a single predicate.
– The path expression does not contain a fn:position function call or a fn:last

function call.

The following example is a path expression that returns results in document
order, assuming that the variable $bib is bound to a single element.
$bib/book[title eq "War and Peace"]/chapter

v Range expressions, which are expressions that contain the to operator, return
sequences of integers in ascending order. For example: 15 to 25.

v Expressions that contain comma operators, if all the operands are sequences
with deterministic order, return results in the order of their operands. For
example the following expression returns the sequence (5, 10, 15, 16, 17, 18, 19,
20, 25):
(5, 10, 15 to 20, 25)

v Other expressions that contain operand expressions that return results in
deterministic order return results in a deterministic order. For example,
assuming the variable $pub is bound to a single element, the following
conditional expression returns ordered results because the path expressions in
the then and else clauses return ordered results:
if ($pub/type eq "journal")

then $pub/editor
else $pub/author

If an expression that is not listed in the previous list returns more than one item,
the order of items in the sequence is nondeterministic.

Table 13. Summary of ordering of results in XQuery expressions

Expression kind

Conditions for a
deterministic
ordering Ordering of results Example

FLWOR Explicit order by
clause

Determined by the
order by clause

The following
expression returns a
sequence of product
elements in
ascending order by
price:

for $p in /product
order by $p/price
return $p

Updating expressions Use of keywords that
specify a position
when adding an
element

Determined by the
updating expression
keywords

When inserting an
element using the
keywords as last
into, the element is
added as the last
child of the specified
node.

Expressions with
union, intersect, or
except operators

None Document order $managers union
$students

Chapter 4. Expressions 53

Table 13. Summary of ordering of results in XQuery expressions (continued)

Expression kind

Conditions for a
deterministic
ordering Ordering of results Example

Path expressions v The path
expression contains
only forward-axis
steps.

v The path
expression has its
origin in a single
node, such as
might result from a
function call or a
variable reference.

v No step in the path
expression contains
more than a single
predicate.

v The path
expression does
not contain a
fn:position function
call or a fn:last
function call.

Document order The following
example is a path
expression that
returns results in
document order,
assuming that the
variable $bib is
bound to a single
element.

$bib/book
[title eq
"War and Peace"]
/chapter

Range expressions,
which are expressions
that contain the to
operator

None Sequence of integers
in ascending order

15 to 25

Expressions that
contain comma
operators

All the operands are
sequences with
deterministic order

Return results are in
the order of their
operands

(5, 10, 15 to 20,
25)

Other expressions Operand expressions
all return results that
are in a deterministic
order

Determined by the
ordering of the
results of the nested
expressions

Assuming the
variable $pub is
bound to a single
element, the
following conditional
expression returns
ordered results
because the path
expressions in the
then and else clauses
return ordered
results:

if ($pub/type
eq "journal")
then $pub/editor
else $pub/author

Note: If a positional predicate is applied to a sequence that does not have a
deterministic order, the result is nondeterministic, which means that any item in
the sequence can be selected.

54 XQuery Reference

Atomization
Atomization is the process of converting a sequence of items into a sequence of
atomic values. Atomization is used by expressions whenever a sequence of atomic
values is required.

Each item in a sequence is converted to an atomic value by applying the following
rules:
v If the item is an atomic value, then the atomic value is returned.
v If the item is a node, then its typed value is returned. The typed value of a node

is a sequence of zero or more atomic values that can be extracted from the node.
If the node has no typed value, then an error is returned.

Implicit atomization of a sequence produces the same result as invoking the
fn:data function explicitly on a sequence.

For example, the following sequence contains a combination of nodes and atomic
values:
("Some text",<anElement xsi:type="string">More text</anElement>,
<anotherElement xsi:type="decimal">1.23</anotherElement>,1001)

Applying atomization to this sequence results in the following sequence of atomic
values:
("Some text", "More text", 1.23, 1001)

The following XQuery expressions use atomization to convert items into atomic
values:
v Arithmetic expressions
v Comparison expressions
v Function calls with arguments whose expected types are atomic
v Cast expressions
v Constructor expressions for various kinds of nodes
v order by clauses in FLWOR expressions
v Type constructor functions

Subtype substitution
Subtype substitution is the use of a value whose dynamic type is derived from an
expected type.

Subtype substitution does not change the actual type of a value. For example, if an
xs:integer value is used where an xs:decimal value is expected, the value retains its
type as xs:integer.

In the following example, the fn:compare function compares an xs:string value to
an xs:NCName value:
fn:compare("product", xs:NCName("product"))

The returned value is 0, which means that the arguments compare as equal.
Although the fn:compare function expects arguments of type xs:string, the function
can be invoked with a value of type xs:NCNAME because this type is derived
from xs:string.

Chapter 4. Expressions 55

Subtype substitution is used whenever an expression is passed a value that is
derived from an expected type.

Type promotion
Type promotion is a process that converts an atomic value from its original type to
the type that is expected by an expression. XQuery uses type promotion during the
evaluation of function calls, order by clauses, and operators that accept numeric or
string operands.

XQuery permits the following type promotions:

Numeric type promotion:
A value of type xs:float (or any type that is derived by restriction from
xs:float) can be promoted to the type xs:double. The result is the xs:double
value that is the same as the original value.

A value of type xs:decimal (or any type that is derived by restriction from
xs:decimal) can be promoted to either of the types xs:float or xs:double.
The result of this promotion is created by casting the original value to the
required type. This kind of promotion might cause loss of precision.
In the following example, a sequence that contains the xs:double value
13.54e-2 and the xs:decimal value 100 is passed to the fn:sum function,
which returns a value of type xs:double:
fn:sum(xs:double(13.54e-2), xs:decimal(100))

URI type promotion:
A value of type xs:anyURI (or any type that is derived by restriction from
xs:anyURI) can be promoted to the type xs:string. The result of this
promotion is created by casting the original value to the type xs:string.

In the following example, the URI value is promoted to the expected type
xs:string, and the function returns 18:
fn:string-length(xs:anyURI("http://example.com"))

Note that type promotion and subtype substitution differ in the following ways:
v For type promotion, the atomic value is actually converted from its original type

to the type that is expected by an expression.
v For subtype substitution, an expression that expects a specific type can be

invoked with a value that is derived from that type. However, the value retains
its original type.

Effective Boolean value
The effective Boolean value (EBV) of a sequence is computed implicitly during the
processing of expressions that require Boolean values. The EBV of a value is
determined by applying the fn:boolean function to a value.

The following table describes the EBVs that are returned for specific types of
values.

Table 14. EBVs returned for specific types of values in XQuery

Description of value EBV returned

An empty sequence false

A sequence whose first item is a node true

56 XQuery Reference

Table 14. EBVs returned for specific types of values in XQuery (continued)

Description of value EBV returned

A single value of type xs:boolean (or derived
from xs:boolean)

false - if the xs:boolean value is false

true - if the xs:boolean value is true

A single value of type xs:string or
xdt:untypedAtomic (or derived from one of
these types)

false - if the length of the value is zero

true - if the length if the value is greater than
zero

A single value of any numeric type (or
derived from a numeric type)

false - if the value is NaN or is numerically
equal to zero

true - if the value is not numerically equal to
zero

All other values error

Note: The effective Boolean value of a sequence that contains at least one node and at least
one atomic value is nondeterministic in a query where the order is unpredictable.

The effective Boolean value of a sequence is computed implicitly when the
following types of expressions are processed:
v Logical expressions (and, or)
v The fn:not function
v The where clause of a FLWOR expression
v Certain types of predicates, such as a[b]

v Conditional expressions (if)
v Quantified expressions (some, every)

Primary expressions
Primary expressions are the basic primitives of the language. They include literals,
variable references, parenthesized expressions, context item expressions,
constructors, and function calls.

Literals
A literal is a direct syntactic representation of an atomic value. DB2 XQuery
supports two kinds of literals: numeric literals and string literals.

A numeric literal is an atomic value of type xs:integer, xs:decimal, or xs:double:
v A numeric literal that contains no decimal point (.) and no e or E character is an

atomic value of type xs:integer. For example, 12 is a numeric literal.
v A numeric literal that contains a decimal point (.), but no e or E character is an

atomic value of type xs:decimal. For example, 12.5 is a numeric literal.
v A numeric literal that contains an e or E character is an atomic value of type

xs:double. For example, 125E2 is a numeric literal.

Values of numeric literals are interpreted according to the rules of XML Schema.

A string literal is an atomic value of type xs:string that is enclosed in delimiting
single quotation marks (') or double quotation marks ("). String literals can include
predefined entity references and character references. For example, the following
strings are valid string literals:

Chapter 4. Expressions 57

"12.5"
"He said, ""Let it be."""
’She said: "Why should I?"’
"Ben & Jerry's"
"€65.50" (: denotes the string €65.50 :)

Tip: To include a single quotation mark within a string literal that is delimited by
single quotation marks, specify two adjacent single quotation marks. Similarly, to
include a double quotation mark within a string literal that is delimited by double
quotation marks, specify two adjacent double quotation marks.

Within a string literal, line endings are normalized according to the rules for XML
1.0 (Third Edition). Any two-character sequence that contains a carriage return
(X'0D') followed by a line feed (X'0A') is translated into a single line feed (X'0A').
Any carriage return (X'0D') that is not followed by a line feed (X'0A') is translated
into a single line feed (X'0A').

If the value that you want to instantiate has no literal representation, you can use a
constructor function or built-in function to return the value. The following
functions and constructors return values that have no literal representation:
v The built-in functions fn:true() and fn:false() return the boolean values true and

false, respectively. These values can also be returned by the constructor
functions xs:boolean("false") and xs:boolean("true").

v The constructor function xs:date("2005-04-16") returns an item whose type is
xs:date and whose value represents the date April 16, 2005.

v The constructor function xdt:dayTimeDuration("PT4H") returns an item whose
type is xdt:dayTimeDuration and whose value represents a duration of four
hours.

v The constructor function xs:float("NaN") returns the special floating-point
value, "Not a Number."

v The constructor function xs:double("INF") returns the special double-precision
value, "positive infinity."

Predefined entity references
A predefined entity reference is a short sequence of characters that represents a
character that has some syntactic significance in DB2 XQuery.

A predefined entity reference begins with an ampersand (&) and ends with a
semicolon (;). When a string literal is processed, each predefined entity reference is
replaced by the character that it represents.

The following table lists the predefined entity references that DB2 XQuery
recognizes.

Table 15. Predefined entity references in DB2 XQuery

Entity reference Character represented

< <

> >

& &

" "

' '

58 XQuery Reference

Character references
A character reference is an XML-style reference to a Unicode character that is
identified by its decimal or hexadecimal code point.

A character reference begins with either &#x or &#, and it ends with a semicolon (;).
If the character reference begins with &#x, the digits and letters before the
terminating semicolon (;) provide a hexadecimal representation of the character's
code point in the ISO/IEC 10646 standard. If the character reference begins with &#,
the digits before the terminating semicolon (;) provide a decimal representation of
the character's code point.

Example

The character reference € or € represents the Euro symbol (€).

Variable references
A variable reference is an NCName that is preceded by a dollar sign ($). When a
query is evaluated, each variable reference resolves to the value that is bound to
the variable. Every variable reference must match a name in the in-scope variables
at the point of reference.

Variables are added to the in-scope variables in the following ways:
v A variable can be added to the in-scope variables by the host language

environment, SQL/XML, through the XMLQUERY function, the XMLTABLE
function, or the XMLEXISTS predicate. A variable that is added by SQL/XML is
in scope for the entire query unless the variable is overridden by another
binding of the same variable in an XQuery expression.

v A variable can be bound to a value by an XQuery expression. The kinds of
expressions that can bind variables are FLWOR expressions and quantified
expressions. Function calls also bind values to the formal parameters of
functions before executing the function body. A variable that is bound by an
XQuery expression is in scope throughout the expression in which it is bound.
A variable name cannot be declared more than once in a FLWOR expression. For
example, DB2 XQuery does not support the following expression:
for $i in (1, 2)
for $i in ("a", "b")
return $i

If a variable reference matches two or more variable bindings that are in scope,
then the reference refers to the inner binding (the binding whose scope is smaller).

Tip: To make your code easier to read, use unique names for variables within a
query.

Example

In the following example, a FLWOR expression binds the variable $seq to the
sequence (10, 20, 30):
let $seq := (10, 20, 30)
return $seq[2];

The returned value is 20.

Chapter 4. Expressions 59

Parenthesized expression
Parentheses can be used to enforce a particular order of evaluation in expressions
that contain multiple operators.

For example, the expression (2 + 4) * 5 evaluates to thirty, because the
parenthesized expression (2 + 4) is evaluated first, and its result is multiplied by
five. Without parentheses, the expression 2 + 4 * 5 evaluates to twenty-two,
because the multiplication operator has higher precedence than the addition
operator.

Empty parentheses denote an empty sequence.

Context item expressions
A context item expression consists of a single period character (.). A context item
expression evaluates to the item that is currently being processed, which is known
as the context item.

The context item can be either a node or an atomic value. Context items are
defined only in path expressions and predicate expressions.

Example

The following example contains a context item expression that invokes the
modulus operator on every item in the sequence that is returned by the range
expression 1 to 100:
(1 to 100)[. mod 5 eq 0]

The result of this example is the sequence of integers between 1 and 100 that are
evenly divisible by 5.

Function calls
A function call consists of a QName that is followed by a parenthesized list of zero
or more expressions, which are called arguments. DB2 XQuery supports calls to
built-in XQuery functions and DB2 built-in functions.

Built-in XQuery functions are in the namespace http://www.w3.org/2005/xpath-
functions, which is bound to the prefix fn. DB2 built-in functions are in the
namespace http://www.ibm.com/xmlns/prod/db2/functions, which is bound to the
prefix db2-fn. If the QName in the function call has no namespace prefix, the
function must be in the default function namespace. The default function
namespace is the namespace of built-in XQuery functions (bound to the prefix fn)
unless the namespace is overridden by a default function declaration in the query
prolog.

Important: Because the arguments of a function call are separated by commas, you
must use parentheses to enclose argument expressions that contain top-level
comma operators.

The following steps explain the process that DB2 XQuery uses to evaluate
functions:
1. DB2 XQuery evaluates each expression that is passed as an argument in the

function call and returns a value for each expression.
2. The value that is returned for each argument is converted to the data type that

is expected for that argument. When the argument expects an atomic value or a

60 XQuery Reference

sequence of atomic values, DB2 XQuery uses the following rules to convert the
value of the argument to its expected type:
a. Atomization is applied to the given value. This results in a sequence of

atomic values.
b. Each item in the atomic sequence that is of type xdt:untypedAtomic is cast

to the expected atomic type. For built-in functions that expect numeric
arguments, arguments of type xdt:untypedAtomic are cast to xs:double.

c. Numeric type promotion is applied to any numeric item in the atomic
sequence that can be promoted to the expected atomic type. Numeric items
include items of type xs:integer (or derived from xs:integer), xs:decimal,
xs:float, or xs:double.

d. If the expected type is xs:string, each item in the atomic sequence that is of
type xs:anyURI, or derived from xs:anyURI, is promoted to xs:string

3. The function is evaluated using the converted values of its arguments. The
result of the function call is either an instance of the function's declared return
type or an error.

Examples

Function call with a string argument: The following function call takes an
argument of type xs:string and returns a value of type xs:string in which all
characters are in uppercase:
fn:upper-case($ns1_customerinfo/ns1:addr/@country)

In this example, the argument that is passed to the fn:upper-case function is a path
expression. When the function is invoked, the path expression is evaluated and the
resulting node sequence is atomized. Each atomic value in the sequence is cast to
the expected type, xs:string. The function is evaluated and returns a sequence of
atomic values of type xs:string.

Function call with a sequence argument: The following function takes a sequence,
(1, 2, 3), as the single argument.
fn:max((1, 2, 3))

Because the function fn:max expects a single argument that is a sequence of atomic
values, nested parentheses are required. The returned value is 3.

Path expressions
Path expressions identify nodes within an XML tree. Path expressions in DB2
XQuery are based on the syntax of XPath 2.0.

A path expression consists of one or more steps that are separated by slash (/) or
double-slash (//) characters. A path expression can begin with a step or with a
slash or double-slash character. Each step before the final step generates a sequence
of nodes that are used as context nodes for the step that follows.

The first step specifies the starting point of the path, often by using a function call
or variable reference that returns a node or sequence of nodes. An initial "/"
indicates that the path begins at the root node of the tree that contains the context
node. An initial "//" indicates that the path begins with an initial node sequence
that consists of the root node of the tree that contains the context node, plus all of
the descendants of the root node.

Chapter 4. Expressions 61

Each step is executed repeatedly, once for each context node that is generated by
the previous step. The results of these repeated executions are then combined to
form the sequence of context nodes for the step that follows. Duplicate nodes are
eliminated from this combined sequence, based on node identity.

The value of the path expression is the combined sequence of items that results
from the final step in the path. This value can be either a sequence of nodes or a
sequence of atomic values. Because each step in a path provides context nodes for
the step that follows, the final step in a path is the only step that can return a
sequence of atomic values. A path expression that returns a mixture of nodes and
atomic values results in an error.

The node sequence that results from a path expression is not guaranteed to be in a
specific order. To understand when a path expression returns ordered results, see
the topic that describes the order of results in XQuery expressions.

Syntax of path expressions
Each step of a path expression is either an axis step or a filter expression. An axis
step returns a sequence of nodes that are reachable from the context node via a
specified axis. A filter expression consists of a primary expression that is followed by
zero or more predicates.

��
/
//

�

/ or //

axis step
filter expression

��

axis step:

�node-test
axis:: [PredicateExpression]

filter expression:

�PrimaryExpression
[PredicateExpression]

/ An initial slash character (/) indicates that the path begins at the root node,
which must be a document node, of the tree that contains the context node.
Slash characters within a path expression separate steps.

// An initial double slash character (//) indicates that the path begins with an
initial node sequence that consists of the root node, which must be a document
node, of the tree that contains the context node, plus all of the descendants of
the root node. To understand the meaning of a double slash character between
steps, see the topic about abbreviated syntax.

axis
A direction of movement through an XML document or fragment. The list of

62 XQuery Reference

supported axes includes child, descendant, attribute, self, descendant-or-self,
and parent. Some of these axes can be represented by using an abbreviated
syntax.

node-test
A condition that must be true for each node that is selected by an axis step.
This test can be either a name test that selects nodes based on the name of the
node or a kind test that selects nodes based on the kind of node.

PrimaryExpression
A primary expression.

PredicateExpression
An expression that determines whether items of the sequence are retained or
discarded.

Examples

The following example shows an axis step that includes two predicates. This step
selects all the employee children of the context node that have both a secretary
child element and an assistant child element:
child::employee[secretary][assistant]

The following example uses a filter expression as a step in a path expression. The
expression returns every chapter or appendix that contains more than one footnote
within a given book:
$book/(chapter | appendix)[fn:count(footnote)> 1]

Axis steps
Axis steps consist of three parts: an optional axis to specify a direction of
movement; a node test to specify the criteria that is used to select nodes; and zero
or more predicates to filter the sequence that is returned by the step.

The result of an axis step is always a sequence of zero or more nodes.

An axis step can be either a forward step, which starts at the context node and
moves through the XML tree in document order, or a reverse step, which starts at
the context node and moves through the XML tree in reverse document order. If
the context item is not a node, then the expression results in an error.

The unabbreviated syntax for an axis step consists of an axis name and node test
that are separated by a double colon, followed by zero or more predicates. The
syntax of an axis expression can be abbreviated by omitting the axis and using
shorthand notations.

In the following example, child is the name of the axis and para is the name of the
element nodes to be selected on this axis.
child::para

The axis step in this example selects all para elements that are children of the
context node.

Axes
An axis is a part of an axis step that specifies a direction of movement through an
XML document.

Chapter 4. Expressions 63

An axis can be either a forward or reverse axis. A forward axis contains the context
node and nodes that are after the context node in document order. A reverse axis
contains the context node and nodes that are before the context node in document
order.

The following table describes the axes that are supported in DB2 XQuery.

Table 16. Supported axes in DB2 XQuery

Axis Description Direction Comments

child Returns the children of the
context node.

Forward Document nodes and element nodes are the only
nodes that have children. If the context node is any
other kind of node, or if the context node is a
document or element node without any children,
the child axis is an empty sequence. The children of
a document node or element node can be element,
processing instruction, comment, or text nodes.
Attribute and document nodes can never appear as
children.

descendant Returns the descendants of the
context node (the children, the
children of the children, and so
on).

Forward

attribute Returns the attributes of the
context node.

Forward This axis is empty if the context node is not an
element node.

self Returns the context node only. Forward

descendant-
or-
self

Returns the context node and the
descendants of the context node.

Forward

parent Returns the parent of the context
node, or an empty sequence if
the context node has no parent.

Reverse An element node can be the parent of an attribute
node even though an attribute node is never a child
of an element node.

When an axis step selects a sequence of nodes, each node is assigned a context
position that corresponds to its position in the sequence. If the axis is a forward
axis, context positions are assigned to the nodes in document order, starting with 1.
If the axis is a reverse axis, context positions are assigned to the nodes in reverse
document order, starting with 1. Context position assignments allow you to select a
node from the sequence by specifying its position.

Node tests
A node test is a condition that must be true for each node that is selected by an axis
step. The node test can be expressed as either a name test or a kind test.

A name test selects nodes based on the name of the node. A kind test selects nodes
based on the kind of node.

Name tests

A name test consists of a QName or a wildcard. When a name test is specified in
an axis step, the step selects the nodes on the specified axis that match the QName
or wildcard. If the name test is specified on the attribute axis, then the step selects
any attributes that match the name test. On all other axes, the step selects any
elements that match the name test. The QNames match if the expanded QName of
the node is equal (on a codepoint basis) to the expanded QName that is specified

64 XQuery Reference

in the name test. Two expanded QNames are equal if their namespace URIs are
equal and their local names are equal (even if their namespace prefixes are not
equal).

Important: Any prefix that is specified in a name test must correspond to one of
the statically known namespaces for the expression. For name tests that are
performed on the attribute axis, unprefixed QNames have no namespace URI. For
name tests that are performed on all other axes, unprefixed QNames have the
namespace URI of the default element/type namespace.

The following table describes the name tests that are supported in DB2 XQuery.

Table 17. Supported name tests in DB2 XQuery

Test Description Examples

QName Matches any nodes (on the specified
axis) whose QName is equal to the
specified QName. If the axis is an
attribute axis, this test matches
attribute nodes. On all other axes,
this test matches element nodes.

In the expression child::para, the
name test para selects all of the para
elements on the child axis.

* Matches all nodes on the specified
axis. If the axis is an attribute axis,
this test matches all attribute nodes.
On all other axes, this test matches
all element nodes.

In the expression, child::*, the
name test * matches all of the
elements on the child axis.

NCName:* Specifies an NCName that represents
the prefix part of a QName. This
name test matches all nodes (on the
specified axis) whose namespace
URI matches the namespace URI to
which the prefix is bound. If the axis
is an attribute axis, this test matches
attribute nodes. On all other axes,
this test matches element nodes.

In the expression child::ns1:*, the
name test ns1:* matches all of the
elements on the child axis that are
associated with the namespace that
is bound to the prefix ns1.

*:NCName Specifies an NCName that represents
the local part of a QName. This
name test matches any nodes (on the
specified axis) whose local name is
equal to the NCName. If the axis is
an attribute axis, this test matches
attribute nodes. On all other axes,
this test matches element nodes.

In the expression
child::*:customerinfo, the name
test *:customerinfo matches all of
the elements on the child axis that
have the local name customerinfo,
regardless of the namespace that is
associated with the element name.

Kind tests

When a kind test is specified in an axis step, the step selects only those nodes on
the specified axis that match the kind test. The following table describes the kind
tests that are supported in DB2 XQuery.

Table 18. Supported kind tests in DB2 XQuery

Test Description Examples

node() Matches any node on the
specified axis.

In the expression child::node(),
the kind test node() selects any
nodes on the child axis.

Chapter 4. Expressions 65

Table 18. Supported kind tests in DB2 XQuery (continued)

Test Description Examples

text() Matches any text node on the
specified axis.

In the expression child::text(),
the kind test text() selects any
text nodes on the child axis.

comment() Matches any comment node on
the specified axis.

In the expression
child::comment(), the kind test
comment() selects any comment
nodes on the child axis.

processing-
instruction()

Matches any
processing-instruction node on
the specified axis.

In the expression
child::processing-
instruction(), the kind test
processing-instruction() selects
any processing instruction nodes
on the child axis.

element() or
element(*)

Matches any element node on the
specified axis.

In the expression
child::element(), the kind test
element() selects any element
nodes on the child axis. In the
expression child::element(*),
the kind test element(*) selects
any element nodes on the child
axis.

attribute() or
attribute(*)

Matches any attribute node on
the specified axis.

In the expression
child::attribute(), the kind test
attribute() selects any attribute
nodes on the child axis. In the
expression child::attribute(*),
the kind test attribute(*) selects
any attribute nodes on the child
axis.

document-node() Matches any document node on
the specified axis.

In the expression
self::document-node(), the kind
test document-node() selects a
document node that is the
context node.

Abbreviated syntax for path expressions
XQuery provides an abbreviated syntax for expressing axes in path expressions.

The following table describes the abbreviations that are allowed in path
expressions.

Table 19. Abbreviated syntax for path expressions

Abbreviated syntax Description Examples

no axis specified Shorthand abbreviation for child:: except
when the axis step specifies attribute() for
the node test. When the axis step specifies an
attribute test, an omitted axis is shorthand for
attribute::.

The path expression section/para is an
abbreviation for child::section/child::para.
The path expression section/attribute() is
an abbreviation for child::section/
attribute::attribute().

@ Shorthand abbreviation for attribute:: . The path expression section/@id is an
abbreviation for child::section/
attribute::id.

66 XQuery Reference

Table 19. Abbreviated syntax for path expressions (continued)

Abbreviated syntax Description Examples

// Shorthand abbreviation for
/descendant-or-self::node()/, except when
this abbreviation appears at the beginning of
the path expression.

When this abbreviation appears at the
beginning of the path expression, the axis step
selects an initial node sequence that contains
the root of the tree in which the context node
is found, plus all nodes that are descended
from this root. This expression returns an
error if the root node is not a document node.

The path expression div1//para is an
abbreviation for child::div1/descendant-or-
self::node()/child::para .

.. Shorthand abbreviation for parent::node(). The path expression ../title is an
abbreviation for parent::node()/child::title
.

Examples of abbreviated syntax and unabbreviated syntax

The following table provides examples of abbreviated syntax and unabbreviated
syntax.

Table 20. Unabbreviated syntax and abbreviated syntax

Unabbreviated syntax Abbreviated syntax Result

child::para para Selects the para elements
that are children of the
context node.

child::* * Selects all of the elements
that are children of the
context node.

child::text() text() Selects all of the text
nodes that are children of
the context node.

child::node() node() Selects all of the children
of the context node. This
expression returns no
attribute nodes because
attributes are not
considered children of a
node.

attribute::name @name Selects the name attribute
of the context node

attribute::* @* Selects all of the attributes
of the context node.

child::para[fn:position() = 1] para[1] Selects the first para
element that is a child of
the context node.

child::para[fn:position() = fn:last()] para[fn:last()] Selects the last para
element that is a child of
the context node.

Chapter 4. Expressions 67

Table 20. Unabbreviated syntax and abbreviated syntax (continued)

Unabbreviated syntax Abbreviated syntax Result

/child::book/child::chapter[fn:position() = 5]
/child::section[fn:position() = 2]

/book/chapter[5]/section[2] Selects the second section
of the fifth chapter of the
book whose parent is the
document node that
contains the context node.

child::para[attribute::type="warning"] para[@type="warning"] Selects all para children of
the context node that have
a type attribute with the
value warning.

child::para[attribute::type=’warning’]
[fn:position() = 5]

para[@type="warning"][5] Selects the fifth para child
of the context node that
has a type attribute with
value warning.

child::para[fn:position() = 5]
[attribute::type="warning"]

para[5][@type="warning"] Selects the fifth para child
of the context node if that
child has a type attribute
with value warning.

child::chapter[child::title=’Introduction’] chapter[title="Introduction"] Selects the chapter
children of the context
node that have one or
more title children
whose typed value is
equal to the string
Introduction.

child::chapter[child::title] chapter[title] Selects the chapter
children of the context
node that have one or
more title children.

Predicates
A predicate filters a sequence by retaining the qualifying items. A predicate consists
of an expression, called a predicate expression, that is enclosed in square brackets
([]).

The predicate expression is evaluated once for each item in the sequence, with the
selected item as the context item. Each evaluation of the predicate expression
returns an xs:boolean value called the predicate truth value. Those items for which
the predicate truth value is true are retained, and those for which the predicate
truth value is false are discarded.

The following rules are used to determine the predicate truth value:
v If the predicate expression returns a non-numeric value, the predicate truth

value is the effective boolean value of the predicate expression.
v If the predicate expression returns a numeric value, the predicate truth value is

true only for the item whose position in the sequence is equal to that numeric
value. For other items, the predicate truth value is false. This kind of predicate is
called a numeric predicate or positional predicate. For example, in the expression
$products[5], the numeric predicate [5] retains only the fifth item in the
sequence bound to the variable $products.

68 XQuery Reference

Important: The item that is selected from a sequence by a numeric predicate is
deterministic only if the sequence has a deterministic order.

Tip: The behavior of a predicate depends on whether the predicate expression
returns a numeric value or not, which might not be clear from looking at the
predicate expression. You can force a predicate to use an effective boolean value by
using the fn:boolean function, as in [fn:boolean(PredicateExpression)].
Alternatively, you can force a predicate to behave like a positional predicate by
using the fn:position function, as in [fn:position() eq PredicateExpression].

The following examples have predicates:
v chapter[2] selects the second chapter element that is a child of the context

node.
v descendant::toy[@color = "Red"] selects all of the descendants of the context

node that are elements named toy and have a color attribute with the value
"Red".

v employee[secretary][assistant] selects all of the employee children of the
context node that have both a secretary child element and an assistant child
element.

v (<cat />, <dog />, 47, <zebra />)[2] returns the element <dog />.

Sequence expressions
Sequence expressions construct, filter, and combine sequences of items. Sequences
are never nested. For example, combining the values 1, (2, 3), and () into a single
sequence results in the sequence (1, 2, 3).

Expressions that construct sequences
Sequences can be constructed by using either the comma operator or a range
expression.

Comma operators

To construct a sequence by using the comma operator, specify two or more
operands (expressions) that are separated by commas. When the sequence
expression is evaluated, the comma operator evaluates each of its operands and
concatenates the resulting sequences, in order, into a single result sequence. For
example, the following expression results in a sequence that contains five integers:
(15, 1, 3, 5, 7)

A sequence can contain duplicate atomic values and nodes. However, a sequence is
never an item in another sequence. When a new sequence is created by
concatenating two or more input sequences, the new sequence contains all of the
items of the input sequences, and the length of the sequence is the sum of the
lengths of the input sequences.

The following expressions use the comma operator for sequence construction:
v This expression combines four sequences of length one, two, zero, and two,

respectively, into a single sequence of length five. The result of this expression is
the sequence 10, 1, 2, 3, 4.
(10, (1, 2), (), (3, 4))

v The result of this expression is a sequence that contains all salary elements that
are children of the context node, followed by all bonus elements that are children
of the context node.

Chapter 4. Expressions 69

(salary, bonus)

v Assuming that the variable $price is bound to the value 10.50, the result of this
expression is the sequence 10.50, 10.50.
($price, $price)

Range expressions

Range expressions construct a sequence of consecutive integers. A range expression
consists of two operands (expressions) that are separated by the to operator. The
value of each operand must be convertible to a value of type xs:integer. If either
operand is an empty sequence, or if the integer that is derived from the first
operand is greater than the integer that is derived from the second operand, the
result of the range expression is an empty sequence. Otherwise, the result is a
sequence that contains the two integers that are derived from the operands and
every integer between the two integers, in increasing order. For example, the
following range expression evaluates to the sequence 1, 2, 3, 4:
(1 to 4)

The following examples use range expressions for sequence construction:
v This example uses a range expression as one operand in constructing a

sequence. The sequence expression evaluates to the sequence 10, 1, 2, 3, 4.
(10, 1 to 4)

v This example constructs a sequence of length one that contains the single integer
10.
10 to 10

v The result of this example is a sequence of length zero.
15 to 10

v This example uses the fn:reverse function to construct a sequence of six integers
in decreasing order. This sequence expression evaluates to the sequence 15, 14,
13, 12, 11, 10.
fn:reverse(10 to 15)

Filter expressions
A filter expression consists of a primary expression that is followed by zero or
more predicates. The predicates, if present, filter the sequence that is returned by
the primary expression.

The result of the filter expression consists of all of the items with a predicate truth
value of true that are returned by the primary expression. If no predicates are
specified, the result is simply the result of the primary expression. The items in the
result sequence are in the same order as the items that are returned by the primary
expression. During evaluation of a predicate, each item has a context position that
represents its position in the sequence that is being filtered by that predicate. The
first context position is 1.

Syntax

�� �PrimaryExpression
[PredicateExpression]

��

70 XQuery Reference

PrimaryExpression
A primary expression.

PredicateExpression
An expression that determines whether items of the sequence are retained or
discarded.

Examples

The following examples use filter expressions to return a filtered sequence:
v Given a sequence of products bound to a variable, this expression returns only

those products with a price that is greater than 100:
$products[price gt 100]

v This expression uses a range expression with a predicate to list all integers from
1 to 100 that are divisible by 5. The range expression is processed as a primary
expression because it is enclosed in parentheses:
(1 to 100)[. mod 5 eq 0]

v This expression results in the integer 5:
(1 to 21)[5]

v This expression uses a filter expression as a step in a path expression. The
expression returns the last chapter or appendix within the book that is bound to
the variable $book:
$book/(chapter | appendix)[fn:last()]

Expressions for combining sequences of nodes
DB2 XQuery provides operators for combining sequences of nodes. These
operators include union, intersect, and except.

The following table describes the operators that are available for combining
sequences of nodes.

Table 21. XQuery operators for combining sequences of nodes

Operator Description

union or | Takes two node sequences as operands and returns a
sequence that contains all of the nodes that occur in
either of the operands. The union keyword and the |
character are equivalent.

intersect Takes two node sequences as operands and returns a
sequence that contains all of the nodes that occur in both
operands.

except Takes two node sequences as operands and returns a
sequence that contains all of the nodes that occur in the
first operand but not in the second operand.

All of these operators eliminate duplicate nodes from their result sequences based
on node identity. The resulting sequence is returned in document order.

The operands of union, intersect, or except must resolve to sequences that
contain nodes only. If an operand contains an item that is not a node, an error is
returned.

In addition to the operators that are described in this topic, DB2 XQuery provides
functions for indexed access to items or sub-sequences of a sequence (fn:index-of),

Chapter 4. Expressions 71

for indexed insertion or removal of items in a sequence (fn:insert-before and
fn:remove), and for removing duplicate items from a sequence (fn:distinct-values).

Examples

In these examples, suppose that the variable $managers is bound to a set of
employee nodes that represent employees who are managers, and the variable
$students is bound to a set of employee nodes that represent employees who are
students.

The following expressions are all valid examples that use operators to combine
sequences of nodes:
v $managers union $students returns the set of nodes that represent employees

who are either managers or students.
v $managers intersect $students returns the set of nodes that represent

employees who are both managers and students.
v $managers except $students returns the set of nodes that represent employees

who are managers but not students.

Arithmetic expressions
Arithmetic expressions perform operations that involve addition, subtraction,
multiplication, division, and modulus.

The following table describes the arithmetic operators and lists them in order of
operator precedence from highest to lowest. Unary operators have a higher
precedence than binary operators unless parentheses are used to force the
evaluation of the binary operator.

Table 22. Arithmetic operators in XQuery

Operator Purpose Associativity

-(unary),
+(unary)

negates value of operand, maintains
value of operand

right-to-left

*, div, idiv,
mod

multiplication, division, integer
division, modulus

left-to-right

+, - addition, subtraction left-to-right

Note: A subtraction operator must be preceded by whitespace if the operator could
otherwise be interpreted as part of a previous token. For example, a-b is interpreted as a
name, but a - b and a -b are interpreted as arithmetic operations.

The result of an arithmetic expression is a numeric value, an empty sequence, or
an error. When an arithmetic expression is evaluated, each operand is atomized
(converted into an atomic value), and the following rules are applied:
v If the atomized operand is an empty sequence, then the result of the arithmetic

expression is an empty sequence.
v If the atomized operand is a sequence that contains more than one value, an

error is returned.
v If the atomized operand is an untyped atomic value (xdt:untypedAtomic), the

value is cast to xs:double. If the cast fails, an error is returned.

If the types of the operands, after evaluation, are a valid combination for the
arithmetic operator, then the operator is applied to the atomized operands, and the
result of this operation is an atomic value or an error (for example, an error might

72 XQuery Reference

result from dividing by zero.) If the types of the operands are not a valid
combination for the arithmetic operator, an error is returned.

Table 23 identifies valid combinations of types for arithmetic operators. In this
table, the letter A represents the first operand in the expression, and the letter B
represents the second operand. The term numeric denotes the types xs:integer,
xs:decimal, xs:float, xs:double, or any types derived from one of these types. If the
result type of an operator is listed as numeric, the result type will be the first type
in the ordered list (xs:integer, xs:decimal, xs:float, xs:double) into which all
operands can be converted by subtype substitution and type promotion.

Table 23. Valid types for operands of arithmetic expressions

Operator with operands Type of operand A Type of operand B Result type

A + B numeric numeric numeric

A + B xs:date xdt:yearMonthDuration xs:date

A + B xdt:yearMonthDuration xs:date xs:date

A + B xs:date xdt:dayTimeDuration xs:date

A + B xdt:dayTimeDuration xs:date xs:date

A + B xs:time xdt:dayTimeDuration xs:time

A + B xdt:dayTimeDuration xs:time xs:time

A + B xs:dateTime xdt:yearMonthDuration xs:dateTime

A + B xdt:yearMonthDuration xs:dateTime xs:dateTime

A + B xs:dateTime xdt:dayTimeDuration xs:dateTime

A + B xdt:dayTimeDuration xs:dateTime xs:dateTime

A + B xdt:yearMonthDuration xdt:yearMonthDuration xdt:yearMonthDuration

A + B xdt:dayTimeDuration xdt:dayTimeDuration xdt:dayTimeDuration

A - B numeric numeric numeric

A - B xs:date xs:date xdt:dayTimeDuration

A - B xs:date xdt:yearMonthDuration xs:date

A - B xs:date xdt:dayTimeDuration xs:date

A - B xs:time xs:time xdt:dayTimeDuration

A - B xs:time xdt:dayTimeDuration xs:time

A - B xs:dateTime xs:dateTime xdt:dayTimeDuration

A - B xs:dateTime xdt:yearMonthDuration xs:dateTime

A - B xs:dateTime xdt:dayTimeDuration xs:dateTime

A - B xdt:yearMonthDuration xdt:yearMonthDuration xdt:yearMonthDuration

A - B xdt:dayTimeDuration xdt:dayTimeDuration xdt:dayTimeDuration

A * B numeric numeric numeric

A * B xdt:yearMonthDuration numeric xdt:yearMonthDuration

A * B numeric xdt:yearMonthDuration xdt:yearMonthDuration

A * B xdt:dayTimeDuration numeric xdt:dayTimeDuration

A * B numeric xdt:dayTimeDuration xdt:dayTimeDuration

A idiv B numeric numeric xs:integer

A div B numeric numeric numeric; but xs:decimal if
both operands are xs:integer

Chapter 4. Expressions 73

Table 23. Valid types for operands of arithmetic expressions (continued)

Operator with operands Type of operand A Type of operand B Result type

A div B xdt:yearMonthDuration numeric xdt:yearMonthDuration

A div B xdt:dayTimeDuration numeric xdt:dayTimeDuration

A div B xdt:yearMonthDuration xdt:yearMonthDuration xs:decimal

A div B xdt:dayTimeDuration xdt:dayTimeDuration xs:decimal

A mod B numeric numeric numeric

Examples
v In the following example, the first expression returns the xs:decimal value -1.5,

and the second expression returns the xs:integer value -1:
-3 div 2
-3 idiv 2

v In the following expression, the subtraction of two date values results in a value
of type xdt:dayTimeDuration:
$emp/hiredate - $emp/birthdate

v The following example illustrates the difference between a subtraction operator
and hyphens that are used in the variable names unit-price and unit-discount:
$unit-price - $unit-discount

Comparison expressions
Comparison expressions compare two values. XQuery provides three kinds of
comparison expressions: value comparisons, general comparisons, and node
comparisons.

Value comparisons
Value comparisons compare two atomic values. The value comparison operators
include eq, ne, lt, le, gt, and ge.

The following table describes these operators.

Table 24. Value comparison operators in XQuery

Operator Purpose

eq Returns true if the first value is equal to the second value.

ne Returns true if the first value is not equal to the second value.

lt Returns true if the first value is less than the second value.

le Returns true if the first value is less than or equal to the second value.

gt Returns true if the first value is greater than the second value.

ge Returns true if the first value is greater than or equal to the second value.

Two values can be compared if they have the same type or if the type of one
operand is a subtype of the other operand's type. Two operands of numeric types
(types xs:float, xs:integer, xs:decimal, xs:double, and types derived from these) can
be compared. Also, xs:string and xs:anyURI values can be compared.

Special values: For xs:float and xs:double values, positive zero and negative zero
compare equal. INF equals INF, and -INF equals -INF. NaN does not equal itself.
Positive infinity is greater than all other non-NaN values; negative infinity is less

74 XQuery Reference

than all other non-NaN values. NaN ne NaN is true, and any other comparison
involving a NaN value is false. Two values of type xs:QName are considered to be
equal if their namespace URIs are equal and their local names are equal
(namespace prefixes are not significant).

The result of a value comparison can be a boolean value, an empty sequence, or an
error. When a value comparison is evaluated, each operand is atomized (converted
into an atomic value), and the following rules are applied:
v If either atomized operand is an empty sequence, then the result of the value

comparison is an empty sequence.
v If either atomized operand is a sequence that contains more than one value, an

error is returned.
v If either atomized operand is an untyped atomic value (xdt:untypedAtomic),

that value is cast to xs:string.
Casting values of type xdt:untypedAtomic to xs:string allows value comparisons
to be transitive. In contrast, general comparisons follow a different rule for
casting untyped data and are therefore not transitive. The transitivity of a value
comparison might be compromised by loss of precision during type conversions.
For example, two xs:integer values that differ slightly might both be considered
equal to the same xs:float value because xs:float has less precision than
xs:integer.

v If the types of the operands, after evaluation, are a valid combination for the
operator, the operator is applied to the atomized operands, and the result of the
comparison is either true or false. If the types of the operands are not a valid
combination for the comparison operator, an error is returned.

The following types can be compared with the eq or ne operator. The term
Gregorian refers to the types xs:gYearMonth, xs:gYear, xs:gMonthDay, xs:gDay, and
xs:gMonth. For binary operators that accept two Gregorian-type operands, both
operands must have the same type (for example, if one operand is of type xs:gDay,
the other operand must be of type xs:gDay). The term numeric refers to the types
xs:integer, xs:decimal, xs:float, xs:double, and any type derived from one of these
types. During comparisons that involve numeric values, subtype substitution and
numeric type promotion are used to convert the operands into the first type in the
ordered list (xs:integer, xs:decimal, xs:float, xs:double) into which all operands can
be converted.
v Numeric
v xs:boolean
v xs:string
v xs:date
v xs:time
v xs:dateTime
v xs:duration
v xdt:yearMonthDuration
v xdt:dayTimeDuration
v Gregorian
v xs:hexBinary
v xs:base64Binary
v xs:QName
v xs:NOTATION

Chapter 4. Expressions 75

The following types can be compared with the gt, lt, ge, and le operators. The
term numeric refers to the types xs:integer, xs:decimal, xs:float, and xs:double.
During comparisons that involve numeric values, subtype substitution and
numeric type promotion are used to convert the operands into the first type in the
ordered list (xs:integer, xs:decimal, xs:float, xs:double) into which all operands can
be converted.
v Numeric
v xs:boolean
v xs:string
v xs:date
v xs:time
v xs:dateTime
v xdt:yearMonthDuration
v xdt:dayTimeDuration

Examples
v The following comparison atomizes the nodes that are returned by the

expression $book/author. The comparison is true only if the result of
atomization is the value "Kennedy" as an instance of xs:string or
xdt:untypedAtomic. If the result of atomization is a sequence that contains more
than one value, an error is returned
$book1/author eq "Kennedy"

v The following path expression contains a predicate that selects products whose
weight is greater than 100. For any product that does not have a weight
subelement, the value of the predicate is the empty sequence, and the product is
not selected:
//product[weight gt 100]

v The following comparisons are true because, in each case, the two constructed
nodes have the same value after atomization, even though they have different
identities or names:
<a>5 eq <a>5
<a>5 eq 5

General comparisons
A general comparison compares two sequences of any length to determine whether
at least one item in the first sequence and one item in the second sequence satisfy
the specified comparison. The general comparison operators are =, !=, <, <=, >, and
>=.

The following table describes these operators.

Table 25. Value comparison operators in XQuery

Operator Purpose

= Returns true if some value in the first sequence is equal to some value in
the second sequence.

!= Returns true if some value in the first sequence is not equal to some
value in the second sequence.

< Returns true if some value in the first sequence is less than some value in
the second sequence.

<= Returns true if some value in the first sequence is less than or equal to
some value in the second sequence.

76 XQuery Reference

Table 25. Value comparison operators in XQuery (continued)

Operator Purpose

> Returns true if some value in the first sequence is greater than some
value in the second sequence.

>= Returns true if some value in the first sequence is greater than or equal to
some value in the second sequence.

As illustrated in the Examples section, later, general comparisons are not transitive
and note that the = and != operators are not inverses of each other.

The result of a general comparison is either a boolean value or an error. When a
general comparison is evaluated, each operand is atomized (converted into a
sequence of atomic values). When the individual atomic values are compared, the
following rules are applied to the implicit cast that takes place:

Atomic value in one
sequence

Atomic value in other
sequence

Type to which untyped
value is cast

xdt:untypedAtomic A numeric type xs:double

If you are working with very
large integers, it is possible
that precision might be lost.
For example, when the 19
digit number
−9223372036854775672 is cast
to xs:double, the result is
−9.223372036854776E18
(three digits of precision are
lost). You can avoid this loss
of precision by casting the
value to an xs:decimal or
xs:long type.

xdt:untypedAtomic xdt:untypedAtomic or
xs:string

xs:string

xdt:untypedAtomic A value other than a numeric
type, xdt:untypedAtomic, or
xs:string

The type of the other value

If the types are successfully cast, the atomic values are compared using one of the
value comparison operators eq, ne, lt, le, gt, or ge. The result of the comparison is
true if there is a pair of atomic values, one in the first operand sequence and the
other in the second operand sequence, for which the comparison is true. For
example, the comparison (1, 2) = (2, 3) returns true because 2 eq 2 is true. If
the implicit cast operation fails, the comparison returns false. For example, the
comparison, [b < 3.4] in the following statement returns false because the string
"N/A" cannot be successfully cast to xs:double:
Xquery let $doc := <a>N/A return $doc[b < 3.4];

Tip: To compare two sequences on an item-by-item basis, use the XQuery function
fn:deep-equal.

Examples
v The following comparison is true if the typed value of some author subelement

of $book1 is "Kennedy" as an instance of xs:string or xdt:untypedAtomic:

Chapter 4. Expressions 77

$book1/author = "Kennedy"

v The following example contains three general comparisons. The value of the first
two comparisons is true, and the value of the third comparison is false. This
example illustrates the fact that general comparisons are not transitive:
(1, 2) = (2, 3)
(2, 3) = (3, 4)
(1, 2) = (3, 4)

v The following example contains two general comparisons, both of which are
true. This example illustrates the fact that the = and != operators are not inverses
of each other.
(1, 2) = (2, 3)
(1, 2) != (2, 3)

v In the following example, the variables $a, $b, and $c are bound to element
nodes that have the type annotation xdt:untypedAtomic. The first element node
contains the string value "1", the second element "2", and the third element "2.0"
. In this example, the following expression returns false because the values that
are bound to $b and $c ("2" and "2.0") are compared as strings:
($a, $b) = ($c, 3.0)

However, the following expression returns true because the value that is bound
to $b ("2") and the value 2.0 are compared as numbers:
($a, $b) = ($c, 2.0)

Node comparisons
Node comparisons compare two nodes. Nodes can be compared to determine if
they share the same identity or if one node precedes or follows another node in
document order.

The following table describes the node comparison operators that are available in
XQuery.

Table 26. Node comparison operators in XQuery

Operator Purpose

is Returns true if the two nodes that are compared have the same identity.

<< Returns true if the first operand node precedes the second operand node
in document order.

>> Returns true if the first operand node follows the second operand node
in document order.

The result of a node comparison is either a boolean value, an empty sequence, or
an error. The result of a node comparison is defined by the following rules:
v Each operand must be either a single node or an empty sequence; otherwise, an

error is returned.
v If either operand is an empty sequence, the result of the comparison is an empty

sequence.
v A comparison that uses the is operator is true when the two nodes that are

compared have the same identity; otherwise, the comparison is false.
v A comparison that uses the << operator returns true when the left operand node

precedes the right operand node in document order; otherwise, the comparison
returns false.

78 XQuery Reference

v A comparison that uses the >> operator returns true when the left operand node
follows the right operand node in document order; otherwise, the comparison
returns false.

Examples
v The following comparison is true only if both the left operand and right operand

evaluate to exactly the same single node:
/books/book[isbn="1558604820"] is /books/book[call="QA76.9 C3845"]

v The following comparison is false because each constructed node has its own
identity:
<a>5 is <a>5

v The following comparison is true only if the node that is identified by the left
operand occurs before the node that is identified by the right operand in
document order:
/transactions/purchase[parcel="28-451"] << /transactions/sale[parcel="33-870"]

Logical expressions
Logical expressions use the operators and and or to compute a Boolean value (true
or false).

The following table describes these operators and lists them in order of operator
precedence from highest to lowest.

Table 27. Logical expression operators in XQuery

Operator Purpose

and Returns true if both expressions are true.

or Returns true if one or both expressions are true.

The result of a logical expression is either a Boolean value (true or false) or an
error. When a logical expression is evaluated, the effective Boolean value (EBV) of
each operand is determined. The operator is then applied to the EBVs of the
operands, and the result is either a boolean value or an error. If the EBV of an
operand is an error, then the logical expression might result in an error. The
following table shows the results that are returned by a logical expression based on
the EBVs of its operands.

Table 28. Results of logical expressions based on EBVs of operands

EBV of operand 1 Operator EBV of operand 2 Result

true and true true

true and false false

false and true false

false and false false

true and error error

error and true error

false and error false or error

error and false false or error

error and error error

true or true true

Chapter 4. Expressions 79

Table 28. Results of logical expressions based on EBVs of operands (continued)

EBV of operand 1 Operator EBV of operand 2 Result

false or false false

true or false true

false or true true

true or error true or error

error or true true or error

false or error error

error or false error

error or error error

Tip: In addition to logical expressions, XQuery provides a function named fn:not
that takes a general sequence as a parameter and returns a Boolean value.

Examples
v The following expressions return true:

1 eq 1 and 2 eq 2
1 eq 1 or 2 eq 3

v The following expression might return either false or an error:
1 eq 2 and 3 idiv 0 = 1

v The following expression might return either true or an error:
1 eq 1 or 3 idiv 0 = 1

v The following expression returns an error:
1 eq 1 and 3 idiv 0 = 1

Constructors
Constructors create XML structures within a query. XQuery provides constructors
for creating element nodes, attribute nodes, document nodes, text nodes,
processing instruction nodes, and comment nodes. XQuery provides two kinds of
constructors: direct constructors and computed constructors.

Direct constructors use an XML-like notation to create XML structures within a
query. XQuery provides direct constructors for creating element nodes (which
might include attribute nodes, text nodes, and nested element nodes), processing
instruction nodes, and comment nodes. For example, the following constructor
creates a book element that contains an attribute and some nested elements:
<book isbn="isbn-0060229357">

<title>Harold and the Purple Crayon</title>
<author>

<first>Crockett</first>
<last>Johnson</last>

</author>
</book>

Computed constructors use a notation that is based on enclosed expressions to create
XML structures within a query. A computed constructor begins with a keyword
that identifies the type of node to be created and is followed by the name of the
node, if applicable, and an enclosed expression that computes the content of the
node. XQuery provides computed constructors for creating element nodes,
attribute nodes, document nodes, text nodes, processing-instruction nodes, and

80 XQuery Reference

comment nodes. For example, the following query contains computed constructors
that generate the same result as the direct constructor described in the previous
example:
element book {

attribute isbn {"isbn-0060229357" },
element title { "Harold and the Purple Crayon"},
element author {

element first { "Crockett" },
element last {"Johnson" }

}
}

Enclosed expressions in constructors
Enclosed expressions are used in constructors to provide computed values for
element and attribute content. These expressions are evaluated and replaced by
their value when the constructor is processed. Enclosed expressions are enclosed in
curly braces ({}) to distinguish them from literal text.

Enclosed expressions can be used in the following constructors to provide
computed values:
v Direct element constructors:

– An attribute value in the start tag of a direct element constructor can include
an enclosed expression.

– The content of a direct element constructor can include an enclosed
expression that computes both the content and the attributes of the
constructed node.

v Computed constructors:
– An enclosed expression can be used to generate the content of the node.

For example, the following direct element constructor includes an enclosed
expression:
<example>

<p> Here is a query. </p>
<eg> $b/title </eg>
<p> Here is the result of the query. </p>
<eg>{ $b/title }</eg>

</example>

When this constructor is evaluated, it might produce the following result
(whitespace is added to this example to improve readability):
<example>

<p> Here is a query. </p>
<eg> $b/title </eg>
<p> Here is the result of the query. </p>
<eg><title>Harold and the Purple Crayon</title></eg>

</example>

Tip: To use a curly brace as an ordinary character within the content of an element
or attribute, you can either include a pair of identical curly braces or use character
references. For example, you can use the pair {{ to represent the character {.
Likewise, you can use the pair }} to represent }. Alternatively, you can use the
character references { and } to denote curly brace characters. A single
left curly brace ({) is interpreted as the beginning delimiter for an enclosed
expression. A single right curly brace (}) without a matching left curly brace is an
error.

Chapter 4. Expressions 81

Direct element constructors
Direct element constructors use an XML-like notation to create element nodes. The
constructed node can be a simple element or a complex element that contains
attributes, text content, and nested elements.

The result of a direct element constructor is a new element node that has its own
node identity. All of the attribute and descendant nodes of the new element node
are also new nodes that have their own identities.

Syntax

�� �< ElementName
AttributeName = ' AttributeValue '

" "
Namespace declaration attribute

�

�

�

/>

> </ ElementName >
ElementContent

��

Namespace declaration attribute:

xmlns:prefixToBind = URILiteral
xmlns

ElementName
A QName that represents the name of the element to construct. The name that
is used for ElementName in the end tag must exactly match the name that is
used in the corresponding start tag, including the prefix or absence of a prefix.
If ElementName includes a namespace prefix, the prefix is resolved to a
namespace URI by using the statically known namespaces. If ElementName has
no namespace prefix, the name is implicitly qualified by the default
element/type namespace. The expanded QName that results from evaluating
ElementName becomes the name of the constructed element node.

AttributeName
A QName that represents the name of the attribute to construct. If
AttributeName includes a namespace prefix, the prefix is resolved to a
namespace URI by using the statically known namespaces. If AttributeName has
no namespace prefix, the attribute is in no namespace. The expanded QName
that results from evaluating AttributeName becomes the name of the
constructed attribute node. The expanded QName of each attribute must be
unique, or the expression results in a error.

Each attribute in a direct element constructor creates a new attribute node,
with its own node identity. The parent of the new attribute node is the
constructed element node. The new attribute node is given a type annotation
of xdt:untypedAtomic.

AttributeValue
A string of characters that specify a value for the attribute. The attribute value

82 XQuery Reference

can contain enclosed expressions (expressions that are enclosed in curly braces)
that are evaluated and replaced by their value when the element constructor is
processed. Predefined entity references and character references are also valid
and get replaced by the characters that they represent. The following table lists
special characters that are valid within AttributeValue, but must be represented
by double characters or an entity reference.

Table 29. Representation of special characters in attribute values

Character Representation required in attribute values

{ two open curly braces ({{)

} two closed curly braces (}})

< <

& &

" " or two double quotation marks ("")

' ' or two single quotation marks ('')

xmlns
The word that begins a namespace declaration attribute. When specified as a
prefix in a QName, xmlns indicates that the value of prefixToBind will be bound
to the URI that is specified by URILiteral. This namespace binding is added to
the statically-known namespaces for this constructor expression and for all of
the expressions that are nested inside of the expression (unless the binding is
overridden by a nested namespace declaration attribute). In the following
example, the namespace declaration attribute xmlns:metric =
"http://example.org/metric/units" binds the prefix metric to the namespace
http://example.org/metric/units.

When specified as the complete QName with no prefix, xmlns indicates that
the default element/type namespace is set to the value of URILiteral. This
default element/type namespace is in effect for this constructor expression and
for all expressions that are nested inside of the constructor expression (unless
the declaration is overridden by a nested namespace declaration attribute). In
the following example, the namespace declaration attribute xmlns =
"http://example.org/animals" sets the default element/type namespace to
http://example.org/animals.

prefixToBind
The prefix to be bound to the URI that is specified for URILiteral. The value of
prefixToBind cannot be xml or xmlns. Specifying either of these values results in
an error.

URILiteral
A string literal (a sequence of zero or more characters that is enclosed in single
quotation marks or double quotation marks) that represents a URI. The string
literal value must be a valid URI. The value of URILiteral can be a zero-length
string only when the namespace declaration attribute is being used to set the
default element/type namespace. Otherwise, specifying a zero-length string for
URILiteral results in an error.

ElementContent
The content of the direct element constructor. The content consists of
everything between the start tag and end tag of the constructor. How
boundary space is handled within element constructors is controlled by the
boundary-space declaration in the prolog. The resulting content sequence is a
concatenation of the content entities. Any resulting adjacent text characters,

Chapter 4. Expressions 83

including text resulting from enclosed expressions, are merged into a single
text node. Any resulting attribute nodes must come before any other content in
the resulting content sequence.

ElementContent can consist of any of the following content:
v Text characters. Text characters create text nodes and adjacent text nodes are

merged into a single text node. Line endings within sequences of characters
are normalized according to the rules for end-of-line handling that are
specified for XML 1.0. The following table lists special characters that are
valid within ElementContent, but must be represented by double characters
or an entity reference.

Table 30. Representation of special characters in element content

Character Representation required in element content

{ two open curly braces ({{)

} two closed curly braces (}})

< <

& &

v Nested direct constructors.

v CDataSections. CDataSections are specified using the following syntax:
<![CDATA[contents]]> where contents consists of a series of characters. The
characters that are specified for contents, including special characters such as
< and &, are treated as literal characters rather than as delimiters. The
sequence]]> terminates the CDataSection and is therefore not allowed
within contents.

v Character references and predefined entity references. During processing,
predefined entity references and character references are expanded into their
referenced strings.

v Enclosed expressions. An enclosed expression is an XQuery expression that
is enclosed in curly braces. For example, {5 + 7} is an enclosed expression.
The value of an enclosed expression can be any sequence of nodes and
atomic values. Enclosed expressions can be used within the content of a
direct element constructor to compute both the content and the attributes of
the constructed node. For each node that is returned by an enclosed
expression, a new copy is made of the node and all of its descendants,
which retain their original type annotations. Any attribute nodes that are
returned by ElementContent must be at the beginning of the resulting content
sequence; these attribute nodes become attributes of the constructed element.
Any element, content, or processing instruction nodes that are returned by
ElementContent become children of the newly constructed node. Any atomic
values that are returned by ElementContent are converted to strings and
stored in text nodes, which become children of the constructed node.
Adjacent text nodes are merged into a single text node.

Examples
v The following direct element constructor creates a book element. The book

element contains complex content that includes an attribute node, some nested
element nodes, and some text nodes:
<book isbn="isbn-0060229357">

<title>Harold and the Purple Crayon</title>
<author>

84 XQuery Reference

<first>Crockett</first>
<last>Johnson</last>

</author>
</book>

v The following examples demonstrate how element content is processed in direct
element constructors:
– The following expression constructs an element node that has one child, a text

node that contains the value "1":
<a>{1}

– The following expression constructs an element node that has one child, a text
node that contains the value "1 2 3":
<a>{1, 2, 3}

– The following expression constructs an element node that has one child, a text
node that contains the value "123":
<c>{1}{2}{3}</c>

– The following expression constructs an element node that has one child, a text
node that contains the value "1 2 3":
{1, "2", "3"}

– The following expression constructs an element node that has one child, a text
node that contains the value "I saw 8 cats.":
<fact>I saw 8 cats.</fact>

– The following expression constructs an element node that has one child, a text
node that contains the value "I saw 8 cats."
<fact>I saw {5 + 3} cats.</fact>

– The following expression constructs an element node that has three children:
a text node that contains "I saw ", a child element node that is named
howmany, and a text node that contains " cats." The child element node has a
single child, a text node that contains the value "8".
<fact>I saw <howmany>{5 + 3}</howmany> cats.</fact>

Namespace declaration attributes
Namespace declaration attributes are specified in the start tag of a direct element
constructor. Namespace declaration attributes are used for two purposes: to bind a
namespace prefix to a URI, and to set the default element/type namespace for the
constructed element node and for its attributes and descendants.

Syntactically, a namespace declaration attribute has the same form as an attribute
in a direct element constructor: the attribute is specified by a name and a value.
The attribute name is constant QName. The attribute value is a string literal that
represents a valid URI.

A namespace declaration attribute does not cause an attribute node to be created.

Important: The name of each namespace declaration attribute in a direct element
constructor must be unique, or the expression results in an error.

Binding a namespace prefix to a URI

If the QName begins with the prefix xmlns followed by a local name, then the
declaration is used to bind the namespace prefix (specified as the local name) to a
URI (specified as the attribute value). For example, the namespace declaration
attribute xmlns:metric = "http://example.org/metric/units" binds the prefix
metric to the namespace http://example.org/metric/units.

Chapter 4. Expressions 85

When the namespace declaration attribute is processed, the prefix and URI are
added to the statically known namespaces of the constructor expression, and the
new binding overrides any existing binding of the given prefix. The prefix and URI
are also added as a namespace binding to the in-scope namespaces of the
constructed element.

For example, in the following element constructor, namespace declaration
attributes are used to bind the namespace prefixes metric and english:
<box xmlns:metric = "http://example.org/metric/units"
xmlns:english = "http://example.org/english/units">

<height> <metric:meters>3</metric:meters> </height>
<width> <english:feet>6</english:feet> </width>
<depth> <english:inches>18</english:inches> </depth>

</box>

Setting the default element/type namespace

If the QName is xmlns with no prefix, then the declaration is used to set the
default element/type namespace. For example, the namespace declaration attribute
xmlns = "http://example.org/animals" sets the default element/type namespace
to http://example.org/animals.

When the namespace declaration attribute is processed, the value of the attribute is
interpreted as a namespace URI. This URI specifies the default element/type
namespace of the constructor expression, and the new specification overrides any
existing default. The URI is also added (with no prefix) to the in-scope namespaces
of the constructed element, and the new specification overrides any existing
namespace binding that has no prefix. If the namespace URI is a zero-length string,
then the default element/type namespace of the constructor expression is set to
"none".

For example, in the following direct element constructor, a namespace declaration
attribute sets the default element/type namespace to http://example.org/animals:
<cat xmlns = "http://example.org/animals">

<breed>Persian</breed>
</cat>

Boundary whitespace in direct element constructors
Within a direct element constructor, boundary whitespace is a sequence of
consecutive whitespace characters that is delimited at each end either by the start
or end of the content, or by a direct constructor, or by an enclosed expression.

For example, boundary whitespace might be used in the content of the constructor
to separate the end tag of a direct constructor from the start tag of a nested
element.

The following diagram shows an example of a direct element constructor, with the
boundary whitespace highlighted:

<product>

</product>

<description> </description>{ " enclosed expression " }

86 XQuery Reference

The boundary whitespace in this example includes the following characters: a
newline character and four space characters that occur between the start tags of the
product and description elements; four space characters that occur between the
start tag of the description element and the enclosed expression; four space
characters that occur between the enclosed expression and the end tag of the
description element; and one newline character that appears after the end tag of
the description element.

Boundary whitespace does not include any of the following types of whitespace:
v Whitespace that is generated by an enclosed expression
v Characters that are generated by character references (for example,) or by

CDataSections
v Whitespace characters that are adjacent to a character reference or a

CDataSection

The boundary-space policy controls whether boundary whitespace is preserved by
element constructors. This policy is specified by a boundary-space declaration in
the query prolog. If the boundary-space declaration specifies strip, then boundary
whitespace is discarded. If the boundary-space declaration specifies preserve, then
boundary whitespace is preserved. If no boundary-space declaration is specified,
then the default behavior is to strip boundary whitespace during element
construction.

Examples
v In the following example, the constructed cat element node has two child

element nodes that are named breed and color:
<cat>

<breed>{$b}</breed>
<color>{$c}</color>

</cat>

Because the boundary-space policy is strip by default, the whitespace that
surrounds the child elements will be stripped away by the element constructor.

v In the following example, the boundary-space policy is strip. This example is
equivalent to <a>abc:
declare boundary-space strip;
<a> {"abc"}

v In the following example, however, the boundary-space policy is preserve. This
example is equivalent to <a> abc :
declare boundary-space preserve;
<a> {"abc"}

Because the boundary-space policy is preserve, the spaces that appear before
and after the enclosed expression will be preserved by the element constructor.

v In the following example, the whitespace that surrounds the z is not boundary
whitespace. The whitespace is always preserved, and this example is equivalent
to <a> z abc:
<a> z {"abc"}

v In the following example, the whitespace characters that are generated by the
character reference and adjacent whitespace characters are preserved, regardless
of the boundary-space policy. This example is equivalent to <a> abc:
<a> {"abc"}

v In the following example, the whitespace in the enclosed expression is
preserved, regardless of the boundary-space policy, because whitespace that is

Chapter 4. Expressions 87

generated by an enclosed expression is never considered to be boundary
whitespace. This example is equivalent to <a> :
<a>{" "}

The two spaces in the enclosed expression will be preserved by the element
constructor and will appear between the start tag and the end tag in the result.

In-scope namespaces of a constructed element
A constructed element node has an in-scope namespaces property that consists of a
set of namespace bindings. Each namespace binding associates a namespace prefix
with a URI. The namespace bindings define the set of namespace prefixes that are
available for interpreting QNames within the scope of an element.

Important: To understand this topic, you need to understand the difference
between the following concepts:

Statically known namespaces
Statically known namespaces is a property of an expression. This property
denotes the set of namespace bindings that are used by XQuery to resolve
namespace prefixes during the processing of the expression. These
bindings are not part of the query result.

In-scope namespaces
In-scope namespaces is a property of an element node. This property denotes
the set of namespace bindings that are available to applications outside of
XQuery when the element and its content are processed. These bindings
are serialized as part of the query result so they will be available to outside
applications.

The in-scope namespaces of a constructed element include all of the namespace
bindings that are created in the following ways:
v Explicitly through namespace declaration attributes. A namespace binding is

created for each namespace declaration attribute that is declared in the following
constructors:
– The current element constructor.
– An enclosing direct element constructor (unless the namespace declaration

attribute is overridden by the current element constructor or an intermediate
constructor).

v Automatically by the system. A namespace binding is created in the following
situations:
– To bind the prefix xml to the namespace URI http://www.w3.org/XML/1998/

namespace. This binding is created for every constructed element.
– For each namespace that is used in the name of a constructed element or in

the names of its attributes (unless the namespace binding already exists in the
in-scope namespaces of the element). If the name of the node includes a
prefix, then the prefix is used in the namespace binding. If the name has no
prefix, then a binding is created for the empty prefix. If a conflict arises that
would require two different bindings of the same prefix, then the prefix that
is used in the node name is changed to an arbitrary prefix, and the
namespace binding is created for the arbitrary prefix.

Remember: A prefix that is used in a QName must resolve to a valid URI, or
a binding for that prefix cannot be added to the in-scope namespaces of the
element. If the QName cannot be resolved, the expression results in an error.

88 XQuery Reference

Example

The following query includes a prolog that contains namespace declarations and a
body that contains a direct element constructor:
declare namespace p="http://example.com/ns/p";
declare namespace q="http://example.com/ns/q";
declare namespace f="http://example.com/ns/f";
<p:newElement q:b="{f:func(2)}" xmlns:r="http://example.com/ns/r"/>

The namespace declarations in the prolog add the namespace bindings to the
statically known namespaces of the expression. However, the namespace bindings
are added to the in-scope namespaces of the constructed element only if the
QNames in the constructor use these namespaces. Therefore, the in-scope
namespaces of p:newElement consist of the following namespace bindings:
v p = "http://example.com/ns/p" - This namespace binding is added to the

in-scope namespaces because the prefix p appears in the QName p:newElement.
v q = "http://example.com/ns/q" - This namespace binding is added to the

in-scope namespaces because the prefix q appears in the attribute QName q:b.
v r = "http://example.com/ns/r" - This namespace binding is added to the

in-scope namespaces because it is defined by a namespace declaration attribute.
v xml = "http://www.w3.org/XML/1998/namespace" - This namespace binding is

added to the in-scope namespaces because it is defined for every constructed
element node.

Notice that no binding for the namespace f="http://example.com/ns/f" is added
to the in-scope namespaces. This is because the element constructor does not
include element or attribute names that use the prefix f (even though f:func(2)
appears in the content of the attribute named q:b). Therefore, this namespace
binding does not appear in the query result, even though it is present in the
statically known namespaces and is available for use during processing of the
query.

Computed element constructors
A computed element constructor creates an element node for which the content of
the node is computed based on an enclosed expression.

The result of a computed element constructor is a new element node that has its
own node identity. All of the attribute and descendant nodes of the new element
node are also new nodes that have their own identities, even if they are copies of
existing nodes.

Syntax

�� element ElementName { }
ContentExpression

��

element
A keyword that indicates that an element node will be constructed.

ElementName
The QName of the element to construct. If ElementName includes a namespace
prefix, the prefix is resolved to a namespace URI by using the statically known
namespaces. If ElementName has no namespace prefix, the name is implicitly

Chapter 4. Expressions 89

qualified by the default element/type namespace. The expanded QName that
results from evaluating ElementName becomes the name of the constructed
element node.

ContentExpression
An expression that generates the content of the constructed element node. The
value of ContentExpression can be any sequence of nodes and atomic values.
ContentExpression can be used to compute both the content and the attributes of
the constructed node. For each node that is returned by ContentExpression, a
new copy is made of the node and all of its descendants, which retain their
original type annotations. Any attribute nodes that are returned by
ContentExpression must be at the beginning of the node sequence (before any
other nodes); these attribute nodes become attributes of the constructed
element. Any element, content, or processing instruction nodes that are
returned by ContentExpression become children of the newly constructed node.
Any atomic values that are returned by ContentExpression are converted to
strings and stored in text nodes, which become children of the constructed
node. Adjacent text nodes are merged into a single text node.

Example

In the following expression, a computed element constructor makes a modified
copy of an existing element. Suppose that the variable $e is bound to an element
that has numeric content. This constructor creates a new element named length
that has the same attributes as $e and has numeric content equal to twice the
content of $e:
element length {$e/@*, 2 * fn:data($e)}

In this example, if the variable $e is bound to the expression let $e := <length
units="inches">{5}</length>, then the result of the example expression is the
element <length units="inches">10</length>.

Computed attribute constructors
A computed attribute constructor creates an attribute node for which the attribute
value is computed based on an enclosed expression.

The result of a computed attribute constructor is a new attribute node that has its
own node identity.

Note: To construct an attribute node directly, declare the attribute in a direct
element constructor.

Syntax

�� attribute AttributeName { }
AttributeValueExpression

��

attribute
A keyword that indicates that an attribute node will be constructed.

AttributeName
The QName of the attribute to construct. If AttributeName includes a
namespace prefix, the prefix is resolved to a namespace URI by using the
statically known namespaces. If AttributeName has no namespace prefix, the
attribute is in no namespace. The expanded QName that results from

90 XQuery Reference

evaluating AttributeName becomes the name of the constructed attribute node.
The expanded QName of each attribute in an element must be unique, or the
expression results in an error.

AttributeValueExpression
An expression that generates the value of the attribute node. During
processing, atomization is applied to the result of AttributeValueExpression, and
each atomic value in the resulting sequence is cast to a string. The individual
strings that result from the cast are concatenated with an intervening space
character. The concatenated string becomes the value of the constructed
attribute node.

Example

The following computed attribute constructor constructs an attribute named size
with a value of "7".
attribute size {4 + 3}

Document node constructors
All document node constructors are computed constructors. A document node
constructor creates a document node for which the content of the node is
computed based on an enclosed expression. A document node constructor is useful
when the result of a query is a complete document.

The result of a document node constructor is a new document node that has its
own node identity.

Important: No validation is performed on the constructed document node. The
XQuery document node constructor does not enforce the XML 1.0 rules that
govern the structure of an XML document. For example, a document node is not
required to have exactly one child that is an element node.

Syntax

�� document { ContentExpression } ��

document
A keyword that indicates that a document node will be constructed.

ContentExpression
An expression that generates the content of the constructed document node.
The value of ContentExpression can be any sequence of nodes and atomic values
except for an attribute node. Attribute nodes in the content sequence result in
an error. Document nodes in the content sequence are replaced by their
children. For each node that is returned by ContentExpression, a new copy is
made of the node and all of its descendants, which retain their original type
annotations. Any atomic values that are returned by the content expression are
converted to strings and stored in text nodes, which become children of the
constructed document node. Adjacent text nodes are merged into a single text
node.

Example

The following document node constructor includes a content expression that
returns an XML document that contains a root element named customer-list:

Chapter 4. Expressions 91

document
{
<customer-list>

{db2-fn:xmlcolumn(’MYSCHEMA.CUSTOMER.INFO’)/ns1:customerinfo/name}
</customer-list>
}

Text node constructors
All text node constructors are computed constructors. A text node constructor
creates a text node for which the content of the node is computed based on an
enclosed expression.

The result of a text node constructor is a new text node that has its own node
identity.

Syntax

�� text { ContentExpression } ��

text
A keyword that indicates that a text node will be constructed.

ContentExpression
An expression that generates the content of the constructed text node. During
processing, atomization is applied to the result of ContentExpression, and each
atomic value in the resulting sequence is cast to a string. The individual strings
that result from the cast are concatenated with an intervening space character.
The concatenated string becomes the content of the constructed text node. If
atomization results in an empty sequence, no text node is constructed.

Note: A text node constructor can be used to construct a text node that contains a
zero-length string. However, if this text node is used in the content of a
constructed element or a document node, then the text node is deleted or merged
with another text node.

Example

The following constructor creates a text node that contains the string "Hello":
text {"Hello"}

Processing instruction constructors
Processing instruction constructors create processing instruction nodes. XQuery
provides both direct and computed constructors for creating processing instruction
nodes.

The constructed node has the following node properties:

A target property
Identifies the application to which the processing instruction is directed.

A content property
Specifies the content of the processing instruction.

Direct processing instruction constructors
Direct processing instruction constructors use an XML-like notation to create
processing instruction nodes.

92 XQuery Reference

Syntax

�� <? PITarget ?>
DirPIContents

��

PITarget
An NCName that represents the name of the processing application to which
the processing instruction is directed. The PI target of a processing instruction
cannot consist of the characters "XML" in any combination of uppercase and
lowercase.

DirPIContents
A series of characters that specify the contents of the processing instruction.
The contents of a processing instruction cannot contain the string ?>.

Example

The following constructor creates a processing instruction node:
<?format role="output" ?>

Computed processing instruction constructors
A computed processing instruction constructor creates a processing instruction
node for which the content of the node is computed based on an enclosed
expression.

The result of a computed processing instruction constructor is a new processing
instruction node that has its own node identity.

Syntax

�� processing-instruction PITarget { }
PIContentExpression

��

processing-instruction
A keyword that indicates that a processing instruction node will be
constructed.

PITarget
An NCName that represents the name of the processing application to which
the processing instruction is directed. This name must conform to the format
for NCNames that is specified by Namespaces in XML.

PIContentExpression
An expression that generates the content of the processing instruction node.
During processing, atomization is applied to the result of PIContentExpression,
and each atomic value in the resulting sequence is cast to a string. The
individual strings that result from the cast are concatenated with an
intervening space character. Leading whitespace is removed, and the
concatenated string becomes the content of the processing instruction node. If
atomization results in an empty sequence, the sequence is replaced by a
zero-length string. The content sequence cannot contain the string "?>".

Example

The following computed constructor creates the processing instruction
<?audio-output beep?>:

Chapter 4. Expressions 93

processing-instruction audio-output {"beep"}

Comment constructors
Comment constructors create comment nodes. XQuery provides both direct and
computed constructors for creating comment nodes.

Direct comment constructors
Direct comment constructors use an XML-like notation to create comment nodes.

Syntax

�� <!-- DirCommentContents --> ��

DirCommentContents
A series of characters that specify the contents of the comment. The contents of
a comment cannot contain two consecutive hyphens or end with a hyphen.

Example

The following constructor creates a comment node:
<!-- This is an XML comment. -->

Computed comment constructors
A computed comment constructor creates a comment node for which the content
of the node is computed based on an enclosed expression.

The result of a computed comment constructor is a new comment node that has its
own node identity.

Syntax

�� comment { CommentContents } ��

comment
A keyword that indicates that a comment node will be constructed.

CommentContents
An expression that generates the content of the comment. During processing,
atomization is applied to the result of CommentContents, and each atomic value
in the atomized sequence is cast to a string. The individual strings that result
from the cast are concatenated with an intervening space character. If
atomization results in an empty sequence, the sequence is replaced by a
zero-length string. The content sequence cannot contain two adjacent hyphens
or end with a hyphen.

Example

The following computed constructor creates the comment <!--Houston, we have a
problem.-->:
let $homebase := "Houston"
return comment {fn:concat($homebase, ", we have a problem.")}

94 XQuery Reference

FLWOR expressions
FLWOR expressions iterate over sequences and bind variables to intermediate
results. FLWOR expressions are useful for computing joins between two or more
documents, restructuring data, and sorting the result.

Syntax of FLWOR expressions
A FLWOR expression is composed of the following clauses, some of which are
optional: for, let, where, order by, and return.

�� � for clause
let clause where Expression

�

�

�

,
ascending

order by Expression
descending

return Expression ��

for clause:

�

,

for $VariableName in Expression
at $PositionalVariableName

let clause:

�

,

let $VariableName := Expression

for
The keyword that begins a for clause. A for clause iterates over the result of
Expression and binds VariableName to each item that is returned by Expression.

let
The keyword that begins a let clause. A let clause binds VariableName to the
entire result of Expression.

VariableName
The name of the variable to bind to the result of Expression.

PositionalVariableName
The name of an optional variable that is bound to the position within the input
stream of the item that is bound by each iteration of the for clause.

Expression
Any XQuery expression. If the expression includes a top-level comma operator,
then the expression must be enclosed in parentheses.

Chapter 4. Expressions 95

where
The keyword that begins a where clause. A where clause filters the tuples of
variable bindings that are generated by the for and let clauses.

order by
The keywords that begin an order by clause. An order by clause specifies the
order in which values are processed by the return clause.

ascending
Specifies that ordering keys are processed in ascending order.

descending
Specifies that ordering keys are processed in descending order.

return
The keyword that begins a return clause. The expression in the return clause
is evaluated once for each tuple of bound variables that is generated by the
for, let, where, and order by clauses. If the return clause contains a
non-updating expression, the FLWOR expression is a non-updating expression.
The results of all of the evaluations of the return clause are concatenated into a
single sequence, which is the result of the FLWOR expression.

If the return clause contains an updating expression, the FLWOR expression is
an updating expression. An updating FLWOR expression must be specified
within the modify clause of a transform expression. The result of the updating
FLWOR expression is a list of updates. The containing transform expression
performs the updates after merging them with other updates returned by other
updating expressions within the modify clause of the transform expression.

for and let clauses
A for or let clause in a FLWOR expression binds one or more variables to values
that will be used in other clauses of the FLWOR expression.

for clauses
A for clause iterates through the result of an expression and binds a variable to
each item in the sequence.

The simplest type of for clause contains one variable and an associated expression.
In the following example, the for clause includes a variable called $i and an
expression that constructs the sequence (1, 2, 3):
for $i in (1, 2, 3)
return <output>{$i}</output>

When the for clause is evaluated, three variable bindings are created (one binding
for each item in the sequence):
$i = 1
$i = 2
$i = 3

The return clause in the example executes once for each binding. The expression
results in the following output:
<output>1</output>
<output>2</output>
<output>3</output>

A for clause can contain multiple variables, each of which is bound to the result of
an expression. In the following example, a for clause contains two variables, $a
and $b, and expressions that construct the sequences 1 2 and 4 5:

96 XQuery Reference

for $a in (1, 2), $b in (4, 5)
return <output>{$a, $b}</output>

When the for clause is evaluated, a tuple of variable bindings is created for each
combination of values. This results in four tuples of variable bindings:
($a = 1, $b = 4)
($a = 2, $b = 4)
($a = 1, $b = 5)
($a = 2, $b = 5)

The return clause in the example executes once for each tuple of bindings. The
expression results in the following output:
<output>1 4</output>
<output>2 4</output>
<output>1 5</output>
<output>2 5</output>

When the binding expression evaluates to an empty sequence, no for binding is
generated, and no iteration is performed. In the following example, the binding
sequence evaluates to an empty sequence and no iteration is performed. The node
sequence in the return clause is not returned.
for $node in (, ,)[@test = "1"]
return

<test>
Sample return response

</test>

Positional variables in for clauses

Each variable that is bound in a for clause can have an associated positional
variable that is bound at the same time. The name of the positional variable is
preceded by the keyword at. When a variable iterates over the items in a
sequence, the positional variable iterates over the integers that represent the
positions of those items in the sequence, starting with 1.

In the following example, the for clause includes a variable called $cat and an
expression that constructs the sequence ("Persian", "Calico", "Siamese"). The
clause also includes the positional variable $i, which is referenced in an attribute
constructor to compute the value of the order attribute:
for $cat at $i in ("Persian", "Calico", "Siamese")
return <cat order = "{$i}"> { $cat } </cat>

When the for clause is evaluated, three tuples of variable bindings are created,
each of which includes a binding for the positional variable:
($i = 1, $cat = "Persian")
($i = 2, $cat = "Calico")
($i = 3, $cat = "Siamese")

The return clause in the example executes once for each tuple of bindings. The
expression results in the following output:
<cat order = "1">Persian</cat>
<cat order = "2">Calico</cat>
<cat order = "3">Siamese</cat>

Although each output element contains an order attribute, the actual order of the
elements in the output stream is not guaranteed unless the FLWOR expression
contains an order by clause such as order by $i. The positional variable represents
the ordinal position of a value in the input sequence, not in the output sequence.

Chapter 4. Expressions 97

let clauses
A let clause binds a variable to the entire result of an expression. A let clause does
not perform any iteration.

The simplest type of let clause contains one variable and an associated expression.
In the following example, the let clause includes a variable called $j and an
expression that constructs the sequence (1, 2, 3).
let $j := (1, 2, 3)
return <output>{$j}</output>

When the let clause is evaluated, a single binding is created for the entire
sequence that results from evaluating the expression:
$j = 1 2 3

The return clause in the example executes once. The expression results in the
following output:
<output>1 2 3</output>

A let clause can contain multiple variables. However, unlike a for clause, a let
clause binds each variable to the result of its associated expression, without
iteration. In the following example, a let clause contains two variables, $a and $b,
and expressions that construct the sequences 1 2 and 4 5:
let $a := (1, 2), $b := (4, 5)
return <output>{$a, $b}</output>

When the let clause is evaluated, one tuple of variable bindings is created:
($a = 1 2, $b = 4 5)

The return clause in the example executes once for the tuple. The expression
results in the following output:
<output>1 2 4 5</output>

When the binding expression evaluates to an empty sequence, a let binding is
created, which contains the empty sequence.

for and let clauses in the same expression
When a FLWOR expression contains both for and let clauses, the variable
bindings that are generated by let clauses are added to the variable bindings that
are generated by the for clauses.

In the following example, the for clause includes a variable called $a and an
expression that constructs the sequence (1, 2, 3). The let clause includes a
variable called $b and an expression that constructs the sequence (4, 5, 6):
for $a in (1, 2, 3)
let $b := (4, 5, 6)
return <output>{$a, $b}</output>

The for and let clauses in this example result in three tuples of bindings. The
number of tuples is determined by the for clause.
($a = 1, $b = 4 5 6)
($a = 2, $b = 4 5 6)
($a = 3, $b = 4 5 6)

The return clause in the example executes once for each tuple of bindings. The
expression results in the following output:

98 XQuery Reference

<output>1 4 5 6</output>
<output>2 4 5 6</output>
<output>3 4 5 6</output>

for and let clauses compared
Although for and let clauses both bind variables, the manner in which variables
are bound is different.

The following table provides examples that compare the results that are returned
by FLWOR expressions that contain similar for and let clauses.

Table 31. Comparison of for and let clauses in FLWOR expressions

Description of query FLWOR expression Result

Bind a single variable
using for

for $i in ("a", "b", "c")
return <output>{$i}</output>

<output>a</output>
<output>b</output>
<output>c</output>

Bind a single variable
using let

let $i := ("a", "b", "c")
return <output>{$i}</output>

<output>a b c</output>

Bind multiple variables
using for

for $i in ("a", "b"), $j in ("c", "d")
return <output>{$i, $j}</output>

<output>a c</output>
<output>b c</output>
<output>a d</output>
<output>b d</output>

Bind multiple variables
using let

let $i := ("a", "b"), $j := ("c", "d")
return <output>{$i, $j}</output>

<output>a b c d</output>

Note: Because the expressions in this table do not include order by clauses, the order of the output elements is
non-deterministic.

Variable scope in for and let clauses
A variable that is bound in a for or let clause is in scope for all of the
sub-expressions of the FLWOR expression that appear after the variable binding.

This means that a for or let clause can reference variables that are bound in
earlier clauses or in earlier bindings in the same clause.

In the following example, a FLWOR expression has the following clauses:
v A let clause that binds the variable $orders.
v A for clause that references $orders and binds the variable $i.
v Another let clause that references both $orders and $i and binds the variable

$c.

The example finds all of the distinct item numbers in a set of orders, and returns
the number of orders for each distinct item number.
let $orders := db2-fn:xmlcolumn("ORDERS.XMLORDER")
for $i in fn:distinct-values($orders/order/itemno)
let $c := fn:count($orders/order[itemno = $i])
return
<ordercount>

<itemno> {$i} </itemno>
<count> {$c} </count>

</ordercount>

Important: The for and let clauses of a FLWOR expression cannot bind the same
variable name more than once.

Chapter 4. Expressions 99

where clauses
A where clause in a FLWOR expression filters the tuples of variable bindings that
are generated by the for and let clauses.

The where clause specifies a condition that is applied to each tuple of variable
bindings. If the condition is true (that is, if the expression results in an effective
Boolean value of true), then the tuple is retained, and its bindings are used when
the return clause executes. Otherwise, the tuple is discarded.

In the following example, the for clause binds the variables $x and $y to sequences
of numeric values:
for $x in (1.5, 2.6, 1.9), $y in (.5, 1.6, 1.7)
where ((fn:floor($x) eq 1) and (fn:floor($y) eq 1))
return <output>{$x, $y}</output>

When the for clause is evaluated, nine tuples of variable bindings are created:
($x = 1.5, $y = .5)
($x = 2.6, $y = .5)
($x = 1.9, $y = .5)
($x = 1.5, $y = 1.6)
($x = 2.6, $y = 1.6)
($x = 1.9, $y = 1.6)
($x = 1.5, $y = 1.7)
($x = 2.6, $y = 1.7)
($x = 1.9, $y = 1.7)

The where clause filters these tuples, and the following tuples are retained:
($x = 1.5, $y = 1.6)
($x = 1.9, $y = 1.6)
($x = 1.5, $y = 1.7)
($x = 1.9, $y = 1.7)

The return clause executes once for each remaining tuple, and the expression
results in the following output:
<output>1.5 1.6</output>
<output>1.9 1.6</output>
<output>1.5 1.7</output>
<output>1.9 1.7</output>

Because the expression in this example does not include an order by clause, the
order of the output elements is non-deterministic.

order by clauses
An order by clause in a FLWOR expression specifies the order in which values are
processed by the return clause. If no order by clause is present, the results of a
FLWOR expression are returned in a non-deterministic order.

An order by clause contains one or more ordering specifications. Ordering
specifications are used to reorder the tuples of variable bindings that are retained
after being filtered by the where clause. The resulting order determines the order in
which the return clause is evaluated.

Each ordering specification consists of an expression, which is evaluated to
produce an ordering key, and an order modifier, which specifies the sort order
(ascending or descending) for the ordering keys. The relative order of two tuples is
determined by comparing the values of their ordering keys as strings, working
from left to right.

100 XQuery Reference

In the following example, a FLWOR expression includes an order by clause that
sorts products in descending order based on their price:
<price_list>{

for $prod in db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)/product/description
order by xs:decimal($prod/price) descending
return
<product>{$prod/name, $prod/price}</product>}

</price_list>

During processing of the order by clause, the expression in the ordering
specification is evaluated for each tuple that is generated by the for clause. For the
first tuple, the value that is returned by the expression xs:decimal($prod/price) is
9.99. The expression is then evaluated for the next tuple, and the expression
returns the value 19.99. Because the ordering specification indicates that items are
sorted in descending order, the product with the price 19.99 sorts before the
product with the price 9.99. This sorting process continues until all tuples are
reordered. The return clause then executes once for each tuple in the reordered
tuple stream.

When run against the PRODUCT.DESCRIPTION table of the SAMPLE database,
the query in the example returns the following result:
<price_list>

<product>
<name>Snow Shovel, Super Deluxe 26"</name>
<price>49.99</price>

</product>
<product>

<name>Snow Shovel, Deluxe 24"</name>
<price>19.99</price></product>

<product>
<name>Snow Shovel, Basic 22"</name>
<price>9.99</price>

</product>
<product>

<name>Ice Scraper, Windshield 4" Wide</name>
<price>3.99</price>

</product>
</price_list>

In this example, the expression in the ordering specification constructs an
xs:decimal value from the value of the price element. This type conversion is
necessary because the type of the price element is xdt:untypedAtomic. Without
this conversion, the result would use string ordering rather than numeric ordering.

Tip: You can use an order by clause in a FLWOR expression to specify value
ordering in a query that would otherwise not require iteration. For example, the
following path expression returns a list of customerinfo elements with a customer
ID (Cid) that is greater than 1000:
db2-fn:xmlcolumn(’CUSTOMER.INFO’)/customerinfo[@Cid > "1000"]

To return these items in ascending order by the name of the customer, however,
you would need to specify a FLWOR expression that includes an order by clause:
for $custinfo in db2-fn:xmlcolumn(’CUSTOMER.INFO’)/customerinfo
where ($custinfo/@Cid > "1000")
order by $custinfo/name ascending
return $custinfo

Chapter 4. Expressions 101

The ordering key does not need be part of the output. The following query
produces a list of product names, in descending order by price, but does not
include the price in the output:
for $prod in db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)/product
order by xs:decimal($prod/description/price) descending
return $prod/name

Rules for comparing ordering specifications

The process of evaluating and comparing ordering specifications is based on the
following rules:
v The expression in the ordering specification is evaluated and atomization is

applied to the result. The result of atomization must be either a single atomic
value or an empty sequence; otherwise an error is returned. The result of
evaluating an ordering specification is called an ordering key.

v If the type of an ordering key is xdt:untypedAtomic, then that key is cast to the
type xs:string. Consistently treating untyped values as strings enables the sorting
process to begin without complete knowledge of the types of all of the values to
be sorted.

v If the values that are generated by an ordering specification are not all of the
same type, these values (keys) are converted to a common type by subtype
substitution or type promotion. Keys are compared by converting them to the
least common type that supports the gt operator. For example, if an ordering
specification generates a list of keys that includes both xs:anyURI values and
xs:string values, the keys are compared by using the gt operator of the xs:string
type. If the ordering keys that are generated by a given ordering specification do
not have a common type that supports the gt operator, an error results.

v The values of the ordering keys are used to determine the order in which tuples
of bound variables are passed to the return clause for execution. The ordering of
tuples is determined by comparing their ordering keys, working from left to
right, by using the following rules:
– If the sort order is ascending, tuples with ordering keys that are greater than

other tuples sort after those tuples.
– If the sort order is descending, tuples with ordering keys that are greater than

other tuples sort before those tuples.
The greater-than relationship for ordering keys is defined as follows:
– An empty sequence is greater than all other values.
– NaN is interpreted as greater than all other values except the empty

sequence.
– A value is greater than another value if, when the value is compared to

another value, the gt operator returns true.
– Neither of the special floating-point values positive zero or negative zero is

greater than the other because +0.0 gt -0.0 and -0.0 gt +0.0 are both false.

Note: Tuples whose ordering key is empty appear at the end of the output
stream if the ascending option, which is the default, is specified, or at the
beginning of the output stream if the descending option is specified.

return clauses
A return clause generates the result of the FLWOR expression.

The return clause is evaluated once for each tuple of variable bindings that is
generated by the other clauses of the FLWOR expression. The order in which

102 XQuery Reference

tuples of bound variables are processed by the return clause is non-deterministic
unless the FLWOR expression contains an order by clause.

If the expression in the return clause is a non-updating expression, the results of
all the return clause evaluations are concatenated to form the result of the
non-updating FLWOR expression.

If the expression in the return clause is an updating expression, the result of all
the return clause evaluations is a list of updates. The transform expression that
contains the FLWOR expression performs the updates after merging them with
updates returned by other updating expressions within the modify clause of the
transform expression.

Tip: In return clauses, use parentheses to enclose expressions that contain
top-level comma operators. Because FLWOR expressions have a higher precedence
than the comma operator, expressions that contain top-level comma operators
could result in errors or unexpected results if parentheses are not used.

FLWOR examples
These examples show to how to use FLWOR expressions in complete queries to
perform joins, grouping, and aggregation.

FLWOR expression that joins XML data

The following query joins XML data from the PRODUCT and PURCHASEORDER
tables in the SAMPLE database to list the names of products ordered in purchase
orders placed in 2005.

Because the elements in both the product documents and the PurchaseOrder
documents are in the same namespace, the query begins by declaring a default
namespace so that the element names in the query do not need prefixes. The for
clause iterates over the PURCHASEORDER.PORDER column, specifically for
purchase orders with OrderDate attribute value that starts with "2005". For each
purchase order, the let clause assigns the partid values to the $parts variable. The
return clause then lists the names of the products that are included in the
purchase order.
for $po in db2-fn:xmlcolumn(’PURCHASEORDER.PORDER’)

/PurchaseOrder[fn:starts-with(@OrderDate, "2005")]
let $parts := $po/item/partid
return
<ProductList PoNum = "{$po/@PoNum}">

{ db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)
/product[@pid = $parts]/description/name }

</ProductList>

The query returns the following result:
<ProductList PoNum="5001">

<name>Snow Shovel, Deluxe 24 inch</name>
<name>Snow Shovel, Super Deluxe 26 inch</name>
<name>Ice Scraper, Windshield 4 inch</name>

</ProductList>
<ProductList PoNum="5003">

<name>Snow Shovel, Basic 22 inch</name>
</ProductList>
<ProductList PoNum="5004">

<name>Snow Shovel, Basic 22 inch</name>
<name>Snow Shovel, Super Deluxe 26 inch</name>

</ProductList>

Chapter 4. Expressions 103

FLWOR expression that groups elements

The following query groups customer names in the CUSTOMER table of the
SAMPLE database by city. The for clause iterates over the customerinfo documents
and binds each city element to the variable $city. For each city, the let clause binds
the variable $cust-names to an unordered list of all the customer names in that city.
The query returns city elements that each contain the name of a city and the
nested name elements of all of the customers who live in that city.
for $city in fn:distinct-values(db2-fn:xmlcolumn(’CUSTOMER.INFO’)

/customerinfo/addr/city)
let $cust-names := db2-fn:xmlcolumn(’CUSTOMER.INFO’)

/customerinfo/name[../addr/city = $city]
order by $city
return <city>{$city, $cust-names} </city>

The query returns the following result:
<city>Aurora

<name>Robert Shoemaker</name>
</city>
<city>Markham

<name>Kathy Smith</name>
<name>Jim Noodle</name>

</city>
<city>Toronto

<name>Kathy Smith</name>
<name>Matt Foreman</name>
<name>Larry Menard</name>

</city>

FLWOR expression that aggregates data

The following query returns the total revenue generated by each purchase order in
2005 and creates an HTML report.

The query iterates over each PurchaseOrder element with an order date in 2005
and binds the element to the variable $po in the for clause. The path expression
$po/item/ then moves the context position to each item element within a
PurchaseOrder element. The nested expression (price * quantity) determines the
total revenue for that item. The fn:sum function adds the resulting sequence of
total revenue for each item. The let clause binds the result of the fn:sum function
to the variable $revenue. The order by clause sorts the results by total revenue for
each purchase order. Finally, the return clause creates a row in the report table for
each purchase order.
<html>
<body>
<h1>PO totals</h1>
<table>
<thead>

<tr>
<th>PO Number</th>
<th>Status</th>
<th>Revenue</th>

</tr>
</thead>
<tbody>{

for $po in db2-fn:xmlcolumn(’PURCHASEORDER.PORDER’)/
PurchaseOrder[fn:starts-with(@OrderDate, "2005")]

let $revenue := sum($po/item/(price * quantity))
order by $revenue descending
return

<tr>

104 XQuery Reference

<td>{string($po/@PoNum)}</td>
<td>{string($po/@Status)}</td>
<td>{$revenue}</td>

</tr>
}
</tbody>
</table>
</body>
</html>

The query returns the following result:
<html>
<body>
<h1>PO totals</h1>
<table>
<thead>

<tr>
<th>PO Number</th>
<th>Status</th>
<th>Revenue</th>

</tr>
</thead>
<tbody>

<tr>
<td>5004</td>
<td>Shipped</td>
<td>139.94</td>

</tr>
<tr>

<td>5001</td>
<td>Shipped</td>
<td>123.96</td>

</tr>
<tr>

<td>5003</td>
<td>UnShipped</td>
<td>9.99</td>

</tr>
</tbody>
</table>
</body>
</html>

When viewed in a browser, the query output would look similar to the following
table:

Table 32. PO totals

PO Number Status Revenue

5004 Shipped 139.94

5001 Shipped 123.96

5003 Unshipped 9.99

FLWOR expression that updates XML data

The following example uses the CUSTOMER table from the DB2 SAMPLE
database. In the CUSTOMER table, the XML column INFO contains customer
address and phone information.

Chapter 4. Expressions 105

The transform expression creates a copy of an XML document containing customer
information. In the modify clause, the FLWOR expression and the rename
expression change all instances of the node name phone to the name
phonenumber:
xquery
transform

copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1003’)
modify

for $phone in $mycust/customerinfo/phone
return

do rename $phone as "phonenumber"
return $mycust

When run against the SAMPLE database, the expression changes the node name
phone to phonenumber and returns the following result:
<customerinfo Cid="1003">

<name>Robert Shoemaker</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Aurora</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X 7F8</pcode-zip>

</addr>
<phonenumber type="work">905-555-7258</phonenumber>
<phonenumber type="home">416-555-2937</phonenumber>
<phonenumber type="cell">905-555-8743</phonenumber>
<phonenumber type="cottage">613-555-3278</phonenumber>

</customerinfo>

Conditional expressions
Conditional expressions use the keywords if, then, and else to evaluate one of
two expressions based on whether the value of a test expression is true or false.

Syntax

�� if (TestExpression) then Expression else Expression ��

if The keyword that directly precedes the test expression.

TestExpression
An XQuery expression that determines which part of the conditional
expression to evaluate.

then
If the effective Boolean value of TestExpression is true, then the expression that
follows this keyword is evaluated. The expression is not evaluated or checked
for errors if the effective Boolean value of the test expression is false.

else
If the effective Boolean value of TestExpression is false, then the expression that
follows this keyword is evaluated. The expression is not evaluated or checked
for errors if the effective Boolean value of the test expression is true.

Expression
Any XQuery expression. If the expression includes a top-level comma operator,
then the expression must be enclosed in parentheses.

If either the then or else condition branch contains an updating expression,
then the conditional expression is an updating expression. An updating
expression must be within the modify clause of a transform expression.

106 XQuery Reference

For an updating conditional expression, each branch must contain either an
updating expression or an empty sequence. Based on the value of the test
expression, either the then or else clause is selected and evaluated. The result
of the conditional updating expression is a list of updates returned by the
selected branch. The containing transform expression performs the updates
after merging them with updates returned by other updating expressions
within the modify clause of the transform expression.

Example

In the following example, the query constructs a list of product elements that
include an attribute named basic. The value of the basic attribute is specified
conditionally based on whether the value of the price element is less than 10:
for $prod in db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)/product/description
return (
if (xs:decimal($prod/price) < 10)

then <product basic = "true">{fn:data($prod/name)}</product>
else <product basic = "false">{fn:data($prod/name)}</product>)

The query returns the following result:
<product basic="true">Snow Shovel, Basic 22"</product>
<product basic="false">Snow Shovel, Deluxe 24"</product>
<product basic="false">Snow Shovel, Super Deluxe 26"</product>
<product basic="true">Ice Scraper, Windshield 4" Wide</product>

In this example, the test expression constructs an xs:decimal value from the value
of the price element. The xs:decimal function is used to force a decimal
comparison.

Quantified expressions
Quantified expressions return true if some or every item in one or more sequences
satisfies a specific condition. The value of a quantified expression is always true or
false.

A quantified expression begins with a quantifier (some or every) that indicates
whether the expression performs existential or universal quantification. The
quantifier is followed by one or more clauses that bind variables to items that are
returned by expressions. The bound variables are then referenced in a test
expression to determine if some or all of the bound values satisfy a specific
condition.

Syntax

�� �

,

some $VariableName in Expression satisfies TestExpression
every

��

some
When this keyword is specified, the quantified expression returns true if the
effective boolean value of TestExpression is true for at least one item that is
returned by Expression. Otherwise, the quantified expression returns false.

every
When this keyword is specified, the quantified expression returns true if the

Chapter 4. Expressions 107

effective boolean value of TestExpression is true for every item that is returned
by Expression. Otherwise, the quantified expression returns false.

VariableName
The name of the variable to bind to each item in the result of Expression.
Variables that are bound in a quantified expression are in scope for all of the
sub-expressions that appear after the variable binding in the quantified
expression.

Expression
Any XQuery expression. If the expression includes a top-level comma operator,
then the expression must be enclosed in parentheses.

satisfies
The keyword that directly precedes the test expression

TestExpression
An XQuery expression that specifies the condition that must be met by some
or every item in the sequences returned by Expression.

Note: When errors occur, the result of a quantified comparison can be either a
boolean value or an error.

Examples
v The quantified expression in the following example returns true if every

customer in the CUSTOMER.INFO column of the SAMPLE database has an
address in Canada:
every $cust in db2-fn:xmlcolumn(’CUSTOMER.INFO’)/customerinfo
satisfies $cust/addr/@country = "Canada"

v In the following examples, each quantified expression evaluates its test
expression for every combination of values that are bound to the variables a and
b (there are nine combinations in all).
The result of the following expression is true:
some $a in (3, 5, 9), $b in (1, 3, 5)
satisfies $a * $b = 27

The result of the following expression is false:
every $a in (3, 5, 9), $b in (1, 3, 5)
satisfies $a * $b = 27

v The following example demonstrates that the result of a quantified expression is
not deterministic in the presence of errors. The expression can either return true
or an error because the test expression returns true for one variable binding and
returns an error for another:
some $a in (3, 5, "six") satisfies $a * 3 = 9

Likewise, the following expression can return false or an error:
every $a in (3, 5, "six") satisfies $a * 3 = 9

Cast expressions
A cast expression creates a new value of a specific type based on an existing value.

A cast expression takes two operands: an input expression and a target type. When
the cast expression is evaluated, atomization is used to convert the result of the
input expression into an atomic value or an empty sequence. If atomization results
in a sequence of more than one atomic value, an error is returned. If no errors are
returned, the cast expression attempts to create a new value of the target type that

108 XQuery Reference

is based on the input value. Some combinations of input and target types are not
supported for casting. For information about which types can be cast to which
other types, see “Type casting” on page 24. When casting a value to a data type,
you can use the castable expression to test whether the value can be cast to the
data type.

An empty sequence is a valid input value only when the target type is followed by
a question mark (?).

If the target type of a cast expression is xs:QName or is a type derived from
xs:QName or xs:NOTATION, and input expression is of type xs:string but it is not
a literal string, an error is returned.

Syntax

�� Expression cast as TargetType
?

��

Expression
Any XQuery expression that returns a single atomic value or an empty
sequence. An empty sequence is allowed when TargetType is followed by a
question mark (?).

TargetType
The type to which the value of Expression is cast. TargetType must be an atomic
type that is in the predefined atomic XML schema types. The data types
xs:NOTATION, xdt:anyAtomicType, and xs:anySimpleType are not valid types
for TargetType.

? Indicates that the result of Expression can be an empty sequence.

Example

In the following example, a cast expression is used to cast the value of the price
element, which has the type xs:string, to the type xs:decimal:
for $price in db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)/product/description/price
return $price cast as xs:decimal

When run against the PRODUCT.DESCRIPTION table of the SAMPLE database,
the query in the example returns the following result:
9.99
19.99
49.99
3.99

Castable expressions
Castable expressions test whether a value can be cast to a specific data type. If the
value can be cast to the data type, the castable expression returns true. Otherwise,
the expression returns false.

Castable expressions can be used as predicates to avoid cast errors at evaluation
time. They can also be used to select an appropriate type for processing a value.
For information about which types can be cast to which other types, see “Type
casting” on page 24.

Chapter 4. Expressions 109

Syntax

�� Expression castable as TargetType
?

��

Expression
An XQuery expression that returns a single atomic value or an empty
sequence.

TargetType
The type used to test if the value of Expression can be cast. TargetType must be
an atomic type that is one of the predefined XML schema types. The data types
xs:NOTATION, xdt:anyAtomicType, and xs:anySimpleType are not valid types
for TargetType.

? Indicates that an empty sequence is considered a valid instance of the target
type. If Expression evaluates to an empty sequence and ? is not specified, the
castable expression returns False.

Returned value

If Expression can be cast to TargetType, the castable expression returns true.
Otherwise, the expression returns false.

If the result of Expression is an empty sequence and the question mark indicator
follows TargetType, the castable expression returns true. In the following example,
the question mark indicator follows the target type xs:integer.
$prod/revision castable as xs:integer?

If TargetType of a castable expression is xs:QName, or a type derived from
xs:QName or xs:NOTATION, and Expression is of type xs:string but it is not a
literal string, the returned value of the castable expression is false.

If the result of Expression is a sequence of more than one atomic value, an error is
returned.

Examples

The following example uses the castable expression as a predicate to avoid errors
at evaluation time. The following example avoids a dynamic error if @OrderDate is
not a valid date.
$po/orderID[if ($po/@OrderDate castable as xs:date)

then xs:date($po/@OrderDate) gt xs:date("2000-01-01")
else false()]

The predicate is true and returns the orderID only if the date attribute is a valid
date greater than January 1, 2000. Otherwise, the predicate is false and returns an
empty sequence.

The following example uses the castable expression to select an appropriate type
for processing of a given value. The example uses castable to cast a postal code as
either an integer or a string:
if ($postalcode castable as xs:integer)

then $postalcode cast as xs:integer
else $postalcode cast as xs:string

110 XQuery Reference

The following example uses the castable expression in the FLWOR let clause to
test the value of $prod/mfgdate and bind a value to $currdate. The castable
expression and the cast expression support processing an empty sequence using
the question mark indicator.
let $currdate := if ($prod/mfgdate castable as xs:date?)

then $prod/mfgdate cast as xs:date?
else "1000-01-01" cast as xs:date

If the value of $prod/mfgdate can be cast as xs:date, it is cast to the data type and
is bound to $currdate. If $prod/mfgdate is an empty sequence, an empty sequence
is bound to $currdate. If $prod/mfgdate cannot be cast as xs:date, a value of
1000-01-01 of type xs:date is bound to $currdate.

The following example uses the castable expression to test the value of the product
category before performing a comparison. In the XML column FEATURES.INFO,
the documents contain the element /prod/category. The value is either a numeric
code or string code. The castable expressions in the XMLEXISTS predicate tests the
value of /prod/category before performing a comparison to avoid errors at
evaluation time.
SELECT F.PRODID FROM F FEATURES
WHERE xmlexists(’$test/prod/category[((. castable as xs:double) and . > 100) or

((. castable as xs:string) and . > "A100")]’
passing F.INFO as "test")

The returned values are product IDs where the category codes are either greater
than the number 100 or greater than the string "A100."

Transform expression and updating expressions
To update existing XML data with DB2 XQuery, use updating expressions within
the modify clause of a transform expression.

Use of updating expressions in a transform expression
DB2 XQuery updating expressions must be used in the modify clause of a
transform expression. The updating expressions operate on the copied nodes
created by the copy clause of the transform expression.

The following expressions are updating expressions:
v A delete expression
v An insert expression
v A rename expression
v A replace expression
v A FLWOR expression that contains an updating expression in its return clause
v A conditional expression that contains an updating expression in its then or else

clause
v Two or more updating expressions, separated by commas where all operands are

either updating expressions or an empty sequence

DB2 XQuery returns an error for updating expressions that are not valid. For
example, DB2 XQuery returns an error if one branch of a conditional expression
contains an updating expression and the other branch contains a non-updating
expression that is not the empty sequence.

Chapter 4. Expressions 111

A transform expression is not an updating expression, because it does not modify
any existing nodes. A transform expression creates modified copies of existing
nodes. The result of a transform expression can include nodes created by updating
expressions in the modify clause of the transform expression and copies of
previously existing nodes.

Processing XQuery updating operations

In a transform expression, the modify clause can specify multiple updates. For
example, the modify clause can contain two updating expressions, one expression
that replaces an existing value, and the other expression that inserts a new
element. When the modify clause contains multiple updating expressions, each
updating expression is evaluated independently and results in a list of change
operations associated with specific nodes that were created by the copy clause of
the transform expression.

Within a modify clause, updating expressions cannot modify new nodes that are
added by other updating expressions. For example, if an updating expression adds
a new element node, another updating expression cannot change the node name of
the newly created node.

All the change operations specified in the modify clause of the transform
expression are collected and effectively applied in the following order:
1. The following updating operations are performed in a nondeterministic order:

v Insert operations that do not use ordering keywords such as before, after,
as first, or as last.

v All rename operations.
v Replace operations where the keywords value of are specified and the target

node is an attribute, text, comment, or processing instruction node.
2. Insert operations that use ordering keywords such as before, after, as first,

or as last.
3. Replace operations where the keywords value of are not specified.
4. Replace operations where the keywords value of are specified and the target

node is an element node.
5. All delete operations.

The order in which change operations are applied ensures that a series of multiple
changes will have a deterministic result. For an example of how the order of
update operations guarantees that a series of multiple changes will have a
deterministic result, see the last XQuery expression in “Examples” on page 113.

Invalid XQuery updating operations

During processing of a transform expression, DB2 XQuery returns an error if any
of the following conditions occur:
v Two or more rename operations are applied to the same node.
v Two or more replace operations that use the value of keywords are applied to

the same node.
v Two or more replace operations that don't use the value of keywords are

applied to the same node.
v The result of the transform expression is not a valid XDM instance.

An example of an invalid XDM instance is one that contains an element with
two attributes where both attributes have the same name.

112 XQuery Reference

v The XDM instance contains inconsistent namespace bindings.
The following are examples of inconsistent namespace bindings:
– A namespace binding in the QName of an attribute node does not agree with

the namespace bindings in its parent element node.
– The namespace bindings in two attribute nodes with the same parent do not

agree with each other.

Examples

In the following example, the copy clause of a transform expression binds the
variable $product to a copy of an element node, and the modify clause of the
transform expression uses two updating expressions to change the copied node:
xquery
transform
copy $product := db2-fn:sqlquery(

"select description from product where pid=’100-100-01’")/product
modify(

do replace value of $product/description/price with 349.95,
do insert <status>Available</status> as last into $product)

return $product

The following example uses an XQuery transform expression within an SQL
UPDATE statement to modify XML data in the CUSTOMER table. The SQL
UPDATE statement operates on a row of the CUSTOMER table. The transform
expression creates a copy of the XML document from the INFO column of the row,
and adds a status element to the copy of the document. The UPDATE statement
replaces the document in the INFO column of the row with the copy of the
document modified by the transform expression:
UPDATE customer
SET info = xmlquery(’transform

copy $newinfo := $info
modify do insert <status>Current</status> as last into $newinfo/customerinfo
return $newinfo’ passing info as "info")

WHERE cid = 1003

The following examples use the CUSTOMER table from the DB2 SAMPLE
database. In the CUSTOMER table, the XML column INFO contains customer
address and phone information.

In the following example, the SQL SELECT statement operates on a row of the
CUSTOMER table. The copy clause of the transform expression creates a copy of
the XML document from the column INFO. The delete expression deletes address
information, and non-work phone numbers, from the copy of the document. The
return uses the customer ID attribute and country attribute from the original
document from the CUSTOMER table:
SELECT XMLQUERY(’transform

copy $mycust := $d
modify

do delete ($mycust/customerinfo/addr,
$mycust/customerinfo/phone[@type != "work"])

return
<custinfo>

<Cid>{data($d/customerinfo/@Cid)}</Cid>
{$mycust/customerinfo/*}
<country>{data($d/customerinfo/addr/@country)}</country>

</custinfo>’
passing INFO as "d")

FROM CUSTOMER
WHERE CID = 1003

Chapter 4. Expressions 113

When run against the SAMPLE database, the statement returns the following
result:
<custinfo>

<Cid>1003</Cid>
<name>Robert Shoemaker</name>
<phone type="work">905-555-7258</phone>
<country>Canada</country>

</custinfo>

In the following example, the XQuery expression demonstrates how the order of
update operations guarantees that a series of multiple changes will have a
deterministic result. The insert expression adds a status element after a phone
element, and the replace expression replaces the phone element with an email
element:
xquery
let $email := <email>jnoodle@my-email.com</email>
let $status := <status>current</status>
return

transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1002’)
modify (

do replace $mycust/customerinfo/phone with $email,
do insert $status after $mycust/customerinfo/phone[@type = "work"])

return $mycust

In the modify clause, the replace expression is before the insert expression.
However, when updating the copied node sequence $mycust, the insert update
operation is performed before the replace update operation to ensure a
deterministic result. When run against the SAMPLE database, the expression
returns the following result:
<customerinfo Cid="1002">

<name>Jim Noodle</name>
<addr country="Canada">

<street>25 EastCreek</street>
<city>Markham</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9C 3T6</pcode-zip>

</addr>
<email>jnoodle@my-email.com</email>
<status>current</status>

</customerinfo>

If the replace operation were performed first, the phone element would not be in
the node sequence, and the operation to insert the status element after the phone
element would have no meaning.

For information about the order of update operations, see “Processing XQuery
updating operations” on page 112.

Transform expression
A transform expression creates copies of one or more nodes. Updating expressions
in the modify clause of the transform expression change the copied nodes. The
expression in the return clause specifies the result of the transform expression.

Syntax

��
transform

copy clause modify clause return clause ��

114 XQuery Reference

copy clause:

�

,

copy $VariableName := CopySourceExpression

modify clause:

modify ModifyExpression

return clause:

return ReturnExpression

Parameters

transform
Optional keyword that can be used to begin a transform expression.

copy
Keyword that begins the copy clause of a transform expression. Each
VariableName in the copy clause is bound to a logical copy of the node tree that
is returned by the corresponding CopySourceExpression.

VariableName
The name of the variable to bind to a copy of the node tree returned by
CopySourceExpression.

CopySourceExpression
An XQuery expression that is not an updating expression. The expression must
return a single node, together with its descendants (if any), called a node tree.

If the expression includes a top-level comma operator, the expression must be
enclosed in parentheses. The CopySourceExpression is evaluated as though it
were an enclosed expression in an element constructor.
The nodes created by the copy clause have new node identities and are
untyped.

modify
Keyword that begins the modify clause of a transform expression.

ModifyExpression
An updating expression or an empty sequence. If the expression includes a
top-level comma operator, the expression must be enclosed in parentheses. The
updating expression is evaluated and the resulting updates are applied to
nodes created by the copy clause.

DB2 XQuery returns an error if the target node of an updating expression is
not a node created by the copy clause of the containing transform expression.
For example, DB2 XQuery returns an error if a rename expression tries to
rename a node that is not created by the copy clause.

The updates specified in a modify clause can result in a node that has multiple,
adjacent text nodes among its children. If a node has multiple, adjacent text
nodes among its children, the adjacent text nodes are merged into a single text
node. The string value of the resulting text node is the concatenated string

Chapter 4. Expressions 115

values of the adjacent text nodes with no intervening spaces. If a child node is
created that is a text node with a string value that is a zero-length string, the
text node is deleted.

return
The keyword that begins the return clause of a transform expression.

ReturnExpression
An XQuery expression that is not an updating expression. If the expression
includes a top-level comma operator, the expression must be enclosed in
parentheses.

The expression in the return clause is evaluated and is returned as the result
of the transform expression. Expressions in the return clause can access the
nodes changed or created by updating expressions in the modify clause.

The return clause of a transform expression is not restricted to return only
nodes that were created by the copy clause. The ReturnExpression can return
any combination of copied nodes, original nodes, and constructed nodes.

Examples

The following examples use the CUSTOMER table from the DB2 SAMPLE
database. In the CUSTOMER table, the XML column INFO contains customer
address and phone information.

In the following example, the copy clause of the transform expression creates a
copy of the XML document from the column INFO. In the modify clause, the delete
expression deletes all phone numbers from the XML document where the phone's
type attribute is not home:
xquery
transform

copy $mycust := db2-fn:sqlquery(’select INFO from CUSTOMER where Cid = 1003’)
modify

do delete $mycust/customerinfo/phone[@type!="home"]
return $mycust;

When run against the SAMPLE database, the expression returns the following
result:
<customerinfo Cid="1003">

<name>Robert Shoemaker</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Aurora</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X 7F8</pcode-zip>

</addr>
<phone type="home">416-555-2937</phone>

</customerinfo>

The following expression does not use the optional keyword transform. The
transform expression starts with the copy clause and is equivalent to the previous
expression.
xquery
copy $mycust := db2-fn:sqlquery(’select INFO from CUSTOMER where Cid = 1003’)
modify

do delete $mycust/customerinfo/phone[@type!="home"]
return $mycust;

116 XQuery Reference

In the following example, the SQL UPDATE statement modifies and validates the
XML document from a row of the CUSTOMER table. The copy clause of the
transform expression creates a copy of the XML document from the column INFO.
The replace expression changes the value of the name element in the copy of the
XML document. The copy of the document is not validated. The XMLVALIDATE
function validates the document copy:
UPDATE customer set info = XMLVALIDATE(

XMLQUERY(’transform
copy $mycust := $cust
modify

do replace value of $mycust/customerinfo/name with "Larry Menard, Jr."
return $mycust’
passing info as "cust")

ACCORDING TO XMLSCHEMA ID customer)
where cid = 1005

Basic updating expressions
Using the four basic XQuery updating expressions, you can create complex
updating expressions to update existing XML data. When using DB2 XQuery,
updating expressions are used within the modify clause of a transform expression.

Delete expression
A delete expression deletes zero or more nodes from a node sequence.

Syntax

�� do delete TargetExpression ��

do delete
The keywords that begin a delete expression.

TargetExpression
An XQuery expression that is not an updating expression. If the expression
includes a top-level comma operator, the expression must be enclosed in
parentheses. The result of TargetExpression must be a sequence of zero or more
nodes. Each node's parent property cannot be empty.

The transform expression evaluates the delete expression and generates a list of
updates that consist of nodes to be deleted. Any node that matches the
TargetExpression is marked for deletion. When deleting the TargetExpression nodes,
the nodes are detached from their parent nodes. The nodes and the nodes' children
are no longer part of the node sequence.

Examples

The following examples use the CUSTOMER table from the DB2 SAMPLE
database. In the CUSTOMER table, the XML column INFO contains customer
address and phone information.

The following expression deletes the address element and all of its children nodes,
and all phone numbers from the XML document where the phone's attribute type
is not home:

Chapter 4. Expressions 117

xquery
transform
copy $mycust := db2-fn:sqlquery(’select INFO from CUSTOMER where Cid =1003’)
modify

do delete ($mycust/customerinfo/addr, $mycust/customerinfo/phone[@type!="home"])
return $mycust

When run against the SAMPLE database, the expression returns the following
result:
<customerinfo Cid="1003">

<name>Robert Shoemaker</name>
<phone type="home">416-555-2937</phone>

</customerinfo>

The following example deletes the type attribute from any phone element node
when the attribute value is home.
xquery
transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1004’)
modify (

for $phone in $mycust/customerinfo//phone[@type="home"]
return

do delete $phone/@type)
return $mycust

When run against the SAMPLE database, the expression returns the following
result:
<customerinfo Cid="1004">

<name>Matt Foreman</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M3Z 5H9</pcode-zip>

</addr>
<phone type="work">905-555-4789</phone>
<phone>416-555-3376</phone>
<assistant><name>Gopher Runner</name>

<phone>416-555-3426</phone>
</assistant>

</customerinfo>

The expression deletes the type attribute from both the customer's phone number
and the assistant's phone number.

Insert expression
An insert expression inserts copies of one or more nodes into a designated position
in a node sequence.

Syntax

�� do insert SourceExpression before TargetExpression
after
as first into
as last into
into

��

do insert
The keywords that begin an insert expression.

118 XQuery Reference

SourceExpression
An XQuery expression that is not an updating expression. If the expression
includes a top-level comma operator, then the expression must be enclosed in
parentheses. The expression is evaluated as though it were an enclosed
expression in an element constructor. The result of the SourceExpression is a
sequence of zero or more nodes to be inserted, called the insertion sequence. If
the insertion sequence contains a document node, the document node is
replaced in the insertion sequence by its children.

If the insertion sequence contains attribute nodes that appear first in the
sequence, the attributes are added to the TargetExpression node or to its parent,
depending on the keyword specified. If the insertion sequence contains an
attribute node following a node that is not an attribute node, DB2 XQuery
returns an error.

before
Keyword that specifies the SourceExpression nodes become the preceding
siblings of the TargetExpression node.

The SourceExpression nodes are inserted immediately before the TargetExpression
node. If multiple nodes are inserted before the TargetExpression, they are
inserted in nondeterministic order, but the set of inserted nodes appear
immediately before the TargetExpression. If the insertion sequence contains
attribute nodes that appear first in the sequence, the attribute nodes become
attributes of the parent of the target node.

after
Keyword that specifies the SourceExpression nodes become the following
siblings of the TargetExpression node.

The SourceExpression nodes are inserted immediately after the TargetExpression
node. If multiple nodes are inserted after the TargetExpression, they are inserted
in nondeterministic order, but the set of inserted nodes appear immediately
after the TargetExpression. If the insertion sequence contains attribute nodes that
appear first in the sequence, the attribute nodes become attributes of the parent
of the target node.

as first into
Keywords that specify the SourceExpression nodes become the first children of
the TargetExpression node.

If multiple nodes are inserted as the first children of the TargetExpression node,
they are inserted in nondeterministic order, but the set of inserted nodes
appear as the first children of the TargetExpression. If the insertion sequence
contains attribute nodes that appear first in the sequence, the attribute nodes
become attributes of the target node.

as last into
Keywords that specify the SourceExpression nodes become the last children of
the TargetExpression node.

If multiple nodes are inserted as the last children of the TargetExpression node,
they are inserted in nondeterministic order, but the set of inserted nodes
appear as the last children of the TargetExpression node. If the insertion
sequence contains attribute nodes that appear first in the sequence, the
attribute nodes become attributes of the target node.

into
Keyword that specifies the SourceExpression nodes become the children of the
TargetExpression node in a nondeterministic order.

Chapter 4. Expressions 119

The SourceExpression nodes are inserted as children of the TargetExpression node
in nondeterministic positions. If the insertion sequence contains attribute nodes
that appear first in the sequence, the attribute nodes become attributes of the
target node.

TargetExpression
An XQuery expression that is not an updating expression. If the expression
includes a top-level comma operator, then the expression must be enclosed in
parentheses. Based on the keywords specified before the TargetExpression, the
following rules apply:
v If before or after is specified, the result of TargetExpression must be an

element, text, processing instruction, or comment node whose parent
property is not empty. If the parent of the TargetExpression node is a
document node and before or after is specified, the insertion sequence
cannot contain an attribute node.

v If into, as first into, or as last into is specified, the result of
TargetExpression must be a single element node or a single document node.

v If into is specified and TargetExpression is a document node, the insertion
sequence cannot contain an attribute node.

Examples

The following examples use the CUSTOMER table from the DB2 SAMPLE
database. In the CUSTOMER table, the XML column INFO contains customer
address and phone information.

In the following example, the copy clause of the transform expression creates a
copy of the XML document from column INFO. The insert expression inserts the
billto element and all its children after the last phone element :
xquery

transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1004’)
modify

do insert
<billto country="Canada">

<street>4441 Wagner</street>
<city>Aurora</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X 7F8</pcode-zip>

</billto>
after $mycust/customerinfo/phone[last()]
return $mycust

When run against the SAMPLE database, the expression returns the following
result:
<customerinfo Cid="1004">

<name>Matt Foreman</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M3Z 5H9</pcode-zip>

</addr>
<phone type="work">905-555-4789</phone>
<phone type="home">416-555-3376</phone>
<billto country="Canada">

<street>4441 Wagner</street>
<city>Aurora</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X 7F8</pcode-zip>

120 XQuery Reference

</billto>
<assistant>

<name>Gopher Runner</name>
<phone type="home">416-555-3426</phone>

</assistant>
</customerinfo>

The following example inserts the attribute extension with the value x2334 into the
phone element where the phone's type attribute is work:
xquery
let $phoneext := attribute extension { "x2334" }
return

transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1004’)
modify

do insert $phoneext into $mycust/*:customerinfo/*:phone[@type="work"]
return $mycust

When run against the SAMPLE database, the expression returns the following
result:
<customerinfo Cid="1004">

<name>Matt Foreman</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M3Z 5H9</pcode-zip>

</addr>
<phone extension="x2334" type="work">905-555-4789</phone>
<phone type="home">416-555-3376</phone>
<assistant>

<name>Gopher Runner</name>
<phone type="home">416-555-3426</phone>

</assistant>
</customerinfo>

Rename expression
A rename expression replaces the name property of a data model node with a new
QName.

Syntax

�� do rename TargetExpression as NewNameExpression ��

do rename
The keywords that begin a rename expression.

TargetExpression
An XQuery expression that is not an updating expression. The result of
TargetExpression must be a single element, attribute, or processing instruction
node. If the expression includes a top-level comma operator, then the
expression must be enclosed in parentheses.

The rename expression affects only the TargetExpression node. If the
TargetExpression node is an element node, the expression has no effect on any
attributes or children of the target node. If the TargetExpression node is an
attribute node, the expression has no effect on other attributes or descendants
of the parent node of the TargetExpression node.

as The keyword that begins the new name expression.

Chapter 4. Expressions 121

NewNameExpression
An XQuery expression that is not an updating expression. The result of
NewNameExpression must be a value of type xs:string, xs:QName,
xs:untypedAtomic, or a node from which such a value can be extracted by the
atomization process. If the expression includes a top-level comma operator,
then the expression must be enclosed in parentheses.

The resulting value is converted to a QName, resolving its namespace prefix, if
any, according to the statically known namespaces. The result is either an error
or an expanded QName. The expanded QName replaces the name of the
TargetExpression node.

If the new QName contains the same prefix but a different URI than an
in-scope namespace of the TargetExpression node, DB2 XQuery returns an error.

Examples

The following examples use the CUSTOMER table from the DB2 SAMPLE
database. In the CUSTOMER table, the XML column INFO contains customer
address and phone information.

In the following example, the copy clause of the transform expression creates a
copy of the XML document from column INFO. The rename expression changes
the name property of the addr element to shipto:
xquery
transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1000’)
modify

do rename $mycust/customerinfo/addr as "shipto"
return $mycust

When run against the SAMPLE database, the expression returns the following
result:
<customerinfo Cid="1000">

<name>Kathy Smith</name>
<shipto country="Canada">

<street>5 Rosewood</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M6W 1E6</pcode-zip>

</shipto>
<phone type="work">416-555-1358</phone>

</customerinfo>

In the following example, the modify clause of the transform expression contains a
FLWOR expression and a rename expression that changes the name property of all
instances of the element phone to phonenumber:
xquery
transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1003’)
modify

for $phone in $mycust/customerinfo/phone
return

do rename $phone as "phonenumber"
return $mycust

When run against the SAMPLE database, the expression returns the following
result:

122 XQuery Reference

<customerinfo Cid="1003">
<name>Robert Shoemaker</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Aurora</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X 7F8</pcode-zip>

</addr>
<phonenumber type="work">905-555-7258</phonenumber>
<phonenumber type="home">416-555-2937</phonenumber>
<phonenumber type="cell">905-555-8743</phonenumber>
<phonenumber type="cottage">613-555-3278</phonenumber>

</customerinfo>

In the following example, the rename expression changes the name of the addr
element's attribute from country to geography:
xquery
transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1000’)
modify

do rename $mycust/customerinfo/addr/@country as "geography"
return $mycust

When run against the SAMPLE database, the expression returns the following
result:
<customerinfo Cid="1000">

<name>Kathy Smith</name>
<addr geography="Canada">

<street>5 Rosewood</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M6W 1E6</pcode-zip>

</addr>
<phone type="work">416-555-1358</phone>

</customerinfo>

The following example uses the rename expression and the fn:QName function to
add the namespace prefix other to the names of the customer's non-work phone
number elements and attributes. The prefix other is bound to the URI
http://otherphone.com:
xquery
transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1004’)
modify

for $elem in $mycust/customerinfo/phone[@type != "work"]
let $elemLocalName := fn:local-name($elem)
let $newElemQName := fn:QName("http://otherphone.com", fn:concat("other:",

$elemLocalName))
return

(do rename $elem as $newElemQName,
for $a in $elem/@* let $attrlocalname := fn:local-name($a)
let $newAttrName := fn:QName("http://otherphone.com", fn:concat("other:",

$attrlocalname))
return

do rename $a as $newAttrName)
return $mycust

When run against the SAMPLE database, the expression returns the following
result:
<customerinfo Cid="1004">

<name>Matt Foreman</name>
<addr country="Canada">

<street>1596 Baseline</street>

Chapter 4. Expressions 123

<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M3Z 5H9</pcode-zip>

</addr>
<phone type="work">905-555-4789</phone>
<other:phone xmlns:other="http://otherphone.com" other:type="home">

416-555-3376</other:phone>
<assistant>

<name>Gopher Runner</name>
<phone type="home">416-555-3426</phone>

</assistant>
</customerinfo>

If you use the following expression in the transform expression's return clause, the
phone element nodes that use the default element namespace appear as child nodes
of the primary node, and the other:phone element node appears as the child node
of the secondary node.
<phonenumbers xmlns:other="http://otherphone.com">

<primary>
{ $mycust//phone }

</primary>
<secondary>

{ $mycust//other:phone }
</secondary>

</phonenumbers>

When run against the SAMPLE database, the transform expression returns the
following result:
<phonenumbers xmlns:other="http://otherphone.com"

<primary>
<phone type="work">905-555-4789</phone>
<phone type="home">416-555-3426</phone>

</primary>
<secondary>

<other:phone other:type="home">416-555-3376</other:phone>
</secondary>

</phonenumbers>

Replace expression
A replace expression replaces an existing node with a new sequence of zero or
more nodes, or replaces a node's value while preserving the node's identity.

Syntax

�� do replace TargetExpression with SourceExpression
value of

��

do replace
The keywords that begin a replace expression.

TargetExpression
An XQuery expression that is not an updating expression. If the expression
includes a top-level comma operator, the expression must be enclosed in
parentheses. The result of TargetExpression must be a single node that is not a
document node. If the result of TargetExpression is a document node, DB2
XQuery returns an error.

If the value of keywords are not specified, the result of TargetExpression must
be a single node whose parent property is not empty.

124 XQuery Reference

value of
The keywords that specify replacing the value of the TargetExpression node
while preserving the node's identity.

with
The keyword that begins the source expression.

SourceExpression
An XQuery expression that is not an updating expression. If the expression
includes a top-level comma operator, the expression must be enclosed in
parentheses.

If the value of keywords are specified, the SourceExpression is evaluated as
though it were the content expression of a text node constructor. The result of
the SourceExpression is a single text node or an empty sequence.

If the value of keywords are not specified, the result of the SourceExpression
must be a sequence of nodes. The SourceExpression is evaluated as though it
were an expression enclosed in an element constructor. If the SourceExpression
sequence contains a document node, the document node is replaced by its
children. The SourceExpression sequence must consist of the following node
types:
v If the TargetExpression node is an attribute node, the replacement sequence

must consist of zero or more attribute nodes.
v If the TargetExpression node is an element, text, comment, or processing

instruction node, the replacement sequence must consist of some
combination of zero or more element, text, comment, or processing
instruction nodes.

The following updates are generated when the value of keywords are specified:
v If the TargetExpression node is an element node, the existing children of the

TargetExpression node are replaced by the text node returned by the
SourceExpression. If the SourceExpression returns an empty sequence, the children
property of the TargetExpression node becomes empty. If the TargetExpression node
contains attribute nodes, they are not affected.

v If the TargetExpression node is not an element node, the string value of the
TargetExpression node is replaced by the string value of the text node returned by
the SourceExpression. If the SourceExpression does not return a text node, the
string value of the TargetExpression node is replaced by a zero-length string.

The following updates are generated when the value of keywords are not
specified:
v SourceExpression nodes replace the TargetExpression node. The parent node of the

TargetExpression node becomes the parent of each of the SourceExpression nodes.
The SourceExpression nodes occupy the position in the node hierarchy occupied
by the TargetExpression node.

v The TargetExpression node, all its attributes and descendants are detached from
the node sequence.

Examples

The following examples use the CUSTOMER table from the DB2 SAMPLE
database. In the CUSTOMER table, the XML column INFO contains customer
address and phone information.

Chapter 4. Expressions 125

In the following example, the copy clause of the transform expression creates a
copy of the XML document from column INFO. The replace expression replaces
the addr element and its children:
xquery
transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1000’)
modify

do replace $mycust/customerinfo/addr
with

<addr country="Canada">
<street>1596 14th Avenue NW</street>
<city>Calgary</city>
<prov-state>Alberta</prov-state>
<pcode-zip>T2N 1M7</pcode-zip>

</addr>
return $mycust

When run against the SAMPLE database, the expression returns the following
result with the replaced address information:
<customerinfo Cid="1000">

<name>Kathy Smith</name>
<addr country="Canada">

<street>1596 14th Avenue NW</street>
<city>Calgary</city>
<prov-state>Alberta</prov-state>
<pcode-zip>T2N 1M7</pcode-zip>

</addr>
<phone type="work">416-555-1358</phone>

</customerinfo>

The following expression replaces the value of the customer phone element's type
attribute from home to personal:
xquery
transform
copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1004’)
modify

do replace value of $mycust/customerinfo/phone[@type="home"]/@type with "personal"
return $mycust

When run against the SAMPLE database, the expression returns the following
result with the replaced attribute value:
<customerinfo Cid="1004">

<name>Matt Foreman</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M3Z 5H9</pcode-zip>

</addr>
<phone type="work">905-555-4789</phone>
<phone type="personal">416-555-3376</phone>
<assistant>

<name>Gopher Runner</name>
<phone type="home">416-555-3426</phone>

</assistant>
</customerinfo>

The value of the assistant's phone attribute has not been changed.

126 XQuery Reference

Chapter 5. Built-in functions

DB2 XQuery provides a library of built-in functions for working with XML data.
These built-in functions include XQuery-defined functions and DB2 built-in
functions.

XQuery-defined functions
XQuery-defined functions are in the namespace that is bound to the prefix
fn. This namespace is the default function namespace, which means that
you can invoke XQuery-defined functions without specifying a namespace
prefix. If you override this default function namespace with a default
function namespace declaration in the query prolog, you must use the
prefix fn to invoke XQuery-defined functions.

DB2-defined functions
The DB2-defined functions are db2-fn:xmlcolumn and db2-fn:sqlquery,
which you use to access XML values from a DB2 database. The prefix
db2-fn is not the default function namespace, so you must use the
namespace prefix when invoking these functions unless you override the
default namespace with a default function namespace declaration in the
query prolog.

DB2 XQuery functions by category
The following categories of DB2 XQuery functions are available: string, boolean,
number, date and time, sequence, QName, node, and other.

String functions

Function Description

“codepoints-to-string function” on page 142 The fn:codepoints-to-string function returns
the string equivalent of a sequence of
Unicode code points.

“compare function” on page 143 The fn:compare function compares two
strings.

“concat function” on page 143 The fn:concat function returns a string that
is the concatenation of two or more atomic
values.

“contains function” on page 144 The fn:contains function determines whether
a string contains a specific substring. The
search string is matched using the default
collation.

“ends-with function” on page 154 The fn:ends-with function determines
whether a string ends with a specific
substring. The search string is matched
using the default collation.

“lower-case function” on page 164 The fn:lower-case function converts a string
to lowercase.

“matches function” on page 165 The fn:matches function determines whether
a string matches a specific pattern.

© Copyright IBM Corp. 2006, 2013 127

Function Description

“normalize-space function” on page 176 The fn:normalize-space function strips
leading and trailing white space characters
from a string and replaces each internal
sequence of white space characters with a
single blank character.

“normalize-unicode function” on page 176 The fn:normalize-unicode function performs
Unicode normalization on a string.

“replace function” on page 181 The fn:replace function compares each set of
characters within a string to a specific
pattern, and then it replaces the characters
that match the pattern with another set of
characters.

“starts-with function” on page 192 The fn:starts-with function determines
whether a string begins with a specific
substring. The search string is matched
using the default collation.

“string function” on page 192 The fn:string function returns the string
representation of a value.

“string-join function” on page 193 The fn:string-join function returns a string
that is generated by concatenating items
separated by a separator character.

“string-length function” on page 194 The fn:string-length function returns the
length of a string.

“string-to-codepoints function” on page 194 The fn:string-to-codepoints function returns
a sequence of Unicode code points that
corresponds to a string value.

“substring function” on page 196 The fn:substring function returns a substring
of a string.

“substring-after function” on page 196 The fn:substring-after function returns a
substring that occurs in a string after the
end of the first occurrence of a specific
search string. The search string is matched
using the default collation.

“substring-before function” on page 197 The fn:substring-before function returns a
substring that occurs in a string before the
first occurrence of a specific search string.
The search string is matched using the
default collation.

“tokenize function” on page 201 The fn:tokenize function breaks a string into
a sequence of substrings.

“translate function” on page 202 The fn:translate function replaces selected
characters in a string with replacement
characters.

“upper-case function” on page 204 The fn:upper-case function converts a string
to uppercase.

Boolean functions

Function Description

“boolean function” on page 140 The fn:boolean function returns the effective
Boolean value of a sequence.

128 XQuery Reference

Function Description

“false function” on page 156 The fn:false function returns the xs:boolean
value false.

“not function” on page 177 The fn:not function returns false if the
effective boolean value of a sequence is true
and returns true if the effective boolean
value of a sequence is false.

“true function” on page 203 The fn:true function returns the xs:boolean
value true.

Number functions

Function Description

“abs function” on page 139 The fn:abs function returns the absolute
value of a numeric value.

“avg function” on page 139 The fn:avg function returns the average of
the values in a sequence.

“ceiling function” on page 141 The fn:ceiling function returns the smallest
integer that is greater than or equal to a
specific numeric value.

“floor function” on page 157 The fn:floor function returns the largest
integer that is less than or equal to a specific
numeric value.

“max function” on page 166 The fn:max function returns the maximum
of the values in a sequence.

“min function” on page 167 The fn:min function returns the minimum of
the values in a sequence.

“number function” on page 178 The fn:number function converts a value to
the xs:double data type.

“round function” on page 184 The fn:round function returns the integer
that is closest to a specific numeric value.

“round-half-to-even function” on page 185 The fn:round-half-to-even function returns
the numeric value with a specified precision
that is closest to a specific numeric value.

“sum function” on page 198 The fn:sum function returns the sum of the
values in a sequence.

Date, time, and duration functions

Function Description

“adjust-date-to-timezone function” on page
133

The fn:adjust-date-to-timezone function
adjusts an xs:date value for a specific time
zone or removes the time zone component
from the value.

“adjust-dateTime-to-timezone function” on
page 135

The fn:adjust-dateTime-to-timezone function
adjusts an xs:dateTime value for a specific
time zone or removes the time zone
component from the value.

Chapter 5. Built-in functions 129

Function Description

“adjust-time-to-timezone function” on page
137

The fn:adjust-time-to-timezone function
adjusts an xs:time value for a specific time
zone or removes the time zone component
from the value.

“current-date function” on page 145 The fn:current-date function returns the
current date in the implicit time zone of
UTC.

“current-dateTime function” on page 146 The fn:current-dateTime function returns the
current date and time in the implicit time
zone of UTC.

“current-local-date function” on page 146 The db2-fn:current-local-date function
returns the current date in the local time
zone.

“current-local-dateTime function” on page
146

The db2-fn:current-local-dateTime function
returns the current date and time in the local
time zone.

“current-local-time function” on page 147 The db2-fn:current-local-time function
returns the current time in the local time
zone.

“current-time function” on page 147 The fn:current-time function returns the
current time in the implicit time zone of
UTC.

“dateTime function” on page 148 The fn:dateTime function constructs an
xs:dateTime value from an xs:date value and
an xs:time value.

“day-from-date function” on page 149 The fn:day-from-date function returns the
day component of an xs:date value.

“day-from-dateTime function” on page 149 The fn:day-from-dateTime function returns
the day component of an xs:dateTime value.

“days-from-duration function” on page 150 The fn:days-from-duration function returns
the days component of a duration.

“hours-from-dateTime function” on page 157 The fn:hours-from-dateTime function returns
the hours component of an xs:dateTime
value.

“hours-from-duration function” on page 158 The fn:hours-from-duration function returns
the hours component of a duration value.

“hours-from-time function” on page 159 The fn:hours-from-time function returns the
hours component of an xs:time value.

“implicit-timezone function” on page 159 The fn:implicit-timezone function returns the
implicit time zone value of PT0S, which is of
type xs:dayTimeDuration. The value PT0S
indicates that UTC is the implicit time zone.

“local-timezone function” on page 163 The db2-fn:local-timezone function returns
the time zone of the local system.

“minutes-from-dateTime function” on page
168

The fn:minutes-from-dateTime function
returns the minutes component of an
xs:dateTime value.

“minutes-from-duration function” on page
169

The fn:minutes-from-duration function
returns the minutes component of a
duration.

130 XQuery Reference

Function Description

“minutes-from-time function” on page 170 The fn:minutes-from-time function returns
the minutes component of an xs:time value.

“month-from-date function” on page 170 The fn:month-from-date function returns the
month component of a xs:date value.

“month-from-dateTime function” on page
171

The fn:month-from-dateTime function
returns the month component of an
xs:dateTime value.

“months-from-duration function” on page
171

The fn:months-from-duration function
returns the months component of a duration
value.

“seconds-from-dateTime function” on page
187

The fn:seconds-from-dateTime function
returns the seconds component of an
xs:dateTime value.

“seconds-from-duration function” on page
187

The fn:seconds-from-duration function
returns the seconds component of a
duration.

“seconds-from-time function” on page 188 The fn:seconds-from-time function returns
the seconds component of an xs:time value.

“timezone-from-date function” on page 199 The fn:timezone-from-date function returns
the time zone component of an xs:date
value.

“timezone-from-dateTime function” on page
200

The fn:timezone-from-dateTime function
returns the time zone component of an
xs:dateTime value.

“timezone-from-time function” on page 200 The fn:timezone-from-time function returns
the time zone component of an xs:time
value.

“year-from-date function” on page 207 The fn:year-from-date function returns the
year component of an xs:date value.

“year-from-dateTime function” on page 207 The fn:year-from-dateTime function returns
the year component of an xs:dateTime value.

“years-from-duration function” on page 208 The fn:years-from-duration function returns
the years component of a duration.

Sequence functions

Function Description

“count function” on page 145 The fn:count function returns the number of
values in a sequence.

“data function” on page 147 The fn:data function returns the input
sequence after replacing any nodes in the
input sequence by their typed values.

“deep-equal function” on page 151 The fn:deep-equal function compares two
sequences to determine whether they meet
the requirements for deep equality.

“distinct-values function” on page 153 The fn:distinct-values function returns the
distinct values in a sequence.

“empty function” on page 154 The fn:empty function indicates whether an
argument is an empty sequence.

Chapter 5. Built-in functions 131

Function Description

“exactly-one function” on page 155 The fn:exactly-one function returns its
argument if the argument contains exactly
one item.

“exists function” on page 155 The fn:exists function can check for the
existence of many different types of items,
such as elements, attributes, text nodes,
atomic values (for example, an integer) or
XML documents.

“last function” on page 162 The fn:last function returns the number of
values in the sequence that is being
processed.

“index-of function” on page 160 The fn:index-of function returns the
positions where an item appears in a
sequence.

“insert-before function” on page 161 The fn:insert-before function inserts a
sequence before a specific position in
another sequence.

“one-or-more function” on page 178 The fn:one-or-more function returns its
argument if the argument contains one or
more items.

“position function” on page 179 The fn:position function returns the position
of the context item in the sequence that is
being processed.

“remove function” on page 180 The fn:remove function removes an item
from a sequence.

“reverse function” on page 183 The fn:reverse function reverses the order of
the items in a sequence.

“subsequence function” on page 195 The fn:subsequence function returns a
subsequence of a sequence.

“unordered function” on page 204 The fn:unordered function returns the items
in a sequence in non-deterministic order.

“zero-or-one function” on page 208 The fn:zero-or-one function returns its
argument if the argument contains one item
or is the empty sequence.

QName functions

Function Description

“in-scope-prefixes function” on page 160 The fn:in-scope-prefixes function returns a
list of prefixes for all in-scope namespaces of
an element.

“local-name-from-QName function” on page
163

The fn:local-name-from-QName function
returns the local part of an xs:QName value.

“namespace-uri-for-prefix function” on page
174

The fn:namespace-uri-for-prefix function
returns the namespace URI that is associated
with a prefix in the in-scope namespaces for
an element.

“namespace-uri-from-QName function” on
page 175

The fn:namespace-uri-from-QName function
returns the namespace URI part of an
xs:QName value.

132 XQuery Reference

Function Description

“QName function” on page 179 The fn:QName function builds an expanded
name from a namespace URI and a string
that contains a lexical QName with an
optional prefix.

“resolve-QName function” on page 182 The fn:resolve-QName function converts a
string containing a lexical QName into an
expanded QName by using the in-scope
namespaces of an element to resolve the
namespace prefix to a namespace URI.

Node functions

Function Description

“local-name function” on page 162 The fn:local-name function returns the local
name property of a node.

“name function” on page 172 The fn:name function returns the prefix and
local name parts of a node name.

“namespace-uri function” on page 173 The fn:namespace-uri function returns the
namespace URI of the qualified name for a
node.

“node-name function” on page 175 The fn:node-name function returns the
expanded QName of a node.

“root function” on page 184 The fn:root function returns the root node of
a tree to which a node belongs.

Other functions

Function Description

“default-collation function” on page 152 The fn:default-collation function returns a
URI that represents the default collation that
is defined for the database.

“sqlquery function” on page 189 The db2-fn:sqlquery function retrieves a
sequence that is the result of an SQL
fullselect in the currently connected DB2
database.

“xmlcolumn function” on page 205 The db2-fn:xmlcolumn function retrieves a
sequence from a column in the currently
connected DB2 database.

adjust-date-to-timezone function
The fn:adjust-date-to-timezone function adjusts an xs:date value for a specific time
zone or removes the time zone component from the value.

Syntax

�� fn:adjust-date-to-timezone(date-value)
,timezone-value

��

Chapter 5. Built-in functions 133

date-value
The date value that is to be adjusted.

date-value is of type xs:date, or is an empty sequence.

timezone-value
A duration that represents the time zone to which date-value is to be
adjusted.

timezone-value can be an empty sequence or a single value of type
xdt:dayTimeDuration between -PT14H and PT14H, inclusive. The value
can have an integer number of minutes and must not have a seconds
component. If timezone-value is not specified, the default value is PT0H,
which represents UTC.

Returned value

The returned value is either a value of type xs:date or an empty sequence
depending on the parameters that are specified. If date-value is not an empty
sequence, the returned value is of type xs:date. The following table describes the
possible returned values:

Table 33. Types of input values and returned value for fn:adjust-date-to-timezone

date-value timezone-value Returned value

date-value that contains a
timezone component

An explicit value, or no
value specified (duration of
PT0H)

The date-value adjusted for
the time zone represented by
timezone-value.

date-value that contains a
timezone component

An empty sequence The date-value with no
timezone component.

date-value that does not
contain a timezone
component

An explicit value, or no
value specified (duration of
PT0H)

The date-value with a
timezone component. The
timezone component is the
time zone represented by
timezone-value. The date
component is not adjusted
for the time zone.

date-value that does not
contain a timezone
component

An empty sequence The date-value.

An empty sequence An explicit value, empty
sequence, or no value
specified

An empty sequence.

When adjusting date-value to a different time zone, date-value is treated as a
dateTime value with time component 00:00:00. The returned value contains the
timezone component represented by timezone-value. The following function
calculates the adjusted date value:
xs:date(fn:adjust-dateTime-to-timezone(xs:dateTime(date-value),timezone-value))

Examples

In the following examples, the variable $tz is a duration of -10 hours, defined as
xdt:dayTimeDuration("-PT10H").

The following function adjusts the date value for May 7, 2002 in the UTC+1 time
zone. The function specifies a timezone-value of -PT10H.

134 XQuery Reference

fn:adjust-date-to-timezone(xs:date("2002-05-07+01:00"), $tz)

The returned date value is 2002-05-06-10:00. The date is adjusted to the UTC-10
time zone.

The following function adds a timezone component to the date value for March 7,
2002 without a timezone component. The function specifies a timezone-value of
-PT10H.
fn:adjust-date-to-timezone(xs:date("2002-03-07"), $tz)

The returned value is 2002-03-07-10:00. The timezone component is added to the
date value.

The following function adjusts the date value for February 9, 2002 in the UTC-7
time zone. Without a timezone-value specified, the function uses the default
timezone-value PT0H.
fn:adjust-date-to-timezone(xs:date("2002-02-09-07:00"))

The returned date is 2002-02-09Z, the date is adjusted to UTC.

The following function removes the timezone component from the date value for
May 7, 2002 in the UTC-7 time zone. The timezone-value is an empty sequence.
fn:adjust-date-to-timezone(xs:date("2002-05-07-07:00"), ())

The returned value is 2002-05-07.

adjust-dateTime-to-timezone function
The fn:adjust-dateTime-to-timezone function adjusts an xs:dateTime value for a
specific time zone or removes the time zone component from the value.

Syntax

�� fn:adjust-dateTime-to-timezone(dateTime-value)
,timezone-value

��

dateTime-value
The dateTime value that is to be adjusted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

timezone-value
A duration that represents the time zone to which dateTime-value is to be
adjusted.

timezone-value can be an empty sequence or a single value of type
xdt:dayTimeDuration between -PT14H and PT14H, inclusive. The value
can have an integer number of minutes and must not have a seconds
component. If timezone-value is not specified, the default value is PT0H,
which represents UTC.

Chapter 5. Built-in functions 135

Returned value

The returned value is either a value of type xs:dateTime or is an empty sequence
depending on the types of input values. If dateTime-value is not an empty sequence,
the returned value is of type xs:dateTime. The following table describes the
possible returned values:

Table 34. Types of input values and returned value for fn:adjust-dateTime-to-timezone

dateTime-value timezone-value Returned value

dateTime-value that contains a
timezone component

An explicit value, or no
value specified (duration of
PT0H)

The dateTime-value adjusted
to the time zone represented
by timezone-value. The
returned value contains the
timezone component
represented by timezone-value.

dateTime-value that contains a
timezone component

An empty sequence The dateTime-value with no
timezone component.

dateTime-value that does not
contain a timezone
component

An explicit value, or no
value specified (duration of
PT0H)

The dateTime-value with a
timezone component. The
timezone component is the
time zone represented by
timezone-value. The date and
time components are not
adjusted to the time zone.

dateTime-value that does not
contain a timezone
component

An empty sequence The dateTime-value.

An empty sequence An explicit value, empty
sequence, or no value
specified

An empty sequence.

Examples

In the following examples, the variable $tz is a duration of -10 hours, defined as
xdt:dayTimeDuration("-PT10H").

The following function adjusts the dateTime of March 7, 2002 at 10 am in the
UTC-7 time zone to the timezone specified by timezone-value of -PT10H.
fn:adjust-dateTime-to-timezone(xs:dateTime("2002-03-07T10:00:00-07:00"), $tz)

The returned dateTime is 2002-03-07T07:00:00-10:00.

The following function adjusts the dateTime value for March 7, 2002 at 10 am. The
dateTime-value does not have a timezone component, and the function specifies a
timezone-value of -PT10H.
fn:adjust-dateTime-to-timezone(xs:dateTime("2002-03-07T10:00:00"), $tz)

The returned dateTime is 2002-03-07T10:00:00-10:00.

In the following function adjusts the dateTime value for June 4, 2006 at 10 am in
the UTC-7 time zone. Without a timezone-value specified, the function uses the
default timezone value of PT0H.
fn:adjust-dateTime-to-timezone(xs:dateTime("2006-06-04T10:00:00-07:00"))

136 XQuery Reference

The returned dateTime is 2006-06-04T17:00:00Z, the dateTime adjusted to UTC.

The following function removes the timezone component from the dateTime value
for March 7, 2002 at 10 am in the UTC-7 time zone. The timezone-value value is the
empty sequence.
fn:adjust-dateTime-to-timezone(xs:dateTime("2002-03-07T10:00:00-07:00"), ())

The returned dateTime is 2002-03-07T10:00:00.

adjust-time-to-timezone function
The fn:adjust-time-to-timezone function adjusts an xs:time value for a specific time
zone or removes the time zone component from the value.

Syntax

�� fn:adjust-time-to-timezone(time-value)
,timezone-value

��

time-value
The time value that is to be adjusted.

time-value is of type xs:time, or is an empty sequence.

timezone-value
A duration that represents the time zone to which time-value is to be
adjusted.

timezone-value can be an empty sequence or a single value of type
xdt:dayTimeDuration between -PT14H and PT14H, inclusive. The value
can have an integer number of minutes and must not have a seconds
component. If timezone-value is not specified, the default value is PT0H,
which represents UTC.

Returned value

The returned value is either a value of type xs:time or an empty sequence
depending on the parameters that are specified. If time-value is not an empty
sequence, the returned value is of type xs:time. The following table describes the
possible returned values:

Table 35. Types of input values and returned value for fn:adjust-time-to-timezone

date-value timezone-value Returned value

time-value that contains a
timezone component

An explicit value, or no
value specified (duration of
PT0H)

The time-value adjusted for
the time zone represented by
timezone-value. The returned
value contains the timezone
component represented by
timezone-value. If the time
zone adjustment crosses over
midnight, the change in date
is ignored.

time-value that contains a
timezone component

An empty sequence The time-value with no
timezone component.

Chapter 5. Built-in functions 137

Table 35. Types of input values and returned value for fn:adjust-time-to-
timezone (continued)

date-value timezone-value Returned value

time-value that does not
contain a timezone
component

An explicit value, or no
value specified (duration of
PT0H)

The time-value with a
timezone component. The
timezone component is the
timezone represented by
timezone-value. The time
component is not adjusted
for the time zone.

time-value that does not
contain a timezone
component

An empty sequence The time-value.

An empty sequence An explicit value, empty
sequence, or no value
specified

An empty sequence.

Examples

In the following examples, the variable $tz is a duration of -10 hours, defined as
xdt:dayTimeDuration("-PT10H").

The following function adjusts the time value for 10:00 am in the UTC-7 time zone,
and the function specifies a timezone-value of -PT10H.
fn:adjust-time-to-timezone(xs:time("10:00:00-07:00"), $tz)

The returned value is 7:00:00-10:00. The time is adjusted to the time zone
represented by the duration -PT10H.

The following function adjusts the time value for 1:00 pm. The time value does not
have a timezone component.
fn:adjust-time-to-timezone(xs:time("13:00:00"), $tz)

The returned value is 13:00:00-10:00. The time contains a timezone component
represented by the duration -PT10H.

The following function adjusts the time value for 10:00 am in the UTC-7 time zone.
The function does not specify a timezone-value and uses the default value of PT0H.
fn:adjust-time-to-timezone(xs:time("10:00:00-07:00"))

The returned value is 17:00:00Z, the time adjusted to UTC.

The following function removes the timezone component from the time value 8:00
am in the UTC-7 time zone. The timezone-value is the empty sequence.
fn:adjust-time-to-timezone(xs:time("08:00:00-07:00"), ())

The returned value is 8:00:00.

The following example compares two times. The time zone adjustment crosses over
the midnight and cause a date change. However, fn:adjust-time-to-timezone
ignores date changes.
fn:adjust-time-to-timezone(xs:time("01:00:00+14:00"), $tz)

eq xs:time("01:00:00-10:00")

138 XQuery Reference

The returned value is true.

abs function
The fn:abs function returns the absolute value of a numeric value.

Syntax

�� fn:abs(numeric-value) ��

numeric-value
An atomic value or an empty sequence.

If numeric-value is an atomic value, it has one of the following types:
v xs:float
v xs:double
v xs:decimal
v xs:integer
v A type that is derived from any of the previously listed types
v xdt:untypedAtomic

If numeric-value has the xdt:untypedAtomic data type, it is converted to an
xs:double value.

Returned value

If numeric-value is not the empty sequence, the returned value is the absolute value
of numeric-value.

If numeric-value is the empty sequence, fn:abs returns the empty sequence.

The data type of the returned value depends on the data type of numeric-value:
v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is

returned has the same type as numeric-value.
v If numeric-value has a data type that is derived from xs:float, xs:double,

xs:decimal, or xs:integer, the value that is returned has the direct parent data
type of numeric-value.

v If numeric-value has the xdt:untypedAtomic data type, the value that is returned
has the xs:double data type.

Example

The following function returns the absolute value of -10.5.
fn:abs(-10.5)

The returned value is 10.5.

avg function
The fn:avg function returns the average of the values in a sequence.

Syntax

�� fn:avg(sequence-expression) ��

Chapter 5. Built-in functions 139

sequence-expression
A sequence that contains items of any of the following atomic types, or an
empty sequence:
v xs:float
v xs:double
v xs:decimal
v xs:integer
v xdt:untypedAtomic
v xdt:dayTimeDuration
v xdt:yearMonthDuration
v A type that is derived from any of the previously listed types

Input items of type xdt:untypedAtomic are cast to xs:double. After this
casting, all of the items in the input sequence must be convertible to a
common type by promotion or subtype substitution. The average is
computed in this common type. For example, if the input sequence
contains items of type money (derived from xs:decimal) and stockprice
(derived from xs:float), the average is computed in the type xs:float.

Returned value

If sequence-expression is not the empty sequence, the returned value is the average
of the values in sequence-expression. The data type of the returned value is the same
as the data type of the items in sequence-expression, or the data type to which the
items in sequence-expression are promoted.

If sequence-expression is the empty sequence, the empty sequence is returned.

Example

The following function returns the average of the sequence (5, 1.0E2, 40.5):
fn:avg((5, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The function returns the
xs:double value 4.85E1, which is serialized as "48.5".

boolean function
The fn:boolean function returns the effective Boolean value of a sequence.

Syntax

�� fn:boolean(sequence-expression) ��

sequence-expression
Any sequence that contains items of any type, or the empty sequence.

Returned value

The returned effective Boolean value (EBV) depends on the value of
sequence-expression:

Table 36. EBVs returned for specific types of values in XQuery

Description of value EBV returned

An empty sequence false

140 XQuery Reference

Table 36. EBVs returned for specific types of values in XQuery (continued)

Description of value EBV returned

A sequence whose first item is a node true

A single value of type xs:boolean (or derived
from xs:boolean)

false - if the xs:boolean value is false

true - if the xs:boolean value is true

A single value of type xs:string or
xdt:untypedAtomic (or derived from one of
these types)

false - if the length of the value is zero

true - if the length if the value is greater than
zero

A single value of any numeric type (or
derived from a numeric type)

false - if the value is NaN or is numerically
equal to zero

true - if the value is not numerically equal to
zero

All other values error

Note: The effective Boolean value of a sequence that contains at least one node and at least
one atomic value is nondeterministic in a query where the order is unpredictable.

Examples

Example with an argument that is a single numeric value: The following function
returns the effective Boolean value of 0:
fn:boolean(0)

The returned value is false.

Example with an argument that is a multiple-item sequence: The following
function returns the effective Boolean value of (<a/>, 0,):
fn:boolean((<a/>, 0,))

The returned value is true.

ceiling function
The fn:ceiling function returns the smallest integer that is greater than or equal to a
specific numeric value.

Syntax

�� fn:ceiling(numeric-value) ��

numeric-value
An atomic value or an empty sequence.

If numeric-value is an atomic value, it has one of the following types:
v xs:float
v xs:double
v xs:decimal
v xs:integer
v xdt:untypedAtomic
v A type that is derived from any of the previously listed types

If numeric-value has the xdt:untypedAtomic data type, it is converted to an
xs:double value.

Chapter 5. Built-in functions 141

Returned value

If numeric-value is not the empty sequence, the returned value is the smallest
integer that is greater than or equal to numeric-value. The data type of the returned
value depends on the data type of numeric-value:
v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is

returned has the same type as numeric-value.
v If numeric-value has a data type that is derived from xs:float, xs:double,

xs:decimal, or xs:integer, the value that is returned has the direct parent data
type of numeric-value.

If numeric-value is the empty sequence, the returned value is the empty sequence.

Examples

Example with a positive argument: The following function returns the ceiling
value of 0.5:
fn:ceiling(0.5)

The returned value is 1.

Example with a negative argument: The following function returns the ceiling
value of (-1.2):
fn:ceiling(-1.2)

The returned value is -1.

codepoints-to-string function
The fn:codepoints-to-string function returns the string equivalent of a sequence of
Unicode code points.

Syntax

�� fn:codepoints-to-string(codepoint-sequence) ��

codepoint-sequence
A sequence of integers that correspond to Unicode code points, or the
empty sequence.

Returned value

If codepoint-sequence is not the empty sequence, the returned value is a string that is
the concatenation of the character equivalents of the items in codepoint-sequence. If
any item in codepoint-sequence is not a valid Unicode code point, an error is
returned.

If codepoint-sequence is the empty sequence, the returned value is a string of length
0.

Example

The following function returns the character equivalent of the sequence of UTF-8
code points (88,81,117,101,114,121).

142 XQuery Reference

fn:codepoints-to-string((88,81,117,101,114,121))

The returned value is 'XQuery'.

compare function
The fn:compare function compares two strings.

Syntax

�� fn:compare(string-1,string-2) ��

string-1 , string-2
The xs:string values that are to be compared.

Returned value

If string-1 and string-2 are not the empty sequence, one of the following values is
returned:

-1 If string-1 is less than string-2.

0 If string-1 is equal to string-2.

1 If string-1 is greater than string-2.

string-1 and string-2 are equal if they have the same length, including a length of
zero, and all corresponding characters are equal according to the default collation.

If string-1 and string-2 are not equal, their relationship (that is, which has the
greater value) is determined by the comparison of the first pair of unequal
characters from the left end of the strings. This comparison is made according to
the default collation.

If string-1 is longer than string-2, and all characters of string-2 are equal to the
leading characters of string-1, string-1 is greater than string-2.

If string-1 or string-2 is the empty sequence, the empty sequence is returned.

Example

The following function compares 'ABC' to 'ABD' using the default collation.
fn:compare(’ABC’, ’ABD’)

'ABC' is less than 'ABD'. The returned value is -1.

concat function
The fn:concat function returns a string that is the concatenation of two or more
atomic values.

Chapter 5. Built-in functions 143

Syntax

��

�

fn:concat(atomic-value,atomic-value)
,

, atomic-value

��

atomic-value
An atomic value or the empty sequence. If an argument is the empty
sequence, the argument is treated as the zero-length string. If atomic-value
is not an xs:string value, it is cast to xs:string before the values are
concatenated.

Returned value

If all atomic-value arguments are the empty sequence, the returned value is a string
of length 0. Otherwise, the returned value is the concatenation of the xs:string
values that result from casting the atomic-value arguments to strings.

Example

The following function concatenates the strings 'ABC', 'ABD', the empty sequence,
and 'ABE':
fn:concat(’ABC’, ’ABD’, (), ’ABE’)

The returned value is 'ABCABDABE'.

contains function
The fn:contains function determines whether a string contains a specific substring.
The search string is matched using the default collation.

Syntax

�� fn:contains(string,substring) ��

string The string to search for substring.

string has the xs:string data type, or is the empty sequence. If string is the
empty sequence, string is set to a string of length 0.

substring
The substring to search for in string.

substring has the xs:string data type, or is the empty sequence.

Limitation of length

The length of substring is limited to 32000 bytes.

Returned value

The returned value is the xs:boolean value true if either of the following conditions
are satisfied:
v substring occurs anywhere within string.
v substring is an empty sequence or a string of length zero.

144 XQuery Reference

Otherwise, the returned value is false.

Example

The following function determines whether the string 'Test literal' contains the
string 'lite'.
fn:contains(’Test literal’,’lite’)

The returned value is true.

count function
The fn:count function returns the number of values in a sequence.

Syntax

�� fn:count(sequence-expression) ��

sequence-expression
A sequence that contains items of any type, or an empty sequence.

Returned value

If sequence-expression is not the empty sequence, the number of values in
sequence-expression is returned. If sequence-expression is the empty sequence, 0 is
returned.

Example

The following function returns the number of items in the sequence (5, 1.0E2, 40.5):
fn:count((5, 1.0E2, 40.5))

The returned value is 3.

current-date function
The fn:current-date function returns the current date in the implicit time zone of
UTC.

Syntax

�� fn:current-date() ��

Returned value

The returned value is an xs:date value that is the current date.

Example

The following function returns the current date.
fn:current-date()

If this function were invoked on December 2, 2005, the returned value would be
2005-12-02Z.

Chapter 5. Built-in functions 145

current-dateTime function
The fn:current-dateTime function returns the current date and time in the implicit
time zone of UTC.

Syntax

�� fn:current-dateTime() ��

Returned value

The returned value is an xs:dateTime value that is the current date and time.

Example

The following function returns the current date and time.
fn:current-dateTime()

If this function were invoked on December 2, 2005 at 6:25 in Toronto (timezone
-PT5H), the returned value might be 2005-12-02T011:25:30.864001Z.

current-local-date function
The db2-fn:current-local-date function returns the current date in the local time
zone.

Syntax

�� db2-fn:current-local-date() ��

Returned value

The returned value is an xs:date value that is the current date. The returned value
does not include a time zone component.

For example, if you invoke this function on 2 December, 2009 at 3:00 Greenwich
Mean Time (GMT) and the local time zone is Eastern Standard Time (-PT5H), the
returned value is 2009-12-01.

current-local-dateTime function
The db2-fn:current-local-dateTime function returns the current date and time in the
local time zone.

Syntax

�� db2-fn:current-local-dateTime() ��

Returned value

The returned value is an xs:dateTime value that is the current date and time. The
returned value does not include a time zone component.

146 XQuery Reference

For example, if you invoke this function on 2 December 2009 at 6:25 in Toronto
(timezone -PT5H), an example of a returned value is 2009-12-02T06:25:30.864001.

current-local-time function
The db2-fn:current-local-time function returns the current time in the local time
zone.

Syntax

�� db2-fn:current-local-time() ��

Returned value

The returned value is an xs:time value that is the current time. The returned value
does not include a time zone component.

For example, if you invoke the function at 6:31 Greenwich Mean Time (GMT), and
the local time zone is Eastern Standard Time (-PT5H), an example returned value is
01:31:35.519001.

current-time function
The fn:current-time function returns the current time in the implicit time zone of
UTC.

Syntax

�� fn:current-time() ��

Returned value

The returned value is an xs:time value that is the current time.

Example

The following function returns the current time.
fn:current-time()

If this function were invoked at 6:31 Greenwich Mean Time, the returned value
might be 06:31:35.519001Z.

data function
The fn:data function returns the input sequence after replacing any nodes in the
input sequence by their typed values.

Syntax

�� fn:data(sequence-expression) ��

sequence-expression
Any sequence, including the empty sequence.

Chapter 5. Built-in functions 147

Returned value

If sequence-expression is an empty sequence, the returned value is an empty
sequence.

If sequence-expression is a single atomic value, the returned value is
sequence-expression.

If sequence-expression is a single node, the returned value is the typed value of
sequence-expression.

If sequence-expression is a sequence of more than one item, a sequence of atomic
values is returned from the items in sequence-expression. Each atomic value in
sequence-expression remains unchanged. Each node in sequence-expression is replaced
by its typed value, which is a sequence of zero or more atomic values.

Example

The following function returns a sequence that contains the atomic values that are
in the sequence (<x xsi:type="string">ABC</x>,<y xsi:type="decimal">1.23</y>).
fn:data((<x xsi:type="string">ABC</x>,<y xsi:type="decimal">1.23</y>))

The returned value is ("ABC",1.23).

dateTime function
The fn:dateTime function constructs an xs:dateTime value from an xs:date value
and an xs:time value.

Syntax

�� fn:dateTime(date-value,time-value) ��

date-value
An xs:date value.

time-value
An xs:time value.

Returned value

The returned value is an xs:dateTime value with a date component that is equal to
date-value and a time component that is equal to time-value. The timezone of the
result is computed as follows:
v If neither argument has a timezone, the result has no timezone.
v If exactly one of the arguments has a timezone, or if both arguments have the

same timezone, the result has this timezone.
v If the two arguments have different timezones, an error is returned.

Example

The following function returns an xs:dateTime value from an xs:date value and an
xs:time value.
fn:dateTime((xs:date("2005-04-16")), (xs:time("12:30:59")))

148 XQuery Reference

The returned value is the xs:dateTime value 2005-04-16T12:30:59.

day-from-date function
The fn:day-from-date function returns the day component of an xs:date value.

Syntax

�� fn:day-from-date(date-value) ��

date-value
The date value from which the day component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value

If date-value is of type xs:date, the returned value is of type xs:integer, and the
value is between 1 and 31, inclusive. The value is the day component of date-value.

If date-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the day component of the date value for June 1,
2005.
fn:day-from-date(xs:date("2005-06-01"))

The returned value is 1.

day-from-dateTime function
The fn:day-from-dateTime function returns the day component of an xs:dateTime
value.

Syntax

�� fn:day-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the day component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and
the value is between 1 and 31, inclusive. The value is the day component of
dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Chapter 5. Built-in functions 149

Example

The following function returns the day component of the dateTime value for
January 31, 2005 at 8:00 pm in the UTC+4 time zone.
fn:day-from-dateTime(xs:dateTime("2005-01-31T20:00:00+04:00"))

The returned value is 31.

days-from-duration function
The fn:days-from-duration function returns the days component of a duration.

Syntax

�� fn:days-from-duration(duration-value) ��

duration-value
The duration value from which the days component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the
following types: xdt:dayTimeDuration, xs:duration, or
xdt:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xdt:dayTimeDuration or is of type xs:duration, the

returned value is of type xs:integer, and is the days component of duration-value
cast as xdt:dayTimeDuration. The returned value is negative if duration-value is
negative.

v If duration-value is of type xdt:yearMonthDuration, the returned value is 0.
v If duration-value is an empty sequence, the returned value is an empty sequence.

The days component of duration-value cast as xdt:dayTimeDuration is the integer
number of days computed as (S idiv 86400). The value S is the total number of
seconds of duration-value cast as xdt:dayTimeDuration to remove the years and
months components.

Examples

This function returns the days component of the duration -10 days and 0 hours.
fn:days-from-duration(xdt:dayTimeDuration("-P10DT00H"))

The returned value is -10.

This function returns the days component of the duration 3 days and 55 hours.
fn:days-from-duration(xdt:dayTimeDuration("P3DT55H"))

The returned value is 5. When calculating the total number of days in the duration,
55 hours is converted to 2 days and 7 hours. The duration is equal to P5D7H
which has a days component of 5 days.

150 XQuery Reference

deep-equal function
The fn:deep-equal function compares two sequences to determine whether they
meet the requirements for deep equality.

Syntax

�� fn:deep-equal(sequence-1,sequence-2) ��

sequence-1, sequence-2
The sequences that are to be compared. The items in each sequence can be
atomic values of any type, or nodes.

Returned value

The returned value is the xs:boolean value true if sequence-1 and sequence-2 have
deep equality. Otherwise the returned value is false.

If sequence-1 and sequence-2 are the empty sequence, they have deep equality.

If two sequences are not empty, the two sequences have deep equality if they
satisfy both of the following conditions:
v The number of items in sequence-1 is equal to the number of items in sequence-2.
v Each item in sequence-1 (item-1) satisfies the conditions for deep equality to the

corresponding item in sequence-2 (item-2). item-1 and item-2 have deep equality if
they satisfy either of the following conditions:
– item-1 and item-2 are both atomic values and satisfy either of the following

conditions:
- The expression item-1 eq item-2 returns true
- Both item-1 and item-2 have the type xs:float or xs:double and the value

NaN.
– item-1 and item-2 are both nodes of the same kind and satisfy the conditions

for deep equality in the following table.

Table 37. Deep equality for nodes in a sequence

Node kind of both
item-1 and item-2 Conditions for deep equality

Document The sequence of the text and element children of item-1 is deep-equal
to the sequence of the text and element children of item-2.

Chapter 5. Built-in functions 151

Table 37. Deep equality for nodes in a sequence (continued)

Node kind of both
item-1 and item-2 Conditions for deep equality

Element All of the following conditions must be true:

v item-1 and item-2 have the same name, which means that their
namespace URIs match and their local names match. Namespace
prefixes are ignored. Name matching is done using a binary
comparison.

v item-1 and item-2 have the same number of attributes, and every
attribute of item-1 is deep-equal to an attribute of item-2.

v One of the following conditions is true:

– Both nodes are either unvalidated or validated with a type that
permits mixed content (both text and child elements), and the
sequence of the text and element children of item-1 is deep-equal
to the sequence of the text and element children of item-2.

– Both nodes are validated with a simple type (such as xs:decimal)
or a type that has simple content (such as a "temperature" type
whose content is xs:decimal), and the typed value of item-1 is
deep-equal to the typed value of item-2.

– Both nodes are validated with a type that permits no content
(neither text nor child elements).

– Both nodes are validated with a type that permits only child
elements (no text), and each child element of item-1 is deep-equal
to the corresponding child element of item-2.

Attribute All of the following conditions must be true:

v item-1 and item-2 have the same name, which means that their
namespace URIs match and their local names match. Namespace
prefixes are ignored. Name matching is done using a binary
comparison.

v The typed value of item-1 is deep-equal to the typed value of item-2.

Text The content property values are equal when compared as strings with
the eq operator using the default collation.

Comment The content property values are equal when compared as strings with
the eq operator using the default collation.

Processing
instruction

All of the following conditions must be true:

v item-1 and item-2 have the same name.

v The content property values are equal when compared as strings
with the eq operator using the default collation.

Example

The following function compares the sequences (1,'ABC') and (1,'ABCD') for deep
equality. String comparisons use the default correlation.
fn:deep-equal((1,’ABC’), (1,’ABCD’))

The returned value is false.

default-collation function
The fn:default-collation function returns a URI that represents the default collation
that is defined for the database.

152 XQuery Reference

Syntax

�� fn:default-collation() ��

Returned value

The returned value is of the type xs:anyURI and specifies the collation of the
database.

Example

A DB2 database is created specifying CLDR181_LEN as the collation. When
querying this database with the fn:default-collation function, the following value is
returned:
http://www.ibm.com/xmlns/prod/db2/sql/collations?name=CLDR181_LEN_AN_CX_EX_FX_HX_NX_S3

distinct-values function
The fn:distinct-values function returns the distinct values in a sequence.

Syntax

�� fn:distinct-values(sequence-expression) ��

sequence-expression
A sequence of atomic values, or the empty sequence.

Returned value

If sequence-expression is not the empty sequence, the returned value is a sequence
that contains the distinct values in sequence-expression. Two values, value1 and
value2, are distinct if value1 eq value2 is false using the default collation. If the eq
operator is not defined for two values, those values are considered to be distinct.

Values of type xdt:untypedAtomic are converted to values of type xs:string before
the values are compared.

For xs:float and xs:double values, if sequence-expression contains multiple NaN
values, a single NaN value is returned.

For xs:dateTime, xs:date, or xs:time values, the values are adjusted for timezone
differences before they are compared. If a value does not have a timezone, the
implicit timezone (UTC) is used.

If sequence-expression is the empty sequence, the empty sequence is returned.

If two values in the input sequence are equal by the eq operator but have different
types, either of the values, but not both, can appear in the result sequence. The
result sequence might not preserve the order of the input sequence.

Example

The following function returns the distinct values in a sequence, after atomizing
the nodes in the sequence:

Chapter 5. Built-in functions 153

fn:distinct-values((1, ’a’, 1.0, ’A’, <greeting>Hello</greeting>))

The returned value can be (1, 'a', 'A', 'Hello') or (1.0, 'A', 'a', 'Hello').

empty function
The fn:empty function indicates whether an argument is an empty sequence.

Syntax

�� fn:empty(item) ��

item An expression of any data type, or the empty sequence.

Returned value

The returned value is true if item is the empty sequence. Otherwise, the returned
value is false.

Example

The following example uses the empty function to determine whether the sequence
in variable $seq is the empty sequence.
let $seq := (5, 10)
return fn:empty($seq)

The returned value is false.

ends-with function
The fn:ends-with function determines whether a string ends with a specific
substring. The search string is matched using the default collation.

Syntax

�� fn:ends-with(string,substring) ��

string The string to search for substring.

string has the xs:string data type, or is an empty sequence. If string is an
empty sequence, string is set to a string of length 0.

substring
The substring to search for at the end of string.

substring has the xs:string data type, or is an empty sequence.

Limitation of length

The length of substring is limited to 32000 bytes.

Returned value

The returned value is the xs:boolean value true if either of the following conditions
is satisfied:
v substring occurs at the end of string.
v substring is an empty sequence or a string of length zero.

154 XQuery Reference

Otherwise, the returned value is false.

Example

The following function determines whether the string 'Test literal' ends with the
string 'literal'.
fn:ends-with(’Test literal’,’literal’)

The returned value is true.

exactly-one function
The fn:exactly-one function returns its argument if the argument contains exactly
one item.

Syntax

�� fn:exactly-one(sequence-expression) ��

sequence-expression
Any sequence, including the empty sequence.

Returned value

If sequence-expression contains exactly one item, sequence-expression is returned.
Otherwise, an error is returned.

Example

The following example uses the exactly-one function to determine whether the
sequence in variable $seq contains exactly one item.
let $seq := 5
return fn:exactly-one($seq)

The value 5 is returned.

exists function
The fn:exists function can check for the existence of many different types of items,
such as elements, attributes, text nodes, atomic values (for example, an integer) or
XML documents.

If the XQuery expression specified as its argument, sequence-expression, produces an
empty result (the empty sequence), then fn:exists returns false. If the argument
returns anything but the empty sequence, then fn:exists returns true.

Syntax

�� fn:exists(sequence-expression) ��

sequence-expression
A sequence of any data type, or the empty sequence

Chapter 5. Built-in functions 155

Returned value

The returned value is true if sequence-expression is not the empty sequence. If
sequence-expression produces the empty sequence, the returned value is false.

Examples

The following example uses the exists function to determine whether the sequence
in variable $seq is not the empty sequence.
let $seq := (5, 10)
return fn:exists($seq)

The value true is returned.

The next example checks whether there is an element, customer, with a child
element, phone. If there is, the fn:exists function returns true:
fn:exists($info/customer/phone)

The following example returns true if there is an element, customer, which has an
attribute, Cid:
fn:exists($info/customer/@Cid)

The next example checks whether the element, comment, has a text node. In this
example, if the comment element is an empty element it has no text node, so
fn:exists returns false. Also, if there is no comment element at all, fn:exists returns
false:
fn:exists($info/customer/comment/text())

The final example checks whether there is any XML document in the XML column
INFO of the CUSTOMER table:
fn:exists(db2-fn:xmlcolumn("CUSTOMER.INFO"))

false function
The fn:false function returns the xs:boolean value false.

Syntax

�� fn:false() ��

Returned value

The returned value is the xs:boolean value false.

Example

Use the false function to return the value false.
fn:false()

The value false is returned.

156 XQuery Reference

floor function
The fn:floor function returns the largest integer that is less than or equal to a
specific numeric value.

Syntax

�� fn:floor(numeric-value) ��

numeric-value
An atomic value or an empty sequence.

If numeric-value is an atomic value, it has one of the following types:
v xs:float
v xs:double
v xs:decimal
v xs:integer
v xdt:untypedAtomic
v A type that is derived from any of the previously listed types

If numeric-value has the xdt:untypedAtomic data type, it is converted to
an xs:double value.

Returned value

If numeric-value is not the empty sequence, the returned value is the largest integer
that is less than numeric-value. The data type of the returned value depends on the
data type of numeric-value:
v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is

returned has the same type as numeric-value.
v If numeric-value has a data type that is derived from xs:float, xs:double,

xs:decimal, or xs:integer, the value that is returned has the direct parent data
type of numeric-value.

If numeric-value is the empty sequence, the returned value is the empty sequence.

Examples

Example with a positive argument: The following function returns the floor value
of 0.5:
fn:floor(0.5)

The returned value is 0.

Example with a negative argument: The following function returns the floor value
of (-1.2):
fn:floor(-1.2)

The returned value is -2.

hours-from-dateTime function
The fn:hours-from-dateTime function returns the hours component of an
xs:dateTime value.

Chapter 5. Built-in functions 157

Syntax

�� fn:hours-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the hours component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and
the value is between 0 and 23, inclusive. The value is the hours component of
dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the hours component of the dateTime value for
January 31, 2005 at 2:00 pm in the UTC-8 time zone.
fn:hours-from-dateTime(xs:dateTime("2005-01-31T14:00:00-08:00"))

The returned value is 14.

hours-from-duration function
The fn:hours-from-duration function returns the hours component of a duration
value.

Syntax

�� fn:hours-from-duration(duration-value) ��

duration-value
The duration value from which the hours component is to be extracted.

duration-value is an empty sequence or is a value that has one of the
following types: xdt:dayTimeDuration, xs:duration, or
xdt:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xdt:dayTimeDuration or is of type xs:duration, the

returned value is of type xs:integer, and is a value between -23 and 23, inclusive.
The value is the hours component of duration-value cast as xdt:dayTimeDuration.
The value is negative if duration-value is negative.

v If duration-value is of type xdt:yearMonthDuration, the returned value is of type
xs:integer and is 0.

v If duration-value is an empty sequence, the returned value is an empty sequence.

The hours component of duration-value cast as xdt:dayTimeDuration is the integer
number of hours computed as ((S mod 86400) idiv 3600). The value S is the total
number of seconds of duration-value cast as xdt:dayTimeDuration to remove the

158 XQuery Reference

days and months component. The value 86400 is the number of seconds in a day,
and 3600 is the number of seconds in an hour.

Example

The following function returns the hours component of the duration 126 hours.
fn:hours-from-duration(xdt:dayTimeDuration("PT126H"))

The returned value is 6. When calculating the total number of hours in the
duration, 126 hours is converted to 5 days and 6 hours. The duration is equal to
P5DT6H which has an hours component of 6 hours.

hours-from-time function
The fn:hours-from-time function returns the hours component of an xs:time value.

Syntax

�� fn:hours-from-time(time-value) ��

time-value
The time value from which the hours component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value

If time-value is not an empty sequence, the returned value is of type xs:integer, and
the value is between 0 and 23, inclusive. The value is the hours component of
time-value.

If time-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the hours component of the time value for 9:30 am
in the UTC-8 time zone.
fn:hours-from-time(xs:time("09:30:00-08:00"))

The returned value is 9.

implicit-timezone function
The fn:implicit-timezone function returns the implicit time zone value of PT0S,
which is of type xs:dayTimeDuration. The value PT0S indicates that UTC is the
implicit time zone.

Syntax

�� fn:implicit-timezone() ��

Chapter 5. Built-in functions 159

Returned value

The returned value is PT0S, which is UTC represented by the type
xs:dayTimeDuration.

Example

The following function returns xdt:dayTimeDuration("PT0S"):
fn:implicit-timezone()

in-scope-prefixes function
The fn:in-scope-prefixes function returns a list of prefixes for all in-scope
namespaces of an element.

Syntax

�� fn:in-scope-prefixes(element) ��

element
The element for which the prefixes for in-scope namespaces are to be
retrieved.

Returned value

The returned value is a sequence of xs:NCName values, which are the prefixes for
all in-scope namespaces for element. If a default namespace is in-scope for element,
the sequence item for the default namespace prefix is a string of length 0. The
namespace "xml" is always included in the in-scope namespaces of an element.

Example

The following query returns a sequences of prefixes (as NCNames) for in-scope
namespaces for the element emp.
declare namespace d="http://www.mycompany.com";
let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">
<comp:emp id="31201" />

</comp:dept> }
return fn:in-scope-prefixes($department/d:dept/d:emp)

The returned value is ("xml", "comp"), not necessarily in that order.

index-of function
The fn:index-of function returns the positions where an item appears in a
sequence.

Syntax

�� fn:index-of(sequence-expression,search-value) ��

sequence-expression
Any sequence of atomic types, or the empty sequence.

160 XQuery Reference

search-value
The value to find in sequence-expression.

Returned value

The returned value is a sequence of xs:integer values that represent the positions of
items in sequence-expression that match search-value when compared by using the
rules of the eq operator using the default collation. Items that cannot be compared
because the eq operator is not defined for their types are considered to not match
search-value, and therefore the positions are not returned. The first item in a
sequence has the position 1.

The function returns an empty sequence if search-value does not match any items in
sequence-expression , or if sequence-expression is an empty sequence.

Example

The following function returns the positions where 'ABC' appears in a sequence.
fn:index-of((’ABC’,’DEF’,’ABC’,’123’), ’ABC’)

The returned value is the sequence (1,3).

insert-before function
The fn:insert-before function inserts a sequence before a specific position in another
sequence.

Syntax

�� fn:insert-before(source-sequence,insert-position,insert-sequence) ��

source-sequence
The sequence into which a sequence is to be inserted.

source-sequence is a sequence of items of any data type, or is the empty
sequence.

insert-position
The position in source-sequence before which a sequence is to be inserted.
insert-position has the xs:integer data type. If insert-position<=0,
insert-position is set to 1. If insert-position is greater than the number of
items in source-sequence, insert-position is set to one greater than the number
of items in source-sequence.

insert-sequence
The sequence that is to be inserted into source-sequence.

insert-sequence is a sequence of items of any data type, or is the empty
sequence.

Returned value

If source-sequence is not the empty sequence:
v If insert-sequence is not the empty sequence, the returned value is a sequence

with the following items, in the following order:
– The items in source-sequence before item insert-position
– The items in insert-sequence

Chapter 5. Built-in functions 161

– The item in source-sequence at item insert-position
– The items in source-sequence after item insert-position

v If insert-sequence is the empty sequence, the returned value is source-sequence.

If source-sequence is the empty sequence:
v If insert-sequence is not an empty sequence, the returned value is insert-sequence.
v If insert-sequence is an empty sequence, the returned value is the empty

sequence.

Example

The following function returns the sequence that results from inserting the
sequence (4,5,6) before position 4 in sequence (1,2,3,7):
fn:insert-before((1,2,3,7),4,(4,5,6))

The returned value is (1,2,3,4,5,6,7).

last function
The fn:last function returns the number of values in the sequence that is being
processed.

Syntax

�� fn:last() ��

Returned value

If the sequence that is currently being processed is not the empty sequence, the
returned value is the number of values in the sequence. If the sequence that is
currently being processed is the empty sequence, the returned value is the empty
sequence.

Example

The following example uses the function as a predicate expression to return last
item in the current sequence:
(<a/>, , <c/>)[fn:last()]

The returned value is <c/>.

local-name function
The fn:local-name function returns the local name property of a node.

Syntax

�� fn:local-name()
node

��

node The node for which the local name is to be retrieved. If node is not
specified, fn:local-name is evaluated for the current context node.

162 XQuery Reference

Returned value

The returned value depends on whether node is specified, and the value of node:
v If node is not specified, the local name of the context node is returned.
v If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.
– node is not an element node, an attribute node, or a processing-instruction

node.
v If node meets any of the following conditions, an error is returned:

– node is undefined.
– node is not a node.

v Otherwise, an xs:string value is returned that contains the local name part of the
expanded name for node.

Example

The following function returns the local name for node emp.
declare namespace a="http://posample.org";
fn:local-name(<a:b/>)

The returned value is b.

local-name-from-QName function
The fn:local-name-from-QName function returns the local part of an xs:QName
value.

Syntax

�� fn:local-name-from-QName(qualified-name) ��

qualified-name
The qualified name from which the local part is to be retrieved.

qualified-name has the xs:QName data type, or is the empty sequence.

Returned value

If qualified-name is not the empty sequence, the value that is returned is an
xs:NCName value that is the local part of qualified-name. If qualified-name is the
empty sequence, the empty sequence is returned.

Example

The following function returns the local part of a qualified name.
fn:local-name-from-QName(fn:QName("http://www.mycompany.com/", "ns:employee"))

The returned value is "employee".

local-timezone function
The db2-fn:local-timezone function returns the time zone of the local system.

Chapter 5. Built-in functions 163

Syntax

�� db2-fn:local-timezone() ��

Returned value

The returned value is an xdt:dayTimeDuration value that represents the local time
zone offset from Coordinated Universal Time (UTC).

For example, if you invoke this function in the local time zone of Eastern Standard
Time, the returned value is -PT5H.

lower-case function
The fn:lower-case function converts a string to lowercase.

Syntax

�� fn:lower-case(source-string)
, locale-name

��

source-string
The string that is to be converted to lowercase.

source-string is of type xs:string, or is the empty sequence.

locale-name
A string containing the locale to be used for the lowercase operation.

locale-name is of type xs:string, or is the empty sequence. If locale-name is
not the empty sequence, the value of locale-name is not case sensitive and
must be a valid locale or a string of length zero.

Returned value

If source-string is not the empty sequence, the returned value is source-string with
each character converted to its lowercase correspondent. If locale-name is not
specified, is the empty sequence, or is a string of length zero, then the lowercase
rules as defined in the Unicode standard are used. Otherwise, the lowercase rules
for the specified locale are used. Every character that does not have a lowercase
correspondent is included in the returned value in its original form.

If source-string is the empty sequence, the returned value is a string of length zero.

Examples

The following function converts the string "Wireless Router TB2561" to lowercase:
fn:lower-case("Wireless Router TB2561")

The returned value is "wireless router tb2561"

The following function specifies the Turkish locale tr_TR and converts the letter "I"
and the numeric character reference İ (the character reference for Latin
upper case I with dot above).
fn:lower-case("Iİ", "tr_TR")

164 XQuery Reference

The returned value consists of two characters, the character represented by ı
(Latin small letter dotless i), and the letter "i." For the Turkish locale, the letter "I"
is converted to the character represented by ı (Latin small letter dotless i),
and İ (Latin upper case I with dot above) is converted to "i."

The following function does not specify a locale and converts the letter "I" to
lowercase using the rules defined in the Unicode standard.
fn:lower-case("I")

The returned value is the letter "i."

matches function
The fn:matches function determines whether a string matches a specific pattern.

Syntax

�� fn:matches(source-string,pattern)
,flags

��

source-string
A string that is compared to a pattern.

source-string is an xs:string value or the empty sequence.

pattern A regular expression that is compared to source-string. A regular expression
is a set of characters, wildcards, and operators that define a string or group
of strings in a search pattern.

pattern is an xs:string value.

flags An xs:string value that can contain any of the following values that control
matching of pattern to source-string:

s Indicates that the dot (.) matches any character.

If the s flag is not specified, the dot (.) matches any character
except the new line character (X'0A').

m Indicates that the caret (^) matches the start of a line (the position
after a new line character), and the dollar sign ($) matches the end
of a line (the position before a new line character).

If the m flag is not specified, the caret (^) matches the start of the
string, and the dollar sign ($) matches the end of the string.

i Indicates that matching is case-insensitive.

If the i flag is not specified, case-sensitive matching is done.

x Indicates that whitespace characters within pattern are ignored.

If the x flag is not specified, whitespace characters are used for
matching.

Limitation of length

The length of source-string and pattern is limited to 32000 bytes.

Chapter 5. Built-in functions 165

Returned value

If source-string is not the empty sequence, the returned value is true if source-string
matches pattern. The returned value is false if source-string does not match pattern.

If pattern does not contain the string- or line-starting character caret (^), or the
string- or line-ending character dollar sign ($), source-string matches pattern if any
substring of source-string matches pattern. If pattern contains the string- or
line-starting character caret (^), source-string matches pattern only if source-string
matches pattern from the beginning of source-string or the beginning of a line in
source-string. If pattern contains the string- or line-ending character dollar sign ($),
source-string matches pattern only if source-string matches pattern at the end of
source-string or at the end of a line of source-string. The m flag determines whether
the match occurs from the beginning of the string or the beginning of a line.

If source-string is the empty sequence, the returned value is false.

Examples

Example of matching a pattern to any substring within a string: The following
function determines whether the characters "ac" or "bd" appear anywhere within
the string "abbcacadbdcd".
fn:matches("abbcacadbdcd","(ac)|(bd)")

The returned value is true.

Example of matching a pattern to an entire string: The following function
determines whether the characters "ac" or "bd" match the string "bd".
fn:matches("bd","^(ac)|(bd)$")

The returned value is true.

Example of ignoring spaces and capitalization when matching a pattern: The
following function uses the i and x flags to ignore capitalization and spaces when
determining whether the string "abc1234" matches the pattern "ABC 1234."
fn:matches("abc1234","ABC 1234", "ix")

The returned value is true.

max function
The fn:max function returns the maximum of the values in a sequence.

Syntax

�� fn:max(sequence-expression) ��

sequence-expression
A sequence that contains items of any of the following atomic types, or an
empty sequence:
v xs:float
v xs:double
v xs:decimal
v xs:integer
v xs:string

166 XQuery Reference

v xs:date
v xs:time
v xs:dateTime
v xdt:untypedAtomic
v xdt:dayTimeDuration
v xdt:yearMonthDuration
v A type that is derived from any of the previously listed types

Input items of type xdt:untypedAtomic are cast to xs:double. After this
casting, all the items in the input sequence must be convertible by
promotion or subtype substitution to a common type that supports the ge
operator. The maximum value is computed in this common type. For
example, if the input sequence contains items of type money (derived from
xs:decimal) and stockprice (derived from xs:float), the maximum is
computed in the type xs:float.

Before date, time, or dateTime values are compared, they are adjusted to a
common timezone. Datetime values without an explicit timezone
component use the implicit timezone, which is UTC.

String values are compared using the default collation.

Returned value

If sequence-expression is not the empty sequence, the returned value is the maximum
of the values in sequence-expression. The data type of the returned value is the same
as the data type of the items in sequence-expression, or the common data type to
which the items in sequence-expression are promoted.

If sequence-expression is the empty sequence, the empty sequence is returned. If the
sequence includes the value NaN, NaN is returned.

Example

The following function returns the maximum of the sequence (500, 1.0E2, 40.5).
fn:max((500, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The function returns the
xs:double value 5.0E2, which is serialized as "500".

min function
The fn:min function returns the minimum of the values in a sequence.

Syntax

�� fn:min(sequence-expression) ��

sequence-expression
A sequence that contains items of any of the following atomic types, or an
empty sequence:
v xs:float
v xs:double
v xs:decimal
v xs:integer
v xs:string
v xs:date

Chapter 5. Built-in functions 167

v xs:time
v xs:dateTime
v xdt:untypedAtomic
v xdt:dayTimeDuration
v xdt:yearMonthDuration
v A type that is derived from any of the previously listed types

Input items of type xdt:untypedAtomic are cast to xs:double. After this
casting, all of the items in the input sequence must be convertible by
promotion or subtype substitution to a common type that supports the le
operator. The minimum value is computed in this common type. For
example, if the input sequence contains items of type money (derived from
xs:decimal) and stockprice (derived from xs:float), the minimum is
computed in the type xs:float.

Before date, time, or dateTime values are compared, they are adjusted to a
common timezone. Datetime values without an explicit timezone
component use the implicit timezone, which is UTC.

String values are compared using the default collation.

Returned value

If sequence-expression is not the empty sequence, the returned value is the minimum
of the values in sequence-expression. The data type of the returned value is the same
as the data type of the items in sequence-expression, or the common data type to
which the items in sequence-expression are promoted.

If sequence-expression is the empty sequence, the empty sequence is returned. If the
sequence includes the value NaN, NaN is returned.

Examples

Example with numeric arguments: The following function returns the minimum of
the sequence (500, 1.0E2, 40.5):
fn:min((500, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The function returns the
xs:double value 4.05E1, which is serialized as "40.5".

Example with string arguments: The following function returns the minimum of
the sequence ("x", "y", "Z") using the default collation. Assume that the default
collation sorts lowercase alphabetic characters before uppercase alphabetic
characters.
fn:min(("x", "y", "Z"))

The returned value is "x".

minutes-from-dateTime function
The fn:minutes-from-dateTime function returns the minutes component of an
xs:dateTime value.

Syntax

�� fn:minutes-from-dateTime(dateTime-value) ��

168 XQuery Reference

dateTime-value
The dateTime value from which the minutes component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and
the value is between 0 and 59, inclusive. The value is the minutes component of
dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the minutes component from the dateTime value
for January 23, 2005 at 9:42 am in the UTC-8 time zone.
fn:minutes-from-dateTime(xs:dateTime("2005-01-23T09:42:00-08:00"))

The returned value is 42.

minutes-from-duration function
The fn:minutes-from-duration function returns the minutes component of a
duration.

Syntax

�� fn:minutes-from-duration(duration-value) ��

duration-value
The duration value from which the minutes component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the
following types: xdt:dayTimeDuration, xs:duration, or
xdt:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xdt:dayTimeDuration or is of type xs:duration, the

returned value is of type xs:integer and is a value between -59 and 59, inclusive.
The value is the minutes component of duration-value cast as
xdt:dayTimeDuration. The value is negative if duration-value is negative.

v If duration-value is of type xdt:yearMonthDuration, the returned value is 0.
v If duration-value is an empty sequence, the returned value is an empty sequence.

The minutes component of duration-value cast as xdt:dayTimeDuration is the
integer number of minutes computed as ((S mod 3600) idiv 60). The value S is
the total number of seconds of duration-value cast as xdt:dayTimeDuration to
remove the years and months components.

Chapter 5. Built-in functions 169

Example

The following function returns the minutes component of the duration 2 days, 16
hours, and 93 minutes.
fn:minutes-from-duration(xdt:dayTimeDuration("P2DT16H93M"))

The returned value is 33. When calculating the total number of minutes in the
duration, 93 minutes is converted to 1 hour and 33 minutes. The duration is equal
to P2DT17H33M which has a minutes component of 33 minutes.

minutes-from-time function
The fn:minutes-from-time function returns the minutes component of an xs:time
value.

Syntax

�� fn:minutes-from-time(time-value) ��

time-value
The time value from which the minutes component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value

If time-value is of type xs:time, the returned value is of type xs:integer, and the
value is between 0 and 59, inclusive. The value is the minutes component of
time-value.

If time-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the minutes component of the time value for 8:59
am in the UTC-8 time zone.
fn:minutes-from-time(xs:time("08:59:00-08:00"))

The returned value is 59.

month-from-date function
The fn:month-from-date function returns the month component of a xs:date value.

Syntax

�� fn:month-from-date(date-value) ��

date-value
The date value from which the month component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

170 XQuery Reference

Returned value

If date-value is of type xs:date, the returned value is of type xs:integer, and the
value is between 1 and 12, inclusive. The value is the month component of
date-value.

If date-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the month component of the date value for
December 1, 2005.
fn:month-from-date(xs:date("2005-12-01"))

The returned value is 12.

month-from-dateTime function
The fn:month-from-dateTime function returns the month component of an
xs:dateTime value.

Syntax

�� fn:month-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the month component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and
the value is between 1 and 12, inclusive. The value is the month component of
dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the month component of the dateTime value for
October 31, 2005 at 8:15 am in the UTC-8 time zone.
fn:month-from-dateTime(xs:dateTime("2005-10-31T08:15:00-08:00"))

The returned value is 10.

months-from-duration function
The fn:months-from-duration function returns the months component of a duration
value.

Syntax

�� fn:months-from-duration(duration-value) ��

Chapter 5. Built-in functions 171

duration-value
The duration value from which the months component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the
following types: xdt:dayTimeDuration, xs:duration, or
xdt:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xs:duration or is of type xdt:yearMonthDuration, the

returned value is of type xs:integer, and is a value is between -11 and 11,
inclusive. The value is the months component of duration-value cast as
xdt:yearMonthDuration. The value is negative if duration-value is negative.

v If duration-value is of type xdt:dayTimeDuration, the returned value is 0.
v If duration-value is an empty sequence, the returned value is an empty sequence.

The months component of duration-value cast as xdt:yearMonthDuration is the
integer number of months remaining from the total number of months of
duration-value divided by 12.

Examples

The following function returns the months component of the duration 20 years and
5 months.
fn:months-from-duration(xs:duration("P20Y5M"))

The returned value is 5.

The following function returns the months component of the yearMonthDuration
-9 years and -13 months.
fn:months-from-duration(xdt:yearMonthDuration("-P9Y13M"))

The returned value is -1. When calculating the total number of months in the
duration, -13 months is converted to -1 year and -1 month. The duration is equal to
-P10Y1M which has a month component of -1 month.

The following function returns the months component of the duration 14 years, 11
months, 40 days, and 13 hours.
xquery fn:months-from-duration(xs:duration("P14Y11M40DT13H"))

The returned value is 11.

name function
The fn:name function returns the prefix and local name parts of a node name.

Syntax

�� fn:name()
node

��

node The qualified name of a node for which the name is to be retrieved. If node
is not specified, fn:name is evaluated for the current context node.

172 XQuery Reference

Returned value

The returned value depends on the value of node:
v If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.
– node is not an element node, an attribute node, or a processing-instruction

node.
v If node meets any of the following conditions, an error is returned:

– node is undefined.
– node is not a node.

v Otherwise, an xs:string value is returned that contains the prefix (if present) and
local name for node.

Examples

The following query returns the value "comp:emp":
declare namespace d="http://www.mycompany.com";
let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">
<comp:emp id="31201" />

</comp:dept> }
return fn:name($department/d:dept/d:emp)

The following query also returns the value "comp:emp":
declare namespace d="http://www.mycompany.com";
let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">
<comp:emp id="31201" />

</comp:dept> }
return $department/d:dept/d:emp/fn:name()

namespace-uri function
The fn:namespace-uri function returns the namespace URI of the qualified name
for a node.

Syntax

�� fn:namespace-uri()
node

��

node The qualified name of a node for which the namespace URI is to be
retrieved. If node is not specified, fn:namespace-uri is evaluated for the
current context node.

Returned value

The returned value depends on the value of node:
v If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.
– node is not an element node or an attribute node.
– node is an element node or an attribute node, but the expanded qualified

name for node is not in a namespace.
v If node meets any of the following conditions, an error is returned:

Chapter 5. Built-in functions 173

– node is undefined.
– node is not a node.

v Otherwise, an xs:string value is returned that contains the namespace URI of the
expanded name for node.

Examples

The following query returns the value "http://www.mycompany.com":
declare namespace d="http://www.mycompany.com";
let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">
<comp:emp id="31201" />

</comp:dept> }
return fn:namespace-uri($department/d:dept/d:emp)

The following query also returns the value "http://www.mycompany.com":
declare namespace d="http://www.mycompany.com";
let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">
<comp:emp id="31201" />

</comp:dept> }
return $department/d:dept/d:emp/fn:namespace-uri()

namespace-uri-for-prefix function
The fn:namespace-uri-for-prefix function returns the namespace URI that is
associated with a prefix in the in-scope namespaces for an element.

Syntax

�� fn:namespace-uri-for-prefix(prefix,element) ��

prefix The prefix for which the namespace is returned.

prefix has the xs:string data type, which can have zero length, or is an
empty sequence.

element
An element that has an in-scope namespace that is bound to prefix.

Returned value

The returned value depends on the value of prefix:
v If element has an in-scope namespace whose prefix value matches the value of

prefix, the namespace URI for that namespace is returned.
v If element does not have an in-scope namespace whose prefix value matches the

value of prefix, the empty sequence is returned.
v If prefix is a string of length 0 or is an empty sequence, the namespace URI for

the default namespace is returned.

Example

The following query returns the value "http://www.mycompany.com":
declare namespace d="http://www.mycompany.com";
let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

174 XQuery Reference

<comp:emp id="31201" />
</comp:dept> }

return fn:namespace-uri-for-prefix("comp", $department/d:dept/d:emp)

namespace-uri-from-QName function
The fn:namespace-uri-from-QName function returns the namespace URI part of an
xs:QName value.

Syntax

�� fn:namespace-uri-from-QName(qualified-name) ��

qualified-name
The qualified name from which the namespace URI part is to be retrieved.

qualified-name has the xs:QName data type, or is an empty sequence.

Returned value

If qualified-name is not the empty sequence, the value that is returned is an xs:string
value that is the namespace URI part of qualified-name. If qualified-name is not in a
namespace, a string of length 0 is returned. If qualified-name is the empty sequence,
the empty sequence is returned.

Example

This function returns the string value "http://www.mycompany.com":
fn:namespace-uri-from-QName(fn:QName("http://www.mycompany.com", "comp:employee"))

node-name function
The fn:node-name function returns the expanded QName of a node.

Syntax

�� fn:node-name(node) ��

node The node for which the expanded name is to be retrieved.

Returned value

The returned value is an xs:QName value that contains the expanded QName for
node. If node is an empty sequence, an empty sequence is returned.

Example

The following query returns the expanded QName that corresponds to the URI
http://www.mycompany.com and the lexical QName comp:emp:
declare namespace d="http://www.mycompany.com";
let $department := document {

<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">
<comp:emp id="31201" />

</comp:dept> }
return fn:node-name($department/d:dept/d:emp)

Chapter 5. Built-in functions 175

normalize-space function
The fn:normalize-space function strips leading and trailing white space characters
from a string and replaces each internal sequence of white space characters with a
single blank character.

Syntax

�� fn:normalize-space()
source-string

��

source-string
A string in which whitespace is to be normalized.

source-string is an xs:string value or the empty sequence.

If source-string is not specified, the argument of fn:normalize-space is the
current context item, which is converted to an xs:string value by using the
fn:string function.

Returned value

The returned value is the xs:string value that results when the following operations
are performed on source-string:
v Leading and trailing whitespace characters are removed.
v Each internal sequence of one or more adjacent whitespace characters is replaced

by a single space (X'20') character.

Whitespace characters are space (X'20'), tab (X'09'), line feed (X'0A'), and carriage
return (X'0D').

If source-string is the empty sequence, a string of length 0 is returned.

Example

The following function removes extra whitespace characters from the string "a b c
d ".
fn:normalize-space(" a b c d ")

The returned value is "a b c d".

normalize-unicode function
The fn:normalize-unicode function performs Unicode normalization on a string.

Syntax

�� fn:normalize-unicode(source-string)
,normalization-type

��

source-string
A value on which Unicode normalization is to be performed.

source-string is an xs:string value or the empty sequence.

176 XQuery Reference

normalization-type
An xs:string value that indicates the type of Unicode normalization that is
to be performed. Possible values are:

NFC Unicode Normalization Form C. If normalization-type, is not
specified, NFC normalization is performed.

NFD Unicode Normalization Form D.

NFKC Unicode Normalization Form KC.

NFKD Unicode Normalization Form KD.

If a zero-length string is specified, then no normalization is performed.

Returned value

If source-string is not the empty sequence, the returned value is the xs:string value
that results when Unicode normalization that is specified by normalization-type is
performed on source-string. If normalization-type is not specified, Unicode
Normalization Form C (NFC) is performed on source-string. Unicode normalization
is described in Character Model for the World Wide Web 1.0.

If source-string is the empty sequence, a string of length 0 is returned.

Examples

The following function performs Unicode Normalization Form C on the string
"ṃ" (a Latin lowercase letter m with a dot below):
fn:normalize-unicode("ṃ","NFC")

The returned value is the UTF-8 character represented by the numeric character
reference &x1e43;, a Latin lowercase letter m with a dot below.

The following example converts the normalized Unicode to the decimal codepoint:
fn:string-to-codepoints(fn:normalize-unicode("ṃ", "NFC"))

The returned value is 7747.

not function
The fn:not function returns false if the effective boolean value of a sequence is true
and returns true if the effective boolean value of a sequence is false.

Syntax

�� fn:not(sequence-expression) ��

sequence-expression
Any sequence that contains items of any type, or the empty sequence.

Returned value

If sequence-expression is not an empty sequence, then the value that is returned is
true if the effective Boolean value of the sequence is false. The returned value is
false if the effective boolean value of the sequence is true.

Chapter 5. Built-in functions 177

If sequence-expression is the empty sequence, the returned value is true.

Example

The following function returns false because the effective Boolean value of a node
is true.
fn:not(<employee />)

number function
The fn:number function converts a value to the xs:double data type.

Syntax

�� fn:number()
atomic-value

��

atomic-value
An atomic value or the empty sequence. If atomic-value is not specified,
fn:number is evaluated for the current context item.

Returned value

If atomic-value is not the empty sequence, the returned value is the result of casting
atomic-value as xs:double. If atomic-value cannot be cast to the xs:double data type,
NaN is returned.

If numeric-value is the empty sequence, NaN is returned.

Examples

Example of converting an xs:decimal value to xs:double: The following function
converts the xs:decimal value 2.75 to xs:double.
fn:number(2.75)

The returned value is 2.75E0.

Example of converting an xs:boolean value to xs:double: The following function
converts the boolean value false() to xs:double.
fn:number(false())

The returned value is 0.0E0.

one-or-more function
The fn:one-or-more function returns its argument if the argument contains one or
more items.

Syntax

�� fn:one-or-more(sequence-expression) ��

sequence-expression
Any sequence, including the empty sequence.

178 XQuery Reference

Returned value

If sequence-expression contains one or more items, sequence-expression is returned.
Otherwise, an error is returned.

Example

The following example uses the fn:one-or-more function to determine if the
sequence in variable $seq contains one or more items.
let $seq := (5,10)
return fn:one-or-more($seq)

(5,10) is returned.

position function
The fn:position function returns the position of the context item in the sequence
that is being processed.

Syntax

�� fn:position() ��

Returned value

The returned value is an xs:integer value that indicates the position of the context
item in the sequence that is currently being processed. If the context item is
undefined, an error is returned. The position function returns a deterministic result
only if the sequence that contains the context item has a deterministic order. The
position function is typically used in a predicate.

Example

In the following expression, the position function is called for each item in a
sequence of ten items. For each item, the position function returns the position of
that item in the sequence. The predicate position() eq 5 is true only for the fifth
item in the sequence.
(11 to 20)[position() eq 5]

The value returned by the expression is 15.

QName function
The fn:QName function builds an expanded name from a namespace URI and a
string that contains a lexical QName with an optional prefix.

Syntax

�� fn:QName(URI,QName) ��

URI The namespace portion of an expanded name.

URI has the xs:string data type, or is an empty string or sequence.

Chapter 5. Built-in functions 179

QName
A value that is the correct lexical form of The xs:QName.

QName data type has the xs:string data type.

Returned value

The returned value is an xs:QName value that is an expanded name with a
namespace URI that is specified by URI, and the prefix and local name that is
specified by QName.

The fn:QName function associates the namespace prefix of QName with the value
of URI. If QName has a namespace prefix, URI cannot be a zero-length string or
empty sequence. If QName has only a local name and no prefix, URI can be a
zero-length string or empty sequence.

Example

The following function is given a namespace URI and a string that contains a
lexical QName, and it returns a value of type xs:QName.
fn:QName("http://www.mycompany.com", "comp:employee")

The returned value is an xs:QName value with namespace URI of
"http://www.mycompany.com", a prefix of "comp", and local name of "employee".

remove function
The fn:remove function removes an item from a sequence.

Syntax

�� fn:remove(source-sequence,remove-position) ��

source-sequence
The sequence from which an item is to be removed.

source-sequence is a sequence of items of any data type, or is the empty
sequence.

remove-position
The position in source-sequence of the item that is to be removed.
remove-position has the xs:integer data type.

Returned value

If source-sequence is not the empty sequence:
v If remove-position is less than one or greater than the length of source-sequence, the

returned value is source-sequence.
v If remove-position is greater than or equal to one and less than or equal to the

length of source-sequence, the returned value is a sequence with the following
items, in the following order:
– The items in source-sequence before item remove-position
– The items in source-sequence after item remove-position

v If source-sequence is the empty sequence, the returned value is the empty
sequence.

180 XQuery Reference

Example

The following function returns the sequence that results from removing the item at
position three from the sequence (1,2,4,7):
fn:remove((1,2,4,7),3)

The returned value is (1,2,7).

replace function
The fn:replace function compares each set of characters within a string to a specific
pattern, and then it replaces the characters that match the pattern with another set
of characters.

Syntax

�� fn:replace(source-string,pattern,replacement-string)
,flags

��

source-string
A string that contains characters that are to be replaced.

source-string is an xs:string value or the empty sequence.

pattern A regular expression that is compared to source-string. A regular expression
is a set of characters, wildcards, and operators that define a string or group
of strings in a search pattern.

pattern is an xs:string value.

replacement-string
A string that contains characters that replace characters that match pattern
in source-string.

replacement-string is an xs:string value.

replacement-string can contain the variables $0 to $9. $0 represents the entire
string in pattern. The variable $1 through $9 represent one of nine possible
parenthesized subexpressions in pattern. ($1 represents the first
subexpression, $2 represents the second subexpression, and so on.)

To use the literal dollar sign ($) in replacement-string, use the string "\$". To
use the literal backslash (\) in replacement-string, use the string "\\".

flags An xs:string value that can contain any of the following values that control
the matching of pattern to source-string:

s Indicates that the dot (.) replaces any character.

If the s flag is not specified, the dot (.) replaces any character
except the new-line character (X'0A').

m Indicates that the caret (^) replaces the start of a line (the position
after a new-line character), and the dollar sign ($) replaces the end
of a line (the position before a new-line character).

If the m flag is not specified, the caret (^) replaces the start of a
string, and the dollar sign ($) replaces the end of the string.

i Indicates that matching is case-insensitive.

If the i flag is not specified, case-sensitive matching is done.

Chapter 5. Built-in functions 181

x Indicates that whitespace characters within pattern are ignored.

If the x flag is not specified, whitespace characters are used for
matching.

Limitation of length

The length of source-string, pattern and replacement-string is limited to 32000
bytes.

Returned value

If source-string is not the empty sequence, the returned value is a string that results
when the following operations are performed on source-string:
v source-string is searched for characters that match pattern. If pattern contains two

or more alternative sets of characters, the first set of characters in pattern that
matches characters in source-string is considered to be the matching pattern.

v Each set of characters in source-string that matches pattern is replaced with
replacement-string. If replacement-string contains any of the variables $0 through
$9, the substring of source-string that matches the subexpression in pattern that
corresponds to the variable replaces the variable in replacement-string. Then the
modified replacement-string is inserted into source-string. If a variable does not
have a corresponding subexpression in pattern because there are more variables
than subexpressions or a subexpression does not have a match in source-string, a
string of length 0 replaces the variable in replacement-string.

If pattern is not found in source-string, an error is returned.

If source-string is the empty sequence, a string of length 0 is returned.

Examples

Example of replacing a substring with another substring: The following function
replaces all instances of "a" in the string "abbcacadbdcd" with "ba".
fn:replace("abbcacadbdcd","a","ba")

The returned value is "babbcbacbadbdcd".

Example of replacing a substring using a replacement string with variables: The
following function replaces "a" and the character that follows "a" with two
instances of the character that follows the "a" in "abbcacadbdcd".
fn:replace("abbcacadbdcd","a(.)","$1$1")

The returned value is "bbbcccddbdcd".

resolve-QName function
The fn:resolve-QName function converts a string containing a lexical QName into
an expanded QName by using the in-scope namespaces of an element to resolve
the namespace prefix to a namespace URI.

Syntax

�� fn:resolve-QName(qualified-name,element-for-namespace) ��

182 XQuery Reference

qualified-name
A string that is in the form of a qualified name.

qualified-name has the xs:string data type, or is the empty sequence.

element-for-namespace
An element that provides the in-scope namespaces for qualified-name.

element-for-namespace is an element node.

Returned value

If qualified-name is not the empty sequence, the returned value is an expanded
name that is constructed as follows:
v The prefix and local name of the expanded QName is taken from qualified-name.
v If qualified-name has a prefix, and that prefix matches a prefix in the in-scope

namespaces of element-for-namespace, the namespace URI to which this prefix is
bound is the namespace URI for the returned value.

v If qualified-name has no prefix, and a default namespace URI is defined in the
in-scope namespaces of element-for-namespace, this default namespace URI is the
namespace URI for the returned value.

v If qualified-name has no prefix, and no default namespace URI is defined in the
in-scope namespaces of element-for-namespace, the returned value has no
namespace URI.

v If the prefix for qualified-name does not match a namespace prefix in the in-scope
namespaces of element-for-namespace, or qualified-name is not in the form of a
valid qualified name, an error is returned.

If qualified-name is the empty sequence, the empty sequence is returned.

Example

The following query returns the expanded QName that corresponds to the URI
http://www.mycompany.com and the lexical QName comp:dept:
declare namespace d="http://www.mycompany.com";
let $department := document {
<comp:dept xmlns:comp="http://www.mycompany.com" id="A07">

<comp:emp id="31201" />
</comp:dept> }
return fn:resolve-QName("comp:dept", $department/d:dept/d:emp)

reverse function
The fn:reverse function reverses the order of the items in a sequence.

Syntax

�� fn:reverse(source-sequence) ��

source-sequence
The sequence that is to be reversed.

source-sequence is a sequence of items of any data type, or is the empty
sequence.

Chapter 5. Built-in functions 183

Returned value

If source-sequence is not the empty sequence, the returned value is a sequence that
contains the items in source-sequence, in reverse order.

If source-sequence is the empty sequence, the empty sequence is returned.

Example

The following function returns the items in sequence (1,2,3,7) in reverse order:
fn:reverse((1,2,3,7))

The returned value is (7,3,2,1).

root function
The fn:root function returns the root node of a tree to which a node belongs.

Syntax

�� fn:root()
node

��

node A node or the empty sequence. The default value for node is the context
node.

Returned value

If node is not the empty sequence, the returned value is the root node of the tree to
which node belongs. If node is the root node of the tree, the returned value is node.

If node is the empty sequence, the returned value is the empty sequence.

Example

Suppose that some XQuery variables are defined like this:
let $f := <first>Laura</first>
let $e := <emp> {$f} <last>Brown</last> </emp>
let $doc := document {<emps>{$e}</emps>}

Example of returning the root node of an element: The following function returns
the root node of the element named last:
fn:root($e/last)

The returned value is <emp><first>Laura</first><last>Brown</last></emp>.

Example of returning the root node of a document: The following function
returns the root node of the document that is bound to the variable $doc:
fn:root($doc)

The returned value is a document node.

round function
The fn:round function returns the integer that is closest to a specific numeric value.

184 XQuery Reference

Syntax

�� fn:round(numeric-value) ��

numeric-value
An atomic value or an empty sequence.

If numeric-value is an atomic value, it has one of the following types:
v xs:float
v xs:double
v xs:decimal
v xs:integer
v xdt:untypedAtomic
v A type that is derived from any of the previously listed types

If numeric-value has the xdt:untypedAtomic data type, it is converted to an
xs:double value.

Returned value

If numeric-value is not the empty sequence, the returned value is the integer that is
closest to numeric-value. That is, fn:round(numeric-value) is equivalent to
fn:floor(numeric-value+0.5). The data type of the returned value depends on the
data type of numeric-value:
v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is

returned has the same type as numeric-value.
v If numeric-value has a data type that is derived from xs:float, xs:double,

xs:decimal, or xs:integer, the value that is returned has the direct parent data
type of numeric-value.

If numeric-value is the empty sequence, the returned value is the empty sequence.

Examples

Example with a positive argument: The following function returns the rounded
value of 0.5:
fn:round(0.5)

The returned value is 1.

Example with a negative argument: The following function returns the rounded
value of (-1.5):
fn:round(-1.5)

The returned value is -1.

round-half-to-even function
The fn:round-half-to-even function returns the numeric value with a specified
precision that is closest to a specific numeric value.

Chapter 5. Built-in functions 185

Syntax

�� fn:round-half-to-even(numeric-value)
,precision

��

numeric-value
An atomic value or an empty sequence.

If numeric-value is an atomic value, it has one of the following types:
v xs:float
v xs:double
v xs:decimal
v xs:integer
v xdt:untypedAtomic
v A type that is derived from any of the previously listed types

If numeric-value has the xdt:untypedAtomic data type, it is converted to an
xs:double value.

precision
The number of digits to the right of the decimal point to which
numeric-value is to be rounded. precision is an xs:integer value. The default
value for precision is 0.

Returned value

If numeric-value is not the empty sequence, and precision is 0 or not specified, the
returned value is the integer that is closest to numeric-value. If numeric-value is
equally close to two integers, the returned value is the even integer.

If numeric-value is not the empty sequence, and precision is not 0, the returned value
is a numeric value that has precision digits to the right of the decimal point and is
closest to numeric-value. If numeric-value is equally close to two values, the returned
value is the value whose least significant digit is even.

The data type of the returned value depends on the data type of numeric-value:
v If numeric-value is xs:float, xs:double, xs:decimal, or xs:integer, the value that is

returned has the same type as numeric-value.
v If numeric-value has a data type that is derived from xs:float, xs:double,

xs:decimal, or xs:integer, the value that is returned has the direct parent data
type of numeric-value.

If numeric-value is the empty sequence, the returned value is the empty sequence.

Examples

Example without a precision argument: The following function returns the
rounded value of 0.5:
fn:round-half-to-even(0.5)

The returned value is 0.

Example with a non-zero precision argument: The following function returns
1.5432, rounded to two decimal places.
fn:round-half-to-even(1.5432,2)

186 XQuery Reference

The returned value is 1.54.

Example with negative precision: The following function returns 35600.
fn:round-half-to-even(35612.25, -2)

seconds-from-dateTime function
The fn:seconds-from-dateTime function returns the seconds component of an
xs:dateTime value.

Syntax

�� fn:seconds-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the seconds component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:decimal,
and the value is greater than or equal to 0 and less than 60. The value is the
seconds and fractional seconds component of dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Examples

The following function returns the seconds component of dateTime value for
February 8, 2005 at 2:16:23 pm in theUTC-8 time zone.
fn:seconds-from-dateTime(xs:dateTime("2005-02-08T14:16:23-08:00"))

The returned value is 23.

The following function returns the seconds component of dateTime value for June
23, 2005 at 9:16:20.43 am in the UTC time zone.
fn:seconds-from-dateTime(xs:dateTime("2005-06-23T09:16:23.43Z"))

The returned value is 20.43.

seconds-from-duration function
The fn:seconds-from-duration function returns the seconds component of a
duration.

Syntax

�� fn:seconds-from-duration(duration-value) ��

duration-value
The duration value from which the seconds component is to be extracted.

Chapter 5. Built-in functions 187

duration-value is an empty sequence, or is a value that has one of the
following types: xdt:dayTimeDuration, xs:duration, or
xdt:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xdt:dayTimeDuration, or is of type xs:duration, the

returned value is of type xs:decimal, and is a value greater than -60 and less
than 60. The value is the seconds and fractional seconds component of
duration-value cast as xdt:dayTimeDuration. The value is negative if duration-value
is negative.

v If duration-value is of type xdt:yearMonthDuration, the returned value is of type
xs:integer and is 0.

v If duration-value is an empty sequence, the returned value is an empty sequence.

The seconds and fractional seconds component of duration-value cast as
xdt:dayTimeDuration is computed as (S mod 60). The value S is the total number
of seconds and fractional seconds of duration-value cast as xdt:dayTimeDuration to
remove the years and months components.

Example

The following function returns the seconds component of the duration 150.5
seconds.
fn:seconds-from-duration(xdt:dayTimeDuration("PT150.5S"))

The returned value is 30.5. When calculating the total number of seconds in the
duration, 150.5 seconds is converted to 2 minutes and 30.5 seconds. The duration is
equal to PT2M30.5S which has a seconds component of 30.5 seconds.

seconds-from-time function
The fn:seconds-from-time function returns the seconds component of an xs:time
value.

Syntax

�� fn:seconds-from-time(time-value) ��

time-value
The time value from which the seconds component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value

If time-value is of type xs:time, the returned value is of type xs:decimal, and the
value is greater than or equal to zero and less than 60. The value is the seconds
and fractional seconds component of time-value.

If time-value is an empty sequence, the returned value is an empty sequence.

188 XQuery Reference

Example

The following function returns the seconds component of the time value for
08:59:59 am in the UTC-8 time zone.
fn:seconds-from-time(xs:time("08:59:59-08:00"))

The returned value is 59.

sqlquery function
The db2-fn:sqlquery function retrieves a sequence that is the result of an SQL
fullselect in the currently connected DB2 database.

Syntax

��

�

db2-fn:sqlquery(string-literal)

, parameter-expression

��

string-literal
Contains a fullselect. The fullselect must specify a single-column result set,
and the column must have the XML data type. The scope of the fullselect
is a new SQL query scope, not a nested SQL query.

The fullselect cannot contain an isolation clause or lock-request clause.

If the fullselect contains single quotation marks (for example, around a
string constant), enclose the function argument in double quotation marks.
For example:
"select c1 from t1 where c2 = ’Hello’"

If the fullselect contains double quotation marks (for example, around a
delimited identifier), enclose the function argument in single quotation
marks. For example:
’select c1 from "t1" where c2 = 47’

If the fullselect contains both single and double quotation marks, enclose
the function argument in single quotation marks and represent each
internal single quote by two adjacent single quote characters. For example:
’select c1 from "t1" where c2 = ’’Hello’’’

The fullselect can contain calls to the PARAMETER function to reference
the result value from each parameter-expression specified in the
db2-fn:sqlquery function invocation. The PARAMETER function calls are
substituted with the result value of the corresponding parameter-expression
in the execution of the fullselect.

parameter-expression
An XQuery expression that returns a value. The result value of each
parameter-expression can be referenced by a designated SQL function
PARAMETER with an integer value argument in the SQL fullselect. The
integer value is an index to the parameter-expression by its position in the
db2-fn:sqlquery function invocation. The valid integer values are between 1
and the total number of the parameter-expression in the function invocation.
For example, if the string-literal argument includes PARAMETER(1) and
PARAMETER(2) in the SQL fullselect, the function invocation must specify

Chapter 5. Built-in functions 189

two XQuery parameter-expression arguments. PARAMETER(1) references the
result of the first parameter-expression argument and PARAMETER(2)
references the result of the second parameter-expression argument.

During the processing of the SQL fullselect, each PARAMETER function
call is replaced with the result value of the corresponding
parameter-expression in the db2-fn:sqlquery function invocation. Each
parameter-expression is evaluated once regardless the number of times it is
referenced in the SQL fullselect.

The result data type of the corresponding parameter-expression must be
castable to the result type of the PARAMETER function according to the
rules of XMLCAST. If not, an error is returned.

The result type of the PARAMETER function is determined as if it were a
parameter marker in the SQL fullselect. For example, a parameter marker
is indicated by a question mark (?), or a colon followed by a name (:name),
in other contexts. If the result type cannot be determined for a
PARAMETER function, an error is returned.

Tip: If an untyped parameter marker is not allowed in an operation, you
can use the CAST specification or XMLCAST specification to specify a
type. For example, to cast PARAMETER(1) to the type DOUBLE, use the
following CAST specification, CAST(PARAMETER(1) as double).

Returned value

The returned value is a sequence that is the result of the fullselect in string-literal.
The fullselect is processed as an SQL statement, following the usual dynamic SQL
rules for authorization and name resolution. If the fullselect contains any calls to
the PARAMETER function, they are substituted with the result value of the
XQuery expression of the corresponding parameter-expression argument when the
fullselect is evaluated. The XML values that are returned by the fullselect are
concatenated to form the result of the function. Rows that contain null values do
not affect the result sequence. If the fullselect returns no rows or returns only null
values, the result of the function is an empty sequence.

The number of items in the sequence that is returned by the db2-fn:sqlquery
function can be different from the number of rows that are returned by the
fullselect because some of these rows can contain null values or sequences with
multiple items.

Examples

Example of fullselects that return a sequence of XML documents: The following
example shows several function calls that return the same sequence of documents
from table PRODUCT. The documents are in column DESCRIPTION.

Any of the following functions produce the same result:
db2-fn:sqlquery(’select description from product’)
db2-fn:sqlquery(’SELECT DESCRIPTION FROM PRODUCT’)
db2-fn:sqlquery(’select "DESCRIPTION" from "PRODUCT"’)

Example of fullselects that return a single XML document: The following
example returns a sequence that is a single document in table PRODUCT. The
document is in column DESCRIPTION and is identified by a value of '100-103-01'
for column PID.

190 XQuery Reference

Any of the following functions produce the same result:
db2-fn:sqlquery(’select Description from Product where pID=’’100-103-01’’’)
db2-fn:sqlquery("select description from product where pid=’100-103-01’")
db2-fn:sqlquery("select ""DESCRIPTION"" from product where pid=’100-103-01’")

Example of fullselect using two PARAMETER function calls and one expression:
The following example returns the purchase ID, part ID, and the purchase date for
all the parts sold within the promotion dates.
xquery
for $po in db2-fn:xmlcolumn(’PURCHASEORDER.PORDER’)/PurchaseOrder,

$item in $po/item/partid
for $p in db2-fn:sqlquery(

"select description
from product
where promostart < parameter(1)
and promoend > parameter(1)",
$po/@OrderDate)

where $p//@pid = $item
return
<RESULT>

<PoNum>{data($po/@PoNum)}</PoNum>
<PartID>{data($item)} </PartID>
<PoDate>{data($po/@OrderDate)}</PoDate>

</RESULT>

During processing of the db2-fn:sqlquery function, both references to parameter(1)
return the value of the order date attribute $po/@OrderDate.

Example of a fullselect using two PARAMETER function calls and two
expressions: The following example uses the PURCHASEORDER table from the
DB2 SAMPLE database. The XQuery expression retrieves unshipped purchase
orders that have an order date before April 4, 2006, and lists the distinct part
numbers from each purchase order:
xquery
let $status := ("Unshipped"), $date := ("2006-04-04")
for $myorders in db2-fn:sqlquery(

"select porder from purchaseorder
where status = parameter(1)
and orderdate < parameter(2)",
$status, $date)

return
<LateOrder>

<PoNum>
{data($myorders/PurchaseOrder/@PoNum)}
</PoNum>
<PoDate>
{data($myorders/PurchaseOrder/@OrderDate)}
</PoDate>
<Items>

{for $itemID in distinct-values($myorders/PurchaseOrder/item/partid)
return
<PartID>
{$itemID}
</PartID>}

</Items>
</LateOrder>

During processing of the db2-fn:sqlquery function, the reference to parameter(1)
returns the result value of the expression $status, and the reference to
parameter(2) returns the result value of the expression $date.

Chapter 5. Built-in functions 191

When run against the SAMPLE database, the expression returns the following
result:
<LateOrder>

<PoNum>5000</PoNum>
<PoDate>2006-02-18</PoDate>
<Items>

<PartID>100-100-01</PartID>
<PartID>100-103-01</PartID>

</Items>
</LateOrder>

starts-with function
The fn:starts-with function determines whether a string begins with a specific
substring. The search string is matched using the default collation.

Syntax

�� fn:starts-with(string,substring) ��

string The string to search for substring.

string has the xs:string data type, or is the empty sequence. If string is the
empty sequence, string is set to a string of length 0.

substring
The substring to search for at the beginning of string.

substring has the xs:string data type, or is the empty sequence.

Limitation of length

The length of substring is limited to 32000 bytes.

Returned value

The returned value is the xs:boolean value true if either of the following conditions
are satisfied:
v substring occurs at the beginning of the string.
v substring is an empty sequence of a string of length zero.

Otherwise, the returned value is false.

Example

The following function determines whether the string 'Test literal' begins with the
string 'lite'.
fn:starts-with(’Test literal’,’lite’)

The returned value is false.

string function
The fn:string function returns the string representation of a value.

Syntax

192 XQuery Reference

�� fn:string()
value

��

value The value that is to be represented as a string.

value is a node or an atomic value, or is the empty sequence.

If value is not specified, fn:string is evaluated for the current context item.
If the current context item is undefined, an error is returned.

Returned value

If value is not the empty sequence:
v If value is a node, the returned value is the string value of the node.
v If value is an atomic value, the returned value is the result of casting value to the

xs:string type.

If value is the empty sequence, the result is a string of length 0.

Example

The following function returns the string representation of 123:
fn:string(xs:integer(123))

The returned value is '123'.

string-join function
The fn:string-join function returns a string that is generated by concatenating items
separated by a separator character.

Syntax

�� fn:string-join(sequence,separator) ��

sequence
The sequence of items that are to be concatenated to form a string.

sequence is any sequence of xs:string values, or an empty sequence.

separator
A delimiter that is inserted into the resulting string between items from
sequence.

separator has a data type of xs:string.

Returned value

The returned value is a string that is the concatenation of the items in sequence,
separated by separator. If separator is a zero-length string, the items in sequence are
concatenated without a separator. If sequence is an empty sequence, a zero-length
string is returned.

Chapter 5. Built-in functions 193

Example

The following function returns the string that is the result of concatenating the
items in the sequence ("I" , "made", "a", "sentence!"), using the whitespace character
as a separator:
fn:string-join(("I" , "made", "a", "sentence!"), " ")

The returned value is the string "I made a sentence!"

string-length function
The fn:string-length function returns the length of a string.

Syntax

�� fn:string-length(source-string) ��

source-string
The string for which the length is to be returned.

source-string has the xs:string data type, or is an empty sequence.

Returned value

If source-string is not the empty sequence, the returned value is the length of
source-string in characters. Code points above xFFFF, which use two 16-bit values
known as a surrogate pairs, are counted as one character in the length of the
string. source-string is an xs:integer value.

If source-string is the empty sequence, the returned value is 0.

Example

The following function returns the length of the string 'Test literal'.
fn:string-length(’Test literal’)

The returned value is 12.

string-to-codepoints function
The fn:string-to-codepoints function returns a sequence of Unicode code points that
corresponds to a string value.

Syntax

�� fn:string-to-codepoints(source-string) ��

source-string
A string value for which the Unicode code point for each character is to be
returned, or the empty sequence.

194 XQuery Reference

Returned value

If source-string is not the empty sequence and does not have length 0, the returned
value is a sequence of xs:integer values that represent the code points for the
characters in source-string.

If source-string is the empty sequence or has length 0, the returned value is the
empty sequence.

Example

The following function returns a sequence of code points that represent the
characters in the string 'XQuery'.
fn:string-to-codepoints("XQuery")

The returned value is (88,81,117,101,114,121).

subsequence function
The fn:subsequence function returns a subsequence of a sequence.

Syntax

�� fn:subsequence(source-sequence,start)
,length

��

source-sequence
The sequence from which the subsequence is retrieved.

source-sequence is any sequence, including the empty sequence.

start The starting position in source-sequence of the subsequence. The first
position of source-sequence is 1. If start<=0, start is set to 1.

start has the xs:double data type.

length The number of items in the subsequence. The default for length is the
number of items in source-sequence. If start+length-1 is greater than the
length of source-sequence, length is set to (length of source-sequence)-start+1.

length has the xs:double data type.

Returned value

If source-sequence is not the empty sequence, the returned value is a subsequence of
source-sequence that starts at position start and contains length items.

If source-sequence is the empty sequence, the empty sequence is returned.

Example

The following function returns three items from the sequence ('T','e','s','t','
','s','e','q','u','e','n','c','e'), starting at the sixth item.
fn:subsequence((’T’,’e’,’s’,’t’,’ ’,’s’,’e’,’q’,’u’,’e’,’n’,’c’,’e’),6,3)

The returned value is ('s','e','q').

Chapter 5. Built-in functions 195

substring function
The fn:substring function returns a substring of a string.

Syntax

�� fn:substring(source-string,start)
,length

��

source-string
The string from which the substring is retrieved.

source-string has the xs:string data type, or is an empty sequence.

start The starting character position in source-string of the substring. The first
position of source-string is 1. If start<= 0, start is set to 1. Code points above
xFFFF, which use two 16-bit values known as a surrogate pairs, are
counted as one character.

start has the xs:double data type.

length The length in characters of the substring. The default for length is the
length of source-string. If start+length-1 is greater than the length of
source-string, length is set to (length of source-string)-start+1. Code points
above xFFFF, which use two 16-bit values known as a surrogate pairs, are
counted as one character in the length of the string.

length has the xs:double data type.

Returned value

If source-string is not the empty sequence, the returned value is a substring of
source-string that starts at character position start and has length characters. If
source-string is the empty sequence, the result is a string of length 0.

Example

The following function returns seven characters starting at the sixth character of
the string 'Test literal'.
fn:substring(’Test literal’,6,7)

The returned value is 'literal'.

substring-after function
The fn:substring-after function returns a substring that occurs in a string after the
end of the first occurrence of a specific search string. The search string is matched
using the default collation.

Syntax

�� fn:substring-after(source-string,search-string) ��

source-string
The string from which the substring is retrieved.

196 XQuery Reference

source-string has the xs:string data type, or is an empty sequence. If
source-string is the empty sequence, source-string is set to a string of length
0.

search-string
The string whose first occurrence in source-string is to be searched for.

search-string has the xs:string data type, or is an empty sequence.

Limitation of length

The length of search-string is limited to 32000 bytes.

Returned value

If source-string is not the empty sequence or a string of length 0:
v Suppose that the length of source-string is n, and m<n. If search-string is found in

source-string, and the end of the first occurrence of search-string in source-string is
at position m, the returned value is the substring that begins at position m+1,
and ends at position n of source-string.

v Suppose that the length of source-string is n. If search-string is found in
source-string, and the end of the first occurrence of search-string in source-string is
at position n, the returned value is a string of length 0.

v If search-string is the empty string or a string of length 0, the returned value is
source-string.

v If search-string is not found in source-string, the returned value is a string of
length 0.

If source-string is the empty sequence or a string of length 0, the returned value is a
string of length 0.

Example

The following function finds the characters after 'ABC' in string to 'DEFABCD'
using the default collation.
fn:substring-after(’DEFABCD’, ’ABC’)

The returned value is 'D'.

substring-before function
The fn:substring-before function returns a substring that occurs in a string before
the first occurrence of a specific search string. The search string is matched using
the default collation.

Syntax

�� fn:substring-before(source-string,search-string) ��

source-string
The string from which the substring is retrieved.

source-string has the xs:string data type, or is an empty sequence. If
source-string is an empty sequence, source-string is set to a string of length 0.

search-string
The string whose first occurrence in source-string is to be searched for.

Chapter 5. Built-in functions 197

search-string has the xs:string data type, or is an empty sequence.

Limitation of length

The length of search-string is limited to 32000 bytes.

Returned value

If source-string is not the empty sequence or a string of length 0:
v If search-string is found at position m of source-string, and m>1, the returned

value is the substring that begins at position 1, and ends at position m of
source-string.

v If search-string is found at position 1 of source-string, the returned value is a
string of length 0.

v If search-string is an empty sequence or a string of length 0, the returned value is
a string of length 0.

v If search-string is not found in source-string, the returned value is a string of
length 0.

If source-string is the empty sequence or a string of length 0, the returned value is a
string of length 0.

Example

The following function finds the characters before 'ABC' in string to 'DEFABCD'
using the default collation.
fn:substring-before(’DEFABCD’, ’ABC’)

The returned value is 'DEF'.

sum function
The fn:sum function returns the sum of the values in a sequence.

Syntax

�� fn:sum(sequence-expression)
,empty-sequence-replacement

��

sequence-expression
A sequence that contains items of any of the following atomic types, or an
empty sequence:
v xs:float
v xs:double
v xs:decimal
v xs:integer
v xdt:untypedAtomic
v xdt:dayTimeDuration
v xdt:yearMonthDuration
v A type that is derived from any of the previously listed types

Input items of type xdt:untypedAtomic are cast to xs:double. After this
casting, all of the items in the input sequence must be convertible to a
common type by promotion or subtype substitution. The sum is computed
in this common type. For example, if the input sequence contains items of

198 XQuery Reference

type money (derived from xs:decimal) and stockprice (derived from
xs:float), the sum is computed in the type xs:float.

empty-sequence-replacement
The value that is returned if sequence-expression is the empty sequence.
empty-sequence-replacement can have one of the data types that is listed for
sequence-expression.

Returned value

If sequence-expression is not the empty sequence, the returned value is the sum of
the values in sequence-expression. The data type of the returned value is the same as
the data type of the items in sequence-expression, or the data type to which the items
in sequence-expression are promoted.

If sequence-expression is the empty sequence, and empty-sequence-replacement is not
specified, fn:sum returns 0.0E0. If sequence-expression is an empty sequence, and
empty-sequence-replacement is specified, fn:sum returns empty-sequence-replacement.

Example

The following function returns the sum of the sequence (500, 1.0E2, 40.5):
fn:sum((500, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The function returns the
xs:double value 6.405E2, which is serialized as "640.5".

timezone-from-date function
The fn:timezone-from-date function returns the time zone component of an xs:date
value.

Syntax

�� fn:timezone-from-date(date-value) ��

date-value
The date value from which the timezone component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value

If date-value is of type xs:date and has an explicit timezone component, the
returned value is of type xdt:dayTimeDuration, and the value is between -PT14H
hours and PT14H, inclusive. The value is the deviation of the date-value timezone
component from the UTC time zone.

If date-value does not have an explicit timezone component or is an empty
sequence, the returned value is an empty sequence.

Example

The following function returns the timezone component of the date value for
March 13, 2007 in the UTC-8 time zone.
fn:timezone-from-date(xs:date("2007-03-13-08:00"))

Chapter 5. Built-in functions 199

The returned value is -PT8H.

timezone-from-dateTime function
The fn:timezone-from-dateTime function returns the time zone component of an
xs:dateTime value.

Syntax

�� fn:timezone-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the timezone component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime and has an explicit timezone component,
the returned value is of type xdt:dayTimeDuration, and the value is between
-PT14H and PT14H, inclusive. The value is the deviation of the dateTime-value
timezone component from the UTC time zone.

If dateTime-value does not have an explicit timezone component, or is an empty
sequence, the returned value is an empty sequence.

Examples

The following function returns the timezone component of the dateTime value for
October 30, 2005 at 7:30 am in the UTC-8 time zone.
fn:timezone-from-dateTime(xs:dateTime("2005-10-30T07:30:00-08:00"))

The returned value is -PT8H.

The following function returns the timezone component of the dateTime value for
January 1, 2005 at 2:30 pm in the UTC+10:30 time zone.
fn:timezone-from-dateTime(xs:dateTime("2005-01-01T14:30:00+10:30"))

The returned value is PT10H30M.

timezone-from-time function
The fn:timezone-from-time function returns the time zone component of an xs:time
value.

Syntax

�� fn:timezone-from-time(time-value) ��

time-value
The time value from which the timezone component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

200 XQuery Reference

Returned value

If time-value is of type xs:time and has an explicit timezone component, the
returned value is of type xdt:dayTimeDuration, and the value is between -PT14H
and PT14H, inclusive. The value is the deviation of the time-value timezone
component from UTC time zone.

If time-value does not have an explicit timezone component, or is an empty
sequence, the returned value is an empty sequence.

Examples

The following function returns the timezone component of the time value for 12
noon in the UTC-5 time zone.
fn:timezone-from-time(xs:time("12:00:00-05:00"))

The returned value is -PT5H.

In the following function, the time value for 1:00 pm does not have a timezone
component.
fn:timezone-from-time(xs:time("13:00:00"))

The returned value is the empty sequence.

tokenize function
The fn:tokenize function breaks a string into a sequence of substrings.

Syntax

�� fn:tokenize(source-string , pattern)
, flags

��

source-string
A string that is to be broken into a sequence of substrings.

source-string is an xs:string value or the empty sequence.

pattern The delimiter between substrings in source-string.

pattern is an xs:string value that contains a regular expression. A regular
expression is a set of characters, wildcards, and operators that define a
string or group of strings in a search pattern.

flags An xs:string value that can contain any of the following values that control
how pattern is matched to characters in source-string:

s Indicates that the dot (.) in the regular expression matches any
character, including the new-line character (X'0A').

If the s flag is not specified, the dot (.) matches any character
except the new-line character (X'0A').

m Indicates that the caret (^) matches the start of a line (the position
after a new-line character), and the dollar sign ($) matches the end
of a line (the position before a new-line character).

If the m flag is not specified, the caret (^) matches the start of a
string, and the dollar sign ($) matches the end of the string.

Chapter 5. Built-in functions 201

i Indicates that matching is case-insensitive.

If the i flag is not specified, case-sensitive matching is done.

x Indicates that whitespace characters within pattern are ignored.

If the x flag is not specified, whitespace characters are used for
matching.

Limitation of length

The length of source-string and pattern is limited to 32000 bytes.

Returned value

If source-string is not the empty sequence or a zero-length string, the returned value
is a sequence that results when the following operations are performed on
source-string:
v source-string is searched for characters that match pattern.
v If pattern contains two or more alternative sets of characters, the first set of

characters in pattern that matches characters in source-string is considered to be
the matching pattern.

v Each set of characters that does not match pattern becomes an item in the result
sequence.

v If pattern matches characters at the beginning of source-string, the first item in the
returned sequence is a string of length 0.

v If two successive matches for pattern are found within source-string, a string of
length 0 is added to the sequence.

v If pattern matches characters at the end of source-string, the last item in the
returned sequence is a string of length 0.

If pattern is not found in source-string, an error is returned.

If source-string is the empty sequence, or is the zero-length string, the result is the
empty sequence.

Example

The following function creates a sequence from the string "Tokenize this sentence,
please." "\s+" is a regular expression that denotes one or more whitespace
characters.
fn:tokenize("Tokenize this sentence, please.", "\s+")

The returned value is the sequence ("Tokenize", "this", "sentence,", "please.").

translate function
The fn:translate function replaces selected characters in a string with replacement
characters.

Syntax

�� fn:translate(source-string,original-string,replacement-string) ��

source-string
The string in which characters are to be converted.

202 XQuery Reference

source-string has the xs:string data type, or is the empty sequence.

original-string
A string that contains the characters that can be converted.

original-string has the xs:string data type.

replacement-string
A string that contains the characters that replace the characters in
original-string.

replacement-string has the xs:string data type.

If the length of replacement-string is greater than the length of original-string,
the additional characters in replacement-string are ignored.

Limitation of length

The length of original-string and replacement-string is limited to 32000 bytes.

Returned value

If source-string is not the empty sequence, the returned value is the xs:string value
that results when the following operations are performed:
v For each character in source-string that appears in original-string, replace the

character in source-string with the character in replacement-string that appears at
the same position as the character in original-string. The characters are matched
using a binary comparison.
If the length of original-string is greater than the length of replacement-string,
delete each character in source-string that appears in original-string, but the
character position in original-string does not have a corresponding position in
replacement-string.
If a character appears more than once in original-string, the position of the first
occurrence of the character in original-string determines the character in
replacement-string that is used.

v For each character in source-string that does not appear in original-string, leave
the character as it is.

If source-string is the empty sequence, a string of length 0 is returned.

Examples

The following function returns the string that results from replacing e with o and l
with m in the string 'Test literal'.
fn:translate(’Test literal’,’el’,’om’)

The returned value is 'Tost mitoram'.

The following function returns the string that results from replacing A with B, t
with f, e with i, and r with m in the string literal 'Another test literal'.
fn:translate(’Another test literal’, ’Ater’, ’Bfim’)

The returned value is 'Bnofhim fisf lifimal'.

true function
The fn:true function returns the xs:boolean value true.

Chapter 5. Built-in functions 203

Syntax

�� fn:true() ��

Returned value

The returned value is the xs:boolean value true.

Example

Use the true function to return the value true.
fn:true()

The value true is returned.

unordered function
The fn:unordered function returns the items in a sequence in non-deterministic
order.

Syntax

�� fn:unordered(sequence-expression) ��

sequence-expression
Any sequence, including the empty sequence.

Returned value

The returned value is the items in sequence-expression in non-deterministic order.
This assists the query optimizer in choosing access paths that are not dependent on
the order of the items in the sequence.

Example

The following function returns the items in sequence (1,2,3) in non-deterministic
order.
fn:unordered((1,2,3))

upper-case function
The fn:upper-case function converts a string to uppercase.

Syntax

�� fn:upper-case(source-string)
, locale-name

��

source-string
The string that is to be converted to uppercase.

source-string has the xs:string data type, or is an empty sequence.

204 XQuery Reference

locale-name
A string containing the locale to be used for the uppercase operation.

locale-name is of type xs:string, or is the empty sequence. If locale-name is
not the empty sequence, the value of locale-name is not case sensitive and
must be a valid locale or a string of length zero.

Returned value

If source-string is not an empty sequence, the returned value is source-string with
each character converted to its uppercase correspondent. If locale-name is not
specified, is the empty sequence, or is a string of length zero, then the uppercase
rules as defined in the Unicode standard are used. Otherwise, the uppercase rules
for the specified locale are used. Every character that does not have an uppercase
correspondent is included in the returned value in its original form.

If source-string is the empty sequence, the returned value is a string of length zero.

Examples

The following function converts the string 'Test literal 1' to uppercase.
fn:upper-case(’Test literal 1’)

The returned value is 'TEST LITERAL 1'.

The following function specifies the Turkish locale tr_TR and converts the letter "i",
and the numeric character reference ı (the character reference for Latin
small letter dotless i).
fn:upper-case("iı", "tr_TR")

The returned value consists of two characters, the character represented by İ
(Latin upper case I with dot above), and the letter "I". For the Turkish locale, the
letter "i" is converted to character represented by İ (Latin upper case I with
dot above), and character represented by ı (Latin small letter dotless i) is
converted to the letter "I".

The following function does not specify a locale and converts two characters to
uppercase using the rules defined in the Unicode standard.
fn:upper-case("ıi")

The function returns the characters "II". fn:upper-case converts both the lowercase
character ı and the letter "i" to the uppercase letter "I".

xmlcolumn function
The db2-fn:xmlcolumn function retrieves a sequence from a column in the
currently connected DB2 database.

Syntax

�� db2-fn:xmlcolumn(string-literal) ��

string-literal
Specifies the name of the column from which the sequence is retrieved.
The column name must be qualified by a table name, view name, or alias

Chapter 5. Built-in functions 205

name, and it must reference a column with the XML data type. The SQL
schema name is optional. If you do not specify the SQL schema name, the
CURRENT SCHEMA special register is used as the implicit qualifier for
the table or view. The string-literal is case sensitive. string-literal must use
the exact characters that identify the column name in the database.

Returned value

The returned value is a sequence that is the concatenation of the non-null XML
values in the column that is specified by string-literal. If there are no rows in the
table or view, db2-fn:xmlcolumn returns the empty sequence.

The number of items in the sequence that is returned by the db2-fn:xmlcolumn
function can be different from the number of rows in the specified table or view
because some of these rows can contain null values or sequences with multiple
items.

The db2-fn:xmlcolumn function is related to the db2-fn:sqlquery function, and both
can produce the same result. However, the arguments of the two functions differ in
case sensitivity. The argument in the db2-fn:xmlcolumn function is processed by
XQuery, and so it is case sensitive. Because table names and column names in a
DB2 database are in uppercase by default, the argument of db2-fn:xmlcolumn is
usually in uppercase. The argument of the db2-fn:sqlquery function is processed by
SQL, which automatically converts identifiers to uppercase.

The following function calls are equivalent and return the same results:
db2-fn:xmlcolumn(’SQLSCHEMA.TABLENAME.COLNAME’)
db2-fn:sqlquery(’select colname from sqlschema.tablename’)

Examples

Example that returns a sequence of documents: The following function returns a
sequence of XML documents that are stored in the XML column DESCRIPTION in
the table named PRODUCT, which, for this example, is in the SQL schema
SAMPLE.
db2-fn:xmlcolumn(’SAMPLE.PRODUCT.DESCRIPTION’)

Example that uses an implicit SQL schema: In the following example, the
CURRENT SCHEMA special register in a DB2 database is set to SAMPLE, and so
the function returns the same results as the previous example:
db2-fn:xmlcolumn(’PRODUCT.DESCRIPTION’)

Example that uses an SQL delimited identifier: The following function returns a
sequence of documents that are stored in the "Thesis" column of the "Student"
table, assuming that the table is in the schema currently assigned to CURRENT
SCHEMA. Because the table name and column name contain lowercase characters,
there are two ways that they can be specified in the string literal argument of the
db2-fn:xmlcolumn function:
v Specified as SQL-delimited identifiers (enclosed in double quotation marks):

db2-fn:xmlcolumn(’"Student"."Thesis"’)

v Specified as a string without indication that they are SQL-delimited identifiers:
db2-fn:xmlcolumn(’Student.Thesis’)

By contrast, the same table and column information that is used in the
db2-fn:sqlquery function is required to use the SQL-delimited identifiers as follows:

206 XQuery Reference

db2-fn:sqlquery(’select "Thesis" from "Student"’)

year-from-date function
The fn:year-from-date function returns the year component of an xs:date value.

Syntax

�� fn:year-from-date(date-value) ��

date-value
The date value from which the year component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value

If date-value is of type xs:date, the returned value is of type xs:integer, The value is
the year component of the date-value, a non-negative value.

If date-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the year component of the date value for October
29, 2005.
fn:year-from-date(xs:date("2005-10-29"))

The returned value is 2005.

year-from-dateTime function
The fn:year-from-dateTime function returns the year component of an xs:dateTime
value.

Syntax

�� fn:year-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the year component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer. The
value is the year component of the dateTime-value, a non-negative value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the year component of the dateTime value for
October 29, 2005 at 8:00 am in the UTC-8 time zone.

Chapter 5. Built-in functions 207

fn:year-from-dateTime(xs:dateTime("2005-10-29T08:00:00-08:00"))

The returned value is 2005.

years-from-duration function
The fn:years-from-duration function returns the years component of a duration.

Syntax

�� fn:years-from-duration(duration-value) ��

duration-value
The duration value from which the years component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the
following types: xdt:dayTimeDuration, xs:duration, or
xdt:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xdt:yearMonthDuration or is of type xs:duration, the

returned value is of type xs:integer. The value is the years component of
duration-value cast as xdt:yearMonthDuration. The value is negative if
duration-value is negative.

v If duration-value is of type xs:dayTimeDuration, the returned value is of type
xs:integer and is 0.

v If duration-value is an empty sequence, the returned value is an empty sequence.

The years component of duration-value cast as xdt:yearMonthDuration is the integer
number of years determined by the total number of months of duration-value cast
as xdt:yearMonthDuration divided by 12.

Examples

The following function returns the years component of the duration -4 years, -11
months, and -320 days.
fn:years-from-duration(xs:duration("-P4Y11M320D"))

The returned value is -4.

The following function returns the years component of the duration 9 years and 13
months.
fn:years-from-duration(xdt:yearMonthDuration("P9Y13M"))

The returned value is 10. When calculating the total number of years in the
duration, 13 months is converted to 1 year and 1 month. The duration is equal to
P10Y1M which has a years component of 10 years.

zero-or-one function
The fn:zero-or-one function returns its argument if the argument contains one item
or is the empty sequence.

208 XQuery Reference

Syntax

�� fn:zero-or-one(sequence-expression) ��

sequence-expression
Any sequence, including the empty sequence.

Returned value

If sequence-expression contains one item or is the empty sequence, sequence-expression
is returned. Otherwise, an error is returned.

Example

The following example uses the fn:zero-or-one function to determine if the
sequence in variable $seq contains one or fewer items.
let $seq := (5,10)
return fn:zero-or-one($seq)

An error is returned because the sequence contains two items.

Chapter 5. Built-in functions 209

210 XQuery Reference

Chapter 6. Regular expressions

A regular expression is a sequence of characters that act as a pattern for matching
and manipulating strings.

Regular expressions are used in the following XQuery functions: fn:matches,
fn:replace, and fn:tokenize. DB2 XQuery regular expression support is based on the
XML schema regular expression support as defined in the W3C Recommendation
XML Schema Part 2: Datatypes Second Edition with extensions as defined by W3C
Recommendation XQuery 1.0 and XPath 2.0 Functions and Operators.

Syntax

RegularExpression

�� �
(1)

Branch
pipeChar Branch

��

Branch:

�

Atom
Quantifier

Atom:

normalCharacter
CharClassExpression
CharClassEscape

^
$
(RegularExpression)

Quantifier:

*
+
?
{ min }

min ,
max

?

CharClassExpression:

[CharGroup]

© Copyright IBM Corp. 2006, 2013 211

CharGroup:

� XMLCharIncludeDash
^ XMLChar dashChar XMLChar

charEscape charEscape
CharClassEscape

CharClassEscape:

.
charEscape
multiCharEscape
\nonZeroDigit
\p{IsblockName}
\P{IsblockName}
\p{charProperty}
\P{charProperty}

Notes:

1 The syntax for regular-expression represents the content of a string literal that
cannot include whitespace characters other than as the specific meaning of
the whitespace character as a pattern character. Do not consider spaces or
portions between syntax elements as allowing any form of whitespace.

RegularExpression

A regular expression contains one or more branches. Branches are separated by
pipes (|), indicating that each branch is an alternative pattern.

pipeChar
A pipe character (|) separates alternative branches in a regular expression.

Branch
A branch consists of zero or more atoms, with each atom allowing an optional
quantifier.

Atom

An atom is either a normal character, a character class expression, a character class
escape, or a parenthesized regular expression.

normalCharacter
Any valid XML character that is not one of the metacharacters that is in
Table 38 on page 214.

^ When used at the beginning of a branch, the caret (^) indicates that the pattern
must match from the beginning of the string.

$ When used at the end of a branch, the dollar sign ($) indicates that the pattern
must match from the end of the string.

Quantifier

The quantifier specifies the repetition of an atom in a regular expression. By
default, a quantifier will match as much as possible of the target string, using what
is referred to as a greedy algorithm. For example, the regular expression ’A.*A’

212 XQuery Reference

matches the entire string 'ABACADA' because the substring between the required
outer 'A' characters matches the requirement for any character any number of
times. The default greedy algorithm can be changed by specifying the question
mark (?) character after the quantifier. The question mark specifies that the
pattern matching uses a reluctant algorithm, which matches to the next shortest
substring from left to right in the target string that satisfies the regular expression.
For example, the regular expression ’A.*?A’ matches the substrings 'ABA' and
'ADA' instead of matching the entire string 'ABACADA'. Characters of a substring
that matches a regular expression by using the reluctant algorithm are not
considered for further matches. This is why 'ACA' is not considered a match in the
previous example. The reluctant algorithm is most useful with the fn:replace
function because it processes matches and replacements from left to right.

For example, if you use the greedy algorithm in the function
fn:replace("nonsensical","n(.*)s","mus") to replace the string of characters
starting with "n" and ending with "s" with the string "mus", the returned value is
'musical'. The original string included substrings "nons" and "ns", which also
matched the pattern scanning left to right for the next match, but the greedy
algorithm did not operate on these matches because it found a longer enclosing
match.

The result is different if you use the reluctant algorithm on the same string in the
function fn:replace("nonsensical","n(.*?)s","mus"). The returned value is
"musemusical". In this case, two replacements occurred within in the string. The
first match replaced "nons" with "mus", and the second match replaced "ns" with
"mus".

As another example, if you use the greedy algorithm to replace the character A
that encloses any number of characters with the character X that encloses the same
characters in the function fn:replace("AbrAcAdAbrA","A(.*)A","X$1X"), the
returned value is "XbrAcAdAbrX". The original string included substrings "AbrA"
and "AdA", which also matched the pattern when scanning left to right for the
next match, but the greedy algorithm did not operate on these matches because it
found a longer enclosing match.

The result is different if you use the reluctant algorithm on the same string in the
function fn:replace("AbrAcAdAbrA","A(.*?)A","X$1X"). The returned value is
"XbrXcXdXbrA". In this case, two replacements occurred within in the string: the
first on "AbrA", and the second on "AdA". The final "A" in the string did not get
replaced because the reluctant algorithm used all of the preceding "A" characters
for other matches within the string. Other substrings that start and end with
character "A", such as "AcA", "AcAdA", "AdAbrA" and "AbrA", within the original
string are not considered because the reluctant algorithm considers the characters
to be already used after they participate in a match to the pattern.

* Matches the atom zero or more times. Equivalent to the quantifier {0, }.

+ Matches the atom one or more times. Equivalent to the quantifier {1, }.

? Matches the atom zero or one times. Equivalent to the quantifier {0, 1}. When
following another quantifier, indicates use of the reluctant algorithm instead of
the greedy algorithm.

min
Matches the atom at least min number of times. min must be a positive integer.
v {min} matches the atom exactly min times.
v {min, } matches the atom at least min times.

Chapter 6. Regular expressions 213

max
Matches the atom at not more than max number of times. max must be a
positive integer greater than or equal to min.
v {0, max} matches the atom not more than min times.
v {0, 0} matches only an empty string.

CharGroup

^ Indicates the complement of the set of characters that are defined by the rest of
the CharGroup.

dashChar
The dash character (-)separates two characters that define the outer characters
in a range of characters. A character range of the form s-e is the set of UCS2
code points that are greater than or equal to s and less than or equal to e such
that:
v s is not the backslash character (\)
v If s is the first character in a CharGroup, it is not the caret character (^)
v e is not the backslash character (\) or the opening bracket character ([)
v The code point of e is greater than the code point of s

XMLCharIncludeDash
A single character from the set of valid XML characters, excluding the
backslash (\) and brackets ([]), but including the dash (-). The dash is valid as
a character only at the beginning or the end of a CharGroup. The caret (^) at
the beginning of a CharGroup indicates the complement of the group.
Anywhere else in the group, the caret just matches the caret character.
XMLCharIncludeDash can include any character that is matched by the regular
expression [^\#5B#5D].

XMLChar
A single character from the set of valid XML characters, excluding the
backslash (\), brackets ([]), and the dash (-). The dash is valid as a character
only at the beginning or the end of a CharGroup. The caret (^) at the
beginning of a CharGroup indicates the complement of the group. Anywhere
else in the group, the caret just matches the caret character. XMLChar can
include any character that is matched by the regular expression [^\#2D#5B#5D].

charEscape
A backslash followed by a single metacharacter, newline character, return
character, or tab character. You must escape the characters that are in Table 38
in a regular expression to match them.

Table 38. Valid metacharacter escapes

Character escape Character represented Description

\n #x0A Newline

\r #x0D Return

\t #x09 Tab

\\ \ Backslash

\| | Pipe

\. . Period

\- - Dash

\^ ^ Caret

\? ? Question mark

214 XQuery Reference

Table 38. Valid metacharacter escapes (continued)

Character escape Character represented Description

\$ $ Dollar sign

* * Asterisk

\+ + Plus sign

\{ { Opening curly brace

\} } Closing curly brace

\((Opening parenthesis

\)) Closing parenthesis

\[[Opening bracket

\]] Closing bracket

CharClassEscape

. The period character (.) matches all characters except newline and return
characters. The period character is quivalent to the expression [^\n\r].

\nonZeroDigit
Specifies a back reference that matches the string that was matched by a
subexpression, which is surrounded by parentheses, in the nonZeroDigit
position in the regular expression. nonZeroDigit must be between 1 and 9. The
first 9 subexpressions can be referenced.

Note: For future upward compatibility, if a back reference is followed by a
digit character, enclose the back reference in parentheses. For example, a back
reference to the first subexpression that is followed by the digit 3 should be
expressed as (/1)3 instead of /13 even though both currently produce the
same result.

\P{IsblockName}
Specifies the complement of a range of Unicode code points. The range is
identified by blockName, as listed in XML Schema Part 2: Datatypes Second
Edition.

\p{IsblockName}
Specifies a character in a specific range of Unicode code points. The range is
identified by blockName, as listed in XML Schema Part 2: Datatypes Second
Edition.

charEscape
A backslash followed by a single metacharacter, newline character, return
character, or tab character. You must escape the characters that are in Table 38
on page 214 in a regular expression to match them.

multiCharEscape
A backslash followed by a character that identifies commonly used sets of
characters that are in Table 39 in a regular expression to match them.

Table 39. Multi-character escapes

Multi-
character
escape

Equivalent regular
expression Description

\s [#x20\t\n\r] Space, tab, newline, or return character.

Chapter 6. Regular expressions 215

Table 39. Multi-character escapes (continued)

Multi-
character
escape

Equivalent regular
expression Description

\S [^\s] Any character except a space, tab, newline, or return
character.

\i none The set of characters allowed as the first character in
an XML name.

\I [^\i] Not in the set of characters allowed as the first
character in an XML name.

\c none The set of characters allowed in an XML name.

\C [^\c] Not in the set of characters allowed in an XML
name.

\d \p{Nd} A decimal digit.

\D [^\d] Not a decimal digit.

\w [#x0000-#x10FFFF]-
[\p{P}\p{Z}\p{C}]

A word character, which includes the following
charProperty categories: letters, marks, symbols, and
numbers.

\W [^\w] A non-word character, which includes the following
charProperty categories: punctuation, separators, and
other.

\p{charProperty}
Specifies a character in a category. The categories are listed in Table 40.

\P{charProperty}
Specifies the complement of a character category. The categories are listed in
Table 40.

Table 40. Supported values of charProperty

charProperty Category Description

L Letters All letters

Lu Letters Uppercase

Ll Letters Lowercase

Lt Letters Title case

Lm Letters Modifier

Lo Letters Other

M Marks All marks

Mn Marks Nonspacing

Mc Marks Spacing combining

Me Marks Enclosing

N Numbers All numbers

Nd Numbers Decimal digit

Nl Numbers Letter

No Numbers Other

P Punctuation All punctuation

Pc Punctuation Connector

Pd Punctuation Dash

216 XQuery Reference

Table 40. Supported values of charProperty (continued)

charProperty Category Description

Ps Punctuation Open

Pe Punctuation Close

Pi Punctuation Initial quotation mark (can behave like Ps or Pe
depending on usage)

Pf Punctuation Final quotation mark (can behave like Ps or Pe
depending on usage)

Po Punctuation Other

Z Separators All separators

Zs Separators Space

Zl Separators Line

Zp Separators Paragraph

S Symbols All symbols

Sm Symbols Math

Sc Symbols Currency

Sk Symbols Modifier

So Symbols Other

C Other All others

Cc Other Control

Cf Other Format

Co Other Private use

Cn Other Not assigned

Note: Regular expressions are matched using a binary comparison. The default
collation is not used.

Chapter 6. Regular expressions 217

218 XQuery Reference

Chapter 7. Limits

DB2 XQuery has size limits and limits for data types.

Limits for XQuery data types
This topic identifies the range of values that are allowed for specific DB2 XQuery
data types.

Table 41. Limits for XQuery numeric data types

Data type Smallest value Largest value Additional limits

xs:float -3.4028234663852886e+38 +3.4028234663852886e+38 Smallest positive value:
+1.1754943508222875e-38

Largest negative value:
-1.1754943508222875e-38

xs:double -1.7976931348623158e+308 +1.7976931348623158e+308 Smallest positive value:
+2.2250738585072014e-308

Largest negative value:
+2.2250738585072014e-308

xs:decimal Not available Not available Largest decimal precision:
31 digits

xs:integer -9 223 372 036 854 775 808 +9 223 372 036 854 775 807

xs:nonPositiveInteger -9 223 372 036 854 775 808 0

xs:negativeInteger -9 223 372 036 854 775 808 -1

xs:long -9 223 372 036 854 775 808 9 223 372 036 854 775 807

xs:int -2 147 483 648 +2 147 483 647

xs:short -32 768 +32 767

xs:byte -128 +127

xs:nonNegativeInteger 0 +9 223 372 036 854 775 807

xs:unsignedLong 0 +9 223 372 036 854 775 807

xs:unsignedInt 0 4 294 967 295

xs:unsignedShort 0 +65 535

xs:unsignedByte 0 +255

xs:positiveInteger +1 +9 223 372 036 854 775 807

Table 42. Limits for XQuery date, time, and duration data types

Data type Smallest value Largest value

xs:duration -P83333333333333Y3M11574074074DT1H46M39.999999SP83333333333333Y3M11574074074DT1H46M39.999999S

xdt:yearMonthDuration-P83333333333333Y3M P83333333333333Y3M

xdt:dayTimeDuration -P11574074074DT1H46M39.999999S P11574074074DT1H46M39.999999S

xs:dateTime 0001-01-01T00:00:00.000000Z 9999-12-31T23:59:59.999999Z

xs:date 0001-01-01Z 9999-12-31Z

xs:time 00:00:00Z 23:59:59Z

xs:gDay 01Z 31Z

xs:gMonth 01Z 12Z

© Copyright IBM Corp. 2006, 2013 219

Table 42. Limits for XQuery date, time, and duration data types (continued)

Data type Smallest value Largest value

xs:gYear 0001Z 9999Z

xs:gYearMonth 0001-01Z 9999-12Z

xs:gMonthDay 01-01Z 12-31Z

Note: DB2 XQuery provides no support for negative dates or negative times.

Size limits
DB2 XQuery has size limits for string literals and queries.

The size limit for a string literal is 32672 bytes.

The size limit for the length of a query is 2 097 152 bytes.

220 XQuery Reference

Appendix A. Overview of the DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command-line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2
technical issue that the documentation does not resolve, contact your local IBM
service center for assistance.

DB2 technical library in hardcopy or PDF format
The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 10.1 manuals in PDF format can be
downloaded from www.ibm.com/support/docview.wss?rs=71&uid=swg27009474.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2006, 2013 221

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474#manuals

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 43. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-3864-00 Yes April, 2012

Administrative Routines
and Views

SC27-3865-01 No January, 2013

Call Level Interface
Guide and Reference
Volume 1

SC27-3866-01 Yes January, 2013

Call Level Interface
Guide and Reference
Volume 2

SC27-3867-01 Yes January, 2013

Command Reference SC27-3868-01 Yes January, 2013

Database Administration
Concepts and
Configuration Reference

SC27-3871-01 Yes January, 2013

Data Movement Utilities
Guide and Reference

SC27-3869-01 Yes January, 2013

Database Monitoring
Guide and Reference

SC27-3887-01 Yes January, 2013

Data Recovery and High
Availability Guide and
Reference

SC27-3870-01 Yes January, 2013

Database Security Guide SC27-3872-01 Yes January, 2013

DB2 Workload
Management Guide and
Reference

SC27-3891-01 Yes January, 2013

Developing ADO.NET
and OLE DB
Applications

SC27-3873-01 Yes January, 2013

Developing Embedded
SQL Applications

SC27-3874-01 Yes January, 2013

Developing Java
Applications

SC27-3875-01 Yes January, 2013

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-3876-00 No April, 2012

Developing RDF
Applications for IBM
Data Servers

SC27-4462-00 Yes January, 2013

Developing User-defined
Routines (SQL and
External)

SC27-3877-01 Yes January, 2013

Getting Started with
Database Application
Development

GI13-2046-01 Yes January, 2013

222 XQuery Reference

Table 43. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2047-00 Yes April, 2012

Globalization Guide SC27-3878-00 Yes April, 2012

Installing DB2 Servers GC27-3884-01 Yes January, 2013

Installing IBM Data
Server Clients

GC27-3883-00 No April, 2012

Message Reference
Volume 1

SC27-3879-01 No January, 2013

Message Reference
Volume 2

SC27-3880-01 No January, 2013

Net Search Extender
Administration and
User's Guide

SC27-3895-01 No January, 2013

Partitioning and
Clustering Guide

SC27-3882-01 Yes January, 2013

Preparation Guide for
DB2 10.1 Fundamentals
Exam 610

SC27-4540-00 No January, 2013

Preparation Guide for
DB2 10.1 DBA for
Linux, UNIX, and
Windows Exam 611

SC27-4541-00 No January, 2013

pureXML Guide SC27-3892-01 Yes January, 2013

Spatial Extender User's
Guide and Reference

SC27-3894-00 No April, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-3896-01 Yes January, 2013

SQL Reference Volume 1 SC27-3885-01 Yes January, 2013

SQL Reference Volume 2 SC27-3886-01 Yes January, 2013

Text Search Guide SC27-3888-01 Yes January, 2013

Troubleshooting and
Tuning Database
Performance

SC27-3889-01 Yes January, 2013

Upgrading to DB2
Version 10.1

SC27-3881-01 Yes January, 2013

What's New for DB2
Version 10.1

SC27-3890-01 Yes January, 2013

XQuery Reference SC27-3893-01 No January, 2013

Table 44. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Personal Edition

SC27-3861-00 Yes April, 2012

Appendix A. Overview of the DB2 technical information 223

Table 44. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Servers

SC27-3862-01 Yes January, 2013

DB2 Connect User's
Guide

SC27-3863-01 Yes January, 2013

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
Documentation for other versions of DB2 products is found in separate information
centers on ibm.com®.

About this task

For DB2 Version 10.1 topics, the DB2 Information Center URL is
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1.

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

224 XQuery Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Before you begin

A DB2 Version 10.1 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates update existing Information Center features and languages.

One benefit of automatic updates is that the Information Center is unavailable
for a shorter time compared to during a manual update. In addition, automatic
updates can be set to run as part of other batch jobs that run periodically.

v Manual updates can be used to update existing Information Center features and
languages. Automatic updates reduce the downtime during the update process,
however you must use the manual process when you want to add features or
languages. For example, a local Information Center was originally installed with
both English and French languages, and now you want to also install the
German language; a manual update will install German, as well as, update the
existing Information Center features and languages. However, a manual update
requires you to manually stop, update, and restart the Information Center. The
Information Center is unavailable during the entire update process. In the
automatic update process the Information Center incurs an outage to restart the
Information Center after the update only.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V10.1
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 10.1 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Appendix A. Overview of the DB2 technical information 225

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system by using a machine that is connected to the internet
and has the DB2 Information Center installed. If many users on your network
will be installing the documentation updates, you can reduce the time required
for individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv10 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.

226 XQuery Reference

b. Navigate to the path where the Information Center is installed. By
default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 10.1 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
/opt/ibm/db2ic/V10.1 directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check that the selections you want to install,
then click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the doc\bin directory within the installation
directory, and run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the doc/bin directory within the installation directory,
and run the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv10 start

Results

The updated DB2 Information Center displays the new and updated topics.

Appendix A. Overview of the DB2 technical information 227

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 database products.
Lessons provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center, which contains:
v Information about how to isolate and identify problems with DB2

diagnostic tools and utilities.
v Solutions to some of the most common problem.
v Advice to help solve other problems you might encounter with your

DB2 database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

228 XQuery Reference

http://publib.boulder.ibm.com/infocenter/db2luw/10r1/
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM® Trademarks: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Appendix A. Overview of the DB2 technical information 229

http://www.ibm.com/legal/copytrade.shtml

230 XQuery Reference

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2006, 2013 231

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

232 XQuery Reference

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java™ and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 233

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

234 XQuery Reference

Index

A
abbreviated syntax 66
abs function 139
adjust-date-to-timezone function 133
adjust-dateTime-to-timezone function 135
adjust-time-to-timezone function 137
and operator 79
anyAtomicType data type 27
anySimpleType data type 27
anyType data type 27
anyURI data type 27
arithmetic expressions 72
atomic types 17
atomic values 5
atomization 55
attribute axis 64
attribute nodes 9
attributes

computed constructors 90
constructing 90
namespace declaration 85

avg function 139
axes

abbreviated syntax 66
in path expressions 64

axis steps
in path expressions 63
node tests 64

B
base64Binary data type 27
binary data types 19
boolean data type 19, 28
boolean function 140
Boolean functions

XQuery 127
boundary whitespace

declaration 44
direct element constructors 86

boundary-space declarations 44
built-in data types

constructors 23
built-in functions

XQuery 127
byte data type 28

C
case sensitivity

query language 14
cast expressions 108
castable expressions 109
casting

data types 24
XQuery castable expressions 109

ceiling function 141
character references 59
child axis 64
codepoints-to-string function 142

comment nodes 10
comments

computed constructors 94
constructing 94
direct constructors 94
query language 14

compare function 143
comparison expressions

general 76
node 78
overview 74
value 74

computed constructors
attribute 90
comment 94
element 89
overview 80
processing instruction 93

concat function 144
conditional expressions 106
construction declarations 45
constructors

attribute 90
built-in types 23
computed attribute 90
computed comment 94
computed element 89
computed processing instruction 93
direct comment 94
direct element 82
direct processing instruction 93
document node 91
enclosed expressions 81
in-scope namespaces 88
namespace declaration attributes 85
processing instruction 92
text node 92
XML 80

contains function 144
context item expressions 60
context of expressions 51
copy-namespace declarations 45
count function 145
current-date function 145
current-dateTime function 146
current-local-date function 146
current-local-dateTime function 146
current-local-time function 147
current-time function 147

D
data function 147
data models

XQuery and XPath 4
data types

binary 19
boolean 19
built-in 23
casting 24
categories 19

© Copyright IBM Corp. 2006, 2013 235

data types (continued)
date, time, and duration 19
generic 19
hierarchy 17
limits 219
lists 19
numeric

DB2 XQuery 19
overview 17
promotion 56
string 19
substitution 55
untyped 19
xdt: 41
xdt:anyAtomicType 27
xdt:dayTimeDuration 30
xdt:untyped 41
xdt:untypedAtomic 41
XQuery

casting 109
xs:anySimpleType 27
xs:anyType 27
xs:anyURI 27
xs:base64Binary 27
xs:boolean 28
xs:byte 28
xs:date 28
xs:dateTime 28
xs:decimal 31
xs:double 31
xs:duration 32
xs:ENTITY 33
xs:float 33
xs:gDay 34
xs:gMonth 34
xs:gMonthDay 35
xs:gYear 35
xs:gYearMonth 35
xs:hexBinary 36
xs:ID 36
xs:IDREF 36
xs:int 36
xs:integer 36
xs:language 37
xs:long 37
xs:Name 37
xs:NCName 37
xs:negativeInteger 37
xs:NMTOKEN 37
xs:nonNegativeInteger 38
xs:nonPositiveInteger 38
xs:normalizedString 38
xs:NOTATION 38
xs:positiveInteger 38
xs:QName 38
xs:short 39
xs:string 39
xs:time 39
xs:token 40
xs:unsignedByte 40
xs:unsignedInt 40
xs:unsignedLong 40
xs:unsignedShort 40

date data type 28
date data types

overview 19

date functions
XQuery 127

dateTime data type 28
dateTime function 148
day-from-date function 149
day-from-dateTime function 149
days-from-duration function 150
dayTimeDuration data type 30
DB2 Information Center

updating 225, 226
versions 224

DB2 XQuery functions
abs 139
avg 139
boolean 140
ceiling 141
codepoints-to-string 142
compare 143
concat 144
contains 144
count 145
current-date 145
current-dateTime 146
current-local-date 146
current-local-dateTime 146
current-local-time 147
current-time 147
data 147
dateTime 148
deep-equal 151
default-collation 153
distinct-values 153
empty 154
ends-with 154
exactly-one 155
exists 155
false 156
floor 157
implicit-timezone 159
in-scope-prefixes 160
index-of 160
insert-before 161
last 162
local-name 162
local-name-from-QName 163
local-timezone 164
lower-case 164
matches 165
max 166
min 167
name 172
namespace-uri 173
namespace-uri-for-prefix 174
namespace-uri-from-QName 175
node-name 175
normalize-space 176
normalize-unicode 176
not 177
number 178
one-or-more 178
position 179
QName 179
remove 180
replace 181
resolve-QName 182
reverse 183
root 184

236 XQuery Reference

DB2 XQuery functions (continued)
round 185
round-half-to-even 186
sqlquery 189
starts-with 192
string 192
string-join 193
string-length 194
string-to-codepoints 194
subsequence 195
substring 196
substring-after 196
substring-before 197
sum 198
timezone-from-dateTime 200
tokenize 201
translate 202
true 204
unordered 204
upper-case 204
xmlcolumn 3, 205
zero-or-one 209

DB2-defined functions 127
decimal data type 31
declarations

boundary-space 44
construction 45
copy-namespaces 45
default element/type namespace declarations 46
default function namespace 47
empty order 47
namespace 49
ordering mode 48
prolog 43
version 43

deep-equal function 151
default element/type namespace declarations 46
default function namespace declarations 47
default-collation function 153
delete expressions 117
descendant axis 64
descendant-or-self axis 64
direct constructors

comment 94
description 80
element 82
processing instruction 93
whitespace in element 86

distinct-values function 153
document nodes

constructing 91
details 8

document order 10
documentation

overview 221
PDF files 221
printed 221
terms and conditions of use 228

double data type 31
duration data type 32
duration data types 19
duration functions

XQuery 127
dynamic context of expressions 51

E
effective Boolean value 56
element nodes 8
elements

computed constructors 89
direct constructors 82
in-scope namespaces 88

empty function 154
empty order declarations 47
empty sequences

ordering 47
enclosed expressions

in constructors 81
ends-with function 154
ENTITY data type 33
entity references 58
errors

XQuery updates 111
exactly-one function 155
exists function 155
expanded QNames

converting 182
details 12

expressions
arithmetic 72
atomization 55
cast 108
castable 109
combining node sequences 71
comparison

general 76
node 78
overview 74
value 74

conditional 106
constructing sequences 69
constructors

computed attribute 90
computed comment 94
computed element 89
computed processing instruction 93
direct comment 94
direct element 82
direct processing instruction 93
document node 91
in-scope namespaces 88
namespace declaration attributes 85
overview 80
processing instruction 92
text node 92

delete 117
dynamic context 51
effective Boolean value 56
enclosed in constructors 81
errors when updating XML data 111
evaluating 51
filter 70
FLWOR

example 103
for and let clauses comparison 99
for and let clauses overview 96
for and let clauses together 98
for and let clauses variable scope 99
for clauses 96
let clauses 98
order by clauses 100
overview 95

Index 237

expressions (continued)
FLWOR (continued)

return clauses 102
syntax 95
where clauses 100

focus 51
insert 118
logical 79
order of results 52
path

abbreviated syntax 66
overview 61
syntax 62

precedence 51
predicates 68
primary

character references 59
context item 60
entity references 58
function calls 60
literals 57
overview 57
parenthesized 60
variable references 59

processing 51
quantified 107
range 69
rename 121
replace 124
sequence 69
subtype substitution 55
transform 114
type promotion 56
updating XML data 111

F
false function 156
filter expressions 70
float data type 33
floor function 157
FLWOR expressions

example 103
for clauses

details 96
in same expression as let clauses 98
let clauses comparison 99
overview 96
variable scope 99

let clauses
details 98
for clauses comparison 99
in same expression as for clauses 98
overview 96
variable scope 99

order by clauses 100
overview 95
return clauses 102
syntax 95
where clauses 100

focus of expressions 51
for clauses

details 96
forward axis 64
function calls

DB2 XQuery 60

functions
DB2 XQuery

abs 139
avg 139
boolean 140
ceiling 141
codepoints-to-string 142
compare 143
concat 144
contains 144
count 145
current-date 145
current-dateTime 146
current-local-date 146
current-local-dateTime 146
current-local-time 147
current-time 147
data 147
dateTime 148
deep-equal 151
default-collation 153
distinct-values 153
empty 154
ends-with 154
exactly-one 155
exists 155
false 156
floor 157
implicit-timezone 159
in-scope-prefixes 160
index-of 160
insert-before 161
last 162
local-name 162
local-name-from-QName 163
local-timezone 164
lower-case 164
matches 165
max 166
min 167
name 172
namespace-uri 173
namespace-uri-for-prefix 174
namespace-uri-from-QName 175
node-name 175
normalize-space 176
normalize-unicode 176
not 177
number 178
one-or-more 178
position 179
QName 179
remove 180
replace 181
resolve-QName 182
reverse 183
root 184
round 185
round-half-to-even 186
sqlquery 189
starts-with 192
string 192
string-join 193
string-length 194
string-to-codepoints 194
subsequence 195
substring 196

238 XQuery Reference

functions (continued)
DB2 XQuery (continued)

substring-after 196
substring-before 197
sum 198
timezone-from-dateTime 200
tokenize 201
translate 202
true 204
unordered 204
upper-case 204
xmlcolumn 205
zero-or-one 209

XQuery
adjust-date-to-timezone 133
adjust-dateTime-to-timezone 135
adjust-time-to-timezone 137
Boolean category 127
date category 127
day-from-date 149
day-from-dateTime 149
days-from-duration 150
duration category 127
hours-from-dateTime 158
hours-from-duration 158
hours-from-time 159
list by category 127
minutes-from-dateTime 168
minutes-from-duration 169
minutes-from-time 170
month-from-date 170
month-from-dateTime 171
months-from-duration 171
node category 127
number category 127
other category 127
QName category 127
seconds-from-dateTime 187
seconds-from-duration 187
seconds-from-time 188
sequence category 127
string category 127
time category 127
timezone-from-date 199
timezone-from-dateTime 200
timezone-from-time 200
year-from-date 207
year-from-dateTime 207
years-from-duration 208

G
gDay data type 34
general comparisons 76
generic data types 19
gMonth data type 34
gMonthDay data type 35
gYear data type 35
gYearMonth data type 35

H
help

SQL statements 224
hexBinary data type 36
hierarchy of nodes 10

hours-from-dateTime function 158
hours-from-duration function 158
hours-from-time function 159

I
ID data type 36
identity of nodes 11
IDREF data type 36
if-then-else expressions

details 106
implicit-timezone function 159
in-scope namespaces 88
in-scope-prefixes function 160
index-of function 160
insert expressions 118
insert-before function 161
int data type 36
integer data type 36
items in sequences 5

K
kind tests 64

L
language data type 37
last function 162
let clauses

details 98
limits

size 220
XQuery data types 219

literals
DB2 XQuery 57

local-name function 162
local-name-from-QName function 163
local-timezone function

details 164
logical expressions 79
long data type 37
lower-case function 164

M
matches function 165
max function 166
min function 167
minutes-from-dateTime function 168
minutes-from-duration function 169
minutes-from-time function 170
modify clauses 114
month-from-date function 170
month-from-dateTime function 171
months-from-duration function 171

N
Name data type 37
name function 172
name tests 64
namespace declaration attributes 85
namespace declarations 49
namespace-uri function 173

Index 239

namespace-uri-for-prefix function 174
namespace-uri-from-QName function 175
namespaces

binding a prefix 85
declaring 49
default element/type 46, 85
function default 47
in-scope 88
setting default 85
XML 12

NCName data type 37
negativeInteger data type 37
NMTOKEN data type 37
node names

changing 121
node tests 64
node-name function 175
nodes

attribute 9
combining sequences 71
comment

computed constructors 94
constructing, overview 94
description 10
direct constructors 94

comparing 78
deleting 117
document

constructing 91
description 8

duplicate 11
element 8
hierarchy 10
identity 11
overview 6, 8
processing instruction

constructing 92
description 10

properties 7
removing 117
string values 11
text

constructing 92
description 9

typed values 11
XQuery

inserting 118
XQuery functions 127

nodes and node values, replacing 124
nonNegativeInteger data type 38
nonPositiveInteger data type 38
normalize-space function 176
normalize-unicode function 176
normalized duration form

dayTimeDuration data type 30
duration data type 32
yearMonthDuration data type 41

normalizedString data type 38
not function 177
NOTATION data type 38
notices 231
number function 178
number functions 127
numeric data types

DB2 XQuery 19
numeric literals 57
numeric predicates 68

O
one-or-more function 178
operators

precedence 51
or operator 79
order by clauses 100
order of processing 100
order of results 52
ordering mode declarations 48

P
parent axis 64
parentheses, precedence of operations 51
parenthesized expressions 60
path expressions

abbreviated and unabbreviated syntax 66
axis steps 63
description 61
syntax 62

position function 179
positional predicates 68
positiveInteger data type 38
precedence

operators and expressions 51
predicates

in expressions 68
primary expressions 57
primitive type casting 24
problem determination

information available 228
tutorials 228

processing instruction nodes
constructing 92
description 10

processing order 100
prologs

boundary-space declarations 44
construction declarations 45
copy-namespace declarations 45
default element/type namespace declarations 46
default function namespace declarations 47
empty order declarations 47
namespace declarations 49
ordering mode declarations 48
syntax 43
version declarations 43

Q
QName data type 38
QName function 179
QName functions 127
QNames

overview 12
QNames (qualified names)

expanded, converting 182
overview 12

qualified names (QNames)
expanded, converting 182
overview 12

quantified expressions 107
queries

structure 1
query languages

case sensitivity 14

240 XQuery Reference

query languages (continued)
comments 14
XML data 2

R
range expressions 69
regular expressions

details 211
remove function 180
rename expressions 121
renaming nodes 121
replace expressions 124
replace function 181
replacing nodes and node values 124
resolve-QName function 182
resources

XQuery 15
results

order for expressions 52
return clauses

details 102
transform expressions 114

reverse axis 64
reverse function 183
root function 184
round function 185
round-half-to-even function 186

S
seconds-from-dateTime function 187
seconds-from-duration function 187
seconds-from-time function 188
self axis 64
sequence expressions 69
sequences

atomization 55
constructing 69
description 5
effective Boolean value 56
empty 47
nodes

combining 71
XQuery

functions 127
serialization

XML data 11
setters, prolog 43
short data type

DB2 XQuery 39
specifications

XQuery 15
SQL statements

help
displaying 224

sqlquery function 189
starts-with function 192
statically known namespaces 88
string data type 39
string data types 19
string function 192
string literals 57
string values of nodes 11
string-join function 193
string-length function 194

string-to-codepoints function 194
strings

functions
XQuery 127

subsequence function 195
substring function 196
substring-after function 196
substring-before function 197
subtype substitution 55
sum function 198
syntax

abbreviated 66
FLWOR expressions 95

T
terms and conditions

publications 228
testing

cast of value in XQuery 109
text nodes

constructing 92
description 9

time data type 39
time data types 19
time functions

XQuery 127
timezone-from-date function 199
timezone-from-dateTime function 200
timezone-from-time function 200
timezone, implicit 159
token data type 40
tokenize function 201
transform expressions

details 114
translate function 202
troubleshooting

online information 228
tutorials 228

true function 204
tutorials

list 228
problem determination 228
pureXML 228
troubleshooting 228

type casting 24
type hierarchy 17
type promotion 56
typed values of nodes 11
types

see data types 19

U
Unicode characters 59
unordered function 204
unsignedByte data type 40
unsignedInt data type 40
unsignedLong data type 40
unsignedShort data type 40
untyped data type 41
untyped data types 19
untypedAtomic data type 41
updates

DB2 Information Center 225, 226

Index 241

updating expressions
combining 111

updating XML data using XQuery 111
upper-case function 204
URI

binding a namespace prefix 85

V
value comparisons 74
values, atomic 5
variables

in scope in for and let clauses 99
positional in for clauses 96
references 59

version declarations 43

W
where clauses

description 100
whitespace

boundary 44
description 14
in direct element constructors 86

X
XDM, see XQuery and XPath data model 4
XML data

querying in DB2 database 2
serializing 11

xmlcolumn function 3, 205
XMLEXISTS function 2
XMLQUERY function 2
XMLTABLE function 2
XQuery

combining updating expressions 111
invoking from SQL 2
language conventions 14
overview 1
resources 15
size and data type limits 219
statically known namespaces 13
updating expressions 111

XQuery and XPath data model 4
XQuery expressions

overview 51
updating expressions 111, 117

XQuery functions
adjust-date-to-timezone 133
adjust-dateTime-to-timezone 135
adjust-time-to-timezone 137
Boolean category 127
date category 127
day-from-date 149
day-from-dateTime 149
days-from-duration 150
duration category 127
hours-from-dateTime 158
hours-from-duration 158
hours-from-time 159
list by category 127
minutes-from-dateTime 168
minutes-from-duration 169
minutes-from-time 170

XQuery functions (continued)
month-from-date 170
month-from-dateTime 171
months-from-duration 171
node category 127
number category 127
other category 127
QName category 127
seconds-from-dateTime 187
seconds-from-duration 187
seconds-from-time 188
sequence category 127
string category 127
time category 127
timezone-from-date 199
timezone-from-dateTime 200
timezone-from-time 200
year-from-date 207
year-from-dateTime 207
years-from-duration 208

XQuery reference overview vii
XQuery updates

errors 111
XQuery-defined functions 127

Y
year-from-date function 207
year-from-dateTime function 207
yearMonthDuration data type 41
years-from-duration function 208

Z
zero-or-one function 209

242 XQuery Reference

����

Printed in USA

SC27-3893-01

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.1

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

XQ
ue

ry
Re

fe
re

nc
e

�
�

�

	Contents
	About this book
	Chapter 1. DB2 XQuery concepts
	Introduction to XQuery
	Comparison of XQuery to SQL
	Retrieving DB2 data with XQuery functions
	XQuery and XPath data model
	Sequences and items
	Atomic values
	Node hierarchies
	Node properties
	Node kinds
	Document nodes
	Element nodes
	Attribute nodes
	Text nodes
	Processing instruction nodes
	Comment nodes

	Document order of nodes
	Node identity
	Typed values and string values of nodes

	Serialization of the XDM
	XML namespaces and QNames
	Qualified names (QNames)
	Statically known namespaces

	Language conventions
	Case sensitivity
	Whitespace
	Comments

	Where to find more information about XQuery

	Chapter 2. Type system
	The type hierarchy
	Types by category
	Constructor functions for built-in data types
	Type casting
	anyAtomicType data type
	anySimpleType data type
	anyType data type
	anyURI data type
	base64Binary data type
	boolean data type
	byte data type
	date data type
	dateTime data type
	dayTimeDuration data type
	decimal data type
	double data type
	duration data type
	ENTITY data type
	float data type
	gDay data type
	gMonth data type
	gMonthDay data type
	gYear data type
	gYearMonth data type
	hexBinary data type
	ID data type
	IDREF data type
	int data type
	integer data type
	language data type
	long data type
	Name data type
	NCName data type
	negativeInteger data type
	NMTOKEN data type
	nonNegativeInteger data type
	nonPositiveInteger data type
	normalizedString data type
	NOTATION data type
	positiveInteger data type
	QName data type
	short data type
	string data type
	time data type
	token data type
	unsignedByte data type
	unsignedInt data type
	unsignedLong data type
	unsignedShort data type
	untyped data type
	untypedAtomic data type
	yearMonthDuration data type

	Chapter 3. Prolog
	Version declaration
	Boundary-space declaration
	Construction declaration
	Copy-namespaces declaration
	Default element/type namespace declaration
	Default function namespace declaration
	Empty order declaration
	Ordering mode declaration
	Namespace declaration

	Chapter 4. Expressions
	Expression evaluation and processing
	Dynamic context and focus
	Precedence
	Order of results in XQuery expressions
	Atomization
	Subtype substitution
	Type promotion
	Effective Boolean value

	Primary expressions
	Literals
	Predefined entity references
	Character references

	Variable references
	Parenthesized expression
	Context item expressions
	Function calls

	Path expressions
	Syntax of path expressions
	Axis steps
	Axes
	Node tests

	Abbreviated syntax for path expressions

	Predicates
	Sequence expressions
	Expressions that construct sequences
	Filter expressions
	Expressions for combining sequences of nodes

	Arithmetic expressions
	Comparison expressions
	Value comparisons
	General comparisons
	Node comparisons

	Logical expressions
	Constructors
	Enclosed expressions in constructors
	Direct element constructors
	Namespace declaration attributes
	Boundary whitespace in direct element constructors
	In-scope namespaces of a constructed element

	Computed element constructors
	Computed attribute constructors
	Document node constructors
	Text node constructors
	Processing instruction constructors
	Direct processing instruction constructors
	Computed processing instruction constructors

	Comment constructors
	Direct comment constructors
	Computed comment constructors

	FLWOR expressions
	Syntax of FLWOR expressions
	for and let clauses
	for clauses
	let clauses
	for and let clauses in the same expression
	for and let clauses compared
	Variable scope in for and let clauses

	where clauses
	order by clauses
	return clauses
	FLWOR examples

	Conditional expressions
	Quantified expressions
	Cast expressions
	Castable expressions
	Transform expression and updating expressions
	Use of updating expressions in a transform expression
	Transform expression
	Basic updating expressions
	Delete expression
	Insert expression
	Rename expression
	Replace expression

	Chapter 5. Built-in functions
	DB2 XQuery functions by category
	adjust-date-to-timezone function
	adjust-dateTime-to-timezone function
	adjust-time-to-timezone function
	abs function
	avg function
	boolean function
	ceiling function
	codepoints-to-string function
	compare function
	concat function
	contains function
	count function
	current-date function
	current-dateTime function
	current-local-date function
	current-local-dateTime function
	current-local-time function
	current-time function
	data function
	dateTime function
	day-from-date function
	day-from-dateTime function
	days-from-duration function
	deep-equal function
	default-collation function
	distinct-values function
	empty function
	ends-with function
	exactly-one function
	exists function
	false function
	floor function
	hours-from-dateTime function
	hours-from-duration function
	hours-from-time function
	implicit-timezone function
	in-scope-prefixes function
	index-of function
	insert-before function
	last function
	local-name function
	local-name-from-QName function
	local-timezone function
	lower-case function
	matches function
	max function
	min function
	minutes-from-dateTime function
	minutes-from-duration function
	minutes-from-time function
	month-from-date function
	month-from-dateTime function
	months-from-duration function
	name function
	namespace-uri function
	namespace-uri-for-prefix function
	namespace-uri-from-QName function
	node-name function
	normalize-space function
	normalize-unicode function
	not function
	number function
	one-or-more function
	position function
	QName function
	remove function
	replace function
	resolve-QName function
	reverse function
	root function
	round function
	round-half-to-even function
	seconds-from-dateTime function
	seconds-from-duration function
	seconds-from-time function
	sqlquery function
	starts-with function
	string function
	string-join function
	string-length function
	string-to-codepoints function
	subsequence function
	substring function
	substring-after function
	substring-before function
	sum function
	timezone-from-date function
	timezone-from-dateTime function
	timezone-from-time function
	tokenize function
	translate function
	true function
	unordered function
	upper-case function
	xmlcolumn function
	year-from-date function
	year-from-dateTime function
	years-from-duration function
	zero-or-one function

	Chapter 6. Regular expressions
	Chapter 7. Limits
	Limits for XQuery data types
	Size limits

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

