
IBM DB2 10.1
for Linux, UNIX, and Windows

Database Security Guide
Updated January, 2013

SC27-3872-01

���

IBM DB2 10.1
for Linux, UNIX, and Windows

Database Security Guide
Updated January, 2013

SC27-3872-01

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 359.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book vii

Chapter 1. DB2 security model 1
Authentication. 2
Authorization 3
Security considerations when installing and using the
DB2 database manager 4

File permission requirements for the instance and
database directories 6

Authentication details 7
Authentication methods for your server 7
Authentication considerations for remote clients 13
Partitioned database authentication
considerations 13
Kerberos authentication 14
Maintaining passwords on servers 20

Authorization, privileges, and object ownership . . 20
Authorities overview 25
Instance level authorities 29
Database authorities 32
Privileges 40
Authorization IDs in different contexts 45
Default privileges granted on creating a database 47
Granting and revoking access 49
Controlling access for database administrators
(DBAs) 55
Gaining access to data through indirect means . 56

Data encryption 59
Configuring Secure Sockets Layer (SSL) support
in a DB2 instance 60
IBM Database Encryption Expert for encryption
of data at rest. 86
Database encryption using AIX encrypted file
system (EFS) 88

Auditing DB2 activities 91
Introduction to the DB2 audit facility 91
Audit facility management 112

Security model for the db2cluster command . . . 116

Chapter 2. Roles 119
Creating and granting membership in roles . . . 120
Role hierarchies 122
Effect of revoking privileges from roles 122
Delegating role maintenance by using the WITH
ADMIN OPTION clause. 124
Roles compared to groups 124
Using roles after migrating from IBM Informix
Dynamic Server 126

Chapter 3. Using trusted contexts and
trusted connections 127
Trusted contexts and trusted connections 129
Role membership inheritance through a trusted
context 132

Rules for switching the user ID on an explicit
trusted connection. 133
Trusted context problem determination 135

Chapter 4. Row and column access
control (RCAC) overview 137
Row and column access control (RCAC) rules . . 138

SQL statements for managing RCAC rules. . . 138
Built-in functions for managing RCAC
permissions and masks 138

Scenario: ExampleHMO using row and column
access control 138

Scenario: ExampleHMO using row and column
access control - Security policies 139
Scenario: ExampleHMO using row and column
access control - Database users and roles . . . 139
Scenario: ExampleHMO using row and column
access control - Database tables 140
Scenario: ExampleHMO using row and column
access control - Security administration. . . . 142
Scenario: ExampleHMO using row and column
access control - Row permissions 143
Scenario: ExampleHMO using row and column
access control - Column masks 144
Scenario: ExampleHMO using row and column
access control - Data insertion 145
Scenario: ExampleHMO using row and column
access control - Data updates 146
Scenario: ExampleHMO using row and column
access control - Data queries 146
Scenario: ExampleHMO using row and column
access control - View creation 148
Scenario: ExampleHMO using row and column
access control - Secure functions 149
Scenario: ExampleHMO using row and column
access control - Secure triggers 151
Scenario: ExampleHMO using row and column
access control - Revoke authority 152

Scenario: ExampleBANK using row and column
access control 152

Scenario: ExampleBANK using row and column
access control - Security policies 153
Scenario: ExampleBANK using row and column
access control - Database users and roles . . . 153
Scenario: ExampleBANK using row and column
access control - Database tables 154
Scenario: ExampleBANK using row and column
access control - Row permissions 155
Scenario: ExampleBANK using row and column
access control - Column masks 156
Scenario: ExampleBANK using row and column
access control - Data queries 156

Chapter 5. Label-based access control
(LBAC) 159

© Copyright IBM Corp. 2013 iii

LBAC security policies 161
LBAC security label components overview . . . 162

LBAC security label component type: SET . . . 163
LBAC security label component type: ARRAY 163
LBAC security label component type: TREE . . 164

LBAC security labels 167
Format for security label values 169
How LBAC security labels are compared 170
LBAC rule sets overview 171

LBAC rule set: DB2LBACRULES 171
LBAC rule exemptions 175
Built-in functions for managing LBAC security
labels 176
Protection of data using LBAC 177
Reading of LBAC protected data 179
Inserting of LBAC protected data. 181
Updating of LBAC protected data 184
Deleting or dropping of LBAC protected data . . 188
Removal of LBAC protection from data 191

Chapter 6. Using the system catalog
for security information 193
Retrieving authorization names with granted
privileges. 194
Retrieving all names with DBADM authority . . . 195
Retrieving names authorized to access a table . . 195
Retrieving all privileges granted to users 195
Securing the system catalog view. 196

Chapter 7. Firewall support 199
Screening router firewalls 199
Application proxy firewalls. 199
Circuit level firewalls 199
Stateful multi-layer inspection (SMLI) firewalls . . 200

Chapter 8. Security plug-ins 201
Security plug-in library locations 205
Security plug-in naming conventions 206
Security plug-in support for two-part user IDs . . 207
Security plug-in API versioning 209
32-bit and 64-bit considerations for security
plug-ins 209
Security plug-in problem determination 209
Enabling plug-ins 211

Deploying a group retrieval plug-in 211
Deploying a user ID/password plug-in 211
Deploying a GSS-API plug-in 212
Deploying a Kerberos plug-in 214

LDAP-based authentication and group lookup
support 215

Configuring transparent LDAP for
authentication and group lookup (AIX). . . . 217
Configuring transparent LDAP for
authentication and group lookup (Linux) . . . 220
Configuring transparent LDAP for
authentication and group lookup (HP-UX) . . 221
Configuring transparent LDAP for
authentication and group lookup (Solaris) . . . 223
Configuring the LDAP plug-in modules . . . 225
Enabling the LDAP plug-in modules 227

Connecting with an LDAP user ID 228
Considerations for group lookup 229
Troubleshooting authenticating LDAP users or
retrieving groups 230

Writing security plug-ins 230
How DB2 loads security plug-ins. 230
Restrictions for developing security plug-in
libraries 232
Restrictions on security plug-ins 234
Return codes for security plug-ins 235
Error message handling for security plug-ins 238
Calling sequences for the security plug-in APIs 239

Chapter 9. Security plug-in APIs . . . 243
APIs for group retrieval plug-ins 244

db2secDoesGroupExist API - Check if group
exists 245
db2secFreeErrormsg API - Free error message
memory 246
db2secFreeGroupListMemory API - Free group
list memory 246
db2secGetGroupsForUser API - Get list of
groups for user 247
db2secGroupPluginInit API - Initialize group
plug-in 250
db2secPluginTerm - Clean up group plug-in
resources 251

APIs for user ID/password authentication plug-ins 251
db2secClientAuthPluginInit API - Initialize
client authentication plug-in 257
db2secClientAuthPluginTerm API - Clean up
client authentication plug-in resources 258
db2secDoesAuthIDExist - Check if
authentication ID exists 259
db2secFreeInitInfo API - Clean up resources
held by the db2secGenerateInitialCred 259
db2secFreeToken API - Free memory held by
token 260
db2secGenerateInitialCred API - Generate initial
credentials 260
db2secGetAuthIDs API - Get authentication IDs 262
db2secGetDefaultLoginContext API - Get
default login context 264
db2secProcessServerPrincipalName API -
Process service principal name returned from
server 265
db2secRemapUserid API - Remap user ID and
password. 266
db2secServerAuthPluginInit - Initialize server
authentication plug-in 267
db2secServerAuthPluginTerm API - Clean up
server authentication plug-in resources 270
db2secValidatePassword API - Validate
password. 270

Required APIs and definitions for GSS-API
authentication plug-ins 273

Restrictions for GSS-API authentication plug-ins 274

Chapter 10. Communication buffer
exit libraries 275

iv Database Security Guide

Communication buffer exit library deployment . . 276
Communication buffer exit library location . . 276
Communication buffer exit library naming
conventions and permissions 276
Enabling communication buffer exit libraries
outside of DB2 pureScale environments . . . 277
Enabling communication buffer exit libraries in
DB2 pureScale environments 278
Communication buffer exit library problem
determination 278

Communication buffer exit library development 279
How a communication buffer exit library is
loaded. 279
Communication buffer exit library APIs . . . 280
Communication buffer exit library functions
structure 288
Communication buffer exit library information
structure 289
Communication buffer exit library buffer
structure 290
Communication buffer exit library control over
connections 290
Communication buffer exit library API versions 290
Communication buffer exit library error
handing and return codes 291
Communication buffer exit library development
restrictions 291
Communication buffer exit library API calling
sequences 293

Chapter 11. Audit facility record
layouts 297
Audit record object types 297
Audit record layout for AUDIT events 298
Audit record layout for CHECKING events . . . 302
CHECKING access approval reasons 303
CHECKING access attempted types 305
Audit record layout for OBJMAINT events . . . 308
Audit record layout for SECMAINT events . . . 310
SECMAINT privileges or authorities 314
Audit record layout for SYSADMIN events . . . 317
Audit record layout for VALIDATE events . . . 319

Audit record layout for CONTEXT events 320
Audit record layout for EXECUTE events 322
Audit events 327

Chapter 12. Working with operating
system security 333
DB2 and Windows security. 333

Authentication scenarios. 334
Support for global groups (Windows) 335
User authentication and group information with
DB2 on Windows 335
Defining which users hold SYSADM authority
(Windows) 341
Windows LocalSystem account support . . . 342
Extended Windows security using the
DB2ADMNS and DB2USERS groups 342
Considerations for Windows 2008 and Windows
Vista or higher: User Access Control feature . . 346

DB2 and UNIX security 347
DB2 and Linux security 347

Change password support (Linux) 347
Deploying a change password plug-in (Linux) 347

Appendix A. Overview of the DB2
technical information 349
DB2 technical library in hardcopy or PDF format 349
Displaying SQL state help from the command line
processor 352
Accessing different versions of the DB2
Information Center 352
Updating the DB2 Information Center installed on
your computer or intranet server 352
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 354
DB2 tutorials 356
DB2 troubleshooting information 356
Terms and conditions. 356

Appendix B. Notices 359

Index 363

Contents v

vi Database Security Guide

About this book

The Database Security Guide describes how to use DB2® security features to
implement and manage the level of security you require for your database
installation.

The Database Security Guide provides detailed information about:
v Managing the authentication of users who can access DB2 databases
v Setting up authorization to control user access to database objects and data

© Copyright IBM Corp. 2013 vii

viii Database Security Guide

Chapter 1. DB2 security model

Two modes of security control access to the DB2 database system data and
functions. Access to the DB2 database system is managed by facilities that reside
outside the DB2 database system (authentication), whereas access within the DB2
database system is managed by the database manager (authorization).

Authentication

Authentication is the process by which a system verifies a user's identity. User
authentication is completed by a security facility outside the DB2 database system,
through an authentication security plug-in module. A default authentication
security plug-in module that relies on operating-system-based authentication is
included when you install the DB2 database system. For your convenience, the
DB2 database manager also ships with authentication plug-in modules for
Kerberos and lightweight directory access protocol (LDAP). To provide even
greater flexibility in accommodating your specific authentication needs, you can
build your own authentication security plug-in module.

The authentication process produces a DB2 authorization ID. Group membership
information for the user is also acquired during authentication. Default acquisition
of group information relies on an operating-system based group-membership
plug-in module that is included when you install the DB2 database system. If you
prefer, you can acquire group membership information by using a specific
group-membership plug-in module, such as LDAP.

Authorization

After a user is authenticated, the database manager determines if that user is
allowed to access DB2 data or resources. Authorization is the process whereby the
DB2 database manager obtains information about the authenticated user, indicating
which database operations that user can perform, and which data objects that user
can access.

The different sources of permissions available to an authorization ID are as follows:
1. Primary permissions: those granted to the authorization ID directly.
2. Secondary permissions: those granted to the groups and roles in which the

authorization ID is a member.
3. Public permissions: those granted to PUBLIC.
4. Context-sensitive permissions: those granted to a trusted context role.

Authorization can be given to users in the following categories:
v System-level authorization

The system administrator (SYSADM), system control (SYSCTRL), system
maintenance (SYSMAINT), and system monitor (SYSMON) authorities provide
varying degrees of control over instance-level functions. Authorities provide a
way both to group privileges and to control maintenance and utility operations
for instances, databases, and database objects.

v Database-level authorization
The security administrator (SECADM), database administrator (DBADM), access
control (ACCESSCTRL), data access (DATAACCESS), SQL administrator

© Copyright IBM Corp. 2013 1

(SQLADM), workload management administrator (WLMADM), and explain
(EXPLAIN) authorities provide control within the database. Other database
authorities include LOAD (ability to load data into a table), and CONNECT
(ability to connect to a database).

v Object-level authorization
Object level authorization involves checking privileges when an operation is
performed on an object. For example, to select from a table a user must have
SELECT privilege on a table (as a minimum).

v Content-based authorization
Views provide a way to control which columns or rows of a table specific users
can read. Label-based access control (LBAC) determines which users have read
and write access to individual rows and individual columns.

You can use these features, in conjunction with the DB2 audit facility for
monitoring access, to define and manage the level of security your database
installation requires.

Authentication
Authentication of a user is completed using a security facility outside of the DB2
database system. The security facility can be part of the operating system or a
separate product.

The security facility requires two items to authenticate a user: a user ID and a
password. The user ID identifies the user to the security facility. By supplying the
correct password, information known only to the user and the security facility, the
user's identity (corresponding to the user ID) is verified.

Note: In non-root installations, operating system-based authentication must be
enabled by running the db2rfe command.

After being authenticated:
v The user must be identified to DB2 using an SQL authorization name or authid.

This name can be the same as the user ID, or a mapped value. For example, on
UNIX operating systems, when you are using the default security plug-in
module, a DB2 authid is derived by transforming to uppercase letters a UNIX
user ID that follows DB2 naming conventions.

v A list of groups to which the user belongs is obtained. Group membership may
be used when authorizing the user. Groups are security facility entities that must
also map to DB2 authorization names. This mapping is done in a method similar
to that used for user IDs.

The DB2 database manager uses the security facility to authenticate users in one of
two ways:
v A successful security system login is used as evidence of identity, and allows:

– Use of local commands to access local data
– Use of remote connections when the server trusts the client authentication.

v Successful validation of a user ID and password by the security facility is used
as evidence of identity and allows:
– Use of remote connections where the server requires proof of authentication
– Use of operations where the user wants to run a command under an identity

other than the identity used for login.

2 Database Security Guide

Note: On some UNIX systems, the DB2 database manager can log failed password
attempts with the operating system, and detect when a client has exceeded the
number of allowable login tries, as specified by the LOGINRETRIES parameter.

Authorization
Authorization is performed using DB2 facilities. DB2 tables and configuration files
are used to record the permissions associated with each authorization name.

When an authenticated user tries to access data, these recorded permissions are
compared with the permissions of:
v The authorization name of the user
v The groups to which the user belongs
v The roles granted to the user directly or indirectly through a group or a role
v The permissions acquired through a trusted context

Based on this comparison, the DB2 server determines whether to allow the
requested access.

The types of permissions recorded are privileges, authority levels, and LBAC
credentials.

A privilege defines a single permission for an authorization name, enabling a user
to create or access database resources. Privileges are stored in the database
catalogs.

Authority levels provide a method of grouping privileges and control over database
manager operations. Database-specific authorities are stored in the database
catalogs; system authorities are associated with group membership, and the group
names that are associated with the authority levels are stored in the database
manager configuration file for a given instance.

LBAC credentials are LBAC security labels and LBAC rule exemptions that allow
access to data protected by label-based access control (LBAC). LBAC credentials
are stored in the database catalogs.

Groups provide a convenient means of performing authorization for a collection of
users without having to grant or revoke privileges for each user individually.
Unless otherwise specified, group authorization names can be used anywhere that
authorization names are used for authorization purposes. In general, group
membership is considered for dynamic SQL and non-database object authorizations
(such as instance level commands and utilities), but is not considered for static
SQL. The exception to this general case occurs when privileges are granted to
PUBLIC: these are considered when static SQL is processed. Specific cases where
group membership does not apply are noted throughout the DB2 documentation,
where applicable.

A role is a database object that groups together one or more privileges and can be
assigned to users, groups, PUBLIC, or other roles by using a GRANT statement or
to a trusted context by using a CREATE TRUSTED CONTEXT or ALTER
TRUSTED CONTEXT statement. A role can be specified for the SESSION_USER
ROLE connection attribute in a workload definition. When you use roles, you
associate access permissions on database objects with the roles. Users that are
members of those roles then have the privileges defined for the role with which to
access database objects.

Chapter 1. DB2 security model 3

Roles provide similar functionality as groups; they perform authorization for a
collection of users without having to grant or revoke privileges for each user
individually. One advantage of roles is that they are managed by the DB2 database
system. The permissions granted to roles are taken into consideration during the
authorization process for views, triggers, materialized query tables (MQTs),
packages and SQL routines, unlike the permissions granted to groups. Permissions
granted to groups are not considered during the authorization process for views,
triggers, MQTs, packages and SQL routines, because the DB2 database system
cannot discover when membership in a group changes, and so it cannot invalidate
the objects mentioned previously, if appropriate.

Note: Permissions granted to roles that are granted to groups are not considered
during the authorization process for views, triggers, MQTs, packages and SQL
routines.

During an SQL statement processing, the permissions that the DB2 authorization
model considers are the union of the following permissions:
1. The permissions granted to the primary authorization ID associated with the

SQL statement
2. The permissions granted to the secondary authorization IDs (groups or roles)

associated with the SQL statement
3. The permissions granted to PUBLIC, including roles that are granted to

PUBLIC, directly or indirectly through other roles.
4. The permissions granted to the trusted context role, if applicable.

Security considerations when installing and using the DB2 database
manager

Security considerations are important to the DB2 administrator from the moment
the product is installed.

To complete the installation of the DB2 database manager, a user ID, a group
name, and a password are required. The GUI-based DB2 database manager install
program creates default values for different user IDs and the group. Different
defaults are created, depending on whether you are installing on Linux and UNIX
or Windows operating systems:
v On UNIX and Linux operating systems, if you choose to create a DB2 instance in

the instance setup window, the DB2 database install program creates, by default,
different users for the DAS (dasusr), the instance owner (db2inst), and the
fenced user (db2fenc). Optionally, you can specify different user names
The DB2 database install program appends a number from 1-99 to the default
user name, until a user ID that does not already exist can be created. For
example, if the users db2inst1 and db2inst2 already exist, the DB2 database
install program creates the user db2inst3. If a number greater than 10 is used,
the character portion of the name is truncated in the default user ID. For
example, if the user ID db2fenc9 already exists, the DB2 database install
program truncates the c in the user ID, then appends the 10 (db2fen10).
Truncation does not occur when the numeric value is appended to the default
DAS user (for example, dasusr24).

v On Windows operating systems, the DB2 database install program creates, by
default, the user db2admin for the DAS user, the instance owner, and fenced
users (you can specify a different user name during setup, if you want). Unlike
Linux and UNIX operating systems, no numeric value is appended to the user
ID.

4 Database Security Guide

To minimize the risk of a user other than the administrator from learning of the
defaults and using them in an improper fashion within databases and instances,
change the defaults during the install to a new or existing user ID of your choice.

Note: Response file installations do not use default values for user IDs or group
names. These values must be specified in the response file.

Passwords are very important when authenticating users. If no authentication
requirements are set at the operating system level and the database is using the
operating system to authenticate users, users will be allowed to connect. For
example on Linux and UNIX operating systems, undefined passwords are treated
as NULL. In this situation, any user without a defined password will be
considered to have a NULL password. From the operating system's perspective,
this is a match and the user is validated and able to connect to the database. Use
passwords at the operating system level if you want the operating system to do
the authentication of users for your database.

When working with partitioned database environments on Linux and UNIX
operating systems, the DB2 database manager by default uses the rsh utility
(remsh on HP-UX) to run some commands on remote members. The rsh utility
transmits passwords in clear text over the network, which can be a security
exposure if the DB2 server is not on a secure network. You can use the DB2RSHCMD
registry variable to set the remote shell program to a more secure alternative that
avoids this exposure. One example of a more secure alternative is ssh. See the
DB2RSHCMD registry variable documentation for restrictions on remote shell
configurations.

After installing the DB2 database manager, also review, and change (if required),
the default privileges that have been granted to users. By default, the installation
process grants system administration (SYSADM) privileges to the following users
on each operating system:

Linux and UNIX operating systems
To a valid DB2 database user name that belongs to the primary group of
the instance owner.

Windows environments

v To members of the local Administrators group.
v If the DB2 database manager is configured to enumerate groups for

users at the location where the users are defined, to members of the
Administrators group at the Domain Controller. You use the
DB2_GRP_LOOKUP environment variable to configure group enumeration
on Windows operating systems.

v If Windows extended security is enabled, to members of the
DB2ADMNS group. The location of the DB2ADMNS group is decided
during installation.

v To the LocalSystem account

By updating the database manager configuration parameter sysadm_group, the
administrator can control which group of users possesses SYSADM privileges. You
must use the following guidelines to complete the security requirements for both
the DB2 database installation and the subsequent instance and database creation.

Any group defined as the system administration group (by updating sysadm_group)
must exist. The name of this group should allow for easy identification as the

Chapter 1. DB2 security model 5

group created for instance owners. User IDs and groups that belong to this group
have system administrator authority for their corresponding instances.

The administrator should consider creating an instance owner user ID that is easily
recognized as being associated with a particular instance. This user ID should have
as one of its groups, the name of the SYSADM group created previously. Another
recommendation is to use this instance-owner user ID only as a member of the
instance owner group and not to use it in any other group. This should control the
proliferation of user IDs and groups that can modify the instance.

The created user ID must be associated with a password to provide authentication
before being permitted entry into the data and databases within the instance. The
recommendation when creating a password is to follow your organization's
password naming guidelines.

Note: To avoid accidentally deleting or overwriting instance configuration or other
files, administrators should consider using another user account, which does not
belong to the same primary group as the instance owner, for day-to-day
administration tasks that are performed on the server directly.

File permission requirements for the instance and database
directories

The DB2 database system requires that your instance and database directories have
a minimum level of permissions.

Note: When the instance and database directories are created by the DB2 database
manager, the permissions are accurate and should not be changed.

The minimum permissions of the instance directory and the NODE000x/sqldbdir
directory on UNIX and Linux machines must be: u=rwx and go=rx. The meaning of
the letters is explained in the following table:

Character Represents:

u User (owner)

g Group

o Other users

r Read

w Write

x Execute

For example, the permissions for the instance, db2inst1, in /home are:
drwxr-xr-x 36 db2inst1 db2grp1 4096 Jun 15 11:13 db2inst1

For the directories containing the databases, each and every directory level up to
and including NODE000x needs the following permissions:
drwxrwxr-x 11 db2inst1 db2grp1 4096 Jun 14 15:53 NODE0000/

For example, if a database is located in /db2/data/db2inst1/db2inst1/NODE0000
then the directories: /db2, /db2/data, /db2/data/db2inst1, /db2/data/db2inst1/
db2inst1 and /db2/data/db2inst1/db2inst1/NODE0000 need drwxrwxr-x.

6 Database Security Guide

Within the NODE000x directory, the sqldbdir directory requires the permissions
drwxrwxr-x, for example:
drwx------ 5 db2inst1 db2grp1 256 Jun 14 14:17 SAMPLE/
drwxr-x--- 7 db2inst1 db2grp1 4096 Jun 14 13:26 SQL00001/
drwxrwxr-x 2 db2inst1 db2grp1 256 Jun 14 13:02 sqldbdir/

CAUTION:
To maintain the security of your files, do not change the permissions on the
DBNAME directories (such as SAMPLE) and the SQLxxxx directories from the
permissions they are assigned when the DB2 database manager creates them.

Authentication details

Authentication methods for your server
Access to an instance or a database first requires that the user be authenticated. The
authentication type for each instance determines how and where a user will be
verified.

The authentication type is stored in the configuration file at the server. It is initially
set when the instance is created. There is one authentication type per instance,
which covers access to that database server and all the databases under its control.

If you intend to access data sources from a federated database, you must consider
data source authentication processing and definitions for federated authentication
types.

Note: You can check the following website for certification information about the
cryptographic routines used by the DB2 database management system to perform
encryption of the user ID and password when using SERVER_ENCRYPT
authentication, and of the user ID, password, and user data when using
DATA_ENCRYPT authentication: http://www.ibm.com/security/standards/
st_evaluations.shtml.

Switching User on an Explicit Trusted Connection

For CLI/ODBC and XA CLI/ODBC applications, the authentication mechanism
used when processing a switch user request that requires authentication is the
same as the mechanism used to originally establish the trusted connection itself.
Therefore, any other negotiated security attributes (for example, encryption
algorithm, encryption keys, and plug-in names) used during the establishment of
the explicit trusted connection are assumed to be the same for any authentication
required for a switch user request on that trusted connection. Java™ applications
allow the authentication method to be changed on a switch user request (by use of
a datasource property).

Because a trusted context object can be defined such that switching user on a
trusted connection does not require authentication, in order to take full advantage
of the switch user on an explicit trusted connection feature, user-written security
plug-ins must be able to:
v Accept a user ID-only token
v Return a valid DB2 authorization ID for that user ID

Note: An explicit trusted connection cannot be established if the CLIENT type of
authentication is in effect.

Chapter 1. DB2 security model 7

http://www.ibm.com/security/standards/st_evaluations.shtml
http://www.ibm.com/security/standards/st_evaluations.shtml

Authentication types provided

The following authentication types are provided:

SERVER
Specifies that authentication occurs on the server through the security
mechanism in effect for that configuration, for example, through a security
plug-in module. The default security mechanism is that if a user ID and
password are specified during the connection or attachment attempt, they
are sent to the server and compared to the valid user ID and password
combinations at the server to determine if the user is permitted to access
the instance.

Note: The server code detects whether a connection is local or remote. For
local connections, when authentication is SERVER, a user ID and password
are not required for authentication to be successful.

SERVER_ENCRYPT
Specifies that the server accepts encrypted SERVER authentication schemes.
If the client authentication is not specified, the client is authenticated using
the method selected at the server. The user ID and password are encrypted
when they are sent over the network from the client to the server.

When the resulting authentication method negotiated between the client
and server is SERVER_ENCRYPT, you can choose to encrypt the user ID
and password using an AES (Advanced Encryption Standard) 256-bit
algorithm. To do this, set the alternate_auth_enc database manager
configuration parameter. This configuration parameter has three settings:
v NOT_SPECIFIED (default) means that the server accepts the encryption

algorithm that the client proposes, including an AES 256-bit algorithm.
v AES_CMP means that if the connecting client proposes DES but supports

AES encryption, the server renegotiates for AES encryption.
v AES_ONLY means that the server accepts only AES encryption. If the client

does not support AES encryption, the connection is rejected.

AES encryption can be used only when the authentication method
negotiated between the client and server is SERVER_ENCRYPT.

CLIENT
Specifies that authentication occurs on the database partition where the
application is invoked using operating system security. The user ID and
password specified during a connection or attachment attempt are
compared with the valid user ID and password combinations on the client
node to determine whether the user ID is permitted access to the instance.
No further authentication will take place on the database server. This is
sometimes called single signon.

If the user performs a local or client login, the user is known only to that
local client workstation.

If the remote instance has CLIENT authentication, two other parameters
determine the final authentication type: trust_allclnts and
trust_clntauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.

8 Database Security Guide

When the authentication type of CLIENT has been selected, an
additional option might be selected to protect against clients whose
operating environment has no inherent security.

To protect against unsecured clients, the administrator can select
Trusted Client Authentication by setting the trust_allclnts
parameter to NO. This implies that all trusted platforms can
authenticate the user on behalf of the server. Untrusted clients are
authenticated on the Server and must provide a user ID and
password. You use the trust_allclnts configuration parameter to
indicate whether you are trusting clients. The default for this
parameter is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet
have some of those clients as those who do not have a native safe
security system for authentication.

You might also want to complete authentication at the server even
for trusted clients. To indicate where to validate trusted clients, you
use the trust_clntauth configuration parameter. The default for
this parameter is CLIENT.

Note: For trusted clients only, if no user ID or password is
explicitly provided when attempting to CONNECT or ATTACH, then
validation of the user takes place at the client. The trust_clntauth
parameter is only used to determine where to validate the
information provided on the USER or USING clauses.

To protect against all clients, including JCC type 4 clients on z/OS®

and System i® but excluding native DB2 clients on z/OS, OS/390®,
VM, VSE, and System i, set the trust_allclnts parameter to
DRDAONLY. Only these clients can be trusted to perform client-side
authentication. All other clients must provide a user ID and
password to be authenticated by the server.

The trust_clntauth parameter is used to determine where the
clients mentioned previously are authenticated: if trust_clntauth
is CLIENT, authentication takes place at the client. If trust_clntauth
is SERVER, authentication takes place at the client when no user ID
and password are provided and at the server when a user ID and
password are provided.

Table 1. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter Combinations.

trust_ allclnts trust_ clntauth

Untrusted
non-
DRDA®

Client
Authen-
tication (no
user ID &
password)

Untrusted
non-
DRDA
Client
Authen-
tication
(with user
ID &
password)

Trusted
non-
DRDA
Client
Authen-
tication (no
user ID &
password)

Trusted
non-
DRDA
Client
Authen-
tication
(with user
ID &
password)

DRDA
Client
Authen-
tication (no
user ID &
password)

DRDA
Client
Authen-
tication
(with user
ID &
password)

YES CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT

YES SERVER CLIENT SERVER CLIENT SERVER CLIENT SERVER

NO CLIENT SERVER SERVER CLIENT CLIENT CLIENT CLIENT

NO SERVER SERVER SERVER CLIENT SERVER CLIENT SERVER

DRDAONLY CLIENT SERVER SERVER SERVER SERVER CLIENT CLIENT

Chapter 1. DB2 security model 9

Table 1. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter
Combinations. (continued)

trust_ allclnts trust_ clntauth

Untrusted
non-
DRDA®

Client
Authen-
tication (no
user ID &
password)

Untrusted
non-
DRDA
Client
Authen-
tication
(with user
ID &
password)

Trusted
non-
DRDA
Client
Authen-
tication (no
user ID &
password)

Trusted
non-
DRDA
Client
Authen-
tication
(with user
ID &
password)

DRDA
Client
Authen-
tication (no
user ID &
password)

DRDA
Client
Authen-
tication
(with user
ID &
password)

DRDAONLY SERVER SERVER SERVER SERVER SERVER CLIENT SERVER

DATA_ENCRYPT
The server accepts encrypted SERVER authentication schemes and the
encryption of user data. The authentication works the same way as that
shown with SERVER_ENCRYPT. The user ID and password are encrypted
when they are sent over the network from the client to the server.

The following user data are encrypted when using this authentication type:
v SQL and XQuery statements.
v SQL program variable data.
v Output data from the server processing of an SQL or XQuery statement

and including a description of the data.
v Some or all of the answer set data resulting from a query.
v Large object (LOB) data streaming.
v SQLDA descriptors.

DATA_ENCRYPT_CMP
The server accepts encrypted SERVER authentication schemes and the
encryption of user data. In addition, this authentication type allows
compatibility with down level products not supporting DATA_ENCRYPT
authentication type. These products are permitted to connect with the
SERVER_ENCRYPT authentication type and without encrypting user data.
Products supporting the new authentication type must use it. This
authentication type is only valid in the server's database manager
configuration file and is not valid when used on the CATALOG DATABASE
command.

KERBEROS
Used when both the DB2 client and server are on operating systems that
support the Kerberos security protocol. The Kerberos security protocol
performs authentication as a third party authentication service by using
conventional cryptography to create a shared secret key. This key becomes
a user's credential and is used to verify the identity of users during all
occasions when local or network services are requested. The key eliminates
the need to pass the user name and password across the network as clear
text. Using the Kerberos security protocol enables the use of a single
sign-on to a remote DB2 database server. The KERBEROS authentication
type is supported on various operating systems, see the related information
section for more information.

Kerberos authentication works as follows:

10 Database Security Guide

1. A user logging on to the client machine using a domain account
authenticates to the Kerberos key distribution center (KDC) at the
domain controller. The key distribution center issues a ticket-granting
ticket (TGT) to the client.

2. During the first phase of the connection the server sends the target
principal name, which is the service account name for the DB2 database
server service, to the client. Using the server's target principal name
and the target-granting ticket, the client requests a service ticket from
the ticket-granting service (TGS) which also resides at the domain
controller. If both the client's ticket-granting ticket and the server's
target principal name are valid, the TGS issues a service ticket to the
client. The principal name recorded in the database directory can be
specified as name/instance@REALM. (This is in addition to
DOMAIN\userID and userID@xxx.xxx.xxx.com formats accepted on
Windows.)

3. The client sends this service ticket to the server using the
communication channel (which can be, as an example, TCP/IP).

4. The server validates the client's server ticket. If the client's service ticket
is valid, then the authentication is completed.

It is possible to catalog the databases on the client machine and explicitly
specify the Kerberos authentication type with the server's target principal
name. In this way, the first phase of the connection can be bypassed.

If a user ID and a password are specified, the client will request the
ticket-granting ticket for that user account and use it for authentication.

KRB_SERVER_ENCRYPT
Specifies that the server accepts KERBEROS authentication or encrypted
SERVER authentication schemes. If the client authentication is KERBEROS,
the client is authenticated using the Kerberos security system. If the client
authentication is SERVER_ENCRYPT, the client is authenticated using a
user ID and encryption password. If the client authentication is not
specified, then the client will use Kerberos if available, otherwise it will use
password encryption. For other client authentication types, an
authentication error is returned. The authentication type of the client
cannot be specified as KRB_SERVER_ENCRYPT

Note: The Kerberos authentication types are supported on clients and
servers running on specific operating systems, see the related information
section for more information. For Windows operating systems, both client
and server machines must either belong to the same Windows domain or
belong to trusted domains. This authentication type should be used when
the server supports Kerberos and some, but not all, of the client machines
support Kerberos authentication.

GSSPLUGIN
Specifies that the server uses a GSS-API plug-in to perform authentication.
If the client authentication is not specified, the server returns a list of
server-supported plug-ins, including any Kerberos plug-in that is listed in
the srvcon_gssplugin_list database manager configuration parameter, to
the client. The client selects the first plug-in found in the client plug-in
directory from the list. If the client does not support any plug-in in the list,
the client is authenticated using the Kerberos authentication scheme (if it is
returned). If the client authentication is the GSSPLUGIN authentication
scheme, the client is authenticated using the first supported plug-in in the
list.

Chapter 1. DB2 security model 11

GSS_SERVER_ENCRYPT
Specifies that the server accepts plug-in authentication or encrypted server
authentication schemes. If client authentication occurs through a plug-in,
the client is authenticated using the first client-supported plug-in in the list
of server-supported plug-ins.

If the client authentication is not specified and an implicit connect is being
performed (that is, the client does not supply a user ID and password
when making the connection), the server returns a list of server-supported
plug-ins, the Kerberos authentication scheme (if one of the plug-ins in the
list is Kerberos-based), and the encrypted server authentication scheme.
The client is authenticated using the first supported plug-in found in the
client plug-in directory. If the client does not support any of the plug-ins
that are in the list, the client is authenticated using the Kerberos
authentication scheme. If the client does not support the Kerberos
authentication scheme, the client is authenticated using the encrypted
server authentication scheme, and the connection will fail because of a
missing password. A client supports the Kerberos authentication scheme if
a DB2 supplied Kerberos plug-in exists for the operating system, or a
Kerberos-based plug-in is specified for the srvcon_gssplugin_list database
manager configuration parameter.

If the client authentication is not specified and an explicit connection is
being performed (that is, both the user ID and password are supplied), the
authentication type is equivalent to SERVER_ENCRYPT. In this case, the
choice of the encryption algorithm used to encrypt the user ID and
password depends on the setting of the alternate_auth_enc database
manager configuration parameter.

Note:

1. Do not inadvertently lock yourself out of your instance when you are changing
the authentication information, since access to the configuration file itself is
protected by information in the configuration file. The following database
manager configuration file parameters control access to the instance:
v authentication *
v sysadm_group *
v trust_allclnts

v trust_clntauth

v sysctrl_group

v sysmaint_group

* Indicates the two most important parameters.
There are some things that can be done to ensure this does not happen: If you
do accidentally lock yourself out of the DB2 database system, you have a
fail-safe option available on all platforms that will allow you to override the
usual DB2 database security checks to update the database manager
configuration file using a highly privileged local operating system security user.
This user always has the privilege to update the database manager
configuration file and thereby correct the problem. However, this security
bypass is restricted to a local update of the database manager configuration file.
You cannot use a fail-safe user remotely or for any other DB2 database
command. This special user is identified as follows:
v UNIX platforms: the instance owner
v Windows platform: someone belonging to the local “Administrators” group

12 Database Security Guide

v Other platforms: there is no local security on the other platforms, so all users
pass local security checks anyway

Authentication considerations for remote clients
When you catalog a database for remote access, you can specify the authentication
type in the database directory entry.

The authentication type is not required. If it is not specified the client will try to
connect using the SERVER_ENCRYPT authentication type first. If the server does
not support SERVER_ENCRYPT, the server returns a list of the authentication
types that it supports. The client will use the first authentication type listed to
connect to the server. While unspecified, the database catalog listed using the LIST
DATABASE DIRECTORY command will not show an authentication type. If the
authentication type is not specified in the database directory entry then the client
may take longer to connect. If an authentication type is specified, authentication
can begin immediately provided that value specified matches that at the server. If a
mismatch is detected, DB2 database attempts to recover. Recovery may result in
more flows to reconcile the difference, or in an error if the DB2 database cannot
recover. In the case of a mismatch, the value at the server is assumed to be correct.

The authentication type DATA_ENCRYPT_CMP is designed to allow clients from a
previous release that does not support data encryption to connect to a server using
SERVER_ENCRYPT authentication instead of DATA_ENCRYPT. This
authentication does not work when the following statements are true:
v The client level is Version 7.2.
v The gateway level is Version 8 FixPak 7 or later.
v The server is Version 8 FixPak 7 or later.

When these are all true, the client cannot connect to the server. To allow the
connection, you must either upgrade your client to Version 8 or later, or have your
gateway level at Version 8 FixPak 6 or earlier.

The determination of the authentication type used when connecting is made by
specifying the appropriate authentication type as a database catalog entry at the
gateway. This is true for both DB2 Connect™ scenarios and for clients and servers
in a partitioned database environment where the client has set the DB2NODE registry
variable. You will catalog the authentication type at the catalog partition with the
intent to “hop” to the appropriate partition. In this scenario, the authentication
type cataloged at the gateway is not used because the negotiation is solely between
the client and the server.

You may have a need to catalog multiple database aliases at the gateway using
different authentication types if they need to have clients that use differing
authentication types. When deciding which authentication type to catalog at a
gateway, you can keep the authentication type the same as that used at the client
and server; or, you can use the NOTSPEC authentication type with the
understanding that NOTSPEC defaults to SERVER.

Partitioned database authentication considerations
In a partitioned database, each partition of the database must have the same set of
users and groups defined. If the definitions are not the same, the user may be
authorized to do different things on different partitions.

Consistency across all partitions is recommended.

Chapter 1. DB2 security model 13

Kerberos authentication
Kerberos is a third-party network authentication protocol that employs a system of
shared secret keys to securely authenticate a user in an unsecured network
environment. The DB2 database system provides support for the Kerberos
authentication protocol on AIX®, HP-UX, Solaris, Linux IA32 and AMD64, and
Windows operating systems.

Introduction

Kerberos authentication is managed by a three-tiered system in which encrypted
service tickets, rather than a plain-text user ID and password pair, are exchanged
between the application server and client. These encrypted service tickets, called
credentials, are provided by a separate server called the Kerberos Key Distribution
Center (KDC). Credentials have a finite lifetime and are understood only by the
client and the server. These features reduce the risk of a security exposure, even if
the ticket is intercepted from the network. Each user, or principal in Kerberos terms,
possesses a private encryption key that is shared with the KDC. Collectively, the
principals and computers that are registered with a KDC are known as a realm.

One key feature of Kerberos is that it provides a single sign-on environment: a user
must verify identity only once to access the resources within the Kerberos realm.
This single sign-on environment means that a user can connect or attach to a DB2
database server without providing a user ID or password. Another advantage is
that the administration of user identification is simplified because Kerberos uses a
central repository for principals. Finally, Kerberos supports mutual authentication,
which enables the client to validate the identity of the server.

Setup

Before you can use Kerberos with a DB2 database system, you must install and
configure the Kerberos layer on all computers. For a typical configuration, you
must meet the following requirements:
v Create the appropriate principals.
v Ensure that the client and server computers and principals belong to the same

realm or to trusted realms. Trusted realms are known as trusted domains in
Windows terminology.

v Where appropriate, create server keytab files.
v Synchronize the time clocks on all computers. Kerberos typically permits a

5-minute time skew; if there is more than a 5-minute time skew, a
preauthentication error occurs during an attempt to obtain credentials.

Setting up Kerberos for a DB2 server
Before you can use Kerberos authentication with a DB2 database system, you must
install and configure the Kerberos layer on all computers. For a typical
configuration, you must follow the instructions on this page.

Before you begin

If you are using a Linux, Sun Solaris, or HP-UX operating system, ensure that no
Kerberos libraries other than the krb5 library are installed on your system.
Otherwise, Kerberos authentication fails, and a message is logged in the db2diag
log files.

If you are using a Linux or Sun Solaris operating system, uninstall any instances of
the IBM® Network Authentication Service (NAS) Toolkit, and remove any reference

14 Database Security Guide

to the NAS installation path locations from the system PATH variable.

About this task

The use of Kerberos authentication by a DB2 database depends on whether the
security authentication was successfully created using the credentials provided by
the connecting application. Furthermore, whenever available, Kerberos mutual
authentication is supported, where the client and server must both prove their
identities to use Kerberos. However, other Kerberos features, such as the signing or
encryption of messages, are unavailable.

For additional details on installing and configuring Kerberos products on your
systems, see http://www.ibm.com/developerworks/data/library/techarticle/dm-
0603see/index.html, or the documentation provided with your Kerberos product.

Kerberos support for a DB2 database system is provided through the IBMkrb5
GSS-API security plug-in. This plug-in is used for both server and client
authentication. The plug-in library is installed during DB2 installation in the
following locations:
v On UNIX and Linux 32-bit operating systems: the sqllib/security32/plugin/

IBM/client and sqllib/security32/plugin/IBM/server directories
v On UNIX and Linux 64-bit operating systems: the sqllib/security64/plugin/

IBM/client and sqllib/security64/plugin/IBM/server directories
v On Windows operating systems: the sqllib\security\plugin\IBM\client and

sqllib\security\plugin\IBM\server directories

The source code for the UNIX and Linux plug-in, IBMkrb5.C, is available in the
sqllib/samples/security/plugins directory. For 64-bit Windows operating
systems, the plug-in library is called IBMkrb564.dll.

Kerberos and groups

Kerberos does not possess the concept of groups. As a result, the DB2 database
instance relies upon the local operating system to obtain a group list for a Kerberos
principal. For UNIX and Linux operating systems, this reliance requires an
equivalent system account for each principal. For example, for the principal
name@REALM, the DB2 database product collects group information by querying
the local operating system for all group names to which the operating system user
name belongs. If an operating system user name does not exist, the AUTHID
belongs only to the PUBLIC group.

On Windows operating systems, a domain account is automatically associated with
a Kerberos principal. The additional step of creating a separate operating system
account is not required.

Kerberos keytab files

To accept security context requests, every Kerberos service on a UNIX or Linux
operating system must place its credentials in a keytab file. This requirement
applies to those principals that the DB2 database instance uses as server principals.
Only the default keytab file is searched for the server key. For instructions on
adding a key to the keytab file, see the documentation provided with the Kerberos
product.

There is no concept of a keytab file on Windows operating systems; the system
automatically handles storing and acquiring the credentials for a principal.

Chapter 1. DB2 security model 15

http://www.ibm.com/developerworks/data/library/techarticle/dm-0603see/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0603see/index.html

You can specify the default keytab file name by using the KRB5_KTNAME
environment variable. However, because the server plug-in runs within a DB2
database engine process, this environment variable might not be accessible. To
avoid this situation, add the KRB5_KTNAME environment variable to the DB2ENVLIST
registry variable using the db2set command:
db2set DB2ENVLIST=KRB5_KTNAME

As keytab files are not used by Kerberos for Windows, this option is only available
for a Linux or UNIX server.

Procedure

To set up Kerberos for a DB2 server:
1. Install Kerberos by performing one of the following steps:

v For AIX operating systems, install the NAS (Network Authentication
Services) Toolkit for DB2 on AIX, Version 1.4 or later. You can download the
NAS package from https://www.ibm.com/services/forms/
preLogin.do?source=dm-nas.

v For Linux and HP-UX (64-bit only) operating systems, install the Kerberos
package, krb5, that is included on your operating system installation media.

v For Sun Solaris operating systems, the Kerberos service is included in the
Solaris 10 release. No additional installation is required.

v For Windows operating systems, enable the Active Directory on your domain
controller.

2. Configure the DB2 product to use the Kerberos plug-in. See “Deploying a
Kerberos plug-in” on page 214.

3. Restart the DB2 server.

Naming and mapping for Kerberos
Before you can use Kerberos with a DB2 database system, you must ensure that
the client and server computers and principals belong to the same realm or to
trusted realms.

Client principals

Any unique identity that can receive Kerberos tickets for authentication is known
as a principal. A Kerberos principal identity is defined by either a two-part or
multipart format, either name@REALM or name/instance@REALM. Because the name
component is used in the authorization ID (AUTHID) mapping, the name must
adhere to the DB2 database naming rules. Those rules limit a name to 128
characters and restrict the choice of characters.

Note: Windows operating systems directly associate a Kerberos principal identity
with a domain user. An implication is that Kerberos authentication is unavailable
to Windows operating systems that are not associated with a domain or realm.
Furthermore, Windows operating systems support only the two-part format for
defining principal identities, that is, name@domain.

Authorization ID mapping

Unlike operating system user IDs, whose scope of existence is usually restricted to
a single computer, Kerberos principals can be authenticated in realms other than
their own. You can avoid the potential problem of duplicate principal names by

16 Database Security Guide

https://www.ibm.com/services/forms/preLogin.do?source=dm-nas
https://www.ibm.com/services/forms/preLogin.do?source=dm-nas

using the realm name to fully qualify the principal name. In Kerberos, a fully
qualified principal name takes the following form:

name/instance@REALM

where instance can be multiple instance names separated by a forward slash (/), for
example, name/instance1/instance2@REALM. Alternatively, you can omit the
instance field.

The realm name must be unique within all the realms that are defined within a
network. A one-to-one mapping is needed between the authorization ID and the
principal name, that is, the name field in the fully qualified principal. This simple
mapping is needed because the authorization ID is used as the default schema by
the DB2 database manager and should be easily and logically derived. Be aware of
the potential issues caused by the following mappings:
v Principals with the same name but from different realms are mapped to the

same authorization ID. For example, the following two principal names both
map to an authorization ID of gregor1x:
– gregor1x@EXAMPLE.COM
– gregor1x@WWW.COM

v Principals with the same name but on different instances are mapped to the
same authorization ID. For example, the following two principal names both
map to an authorization ID of gregor1x:
– gregor1x/bigmachine@EXAMPLE.COM
– gregor1x/littlemachine@EXAMPLE.COM

Therefore, follow these guidelines:
v Maintain a unique namespace for a name in all the trusted realms that access the

DB2 database server.
v Make all principals with the same name field, regardless of the instance, belong

to the same user.

Server principals

On UNIX and Linux operating systems, the server principal name for the DB2
database instance is assumed to be instance name/fully qualified hostname@REALM.
This principal must be able to accept Kerberos security contexts, and it must exist
before you start the DB2 database instance, because the server name is reported to
the DB2 database instance by the plug-in at initialization time.

On Windows operating systems, the server principal is usually identified by the
domain account that is used to start the DB2 database service. An exception to this
situation is when the instance is started by the LocalSystem account. In this case,
the server principal name is reported as host/hostname. This identity is valid only
if both the client and server belong to Windows domains.

Windows operating systems do not support names that have more than two parts.
For example: component/component@REALM. This creates an issue when a
Windows client attempts to connect to a UNIX server. As a result, if you require
interoperability with UNIX Kerberos, you must create a mapping between the
Kerberos principal and a Windows account in the Windows domain. For
instructions, see the appropriate Windows documentation.

Chapter 1. DB2 security model 17

You can override the Kerberos server principal name that is used by the DB2
server on UNIX and Linux operating systems by setting the DB2_KRB5_PRINCIPAL
environment variable to the fully qualified server principal name. The replacement
server principal name is recognized by the DB2 database system only after you
restart the instance by issuing the db2start command.

Kerberos authentication enablement
Before you can use Kerberos with a DB2 database system, you must enable
Kerberos authentication.

Enabling Kerberos authentication on the client

To enable Kerberos authentication on the client, set the clnt_krb_plugin database
manager configuration parameter to the name of the Kerberos plug-in that you are
using.

For local authorizations, the client will use Kerberos if the authentication
configuration parameter is set to KERBEROS or KRB_SERVER_ENCRYPT. Otherwise, no
client-side Kerberos support is assumed.

Important: No checks are performed to validate that Kerberos support is available.

To enable Kerberos authentication on outbound connections to a DB2 server, you
instead specify Kerberos as the authentication type when you catalog the database,
as shown in the following example:

CATALOG DATABASE testdb AT NODE testnode
AUTHENTICATION KERBEROS TARGET PRINCIPAL
service/host@REALM

However, if you do not provide authentication information, the server sends the
name of the server principal to the client.

Enabling Kerberos authentication on the server

To enable Kerberos authentication on the server, include the specific Kerberos
plug-in name in the list of plug-ins that you specify for the srvcon_gssplugin_list
database manager configuration parameter on the server. Having the Kerberos
plug-in name in this list enables the client to scan the server and select the
Kerberos authentication method when making a connection.

If this configuration parameter is left empty and you set the authentication
configuration parameter to KERBEROS or KRB_SERVER_ENCRYPT, the default Kerberos
plug-in, IBMkrb5, is used instead. You can specify only one Kerberos plug-in.

Finally, to use Kerberos for authorization of incoming connections only, set
thesvrcon_auth parameter to one of the following two options:
v KERBEROS to use only Kerberos authentication; or
v KRB_SERVER_ENCRYPT to use Kerberos and SERVER_ENCRYPT authorization.

If you want to use Kerberos for incoming connections and local authorizations,
leave the svrcon_auth configuration parameter empty and set the value of the
authentication configuration parameter to one of the Kerberos options.

Kerberos plug-in creation
To customize the behavior of Kerberos authentication on a DB2 database system,
you can develop your own Kerberos authentication plug-ins.

18 Database Security Guide

Consider the following points when creating a Kerberos plug-in:
v Write the Kerberos plug-in as a GSS-API plug-in, but in the initialization

function, set the plugintype variable to DB2SEC_PLUGIN_TYPE_KERBEROS for the
function pointer array that is returned to the DB2 database instance.

v Under certain conditions, the server reports the server principal name to the
client. The Kerberos plug-in must specify principals in the GSS_C_NT_USER_NAME
format (that is, server/host@REALM). The GSS_C_NT_HOSTBASED_SERVICE format
(that is, service@host) is not supported.

Kerberos compatibility
DB2 Kerberos authentication is compatible with IBM System z®, IBM i, and
Windows systems.

IBM System z and IBM i compatibility

To connect to a database on an IBM System z or IBM i system, you must catalog
the database by using the AUTHENTICATION and KERBEROS TARGET PRINCIPAL
parameters of the CATALOG DATABASE command.

Neither IBM System z nor IBM i operating systems support the mutual
authentication security feature of Kerberos.

Windows issues

When you are using Kerberos on Windows operating systems, be aware of the
following issues:
v Due to the manner in which Windows operating systems detect and report some

errors, the following conditions result in a client security plug-in error.
– Expired account
– Invalid password
– Expired password
– Password change forced by administrator
– Disabled account
Furthermore, in all cases, the DB2 administration log or the db2diag log files
contain Logon failed or Logon denied messages.

v If a domain account name is also defined locally, connections explicitly
specifying the domain name and password fail with the following error: The
Local Security Authority cannot be contacted. The error is a result of the
Windows operating system locating the local user first. The solution is to fully
qualify the user in the connection string, for example name@DOMAIN.IBM.COM.

v Windows accounts cannot include the at sign (@) character in their names
because the DB2 Kerberos plug-in assumes that the character is the domain
name separator.

v If the client and server are both on the Windows operating system, you can
start the DB2 service using the LocalSystem account. However, if the client and
server are in different domains, the connection can fail with an invalid target
principal name error. To avoid this error, explicitly catalog the target principal on
the client with the CATALOG DATABASE command, using the fully qualified server
host name and the fully qualified domain name. Use the following format:
host/server hostname@server domain name. For example, host248/
server34.toronto.ibm.com@TORONTO.IBM.COM. An alternative to using the
LocalSystem account is to use a valid domain account.

Chapter 1. DB2 security model 19

Maintaining passwords on servers
You might be required to perform password maintenance tasks. Because such tasks
are typically required at the server, and many users are not able or comfortable
working with the server environment, performing these tasks can pose a significant
challenge. The DB2 database system provides a way to update and verify
passwords without having to be at the server.

You can assign new passwords when you connect to databases on the following
servers for the indicated (and later) releases: DB2 Universal Database™ Version 8
on AIX and Windows operating systems, DB2 Version 9.1 Fix Pack 3 or later on
Linux operating systems, DB2 for z/OS Version 7, DB2 for i V6R1.

For example, if an error message SQL1404N “Password expired” or SQL30082N
“Security processing failed with reason 1 (PASSWORD EXPIRED)” is received, use
the CONNECT statement to change the password as follows:
CONNECT TO database USER userid USING

password NEW new_password CONFIRM new_password

Authorization, privileges, and object ownership
Users (identified by an authorization ID) can successfully execute operations only
if they have the authority to perform the specified function. To create a table, a
user must be authorized to create tables; to alter a table, a user must be authorized
to alter the table; and so forth.

The database manager requires that each user be specifically authorized to use
each database function needed to perform a specific task. A user can acquire the
necessary authorization through a grant of that authorization to their user ID or
through membership in a role or a group that holds that authorization.

There are three forms of authorization, administrative authority, privileges, and LBAC
credentials. In addition, ownership of objects brings with it a degree of
authorization on the objects created. These forms of authorization are discussed in
the following section.

Administrative authority

The person or persons holding administrative authority are charged with the task
of controlling the database manager and are responsible for the safety and integrity
of the data.

System-level authorization

The system-level authorities provide varying degrees of control over
instance-level functions:
v SYSADM (system administrator) authority

The SYSADM (system administrator) authority provides control over all
the resources created and maintained by the database manager. The
system administrator possesses all the authorities of SYSCTRL,
SYSMAINT, and SYSMON authority. The user who has SYSADM
authority is responsible both for controlling the database manager, and
for ensuring the safety and integrity of the data.

v SYSCTRL authority
The SYSCTRL authority provides control over operations that affect
system resources. For example, a user with SYSCTRL authority can

20 Database Security Guide

create, update, start, stop, or drop a database. This user can also start or
stop an instance, but cannot access table data. Users with SYSCTRL
authority also have SYSMON authority.

v SYSMAINT authority
The SYSMAINT authority provides the authority required to perform
maintenance operations on all databases associated with an instance. A
user with SYSMAINT authority can update the database configuration,
backup a database or table space, restore an existing database, and
monitor a database. Like SYSCTRL, SYSMAINT does not provide access
to table data. Users with SYSMAINT authority also have SYSMON
authority.

v SYSMON (system monitor) authority
The SYSMON (system monitor) authority provides the authority
required to use the database system monitor.

Database-level authorization

The database level authorities provide control within the database:
v DBADM (database administrator)

The DBADM authority level provides administrative authority over a
single database. This database administrator possesses the privileges
required to create objects and issue database commands.
The DBADM authority can be granted only by a user with SECADM
authority. The DBADM authority cannot be granted to PUBLIC.

v SECADM (security administrator)
The SECADM authority level provides administrative authority for
security over a single database. The security administrator authority
possesses the ability to manage database security objects (database roles,
audit policies, trusted contexts, security label components, and security
labels) and grant and revoke all database privileges and authorities. A
user with SECADM authority can transfer the ownership of objects that
they do not own. They can also use the AUDIT statement to associate an
audit policy with a particular database or database object at the server.
The SECADM authority has no inherent privilege to access data stored
in tables. It can only be granted by a user with SECADM authority. The
SECADM authority cannot be granted to PUBLIC.

v SQLADM (SQL administrator)
The SQLADM authority level provides administrative authority to
monitor and tune SQL statements within a single database. It can be
granted by a user with ACCESSCTRL or SECADM authority.

v WLMADM (workload management administrator)
The WLMADM authority provides administrative authority to manage
workload management objects, such as service classes, work action sets,
work class sets, and workloads. It can be granted by a user with
ACCESSCTRL or SECADM authority.

v EXPLAIN (explain authority)
The EXPLAIN authority level provides administrative authority to
explain query plans without gaining access to data. It can only be
granted by a user with ACCESSCTRL or SECADM authority.

v ACCESSCTRL (access control authority)
The ACCESSCTRL authority level provides administrative authority to
issue the following GRANT (and REVOKE) statements.

Chapter 1. DB2 security model 21

– GRANT (Database Authorities)
ACCESSCTRL authority does not give the holder the ability to grant
ACCESSCTRL, DATAACCESS, DBADM, or SECADM authority. Only
a user who has SECADM authority can grant these authorities.

– GRANT (Global Variable Privileges)
– GRANT (Index Privileges)
– GRANT (Module Privileges)
– GRANT (Package Privileges)
– GRANT (Routine Privileges)
– GRANT (Schema Privileges)
– GRANT (Sequence Privileges)
– GRANT (Server Privileges)
– GRANT (Table, View, or Nickname Privileges)
– GRANT (Table Space Privileges)
– GRANT (Workload Privileges)
– GRANT (XSR Object Privileges)

ACCESSCTRL authority can only be granted by a user with SECADM
authority. The ACCESSCTRL authority cannot be granted to PUBLIC.

v DATAACCESS (data access authority)
The DATAACCESS authority level provides the following privileges and
authorities.
– LOAD authority
– SELECT, INSERT, UPDATE, DELETE privilege on tables, views,

nicknames, and materialized query tables
– EXECUTE privilege on packages
– EXECUTE privilege on modules
– EXECUTE privilege on routines

Except on the audit routines: AUDIT_ARCHIVE, AUDIT_LIST_LOGS,
AUDIT_DELIM_EXTRACT.

– READ privilege on all global variables and WRITE privilege on all
global variables except variables which are read-only

– USAGE privilege on all XSR objects
– USAGE privilege on all sequences

It can be granted only by a user who holds SECADM authority. The
DATAACCESS authority cannot be granted to PUBLIC.

v Database authorities (non-administrative)
To perform activities such as creating a table or a routine, or for loading
data into a table, specific database authorities are required. For example,
the LOAD database authority is required for use of the load utility to
load data into tables (a user must also have INSERT privilege on the
table).

Privileges

A privilege is a permission to perform an action or a task. Authorized users can
create objects, have access to objects they own, and can pass on privileges on their
own objects to other users by using the GRANT statement.

22 Database Security Guide

Privileges may be granted to individual users, to groups, or to PUBLIC. PUBLIC is
a special group that consists of all users, including future users. Users that are
members of a group will indirectly take advantage of the privileges granted to the
group, where groups are supported.

The CONTROL privilege: Possessing the CONTROL privilege on an object allows a
user to access that database object, and to grant and revoke privileges to or from
other users on that object.

Note: The CONTROL privilege only apples to tables, views, nicknames, indexes,
and packages.

If a different user requires the CONTROL privilege to that object, a user with
SECADM or ACCESSCTRL authority could grant the CONTROL privilege to that
object. The CONTROL privilege cannot be revoked from the object owner,
however, the object owner can be changed by using the TRANSFER OWNERSHIP
statement.

Individual privileges: Individual privileges can be granted to allow a user to carry
out specific tasks on specific objects. Users with the administrative authorities
ACCESSCTRL or SECADM, or with the CONTROL privilege, can grant and revoke
privileges to and from users.

Individual privileges and database authorities allow a specific function, but do not
include the right to grant the same privileges or authorities to other users. The
right to grant table, view, schema, package, routine, and sequence privileges to
others can be extended to other users through the WITH GRANT OPTION on the
GRANT statement. However, the WITH GRANT OPTION does not allow the
person granting the privilege to revoke the privilege once granted. You must have
SECADM authority, ACCESSCTRL authority, or the CONTROL privilege to revoke
the privilege.

Privileges on objects in a package or routine: When a user has the privilege to execute
a package or routine, they do not necessarily require specific privileges on the
objects used in the package or routine. If the package or routine contains static
SQL or XQuery statements, the privileges of the owner of the package are used for
those statements. If the package or routine contains dynamic SQL or XQuery
statements, the authorization ID used for privilege checking depends on the setting
of the DYNAMICRULES BIND option of the package issuing the dynamic query
statements, and whether those statements are issued when the package is being
used in the context of a routine (except on the audit routines: AUDIT_ARCHIVE,
AUDIT_LIST_LOGS, AUDIT_DELIM_EXTRACT).

A user or group can be authorized for any combination of individual privileges or
authorities. When a privilege is associated with an object, that object must exist.
For example, a user cannot be given the SELECT privilege on a table unless that
table has previously been created.

Note: Care must be taken when an authorization name representing a user or a
group is granted authorities and privileges and there is no user, or group created
with that name. At some later time, a user or a group can be created with that
name and automatically receive all of the authorities and privileges associated with
that authorization name.

Chapter 1. DB2 security model 23

The REVOKE statement is used to revoke previously granted privileges. The
revoking of a privilege from an authorization name revokes the privilege granted
by all authorization names.

Revoking a privilege from an authorization name does not revoke that same
privilege from any other authorization names that were granted the privilege by
that authorization name. For example, assume that CLAIRE grants SELECT WITH
GRANT OPTION to RICK, then RICK grants SELECT to BOBBY and CHRIS. If
CLAIRE revokes the SELECT privilege from RICK, BOBBY and CHRIS still retain
the SELECT privilege.

LBAC credentials

Label-based access control (LBAC) lets the security administrator decide exactly
who has write access and who has read access to individual rows and individual
columns. The security administrator configures the LBAC system by creating
security policies. A security policy describes the criteria used to decide who has
access to what data. Only one security policy can be used to protect any one table
but different tables can be protected by different security policies.

After creating a security policy, the security administrator creates database objects,
called security labels and exemptions that are part of that policy. A security label
describes a certain set of security criteria. An exemption allows a rule for
comparing security labels not to be enforced for the user who holds the exemption,
when they access data protected by that security policy.

Once created, a security label can be associated with individual columns and rows
in a table to protect the data held there. Data that is protected by a security label is
called protected data. A security administrator allows users access to protected
data by granting them security labels. When a user tries to access protected data,
that user's security label is compared to the security label protecting the data. The
protecting label blocks some security labels and does not block others.

Object ownership

When an object is created, one authorization ID is assigned ownership of the object.
Ownership means the user is authorized to reference the object in any applicable
SQL or XQuery statement.

When an object is created within a schema, the authorization ID of the statement
must have the required privilege to create objects in the implicitly or explicitly
specified schema. That is, the authorization name must either be the owner of the
schema, or possess the CREATEIN privilege on the schema.

Note: This requirement is not applicable when creating table spaces, buffer pools
or database partition groups. These objects are not created in schemas.

When an object is created, the authorization ID of the statement is the definer of
that object and by default becomes the owner of the object after it is created.

Note: One exception exists. If the AUTHORIZATION option is specified for the
CREATE SCHEMA statement, any other object that is created as part of the
CREATE SCHEMA operation is owned by the authorization ID specified by the
AUTHORIZATION option. Any objects that are created in the schema after the
initial CREATE SCHEMA operation, however, are owned by the authorization ID
associated with the specific CREATE statement.

24 Database Security Guide

For example, the statement CREATE SCHEMA SCOTTSTUFF AUTHORIZATION SCOTT
CREATE TABLE T1 (C1 INT) creates the schema SCOTTSTUFF and the table
SCOTTSTUFF.T1, which are both owned by SCOTT. Assume that the user BOBBY is
granted the CREATEIN privilege on the SCOTTSTUFF schema and creates an index
on the SCOTTSTUFF.T1 table. Because the index is created after the schema, BOBBY
owns the index on SCOTTSTUFF.T1.

Privileges are assigned to the object owner based on the type of object being
created:
v The CONTROL privilege is implicitly granted on newly created tables, indexes,

and packages. This privilege allows the object creator to access the database
object, and to grant and revoke privileges to or from other users on that object.
If a different user requires the CONTROL privilege to that object, a user with
ACCESSCTRL or SECADM authority must grant the CONTROL privilege to that
object. The CONTROL privilege cannot be revoked by the object owner.

v The CONTROL privilege is implicitly granted on newly created views if the
object owner has the CONTROL privilege on all the tables, views, and
nicknames referenced by the view definition.

v Other objects like triggers, routines, sequences, table spaces, and buffer pools do
not have a CONTROL privilege associated with them. The object owner does,
however, automatically receive each of the privileges associated with the object
and those privileges are with the WITH GRANT OPTION, where supported.
Therefore the object owner can provide these privileges to other users by using
the GRANT statement. For example, if USER1 creates a table space, USER1
automatically has the USEAUTH privilege with the WITH GRANT OPTION on
this table space and can grant the USEAUTH privilege to other users. In
addition, the object owner can alter, add a comment on, or drop the object.
These authorizations are implicit for the object owner and cannot be revoked.

Certain privileges on the object, such as altering a table, can be granted by the
owner, and can be revoked from the owner by a user who has ACCESSCTRL or
SECADM authority. Certain privileges on the object, such as commenting on a
table, cannot be granted by the owner and cannot be revoked from the owner. Use
the TRANSFER OWNERSHIP statement to move these privileges to another user.
When an object is created, the authorization ID of the statement is the definer of
that object and by default becomes the owner of the object after it is created.
However, when you use the BIND command to create a package and you specify
the OWNER authorization id option, the owner of objects created by the static SQL
statements in the package is the value of authorization id. In addition, if the
AUTHORIZATION clause is specified on a CREATE SCHEMA statement, the
authorization name specified after the AUTHORIZATION keyword is the owner of
the schema.

A security administrator or the object owner can use the TRANSFER OWNERSHIP
statement to change the ownership of a database object. An administrator can
therefore create an object on behalf of an authorization ID, by creating the object
using the authorization ID as the qualifier, and then using the TRANSFER
OWNERSHIP statement to transfer the ownership that the administrator has on the
object to the authorization ID.

Authorities overview
Various administrative authorities exist at the instance level and at the database
level. These administrative authorities group together certain privileges and
authorities so that you can grant them to the users who are responsible for these
tasks in your database installation.

Chapter 1. DB2 security model 25

Instance level authorities

Instance level authorities enable you to perform instance-wide functions, such as
creating and upgrading databases, managing table spaces, and monitoring activity
and performance on your instance. No instance-level authority provides access to
data in database tables. The following diagram summarizes the abilities given by
each of the instance level administrative authorities:
v SYSADM -for users managing the instance as a whole
v SYSCTRL -for users administering a database manager instance
v SYSMAINT -for users maintaining databases within an instance
v SYSMON -for users monitoring the instance and its databases

A user with a higher-level authority also has the abilities given by the lower level
authorities. For example, a user with SYSCTRL authority can perform the functions
of users with SYSMAINT and SYSMON authority as well.

26 Database Security Guide

Database level authorities

Database level authorities enable you to perform functions within a specific
database, such as granting and revoking privileges, inserting, selecting, deleting
and updating data, and managing workloads. The following diagram summarizes
the abilities given by each of the database level authorities. The administrative
database authorities are:
v SECADM - for users managing security within a database
v DBADM - for users administering a database
v ACCESSCTRL - for users who need to grant and revoke authorities and

privileges (except for SECADM, DBADM, ACCESSCTRL, and DATAACCESS
authority, SECADM authority is required to grant and revoke these authorities)

v DATAACCESS - for users who need to access data
v SQLADM - for users who monitor and tune SQL queries

SYSCTRL
- Update a database, node, or distributed connection services (DCS) directory
- Restore to a new or existing database
- Force users off the system
- Create or drop a database (NOTE: automatically gets DBADM authority)
- Create, drop, or alter a table space
- Restore to a new or existing database
- Use any table space

SYSADM
- Update and restore a database manager configuration parameters (DBM CFG) including specifying groups
that have SYSADM, SYSCTRL, SYSMAINT AND SYSMON
- Grant and revoke table space privileges
- Upgrade and restore a database

SYSMAINT
- Back up a database or table space
- Restore to an existing database
- Roll forward recovery
- Start or stop an instance
- Restore or quiesce a table space, and query it’s state
- Run tracing
- Database system monitor snapshots
- Reorganize tables
- Use RUNSTATS and update log history files

SYSMON
- GET DATABASE MANAGER MONITOR SWITCHES
- GET MONITOR SWITCHES
- GET SNAPSHOT
- LIST commands: ACTIVE DATABASES, APPLICATIONS,
DATABASE PARTITION GROUPS, DCS APPLICATIONS, PACKAGES,
TABLES, TABLESPACE CONTAINERS, TABLESPACES, UTILITIES−−
- RESET MONITOR
- UPDATE MONITOR SWITCHES
- APIs: db2GetSnapshot and db2GetSnapshotSize, db2MonitorSwitches,
db2mtrk, db2ResetMonitor
- All snapshot table functions, without running SNAP_WRITE_FILE
- Can connect to a database

Figure 1. Instance-level authorities

Chapter 1. DB2 security model 27

v WLMADM - for users who manage workloads
v EXPLAIN - for users who need to explain query plans (EXPLAIN authority does

not give access to the data itself)

The following diagram shows, where appropriate, which higher level authorities
include the abilities given by a lower level authority. For example, a user with
DBADM authority can perform the functions of users with SQLADM and
EXPLAIN authority, and all functions except granting USAGE privilege on
workloads, of users with WLMADM authority.

DATAACCESS

- Create, alter, drop and comment on security objects
- Grant and revoke all privileges and authorities
- TRANSFER OWNERSHIP statement
- EXECUTE privilege on audit system-defined routines
- Grant EXECUTE privilege on audit system-defined routines
- AUDIT statement
- SELECT privilege on system catalog tables and views
- CONNECT authority

SECADM

- SELECT privilege on system catalog tables and views
- Grant and revoke SQLADM, WLMADM, EXPLAIN, BINDADD,
CONNECT, CREATETAB, CREATE_EXTERNAL_ROUTINE,
CREATE_NOT_FENCED_ROUTINE, IMPLICIT_SCHEMA,
LOAD, QUIESCE_CONNECT
- Grant and revoke all privileges on global variables, indexes,
nicknames, packages, routines (except system-defined audit
routines), schemas, sequences, servers, tables, table spaces,
views, XSR objects

ACCESSCTRL
- LOAD authority
- SELECT, INSERT, UPDATE, AND DELETE
privileges on all tables, views, MQTs, and nicknames
- SELECT privilege on system catalog tables and views
- EXECUTE privilege on all routines
(except system-defined audit routines)
- EXECUTE privilege on all packages
- EXECUTE privilege on all modules
- READ privilege on all global variables and WRITE
privilege on all global variables which are not read-only
- USAGE privilege on all XSR objects
- USAGE privilege on all sequences

DBADM
- Create, alter, drop non-security-related objects
- Read log files
- Create, activate, drop event monitors
- Query the state of a table space
- Update log history files
- Quiesce a table space
- Reorganize indexes/tables
- Use RUNSTATS

- BINDADD authority
- CONNECT authority
- CREATETAB authority
- CREATE_EXTERNAL_ROUTINE authority
- CREATE_NOT_FENCED_ROUTINE authority
- IMPLICIT_SCHEMA authority
- LOAD authority
- QUIESCE_CONNECT authority

SQLADM
- CREATE EVENT MONITOR
- DROP EVENT MONITOR
- FLUSH EVENT MONITOR
- SET EVENT MONITOR STATE
- FLUSH OPT. PROFILE CACHE
- FLUSH PACKAGE CACHE
- PREPARE
- REORG INDEXES/TABLES
- RUNSTATS
- EXECUTE privilege on all system-defined routines
(except audit routines)
- SELECT priv on sys catalog tables and views
- EXPLAIN
- Certain clauses of ALTER SERVICE CLASS,
ALTER THRESHOLD, ALTER WORK ACTION
SET, ALTER WORKLOAD

WLMADM
- Create, alter, comment on
and drop workload manager
objects
- Grant and revoke workload
privileges
- EXECUTE privilege on the
system-defined workload
management routines

Grant USAGE privilege on
workloads

EXPLAIN
- EXPLAIN statement
- PREPARE statement
- EXECUTE privilege on the system-defined
explain routines

Figure 2. Database-level authorities

28 Database Security Guide

Instance level authorities

System administration authority (SYSADM)
The SYSADM authority level is the highest level of administrative authority at the
instance level. Users with SYSADM authority can run some utilities and issue
some database and database manager commands within the instance.

SYSADM authority is assigned to the group specified by the sysadm_group
configuration parameter. Membership in that group is controlled outside the
database manager through the security facility used on your platform.

Only a user with SYSADM authority can perform the following functions:
v Upgrade a database
v Restore a database
v Change the database manager configuration file (including specifying the groups

having SYSADM, SYSCTRL, SYSMAINT, or SYSMON authority)

A user with SYSADM authority can grant and revoke table space privileges and
can also use any table space.

Note: When a user with SYSADM authority creates a database, that user is
automatically granted ACCESSCTRL, DATAACCESS, DBADM and SECADM
authority on the database. If you want to prevent that user from accessing that
database as a database administrator or a security administrator, you must
explicitly revoke these database authorities from the user.

In releases before Version 9.7, SYSADM authority included implicit DBADM
authority and also provided the ability to grant and revoke all authorities and
privileges. In Version 9.7, the DB2 authorization model has been updated to clearly
separate the duties of the system administrator, the database administrator, and the
security administrator. As part of this enhancement, the abilities given by the
SYSADM authority have been reduced.

In Version 9.7, only SECADM authority provides the ability to grant and revoke all
authorities and privileges.

For a user holding SYSADM authority to obtain the same capabilities as in Version
9.5 (other than the ability to grant SECADM authority), the security administrator
must explicitly grant the user DBADM authority and grant the user the new
DATAACCESS and ACCESSCTRL authorities. These new authorities can be
granted by using the GRANT DBADM ON DATABASE statement with the WITH
DATAACCESS and WITH ACCESSCTRL options of that statement, which are
default options. The DATAACCESS authority is the authority that allows access to
data within a specific database, and the ACCESSCTRL authority is the authority
that allows a user to grant and revoke privileges and non-administrative
authorities within a specific database.

Considerations for the Windows LocalSystem account

On Windows systems, when the sysadm_group database manager configuration
parameter is not specified, the LocalSystem account is considered a system
administrator (holding SYSADM authority). Any DB2 application that is run by
LocalSystem is affected by the change in scope of SYSADM authority in Version
9.7. These applications are typically written in the form of Windows services and
run under the LocalSystem account as the service logon account. If there is a need

Chapter 1. DB2 security model 29

for these applications to perform database actions that are no longer within the
scope of SYSADM, you must grant the LocalSystem account the required database
privileges or authorities. For example, if an application requires database
administrator capabilities, grant the LocalSystem account DBADM authority using
the GRANT (Database Authorities) statement. Note that the authorization ID for
the LocalSystem account is SYSTEM.

System control authority (SYSCTRL)
SYSCTRL authority is the highest level of system control authority. This authority
provides the ability to perform maintenance and utility operations against the
database manager instance and its databases. These operations can affect system
resources, but they do not allow direct access to data in the databases.

System control authority is designed for users administering a database manager
instance containing sensitive data.

SYSCTRL authority is assigned to the group specified by the sysctrl_group
configuration parameter. If a group is specified, membership in that group is
controlled outside the database manager through the security facility used on your
platform.

Only a user with SYSCTRL authority or higher can perform the following actions:
v Update a database, node, or distributed connection services (DCS) directory
v Force users off the system
v Create or drop a database
v Drop, create, or alter a table space
v Use any table space
v Restore to a new or an existing database.

In addition, a user with SYSCTRL authority can perform the functions of users
with system maintenance authority (SYSMAINT) and system monitor authority
(SYSMON).

Users with SYSCTRL authority also have the implicit privilege to connect to a
database.

Note: When users with SYSCTRL authority create databases, they are
automatically granted explicit ACCESSCTRL, DATAACCESS, DBADM, and
SECADM authorities on the database. If the database creator is removed from the
SYSCTRL group, and if you want to also prevent them from accessing that
database as an administrator, you must explicitly revoke the four administrative
authorities mentioned previously.

System maintenance authority (SYSMAINT)
SYSMAINT authority is the second level of system control authority. This authority
provides the ability to perform maintenance and utility operations against the
database manager instance and its databases. These operations can affect system
resources, but they do not allow direct access to data in the databases.

System maintenance authority is designed for users maintaining databases within a
database manager instance that contains sensitive data.

30 Database Security Guide

SYSMAINT authority is assigned to the group specified by the sysmaint_group
configuration parameter. If a group is specified, membership in that group is
controlled outside the database manager through the security facility used on your
platform.

Only a user with SYSMAINT or higher system authority can perform the following
actions:
v Back up a database or table space
v Restore to an existing database
v Perform roll forward recovery
v Start or stop an instance
v Restore a table space
v Run a trace, using the db2trc command
v Take database system monitor snapshots of a database manager instance or its

databases.

A user with SYSMAINT authority can perform the following actions:
v Query the state of a table space
v Update log history files
v Quiesce a table space
v Reorganize a table
v Collect catalog statistics using the RUNSTATS utility.

Users with SYSMAINT authority also have the implicit privilege to connect to a
database, and can perform the functions of users with system monitor authority
(SYSMON).

System monitor authority (SYSMON)
SYSMON authority provides the ability to take database system monitor snapshots
of a database manager instance or its databases.

SYSMON authority is assigned to the group specified by the sysmon_group
configuration parameter. If a group is specified, membership in that group is
controlled outside the database manager through the security facility used on your
platform.

SYSMON authority enables the user to run the following commands:
v GET DATABASE MANAGER MONITOR SWITCHES
v GET MONITOR SWITCHES
v GET SNAPSHOT
v LIST (some commands):

– LIST ACTIVE DATABASES
– LIST APPLICATIONS
– LIST DATABASE PARTITION GROUPS
– LIST DCS APPLICATIONS
– LIST PACKAGES
– LIST TABLES
– LIST TABLESPACE CONTAINERS
– LIST TABLESPACES
– LIST UTILITIES

v RESET MONITOR
v UPDATE MONITOR SWITCHES

Chapter 1. DB2 security model 31

SYSMON authority enables the user to use the following APIs:
v db2GetSnapshot - Get Snapshot
v db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output

Buffer
v db2MonitorSwitches - Get/Update Monitor Switches
v db2mtrk - Memory tracker
v db2ResetMonitor - Reset Monitor

SYSMON authority enables the user use the following SQL table functions:
v All snapshot table functions without previously running

SYSPROC.SNAP_WRITE_FILE
SYSPROC.SNAP_WRITE_FILE takes a snapshot and saves its content into a file.
If any snapshot table functions are called with null input parameters, the file
content is returned instead of a real-time system snapshot.

Database authorities
Each database authority allows the authorization ID holding it to perform some
particular type of action on the database as a whole. Database authorities are
different from privileges, which allow a certain action to be taken on a particular
database object, such as a table or an index.

These are the database authorities.

ACCESSCTRL
Allows the holder to grant and revoke all object privileges and database
authorities except for privileges on the audit routines, and ACCESSCTRL,
DATAACCESS, DBADM, and SECADM authority.

BINDADD
Allows the holder to create new packages in the database.

CONNECT
Allows the holder to connect to the database.

CREATETAB
Allows the holder to create new tables in the database.

CREATE_EXTERNAL_ROUTINE
Allows the holder to create a procedure for use by applications and other
users of the database.

CREATE_NOT_FENCED_ROUTINE
Allows the holder to create a user-defined function (UDF) or procedure
that is not fenced. CREATE_EXTERNAL_ROUTINE is automatically granted
to any user who is granted CREATE_NOT_FENCED_ROUTINE.

Attention: The database manager does not protect its storage or control
blocks from UDFs or procedures that are not fenced. A user with this
authority must, therefore, be very careful to test their UDF extremely well
before registering it as not fenced.

DATAACCESS
Allows the holder to access data stored in database tables.

DBADM
Allows the holder to act as the database administrator. In particular it
gives the holder all of the other database authorities except for
ACCESSCTRL, DATAACCESS, and SECADM.

32 Database Security Guide

EXPLAIN
Allows the holder to explain query plans without requiring them to hold
the privileges to access data in the tables referenced by those query plans.

IMPLICIT_SCHEMA
Allows any user to create a schema implicitly by creating an object using a
CREATE statement with a schema name that does not already exist.
SYSIBM becomes the owner of the implicitly created schema and PUBLIC
is given the privilege to create objects in this schema.

LOAD
Allows the holder to load data into a table

QUIESCE_CONNECT
Allows the holder to access the database while it is quiesced.

SECADM
Allows the holder to act as a security administrator for the database.

SQLADM
Allows the holder to monitor and tune SQL statements.

WLMADM
Allows the holder to act as a workload administrator. In particular, the
holder of WLMADM authority can create and drop workload manager
objects, grant and revoke workload manager privileges, and execute
workload manager routines.

Only authorization IDs with the SECADM authority can grant the ACCESSCTRL,
DATAACCESS, DBADM, and SECADM authorities. All other authorities can be
granted by authorization IDs that hold ACCESSCTRL or SECADM authorities.

To remove any database authority from PUBLIC, an authorization ID with
ACCESSCTRL or SECADM authority must explicitly revoke it.

Security administration authority (SECADM)
SECADM authority is the security administration authority for a specific database.
This authority allows you to create and manage security-related database objects
and to grant and revoke all database authorities and privileges. Additionally, the
security administrator can execute, and manage who else can execute, the audit
system routines.

SECADM authority has the ability to SELECT from the catalog tables and catalog
views, but cannot access data stored in user tables.

SECADM authority can be granted only by the security administrator (who holds
SECADM authority) and can be granted to a user, a group, or a role. PUBLIC
cannot obtain the SECADM authority directly or indirectly.

The database must have at least one authorization ID of type USER with the
SECADM authority. The SECADM authority cannot be revoked from every
authorization ID of type USER

SECADM authority gives a user the ability to perform the following operations:
v Create, alter, comment on, and drop:

– Audit policies
– Security label components
– Security policies

Chapter 1. DB2 security model 33

– Trusted contexts
v Create, comment on, and drop:

– Roles
– Security labels

v Grant and revoke database privileges and authorities
v Execute the following audit routines to perform the specified tasks:

– The SYSPROC.AUDIT_ARCHIVE stored procedure and table function archive
audit logs.

– The SYSPROC.AUDIT_LIST_LOGS table function allows you to locate logs of
interest.

– The SYSPROC.AUDIT_DELIM_EXTRACT stored procedure extracts data into
delimited files for analysis.

Also, the security administrator can grant and revoke EXECUTE privilege on
these routines, therefore enabling the security administrator to delegate these
tasks, if required. Only the security administrator can grant EXECUTE privilege
on these routines. EXECUTE privilege WITH GRANT OPTION cannot be
granted for these routines (SQLSTATE 42501).

v Use of the AUDIT statement to associate an audit policy with a particular
database or database object at the server

v Use of the TRANSFER OWNERSHIP statement to transfer objects not owned by
the authorization ID of the statement

No other authority gives these abilities.

Only the security administrator has the ability to grant other users, groups, or roles
the ACCESSCTRL, DATAACCESS, DBADM, and SECADM authorities.

In Version 9.7, the DB2 authorization model has been updated to clearly separate
the duties of the system administrator, the database administrator, and the security
administrator. As part of this enhancement, the abilities given by the SECADM
authority have been extended. In releases before Version 9.7, SECADM authority
did not provide the ability to grant and revoke all privileges and authorities. Also,
SECADM authority could be granted only to a user, not to a role or a group.
Additionally, SECADM authority did not provide the ability to grant EXECUTE
privilege to other users on the audit built-in procedures and table function.

Database administration authority (DBADM)
DBADM authority is an administrative authority for a specific database. The
database administrator possesses the privileges required to create objects and issue
database commands. In addition, users with DBADM authority have SELECT
privilege on the system catalog tables and views, and can execute all built-in DB2
routines, except audit routines.

DBADM authority can only be granted or revoked by the security administrator
(who holds SECADM authority) and can be granted to a user, a group, or a role.
PUBLIC cannot obtain the DBADM authority either directly or indirectly.

Holding the DBADM authority for a database allows a user to perform these
actions on that database:
v Create, alter, and drop non-security related database objects
v Read log files
v Create, activate, and drop event monitors
v Query the state of a table space

34 Database Security Guide

v Update log history files
v Quiesce a table space
v Reorganize a table
v Collect catalog statistics using the RUNSTATS utility

SQLADM authority and WLMADM authority are subsets of the DBADM authority.
WLMADM authority has the additional ability to grant the USAGE privilege on
workloads.

Granting DATAACCESS authority with DBADM authority

The security administrator can specify whether a database administrator can access
data within the database. DATAACCESS authority is the authority that allows
access to data within a specific database. The security administrator can use the
WITH DATAACCESS option of the GRANT DBADM ON DATABASE statement to
provide a database administrator with this ability. If neither the WITH
DATAACCCESS or WITHOUT DATAACCCESS options are specified, by default
DATAACCESS authority is granted.

To grant database administrator authority without DATAACCESS authority, use
GRANT DBADM WITHOUT DATAACCESS in your SQL statement.

Granting ACCESSCTRL authority with DBADM authority

The security administrator can specify whether a database administrator can grant
and revoke privileges within the database. ACCESSCTRL authority is the authority
that allows a user to grant and revoke privileges and non-administrative
authorities within a specific database. The security administrator can use the WITH
ACCESSCTRL option of the GRANT DBADM ON DATABASE statement to
provide a database administrator with this ability. If neither the WITH
ACCCESSCTRL or WITHOUT ACCCESSCTRL options are specified, by default
ACCESSCTRL authority is granted.

To grant database administrator authority without ACCESSCTRL authority, use
GRANT DBADM WITHOUT ACCESSCTRL in your SQL statement.

Revoking DBADM authority

If a security administrator has granted DBADM authority that includes
DATAACCESS or ACCESSCTRL authority, to revoke these authorities, the security
administrator must explicitly revoke DATAACCESS or ACCESSCTRL authority. For
example, if the security administrator grants DBADM authority to a user:
GRANT DBADM ON DATABASE TO user1

By default, DATAACCESS and ACCESSCTRL authority are also granted to user1.

Later, the security administrator revokes DBADM authority from user1:
REVOKE DBADM ON DATABASE FROM user1

Now user1 no longer holds DBADM authority, but still has both DATAACCESS
and ACCESSCTRL authority.

To revoke these remaining authorities, the security administrator needs to revoke
them explicitly:
REVOKE ACCESSCTRL, DATAACCESS ON DATABASE FROM user1

Chapter 1. DB2 security model 35

Differences for DBADM authority in prior releases

In Version 9.7, the DB2 authorization model has been updated to clearly separate
the duties of the system administrator, the database administrator, and the security
administrator. As part of this enhancement, the abilities given by the DBADM
authority have changed. In releases before Version 9.7, DBADM authority
automatically included the ability to access data and to grant and revoke privileges
for a database. In Version 9.7, these abilities are given by the new authorities,
DATAACCESS and ACCESSCTRL as explained earlier.

Also, in releases before Version 9.7, granting DBADM authority automatically
granted the following authorities too:
v BINDADD
v CONNECT
v CREATETAB
v CREATE_EXTERNAL_ROUTINE
v CREATE_NOT_FENCED_ROUTINE
v IMPLICIT_SCHEMA
v QUIESCE_CONNECT
v LOAD

Before Version 9.7, when DBADM authority was revoked these authorities were
not revoked.

In Version 9.7, these authorities are now part of DBADM authority. When DBADM
authority is revoked in Version 9.7, these authorities are lost.

However, if a user held DBADM authority when you upgraded to Version 9.7,
these authorities are not lost if DBADM authority is revoked. Revoking DBADM
authority in Version 9.7 causes a user to lose these authorities only if they acquired
them through holding DBADM authority that was granted in Version 9.7.

Access control administration authority (ACCESSCTRL)
ACCESSCTRL authority is the authority required to grant and revoke privileges on
objects within a specific database. ACCESSCTRL authority has no inherent
privilege to access data stored in tables, except the catalog tables and views.

ACCESSCTRL authority can only be granted by the security administrator (who
holds SECADM authority). It can be granted to a user, a group, or a role. PUBLIC
cannot obtain the ACCESSCTRL authority either directly or indirectly.
ACCESSCTRL authority gives a user the ability to perform the following
operations:
v Grant and revoke the following administrative authorities:

– EXPLAIN
– SQLADM
– WLMADM

v Grant and revoke the following database authorities:
– BINDADD
– CONNECT
– CREATETAB
– CREATE_EXTERNAL_ROUTINE
– CREATE_NOT_FENCED_ROUTINE

36 Database Security Guide

– IMPLICIT_SCHEMA
– LOAD
– QUIESCE_CONNECT

v Grant and revoke all privileges on the following objects, regardless who granted
the privilege:
– Global Variable
– Index
– Nickname
– Package
– Routine (except audit routines)
– Schema
– Sequence
– Server
– Table
– Table Space
– View
– XSR Objects

v SELECT privilege on the system catalog tables and views

This authority is a subset of security administrator (SECADM) authority.

Data access administration authority (DATAACCESS)
DATAACCESS is the authority that allows access to data within a specific
database.

DATAACCESS authority can be granted only by the security administrator (who
holds SECADM authority). It can be granted to a user, a group, or a role. PUBLIC
cannot obtain the DATAACCESS authority either directly or indirectly.

For all tables, views, materialized query tables, and nicknames it gives these
authorities and privileges:
v LOAD authority on the database
v SELECT privilege (including system catalog tables and views)
v INSERT privilege
v UPDATE privilege
v DELETE privilege

In addition, DATAACCESS authority provides the following privileges:
v EXECUTE on all packages
v EXECUTE on all routines (except audit routines)
v EXECUTE on all modules
v READ on all global variables and WRITE on all global variables except variables

which are read-only
v USAGE on all XSR objects
v USAGE on all sequences

SQL administration authority (SQLADM)
SQLADM authority is the authority required to monitor and tune SQL statements.

Chapter 1. DB2 security model 37

SQLADM authority can be granted by the security administrator (who holds
SECADM authority) or a user who possesses ACCESSCTRL authority. SQLADM
authority can be granted to a user, a group, a role, or to PUBLIC. SQLADM
authority gives a user the ability to perform the following functions:
v Execution of the following SQL statements:

– CREATE EVENT MONITOR
– DROP EVENT MONITOR
– EXPLAIN
– FLUSH EVENT MONITOR
– FLUSH OPTIMIZATION PROFILE CACHE
– FLUSH PACKAGE CACHE
– PREPARE
– REORG INDEXES/TABLE
– RUNSTATS
– SET EVENT MONITOR STATE

Note: If the DB2AUTH registry variable is set to SQLADM_NO_RUNSTATS_REORG, users
with SQLADM authority will not be able to perform reorg or runstats
operations.

v Execution of certain clauses of the following workload manager SQL statements:
– The following clauses of the ALTER SERVICE CLASS statement:

- COLLECT AGGREGATE ACTIVITY DATA
- COLLECT AGGREGATE REQUEST DATA
- COLLECT REQUEST METRICS

– The following clause of the ALTER THRESHOLD statement
- WHEN EXCEEDED COLLECT ACTIVITY DATA

.
– The following clauses of the ALTER WORK ACTION SET statement that

allow you to alter a work action:
- ALTER WORK ACTION ... COLLECT ACTIVITY DATA
- ALTER WORK ACTION ... COLLECT AGGREGATE ACTIVITY DATA
- ALTER WORK ACTION ... WHEN EXCEEDED COLLECT ACTIVITY

DATA
– The following clauses of the ALTER WORKLOAD statement:

- COLLECT ACTIVITY METRICS
- COLLECT AGGREGATE ACTIVITY DATA
- COLLECT LOCK TIMEOUT DATA
- COLLECT LOCK WAIT DATA
- COLLECT UNIT OF WORK DATA

v SELECT privilege on the system catalog tables and views
v EXECUTE privilege on all built-in DB2 routines (except audit routines)

SQLADM authority is a subset of the database administrator (DBADM) authority.

EXPLAIN authority is a subset of the SQLADM authority.

38 Database Security Guide

Workload administration authority (WLMADM)
WLMADM authority is the authority required to manage workload objects for a
specific database. This authority allows you to create, alter, drop, comment on, and
grant and revoke access to workload manager objects.

WLMADM authority can be granted by the security administrator (who holds
SECADM authority) or a user who possesses ACCESSCTRL authority. WLMADM
authority can be granted to a user, a group, a role, or to PUBLIC. WLMADM
authority gives a user the ability to perform the following operations:
v Create, alter, comment on, and drop the following workload manager objects:

– Histogram templates
– Service classes
– Thresholds
– Work action sets
– Work class sets
– Workloads

v Grant and revoke workload privileges
v Execute the built-in workload management routines.

WLMADM authority is a subset of the database administrator authority, DBADM.

Explain administration authority (EXPLAIN)
EXPLAIN authority is the authority required to explain query plans without
gaining access to data for a specific database. This authority is a subset of the
database administrator authority and has no inherent privilege to access data
stored in tables.

EXPLAIN authority can be granted by the security administrator (who holds
SECADM authority) or by a user who possesses ACCESSCTRL authority. The
EXPLAIN authority can be granted to a user, a group, a role, or to PUBLIC. It
gives the ability to execute the following SQL statements:
v EXPLAIN
v PREPARE
v DESCRIBE on output of a SELECT statement or of an XQuery statement

EXPLAIN authority also provides EXECUTE privilege on the built-in explain
routines.

EXPLAIN authority is a subset of the SQLADM authority.

LOAD authority
Users having LOAD authority at the database level, as well as INSERT privilege on
a table, can use the LOAD command to load data into a table.

Note: Having DATAACCESS authority gives a user full access to the LOAD
command.

Users having LOAD authority at the database level, as well as INSERT privilege on
a table, can LOAD RESTART or LOAD TERMINATE if the previous load operation is a
load to insert data.

Users having LOAD authority at the database level, as well as the INSERT and
DELETE privileges on a table, can use the LOAD REPLACE command.

Chapter 1. DB2 security model 39

If the previous load operation was a load replace, the DELETE privilege must also
have been granted to that user before the user can LOAD RESTART or LOAD
TERMINATE.

If the exception tables are used as part of a load operation, the user must have
INSERT privilege on the exception tables.

The user with this authority can perform QUIESCE TABLESPACES FOR TABLE,
RUNSTATS, and LIST TABLESPACES commands.

Implicit schema authority (IMPLICIT_SCHEMA) considerations
When a new database is created, PUBLIC is given IMPLICIT_SCHEMA database
authority, unless the RESTRICTIVE option is specified on the CREATE DATABASE
command.

With the IMPLICIT_SCHEMA authority, a user can create a schema by creating an
object and specifying a schema name that does not exist. SYSIBM becomes the
owner of the implicitly created schema and PUBLIC is given the privilege to create
objects in this schema. When the database is restrictive, PUBLIC does not have the
CREATEIN privilege on the schema. The user who implicitly creates the schema
has CREATEIN privilege on the schema.

If control of who can implicitly create schema objects is required for the database,
the database must be created with the RESTRICTIVE option specified. If the
database is not restrictive, IMPLICIT_SCHEMA database authority must be
revoked from PUBLIC. In this scenario, there are only three ways that a schema
object is created:
v Any user can create a schema with their own authorization name on a CREATE

SCHEMA statement.
v Any user with DBADM authority can explicitly create any schema which does

not exist, and can optionally specify another user as the owner of the schema.
v Any user with DBADM authority has IMPLICIT_SCHEMA database authority,

so that they can implicitly create a schema with any name at the time they are
creating other database objects.

Privileges

Authorization ID privileges: SETSESSIONUSER
Authorization ID privileges involve actions on authorization IDs. There is currently
only one such privilege: the SETSESSIONUSER privilege.

The SETSESSIONUSER privilege can be granted to a user or to a group and allows
the holder to switch identities to any of the authorization IDs on which the
privilege was granted. The identity switch is made by using the SQL statement
SET SESSION AUTHORIZATION. The SETSESSIONUSER privilege can only be
granted by a user holding SECADM authority.

Note: When you upgrade a Version 8 database to Version 9.1, or later,
authorization IDs with explicit DBADM authority on that database are
automatically granted SETSESSIONUSER privilege on PUBLIC. This prevents
breaking applications that rely on authorization IDs with DBADM authority being
able to set the session authorization ID to any authorization ID. This does not
happen when the authorization ID has SYSADM authority but has not been
explicitly granted DBADM.

40 Database Security Guide

Schema privileges
Schema privileges are in the object privilege category.

Object privileges are shown in Figure 3.

Schema privileges involve actions on schemas in a database. A user, group, role, or
PUBLIC can be granted any of the following privileges:
v CREATEIN allows the user to create objects within the schema.
v ALTERIN allows the user to alter objects within the schema.
v DROPIN allows the user to drop objects from within the schema.

The owner of the schema has all of these privileges and the ability to grant them to
others. The objects that are manipulated within the schema object include: tables,
views, indexes, packages, data types, functions, triggers, procedures, and aliases.

Database
objects

CONTROL
(Tables)

CONTROL
(Indexes)

DELETE
INSERT
SELECT
UPDATE

CONTROL
(Views)

(Table spaces)

USE

(Schema
Owners)

ALTERIN
CREATEIN
DROPIN

(Server)

PASSTHRU

(Sequences)

USAGE

ALTER

CONTROL
(Nicknames)

BIND
EXECUTE

EXECUTE

CONTROL
(Packages)

(Procedures,
functions, methods)

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

Figure 3. Object Privileges

Chapter 1. DB2 security model 41

Table space privileges
The table space privileges involve actions on the table spaces in a database. A user
can be granted the USE privilege for a table space, which then allows them to
create tables within the table space.

The owner of the table space is granted USE privilege with the WITH GRANT
OPTION on the table space when it is created. Also, users who hold SECADM or
ACCESSCTRL authority have the ability to grant USE privilege on the table space.

Users who hold SYSADM or SYSCTRL authority are able to use any table space.

By default, at database creation time the USE privilege for table space
USERSPACE1 is granted to PUBLIC, although this privilege can be revoked.

The USE privilege cannot be used with SYSCATSPACE or any system temporary
table spaces.

Table and view privileges
Table and view privileges involve actions on tables or views in a database.

A user must have CONNECT authority on the database to use any of the
following privileges:
v CONTROL provides the user with all privileges for a table or view including the

ability to drop it, and to grant and revoke individual table privileges. You must
have ACCESSCTRL or SECADM authority to grant CONTROL. The creator of a
table automatically receives CONTROL privilege on the table. The creator of a
view automatically receives CONTROL privilege only if they have CONTROL
privilege on all tables, views, and nicknames referenced in the view definition.

v ALTER allows the user to modify on a table, for example, to add columns or a
unique constraint to the table. A user with ALTER privilege can also COMMENT
ON a table, or on columns of the table. For information about the possible
modifications that can be performed on a table, see the ALTER TABLE and
COMMENT statements.

v DELETE allows the user to delete rows from a table or view.
v INDEX allows the user to create an index on a table. Creators of indexes

automatically have CONTROL privilege on the index.
v INSERT allows the user to insert a row into a table or view, and to run the

IMPORT utility.
v REFERENCES allows the user to create and drop a foreign key, specifying the

table as the parent in a relationship. The user might have this privilege only on
specific columns.

v SELECT allows the user to retrieve rows from a table or view, to create a view
on a table, and to run the EXPORT utility.

v UPDATE allows the user to change an entry in a table, a view, or for one or
more specific columns in a table or view. The user may have this privilege only
on specific columns.

The privilege to grant these privileges to others may also be granted using the
WITH GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a table, all other
privileges on that table are automatically granted WITH GRANT OPTION. If you
subsequently revoke the CONTROL privilege on the table from a user, that user
will still retain the other privileges that were automatically granted. To revoke all

42 Database Security Guide

the privileges that are granted with the CONTROL privilege, you must either
explicitly revoke each individual privilege or specify the ALL keyword on the
REVOKE statement, for example:

REVOKE ALL
ON EMPLOYEE FROM USER HERON

When working with typed tables, there are implications regarding table and view
privileges.

Note: Privileges may be granted independently at every level of a table hierarchy.
As a result, a user granted a privilege on a supertable within a hierarchy of typed
tables may also indirectly affect any subtables. However, a user can only operate
directly on a subtable if the necessary privilege is held on that subtable.

The supertable/subtable relationships among the tables in a table hierarchy mean
that operations such as SELECT, UPDATE, and DELETE will affect the rows of the
operation's target table and all its subtables (if any). This behavior can be called
substitutability. For example, suppose that you have created an Employee table of
type Employee_t with a subtable Manager of type Manager_t. A manager is a
(specialized) kind of employee, as indicated by the type/subtype relationship
between the structured types Employee_t and Manager_t and the corresponding
table/subtable relationship between the tables Employee and Manager. As a result
of this relationship, the SQL query:

SELECT * FROM Employee

will return the object identifier and Employee_t attributes for both employees and
managers. Similarly, the update operation:

UPDATE Employee SET Salary = Salary + 1000

will give a thousand dollar raise to managers as well as regular employees.

A user with SELECT privilege on Employee will be able to perform this SELECT
operation even if they do not have an explicit SELECT privilege on Manager.
However, such a user will not be permitted to perform a SELECT operation
directly on the Manager subtable, and will therefore not be able to access any of
the non-inherited columns of the Manager table.

Similarly, a user with UPDATE privilege on Employee will be able to perform an
UPDATE operation on Manager, thereby affecting both regular employees and
managers, even without having the explicit UPDATE privilege on the Manager
table. However, such a user will not be permitted to perform UPDATE operations
directly on the Manager subtable, and will therefore not be able to update
non-inherited columns of the Manager table.

Package privileges
A package is a database object that contains the information needed by the
database manager to access data in the most efficient way for a particular
application program. Package privileges enable a user to create and manipulate
packages.

The user must have CONNECT authority on the database to use any of the
following privileges:
v CONTROL provides the user with the ability to rebind, drop, or execute a

package as well as the ability to extend those privileges to others. The creator of
a package automatically receives this privilege. A user with CONTROL privilege

Chapter 1. DB2 security model 43

is granted the BIND and EXECUTE privileges, and can also grant these
privileges to other users by using the GRANT statement. (If a privilege is
granted using WITH GRANT OPTION, a user who receives the BIND or
EXECUTE privilege can, in turn, grant this privilege to other users.) To grant
CONTROL privilege, the user must have ACCESSCTRL or SECADM authority.

v BIND privilege on a package allows the user to rebind or bind that package and
to add new package versions of the same package name and creator.

v EXECUTE allows the user to execute or run a package.

Note: All package privileges apply to all VERSIONs that share the same package
name and creator.

In addition to these package privileges, the BINDADD database authority allows
users to create new packages or rebind an existing package in the database.

Objects referenced by nicknames need to pass authentication checks at the data
sources containing the objects. In addition, package users must have the
appropriate privileges or authority levels for data source objects at the data source.

It is possible that packages containing nicknames might require additional
authorization steps because DB2 database uses dynamic queries when
communicating with DB2 Family data sources. The authorization ID running the
package at the data source must have the appropriate authority to execute the
package dynamically at that data source.

Index privileges
The creator of an index or an index specification automatically receives CONTROL
privilege on the index. CONTROL privilege on an index is really the ability to
drop the index. To grant CONTROL privilege on an index, a user must have
ACCESSCTRL or SECADM authority.

The table-level INDEX privilege allows a user to create an index on that table.

The nickname-level INDEX privilege allows a user to create an index specification
on that nickname.

Sequence privileges
The creator of a sequence automatically receives the USAGE and ALTER privileges
on the sequence. The USAGE privilege is needed to use NEXT VALUE and
PREVIOUS VALUE expressions for the sequence.

To allow other users to use the NEXT VALUE and PREVIOUS VALUE expressions,
sequence privileges must be granted to PUBLIC. This allows all users to use the
expressions with the specified sequence.

ALTER privilege on the sequence allows the user to perform tasks such as
restarting the sequence or changing the increment for future sequence values. The
creator of the sequence can grant the ALTER privilege to other users, and if WITH
GRANT OPTION is used, these users can, in turn, grant these privileges to other
users.

Routine privileges
Execute privileges involve actions on all types of routines such as functions,
procedures, and methods within a database. Once having EXECUTE privilege, a
user can then invoke that routine, create a function that is sourced from that

44 Database Security Guide

routine (applies to functions only), and reference the routine in any DDL statement
such as CREATE VIEW or CREATE TRIGGER.

The user who defines the externally stored procedure, function, or method receives
EXECUTE WITH GRANT privilege. If the EXECUTE privilege is granted to
another user via WITH GRANT OPTION, that user can, in turn, grant the
EXECUTE privilege to another user.

Usage privilege on workloads
To enable use of a workload, a user who holds ACCESSCTRL, SECADM, or
WLMADM authority can grant USAGE privilege on that workload to a user, a
group, or a role using the GRANT USAGE ON WORKLOAD statement.

When the DB2 database system finds a matching workload, it checks whether the
session user has USAGE privilege on that workload. If the session user does not
have USAGE privilege on that workload, then the DB2 database system searches
for the next matching workload in the ordered list. In other words, the workloads
that the session user does not have USAGE privilege on are treated as if they do
not exist.

The USAGE privilege information is stored in the catalogs and can be viewed
through the SYSCAT.WORKLOADAUTH view.

The USAGE privilege can be revoked using the REVOKE USAGE ON
WORKLOAD statement.

Users with the ACCESSCTRL, DATAACCESS, DBADM, SECADM, or WLMADM
authority implicitly have the USAGE privilege on all workloads.

The SYSDEFAULTUSERWORKLOAD workload and the USAGE
privilege

USAGE privilege on SYSDEFAULTUSERWORKLOAD is granted to PUBLIC at
database creation time, if the database is created without the RESTRICT option.
Otherwise, the USAGE privilege must be explicitly granted by a user with
ACCESSCTRL, WLMADM, or SECADM authority.

If the session user does not have USAGE privilege on any of the workloads,
including SYSDEFAULTUSERWORKLOAD, an SQL error is returned.

The SYSDEFAULTADMWORKLOAD workload and the USAGE privilege

USAGE privilege on SYSDEFAULTADMWORKLOAD cannot be explicitly granted
to any user. Only users who issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD
command and whose session authorization ID has ACCESSCTRL, DATAACCESS,
DBADM, WLMADM or SECADM authority are allowed to use this workload.

The GRANT USAGE ON WORKLOAD and REVOKE USAGE ON WORKLOAD
statements do not have any effect on SYSDEFAULTADMWORKLOAD.

Authorization IDs in different contexts
An authorization ID is used for two purposes: identification and authorization
checking. For example, the session authorization ID is used for initial authorization
checking.

Chapter 1. DB2 security model 45

When referring to the use of an authorization ID in a specific context, the reference
to the authorization is qualified to identify the context, as shown in the following
section.

Contextual reference to authorization ID
Definition

System authorization ID
The authorization ID used to do any initial authorization checking, such as
checking for CONNECT privilege during CONNECT processing. As part
of the authentication process during CONNECT processing, an
authorization ID compatible with DB2 naming requirements is produced
that represents the external user ID within the DB2 database system. The
system authorization ID represents the user that created the connection.
Use the SYSTEM_USER special register to see the current value of the
system authorization ID. The system authorization ID cannot be changed
for a connection.

Session authorization ID
The authorization ID used for any session authorization checking
subsequent to the initial checks performed during CONNECT processing.
The default value of the session authorization ID is the value of the system
authorization ID. Use the SESSION_USER special register to see the current
value of the session authorization ID. The USER special register is a
synonym for the SESSION_USER special register. The session authorization
ID can be changed by using the SET SESSION AUTHORIZATION
statement.

Package authorization ID
The authorization ID used to bind a package to the database. This
authorization ID is obtained from the value of the OWNER authorization id
option of the BIND command. The package authorization ID is sometimes
referred to as the package binder or package owner.

Routine owner authorization ID
The authorization ID listed in the system catalogs as the owner of the SQL
routine that has been invoked.

Routine invoker authorization ID
The authorization ID that is the statement authorization ID for the
statement that invoked an SQL routine.

Statement authorization ID
The authorization ID associated with a specific SQL statement that is to be
used for any authorization requirements as well as for determining object
ownership (where appropriate). It takes its value from the appropriate
source authorization ID, depending on the type of SQL statement:
v Static SQL

The package authorization ID is used.
v Dynamic SQL (from non-routine context)

The table shows which authorization ID is used in each case:

Value of DYNAMICRULES option for issuing
the package Authorization ID used

RUN Session authorization ID

BIND Package authorization ID

DEFINERUN, INVOKERUN Session authorization ID

46 Database Security Guide

Value of DYNAMICRULES option for issuing
the package Authorization ID used

DEFINEBIND, INVOKEBIND Package authorization ID

v Dynamic SQL (from routine context)
The table shows which authorization ID is used in each case:

Value of DYNAMICRULES option for issuing
the package Authorization ID used

DEFINERUN, DEFINEBIND Routine owner authorization ID

INVOKERUN, INVOKEBIND Routine invoker authorization ID

Use the CURRENT_USER special register to see the current value of the
statement authorization ID. The statement authorization ID cannot be
changed directly; it is changed automatically by the DB2 database system
to reflect the nature of each SQL statement.

Default privileges granted on creating a database
When you create a database, default database level authorities and default object
level privileges are granted to you within that database.

The authorities and privileges that you are granted are listed according to the
system catalog views where they are recorded:
1. SYSCAT.DBAUTH

v The database creator is granted the following authorities:
– ACCESSCTRL
– DATAACCESS
– DBADM
– SECADM

v In a non-restrictive database, the special group PUBLIC is granted the
following authorities:
– CREATETAB
– BINDADD
– CONNECT
– IMPLICIT_SCHEMA

2. SYSCAT.TABAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v SELECT on all SYSCAT and SYSIBM tables
v SELECT and UPDATE on all SYSSTAT tables
v SELECT on the following views in schema SYSIBMADM:

– ALL_*
– USER_*
– ROLE_*
– SESSION_*
– DICTIONARY
– TAB

3. SYSCAT.ROUTINEAUTH

Chapter 1. DB2 security model 47

In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v EXECUTE with GRANT on all procedures in schema SQLJ
v EXECUTE with GRANT on all functions and procedures in schema SYSFUN
v EXECUTE with GRANT on all functions and procedures in schema

SYSPROC (except audit routines)
v EXECUTE on all table functions in schema SYSIBM
v EXECUTE on all other procedures in schema SYSIBM

4. SYSCAT.MODULEAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v EXECUTE on the following modules in schema SYSIBMADM:

– DBMS_DDL
– DBMS_JOB
– DBMS_LOB
– DBMS_OUTPUT
– DBMS_SQL
– DBMS_STANDARD
– DBMS_UTILITY

5. SYSCAT.PACKAGEAUTH
v The database creator is granted the following privileges:

– CONTROL on all packages created in the NULLID schema
– BIND with GRANT on all packages created in the NULLID schema
– EXECUTE with GRANT on all packages created in the NULLID schema

v In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
– BIND on all packages created in the NULLID schema
– EXECUTE on all packages created in the NULLID schema

6. SYSCAT.SCHEMAAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v CREATEIN on schema SQLJ
v CREATEIN on schema NULLID

7. SYSCAT.TBSPACEAUTH
In a non-restrictive database, the special group PUBLIC is granted the USE
privilege on table space USERSPACE1.

8. SYSCAT.WORKLOADAUTH
In a non-restrictive database, the special group PUBLIC is granted the USAGE
privilege on SYSDEFAULTUSERWORKLOAD.

9. SYSCAT.VARIABLEAUTH
In a non-restrictive database, the special group PUBLIC is granted the READ
privilege on schema global variables in the SYSIBM schema, execpt for the
following variables:
v SYSIBM.CLIENT_ORIGUSERID
v SYSIBM.CLIENT_USRSECTOKEN

48 Database Security Guide

A non-restrictive database is a database created without the RESTRICTIVE option
on the CREATE DATABASE command.

Granting and revoking access

Granting privileges
To grant privileges on most database objects, you must have ACCESSCTRL
authority, SECADM authority, or CONTROL privilege on that object; or, you must
hold the privilege WITH GRANT OPTION. Additionally, users with SYSADM or
SYSCTRL authority can grant table space privileges. You can grant privileges only
on existing objects.

About this task

To grant CONTROL privilege to someone else, you must have ACCESSCTRL or
SECADM authority. To grant ACCESSCTRL, DATAACCESS, DBADM or SECADM
authority, you must have SECADM authority.

The GRANT statement allows an authorized user to grant privileges. A privilege
can be granted to one or more authorization names in one statement; or to
PUBLIC, which makes the privileges available to all users. Note that an
authorization name can be either an individual user or a group.

On operating systems where users and groups exist with the same name, you
should specify whether you are granting the privilege to the user or group. Both
the GRANT and REVOKE statements support the keywords USER, GROUP, and
ROLE. If these optional keywords are not used, the database manager checks the
operating system security facility to determine whether the authorization name
identifies a user or a group; it also checks whether an authorization ID of type role
with the same name exists. If the database manager cannot determine whether the
authorization name refers to a user, a group, or a role, an error is returned. The
following example grants SELECT privileges on the EMPLOYEE table to the user
HERON:

GRANT SELECT
ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to the
group HERON:

GRANT SELECT
ON EMPLOYEE TO GROUP HERON

Revoking privileges
The REVOKE statement allows authorized users to revoke privileges previously
granted to other users.

About this task

To revoke privileges on database objects, you must have ACCESSCTRL authority,
SECADM authority, or CONTROL privilege on that object. Table space privileges
can also be revoked by users with SYSADM and SYSCTRL authority. Note that
holding a privilege WITH GRANT OPTION is not sufficient to revoke that
privilege. To revoke CONTROL privilege from another user, you must have
ACCESSCTRL, or SECADM authority. To revoke ACCESSCTRL, DATAACCESS,
DBADM or SECADM authority, you must have SECADM authority. Table space
privileges can be revoked only by a user who holds SYSADM, or SYSCTRL
authority. Privileges can only be revoked on existing objects.

Chapter 1. DB2 security model 49

Note: A user without ACCESSCTRL authority, SECADM authority, or CONTROL
privilege is not able to revoke a privilege that they granted through their use of the
WITH GRANT OPTION. Also, there is no cascade on the revoke to those who
have received privileges granted by the person being revoked.
If an explicitly granted table (or view) privilege is revoked from a user with
DBADM authority, privileges will not be revoked from other views defined on that
table. This is because the view privileges are available through the DBADM
authority and are not dependent on explicit privileges on the underlying tables.

If a privilege has been granted to a user, a group, or a role with the same name,
you must specify the GROUP, USER, or ROLE keyword when revoking the
privilege. The following example revokes the SELECT privilege on the EMPLOYEE
table from the user HERON:

REVOKE SELECT
ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table
from the group HERON:

REVOKE SELECT
ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all members
of that group. If an individual name has been directly granted a privilege, it will
keep it until that privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only
the privileges implicitly granted by the system are revoked. If a privilege on the
view was granted directly by another user, the privilege is still held.

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only
the privileges implicitly granted by the system are revoked. If a privilege on the
view was granted directly by another user, the privilege is still held.

You may have a situation where you want to GRANT a privilege to a group and
then REVOKE the privilege from just one member of the group. There are only a
couple of ways to do that without receiving the error message SQL0556N:
v You can remove the member from the group; or, create a new group with fewer

members and GRANT the privilege to the new group.
v You can REVOKE the privilege from the group and then GRANT it to individual

users (authorization IDs).

Note: When CONTROL privilege is revoked from a user on a table or a view, the
user continues to have the ability to grant privileges to others. When given
CONTROL privilege, the user also receives all other privileges WITH GRANT
OPTION. Once CONTROL is revoked, all of the other privileges remain WITH
GRANT OPTION until they are explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid, but can
be validated if rebound by a user with appropriate authority. Packages can also be
rebuilt if the privileges are subsequently granted again to the binder of the
application; running the application will trigger a successful implicit rebind. If
privileges are revoked from PUBLIC, all packages bound by users having only
been able to bind based on PUBLIC privileges are invalidated. If DBADM

50 Database Security Guide

authority is revoked from a user, all packages bound by that user are invalidated
including those associated with database utilities. Attempting to use a package that
has been marked invalid causes the system to attempt to rebind the package. If
this rebind attempt fails, an error occurs (SQLCODE -727). In this case, the
packages must be explicitly rebound by a user with:
v Authority to rebind the packages
v Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked.

If you define a trigger or SQL function based on one or more privileges and you
lose one or more of these privileges, the trigger or SQL function cannot be used.

Managing implicit authorizations by creating and dropping
objects
The database manager implicitly grants certain privileges to a user that creates a
database object such as a table or a package. Privileges are also granted when
objects are created by users with DBADM authority. Similarly, privileges are
removed when an object is dropped.

About this task

When the created object is a table, nickname, index, or package, the user receives
CONTROL privilege on the object. When the object is a view, the CONTROL
privilege for the view is granted implicitly only if the user has CONTROL
privilege for all tables, views, and nicknames referenced in the view definition.

When the object explicitly created is a schema, the schema owner is given
ALTERIN, CREATEIN, and DROPIN privileges WITH GRANT OPTION. An
implicitly created schema has CREATEIN granted to PUBLIC.

Establishing ownership of a package
The BIND and PRECOMPILE commands create or change an application package. On
either one, use the OWNER option to name the owner of the resulting package.

About this task

There are simple rules for naming the owner of a package:
v Any user can name themselves as the owner. This is the default if the OWNER

option is not specified.
v A user ID with DBADM authority can name any authorization ID as the owner

using the OWNER option.

Not all operating systems that can bind a package using DB2 database products
support the OWNER option.

Implicit privileges through a package
Access to data within a database can be requested by application programs, as well
as by persons engaged in an interactive workstation session. A package contains
statements that allow users to perform a variety of actions on many database
objects. Each of these actions requires one or more privileges.

Privileges granted to individuals binding the package and to PUBLIC, as well as to
the roles granted to the individuals and to PUBLIC, are used for authorization
checking when static SQL and XQuery statements are bound. Privileges granted

Chapter 1. DB2 security model 51

through groups, and the roles granted to groups, are not used for authorization
checking when static SQL and XQuery statements are bound.

Unless VALIDATE RUN is specified when binding the package, the user with a
valid authorization ID who binds a package must either:
v Have been granted all the privileges required to execute the static SQL or

XQuery statements in the package.
v Have acquired the necessary privileges through membership in one or more of:

– PUBLIC
– The roles granted to PUBLIC
– The roles granted to the user

If VALIDATE RUN is specified at BIND time, all authorization failures for any
static SQL or XQuery statements within this package will not cause the BIND to
fail, and those SQL or XQuery statements are revalidated at run time. PUBLIC,
group, role, and user privileges are all used when checking to ensure the user has
the appropriate authorization (BIND or BINDADD privilege) to bind the package.

Packages may include both static and dynamic SQL and XQuery statements. To
process a package with static queries, a user need only have EXECUTE privilege
on the package. This user can then implicitly obtain the privileges of the package
binder for any static queries in the package but only within the restrictions
imposed by the package.

If the package includes dynamic SQL or XQuery statements, the required privileges
depend on the value that was specified for DYNAMICRULES when the package was
precompiled or bound. For more information, see the topic that describes the effect
of DYNAMICRULES on dynamic queries.

Indirect privileges through a package containing nicknames
When a package contains references to nicknames, authorization processing for
package creators and package users is slightly more complex.

When a package creator successfully binds packages that contain nicknames, the
package creator does not have to pass authentication checking or privilege
checking for the tables and views that the nicknames reference at the data source.
However, the package executor must pass authentication and authorization
checking at data sources.

For example, assume that a package creator's .SQC file contains several SQL or
XQuery statements. One static statement references a local table. Another dynamic
statement references a nickname. When the package is bound, the package creator's
authid is used to verify privileges for the local table and the nickname, but no
checking is done for the data source objects that the nickname identifies. When
another user executes the package, assuming they have the EXECUTE privilege for
that package, that user does not have to pass any additional privilege checking for
the statement referencing the table. However, for the statement referencing the
nickname, the user executing the package must pass authentication checking and
privilege checking at the data source.

When the .SQC file contains only dynamic SQL and XQuery statements and a
mixture of table and nickname references, DB2 database authorization checking for
local objects and nicknames is similar. Package users must pass privilege checking
for any local objects (tables, views) within the statements and also pass privilege
checking for nickname objects (package users must pass authentication and

52 Database Security Guide

privilege checking at the data source containing the objects that the nicknames
identify). In both cases, users of the package must have the EXECUTE privilege.

The authorization ID and password of the package executor is used for all data
source authentication and privilege processing. This information can be changed by
creating a user mapping.

Note: Nicknames cannot be specified in static SQL and XQuery statements. Do not
use the DYNAMICRULES option (set to BIND) with packages containing nicknames.

It is possible that packages containing nicknames might require additional
authorization steps because DB2 database uses dynamic SQL when communicating
with DB2 Family data sources. The authorization ID running the package at the
data source must have the appropriate authority to execute the package
dynamically at that data source.

Controlling access to data with views
A view provides a means of controlling access or extending privileges to a table.

Using a view allows the following kinds of control over access to a table:
v Access only to designated columns of the table.

For users and application programs that require access only to specific columns
of a table, an authorized user can create a view to limit the columns addressed
only to those required.

v Access only to a subset of the rows of the table.
By specifying a WHERE clause in the subquery of a view definition, an
authorized user can limit the rows addressed through a view.

v Access only to a subset of the rows or columns in data source tables or views. If
you are accessing data sources through nicknames, you can create local DB2
database views that reference nicknames. These views can reference nicknames
from one or many data sources.

Note: Because you can create a view that contains nickname references for more
than one data source, your users can access data in multiple data sources from
one view. These views are called multi-location views. Such views are useful when
joining information in columns of sensitive tables across a distributed
environment or when individual users lack the privileges needed at data sources
for specific objects.

To create a view, a user must have DATAACCESS authority, or CONTROL or
SELECT privilege for each table, view, or nickname referenced in the view
definition. The user must also be able to create an object in the schema specified
for the view. That is, DBADM authority, CREATEIN privilege for an existing
schema, or IMPLICIT_SCHEMA authority on the database if the schema does not
already exist.

If you are creating views that reference nicknames, you do not need additional
authority on the data source objects (tables and views) referenced by nicknames in
the view; however, users of the view must have SELECT authority or the
equivalent authorization level for the underlying data source objects when they
access the view.

If your users do not have the proper authority at the data source for underlying
objects (tables and views), you can:

Chapter 1. DB2 security model 53

1. Create a data source view over those columns in the data source table that are
OK for the user to access

2. Grant the SELECT privilege on this view to users
3. Create a nickname to reference the view

Users can then access the columns by issuing a SELECT statement that references
the new nickname.

The following scenario provides a more detailed example of how views can be
used to restrict access to information.

Many people might require access to information in the STAFF table, for different
reasons. For example:
v The personnel department needs to be able to update and look at the entire

table.
This requirement can be easily met by granting SELECT and UPDATE privileges
on the STAFF table to the group PERSONNL:

GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

v Individual department managers need to look at the salary information for their
employees.
This requirement can be met by creating a view for each department manager.
For example, the following view can be created for the manager of department
number 51:

CREATE VIEW EMP051 AS
SELECT NAME,SALARY,JOB FROM STAFF
WHERE DEPT=51

GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051 view
just like the STAFF table. When accessing the EMP051 view of the STAFF table,
this manager views the following information:

NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

v All users need to be able to locate other employees. This requirement can be met
by creating a view on the NAME column of the STAFF table and the
LOCATION column of the ORG table, and by joining the two tables on their
corresponding DEPT and DEPTNUMB columns:

CREATE VIEW EMPLOCS AS
SELECT NAME, LOCATION FROM STAFF, ORG
WHERE STAFF.DEPT=ORG.DEPTNUMB

GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following information:

NAME LOCATION

Molinare New York

Lu New York

Daniels New York

54 Database Security Guide

NAME LOCATION

Jones New York

Hanes Boston

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

O'Brien Atlanta

Quigley Atlanta

Naughton Atlanta

Abrahams Atlanta

Koonitz Chicago

Plotz Chicago

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

Controlling access for database administrators (DBAs)
You may want to monitor, control, or prevent access to data by database
administrators (users holding DBADM authority).

Monitoring access to data

You can use the DB2 audit facility to monitor access by database administrators. To
do so, follow these steps:

Chapter 1. DB2 security model 55

1. Create an audit policy that monitors the events you want to capture for users
who hold DBADM authority.

2. Associate this audit policy with the DBADM authority.

Controlling access to data

You can use trusted contexts in conjunction with a role to control access by
database administrators. To do so, follow these steps:
1. Create a role and grant DBADM authority to that role.
2. Define a trusted context and make the role the default role for this trusted

context.
Do not grant membership in the role to any authorization ID explicitly. This
way, the role is available only through this trusted context and a user acquires
DBADM capability only when they are within the confines of the trusted
context.

3. There are two ways you can control how users access the trusted context:
v Implicit access: Create a unique trusted context for each user. When the user

establishes a regular connection that matches the attributes of the trusted
context, they are implicitly trusted and gain access to the role.

v Explicit access: Create a trusted context using the WITH USE FOR clause to
define all users who can access it. Create an application through which those
users can make database requests. The application establishes an explicit
trusted connection, and when a user issues a request, the application
switches to that user ID and executes the request as that user on the
database.

If you want to monitor the use of this trusted context, you can create an audit
policy that captures the events you are interested in for users of this trusted
context. Associate this audit policy with the trusted context.

Preventing access to data

To prevent access to data in tables, choose one of these options:
v To prevent access to data in all tables, revoke DATAACCESS from your DBADM

user, role or group. Alternatively, you could grant DBADM to the user, role or
group of interest without the DATAACCESS option

v To prevent access to data in one particular table, follow these steps:
– Assign a security label to every column in the table.
– Grant that security label to a role.
– Grant that role to all users (or roles) that have a legitimate need to access the

table.
No user, regardless of their authority, will be able to access data in that table
unless they are a member in that role.

Gaining access to data through indirect means
To successfully manage security, you need to be aware of indirect ways that users
can gain access to data.

The following list represents the indirect means through which users can gain
access to data they might not be authorized to access:
v Catalog views: The DB2 database system catalog views store metadata and

statistics about database objects. Users with SELECT access to the catalog views

56 Database Security Guide

can gain some knowledge about data that they might not be qualified for. For
better security, make sure that only qualified users have access to the catalog
views.

Note: In DB2 Universal Database Version 8, or earlier, SELECT access on the
catalog views was granted to PUBLIC by default. In DB2 Version 9.1, or later,
database systems, users can choose whether SELECT access to the catalog views
is granted to PUBLIC or not by using the new RESTRICTIVE option on the CREATE
DATABASE command.

v Explain snapshot: The explain snapshot is compressed information that is
collected when an SQL or XQuery statement is explained. It is stored as a binary
large object (BLOB) in the EXPLAIN_STATEMENT table, and contains column
statistics that can reveal information about table data. For better security, access
to the explain tables should be granted to qualified users only.

v Section explain: The section explain procedures (EXPLAIN_FROM_SECTION,
EXPLAIN_FROM_CATALOG, EXPLAIN_FROM_ACTIVITY and
EXPLAIN_FROM_DATA) can populate explain tables with information from any
section that resides in the package cache. This information includes statement
text which may contain input data values. For better security, access to the
section explain procedures and explain tables should be granted to qualified
users only.

v Log reader functions: A user authorized to run a function that reads the logs
can gain access to data they might not be authorized for if they are able to
understand the format of a log record. These functions read the logs:

Function Authority needed in order to execute the function

db2ReadLog SYSADM or DBADM

db2ReadLogNoConn None.

v Replication: When you replicate data, even the protected data is reproduced at
the target location. For better security, make sure that the target location is at
least as secure as the source location.

v Exception tables: When you specify an exception table while loading data into a
table, users with access to the exception table can gain information that they
might not be authorized for. For better security, only grant access to the
exception table to authorized users and drop the exception table as soon as you
are done with it.

v Backup table space or database: Users with the authority to run the BACKUP
DATABASE command can take a backup of a database or a table space, including
any protected data, and restore the data somewhere else. The backup can
include data that the user might not otherwise have access to.
The BACKUP DATABASE command can be executed by users with SYSADM,
SYSCTRL, or SYSMAINT authority.

v Set session authorization: In DB2 Universal Database Version 8, or earlier, a
user with DBADM authority could use the SET SESSION AUTHORIZATION
SQL statement to set the session authorization ID to any database user. In DB2
Version 9.1, or later, database systems a user must be explicitly authorized
through the GRANT SETSESSIONUSER statement before they can set the
session authorization ID.
When upgrading an existing Version 8 database to a DB2 Version 9.1, or later,
database system, however, a user with existing explicit DBADM authority (for
example, granted in SYSCAT.DBAUTH) will keep the ability to set the session
authorization to any database user. This is allowed so that existing applications

Chapter 1. DB2 security model 57

will continue to work. Being able to set the session authorization potentially
allows access to all protected data. For more restrictive security, you can
override this setting by executing the REVOKE SETSESSIONUSER SQL
statement.

v Lock monitoring: As part of the lock monitoring activity of DB2 database
management systems, values associated with parameter markers are written to
the monitoring output when the HIST_AND_VALUES collection level is
specified. Values may also be embedded in the statement text captured by the
lock event monitor. A user with access to the monitoring output can gain access
to information for which they might not be authorized.

v Activity monitoring: As part of monitoring activities in a DB2 database
management system using an activity event monitor, the values associated with
parameter markers are written to the monitoring output when the VALUES
clause is specified, and the statement text (which may contain input data values)
is written to the monitoring output when the WITH DETAILS clause is specified.
A user with access to the monitoring output can gain access to information for
which they might not be authorized. For better security, access to the CREATE
EVENT MONITOR statement and any event monitor tables should be granted to
qualified users only.

v Package cache monitoring: As part of monitoring the package cache in a DB2
database management system using a package cache event monitor, the
statement text (which may contain input data values) is written to the
monitoring output whenever a section is ejected from the package cache. For
better security, access to the CREATE EVENT MONITOR statement and any
event monitor tables should be granted to qualified users only.

v Monitor table functions, views and reports: The following monitor table
functions, views and reports expose statement text for either currently executing
statements or statements in the package cache:
– SYSPROC.MON_GET_ACTIVITY_DETALS
– SYSPROC.MON_GET_PKG_CACHE_STMT
– SYSPROC.MON_GET_PKG_CACHE_STMT_DETALS
– SYSIBMADM.MON_PKG_CACHE_SUMMARY
– SYSIBMADM.MON_CURRENT_SQL
– SYSIBMADM.MON_LOCKWAITS
– SYSIBMADM.MONREPORT.LOCKWAIT
– SYSIBMADM.MONREPORT.CURRENTSQL
– SYSIBMADM.MONREPORT.PKGCACHE

The statement text may contain input data values. For better security, EXECUTE
privilege on these table functions and reports and SELECT privilege on these
views should be granted to qualified users only.

v Traces: A trace can contain table data. A user with access to such a trace can
gain access to information that they might not be authorized for.

v Dump files: To help in debugging certain problems, DB2 database products
might generate memory dump files in the sqllib\db2dump directory. These
memory dump files might contain table data. If they do, users with access to the
files can gain access to information that they might not be authorized for. For
better security you should limit access to the sqllib\db2dump directory.

v db2dart: The db2dart tool examines a database and reports any architectural
errors that it finds. The tool can access table data and DB2 does not enforce

58 Database Security Guide

access control for that access. A user with the authority to run the db2dart tool
or with access to the db2dart output can gain access to information that they
might not be authorized for.

v REOPT bind option: When the REOPT bind option is specified, explain snapshot
information for each reoptimizable incremental bind SQL statement is placed in
the explain tables at run time. The explain will also show input data values.

v db2cat: The db2cat tool is used to dump a table's packed descriptor. The table's
packed descriptor contains statistics that can reveal information about a table's
contents. A user who runs the db2cat tool or has access to the output can gain
access to information that they might not be authorized for.

Data encryption
The DB2 database system offers several ways to encrypt data, both while in
storage, and while in transit over the network.

Encrypting data in storage

You have the following options for encrypting data in storage:
v You can use the encryption and decryption built-in functions ENCRYPT,

DECRYPT_BIN, DECRYPT_CHAR, and GETHINT to encrypt your data within
database tables.

v You can use IBM Database Encryption Expert to encrypt the underlying
operating system data and backup files.

v If you are running a DB2 Enterprise Server Edition system on the AIX operating
system, and you are interested in file-level encryption only, you can use
encrypted file system (EFS) to encrypt your operating system data and backup
files.

Encrypting data in transit

To encrypt data in-transit between clients and DB2 databases, you can use the
DATA_ENCRYPT authentication type, or, the DB2 database system support of
Secure Sockets Layer (SSL).

Using the ENCRYPT, DECRYPT_BIN, DECRYPT_CHAR, and
GETHINT functions

The ENCRYPT built-in function encrypts data using a password-based encryption
method. These functions also allow you to encapsulate a password hint. The
password hint is embedded in the encrypted data. Once encrypted, the only way
to decrypt the data is by using the correct password. Developers that choose to use
these functions should plan for the management of forgotten passwords and
unusable data.

The result of the ENCRYPT functions is VARCHAR FOR BIT DATA (with a limit of
32631).

Only CHAR, VARCHAR, and FOR BIT DATA can be encrypted.

The DECRYPT_BIN and DECRYPT_CHAR functions decrypt data using
password-based decryption.

Chapter 1. DB2 security model 59

DECRYPT_BIN always returns VARCHAR FOR BIT DATA while DECRYPT_CHAR
always returns VARCHAR. Since the first argument may be CHAR FOR BIT DATA
or VARCHAR FOR BIT DATA, there are cases where the result is not the same as
the first argument.

The length of the result depends on the bytes to the next 8 byte boundary. The
length of the result could be the length of the data argument plus 40 plus the
number of bytes to the next 8 byte boundary when the optional hint parameter is
specified. Or, the length of the result could be the length of the data argument plus
8 plus the number of bytes to the next 8 byte boundary when the optional hint
parameter is not specified.

The GETHINT function returns an encapsulated password hint. A password hint is
a phrase that will help data owners remember passwords. For example, the word
“Ocean” can be used as a hint to remember the password "Pacific".

The password that is used to encrypt the data is determined in one of two ways:
v Password Argument. The password is a string that is explicitly passed when the

ENCRYPT function is invoked. The data is encrypted and decrypted with the
given password.

v Encryption password special register. The SET ENCRYPTION PASSWORD
statement encrypts the password value and sends the encrypted password to the
database manager to store in a special register. ENCRYPT, DECRYPT_BIN and
DECRYPT_CHAR functions invoked without a password parameter use the
value in the ENCRYPTION PASSWORD special register. The ENCRYPTION
PASSWORD special register is only stored in encrypted form.
The initial or default value for the special register is an empty string.

Valid lengths for passwords are between 6 and 127 inclusive. Valid lengths for
hints are between 0 and 32 inclusive.

Configuring Secure Sockets Layer (SSL) support in a DB2
instance

The DB2 database system supports SSL, which means that a DB2 client application
that also supports SSL can connect to a DB2 database using an SSL socket. CLI,
CLP, and .Net Data Provider client applications and applications that use the IBM
Data Server Driver for JDBC and SQLJ (type 4 connections) support SSL.

Before you begin

Before configuring SSL support, perform the following steps:
v Ensure that the path to the IBM Global Security Kit (GSKit) libraries appears in

the PATH environment variable on Windows platforms and the LIBPATH,
SHLIB_PATH or LD_LIBRARY_PATH environment variables on Linux and UNIX
platforms. GSKit is automatically included when you install the DB2 database
system.
On Windows 32-bit platforms, the GSKit libraries are located in C:\Program
Files\IBM\GSK8\lib. In this case, the system PATH must include C:\Program
Files\IBM\GSK8\lib. On Windows 64-bit platforms, the 64-bit GSKit libraries are
located in C:\Program Files\IBM\GSK8\lib64 and the 32-bit GSKit libraries are
located in C:\Program Files (x86)\IBM\GSK8\lib.
On UNIX and Linux platforms, the GSKit libraries are located in
sqllib/lib/gskit.

60 Database Security Guide

On non-Windows platforms, the DB2 database manager installs GSKit locally,
and for a given instance, the GSKit libraries would be located in
sqllib/lib/gskit or sqllib/lib64/gskit. It is unnecessary to have another copy
of GSKit installed in a global location to bring up the instance. If a global copy
of GSKit does exist, keep the version of the global GSKit at the same version of
the local GSKit.

v Ensure that the connection concentrator is not activated. SSL support will not be
enabled in the DB2 instance if connection concentrator is running.
To determine whether connection concentrator is activated, issue the GET
DATABASE MANAGER CONFIGURATION command. If the configuration parameter
max_connections is set to a value greater than the value of max_coordagents,
connection concentrator is activated.

About this task

The SSL communication will always be in FIPS mode.

SSL support for DB2 Connect
If you are using DB2 Connect for System i, DB2 Connect for System z, or
DB2 Enterprise Server Edition on an intermediate server computer to
connect DB2 clients to a host or System i database, SSL support is available
in any of the following configurations:
v Between the client and the DB2 Connect server
v Between the DB2 Connect server and the server
v Between both the client and the DB2 Connect server and the DB2

Connect server and the server

Note: For SSL support to be enabled on all paths in the configuration, each
client or server must fulfill all requirements for SSL support. For example,
if the DB2 Connect connection concentrator is on, the inbound request to
the DB2 Connect server cannot use SSL. However, the outbound request to
the target server can use SSL.

SSL support for High Availability Disaster Recovery (HADR) systems
SSL is supported between clients and the HADR primary server. Clients
connecting to the HADR primary server using SSL are able to reroute to
the HADR standby database using SSL. However, SSL is not supported
between the HADR primary and standby servers.

Documentation for the GSKit tool: GSKCapiCmd
For information about the GSKit tool GSKCapiCmd, see the GSKCapiCmd
User's Guide, available at ftp://ftp.software.ibm.com/software/webserver/
appserv/library/v80/GSK_CapiCmd_UserGuide.pdf.

Configuring SSL support
To configure SSL support, first, you create a key database to manage your
digital certificates. These certificates and encryption keys are used for
establishing the SSL connections. Second, the DB2 instance owner must
configure the DB2 instance for SSL support.

Procedure
1. Create a key database and set up your digital certificates.

a. Use the GSKCapiCmd tool to create your key database. It must be a
Certificate Management System (CMS) type key database. The
GSKCapiCmd is a non-Java-based command-line tool, and Java does not
need to be installed on your system to use this tool.

Chapter 1. DB2 security model 61

ftp://ftp.software.ibm.com/software/webserver/appserv/library/v80/GSK_CapiCmd_UserGuide.pdf
ftp://ftp.software.ibm.com/software/webserver/appserv/library/v80/GSK_CapiCmd_UserGuide.pdf

You invoke GSKCapiCmd using the gskcapicmd command, as described in
the GSKCapiCmd User's Guide. The path for the command is
sqllib/gskit/bin on Linux and UNIX platforms, and C:\Program
Files\IBM\GSK8\bin on both 32-bit and 64-bit Windows platforms. (On
64-bit platforms, the 32-bit GSKit executable files and libraries are also
present; in this case, the path for the command is C:\Program Files
(x86)\IBM\GSK8\bin.) Ensure PATH (on the Windows platform) includes the
proper GSKit library path, and LIBPATH, SHLIB_PATH, or
LD_LIBRARY_PATH (on UNIX or Linux platforms) include the proper
GSKit library path, such as sqllib/lib64/gskit.
For example, the following command creates a key database called
mydbserver.kdb and a stash file called mydbserver.sth:
gsk8capicmd_64 -keydb -create -db "mydbserver.kdb" -pw "myServerPassw0rdpw0"

-stash

The -stash option creates a stash file at the same path as the key database,
with a file extension of .sth. At instance start-up, GSKit uses the stash file
to obtain the password to the key database.

Note: You should use strong file system protection on the stash file. By
default, only the instance owner has access to this file (both read and write
access).
When you create a key database, it is automatically populated with signer
certificates from a few certificate authorities (CAs), such as Verisign.

b. Add a certificate for your server to your key database. The server sends this
certificate to clients during the SSL handshake to provide authentication for
the server. To obtain a certificate, you can either use GSKCapiCmd to create
a new certificate request and submit it to a CA to be signed, or you can
create a self-signed certificate for testing purposes.
For example, to create a self-signed certificate with a label of myselfsigned,
use the GSKCapiCmd command as shown in the following example:
gsk8capicmd_64 -cert -create -db "mydbserver.kdb" -pw "myServerPassw0rdpw0"

-label "myselfsigned" -dn "CN=myhost.mycompany.com,O=myOrganization,
OU=myOrganizationUnit,L=myLocation,ST=ON,C=CA"

c. Extract the certificate you just created to a file, so that you can distribute it
to computers running clients that will be establishing SSL connections to
your DB2 server.
For example, the following GSKCapiCmd command extracts the certificate
to a file called mydbserver.arm:
gsk8capicmd_64 -cert -extract -db "mydbserver.kdb" -pw "myServerPassw0rdpw0"

-label "myselfsigned" -target "mydbserver.arm" -format ascii -fips

2. To set up your DB2 server for SSL support, log in as the DB2 instance owner
and set the following configuration parameters and the DB2COMM registry
variable.
a. Set the ssl_svr_keydb configuration parameter to the fully qualified path of

the key database file. For example:
db2 update dbm cfg using SSL_SVR_KEYDB

/home/test/sqllib/security/keystore/key.kdb

If ssl_svr_keydb is null (unset), SSL support is not enabled.
b. Set the ssl_svr_stash configuration parameter to the fully qualified path of

the stash file. For example:
db2 update dbm cfg using SSL_SVR_STASH

/home/test/sqllib/security/keystore/mydbserver.sth

62 Database Security Guide

If ssl_svr_stash is null (unset), SSL support is not enabled.
c. Set the ssl_svr_label configuration parameter to the label of the digital

certificate of the server, which you added in Step 1. If ssl_svr_label is not
set, the default certificate in the key database is used. If there is no default
certificate in the key database, SSL is not enabled. For example: db2 update
dbm cfg using SSL_SVR_LABEL myselfsigned where myselfsigned is a sample
label.

d. Set the ssl_svcename configuration parameter to the port that the DB2
database system should listen on for SSL connections. If TCP/IP and SSL
are both enabled (the DB2COMM registry variable is set to 'TCPIP, SSL'), you
must set ssl_svcename to a different port than the port to which svcename is
set. The svcename configuration parameter sets the port that the DB2
database system listens on for TCP/IP connections. If you set ssl_svcename
to the same port as svcename, neither TCP/IP or SSL will be enabled. If
ssl_svcename is null (unset), SSL support is not enabled.

Note: In HADR environments, do not set hadr_local_svc on the primary or
standby database system to the same value as you set for ssl_svcename.
Also, do not set hadr_local_svc to the same value as svcename, or svcename
plus one.

Note: When the DB2COMM registry variable is set to 'TCPIP,SSL', if TCPIP
support is not properly enabled, for example due to the svcename
configuration parameter being set to null, the error SQL5043N is returned
and SSL support is not enabled.

e. (Optional) If you want to specify which cipher suites the server can use, set
the ssl_cipherspecs configuration parameter. If you leave ssl_cipherspecs
as null (unset), this allows GSKit to pick the strongest available cipher suite
that is supported by both the client and the server. See “Supported cipher
suites” on page 73 for information about which cipher suites are available.

f. Add the value SSL to the DB2COMM registry variable. For example:
db2set -i db2inst1 DB2COMM=SSL

where db2inst1 is the DB2 instance name. The database manager can support
multiple protocols at the same time. For example, to enable both TCP/IP
and SSL communication protocols:
db2set -i db2inst1 DB2COMM=SSL,TCPIP

g. Restart the DB2 instance. For example:
db2stop
db2start

Example

The following example demonstrates how to display a certificate. This example
uses the self-signed certificate created by the following command:
gsk8capicmd_64 -cert -create -db "mydbserver.kdb" -pw "mydbserverpw0"

-label "myselfsigned" -dn "CN=myhost.mycompany.com,O=myOrganization,
OU=myOrganizationUnit,L=myLocation,ST=ON,C=CA"

To display the certificate, issue the following command:
gsk8capicmd_64 -cert -details -db "mydbserver.kdb" -pw "mydbserverpw0"

-label "myselfsigned"

The output is displayed is as follows:

Chapter 1. DB2 security model 63

label : myselfsigned
key size : 1024
version : X509 V3
serial : 96c2db8fa769a09d
issue:CN=myhost.mycompany.com,O=myOrganization,OU=myOrganizationUnit,

L=myLocation,ST=ON,C=CA
subject:CN=myhost.mycompany.com,O=myOrganization,OU=myOrganizationUnit,

L=myLocation,ST=ON,C=CA
not before : Tuesday, 24 February 2009 17:11:50 PM
not after : Thursday, 25 February 2010 17:11:50 PM
public Key

30 81 9F 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01
05 00 03 81 8D 00 30 81 89 02 81 81 00 B6 B8 DC
79 69 62 C9 A5 C1 5C 38 31 53 AB 27 BE 63 C0 DB
DE C6 BC 2E A4 0D 37 45 95 22 0E 83 32 FE 67 A9
2F D7 51 FF 40 A3 76 68 B9 E3 34 CB 7D 4A D8 38
CA B1 6B 32 66 74 8F E2 B8 DA 8F D0 F3 62 04 BE
C4 FE 80 2A D0 FF 27 72 37 9A 36 1D DB D3 A1 33
A1 A6 48 33 E9 64 B9 9B 6B DB 08 60 7D 5E 0E 20
0A 26 AA 62 3A DF D3 78 56 DC 15 DE 9F 0B 91 DD
3B 1B 2B E2 82 FA 24 FF 81 A3 F7 3F C1 02 03 01
00 01

public key type : RSA : 1.2.840.113549.1.1.1
finger print : SHA1 :

2D C1 93 F8 AC A0 8F E2 C2 05 D8 23 D7 5D 87 E6
82 3C 47 EC

signature algorithm : SHA1WithRSASignature : 1.2.840.113549.1.1.5
value

0E 80 24 98 F6 6E 89 43 76 57 76 7F 82 95 18 6A
43 A5 81 EC F4 82 1F 1F F2 3F E5 61 67 48 C0 59
94 17 8E 8F DE 4F 7C 35 0C 5D A7 98 73 2A 34 7D
1E BA 53 78 A5 E4 31 45 D1 08 86 BE 5E 57 C6 9D
B5 E7 A7 01 3F 54 01 5E 8F 8B 2F 66 19 24 1E A4
94 58 B0 D4 40 95 AB 98 C2 EF 1C 5C 4A 29 48 EC
8C C0 A2 B1 AC 2A E9 3C 14 E5 77 B2 A6 55 A8 21
CB 59 81 86 79 F0 46 35 F8 FC 99 2D EC D4 B9 EB

Trusted : enabled

To obtain a CA-signed certificate for your server (instead of a self-signed
certificate), you need to generate a certificate signing request and pay the well
known CA, such as VeriSign, to sign the certificate. After you get the signed
certificate back, you need to receive it into the server key database. The following
example demonstrates how to request and receive a certificate. It uses a trial
version of a certificate.
1. First, create a Certificate Signing Request (CSR) for mydbserver.kdb The

following command creates a new RSA private-public key pair and a PKCS10
certificate request in the specified key database. For CMS key databases, the
certificate request information is stored in the file with the ".rdb" extension. The
file specified by the -file option is the one that needs to be sent to a CA.
gsk8capicmd_64 -certreq -create -db "mydbserver.kdb" -pw "mydbserverpw0"

-label "mycert" -dn "CN=myhost.mycompany.com,
O=myOrganization,OU=myOrganizationUnit,L=myLocation,ST=ON,C=CA",
-file "mycertRequestNew"

The following command lists the detailed information of the certificate request
for my db server:
gsk8capicmd_64 -certreq -details -showOID -db "mydbserver.kdb"

-pw "mydbserverpw0" -label "mycert"

The output would display as follows:

64 Database Security Guide

label : mycert
key size : 1024
subject : Common Name (CN):

Type : 2.5.4.3
Value: myhost.mycompany.com
Organization (O):
Type : 2.5.4.10
Value: myOrganization
Organizational Unit (OU):
Type : 2.5.4.11
Value: myOrganizationUnit
Locality (L):
Type : 2.5.6.3
Value: myLocation
State (ST):
Type : ?
Value: Ontario
Country or region (C):
Type : 2.5.4.6
Value: CA

public Key
30 81 9F 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01
05 00 03 81 8D 00 30 81 89 02 81 81 00 9C B4 62
3C 89 02 4E B0 D8 EA 0B B8 CC 70 63 4A 59 1F 0F
FD 98 9A 1A 39 94 E3 43 C1 63 7A CD 21 47 57 D9
86 6F 11 B8 91 08 AC E3 E2 21 32 FE 43 1F 07 C9
F5 40 6B 3E 4D 56 35 05 62 D6 78 0B E3 97 28 F7
27 31 A4 05 BE F2 3A 44 6B D8 D1 FF 1E DA 59 63
E6 49 52 39 45 9C 1E 8E CC DA A1 D9 0F 3A 96 09
66 5C 89 23 2E EE 31 65 8D 87 8E B9 61 C6 69 BC
A5 DB EB 03 16 E6 33 85 14 68 BC DD F1 02 03 01
00 01

finger print :
e0dcde10ded3a46a53c0190e84cc994e
5d7e4bad
attributes
signature algorithm1.2.840.113549.1.1.5
value

4F 06 B4 E3 1F 00 B4 81 90 CC A2 99 4A 02 68 D0
84 B5 7F 33 0B F0 04 D5 7D 4C 5C CB 5C D3 37 77
E2 6D 10 17 50 19 D0 7F 61 C7 C8 54 7B DB CD 6F
47 9F 7E 7E 5A CC 64 20 85 95 A8 5E C7 7D FB F4
8A 7F 4B 74 6F 0A C6 EF 09 E7 0A 15 17 CC 1D D2
5D ED 02 A1 BE 1D FC F2 65 EB 0D E2 93 BC 88 4C
4C 73 76 16 9F 1B 12 3B 7A 01 CF E0 63 97 E8 38
02 FB 47 EE F2 17 54 66 4D F7 7F 9E 13 DA 76 A2

To display the certificate request file:
$ cat mycertRequestNew

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBrjCCARcCAQAwbjELMAkGA1UEBhMCQ0ExEDAOBgNVBAgTB09udGFyaW8xEDAO
BgNVBAcTB01hcmtoYW0xDDAKBgNVBAoTA0lCTTEMMAoGA1UECxMDREIyMR8wHQYD
VQQDExZnaWxlcmEudG9yb2xhYi5pYm0uY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GN
ADCBiQKBgQCctGI8iQJOsNjqC7jMcGNKWR8P/ZiaGjmU40PBY3rNIUdX2YZvEbiR
CKzj4iEy/kMfB8n1QGs+TVY1BWLWeAvjlyj3JzGkBb7yOkRr2NH/HtpZY+ZJUjlF
nB6OzNqh2Q86lglmXIkjLu4xZY2Hjrlhxmm8pdvrAxbmM4UUaLzd8QIDAQABoAAw
DQYJKoZIhvcNAQEFBQADgYEATwa04x8AtIGQzKKZSgJo0IS1fzML8ATVfUxcy1zT
N3fibRAXUBnQf2HHyFR7281vR59+flrMZCCFlahex3379Ip/S3RvCsbvCecKFRfM
HdJd7QKhvh388mXrDeKTvIhMTHN2Fp8bEjt6Ac/gY5foOAL7R+7yF1RmTfd/nhPa
dqI=
-----END NEW CERTIFICATE REQUEST-----

In case you need to delete the certificate request, use a command similar to the
following example:

Chapter 1. DB2 security model 65

gsk8capicmd_64 -certreq -delete -db "mydbserver.kdb" -pw "mydbserverpw0"
-label "mycert"

2. Next, go to the VeriSign website, register and you will be asked to cut and
paste the request file to submit the request. For trial version, you would receive
an email that contains the signed certificate. The email also contains links for
downloading the trial root CA certificate and the trial intermediate CA
certificate. Use notepad or vi to save all three certificates into files:
v RootCert.arm
v IntermediateCert.arm
v MyCertificate.arm

These three are in a chain of trust.
Add the trial Root CA Certificate into mydbserver.kdb with the following
command:
gsk8capicmd_64 -cert -add -db "mydbserver.kdb" -pw "mydbserverpw0"

-label "trialRootCACert" -file RootCert.arm -format ascii

Add the trial Intermediate CA Certificate into mydbserver.kdb with the
following command:
gsk8capicmd_64 -cert -add -db "mydbserver.kdb" -pw "mydbserverpw0"

-label "trialIntermediateCACert" -file IntermediateCert.arm -format ascii

Receive the trial Certificate into mydbserver.kdb with the following command:
$ cat SSLCertificate.cer2

-----BEGIN CERTIFICATE-----
MIIFVjCCBD6gAwIBAgIQdOydrySM+J4uUPNzbPHhVjANBgkqhkiG9w0BAQUFADCB
yzELMAkGA1UEBhMCVVMxFzAVBgNVBAoTDlZlcmlTaWduLCBJbmMuMTAwLgYDVQQL
EydGb3IgVGVzdCBQdXJwb3NlcyBPbmx5LiAgTm8gYXNzdXJhbmNlcy4xQjBABgNV
BAsTOVRlcm1zIG9mIHVzZSBhdCBodHRwczovL3d3dy52ZXJpc2lnbi5jb20vY3Bz
L3Rlc3RjYSAoYykwNTEtMCsGA1UEAxMkVmVyaVNpZ24gVHJpYWwgU2VjdXJlIFNl
cnZlciBUZXN0IENBMB4XDTA5MDIyMzAwMDAwMFoXDTA5MDMwOTIzNTk1OVowgaox
CzAJBgNVBAYTAkNBMRAwDgYDVQQIEwdPbnRhcmlvMRAwDgYDVQQHFAdNYXJraGFt
MQwwCgYDVQQKFANJQk0xDDAKBgNVBAsUA0RCMjE6MDgGA1UECxQxVGVybXMgb2Yg
dXNlIGF0IHd3dy52ZXJpc2lnbi5jb20vY3BzL3Rlc3RjYSAoYykwNTEfMB0GA1UE
AxQWZ2lsZXJhLnRvcm9sYWIuaWJtLmNvbTCBnzANBgkqhkiG9w0BAQEFAAOBjQAw
gYkCgYEAnLRiPIkCTrDY6gu4zHBjSlkfD/2Ymho5lONDwWN6zSFHV9mGbxG4kQis
4+IhMv5DHwfJ9UBrPk1WNQVi1ngL45co9ycxpAW+8jpEa9jR/x7aWWPmSVI5RZwe
jszaodkPOpYJZlyJIy7uMWWNh465YcZpvKXb6wMW5jOFFGi83fECAwEAAaOCAdcw
ggHTMAkGA1UdEwQCMAAwCwYDVR0PBAQDAgWgMEMGA1UdHwQ8MDowOKA2oDSGMmh0
dHA6Ly9TVlJTZWN1cmUtY3JsLnZlcmlzaWduLmNvbS9TVlJUcmlhbDIwMDUuY3Js
MEoGA1UdIARDMEEwPwYKYIZIAYb4RQEHFTAxMC8GCCsGAQUFBwIBFiNodHRwczov
L3d3dy52ZXJpc2lnbi5jb20vY3BzL3Rlc3RjYTAdBgNVHSUEFjAUBggrBgEFBQcD
AQYIKwYBBQUHAwIwHwYDVR0jBBgwFoAUZiKOgeAxWd0qf6tGxTYCBnAnh1oweAYI
KwYBBQUHAQEEbDBqMCQGCCsGAQUFBzABhhhodHRwOi8vb2NzcC52ZXJpc2lnbi5j
b20wQgYIKwYBBQUHMAKGNmh0dHA6Ly9TVlJTZWN1cmUtYWlhLnZlcmlzaWduLmNv
bS9TVlJUcmlhbDIwMDUtYWlhLmNlcjBuBggrBgEFBQcBDARiMGChXqBcMFowWDBW
FglpbWFnZS9naWYwITAfMAcGBSsOAwIaBBRLa7kolgYMu9BSOJsprEsHiyEFGDAm
FiRodHRwOi8vbG9nby52ZXJpc2lnbi5jb20vdnNsb2dvMS5naWYwDQYJKoZIhvcN
AQEFBQADggEBAKs1YpIeOAL6mTryIXpYfokkzRdwP5ooDutHhVbRYcPwq9ynOrHM
3gZolv8th5PpSkZAGTPr3HJZG6HnxRiQjPT88PAADR3SEzVMzQEESHfYToF1qBPZ
svigphI9eIHcg5IWwv7dyuXtkFGbTCqcvEqJiT3UHhubgMfoTuTGayhNoGt75FGU
h4kSJz3af6MNuGmQLs4wzJTepU7srlhGV1C1ujTCydax2BiWfWwO4YaFcckvHxbR
6I7vVj1PTC2RO8n5qcWJYmGU0PG3d58hJETD4E8tAReh21ShBWDgn4+e0k1XtQ8K
lB66QpsFYGTLtGyd/4w4BAgq/QLmcs+mpjc=
-----END CERTIFICATE-----

gsk8capicmd_64 -cert -receive -file MyCertificate.arm -db "mydbserver.kdb"
-pw "mydbserverp -format ascii

List all the certificates in mydbserver.kdb with the following command:

66 Database Security Guide

gsk8capicmd_64 -cert -list all -db "mydbserver.kdb" -pw "mydbserverpw0"

certificates found
* default, - personal, ! trusted
-! mycert
! trialIntermediateCACert
! trialRootCACert
-! myselfsigned
db2 update dbm cfg using SSL_SVR_LABEL mycert

Configuring Secure Sockets Layer (SSL) support in non-Java
DB2 clients
You can configure DB2 database clients, such as CLI, CLP, and .Net Data Provider
clients, to support Secure Sockets Layer (SSL) for communication with the DB2
server.

Before you begin

Note: If your Version 9.7 DB2 client or DB2 Connect server establishes an SSL
connection to a DB2 for z/OS server on a z/OS V1.8, V1.9, or V1.10 system, the
appropriate PTF for APAR PK72201 must be applied to the Communication Server
for z/OS IP Services.

Note: Due to an incompatibility between GSKit version 8 and GSKit 7d versions
before 7.0.4.20, CLI applications connecting to an IDS data server using GSKit 7d
versions before 7.0.4.20 will fail. To correct the problem, upgrade the GSKit library
on the IDS data server to GSKit 7.0.4.20 or later

Before configuring SSL support for a client, perform the following steps:
v If both the client and the server are on the same physical computer, you do not

need to install GSKit, because GSKit is automatically installed with the DB2
server.
Starting with Version 9.7 Fix Pack 1, when you install the 64-bit version of the
DB2 server, the 32-bit GSKit libraries are automatically included in the
installation. To use these libraries, on Linux and UNIX operating systems you
must ensure that the LD_LIBRARY_PATH, LIBPATH, or SHLIB_PATH environment
variable is correctly set. On Windows operating systems, ensure that the PATH
environment variable is correctly set, as shown in the following table.

Application
Operating
system Location of GSKit libraries Environment variable setting

32-bit Linux and
UNIX 64-bit

$INSTHOME/sqllib/lib32/
gskit

Include $INSTHOME/sqllib/lib32/
gskit in the LD_LIBRARY_PATH,
LIBPATH, or SHLIB_PATH
environment variable

64-bit Linux and
UNIX 64-bit

$INSTHOME/sqllib/lib64/
gskit

Include $INSTHOME/sqllib/lib64/
gskit in the LD_LIBRARY_PATH,
LIBPATH, or SHLIB_PATH
environment variable

32-bit Windows
64-bit

C:\Program Files
(x86)\IBM\GSK8\lib

Include C:\Program Files
(x86)\IBM\GSK8\lib in PATH
environment variable

64-bit Windows
64-bit

C:\Program
Files\IBM\GSK8\lib64

Include C:\Program
Files\IBM\GSK8\lib64 in PATH
environment variable

SSL communication will always be in FIPS mode.

Chapter 1. DB2 security model 67

On non-Windows platforms, the DB2 database manager installs GSKit locally,
and for a given instance, the GSKit libraries would be located in
sqllib/lib/gskit or sqllib/lib64/gskit. It is unnecessary to have another copy
of GSKit installed in a global location. If a global copy of GSKit does exist, keep
the version of the global GSKit at the same version of the local GSKit.

v If the client is being installed in a separate computer, for "C" based clients, you
must install GSKit if the clients use SSL to communicate with the servers. You
can install the GSKit libraries from the IBM DB2 Support Files for SSL
Functionality DVD. Alternatively, you can install from an image that you
downloaded from Passport Advantage®.
– Ensure that the path to the IBM Global Security Kit (GSKit) libraries appears

in the PATH environment variable on Windows and in the LIBPATH, SHLIB_PATH
or LD_LIBRARY_PATH environment variables on Linux and UNIX. For example,
on Windows, add the GSKit bin and lib directories to the PATH environment
variable:
set PATH="C:\Program Files\ibm\gsk8\bin";%PATH%
set PATH="C:\Program Files\ibm\gsk8\lib";%PATH%

Documentation for the GSKit tool: GSKCapiCmd

For information about the GSKit tool GSKCapiCmd, see the GSKCapiCmd
User's Guide, available at ftp://ftp.software.ibm.com/software/webserver/
appserv/library/v80/GSK_CapiCmd_UserGuide.pdf.

About this task

The SSL communication will always be in FIPS mode.

Procedure

To configure SSL support in a DB2 client:
1. Obtain the signer certificate of the server digital certificate on the client. The

server certificate can either be a self-signed certificate or a certificate signed by
a certificate authority (CA).
v If your server certificate is a self-signed certificate, you must extract its signer

certificate to a file on the server computer and then distribute it to computers
running clients that will be establishing SSL connections to that server. See
“Configuring Secure Sockets Layer (SSL) support in a DB2 instance” on page
60 for information about how to extract the certificate to a file.

v If your server certificate is signed by a well known CA, your client key
database might already contain the CA certificate that signed your server
certificate. If it does not, you must obtain the CA certificate, which is usually
done by visiting the website of the CA.

2. On the DB2 client computer, use the GSKCapiCmd tool to create a key
database, of CMS type. The GSKCapiCmd tool is a non-Java-based
command-line tool (Java does not need to be installed on your system to use
this tool).
You invoke GSKCapiCmd using the gskcapicmd command, as described in the
GSKCapiCmd User's Guide. The path for the command is sqllib/gskit/bin on
Linux and UNIX operating systems, and C:\Program Files\IBM\GSK8\bin on
both 32-bit and 64-bit Windows operating systems. (On 64-bit operating
systems, the 32-bit GSKit executable files and libraries are also present; in this
case, the path for the command is C:\Program Files (x86)\IBM\GSK8\bin.)
For example, the following command creates a key database called
mydbclient.kdb and a stash file called mydbclient.sth:

68 Database Security Guide

ftp://ftp.software.ibm.com/software/webserver/appserv/library/v80/GSK_CapiCmd_UserGuide.pdf
ftp://ftp.software.ibm.com/software/webserver/appserv/library/v80/GSK_CapiCmd_UserGuide.pdf

gsk8capicmd_64 -keydb -create -db "mydbclient.kdb" -pw "myClientPassw0rdpw0"
-stash

The -stash option creates a stash file at the same path as the key database,
with a file extension of .sth. At connect time, GSKit uses the stash file to
obtain the password to the key database.

3. Add the signer certificate into the client key database
For example, the following gsk8capicmd command imports the certificate from
the file mydbserver.arm into the key database called mydbclient.kdb:
gsk8capicmd_64 -cert -add -db "mydbclient.kdb" -pw "myClientPassw0rdpw0"

-label "dbselfsigned" -file "mydbserver.arm" -format ascii -fips

4. For your client application, set the appropriate connection string or
configuration parameters, as shown in the applicable example for your client.

Example

CLP and embedded SQL clients

CLP clients and embedded SQL clients can connect to a database on a
remote host that has been added to the node catalog using the CATALOG
TCPIP NODE command. Issue the CATALOG TCPIP NODE command with the
SECURITY keyword set to SSL to specify SSL for that connection.

The following example demonstrates how to catalog a node and database
so that a CLP client can connect to them using an SSL connection.

First, catalog the node and database so that client applications can establish
SSL connections to them:
catalog TCPIP NODE mynode REMOTE 127.0.0.1 SERVER 50001 SECURITY SSL

catalog DATABASE sample AS myssldb AT NODE mynode AUTHENTICATION SERVER

Next, use the ssl_clnt_keydb and ssl_clnt_stash configuration
parameters to specify the client key-database and the stash file. You set the
ssl_clnt_keydb configuration parameter to the fully qualified path of the
key database file (.kdb) and the ssl_clnt_stash configuration parameter to
the fully qualified path of the stash file:
db2 update dbm cfg using

SSL_CLNT_KEYDB /home/test1/sqllib/security/keystore/clientkey.kdb
SSL_CLNT_STASH /home/test1/sqllib/security/keystore/clientstore.sth

If either the ssl_clnt_keydb or ssl_clnt_stash configuration parameter is
null (unset), the connection fails and returns error SQL10013N with token
GSKit Error: GSKit_return_code.

Then, connect to the server from the CLP client:
db2 connect to myssldb user user1 using password

Alternatively, an embedded SQL application could use the following
statement to connect:
Strcpy(dbAlias,"myssldb");
EXEC SQL CONNECT TO :dbAlias USER :user USING :pswd;

CLI/ODBC client applications

Depending in which environment you are running your CLI application,
you use either connection string parameters (ssl_client_keystoredb and
ssl_client_keystash) or DB2 configuration parameters (ssl_clnt_keydb and
ssl_clnt_stash) to specify the path for the client key database and for the
stash file.

Chapter 1. DB2 security model 69

v If you are using the IBM Data Server Driver for ODBC and CLI, you use
connection string parameters, as shown in this example:
Call SQLDriverConnect with a connection string that contains the
SECURITY=SSL keyword. For example:
"Database=sampledb; Protocol=tcpip; Hostname= myhost; Servicename=50001;
Security=ssl; Ssl_client_keystoredb=/home/test1/keystore/clientstore.kdb;
Ssl_client_keystash=/home/test1/keystore/clientstore.sth;"

In this case, because Security=ssl is specified, the ssl_client_keystoredb
and ssl_client_keystash connection string parameters must be set,
otherwise the connection will fail.

v If you are using the IBM data server client or IBM Data Server Runtime
Client, you can use either connection string parameters or DB2
configuration parameters to set the path for the client key database and
for the stash file. If the ssl_client_keystoredb and ssl_client_keystash
connection string parameters are set, they override any values set by the
ssl_clnt_keydb or the ssl_clnt_stash configuration parameters.
This example uses the db2cli.ini file to set connection string
parameters:
[sampledb]
Database=sampledb
Protocol=tcpip
Hostname=myhost
Servicename=50001
Security=ssl
SSL_client_keystoredb=/home/test1/keystore/clientstore.kdb
SSL_client_keystash=/home/test1/keystore/clientstore.sth

This example uses the FileDSN CLI/ODBC keyword to identify a DSN
file that contains the database connectivity information, which sets the
connection string parameters. For example, the DSN file may look like
this:
[ODBC]
DRIVER=IBM DB2 ODBC DRIVER – DB2COPY1
UID=user1
AUTHENTICATION=SERVER
PORT=50001
HOSTNAME=myhost
PROTOCOL=TCPIP
DATABASE=SAMPLEDB
SECURITY=SSL
SSL_client_keystoredb=/home/test1/keystore/clientstore.kdb
SSL_client_keystash=/home/test1/keystore/clientstore.sth

In these cases, because Security=ssl is specified, if the
ssl_client_keystoredb and ssl_client_keystash connection string
parameters are not set, and also the ssl_clnt_keydb and ssl_clnt_stash
configuration parameters are not set, the connection will fail.

Certificate-based authentication

Starting in DB2 Version 9.7 Fix Pack 6, a new authentication type
’CERTIFICATE’ has been introduced in the db2dsdriver.cfg authentication
parameter as shown in the syntax below:
<parameter name="Authentication"
value="CERTIFICATE | SERVER | SERVER_ENCRYPT | SERVER_ENCRYPT_AES | DATA_ENCRYPT | KERBEROS | GSSPLUGIN"/>

The certificate-based authentication allows you to use SSL client
authentication without the need of providing database passwords on the
database client. When certificate-based authentication is configured to
supply authentication information, a password cannot be specified in any
other way (as in the db2dsdriver.cfg configuration file, in the db2cli.ini

70 Database Security Guide

configuration file, or in the connection string). Since the authentication
parameter needs a label to be specified, a new data server driver
configuration parameter SSLClientLabel is also introduced. If CERTIFICATE
is specified, then the new label parameter SSLCLientLabel must also be
specified in the CLI configuration file, db2cli.ini, or in the data server
driver configuration file, db2dsdriver.cfg.

Starting in DB2 Version 9.7 Fix Pack 6, a new keyword
SSLClientKeyStoreDBPassword is introduced to set the password for the
keystore db specified through SSLClientKeystoredb keyword. The
configuration parameters SSLClientKeystash and
SSLClientKeyStoreDBPassword are mutually exclusive. When the
SSLClientKeystash configuration parameter and the
SSLClientKeyStoreDBPassword configuration parameter are both specified
in either the CLI configuration file or the data server driver configuration
file, error CLI0220E is returned. Hence, for a successful certificate-based
authentication, it is recommended to specify only one of the keywords but
not both.

DB2 .Net Data Provider applications

A DB2 .Net Data Provider application can establish an SSL connection to a
database by specifying the path for the client key database and for the
stash file by defining the connection string parameters,
SSLClientKeystoredb and SSLClientKeystash. The connection string must
also contain Security=SSL. For example:
String connectString = "Server=myhost:50001;Database=sampledb;Security=ssl;
SSLClientKeystoredb=/home/test1/keystore/clientstore.kdb;
SSLClientKeystash=/home/test1/keystore/clientstore.sth";

Then, as shown in the following C# code fragment, to connect to a
database, pass this connectString to the DB2Connection constructor and use
the Open method of the DB2Connection object to connect to the database
identified in connectString:
DB2Connection conn = new DB2Connection(connectString);
Conn.Open();
Return conn;

If either the SSLClientKeystoredb or SSLClientKeystash connection string
parameter is null (unset), the connection fails and returns error SQL10013N
with token GSKit Error: GSKit_return_code.

Secure Sockets Layer (SSL)
The DB2 database system supports the use of Secure Sockets Layer (SSL) and it's
successor, Transport Layer Security (TLS), to enable a client to authenticate a
server, and to provide private communication between the client and server by use
of encryption. Authentication is performed by the exchange of digital certificates.

Note: When this topic mentions SSL, the same information applies to TLS, unless
otherwise noted.

Without encryption, packets of information travel through networks in full view of
anyone who has access. You can use SSL to protect data in transit on all networks
that use TCP/IP (you can think of an SSL connection as a secured TCP/IP
connection).

A client and server establish a secure SSL connection by performing an "SSL
handshake".

Chapter 1. DB2 security model 71

Overview of the SSL handshake

During an SSL handshake, a public-key algorithm, usually RSA, is used to securely
exchange digital signatures and encryption keys between a client and a server. This
identity and key information is used to establish a secure connection for the
session between the client and the server. After the secure session is established,
data transmission between the client and server is encrypted using a symmetric
algorithm, such as AES.

The client and server perform the following steps during the SSL handshake:
1. The client requests an SSL connection and lists its supported cipher suites.
2. The server responds with a selected cipher suite.
3. The server sends its digital certificate to the client.
4. The client verifies the validity of the server certificate, for authentication

purposes. It can do this by checking with the trusted certificate authority that
issued the server certificate or by checking in its own key database.

5. The client and server securely negotiate a session key and a message
authentication code (MAC).

6. The client and server securely exchange information using the key and MAC
selected.

Note: The DB2 database system does not support the (optional) authentication of
the client during the SSL handshake.

Using SSL encryption with DB2 authentication

You can use SSL encryption in conjunction with all existing DB2 authentication
methods, such as KERBEROS or SERVER. You do this as usual by setting the
authentication type for the instance in the DBM configuration parameters to the
authentication method of your choice.

Digital certificates and certificate authorities
Digital certificates are issued by trusted parties, called certificate authorities, to
verify the identity of an entity, such as a client or server.

The digital certificate serves two purposes: it verifies the owner's identity and it
makes the owner's public key available. It is issued with an expiration date, after
which it is no longer guaranteed by the certificate authority (CA).

To obtain a digital certificate, you send a request to the CA of your choice, such as
Verisign, or RSA. The request includes your distinguished name, your public key,
and your signature. A distinguished name (DN) is a unique identifier for each user
or host for which you are applying for a certificate. The CA checks your signature
using your public key and performs some level of verification of your identity (this
varies with different CAs). After verification, the CA sends you a signed digital
certificate that contains your distinguished name, your public key, the CA's
distinguished name, and the signature of the certificate authority. You store this
signed certificate in your key database.

When you send this certificate to a receiver, the receiver performs two steps to
verify your identity:
1. Uses your public key that comes with the certificate to check your digital

signature.

72 Database Security Guide

2. Verifies that the CA that issued your certificate is legitimate and trustworthy. To
do this, the receiver needs the public key of the CA. The receiver might already
hold an assured copy of the public key of the CA in their key database, but if
not, the receiver must acquire an additional digital certificate to obtain the
public key of the CA. This certificate might in turn depend on the digital
certificate of another CA; there might be a hierarchy of certificates issued by
multiple CAs, each depending on the validity of the next. Eventually, however,
the receiver needs the public key of the root CA. The root CA is the CA at the
top of the hierarchy. To trust the validity of the digital certificate of the root
CA, the public-key user must receive that digital certificate in a secure manner,
such as through a download from an authenticated server, or with preloaded
software received from a reliable source, or on a securely delivered diskette.

Many applications that send a digital certificate to a receiver send not just their
own certificate, but also all of the CA digital certificates necessary to verify the
hierarchy of certificates up to the root CA certificate.

For a digital certificate to be entirely trustworthy, the owner of the digital
certificate must have carefully protected their private key, for example, by
encrypting it on their computer's hard drive. If their private key has been
compromised, an imposter could misuse their digital certificate.

You can use self-signed digital certificates for testing purposes. A self-signed digital
certificate contains your distinguished name, your public key, and your signature.

Public-key cryptography
SSL uses public-key algorithms to exchange encryption key information and digital
certificate information for authentication. Public-key cryptography (also known as
asymmetric cryptography) uses two different encryption keys: a public key to
encrypt data and an associated private key to decrypt it.

Conversely, symmetric key cryptography uses just one key, which is shared by all
parties involved in the secure communication. This secret key is used both to
encrypt and decrypt information. The key must be safely distributed to, and stored
by, all parties, which is difficult to guarantee. With public-key cryptography, the
public key is not secret, but the messages it encrypts can only be decrypted by
using it's associated private key. The private key must be securely stored, for
example, in your key database, or encrypted on your computer's hard drive.

Public-key algorithms alone do not guarantee secure communication, you also
need to verify the identity of whoever is communicating with you. To perform this
authentication, SSL uses digital certificates. When you send your digital certificate
to someone, the certificate provides them with your public key. You have used
your private key to digitally sign your certificate and so the receiver of the
communication can use your public key to verify your signature. The validity of
the digital certificate itself is guaranteed by the certificate authority (CA) that
issued it.

Supported cipher suites
During an SSL handshake, the client and server negotiate which cipher suite to use
to exchange data. A cipher suite is a set of algorithms that are used to provide
authentication, encryption, and data integrity.

The DB2 database system uses GSKit running in FIPS mode to provide SSL
support. GSKit supports the following cipher suites:
v TLS_RSA_WITH_AES_256_CBC_SHA

Chapter 1. DB2 security model 73

v TLS_RSA_WITH_AES_128_CBC_SHA
v TLS_RSA_WITH_3DES_EDE_CBC_SHA

The name of each cipher suite specifies the algorithms that it uses for
authentication, encryption, and data integrity checking. For example, the cipher
suite TLS_RSA_WITH_AES_256_CBC_SHA uses RSA for authentication; AES
256-bit and CBC for encryption algorithms; and SHA-1 for the hash function for
data integrity.

During the SSL handshake, the DB2 database system automatically picks the
strongest cipher suite supported by both the client and the server. If you want the
server to accept only one or more specific cipher suites, you can set the
ssl_cipherspecs configuration parameter to any of the following values:
v TLS_RSA_WITH_AES_256_CBC_SHA
v TLS_RSA_WITH_AES_128_CBC_SHA
v TLS_RSA_WITH_3DES_EDE_CBC_SHA
v Any combination of these three values. To set multiple values, separate each

value by a comma but do not put a space between the values.
v Null. In this case, the strongest available algorithm is automatically picked.

You cannot prioritize which cipher suite is selected. If you set the ssl_cipherspecs
configuration parameter, the DB2 database system picks the strongest available
cipher suite; this selection does not depend on the order you specify the cipher
suites when you set ssl_cipherspecs.

Bundled library and process rules
When DB2 for Linux, UNIX, and Windows bundles vendor software that requires
GSKit, or when vendor software that requires GSKit bundles DB2 for Linux, UNIX,
and Windows, certain rules must be followed.

Library rule

When DB2 for Linux, UNIX, and Windows bundles vendor software that requires
GSKit, the vendor software provides libraries that DB2 for Linux, UNIX, and
Windows links with. These libraries must follow a certain rule. This rule is called a
library rule.

Library rule: Use short name

When dynamically loading a GSKit library, the caller must pass the loader function
only the base file name of the GSKit library and not the path.

For example, dlopen("libgsk8ssl_64.so", RTLD_NOW | RTLD_GLOBAL) is correct,
while dlopen("/usr/opt/ibm/gsk8_64/lib/libgsk8ssl_64.so", RTLD_NOW |
RTLD_GLOBAL) is incorrect.

Process rule

When vendor software, that requires GSKit, bundles DB2 for Linux, UNIX, and
Windows, the vendor software links with the IBM data server client. The vendor
software must follow a certain rule. This rule is called a process rule.

Process rule: Set up the environment search path

74 Database Security Guide

A process must set up the environment search path under which it finds the GSKit
libraries. The process must do this setup so that the included libraries could load
the GSKit libraries from the same location.

On AIX, a process can set LIBPATH or RPATH of the executable to the path of the
GSKit libraries. In setuid and setgid cases, a process can use db2chglibpath to
include the search path of GSKit in the RPATH of the executable. Only then, can
GSKit libraries from that location can be used. On Linux, Sun, and HP-UX, a
process can set LD_LIBRARY_PATH to the path of the GSKit libraries. In setuid
and setgid cases, a process can use db2chglibpath to include the search path of
GSKit in the RPATH of the IBM data server client library. Only then, can GSKit
libraries from that location can be used. For example, when a process needs to use
global GSKit in server instances, or it needs to use its own local GSKit in client or
server instances, it may use db2chglibpath to change the RPATH.

Symbolic link approach and restriction

When you install DB2 for Linux, UNIX, and Windows on UNIX and Linux
platforms, local GSKit libraries are installed as well. Those libraries are located in
<db2_install_path>/lib64/gskit_db2 or <db2_install_path>/lib32/gskit_db2.

During the installation of other IBM products another copy of the GSKit libraries
might be installed. These libraries might be either local GSKit libraries or global
GSKit libraries depending on the product. When DB2 for Linux, UNIX, and
Windows and another IBM product that includes GSKit libraries are both installed
on the same machine, some interoperability issues might arise. These
interoperability issues might occur because GSKit allows only libraries from a
single GSKit source to exist in any single process. The interoperability issues might
lead to unpredictable behavior and runtime errors.

To ensure that a single source of GSKit libraries is used in situations where more
than single installation of GSKit exists on the same machine, the symbolic link
approach can be used. During an initial DB2 for Linux, UNIX, and Windows
installation, the installer creates a symbolic link <db2_install_path>/lib64/gskit
or <db2_install_path>/lib32/gskit to <db2_install_path>/lib64/gskit_db2 or
<db2_install_path>/lib32/gskit_db2. This location is the default location from
which GSKit libraries are loaded. Products that bundle DB2 for Linux, UNIX, and
Windows and change the symbolic link from the default directory noted to the
library directory of another copy of GSKit must ensure that the newly installed
GSKit is at the same or newer level. This restriction applies whether the libraries
are global or local. During an upgrade or update of DB2 for Linux, UNIX, and
Windows, the symbolic link is preserved. If the newly installed copy has a
symbolic link that points to the default location, the symbolic link associated with
the older installation copy is preserved. If the newly installed copy has a symbolic
link that does not point to the default, the symbolic link that is associated with the
newer install copy is used in the newer installation copy. Some limitations exist
since the symbolic link <db2_install_path>/lib64/gskit or <db2_install_path>/
lib32/gskit is located in the path of the DB2 for Linux, UNIX, and Windows
install copy. For example, if there are two or more instances created for any DB2
copy, the symbolic link changes affect all the instances.

The GSKit version included with DB2 for Linux, UNIX, and Windows is 8.0.14.14,
8.0.15.1 on Solaris x64.

Chapter 1. DB2 security model 75

Examples

DB2 for Linux, UNIX, and Windows bundles the LDAP client. The DB2 for Linux,
UNIX, and Windows processes follow the process rule. To follow the process rule,
the environment search path via RPATH is set to its local copy of GSKit. LDAP
client libraries loads GSKit libraries from the same location. LDAP client libraries,
which follow library rules, loads GSKit libraries by their base file names when
GSKIT_LOCAL_INSTALL_MODE is set.

LDAP server bundles DB2 for Linux, UNIX, and Windows. LDAP processes
follows the process rule. The environment search path is set to the global copy of
GSKit and IBM data server client libraries loads GSKit libraries from the same
location. IBM data server client libraries, which follow library rules, loads GSKit
libraries by their base file names.

GSKit return codes
Some DB2 database manager messages might display a return code from the IBM
Global Security Kit (GSKit).

General GSKit return codes

Table 2. GSKit general return codes

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x00000000 0 GSK_OK The task completed successfully.
Issued by every function call that
completes successfully.

0x00000001 1 GSK_INVALID_HANDLE The environment or SSL handle is
not valid. The specified handle
was not the result of a successful
open function call.

0x00000002 2 GSK_API_NOT_AVAILABLE The dynamic link library (DLL)
has been unloaded and is not
available. (Windows only.)

0x00000003 3 GSK_INTERNAL_ERROR Internal error. Report this error to
service.

0x00000004 4 GSK_INSUFFICIENT_STORAGE Insufficient memory is available to
perform the operation.

0x00000005 5 GSK_INVALID_STATE The handle is in an invalid state
for operation, such as performing
an init operation on a handle
twice.

0x00000006 6 GSK_KEY_LABEL_NOT_FOUND Specified key label not found in
key file.

0x00000007 7 GSK_CERTIFICATE_NOT_AVAILABLE Certificate not received from
partner.

0x00000008 8 GSK_ERROR_CERT_VALIDATION Certificate validation error.

0x00000009 9 GSK_ERROR_CRYPTO Error processing cryptography.

0x0000000a 10 GSK_ERROR_ASN Error validating ASN fields in
certificate.

0x0000000b 11 GSK_ERROR_LDAP Error connecting to LDAP server.

76 Database Security Guide

Table 2. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x0000000c 12 GSK_ERROR_UNKNOWN_ERROR Internal error. Report this error to
service.

0x00000065 101 GSK_OPEN_CIPHER_ERROR Internal error. Report this error to
service.

0x00000066 102 GSK_KEYFILE_IO_ERROR I/O error reading the key file.

0x00000067 103 GSK_KEYFILE_INVALID_FORMAT The key file has an invalid
internal format. Re-create the key
file.

0x00000068 104 GSK_KEYFILE_DUPLICATE_KEY The key file has two entries with
the same key. Use the iKeyman
utility to remove the duplicate
key.

0x00000069 105 GSK_KEYFILE_DUPLICATE_LABEL The key file has two entries with
the same label. Use the iKeyman
utility to remove the duplicate
label.

0x0000006a 106 GSK_BAD_FORMAT_OR_
INVALID_PASSWORD

The key file password is used as
an integrity check. Either the
keyfile has become corrupted or
the password ID is incorrect.

0x0000006b 107 GSK_KEYFILE_CERT_EXPIRED The default key in the key file has
an expired certificate. Use the
iKeyman utility to remove
certificates that are expired.

0x0000006c 108 GSK_ERROR_LOAD_GSKLIB An error occurred loading one of
the GSKit dynamic link libraries.
Be sure GSKit was installed
correctly.

0x0000006d 109 GSK_PENDING_CLOSE_ERROR Indicates that a connection is
trying to be made in a GSKit
environment after the
GSK_ENVIRONMENT_
CLOSE_OPTIONS has been set to
GSK_DELAYED_
ENVIRONMENT_CLOSE and
gsk_environment_close() function
has been called.

0x000000c9 201 GSK_NO_KEYFILE_PASSWORD Neither the password nor the
stash-file name was specified, so
the key file could not be
initialized.

0x000000ca 202 GSK_KEYRING_OPEN_ERROR Unable to open the key file or the
Microsoft Certificate Store. The
path was specified incorrectly, or
the file permissions did not allow
the file to be opened, or the file
format is incorrect.

0x000000cb 203 GSK_RSA_TEMP_KEY_PAIR Unable to generate a temporary
key pair. Report this error to
service.

Chapter 1. DB2 security model 77

Table 2. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x000000cc 204 GSK_ERROR_LDAP_NO_SUCH_OBJECT A User Name object was specified
that is not found.

0x000000cd 205 GSK_ERROR_LDAP_INVALID_
CREDENTIALS

A Password used for an LDAP
query is not correct.

0x000000ce 206 GSK_ERROR_BAD_INDEX An index into the Fail Over list of
LDAP servers was not correct.

0x000000cd 207 GSK_ERROR_FIPS_NOT_SUPPORTED Attempt to put GSKit into FIPS
mode has failed.

0x0000012d 301 GSK_CLOSE_FAILED Indicates that the GSKit
environment close request was not
properly handled. This is most
likely due to a
gsk_secure_socket*() command
being attempted after a
gsk_close_environment() call.

0x00000191 401 GSK_ERROR_BAD_DATE The system date was set to an
invalid value.

0x00000192 402 GSK_ERROR_NO_CIPHERS Neither SSLV2 nor SSLV3 is
enabled.

0x00000193 403 GSK_ERROR_NO_CERTIFICATE The required certificate was not
received from partner.

0x00000194 404 GSK_ERROR_BAD_CERTIFICATE The received certificate was
formatted incorrectly.

0x00000195 405 GSK_ERROR_UNSUPPORTED_
CERTIFICATE_TYPE

The received certificate type was
not supported.

0x00000196 406 GSK_ERROR_IO An I/O error occurred on a data
read or write operation.

0x00000197 407 GSK_ERROR_BAD_KEYFILE_LABEL The specified label in the key file
could not be found.

0x00000198 408 GSK_ERROR_BAD_KEYFILE_
PASSWORD

The specified key file password is
incorrect. The key file could not be
used. The key file also might be
corrupt.

0x00000199 409 GSK_ERROR_BAD_KEY_LEN_
FOR_EXPORT

In a restricted cryptography
environment, the key size is too
long to be supported.

0x0000019a 410 GSK_ERROR_BAD_MESSAGE An incorrectly formatted SSL
message was received from the
partner.

0x0000019b 411 GSK_ERROR_BAD_MAC The message authentication code
(MAC) was not successfully
verified.

0x0000019c 412 GSK_ERROR_UNSUPPORTED Unsupported SSL protocol or
unsupported certificate type.

0x0000019d 413 GSK_ERROR_BAD_CERT_SIG The received certificate contained
an incorrect signature.

78 Database Security Guide

Table 2. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x0000019e 414 GSK_ERROR_BAD_CERT Incorrectly formatted certificate
received from partner.

0x0000019f 415 GSK_ERROR_BAD_PEER Invalid SSL protocol received from
partner.

0x000001a0 416 GSK_ERROR_PERMISSION_DENIED Report this internal error to
service.

0x000001a1 417 GSK_ERROR_SELF_SIGNED The self-signed certificate is not
valid.

0x000001a2 418 GSK_ERROR_NO_READ_FUNCTION The read operation failed. Report
this internal error to service.

0x000001a3 419 GSK_ERROR_NO_WRITE_FUNCTION The write operation failed. Report
this internal error to service.

0x000001a4 420 GSK_ERROR_SOCKET_CLOSED The partner closed the socket
before the protocol completed.

0x000001a5 421 GSK_ERROR_BAD_V2_CIPHER The specified V2 cipher is not
valid.

0x000001a6 422 GSK_ERROR_BAD_V3_CIPHER The specified V3 cipher is not
valid.

0x000001a7 423 GSK_ERROR_BAD_SEC_TYPE Report this internal error to
service.

0x000001a8 424 GSK_ERROR_BAD_SEC_
TYPE_COMBINATION

Report this internal error to
service.

0x000001a9 425 GSK_ERROR_HANDLE_
CREATION_FAILED

The handle could not be created.
Report this internal error to
service.

0x000001aa 426 GSK_ERROR_INITIALIZATION_
FAILED

Initialization failed. Report this
internal error to service.

0x000001ab 427 GSK_ERROR_LDAP_NOT_AVAILABLE When validating a certificate,
unable to access the specified
LDAP directory.

0x000001ac 428 GSK_ERROR_NO_PRIVATE_KEY The specified key did not contain
a private key.

0x000001ad 429 GSK_ERROR_PKCS11_
LIBRARY_NOTLOADED

A failed attempt was made to load
the specified PKCS11 shared
library.

0x000001ae 430 GSK_ERROR_PKCS11_TOKEN_
LABELMISMATCH

The PKCS #11 driver failed to find
the token specified by the caller.

0x000001af 431 GSK_ERROR_PKCS11_TOKEN_
NOTPRESENT

A PKCS #11 token is not present
in the slot.

0x000001b0 432 GSK_ERROR_PKCS11_TOKEN_
BADPASSWORD

The password/pin to access the
PKCS #11 token is invalid.

0x000001b1 433 GSK_ERROR_INVALID_V2_HEADER The SSL header received was not a
properly SSLV2 formatted header.

Chapter 1. DB2 security model 79

Table 2. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x000001b2 434 GSK_CSP_OPEN_ERROR Unable to access the
hardware-based cryptographic
service provider (CSP). Either the
given CSP name is not registered
in the system or the specified CSP
name is registered but the
certificate store failed to open.

0x000001b3 435 GSK_CONFLICTING_ATTRIBUTE_
SETTING

Attribute setting conflict between
PKCS11, CMS key database, and
Microsoft Crypto API.

0x000001b4 436 GSK_UNSUPPORTED_PLATFORM The requested function is not
supported on the platform that the
application is running. For
example, the Microsoft Crypto API
is not supported on platforms
other than Windows 2000.

0x000001b5 437 GSK_ERROR_INCORRECT_
SESSION_TYPE

Incorrect value is returned from
the reset session type callback
function.
Only GSKit
GSK_SERVER_SESSION or
GSK_SERVER_SESSION_
WITH_CL_AUTH is
allowed.

0x000001f5 501 GSK_INVALID_BUFFER_SIZE The buffer size is negative or zero.

0x000001f6 502 GSK_WOULD_BLOCK Used with non-blocking I/O.

0x00000259 601 GSK_ERROR_NOT_SSLV3 SSLV3 is required for reset_cipher,
and the connection uses SSLV2.

0x0000025a 602 GSK_MISC_INVALID_ID An invalid ID was specified for
the gsk_secure_soc_misc function
call.

0x000002bd 701 GSK_ATTRIBUTE_INVALID_ID The function call has an invalid
ID. This also might be caused by
specifying an environment handle
when a handle for a SSL
connection should be used.

0x000002be 702 GSK_ATTRIBUTE_INVALID_LENGTH The attribute has a negative
length, which is invalid.

0x000002bf 703 GSK_ATTRIBUTE_INVALID_
ENUMERATION

The enumeration value is invalid
for the specified enumeration
type.

0x000002c0 704 GSK_ATTRIBUTE_INVALID_
SID_CACHE

Invalid parameter list for replacing
the Session ID (SID) cache
routines.

0x000002c1 705 GSK_ATTRIBUTE_INVALID_
NUMERIC_VALUE

When setting a numeric attribute,
the specified value is invalid for
the specific attribute being set.

0x000002c2 706 GSK_CONFLICTING_VALIDATION_
SETTING

Conflicting parameters have been
set for additional certificate
validation.

80 Database Security Guide

Table 2. GSKit general return codes (continued)

Return code
(hexadecimal)

Return
code
(decimal) Constant Explanation

0x000002c3 707 GSK_AES_UNSUPPORTED The cipher specification included
an AES cipher that is not
supported on the system of
execution.

0x000002c4 708 GSK_PEERID_LENGTH_ERROR The length of the peer ID is
incorrect. It must be less than or
equal to 16 bytes.

0x000002c5 709 GSK_CIPHER_INVALID_WHEN_
FIPS_MODE_OFF

Given cipher is not allowed when
FIPS mode is off.

0x000002c6 710 GSK_CIPHER_INVALID_WHEN_
FIPS_MODE_ON

No FIPS approved cipher have
been selected in FIPS mode.

0x00000641 1601 GSK_TRACE_STARTED The trace started successfully.

0x00000642 1602 GSK_TRACE_STOPPED The trace stopped successfully.

0x00000643 1603 GSK_TRACE_NOT_STARTED No trace file was previously
started so it cannot be stopped.

0x00000644 1604 GSK_TRACE_ALREADY_STARTED Trace file already started so it
cannot be started again.

0x00000645 1605 GSK_TRACE_OPEN_FAILED Trace file can not be opened. The
first parameter of gsk_start_trace()
must be a valid full path file
name.

Key management return codes

Table 3. Key management return codes

Return code
(hexadecimal)

Return code
(decimal) Constant

0x00000000 0 GSKKM_ERR_OK

0x00000000 0 GSKKM_ERR_SUCCESS

0x00000001 1 GSKKM_ERR_UNKNOWN

0x00000002 2 GSKKM_ERR_ASN

0x00000003 3 GSKKM_ERR_ASN_INITIALIZATION

0x00000004 4 GSKKM_ERR_ASN_PARAMETER

0x00000005 5 GSKKM_ERR_DATABASE

0x00000006 6 GSKKM_ERR_DATABASE_OPEN

0x00000007 7 GSKKM_ERR_DATABASE_RE_OPEN

0x00000008 8 GSKKM_ERR_DATABASE_CREATE

0x00000009 9 GSKKM_ERR_DATABASE_ALREADY_EXISTS

0x0000000a 10 GSKKM_ERR_DATABASE_DELETE

0x0000000b 11 GSKKM_ERR_DATABASE_NOT_OPENED

0x0000000c 12 GSKKM_ERR_DATABASE_READ

0x0000000d 13 GSKKM_ERR_DATABASE_WRITE

0x0000000e 14 GSKKM_ERR_DATABASE_VALIDATION

Chapter 1. DB2 security model 81

Table 3. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x0000000f 15 GSKKM_ERR_DATABASE_INVALID_VERSION

0x00000010 16 GSKKM_ERR_DATABASE_INVALID_PASSWORD

0x00000011 17 GSKKM_ERR_DATABASE_INVALID_FILE_TYPE

0x00000012 18 GSKKM_ERR_DATABASE_CORRUPTION

0x00000013 19 GSKKM_ERR_DATABASE_PASSWORD_
CORRUPTION

0x00000014 20 GSKKM_ERR_DATABASE_KEY_INTEGRITY

0x00000015 21 GSKKM_ERR_DATABASE_DUPLICATE_KEY

0x00000016 22 GSKKM_ERR_DATABASE_DUPLICATE_
KEY_RECORD_ID

0x00000017 23 GSKKM_ERR_DATABASE_DUPLICATE_
KEY_LABEL

0x00000018 24 GSKKM_ERR_DATABASE_DUPLICATE_
KEY_SIGNATURE

0x00000019 25 GSKKM_ERR_DATABASE_DUPLICATE_
KEY_UNSIGNED_CERTIFICATE

0x0000001a 26 GSKKM_ERR_DATABASE_DUPLICATE_KEY_
ISSUER_AND_SERIAL_NUMBER

0x0000001b 27 GSKKM_ERR_DATABASE_DUPLICATE_KEY_
SUBJECT_PUBLIC_KEY_INFO

0x0000001c 28 GSKKM_ERR_DATABASE_DUPLICATE_KEY_
UNSIGNED_CRL

0x0000001d 29 GSKKM_ERR_DATABASE_DUPLICATE_LABEL

0x0000001e 30 GSKKM_ERR_DATABASE_PASSWORD_
ENCRYPTION

0x0000001f 31 GSKKM_ERR_DATABASE_LDAP

0x00000020 32 GSKKM_ERR_CRYPTO

0x00000021 33 GSKKM_ERR_CRYPTO_ENGINE

0x00000022 34 GSKKM_ERR_CRYPTO_ALGORITHM

0x00000023 35 GSKKM_ERR_CRYPTO_SIGN

0x00000024 36 GSKKM_ERR_CRYPTO_VERIFY

0x00000025 37 GSKKM_ERR_CRYPTO_DIGEST

0x00000026 38 GSKKM_ERR_CRYPTO_PARAMETER

0x00000027 39 GSKKM_ERR_CRYPTO_UNSUPPORTED_
ALGORITHM

0x00000028 40 GSKKM_ERR_CRYPTO_INPUT_GREATER_
THAN_MODULUS

0x00000029 41 GSKKM_ERR_CRYPTO_UNSUPPORTED_
MODULUS_SIZE

0x0000002a 42 GSKKM_ERR_VALIDATION

0x0000002b 43 GSKKM_ERR_VALIDATION_KEY

0x0000002c 44 GSKKM_ERR_VALIDATION_DUPLICATE_
EXTENSIONS

82 Database Security Guide

Table 3. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x0000002d 45 GSKKM_ERR_VALIDATION_KEY_WRONG_
VERSION

0x0000002e 46 GSKKM_ERR_VALIDATION_KEY_
EXTENSIONS_REQUIRED

0x0000002f 47 GSKKM_ERR_VALIDATION_KEY_VALIDITY

0x00000030 48 GSKKM_ERR_VALIDATION_KEY_VALIDITY_
PERIOD

0x00000031 49 GSKKM_ERR_VALIDATION_KEY_VALIDITY_
PRIVATE_KEY_USAGE

0x00000032 50 GSKKM_ERR_VALIDATION_KEY_ISSUER_
NOT_FOUND

0x00000033 51 GSKKM_ERR_VALIDATION_KEY_MISSING_
REQUIRED_EXTENSIONS

0x00000034 52 GSKKM_ERR_VALIDATION_KEY_BASIC_
CONSTRAINTS

0x00000035 53 GSKKM_ERR_VALIDATION_KEY_SIGNATURE

0x00000036 54 GSKKM_ERR_VALIDATION_KEY_ROOT_KEY_
NOT_TRUSTED

0x00000037 55 GSKKM_ERR_VALIDATION_KEY_IS_REVOKED

0x00000038 56 GSKKM_ERR_VALIDATION_KEY_AUTHORITY_
KEY_IDENTIFIER

0x00000039 57 GSKKM_ERR_VALIDATION_KEY_PRIVATE_KEY_
USAGE_PERIOD

0x0000003a 58 GSKKM_ERR_VALIDATION_SUBJECT_
ALTERNATIVE_NAME

0x0000003b 59 GSKKM_ERR_VALIDATION_ISSUER_
ALTERNATIVE_NAME

0x0000003c 60 GSKKM_ERR_VALIDATION_KEY_USAGE

0x0000003d 61 GSKKM_ERR_VALIDATION_KEY_
UNKNOWN_CRITICAL_EXTENSION

0x0000003e 62 GSKKM_ERR_VALIDATION_KEY_PAIR

0x0000003f 63 GSKKM_ERR_VALIDATION_CRL

0x00000040 64 GSKKM_ERR_MUTEX

0x00000041 65 GSKKM_ERR_PARAMETER

0x00000042 66 GSKKM_ERR_NULL_PARAMETER

0x00000043 67 GSKKM_ERR_NUMBER_SIZE

0x00000044 68 GSKKM_ERR_OLD_PASSWORD

0x00000045 69 GSKKM_ERR_NEW_PASSWORD

0x00000046 70 GSKKM_ERR_PASSWORD_EXPIRATION_TIME

0x00000047 71 GSKKM_ERR_THREAD

0x00000048 72 GSKKM_ERR_THREAD_CREATE

0x00000049 73 GSKKM_ERR_THREAD_WAIT_FOR_EXIT

0x0000004a 74 GSKKM_ERR_IO

Chapter 1. DB2 security model 83

Table 3. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x0000004b 75 GSKKM_ERR_LOAD

0x0000004c 76 GSKKM_ERR_PKCS11

0x0000004d 77 GSKKM_ERR_NOT_INITIALIZED

0x0000004e 78 GSKKM_ERR_DB_TABLE_CORRUPTED

0x0000004f 79 GSKKM_ERR_MEMORY_ALLOCATE

0x00000050 80 GSKKM_ERR_UNSUPPORTED_OPTION

0x00000051 81 GSKKM_ERR_GET_TIME

0x00000052 82 GSKKM_ERR_CREATE_MUTEX

0x00000053 83 GSKKM_ERR_CMDCAT_OPEN

0x00000054 84 GSKKM_ERR_ERRCAT_OPEN

0x00000055 85 GSKKM_ERR_FILENAME_NULL

0x00000056 86 GSKKM_ERR_FILE_OPEN

0x00000057 87 GSKKM_ERR_FILE_OPEN_TO_READ

0x00000058 88 GSKKM_ERR_FILE_OPEN_TO_WRITE

0x00000059 89 GSKKM_ERR_FILE_OPEN_NOT_EXIST

0x0000005a 90 GSKKM_ERR_FILE_OPEN_NOT_ALLOWED

0x0000005b 91 GSKKM_ERR_FILE_WRITE

0x0000005c 92 GSKKM_ERR_FILE_REMOVE

0x0000005d 93 GSKKM_ERR_BASE64_INVALID_DATA

0x0000005e 94 GSKKM_ERR_BASE64_INVALID_MSGTYPE

0x0000005f 95 GSKKM_ERR_BASE64_ENCODING

0x00000060 96 GSKKM_ERR_BASE64_DECODING

0x00000061 97 GSKKM_ERR_DN_TAG_NULL

0x00000062 98 GSKKM_ERR_DN_CN_NULL

0x00000063 99 GSKKM_ERR_DN_C_NULL

0x00000064 100 GSKKM_ERR_INVALID_DB_HANDLE

0x00000065 101 GSKKM_ERR_KEYDB_NOT_EXIST

0x00000066 102 GSKKM_ERR_KEYPAIRDB_NOT_EXIST

0x00000067 103 GSKKM_ERR_PWDFILE_NOT_EXIST

0x00000068 104 GSKKM_ERR_PASSWORD_CHANGE_MATCH

0x00000069 105 GSKKM_ERR_KEYDB_NULL

0x0000006a 106 GSKKM_ERR_REQKEYDB_NULL

0x0000006b 107 GSKKM_ERR_KEYDB_TRUSTCA_NULL

0x0000006c 108 GSKKM_ERR_REQKEY_FOR_CERT_NULL

0x0000006d 109 GSKKM_ERR_KEYDB_PRIVATE_KEY_NULL

0x0000006e 110 GSKKM_ERR_KEYDB_DEFAULT_KEY_NULL

0x0000006f 111 GSKKM_ERR_KEYREC_PRIVATE_KEY_NULL

0x00000070 112 GSKKM_ERR_KEYREC_CERTIFICATE_NULL

0x00000071 113 GSKKM_ERR_CRLS_NULL

84 Database Security Guide

Table 3. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x00000072 114 GSKKM_ERR_INVALID_KEYDB_NAME

0x00000073 115 GSKKM_ERR_UNDEFINED_KEY_TYPE

0x00000074 116 GSKKM_ERR_INVALID_DN_INPUT

0x00000075 117 GSKKM_ERR_KEY_GET_BY_LABEL

0x00000076 118 GSKKM_ERR_LABEL_LIST_CORRUPT

0x00000077 119 GSKKM_ERR_INVALID_PKCS12_DATA

0x00000078 120 GSKKM_ERR_PKCS12_PWD_CORRUPTION

0x00000079 121 GSKKM_ERR_EXPORT_TYPE

0x0000007a 122 GSKKM_ERR_PBE_ALG_UNSUPPORT

0x0000007b 123 GSKKM_ERR_KYR2KDB

0x0000007c 124 GSKKM_ERR_KDB2KYR

0x0000007d 125 GSKKM_ERR_ISSUING_CERTIFICATE

0x0000007e 126 GSKKM_ERR_FIND_ISSUER_CHAIN

0x0000007f 127 GSKKM_ERR_WEBDB_DATA_BAD_FORMAT

0x00000080 128 GSKKM_ERR_WEBDB_NOTHING_TO_WRITE

0x00000081 129 GSKKM_ERR_EXPIRE_DAYS_TOO_LARGE

0x00000082 130 GSKKM_ERR_PWD_TOO_SHORT

0x00000083 131 GSKKM_ERR_PWD_NO_NUMBER

0x00000084 132 GSKKM_ERR_PWD_NO_CONTROL_KEY

0x00000085 133 GSKKM_ERR_SIGNATURE_ALGORITHM

0x00000086 134 GSKKM_ERR_INVALID_DATABASE_TYPE

0x00000087 135 GSKKM_ERR_SECONDARY_KEYDB_TO_OTHER

0x00000088 136 GSKKM_ERR_NO_SECONDARY_KEYDB

0x00000089 137 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
LABEL_NOT_EXIST

0x0000008a 138 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
PASSWORD_REQUIRED

0x0000008b 139 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
PASSWORD_NOT_REQUIRED

0x0000008c 140 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
LIBRARY_NOT_LOADED

0x0000008d 141 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
NOT_SUPPORT

0x0000008e 142 GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_
FUNCTION_FAILED

0x0000008f 143 GSKKM_ERR_LDAP_USER_NOT_FOUND

0x00000090 144 GSKKM_ERR_LDAP_INVALID_PASSWORD

0x00000091 145 GSKKM_ERR_LDAP_QUERY_ENTRY_FAILED

0x00000092 146 GSKKM_ERR_INVALID_CERT_CHAIN

0x00000093 147 GSKKM_ERR_CERT_ROOT_NOT_TRUSTED

0x00000094 148 GSKKM_ERR_CERT_REVOKED

Chapter 1. DB2 security model 85

Table 3. Key management return codes (continued)

Return code
(hexadecimal)

Return code
(decimal) Constant

0x00000095 149 GSKKM_ERR_CRYPTOGRAPHIC_OBJECT_
FUNCTION_FAILED

0x00000096 150 GSKKM_ERR_NO_AVAILABLE_CRL_
DATASOURCE

0x00000097 151 GSKKM_ERR_NO_TOKEN_PRESENT

0x00000098 152 GSKKM_ERR_FIPS_NOT_SUPPORTED

0x00000099 153 GSKKM_ERR_FIPS_CONFLICT_SETTING

0x0000009a 154 GSKKM_ERR_PASSWORD_STRENGTH_FAILED

IBM Database Encryption Expert for encryption of data at rest
IBM Database Encryption Expert is a comprehensive software data security
solution that when used in conjunction with native DB2 security provides effective
protection of the data and the database application against a broad array of threats.

Database Encryption Expert helps organizations ensure that private and
confidential data is strongly protected and in compliance with regulations and
legislative acts. The key benefits of Database Encryption Expert are:
v Proven, strong data security for the DB2 database system
v Protection of live files, configuration files, log files and back-up data
v Transparent to application, database and storage environments
v Unified policy and key management for protecting data in both online and

offline environments
v Meets performance requirements

Database Encryption Expert enables you to encrypt offline database backups and
to encrypt online ("live") database files. This is encryption of data on the disk,
sometimes called "data at rest" as opposed to "data in flight", which is travelling
over the network.
v For backups, data is encrypted as it is being backed up, so the data on the

backup device is encrypted. Should the data need to be recovered, the recovery
server recognizes that the data is encrypted and will un-encrypt the data.

v For database files, the operating system data files containing the data from the
DB2 database are encrypted. This protects the data files from unauthorized users
trying to read the "raw" database file.

Database Encryption Expert is transparent to users, databases, applications, and
storage. No code changes or changes to existing infrastructure are required.
Database Encryption Expert can protect data in any storage environment, while
users continue to access data the in the same way as before.

Database Encryption Expert can protect database applications, because it can
prevent changes to executable files, configuration files, libraries, and so on, thereby
preventing attacks on the application.

Note: You cannot use Database Encryption Expert in DB2 pureScale®

environments.

86 Database Security Guide

Architecture of Database Encryption Expert

Database Encryption Expert is a set of agent and server software packages that you
administer by using a Web-based user-interface and command-line utilities. The
Database Encryption Expert administrator configures security policies that govern
how security and encryption are implemented.

According to how these security policies are defined, the Database Encryption
Expert backup agent encrypts DB2 backups, and the Database Encryption Expert
file system agent encrypts DB2 data files.

The Encryption Expert Security Server stores the security policies, encryption keys
and event log files. Security policies contain sets of security rules that must be
satisfied in order to allow or deny access. Each security rule evaluates who, what,
when, and how protected data is accessed and, if these criteria match, the Security
Server either permits or denies access.

Figure 4 illustrates the architecture of Database Encryption Expert.

File system agent

The Database Encryption Expert file system agent process is always running in the
background. The agent intercepts any attempt to access data files, directories, or
executables that you are protecting. The Database Encryption Expert file system
agent forwards the access attempt to the Security Server and, based upon the
applied policy, the Security Server grants or denies the attempted access.

Encryption Expert
Security Server

Web based
User-Interface

DB2 files

DB2 backup DB2 Server

Backup files

Encryption Expert
file system agent

Encryption Expert
backup agent

Figure 4. Architecture of Database Encryption Expert

Chapter 1. DB2 security model 87

Database Encryption Expert protection extends beyond simply allowing or denying
access to a file, you can also encrypt files. Just the file contents is encrypted, but
the file metadata is left intact. Therefore, you do not have to decrypt an encrypted
file just to see it's name, timestamps, file type, and so on. This allows data
management applications to perform their functions without exposing the file
contents. For example, backup managers can backup specific data, without being
able to see the contents.

If an encrypted file is accessed by an unauthorized user, its contents are worthless
without the appropriate Security Server approval and encryption keys. However,
users with the correct policies and permissions are unaware that encryption and
decryption are taking place.

Backup agent

All database backup functions that are normally performed by the DB2 backup
API system are supported by the Database Encryption Expert server, including
native database compression. Other than an additional command-line argument,
DB2 backup operators are unaware of Database Encryption Expert intervention.
Database Encryption Expert backs up and restores static data-at-rest and active
online data.

Basic backup and restore configuration is supported. In the basic configuration,
data is encrypted and backed up with one server and multiple agents; data is
decrypted and restored on an agent that is configured with the same server that
was originally used to make the backup.

Single-site and multi-site configurations are also supported for backup and restore.
In a single-site scenario, configuration data is mirrored across multiple Security
Servers in a single data center. In a multi-site scenario, backups are restored on
different Encryption Expert servers in different data centers.

Audit logging

Database Encryption Expert agent activity is closely monitored and logged through
a centralized audit logging facility. All auditable events, including backups,
restores, and security administration operations can be logged. This includes
Database Encryption Expert system events, such as initialization, shut down and
restart; and network connects and disconnects between different Database
Encryption Expert components.

Database Encryption Expert documentation

For more information about Database Encryption Expert, go to the following web
page: http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/topic/
com.ibm.db2tools.eet.doc.ug/eetwelcome.htm.

Database encryption using AIX encrypted file system (EFS)
For DB2 Enterprise Server Edition running on the AIX operating system, you have
the option to set up an encrypted database by using AIX encrypted file system
(EFS). For detailed information about EFS, see your AIX documentation.

Note: If you are working in a partitioned database environment, to use EFS, your
database should be in a single database partition.

88 Database Security Guide

http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/topic/com.ibm.db2tools.eet.doc.ug/eetwelcome.htm
http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/topic/com.ibm.db2tools.eet.doc.ug/eetwelcome.htm

You can encrypt the operating system files that contain the data in database tables
by using the underlying EFS with JFS2 file system.

To set up encryption, the steps are as follows:
1. Enable EFS on the system.
2. Load the keystores for the user account under which the DB2 database

daemons run.
3. Enable EFS on the database file system.
4. Determine the operating system file to encrypt.
5. Encrypt the file that contains the database table that requires EFS protection.

Enabling EFS on the system

Before you enable EFS, the clic.rte fileset must be installed. The clic.rte install
image can be found on the Expansion Pack CD.

Run the following command as root to enable EFS on the system:
% efsenable -a

You need to run the efsenable command only once.

Loading the keystores

In the following configuration examples, the DB2 user account under which the
database daemons run is called abst. The user abst must have a keystore and any
group that abst is a member of must also have a keystore.
1. All keystores must be associated with the abst process before starting the DB2

daemons.
You can verify that they are associated by using the efskeymgr -V command, as
shown in the following example:
lsuser abst
abst id=203 pgrp=abstgp groups=abstgp,staff ...

efskeymgr -V
List of keys loaded in the current process:

Key #0:
Kind User key
Id (uid / gid) 203
Type Private

key
Algorithm RSA_1024
Validity Key is

valid
Fingerprint

24c88df2:d91cb6a2:c3e11b6a:4c13f8b4:666fabd8

Key #1:
Kind Group

key
Id (uid / gid) 1
Type Private

key
Algorithm RSA_1024
Validity Key is

valid
Fingerprint

03fead42:57e7646e:a1715626:cfa56c8e:8abed1c1

Key #2:

Chapter 1. DB2 security model 89

Kind Group
key

Id (uid / gid) 212
Type Private

key
Algorithm RSA_1024
Validity Key is

valid
Fingerprint

339dfb19:bc850f4c:5551c975:7fe4961b:2dddf3bc

2. If there are no keystores shown as associated with the abst process, try loading
the keystores using the command: % efskeymgr -o ksh

This command prompts for the keystore password, which is initially set to the
login password.

3. Confirm that the user and group keys are loaded by rerunning the command: %
efskeymgr -V

Both the user and group keys should be listed. If the group keystores are still
not listed, continue with Step 4.

4. Depending on how a group was created, the group keystore may not exist. If
the efskeymgr -V command does not list the user's group keystores, you must
create the group keystores.
As root or the RBAC role aix.efs_admin, create the group keystore:
% efskeymgr -C group_name

5. Assign group keystore access to each applicable user:
% efskeymgr -k group /group_name -s user/user_name

If a user is already logged in, they will not immediately have access to the
group keystore, and they should reload their keystore using the efskeymgr -o
ksh command, or re-login.

Enabling EFS on the database file system

EFS only runs on JFS2 file systems and must be specifically enabled.

If your database resides on an existing file system, run the % chfs -a efs=yes
filesystem command to enable EFS, for example:
% chfs -a efs=yes /test01

If you are creating a new file system, you can enable EFS using the -a efs=yes
option with the smit command or the crfs command. For example:
% crfs -v jfs2 -a efs=yes -m mount_point -d devide -A yes

EFS is now enabled on the file system but is not turned on. Turn on EFS only for
the particular database tables requiring encrypted data (for more information, see
your AIX EFS documentation about the efsmgr command and inheritance).

Determining the file to encrypt

To determine which file contains a particular database table that you want to
protect with EFS encryption, follow these steps that use the EMPLOYEE table as
an example.
1. Use a query similar to the following example to find the TBSPACEID for the

table:
SELECT TABNAME, TBSPACEID FROM syscat.tables WHERE tabname=’EMPLOYEE’

Assume the results of this query are as follows:

90 Database Security Guide

TABNAME TBSPACEID

EMPLOYEE 2

2. Look up the table spaces for that TBSPACEID with a query similar to the
following example:
LIST TABLESPACE CONTAINERS FOR 2

Assume the results of this query are as follows:

Container ID Name Type

0 /test01/abst/NODE0000/BAR/T0000002/
C0000000.LRG

File

You now know that this table space is contained in the operating system file
called /test01/abst/NODE0000/BAR/T0000002/C0000000.LRG. This is the file you
need to encrypt.

Encrypting the file

First, as you would do before making any major change to data or databases, back
up your database.

Follow these steps to encrypt the file:
1. List the file, for example:

ls -U /test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

-rw-------- 1 abst abstgp 33554432 Jul 30 18:01
/test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

2. Encrypt the file using the efsmgr command, for example:
efsmgr -e /test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

If you list the file again you will see an “e” at the end of the permissions string
that indicates the file is encrypted. For example:
ls -U /test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

-rw-------e 1 abst abstgp 33554432 Jul 30 18:03
/test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

3. Start the DB2 database manager and use it as normal. All data added to the
EMPLOYEE table and this encrypted table space will be encrypted by EFS in
the underlying file system. Whenever the data is retrieved, it will be decrypted
and presented as normal through the DB2 database manager.

Auditing DB2 activities

Introduction to the DB2 audit facility
To manage access to your sensitive data, you can use a variety of authentication
and access control mechanisms to establish rules and controls for acceptable data
access. But to protect against and discover unknown or unacceptable behaviors
you can monitor data access by using the DB2 audit facility.

Successful monitoring of unwanted data access and subsequent analysis can lead
to improvements in the control of data access and the ultimate prevention of
malicious or careless unauthorized access to data. The monitoring of application
and individual user access, including system administration actions, can provide a
historical record of activity on your database systems.

Chapter 1. DB2 security model 91

The DB2 audit facility generates, and allows you to maintain, an audit trail for a
series of predefined database events. The records generated from this facility are
kept in an audit log file. The analysis of these records can reveal usage patterns
that would identify system misuse. Once identified, actions can be taken to reduce
or eliminate such system misuse.

The audit facility provides the ability to audit at both the instance and the
individual database level, independently recording all instance and database level
activities with separate logs for each. The system administrator (who holds
SYSADM authority) can use the db2audit tool to configure audit at the instance
level as well as to control when such audit information is collected. The system
administrator can use the db2audit tool to archive both instance and database
audit logs as well as to extract audit data from archived logs of either type.

The security administrator (who holds SECADM authority within a database) can
use audit policies in conjunction with the SQL statement, AUDIT, to configure and
control the audit requirements for an individual database. The security
administrator can use the following audit routines to perform the specified tasks:
v The SYSPROC.AUDIT_ARCHIVE stored procedure archives audit logs.
v The SYSPROC.AUDIT_LIST_LOGS table function allows you to locate logs of

interest.
v The SYSPROC.AUDIT_DELIM_EXTRACT stored procedure extracts data into

delimited files for analysis.

The security administrator can grant EXECUTE privilege on these routines to
another user, therefore enabling the security administrator to delegate these tasks,
if required.

When working in a partitioned database environment, many of the auditable
events occur at the database partition at which the user is connected (the
coordinator partition) or at the catalog partition (if they are not the same database
partition). The implication of this is that audit records can be generated by more
than one database partition. Part of each audit record contains information
identifying the coordinator partition and originating partition (the partition where
audit record originated).

At the instance level, the audit facility must be stopped and started explicitly by
use of the db2audit start and db2audit stop commands. When you start
instance-level auditing, the audit facility uses existing audit configuration
information. Since the audit facility is independent of the DB2 database server, it
will remain active even if the instance is stopped. In fact, when the instance is
stopped, an audit record may be generated in the audit log. To start auditing at the
database level, first you need to create an audit policy, then you associate this
audit policy with the objects you want to monitor, such as, authorization IDs,
database authorities, trusted contexts or particular tables.

Categories of audit records

There are different categories of audit records that may be generated. In the
following description of the categories of events available for auditing, you should
notice that following the name of each category is a one-word keyword used to
identify the category type. The categories of events available for auditing are:
v Audit (AUDIT). Generates records when audit settings are changed or when the

audit log is accessed.

92 Database Security Guide

v Authorization Checking (CHECKING). Generates records during authorization
checking of attempts to access or manipulate DB2 database objects or functions.

v Object Maintenance (OBJMAINT). Generates records when creating or dropping
data objects, and when altering certain objects.

v Security Maintenance (SECMAINT). Generates records when:
– Granting or revoking object privileges or database authorities
– Granting or revoking security labels or exemptions
– Altering the group authorization, role authorization, or override or restrict

attributes of an LBAC security policy
– Granting or revoking the SETSESSIONUSER privilege
– Modifying any of the SYSADM_GROUP, SYSCTRL_GROUP,

SYSMAINT_GROUP, or SYSMON_GROUP configuration parameters.
v System Administration (SYSADMIN). Generates records when operations

requiring SYSADM, SYSMAINT, or SYSCTRL authority are performed.
v User Validation (VALIDATE). Generates records when authenticating users or

retrieving system security information.
v Operation Context (CONTEXT). Generates records to show the operation context

when a database operation is performed. This category allows for better
interpretation of the audit log file. When used with the log's event correlator
field, a group of events can be associated back to a single database operation.
For example, a query statement for dynamic queries, a package identifier for
static queries, or an indicator of the type of operation being performed, such as
CONNECT, can provide needed context when analyzing audit results.

Note: The SQL or XQuery statement providing the operation context might be
very long and is completely shown within the CONTEXT record. This can make
the CONTEXT record very large.

v Execute (EXECUTE). Generates records during the execution of SQL statements.

For any of the categories listed previously, you can audit failures, successes, or
both.

Any operations on the database server may generate several records. The actual
number of records generated in the audit log depends on the number of categories
of events to be recorded as specified by the audit facility configuration. It also
depends on whether successes, failures, or both, are audited. For this reason, it is
important to be selective of the events to audit.

Audit policies
The security administrator can use audit policies to configure the audit facility to
gather information only about the data and objects that are needed.

The security administrator can create audit policies to control what is audited
within an individual database. The following objects can have an audit policy
associated with them:
v The whole database

All auditable events that occur within the database are audited according to the
audit policy.

v Tables
All data manipulation language (DML) and XQUERY access to the table
(untyped), MQT (materialized query table), or nickname is audited. Only

Chapter 1. DB2 security model 93

EXECUTE category audit events with or without data are generated when the
table is accessed even if the policy indicates that other categories should be
audited.

v Trusted contexts
All auditable events that happen within a trusted connection defined by the
particular trusted context are audited according to the audit policy.

v Authorization IDs representing users, groups, or roles
All auditable events that are initiated by the specified user are audited according
to the audit policy.
All auditable events that are initiated by users that are a member of the group
or role are audited according to the audit policy. Indirect role membership, such
as through other roles or groups, is also included.
You can capture similar data by using the Work Load Management event
monitors by defining a work load for a group and capturing the activity details.
You should be aware that the mapping to workloads can involve attributes in
addition to just the authorization ID, which can cause you to not achieve the
wanted granularity in auditing, or if those other attributes are modified,
connections may map to different (possibly unmonitored) workloads. The
auditing solution provides a guarantee that a user, group or role will be audited.

v Authorities (SYSADM, SECADM, DBADM, SQLADM, WLMADM,
ACCESSCTRL, DATAACCESS, SYSCTRL, SYSMAINT, SYSMON)
All auditable events that are initiated by a user that holds the specified
authority, even if that authority is unnecessary for the event, are audited
according to the audit policy.

The security administrator can create multiple audit policies. For example, your
company might want a policy for auditing sensitive data and a policy for auditing
the activity of users holding DBADM authority. If multiple audit policies are in
effect for a statement, all events required to be audited by each of the audit
policies are audited (but audited only once). For example, if the database's audit
policy requires auditing successful EXECUTE events for a particular table and the
user's audit policy requires auditing failures of EXECUTE events for that same
table, both successful and failed attempts at accessing that table are audited.

For a specific object, there can only be one audit policy in effect. For example, you
cannot have multiple audit policies associated with the same table at the same
time.

An audit policy cannot be associated with a view or a typed table. Views that
access a table that has an associated audit policy are audited according to the
underlying table's policy.

The audit policy that applies to a table does not automatically apply to a MQT
based on that table. If you associate an audit policy with a table, associate the
same policy with any MQT based on that table.

Auditing performed during a transaction is done based on the audit policies and
their associations at the start of the transaction. For example, if the security
administrator associates an audit policy with a user and that user is in a
transaction at the time, the audit policy does not affect any remaining statements
performed within that transaction. Also, changes to an audit policy do not take
effect until they are committed. If the security administrator issues an ALTER
AUDIT POLICY statement, it does not take effect until the statement is committed.

94 Database Security Guide

The security administrator uses the CREATE AUDIT POLICY statement to create
an audit policy, and the ALTER AUDIT POLICY statement to modify an audit
policy. These statements can specify:
v The status values for events to be audited: None, Success, Failure, or Both.

Only auditable events that match the specified status value are audited.
v The server behavior when errors occur during auditing.

The security administrator uses the AUDIT statement to associate an audit policy
with the current database or with a database object, at the current server. Any time
the object is in use, it is audited according to this audit policy.

To delete an audit policy, the security administrator uses the DROP statement. You
cannot drop an audit policy if it is associated with any object. Use the AUDIT
REMOVE statement to remove any remaining association with an object. To add
metadata to an audit policy, the security administrator uses the COMMENT
statement.

Events generated before a full connection has been established

For some events generated during connect and a switch user operation, the only
audit policy information available is the policy that is associated with the database.
These events are shown in the following table:

Table 4. Connection events

Event
Audit
category Comment

CONNECT CONTEXT

CONNECT_RESET CONTEXT

AUTHENTICATION VALIDATE This includes authentication during both
connect and switch user within a trusted
connection.

CHECKING_FUNC CHECKING The access attempted is SWITCH_USER.

These events are audited based only on the audit policy associated with the
database and not with audit policies associated with any other object such as a
user, their groups, or authorities. For the CONNECT and AUTHENTICATION
events that occur during connect, the instance-level audit settings are used until
the database is activated. The database is activated either during the first
connection or when the ACTIVATE DATABASE command is issued.

Effect of switching user

If a user is switched within a trusted connection, no remnants of the original user
are left behind. In this case, the audit policies associated with the original user are
no longer considered, and the applicable audit policies are re-evaluated according
to the new user. Any audit policy associated with the trusted connection is still in
effect.

If a SET SESSION USER statement is used, only the session authorization ID is
switched. The audit policy of the authorization ID of the original user (the system
authorization ID) remains in effect and the audit policy of the new user is used as
well. If multiple SET SESSION USER statements are issued within a session, only
the audit policies associated with the original user (the system authorization ID)

Chapter 1. DB2 security model 95

and the current user (the session authorization ID) are considered.

Data definition language restrictions

The following data definition language (DDL) statements are called AUDIT
exclusive SQL statements:
v AUDIT
v CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY
v DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context

being dropped is associated with an audit policy

AUDIT exclusive SQL statements have some restrictions in their use:
v Each statement must be followed by a COMMIT or ROLLBACK.
v These statements cannot be issued within a global transaction, for example an

XA transaction.

Only one uncommitted AUDIT exclusive DDL statement is allowed at a time
across all partitions. If an uncommitted AUDIT exclusive DDL statement is
executing, subsequent AUDIT exclusive DDL statements wait until the current
AUDIT exclusive DDL statement commits or rolls back.

Note: Changes are written to the catalog, but do not take effect until COMMIT,
even for the connection that issues the statement.

Example of auditing any access to a specific table

Consider a company where the EMPLOYEE table contains extremely sensitive
information and the company wants to audit any and all SQL access to the data in
that table. The EXECUTE category can be used to track all access to a table; it
audits the SQL statement, and optionally the input data value provided at
execution time for that statement.

There are two steps to track activity on the table. First, the security administrator
creates an audit policy that specifies the EXECUTE category, and then the security
administrator associates that policy with the table:
CREATE AUDIT POLICY SENSITIVEDATAPOLICY

CATEGORIES EXECUTE STATUS BOTH ERROR TYPE AUDIT
COMMIT

AUDIT TABLE EMPLOYEE USING POLICY SENSITIVEDATAPOLICY
COMMIT

Example of auditing any actions by SYSADM or DBADM

In order to complete their security compliance certification, a company must show
that any and all activities within the database by those people holding system
administration (SYSADM) or database administrative (DBADM) authority can be
monitored.

To capture all actions within the database, both the EXECUTE and SYSADMIN
categories should be audited. The security administrator creates an audit policy
that audits these two categories. The security administrator can use the AUDIT
statement to associate this audit policy with the SYSADM and DBADM authorities.
Any user that holds either SYSADM or DBADM authority will then have any
auditable events logged. The following example shows how to create such an audit
policy and associate it with the SYSADM and DBADM authorities:

96 Database Security Guide

CREATE AUDIT POLICY ADMINSPOLICY CATEGORIES EXECUTE STATUS BOTH,
SYSADMIN STATUS BOTH ERROR TYPE AUDIT

COMMIT
AUDIT SYSADM, DBADM USING POLICY ADMINSPOLICY
COMMIT

Example of auditing any access by a specific role

A company has allowed its web applications access to their corporate database.
The exact individuals using the web applications are unknown. Only the role that
is used is known and that role is used to manage the database authorizations. The
company wants to monitor the actions of anyone who is a member of that role in
order to examine the requests they are submitting to the database and to ensure
that they only access the database through the web applications.

The EXECUTE category contains the necessary level of auditing to track the
activity of the users for this situation. The first step is to create the appropriate
audit policy and associate it with the roles that are used by the web applications
(in this example, the roles are TELLER and CLERK):
CREATE AUDIT POLICY WEBAPPPOLICY CATEGORIES EXECUTE WITH DATA

STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT ROLE TELLER, ROLE CLERK USING POLICY WEBAPPPOLICY
COMMIT

Example of enabling auditing for a database

A company wants to determine who is making DDL changes (example: ALTER
TABLE) on the database named SAMPLE.
CONNECT TO SAMPLE

CREATE AUDIT POLICY ALTPOLICY CATEGORIES AUDIT STATUS BOTH,
OBJMAINT STATUS BOTH, CHECKING STATUS BOTH,
EXECUTE STATUS BOTH, ERROR TYPE NORMAL

AUDIT DATABASE USING POLICY ALTPOLICY

Storage and analysis of audit logs
Archiving the audit log moves the active audit log to an archive directory while
the server begins writing to a new, active audit log. Later, you can extract data
from the archived log into delimited files and then load data from these files into
DB2 database tables for analysis.

Configuring the location of the audit logs allows you to place the audit logs on a
large, high-speed disk, with the option of having separate disks for each member
in a partitioned database environment. In a partitioned database environment, the
path for the active audit log can be a directory that is unique to each member.
Having a unique directory for each member helps to avoid file contention, because
each member is writing to a different disk.

The default path for the audit logs on Windows operating systems is
instance\security\auditdata and on Linux and UNIX operating systems is
instance/security/auditdata. If you do not want to use the default location, you
can choose different directories (you can create new directories on your system to
use as alternative locations, if they do not already exist). To set the path for the
active audit log location and the archived audit log location, use the db2audit
configure command with the datapath and archivepath parameters, as shown in
this example:

Chapter 1. DB2 security model 97

db2audit configure datapath /auditlog archivepath /auditarchive

The audit log storage locations you set using db2audit apply to all databases in the
instance.

Note: If there are multiple instances on the server, then each instance should each
have separate data and archive paths.

The path for active audit logs (datapath) in a partitioned database
environment

In a partitioned database environment, the same active audit log location (set by
the datapath parameter) must be used on each partition. There are two ways to
accomplish this:
1. Use database partition expressions when you specify the datapath parameter.

Using database partition expressions allows the partition number to be
included in the path of the audit log files and results in a different path on
each database partition.

2. Use a shared drive that is the same on all members.

You can use database partition expressions anywhere within the value you specify
for the datapath parameter. For example, on a three member system, where the
database partition number is 10, the following command:
db2audit configure datapath ’/pathForNode $N’

will use the following paths:
v /pathForNode10

v /pathForNode20

v /pathForNode30

Note: You cannot use database partition expressions to specify the archive log file
path (archivepath parameter).

Archiving active audit logs

The system administrator can use the db2audit tool to archive both instance and
database audit logs as well as to extract audit data from archived logs of either
type.

The security administrator, or a user to whom the security administrator has
granted EXECUTE privilege on the audit routines, can archive the active audit log
by running the SYSPROC.AUDIT_ARCHIVE stored procedure. To extract data
from the log and load it into delimited files, they can use the
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure.

These are the steps to archive and extract the audit logs using the audit routines:
1. Schedule an application to perform regular archives of the active audit log

using the stored procedure SYSPROC.AUDIT_ARCHIVE.
2. Determine which archived log files are of interest. Use the

SYSPROC.AUDIT_LIST_LOGS table function to list all of the archived audit
logs.

3. Pass the file name as a parameter to the SYSPROC.AUDIT_DELIM_EXTRACT
stored procedure to extract data from the log and load it into delimited files.

4. Load the audit data into DB2 database tables for analysis.

98 Database Security Guide

The archived log files do not need to be immediately loaded into tables for
analysis; they can be saved for future analysis. For example, they may only need to
be looked at when a corporate audit is taking place.

If a problem occurs during archive, such as running out of disk space in the
archive path, or the archive path does not exist, the archive process fails and an
interim log file with the file extension .bk is generated in the audit log data path,
for example, db2audit.instance.log.0.20070508172043640941.bk. After the
problem is resolved (by allocating sufficient disk space in the archive path, or by
creating the archive path) you must move this interim log to the archive path.
Then, you can treat it in the same way as a successfully archived log.

Archiving active audit logs in a partitioned database environment

In a partitioned database environment, if the archive command is issued while the
instance is running, the archive process automatically runs on every member. The
same timestamp is used in the archived log file name on all members. For
example, on a three member system, where the database partition number is 10,
the following command:
db2audit archive to /auditarchive

creates the following files:
v /auditarchive/db2audit.log.10.timestamp

v /auditarchive/db2audit.log.20.timestamp

v /auditarchive/db2audit.log.30.timestamp

If the archive command is issued while the instance is not running, you can control
on which member the archive is run by one of the following methods:
v Use the node option with the db2audit command to perform the archive for the

current member only.
v Use the db2_all command to run the archive on all members.

For example:
db2_all db2audit archive node to /auditarchive

This sets the DB2NODE environment variable to indicate on which members the
command is invoked.

Alternatively, you can issue an individual archive command on each member
separately. For example:
v On member 10:

db2audit archive node 10 to /auditarchive

v On member 20:
db2audit archive node 20 to /auditarchive

v On member 30:
db2audit archive node 30 to /auditarchive

Note: When the instance is not running, the timestamps in the archived audit log
file names are not the same on each member.

Note: It is recommended that the archive path is shared across all members, but it
is not required.

Chapter 1. DB2 security model 99

Note: The AUDIT_DELIM_EXTRACT stored procedure and AUDIT_LIST_LOGS
table function can only access the archived log files that are visible from the
current (coordinator) member.

Example of archiving a log and extracting data to a table

To ensure their audit data is captured and stored for future use, a company needs
to create a new audit log every six hours and archive the current audit log to a
WORM drive. The company schedules the following call to the
SYSPROC.AUDIT_ARCHIVE stored procedure to be issued every six hours by the
security administrator, or by a user to whom the security administrator has
granted EXECUTE privilege on the AUDIT_ARCHIVE stored procedure. The path
to the archived log is the default archive path, /auditarchive, and the archive runs
on all members:
CALL SYSPROC.AUDIT_ARCHIVE(’/auditarchive’, -2)

As part of their security procedures, the company has identified and defined a
number of suspicious behaviors or disallowed activities that it needs to watch for
in the audit data. They want to extract all the data from the one or more audit
logs, place it in a relational table, and then use SQL queries to look for these
activities. The company has decided on appropriate categories to audit and has
associated the necessary audit policies with the database or other database objects.

For example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure to extract the archived audit logs for all categories from all members
that were created with a timestamp in April 2006, using the default delimiter:
CALL SYSPROC.AUDIT_DELIM_EXTRACT(

’’, ’’, ’/auditarchive’, ’db2audit.%.200604%’, ’’)

In another example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure to extract the archived audit records with success events from the
EXECUTE category and failure events from the CHECKING category, from a file
with the timestamp they are interested in:
CALL SYSPROC.AUDIT_DELIM_EXTRACT(’’, ’’, ’/auditarchive’,

’db2audit.%.20060419034937’, ’category
execute status success, checking status failure);

Audit log file names:

The audit log files have names that distinguish whether they are instance-level or
database-level logs and which partition they originate from in a partitioned
database environment. Archived audit logs have the timestamp of when the
archive command was run appended to their file name.

Active audit log file names

In a partitioned database environment, the path for the active audit log can be a
directory that is unique to each partition so that each partition writes to an
individual file. In order to accurately track the origin of audit records, the partition
number is included as part of the audit log file name. For example, on partition 20,
the instance level audit log file name is db2audit.instance.log.20. For a database
called testdb in this instance, the audit log file is db2audit.db.testdb.log.20.

In a non-partitioned database environment the partition number is considered to
be 0 (zero). In this case, the instance level audit log file name is

100 Database Security Guide

db2audit.instance.log.0. For a database called testdb in this instance, the audit
log file is db2audit.db.testdb.log.0.

Archived audit log file names

When the active audit log is archived, the current timestamp in the following
format is appended to the filename: YYYYMMDDHHMMSS (where YYYY is the
year, MM is the month, DD is the day, HH is the hour, MM is the minutes, and SS
is the seconds.

The file name format for an archive audit log depends on the level of the audit log:

instance-level archived audit log
The file name of the instance-level archived audit log is:
db2audit.instance.log.partition.YYYYMMDDHHMMSS.

database-level archived audit log
The file name of the database-level archived audit log is:
db2audit.dbdatabase.log.partition.YYYYMMDDHHMMSS.

In a non-partitioned database environment, the value for partition is 0
(zero).

The timestamp represents the time that the archive command was run, therefore it
does not always precisely reflect the time of the last record in the log. The archived
audit log file may contain records with timestamps a few seconds later than the
timestamp in the log file name because:
v When the archive command is issued, the audit facility waits for the writing of

any in-process records to complete before creating the archived log file.
v In a multi-machine environment, the system time on a remote machine may not

be synchronized with the machine where the archive command is issued.

In a partitioned database environment, if the server is running when archive is
run, the timestamp is consistent across partitions and reflects the timestamp
generated at the partition at which the archive was performed.

Creating tables to hold the DB2 audit data:

Before you can work with audit data in database tables, you need to create the
tables to hold the data. You should consider creating these tables in a separate
schema to isolate the data in the tables from unauthorized users.

Before you begin

v See the CREATE SCHEMA statement for the authorities and privileges that you
require to create a schema.

v See the CREATE TABLE statement for the authorities and privileges that you
require to create a table.

v Decide which table space you want to use to hold the tables. (This topic does
not describe how to create table spaces.)

Note: The format of the tables you need to create to hold the audit data might
change from release to release. New columns might be added or the size of an
existing column might change. The script, db2audit.ddl, creates tables of the
correct format to contain the audit records.

Chapter 1. DB2 security model 101

About this task

The examples that follow show how to create the tables to hold the records from
the delimited files. If you want, you can create a separate schema to contain these
tables.

If you do not want to use all of the data that is contained in the files, you can omit
columns from the table definitions, or bypass creating certain tables, as required. If
you omit columns from the table definitions, you must modify the commands that
you use to load data into these tables.

Procedure

1. Issue the db2 command to open a DB2 command window.
2. Optional: Create a schema to hold the tables. For this example, the schema is

called AUDIT:
CREATE SCHEMA AUDIT

3. Optional: If you created the AUDIT schema, switch to the schema before
creating any tables:

SET CURRENT SCHEMA = ’AUDIT’

4. Run the script, db2audit.ddl, to create the tables that will contain the audit
records.
The script db2audit.ddl is located in the sqllib/misc directory (sqllib\misc on
Windows). The script assumes that a connection to the database exists and that
an 8K table space is available. The command to run the script is: db2 +o -tf
sqllib/misc/db2audit.ddl The tables that the script creates are: AUDIT,
CHECKING, OBJMAINT, SECMAINT, SYSADMIN, VALIDATE, CONTEXT,
and EXECUTE.

5. After you have created the tables, the security administrator can use the
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, or the system
administrator can use the db2audit extract command, to extract the audit
records from the archived audit log files into delimited files. You can load the
audit data from the delimited files into the database tables you just created.

Loading DB2 audit data into tables:

After you have archived and extracted the audit log file into delimited files, and
you have created the database tables to hold the audit data, you can load the audit
data from the delimited files into the database tables for analysis.

About this task

You use the load utility to load the audit data into the tables. Issue a separate load
command for each table. If you omitted one or more columns from the table
definitions, you must modify the version of the LOAD command that you use to
successfully load the data. Also, if you specified a delimiter character other than
the default when you extracted the audit data, you must also modify the version
of the LOAD command that you use.

Procedure

1. Issue the db2 command to open a DB2 command window.
2. To load the AUDIT table, issue the following command:

LOAD FROM audit.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
INSERT INTO schema.AUDIT

102 Database Security Guide

Note: Specify the DELPRIORITYCHAR modifier to ensure proper parsing of
binary data.

Note: Specify the LOBSINFILE option of the LOAD command (due to the
restriction that any inline data for large objects must be limited to 32K). In
some situations, you might also need to use the LOBS FROM option.

Note: When specifying the file name, use the fully qualified path name. For
example, if you have the DB2 database system installed on the C: drive of a
Windows operating system, you would specify C:\Program
Files\IBM\SQLLIB\instance\security\audit.del as the fully qualified file
name for the audit.del file.

3. To load the CHECKING table, issue the following command:
LOAD FROM checking.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.CHECKING

4. To load the OBJMAINT table, issue the following command:
LOAD FROM objmaint.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.OBJMAINT

5. To load the SECMAINT table, issue the following command:
LOAD FROM secmaint.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.SECMAINT

6. To load the SYSADMIN table, issue the following command:
LOAD FROM sysadmin.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.SYSADMIN

7. To load the VALIDATE table, issue the following command:
LOAD FROM validate.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.VALIDATE

8. To load the CONTEXT table, issue the following command:
LOAD FROM context.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.CONTEXT

9. To load the EXECUTE table, issue the following command:
LOAD FROM execute.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

INSERT INTO schema.EXECUTE

10. After you finish loading the data into the tables, delete the .del files from the
security/auditdata subdirectory of the sqllib directory.

11. When you have loaded the audit data into the tables, you are ready to select
data from these tables for analysis.

What to do next

If you have already populated the tables a first time, and want to do so again, use
the INSERT option to have the new table data added to the existing table data. If
you want to have the records from the previous db2audit extract operation
removed from the tables, load the tables again using the REPLACE option.

Audit archive and extract stored procedures:

The security administrator can use the SYSPROC.AUDIT_ARCHIVE stored
procedure and table function, the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure, and the SYSPROC.AUDIT_LIST_LOGS table function to archive audit
logs and extract data to delimited files.

The security administrator can delegate use of these routines to another user by
granting the user EXECUTE privilege on these routines. Only the security

Chapter 1. DB2 security model 103

administrator can grant EXECUTE privilege on these routines. EXECUTE privilege
WITH GRANT OPTION cannot be granted for these routines (SQLSTATE 42501).

You must be connected to a database in order to use these stored procedures and
table functions to archive or list that database's audit logs.

If you copy the archived files to another database system, and you want to use the
stored procedures and table functions to access them, ensure that the database
name is the same, or rename the files to include the same database name.

These stored procedures and table functions do not archive or list the instance
level audit log. The system administrator must use the db2audit command to
archive and extract the instance level audit log.

You can use these stored procedures and table functions to perform the following
operations:

Table 5. Audit system stored procedures and table functions

Stored procedure and
table function Operation Comments

AUDIT_ARCHIVE Archives the current audit
log.

Takes the archive path as input.
If the archive path is not
supplied, this stored procedure
takes the archive path from the
audit configuration file.

The archive is run on each
member, and a synchronized
timestamp is appended to the
name of the audit log file.

AUDIT_LIST_LOGS Returns a list of the archived
audit logs at the specified
path, for the current
database.

104 Database Security Guide

Table 5. Audit system stored procedures and table functions (continued)

Stored procedure and
table function Operation Comments

AUDIT_
DELIM_EXTRACT

Extracts data from the binary
archived logs and loads it
into delimited files.

The extracted audit records are
placed in a delimited format
suitable for loading into DB2
database tables. The output is
placed in separate files, one for
each category. In addition, the
file auditlobs is created to hold
any large objects that are
included in the audit data. The
file names are:

v audit.del

v checking.del

v objmaint.del

v secmaint.del

v sysadmin.del

v validate.del

v context.del

v execute.del

v auditlobs

If the files already exist, the
output is appended to them.
The auditlobs file is created if
the CONTEXT or EXECUTE
categories are extracted. Only
archived audit logs for the
current database can be
extracted. Only files that are
visible to the coordinator
member are extracted.

Only the instance owner can
delete archived audit logs.

The EXECUTE category for auditing SQL statements
The EXECUTE category allows you to accurately track the SQL statements and
user issues. In Version 9.5 and earlier releases, you had to use the CONTEXT
category to find this information.

As part of a comprehensive security policy, a company can require the ability to
retroactively go back a set number of years and analyze the effects of any
particular request against certain tables in their database. To do this, a company
must institute a policy of archiving their weekly backups and associated log files
such that they can reconstitute the database for any chosen moment in time. Also
required, is sufficient database audit information captured about every request
made against the database to allow, at any future time, the replay and analysis of
any request against the relevant, restored database. This requirement can cover
both static and dynamic SQL statements.

This EXECUTE category captures the SQL statement text as well as the compilation
environment and other values that are needed to replay the statement at a later
date. For example, replaying the statement can show you exactly which rows a

Chapter 1. DB2 security model 105

SELECT statement returned. In order to re-run a statement, the database tables
must first be restored to their state when the statement was issued.

When you audit using the EXECUTE category, the statement text for both static
and dynamic SQL is recorded, as are input parameter markers and host variables.
You can configure the EXECUTE category to be audited with or without input
values.

Note: Global variables are not audited.

The auditing of EXECUTE events takes place at the completion of the event (for
SELECT statements this is on cursor close). The status that the event completed
with is also stored. Because EXECUTE events are audited at completion,
long-running queries do not immediately appear in the audit log.

Note: The preparation of a statement is not considered part of the execution. Most
authorization checks are performed at prepare time (for example, SELECT
privilege). This means that statements that fail during prepare due to authorization
errors do not generate EXECUTE events.

Statement Value Index, Statement Value Type and Statement Value Data fields may
be repeated for a given execute record. For the report format generated by the
extraction, each record lists multiple values. For the delimited file format, multiple
rows are used. The first row has an event type of STATEMENT and no values.
Following rows have an event type of DATA, with one row for each data value
associated with the SQL statement. You can use the event correlator and
application ID fields to link STATEMENT and DATA rows together. The columns
Statement Text, Statement Isolation Level, and Compilation Environment
Description are not present in the DATA events.

The statement text and input data values that are audited are converted into the
database code page when they are stored on disk (all audited fields are stored in
the database code page). No error is returned if the code page of the input data is
not compatible with the database code page; the unconverted data will be logged
instead. Because each database has it's own audit log, databases having different
code pages does not cause a problem.

ROLLBACK and COMMIT are audited when executed by the application, and also
when issued implicitly as part of another command, such as BIND.

After an EXECUTE event has been audited due to access to an audited table, all
statements that affect which other statements are executed within a unit of work,
are audited. These statements are COMMIT, ROLLBACK, ROLLBACK TO
SAVEPOINT and SAVEPOINT.

Savepoint ID field

You can use the Savepoint ID field to track which statements were affected by a
ROLLBACK TO SAVEPOINT statement. An ordinary DML statement (such as
SELECT, INSERT, and so on) has the current savepoint ID audited. However, for
the ROLLBACK TO SAVEPOINT statement, the savepoint ID that is rolled back to
will be audited instead. Therefore, every statement with a savepoint ID greater
than or equal to that ID will be rolled back, as demonstrated by the following
example. The table shows the sequence of statements run; all events with a
Savepoint ID greater than or equal to 2 will be rolled back. Only the value of 3
(from the first INSERT statement) is inserted into the table T1.

106 Database Security Guide

Table 6. Sequence of statements to demonstrate effect of ROLLBACK TO SAVEPOINT
statement

Statement Savepoint ID

INSERT INTO T1 VALUES (3) 1

SAVEPOINT A 2

INSERT INTO T1 VALUES (5) 2

SAVEPOINT B 3

INSERT INTO T1 VALUES (6) 3

ROLLBACK TO SAVEPOINT A 2

COMMIT

WITH DATA option

Not all input values are audited when you specify the WITH DATA option. LOB,
LONG, XML and structured type parameters appear as NULL.

Date, time, and timestamp fields are recorded in ISO format.

If WITH DATA is specified in one policy, but WITHOUT DATA is specified in
another policy associated with objects involved in the execution of the SQL
statement, then WITH DATA takes precedence and data is audited for that
particular statement. For example, if the audit policy associated with a user
specifies WITHOUT DATA, but the policy associated with a table specifies WITH
DATA, when that user accesses that table, the input data used for the statement is
audited.

You are not able to determine which rows were modified on a positioned-update
or positioned-delete statement. Only the execution of the underlying SELECT
statement is logged, not the individual FETCH. It is not possible from the
EXECUTE record to determine which row the cursor is on when the statement is
issued. When replaying the statement at a later time, it is only possible to issue the
SELECT statement to see what range of rows may have been affected.

Example of replaying past activities

Consider in this example that as part of their comprehensive security policy, a
company requires that they retain the ability to retroactively go back up to seven
years to analyze the effects of any particular request against certain tables in their
database. To do this, they institute a policy of archiving their weekly backups and
associated log files such that they can reconstitute the database for any chosen
moment in time. They require that the database audit capture sufficient
information about every request made against the database to allow the replay and
analysis of any request against the relevant, restored database. This requirement
covers both static and dynamic SQL statements.

This example shows the audit policy that must be in place at the time the SQL
statement is issued, and the steps to archive the audit logs and later to extract and
analyze them.
1. Create an audit policy that audits the EXECUTE category and apply this policy

to the database:

Chapter 1. DB2 security model 107

CREATE AUDIT POLICY STATEMENTS CATEGORIES EXECUTE WITH DATA
STATUS BOTH ERROR TYPE AUDIT

COMMIT

AUDIT DATABASE USING POLICY STATEMENTS
COMMIT

2. Regularly archive the audit log to create an archive copy.
The following statement should be run by the security administrator, or a user
to whom they grant EXECUTE privilege for the SYSPROC.AUDIT_ARCHIVE
stored procedure, on a regular basis, for example, once a week or once a day,
depending on the amount of data logged. These archived files can be kept for
whatever period is required. The AUDIT_ARCHIVE procedure is called with
two input parameters: the path to the archive directory and -2, to indicate that
the archive should be run on all members:
CALL SYSPROC.AUDIT_ARCHIVE(’/auditarchive’, -2)

3. The security administrator, or a user to whom they grant EXECUTE privilege
for the SYSPROC.AUDIT_LIST_LOGS table function, uses AUDIT_LIST_LOGS
to examine all of the available audit logs from April 2006, to determine which
logs may contain the necessary data:
SELECT FILE FROM TABLE(SYSPROC.AUDIT_LIST_LOGS(’/auditarchive’))

AS T WHERE FILE LIKE ’db2audit.dbname.log.0.200604%’
FILE

...
db2audit.dbname.log.0.20060418235612
db2audit.dbname.log.0.20060419234937
db2audit.dbname.log.0.20060420235128

4. From this output, the security administrator observes that the necessary logs
should be in one file: db2audit.dbname.log.20060419234937. The timestamp
shows this file was archived at the end of the day for the day the auditors
want to see.
The security administrator, or a user to whom they grant EXECUTE privilege
for the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, uses this
filename as input to AUDIT_DELIM_EXTRACT to extract the audit data into
delimited files. The audit data in these files can be loaded into DB2 database
tables, where it can be analyzed to find the particular statement the auditors
are interested in. Even though the auditors are only interested in a single SQL
statement, multiple statements from the unit of work may need to be examined
in case they have any impact on the statement of interest.

5. In order to replay the statement, the security administrator must take the
following actions:
v Determine the exact statement to be issued from the audit record.
v Determine the user who issued the statement from the audit record.
v Re-create the exact permissions of the user at the time they issued the

statement, including any LBAC protection.
v Reproduce the compilation environment, by using the compilation

environment column in the audit record in combination with the SET
COMPILATION ENVIRONMENT statement.

v Restore the database to its exact state at the time the statement was issued.

To avoid disturbing the production system, any restore of the database and
replay of the statement should be done on a second database system. The
security administrator, running as the user who issued the statement, can
reissue the statement as found in the statement text with any input variables
that are provided in the statement value data elements.

108 Database Security Guide

Enabling replay of past activities:

As part of a comprehensive security policy, a company can require the ability to
retroactively go back a set number of years and analyze the effects of any
particular request against certain tables in their database.

Before you begin

A company must institute a policy of archiving their weekly backups and
associated log files such that they can reconstitute the database for any chosen
moment in time.

About this task

To allow, at any future time, the replay and analysis of any request against the
relevant, restored database, sufficient database audit information must be captured
about every request made against the database. This requirement can cover both
static and dynamic SQL statements. The EXECUTE category, when logged WITH
DATA contains the necessary information to replay past SQL statements, assuming
that the data in the database is restored to the state it was when the statement was
issued.

Restrictions

The following authority and privileges are required:
v SECADM authority is required to create the audit policies,
v EXECUTE privilege is required for the audit routines and procedures.

Procedure

To enable replay of past activities, as the SECADM:
1. Create an audit policy that audits the EXECUTE category and apply this policy

to the database.
CREATE AUDIT POLICY STATEMENTS CATEGORIES EXECUTE WITH DATA

STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT DATABASE USING POLICY STATEMENTS
COMMIT

2. Regularly archive the audit log to create an archive copy. To archive the audit
log, run the following command on a regular basis, specifying the path to the
archive directory and -2 to indicate the archive should be run on all members:
CALL SYSPROC.AUDIT_ARCHIVE(’/auditarchive’, -2)

3. Check that the audit log files were created. These archived files will then be
kept for the number of years specified by the company's business policy. To
check the audit log files run:
SELECT FILE FROM SESSION.AUDIT_ARCHIVE_RESULTS

Results

Your environment is now set up so data and information is archived to allow
future replay of logged database activity.

Replaying past database activities:

Chapter 1. DB2 security model 109

Replaying past database activity is possible if all required data, logs and
information is available. This reference topic shows how a SECADM might replay
past database activity via example.

Description

At some point, company auditors might want to analyze the activities of a
particular user that occurred in the past. The SECADM can use the backup
database images, coupled with the backup logs, and audit logs to reconstitute the
database in question and replay the activity the auditors want to analyze. Suppose
the activities of a particular user that occurred on April 19, 2006 are in question,
the following example shows the flow of how a SECADM would help the auditors
carry out their analysis.

Example

1. The SECADM would issue the AUDIT_LIST_LOGS to find all available audit
logs from April 2006.
SELECT FILE FROM TABLE(SYSPROC.AUDIT_LIST_LOGS(’/auditarchive’))

AS T WHERE FILE LIKE ’db2audit.db.sample.log.0.200604%’
FILENAME

...
db2audit.db.sample.log.0.20060418235612
db2audit.db.sample.log.0.20060419234937
db2audit.db.sample.log.0.20060420235128

2. From this output, the SECADM observes that the necessary logs should be in
the db2audit.db.sample.log.20060419234937 file. The log was taken at the end of
the business day on April 19, 2006.

3. This is used as input to the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure. The arguments passed into the procedure are:
v character delimiter (default),
v output path,
v path to the archived audit logs,
v the filename filter to determine what files are extracted from,
v the status for each category to be extracted, in this case the only category is

EXECUTE.
CALL SYSPROC.AUDIT_DELIM_EXTRACT(’’, ’’, ’/auditarchive’,

’db2audit.db.sample.log.0.20060419234937’,
’category execute’)

4. The audit data is now in delimited files. The SECADM will load the audit data
from the EXECUTE category into the AUDITDATA.EXECUTE table. The table
can be created by executing the following:
db2 CONNECT TO sample
db2 SET CURRENT SCHEMA AUDITDATA
db2 -tvf sqllib/misc/db2audit.ddl

5. Next, load the data from execute.del to the AUDITDATA.EXECUTE table. The
do this run the following command:
db2 LOAD FROM FILE execute.del OF DEL MODIFIED BY LOBSINFILE

INSERT INTO AUDITDATA.EXECUTE

6. The SECADM now has all the audit data in the audit tables located within the
AUDITDATA schema. This data can now be analyzed to find the particular
statement the auditors are interested in.

110 Database Security Guide

Note: Even though the auditors are only interested in a single SQL statement,
multiple statements from the unit of work may need to be examined in case
they have any impact on the statement of interest.

7. In order to replay the statement, the following actions must be taken:
v The exact statement issued must be determined from the audit record.
v The user who issued the statement must be determined from the audit

record.
v The exact permissions of the user at the time they issued the statement must

be re-created, including any LBAC protection.
v The compilation environment must be reproduced, by using the compilation

environment column in the audit record in combination with the SET
COMPILATION ENVIRONMENT statement.

v The exact state of the database at the time the statement was issued must be
re-created.

Note: So as not to disturb the production system, any restore of the database
and replay of the statement should be done on a secondary database system.

8. The SECADM would need to roll forward to the time the statement will start
executing. The statement local start time (local_start_time) is part of the
EXECUTE audit record. Using the following EXECUTE audit record as an
example:
timestamp=2006-04-10-13.20.51.029203;

category=EXECUTE;
audit event=STATEMENT;
event correlator=1;
event status=0;
database=SAMPLE;
userid=smith;
authid=SMITH;
session authid=SMITH;
application id=*LOCAL.prodrig.060410172044;
application name=myapp;
package schema=NULLID;
package name=SQLC2F0A;
package section=201;
uow id=2;
activity id=3;
statement invocation id=0;
statement nesting level=0;
statement text=SELECT * FROM DEPARTMENT WHERE DEPTNO = ? AND DEPTNAME = ?;
statement isolation level=CS;
compilation environment=

isolation level=CS
query optimization=5
min_dec_div_3=NO
degree=1
sqlrules=DB2
refresh age=+00000000000000.000000
schema=SMITH
maintained table type=SYSTEM
resolution timestamp=2006-04-10-13.20.51.000000
federated asynchrony=0;

value index=0;
value type=CHAR;
value data=C01;
value index=1;
value type=VARCHAR;
value index=INFORMATION CENTER;
local_start_time=2006-04-10-13.20.51.021507;

Chapter 1. DB2 security model 111

The rollforward statement would look like this:
ROLLFORWARD DATABASE sample
TO 2006-04-10-13.20.51.021507
USING LOCAL TIME AND COMPLETE

9. The compilation environment needs to be set as well. The compilation
environment variable can be set by the SET COMPILATION ENVIRONMENT
statement. The SECADM, running as the user who issued the statement, can
now replay the statement as found in statement text with any input variables
that are provided in the statement value data elements. Here is a sample
program in C embedded SQL that will set the COMPILATION
ENVIRONMENT and replay the SELECT statement the auditors want to
analyze:
EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS BLOB(1M) hv_blob;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE c1 CURSOR FOR SELECT COMPENVDESC
FROM AUDITDATA.EXECUTE TIMESAMP= ’2006-04-10-13.20.51.029203’;

EXEC SQL DECLARE c2 CURSOR FOR SELECT *
FROM DEPARTMENT
WHERE DEPTNO = ’C01’
AND DEPTNAME = ’INFORMATION CENTER’;

EXEC SQL OPEN c1;

EXEC SQL FETCH c1 INTO :hv_blob;

EXEC SQL SET COMPILATION ENVIRONMENT :hv_blob;

EXEC SQL OPEN c2;

....

EXEC SQL CLOSE c1;
EXEC SQL CLOSE c2;

Audit facility management

Audit facility behavior
This topic provides background information to help you understand how the
timing of writing audit records to the log can affect database performance; how to
manage errors that occur within the audit facility; and how audit records are
generated in different situations.

Controlling the timing of writing audit records to the active log

The writing of the audit records to the active log can take place synchronously or
asynchronously with the occurrence of the events causing the generation of those
records. The value of the audit_buf_sz database manager configuration parameter
determines when the writing of audit records is done.

If the value of audit_buf_sz is zero (0), the writing is done synchronously. The
event generating the audit record waits until the record is written to disk. The wait
associated with each record causes the performance of the DB2 database to
decrease.

If the value of audit_buf_sz is greater than zero, the record writing is done
asynchronously. The value of the audit_buf_sz when it is greater than zero is the

112 Database Security Guide

number of 4 KB pages used to create an internal buffer. The internal buffer is used
to keep a number of audit records before writing a group of them out to disk. The
statement generating the audit record as a result of an audit event will not wait
until the record is written to disk, and can continue its operation.

In the asynchronous case, it could be possible for audit records to remain in an
unfilled buffer for some time. To prevent this from happening for an extended
period, the database manager forces the writing of the audit records regularly. An
authorized user of the audit facility can also flush the audit buffer with an explicit
request. Also, the buffers are automatically flushed during an archive operation.

There are differences when an error occurs dependent on whether there is
synchronous or asynchronous record writing. In asynchronous mode, there might
be some records lost because the audit records are buffered before being written to
disk. In synchronous mode, there might be one record lost because the error could
only prevent at most one audit record from being written.

Managing audit facility errors

The setting of the ERRORTYPE audit facility parameter controls how errors are
managed between the DB2 database system and the audit facility. When the audit
facility is active, and the setting of the ERRORTYPE audit facility parameter is
AUDIT, then the audit facility is treated in the same way as any other part of DB2
database. An audit record must be written (to disk in synchronous mode; or to the
audit buffer in asynchronous mode) for an audit event associated with a statement
to be considered successful. Whenever an error is encountered when running in
this mode, a negative SQLCODE is returned to the application for the statement
generating an audit record.

If the error type is set to NORMAL, then any error from db2audit is ignored and the
operation's SQLCODE is returned.

Audit records generated in different situations

Depending on the API or query statement and the audit settings, none, one, or
several audit records might be generated for a particular event. For example, an
SQL UPDATE statement with a SELECT subquery might result in one audit record
containing the results of the authorization check for UPDATE privilege on a table
and another record containing the results of the authorization check for SELECT
privilege on a table.

For dynamic data manipulation language (DML) statements, audit records are
generated for all authorization checking at the time that the statement is prepared.
Reuse of those statements by the same user will not be audited again since no
authorization checking takes place at that time. However, if a change was made to
one of the catalog tables containing privilege information, then in the next unit of
work, the statement privileges for the cached dynamic SQL or XQuery statements
are checked again and one or more new audit records created.

For a package containing only static DML statements, the only auditable event that
could generate an audit record is the authorization check to see if a user has the
privilege to execute that package. The authorization checking and possible audit
record creation required for the static SQL or XQuery statements in the package is
carried out at the time the package is precompiled or bound. The execution of the
static SQL or XQuery statements within the package is auditable using the
EXECUTE category. When a package is bound again either explicitly by the user,

Chapter 1. DB2 security model 113

or implicitly by the system, audit records are generated for the authorization
checks required by the static SQL or XQuery statements.

For statements where authorization checking is performed at statement execution
time (for example, data definition language (DDL), GRANT, and REVOKE
statements), audit records are generated whenever these statements are used.

Note: When executing DDL, the section number recorded for all events (except the
context events) in the audit record will be zero (0) no matter what the actual
section number of the statement might have been.

Audit facility tips and techniques
Best practices for managing your audit include regularly archiving the audit log,
using the error type AUDIT when you create an audit policy, and other tips as
described here.

Archiving the audit log

You should archive the audit log on a regular basis. Archiving the audit log moves
the current audit log to an archive directory while the server begins writing to a
new, active audit log. The name of each archived log file includes a timestamp that
helps you identify log files of interest for later analysis.

For long-term storage, you might want to compress groups of archived files.

For archived audit logs that you are no longer interested in, the instance owner can
simply delete the files from the operating system.

Error handling

When you create an audit policy, you should use the error type AUDIT, unless you
are just creating a test audit policy. For example, if the error type is set to AUDIT,
and an error occurs, such as running out of disk space, then an error is returned.
The error condition must be corrected before any more auditable actions can
continue. However, if the error type was set to NORMAL, the logging would
simply fail and no error is returned to the user. Operation continues as if the error
did not happen.

If a problem occurs during archive, such as running out of disk space in the
archive path, or the archive path does not exist, the archive process fails and an
interim log file with the file extension .bk is generated in the audit log data path,
for example, db2audit.instance.log.0.20070508172043640941.bk. After the
problem is resolved (by allocating sufficient disk space in the archive path, or by
creating the archive path) you must move this interim log to the archive path.
Then, you can treat it in the same way as a successfully archived log.

DDL statement restrictions

Some data definition language (DDL) statements, called AUDIT exclusive SQL
statements, do not take effect until the next unit of work. Therefore, you are
advised to use a COMMIT statement immediately after each of these statements.

The AUDIT exclusive SQL statements are:
v AUDIT
v CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY

114 Database Security Guide

v DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context
being dropped is associated with an audit policy

Table format for holding archived data might change

The security administrator can use the SYSPROC.AUDIT_DEL_EXTRACT stored
procedure, or the system administrator can use the db2audit extract command, to
extract audit records from the archived audit log files into delimited files. You can
load the audit data from the delimited files into DB2 database tables for analysis.
The format of the tables you need to create to hold the audit data might change
from release to release.

Important: The script, db2audit.ddl, creates tables of the correct format to contain
the audit records. You should expect to run db2audit.ddl for each release, as
columns might be added or the size of an existing column might change.

Using CHECKING events

In most cases, when working with CHECKING events, the object type field in the
audit record is the object being checked to see if the required privilege or authority
is held by the user ID attempting to access the object. For example, if a user
attempts to ALTER a table by adding a column, then the CHECKING event audit
record indicates the access attempted was “ALTER” and the object type being
checked was “TABLE” (not the column, because it is table privileges that are
checked).

However, when the checking involves verifying if a database authority exists to
allow a user ID to CREATE or BIND an object, or to DROP an object, then
although there is a check against the database, the object type field will specify the
object being created, bound, or dropped (rather than the database itself).

When creating an index on a table, the privilege to create an index is required,
therefore the CHECKING event audit record has an access attempt type of “index”
rather than “create”.

Audit records created for binding a package

When binding a package that already exists, then an OBJMAINT event audit
record is created for the DROP of the package and then another OBJMAINT event
audit record is created for the CREATE of the new copy of the package.

Using CONTEXT event information after ROLLBACK

Data Definition Language (DDL) might generate OBJMAINT or SECMAINT events
that are logged as successful. It is possible however that following the logging of
the event, a subsequent error might cause a ROLLBACK to occur. This would leave
the object as not created; or the GRANT or REVOKE actions as incomplete. The
use of CONTEXT events becomes important in this case. Such CONTEXT event
audit records, especially the statement that ends the event, indicates the nature of
the completion of the attempted operation.

The load delimiter

When extracting audit records in a delimited format suitable for loading into a
DB2 database table, you should be clear regarding the delimiter used within the
statement text field. This can be done when extracting the delimited file, using:

Chapter 1. DB2 security model 115

db2audit extract delasc delimiter load_delimiter

The load _delimiter can be a single character (such as ") or a four-byte string
representing a hexadecimal value (such as “0x3b”). Examples of valid commands
are:

db2audit extract delasc
db2audit extract delasc delimiter !
db2audit extract delasc delimiter 0x3b

If you have used anything other than the default load delimiter as the delimiter
when extracting, you should use the MODIFIED BY option on the LOAD command. A
partial example of the LOAD command with “0x3b” used as the delimiter follows:

db2 load from context.del of del modified by chardel0x3b replace into ...

This overrides the default load character string delimiter which is " (double quote).

Security model for the db2cluster command
The db2cluster command is the main interface into DB2 cluster services, and as
such acts on both the cluster manager and shared file system cluster provided for
the IBM DB2 pureScale Feature. The db2cluster command options that are
available to a user depend on the user's authority.

In terms of the security model for the db2cluster command, there are three user
groups, broken down by the type of tasks each user group is likely to perform:
v Anyone with a userid on the system

Users in this group are able to use the db2cluster command to report
information about the DB2 pureScale instance, but not to make any changes.

v The SYSADM, SYSCTL or SYSMAINT group
Users in this group are able to use the db2cluster command to keep the
instance up and running, and to perform some administrative tasks on the
cluster manager. By definition, a user in this group is either the userid of the
instance, a member of the primary group of the instance owner, or a member of
a non-primary group of the instance owner. DB2 recommends that normal day
to day activities are performed using a userid with membership in a
non-primary group of the instance owner

v The DB2 cluster services administrator
Users in this group have no requirements to access data in the database; this is
an administrative role used for:
– installation and configuration of the DB2 cluster services portion of DB2
– maintaining clustered instances in the cluster domain and maintaining the

shared file system cluster
The DB2 cluster services administrator role is an end user with access to a
root-owned userid for the operating system; for example, an operating system
administrator. DB2 cluster services can affect all clustered environments, whether
you are using the DB2 pureScale Feature or a partitioned database environment
with integrated HA. Therefore, roles such as DBADM, SECADM, SQLADM,
WLMADM, EXPLAIN, ACCESSCTRL, and DATAACCESS that act on databases,
do not provide the appropriate level of authority for cluster management. The
DB2 cluster services administrator can be the same person as someone with a
userid in the SYSADM, SYSCTL or SYSMAINT groups.

Note: Just because a user has SYSADM privileges, it does not necessarily mean
the user has operating system administration privileges.

116 Database Security Guide

Cluster manager tasks for db2cluster
v Anyone with a userid on the system can retrieve information about the current

state of the cluster domain using the -list and -verify options.
v Users in the SYSADM, SYSMAINT or SYSCTL group can query and change the

preferred primary cluster caching facility using the -list and -set options. As
well, these users can use the -clear -alert option to clear alerts for any of the
hosts, members, and cluster caching facilities in the current instance (as defined
by the DB2INSTANCE registry variable). Users in this group can also create and
delete cluster resources, and repair the cluster manager resource model;
however, it is strongly recommended that these tasks be performed only under
the advisement of DB2 service personnel.

v The DB2 cluster services administrator can perform administrative tasks that
affect DB2 cluster services as a whole across all clustered instances on all hosts
in the cluster domain. This user can perform configuration tasks such as setting
the tiebreaker device and the host failure detection time, using the -set option.
As well, the DB2 cluster services administrator can perform maintenance-related
tasks, such as putting hosts into maintenance mode, using the -enter option, or
committing changes or updates to the cluster manager, using the -commit option.
This user can also perform advanced maintenance operations on the cluster
manager peer domain, such as creating, deleting, starting, or stopping the
domain, and adding or removing hosts; however, it is strongly recommended
that these tasks be performed only under the advisement of DB2 service
personnel.

Shared file system tasks for db2cluster
v Anyone with a userid on the system can retrieve information about the current

state of the cluster domain using the -list and -verify options. These users can
also perform a wide variety of file system operations with the db2cluster
command options, but what they can do is constrained by regular file system
permissions. As long as the userid running the command has read and write
ownership of the device being used, that user can create file systems and add
disks. Once a file system has been created or mounted, access to that file system
is limited to the userid that created it and to the DB2 cluster services
administrator, so only those users can remove, delete, or rebalance a file system.
Either the userid that created it, or the DB2 cluster services administrator can
create directories that are accessible to other users, much as with a normal file
system.

v The DB2 cluster services administrator can perform administrative tasks that
affect DB2 cluster services as a whole across all clustered instances on all hosts
in the cluster domain. This user can perform change options for the tiebreaker
device, using the -set option. As well, the DB2 cluster services administrator
can perform maintenance-related tasks, such as putting hosts into maintenance
mode, using the -enter option, or committing changes or updates to the shared
file system, using the -commit option. This user can also perform advanced
maintenance operations on the shared file system cluster, such as creating,
deleting, starting, or stopping the domain, and adding or removing hosts;
however, it is strongly recommended that these tasks be performed only under
the advisement of DB2 service personnel.

Chapter 1. DB2 security model 117

118 Database Security Guide

Chapter 2. Roles

Roles simplify the administration and management of privileges by offering an
equivalent capability as groups but without the same restrictions.

A role is a database object that groups together one or more privileges and can be
assigned to users, groups, PUBLIC, or other roles by using a GRANT statement, or
can be assigned to a trusted context by using a CREATE TRUSTED CONTEXT or
ALTER TRUSTED CONTEXT statement. A role can be specified for the
SESSION_USER ROLE connection attribute in a workload definition.

Roles provide several advantages that make it easier to manage privileges in a
database system:
v Security administrators can control access to their databases in a way that

mirrors the structure of their organizations (they can create roles in the database
that map directly to the job functions in their organizations).

v Users are granted membership in the roles that reflect their job responsibilities.
As their job responsibilities change, their membership in roles can be easily
granted and revoked.

v The assignment of privileges is simplified. Instead of granting the same set of
privileges to each individual user in a particular job function, the administrator
can grant this set of privileges to a role representing that job function and then
grant that role to each user in that job function.

v A role's privileges can be updated and all users who have been granted that role
receive the update; the administrator does not need to update the privileges for
every user on an individual basis.

v The privileges and authorities granted to roles are always used when you create
views, triggers, materialized query tables (MQTs), static SQL and SQL routines,
whereas privileges and authorities granted to groups (directly or indirectly) are
not used.
This is because the DB2 database system cannot determine when membership in
a group changes, as the group is managed by third-party software (for example,
the operating system or an LDAP directory). Because roles are managed inside
the database, the DB2 database system can determine when authorization
changes and act accordingly. Roles granted to groups are not considered, due to
the same reason groups are not considered.

v All the roles assigned to a user are enabled when that user establishes a
connection, so all privileges and authorities granted to roles are taken into
account when a user connects. Roles cannot be explicitly enabled or disabled.

v The security administrator can delegate management of a role to others.

All DB2 privileges and authorities that can be granted within a database can be
granted to a role. For example, a role can be granted any of the following
authorities and privileges:
v DBADM, SECADM, DATAACCESS, ACCESSCTRL, SQLADM, WLMADM,

LOAD, and IMPLICIT_SCHEMA database authorities
v CONNECT, CREATETAB, CREATE_NOT_FENCED, BINDADD,

CREATE_EXTERNAL_ROUTINE, or QUIESCE_CONNECT database authorities
v Any database object privilege (including CONTROL)

© Copyright IBM Corp. 2013 119

A user's roles are automatically enabled and considered for authorization when a
user connects to a database; you do not need to activate a role by using the SET
ROLE statement. For example, when you create a view, a materialized query table
(MQT), a trigger, a package, or an SQL routine, the privileges that you gain
through roles apply. However, privileges that you gain through roles granted to
groups of which you are a member do not apply.

A role does not have an owner. The security administrator can use the WITH
ADMIN OPTION clause of the GRANT statement to delegate management of the
role to another user, so that the other user can control the role membership.

Restrictions

There are a few restrictions in the use of roles:
v A role cannot own database objects.
v Permissions and roles granted to groups are not considered when you create the

following database objects:
– Packages containing static SQL
– Views
– Materialized query tables (MQT)
– Triggers
– SQL Routines

Only roles granted to the user creating the object or to PUBLIC, directly or
indirectly (such as through a role hierarchy), are considered when creating these
objects.

Creating and granting membership in roles
The security administrator holds the authority to create, drop, grant, revoke, and
comment on a role. The security administrator uses the GRANT (Role) statement to
grant membership in a role to an authorization ID and uses the REVOKE (Role)
statement to revoke membership in a role from an authorization ID.

The security administrator can delegate the management of membership in a role
to an authorization ID by granting the authorization ID membership in the role
with the WITH ADMIN OPTION. The WITH ADMIN OPTION clause of the
GRANT (Role) statement gives another user the ability to:
v Grant roles to others.
v Revoke roles from others.
v Comment on the role.

The WITH ADMIN OPTION clause does not give the ability to:
v Drop the role.
v Revoke the WITH ADMIN OPTION for a role from an authorization ID.
v Grant WITH ADMIN OPTION to someone else (if you do not hold SECADM

authority).

After the security administrator has created a role, the database administrator can
use the GRANT statement to assign authorities and privileges to the role. All DB2
privileges and authorities that can be granted within a database can be granted to
a role. Instance level authorities, such as SYSADM authority, cannot be assigned to
a role.

120 Database Security Guide

The security administrator, or any user who the security administrator has granted
membership in a role with WITH ADMIN OPTION can use the GRANT (Role)
statement to grant membership in that role to other users, groups, PUBLIC or
roles. A user may have been granted membership in a role with WITH ADMIN
OPTION either directly, or indirectly through PUBLIC, a group or a role.

All the roles assigned to a user are enabled when that user establishes a session.
All the privileges and authorities associated with a user's roles are taken into
account when the DB2 database system checks for authorization. Some database
systems use the SET ROLE statement to activate a particular role. The DB2
database system supports SET ROLE to provide compatibility with other products
using the SET ROLE statement. In a DB2 database system, the SET ROLE
statement checks whether the session user is a member of the role and returns an
error if they are not.

To revoke a user's membership in a role, the security administrator, or a user who
holds WITH ADMIN OPTION privilege on the role, uses the REVOKE (Role)
statement.

Example

A role has a certain set of privileges and a user who is granted membership in this
role inherits those privileges. This inheritance of privileges eliminates managing
individual privileges when reassigning the privileges of one user to another user.
The only operations required when using roles is to revoke membership in the role
from one user and grant membership in the role to the other user.

For example, the employees BOB and ALICE, working in department DEV, have
the privilege to SELECT on the tables SERVER, CLIENT and TOOLS. One day,
management decides to move them to a new department, QA, and the database
administrator has to revoke their privilege to select on tables SERVER, CLIENT
and TOOLS. Department DEV later hires a new employee, TOM, and the database
administrator has to grant SELECT privilege on tables SERVER, CLIENT and
TOOLS to TOM.

When using roles, the following steps occur:
1. The security administrator creates a role, DEVELOPER:

CREATE ROLE DEVELOPER

2. The database administrator (who holds DBADM authority) grants SELECT on
tables SERVER, CLIENT, and TOOLS to role DEVELOPER:
GRANT SELECT ON TABLE SERVER TO ROLE DEVELOPER
GRANT SELECT ON TABLE CLIENT TO ROLE DEVELOPER
GRANT SELECT ON TABLE TOOLS TO ROLE DEVELOPER

3. The security administrator grants the role DEVELOPER to the users in
department DEV, BOB and ALICE:
GRANT ROLE DEVELOPER TO USER BOB, USER ALICE

4. When BOB and ALICE leave department DEV, the security administrator
revokes the role DEVELOPER from users BOB and ALICE:
REVOKE ROLE DEVELOPER FROM USER BOB, USER ALICE

5. When TOM is hired in department DEV, the security administrator grants the
role DEVELOPER to user TOM:
GRANT ROLE DEVELOPER TO USER TOM

Chapter 2. Roles 121

Role hierarchies
A role hierarchy is formed when one role is granted membership in another role.

A role contains another role when the other role is granted to the first role. The
other role inherits all of the privileges of the first role. For example, if the role
DOCTOR is granted to the role SURGEON, then SURGEON is said to contain
DOCTOR. The role SURGEON inherits all the privileges of role DOCTOR.

Cycles in role hierarchies are not allowed. A cycle occurs if a role is granted in
circular way such that one role is granted to another role and that other role is
granted to the original role. For example, the role DOCTOR is granted to role
SURGEON, and then the role SURGEON is granted back to the role DOCTOR. If
you create a cycle in a role hierarchy, an error is returned (SQLSTATE 428GF).

Example of building a role hierarchy

The following example shows how to build a role hierarchy to represent the
medical levels in a hospital.

Consider the following roles: DOCTOR, SPECIALIST, and SURGEON. A role
hierarchy is built by granting a role to another role, but without creating cycles.
The role DOCTOR is granted to role SPECIALIST, and role SPECIALIST is granted
to role SURGEON.

Granting role SURGEON to role DOCTOR would create a cycle and is not allowed.

The security administrator runs the following SQL statements to build the role
hierarchy:
CREATE ROLE DOCTOR
CREATE ROLE SPECIALIST
CREATE ROLE SURGEON

GRANT ROLE DOCTOR TO ROLE SPECIALIST

GRANT ROLE SPECIALIST TO ROLE SURGEON

Effect of revoking privileges from roles
When privileges are revoked, this can sometimes cause dependent database objects,
such as views, packages or triggers, to become invalid or inoperative.

The following examples show what happens to a database object when some
privileges are revoked from an authorization identifier and privileges are held
through a role or through different means.

Example of revoking privileges from roles
1. The security administrator creates the role DEVELOPER and grants the user

BOB membership in this role:
CREATE ROLE DEVELOPER
GRANT ROLE DEVELOPER TO USER BOB

2. User ALICE creates a table, WORKITEM:
CREATE TABLE WORKITEM (x int)

3. The database administrator grants SELECT and INSERT privileges on table
WORKITEM to PUBLIC and also to the role DEVELOPER:

122 Database Security Guide

GRANT SELECT ON TABLE ALICE.WORKITEM TO PUBLIC
GRANT INSERT ON TABLE ALICE.WORKITEM TO PUBLIC
GRANT SELECT ON TABLE ALICE.WORKITEM TO ROLE DEVELOPER
GRANT INSERT ON TABLE ALICE.WORKITEM TO ROLE DEVELOPER

4. User BOB creates a view, PROJECT, that uses the table WORKITEM, and a
package, PKG1, that depends on the table WORKITEM:
CREATE VIEW PROJECT AS SELECT * FROM ALICE.WORKITEM
PREP emb001.sqc BINDFILE PACKAGE USING PKG1 VERSION 1

5. If the database administrator revokes SELECT privilege on table
ALICE.WORKITEM from PUBLIC, then the view BOB.PROJECT remains
operative and package PKG1 remains valid because the view definer, BOB, still
holds the privileges required through his membership in the role DEVELOPER:
REVOKE SELECT ON TABLE ALICE.WORKITEM FROM PUBLIC

6. If the database administrator revokes SELECT privilege on table
ALICE.WORKITEM from the role DEVELOPER, the view BOB.PROJECT
becomes inoperative and package PKG1 becomes invalid because the view and
package definer, BOB, does not hold the required privileges through other
means:
REVOKE SELECT ON TABLE ALICE.WORKITEM FROM ROLE DEVELOPER

Example of revoking DBADM authority

In this example, the role DEVELOPER holds DBADM authority and is granted to
user BOB.
1. The security administrator creates the role DEVELOPER:

CREATE ROLE DEVELOPER

2. The system administrator grants DBADM authority to the role DEVELOPER:
GRANT DBADM ON DATABASE TO ROLE DEVELOPER

3. The security administrator grants user BOB membership in this role:
GRANT ROLE DEVELOPER TO USER BOB

4. User ALICE creates a table, WORKITEM:
CREATE TABLE WORKITEM (x int)

5. User BOB creates a view PROJECT that uses table WORKITEM, a package
PKG1 that depends on table WORKITEM, and a trigger, TRG1, that also
depends on table WORKITEM:
CREATE VIEW PROJECT AS SELECT * FROM ALICE.WORKITEM
PREP emb001.sqc BINDFILE PACKAGE USING PKG1 VERSION 1
CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM

FOR EACH STATEMENT MODE DB2SQL
INSERT INTO ALICE.WORKITEM VALUES (1)

6. The security administrator revokes the role DEVELOPER from user BOB:
REVOKE ROLE DEVELOPER FROM USER BOB

Revoking the role DEVELOPER causes the user BOB to lose DBADM authority
because the role that held that authority was revoked. The view, package, and
trigger are affected as follows:
v View BOB. PROJECT is still valid.
v Package PKG1 becomes invalid.
v Trigger BOB.TRG1 is still valid.

View BOB.PROJECT and trigger BOB.TRG1 are usable while package PKG1 is
not usable. View and trigger objects created by an authorization ID holding
DBADM authority are not affected when DBADM authority is lost.

Chapter 2. Roles 123

Delegating role maintenance by using the WITH ADMIN OPTION clause
Using the WITH ADMIN OPTION clause of the GRANT (Role) SQL statement, the
security administrator can delegate the management and control of membership in
a role to someone else.

The WITH ADMIN OPTION clause gives another user the authority to grant
membership in the role to other users, to revoke membership in the role from
other members of the role, and to comment on a role, but not to drop the role.

The WITH ADMIN OPTION clause does not give another user the authority to
grant WITH ADMIN OPTION on a role to another user. It also does not give the
authority to revoke WITH ADMIN OPTION for a role from another authorization
ID.

Example demonstrating use of the WITH ADMIN OPTION clause
1. A security administrator creates the role, DEVELOPER, and grants the new role

to user BOB using the WITH ADMIN OPTION clause:
CREATE ROLE DEVELOPER
GRANT ROLE DEVELOPER TO USER BOB WITH ADMIN OPTION

2. User BOB can grant membership in the role to and revoke membership from
the role from other users, for example, ALICE:
GRANT ROLE DEVELOPER TO USER ALICE
REVOKE ROLE DEVELOPER FROM USER ALICE

3. User BOB cannot drop the role or grant WITH ADMIN OPTION to another
user (only a security administrator can perform these two operations). These
commands issued by BOB will fail:
DROP ROLE DEVELOPER - FAILURE!

- only a security administrator is allowed to drop the role
GRANT ROLE DEVELOPER TO USER ALICE WITH ADMIN OPTION - FAILURE!

- only a security administrator can grant WITH ADMIN OPTION

4. User BOB cannot revoke role administration privileges (conferred by WITH
ADMIN OPTION) from users for role DEVELOPER, because he does not have
security administrator (SECADM) authority. When BOB issues the following
command, it fails:
REVOKE ADMIN OPTION FOR ROLE DEVELOPER FROM USER SANJAY - FAILURE!

5. A security administrator is allowed to revoke the role administration privileges
for role DEVELOPER (conferred by WITH ADMIN OPTION) from user BOB ,
and user BOB still has the role DEVELOPER granted:
REVOKE ADMIN OPTION FOR ROLE DEVELOPER FROM USER BOB

Alternatively, if a security administrator simply revokes the role DEVELOPER
from user BOB, then BOB loses all the privileges he received by being a
member of the role DEVELOPER and the authority on the role he received
through the WITH ADMIN OPTION clause:
REVOKE ROLE DEVELOPER FROM USER BOB

Roles compared to groups
Privileges and authorities granted to groups are not considered when creating
views, materialized query tables (MQTs), SQL routines, triggers, and packages
containing static SQL. Avoid this restriction by using roles instead of groups.

124 Database Security Guide

Roles allow users to create database objects using their privileges acquired through
roles, which are controlled by the DB2 database system. Groups and users are
controlled externally from the DB2 database system, for example, by an operating
system or an LDAP server.

Example of replacing the use of groups with roles

This example shows how you can replace groups by using roles.

Assume that there are three groups, DEVELOPER_G, TESTER_G and SALES_G.
The users BOB, ALICE, and TOM are members of these groups, as shown in the
following table:

Table 7. Example groups and users

Group Users belonging to this group

DEVELOPER_G BOB

TESTER_G ALICE, TOM

SALES_G ALICE, BOB

1. The security administrator creates the roles DEVELOPER, TESTER, and SALES
to be used instead of the groups.
CREATE ROLE DEVELOPER
CREATE ROLE TESTER
CREATE ROLE SALES

2. The security administrator grants membership in these roles to users (setting
the membership of users in groups was the responsibility of the system
administrator):
GRANT ROLE DEVELOPER TO USER BOB
GRANT ROLE TESTER TO USER ALICE, USER TOM
GRANT ROLE SALES TO USER BOB, USER ALICE

3. The database administrator can grant to the roles similar privileges or
authorities as were held by the groups, for example:
GRANT privilege ON object TO ROLE DEVELOPER

The database administrator can then revoke these privileges from the groups,
as well as ask the system administrator to remove the groups from the system.

Example of creating a trigger using privileges acquired through a
role

This example shows that user BOB can successfully create a trigger, TRG1, when
he holds the necessary privilege through the role DEVELOPER.
1. First, user ALICE creates the table, WORKITEM:

CREATE TABLE WORKITEM (x int)

2. Then, the privilege to alter ALICE's table is granted to role DEVELOPER by the
database administrator.
GRANT ALTER ON ALICE.WORKITEM TO ROLE DEVELOPER

3. User BOB successfully creates the trigger, TRG1, because he is a member of the
role, DEVELOPER.
CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM

FOR EACH STATEMENT MODE DB2SQL INSERT INTO ALICE.WORKITEM VALUES (1)

Chapter 2. Roles 125

Using roles after migrating from IBM Informix Dynamic Server
If you have migrated from IBM Informix® Dynamic Server to the DB2 database
system and are using roles there are a few things you need to be aware of.

The Informix Dynamic Server (IDS) SQL statement, GRANT ROLE, provides the
clause WITH GRANT OPTION. The DB2 database system GRANT ROLE
statement provides the clause WITH ADMIN OPTION (this conforms to the SQL
standard) that provides the same functionality. During an IDS to DB2 database
system migration, after the dbschema tool generates CREATE ROLE and GRANT
ROLE statements, the dbschema tool replaces any occurrences of WITH GRANT
OPTION with WITH ADMIN OPTION.

In an IDS database system, the SET ROLE statement activates a particular role. The
DB2 database system supports the SET ROLE statement, but only to provide
compatibility with other products using that SQL statement. The SET ROLE
statement checks whether the session user is a member of the role and returns an
error if they are not.

Example dbschema output

Assume that an IDS database contains the roles DEVELOPER, TESTER and SALES.
Users BOB, ALICE, and TOM have different roles granted to each of them; the role
DEVELOPER is granted to BOB, the role TESTER granted to ALICE, and the roles
TESTER and SALES granted to TOM. To migrate to the DB2 database system, use
the dbschema tool to generate the CREATE ROLE and GRANT ROLE statements for
the database:
CREATE ROLE DEVELOPER
CREATE ROLE TESTER
CREATE ROLE SALES

GRANT DEVELOPER TO BOB
GRANT TESTER TO ALICE, TOM
GRANT SALES TO TOM

You must create the database in the DB2 database system, and then you can run
the preceding statements in that database to re-create the roles and assignment of
the roles.

126 Database Security Guide

Chapter 3. Using trusted contexts and trusted connections

You can establish an explicit trusted connection by making a request within an
application when a connection to a DB2 database is established. The security
administrator must have previously defined a trusted context, using the CREATE
TRUSTED CONTEXT statement, with attributes matching those of the connection
you are establishing (see Step 1, later).

Before you begin

The API you use to request an explicit trusted connection when you establish a
connection depends on the type of application you are using (see the table in Step
2).

After you have established an explicit trusted connection, the application can
switch the user ID of the connection to a different user ID using the appropriate
API for the type of application (see the table in Step 3).

Procedure
1. The security administrator defines a trusted context in the server by using the

CREATE TRUSTED CONTEXT statement. For example:
CREATE TRUSTED CONTEXT MYTCX

BASED UPON CONNECTION USING SYSTEM AUTHID NEWTON
ATTRIBUTES (ADDRESS ’192.0.2.1’)
WITH USE FOR PUBLIC WITHOUT AUTHENTICATION
ENABLE

2. To establish a trusted connection, use one of the following APIs in your
application:

Option Description

Application API

CLI/ODBC SQLConnect, SQLSetConnectAttr

XA CLI/ODBC Xa_open

JAVA getDB2TrustedPooledConnection,
getDB2TrustedXAConnection

3. To switch to a different user, with or without authentication, use one of the
following APIs in your application:

Option Description

Application API

CLI/ODBC SQLSetConnectAttr

XA CLI/ODBC SQLSetConnectAttr

JAVA getDB2Connection, reuseDB2Connection

.NET DB2Connection.ConnectionString keywords:
TrustedContextSystemUserID and
TrustedContextSystemPassword

The switching can be done either with or without authenticating the new user
ID, depending on the definition of the trusted context object associated with the

© Copyright IBM Corp. 2013 127

explicit trusted connection. For example, suppose that the security
administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID USER1
ATTRIBUTES (ADDRESS ’192.0.2.1’)
WITH USE FOR USER2 WITH AUTHENTICATION,

USER3 WITHOUT AUTHENTICATION
ENABLE

Further, suppose that an explicit trusted connection is established. A request to
switch the user ID on the trusted connection to USER3 without providing
authentication information is allowed because USER3 is defined as a user of
trusted context CTX1 for whom authentication is not required. However, a
request to switch the user ID on the trusted connection to USER2 without
providing authentication information will fail because USER2 is defined as a
user of trusted context CTX1 for whom authentication information must be
provided.

Example of establishing an explicit trusted connection and
switching the user

In the following example, a middle-tier server needs to issue some database
requests on behalf of an end-user, but does not have access to the end-user's
credentials to establish a database connection on behalf of that end-user.

You can create a trusted context object on the database server that allows the
middle-tier server to establish an explicit trusted connection to the database. After
establishing an explicit trusted connection, the middle-tier server can switch the
current user ID of the connection to a new user ID without the need to
authenticate the new user ID at the database server. The following CLI code
snippet demonstrates how to establish a trusted connection using the trusted
context, MYTCX, defined in Step 1, earlier, and how to switch the user on the
trusted connection without authentication.
int main(int argc, char *argv[])
{
SQLHANDLE henv; /* environment handle */
SQLHANDLE hdbc1; /* connection handle */
char origUserid[10] = "newton";
char password[10] = "test";
char switchUserid[10] = "zurbie";

char dbName[10] = "testdb";

// Allocate the handles
SQLAllocHandle(SQL_HANDLE_ENV, &henv);
SQLAllocHandle(SQL_HANDLE_DBC, &hdbc1);

// Set the trusted connection attribute
SQLSetConnectAttr(hdbc1, SQL_ATTR_USE_TRUSTED_CONTEXT,
SQL_TRUE, SQL_IS_INTEGER);

// Establish a trusted connection
SQLConnect(hdbc1, dbName, SQL_NTS, origUserid, SQL_NTS,
password, SQL_NTS);

//Perform some work under user ID "newton"
.

// Commit the work
SQLEndTran(SQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

128 Database Security Guide

// Switch the user ID on the trusted connection
SQLSetConnectAttr(hdbc1,
SQL_ATTR_TRUSTED_CONTEXT_USERID, switchUserid,
SQL_IS_POINTER
);

//Perform new work using user ID "zurbie"
.

//Commit the work
SQLEndTranSQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Disconnect from database
SQLDisconnect(hdbc1);

return 0;

} /* end of main */

What to do next

When does the user ID actually get switched?
After the command to switch the user on the trusted connection is issued,
the switch user request is not performed until the next statement is sent to
the server. This is demonstrated by the following example where the list
applications command shows the original user ID until the next statement
is issued.
1. Establish an explicit trusted connection with USERID1.
2. Issue the switch user command, such as getDB2Connection for

USERID2.
3. Run db2 list applications. It still shows that USERID1 is connected.
4. Issue a statement on the trusted connection, such as

executeQuery("values current sqlid"), to perform the switch user
request at the server.

5. Run db2 list applications again. It now shows that USERID2 is
connected.

Trusted contexts and trusted connections
A trusted context is a database object that defines a trust relationship for a
connection between the database and an external entity such as an application
server.

The trust relationship is based upon the following set of attributes:
v System authorization ID: Represents the user that establishes a database

connection
v IP address (or domain name): Represents the host from which a database

connection is established
v Data stream encryption: Represents the encryption setting (if any) for the data

communication between the database server and the database client

When a user establishes a database connection, the DB2 database system checks
whether the connection matches the definition of a trusted context object in the
database. When a match occurs, the database connection is said to be trusted.

Chapter 3. Using trusted contexts and trusted connections 129

A trusted connection allows the initiator of this trusted connection to acquire
additional capabilities that may not be available outside the scope of the trusted
connection. The additional capabilities vary depending on whether the trusted
connection is explicit or implicit.

The initiator of an explicit trusted connection has the ability to:
v Switch the current user ID on the connection to a different user ID with or

without authentication
v Acquire additional privileges via the role inheritance feature of trusted contexts

An implicit trusted connection is a trusted connection that is not explicitly
requested; the implicit trusted connection results from a normal connection request
rather than an explicit trusted connection request. No application code changes are
needed to obtain an implicit connection. Also, whether you obtain an implicit
trusted connection or not has no effect on the connect return code (when you
request an explicit trusted connection, the connect return code indicates whether
the request succeeds or not). The initiator of an implicit trusted connection can
only acquire additional privileges via the role inheritance feature of trusted
contexts; they cannot switch the user ID.

How using trusted contexts enhances security

The three-tiered application model extends the standard two-tiered client and
server model by placing a middle tier between the client application and the
database server. It has gained great popularity in recent years particularly with the
emergence of web-based technologies and the Java 2 Enterprise Edition (J2EE)
platform. An example of a software product that supports the three-tier application
model is IBM WebSphere® Application Server (WAS).

In a three-tiered application model, the middle tier is responsible for authenticating
the users running the client applications and for managing the interactions with
the database server. Traditionally, all the interactions with the database server
occur through a database connection established by the middle tier using a
combination of a user ID and a credential that identify that middle tier to the
database server. This means that the database server uses the database privileges
associated with the middle tier's user ID for all authorization checking and
auditing that must occur for any database access, including access performed by
the middle tier on behalf of a user.

While the three-tiered application model has many benefits, having all interactions
with the database server (for example, a user request) occur under the middle tier's
authorization ID raises several security concerns, which can be summarized as
follows:
v Loss of user identity

Some enterprises prefer to know the identity of the actual user accessing the
database for access control purposes.

v Diminished user accountability
Accountability through auditing is a basic principle in database security. Not
knowing the user's identity makes it difficult to distinguish the transactions
performed by the middle tier for its own purpose from those performed by the
middle tier on behalf of a user.

v Over granting of privileges to the middle tier's authorization ID

130 Database Security Guide

The middle tier's authorization ID must have all the privileges necessary to
execute all the requests from all the users. This has the security issue of enabling
users who do not need access to certain information to obtain access anyway.

v Weakened security
In addition to the privilege issue raised in the previous point, the current
approach requires that the authorization ID used by the middle tier to connect
must be granted privileges on all resources that might be accessed by user
requests. If that middle-tier authorization ID is ever compromised, then all those
resources will be exposed.

v "Spill over" between users of the same connection
Changes by a previous user can affect the current user.

Clearly, there is a need for a mechanism whereby the actual user's identity and
database privileges are used for database requests performed by the middle tier on
behalf of that user. The most straightforward approach of achieving this goal
would be for the middle-tier to establish a new connection using the user's ID and
password, and then direct the user's requests through that connection. Although
simple, this approach suffers from several drawbacks which include the following:
v Inapplicability for certain middle tiers. Many middle-tier servers do not have

the user authentication credentials needed to establish a connection.
v Performance overhead. There is an obvious performance overhead associated

with creating a new physical connection and re-authenticating the user at the
database server.

v Maintenance overhead. In situations where you are not using a centralized
security set up or are not using single sign-on, there is maintenance overhead in
having two user definitions (one on the middle tier and one at the server). This
requires changing passwords at different places.

The trusted contexts capability addresses this problem. The security administrator
can create a trusted context object in the database that defines a trust relationship
between the database and the middle-tier. The middle-tier can then establish an
explicit trusted connection to the database, which gives the middle tier the ability
to switch the current user ID on the connection to a different user ID, with or
without authentication. In addition to solving the end-user identity assertion
problem, trusted contexts offer another advantage. This is the ability to control
when a privilege is made available to a database user. The lack of control on when
privileges are available to a user can weaken overall security. For example,
privileges may be used for purposes other than they were originally intended. The
security administrator can assign one or more privileges to a role and assign that
role to a trusted context object. Only trusted database connections (explicit or
implicit) that match the definition of that trusted context can take advantage of the
privileges associated with that role.

Enhancing performance

When you use trusted connections, you can maximize performance because of the
following advantages:
v No new connection is established when the current user ID of the connection is

switched.
v If the trusted context definition does not require authentication of the user ID to

switch to, then the overhead associated with authenticating a new user at the
database server is not incurred.

Chapter 3. Using trusted contexts and trusted connections 131

Example of creating a trusted context

Suppose that the security administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1

BASED UPON CONNECTION USING SYSTEM AUTHID USER2
ATTRIBUTES (ADDRESS ’192.0.2.1’)
DEFAULT ROLE managerRole
ENABLE

If user user1 requests a trusted connection from IP address 192.0.2.1, the DB2
database system returns a warning (SQLSTATE 01679, SQLCODE +20360) to
indicate that a trusted connection could not be established, and that user user1
simply got a non-trusted connection. However, if user user2 requests a trusted
connection from IP address 192.0.2.1, the request is honored because the connection
attributes are satisfied by the trusted context CTX1. Now that use user2 has
established a trusted connection, he or she can now acquire all the privileges and
authorities associated with the trusted context role managerRole. These privileges
and authorities may not be available to user user2 outside the scope of this trusted
connection

Role membership inheritance through a trusted context
The current user of a trusted connection can acquire additional privileges through
the automatic inheritance of a role through the trusted context, if this was specified
by the security administrator as part of the relevant trusted context definition.

A role can be inherited by all users of the trusted connection by default. The
security administrator can also use the trusted context definition to specify a role
for specific users to inherit.

The active roles that a session authorization ID can hold while on a trusted
connection are:
v The roles of which the session authorization ID is normally considered a

member, plus
v Either the trusted context default role or the trusted context user-specific role, if

they are defined

Note:

v If you configure user authentication using a custom security plugin that is built
such that the system authorization ID and the session authorization ID produced
by this security plug-in upon a successful connection are different from each
other, then a trusted contexts role cannot be inherited through that connection,
even if it is a trusted connection.

v Trusted context privileges acquired through a role are effective only for dynamic
DML operations. They are not effective for:
– DDL operations
– Non-dynamic SQL (operations involving static SQL statements such as BIND,

REBIND, implicit rebind, incremental bind, and so on)

Acquiring trusted context user-specific privileges

The security administrator can use the trusted context definition to associate roles
with a trusted context so that:
v All users of the trusted connection can inherit a specified role by default

132 Database Security Guide

v Specific users of the trusted connection can inherit a specified role

When the user on a trusted connection is switched to a new authorization ID and a
trusted context user-specific role exists for this new authorization ID, the
user-specific role overrides the trusted context default role, if one exists, as
demonstrated in the example.

Example of creating a trusted context that assigns a default role
and a user-specific role

Suppose that the security administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1

BASED UPON CONNECTION USING SYSTEM AUTHID USER1
ATTRIBUTES (ADDRESS ’192.0.2.1’)
WITH USE FOR USER2 WITH AUTHENTICATION,

USER3 WITHOUT AUTHENTICATION
DEFAULT ROLE AUDITOR
ENABLE

When USER1 establishes a trusted connection, the privileges granted to the role
AUDITOR are inherited by this authorization ID. Similarly, these same privileges
are also inherited by USER3 when the current authorization ID on the trusted
connection is switched to his or her user ID. (If the user ID of the connection is
switched to USER2 at some point, then USER2 would also inherit the trusted
context default role, AUDITOR.) The security administrator may choose to have
USER3 inherit a different role than the trusted context default role. They can do so
by assigning a specific role to this user as follows:
CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID USER1
ATTRIBUTES (ADDRESS ’192.0.2.1’)
WITH USE FOR USER2 WITH AUTHENTICATION,

USER3 WITHOUT AUTHENTICATION ROLE OTHER_ROLE
DEFAULT ROLE AUDITOR
ENABLE

When the current user ID on the trusted connection is switched to USER3, this
user no longer inherits the trusted context default role. Rather, they inherit the
specific role, OTHER_ROLE, assigned to him or her by the security administrator.

Rules for switching the user ID on an explicit trusted connection
On an explicit trusted connection, you can switch the user ID of the connection to
a different user ID. Certain rules apply.
1. If the switch request is not made from an explicit trusted connection, and the

switch request is sent to the server for processing, the connection is shut
down and an error message is returned (SQLSTATE 08001, SQLCODE -30082
with reason code 41).

2. If the switch request is not made on a transaction boundary, the transaction is
rolled back, and the switch request is sent to the server for processing, the
connection is put into an unconnected state and an error message is returned
(SQLSTATE 58009, SQLCODE -30020).

3. If the switch request is made from within a stored procedure, an error
message is returned (SQLCODE -30090, reason code 29), indicating this is an
illegal operation in this environment. The connection state is maintained and
the connection is not placed into an unconnected state. Subsequent requests
may be processed.

Chapter 3. Using trusted contexts and trusted connections 133

4. If the switch request is delivered to the server on an instance attach (rather
than a database connection), the attachment is shut down and an error
message is returned (SQLCODE -30005).

5. If the switch request is made with an authorization ID that is not allowed on
the trusted connection, error (SQLSTATE 42517, SQLCODE -20361) is returned,
and the connection is put in an unconnected state.

6. If the switch request is made with an authorization ID that is allowed on the
trusted connection WITH AUTHENTICATION, but the appropriate
authentication token is not provided, error (SQLSTATE 42517, SQLCODE
-20361) is returned, and the connection is put in an unconnected state.

7. If the trusted context object associated with the trusted connection is disabled,
and a switch request for that trusted connection is made, error (SQLSTATE
42517, SQLCODE -20361) is returned, and the connection is put in an
unconnected state.
In this case, the only switch user request that is accepted is one that specifies
the user ID that established the trusted connection or the NULL user ID. If a
switch to the user ID that established the trusted connection is made, this user
ID does not inherit any trusted context role (neither the trusted context default
role nor the trusted context user-specific role).

8. If the system authorization ID attribute of the trusted context object associated
with the trusted connection is changed, and a switch request for that trusted
connection is made, error (SQLSTATE 42517, SQLCODE -20361) is returned,
and the connection is put in an unconnected state.
In this case, the only switch user request that is accepted is one that specifies
the user ID that established the trusted connection or the NULL user ID. If a
switch to the user ID that established the trusted connection is made, this user
ID does not inherit any trusted context role (neither the trusted context default
role nor the trusted context user-specific role).

9. If the trusted context object associated with the trusted connection is dropped,
and a switch request for that trusted connection is made, error (SQLSTATE
42517, SQLCODE -20361) is returned, and the connection is put in an
unconnected state.
In this case, the only switch user request that is accepted is one that specifies
the user ID that established the trusted connection or the NULL user ID. If a
switch to the user ID that established the trusted connection is made, this user
ID does not inherit any trusted context role (neither the trusted context default
role nor the trusted context user-specific role).

10. If the switch request is made with a user ID allowed on the trusted
connection, but that user ID does not hold CONNECT privilege on the
database, the connection is put in an unconnected state and an error message
is returned (SQLSTATE 08004, SQLCODE -1060).

11. If the trusted context system authorization ID appears in the WITH USE FOR
clause, the DB2 database system honors the authentication setting for the
system authorization ID on switch user request to switch back to the system
authorization ID. If the trusted context system authorization ID does not
appear in the WITH USE FOR clause, then a switch user request to switch
back to the system authorization ID is always allowed even without
authentication.

Note: When the connection is put in the unconnected state, the only requests that
are accepted and do not result in returning the error "The application state is in
error. A database connection does not exist." (SQLCODE -900) are:
v A switch user request

134 Database Security Guide

v A COMMIT or ROLLBACK statement
v A DISCONNECT, CONNECT RESET or CONNECT request

Note: When the user ID on the trusted connection is switched to a new user ID,
all traces of the connection environment under the old user are gone. In other
words, the switching of user IDs results in an environment that is identical to a
new connection environment. For example, if the old user ID on the connection
had any temporary tables or WITH HOLD cursors open, these objects are
completely lost when the user ID on that connection is switched to a new user ID.

Note: Java trusted connections do not have an unconnected state. If the switch
user operation fails, Java will throw an exception and the connection will be
disconnected.

Trusted context problem determination
An explicit trusted connection is a connection that is successfully established by a
specific, explicit request for a trusted connection. When you request an explicit
trusted connection and you do not qualify for one, you get a regular connection
and a warning (+20360).

To determine why a user could not establish a trusted connection, the security
administrator needs to look at the trusted context definition in the system catalogs
and at the connection attributes. In particular, the IP address from which the
connection is established, the encryption level of the data stream or network, and
the system authorization ID making the connection. The -application option of
the db2pd utility returns this information, as well as the following additional
information:
v Connection Trust Type: Indicates whether the connection is trusted or not. When

the connection is trusted, this also indicates whether this is an explicit trusted
connection or an implicit trusted connection.

v Trusted Context name: The name of the trusted context associated with the
trusted connection.

v Role Inherited: The role inherited through the trusted connection.

The following are the most common causes of failing to obtain an explicit trusted
connection:
v The client application is not using TCP/IP to communicate with the DB2 server.

TCP/IP is the only supported protocol for a client application to communicate
with the DB2 server that can be used to establish a trusted connection (explicit
or implicit).

v The database server authentication type is set to CLIENT.
v The database server does not have an enabled trusted context object. The

definition of the trusted context object must explicitly state ENABLE in order for
that trusted context to be considered for matching the attributes of an incoming
connection.

v The trusted context objects on the database server do not match the trust
attributes that are presented. For example, one of the following situations may
apply:
– The system authorization ID of the connection does not match any trusted

context object system authorization ID.
– The IP address from which the connection originated does not match any IP

address in the trusted context object considered for the connection.

Chapter 3. Using trusted contexts and trusted connections 135

– The data stream encryption used by the connection does not match the value
of the ENCRYPTION attribute in the trusted context object considered for the
connection.

You can use the db2pd tool to find out the IP address from which the connection
is established, the encryption level of the data stream or network used by the
connection, and the system authorization ID making the connection. You can
consult the SYSCAT.CONTEXTS and SYSCAT.CONTEXTATTRIBUTES catalog
views to find out the definition of a particular trusted context object, such as its
system authorization ID, its set of allowed IP addresses and the value of its
ENCRYPTION attribute.

The following are the most common causes of a switch user failure:
v The user ID to switch to does not have CONNECT privileges on the database. In

this case, SQL1060N is returned.
v The user ID to switch to, or PUBLIC, is not defined in the WITH USE FOR

clause of the trusted context object associated with the explicit trusted
connection.

v Switching the user is allowed with authentication, but the user presents no
credentials or the wrong credentials.

v A switch-user request is not made on a transaction boundary.
v The trusted context that is associated with a trusted connection has been

disabled, dropped, or altered. In this case, only switching to the user ID that
established the trusted connection is allowed.

136 Database Security Guide

Chapter 4. Row and column access control (RCAC) overview

DB2 Version 10.1 introduces row and column access control (RCAC), as an
additional layer of data security. Row and column access control is sometimes
referred to as fine-grained access control or FGAC. RCAC controls access to a table
at the row level, column level, or both. RCAC can be used to complement the table
privileges model.

To comply with various government regulations, you might implement procedures
and methods to ensure that information is adequately protected. Individuals in
your organization are permitted access to only the subset of data that is required to
perform their job tasks. For example, government regulations in your area might
state that a doctor is authorized to view the medical records of their own patients,
but not of other patients. The same regulations might also state that, unless a
patient gives their consent, a healthcare provider is not permitted access to patient
personal information, such as the patients home phone number.

You can use row and column access control to ensure that your users have access
to only the data that is required for their work. For example, a hospital system
running DB2 for Linux, UNIX, and Windows and RCAC can filter patient
information and data to include only that data which a particular doctor requires.
Other patients do not exist as far as the doctor is concerned. Similarly, when a
patient service representative queries the patient table at the same hospital, they
are able to view the patient name and telephone number columns, but the medical
history column is masked for them. If data is masked, a NULL, or an alternate
value is displayed, instead of the actual medical history.

Row and column access control, or RCAC, has the following advantages:
v No database user is inherently exempted from the row and column access

control rules.
Even higher level authorities such as users with DATAACCESS authority are not
exempt from these rules. Only users with security administrator (SECADM)
authority can manage row and column access controls within a database.
Therefore, you can use RCAC to prevent users with DATAACCESS authority
from freely accessing all data in a database.

v Table data is protected regardless of how a table is accessed via SQL.
Applications, improvised query tools, and report generation tools are all subject
to RCAC rules. The enforcement is data-centric.

v No application changes are required to take advantage of this additional layer of
data security.
That is, row and column level access controls are established and defined in a
way that is not apparent to existing applications. However, RCAC represents an
important shift in paradigm in the sense that it is no longer what is being asked
but rather who is asking what. Result sets for the same query change based on
the context in which the query was asked and there is no warning or error
returned. This behavior is the exact intent of the solution. It means that
application designers and DBAs must be conscious that queries do not see the
whole picture in terms of the data in the table, unless granted specific
permissions to do so.

© Copyright IBM Corp. 2013 137

Row and column access control (RCAC) rules
Row and column access control (RCAC) places access control at the table level
around the data itself. SQL rules created on rows and columns are the basis of the
implementation of this capability.

Row and column access control is an access control model in which a security
administrator manages privacy and security policies. RCAC permits all users to
access the same table, as opposed to alternative views of a table. RCAC does
however, restrict access to the table based upon individual user permissions or
rules as specified by a policy associated with the table. There are two sets of rules,
one set operates on rows, and the other on columns.
v Row permission

– A row permission is a database object that expresses a row access control rule
for a specific table.

– A row access control rule is an SQL search condition that describes what set
of rows a user has access to.

v Column mask
– A column mask is a database object that expresses a column access control

rule for a specific column in a table.
– A column access control rule is an SQL CASE expression that describes what

column values a user is permitted to see and under what conditions.

SQL statements for managing RCAC rules
Using the following SQL statements, you can create, alter, and drop RCAC rules.

Built-in functions for managing RCAC permissions and masks
Use the following built-in scalar functions to express conditions in your
permissions and masks. For example, a user must belong to one or more roles, or
to one or more groups to access a particular row.

Scenario: ExampleHMO using row and column access control
This scenario presents ExampleHMO, a national organization with a large and
active list of patients, as a user of row and column access control. ExampleHMO
uses row and column access control to ensure that their database policies reflect
government regulatory requirements for privacy and security, as well as
management business objectives.

Organizations that handle patient health information and their personal
information, like ExampleHMO, must comply with government privacy and data
protection regulations, for example the Health Insurance Portability and
Accountability Act (HIPAA). These privacy and data protection regulations ensure
that any sensitive patient medical or personal information is shared, viewed, and
modified only by authorities who are privileged to do so. Any violation of the act
results in huge penalties including civil and criminal suits.

ExampleHMO must ensure that the data stored in their database systems is secure
and only privileged users have access to the data. According to typical privacy
regulations, certain patient information can be accessed and modified by only
privileged users.

138 Database Security Guide

Scenario: ExampleHMO using row and column access control
- Security policies

ExampleHMO implements a security strategy where data access to DB2 databases
are made available according to certain security policies.

The security policies conform to government privacy and data protection
regulations. The first column outlines the policies and the challenges faced by the
organization, the second column outlines the DB2 row and column access control
feature which addresses the challenge.

Security challenge
Row and column access control feature
which addresses the security challenge

Limiting column access to only privileged
users.

For example, Jane, who is a drug researcher
at a partner company, is not permitted to
view sensitive patient medical information
or personal data like their insurance number.

Column masks can be used to filter or hide
sensitive data from Jane.

Limiting row access to only privileged users.
Dr. Lee is only permitted to view patient
information for his own patients, not all
patients in the ExampleHMO system.

Row permissions can be implemented to
control which user can view any particular
row.

Restricting data on a need-to-know basis. Row permissions can help with this
challenge as well by restricting table level
data at the user level.

Restricting other database objects like UDFs,
triggers, views on RCAC secured data.

Row and column access control protects data
at the data level. It is this data-centric nature
of the row and column access control
solution that enforces security policies on
even database objects like UDFs, triggers,
and views.

Scenario: ExampleHMO using row and column access control
- Database users and roles

In this scenario, a number of different people create, secure, and use ExampleHMO
data. These people have different user rights and database authorities.

ExampleHMO implemented their security strategy to classify the way data is
accessed from the database. Internal and external access to data is based on the
separation of duties to users who access the data and their data access privileges.
ExampleHMO created the following database roles to separate these duties:

PCP
For primary care physicians.

DRUG_RESEARCH
For researchers.

ACCOUNTING
For accountants.

MEMBERSHIP
For members who add patients for opt-in and opt-out.

Chapter 4. Row and column access control (RCAC) 139

PATIENT
For patients.

The following people create, secure, and use ExampleHMO data:

Alex
ExampleHMO Chief Security Administrator. He holds the SECADM authority.

Peter
ExampleHMO Database Administrator. He holds the DBADM authority.

Paul
ExampleHMO Database Developer. He has the privileges to create triggers and
user-defined functions.

Dr. Lee
ExampleHMO Physician. He belongs to the PCP role.

Jane
Drug researcher at Innovative Pharmaceutical Company, a ExampleHMO
partner. She belongs to the DRUG_RESEARCH role.

John
ExampleHMO Accounting Department. He belongs to the ACCOUNTING role.

Tom
ExampleHMO Membership Officer. He belongs to the MEMBERSHIP role.

Bob
ExampleHMO Patient. He belongs to the PATIENT role.

If you want to try any of the example SQL statements and commands presented in
this scenario, create these user IDs with their listed authorities.

The following example SQL statements assume that the users have been created on
the system. The SQL statements create each role and grant SELECT and INSERT
permissions to the various tables in the ExampleHMO database to the users:
--Creating roles and granting authority

CREATE ROLE PCP;

CREATE ROLE DRUG_RESEARCH;

CREATE ROLE ACCOUNTING;

CREATE ROLE MEMBERSHIP;

CREATE ROLE PATIENT;

GRANT ROLE PCP TO USER LEE;
GRANT ROLE DRUG_RESEARCH TO USER JANE;
GRANT ROLE ACCOUNTING TO USER JOHN;
GRANT ROLE MEMBERSHIP TO USER TOM;
GRANT ROLE PATIENT TO USER BOB;

Scenario: ExampleHMO using row and column access control
- Database tables

This scenario focuses on two tables in the ExampleHMO database: the PATIENT
table and the PATIENTCHOICE table.

The PATIENT table stores basic patient information and health information. This
scenario considers the following columns within the PATIENT table:

140 Database Security Guide

SSN
The patient's insurance number. A patient's insurance number is considered
personal information.

NAME
The patient's name. A patient's name is considered personal information.

ADDRESS
The patient's address. A patient's address is considered personal information.

USERID
The patient's database ID.

PHARMACY
The patient's medical information.

ACCT_BALANCE
The patient's billing information.

PCP_ID
The patient's primary care physician database ID

The PATIENTCHOICE table stores individual patient opt-in and opt-out
information which decides whether a patient wants to expose his health
information to outsiders for research purposes in this table. This scenario considers
the following columns within the PATIENTCHOICE table:

SSN
The patient's insurance number is used to match patients with their choices.

CHOICE
The name of a choice a patient can make.

VALUE
The decision made by the patients about the choice.

For example, the row 123-45-6789, drug_research, opt-in says that patient with SSN
123-45-6789 agrees to disclose their information for medical research purposes.

The following example SQL statements create the PATIENT, PATIENTCHOICE,
and ACCT_HISTORY tables. Authority is granted on the tables and data is
inserted:
--Patient table storing information regarding patient
CREATE TABLE PATIENT (
SSN CHAR(11),
USERID VARCHAR(18),
NAME VARCHAR(128),
ADDRESS VARCHAR(128),
PHARMACY VARCHAR(250),
ACCT_BALANCE DECIMAL(12,2) WITH DEFAULT,
PCP_ID VARCHAR(18)
);

--Patientchoice table which stores what patient opts
--to expose regarding his health information

CREATE TABLE PATIENTCHOICE (
SSN CHAR(11),
CHOICE VARCHAR(128),
VALUE VARCHAR(128)
);

--Log table to track account balance

Chapter 4. Row and column access control (RCAC) 141

CREATE TABLE ACCT_HISTORY(
SSN CHAR(11),
BEFORE_BALANCE DECIMAL(12,2),
AFTER_BALANCE DECIMAL(12,2),
WHEN DATE,
BY_WHO VARCHAR(20)
);

--Grant authority

GRANT SELECT, UPDATE ON TABLE PATIENT TO ROLE PCP;

GRANT SELECT ON TABLE PATIENT TO ROLE DRUG_RESEARCH;

GRANT SELECT, UPDATE ON TABLE PATIENT TO ROLE ACCOUNTING;
GRANT SELECT ON TABLE ACCT_HISTORY TO ROLE ACCOUNTING;

GRANT SELECT, UPDATE, INSERT ON TABLE PATIENT TO ROLE MEMBERSHIP;
GRANT INSERT ON TABLE PATIENTCHOICE TO ROLE MEMBERSHIP;

GRANT SELECT ON TABLE PATIENT TO ROLE PATIENT;

GRANT SELECT, ALTER ON TABLE PATIENT TO USER ALEX;

GRANT ALTER, SELECT ON TABLE PATIENT TO USER PAUL;
GRANT INSERT ON TABLE ACCT_HISTORY TO USER PAUL;

--Insert patient data

INSERT INTO PATIENT
VALUES(’123-55-1234’, ’MAX’, ’Max’, ’First Strt’, ’hypertension’, 89.70,’LEE’);

INSERT INTO PATIENTCHOICE
VALUES(’123-55-1234’, ’drug-research’, ’opt-out’);

INSERT INTO PATIENT
VALUES(’123-58-9812’, ’MIKE’, ’Mike’, ’Long Strt’, null, 8.30,’JAMES’);

INSERT INTO PATIENTCHOICE
VALUES(’123-58-9812’, ’drug-research’, ’opt-out’);

INSERT INTO PATIENT
VALUES(’123-11-9856’, ’SAM’, ’Sam’, ’Big Strt’, null, 0.00,’LEE’);

INSERT INTO PATIENTCHOICE
VALUES(’123-11-9856’, ’drug-research’, ’opt-in’);

INSERT INTO PATIENT
VALUES(’123-19-1454’, ’DUG’, ’Dug’, ’Good Strt’, null, 0.00,’JAMES’);

INSERT INTO PATIENTCHOICE
VALUES(’123-19-1454’, ’drug-research’, ’opt-in’);

Scenario: ExampleHMO using row and column access control
- Security administration

Security administration and the security administrator (SECADM) role play
important parts in securing patient and company data at ExampleHMO. At
ExampleHMO, management decided that different people hold database
administration authority and security administration authority.

The management team at ExampleHMO decides to create a role for administering
access to their data. The team also decides that even users with DATAACCESS
authority are not able to view protected health and personal data by default.

142 Database Security Guide

The management team selects Alex to be the sole security administrator for
ExampleHMO. From now on, Alex controls all data access authority. With this
authority, Alex defines security rules such as row permissions, column masks, and
whether functions and triggers are secure or not. These rules control which users
have access to any given data under his control.

After Peter, the database administrator, creates the required tables and sets up the
required roles, duties are separated. The database administration and security
administration duties are separated by making Alex the security administrator.

Peter connects to the database and grants Alex SECADM authority. Peter can grant
SECADM authority since he currently holds the DBADM, DATAACCESS, and
SECADM authorities.
-- To seperate duties of security administrator from system administrator,
-- the SECADMN Peter grants SECADM authority to user Alex.

GRANT SECADM ON DATABASE TO USER ALEX;

Alex, after receiving the SECADM authority, connects to the database and revokes
the security administrator privilege from Peter. The duties are now separated and
Alex becomes the sole authority to grant data access to others within and outside
ExampleHMO. The following SQL statement shows how Alex revoked SECADM
authority from Peter:
--revokes the SECADMIN authority for Peter

REVOKE SECADM ON DATABASE FROM USER PETER;

Scenario: ExampleHMO using row and column access control
- Row permissions

Alex, the security administrator, starts to restrict data access on the ExampleHMO
database by using row permissions, a part of row and column access control. Row
permissions filter the data returned to users by row.

Patients are permitted to view their own data. A physician is permitted to view the
data of all his patients, but not the data of patients who see other physicians. Users
belonging to the MEMBERSHIP, ACCOUNTING, or DRUG_RESEARCH roles can
access all patient information. Alex, the security administrator, is asked to
implement these permissions to restrict who can see any given row on a
need-to-know basis.

Row permissions restrict or filter rows based on the user who has logged on to the
database. At ExampleHMO, the row permissions create a horizontal data restriction
on the table named PATIENT.

Alex implements the following row permissions so that a user in each role is
restricted to view a result set that they are privileged to view:
CREATE PERMISSION ROW_ACCESS ON PATIENT

-- Accounting information:
-- ROLE PATIENT is allowed to access his or her own row
-- ROLE PCP is allowed to access his or her patients’ rows
-- ROLE MEMBERSHIP, ACCOUNTING, and DRUG_RESEARCH are
-- allowed to access all rows
--
FOR ROWS WHERE(VERIFY_ROLE_FOR_USER(SESSION_USER,’PATIENT’) = 1
AND
PATIENT.USERID = SESSION_USER) OR

Chapter 4. Row and column access control (RCAC) 143

(VERIFY_ROLE_FOR_USER(SESSION_USER,’PCP’) = 1
AND
PATIENT.PCP_ID = SESSION_USER) OR
(VERIFY_ROLE_FOR_USER(SESSION_USER,’MEMBERSHIP’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER, ’DRUG_RESEARCH’) = 1)
ENFORCED FOR ALL ACCESS
ENABLE;

Alex observes that even after creating a row permission, all data can still be
viewed by the other employees. A row permission is not applied until it is
activated on the table for which it was defined. Alex must now activate the
permission:
--Activate row access control to implement row permissions

ALTER TABLE PATIENT ACTIVATE ROW ACCESS CONTROL;

Scenario: ExampleHMO using row and column access control
- Column masks

Alex, the security administrator, further restricts data access on the ExampleHMO
database by using column masks, a part of row and column access control.
Column masks hide data returned to users by column unless they are permitted to
view the data.

Patient payment details must only be accessible to the users in the accounts
department. The account balance must not be seen by any other database users.
Alex is asked to prevent access by anyone other than users belonging to the
ACCOUNTING role.

Alex implements the following column mask so that a user in each role is
restricted to view a result set that they are privileged to view:
--Create a Column MASK ON ACCT_BALANCE column on the PATIENT table

CREATE MASK ACCT_BALANCE_MASK ON PATIENT FOR
--
-- Accounting information:
-- Role ACCOUNTING is allowed to access the full information
-- on column ACCT_BALANCE.
-- Other roles accessing this column will strictly view a
-- zero value.
--
COLUMN ACCT_BALANCE RETURN
CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1

THEN ACCT_BALANCE
ELSE 0.00
END
ENABLE;

Alex observes that even after creating a column mask, the data can still be viewed
by the other employees. A column mask is not applied until it is activated on the
table for which it was defined. Alex must now activate the mask:
--Activate column access control to implement column masks

ALTER TABLE PATIENT ACTIVATE COLUMN ACCESS CONTROL;

Alex is asked by management to hide the insurance number of the patients. Only a
patient, physician, accountant, or people in the MEMBERSHIP role can view the
SSN column.

144 Database Security Guide

Also, to protect the PHARMACY detail of a patient, the information in the
PHARMACY column must only be viewed by a drug researcher or a physician.
Drug researchers can see the data only if the patient has agreed to disclose the
information.

Alex implements the following column masks so that a user in each role is
restricted to view a result set that they are privileged to view:
CREATE MASK SSN_MASK ON PATIENT FOR
--
-- Personal contact information:
-- Roles PATIENT, PCP, MEMBERSHIP, and ACCOUNTING are allowed
-- to access the full information on columns SSN, USERID, NAME,
-- and ADDRESS. Other roles accessing these columns will
-- strictly view a masked value.

COLUMN SSN RETURN
CASE WHEN
VERIFY_ROLE_FOR_USER(SESSION_USER,’PATIENT’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’PCP’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’MEMBERSHIP’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1
THEN SSN
ELSE CHAR(’XXX-XX-’ || SUBSTR(SSN,8,4)) END

ENABLE;

CREATE MASK PHARMACY_MASK ON PATIENT FOR
--
-- Medical information:
-- Role PCP is allowed to access the full information on
-- column PHARMACY.
-- For the purposes of drug research, Role DRUG_RESEARCH can
-- conditionally see a patient’s medical information
-- provided that the patient has opted-in.
-- In all other cases, null values are rendered as column
-- values.
--
COLUMN PHARMACY RETURN

CASE WHEN
VERIFY_ROLE_FOR_USER(SESSION_USER,’PCP’) = 1 OR
(VERIFY_ROLE_FOR_USER(SESSION_USER,’DRUG_RESEARCH’)=1
AND
EXISTS (SELECT 1 FROM PATIENTCHOICE C

WHERE PATIENT.SSN = C.SSN AND C.CHOICE = ’drug-research’ AND C.VALUE = ’opt-in’))
THEN PHARMACY
ELSE NULL

END
ENABLE;

Alex observes that after creating these two column masks that the data is only
viewable to the intended users. The PATIENT table already had column access
control activated.

Scenario: ExampleHMO using row and column access control
- Data insertion

When a new patient is admitted for treatment in the hospital, the new patient
record must be added to the ExampleHMO database.

Bob is a new patient, and his records must be added to the ExampleHMO
database. A user with the required security authority must create the new record
for Bob. Tom, from the ExampleHMO membership department, with the

Chapter 4. Row and column access control (RCAC) 145

MEMBERSHIP role, enrolls Bob as a new member. After connecting to the
ExampleHMO database, Tom runs the following SQL statements to add Bob to the
ExampleHMO database:
INSERT INTO PATIENT

VALUES(’123-45-6789’, ’BOB’, ’Bob’, ’123 Some St.’, ’hypertension’, 9.00,’LEE’);
INSERT INTO PATIENTCHOICE

VALUES(’123-45-6789’, ’drug-research’, ’opt-in’);

Tom confirmed that Bob was added to the database by querying the same from the
PATIENT table in the ExampleHMO database:
Select * FROM PATIENT WHERE NAME = ’Bob’;

SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID

----------- --------- ------- ------------- ------------ ------------- ------
123-45-6789 BOB Bob 123 Some St. XXXXXXXXXXX 0.00 LEE

Scenario: ExampleHMO using row and column access control
- Data updates

While in the hospital, Bob gets his treatment changed. As a result his records in the
ExampleHMO database need updating.

Dr. Lee, who is Bob's physician, advises a treatment change and changes Bob's
medicine. Bob's record in the ExampleHMO systems must be updated. The row
permission rules set in the ExampleHMO database specify that anyone who cannot
view the data in a row cannot update the data in that row. Since Bob's PCPID
contains Dr. Lee's ID, and the row permission is set, Dr. Lee can both view, and
update Bob's record using the following example SQL statement:
UPDATE PATIENT SET PHARMACY = ’codeine’ WHERE NAME = ’Bob’;

Dr. Lee checks the update:
Select * FROM PATIENT WHERE NAME = ’Bob’;

SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID

----------- --------- ------- ------------ ----------- -------------- ------
123-45-6789 BOB Bob 123 Some St. codeine 0.00 LEE

Dug is a patient who is under the care of Dr. James, one of Dr. Lee's colleagues. Dr.
Lee attempts the same update on the record for Dug:
UPDATE PATIENT SET PHARMACY = ’codeine’ WHERE NAME = ’Dug’;
SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a query
is an empty table. SQLSTATE=02000

Since Dug's PCPID does not contain Dr. Lee's ID, and the row permission is set,
Dr. Lee cannot view, or update Dug's record.

Scenario: ExampleHMO using row and column access control
- Data queries

With row and column access control, people in different roles can have different
result sets from the same database queries. For example, Peter, the database
administrator with DATAACCESS authority, cannot see any data on the PATIENT
table.

Peter, Bob, Dr. Lee, Tom, Jane, and John each connect to the database and try the
following SQL query:

146 Database Security Guide

SELECT SSN, USERID, NAME, ADDRESS, PHARMACY, ACCT_BALANCE, PCP_ID FROM PATIENT;

Results of the query vary according to who runs the query. The row and column
access control rules created by Alex are applied on these queries.

Here is the result set Peter sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- --------- --------- ----------- ----------- ----------- -----------

0 record(s) selected.

Even though there is data in the table and Peter is the database administrator, he
lacks the authority to see all data.

Here is the result set Bob sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- --------- --------- ----------- ----------- ----------- ------
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 0.00 LEE

1 record(s) selected.

Bob, being a patient, can only see his own data. Bob belongs to the PATIENT role.
The PHARMACY and ACC_BALANCE column data have been hidden from him.

Here is the result set Dr. Lee sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ------------------- ----------- ------
123-55-1234 MAX Max First Strt hypertension 0.00 LEE
123-11-9856 SAM Sam Big Strt High blood pressure 0.00 LEE
123-45-6789 BOB Bob 123 Some St.codeine 0.00 LEE

3 record(s) selected.

Dr. Lee can see only the data for patients under his care. Dr. Lee belongs to the
PCP role. The ACC_BALANCE column data is hidden from him.

Here is the result set Tom sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ----------- ----------- -----------
123-55-1234 MAX Max First Strt XXXXXXXXXXX 0.00 LEE
123-58-9812 MIKE Mike Long Strt XXXXXXXXXXX 0.00 JAMES
123-11-9856 SAM Sam Big Strt XXXXXXXXXXX 0.00 LEE
123-19-1454 DUG Dug Good Strt XXXXXXXXXXX 0.00 JAMES
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 0.00 LEE

5 record(s) selected.

Tom can see all members. Tom belongs to the membership role. He is not
privileged to see any data in the PHARMACY and ACC_BALANCE columns.

Here is the result set Jane sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ------------------- ----------- -------
XXX-XX-1234 MAX Max First Strt XXXXXXXXXXX 0.00 LEE
XXX-XX-9812 MIKE Mike Long Strt XXXXXXXXXXX 0.00 JAMES

Chapter 4. Row and column access control (RCAC) 147

XXX-XX-9856 SAM Sam Big Strt High blood pressure 0.00 LEE
XXX-XX-1454 DUG Dug Good Strt Influenza 0.00 JAMES
XXX-XX-6789 BOB Bob 123 Some St.codeine 0.00 LEE

5 record(s) selected.

Jane can see all members. She belongs to the DRUG_RESEARCH role. The SSN
and ACC_BALANCE column data are hidden from her. The PHARMACY data is
only available if the patients have opted-in to share their data with drug research
companies.

Here is the result set John sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ----------- ----------- --------
123-55-1234 MAX Max First Strt XXXXXXXXXXX 89.70 LEE
123-58-9812 MIKE Mike Long Strt XXXXXXXXXXX 8.30 JAMES
123-11-9856 SAM Sam Big Strt XXXXXXXXXXX 0.00 LEE
123-19-1454 DUG Dug Good Strt XXXXXXXXXXX 0.00 JAMES
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 9.00 LEE

5 record(s) selected.

John can see all members. He belongs to the ACCOUNTING role. The
PHARMACY column data is hidden from him.

Scenario: ExampleHMO using row and column access control
- View creation

Views can be created on tables that have row and column access control defined.
Alex, the security administrator, is asked to create a view on the PATIENT table
that medical researchers can use.

Researchers, that have a partnership with ExampleHMO, can have access to
limited patient data if patients have opted-in to permit this access. Alex and the IT
team are asked to create a view to list only specific information related to research
of the patient. The report must contain the patient insurance number, name of the
patient and the disclosure option chosen by the patient.

The view created fetches the patient basic information and the health condition
disclosure option. This view ensures that patient information is protected and
fetched only with their permission for any other purpose.

Alex and the IT team implement the following view:
CREATE VIEW PATIENT_INFO_VIEW AS
SELECT P.SSN, P.NAME FROM PATIENT P, PATIENTCHOICE C
WHERE P.SSN = C.SSN AND

C.CHOICE = ’drug-research’ AND
C.VALUE = ’opt-in’;

After Alex and his team create the view, users can query the view. They see data
according to the row and column access control rules defined on the base tables on
which the view is created.

Alex sees the following result-set from the following query on the view:

148 Database Security Guide

SELECT SSN, NAME FROM PATIENT_INFO_VIEW;

SSN NAME
----------- ----------

0 record(s) selected.

Dr. Lee sees the following result-set from the following query on the view:
SELECT SSN, NAME FROM PATIENT_INFO_VIEW;

SSN NAME
----------- ----------
123-11-9856 Sam
123-45-6789 Bob

2 record(s) selected.

Bob sees the following result-set from the following query on the view:
SELECT SSN, NAME FROM PATIENT_INFO_VIEW;

SSN NAME
----------- ----------
123-45-6789 Bob

1 record(s) selected.

Scenario: ExampleHMO using row and column access control
- Secure functions

Functions must be deemed secure before they can be called within row and
column access control definitions. Alex, the security administrator, discusses how
Paul, a database developer at ExampleHMO, can create a secure function for his
new accounting application.

After the privacy and security policy went into effect at ExampleHMO, Alex is
notified that the accounting department has developed a powerful accounting
application. ExampleHMOAccountingUDF is a SQL scalar user-defined function
(UDF) that is used in the column mask ACCT_BALANCE_MASK on the
PATIENT.ACCT_BALANCE table and row.

Only UDFs that are secure can be invoked within a column mask. Alex first
discusses the UDF with Paul, who wrote the UDF, to ensure the operation inside
the UDF is secure.

When Alex is satisfied that the function is secure, he grants a system privilege to
Paul so Paul can alter the UDF to be secure:
GRANT CREATE_SECURE_OBJECT ON DATABASE TO USER PAUL;

To create a secured UDF, or alter a UDF to be secured, a developer must be
granted CREATE_SECURE_OBJECT authority.

Paul creates the function:
CREATE FUNCTION EXAMPLEHMOACCOUNTINGUDF(X DECIMAL(12,2))

RETURNS DECIMAL(12,2)
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
NO EXTERNAL ACTION
RETURN X*(1.0 + RAND(X));

Chapter 4. Row and column access control (RCAC) 149

Paul alters the function so it is secured:
ALTER FUNCTION EXAMPLEHMOACCOUNTINGUDF SECURED;

Alex now drops and recreates the mask ACC_BALANCE_MASK so the new UDF
is used:
--Drop the mask to recreate

DROP MASK ACCT_BALANCE_MASK;

CREATE MASK EXAMPLEHMO.ACCT_BALANCE_MASK ONPATIENT FOR
--
-- Accounting information:
-- Role ACCOUNTING is allowed to invoke the secured UDF
-- ExampleHMOAccountingUDFL passing column ACCT_BALANCE as
-- the input argument
-- Other ROLEs accessing this column will strictly view a
-- zero value.
--
COLUMN ACCT_BALANCE RETURN
CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1
THEN EXAMPLEHMOACCOUNTINGUDF(ACCT_BALANCE)
ELSE 0.00
END
ENABLE;

Dr. Lee, who has the PCP role, must call a drug analysis user-defined function.
DrugUDF returns patient drug information. In the past, Dr. Lee issues a SELECT
statement that calls DrugUDF and receives the result set quickly. After the
PATIENT table has been protected with row and column access control, the same
query takes more time to return a result set.

Dr. Lee consults with the ExampleHMO IT staff and Alex, the security
administrator, about this performance degradation. Alex tells Dr. Lee, if the UDF is
not secure, the query cannot be optimized as well and it takes longer to return a
result set.

Alex looks into the UDF with Dr. Lee and the owner, Paul, to ensure the operation
inside the UDF is secure. Alex asks Paul to alter the UDF to be secure as Paul still
has the CREATE_SECURE_OBJECT privilege granted by Alex:
--Function for ExampleHMO Pharmacy department

CREATE FUNCTION DRUGUDF(PHARMACY VARCHAR(5000))
RETURNS VARCHAR(5000)
NO EXTERNAL ACTION
BEGIN ATOMIC
IF PHARMACY IS NULL THEN

RETURN NULL;
ELSE

RETURN ’Normal’;
END IF;

END;

--Secure the UDF

ALTER FUNCTION DRUGUDF SECURED;

--Grant execute permissions to Dr.Lee

GRANT EXECUTE ON FUNCTION DRUGUDF TO USER LEE;

150 Database Security Guide

Dr. Lee can issue the query and the query can be optimized as expected:
--Querying after the function is secured

SELECT PHARMACY FROM PATIENT
WHERE DRUGUDF(PHARMACY) = ’Normal’ AND SSN = ’123-45-6789’;

PHARMACY

codeine

1 record(s) selected.

Scenario: ExampleHMO using row and column access control
- Secure triggers

Triggers defined on a table with row or column access control activated must be
secure. Alex, the security administrator, discusses how Paul, a database developer
at ExampleHMO, can create a secure trigger for his new accounting application.

Alex speaks to the accounting department and learns that an AFTER UPDATE
trigger is needed for the PATIENT table. This trigger monitors the history of the
ACCT_BALANCE column.

Alex explains to Paul, who has the necessary privileges to create the trigger, that
any trigger defined on a row and column access protected table must be marked
secure. Paul and Alex review the action of the new trigger and deem it to be
secure.

ExampleHMO_ACCT_BALANCE_TRIGGER monitors the ACCT_BALANCE
column in the PATIENT table. Every time that column is updated, the trigger is
fired, and inserts the current account balance details into the ACCT_HISTORY
table.

Paul creates the trigger:
CREATE TRIGGER HOSPITAL.NETHMO_ACCT_BALANCE_TRIGGER

AFTER UPDATE OF ACCT_BALANCE ON PATIENT
REFERENCING OLD AS O NEW AS N
FOR EACH ROW MODE DB2SQL SECURED
BEGIN ATOMIC
INSERT INTO ACCT_HISTORY
(SSN, BEFORE_BALANCE, AFTER_BALANCE, WHEN, BY_WHO)
VALUES(O.SSN, O.ACCT_BALANCE, N.ACCT_BALANCE,
CURRENT TIMESTAMP, SESSION_USER);

END;

John, from the accounting department, must update the account balance for the
patient Bob whose SSN is '123-45-6789'.

John looks at the data for Bob before running the update:
SELECT ACCT_BALANCE FROM PATIENT WHERE SSN = ’123-45-6789’;

ACCT_BALANCE

9.00

1 record(s) selected.

SELECT * FROM ACCT_HISTORY WHERE SSN = ’123-45-6789’;

Chapter 4. Row and column access control (RCAC) 151

SSN BEFORE_BALANCE AFTER_BALANCE WHEN BY_WHO
----------- -------------- -------------- ---------- --------------------

0 record(s) selected.

John then runs the update:
UPDATE PATIENT SET ACCT_BALANCE = ACCT_BALANCE * 0.9 WHERE SSN = ’123-45-6789’;

Since there is a trigger defined on the PATIENT table, the update fires the trigger.
Since the trigger is defined SECURED, the update completes successfully. John
looks at the data for Bob after running the update:
SELECT ACCT_BALANCE FROM PATIENT WHERE SSN = ’123-45-6789’;

ACCT_BALANCE

8.10

1 record(s) selected.

SELECT * FROM ACCT_HISTORY WHERE SSN = ’123-45-6789’;

SSN BEFORE_BALANCE AFTER_BALANCE WHEN BY_WHO
----------- -------------- -------------- ---------- --------------------
123-45-6789 9.00 8.10 2010-10-10 JOHN

1 record(s) selected.

Scenario: ExampleHMO using row and column access control
- Revoke authority

Alex, as security administrator, is responsible for controlling who can create secure
objects. When developers are done creating secure objects, Alex revokes their
authority on the database.

Paul, the database developer, is done with development activities. Alex
immediately revokes the create authority from Paul:
REVOKE CREATE_SECURE_OBJECT ON DATABASE FROM USER PAUL;

If Paul must create secure objects in the future, he must speak to Alex to have the
create authority granted again.

Scenario: ExampleBANK using row and column access control
This scenario presents ExampleBANK, a banking institution with a large customer
base spanning many branches, as a user of row and column access control.
ExampleBANK uses row and column access control to ensure that their database
policies reflect company requirements for privacy and security, as well as
management business objectives.

Organizations that handle client investments, savings, and their personal
information, like ExampleBANK, only share information within their organization
on a must know basis. This data protection ensures that any sensitive client
financial or personal information is shared, viewed, and modified only by
employees who are privileged to do so.

152 Database Security Guide

Scenario: ExampleBANK using row and column access
control - Security policies

ExampleBANK implements a security strategy where data access to DB2 databases
is made available according to certain security policies.

The security policies conform to privacy and data protection regulations at
ExampleBANK. The first column outlines the policies and the challenges faced by
ExampleBANK, the second column outlines the DB2 row and column access
control (RCAC) feature which addresses the challenge.

Security challenge
Row and column access control feature
which addresses the security challenge

Limiting row access to only authorized
users. Tellers are only permitted to view
client data that belong to their own branch,
not all clients of ExampleBANK in the
company-wide system.

Row permissions can be implemented to
control which user can view any particular
row.

The account number is accessible by
customer service representatives only when
they are using the account update
application. This application is identified
through stored procedure
ACCOUNTS.ACCTUPDATE.

Column masks can be used to filter or hide
sensitive data from customer service
representatives if they query the data
outside of the ACCOUNTS.ACCTUPDATE
application.

Scenario: ExampleBANK using row and column access
control - Database users and roles

In this scenario, a number of different people use ExampleBANK data. These
people have different user rights.

ExampleBANK implemented their security strategy to classify the way data is
accessed from the database. Internal access to data is based on the separation of
duties to users who access the data and their data access privileges. ExampleBANK
created the following database roles to separate these duties:

TELLER
For tellers of branch locations.

TELEMARKERTER
For telephone marketing and sales people.

CSR
For customer service representatives.

The following people use ExampleBANK data:

ZURBIE
A customer service representative at ExampleBANK. She belongs to the CSR
role.

NEWTON
A teller at an ExampleBANK branch. He belongs to the TELLER role.

PLATO
A telephone marketing and sales person at ExampleBANK. He belongs to the
TELEMARKETER role.

Chapter 4. Row and column access control (RCAC) 153

If you want to try any of the example SQL statements and commands presented in
this scenario, create these user IDs with their listed authorities.

The following example SQL statements assume that the users have been created on
the system. The SQL statements create each role and grant SELECT permission to
the various tables in the ExampleBANK database to the users:
--Creating roles and granting authority

CREATE ROLE TELLER;

CREATE ROLE CSR;

CREATE ROLE TELEMARKERTER;

GRANT ROLE TELLER TO USER NEWTON;
GRANT ROLE CSR TO USER ZURBIE;
GRANT ROLE TELEMARKERTER TO USER PLATO;

Scenario: ExampleBANK using row and column access
control - Database tables

This scenario focuses on two tables in the ExampleBANK database: the
CUSTOMER table and the INTERNAL_INFO table.

The INTERNAL_INFO table stores information about employees who work for
ExampleBANK. This scenario considers the following columns within the
INTERNAL_INFO table:

HOME_BRANCH
The employee home branch ID.

EMP_ID
The employee ID.

The CUSTOMER table stores individual client information:

ACCOUNT
The client account number.

NAME
The client name.

INCOME
The client income.

BRANCH
The client branch ID.

The following example SQL statements create the customer, and INTERNAL_INFO
tables. Authority is granted on the tables and data is inserted:
--Client table storing information regarding client information
CREATE TABLE RCACTSPM.CUSTOMER (

ACCOUNT VARCHAR(19),
NAME VARCHAR(20),
INCOME INTEGER,
BRANCH CHAR(1)

);

--Internal_info table which stores employee information

CREATE TABLE RCACTSPM.INTERNAL_INFO (
HOME_BRANCH CHAR(1),

154 Database Security Guide

EMP_ID VARCHAR(10));

--Grant authority

GRANT SELECT ON RCACTSPM.CUSTOMER TO USER NEWTON, USER ZURBIE, USER PLATO;

--Insert data

INSERT INTO RCACTSPM.CUSTOMER VALUES (’1111-2222-3333-4444’, ’Alice’, 22000, ’A’);
INSERT INTO RCACTSPM.CUSTOMER VALUES (’2222-3333-4444-5555’, ’Bob’, 71000, ’A’);
INSERT INTO RCACTSPM.CUSTOMER VALUES (’3333-4444-5555-6666’, ’Carl’, 123000, ’B’);
INSERT INTO RCACTSPM.CUSTOMER VALUES (’4444-5555-6666-7777’, ’David’, 172000, ’C’);

INSERT INTO RCACTSPM.INTERNAL_INFO VALUES (’A’, ’NEWTON’);
INSERT INTO RCACTSPM.INTERNAL_INFO VALUES (’B’, ’ZURBIE’);
INSERT INTO RCACTSPM.INTERNAL_INFO VALUES (’C’, ’PLATO’);

Scenario: ExampleBANK using row and column access
control - Row permissions

The security administrator at ExampleBANK, starts to restrict data access by using
row permissions, a part of row and column access control. Row permissions filter
the data returned to users by row.

Tellers are permitted to view client data only from their home branch.
Telemarketers and CSRs are permitted to see all ExampleBANK clients in the
system, but telemarketers cannot see the full account number.

Row permissions restrict or filter rows based on the user who has logged on to the
database. At ExampleBANK, the row permissions create a horizontal data
restriction on the CUSTOMER table.

The security administrator implements the following row permissions so that a
user in each role is restricted to view a result set that they are privileged to view:
CREATE PERMISSION TELLER_ROW_ACCESS ON RCACTSPM.CUSTOMER

-- Teller information:
-- ROLE TELLER is allowed to access client data only
-- in their branch.
--
FOR ROWS WHERE VERIFY_ROLE_FOR_USER(USER, ’TELLER’) = 1
AND
BRANCH = (SELECT HOME_BRANCH FROM RCACTSPM.INTERNAL_INFO WHERE EMP_ID = USER)
ENFORCED FOR ALL ACCESS
ENABLE;

CREATE PERMISSION CSR_ROW_ACCESS ON RCACTSPM.CUSTOMER

-- CSR and telemarketer information:
-- ROLE TELEMARKETER and CSR are allowed to access all client
-- data rows in ExampleBANK.
--
FOR ROWS WHERE VERIFY_ROLE_FOR_USER (USER, ’CSR’) = 1
OR
VERIFY_ROLE_FOR_USER (USER, ’TELEMARKETER’) = 1
ENFORCED FOR ALL ACCESS
ENABLE;

The security administrator observes that even after creating a row permission, all
data can still be viewed by the employees. A row permission is not applied until it
is activated on the table for which it was defined. The security administrator must
now activate the permission:

Chapter 4. Row and column access control (RCAC) 155

--Activate row access control to implement row permissions

ALTER TABLE RCACTSPM.CUSTOMER ACTIVATE ROW ACCESS CONTROL;

Scenario: ExampleBANK using row and column access
control - Column masks

The ExampleBANK security administrator, further restricts data access by using
column masks, a part of row and column access control. Column masks hide data
returned to users or applications by column unless they are permitted to view the
data.

Customer service representatives can see all clients in the ExampleBANK system,
but, they are not permitted to view full account numbers unless they are using a
specific application.

The security administrator implements the following column mask so that a
customer service representative is restricted to view a result set that they are
privileged to view:
CREATE MASK ACCOUNT_COL_MASK ON RCACTSPM.CUSTOMER FOR
--
-- Account number information:
-- Role customer service representative (CSR) is allowed to
-- access account number information only when they are using
-- the account update application. This application is
-- identified through stored procedure ACCOUNTS.ACCTUPDATE.
-- If a CSR queries this data outside of this application, the
-- account information is masked and the first 12 digits are
-- replaced with "x".
--
COLUMN ACCOUNT RETURN

CASE WHEN (VERIFY_ROLE_FOR_USER (USER, ’CSR’) = 1 AND
ROUTINE_SPECIFIC_NAME = ’ACCTUPDATE’ AND
ROUTINE_SCHEMA = ’ACCOUNTS’ AND
ROUTINE_TYPE = ’P’)

THEN ACCOUNT
ELSE ’xxxx-xxxx-xxxx-’ || SUBSTR(ACCOUNT,16,4)

END
ENABLE;

The security administrator observes that even after creating a column mask, the
data can still be viewed by all employees. A column mask is not applied until it is
activated on the table for which it was defined. The security administrator must
now activate the mask:
--Activate column access control to implement column masks

ALTER TABLE RCACTSPM.CUSTOMER ACTIVATE COLUMN ACCESS CONTROL;

Scenario: ExampleBANK using row and column access
control - Data queries

With row and column access control, people in different roles can have different
result sets from the same database queries. For example, Newton, a teller, cannot
see any data of clients outside of their branch.

Newton, Zurbie, and Plato each connect to the database and try the following SQL
query:
SELECT * FROM RCACTSPM.CUSTOMER;

156 Database Security Guide

Results of the query vary according to who runs the query. The row and column
access control rules created by the security administrator are applied on these
queries.

Here is the result set Newton sees:
ACCOUNT NAME INCOME BRANCH
------------------- -------------------- ----------- ------
xxxx-xxxx-xxxx-4444 Alice 22000 A
xxxx-xxxx-xxxx-5555 Bob 71000 A

2 record(s) selected.

Newton, being a teller at branch A, can see only ExampleBANK clients that belong
to that branch.

Here is the result set Zurbie sees:
ACCOUNT NAME INCOME BRANCH
------------------- -------------------- ----------- ------
xxxx-xxxx-xxxx-4444 Alice 22000 A
xxxx-xxxx-xxxx-5555 Bob 71000 A
xxxx-xxxx-xxxx-6666 Carl 123000 B
xxxx-xxxx-xxxx-7777 David 172000 C

4 record(s) selected.

Zurbie, being a customer service representative, can see all ExampleBANK clients
in the system, but not their full account number unless he uses the
ACCOUNTS.ACCTUPDATE application. Since this query was issued outside of
ACCOUNTS.ACCTUPDATE, part of that number is masked.

Here is the result set Plato sees:
ACCOUNT NAME INCOME BRANCH
------------------- -------------------- ----------- ------
xxxx-xxxx-xxxx-4444 Alice 22000 A
xxxx-xxxx-xxxx-5555 Bob 71000 A
xxxx-xxxx-xxxx-6666 Carl 123000 B
xxxx-xxxx-xxxx-7777 David 172000 C

4 record(s) selected.

Plato, being a telemarketer, can see all ExampleBANK clients in the system.

Chapter 4. Row and column access control (RCAC) 157

158 Database Security Guide

Chapter 5. Label-based access control (LBAC)

Label-based access control (LBAC) greatly increases the control you have over who
can access your data. LBAC lets you decide exactly who has write access and who
has read access to individual rows and individual columns.

What LBAC does

The LBAC capability is very configurable and can be tailored to match your
particular security environment. All LBAC configuration is performed by a security
administrator, which is a user that has been granted the SECADM authority.

A security administrator configures the LBAC system by creating security label
components. A security label component is a database object that represents a
criterion you want to use to determine if a user should access a piece of data. For
example, the criterion can be whether the user is in a certain department, or
whether they are working on a certain project. A security policy describes the
criteria that will be used to decide who has access to what data. A security policy
contains one or more security label components. Only one security policy can be
used to protect any one table but different tables can be protected by different
security policies.

After creating a security policy, a security administrator creates objects, called
security labels that are part of that policy. Security labels contain security label
components. Exactly what makes up a security label is determined by the security
policy and can be configured to represent the criteria that your organization uses
to decide who should have access to particular data items. If you decide, for
example, that you want to look at a person's position in the company and what
projects they are part of to decide what data they should see, then you can
configure your security labels so that each label can include that information.
LBAC is flexible enough to let you set up anything from very complicated criteria,
to a very simple system where each label represents either a "high" or a "low" level
of trust.

Once created, a security label can be associated with individual columns and rows
in a table to protect the data held there. Data that is protected by a security label is
called protected data. A security administrator allows users access to protected data
by granting them security labels. When a user tries to access protected data, that
user's security label is compared to the security label protecting the data. The
protecting label will block some security labels and not block others.

A user, a role, or a group is allowed to hold security labels for multiple security
policies at once. For any given security policy, however, a use, a role, or a group
can hold at most one label for read access and one label for write access.

A security administrator can also grant exemptions to users. An exemption allows
you to access protected data that your security labels might otherwise prevent you
from accessing. Together your security labels and exemptions are called your LBAC
credentials.

If you try to access a protected column that your LBAC credentials do not allow
you to access then the access will fail and you will get an error message.

© Copyright IBM Corp. 2013 159

If you try to read protected rows that your LBAC credentials do not allow you to
read then DB2 acts as if those rows do not exist. Those rows cannot be selected as
part of any SQL statement that you run, including SELECT, UPDATE, or DELETE.
Even the aggregate functions ignore rows that your LBAC credentials do not allow
you to read. The COUNT(*) function, for example, will return a count only of the
rows that you have read access to.

Views and LBAC

You can define a view on a protected table the same way you can define one on a
non-protected table. When such a view is accessed the LBAC protection on the
underlying table is enforced. The LBAC credentials used are those of the session
authorization ID. Two users accessing the same view might see different rows
depending on their LBAC credentials.

Referential integrity constraints and LBAC

The following rules explain how LBAC rules are enforced in the presence of
referential integrity constraints:
v Rule 1: The LBAC read access rules are NOT applied for internally generated

scans of child tables. This is to avoid having orphan children.
v Rule 2: The LBAC read access rules are NOT applied for internally generated

scans of parent tables
v Rule 3: The LBAC write rules are applied when a CASCADE operation is

performed on child tables. For example, If a user deletes a parent, but cannot
delete any of the children because of an LBAC write rule violation, then the
delete should be rolled-back and an error raised.

Storage overhead when using LBAC

When you use LBAC to protect a table at the row level, the additional storage cost
is the cost of the row security label column. This cost depends on the type of
security label chosen. For example, if you create a security policy with two
components to protect a table, a security label from that security policy will occupy
16 bytes (8 bytes for each component). Because the row security label column is
treated as a not nullable VARCHAR column, the total cost in this case would be 20
bytes per row. In general, the total cost per row is (N*8 + 4) bytes where N is the
number of components in the security policy protecting the table.

When you use LBAC to protect a table at the column level, the column security
label is meta-data (that is, it is stored together with the column's meta-data in the
SYSCOLUMNS catalog table). This meta-data is simply the ID of the security label
protecting the column. The user table does not incur any storage overhead in this
case.

What LBAC does not do
v LBAC will never allow access to data that is forbidden by discretionary access

control.

Example: If you do not have permission to read from a table then you will not
be allowed to read data from that table--even the rows and columns to which
LBAC would otherwise allow you access.

v Your LBAC credentials only limit your access to protected data. They have no
effect on your access to unprotected data.

160 Database Security Guide

v LBAC credentials are not checked when you drop a table or a database, even if
the table or database contains protected data.

v LBAC credentials are not checked when you back up your data. If you can run a
backup on a table, which rows are backed up is not limited in any way by the
LBAC protection on the data. Also, data on the backup media is not protected
by LBAC. Only data in the database is protected.

v LBAC cannot be used to protect any of the following types of tables:
– A staging table
– A table that a staging table depends on
– A typed table

v LBAC protection cannot be applied to a nickname.

LBAC tutorial

A tutorial leading you through the basics of using LBAC is available online at
http://www.ibm.com/developerworks/data and is called DB2 Label-Based Access
Control, a practical guide.

LBAC security policies
The security administrator uses a security policy to define criteria that determine
who has write access and who has read access to individual rows and individual
columns of tables.

A security policy includes this information:
v What security label components are used in the security labels that are part of

the policy
v What rules are used when comparing those security label components
v Which of certain optional behaviors are used when accessing data protected by

the policy
v What additional security labels and exemptions are to be considered when

enforcing access to data protected by the security policy. For example, the option
to consider or not to consider security labels granted to roles and groups is
controlled through the security policy.

Every protected table must have one and only one security policy associated with
it. Rows and columns in that table can only be protected with security labels that
are part of that security policy and all access of protected data follows the rules of
that policy. You can have multiple security policies in a single database but you
cannot have more than one security policy protecting any given table.

Creating a security policy

You must be a security administrator to create a security policy. You create a
security policy with the SQL statement CREATE SECURITY POLICY. The security
label components listed in a security policy must be created before the CREATE
SECURITY POLICY statement is executed. The order in which the components are
listed when a security policy is created does not indicate any sort of precedence or
other relationship among the components but it is important to know the order
when creating security labels with built-in functions like SECLABEL.

From the security policy you have created, you can create security labels to protect
your data.

Chapter 5. Label-Based Access Control (LBAC) 161

http://www.ibm.com/developerworks/data
http://www.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html
http://www.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html

Altering a security policy

A security administrator can use the ALTER SECURITY POLICY statement to
modify a security policy.

Dropping a security policy

You must be a security administrator to drop a security policy. You drop a security
policy using the SQL statement DROP.

You cannot drop a security policy if it is associated with (added to) any table.

LBAC security label components overview
A security label component is a database object that is part of label-based access
control (LBAC). You use security label components to model your organization's
security structure.

A security label component can represent any criteria that you might use to decide
if a user should have access to a given piece of data. Typical examples of such
criteria include:
v How well trusted the user is
v What department the user is in
v Whether the user is involved in a particular project

Example: If you want the department that a user is in to affect which data they
can access, you could create a component named dept and define elements for that
component that name the various departments in your company. You would then
include the component dept in your security policy.

An element of a security label component is one particular "setting" that is allowed
for that component.

Example: A security label component that represents a level of trust might have
the four elements: Top Secret, Secret, Classified, and Unclassified.

Creating a security label component

You must be a security administrator to create a security label component. You
create security label components with the SQL statement CREATE SECURITY
LABEL COMPONENT.

When you create a security label component you must provide:
v A name for the component
v What type of component it is (ARRAY, TREE, or SET)
v A complete list of allowed elements
v For types ARRAY and TREE you must describe how each element fits into the

structure of the component

After creating your security label components, you can create a security policy
based on these components. From this security policy, you can create security
labels to protect your data.

162 Database Security Guide

Types of components

There are three types of security label components:
v TREE: Each element represents a node in a tree structure
v ARRAY: Each element represents a point on a linear scale
v SET: Each element represents one member of a set

The types are used to model the different ways in which elements can relate to
each other. For example, if you are creating a component to describe one or more
departments in a company you would probably want to use a component type of
TREE because most business structures are in the form of a tree. If you are creating
a component to represent the level of trust that a person has, you would probably
use a component of type ARRAY because for any two levels of trust, one will
always be higher than the other.

The details of each type, including detailed descriptions of the relationships that
the elements can have with each other, are described in their own section.

Altering security label components

The security administrator can use the ALTER SECURITY LABEL COMPONENT
statement to modify a security label component.

Dropping a security label component

You must be a security administrator to drop a security label component. You drop
a security label component with the SQL statement DROP.

LBAC security label component type: SET
SET is one type of security label component that can be used in a label-based
access control (LBAC) security policy.

Components of type SET are unordered lists of elements. The only comparison that
can be made for elements of this type of component is whether or not a given
element is in the list.

LBAC security label component type: ARRAY
ARRAY is one type of security label component.

In the ARRAY type of component the order in which the elements are listed when
the component is created defines a scale with the first element listed being the
highest value and the last being the lowest.

Example: If the component mycomp is defined in this way:
CREATE SECURITY LABEL COMPONENT mycomp

ARRAY [’Top Secret’, ’Secret’, ’Employee’, ’Public’]

Then the elements are treated as if they are organized in a structure like this:

Chapter 5. Label-Based Access Control (LBAC) 163

In a component of type ARRAY, the elements can have these sorts of relationships
to each other:

Higher than
Element A is higher than element B if element A is listed earlier in the
ARRAY clause than element B.

Lower than
Element A is lower than element B if element A is listed later in the
ARRAY clause than element B

LBAC security label component type: TREE
TREE is one type of security label component that can be used in a label-based
access control (LBAC) security policy.

In the TREE type of component the elements are treated as if they are arranged in
a tree structure. When you specify an element that is part of a component of type
TREE you must also specify which other element it is under. The one exception is
the first element which must be specified as being the ROOT of the tree. This
allows you to organize the elements in a tree structure.

Example: If the component mycomp is defined this way:
CREATE SECURITY LABEL COMPONENT mycomp
TREE (

’Corporate’ ROOT,
’Publishing’ UNDER ’Corporate’,
’Software’ UNDER ’Corporate’,
’Development’ UNDER ’Software’,
’Sales’ UNDER ’Software’,
’Support’ UNDER ’Software’
’Business Sales’ UNDER ’Sales’
’Home Sales’ UNDER ’Sales’

)

Then the elements are treated as if they are organized in a tree structure like this:

Secret

Employee

Top Secret

Public

Highest

Lowest

164 Database Security Guide

In a component of type TREE, the elements can have these types of relationships to
each other:

Parent Element A is a parent of element B if element B is UNDER element A.

Example: This diagram shows the parent of the Business Sales element:

Child Element A is a child of element B if element A is UNDER element B.

Example: This diagram shows the children of the Software element:

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Chapter 5. Label-Based Access Control (LBAC) 165

Sibling
Two elements are siblings of each other if they have the same parent.

Example: This diagram shows the siblings of the Development element:

Ancestor
Element A is an ancestor of element B if it is the parent of B, or if it is the
parent of the parent of B, and so on. The root element is an ancestor of all
other elements in the tree.

Example: This diagram shows the ancestors of the Home Sales element:

Publishing Software

Business
Sales

Home Sales

Corporate

SalesDevelopment Support

Publishing Software

Development

Business
Sales

Home Sales

Corporate

Sales Support

166 Database Security Guide

Descendent
Element A is a descendent of element B if it is the child of B, or if it is the
child of a child of B, and so on.

Example: This diagram shows the descendents of the Software element:

LBAC security labels
In label-based access control (LBAC) a security label is a database object that
describes a certain set of security criteria. Security labels are applied to data in
order to protect the data. They are granted to users to allow them to access
protected data.

When a user tries to access protected data, their security label is compared to the
security label that is protecting the data. The protecting security label will block
some security labels and not block others. If a user's security label is blocked then
the user cannot access the data.

Every security label is part of exactly one security policy and includes one value
for each component in that security policy. A value in the context of a security label
component is a list of zero or more of the elements allowed by that component.

Publishing

Development Support

Business
Sales

Home Sales

Sales

Software

Corporate

Publishing Software

Corporate

SalesDevelopment Support

Business
Sales

Home Sales

Chapter 5. Label-Based Access Control (LBAC) 167

Values for ARRAY type components can contain zero or one element, values for
other types can have zero or more elements. A value that does not include any
elements is called an empty value.

Example: If a TREE type component has the three elements Human Resources,
Sales, and Shipping then these are some of the valid values for that component:
v Human Resources (or any of the elements by itself)
v Human Resources, Shipping (or any other combination of the elements as long

as no element is included more than once)
v An empty value

Whether a particular security label will block another is determined by the values
of each component in the labels and the LBAC rule set that is specified in the
security policy of the table. The details of how the comparison is made are given
in the topic that discusses how LBAC security labels are compared.

When security labels are converted to a text string they use the format described in
the topic that discusses the format for security label values.

Creating security labels

You must be a security administrator to create a security label. You create a
security label with the SQL statement CREATE SECURITY LABEL. When you
create a security label you provide:
v A name for the label
v The security policy that the label is part of
v Values for one or more of the components included in the security policy

Any components for which a value is not specified is assumed to have an empty
value. A security label must have at least one non-empty value.

Altering security labels

Security labels cannot be altered. The only way to change a security label is to
drop it and re-create it. However, the components of a security label can be
modified by a security administrator (using the ALTER SECURITY LABEL
COMPONENT statement).

Dropping security labels

You must be a security administrator to drop a security label. You drop a security
label with the SQL statement DROP. You cannot drop a security label that is being
used to protect data anywhere in the database or that is currently held by one or
more users.

Granting security labels

You must be a security administrator to grant a security label to a user, a group, or
a role. You grant a security label with the SQL statement GRANT SECURITY
LABEL. When you grant a security label you can grant it for read access, for write
access, or for both read and write access. A user, a group, or a role cannot hold
more than one security label from the same security policy for the same type of
access.

168 Database Security Guide

Revoking security labels

You must be a security administrator to revoke a security label from a user, group,
or role. To revoke a security label, use the SQL statement REVOKE SECURITY
LABEL.

Data types compatible with security labels

Security labels have a data type of SYSPROC.DB2SECURITYLABEL. Data
conversion is supported between SYSPROC.DB2SECURITYLABEL and
VARCHAR(128) FOR BIT DATA.

Determining the security labels held by users

You can use the following query to determine the security labels that are held by
users:
SELECT A.grantee, B.secpolicyname, c.seclabelname
FROM syscat.securitylabelaccess A, syscat.securitypolicies B, syscat.securitylabels C
WHERE A.seclabelid = C.seclabelid and B.secpolicyid = C.secpolicyid

Format for security label values
Sometimes the values in a security label are represented in the form of a character
string, for example when using the built-in function SECLABEL.

When the values in a security label are represented as a string, they are in the
following format:
v The values of the components are listed from left to right in the same order that

the components are listed in the CREATE SECURITY POLICY statement for the
security policy

v An element is represented by the name of that element
v Elements for different components are separated by a colon (:)
v If more than one element are given for the same component the elements are

enclosed in parentheses (()) and are separated by a comma (,)
v Empty values are represented by a set of empty parentheses (())

Example: A security label is part of a security policy that has these three
components in this order: Level, Department, and Projects. The security label has
these values:

Table 8. Example values for a security label

Component Values

Level Secret

Department Empty value

Projects v Epsilon 37

v Megaphone

v Cloverleaf

This security label values look like this as a string:
’Secret:():(Epsilon 37,Megaphone,Cloverleaf)’

Chapter 5. Label-Based Access Control (LBAC) 169

How LBAC security labels are compared
When you try to access data protected by label-based access control (LBAC), your
LBAC credentials are compared to one or more security labels to see if the access is
blocked. Your LBAC credentials are any security labels you hold plus any
exemptions that you hold.

There are only two types of comparison that can be made. Your LBAC credentials
can be compared to a single security label for read access or your LBAC credentials
compared to a single security label for write access. Updating and deleting are
treated as being a read followed by a write. When an operation requires multiple
comparisons to be made, each is made separately.

Which of your security labels is used

Even though you might hold multiple security labels only one is compared to the
protecting security label. The label used is the one that meets these criteria:
v It is part of the security policy that is protecting the table being accessed.
v It was granted for the type of access (read or write).

If you do not have a security label that meets these criteria then a default security
label is assumed that has empty values for all components.

How the comparison is made

Security labels are compared component by component. If a security label does not
have a value for one of the components then an empty value is assumed. As each
component is examined, the appropriate rules of the LBAC rule set are used to
decide if the elements in your value for that component should be blocked by the
elements in the value for the same component in the protecting label. If any of
your values are blocked then your LBAC credentials are blocked by the protecting
security label.

The LBAC rule set used in the comparison is designated in the security policy. To
find out what the rules are and when each one is used, see the description of that
rule set.

How exemptions affect comparisons

If you hold an exemption for the rule that is being used to compare two values
then that comparison is not done and the protecting value is assumed not to block
the value in your security label.

Example: The LBAC rule set is DB2LBACRULES and the security policy has two
components. One component is of type ARRAY and the other is of type TREE. The
user has been granted an exemption on the rule DB2LBACREADTREE, which is
the rule used for read access when comparing values of components of type TREE.
If the user attempts to read protected data then whatever value the user has for the
TREE component, even if it is an empty value, will not block access because that
rule is not used. Whether the user can read the data depends entirely on the values
of the ARRAY component of the labels.

170 Database Security Guide

LBAC rule sets overview
An LBAC rule set is a predefined set of rules that are used when comparing
security labels. When the values of a two security labels are being compared, one
or more of the rules in the rule set will be used to determine if one value blocks
another.

Each LBAC rule set is identified by a unique name. When you create a security
policy you must specify the LBAC rule set that will be used with that policy. Any
comparison of security labels that are part of that policy will use that LBAC rule
set.

Each rule in a rule set is also identified by a unique name. You use the name of a
rule when you are granting an exemption on that rule.

How many rules are in a set and when each rule is used can vary from rule set to
rule set.

There is currently only one supported LBAC rule set. The name of that rule set is
DB2LBACRULES.

LBAC rule set: DB2LBACRULES
The DB2LBACRULES LBAC rule set provides a traditional set of rules for
comparing the values of security label components. It protects from both write-up
and write-down.

What are write-up and write down?

Write-up and write-down apply only to components of type ARRAY and only to
write access. Write up occurs when the value protecting data that you are writing
to is higher than your value. Write-down is when the value protecting the data is
lower than yours. By default neither write-up nor write-down is allowed, meaning
that you can only write data that is protected by the same value that you have.

When comparing two values for the same component, which rules are used
depends on the type of the component (ARRAY, SET, or TREE) and what type of
access is being attempted (read, or write). This table lists the rules, tells when each
is used, and describes how the rule determines if access is blocked.

Table 9. Summary of the DB2LBACRULES rules

Rule name

Used to
compare
values of
this type of
component

Used for
this type of
access

Access is blocked when this
condition is met

DB2LBACREADARRAY ARRAY Read The user's value is lower than the
protecting value.

DB2LBACREADSET SET Read There are one or more protecting
values that the user does not hold.

DB2LBACREADTREE TREE Read None of the user's values is equal to
or an ancestor of one of the
protecting values.

DB2LBACWRITEARRAY ARRAY Write The user's value is higher than the
protecting value or lower than the
protecting value.1

Chapter 5. Label-Based Access Control (LBAC) 171

Table 9. Summary of the DB2LBACRULES rules (continued)

Rule name

Used to
compare
values of
this type of
component

Used for
this type of
access

Access is blocked when this
condition is met

DB2LBACWRITESET SET Write There are one or more protecting
values that the user does not hold.

DB2LBACWRITETREE TREE Write None of the user's values is equal to
or an ancestor of one of the
protecting values.

Note:

1. The DB2LBACWRITEARRAY rule can be thought of as being two different
rules combined. One prevents writing to data that is higher than your level
(write-up) and the other prevents writing to data that is lower than your level
(write-down). When granting an exemption to this rule you can exempt the
user from either of these rules or from both.

How the rules handle empty values

All rules treat empty values the same way. An empty value blocks no other values
and is blocked by any non-empty value.

DB2LBACREADSET and DB2LBACWRITESET examples

These examples are valid for a user trying to read or trying to write protected data.
They assume that the values are for a component of type SET that has these
elements: one two three four

Table 10. Examples of applying the DB2LBACREADSET and DB2LBACWRITESET rules.

User's value Protecting value Access blocked?

'one' 'one' Not blocked. The values are the same.

'(one,two,three)' 'one' Not blocked. The user's value contains
the element 'one'.

'(one,two)' '(one,two,four)' Blocked. The element 'four' is in the
protecting value but not in the user's
value.

'()' 'one' Blocked. An empty value is blocked
by any non-empty value.

'one' '()' Not blocked. No value is blocked by
an empty value.

'()' '()' Not blocked. No value is blocked by
an empty value.

DB2LBACREADTREE and DB2LBACWRITETREE

These examples are valid for both read access and write access. They assume that
the values are for a component of type TREE that was defined in this way:
CREATE SECURITY LABEL COMPONENT mycomp
TREE (

’Corporate’ ROOT,

172 Database Security Guide

’Publishing’ UNDER ’Corporate’,
’Software’ UNDER ’Corporate’,
’Development’ UNDER ’Software’,
’Sales’ UNDER ’Software’,
’Support’ UNDER ’Software’
’Business Sales’ UNDER ’Sales’
’Home Sales’ UNDER ’Sales’

)

This means the elements are in this arrangement:

Table 11. Examples of applying the DB2LBACREADTREE and DB2LBACWRITETREE
rules.

User's value Protecting value Access blocked?

'(Support,Sales)' 'Development' Blocked. The element
'Development' is not one of the
user's values and neither
'Support' nor 'Sales' is an
ancestor of 'Development'.

'(Development,Software)' '(Business Sales,Publishing)' Not blocked. The element
'Software' is an ancestor of
'Business Sales'.

'(Publishing,Sales)' '(Publishing,Support)' Not blocked. The element
'Publishing' is in both sets of
values.

'Corporate' 'Development' Not blocked. The root value is
an ancestor of all other values.

'()' 'Sales' Blocked. An empty value is
blocked by any non-empty
value.

'Home Sales' '()' Not blocked. No value is
blocked by an empty value.

'()' '()' Not blocked. No value is
blocked by an empty value.

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Chapter 5. Label-Based Access Control (LBAC) 173

DB2LBACREADARRAY examples

These examples are for read access only. They assume that the values are for a
component of type ARRAY that includes these elements in this arrangement:

Table 12. Examples of applying the DB2LBACREADARRAY rule.

User's value Protecting value Read access blocked?

'Secret' 'Employee' Not blocked. The element 'Secret' is higher
than the element 'Employee'.

'Secret' 'Secret' Not blocked. The values are the same.

'Secret' 'Top Secret' Blocked. The element 'Top Secret' is higher
than the element 'Secret'.

'()' 'Public' Blocked. An empty value is blocked by any
non-empty value.

'Public' '()' Not blocked. No value is blocked by an
empty value.

'()' '()' Not blocked. No value is blocked by an
empty value.

DB2LBACWRITEARRAY examples

These examples are for write access only. They assume that the values are for a
component of type ARRAY that includes these elements in this arrangement:

Secret

Employee

Top Secret

Public

Highest

Lowest

174 Database Security Guide

Table 13. Examples of applying the DB2LBACWRITEARRAY rule.

User's value Protecting value Write access blocked?

'Secret' 'Employee' Blocked. The element 'Employee' is lower
than the element 'Secret'.

'Secret' 'Secret' Not blocked. The values are the same.

'Secret' 'Top Secret' Blocked. The element 'Top Secret' is higher
than the element 'Secret'.

'()' 'Public' Blocked. An empty value is blocked by any
non-empty value.

'Public' '()' Not blocked. No value is blocked by an
empty value.

'()' '()' Not blocked. No value is blocked by an
empty value.

LBAC rule exemptions
When you hold an LBAC rule exemption on a particular rule of a particular
security policy, that rule is not enforced when you try to access data protected by
that security policy.

An exemption has no effect when comparing security labels of any security policy
other than the one for which it was granted.

Example:

There are two tables: T1 and T2. T1 is protected by security policy P1 and T2 is
protected by security policy P2. Both security policies have one component. The
component of each is of type ARRAY. T1 and T2 each contain only one row of
data. The security label that you hold for read access under security policy P1 does
not allow you access to the row in T1. The security label that you hold for read
access under security policy P2 does not allow you read access to the row in T2.

Now you are granted an exemption on DB2LBACREADARRAY under P1. You can
now read the row from T1 but not the row from T2 because T2 is protected by a
different security policy and you do not hold an exemption to the
DB2LBACREADARRAY rule in that policy.

Secret

Employee

Top Secret

Public

Highest

Lowest

Chapter 5. Label-Based Access Control (LBAC) 175

You can hold multiple exemptions. If you hold an exemption to every rule used by
a security policy then you will have complete access to all data protected by that
security policy.

Granting LBAC rule exemptions

You must be a security administrator to grant an LBAC rule exemption. To grant
an LBAC rule exemption, use the SQL statement GRANT EXEMPTION ON RULE.

When you grant an LBAC rule exemption you provide this information:
v The rule or rules that the exemption is for
v The security policy that the exemption is for
v The user, group, or role to which you are granting the exemption

Important: LBAC rule exemptions provide very powerful access. Do not grant
them without careful consideration.

Revoking LBAC rule exemptions

You must be a security administrator to revoke an LBAC rule exemption. To
revoke an LBAC rule exemption, use the SQL statement REVOKE EXEMPTION
ON RULE.

Determining the rule exemptions held by users

You can use the following query to determine the rule exemptions that are held by
users:
SELECT A.grantee, A.accessrulename, B.secpolicyname
FROM syscat.securitypolicyexemptions A, syscat.securitypolicies B
WHERE A.secpolicyid = B.secpolicyid

Built-in functions for managing LBAC security labels
The built-in functions SECLABEL, SECLABEL_BY_NAME, and
SECLABEL_TO_CHAR are provided for managing label-based access control
(LBAC) security labels.

Each is described briefly here and in detail in the SQL Reference

SECLABEL

This built-in function is used to build a security label by specifying a security
policy and values for each of the components in the label. The returned value has
a data type of DB2SECURITYLABEL and is a security label that is part of the
indicated security policy and has the indicated values for the components. It is not
necessary that a security label with the indicated values already exists.

Example: Table T1 has two columns, the first has a data type of
DB2SECURITYLABEL and the second has a data type of INTEGER. T1 is protected
by security policy P1, which has three security label components: level,
departments, and groups. If UNCLASSIFIED is an element of the component level,
ALPHA and SIGMA are both elements of the component departments, and G2 is
an element of the component groups then a security label could be inserted like
this:

176 Database Security Guide

INSERT INTO T1 VALUES
(SECLABEL(’P1’, ’UNCLASSIFIED:(ALPHA,SIGMA):G2’), 22)

SECLABEL_BY_NAME

This built-in function accepts the name of a security policy and the name of a
security label that is part of that security policy. It then returns the indicated
security label as a DB2SECURITYLABEL. You must use this function when
inserting an existing security label into a column that has a data type of
DB2SECURITYLABEL.

Example: Table T1 has two columns, the first has a data type of
DB2SECURITYLABEL and the second has a data type of INTEGER. The security
label named L1 is part of security policy P1. This SQL inserts the security label:
INSERT INTO T1 VALUES (SECLABEL_BY_NAME(’P1’, ’L1’), 22)

This SQL statement does not work:
INSERT INTO T1 VALUES (P1.L1, 22) // Syntax Error!

SECLABEL_TO_CHAR

This built-in function returns a string representation of the values that make up a
security label.

Example: Column C1 in table T1 has a data type of DB2SECURITYLABEL. T1 is
protected by security policy P1, which has three security label components: level,
departments, and groups. There is one row in T1 and the value in column C1 that
has these elements for each of the components:

Component Elements

level SECRET

departments DELTA and SIGMA

groups G3

A user that has LBAC credentials that allow reading the row executes this SQL
statement:
SELECT SECLABEL_TO_CHAR(’P1’, C1) AS C1 FROM T1

The output looks like this:
C1

’SECRET:(DELTA,SIGMA):G3’

Protection of data using LBAC
Label-based access control (LBAC) can be used to protect rows of data, columns of
data, or both. Data in a table can only be protected by security labels that are part
of the security policy protecting the table. Data protection, including adding a
security policy, can be done when creating the table or later by altering the table.

You can add a security policy to a table and protect data in that table as part of the
same CREATE TABLE or ALTER TABLE statement.

Chapter 5. Label-Based Access Control (LBAC) 177

As a general rule you are not allowed to protect data in such a way that your
current LBAC credentials do not allow you to write to that data.

Adding a security policy to a table

You can add a security policy to a table when you create the table by using the
SECURITY POLICY clause of the CREATE TABLE statement. You can add a
security policy to an existing table by using the ADD SECURITY POLICY clause of
the ALTER TABLE statement. You do not need to have SECADM authority or have
LBAC credentials to add a security policy to a table.

Security policies cannot be added to types of tables that cannot be protected by
LBAC. See the overview of LBAC for a list of table types that cannot be protected
by LBAC.

No more than one security policy can be added to any table.

Protecting rows

You can allow protected rows in a new table by including a column with a data
type of DB2SECURITYLABEL when you create the table. The CREATE TABLE
statement must also add a security policy to the table. You do not need to have
SECADM authority or have any LBAC credentials to create such a table.

You can allow protected rows in an existing table by adding a column that has a
data type of DB2SECURITYLABEL. To add such a column, either the table must
already be protected by a security policy or the ALTER TABLE statement that adds
the column must also add a security policy to the table. When the column is
added, the security label you hold for write access is used to protect all existing
rows. If you do not hold a security label for write access that is part of the security
policy protecting the table then you cannot add a column that has a data type of
DB2SECURITYLABEL.

After a table has a column of type DB2SECURITYLABEL you protect each new
row of data by storing a security label in that column. The details of how this
works are described in the topics about inserting and updating LBAC protected
data. You must have LBAC credentials to insert rows into a table that has a column
of type DB2SECURITYLABEL.

A column that has a data type of DB2SECURITYLABEL cannot be dropped and
cannot be changed to any other data type.

Protecting columns

You can protect a column when you create the table by using the SECURED WITH
column option of the CREATE TABLE statement. You can add protection to an
existing column by using the SECURED WITH option in an ALTER TABLE
statement.

To protect a column with a particular security label you must have LBAC
credentials that allow you to write to data protected by that security label. You do
not have to have SECADM authority.

Columns can only be protected by security labels that are part of the security
policy protecting the table. You cannot protect columns in a table that has no

178 Database Security Guide

security policy. You are allowed to protect a table with a security policy and
protect one or more columns in the same statement.

You can protect any number of the columns in a table but a column can be
protected by no more than one security label.

Reading of LBAC protected data
When you try to read data protected by label-based access control (LBAC), your
LBAC credentials for reading are compared to the security label that is protecting
the data. If the protecting label does not block your credentials you are allowed to
read the data.

In the case of a protected column the protecting security label is defined in the
schema of the table. The protecting security label for that column is the same for
every row in the table. In the case of a protected row the protecting security label
is stored in the row in a column of type DB2SECURITYLABEL. It can be different
for every row in the table.

The details of how your LBAC credentials are compared to a security label are
given in the topic about how LBAC security labels are compared.

Reading protected columns

When you try to read from a protected column your LBAC credentials are
compared with the security label protecting the column. Based on this comparison
access will either be blocked or allowed. If access is blocked then an error is
returned and the statement fails. Otherwise, the statement proceeds as usual.

Trying to read a column that your LBAC credentials do not allow you to read,
causes the entire statement to fail.

Example:

Table T1 has two protected columns. The column C1 is protected by the security
label L1. The column C2 is protected by the security label L2.

Assume that user Jyoti has LBAC credentials for reading that allow access to
security label L1 but not to L2. If Jyoti issues the following SQL statement, the
statement will fail:
SELECT * FROM T1

The statement fails because column C2 is included in the SELECT clause as part of
the wildcard (*).

If Jyoti issues the following SQL statement it will succeed:
SELECT C1 FROM T1

The only protected column in the SELECT clause is C1, and Jyoti's LBAC
credentials allow her to read that column.

Reading protected rows

If you do not have LBAC credentials that allow you to read a row it is as if that
row does not exist for you.

Chapter 5. Label-Based Access Control (LBAC) 179

When you read protected rows, only those rows to which your LBAC credentials
allow read access are returned. This is true even if the column of type
DB2SECURITYLABEL is not part of the SELECT clause.

Depending on their LBAC credentials, different users might see different rows in a
table that has protected rows. For example, two users executing the statement
SELECT COUNT(*) FROM T1 may get different results if T1 has protected rows and
the users have different LBAC credentials.

Your LBAC credentials affect not only SELECT statements but also other SQL
statements like UPDATE, and DELETE. If you do not have LBAC credentials that
allow you to read a row, you cannot affect that row.

Example:

Table T1 has these rows and columns. The column ROWSECURITYLABEL has a
data type of DB2SECURITYLABEL.

Table 14. Example values in table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Bird 55 L2

Assume that user Dan has LBAC credentials that allow him to read data that is
protected by security label L1 but not data protected by L2 or L3.

Dan issues the following SQL statement:
SELECT * FROM T1

The SELECT statement returns only the row for Miller. No error messages or
warning are returned.

Dan's view of table T1 is this:

Table 15. Example values in view of table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Miller 77 L1

The rows for Rjaibi, Fielding, and Bird are not returned because read access is
blocked by their security labels. Dan cannot delete or update these rows. They will
also not be included in any aggregate functions. For Dan it is as if those rows do
not exist.

Dan issues this SQL statement:
SELECT COUNT(*) FROM T1

The statement returns a value of 1 because only the row for Miller can be read by
the user Dan.

180 Database Security Guide

Reading protected rows that contain protected columns

Column access is checked before row access. If your LBAC credentials for read
access are blocked by the security label protecting one of the columns you are
selecting then the entire statement fails. If not, the statement continues and only
the rows protected by security labels to which your LBAC credentials allow read
access are returned.

Example

The column LASTNAME of table T1 is protected with the security label L1. The
column DEPTNO is protected with security label L2. The column
ROWSECURITYLABEL has a data type of DB2SECURITYLABEL. T1, including the
data, looks like this:

Table 16. Example values in table T1

LASTNAME
Protected by L1

DEPTNO
Protected by L2 ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Assume that user Sakari has LBAC credentials that allow reading data protected
by security label L1 but not L2 or L3.

Sakari issues this SQL statement:
SELECT * FROM T1

The statement fails because the SELECT clause uses the wildcard (*) which
includes the column DEPTNO. The column DEPTNO is protected by security label
L2, which Sakari's LBAC credentials do not allow her to read.

Sakari next issues this SQL statement:
SELECT LASTNAME, ROWSECURITYLABEL FROM T1

The select clause does not include any columns that Sakari is not able to read so
the statement continues. Only one row is returned, however, because each of the
other rows is protected by security label L2 or L3.

Table 17. Example output from query on table T1

LASTNAME ROWSECURITYLABEL

Miller L1

Inserting of LBAC protected data
When you try to insert data into a protected column, or to insert a new row into a
table with protected rows, your LBAC credentials determine how that INSERT
statement is handled.

Chapter 5. Label-Based Access Control (LBAC) 181

Inserting to protected columns

When you try to insert data into a protected column your LBAC credentials for
writing are compared with the security label protecting that column. Based on this
comparison access will either be blocked or allowed.

The details of how two security labels are compared are given in the topic about
how LBAC security labels are compared.

If access is allowed, the statement proceeds as usual. If access is blocked, then the
insert fails and an error is returned.

If you are inserting a row but do not provide a value for a protected column then
a default value is inserted if one is available. This happens even if your LBAC
credentials do not allow write access to that column. A default is available in the
following cases:
v The column was declared with the WITH DEFAULT option
v The column is a generated column
v The column has a default value that is given through a BEFORE trigger
v The column has a data type of DB2SECURITYLABEL, in which case security

label that you hold for write access is the default value

Inserting to protected rows

When you insert a new row into a table with protected rows, you do not have to
provide a value for the column that is of type DB2SECURITYLABEL. If you do not
provide a value for that column, the column is automatically populated with the
security label you have been granted for write access. If you have not been granted
a security label for write access, an error is returned and the insert fails.

By using built-in functions like SECLABEL, you can explicitly provide a security
label to be inserted in a column of type DB2SECURITYLABEL. The provided
security label is only used, however, if your LBAC credentials would allow you to
write to data that is protected with the security label you are trying to insert.

If you provide a security label that you would not be able to write, then what
happens depends on the security policy that is protecting the table. If the security
policy has the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option,
then the insert fails and an error is returned. If the security policy does not have
the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option or if it
instead has the OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option,
then the security label you provide is ignored and if you hold a security label for
write access, it is used instead. If you do not hold a security label for write access,
an error is returned.

Examples

Table T1 is protected by a security policy named P1 that was created without the
RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option. Table T1 has
two columns but no rows. The columns are LASTNAME and LABEL. The column
LABEL has a data type of DB2SECURITYLABEL.

User Joe holds a security label L2 for write access. Assume that the security label
L2 allows him to write to data protected by security label L2 but not to data
protected by security labels L1 or L3.

182 Database Security Guide

Joe issues the following SQL statement:
INSERT INTO T1 (LASTNAME, DEPTNO) VALUES (’Rjaibi’, 11)

Because no security label was included in the INSERT statement, Joe's security
label for write access is inserted into the LABEL row.

Table T1 now looks like this:

Table 18. Values in the example table T1 after first INSERT statement

LASTNAME LABEL

Rjaibi L2

Joe issues the following SQL statement, in which he explicitly provides the security
label to be inserted into the column LABEL:
INSERT INTO T1 VALUES (’Miller’, SECLABEL_BY_NAME(’P1’, ’L1’))

The SECLABEL_BY_NAME function in the statement returns a security label that
is part of security policy P1 and is named L1. Joe is not allowed to write to data
that is protected with L1 so he is not allowed to insert L1 into the column LABEL.

Because the security policy protecting T1 was created without the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option the security label that Joe holds
for writing is inserted instead. No error or message is returned.

The table now looks like this:

Table 19. Values in example table T1 after second INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

If the security policy protecting the table had been created with the RESTRICT
NOT AUTHORIZED WRITE SECURITY LABEL option then the insert would have
failed and an error would have been returned.

Next Joe is granted an exemption to one of the LBAC rules. Assume that his new
LBAC credentials allow him to write to data that is protected with security labels
L1 and L2. The security label granted to Joe for write access does not change, it is
still L2.

Joe issues the following SQL statement:
INSERT INTO T1 VALUES (’Bird’, SECLABEL_BY_NAME(’P1’, ’L1’))

Because of his new LBAC credentials Joe is able to write to data that is protected
by the security label L1. The insertion of L1 is therefore allowed. The table now
looks like this:

Table 20. Values in example table T1 after third INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

Bird L1

Chapter 5. Label-Based Access Control (LBAC) 183

Updating of LBAC protected data
Your LBAC credentials must allow you write access to data before you can update
it. In the case of updating a protected row, your LBAC credentials must also allow
read access to the row.

Updating protected columns

When you try to update data in a protected column, your LBAC credentials are
compared to the security label protecting the column. The comparison made is for
write access. If write access is blocked then an error is returned and the statement
fails, otherwise the update continues.

The details of how your LBAC credentials are compared to a security label are
given in the topic about how LBAC security labels are compared.

Example:

Assume there is a table T1 in which column DEPTNO is protected by a security
label L2 and column PAYSCALE is protected by a security label L3. T1, including
its data, looks like this:

Table 21. Table T1

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 11 7

3 Bird 11 9

User Lhakpa has no LBAC credentials. He issues this SQL statement:
UPDATE T1 SET EMPNO = 4

WHERE LASTNAME = "Bird"

This statement executes without error because it does not update any protected
columns. T1 now looks like this:

Table 22. Table T1 After Update

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 11 7

4 Bird 11 9

Lhakpa next issues this SQL statement:
UPDATE T1 SET DEPTNO = 55

WHERE LASTNAME = "Miller"

184 Database Security Guide

This statement fails and an error is returned because DEPTNO is protected and
Lhakpa has no LBAC credentials.

Assume Lhakpa is granted LBAC credentials and that allow the access
summarized in the following table. The details of what those credentials are and
what elements are in the security labels are not important for this example.

Security label protecting the data Can read? Can Write?

L2 No Yes

L3 No No

Lhakpa issues this SQL statement again:
UPDATE T1 SET DEPTNO = 55

WHERE LASTNAME = "Miller"

This time the statement executes without error because Lhakpa's LBAC credentials
allow him to write to data protected by the security label that is protecting the
column DEPTNO. It does not matter that he is not able to read from that same
column. The data in T1 now looks like this:

Table 23. Table T1 After Second Update

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 55 7

4 Bird 11 9

Next Lhakpa issues this SQL statement:
UPDATE T1 SET DEPTNO = 55, PAYSCALE = 4

WHERE LASTNAME = "Bird"

The column PAYSCALE is protected by the security label L3 and Lhakpa's LBAC
credentials do not allow him to write to it. Because Lhakpa is unable to write to
the column, the update fails and no data is changed.

Updating protected rows

If your LBAC credentials do not allow you to read a row, then it is as if that row
does not exist for you so there is no way for you to update that row. For rows that
you are able to read, you must also be able to write to the row in order to update
it.

When you try to update a row, your LBAC credentials for writing are compared to
the security label protecting the row. If write access is blocked, the update fails and
an error is returned. If write access is not blocked, then the update continues.

The update that is performed is done the same way as an update to a
non-protected row except for the treatment of the column that has a data type of
DB2SECURITYLABEL. If you do not explicitly set the value of that column, it is
automatically set to the security label that you hold for write access. If you do not
have a security label for write access, an error is returned and the statement fails.

Chapter 5. Label-Based Access Control (LBAC) 185

If the update explicitly sets the column that has a data type of
DB2SECURITYLABEL, then your LBAC credentials are checked again. If the
update you are trying to perform would create a row that your current LBAC
credentials would not allow you to write to, then what happens depends on the
security policy that is protecting the table. If the security policy has the RESTRICT
NOT AUTHORIZED WRITE SECURITY LABEL option, then the update fails and
an error is returned. If the security policy does not have the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option or if it instead has the
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option, then the
security label you provide is ignored and if you hold a security label for write
access, it is used instead. If you do not hold a security label for write access, an
error is returned.

Example:

Assume that table T1 is protected by a security policy named P1 and has a column
named LABEL that has a data type of DB2SECURITYLABEL.

T1, including its data, looks like this:

Table 24. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

2 Miller 11 L2

3 Bird 11 L3

Assume that user Jenni has LBAC credentials that allow her to read and write data
protected by the security labels L0 and L1 but not data protected by any other
security labels. The security label she holds for both read and write is L0. The
details of her full credentials and of what elements are in the labels are not
important for this example.

Jenni issues this SQL statement:
SELECT * FROM T1

Jenni sees only one row in the table:

Table 25. Jenni's SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

The rows protected by labels L2 and L3 are not included in the result set because
Jenni's LBAC credentials do not allow her to read those rows. For Jenni it is as if
those rows do not exist.

Jenni issues these SQL statements:
UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11;
SELECT * FROM T1;

The result set returned by the query looks like this:

186 Database Security Guide

Table 26. Jenni's UPDATE & SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

The actual data in the table looks like this:

Table 27. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

2 Miller 11 L2

3 Bird 11 L3

The statement executed without error but affected only the first row. The second
and third rows are not readable by Jenni so they are not selected for update by the
statement even though they meet the condition in the WHERE clause.

Notice that the value of the LABEL column in the updated row has changed even
though that column was not explicitly set in the UPDATE statement. The column
was set to the security label that Jenni held for writing.

Now Jenni is granted LBAC credentials that allow her to read data protected by
any security label. Her LBAC credentials for writing do not change. She is still
only able to write to data protected by L0 and L1.

Jenni again issues this SQL statement:
UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11

This time the update fails because of the second and third rows. Jenni is able to
read those rows, so they are selected for update by the statement. She is not,
however, able to write to them because they are protected by security labels L2
and L3. The update does not occur and an error is returned.

Jenni now issues this SQL statement:
UPDATE T1
SET DEPTNO = 55, LABEL = SECLABEL_BY_NAME(’P1’, ’L2’)
WHERE LASTNAME = "Rjaibi"

The SECLABEL_BY_NAME function in the statement returns the security label
named L2. Jenni is trying to explicitly set the security label protecting the first row.
Jenni's LBAC credentials allow her to read the first row, so it is selected for update.
Her LBAC credentials allow her to write to rows protected by the security label L0
so she is allowed to update the row. Her LBAC credentials would not, however,
allow her to write to a row protected by the security label L2, so she is not allowed
to set the column LABEL to that value. The statement fails and an error is
returned. No columns in the row are updated.

Jenni now issues this SQL statement:
UPDATE T1 SET LABEL = SECLABEL_BY_NAME(’P1’, ’L1’) WHERE LASTNAME = "Rjaibi"

The statement succeeds because she would be able to write to a row protected by
the security label L1.

T1 now looks like this:

Chapter 5. Label-Based Access Control (LBAC) 187

Table 28. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L1

2 Miller 11 L2

3 Bird 11 L3

Updating protected rows that contain protected columns

If you try to update protected columns in a table with protected rows then your
LBAC credentials must allow writing to of all of the protected columns affected by
the update, otherwise the update fails and an error is returned. This is as described
in section about updating protected columns, earlier. If you are allowed to update
all of the protected columns affected by the update you will still only be able to
update rows that your LBAC credentials allow you to both read from and write to.
This is as described in the section about updating protected rows, earlier. The
handling of a column with a data type of DB2SECURITYLABEL is the same
whether the update affects protected columns or not.

If the column that has a data type of DB2SECURITYLABEL is itself a protected
column then your LBAC credentials must allow you to write to that column or you
cannot update any of the rows in the table.

Deleting or dropping of LBAC protected data
Your ability to delete data in tables protected by LBAC depend on your LBAC
credentials.

Deleting protected rows

If your LBAC credentials do not allow you to read a row, it is as if that row does
not exist for you so there is no way for you to delete it. To delete a row that you
are able to read, your LBAC credentials must also allow you to write to the row.
To delete any row in a table that has protected columns you must have LBAC
credentials that allow you to write to all protected columns in the table.

When you try to delete a row, your LBAC credentials for writing are compared to
the security label protecting the row. If the protecting security label blocks write
access by your LBAC credentials, the DELETE statement fails, an error is returned,
and no rows are deleted.

Example

Protected table T1 has these rows:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Assume that user Pat has LBAC credentials such that her access is as
summarized in this table:

188 Database Security Guide

Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of her LBAC credentials and of the security labels are
unimportant for this example.

Pat issues the following SQL statement:
SELECT * FROM T1 WHERE DEPTNO != 999

The statement executes and returns this result set:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

The last row of T1 is not included in the results because Pat does not have
read access to that row. It is as if that row does not exist for Pat.

Pat issues this SQL statement:
DELETE FROM T1 WHERE DEPTNO != 999

Pat does not have write access to the first or third row, both of which are
protected by L2. So even though she can read the rows she cannot delete
them. The DELETE statement fails and no rows are deleted.

Pat issues this SQL statement:
DELETE FROM T1 WHERE DEPTNO = 77;

This statement succeeds because Pat is able to write to the row with Miller
in the LASTNAME column. That is the only row selected by the statement.
The row with Fielding in the LASTNAME column is not selected because
Pat's LBAC credentials do not allow her to read that row. That row is
never considered for the delete so no error occurs.

The actual rows of the table now look like this:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

Deleting rows that have protected columns

To delete any row in a table that has protected columns you must have LBAC
credentials that allow you to write to all protected columns in the table. If there is
any row in the table that your LBAC credentials do not allow you to write to then
the delete will fail and an error will be returned.

Chapter 5. Label-Based Access Control (LBAC) 189

If the table has both protected columns and protected rows then to delete a
particular row you must have LBAC credentials that allow you to write to every
protected column in the table and also to read from and write to the row that you
want to delete.

Example

In protected table T1, the column DEPTNO is protected by the security
label L2. T1 contains these rows:

LASTNAME
DEPTNO
Protected by L2 LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Assume that user Benny has LBAC credentials that allow him the access
summarized in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of his LBAC credentials and of the security labels are
unimportant for this example.

Benny issues the following SQL statement:
DELETE FROM T1 WHERE DEPTNO = 77

The statement fails because Benny does not have write access to the
column DEPTNO.

Now Benny's LBAC credentials are changed so that he has access as
summarized in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes Yes

L3 Yes No

Benny issues this SQL statement again:
DELETE FROM T1 WHERE DEPTNO = 77

This time Benny has write access to the column DEPTNO so the delete
continues. The delete statement selects only the row that has a value of
Miller in the LASTNAME column. The row that has a value of Fielding in
the LASTNAME column is not selected because Benny's LBAC credentials
do not allow him to read that row. Because the row is not selected for
deletion by the statement it does not matter that Benny is unable to write
to the row.

190 Database Security Guide

The one row selected is protected by the security label L1. Benny's LBAC
credentials allow him to write to data protected by L1 so the delete is
successful.

The actual rows in table T1 now look like this:

LASTNAME
DEPTNO
Protected by L2 LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

Dropping protected data

You cannot drop a column that is protected by a security label unless your LBAC
credentials allow you to write to that column.

A column with a data type of DB2SECURITYLABEL cannot be dropped from a
table. To remove it you must first drop the security policy from the table. When
you drop the security policy the table is no longer protected with LBAC and the
data type of the column is automatically changed from DB2SECURITYLABEL to
VARCHAR(128) FOR BIT DATA. The column can then be dropped.

Your LBAC credentials do not prevent you from dropping entire tables or
databases that contain protected data. If you would normally have permission to
drop a table or a database you do not need any LBAC credentials to do so, even if
the database contains protected data.

Removal of LBAC protection from data
You must have SECADM authority to remove the security policy from a table. To
remove the security policy from a table you use the DROP SECURITY POLICY
clause of the ALTER TABLE statement. This also automatically removes protection
from all rows and all columns of the table.

Removing protection from rows

In a table that has protected rows every row must be protected by a security label.
There is no way to remove LBAC protection from individual rows.

A column of type DB2SECURITYLABEL cannot be altered or removed except by
removing the security policy from the table.

Removing protection from columns

Protection of a column can be removed using the DROP COLUMN SECURITY
clause of the SQL statement ALTER TABLE. To remove the protection from a
column you must have LBAC credentials that allow you to read from and write to
that column in addition to the normal privileges and authorities needed to alter a
table.

Chapter 5. Label-Based Access Control (LBAC) 191

192 Database Security Guide

Chapter 6. Using the system catalog for security information

Information about each database is automatically maintained in a set of views
called the system catalog, which is created when the database is created. This
system catalog describes tables, columns, indexes, programs, privileges, and other
objects.

The following views and table functions list information about privileges held by
users, identities of users granting privileges, and object ownership:

SYSCAT.COLAUTH
Lists the column privileges

SYSCAT.DBAUTH
Lists the database privileges

SYSCAT.INDEXAUTH
Lists the index privileges

SYSCAT.MODULEAUTH
Lists the module privileges

SYSCAT.PACKAGEAUTH
Lists the package privileges

SYSCAT.PASSTHRUAUTH
Lists the server privilege

SYSCAT.ROLEAUTH
Lists the role privileges

SYSCAT.ROUTINEAUTH
Lists the routine (functions, methods, and stored procedures) privileges

SYSCAT.SCHEMAAUTH
Lists the schema privileges

SYSCAT.SEQUENCEAUTH
Lists the sequence privileges

SYSCAT.SURROGATEAUTHIDS
Lists the authorization IDs for which another authorization ID can act as a
surrogate.

SYSCAT.TABAUTH
Lists the table and view privileges

SYSCAT.TBSPACEAUTH
Lists the table space privileges

SYSCAT.VARIABLEAUTH
Lists the variable privileges

SYSCAT.WORKLOADAUTH
Lists the workload privileges

SYSCAT.XSROBJECTAUTH
Lists the XSR object privileges

© Copyright IBM Corp. 2013 193

Privileges granted to users by the system will have SYSIBM as the grantor.
SYSADM, SYSMAINT SYSCTRL, and SYSMON are not listed in the system
catalog.

The CREATE and GRANT statements place privileges in the system catalog. Users
with ACCESSCTRL and SECADM authority can grant and revoke SELECT
privilege on the system catalog views.

Retrieving authorization names with granted privileges
You can use the PRIVILEGES and other administrative views to retrieve
information about the authorization names that have been granted privileges in a
database.

About this task

For example, the following query retrieves all explicit privileges and the
authorization IDs to which they were granted, plus other information, from the
PRIVILEGES administrative view:
SELECT AUTHID, PRIVILEGE, OBJECTNAME, OBJECTSCHEMA, OBJECTTYPE

FROM SYSIBMADM.PRIVILEGES

The following query uses the AUTHORIZATIONIDS administrative view to find
all the authorization IDs that have been granted privileges or authorities, and to
show their types:
SELECT AUTHID, AUTHIDTYPE FROM SYSIBMADM.AUTHORIZATIONIDS

You can also use the SYSIBMADM.OBJECTOWNERS administrative view and the
SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID table function to find
security-related information.

Prior to Version 9.1, no single system catalog view contained information about all
privileges. For releases earlier than version 9.1, the following statement retrieves all
authorization names with privileges:

SELECT DISTINCT GRANTEE, GRANTEETYPE, ’DATABASE’ FROM SYSCAT.DBAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, ’TABLE ’ FROM SYSCAT.TABAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, ’PACKAGE ’ FROM SYSCAT.PACKAGEAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, ’INDEX ’ FROM SYSCAT.INDEXAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, ’COLUMN ’ FROM SYSCAT.COLAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, ’SCHEMA ’ FROM SYSCAT.SCHEMAAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, ’SERVER ’ FROM SYSCAT.PASSTHRUAUTH
ORDER BY GRANTEE, GRANTEETYPE, 3

Periodically, the list retrieved by this statement should be compared with lists of
user and group names defined in the system security facility. You can then identify
those authorization names that are no longer valid.

Note: If you are supporting remote database clients, it is possible that the
authorization name is defined at the remote client only and not on your database
server machine.

194 Database Security Guide

Retrieving all names with DBADM authority
The following statement retrieves all authorization names that have been directly
granted DBADM authority:

About this task
SELECT DISTINCT GRANTEE, GRANTEETYPE FROM SYSCAT.DBAUTH

WHERE DBADMAUTH = ’Y’

Retrieving names authorized to access a table
You can use the PRIVILEGES and other administrative views to retrieve
information about the authorization names that have been granted privileges in a
database.

About this task

The following statement retrieves all authorization names (and their types) that are
directly authorized to access the table EMPLOYEE with the qualifier JAMES:
SELECT DISTINCT AUTHID, AUTHIDTYPE FROM SYSIBMADM.PRIVILEGES

WHERE OBJECTNAME = ’EMPLOYEE’ AND OBJECTSCHEMA = ’JAMES’

For releases earlier than Version 9.1, the following query retrieves the same
information:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = ’EMPLOYEE’

AND TABSCHEMA = ’JAMES’
UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = ’EMPLOYEE’
AND TABSCHEMA = ’JAMES’

To find out who can update the table EMPLOYEE with the qualifier JAMES, issue
the following statement:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = ’EMPLOYEE’ AND TABSCHEMA = ’JAMES’ AND

(CONTROLAUTH = ’Y’ OR
UPDATEAUTH IN (’G’,’Y’))

UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.DBAUTH

WHERE DBADMAUTH = ’Y’
UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = ’EMPLOYEE’ AND TABSCHEMA = ’JAMES’ AND
PRIVTYPE = ’U’

This retrieves any authorization names with DBADM authority, as well as those
names to which CONTROL or UPDATE privileges have been directly granted.

Remember that some of the authorization names may be groups, not just
individual users.

Retrieving all privileges granted to users
By making queries on the system catalog views, users can retrieve a list of the
privileges they hold and a list of the privileges they have granted to other users.

Chapter 6. Using the system catalog for security information 195

About this task

You can use the PRIVILEGES and other administrative views to retrieve
information about the authorization names that have been granted privileges in a
database. For example, the following query retrieves all the privileges granted to
the current session authorization ID:
SELECT * FROM SYSIBMADM.PRIVILEGES
WHERE AUTHID = SESSION_USER AND AUTHIDTYPE = ’U’

The keyword SESSION_USER in this statement is a special register that is equal to
the value of the current user's authorization name.

For releases earlier than Version 9.1, the following examples provide similar
information. For example, the following statement retrieves a list of the database
privileges that have been directly granted to the individual authorization name
JAMES:

SELECT * FROM SYSCAT.DBAUTH
WHERE GRANTEE = ’JAMES’ AND GRANTEETYPE = ’U’

The following statement retrieves a list of the table privileges that were directly
granted by the user JAMES:

SELECT * FROM SYSCAT.TABAUTH
WHERE GRANTOR = ’JAMES’

The following statement retrieves a list of the individual column privileges that
were directly granted by the user JAMES:

SELECT * FROM SYSCAT.COLAUTH
WHERE GRANTOR = ’JAMES’

Securing the system catalog view
Because the system catalog views describe every object in the database, if you have
sensitive data, you might want to restrict their access.

About this task

The following authorities have SELECT privilege on all catalog tables:
v ACCESSCTRL
v DATAACCESS
v DBADM
v SECADM
v SQLADM

In addition, the following instance level authorities have the ability to select from
SYSCAT.BUFFERPOOLS, SYSCAT.DBPARTITIONGROUPS,
SYSCAT.DBPARTITIONGROUPDEF, SYSCAT.PACKAGES, and SYSCAT.TABLES:
v SYSADM
v SYSCTRL
v SYSMAINT
v SYSMON

You can use the CREATE DATABASE ... RESTRICTIVE command to create a
database in which no privileges are automatically granted to PUBLIC. In this case,
none of the following normal default grant actions occur:

196 Database Security Guide

v CREATETAB
v BINDADD
v CONNECT
v IMPLICIT_SCHEMA
v EXECUTE with GRANT on all procedures in schema SQLJ
v EXECUTE with GRANT on all functions and procedures in schema SYSPROC
v BIND on all packages created in the NULLID schema
v EXECUTE on all packages created in the NULLID schema
v CREATEIN on schema SQLJ
v CREATEIN on schema NULLID
v USE on table space USERSPACE1
v SELECT access to the SYSIBM catalog tables
v SELECT access to the SYSCAT catalog views
v SELECT access to the SYSIBMADM administrative views
v SELECT access to the SYSSTAT catalog views
v UPDATE access to the SYSSTAT catalog views

If you have created a database using the RESTRICTIVE option, no permissions are
granted to PUBLIC. You can run the following query to verify that no schemas are
accessibly by PUBLIC:

SELECT DISTINCT OBJECTSCHEMA FROM SYSIBMADM.PRIVILEGES WHERE AUTHID=’PUBLIC’

OBJECTSCHEMA

For releases earlier than Version 9.1 of the DB2 database manager, during database
creation, SELECT privilege on the system catalog views is granted to PUBLIC. In
most cases, this does not present any security problems. For very sensitive data,
however, it may be inappropriate, as these tables describe every object in the
database. If this is the case, consider revoking the SELECT privilege from PUBLIC;
then grant the SELECT privilege as required to specific users. Granting and
revoking SELECT on the system catalog views is done in the same way as for any
view, but you must have either ACCESSCTRL or SECADM authority to do this.

At a minimum, if you don't want any user to be able to know what objects other
users have access to, you should consider restricting access to the following catalog
and administrative views:
v SYSCAT.COLAUTH
v SYSCAT.DBAUTH
v SYSCAT.INDEXAUTH
v SYSCAT.PACKAGEAUTH
v SYSCAT.PASSTHRUAUTH
v SYSCAT.ROUTINEAUTH
v SYSCAT.SCHEMAAUTH
v SYSCAT.SECURITYLABELACCESS
v SYSCAT.SECURITYPOLICYEXEMPTIONS
v SYSCAT.SEQUENCEAUTH
v SYSCAT.SURROGATEAUTHIDS
v SYSCAT.TABAUTH
v SYSCAT.TBSPACEAUTH

Chapter 6. Using the system catalog for security information 197

v SYSCAT.XSROBJECTAUTH
v SYSIBMADM.AUTHORIZATIONIDS
v SYSIBMADM.OBJECTOWNERS
v SYSIBMADM.PRIVILEGES

This would prevent information about user privileges from becoming available to
everyone with access to the database.

You should also examine the columns for which statistics are gathered. Some of the
statistics recorded in the system catalog contain data values which could be
sensitive information in your environment. If these statistics contain sensitive data,
you may want to revoke SELECT privilege from PUBLIC for the
SYSCAT.COLUMNS and SYSCAT.COLDIST catalog views.

If you want to limit access to the system catalog views, you could define views to
let each authorization name retrieve information about its own privileges.

For example, the following view MYSELECTS includes the owner and name of
every table on which a user's authorization name has been directly granted
SELECT privilege:

CREATE VIEW MYSELECTS AS
SELECT TABSCHEMA, TABNAME FROM SYSCAT.TABAUTH
WHERE GRANTEETYPE = ’U’

AND GRANTEE = USER
AND SELECTAUTH = ’Y’

The keyword USER in this statement is equal to the value of the current session
authorization name.

The following statement makes the view available to every authorization name:
GRANT SELECT ON TABLE MYSELECTS TO PUBLIC

And finally, remember to revoke SELECT privilege on the view and base table by
issuing the following two statements:

REVOKE SELECT ON TABLE SYSCAT.TABAUTH FROM PUBLIC

REVOKE SELECT ON TABLE SYSIBM.SYSTABAUTH FROM PUBLIC

198 Database Security Guide

Chapter 7. Firewall support

A firewall is a set of related programs, located at a network gateway server, that are
used to prevent unauthorized access to a system or network.

There are four types of firewalls:
1. Network level, packet-filter, or screening router firewalls
2. Classical application level proxy firewalls
3. Circuit level or transparent proxy firewalls
4. Stateful multi-layer inspection (SMLI) firewalls

There are existing firewall products that incorporate one of the firewall types listed
previously. There are many other firewall products that incorporate some
combination of the types listed previously.

Screening router firewalls
The screening router firewall is also known as a network level or packet-filter
firewall. Such a firewall works by screening incoming packets by protocol
attributes. The protocol attributes screened may include source or destination
address, type of protocol, source or destination port, or some other
protocol-specific attributes.

For all firewall solutions (except SOCKS), you need to ensure that all the ports
used by DB2 database are open for incoming and outgoing packets. DB2 database
uses port 523 for the DB2 Administration Server (DAS), which is used by the DB2
database tools. Determine the ports used by all your server instances by using the
services file to map the service name in the server database manager configuration
file to its port number.

Application proxy firewalls
A proxy or proxy server is a technique that acts as an intermediary between a Web
client and a Web server. A proxy firewall acts as a gateway for requests arriving
from clients.

When client requests are received at the firewall, the final server destination
address is determined by the proxy software. The application proxy translates the
address, performs additional access control checking and logging as necessary, and
connects to the server on behalf of the client.

The DB2 Connect product on a firewall machine can act as a proxy to the
destination server. Also, a DB2 database server on the firewall, acting as a hop
server to the final destination server, acts like an application proxy.

Circuit level firewalls
The circuit level firewall is also known as a transparent proxy firewall.

A transparent proxy firewall does not modify the request or response beyond what
is required for proxy authentication and identification. An example of a transparent
proxy firewall is SOCKS.

© Copyright IBM Corp. 2013 199

The DB2 database system supports SOCKS Version 4.

Stateful multi-layer inspection (SMLI) firewalls
The stateful multi-layer inspection (SMLI) firewall uses a sophisticated form of
packet-filtering that examines all seven layers of the Open System Interconnection
(OSI) model.

Each packet is examined and compared against known states of friendly packets.
While screening router firewalls only examine the packet header, SMLI firewalls
examine the entire packet including the data.

200 Database Security Guide

Chapter 8. Security plug-ins

Authentication for the DB2 database system is done using security plug-ins. A
security plug-in is a dynamically loadable library that provides authentication
security services.

Group retrieval plug-in
Retrieves group membership information for a particular user.

User ID/password authentication plug-in
The following authentication types are implemented using a user ID and
password authentication plug-in:
v CLIENT

v SERVER

v SERVER_ENCRYPT

v DATA_ENCRYPT

v DATA_ENCRYPT_CMP

These authentication types determine how and where authentication of a
user occurs. The authentication type that is used is determined by the
following method:
v For connect or attach operations, if you specify a value for the

srvcon_auth configuration parameter, then that value takes precedence
over the value of the authentication configuration parameter.

v In all other cases, the value of the authentication configuration
parameter is used.

GSS-API authentication plug-in
GSS-API is formally known as Generic Security Service Application
Program Interface, Version 2 (IETF RFC2743) and Generic Security Service
API Version 2: C-Bindings (IETF RFC2744). The Kerberos protocol is the
predominant means of implementing the GSS-API authentication
mechanism. The following authentication types are implemented using
GSS-API authentication plug-ins:
v KERBEROS

v GSSPLUGIN

v KRB_SERVER_ENCRYPT

v GSS_SERVER_ENCRYPT

KRB_SERVER_ENCRYPT and GSS_SERVER_ENCRYPT support both GSS-API
authentication and user ID/password authentication. However, GSS-API
authentication is the preferred authentication type. Client-side Kerberos
support is available on Solaris, AIX, HP-UX (64-bit only), Windows, and
Linux operating systems. For Windows operating systems, Kerberos
support is enabled by default.

The DB2 database manager supports these plug-ins at both the client and the
server.

Note: Authentication types determine how and where a user is authenticated. To
use a particular authentication type, set the value of the authentication database
manager configuration parameter.

© Copyright IBM Corp. 2013 201

You can use each of the plug-ins independently, or with the other plug-ins. For
example, you might use a specific sever-side authentication plug-in, but accept the
DB2 default values for client and group authentication. Alternatively, you might
have only a group retrieval, or a client authentication plug-in, but without a
server-side plug-in.

If you want to use GSS-API authentication, plug-ins are required on both the client
and the server.

The default behavior for authentication is to use a user ID/password plug-in that
implements an operating-system-level mechanism to authenticate.

The DB2 database product includes plug-ins for group retrieval, user ID/password
authentication, and GSS-API authentication. You can customize DB2 client and
server authentication behavior further by developing your own plug-ins, or by
purchasing plug-ins from a third party.

Deployment of security plug-ins on DB2 clients

DB2 clients can support one group retrieval plug-in and one user ID/password
authentication plug-in.

Alternatively, clients using GSS-API authentication plug-in determine which
plug-in to use by scanning the list of implemented GSS-API plug-ins on the DB2
server. The first authentication plug-in name that matches a GSS-API
authentication plug-in implemented on the client is the one chosen. You specify the
list of implemented server GSS-API plug-ins using the srvcon_gssplugin_list
database manager configuration parameter. The following figure portrays the
security plug-in infrastructure on a DB2 client:

Deployment of security plug-ins on DB2 servers

DB2 servers can support one group retrieval plug-in, one user ID/password
authentication plug-in, and multiple GSS-API plug-ins. You can specify the

User ID/password
client plug-in

Kerberos GSS-API
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Client

Security layer

Plug-in interface

Figure 5. Deploying Security Plug-ins on DB2 Clients

202 Database Security Guide

available GSS-API plug-ins as a list of values for the srvcon_gssplugin_list
database manager configuration parameter. However, only one GSS-API plug-in in
this list can be a Kerberos plug-in.

In addition to deploying the server-side security plug-ins on your database server,
you might have to deploy client authentication plug-ins on your database server.
When you run instance-level operations, such as the db2start and db2trc
commands, the DB2 database manager performs authorization checking for these
operations using client authentication plug-ins. Therefore, you might need to install
the client authentication plug-in that corresponds to the authentication plug-in on
the server. This plug-in name is specified by the authentication database manager
configuration parameter on the server.

You can set the authentication and srvcon_auth configuration parameters to
different values. This scenario causes one mechanism to be used to authenticate
database connections and the other mechanism to be used for local authorization.

The most common method for this approach is to:
v Set the srvcon_auth configuration parameter to GSSPLUGIN; and
v Set the authentication configuration parameter to SERVER.

The srvcon_auth configuration parameter is a means to override the authentication
type used by incoming connections. These connections use the authentication
method specified by the srvcon_auth configuration parameter, but if this value is
left empty, the value of the authentication parameter is used instead.

If you do not use client authentication plug-ins on the database server,
instance-level operations, such as the db2start command, fail.

The following figure outlines the security authentication plug-in infrastructure on a
DB2 server:

User ID/password
client plug-in

Kerberos GSS-API
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Server

Security layer

Plug-in interface

User ID/password
server plug-in

Kerberos GSS-API
server plug-in

GSS-API
server plug-in

Figure 6. Deploying Security Plug-ins on DB2 Servers

Chapter 8. Security plug-ins 203

Enabling security plug-ins

You can specify the plug-ins to use for each authentication mechanism by setting
database manager configuration parameters. The following table outlines these
parameters:

Table 29. Database Manager configuration parameters for security authentication plug-ins

Description Parameter name

Client Userid-Password Plugin CLNT_PW_PLUGIN

Client Kerberos Plugin CLNT_KRB_PLUGIN

Group Plugin GROUP_PLUGIN

GSS Plugin for Local Authorization LOCAL_GSSPLUGIN

Server Plugin Mode SRV_PLUGIN_MODE

Server List of GSS Plugins SRVCON_GSSPLUGIN_LIST

Server Userid-Password Plugin SRVCON_PW_PLUGIN

Server Connection Authentication SRVCON_AUTH

Database manager authentication AUTHENTICATION

If you do not set the values for these parameters, the default plug-ins that the DB2
product supplies are used for group retrieval, user ID/password management, and
Kerberos authentication (if the authenticationparameter is set to KERBEROS on the
server). However, a default GSS-API plug-in is not provided. Therefore, if you
specify an authentication type of GSSPLUGIN for the authentication parameter, you
must also specify a GSS-API authentication plug-in for the srvcon_gssplugin_list
configuration parameter.

Loading security plug-ins

All of the supported plug-ins that are identified by the database manager
configuration parameters are loaded when the database manager starts.

During connect or attach operations, the DB2 client loads a plug-in that is
appropriate for the security mechanism that the client negotiated with the server. A
client application can cause multiple security plug-ins to be concurrently loaded
and used. This situation can occur, for example, in a threaded program that has
concurrent connections to different databases from different instances. In this
scenario, the client program makes an initial connection to server A that uses a
GSS-API plug-in (G1). Server A sends a list of supported plug-ins to the client, and
the matching G1 plug-in is loaded on the client. The client program then has
another thread, which connects to server B that uses a GSS-API plug-in (G2). The
client is informed about G2, which is then loaded, and now both G1 and G2
plug-ins are simultaneously in use on the client.

Actions other than connect or attach operations (such as updating the database
manager configuration, starting and stopping the database manager, or turning a
DB2 trace on and off) also require an authorization mechanism. For such actions,
the DB2 client program loads a plug-in that is specified by another database
manager configuration parameter:
v If you set the authentication configuration parameter to GSSPLUGIN, the DB2

database manager uses the plug-in specified by the local_gssplugin
configuration parameter.

204 Database Security Guide

v If you set the authentication configuration parameter to KERBEROS, the DB2
database manager uses the plug-in specified by the clnt_krb_plugin
configuration parameter.

v Otherwise, the DB2 database manager uses the plug-in specified by the
clnt_pw_plugin configuration parameter.

Security plug-ins are supported for connections made to the database server over
both IPv4 and IPv6 address protocols.

Developing security plug-ins

If you are developing a security authentication plug-in, you must implement the
standard authentication functions used by the DB2 database manager. The
functionality that you must implement for the three types of plug-ins:

Group retrieval plug-in

v Find and return the list of groups to which a user belongs

User ID/password authentication plug-in

v Identify the default security context (for a client plug-in only)
v Validate and, optionally, change a password
v Determine whether a particular string represents a valid user (for a

server plug-in only)
v Modify the user ID or password that is provided on the client before it

is sent to the server (for a client plug-in only)
v Return the DB2 authorization ID that is associated with a particular user

GSS-API authentication plug-in

v Identify the default security context (for a client plug-in only)
v Implement the required GSS-API functions
v Generate initial credentials based on a user ID and password and,

optionally, change a password (for a client plug-in only)
v Create and accept security tickets
v Return the DB2 authorization ID that is associated with a particular

GSS-API security context

You can pass a user ID of up to 255 characters for a connect statement that you
issue through the CLP or via a dynamic SQL statement.

Important: The integrity of your DB2 database system installation can be
compromised if security plug-ins are not adequately coded, reviewed, and tested.
The DB2 database product takes precautions against many common types of
failures, but it cannot guarantee complete integrity if user-written security plug-ins
are deployed.

Security plug-in library locations
After you acquire your security plug-ins (either by developing them yourself, or
purchasing them from a third party), copy them to specific locations on your
database server.

DB2 clients looks for client-side user authentication plug-ins in the following
directory:
v UNIX 32-bit: $DB2PATH/security32/plugin/client

Chapter 8. Security plug-ins 205

v UNIX 64-bit: $DB2PATH/security64/plugin/client
v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\client

Note: On Windows-based platforms, the subdirectories instance name and client are
not created automatically. The instance owner has to manually create them.

The DB2 database manager looks for server-side user authentication plug-ins in the
following directory:
v UNIX 32-bit: $DB2PATH/security32/plugin/server
v UNIX 64-bit: $DB2PATH/security64/plugin/server
v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\server

Note: On Windows-based platforms, the subdirectories instance name and server are
not created automatically. The instance owner has to manually create them.

The DB2 database manager looks for group plug-ins in the following directory:
v UNIX 32-bit: $DB2PATH/security32/plugin/group
v UNIX 64-bit: $DB2PATH/security64/plugin/group
v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\group

Note: On Windows-based platforms, the subdirectories instance name and group are
not created automatically. The instance owner has to manually create them.

Security plug-in naming conventions
Security plug-in libraries must have a platform-specific file name extension.
Security plug-in libraries written in C or C++ must have a platform-specific file
name extension:
v Windows: .dll
v AIX: .a or .so, and if both extensions exist, .a extension is used.
v Linux, HP IPF and Solaris: .so

Note: Users can also develop security plug-ins with the DB2 Universal JDBC
Driver.
For example, assume you have a security plug-in library called MyPlugin. For each
supported operating system, the appropriate library file name follows:
v Windows 32-bit: MyPlugin.dll
v Windows 64-bit: MyPlugin64.dll
v AIX 32 or 64-bit: MyPlugin.a or MyPlugin.so
v SUN 32 or 64-bit, Linux 32 or 64 bit, HP 32 or 64 bit on IPF: MyPlugin.so

Note: The suffix "64" is only required on the library name for 64-bit Windows
security plug-ins.

When you update the database manager configuration with the name of a security
plug-in, use the full name of the library without the "64" suffix and omit both the
file extension and any qualified path portion of the name. Regardless of the
operating system, a security plug-in library called MyPlugin would be registered as
follows:
UPDATE DBM CFG USING CLNT_PW_PLUGIN MyPlugin

206 Database Security Guide

The security plug-in name is case sensitive, and must exactly match the library
name. DB2 database systems use the value from the relevant database manager
configuration parameter to assemble the library path, and then uses the library
path to load the security plug-in library.

To avoid security plug-in name conflicts, you should name the plug-in using the
authentication method used, and an identifying symbol of the firm that wrote the
plug-in. For instance, if the company Foo, Inc. wrote a plug-in implementing the
authentication method FOOsomemethod, the plug-in could have a name like
FOOsomemethod.dll.

The maximum length of a plug-in name (not including the file extension and the
"64" suffix) is limited to 32 bytes. There is no maximum number of plug-ins
supported by the database server, but the maximum length of the
comma-separated list of plug-ins in the database manager configuration is 255
bytes. Two defines located in the include file sqlenv.h identifies these two limits:
#define SQL_PLUGIN_NAME_SZ 32 /* plug-in name */
#define SQL_SRVCON_GSSPLUGIN_LIST_SZ 255 /* GSS API plug-in list */

The security plug-in library files must have the following file permissions:
v Owned by the instance owner.
v Readable by all users on the system.
v Executable by all users on the system.

Security plug-in support for two-part user IDs
The DB2 database manager on Windows supports the use of two-part user IDs,
and the mapping of two-part user IDs to two-part authorization IDs.

For example, consider a Windows operating system two-part user ID composed of
a domain and user ID such as: MEDWAY\pieter. In this example, MEDWAY is a domain
and pieter is the user name. In DB2 database systems, you can specify whether
this two-part user ID should be mapped to either a one-part authorization ID or a
two-part authorization ID.

The mapping of a two-part user ID to a two-part authorization ID is supported,
but is not the default behavior. By default, both one-part user IDs and two-part
user IDs map to one-part authorization IDs. The mapping of a two-part user ID to
a two-part authorization ID is supported, but is not the default behavior.

The default mapping of a two-part user ID to a one-part user ID allows a user to
connect to the database using:
db2 connect to db user MEDWAY\pieter using pw

In this situation, if the default behavior is used, the user ID MEDWAY\pieter is
resolved to the authorization ID PIETER. If the support for mapping a two-part
user ID to a two-part authorization ID is enabled, the authorization ID would be
MEDWAY\PIETER.

To enable DB2 to map two-part user IDs to two-part authorization IDs, DB2
supplies two sets of authentication plug-ins:
v One set exclusively maps a one-part user ID to a one-part authorization ID and

maps a two-part user-ID to a one-part authorization ID.

Chapter 8. Security plug-ins 207

v Another set maps both one-part user ID or two-part user ID to a two-part
authorization ID.

If a user name in your work environment can be mapped to multiple accounts
defined in different locations (such as local account, domain account, and trusted
domain accounts), you can specify the plug-ins that enable two-part authorization
ID mapping.

It is important to note that a one-part authorization ID, such as, PIETER and a
two-part authorization ID that combines a domain and a user ID like
MEDWAY\pieter are functionally distinct authorization IDs. The set of privileges
associated with one of these authorization IDs can be completely distinct from the
set of privileges associated with the other authorization ID. Care should be taken
when working with one-part and two-part authorization IDs.

The following table identifies the kinds of plug-ins supplied by DB2 database
systems, and the plug-in names for the specific authentication implementations.

Table 30. DB2 security plug-ins

Authentication type
Name of one-part user ID
plug-in

Name of two-part user ID
plug-in

User ID/password (client) IBMOSauthclient IBMOSauthclientTwoPart

User ID/password (server) IBMOSauthserver IBMOSauthserverTwoPart

Kerberos IBMkrb5 IBMkrb5TwoPart

Note: On Windows 64-bit platforms, the characters "64" are appended to the
plug-in names listed here.

When you specify an authentication type that requires a user ID/password or
Kerberos plug-in, the plug-ins that are listed in the "Name of one-part user ID
plug-in" column in the previous table are used by default.

To map a two-part user ID to a two-part authorization ID, you must specify that
the two-part plug-in, which is not the default plug-in, be used. Security plug-ins
are specified at the instance level by setting the security related database manager
configuration parameters as follows:

For server authentication that maps two-part user IDs to two-part authorization
IDs, you must set:
v srvcon_pw_plugin to IBMOSauthserverTwoPart

v clnt_pw_plugin to IBMOSauthclientTwoPart

For client authentication that maps two-part user IDs to two-part authorization
IDs, you must set:
v srvcon_pw_plugin to IBMOSauthserverTwoPart

v clnt_pw_plugin to IBMOSauthclientTwoPart

For Kerberos authentication that maps two-part user IDs to two-part authorization
IDs, you must set:
v srvcon_gssplugin_list to IBMOSkrb5TwoPart

v clnt_krb_plugin to IBMkrb5TwoPart

208 Database Security Guide

The security plug-in libraries accept two-part user IDs specified in a Microsoft
Windows Security Account Manager compatible format. For example, in the
format: domain\user ID. Both the domain and user ID information will be used by
the DB2 authentication and authorization processes at connection time.

You should consider implementing the two-part plug-ins when creating new
databases to avoid conflicts with one-part authorization IDs in existing databases.
New databases that use two-part authorization IDs must be created in a separate
instance from databases that use single-part authorization IDs.

Security plug-in API versioning
The DB2 database system supports version numbering of the security plug-in APIs.
These version numbers are integers starting with 1 for DB2 UDB, Version 8.2.

The version number that DB2 passes to the security plug-in APIs is the highest
version number of the API that DB2 can support, and corresponds to the version
number of the structure. If the plug-in can support a higher API version, it must
return function pointers for the version that DB2 has requested. If the plug-in only
supports a lower version of the API, the plug-in should specify the function
pointers for the lower version. In either situation, the security plug-in APIs should
return the version number for the API it is supporting in the version field of the
functions structure.

For DB2, the version numbers of the security plug-ins will only change when
necessary (for example, when there are changes to the parameters of the APIs).
Version numbers will not automatically change with DB2 release numbers.

32-bit and 64-bit considerations for security plug-ins
In general, a 32-bit DB2 instance uses the 32-bit security plug-in and a 64-bit DB2
instance uses the 64-bit security plug-in. However, on a 64-bit instance, DB2
supports 32-bit applications, which require the 32-bit plug-in library.

A database instance where both the 32-bit and the 64-bit applications can run is
known as a hybrid instance. If you have a hybrid instance and intend to run 32-bit
applications, ensure that the required 32-bit security plug-ins are available in the
32-bit plug-in directory. For 64-bit DB2 instances on Linux and UNIX operating
systems, excluding Linux on IPF, the directories security32 and security64
appear. For a 64-bit DB2 instance on Windows on x64 or IPF, both 32-bit and 64-bit
security plug-ins are located in the same directory, but 64-bit plug-in names have a
suffix, "64".

If you want to upgrade from a 32-bit instance to a 64-bit instance, you should
obtain versions of your security plug-ins that are recompiled for 64-bit.

If you acquired your security plug-ins from a vendor that does not supply 64-bit
plug-in libraries, you can implement a 64-bit stub that executes a 32-bit application.
In this situation, the security plug-in is an external program rather than a library.

Security plug-in problem determination
Problems with security plug-ins are reported in two ways: through SQL errors and
through the administration notification log.

Following are the SQLCODE values related to security plug-ins:

Chapter 8. Security plug-ins 209

v SQLCODE -1365 is returned when a plug-in error occurs during db2start or
db2stop.

v SQLCODE -1366 is returned whenever there is a local authorization problem.
v SQLCODE -30082 is returned for all connection-related plug-in errors.

The administration notification logs are a good resource for debugging and
administrating security plug-ins. To see the an administration notification log file
on UNIX, check sqllib/db2dump/instance name.N.nfy. To see an administration
notification log on Windows operating systems, use the Event Viewer tool. The
Event Viewer tool can be found by navigating from the Windows operating system
"Start" button to Settings -> Control Panel -> Administrative Tools -> Event
Viewer. Following are the administration notification log values related to security
plug-ins:
v 13000 indicates that a call to a GSS-API security plug-in API failed with an error,

and returned an optional error message.
SQLT_ADMIN_GSS_API_ERROR (13000)
Plug-in "plug-in name" received error code "error code" from
GSS API "gss api name" with the error message "error message"

v 13001 indicates that a call to a DB2 security plug-in API failed with an error, and
returned an optional error message.
SQLT_ADMIN_PLUGIN_API_ERROR(13001)
Plug-in "plug-in name" received error code "error code" from DB2
security plug-in API "gss api name" with the error message
"error message"

v 13002 indicates that DB2 failed to unload a plug-in.
SQLT_ADMIN_PLUGIN_UNLOAD_ERROR (13002)
Unable to unload plug-in "plug-in name". No further action required.

v 13003 indicates a bad principal name.
SQLT_ADMIN_INVALID_PRIN_NAME (13003)
The principal name "principal name" used for "plug-in name"
is invalid. Fix the principal name.

v 13004 indicates that the plug-in name is not valid. Path separators (On UNIX "/"
and on Windows "\") are not allowed in the plug-in name.
SQLT_ADMIN_INVALID_PLGN_NAME (13004)
The plug-in name "plug-in name" is invalid. Fix the plug-in name.

v 13005 indicates that the security plug-in failed to load. Ensure the plug-in is in
the correct directory and that the appropriate database manager configuration
parameters are updated.
SQLT_ADMIN_PLUGIN_LOAD_ERROR (13005)
Unable to load plug-in "plug-in name". Verify the plug-in existence and
directory where it is located is correct.

v 13006 indicates that an unexpected error was encountered by a security plug-in.
Gather all the db2support information, if possible capture a db2trc, and then call
IBM support for further assistance.
SQLT_ADMIN_PLUGIN_UNEXP_ERROR (13006)
Plug-in encountered unexpected error. Contact IBM Support for further assistance.

Note: If you are using security plug-ins on a Windows 64-bit database server and
are seeing a load error for a security plug-in, see the topics about 32-bit and 64-bit
considerations and security plug-in naming conventions. The 64-bit plug-in library
requires the suffix "64" on the library name, but the entry in the security plug-in
database manager configuration parameters should not indicate this suffix.

210 Database Security Guide

Enabling plug-ins

Deploying a group retrieval plug-in
To customize the DB2 security system's group retrieval behavior, you can develop
your own group retrieval plug-in or buy one from a third party.

Before you begin

After you acquire a group retrieval plug-in that is suitable for your database
management system, you can deploy it.

Procedure
v To deploy a group retrieval plug-in on the database server, perform the

following steps:
1. Copy the group retrieval plug-in library into the server's group plug-in

directory.
2. Update the database manager configuration parameter group_plugin with the

name of the plug-in.
v To deploy a group retrieval plug-in on database clients, perform the following

steps:
1. Copy the group retrieval plug-in library in the client's group plug-in

directory.
2. On the database client, update the database manager configuration

parameter group_plugin with the name of the plug-in.

Deploying a user ID/password plug-in
To customize the DB2 security system's user ID/password authentication behavior,
you can develop your own user ID/password authentication plug-ins or buy one
from a third party.

Before you begin

Depending on their intended usage, all user ID-password based authentication
plug-ins must be placed in either the client plug-in directory or the server plug-in
directory. If a plug-in is placed in the client plug-in directory, it will be used both
for local authorization checking and for validating the client when it attempts to
connect with the server. If the plug-in is placed in the server plug-in directory, it
will be used for handling incoming connections to the server and for checking
whether an authorization ID exists and is valid whenever the GRANT statement is
issued without specifying either the keyword USER or GROUP. In most situations,
user ID/password authentication requires only a server-side plug-in. It is possible,
though generally deemed less useful, to have only a client user ID/password
plug-in. It is possible, though quite unusual to require matching user ID/password
plug-ins on both the client and the server.

Note: You must stop the DB2 server or any applications using the plug-ins before
you deploy a new version of an existing plug-in. Undefined behavior including
traps will occur if a process is still using a plug-in when a new version (with the
same name) is copied over it. This restriction is not in effect when you deploy a
plugin for the first time or when the plug-in is not in use.
After you acquire user ID/password authentication plug-ins that are suitable for
your database management system, you can deploy them.

Chapter 8. Security plug-ins 211

Procedure
v To deploy a user ID/password authentication plug-in on the database server,

perform the following steps on the database server:
1. Copy the user ID/password authentication plug-in library in the server

plug-in directory.
2. Update the database manager configuration parameter srvcon_pw_plugin

with the name of the server plug-in. This plug-in is used by the server when
it is handling CONNECT and ATTACH requests.

3. Either:
– Set the database manager configuration parameter srvcon_auth to the

CLIENT, SERVER, SERVER_ENCRYPT, DATA_ENCRYPT, or DATA_ENCRYPT_CMP
authentication type. Or:

– Set the database manager configuration parameter srvcon_auth to
NOT_SPECIFIED and set authentication to CLIENT, SERVER, SERVER_ENCRYPT,
DATA_ENCRYPT, or DATA_ENCRYPT_CMP authentication type.

v To deploy a user ID/password authentication plug-in on database clients,
perform the following steps on each client:
1. Copy the user ID/password authentication plug-in library in the client

plug-in directory.
2. Update the database manager configuration parameter clnt_pw_plugin with

the name of the client plug-in. This plug-in is loaded and called regardless of
where the authentication is being done, not only when the database
configuration parameter, authentication is set to CLIENT.

v For local authorization on a client, server, or gateway using a user ID/password
authentication plug-in, perform the following steps on each client, server, or
gateway:
1. Copy the user ID/password authentication plug-in library in the client

plug-in directory on the client, server, or gateway.
2. Update the database manager configuration parameter clnt_pw_plugin with

the name of the plug-in.
3. Set the authentication database manager configuration parameter to CLIENT,

SERVER, SERVER_ENCRYPT, DATA_ENCRYPT, or DATA_ENCRYPT_CMP.

Deploying a GSS-API plug-in
To customize the DB2 security system's authentication behavior, you can develop
your own authentication plug-ins using the GSS-API, or buy one from a third
party.

Before you begin

In the case of plug-in types other than Kerberos, you must have matching plug-in
names on the client and the server along with the same plug-in type. The plug-ins
on the client and server need not be from the same vendor, but they must generate
and consume compatible GSS-API tokens. Any combination of Kerberos plug-ins
deployed on the client and the server is acceptable since Kerberos plug-ins are
standardized. However, different implementations of less standardized GSS-API
mechanisms, such as x.509 certificates, might only be partially compatible with
DB2 database systems. Depending on their intended usage, all GSS-API
authentication plug-ins must be placed in either the client plug-in directory or the
server plug-in directory. If a plug-in is placed in the client plug-in directory, it will
be used for local authorization checking and when a client attempts to connect
with the server. If the plug-in is placed in the server plug-in directory, it will be

212 Database Security Guide

used for handling incoming connections to the server and for checking whether an
authorization ID exists and is valid whenever the GRANT statement is issued
without specifying either the keyword USER or GROUP.

Note: You must stop the DB2 server or any applications using the plug-ins before
you deploy a new version of an existing plug-in. Undefined behavior including
traps will occur if a process is still using a plug-in when a new version (with the
same name) is copied over it. This restriction is not in effect when you deploy a
plugin for the first time or when the plug-in is not in use.

After you acquire GSS-API authentication plug-ins that are suitable for your
database management system, you can deploy them.

Procedure
v To deploy a GSS-API authentication plug-in on the database server, perform the

following steps on the server:
1. Copy the GSS-API authentication plug-in library in the server plug-in

directory. You can copy numerous GSS-API plug-ins into this directory.
2. Update the database manager configuration parameter

srvcon_gssplugin_list with an ordered, comma-delimited list of the names
of the plug-ins installed in the GSS-API plug-in directory.

3. Either:
– Setting the database manager configuration parameter srvcon_auth to

GSSPLUGIN or GSS_SERVER_ENCRYPT is a way to enable the server to use
GSSAPI PLUGIN authentication method. Or:

– Setting the database manager configuration parameter srvcon_auth to
NOT_SPECIFIED and setting authentication to GSSPLUGIN or
GSS_SERVER_ENCRYPT is a way to enable the server to use GSSAPI PLUGIN
authentication method.

v To deploy a GSS-API authentication plug-in on database clients, perform the
following steps on each client:
1. Copy the GSS-API authentication plug-in library in the client plug-in

directory. You can copy numerous GSS-API plug-ins into this directory. The
client selects a GSS-API plug-in for authentication during a CONNECT or
ATTACH operation by picking the first GSS-API plug-in contained in the
server's plug-in list that is available on the client.

2. Optional: Catalog the databases that the client will access, indicating that the
client will only accept a GSS-API authentication plug-in as the authentication
mechanism. For example:
CATALOG DB testdb AT NODE testnode AUTHENTICATION GSSPLUGIN

v For local authorization on a client, server, or gateway using a GSS-API
authentication plug-in, perform the following steps:
1. Copy the GSS-API authentication plug-in library in the client plug-in

directory on the client, server, or gateway.
2. Update the database manager configuration parameter local_gssplugin with

the name of the plug-in.
3. Set the authentication database manager configuration parameter to

GSSPLUGIN, or GSS_SERVER_ENCRYPT.

Chapter 8. Security plug-ins 213

Deploying a Kerberos plug-in
To customize the Kerberos authentication behavior of the DB2 security system, you
can develop your own Kerberos authentication plug-ins or purchase one from a
third party.

Before you begin

If you want to deploy a new version of an existing plug-in, you must stop the DB2
server and any applications using the plug-in. Undefined behaviors, including
traps, occur if a process is using a plug-in when you deploy a new version of that
plug-in (with the same name).

About this task

The Kerberos authentication plug-in can be deployed on a database server or a
database client.

Procedure
v To deploy a Kerberos authentication plug-in on the database server, perform the

following steps on the server:
1. Copy the Kerberos authentication plug-in library into the server plug-in

directory.
2. Update the setting of the srvcon_gssplugin_list database manager

configuration parameter, which is an ordered, comma-delimited list, to
include the Kerberos server plug-in name. Only one plug-in in this list can
be a Kerberos plug-in. If there is no Kerberos plug-in in the list, an error is
returned. If there is more than one Kerberos plug-in in the list, an error is
returned. If the configuration parameter value is blank and the
authentication configuration parameter is set to KERBEROS or
KRB_SVR_ENCRYPT, the default DB2 Kerberos plug-in, IBMkrb5, is used.

3. If necessary, set the value of the srvcon_auth database manager configuration
parameter. If you want to deploy a Kerberos plug-in, the acceptable values
for the srvcon_auth database manager configuration parameter are as
follows:
– KERBEROS

– KRB_SERVER_ENCRYPT

– GSSPLUGIN

– GSS_SERVER_ENCRYPT

– Blank, but only if the authentication configuration parameter is set to
one of the previous values in this list.

v To deploy a Kerberos authentication plug-in on a database client, perform the
following steps on the client:
1. Copy the Kerberos authentication plug-in library into the client plug-in

directory.
2. Set the clnt_krb_plugin database manager configuration parameter to the

name of the Kerberos plug-in. If the value of the clnt_krb_plugin
configuration parameter is blank, the client cannot use Kerberos
authentication. On Windows, the default value is IBMkrb5. It only needs to be
altered for a customized Kerberos plugin. On UNIX, the value must be set
since the default value is blank. For local authorization on a client, server, or
gateway using a Kerberos authentication plug-in, perform the following
steps:

214 Database Security Guide

a. Copy the Kerberos authentication plug-in library in the client plug-in
directory on the client, server, or gateway.

b. Set the clnt_krb_plugin database manager configuration parameter to the
name of the plug-in.

c. Set the authentication database manager configuration parameter to
KERBEROS or KRB_SERVER_ENCRYPT.

3. Optional: Catalog the databases that the client will access, indicating that the
client will use only a Kerberos authentication plug-in. The following example
catalogs the testdb database:
CATALOG DB testdb AT NODE testnode AUTHENTICATION KERBEROS

TARGET PRINCIPAL service/host@REALM

LDAP-based authentication and group lookup support
The DB2 database manager and DB2 Connect support LDAP-based authentication
and group lookup functionality through the use of LDAP security plug-in modules
and also through transparent LDAP

LDAP-based authentication support has been enhanced on the AIX operating
system. Starting with DB2 V9.7 Fix Pack 1, transparent LDAP support has also
been extended to the Linux, HP-UX and Solaris operating systems at the same
version levels that the DB2 product supports. LDAP now enables central
management of user authentication and group membership using transparent
LDAP authentication. You can configure DB2 instances to authenticate users and
acquire their groups through the operating system. The operating system will, in
turn, perform the authentication through an LDAP server. To enable transparent
LDAP authentication, set the DB2AUTH miscellaneous registry variable to OSAUTHDB.
Supported operating systems are:
v AIX
v HP-UX
v Linux
v Solaris

Another option for implementing LDAP-based authentication is through the use of
LDAP security plug-ins. LDAP security plug-in modules allow the DB2 database
manager to authenticate users defined in an LDAP directory, removing the
requirement that users and groups be defined to the operating system at the same
version levels that the DB2 product supports. Supported operating systems are:
v AIX
v HP-UX on Itanium-based HP Integrity Series systems (IA-64)
v Linux on IA32, x64, or zSeries® hardware
v Solaris
v Windows

Supported LDAP servers for use with security plug-in modules are:
v IBM Lotus® Domino® LDAP Server, Version 8.0, and later
v IBM Tivoli® Directory Server (ITDS) Version 6.2 (with GSKit 7.0.4.20 and later),

and later
v Microsoft Active Directory (MSAD) Version 2008, and later
v Novell eDirectory, Version 8.8, and later
v OpenLDAP server, Version 2.4, and later

Chapter 8. Security plug-ins 215

v Sun Java System Directory Server Enterprise Edition, Version 5.2 FP4, and later
v z/OS Integrated Security Services LDAP Server Version V1R6, and later

Note: When you use the LDAP plug-in modules, all users associated with the
database must be defined on the LDAP server. This includes both the DB2 instance
owner ID as well as the fenced user. (These users are typically defined in the
operating system, but must also be defined in LDAP.) Similarly, if you use the
LDAP group plug-in module, any groups required for authorization must be
defined on the LDAP server. This includes the SYSADM, SYSMAINT, SYSCTRL
and SYSMON groups defined in the database manager configuration.

DB2 security plug-in modules are available for server-side authentication,
client-side authentication and group lookup, described later. Depending on your
specific environment, you may need to use one, two or all three types of plug-in.

To use DB2 security plug-in modules, follow these steps:
1. Decide if you need server, client, or group plug-in modules, or a combination

of these modules.
2. Configure the plug-in modules by setting values in the IBM LDAP security

plug-in configuration file (default name is IBMLDAPSecurity.ini). You will need
to consult with your LDAP administrator to determine appropriate values.

3. Enable the plug-in modules
4. Test connecting with various LDAP User IDs.

Server authentication plugin

The server authentication plug-in module performs server validation of user IDs
and passwords supplied by clients on CONNECT and ATTACH statements. It also
provides a way to map LDAP user IDs to DB2 authorization IDs, if required. The
server plug-in module is generally required if you want users to authenticate to
the DB2 database manager using their LDAP user ID and password.

Client authentication plug-in

The client authentication plug-in module is used where user ID and password
validation occurs on the client system; that is, where the DB2 server is configured
with SRVCON_AUTH or AUTHENTICATION settings of CLIENT. The client
validates any user IDs and passwords supplied on CONNECT or ATTACH
statements, and sends the user ID to the DB2 server. Note that CLIENT
authentication is difficult to secure, and not generally recommended.

The client authentication plug-in module may also be required if the local
operating system user IDs on the database server are different from the DB2
authorization IDs associated with those users. You can use the client-side plugin to
map local operating system user IDs to DB2 authorization IDs before performing
authorization checks for local commands on the database server, such as
for:db2start.

Group lookup plug-in

The group lookup plug-in module retrieves group membership information from
the LDAP server for a particular user. It is required if you want to use LDAP to
store your group definitions. The most common scenario is where:
v All users and groups are defined in the LDAP server

216 Database Security Guide

v Any users defined locally on the database server are also defined with the same
user ID on the LDAP server (including the instance owner and the fenced user)

v Password validation occurs on the DB2 server (that is, an AUTHENTICATION
or SRVCON_AUTH value of SERVER, SERVER_ENCRYPT or DATA_ENCRYPT
is set in the server DBM config file).

It is generally sufficient to install only the server authentication plug-in module
and the group lookup plug-in module on the server. DB2 clients typically do not
need to have the LDAP plug-in module installed.

It is possible to use only the LDAP group lookup plug-in module in combination
with some other form of authentication plug-in (such as Kerberos). In this case, the
LDAP group lookup plug-in module will be provided the DB2 authorization IDs
associated with a user. The plug-in module searches the LDAP directory for a user
with a matching AUTHID_ATTRIBUTE, then retrieves the groups associated with
that user object.

Configuring transparent LDAP for authentication and group
lookup (AIX)

Starting in DB2 V9.7, transparent LDAP-based authentication and group look up
are supported on the AIX operating system. Some configuration steps are required
before this support is enabled.

Before you begin

These steps assume that the LDAP server is RFC 2307 compliant and configured to
store user and group information.

Procedure
1. To configure your AIX client system for LDAP, perform the following steps:

a. Log in as a user with root authority.
b. Ensure that the LDAP client file set has been installed on your AIX system.

AIX works with all three versions of LDAP clients: ITDS V5.2 which ships
with AIX V5.3, ITDS V6.1 which ships with AIX V6.1, and ITDS V6.2 which
ships with the AIX expansion pack. The following shows ITDS V5.2 file sets
installed on and AIX V5.3 system:
$ lslpp -l "ldap*"
Fileset Level State Description
--

Path: /usr/lib/objrepos
ldap.client.adt 5.2.0.0 COMMITTED Directory Client SDK
ldap.client.rte 5.2.0.0 COMMITTED Directory Client Runtime (No

SSL)
ldap.html.en_US.config 5.2.0.0 COMMITTED Directory Install/Config

Gd-U.S. English
ldap.html.en_US.man 5.2.0.0 COMMITTED Directory Man Pages - U.S.

English
ldap.msg.en_US 5.2.0.0 COMMITTED Directory Messages - U.S.

English

Path: /etc/objrepos
ldap.client.rte 5.2.0.0 COMMITTED Directory Client Runtime (No

SSL)

c. Using the mksecldap command with the -c option, configure the client. For
more information about the mksecldap command and how to use it to
configure the client, see http://publib.boulder.ibm.com/infocenter/pseries/
v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/
setup_ldap_sec_info_server.htm

d. Update default stanza in the /etc/security/user file.
Once you are certain that LDAP is configured properly and that you have
populated the LDAP directory with users, you must set the default user to

Chapter 8. Security plug-ins 217

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/setup_ldap_sec_info_server.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/setup_ldap_sec_info_server.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/setup_ldap_sec_info_server.htm

use LDAP. This will ensure that you can log in to the AIX client with any
user in the LDAP directory that is not restricted.
The SYSTEM and REGISTRY attributes in the /etc/security/user file are used
to specify the authentication method and the database used for user
management. To enable LDAP authentication and user management, set the
SYSTEM and REGISTRY attributes in the default stanza to LDAP. For example:
chsec -f /etc/security/user -s default -a "SYSTEM=LDAP or files"
chsec -f /etc/security/user -s default -a "REGISTRY=LDAP"

DB2 supports the following SYSTEM attributes:
v LDAP
v files
DB2 supports the following REGISTRY attributes:
v LDAP
v KRB5LDAP
v KRB5ALDAP
v files
v KRB5files
v KRB5Afiles
Configurations that use other SYSTEM or REGISTRY attributes might work, but
are not supported.
For more details on the stanza SYSTEM and REGISTRY attributes, refer to
http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/
com.ibm.aix.files/doc/aixfiles/user.htm?.

For more details, refer to the redbook titled, Integrating AIX into
Heterogeneous LDAP Environments, at: http://www.redbooks.ibm.com/
abstracts/sg247165.html

2. To configure transparent LDAP authentication on your DB2 instance:
a. Set the DB2AUTH miscellaneous registry variable to OSAUTHDB. As a user with

SYSADM authority run db2set DB2AUTH=OSAUTHDB.
b. Using the UPDATE DBM CFG command, set the authentication on the database

server instance to any one of the following:
v SERVER
v SERVER_ENCRYPT
v DATA_ENCRYPT

c. Ensure that you are using the default Client Userid-Password Plugin
(clnt_pw_plugin), Server Userid-Password Plugin (srvcon_pw_plugin) and
Group Plugin (group_plugin).

d. Restart the DB2 instance.

Considerations when using various authentication methods
Transparent LDAP-based authentication and group look up support on AIX
extends support to Kerberos authentication.

Additional work was done on AIX for using Kerberos authentication with
Transparent LDAP. The following is what needs to be included in
/usr/lib/security/methods.cfg and /etc/security/users when there is a need to
manage accounts in different locations and use different authentication methods,
such as Kerberos.

218 Database Security Guide

http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/user.htm?
http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/user.htm?
http://www.redbooks.ibm.com/abstracts/sg247165.html
http://www.redbooks.ibm.com/abstracts/sg247165.html

In /usr/lib/security/methods.cfg you need to have the following to have files,
LDAP and Kerberos authentication.

Note: KRB5A is for using Microsoft Active Directory as the Keberos Key
Distribution Center (KDC).

For LDAP:
program = /usr/lib/security/LDAP
program_64 =/usr/lib/security/LDAP64

For KRB5A:
program = /usr/lib/security/KRB5A
program_64 = /usr/lib/security/KRB5A_64
options = tgt_verify=no,authonly,is_kadmind_compat=no

For KRB5:
program = /usr/lib/security/KRB5
program_64 = /usr/lib/security/KRB5_64
options = kadmind=no

For KRB5Afiles:
options = db=BUILTIN,auth=KRB5A

For KRB5files:
options = db=BUILTIN,auth=KRB5

For KRB5ALDAP:
options = db=LDAP,auth=KRB5A

For KRB5LDAP:
options = db=LDAP,auth=KRB5

Example

The following example shows four accounts managed differently. Each uses
different authentication methods.

If frank's account is stored on file and is authenticated using files, then this is what
frank's stanza would look like in /etc/security/users.
frank:

SYSTEM = files
registry = files

If karen's account is stored on file and is authenticated using Kerberos, then this is
what karen's stanza would look like in /etc/security/users.
karen:

SYSTEM = KRB5files
registry = KRB5files

If luke's account is stored on LDAP and is authenticated using Kerberos, then this
is what luke's stanza would look like in /etc/security/users.
luke:

SYSTEM = KRB5LDAP
registry = KRB5LDAP

Chapter 8. Security plug-ins 219

If lucy's account is stored on LDAP and is authenticated using LDAP, then this is
what lucy's stanza would look like in /etc/security/users.
lucy:

SYSTEM = LDAP
registry = LDAP

To determine if a user is defined on LDAP you can use the following command to
query a user.
$ lsuser -R LDAP lucy
lucy id=1234 pgrp=staff groups=staff home=/home/lucy shell=/bin/ksh registry=LDAP

Configuring transparent LDAP for authentication and group
lookup (Linux)

Starting in DB2 V9.7 Fix Pack 1 and later, to ensure the DB2 database server
transparently uses LDAP-based authentication on the Linux operating system, use
Pluggable Authentication Modules (PAM). Your LDAP server should already be
configured to store user and group information.

Before you begin

To enable support for transparent LDAP on the DB2 database, complete the
following tasks:
1. Configure your operating system to authenticate users using PAM
2. Configure your DB2 instance

The steps assume that the LDAP server is RFC 2307 compliant.

Procedure
1. To configure your operating system for LDAP and PAM, perform the following

steps:
a. Log in as a user with root authority.
b. Ensure that the nss_ldap and pam_ldap packages are installed. These two

packages appear as libnss_ldap.so and libpam_ldap.so in the /lib(64) or
/usr/lib(64) directories.

c. Set up your operating system to act as a LDAP client machine by modifying
the /etc/ldap.conf file to enable the operating system to bind with a LDAP
server. Here's a sample /etc/ldap.conf file:
host <host> # Address of ldap server
base <base> # The DN of the search base.
rootbinddn <binddn> # The bind DN to bind to LDAP
ldap_version 3 # LDAP version
pam_login_attribute uid # user ID attribute for pam user lookups
nss_base_group <group> # nsswitch configuration pertaining to group

search lookup

d. Set your password in the /etc/ldap.secret file. Only the root user should
be able to read or write to this file.

e. Create or modify the PAM configuration file at /etc/pam.d/db2. The file
should be only be readable and writable by root. You might have to modify
the configuration file, depending on the version of the operating system
that is being used. Here is a sample configuration file for SUSE Linux
Enterprise Server 10:
auth sufficient pam_unix2.so
auth required pam_ldap.so use_first_pass
account sufficient pam_unix2.so
account required pam_ldap.so

220 Database Security Guide

password required pam_pwcheck.so
password sufficient pam_unix2.so use_authtok use_first_pass
password required pam_ldap.so use_first_pass
session required pam_unix2.so

For Red Hat Enterprise Linux 5, modify the configuration file as follows:
#%PAM-1.0

auth required pam_env.so
auth sufficient pam_unix.so likeauth nullok
auth sufficient pam_ldap.so use_first_pass
auth required pam_deny.so

account required pam_unix.so
account sufficient pam_succeed_if.so uid < 100 quiet
account sufficient pam_ldap.so
account required pam_permit.so

password requisite pam_cracklib.so retry=3 dcredit=-1 ucredit=-1
password sufficient pam_unix.so nullok use_authtok md5 shadowremember=3
password sufficient pam_ldap.so use_first_pass
password required pam_deny.so

session required pam_limits.so
session required pam_unix.so

DB2 supports PAM configurations that use pam_ldap.so, pam_unix.so, and
pam_unix2.so. Configurations that use other PAM modules might work, but
are not supported.

f. Setup your Linux system to perform group lookup through LDAP. Find the
group and passwd entries in /etc/nsswitch.conf file and ensure ldap is
entered as a lookup method. Here is an example of the group and passwd
entry:
group: files ldap
passwd: files ldap

2. To configure your DB2 instance to use transparent LDAP authentication,
perform the following steps:
a. Set the DB2AUTH miscellaneous registry variable to OSAUTHDB. Issue the

following command as a user with SYSADM authority:
db2set DB2AUTH=OSAUTHDB

b. Set the authentication on the server to any one of the following:
v SERVER
v SERVER_ENCRYPT
v DATA_ENCRYPT

c. Ensure that you are using the default Client Userid-Password Plugin
(clnt_pw_plugin), Server Userid-Password Plugin (srvcon_pw_plugin) and
Group Plugin (group_plugin).

d. Restart the DB2 instance.

Configuring transparent LDAP for authentication and group
lookup (HP-UX)

Starting in DB2 V9.7 Fix Pack 1 and later, to ensure your DB2 database server
transparently uses LDAP-based authentication on the HP-UX operating system,
you need to use Pluggable Authentication Modules (PAM). Your LDAP server
should already be configured to store user and group information.

Chapter 8. Security plug-ins 221

Before you begin

This procedure assumes that the LDAP server is RFC 2307 compliant.

Procedure
1. If you are using IBM Tivoli Directory Server (ITDS) Version 6.1, set up the

LDAP server before the HP-UX system can connect to it. To configure your
LDAP server on the HP-UX operating system, perform the following steps:
a. Log in on the LDAP server as a user with root authority.
b. Issue the idsldapadd command:

idsldapadd -D <root> -w <password> -h <hostname> -p <port> -c -i duaconfigschema.ldif

where,
<root> - the bind dn to bind to LDAP
<password> - the password for bind dn
<hostname> - hostname of the LDAP server
<port> - the port LDAP server is running. Default is 389
<schema.ldif> - LDIF file contains DUAConfigProfle Schema

The object class listed in the duaconfigschema.ldif is added to the LDAP
server automatically using the LDAP-UX setup program if either Netscape
or Red Hat Directory Servers are employed. However, if ITDS is used the
object class must be added manually before running the LDAP-UX setup
program on the HP-UX Client.

2. To configure your operating system for LDAP and PAM, perform the following
steps:
a. Log in as a user with root authority.
b. Install LDAP-UX Client Service and run the LDAP-UX setup program. The

following screen will appear:
[ctrl-B]=Go Back screen 2
Hewlett-Packard Company
LDAP-UX Client Services Setup Program
--
Select which Directory Server you want to connect to:
1. Netscape or Red Hat Directory
2. Windows 2000/2003/2003 R2 Active Directory
To accept the default shown in brackets, press the Return key.
Directory Server: [1]:

Select option 1, as though you are connecting to the Netscape or Red Hat
Directory Server and follow the instructions.
For details on installing LDAP-UX, refer to the LDAP-UX Client Services
B.04.15 Administrator's Guide.

c. Edit the PAM configuration file at /etc/pam.conf. Add the following text to
the file:
db2 auth required libpam_hpsec.so.1
db2 auth sufficient libpam_unix.so.1
db2 auth required libpam_ldap.so.1 use_first_pass

The previous configuration first checks the userid and password against the
local file system. It will only conduct a LDAP lookup if the user is not
found or if authentication with local file system fails.
DB2 supports PAM configurations that use libpam_ldap.so and
libpam_unix.so. Configurations that use other PAM modules might work,
but are not supported.

d. Setup your HP-UX system to perform group lookup through LDAP. Find
the group and passwd entries in /etc/nsswitch.conf file and ensure ldap is
entered as a lookup method. Here is an example of the group and passwd
entry:

222 Database Security Guide

group: files ldap
passwd: files ldap

3. To configure your DB2 instance to use transparent LDAP authentication,
perform the following steps:
a. Set the DB2AUTH miscellaneous registry variable to OSAUTHDB. Issue the

following command as a user with SYSADM authority:
db2set DB2AUTH=OSAUTHDB

b. Using the UPDATE DBM CFG command, set the authentication on the
database server instance to any one of the following:
v SERVER
v SERVER_ENCRYPT
v DATA_ENCRYPT
v CLIENT

c. Ensure that you are using the default empty values for Client
Userid-Password Plugin (clnt_pw_plugin), Server Userid-Password Plugin
(srvcon_pw_plugin) and Group Plugin (group_plugin). The default plug-ins
are IBMOSauthclient, IBMOSauthserver and IBMOSgroups, and those plug-ins
are implied if you leave the values for the plug-in name empty.

d. Restart the DB2 instance.

Note: IBMLDAPSecurity.iniis not used by transparent LDAP. This file is used
only with LDAP plug-in modules.

Configuring transparent LDAP for authentication and group
lookup (Solaris)

Starting in DB2 V9.7 Fix Pack 1 and later, to ensure your DB2 database server
transparently uses LDAP-based authentication on the Solaris operating system, you
need to use Pluggable Authentication Modules (PAM). Your LDAP server should
already be configured to store user and group information.

Before you begin

This procedure assumes that the LDAP server is RFC 2307 compliant.

About this task

This task describes the steps that re applicable to Solaris 10. The instructions might
vary slightly for other version of Solaris operating systems.

Procedure
1. Configure your operating system for LDAP and PAM by performing the

following steps:
a. Log in as a user with root authority.
b. Ensure that the nss_ldap and pam_ldap packages are installed. These two

packages appear as nss_ldap.so and pam_ldap.so in /usr/lib and
/usr/lib/security directories.

c. Setup your operating system to act as a LDAP client machine. The
ldapclient(1M) interface can be used to issue the ldapclient command.
Here is the sample output:
ldapclient manual -a credentialLevel=proxy \
-a authenticationMethod=simple \
-a proxyDN=<root> \

Chapter 8. Security plug-ins 223

-a proxyPassword=<password> \
-a defaultSearchBase=<base> \
-a serviceSearchDescriptor=group:<group> \
-a domainName=<domain> \
-a defaultServerList=<IP>

where,

<root> the bind dn to bind to LDAP. This is the dn of the user entry in the
LDAP server that is permitted to search the LDAP server for user
accounts and groups

<password>
the password for bind dn

<base>
the dn for the search base. This should be one level above the user
and group entry

<group>
the base dn for where the group information is stored

<domain>
the domain name for the LDAP server

<IP> the IP address for the LDAP server

For more information, refer to the ldapclient(1M) manual.
d. Edit the PAM configuration file at /etc/pam.conf. Add the following text to

the file:
db2 auth requisite pam_authtok_get.so.1
db2 auth required pam_unix_cred.so.1
db2 auth sufficient pam_unix_auth.so.1
db2 auth required pam_ldap.so.1

The previous configuration first checks the userid and password against the
local file system. It will only conduct a LDAP lookup if the user is not
found or if authentication with local file system fails.
DB2 supports PAM configurations that use pam_ldap.so and
pam_unix_auth.so. Configurations that use other PAM modules might work,
but are not supported.

e. Setup your Solaris system to perform group lookup through LDAP. Find the
group and passwd entries in /etc/nsswitch.conf file and ensure ldap is
entered as a lookup method. Here is an example of the group and passwd
entry:
group: files ldap
passwd: files ldap

2. Configure your DB2 instance to use transparent LDAP authentication by
performing the following steps:
a. Set the DB2AUTH miscellaneous registry variable to OSAUTHDB. Issue the

following command as a user with SYSADM authority:
db2set DB2AUTH=OSAUTHDB

b. Set the authentication on the server to any one of the following:
v SERVER
v SERVER_ENCRYPT
v DATA_ENCRYPT

224 Database Security Guide

c. Ensure that you are using the default Client Userid-Password Plugin
(clnt_pw_plugin), Server Userid-Password Plugin (srvcon_pw_plugin) and
Group Plugin (group_plugin).

d. Restart the DB2 instance.

Note: IBMLDAPSecurity.ini is not used by transparent LDAP. This file is used
only with LDAP plug-in modules.

Configuring the LDAP plug-in modules
To configure the LDAP plug-in modules, you need to update your IBM LDAP
security plug-in configuration file to suit your environment. In most cases, you will
need to consult with your LDAP administrator to determine the appropriate
configuration values.

The default name and location for the IBM LDAP security plug-in configuration
file is:
v On UNIX: INSTHOME/sqllib/cfg/IBMLDAPSecurity.ini
v On Windows: %DB2PATH%\cfg\IBMLDAPSecurity.ini

Optionally, you can specify the location of this file using the
DB2LDAPSecurityConfig environment variable. On Windows, you should set
DB2LDAPSecurityConfig in the global system environment, to ensure it is picked
up by the DB2 service.

The following tables provide information to help you determine appropriate
configuration values.

Table 31. Server-related values

Parameter Description

LDAP_HOST The name of your LDAP server(s).
This is a space separated list of LDAP server host names
or IP addresses, with an optional port number for each one.
For example: host1[:port] [host2:[port2] ...]
The default port number is 389, or 636 if SSL is enabled.

ENABLE_SSL To enable SSL support, set ENABLE_SSL to TRUE (you must have
the GSKit installed). This is an optional parameter; it defaults to
FALSE (no SSL support).

SSL_KEYFILE The path for the SSL keyring.
A keyfile is only required if your LDAP server is using a
certificate that is not automatically trusted by your GSKit
installation.
For example:SSL_KEYFILE = /home/db2inst1/IBMLDAPSecurity.kdb

SSL_PW The SSL keyring password. For example: SSL_PW = keyfile-password

Table 32. User-related values

Parameter Description

USER_
OBJECTCLASS

The LDAP object class used for users.
Generally, set USER_OBJECTCLASS to inetOrgPerson (the user
for Microsoft Active Directory)
For example: USER_OBJECTCLASS = inetOrgPerson

Chapter 8. Security plug-ins 225

Table 32. User-related values (continued)

Parameter Description

USER_BASEDN The LDAP base DN to use when searching for users.
If not specified, user searches start at the root of the
LDAP directory. Some LDAP servers require that you
specify a value for this parameter.
For example: USER_BASEDN = o=ibm

USERID_
ATTRIBUTE

The LDAP user attribute that represents the user ID.
The USERID_ATTRIBUTE attribute is combined with the
USER_OBJECTCLASS and USER_BASEDN (if specified)
to construct an LDAP search filter when a user issues a
DB2 CONNECT statement with an unqualified user ID.
For example, if USERID_ATTRIBUTE = uid, then issuing
this statement:
db2 connect to MYDB user bob using bobpass

results in the following search filter:
&(objectClass=inetOrgPerson)(uid=bob)

AUTHID_
ATTRIBUTE

The LDAP user attribute that represents the DB2 authorization ID.
Usually this is the same as the USERID_ATTRIBUTE.
For example: AUTHID_ATTRIBUTE = uid

Table 33. Group-related values

Parameter Description

GROUP_
OBJECTCLASS

The LDAP object class used for groups.
Generally this is groupOfNames or groupOfUniqueNames
(for Microsoft Active Directory, it is group)
For example: GROUP_OBJECTCLASS = groupOfNames

GROUP_BASEDN The LDAP base DN to use when searching for groups
If not specified, group searches start at the root of the
LDAP directory. Some LDAP servers require that you
specify a value for this parameter.
For example: GROUP_BASEDN = o=ibm

GROUPNAME_
ATTRIBUTE

The LDAP group attribute that represents the name of the
group.
For example: GROUPNAME_ATTRIBUTE = cn

GROUP_LOOKUP_
METHOD

Determines the method used to find the group memberships for a
user. Possible values are:

v SEARCH_BY_DN Indicates to search for groups that list the user
as a member. Membership is indicated by the group attribute
defined as GROUP_LOOKUP_ATTRIBUTE (typically, member or
uniqueMember).

v USER_ATTRIBUTE In this case, a user's groups are listed as
attributes of the user object itself. This setting indicates to search
for the user attribute defined as GROUP_LOOKUP_ATTRIBUTE
to get the user's groups (typically memberOf for Microsoft Active
Directory or ibm-allGroups for IBM Tivoli Directory Server).

For example:GROUP_LOOKUP_METHOD = SEARCH_BY_DN
GROUP_LOOKUP_METHOD = USER_ATTRIBUTE

GROUP_LOOKUP_
ATTRIBUTE

Name of the attribute used to determine group membership, as
described for GROUP_LOOKUP_METHOD.

For example:
GROUP_LOOKUP_ATTRIBUTE = member
GROUP_LOOKUP_ATTRIBUTE = ibm-allGroups

226 Database Security Guide

Table 33. Group-related values (continued)

Parameter Description

NESTED_GROUPS If NESTED_GROUPS is TRUE, the DB2 database manager
recursively searches for group membership by attempting to look
up the group memberships for every group that is found.

Cycles (such as A belongs to B, and B belongs to A) are
handled correctly.
This parameter is optional, and defaults to FALSE.

Table 34. Miscellaneous values

Parameter Description

SEARCH_DN,
SEARCH_PW

If your LDAP server does not support anonymous access, or if
anonymous access is not sufficient when searching for users or groups,
then you can optionally define a DN and password that will be used to
perform searches.

For example:
SEARCH_DN = cn=root
SEARCH_PW = rootpassword

DEBUG Set DEBUG to TRUE to write extra information to the db2diag log files
to aid in debugging LDAP related issues.

Most of the additional information is logged at
DIAGLEVEL 4 (INFO).
DEBUG defaults to false.

Enabling the LDAP plug-in modules
Compiled binary LDAP plug-in modules are found in your DB2 instance directory.

The following tables show where the LDAP plug-in modules are located on your
DB2 instance.

Table 35. For 64-bit UNIX and Linux systems

Plug-in
module type Location

server /sqllib/security64/plugin/IBM/server

client /sqllib/security64/plugin/IBM/client

group /sqllib/security64/plugin/IBM/group

Table 36. For 32-bit UNIX and Linux systems

Plug-in
module type Location

server /sqllib/security32/plugin/IBM/server

client /sqllib/security32/plugin/IBM/client

group /sqllib/security32/plugin/IBM/group

Chapter 8. Security plug-ins 227

Table 37. For Windows systems (both 64-bit and 32-bit)

Plug-in
module type Location

server %DB2PATH%\security\plugin\IBM\instance-name\server

client %DB2PATH%\security\plugin\IBM\instance-name\client

group %DB2PATH%\security\plugin\IBM\instance-name\group

Note: 64-bit Windows plug-in modules include the digits 64 in the file name.

Use the DB2 command line processor to update the database manager
configuration to enable the plug-in modules that you require:
v For the server plug-in module:

UPDATE DBM CFG USING SRVCON_PW_PLUGIN IBMLDAPauthserver

v For the client plug-in module:
UPDATE DBM CFG USING CLNT_PW_PLUGIN IBMLDAPauthclient

v For the group plug-in module:
UPDATE DBM CFG USING GROUP_PLUGIN IBMLDAPgroups

Terminate all running DB2 command line processor backend processes, by using
the db2 terminate command, and then stop and restart the instance by using the
db2stop and db2start commands.

Connecting with an LDAP user ID
After the LDAP security plug-ins have been configured in a DB2 instance, a user
can connect to the databases using a variety of different user strings.

The location of an object within an LDAP directory is defined by its distinguished
name (DN). A DN is typically a multi-part name that reflects some sort of
hierarchy, for example:
cn=John Smith, ou=Sales, o=WidgetCorp

A user's user ID is defined by an attribute associated with the user object (typically
the uid attribute). It may be a simple string (such as jsmith), or look like an email
address (such as jsmith@sales.widgetcorp.com), that reflects part of the
organizational hierarchy.

A user's DB2 authorization ID is the name associated with that user within the DB2
database.

In the past, users were typically defined in the server's host operating system, and
the user ID and authorization ID were the same (though the authorization ID is
usually in uppercase). The DB2 LDAP plug-in modules give you the ability to
associate different attributes of the LDAP user object with the user ID and the
authorization ID. In most cases, the user ID and authorization ID can be the same
string, and you can use the same attribute name for both the USERID_ATTRIBUTE
and the AUTHID_ATTRIBUTE. However, if in your environment the user ID
attribute typically contains extra information that you do not want to carry over to
the authorization ID, you can configure a different AUTHID_ATTRIBUTE in the
plug-in initialization file. The value of the AUTHID_ATTRIBUTE attribute is
retrieved from the server and used as the internal DB2 representation of the user.

228 Database Security Guide

For example, if your LDAP user IDs look like email addresses (such as
jsmith@sales.widgetcorp.com), but you would rather use just the user portion
(jsmith) as the DB2 authorization ID, then you can:
1. Associate a new attribute containing the shorter name with all user objects on

your LDAP server
2. Configure the AUTHID_ATTRIBUTE with the name of this new attribute

Users are then able to connect to a DB2 database by specifying their full LDAP
user ID and password, for example:
db2 connect to MYDB user ’jsmith@sales.widgetcorp.com’ using ’pswd’

But internally, the DB2 database manager refers to the user using the short name
retrieved using the AUTHID_ATTRIBUTE (jsmith in this case).

After an LDAP plug-in module has been enabled and configured, a user can
connect to a DB2 database using a variety of different strings:
v A full DN. For example:

connect to MYDB user ’cn=John Smith, ou=Sales, o=WidgetCorp’

v A partial DN, provided that a search of the LDAP directory using the partial DN
and the appropriate search base DN (if defined) results in exactly one match. For
example:
connect to MYDB user ’cn=John Smith’ connect to MYDB user uid=jsmith

v A simple string (containing no equals signs). The string is qualified with the
USERID_ATTRIBUTE and treated as a partial DN. For example:
connect to MYDB user jsmith

Note: Any string supplied on a CONNECT statement or ATTACH command must be
delimited with single quotation marks if it contains spaces or special characters.

Considerations for group lookup
Group membership information is typically represented on an LDAP server either
as an attribute of the user object, or as an attribute of the group object:
v As an attribute of the user object

Each user object has an attribute called GROUP_LOOKUP_ATTRIBUTE that you
can query to retrieve all of the group membership for that user.

v As an attribute of the group object
Each group object has an attribute, also called GROUP_LOOKUP_ATTRIBUTE,
that you can use to list all the user objects that are members of the group. You
can enumerate the groups for a particular user by searching for all groups that
list the user object as a member.

Many LDAP servers can be configured in either of these ways, and some support
both methods at the same time. Consult with your LDAP administrator to
determine how your LDAP server is configured.

When configuring the LDAP plug-in modules, you can use the
GROUP_LOOKUP_METHOD parameter to specify how group lookup should be
performed:
v If you need to use the GROUP_LOOKUP_ATTRIBUTE attribute of the user

object to find group membership, set GROUP_LOOKUP_METHOD =
USER_ATTRIBUTE

Chapter 8. Security plug-ins 229

v If you need to use the GROUP_LOOKUP_ATTRIBUTE attribute of the group
object to find group membership, set GROUP_LOOKUP_METHOD =
SEARCH_BY_DN

Many LDAP servers use the GROUP_LOOKUP_ATTRIBUTE attribute of the group
object to determine membership. They can be configured as shown in this example:
GROUP_LOOKUP_METHOD = SEARCH_BY_DN
GROUP_LOOKUP_ATTRIBUTE = groupOfNames

Microsoft Active Directory typically stores group membership as a user attribute,
and could be configured as shown in this example:
GROUP_LOOKUP_METHOD = USER_ATTRIBUTE
GROUP_LOOKUP_ATTRIBUTE = memberOf

The IBM Tivoli Directory Server supports both methods at the same time. To query
the group membership for a user you can make use of the special user attribute
ibm-allGroups, as shown in this example:
GROUP_LOOKUP_METHOD = USER_ATTRIBUTE
GROUP_LOOKUP_ATTRIBUTE = ibm-allGroups

Other LDAP servers may offer similar special attributes to aid in retrieving group
membership. In general, retrieving membership through a user attribute is faster
than searching for groups that list the user as a member.

Troubleshooting authenticating LDAP users or retrieving
groups

If you encounter problems authenticating LDAP users or retrieving their groups,
the db2diag log files and administration log are a good source of information to
aid in troubleshooting.

The LDAP plug-in modules typically log LDAP return codes, search filters, and
other useful data when a failure occurs. If you enable the DEBUG option in the
LDAP plug-in configuration file, the plug-in modules will log even more
information in the db2diag log files. While this might be an aid in troubleshooting,
it is not recommended for extended use on production systems due to the
overhead associated with writing all of the extra data to a single file.

Ensure that the diaglevel configuration parameter in the database manager is set
to 4 so that all messages from the LDAP plug-in modules will be captured.

Writing security plug-ins

How DB2 loads security plug-ins
So that the DB2 database system has the necessary information to call security
plug-in functions, a security plug-in must have a correctly set up initialization
function.

Each plug-in library must contain an initialization function with a specific name
determined by the plug-in type:
v Server side authentication plug-in: db2secServerAuthPluginInit()
v Client side authentication plug-in: db2secClientAuthPluginInit()
v Group plug-in: db2secGroupPluginInit()

230 Database Security Guide

This function is known as the plug-in initialization function. The plug-in
initialization function initializes the specified plug-in and provides DB2 with
information that it requires to call the plug-in's functions. The plug-in initialization
function accepts the following parameters:
v The highest version number of the function pointer structure that the DB2

instance invoking the plug-in can support
v A pointer to a structure containing pointers to all the APIs requiring

implementation
v A pointer to a function that adds log messages to the db2diag log files
v A pointer to an error message string
v The length of the error message

The following is a function signature for the initialization function of a group
retrieval plug-in:

SQL_API_RC SQL_API_FN db2secGroupPluginInit(
db2int32 version,
void *group_fns,
db2secLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen);

Note: If the plug-in library is compiled as C++, all functions must be declared
with: extern "C". DB2 relies on the underlying operating system dynamic loader
to handle the C++ constructors and destructors used inside of a C++ user-written
plug-in library.

The initialization function is the only function in the plug-in library that uses a
prescribed function name. The other plug-in functions are referenced through
function pointers returned from the initialization function. Server plug-ins are
loaded when the DB2 server starts. Client plug-ins are loaded when required on
the client. Immediately after DB2 loads a plug-in library, it will resolve the location
of this initialization function and call it. The specific task of this function is as
follows:
v Cast the functions pointer to a pointer to an appropriate functions structure
v Specify the pointers to the other functions in the library
v Specify the version number of the function pointer structure being returned

DB2 can potentially call the plug-in initialization function more than once. This
situation can occur when an application dynamically loads the DB2 client library,
unloads it, and reloads it again, then performs authentication functions from a
plug-in both before and after reloading. In this situation, the plug-in library might
not be unloaded and then re-loaded; however, this behavior varies depending on
the operating system.

Another example of DB2 issuing multiple calls to a plug-in initialization function
occurs during the execution of stored procedures or federated system calls, where
the database server can itself act as a client. If the client and server plug-ins on the
database server are in the same file, DB2 could call the plug-in initialization
function twice.

If the plug-in detects that db2secGroupPluginInit is called more than once, it
should handle this event as if it was directed to terminate and reinitialize the
plug-in library. As such, the plug-in initialization function should do the entire
cleanup tasks that a call to db2secPluginTerm would do before returning the set of
function pointers again.

Chapter 8. Security plug-ins 231

On a DB2 server running on a UNIX or Linux-based operating system, DB2 can
potentially load and initialize plug-in libraries more than once in different
processes.

Restrictions for developing security plug-in libraries
There are certain restrictions that affect how you develop plug-in libraries.

The following list outlines the restrictions for developing plug-in libraries.

C-linkage
Plug-in libraries must be linked with C-linkage. Header files providing the
prototypes, data structures needed to implement the plug-ins, and error
code definitions are provided for C/C++ only. Functions that DB2 will
resolve at load time must be declared with extern "C" if the plug-in library
is compiled as C++.

.NET common language runtime is not supported
The .NET common language runtime (CLR) is not supported for compiling
and linking source code for plug-in libraries.

Signal handlers
Plug-in libraries must not install signal handlers or change the signal mask,
because this will interfere with the DB2 signal handlers. Interfering with
the DB2 signal handlers could seriously interfere with the ability for DB2
to report and recover from errors, including traps in the plug-in code itself.
Plug-in libraries should also never throw C++ exceptions, as this can also
interfere with the error handling used in DB2.

Thread-safe
Plug-in libraries must be thread-safe and re-entrant. The plug-in
initialization function is the only API that is not required to be re-entrant.
The plug-in initialization function could potentially be called multiple
times from different processes; in which case, the plug-in will cleanup all
used resources and reinitialize itself.

Exit handlers and overriding standard C library and operating system calls
Plug-in libraries should not override standard C library or operating
system calls. Plug-in libraries should also not install exit handlers or
pthread_atfork handlers. The use of exit handlers is not recommended
because they could be unloaded before the program exits.

Library dependencies
On Linux or UNIX, the processes that load the plug-in libraries can be
setuid or setgid, which means that they will not be able to rely on the
$LD_LIBRARY_PATH, $SHLIB_PATH, or $LIBPATH environment variables to find
dependent libraries. Therefore, plug-in libraries should not depend on
additional libraries, unless any dependent libraries are accessible through
other methods, such as the following situations:
v By being in /lib or /usr/lib

v By having the directories they reside in being specified OS-wide (such as
in the ld.so.conf file on Linux)

v By being specified in the RPATH in the plug-in library itself

This restriction is not applicable to Windows operating systems.

Symbol collisions
When possible, plug-in libraries should be compiled and linked with any
available options that reduce the likelihood of symbol collisions, such as
those that reduce unbound external symbolic references. For example, use

232 Database Security Guide

of the "-Bsymbolic" linker option on HP, Solaris, and Linux can help
prevent problems related to symbol collisions. However, for plug-ins
written on AIX, do not use the "-brtl" linker option explicitly or
implicitly.

32-bit and 64-bit applications
32-bit applications must use 32-bit plug-ins. 64-bit applications must use
64-bit plug-ins. Refer to the topic about 32-bit and 64-bit considerations for
more details.

Text strings
Input text strings are not guaranteed to be null-terminated, and output
strings are not required to be null-terminated. Instead, integer lengths are
given for all input strings, and pointers to integers are given for lengths to
be returned.

Passing authorization ID parameters
An authorization ID (authid) parameter that DB2 passes into a plug-in (an
input authid parameter) will contain an upper-case authid, with padded
blanks removed. An authid parameter that a plug-in returns to DB2 (an
output authid parameter) does not require any special treatment, but DB2
will fold the authid to upper-case and pad it with blanks according to the
internal DB2 standard.

Size limits for parameters
The plug-in APIs use the following as length limits for parameters:
#define DB2SEC_MAX_AUTHID_LENGTH 255
#define DB2SEC_MAX_USERID_LENGTH 255
#define DB2SEC_MAX_USERNAMESPACE_LENGTH 255
#define DB2SEC_MAX_PASSWORD_LENGTH 255
#define DB2SEC_MAX_DBNAME_LENGTH 128

A particular plug-in implementation may require or enforce smaller
maximum lengths for the authorization IDs, user IDs, and passwords. In
particular, the operating system authentication plug-ins supplied with DB2
database systems are restricted to the maximum user, group and
namespace length limits enforced by the operating system for cases where
the operating system limits are lower than those stated previously.

Security plug-in library extensions in AIX
On AIX systems, security plug-in libraries can have a file name extension
of .a or .so. The mechanism used to load the plug-in library depends on
which extension is used:
v Plug-in libraries with a file name extension of .a are assumed to be

archives containing shared object members. These members must be
named shr.o (32-bit) or shr64.o (64-bit). A single archive can contain both
the 32-bit and 64-bit members, allowing it to be deployed on both types
of platforms.
For example, to build a 32-bit archive style plug-in library:
xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp
ar rv MyPlugin.a shr.o

v Plug-in libraries with a file name extension of .so are assumed to be
dynamically loadable shared objects. Such an object is either 32-bit or
64-bit, depending on the compiler and linker options used when it was
built. For example, to build a 32-bit plug-in library:

xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always
assumed to be dynamically loadable shared objects.

Chapter 8. Security plug-ins 233

Fork Plug-in libraries should not fork because file descriptors and sockets will
be duplicated in the child process, and this can cause hangs or incorrect
behavior. In particular, it can cause false file lock conflicts if child was
forked when we had an open file descriptor on that file. There is also the
possibility that the fork will inherit many other resources like semaphores.

Restrictions on security plug-ins
There are certain restrictions on the use of security plug-ins.

DB2 database family support restrictions

You cannot use a GSS-API plug-in to authenticate connections between DB2 clients
on Linux, UNIX, and Windows and another DB2 family servers such as DB2 for
z/OS. You also cannot authenticate connections from another DB2 database family
product, acting as a client, to a DB2 server on Linux, UNIX, or Windows.

If you use a DB2 client on Linux, UNIX, or Windows to connect to other DB2
database family servers, you can use client-side user ID/password plug-ins (such
as the IBM shipped operating system authentication plug-in), or you can write
your own user ID/password plug-in. You can also use the built-in Kerberos
plug-ins, or implement your own.

With a DB2 client on Linux, UNIX, or Windows, you should not catalog a database
using the GSSPLUGIN authentication type.

Restrictions on the AUTHID identifier. Version 9.5, and later, of the DB2 database
system allows you to have an 128-byte authorization ID, but when the
authorization ID is interpreted as an operating system user ID or group name, the
operating system naming restrictions apply (for example, a limitation to 8 or 30
character user IDs and 30 character group names). Therefore, while you can grant
an 128-byte authorization ID, it is not possible to connect as a user that has that
authorization ID. If you write your own security plugin, you should be able to
take full advantage of the extended sizes for the authorization ID. For example,
you can give your security plug-in a 30-byte user ID and it can return an 128-byte
authorization ID during authentication that you are able to connect with.

InfoSphere® Federation Server support restrictions

DB2 II does not support the use of delegated credentials from a GSS_API plug-in
to establish outbound connections to data sources. Connections to data sources
must continue to use the CREATE USER MAPPING command.

Database Administration Server support restrictions

The DB2 Administration Server (DAS) does not support security plug-ins. The DAS
only supports the operating system authentication mechanism.

Security plug-in problem and restriction for DB2 clients
(Windows)

When developing security plug-ins that will be deployed in DB2 clients on
Windows operating systems, do not unload any auxiliary libraries in the plug-in
termination function. This restriction applies to all types of client security plug-ins,
including group, user ID and password, Kerberos, and GSS-API plug-ins. Since
these termination APIs such as db2secPluginTerm, db2secClientAuthPluginTerm

234 Database Security Guide

and db2secServerAuthPluginTerm are not called on any Windows platform, you
need to do the appropriate resource cleanup.

This restriction is related to cleanup issues associated with the unloading of DLLs
on Windows.

Loading plug-in libraries on AIX with extension of .a or .so

On AIX, security plug-in libraries can have a file name extension of .a or .so. The
mechanism used to load the plug-in library depends on which extension is used:
v Plug-in libraries with a file name extension of .a

Plug-in libraries with file name extensions of .a are assumed to be archives
containing shared object members. These members must be named shr.o (32-bit)
or shr64.o (64-bit). A single archive can contain both the 32-bit and 64-bit
members, allowing it to be deployed on both types of platforms.
For example, to build a 32-bit archive style plug-in library:

xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp
ar rv MyPlugin.a shr.o

v Plug-in libraries with a file name extension of .so
Plug-in libraries with file name extensions of .so are assumed to be dynamically
loadable shared objects. Such an object is either 32-bit or 64-bit, depending on
the compiler and linker options used when it was built. For example, to build a
32-bit plug-in library:

xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always assumed to
be dynamically loadable shared objects.

GSS-API security plug-ins do not support message encryption
and signing

Message encryption and signing is not available in GSS-API security plug-ins.

Return codes for security plug-ins
All security plug-in APIs must return an integer value to indicate the success or
failure of the execution of the API. A return code value of 0 indicates that the API
ran successfully. All negative return codes, with the exception of -3, -4, and -5,
indicate that the API encountered an error.

All negative return codes returned from the security-plug-in APIs are mapped to
SQLCODE -1365, SQLCODE -1366, or SQLCODE -30082, with the exception of
return codes with the -3, -4, or -5. The values -3, -4, and -5 are used to indicate
whether or not an authorization ID represents a valid user or group.

All the security plug-in API return codes are defined in db2secPlugin.h, which can
be found in the DB2 include directory: SQLLIB/include.

Details regarding all of the security plug-in return codes are presented in the
following table:

Chapter 8. Security plug-ins 235

Table 38. Security plug-in return codes

Return
code

Define value Meaning Applicable APIs

0 DB2SEC_PLUGIN_OK The plug-in API executed
successfully.

All

-1
DB2SEC_PLUGIN_UNKNOWNERROR

The plug-in API encountered an
unexpected error.

All

-2 DB2SEC_PLUGIN_BADUSER The user ID passed in as input is
not defined. db2secGenerateInitialCred

db2secValidatePassword
db2secRemapUserid
db2secGetGroupsForUser

-3
DB2SEC_PLUGIN
_INVALIDUSERORGROUP

No such user or group.
db2secDoesAuthIDExist
db2secDoesGroupExist

-4
DB2SEC_PLUGIN
_USERSTATUSNOTKNOWN

Unknown user status. This is not
treated as an error by DB2; it is
used by a GRANT statement to
determine if an authid represents
a user or an operating system
group.

db2secDoesAuthIDExist

-5
DB2SEC_PLUGIN
_GROUPSTATUSNOTKNOWN

Unknown group status. This is
not treated as an error by DB2; it
is used by a GRANT statement to
determine if an authid represents
a user or an operating system
group.

db2secDoesGroupExist

-6 DB2SEC_PLUGIN_UID_EXPIRED User ID expired.
db2secValidatePassword
db2GetGroupsForUser
db2secGenerateInitialCred

-7 DB2SEC_PLUGIN_PWD_EXPIRED Password expired.
db2secValidatePassword
db2GetGroupsForUser
db2secGenerateInitialCred

-8 DB2SEC_PLUGIN_USER_REVOKED User revoked.
db2secValidatePassword
db2GetGroupsForUser

-9
DB2SEC_PLUGIN
_USER_SUSPENDED

User suspended.
db2secValidatePassword
db2GetGroupsForUser

-10 DB2SEC_PLUGIN_BADPWD Bad password.
db2secValidatePassword
db2secRemapUserid
db2secGenerateInitialCred

-11
DB2SEC_PLUGIN
_BAD_NEWPASSWORD

Bad new password.
db2secValidatePassword
db2secRemapUserid

-12
DB2SEC_PLUGIN
_CHANGEPASSWORD
_NOTSUPPORTED

Change password not supported.
db2secValidatePassword
db2secRemapUserid
db2secGenerateInitialCred

236 Database Security Guide

Table 38. Security plug-in return codes (continued)

Return
code

Define value Meaning Applicable APIs

-13 DB2SEC_PLUGIN_NOMEM Plug-in attempt to allocate
memory failed due to insufficient
memory.

All

-14 DB2SEC_PLUGIN_DISKERROR Plug-in encountered a disk error. All

-15 DB2SEC_PLUGIN_NOPERM Plug-in attempt to access a file
failed because of wrong
permissions on the file.

All

-16 DB2SEC_PLUGIN_NETWORKERROR Plug-in encountered a network
error.

All

-17
DB2SEC_PLUGIN
_CANTLOADLIBRARY

Plug-in is unable to load a
required library. db2secGroupPluginInit

db2secClientAuthPluginInit
db2secServerAuthPluginInit

-18
DB2SEC_PLUGIN_CANT
_OPEN_FILE

Plug-in is unable to open and
read a file for a reason other than
missing file or inadequate file
permissions.

All

-19 DB2SEC_PLUGIN_FILENOTFOUND Plug-in is unable to open and
read a file, because the file is
missing from the file system.

All

-20
DB2SEC_PLUGIN
_CONNECTION_DISALLOWED

The plug-in is refusing the
connection because of the
restriction on which database is
allowed to connect, or the
TCP/IP address cannot connect
to a specific database.

All server-side plug-in APIs.

-21 DB2SEC_PLUGIN_NO_CRED GSS API plug-in only: initial
client credential is missing. db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-22 DB2SEC_PLUGIN_CRED_EXPIRED GSS API plug-in only: client
credential has expired. db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-23
DB2SEC_PLUGIN
_BAD_PRINCIPAL_NAME

GSS API plug-in only: the
principal name is invalid.

db2secProcessServer
PrincipalName

-24
DB2SEC_PLUGIN
_NO_CON_DETAILS

This return code is returned by
the db2secGetConDetails callback
(for example, from DB2 to the
plug-in) to indicate that DB2 is
unable to determine the client's
TCP/IP address.

db2secGetConDetails

-25
DB2SEC_PLUGIN
_BAD_INPUT_PARAMETERS

Some parameters are not valid or
are missing when plug-in API is
called.

All

-26
DB2SEC_PLUGIN
_INCOMPATIBLE_VER

The version of the APIs reported
by the plug-in is not compatible
with DB2.

db2secGroupPluginInit
db2secClientAuthPluginInit
db2secServerAuthPluginInit

Chapter 8. Security plug-ins 237

Table 38. Security plug-in return codes (continued)

Return
code

Define value Meaning Applicable APIs

-27 DB2SEC_PLUGIN_PROCESS_LIMIT Insufficient resources are
available for the plug-in to create
a new process.

All

-28 DB2SEC_PLUGIN_NO_LICENSES The plug-in encountered a user
license problem. A possibility
exists that the underlying
mechanism license has reached
the limit.

All

-29 DB2SEC_PLUGIN_ROOT_NEEDED The plug-in is trying to run an
application that requires root
privileges.

All

-30 DB2SEC_PLUGIN_UNEXPECTED_
SYSTEM_ERROR

The plug-in encountered an
unexpected system error. A
possibility exists that the current
system configuration is not
supported.

All

Error message handling for security plug-ins
When an error occurs in a security plug-in API, the API can return an ASCII text
string in the errormsg field to provide a more specific description of the problem
than the return code.

For example, the errormsg string can contain "File /home/db2inst1/mypasswd.txt
does not exist." DB2 will write this entire string into the DB2 administration
notification log, and will also include a truncated version as a token in some SQL
messages. Because tokens in SQL messages can only be of limited length, these
messages should be kept short, and important variable portions of these messages
should appear at the front of the string. To aid in debugging, consider adding the
name of the security plug-in to the error message.

For non-urgent errors, such as password expired errors, the errormsg string will
only be dumped when the DIAGLEVEL database manager configuration parameter
is set at 4.

The memory for these error messages must be allocated by the security plug-in.
Therefore, the plug-ins must also provide an API to free this memory:
db2secFreeErrormsg.

The errormsg field will only be checked by DB2 if an API returns a non-zero value.
Therefore, the plug-in should not allocate memory for this returned error message
if there is no error.

At initialization time a message logging function pointer, logMessage_fn, is passed
to the group, client, and server plug-ins. The plug-ins can use the function to log
any debugging information to the db2diag log files. For example:

// Log an message indicate init successful
(*(logMessage_fn))(DB2SEC_LOG_CRITICAL,

"db2secGroupPluginInit successful",
strlen("db2secGroupPluginInit successful"));

238 Database Security Guide

For more details about each parameter for the db2secLogMessage function, refer to
the initialization API for each of the plug-in types.

Calling sequences for the security plug-in APIs
The sequence with which the DB2 database manager calls the security plug-in APIs
varies according to the scenario in which the security plug-in API is called.

These are the main scenarios in which the DB2 database manager calls security
plug-in APIs:
v On a client for a database connection (implicit and explicit)

– CLIENT
– Server-based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT)
– GSSAPI and Kerberos

v On a client, server, or gateway for local authorization
v On a server for a database connection
v On a server for a grant statement
v On a server to get a list of groups to which an authorization ID belongs

Note: The DB2 database servers treat database actions requiring local
authorizations, such as db2start, db2stop, and db2trc like client applications.

For each of these operations, the sequence with which the DB2 database manager
calls the security plug-in APIs is different. Following are the sequences of APIs
called by the DB2 database manager for each of these scenarios.

CLIENT - implicit
When the user-configured authentication type is CLIENT, the DB2 client
application calls the following security plug-in APIs:
v db2secGetDefaultLoginContext();
v db2secValidatePassword();
v db2secFreetoken();

For an implicit authentication, that is, when you connect without
specifying a particular user ID or password, the db2secValidatePassword
API is called if you are using a user ID/password plug-in. This API
permits plug-in developers to prohibit implicit authentication if necessary.

CLIENT - explicit
On an explicit authentication, that is, when you connect to a database in
which both the user ID and password are specified, if the authentication
database manager configuration parameter is set to CLIENT, the DB2 client
application calls the following security plug-in APIs multiple times if the
implementation requires it:
v db2secRemapUserid();
v db2secValidatePassword();
v db2secFreeToken();

Server-based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT) - implicit
On an implicit authentication, when the client and server negotiate user
ID/password authentication (for example, when the srvcon_auth
parameter at the server is set to SERVER; SERVER_ENCRYPT, DATA_ENCRYPT, or
DATA_ENCRYPT_CMP), the client application calls the following security
plug-in APIs:
v db2secGetDefaultLoginContext();

Chapter 8. Security plug-ins 239

v db2secFreeToken();

Server-based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT) - explicit
On an explicit authentication, when the client and server negotiate
userid/password authentication (for example, when the srvcon_auth
parameter at the server is set to SERVER; SERVER_ENCRYPT, DATA_ENCRYPT, or
DATA_ENCRYPT_CMP), the client application calls the following security
plug-in APIs:
v db2secRemapUserid();

GSSAPI and Kerberos - implicit
On an implicit authentication, when the client and server negotiate
GSS-API or Kerberos authentication (for example, when the srvcon_auth
parameter at the server is set to KERBEROS; KRB_SERVER_ENCRYPT, GSSPLUGIN,
or GSS_SERVER_ENCRYPT), the client application calls the following security
plug-in APIs. (The call to gss_init_sec_context() uses
GSS_C_NO_CREDENTIAL as the input credential.)
v db2secGetDefaultLoginContext();
v db2secProcessServerPrincipalName();
v gss_init_sec_context();
v gss_release_buffer();
v gss_release_name();
v gss_delete_sec_context();
v db2secFreeToken();

With multi-flow GSS-API support, gss_init_sec_context() can be called
multiple times if the implementation requires it.

GSSAPI and Kerberos - explicit
If the negotiated authentication type is GSS-API or Kerberos, the client
application calls the following security plug-in APIs for GSS-API plug-ins
in the following sequence. These APIs are used for both implicit and
explicit authentication unless otherwise stated.
v db2secProcessServerPrincipalName();
v db2secGenerateInitialCred(); (For explicit authentication only)
v gss_init_sec_context();
v gss_release_buffer ();
v gss_release_name();
v gss_release_cred();
v db2secFreeInitInfo();
v gss_delete_sec_context();
v db2secFreeToken();

The API gss_init_sec_context() might be called multiple times if a mutual
authentication token is returned from the server and the implementation
requires it.

On a client, server, or gateway for local authorization
For a local authorization, the DB2 command being used calls the following
security plug-in APIs:
v db2secGetDefaultLoginContext();
v db2secGetGroupsForUser();
v db2secFreeToken();
v db2secFreeGroupList();

240 Database Security Guide

These APIs are called for both user ID/password and GSS-API
authentication mechanisms.

On a server for a database connection
For a database connection on the database server, the DB2 agent process or
thread calls the following security plug-in APIs for the user ID/password
authentication mechanism:
v db2secValidatePassword(); Only if the authentication database

configuration parameter is not CLIENT
v db2secGetAuthIDs();
v db2secGetGroupsForUser();
v db2secFreeToken();
v db2secFreeGroupList();

For a CONNECT to a database, the DB2 agent process or thread calls the
following security plug-in APIs for the GSS-API authentication mechanism:
v gss_accept_sec_context();
v gss_release_buffer();
v db2secGetAuthIDs();
v db2secGetGroupsForUser();
v gss_delete_sec_context();
v db2secFreeGroupListMemory();

On a server for a GRANT statement
For a GRANT statement that does not specify the USER or GROUP
keyword, (for example, "GRANT CONNECT ON DATABASE TO user1"), the DB2
agent process or thread must be able to determine if user1 is a user, a
group, or both. Therefore, the DB2 agent process or thread calls the
following security plug-in APIs:
v db2secDoesGroupExist();
v db2secDoesAuthIDExist();

On a server to get a list of groups to which an authid belongs
From your database server, when you need to get a list of groups to which
an authorization ID belongs, the DB2 agent process or thread calls the
following security plug-in API with only the authorization ID as input:
v db2secGetGroupsForUser();

There will be no token from other security plug-ins.

Chapter 8. Security plug-ins 241

242 Database Security Guide

Chapter 9. Security plug-in APIs

To enable you to customize the DB2 database system authentication and group
membership lookup behavior, the DB2 database system provides APIs that you can
use to modify existing plug-in modules or build new security plug-in modules.

When you develop a security plug-in module, you need to implement the standard
authentication or group membership lookup functions that the DB2 database
manager will invoke. For the three available types of plug-in modules, the
functionality you need to implement is as follows:

Group retrieval
Retrieves group membership information for a given user and determines
if a given string represents a valid group name.

User ID/password authentication
Authentication that identifies the default security context (client only),
validates and optionally changes a password, determines if a given string
represents a valid user (server only), modifies the user ID or password
provided on the client before it is sent to the server (client only), returns
the DB2 authorization ID associated with a given user.

GSS-API authentication
Authentication that implements the required GSS-API functions, identifies
the default security context (client side only), generates initial credentials
based on user ID and password, and optionally changes password (client
side only), creates and accepts security tickets, and returns the DB2
authorization ID associated with a given GSS-API security context.

The following list shows the definitions for terminology used in the descriptions of
the plug-in APIs.

Plug-in
A dynamically loadable library that DB2 will load to access user-written
authentication or group membership lookup functions.

Implicit authentication
A connection to a database without specifying a user ID or a password.

Explicit authentication
A connection to a database in which both the user ID and password are
specified.

Authid
An internal ID representing an individual or group to which authorities
and privileges within the database are granted. Internally, a DB2 authid is
folded to upper-case and is a minimum of 8 characters (blank padded to 8
characters). Currently, DB2 requires authids, user IDs, passwords, group
names, namespaces, and domain names that can be represented in 7-bit
ASCII.

Local authorization
Authorization that is local to the server or client that implements it, that
checks if a user is authorized to perform an action (other than connecting
to the database), such as starting and stopping the database manager,
turning DB2 trace on and off, or updating the database manager
configuration.

© Copyright IBM Corp. 2013 243

Namespace
A collection or grouping of users within which individual user identifiers
must be unique. Common examples include Windows domains and
Kerberos Realms. For example, within the Windows domain
"usa.company.com" all user names must be unique. For example,
"user1@usa.company.com". The same user ID in another domain, as in the
case of "user1@canada.company.com", however refers to a different person.
A fully qualified user identifier includes a user ID and namespace pair; for
example, "user@domain.name" or "domain\user".

Input Indicates that DB2 will enter in the value for the security plug-in API
parameter.

Output
Indicates that the security plug-in API will specify the value for the API
parameter.

APIs for group retrieval plug-ins
For the group retrieval plug-in module, you need to implement the following APIs:
v db2secGroupPluginInit

Note: The db2secGroupPluginInit API takes as input a pointer, *logMessage_fn,
to an API with the following prototype:
SQL_API_RC (SQL_API_FN db2secLogMessage)
(
db2int32 level,
void *data,
db2int32 length
);

The db2secLogMessage API allows the plug-in to log messages to the db2diag
log files for debugging or informational purposes. This API is provided by the
DB2 database system, so you need not implement it.

v db2secPluginTerm

v db2secGetGroupsForUser

v db2secDoesGroupExist

v db2secFreeGroupListMemory

v db2secFreeErrormsg

v The only API that must be resolvable externally is db2secGroupPluginInit. This
API will take a void * parameter, which should be cast to the type:
typedef struct db2secGroupFunctions_1
{
db2int32 version;
db2int32 plugintype;
SQL_API_RC (SQL_API_FN * db2secGetGroupsForUser)
(
const char *authid,
db2int32 authidlen,
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
const void *token,
db2int32 tokentype,

244 Database Security Guide

db2int32 location,
const char *authpluginname,
db2int32 authpluginnamelen,
void **grouplist,
db2int32 *numgroups,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secDoesGroupExist)
(
const char *groupname,
db2int32 groupnamelen,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeGroupListMemory)
(
void *ptr,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)
(
char *msgtobefree
);

SQL_API_RC (SQL_API_FN * db2secPluginTerm)
(
char **errormsg,
db2int32 *errormsglen
);

} db2secGroupFunctions_1;

The db2secGroupPluginInit API assigns the addresses for the rest of the
externally available functions.

Note: The _1 indicates that this is the structure corresponding to version 1 of the
API. Subsequent interface versions will have the extension _2, _3, and so on.

db2secDoesGroupExist API - Check if group exists
Determines whether an authid represents a group.

If the groupname exists, the API must be able to return the value
DB2SEC_PLUGIN_OK, to indicate success. It must also be able to return the value
DB2SEC_PLUGIN_INVALIDUSERORGROUP if the group name is not valid. It is
permissible for the API to return the value
DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN if it is impossible to determine if
the input is a valid group. If an invalid group
(DB2SEC_PLUGIN_INVALIDUSERORGROUP) or group not known
(DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN) value is returned, DB2 for
Linux, UNIX, and Windows might not be able to determine whether the authid is
a group or user when issuing the GRANT statement without the keywords USER
and GROUP, which would result in the error SQLCODE -569, SQLSTATE 56092
being returned to the user.

Chapter 9. Security plug-in APIs 245

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secDoesGroupExist)

(const char *groupname,
db2int32 groupnamelen,
char **errormsg,
db2int32 *errormsglen);

db2secDoesGroupExist API parameters

groupname
Input. An authid, upper-cased, with no trailing blanks.

groupnamelen
Input. Length in bytes of the groupname parameter value.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secDoesGroupExist API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secFreeErrormsg API - Free error message memory
Frees the memory used to hold an error message from a previous API call. This is
the only API that does not return an error message. If this API returns an error,
DB2 will log it and continue.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secFreeErrormsg)

(char *errormsg);

db2secFreeErrormsg API parameters

errormsg
Input. A pointer to the error message allocated from a previous API call.

db2secFreeGroupListMemory API - Free group list memory
Frees the memory used to hold the list of groups from a previous call to
db2secGetGroupsForUser API.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secFreeGroupListMemory)

(void *ptr,
char **errormsg,
db2int32 *errormsglen);

db2secFreeGroupListMemory API parameters

ptr Input. Pointer to the memory to be freed.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secFreeGroupListMemory API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in the errormsg parameter.

246 Database Security Guide

db2secGetGroupsForUser API - Get list of groups for user
Returns the list of groups to which a user belongs.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secGetGroupsForUser)

(const char *authid,
db2int32 authidlen,
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void *token,
db2int32 tokentype,
db2int32 location,
const char *authpluginname,
db2int32 authpluginnamelen,
void **grouplist,
db2int32 *numgroups,
char **errormsg,
db2int32 *errormsglen);

db2secGetGroupsForUser API parameters

authid Input. This parameter value is an SQL authid, which means that DB2 for
Linux, UNIX, and Windows converts it to an uppercase character string
with no trailing blanks. DB2 for Linux, UNIX, and Windows always
provides a non-null value for the authid parameter. The API must be able
to return a list of groups to which the authid belongs without depending
on the other input parameters. It is permissible to return a shortened or
empty list if this cannot be determined.

If a user does not exist, the API must return the return code
DB2SEC_PLUGIN_BADUSER. DB2 for Linux, UNIX, and Windows does
not treat the case of a user not existing as an error, since it is permissible
for an authid to not have any groups associated with it. For example, the
db2secGetAuthids API can return an authid that does not exist on the
operating system. The authid is not associated with any groups, however,
it can still be assigned privileges directly.

If the API cannot return a complete list of groups using only the authid,
then there will be some restrictions on certain SQL functions related to
group support. For a list of possible problem scenarios, see the Usage notes
section in this topic.

authidlen
Input. Length in bytes of the authid parameter value. The DB2 database
manager always provides a non-zero value for the authidlen parameter.

userid Input. This is the user ID corresponding to the authid. When this API is
called on the server in a non-connect scenario, this parameter will not be
filled by DB2 for Linux, UNIX, and Windows.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained. When the
user ID is not available, this parameter will not be filled by the DB2
database manager.

Chapter 9. Security plug-in APIs 247

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. The type of namespace. Valid values for the usernamespacetype
parameter (defined in db2secPlugin.h) are:
v DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username style like

domain\myname
v DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username style like

myname@domain.ibm.com

Currently, the DB2 database system only supports the value
DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not available, the
usernamespacetype parameter is set to the value
DB2SEC_USER_NAMESPACE_UNDEFINED (defined in db2secPlugin.h).

dbname
Input. Name of the database being connected to. This parameter can be
NULL in a non-connect scenario.

dbnamelen
Input. Length in bytes of the dbname parameter value. This parameter is set
to 0 if dbname parameter is NULL in a non-connect scenario.

token Input. A pointer to data provided by the authentication plug-in. It is not
used by DB2 for Linux, UNIX, and Windows. It provides the plug-in writer
with the ability to coordinate user and group information. This parameter
might not be provided in all cases (for example, in a non-connect scenario),
in which case it will be NULL. If the authentication plug-in used is
GSS-API based, the token will be set to the GSS-API context handle
(gss_ctx_id_t).

tokentype
Input. Indicates the type of data provided by the authentication plug-in. If
the authentication plug-in used is GSS-API based, the token will be set to
the GSS-API context handle (gss_ctx_id_t). If the authentication plug-in
used is user ID/password based, it will be a generic type. Valid values for
the tokentype parameter (defined in db2secPlugin.h) are:
v DB2SEC_GENERIC: Indicates that the token is from a user ID/password

based plug-in.
v DB2SEC_GSSAPI_CTX_HANDLE: Indicates that the token is from a GSS-API

(including Kerberos) based plug-in.

location
Input. Indicates whether DB2 for Linux, UNIX, and Windows is calling this
API on the client side or server side. Valid values for the location
parameter (defined in db2secPlugin.h) are:
v DB2SEC_SERVER_SIDE: The API is to be called on the database server.
v DB2SEC_CLIENT_SIDE: The API is to be called on a client.

authpluginname
Input. Name of the authentication plug-in that provided the data in the
token. The db2secGetGroupsForUser API might use this information in
determining the correct group memberships. This parameter might not be
filled by DB2 for Linux, UNIX, and Windows if the authid is not
authenticated (for example, if the authid does not match the current
connected user).

248 Database Security Guide

authpluginnamelen
Input. Length in bytes of the authpluginname parameter value.

grouplist
Output. List of groups to which the user belongs. The list of groups must
be returned as a pointer to a section of memory allocated by the plug-in
containing concatenated varchars (a varchar is a character array in which
the first byte indicates the number of bytes following the first byte). The
length is an unsigned char (1 byte) and that limits the maximum length of
a groupname to 255 characters. For example, "\006GROUP1\
007MYGROUP\008MYGROUP3". Each group name should be a valid DB2
authid. The memory for this array must be allocated by the plug-in. The
plug-in must therefore provide an API, such as the
db2secFreeGroupListMemory API that DB2 for Linux, UNIX, and Windows
will call to free the memory.

numgroups
Output. The number of groups contained in the grouplist parameter.

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secGetGroupsForUser API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

Usage notes

The following list describes the scenarios that which problems can occur if an
incomplete group list is returned by this API to DB2 for Linux, UNIX, and
Windows:
v Alternate authorization is provided in CREATE SCHEMA statement. Group

lookup will be performed against the AUTHORIZATION NAME parameter if
there are nested CREATE statements in the CREATE SCHEMA statement.

v Processing a jar file in an MPP environment. In an MPP environment, the jar
processing request is sent from the coordinator node with the session authid.
The catalog node received the requests and process the jar files based on the
privilege of the session authid (the user executing the jar processing requests).
– Install jar file. The session authid needs to have one of the following rights:

DBADM, or CREATEIN (implicit or explicit on the jar schema). The operation
will fail if the rights stated previously are granted to group containing the
session authid, but not explicitly to the session authid.

– Remove jar file. The session authid needs to have one of the following rights:
DBADM, or DROPIN (implicit or explicit on the jar schema), or is the definer
of the jar file. The operation will fail if the rights stated previously are
granted to group containing the session authid, but not explicitly to the
session authid, and if the session authid is not the definer of the jar file.

– Replace jar file. This is same as removing the jar file, followed by installing
the jar file. Both of the scenarios described previously apply.

v When SET SESSION_USER statement is issued. Subsequent DB2 operations are
run under the context of the authid specified by this statement. These operations
will fail if the privileges required are owned by one of the SESSION_USER's
group is not explicitly granted to the SESSION_USER authid.

Chapter 9. Security plug-in APIs 249

db2secGroupPluginInit API - Initialize group plug-in
Initialization API, for the group-retrieval plug-in, that the DB2 database manager
calls immediately after loading the plug-in.

API and data structure syntax
SQL_API_RC SQL_API_FN db2secGroupPluginInit

(db2int32 version,
void *group_fns,
db2secLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen);

db2secGroupPluginInit API parameters

version
Input. The highest version of the API supported by the instance loading
that plugin. The value DB2SEC_API_VERSION (in db2secPlugin.h) contains
the latest version number of the API that the DB2 database manager
currently supports.

group_fns
Output. A pointer to the db2secGroupFunctions_<version_number> (also
known as group_functions_<version_number>) structure. The
db2secGroupFunctions_<version_number> structure contains pointers to
the APIs implemented for the group-retrieval plug-in. In future, there
might be different versions of the APIs (for example,
db2secGroupFunctions_<version_number>), so the group_fns parameter is
cast as a pointer to the db2secGroupFunctions_<version_number> structure
corresponding to the version the plug-in has implemented. The first
parameter of the group_functions_<version_number> structure tells DB2
for Linux, UNIX, and Windows the version of the APIs that the plug-in has
implemented. Note: The casting is done only if the DB2 version is higher
or equal to the version of the APIs that the plug-in has implemented. The
version number represents the version of the APIs implemented by the
plugin, and the pluginType should be set to DB2SEC_PLUGIN_TYPE_GROUP.

logMessage_fn
Input. A pointer to the db2secLogMessage API, which is implemented by
the DB2 database system. The db2secGroupPluginInit API can call the
db2secLogMessage API to log messages to the db2diag log files for
debugging or informational purposes. The first parameter (level) of
db2secLogMessage API specifies the type of diagnostic errors that will be
recorded in the db2diag log files and the last two parameters are the
message string and its length. The valid values for the first parameter of
db2secLogMessage API (defined in db2secPlugin.h) are:
v DB2SEC_LOG_NONE: (0) No logging
v DB2SEC_LOG_CRITICAL: (1) Severe Error encountered
v DB2SEC_LOG_ERROR: (2) Error encountered
v DB2SEC_LOG_WARNING: (3) Warning
v DB2SEC_LOG_INFO: (4) Informational

The message text shows up in the db2diag log files only if the value of the
level parameter of the db2secLogMessage API is less than or equal to the
diaglevel database manager configuration parameter. So for example, if
you use the DB2SEC_LOG_INFO value, the message text shows up in the
db2diag log files only if the diaglevel database manager configuration
parameter is set to 4.

250 Database Security Guide

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secGroupPluginInit API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

db2secPluginTerm - Clean up group plug-in resources
Frees resources used by the group-retrieval plug-in.

This API is called by the DB2 database manager just before it unloads the
group-retrieval plug-in. It should be implemented in a manner that it does a
proper cleanup of any resources the plug-in library holds, for example, free any
memory allocated by the plug-in, close files that are still open, and close network
connections. The plug-in is responsible for keeping track of these resources in
order to free them. This API is not called on any Windows operating systems.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secPluginTerm)

(char **errormsg,
db2int32 *errormsglen);

db2secPluginTerm API parameters

errormsg
Output. A pointer to the address of an ASCII error message string allocated
by the plug-in that can be returned in this parameter if the
db2secPluginTerm API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the
error message string in errormsg parameter.

APIs for user ID/password authentication plug-ins
For the user ID/password plug-in module, you need to implement the following
client-side APIs:
v db2secClientAuthPluginInit

Note: The db2secClientAuthPluginInit API takes as input a pointer,
*logMessage_fn, to an API with the following prototype:
SQL_API_RC (SQL_API_FN db2secLogMessage)
(
db2int32 level,
void *data,
db2int32 length
);

The db2secLogMessage API allows the plug-in to log messages to the db2diag
log files for debugging or informational purposes. This API is provided by the
DB2 database system, so you do not need to implement it.

v db2secClientAuthPluginTerm
v db2secGenerateInitialCred (Only used for gssapi)
v db2secRemapUserid (Optional)

Chapter 9. Security plug-in APIs 251

v db2secGetDefaultLoginContext
v db2secValidatePassword
v db2secProcessServerPrincipalName (This is only for GSS-API)
v db2secFreeToken (Functions to free memory held by the DLL)
v db2secFreeErrormsg
v db2secFreeInitInfo
v The only API that must be resolvable externally is db2secClientAuthPluginInit.

This API will take a void * parameter, which should be cast to either:
typedef struct db2secUseridPasswordClientAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)
(
char authid[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *authidlen,
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
db2int32 useridtype,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void **token,
char **errormsg,
db2int32 *errormsglen
);
/* Optional */
SQL_API_RC (SQL_API_FN * db2secRemapUserid)
(
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
char password[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *passwordlen,
char newpassword[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secValidatePassword)
(
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpassword,
db2int32 newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
db2Uint32 connection_details,
void **token,
char **errormsg,

252 Database Security Guide

db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeToken)
(
void **token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)
(
char *errormsg
);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)
(
char **errormsg,
db2int32 *errormsglen
);
}

or
typedef struct db2secGssapiClientAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)
(
char authid[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *authidlen,
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
db2int32 useridtype,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void **token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secProcessServerPrincipalName)
(
const void *data,
gss_name_t *gssName,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secGenerateInitialCred)
(
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpassword,
db2int32 newpasswordlen,
const char *dbname,
db2int32 dbnamelen,

Chapter 9. Security plug-in APIs 253

gss_cred_id_t *pGSSCredHandle,
void **initInfo,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeToken)
(
void *token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)
(
char *errormsg
);

SQL_API_RC (SQL_API_FN * db2secFreeInitInfo)
(
void *initInfo,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)
(
char **errormsg,
db2int32 *errormsglen
);

/* GSS-API specific functions -- refer to db2secPlugin.h
for parameter list*/

OM_uint32 (SQL_API_FN * gss_init_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);
}

You should use the db2secUseridPasswordClientAuthFunctions_1 structure if
you are writing a user ID/password plug-in. If you are writing a GSS-API
(including Kerberos) plug-in, you should use the
db2secGssapiClientAuthFunctions_1 structure.

For the user ID/password plug-in library, you will need to implement the
following server-side APIs:
v db2secServerAuthPluginInit

The db2secServerAuthPluginInit API takes as input a pointer, *logMessage_fn, to
the db2secLogMessage API, and a pointer, *getConDetails_fn, to the
db2secGetConDetails API with the following prototypes:
SQL_API_RC (SQL_API_FN db2secLogMessage)
(
db2int32 level,
void *data,
db2int32 length
);

SQL_API_RC (SQL_API_FN db2secGetConDetails)

254 Database Security Guide

(
db2int32 conDetailsVersion,
const void *pConDetails
);

The db2secLogMessage API allows the plug-in to log messages to the db2diag
log files for debugging or informational purposes. The db2secGetConDetails API
allows the plug-in to obtain details about the client that is trying to attempt to
have a database connection. Both the db2secLogMessage API and
db2secGetConDetails API are provided by the DB2 database system, so you do
not need to implement them. The db2secGetConDetails API in turn, takes as its
second parameter,pConDetails, a pointer to one of the following structures:
db2sec_con_details_1:
typedef struct db2sec_con_details_1
{

db2int32 clientProtocol;
db2Uint32 clientIPAddress;
db2Uint32 connect_info_bitmap;
db2int32 dbnameLen;
char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];

} db2sec_con_details_1;

db2sec_con_details_2:
typedef struct db2sec_con_details_2
{

db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */
db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */
db2Uint32 connect_info_bitmap;
db2int32 dbnameLen;
char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];
db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */

} db2sec_con_details_2;

db2sec_con_details_3:
typedef struct db2sec_con_details_3
{

db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */
db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */
db2Uint32 connect_info_bitmap;
db2int32 dbnameLen;
char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];
db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */
db2Uint32 clientPlatform; /* SQLM_PLATFORM_* from sqlmon.h */
db2Uint32 _reserved[16];

} db2sec_con_details_3;

The possible values for conDetailsVersion are DB2SEC_CON_DETAILS_VERSION_1,
DB2SEC_CON_DETAILS_VERSION_2, and DB2SEC_CON_DETAILS_VERSION_3 representing
the version of the API.

Note: While using db2sec_con_details_1, db2sec_con_details_2, or
db2sec_con_details_3, consider the following:
– Existing plugins that are using the db2sec_con_details_1 structure and the

DB2SEC_CON_DETAILS_VERSION_1 value will continue to work as they did with
Version 8.2 when calling the db2GetConDetails API. If this API is called on an
IPv4 platform, the client IP address is returned in the clientIPAddress field
of the structure. If this API is called on an IPv6 platform, a value of 0 is
returned in the clientIPAddress field. To retrieve the client IP address on an
IPv6 platform, the security plug-in code should be changed to use either the
db2sec_con_details_2 structure and the DB2SEC_CON_DETAILS_VERSION_2 value,
or the db2sec_con_details_3 structure and the DB2SEC_CON_DETAILS_VERSION_3
value.

Chapter 9. Security plug-in APIs 255

– New plugins should use the db2sec_con_details_3 structure and the
DB2SEC_CON_DETAILS_VERSION_3 value. If the db2secGetConDetails API is
called on an IPv4 platform, the client IP address is returned in the
clientIPAddress field of the db2sec_con_details_3 structure and if the API is
called on an IPv6 platform the client IP address is returned in the
clientIP6Address field of the db2sec_con_details_3 structure. The
clientProtocol field of the connection details structure will be set to one of
SQL_PROTOCOL_TCPIP (IPv4, with v1 of the structure), SQL_PROTOCOL_TCPIP4
(IPv4, with v2 of the structure) or SQL_PROTOCOL_TCPIP6 (IPv6, with v2 or v3
of the structure).

– The structure db2sec_con_details_3 is identical to the structure
db2sec_con_details_2 except that it contains an additional field
(clientPlatform) that identifies the client platform type (as reported by the
communication layer) using platform type constants defined in sqlmon.h,
such as SQLM_PLATFORM_AIX.

v db2secServerAuthPluginTerm
v db2secValidatePassword
v db2secGetAuthIDs
v db2secDoesAuthIDExist
v db2secFreeToken
v db2secFreeErrormsg
v The only API that must be resolvable externally is db2secServerAuthPluginInit.

This API will take a void * parameter, which should be cast to either:
typedef struct db2secUseridPasswordServerAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;

/* parameter lists left blank for readability
see above for parameters */

SQL_API_RC (SQL_API_FN * db2secValidatePassword)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);
SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secFreeToken)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();
} userid_password_server_auth_functions;

or
typedef struct db2secGssapiServerAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;
gss_buffer_desc serverPrincipalName;
gss_cred_id_t ServerCredHandle;
SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);
SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();

/* GSS-API specific functions
refer to db2secPlugin.h for parameter list*/
OM_uint32 (SQL_API_FN * gss_accept_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_display_name)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);

256 Database Security Guide

OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);

} gssapi_server_auth_functions;

You should use the db2secUseridPasswordServerAuthFunctions_1 structure if
you are writing a user ID/password plug-in. If you are writing a GSS-API
(including Kerberos) plug-in, you should use the
db2secGssapiServerAuthFunctions_1 structure.

db2secClientAuthPluginInit API - Initialize client authentication
plug-in

Initialization API, for the client authentication plug-in, that the DB2 database
manager calls immediately after loading the plug-in.

API and data structure syntax
SQL_API_RC SQL_API_FN db2secClientAuthPluginInit

(db2int32 version,
void *client_fns,
db2secLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen);

db2secClientAuthPluginInit API parameters

version
Input. The highest version number of the API that the DB2 database manager
currently supports. The DB2SEC_API_VERSION value (in db2secPlugin.h) contains
the latest version number of the API that DB2 for Linux, UNIX, and Windows
currently supports.

client_fns
Output. A pointer to memory provided by the DB2 database manager for a
db2secGssapiClientAuthFunctions_<version_number> structure (also known as
gssapi_client_auth_functions_<version_number>), if GSS-API authentication is
used, or a db2secUseridPasswordClientAuthFunctions_<version_number>
structure (also known as
userid_password_client_auth_functions_<version_number>), if
userid/password authentication is used. The
db2secGssapiClientAuthFunctions_<version_number> structure and
db2secUseridPasswordClientAuthFunctions_<version_number> structure
contain pointers to the APIs implemented for the GSS-API authentication
plug-in and userid/password authentication plug-in. In future versions of DB2
for Linux, UNIX, and Windows, there might be different versions of the APIs,
so the client_fns parameter is cast as a pointer to the
gssapi_client_auth_functions_<version_number> structure corresponding to the
version the plug-in has implemented.

The first parameter of the gssapi_client_auth_functions_<version_number>
structure or the userid_password_client_auth_functions_<version_number>
structure tells the DB2 database manager the version of the APIs that the
plug-in has implemented.

Note: The casting is done only if the DB2 version is higher or equal to the
version of the APIs that the plug-in has implemented.

Inside the gssapi_server_auth_functions_<version_number> or
userid_password_server_auth_functions_<version_number> structure, the
plugintype parameter should be set to one of

Chapter 9. Security plug-in APIs 257

DB2SEC_PLUGIN_TYPE_USERID_PASSWORD, DB2SEC_PLUGIN_TYPE_GSSAPI, or
DB2SEC_PLUGIN_TYPE_KERBEROS. Other values can be defined in future versions
of the API.

logMessage_fn
Input. A pointer to the db2secLogMessage API, which is implemented by the
DB2 database manager. The db2secClientAuthPluginInit API can call the
db2secLogMessage API to log messages to the db2diag log files for debugging
or informational purposes. The first parameter (level) of db2secLogMessage
API specifies the type of diagnostic errors that will be recorded in the db2diag
log files and the last two parameters are the message string and its length. The
valid values for the first parameter of db2secLogMessage API (defined in
db2secPlugin.h) are:
v DB2SEC_LOG_NONE (0) No logging
v DB2SEC_LOG_CRITICAL (1) Severe Error encountered
v DB2SEC_LOG_ERROR (2) Error encountered
v DB2SEC_LOG_WARNING (3) Warning
v DB2SEC_LOG_INFO (4) Informational

The message text will show up in the db2diag log files only if the value of the
'level' parameter of the db2secLogMessage API is less than or equal to the
diaglevel database manager configuration parameter. For example, if you use
the DB2SEC_LOG_INFO value, the message text will appear in the db2diag log
files only if the diaglevel database manager configuration parameter is set to
4.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the
db2secClientAuthPluginInit API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secClientAuthPluginTerm API - Clean up client
authentication plug-in resources

Frees resources used by the client authentication plug-in.

This API is called by the DB2 database manager just before it unloads the client
authentication plug-in. It should be implemented in a manner that it does a proper
cleanup of any resources the plug-in library holds, for example, free any memory
allocated by the plug-in, close files that are still open, and close network
connections. The plug-in is responsible for keeping track of these resources in
order to free them. This API is not called on any Windows operating systems.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secClientAuthPluginTerm)

(char **errormsg,
db2int32 *errormsglen);

db2secClientAuthPluginTerm API parameters

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the
db2secClientAuthPluginTerm API execution is not successful.

258 Database Security Guide

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secDoesAuthIDExist - Check if authentication ID exists
Determines if the authid represents an individual user (for example, whether the
API can map the authid to an external user ID).

The API should return the value DB2SEC_PLUGIN_OK if it is successful - the authid is
valid, DB2SEC_PLUGIN_INVALID_USERORGROUP if it is not valid, or
DB2SEC_PLUGIN_USERSTATUSNOTKNOWN if the authid existence cannot be determined.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secDoesAuthIDExist)

(const char *authid,
db2int32 authidlen,
char **errormsg,
db2int32 *errormsglen);

db2secDoesAuthIDExist API parameters

authid
Input. The authid to validate. This is upper-cased, with no trailing blanks.

authidlen
Input. Length in bytes of the authid parameter value.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the
db2secDoesAuthIDExist API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length of the error message
string in errormsg parameter.

db2secFreeInitInfo API - Clean up resources held by the
db2secGenerateInitialCred

Frees any resources allocated by the db2secGenerateInitialCred API. This can
include, for example, handles to underlying mechanism contexts or a credential
cache created for the GSS-API credential cache.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secFreeInitInfo)

(void *initinfo,
char **errormsg,
db2int32 *errormsglen);

db2secFreeInitInfo API parameters

initinfo
Input. A pointer to data that is not known to the DB2 database manager. The
plug-in can use this memory to maintain a list of resources that are allocated in
the process of generating the credential handle. These resources are freed by
calling this API.

Chapter 9. Security plug-in APIs 259

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the db2secFreeInitInfo API
execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secFreeToken API - Free memory held by token
Frees the memory held by a token. This API is called by the DB2 database
manager when it no longer needs the memory held by the token parameter.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secFreeToken)

(void *token,
char **errormsg,
db2int32 *errormsglen);

db2secFreeToken API parameters

token
Input. Pointer to the memory to be freed.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the db2secFreeToken API
execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secGenerateInitialCred API - Generate initial credentials
The db2secGenerateInitialCred API obtains the initial GSS-API credentials based on
the user ID and password that are passed in.

For Kerberos, this is the ticket-granting ticket (TGT). The credential handle that is
returned in pGSSCredHandle parameter is the handle that is used with the
gss_init_sec_context API and must be either an INITIATE or BOTH credential. The
db2secGenerateInitialCred API is only called when a user ID, and possibly a
password are supplied. Otherwise, the DB2 database manager specifies the value
GSS_C_NO_CREDENTIAL when calling the gss_init_sec_context API to signify that the
default credential obtained from the current login context is to be used.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secGenerateInitialCred)

(const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpassword,
db2int32 newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
gss_cred_id_t *pGSSCredHandle,

260 Database Security Guide

void **InitInfo,
char **errormsg,
db2int32 *errormsglen);

db2secGenerateInitialCred API parameters

userid
Input. The user ID whose password is to be verified on the database server.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained.

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. The type of namespace.

password
Input. The password to be verified.

passwordlen
Input. Length in bytes of the password parameter value.

newpassword
Input. A new password if the password is to be changed. If no change is
requested, the newpassword parameter is set to NULL. If it is not NULL, the
API should validate the old password before setting the password to its new
value. The API does not have to honor a request to change the password, but
if it does not, it should immediately return with the return value
DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without validating the old
password.

newpasswordlen
Input. Length in bytes of the newpassword parameter value.

dbname
Input. The name of the database being connected to. The API is free to ignore
this parameter, or the API can return the value
DB2SEC_PLUGIN_CONNECTION_DISALLOWED if it has a policy of restricting access to
certain databases to users who otherwise have valid passwords.

dbnamelen
Input. Length in bytes of the dbname parameter value.

pGSSCredHandle
Output. Pointer to the GSS-API credential handle.

InitInfo
Output. A pointer to data that is not known to DB2 for Linux, UNIX, and
Windows. The plug-in can use this memory to maintain a list of resources that
are allocated in the process of generating the credential handle. The DB2
database manager calls the db2secFreeInitInfo API at the end of the
authentication process, at which point these resources are freed. If the
db2secGenerateInitialCred API does not need to maintain such a list, then it
should return NULL.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by

Chapter 9. Security plug-in APIs 261

the plug-in that can be returned in this parameter if the
db2secGenerateInitialCred API execution is not successful.

Note: For this API, error messages should not be created if the return value
indicates a bad user ID or password. An error message should be returned
only if there is an internal error in the API that prevented it from completing
properly.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secGetAuthIDs API - Get authentication IDs
Returns an SQL authid for an authenticated user. This API is called during
database connections for both user ID/password and GSS-API authentication
methods.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secGetAuthIDs)

(const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void **token,
char SystemAuthID[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *SystemAuthIDlen,
char InitialSessionAuthID[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *InitialSessionAuthIDlen,
char username[DB2SEC_MAX_USERID_LENGTH],
db2int32 *usernamelen,
db2int32 *initsessionidtype,
char **errormsg,
db2int32 *errormsglen);

db2secGetAuthIDs API parameters

userid
Input. The authenticated user. This is usually not used for GSS-API
authentication unless a trusted context is defined to permit switch user
operations without authentication. In those situations, the user name provided
for the switch user request is passed in this parameter.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained.

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. Namespace type value. Currently, the only supported namespace type
value is DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a username style
like domain\myname).

dbname
Input. The name of the database being connected to. The API can ignore this,

262 Database Security Guide

or it can return differing authids when the same user connects to different
databases. This parameter can be NULL.

dbnamelen
Input. Length in bytes of the dbname parameter value. This parameter is set to 0
if dbname parameter is NULL.

token
Input or output. Data that the plug-in might pass to the
db2secGetGroupsForUser API. For GSS-API, this is a context handle
(gss_ctx_id_t). Ordinarily, token is an input-only parameter and its value is
taken from the db2secValidatePassword API. It can also be an output
parameter when authentication is done on the client and therefore
db2secValidatePassword API is not called. In environments where a trusted
context is defined that allows switch user operations without authentication,
the db2secGetAuthIDs API must be able to accommodate receiving a NULL
value for this token parameter and be able to derive a system authorization ID
based on the userid and useridlen input parameters mentioned previously.

SystemAuthID
Output. The system authorization ID that corresponds to the ID of the
authenticated user. The size is 255 bytes, but the DB2 database manager
currently uses only up to (and including) 30 bytes.

SystemAuthIDlen
Output. Length in bytes of the SystemAuthID parameter value.

InitialSessionAuthID
Output. Authid used for this connection session. This is usually the same as
the SystemAuthID parameter but can be different in some situations, for
example, when issuing a SET SESSION AUTHORIZATION statement. The size
is 255 bytes, but the DB2 database manager currently uses only up to (and
including) 30 bytes.

InitialSessionAuthIDlen
Output. Length in bytes of the InitialSessionAuthID parameter value.

username
Output. A username corresponding to the authenticated user and authid. This
will be used only for auditing and will be logged in the "User ID" field in the
audit record for CONNECT statement. If the API does specify the username
parameter, the DB2 database manager copies it from the userid.

usernamelen
Output. Length in bytes of the username parameter value.

initsessionidtype
Output. Session authid type indicating whether the InitialSessionAuthid
parameter is a role or an authid. The API should return one of the following
values (defined in db2secPlugin.h):
v DB2SEC_ID_TYPE_AUTHID (0)
v DB2SEC_ID_TYPE_ROLE (1)

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the db2secGetAuthIDs API
execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

Chapter 9. Security plug-in APIs 263

db2secGetDefaultLoginContext API - Get default login context
Determines the user associated with the default login context, that is, determines
the DB2 authid of the user invoking a DB2 command without explicitly specifying
a user ID (either an implicit authentication to a database, or a local authorization).
This API must return both an authid and a user ID.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secGetDefaultLoginContext)

(char authid[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *authidlen,
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
db2int32 useridtype,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void **token,
char **errormsg,
db2int32 *errormsglen);

db2secGetDefaultLoginContext API parameters

authid
Output. The parameter in which the authid should be returned. The returned
value must conform to DB2 authid naming rules, or the user will not be
authorized to perform the requested action.

authidlen
Output. Length in bytes of the authid parameter value.

userid
Output. The parameter in which the user ID associated with the default login
context should be returned.

useridlen
Output. Length in bytes of the userid parameter value.

useridtype
Input. Indicates if the real or effective user ID of the process is being specified.
On Windows, only the real user ID exists. On UNIX and Linux, the real user
ID and effective user ID can be different if the uid user ID for the application
is different than the ID of the user executing the process. Valid values for the
userid parameter (defined in db2secPlugin.h) are:

DB2SEC_PLUGIN_REAL_USER_NAME
Indicates that the real user ID is being specified.

DB2SEC_PLUGIN_EFFECTIVE_USER_NAME
Indicates that the effective user ID is being specified.

Note: Some plug-in implementations might not distinguish between the
real and effective user ID. In particular, a plug-in that does not use the
UNIX or Linux identity of the user to establish the DB2 authorization ID
can safely ignore this distinction.

usernamespace
Output. The namespace of the user ID.

usernamespacelen
Output. Length in bytes of the usernamespace parameter value. Under the

264 Database Security Guide

limitation that the usernamespacetype parameter must be set to the value
DB2SEC_NAMESPACE_SAM_COMPATIBLE (defined in db2secPlugin.h), the maximum
length currently supported is 15 bytes.

usernamespacetype
Output. Namespace type value. Currently, the only supported namespace type
is DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a username style like
domain\myname).

dbname
Input. Contains the name of the database being connected to, if this call is
being used in the context of a database connection. For local authorization
actions or instance attachments, this parameter is set to NULL.

dbnamelen
Input. Length in bytes of the dbname parameter value.

token
Output. This is a pointer to data allocated by the plug-in that it might pass to
subsequent authentication calls in the plug-in, or possibly to the group
retrieval plug-in. The structure of this data is determined by the plug-in writer.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the
db2secGetDefaultLoginContext API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secProcessServerPrincipalName API - Process service
principal name returned from server

The db2secProcessServerPrincipalName API processes the service principal name
returned from the server and returns the principal name in the gss_name_t internal
format to be used with the gss_init_sec_context API.

The db2secProcessServerPrincipalName API also processes the service principal
name cataloged with the database directory when Kerberos authentication is used.
Ordinarily, this conversion uses the gss_import_name API. After the context is
established, the gss_name_t object is freed through the call to gss_release_name
API. The db2secProcessServerPrincipalName API returns the value
DB2SEC_PLUGIN_OK if the gssName parameter points to a valid GSS name; a
DB2SEC_PLUGIN_BAD_PRINCIPAL_NAME error code is returned if the principal name is
invalid.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secProcessServerPrincipalName)

(const char *name,
db2int32 namelen,
gss_name_t *gssName,
char **errormsg,
db2int32 *errormsglen);

db2secProcessServerPrincipalName API parameters

name
Input. Text name of the service principal in GSS_C_NT_USER_NAME format;
for example, service/host@REALM.

Chapter 9. Security plug-in APIs 265

namelen
Input. Length in bytes of the name parameter value.

gssName
Output. Pointer to the output service principal name in the GSS-API internal
format.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the
db2secProcessServerPrincipalName API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secRemapUserid API - Remap user ID and password
This API is called by the DB2 database manager on the client side to remap a
given user ID and password (and possibly new password and usernamespace) to
values different from those given at connect time.

The DB2 database manager only calls this API if a user ID and a password are
supplied at connect time. This prevents a plug-in from remapping a user ID by
itself to a user ID/password pair. This API is optional and is not called if it is not
provided or implemented by the security plug-in.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secRemapUserid)

(char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
char password[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *passwordlen,
char newpasswd[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *newpasswdlen,
const char *dbname,
db2int32 dbnamelen,
char **errormsg,
db2int32 *errormsglen);

db2secRemapUserid API parameters

userid
Input or output. The user ID to be remapped. If there is an input user ID
value, then the API must provide an output user ID value that can be the same
or different from the input user ID value. If there is no input user ID value,
then the API should not return an output user ID value.

useridlen
Input or output. Length in bytes of the userid parameter value.

usernamespace
Input or output. The namespace of the user ID. This value can optionally be
remapped. If no input parameter value is specified, but an output value is
returned, then the usernamespace will be used by the DB2 database manager
only for CLIENT type authentication and is disregarded for other
authentication types.

266 Database Security Guide

usernamespacelen
Input or output. Length in bytes of the usernamespace parameter value. Under
the limitation that the usernamespacetype parameter must be set to the value
DB2SEC_NAMESPACE_SAM_COMPATIBLE (defined in db2secPlugin.h), the maximum
length currently supported is 15 bytes.

usernamespacetype
Input or output. Old and new namespace type value. Currently, the only
supported namespace type value is DB2SEC_NAMESPACE_SAM_COMPATIBLE
(corresponds to a username style like domain\myname).

password
Input or output. As an input, it is the password that is to be remapped. As an
output it is the remapped password. If an input value is specified for this
parameter, the API must be able to return an output value that differs from the
input value. If no input value is specified, the API must not return an output
password value.

passwordlen
Input or output. Length in bytes of the password parameter value.

newpasswd
Input or output. As an input, it is the new password that is to be set. As an
output it is the confirmed new password.

Note: This is the new password that is passed by the DB2 database manager
into the newpassword parameter of the db2secValidatePassword API on the
client or the server (depending on the value of the authentication database
manager configuration parameter). If a new password was passed as input,
then the API must be able to return an output value and it can be a different
new password. If there is no new password passed in as input, then the API
should not return an output new password.

newpasswdlen
Input or output. Length in bytes of the newpasswd parameter value.

dbname
Input. Name of the database to which the client is connecting.

dbnamelen
Input. Length in bytes of the dbname parameter value.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the db2secRemapUserid
API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secServerAuthPluginInit - Initialize server authentication
plug-in

The db2secServerAuthPluginInit API is the initialization API for the server
authentication plug-in that the DB2 database manager calls immediately after
loading the plug-in.

In the case of GSS-API, the plug-in is responsible for filling in the server's principal
name in the serverPrincipalName parameter inside the
gssapi_server_auth_functions structure at initialization time and providing the

Chapter 9. Security plug-in APIs 267

server's credential handle in the serverCredHandle parameter inside the
gssapi_server_auth_functions structure. The freeing of the memory allocated to
hold the principal name and the credential handle must be done by the
db2secServerAuthPluginTerm API by calling the gss_release_name and
gss_release_cred APIs.

API and data structure syntax
SQL_API_RC SQL_API_FN db2secServerAuthPluginInit

(db2int32 version,
void *server_fns,
db2secGetConDetails *getConDetails_fn,
db2secLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen);

db2secServerAuthPluginInit API parameters

version
Input. The highest version number of the API that the DB2 database manager
currently supports. The DB2SEC_API_VERSION value (in db2secPlugin.h) contains
the latest version number of the API that the DB2 database manager currently
supports.

server_fns
Output. A pointer to memory provided by the DB2 database manager for a
db2secGssapiServerAuthFunctions_<version_number> structure (also known as
gssapi_server_auth_functions_<version_number>), if GSS-API authentication is
used, or a db2secUseridPasswordServerAuthFunctions_<version_number>
structure (also known as
userid_password_server_auth_functions_<version_number>), if
userid/password authentication is used. The
db2secGssapiServerAuthFunctions_<version_number> structure and
db2secUseridPasswordServerAuthFunctions_<version_number> structure
contain pointers to the APIs implemented for the GSS-API authentication
plug-in and userid/password authentication plug-in.

The server_fns parameter is cast as a pointer to the
gssapi_server_auth_functions_<version_number> structure corresponding to
the version the plug-in has implemented. The first parameter of the
gssapi_server_auth_functions_<version_number> structure or the
userid_password_server_auth_functions_<version_number> structure tells
theDB2 database manager the version of the APIs that the plug-in has
implemented.

Note: The casting is done only if the DB2 version is higher or equal to the
version of the APIs that the plug-in has implemented.

Inside the gssapi_server_auth_functions_<version_number> or
userid_password_server_auth_functions_<version_number> structure, the
plugintype parameter should be set to one of
DB2SEC_PLUGIN_TYPE_USERID_PASSWORD, DB2SEC_PLUGIN_TYPE_GSSAPI, or
DB2SEC_PLUGIN_TYPE_KERBEROS. Other values can be defined in future versions
of the API.

getConDetails_fn
Input. Pointer to the db2secGetConDetails API, which is implemented by DB2.
The db2secServerAuthPluginInit API can call the db2secGetConDetails API in
any one of the other authentication APIs to obtain details related to the
database connection. These details include information about the

268 Database Security Guide

communication mechanism associated with the connection (such as the IP
address, in the case of TCP/IP), which the plug-in writer might need to
reference when making authentication decisions. For example, the plug-in
could disallow a connection for a particular user, unless that user is connecting
from a particular IP address. The use of the db2secGetConDetails API is
optional.

If the db2secGetConDetails API is called in a situation not involving a database
connection, it returns the value DB2SEC_PLUGIN_NO_CON_DETAILS, otherwise, it
returns 0 on success.

The db2secGetConDetails API takes two input parameters; pConDetails, which
is a pointer to the db2sec_con_details_<version_number> structure, and
conDetailsVersion, which is a version number indicating which
db2sec_con_details structure to use. Possible values are
DB2SEC_CON_DETAILS_VERSION_1 when db2sec_con_details1 is used or
DB2SEC_CON_DETAILS_VERSION_2 when db2sec_con_details2. The recommended
version number to use is DB2SEC_CON_DETAILS_VERSION_2.

Upon a successful return, the db2sec_con_details structure (either
db2sec_con_details1 or db2sec_con_details2) will contain the following
information:
v The protocol used for the connection to the server. The listing of protocol

definitions can be found in the file sqlenv.h (located in the include
directory) (SQL_PROTOCOL_*). This information is filled out in the
clientProtocol parameter.

v The TCP/IP address of the inbound connect to the server if the
clientProtocol is SQL_PROTOCOL_TCPIP or SQL_PROTOCOL_TCPIP4. This
information is filled out in the clientIPAddress parameter.

v The database name the client is attempting to connect to. This will not be set
for instance attachments. This information is filled out in the dbname and
dbnameLen parameters.

v A connection information bit-map that contains the same details as
documented in the connection_details parameter of the
db2secValidatePassword API. This information is filled out in the
connect_info_bitmap parameter.

v The TCP/IP address of the inbound connect to the server if the
clientProtocol is SQL_PROTOCOL_TCPIP6. This information is filled out in the
clientIP6Address parameter and it is only available if
DB2SEC_CON_DETAILS_VERSION_2 is used for db2secGetConDetails API call.

logMessage_fn

Input. A pointer to the db2secLogMessage API, which is implemented by the
DB2 database manager. The db2secClientAuthPluginInit API can call the
db2secLogMessage API to log messages to the db2diag log files for debugging
or informational purposes. The first parameter (level) of db2secLogMessage
API specifies the type of diagnostic errors that will be recorded in the db2diag
log files and the last two parameters are the message string and its length. The
valid values for the first parameter of db2secLogMessage API (defined in
db2secPlugin.h) are:
v DB2SEC_LOG_NONE (0): No logging
v DB2SEC_LOG_CRITICAL (1): Severe Error encountered
v DB2SEC_LOG_ERROR (2): Error encountered
v DB2SEC_LOG_WARNING (3): Warning
v DB2SEC_LOG_INFO (4): Informational

Chapter 9. Security plug-in APIs 269

The message text will appear in the db2diag log files only if the value of the
level parameter of the db2secLogMessage API is less than or equal to the
diaglevel database manager configuration parameter.

So for example, if you use the DB2SEC_LOG_INFO value, the message text will
appear in the db2diag log files only if the diaglevel database manager
configuration parameter is set to 4.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the
db2secServerAuthPluginInit API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secServerAuthPluginTerm API - Clean up server
authentication plug-in resources

The db2secServerAuthPluginTerm API frees resources used by the server
authentication plug-in.

This API is called by the DB2 database manager just before it unloads the server
authentication plug-in. It should be implemented in a manner that it does a proper
cleanup of any resources the plug-in library holds, for example, free any memory
allocated by the plug-in, close files that are still open, and close network
connections. The plug-in is responsible for keeping track of these resources in
order to free them. This API is not called on any Windows operating systems.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secServerAuthPluginTerm)

(char **errormsg,
db2int32 *errormsglen);

db2secServerAuthPluginTerm API parameters

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the
db2secServerAuthPluginTerm API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

db2secValidatePassword API - Validate password
Provides a method for performing user ID and password style authentication
during a database connect operation.

Note: When the API is run on the client side, the API code is run with the
privileges of the user executing the CONNECT statement. This API will only be
called on the client side if the authentication configuration parameter is set to
CLIENT.

When the API is run on the server side, the API code is run with the privileges of
the instance owner.

270 Database Security Guide

The plug-in writer should take the previous scenarios into consideration if
authentication requires special privileges (such as root level system access on
UNIX).

This API must return the value DB2SEC_PLUGIN_OK (success) if the password is
valid, or an error code such as DB2SEC_PLUGIN_BADPWD if the password is invalid.

API and data structure syntax
SQL_API_RC (SQL_API_FN *db2secValidatePassword)

(const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpasswd,
db2int32 newpasswdlen,
const char *dbname,
db2int32 dbnamelen,
db2Uint32 connection_details,
void **token,
char **errormsg,
db2int32 *errormsglen);

db2secValidatePassword API parameters

userid
Input. The user ID whose password is to be verified.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained.

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. The type of namespace. Valid values for the usernamespacetype
parameter (defined in db2secPlugin.h) are:
v DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username style like

domain\myname
v DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username style like

myname@domain.ibm.com

Currently, the DB2 database system only supports the value
DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not available, the
usernamespacetype parameter is set to the value
DB2SEC_USER_NAMESPACE_UNDEFINED (defined in db2secPlugin.h).

password
Input. The password to be verified.

passwordlen
Input. Length in bytes of the password parameter value.

newpasswd
Input. A new password, if the password is to be changed. If no change is
requested, this parameter is set to NULL. If this parameter is not NULL, the
API should validate the old password before changing it to the new password.

Chapter 9. Security plug-in APIs 271

The API does not have to fulfill a request to change the password, but if it
does not, it should immediately return with the return value
DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without validating the old
password.

newpasswdlen
Input. Length in bytes of the newpasswd parameter value.

dbname
Input. The name of the database being connected to. The API is free to ignore
the dbname parameter, or it can return the value
DB2SEC_PLUGIN_CONNECTIONREFUSED if it has a policy of restricting access to
certain databases to users who otherwise have valid passwords. This
parameter can be NULL.

dbnamelen
Input. Length in bytes of the dbname parameter value. This parameter is set to 0
if dbname parameter is NULL.

connection_details
Input. A 32-bit parameter of which 3 bits are currently used to store the
following information:
v The rightmost bit indicates whether the source of the user ID is the default

from the db2secGetDefaultLoginContext API, or was explicitly provided
during the connect.

v The second-from-right bit indicates whether the connection is local (using
Inter Process Communication (IPC) or a connect from one of the nodes in
the db2nodes.cfg in the partitioned database environment), or remote
(through a network or loopback). This gives the API the ability to decide
whether clients on the same machine can connect to the DB2 server without
a password. Due to the default operating-system-based user ID/password
plugin, local connections are permitted without a password from clients on
the same machine (assuming the user has connect privileges).

v The third-from-right bit indicates whether the DB2 database manager is
calling the API from the server side or client side.

The bit values are defined in db2secPlugin.h:
v DB2SEC_USERID_FROM_OS (0x00000001) Indicates that the user ID is obtained

from OS and not explicitly given on the connect statement.
v DB2SEC_CONNECTION_ISLOCAL (0x00000002) Indicates a local connection.
v DB2SEC_VALIDATING_ON_SERVER_SIDE (0x0000004) Indicates whether the DB2

database manager is calling from the server side or client side to validate
password. If this bit value is set, then the DB2 database manager is calling
from server side; otherwise, it is calling from the client side.

The DB2 database system default behavior for an implicit authentication is to
allow the connection without any password validation. However, plug-in
developers can disallow implicit authentication by returning a
DB2SEC_PLUGIN_BADPASSWORD error.

token
Input. A pointer to data which can be passed as a parameter to subsequent API
calls during the current connection. Possible APIs that might be called include
db2secGetAuthIDs API and db2secGetGroupsForUser API.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by

272 Database Security Guide

the plug-in that can be returned in this parameter if the
db2secValidatePassword API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error
message string in errormsg parameter.

Required APIs and definitions for GSS-API authentication plug-ins
The following table is a complete list of GSS-APIs required for the DB2 security
plug-in interface.

The supported APIs follow these specifications: Generic Security Service Application
Program Interface, Version 2 (IETF RFC2743) and Generic Security Service API Version
2: C-Bindings (IETF RFC2744). Before implementing a GSS-API based plug-in, you
should have a complete understanding of these specifications.

Table 39. Required APIs and Definitions for GSS-API authentication plug-ins

API type API name Description

Client-side APIs gss_init_sec_context Initiate a security context with a peer application.

Server-side APIs gss_accept_sec_context Accept a security context initiated by a peer application.

Server-side APIs gss_display_name Convert an internal format name to text.

Common APIs gss_delete_sec_context Delete an established security context.

Common APIs gss_display_status Obtain the text error message associated with a GSS-API
status code.

Common APIs gss_release_buffer Delete a buffer.

Common APIs gss_release_cred Release local data structures associated with a GSS-API
credential.

Common APIs gss_release_name Delete internal format name.

Required
definitions

GSS_C_DELEG_FLAG Requests delegation.

Required
definitions

GSS_C_EMPTY_BUFFER Signifies that the gss_buffer_desc does not contain any
data.

Required
definitions

GSS_C_GSS_CODE Indicates a GSS major status code.

Required
definitions

GSS_C_INDEFINITE Indicates that the mechanism does not support context
expiration.

Required
definitions

GSS_C_MECH_CODE Indicates a GSS minor status code.

Required
definitions

GSS_C_MUTUAL_FLAG Mutual authentication requested.

Required
definitions

GSS_C_NO_BUFFER Signifies that the gss_buffer_t variable does not point to
a valid gss_buffer_desc structure.

Required
definitions

GSS_C_NO_CHANNEL_BINDINGS No communication channel bindings.

Required
definitions

GSS_C_NO_CONTEXT Signifies that the gss_ctx_id_t variable does not point to
a valid context.

Required
definitions

GSS_C_NO_CREDENTIAL Signifies that gss_cred_id_t variable does not point to a
valid credential handle.

Required
definitions

GSS_C_NO_NAME Signifies that the gss_name_t variable does not point to a
valid internal name.

Chapter 9. Security plug-in APIs 273

Table 39. Required APIs and Definitions for GSS-API authentication plug-ins (continued)

API type API name Description

Required
definitions

GSS_C_NO_OID Use default authentication mechanism.

Required
definitions

GSS_C_NULL_OID_SET Use default mechanism.

Required
definitions

GSS_S_COMPLETE API completed successfully.

Required
definitions

GSS_S_CONTINUE_NEEDED Processing is not complete and the API must be called
again with the reply token received from the peer.

Restrictions for GSS-API authentication plug-ins
The following list describes the restrictions for GSS-API authentication plug-ins.
v The default security mechanism is always assumed; therefore, there is no OID

consideration.
v The only GSS services requested in gss_init_sec_context() are mutual

authentication and delegation. The DB2 database manager always requests a
ticket for delegation, but does not use that ticket to generate a new ticket.

v Only the default context time is requested.
v Context tokens from gss_delete_sec_context() are not sent from the client to

the server and vice-versa.
v Anonymity is not supported.
v Channel binding is not supported
v If the initial credentials expire, the DB2 database manager does not automatically

renew them.
v The GSS-API specification stipulates that even if gss_init_sec_context() or

gss_accept_sec_context() fail, either function must return a token to send to
the peer. However, because of DRDA limitations, the DB2 database manager
only sends a token if gss_init_sec_context() fails and generates a token on the
first call.

274 Database Security Guide

Chapter 10. Communication buffer exit libraries

The DB2 for Linux, UNIX, and Windows database manager provides customers
and vendors the capability to review communication buffers. External trusted
shared libraries are used to access the communication buffers, which flow between
clients and database servers, before they are sent and received. These external
libraries are known as communication buffer exit libraries.

With communication buffer exit libraries, you can examine communication buffers
in order to provide solutions such as auditing or other security solutions based on
the contents of the buffers. DB2 for Linux, UNIX, and Windows provides access to
each buffer received from clients, as well as each buffer about to be sent to clients.
Buffers are provided before they are encrypted with either DATA_ENCRYPT
authentication or SSL. DB2 for Linux, UNIX, and Windows uses the DRDA
protocol to communicate between clients and the server. The communication
buffers that are passed to the communication buffer exit library are formatted
according to the DRDA protocol. The communication buffer exit library must
understand the DRDA protocol that is used for communication.

DB2 for Linux, UNIX, and Windows provides the buffers regardless of
communication protocol. Communication buffer exit libraries work consistently
with TCPIP (IPv4 and IPv6), SSL, Inter-Process Communication (IPC), and named
pipe.

In addition to the buffers, DB2 for Linux, UNIX, and Windows also makes
available identity information, including the username and session authorization
ID established for the connection to the database. This information is useful for
scenarios that involve GSS-API plug-ins such as Kerberos. In this scenario, there is
no standard username, but rather generic tickets from which the database manager
derives the username. This detail is not available solely by looking at the
communication buffer.

The database manager ensures that only trusted libraries are loaded. The libraries
must be installed in a specific location that can be modified by only the instance
owner. Furthermore, only a user with SYSADM authority can enable the library.
This authority level is the same which is required to enable encryption
(DATA_ENCRYPT or SSL).

The communication buffer exit library can terminate a connection if any buffer
provided contains data that the library considers harmful. Both data that is sent to
the server, as well as data that is returned to the client is included. For example,
the communication buffer exit library might detect that the data returned from a
select statement is inappropriate for the client to receive. A return code from the
library indicates to the database manager that the connection must be terminated.
The database managers stops that or any further communication buffers to the
client and terminates the connection.

Note: Third party vendors typically provide these communication buffer exit
libraries. DB2 for Linux, UNIX, and Windows does provide samples of libraries in
the sqllib/samples/security/commexit directory. You might choose to develop
your own libraries using the samples as a guide.

© Copyright IBM Corp. 2013 275

Communication buffer exit library deployment
Certain considerations must be taken with the deployment of a communication
buffer exit library.

In typical scenarios communication buffer exit libraries are provided by vendors.
In these scenarios, the deployment of communication buffer exit libraries are
handled by the vendor supplied installation scripts. The deployment steps are
outlined here so you can deploy your own library if you choose to do so.

Communication buffer exit library location
Communication buffer exit libraries must exist in specific directories.

The database manager looks for communication buffer exit libraries in the
following directories:

Linux and UNIX 32-bit
$DB2PATH/security32/plugin/commexit

Linux and UNIX 64-bit
$DB2PATH/security64/plugin/commexit

Windows 32-bit and 64-bit
$DB2PATH\security\plugin\instance_name\commexit

Note: On Windows platforms, the subdirectories instance_name and commexit are
not created automatically. The instance owner must manually create them.

Communication buffer exit library naming conventions and
permissions

Communication buffer exit libraries must adhere to platform-specific naming and
permission rules.

The maximum length of a communication buffer exit library name, not including
the file extension and the 64 suffix, is limited to 32 bytes.

The following list outlines the naming convention for the library file extension on
each platform:

AIX
The extension must be .a or .so

Note: If both the .a and .so extensions exist, .a is used.

Linux, HP IPF, and Solaris
The extension must be.so

Windows
The extension must be .dll

The following list outlines the permission for the library file on each platform:

UNIX and Linux
Owned by the instance owner and readable and executable by only the
instance owner.

Windows
Owned by a member of the DB2AMINS group and readable and executable by
a member of the DB2ADMINS group.

276 Database Security Guide

Examples

The following example shows communication buffer exit library extensions on a
library called mycommexit on all platforms:
v AIX 64-bit mycommexit.a or mycommexit.so

v Solaris 64-bit, Linux 32-bit, or 64-bit, HP 64-bit on IPF: mycommexit.so
v Windows 32-bit: mycommexit.dll
v Windows 64-bit: mycommexit64.dll

Note: The file name suffix 64 is required only on the library name for Windows
64-bit.

When you update the database manager configuration with the name of a
communication buffer exit library, use the full name of the library without the 64
suffix. The file extension and qualified path to the file must not be specified
either when updating the database manager configuration.

The following example shows the updating of the database manager configuration
on a Windows 64-bit system setting the mycommexit64.dll library as the
communication buffer exit library.
UPDATE DBM CFG USING COMM_EXIT_LIST mycommexit

Note: The COMM_EXIT_LIST name is case-sensitive, and must exactly match the
library name.

Enabling communication buffer exit libraries outside of DB2
pureScale environments

The steps outlined in this task are typically performed by third party supplied
installation scripts. The steps are outlined to help you enable a communication
buffer exit library you develop.

Before you begin

You must have SYSADM authority to perform the steps in this task.

Restrictions

The communication buffer exit library files must follow strict file permission
guidelines. For more information about these guidelines, see the related concepts.

Procedure

To enable a communication buffer exit library:
1. Stop the database manager. To stop the database manager, run the db2stop

command.
2. Copy the communication buffer exit library file to the correct directory. For

more details on the required location of communication buffer exit libraries, see
the related concepts. The file can be a symbolic link to another location if
wanted.

3. Update the database manager configuration parameter COMM_EXIT_LIST with the
name of the library. To update the configuration parameter use the UPDATE DBM
CFG command.

Chapter 10. Communication buffer exit libraries 277

4. Start the database manager. To start the database manager, run the db2start
command.

Results

The library is loaded and initialized.

Enabling communication buffer exit libraries in DB2 pureScale
environments

The steps outlined in this task are typically performed by third party supplied
installation scripts. The steps are outlined to help you enable a communication
buffer exit library you develop.

About this task

By making use of a communication buffer exit library that contains a version
number in the file name, and a symbolic link to this file for a library without the
version number, it is possible to deploy the library on a member by member basis.
In this scenario, it is not necessary to stop the whole instance, only individual
members.

Restrictions

The communication buffer exit library files must follow strict file permission
guidelines. For more information about these guidelines, see the related concepts.

Procedure

To enable a communication buffer exit library:
1. Copy the communication buffer exit library that contains the version number in

file name to the correct directory. For more details on the required location of
communication buffer exit libraries, see the related concepts.

2. Create a symbolic link from the library without a version to the library that
contains the version in the file name.

3. Update the database manager configuration parameter comm_exit_list with the
name of the library. To update the configuration parameter use the UPDATE DBM
CFG command.

4. Stop each member individually. To stop each member, run the db2stop
command on each member

5. Restart the stopped members. To start the stopped members, run the db2start
command.

Results

The library is loaded and initialized.

Communication buffer exit library problem determination
Some options are available to help diagnose problems with a communication
buffer exit library.

278 Database Security Guide

The communication buffer exit library is not provided as part of DB2 for Linux,
UNIX, and Windows. Rather, it is a library you install. It might be automatically
installed and configured by a tool or application that you are using, or it might be
written by you.

The name of the library specified in the database manager configuration parameter
comm_exit_list gives some indication as to the source of the library.

If you experience any issue with the library, the documentation for the tool or
application must be consulted to determine what problem determination steps
must be taken.

An interface to write to the db2diag log files is available to communication buffer
exit libraries. The db2diag log files can be checked if there are concerns with how
the library is functioning.

If there are concerns about the performance of the communication buffer exit
library, monitoring wait times can be used to investigate how long the library is
taking. For more information about these monitor tools, see the related reference.

Communication buffer exit library development
Certain considerations must be taken with the development of a communication
buffer exit library.

In typical scenarios communication buffer exit libraries are provided by vendors.
In these scenarios, the development of communication buffer exit libraries is
handled by the vendor. You can develop your own library if you choose to do so.

How a communication buffer exit library is loaded
When the database manager is started, the communication buffer exit library is
dynamically loaded and initialized. The library must contain the initialization
function db2commexitInit. This function is known as the library initialization
function.

The library initialization function initializes the specified communication buffer exit
library. The initialization provides the database manager with the information
needed to call the library functions. The library initialization function accepts the
following parameters:
v The highest version number of the function pointer structure that the database

instance invoking the library can support.
v A pointer to a structure containing pointers to all the APIs requiring

implementation.
v A pointer to a function that adds log messages to the db2diag log files.
v A pointer to an error message string.
v The length of the error message.

The function signature for the initialization function is:
SQL_API_RC SQL_API_FN db2commexitInit
(db2int32 version,

void *commexit_fns,
db2commexitLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen);

Chapter 10. Communication buffer exit libraries 279

The initialization function is the only function in the library that uses a prescribed
function name. The other library functions are referenced through function pointers
returned from the initialization function.

The specific tasks of this function are:
v Cast the functions pointer to a pointer of an appropriate functions structure.
v Assign the pointers to the other functions in the library.
v Assign the version number of the function pointer structure being returned.

The function db2commexitInit must be declared extern "C" if the library is
compiled as C++.

Communication buffer exit library APIs
APIs are implemented in the communication buffer exit library.

db2commexitInit API - Initialization
When the database manager is started with the db2start command, the
communication buffer exit library is loaded. Immediately following the load of the
library, this function is called. This function is responsible for initializing the
communication buffer exit library. The function is also responsible for returning all
of the implemented functions back to the database manager.

This function must be declared extern "C" if the library is compiled as C++.

This function is not required to be thread-safe, since it is only called a single time.

API header file

db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitInit)
(

db2int32 version,
void *commexit_fns,
db2commexitLogMessage *logMessage_fn,
char **errormsg,
db2int32 *errormsglen

);

db2commexiInit API Parameters

version
Input. The highest version of the API supported by the instance loading that
library. The value DB2COMMEXIT_API_VERSION, in db2commexit.h, contains the
latest version number of the API that the database manager currently supports.

commexit_fns
Output. A pointer to the db2commexitFunctions_<version_number> structure,
that contains pointers to the APIs implemented for the communication buffer
exit library. There might be different versions of the APIs, so the commexit_fns
parameter is cast to the db2commexitFunctions_<version_number> structure
corresponding to the version implemented by the library. The first parameter
of the db2commexitFunctions_<version_number> structure indicates the
version of the APIs implemented by the plug-in.

280 Database Security Guide

logMessage_fn
Input. A pointer to the db2commexitLogMessage API, which is implemented
by the DB2 database system. The db2commexitInit API can call the
db2commexitLogMessage API to log messages to the db2diag log files for
debugging or informational purposes. The first parameter of the
db2commexitLogMessage API specifies the type of diagnostic errors that are
recorded in the db2diag log files and the last two parameters are the message
string and its length. The valid values for the first parameter of the
db2commexitLogMessage API, defined in db2commexit.h, are:
v DB2COMMEXIT_LOG_NONE: (0) No logging
v DB2COMMEXIT_LOG_CRITICAL: (1) Severe Error encountered
v DB2COMMEXIT_LOG_ERROR: (2) Error encountered
v DB2COMMEXIT_LOG_WARNING: (3) Warning
v DB2COMMEXIT_LOG_INFO: (4) Informational

The message text is logged in the db2diag log files only if the value of the
'level' parameter of the db2commexitLogMessage API is less than or equal to
the diaglevel database manager configuration parameter. For example, if you
use the DB2SEC_LOG_INFO value, the message text is logged only if the
diaglevel database manager configuration parameter is set to 4.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the plug-in that can be returned in this parameter if the function execution is
not successful. This memory is not freed by calling db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error
message string in the errormsg parameter.

db2commexitTerm API - Termination
This function frees resources used by the communication buffer exit library.

This API is called by the database manager just before it unloads the
communication buffer exit library during db2stop processing. The API must be
implemented in a manner so it does a proper cleanup of any resources the library
holds. For instance, the API must free any memory allocated by the library, close
files that are still open, and close network connections. The library is responsible
for tracking these resources in order to free them.

This function is not required to be thread-safe as it is called only one time.

API header file

db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitTerm)
(

char **errormsg,
db2int32 *errormsglen

);

db2commexitTerm API Parameters

errormsg
Output. A pointer to the address of an ASCII error message string allocated by

Chapter 10. Communication buffer exit libraries 281

the communication buffer exit library. This error messages string might be
returned in this parameter if the function execution is not successful. This
memory is not freed by calling db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error
message string in the errormsg parameter.

db2commexitRegister API - Registration
This function registers the agent to the connection.

This function is called by the database manager whenever an agent accepts a
socket and starts receiving and sending data on the socket. This activity is typically
associated with a new SQL connection to the database or instance attachment.

This function is also called when an idle connection is dispatched to an agent to
handle a new request from the client.

This function is not directly associated with SQL connections to the database. An
input parameter to the function differentiates between a new socket and existing
one that is dispatched to a new agent.

API header file

db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitRegister)
(

void ** pConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
db2int32 state,
db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

db2commexitRegister API Parameters

pConnectionContext
Input/Output. A pointer to communication buffer exit library-specific data.
This pointer is specific to the inbound connection. This parameter is passed as
input to each function call for that connection. The library might allocate and
store connection-specific information and make it available in each function
call. The memory for the parameter must be freed in the call to
db2commexitDeregister. The database manager cannot access the memory
pointed to by this parameter.

pCommInfo
Input. A pointer to a structure that contains information identifying the
database server and protocol-specific information for the incoming connection.
Some of the fields in the structure are not setup until multiple buffers are
exchanged with the client. The fields are available in later calls to
db2commexitRecv and db2commexitSend. This scenario applies specifically to
inbound_appl_id, outbound_appl_id, and connection_type. Once these values
are known, the connection_type parameter indicates whether the connection is
for a local database or a gateway connection.

282 Database Security Guide

State
Input. Indicates under which condition the function called. Possible values are:
v NEW_CONNECTION - indicates a new physical incoming client connection.
v AGENT_ASSOCIATION - indicates an existing idle client connection that becomes

active again and is associated with an agent to handle the request.

pReservedFlags
Input/Output. Reserved for future use. The value must be set to 0 on output.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the communication buffer exit library. This error messages string might be
returned in this parameter if the function execution is not successful. This
memory is not freed by calling db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error
message string in the errormsg parameter.

db2commexitDeregister API - Deregistration
This function releases the agent from the connection with which it was associated.

This function is called by the database manager whenever the agent stops handling
requests on the connection. This situation occurs when the physical connection
with the client is terminated, or the client is idle and the agent is disassociating
with it.

API header file

db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitDeregister)
(

void * pConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
db2int32 state,
db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

db2commexitDeregister API Parameters

pConnectionContext
Input. A pointer to communication buffer exit library-specific data. This pointer
is specific to the inbound connection. This parameter is passed as input to each
function call for that connection. The database manager cannot access the
memory pointed to by this parameter. This memory must be deallocated by
this function.

pCommInfo
Input. A pointer to a structure that contains information identifying the
database server and protocol-specific information for the incoming connection.

State
Input. Indicates under which condition the function is called. Possible values
are

Chapter 10. Communication buffer exit libraries 283

v CONNECTION_TERM - indicates that the physical connection with the client is
terminated.

v AGENT_DISASSOCIATION - indicates that the client connection is idle and the
agent is disassociated from it.

pReservedFlags
Input/Output. Reserved for future use. The value must be set to 0 on output.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the communication buffer exit library. This error messages string might be
returned in this parameter if the function execution is not successful. This
memory is not freed by calling db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error
message string in the errormsg parameter.

db2commexitRecv API - Receive
This function is called for each buffer that the database manager receives from a
client.

This function is called by the database manager immediately after receiving a
communication buffer from the client. The function is called after the buffer is
decrypted so that the communication buffer exit library can access the unencrypted
buffer.

API header file

db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitRecv)
(

void * pConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
const db2commexitBuffer * pBuffer,
db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

db2commexitRecv API Parameters

pConnectionContext
Input. A pointer to communication buffer exit library-specific data. This pointer
is specific to the inbound connection. This parameter is passed as input to each
function call for that connection. The database manager cannot access the
memory pointed to by this parameter. This memory must be deallocated by
this function.

pCommInfo
Input. A pointer to a structure that contains information identifying the
database server and protocol-specific information for the incoming connection.
Some of the fields in the structure are not setup until multiple buffers are
exchanged with the client. The fields are available in later calls to
db2commexitRecv and db2commexitSend. This scenario applies specifically to
inbound_appl_id, outbound_appl_id, and connection_type.

284 Database Security Guide

pBuffer
Input. A pointer to a structure that contains the length of the buffer that is
received by the database manager as well as a pointer to the buffer. If the
buffer is encrypted, it is unencrypted before this function is called.

pReservedFlags
Input/Output. The bit DB2COMMEXIT_RECV_IN_FLAG_END_DECRYPT is set to
indicate this is the final call to this function for a DSS that is encrypted. The
length of the DSS that is passed as input indicates the length of the encrypted
DSS. However, the DSS is then unencrypted and the padding removed. Since
there is always padding, the length of the DSS is less than indicated. The
length indicated in the pBuffer structure is the final data for the DSS. It is
possible that it is zero if a full block size of padding is added.

For output, this value is reserved for future use. The value must be set to 0 on
output.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the communication buffer exit library. This error messages string might be
returned in this parameter if the function execution is not successful. This
memory is not freed by calling db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error
message string in the errormsg parameter.

db2commexitSend API - Send
This function is called for each buffer that the database manager sends to a client.

This function is called by the database manager immediately before sending a
communication buffer to the client. The function is called before the buffer is
encrypted so that the communication buffer exit library can access the unencrypted
buffer.

API header file

db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitSend)
(

void * pConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
const db2commexitBuffer * pBuffer,
db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

db2commexitSend API Parameters

pConnectionContext
Input. A pointer to communication buffer exit library-specific data. This pointer
is specific to the inbound connection. This parameter is passed as input to each
function call for that connection. The database manager cannot access the
memory pointed to by this parameter.

pCommInfo
Input. A pointer to a structure that contains information identifying the

Chapter 10. Communication buffer exit libraries 285

database server and protocol-specific information for the incoming connection.
Some of the fields in the structure are not setup until multiple buffers are
exchanged with the client. The fields are available in later calls to
db2commexitRecv and db2commexitSend. This scenario applies specifically to
inbound_appl_id, outbound_appl_id, and connection_type.

pBuffer
Input. A pointer to a structure that contains the length of the buffer that is sent
to the client as well as a pointer to the buffer. If the buffer is encrypted, it is
unencrypted before this function is called.

pReservedFlags
Input/Output. The bit DB2COMMEXIT_SEND_IN_FLAG_PURGE is set if the database
manager encounters an error and must purge some buffers that were prepared
to send to the client. Some of these buffers might have passed as input to the
communication buffer exit library.

For output, this value is reserved for future use. The value must be set to 0 on
output.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the communication buffer exit library. This error messages string might be
returned in this parameter if the function execution is not successful. This
memory is not freed by calling db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error
message string in the errormsg parameter.

db2commexitUserIdentity API - User identity
This function is called to provide the identity of the user for the current socket.

This function is called to inform the communication buffer exit library of the
username and session authorized ID used to establish the connection. The function
is also called if these parameters change because of a trusted context switch user or
SET SESSION AUTHORIZATION. The username and session authorization ID are
not determined until after the database manager authenticates the user. This
function is not called until db2commexitRegister and multiple db2commexitSend
and db2commexitRecv functions are called to perform authentication.

API header file

db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitUserIdentity)
(

void * pConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
db2int32 state,
db2int32 usernameLen,
const char * pUserame,
db2int32 sessionAuthidLen,
const char * pSessionAuthid,
db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

286 Database Security Guide

db2commexitUserIdentity API Parameters

pConnectionContext
Input. A pointer to communication buffer exit library-specific data. This pointer
is specific to the inbound connection. This parameter is passed as input to each
function call for that connection. The database manager will not access the
memory pointed to by this parameter.

pCommInfo
Input. A pointer to a structure that contains information identifying the
database server and protocol-specific information for the incoming connection.
Some of the fields in the structure are not setup until multiple buffers are
exchanged with the client. The fields are available in later calls to
db2commexitRecv and db2commexitSend. This scenario applies specifically to
inbound_appl_id, outbound_appl_id, and connection_type.

State
Input. Indicates under which condition the function is called. Possible values
are:
v DB2COMMEXIT_USERIDENT_NEW_CONNECTION - a new connection.
v DB2COMMEXIT_USERIDENT_TC_SWITCH_USER - a trusted context switch user is

issued.
v DB2COMMEXIT_USERIDENT_SET_SESSION_USER - SET SESSION

AUTHORIZATION SQL statement is issued to change the session
authorization ID.

usernameLen
Input. The length of pUsername.

pUsername
Input. The username used to establish the connection.

sessionAuthidLen
Input. The length of pSessionAuthid.

pSessionAuthid
Input. The session authorization ID established for this connection.

pReservedFlags
Input/Output. Reserved for future use. The value must be set to 0 on output.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by
the communication buffer exit library. This error messages string might be
returned in this parameter if the function execution is not successful. This
memory is not freed by calling db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error
message string in the errormsg parameter.

db2commexitFreeErrormsg API - Free error message memory
This function frees the memory used to hold an error message from a previous API
call.

API header file

db2commexit.h

Chapter 10. Communication buffer exit libraries 287

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitFreeErrormsg)
(char * errormsg);

db2commexitFreeErrormsg API Parameters

errormsg
Input. A pointer to the error message returned from a previous API call.

Communication buffer exit library functions structure
The db2commexitInit function takes a void * commexit_fns parameter. This
parameter is cast to the version-specific structure which contains all of the
functions implemented by the communication buffer exit library. The
db2commexitInit function must assign the function pointers so that the database
manager can call those functions.

The structure that must be completed, including a function pointer for each API,
follows.
struct db2commexitFunctions_v1
{

db2int32 version;

SQL_API_RC (SQL_API_FN * db2commexitTerm)
(

char **errormsg,
db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2commexitRegister)
(

void ** ppConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
db2int32 state,
db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

SQL_API_RC (SQL_API_FN * db2commexitDeregister)
(

void * pConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
db2int32 state,
db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

SQL_API_RC (SQL_API_FN * db2commexitRecv)
(

void * pConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
const db2commexitBuffer * pBuffer,
db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

SQL_API_RC (SQL_API_FN * db2commexitSend)
(

void * pConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
const db2commexitBuffer * pBuffer,

288 Database Security Guide

db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

SQL_API_RC (SQL_API_FN * db2commexitUserIdentity)
(

void * pConnectionContext,
const db2commexitCommInfo_v1 * pCommInfo,
db2int32 state,
db2int32 usernameLen,
const char * pUserame,
db2int32 sessionAuthidLen,
const char * pSessionAuthid,
db2int64 * pReservedFlags,
char ** errormsg,
db2int32 * errormsglen

);

SQL_API_RC (SQL_API_FN * db2commexitFreeErrormsg)
(

char * errormsg
);

};

Communication buffer exit library information structure
The information structure indicates the communication protocol information for the
current physical connection.

The db2commexitCommInfo_v1 structure that is passed to each communication buffer
exit library function follows. This structure is included in the db2commexit.h file.
struct db2commexitIPV4Info
{

sockaddr_in client_sockaddr;
sockaddr_in server_sockaddr;

};

struct db2commexitIPV6Info
{

sockaddr_in6 client_sockaddr;
sockaddr_in6 server_sockaddr;

};

struct db2commexitIPCInfo
{

void * pSharedMemSegmentHandle;
};

struct db2commexitNamedPipeInfo
{

void * handle;
};

struct db2commexitCommInfo_v1
{

db2int32 clientProtocol; // SQL_PROTOCOL_ ...
db2int32 connectionType; // unknown, local or gateway

db2int32 hostnameLen;
db2int32 instanceLen;
db2int32 dbnameLen;
db2int32 dbaliasLen;
db2int32 inbound_appl_id_len;

Chapter 10. Communication buffer exit libraries 289

db2int32 outbound_appl_id_len;

db2int32 reserved1;
db2int32 reserved2;

db2NodeType member;

char hostname[SQL_HOSTNAME_SZ+1];
char instance[DB2COMMEXIT_INSTANCE_SZ + 1];
char dbname[DB2COMMEXIT_DBNAME_SZ + 1];
char dbalias[DB2COMMEXIT_DBNAME_SZ + 1];
char inbound_appl_id[SQLM_APPLID_SZ + 1];
char outbound_appl_id[SQLM_APPLID_SZ + 1];

char reservedChar1[128];

union
{

db2commexitIPV4Info ipv4Info;
db2commexitIPV6Info ipv6Info;
db2commexitIPCInfo ipcInfo;
db2commexitNamedPipeInfo namedPipeInfo;

}
};

Communication buffer exit library buffer structure
The buffer structure is the structure that is passed as input to the db2commexitSend
and db2commexitRecv functions.

The buffer structure follows:
struct db2commexitBuffer
{

const unsigned char * pBuffer;
db2int64 buffer_len;

db2int32 reserved1;
db2int32 reserved2;

};

Communication buffer exit library control over connections
The communication buffer exit library can force a drop of the connection to the
client at any time.

If the communication buffer exit library returns the appropriate error return code
on any of the calls to db2commexitUserIdentity, db2commexitRegister,
db2commexitDeregister, db2commexitRecv, or db2commexitSend, the database
manager immediately closes the connection with the client.

This capability allows the communication buffer exit library to determine, based on
the buffers reviewed, if some inappropriate activity is taking place. If such a
determination is made, any further action by the database manager for that
connection can be prevented.

Communication buffer exit library API versions
The DB2 database system supports version numbering of the communication
buffer exit library APIs. These version numbers are integers starting with 1.

The version number that the database manager passes to the security library
initialization function is the highest supported version number of the API. If the

290 Database Security Guide

library can support a higher API version, it must return function pointers for the
version that the database manager requests. If the library supports only a lower
version of the API, the library must define function pointers for the version that it
supports. In either situation, the library initialization function must return the
version number for the API it is supporting in the version field of the functions
structure.

The version numbers of the communication buffer exit library APIs change only
when necessary. For example, when there are changes to the parameters of the
APIs. Version numbers are not automatically changed with database manager
release numbers.

The version numbers allow the introduction of new or changed APIs. Library
support for older versions is maintained

Communication buffer exit library error handing and return
codes

When an error occurs in a communication buffer exit library API, the API can
return an ASCII text string in the errormsg field. That ASCII text string provides a
more specific description of the problem than the return code. The database
manager writes this entire string into the db2diag log files.

The memory for these error messages must be allocated by the communication
buffer exit library. Therefore, the library must also provide an API to free this
memory: db2commexitFreeErrormsg.

In addition to the errormsg field, at initialization time a message logging function
pointer, logMessage_fn, is passed to the communication buffer exit library. The
library can use the function to log any debugging information to the db2diag log
files. For example:
// Log an message indicate init successful

(*(logMessage_fn))(DB2COMMEXIT_LOG_CRITICAL,
"comm exit initialization successful",
strlen("comm. exit initialization successful"));

For more details about each parameter for the db2secLogMessage function, refer to
the initialization API db2commexitInit in the related reference.

Return codes

Table 40. Return codes that a communication buffer exit library can return to the database
manager.
Return code Define value Details

0 DB2COMMEXIT_SUCCESS Successful execution

-1 DB2COMMEXIT_ERR_UNKNOWN The library encountered an
unexpected error.

-2 DB2COMMEXIT_ERR_DROP_CONNECTION The library determined that the
connection for which it was called
must be terminated.

Communication buffer exit library development restrictions
Certain restrictions and considerations must be taken when developing a
communication buffer exit library.

Chapter 10. Communication buffer exit libraries 291

Restrictions

C-linkage
The communication buffer exit library must be written in C/C++ and linked
with C-linkage. Header files providing the prototypes, data structures required
to implement the libraries, and error code definitions are provided only for
C/C++. The function db2commexitInit must be declared extern "C" if the
library is compiled as C++.

Signal handlers
The communication buffer exit library must not install signal handlers or
change the signal mask. Doing so interferes with the signal handlers of the
database manager. Interfering with the database manager signal handlers could
seriously interfere with the ability to report and recover from errors.

Exceptions
The communication buffer exit library APIs must not throw C++ exceptions.
Such exceptions can interfere with database manager error handling.

Thread-safe
The communication buffer exit library functions must be thread-safe. The
db2commexitInit and db2commexitTerm functions are the only APIs that do not
have this requirement.

Exit handlers
The communication buffer exit library must not install exit handlers or
pthread_atfork handlers. The use of exit handlers is not supported because the
communication buffer exit library is unloaded before the database manager
process exits.

Fork/threads
The communication buffer exit library must not call fork or create new threads
because this situation can lead to undefined behavior such as traps in the
database manager.

Library dependencies
On Linux and UNIX, the communication buffer exit library is loaded from a
process that is setuid or setgid. It cannot rely on the LD_LIBRARY_PATH,
SHLIB_PATH, or LIBPATH environment variables to find dependent libraries.
Therefore, the library must not depend on additional libraries, unless any
dependent libraries are accessible through other methods, such as:
v they exist in /lib or /usr/lib.
v the directories they reside in are specified OS-wide (such as in the ld.so.conf

file on Linux).
v they are specified in the RPATH in the library itself.

Symbol collisions
When possible, communication buffer exit library might be compiled and
linked with any available options that reduce the likelihood of symbol
collisions. Such as, those that reduce unbound external symbolic references. For
example, use of the "-Bsymbolic" linker option on HP, Solaris, and Linux can
help prevent problems related to symbol collisions. However, for libraries
written on AIX, do not use the "-brtl" linker option explicitly or implicitly.

32-bit versus 64-bit considerations
The database manager has both 32-bit and 64-bit versions, depending on the
platform. A 32-bit communication buffer exit library must be enabled on a
32-bit database manager, and a 64-bit communication buffer exit library must
be enabled on a 64-bit database manager. You cannot mix the two.

292 Database Security Guide

Stored procedures, triggers, and other internal SQL
Stored procedure interaction with the server is passed onto the communication
buffer exit library. Much of the interaction does not occur over standard
communication channels and does not fit the model used for the exit library.
Similarly, triggers, and other sources of internal SQL do not pass over standard
communication channels and are not passed onto the communication buffer
exit library.

Communication buffers must not be manipulated
It is expected that the communication buffer exit library does not manipulate
or change the buffers that it is passed.

Rolling updates support
DB2 for Linux, UNIX, and Windows supports updating the fix pack level of
individual members in DB2 pureScale environments without stopping other
members. This is known as rolling updates. Similarly, as outlined in the
deployment section for the communication buffer exit library, it is possible to
update the level of the library used on individual members. It is possible that
two different versions of the communication buffer exit library might be
running simultaneously on two different members, with each member
potentially at a different fix pack level. The communication buffer exit library
must tolerate such conditions without error.

Communication buffer exit library API calling sequences
API calling sequences might be different depending on specific scenarios.

The following topics outline specific scenarios you must be aware of when
developing communication buffer exit libraries. These topics help you determine
the calling sequence most appropriate for your environment.

API calling sequence - Normal connect in a single agent
The most typical scenario is a client connecting to the database manager, issuing
some SQL, and then disconnecting.

In this case, a single agent or thread handles the connection, and the following
calls are made:
1. db2commexitRegister for a new socket connection.
2. db2commexitRecv and db2commexitSend to handle authentication, possibly

multiple times.
3. db2commexitUserIdentity for a new connection
4. db2commexitRecv and db2commexitSend to handle clients SQL requests, possibly

multiple times.
5. db2commexitDeregister to terminate socket connection.

API calling sequence - Connect without a connect reset
This scenario covers a connect over an existing socket. The client might initiate
another SQL connection without first issuing a connect reset.

Once the database manager receives the SQL connect statement from the client, it
implicitly drives an internal connect reset before continuing with the connect.
There is no change to the status of the socket, these are regular requests and
replies. In this case, a single agent is handling all requests. As the buffers that
contain the connect request from the client is made available through
db2commexitRecv, the communication buffer exit library is able to determine a new
connect started when parsing the buffer. The following calls are made:

Chapter 10. Communication buffer exit libraries 293

1. db2commexitRegister for a new socket connection.
2. db2commexitRecv and db2commexitSend to handle authentication, possibly

multiple times.
3. db2commexitUserIdentity for a new connection
4. db2commexitRecv and db2commexitSend to handle client SQL requests, possibly

multiple times.
5. db2commexitRecv and db2commexitSend to handle authentication, possibly

multiple times.
6. db2commexitUserIdentity for a new connection.
7. db2commexitRecv and db2commexitSend to handle client SQL requests, possibly

multiple times.
8. db2commexitDeregister to terminate socket connection.

Note:
db2commexitRegister and db2commexitDeregister are called only a single time
each, even though the database manager processed two SQL connections.

API calling sequence - Trusted context and switch user
This scenario is similar to connecting without a connect reset. The difference being
the client requests a trusted context switch user rather than sending a new SQL
connect request.

The following calls are made:
1. db2commexitRegister for a new socket connection.
2. db2commexitRecv and db2commexitSend to handle authentication, possibly

multiple times.
3. db2commexitUserIdentity for a new connection
4. db2commexitRecv and db2commexitSend to handle clients SQL requests, possibly

multiple times.
5. db2commexitRecv and db2commexitSend to handle authentication, possibly

multiple times.
At some future point, the client sends a trusted context switch user request to
the server to switch the user for the connection.

6. db2commexitUserIdentity for a trusted context switch user.
7. db2commexitRecv and db2commexitSend to handle clients SQL requests, possibly

multiple times.
8. db2commexitDeregister to terminate socket connection.

API calling sequence - Connection concentrator
This scenario covers the API calling sequence when connection concentrator is
used. The connection concentrator feature allows the database manager to handle
many more clients than there are coordinating agents or threads.

Once a client reaches a unit of work boundary and does not send another request
immediately, client sockets are placed into an idle pool. The agent that previously
handled client requests moves on to another client. Once the idle socket has data
to read, a dispatcher finds an idle agent to handle it. Over the life of an SQL
connection, there may be multiple agents handling the clients request. Each time
the socket is moved in and out of the idle pool, db2commexitDeregister and
db2commexitRegister are called. The following calls are made:
1. db2commexitRegister for a new socket connection.

294 Database Security Guide

2. db2commexitRecv and db2commexitSend to handle authentication, possibly
multiple times.

3. db2commexitUserIdentity for a new connection
4. db2commexitRecv and db2commexitSend to handle client SQL requests, possibly

multiple times.
The client does not send another request immediately and the socket is placed
into an idle pool.

5. db2commexitDeregister to disassociate with the agent.
At some future point, the client sends another request at which point the
dispatcher chooses an idle agent, which will likely be a different one than used
previously:

6. db2commexitRegister to associate an agent.
7. db2commexitRecv and db2commexitSend to handle client SQL requests, possibly

multiple times.
8. db2commexitDeregister to terminate socket connection.

Note: There are multiple calls to db2commexitRegister and db2commexitDeregister
for a single SQL connection.

API calling sequence - SET SESSION AUTHORIZATION statement
This scenario covers the API calling sequence when the SET SESSION
AUTHORIZATION statement is used.

The SET SESSION AUTHORIZATION statement changes the session authorization
ID in use for the current connection. Db2commexitUserIdentity is called to inform
the communication buffer exit library that identity information changed for the
current connection. The following calls are made:
1. db2commexitRegister for a new socket connection.
2. db2commexitRecv and db2commexitSend to handle authentication, possibly

multiple times.
3. db2commexitUserIdentity for a new connection.
4. db2commexitRecv and db2commexitSend to handle clients SQL requests,

possibly multiple times.
The user issues a SET SESSION AUTHORIZATION statement. This request is
passed to db2commexitRecv. It is no different from other SQL statement.

5. db2commexitUserIdentity for a SET SESSION AUTHORIZATION.
6. db2commexitRecv and db2commexitSend to handle client SQL requests,

possibly multiple times.
7. db2commexitDeregister to terminate socket connection.

Considerations for setting the target logical node
Considerations must be taken when setting the target logical node with the
DB2NODE variable or with the SET CLIENT command.

In a partitioned database environment, if the client specifies a member through the
DB2NODE variable that is not the member it is configured to connect to, the
database manager switches the connection to the new member specified in the
variable. The client connection is forwarded through the connected member to the
remote member. In this case, the communication buffer exit library is called at both
members. There are a few features to note:
v At the connected member, the client address reflects the actual client.
v At the remote member, the client address will reflect the connected member.

Chapter 10. Communication buffer exit libraries 295

v The outbound application id at the connected member is the same as the
inbound application id at the remote member.

Once the application IDs have been established, the connectionType in the
db2commexitCommInfo_v1 structure is set to GATEWAY.

Considerations for a connect gateway
Considerations must be taken when the database manager acts as a connect
gateway to another DRDA database server.

When DB2 for Linux, UNIX, and Windows acts as a connect gateway, the
communication buffer exit library is called in the same manner as a standard
connection. Once authentication is complete and the application IDs are
established, the connectionType in the db2commexitCommInfo_v1 structure is set to
GATEWAY. The outbound_application_id matches the application ID for the
connection at the DRDA database server.

Considerations for DATA_ENCRYPT
Considerations must be taken when the DATA_ENCRYPT authentication type is used.

The handling of communications protected with the authentication type
DATA_ENCRYPT requires special mention. Unlike SSL, the encryption and decryption
necessary to support DATA_ENCRYPT is performed by the database manager after a
receive from the client and before sending a reply to the client.

Receive and DATA_ENCRYPT

When receiving an encrypted DSS from the client, the buffer is decrypted as
needed by the database manager. That is, the whole buffer is not decrypted all at
once. The communication buffer exit library is called with the decrypted data as it
is decrypted.

The DSS length, or the DSS continuation length if the DSS is longer than a logical
record, contains the length of the encrypted DSS, and not the length of the
decrypted buffer. As the encryption always adds padding, this length is always
larger than the plaintext length. The length of the padding for DSS is a maximum
of 8 bytes.

When the final call to db2CommexitRecv is made, the
DB2COMMEXIT_RECV_IN_FLAG_END_DECRYPT flag is passed as input to
indicate the end of the encrypted DSS.

Note: It is possible the length in such a case is 0, indicating that a full block size of
padding is added.

Send and DATA_ENCRYPT

When encrypting a DSS reply to the client, multiple plaintext DSS and encrypted
DSS might make up the buffer which is sent to the client. As these DSS are
prepared, they are passed as input to the db2commexitSend routine. These passes
are done one at a time as the plaintext data must be used as input before
encryption. The database manager might hit an error condition which requires it to
purge previously prepared, but not sent, DSS. The communication buffer exit
library might already know about these libraries. The db2CommexitSend function is
called with a length of 0 and a flag DB2COMMEXIT_SEND_IN_FLAG_PURGE indicating
that a purge occurred.

296 Database Security Guide

Chapter 11. Audit facility record layouts

When an audit record is extracted from the audit log, each record has one of the
formats shown in the following tables. Each table is preceded by a sample record.

The description of each item in the record is shown one row at a time in the
associated table. Each item is shown in the table in the same order as it is output
in the delimited file after the extract operation.

Note:

1. Depending on the audit event, not all fields in the audit records will have
values. When there is no values in the field, the field will not be shown in the
audit output.

2. Some fields such as “Access Attempted” are stored in the delimited ASCII
format as bit maps. In this flat report file, however, these fields appear as a set
of strings representing the bit map values.

Audit record object types
The following table shows for each audit record object type whether it can
generate CHECKING, OBJMAINT, and SECMAINT events.

Table 41. Audit Record Object Types Based on Audit Events

Object type CHECKING events OBJMAINT events SECMAINT events

ACCESS_RULE X

ALIAS X X

ALL X

AUDIT_POLICY X X

BUFFERPOOL X X

CHECK_CONSTRAINT X

DATABASE X X

DATA TYPE X

EVENT_MONITOR X X

FOREIGN_KEY X

FUNCTION X X X

FUNCTION MAPPING X X

GLOBAL_VARIABLE X X X

HISTOGRAM TEMPLATE X X

INDEX X X X

INDEX EXTENSION X

INSTANCE X

JAR_FILE X

METHOD_BODY X X X

MODULE X X X

NICKNAME X X X

© Copyright IBM Corp. 2013 297

Table 41. Audit Record Object Types Based on Audit Events (continued)

Object type CHECKING events OBJMAINT events SECMAINT events

NODEGROUP X X

NONE X X X

OPTIMIZATION PROFILE X

PACKAGE X X X

PACKAGE CACHE X

PRIMARY_KEY X

REOPT_VALUES X

ROLE X X X

SCHEMA X X X

SECURITY LABEL X X

SECURITY LABEL COMPONENT X

SECURITY POLICY X X

SEQUENCE X X

SERVER X X X

SERVER OPTION X X

SERVICE CLASS X X

STORED_PROCEDURE X X X

SUMMARY TABLES X X X

TABLE X X X

TABLESPACE X X X

THRESHOLD X X

TRIGGER X

TRUSTED CONTEXT X X X

TYPE MAPPING X X

TYPE&TRANSFORM X X

UNIQUE_CONSTRAINT X

USER MAPPING X X

USER_TEMPORARY_TABLE X X X

VIEW X X X

WORK ACTION SET X X

WORK CLASS SET X X

WORKLOAD X X X

WRAPPER X X

XSR object X X X

Audit record layout for AUDIT events
The following table shows the layout of the audit record for AUDIT events.

Sample audit record:

298 Database Security Guide

timestamp=2007-04-10-08.29.52.000001;
category=AUDIT;
audit event=START;
event correlator=0;
event status=0;
userid=newton;
authid=NEWTON;
application id=*LOCAL_APPLICATION;
application name=db2audit.exe;

Table 42. Audit Record Layout for AUDIT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

AUDIT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the AUDIT
category in “Audit events” on page 327.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section SMALLINT Section number in package being used at the time the audit event
occurred

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Chapter 11. Audit facility record layouts 299

Table 42. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Policy Name VARCHAR(128) The audit policy name.

Policy Association
Object Type

CHAR(1) The type of the object that the audit policy is associated with.
Possible values include:

v N = Nickname

v S = MQT

v T = Table (untyped)

v i = Authorization ID

v g= Authority

v x = Trusted context

v blank = Database

Policy Association
Subobject Type

CHAR(1) The type of sub-object that the audit policy is associated with. If the
Object Type is ? (authorization id), then possible values are:

v U = User

v G = Group

v R = Role

Policy Association
Object Name

VARCHAR(128) The name of the object that the audit policy is associated with.

Policy Association
Object Schema

VARCHAR(128) The schema name of the object that the audit policy is associated
with. This is NULL if the Policy Association Object Type identifies
an object to which a schema does not apply.

Audit Status CHAR(1) The status of the AUDIT category in an audit policy. Possible values
are:

v B-Both

v F-Failure

v N-None

v S-Success

Checking Status CHAR(1) The status of the CHECKING category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

300 Database Security Guide

Table 42. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Context Status CHAR(1) The status of the CONTEXT category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Execute Status CHAR(1) The status of the EXECUTE category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Execute With Data CHAR(1) The WITH DATA option of the EXECUTE category in the audit
policy. Possible values are:

v Y-WITH DATA

v N-WITHOUT DATA

Objmaint Status CHAR(1) The status of the OBJMAINT category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Secmaint Status CHAR(1) The status of the SECMAINT category in an audit policy. See Audit
Status field for possible values.

Sysadmin Status CHAR(1) The status of the SYSADMIN category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Validate Status CHAR(1) The status of the VALIDATE category in an audit policy. Possible
values are:

v B-Both

v F-Failure

v N-None

v S-Success

Error Type CHAR(8) The error type in an audit policy. Possible values are: AUDIT and
NORMAL.

Data Path VARCHAR(1024) The path to the active audit logs specified on the db2audit
configure command.

Archive Path VARCHAR(1024) The path to the archived audit logs specified on the db2audit
configure command

Chapter 11. Audit facility record layouts 301

Audit record layout for CHECKING events
The format of the audit record for CHECKING events is shown in the following
table.

Sample audit record:
timestamp=1998-06-24-08.42.11.622984;
category=CHECKING;
audit event=CHECKING_OBJECT;
event correlator=2;
event status=0;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.newton.980624124210;
application name=testapp;
package schema=NULLID;
package name=SYSSH200;
package section=0;
object schema=GSTAGER;
object name=NONE;
object type=REOPT_VALUES;
access approval reason=DBADM;
access attempted=STORE;

Table 43. Audit record layout for CHECKING events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

CHECKING

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the CHECKING
category in “Audit events” on page 327.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator Member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

302 Database Security Guide

Table 43. Audit record layout for CHECKING events (continued)

NAME FORMAT DESCRIPTION

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible
values include: those shown in the topic titled “Audit record object
types”.

Access Approval
Reason

CHAR(34) Indicates the reason why access was approved for this audit event.
Possible values include: those shown in the topic titled “List of
possible CHECKING access approval reasons”.

Access Attempted CHAR(34) Indicates the type of access that was attempted. Possible values
include: those shown in the topic titled “List of possible
CHECKING access attempted types”.

Package Version VARCHAR (64) Version of the package in use at the time that the audit event
occurred.

Checked
Authorization ID

VARCHAR(128) Authorization ID is checked when it is different than the
authorization ID at the time of the audit event. For example, this
can be the target owner in a TRANSFER OWNERSHIP statement.

When the audit event is SWITCH_USER, this field represents the
authorization ID that is switched to.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(255) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

CHECKING access approval reasons
The following list shows the possible CHECKING access approval reasons.

Note that an audit record might contain multiple access approval reasons, for
example: access approval reason=DATAACCESS,ACCESSCTRL;. When multiple access
approval reasons are present, the user must have all stated authorities and
privileges in order to pass the authorization check for the attempted access.

Chapter 11. Audit facility record layouts 303

0x00000000000000000000000000000001 ACCESS DENIED
Access is not approved; rather, it was denied.

0x00000000000000000000000000000002 SYSADM
Access is approved; the application or user has SYSADM authority.

0x00000000000000000000000000000004 SYSCTRL
Access is approved; the application or user has SYSCTRL authority.

0x00000000000000000000000000000008 SYSMAINT
Access is approved; the application or user has SYSMAINT authority.

0x00000000000000000000000000000010 DBADM
Access is approved; the application or user has DBADM authority.

0x00000000000000000000000000000020 DATABASE
Access is approved; the application or user has an explicit privilege on the
database.

0x00000000000000000000000000000040 OBJECT
Access is approved; the application or user has a privilege on the object or
function.

0x00000000000000000000000000000080 DEFINER
Access is approved; the application or user is the definer of the object or
function.

0x00000000000000000000000000000100 OWNER
Access is approved; the application or user is the owner of the object or
function.

0x00000000000000000000000000000200 CONTROL
Access is approved; the application or user has CONTROL privilege on the
object or function.

0x00000000000000000000000000000400 BIND
Access is approved; the application or user has bind privilege on the
package.

0x00000000000000000000000000000800 SYSQUIESCE
Access is approved; if the instance or database is in quiesce mode, the
application or user may connect or attach.

0x00000000000000000000000000001000 SYSMON
Access is approved; the application or user has SYSMON authority.

0x00000000000000000000000000002000 SECADM
Access is approved; the application or user has SECADM authority.

0x00000000000000000000000000004000 SETSESSIONUSER
Access is approved; the application or user has SETSESSIONUSER
authority.

0x00000000000000000000000000008000 TRUSTED_CONTEXT_MATCH
Connection attributes matched the attributes of a unique trusted context
defined at the DB2 server.

0x00000000000000000000000000010000 TRUSTED_CONTEXT_USE
Access is approved to use a trusted context.

0x00000000000000000000000000020000 SQLADM
Access is approved; the application or user has SQLADM authority.

0x00000000000000000000000000040000 WLMADM
Access is approved; the application or user has WLMADM authority.

304 Database Security Guide

0x00000000000000000000000000080000 EXPLAIN
Access is approved; the application or user has EXPLAIN authority.

0x00000000000000000000000000100000 DATAACCESS
Access is approved; the application or user has DATAACCESS authority.

0x00000000000000000000000000200000 ACCESSCTRL
Access is approved; the application or user has ACCESSSCTRL authority.

CHECKING access attempted types
The following list shows the possible CHECKING access attempted types.

If Audit Event is CHECKING_TRANSFER, then the audit entry reflects that a
privilege is held or not.

0x00000000000000000000000000000001 CONTROL
Attempt to verify whether CONTROL privilege is held.

0x00000000000000000000000000000002 ALTER
Attempt to alter an object or to verify whether ALTER privilege is held if
Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000000000004 DELETE
Attempt to delete an object or to verify whether DELETE privilege is held
if Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000000000008 INDEX
Attempt to use an index or to verify whether INDEX privilege is held if
Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000000000010 INSERT
Attempt to insert into an object or to verify whether INSERT privilege is
held if Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000000000020 SELECT
Attempt to query a table or view or to verify whether SELECT privilege is
held if Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000000000040 UPDATE
Attempt to update data in an object or to verify whether UPDATE
privilege is held if Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000000000080 REFERENCE
Attempt to establish referential constraints between objects or to verify
whether REFERENCE privilege is held if Audit Event is
CHECKING_TRANSFER.

0x00000000000000000000000000000100 CREATE
Attempt to create an object.

0x00000000000000000000000000000200 DROP
Attempt to drop an object.

0x00000000000000000000000000000400 CREATEIN
Attempt to create an object within another schema.

0x00000000000000000000000000000800 DROPIN
Attempt to drop an object found within another schema.

0x00000000000000000000000000001000 ALTERIN
Attempt to alter or modify an object found within another schema.

Chapter 11. Audit facility record layouts 305

0x00000000000000000000000000002000 EXECUTE
Attempt to execute or run an application or to invoke a routine, create a
function sourced from the routine (applies to functions only), or reference a
routine in any DDL statement or to verify whether EXECUTE privilege is
held if Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000000004000 BIND
Attempt to bind or prepare an application.

0x00000000000000000000000000008000 SET_EVENT MONITOR
Attempt to set event monitor switches.

0x00000000000000000000000000010000 SET_CONSTRAINTS
Attempt to set constraints on an object.

0x00000000000000000000000000020000 COMMENT ON
Attempt to create comments on an object.

0x00000000000000000000000000040000 GRANT
Attempt to grant privileges or roles on an object to another authorization
ID.

0x00000000000000000000000000080000 REVOKE
Attempt to revoke privileges or roles from an object from an authorization
ID.

0x00000000000000000000000000100000 LOCK
Attempt to lock an object.

0x00000000000000000000000000200000 RENAME
Attempt to rename an object.

0x00000000000000000000000000400000 CONNECT
Attempt to connect to a database.

0x00000000000000000000000000800000 MEMBER_OF_SYS_GROUP
Attempt to access or use a member of the SYS group.

0x00000000000000000000000001000000 ALL
Attempt to execute a statement with all required privileges on objects held
(only used for DBADM/SYSADM).

0x00000000000000000000000002000000 DROP ALL
Attempt to drop multiple objects.

0x00000000000000000000000004000000 LOAD
Attempt to load a table in a table space.

0x00000000000000000000000008000000 USE
Attempt to create a table in a table space or to verify whether USE
privilege is held if Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000010000000 SET_SESSION_USER
Attempt to execute the SET SESSION_USER statement.

0x00000000000000000000000020000000 FLUSH
Attempt to execute the FLUSH statement.

0x00000000000000000000000040000000 STORE
Attempt to view the values of a reoptimized statement in the
EXPLAIN_PREDICATE table.

0x00000000000000000000000100000000 SET_OWNER
Attempt to set an owner that does not match the current user when
binding a package.

306 Database Security Guide

0x00000000000000000000000200000000 SET_PASSTHRU
Attempt to issue the SET PASSTHRU statement.

0x00000000000000000000000400000000 TRANSFER
Attempt to transfer an object.

0x00000000000000000000000800000000 ALTER_WITH_GRANT
Attempt to verify whether ALTER with GRANT privilege is held.

0x00000000000000000000001000000000 DELETE_WITH_GRANT
Attempt to verify whether DELETE with GRANT privilege is held.

0x00000000000000000000002000000000 INDEX_WITH_GRANT
Attempt to verify whether INDEX with GRANT privilege is held

0x00000000000000000000004000000000 INSERT_WITH_GRANT
Attempt to verify whether INSERT with GRANT privilege is held.

0x00000000000000000000008000000000 SELECT_WITH_GRANT
Attempt to verify whether SELECT with GRANT privilege is held.

0x00000000000000000000010000000000 UPDATE_WITH_GRANT
Attempt to verify whether UPDATE with GRANT privilege is held.

0x00000000000000000000020000000000 REFERENCE_WITH_GRANT
Attempt to verify whether REFERENCE with GRANT privilege is held.

0x00000000000000000000040000000000 USAGE
Attempt to use a sequence or an XSR object or to verify whether USAGE
privilege is held if Audit Event is CHECKING_TRANSFER.

0x00000000000000000000080000000000 SET ROLE
Attempt to set a role.

0x00000000000000000000100000000000 EXPLICIT_TRUSTED_CONNECTION
Attempt to establish an explicit trusted connection.

0x00000000000000000000200000000000 IMPLICIT_TRUSTED_CONNECTION
Attempt to establish an implicit trusted connection.

0x00000000000000000000400000000000 READ
Attempt to read a global variable.

0x00000000000000000000800000000000 WRITE
Attempt to write a global variable.

0x00000000000000000001000000000000 SWITCH_USER
Attempt to switch a user ID on an explicit trusted connection.

0x00000000000000000002000000000000 AUDIT_USING
Attempt to associate an audit policy with an object.

0x00000000000000000004000000000000 AUDIT_REPLACE
Attempt to replace an audit policy association with an object.

0x00000000000000000008000000000000 AUDIT_REMOVE
Attempt to remove an audit policy association with an object.

0x00000000000000000010000000000000 AUDIT_ARCHIVE
Attempt to archive the audit log.

0x00000000000000000020000000000000 AUDIT_EXTRACT
Attempt to extract the audit log.

0x00000000000000000040000000000000 AUDIT_LIST_LOGS
Attempt to list the audit logs.

Chapter 11. Audit facility record layouts 307

0x00000000000000000080000000000000 IGNORE_TRIGGERS
Attempt to ignore the triggers associated with a database object.

0x00000000000000000100000000000000 PREPARE
Attempt to prepare an SQL statement and the user does not hold the
necessary object level privilege or DATAACCESS authority.

0x00000000000000000200000000000000 DESCRIBE
Attempt to describe a statement and the user does not hold the necessary
object level privilege or DATAACCESS authority.

0x00000000000000000400000000000000 SET_USAGELIST
Attempt to set the usage list state.

Audit record layout for OBJMAINT events
The format of the audit record for OBJMAINT events is shown in the following
table.

Sample audit record:
timestamp=1998-06-24-08.42.41.957524;
category=OBJMAINT;
audit event=CREATE_OBJECT;
event correlator=3;
event status=0;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.newton.980624124210;
application name=testapp;
package schema=NULLID;
package name=SQLC28A1;
package section=0;
object schema=BOSS;
object name=AUDIT;
object type=TABLE;

Table 44. Audit Record Layout for OBJMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

OBJMAINT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the OBJMAINT
category in “Audit events” on page 327.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

308 Database Security Guide

Table 44. Audit Record Layout for OBJMAINT Events (continued)

NAME FORMAT DESCRIPTION

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(256) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible
values include: those shown in the topic titled “Audit record object
types”.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Security Policy Name VARCHAR(128) The name of the security policy if the object type is TABLE and that
table is associated with a security policy.

Alter Action VARCHAR(32) Specific Alter operation

Possible values include:

v ADD_PROTECTED_COLUMN

v ADD_COLUMN_PROTECTION

v DROP_COLUMN_PROTECTION

v ADD_ROW_PROTECTION

v ADD_SECURITY_POLICY

v ADD_ELEMENT

v ADD COMPONENT

v USE GROUP AUTHORIZATIONS

v IGNORE GROUP AUTHORIZATIONS

v USE ROLE AUTHORIZATIONS

v IGNORE ROLE AUTHORIZATIONS

v OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

v RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Protected Column
Name

VARCHAR(128) If the Alter Action is ADD_COLUMN_PROTECTION or
DROP_COLUMN_PROTECTION this is the name of the affected
column.

Column Security
Label

VARCHAR(128) The security label protecting the column specified in the field
Column Name.

Security Label
Column Name

VARCHAR(128) Name of the column containing the security label protecting the
row.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Chapter 11. Audit facility record layouts 309

Table 44. Audit Record Layout for OBJMAINT Events (continued)

NAME FORMAT DESCRIPTION

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Object Module VARCHAR(128) Name of module to which the object belongs.

Audit record layout for SECMAINT events
The format of the audit record for SECMAINT events is shown in the following
table.

Sample audit record:
timestamp=1998-06-24-11.57.45.188101;
category=SECMAINT;
audit event=GRANT;
event correlator=4;
event status=0;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.boss.980624155728;
application name=db2bp;
package schema=NULLID;
package name=SQLC28A1;
package section=0;
object schema=BOSS;
object name=T1;
object type=TABLE;
grantor=BOSS;
grantee=WORKER;
grantee type=USER;
privilege=SELECT;

Table 45. Audit Record Layout for SECMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

SECMAINT

310 Database Security Guide

Table 45. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the SECMAINT
category in “Audit events” on page 327.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

If the object type field is ACCESS_RULE then this field contains the
security policy name associated with the rule. The name of the rule
is stored in the field Object Name.

If the object type field is SECURITY_LABEL, then this field contains
the name of the security policy that the security label is part of. The
name of the security label is stored in the field Object Name.

Chapter 11. Audit facility record layouts 311

Table 45. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Represents a role name when the audit event is any of:

v ADD_DEFAULT_ROLE

v DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER

v DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

If the object type field is ACCESS_RULE then this field contains the
name of the rule. The security policy name associated with the rule
is stored in the field Object Schema.

If the object type field is SECURITY_LABEL, then this field contains
the name of the security label. The name of the security policy that
it is part of is stored in the field Object Schema.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible
values include: those shown in the topic titled “Audit record object
types”.

The value is ROLE when the audit event is any of:

v ADD_DEFAULT_ROLE

v DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER

v DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

Grantor VARCHAR(128) The ID of the grantor or the revoker of the privilege or authority.

Grantee VARCHAR(128) Grantee ID for which a privilege or authority was granted or
revoked.

Represents a trusted context object when the audit event is any of:

v ADD_DEFAULT_ROLE

v DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER, DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

312 Database Security Guide

Table 45. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Grantee Type VARCHAR(32) Type of the grantee that was granted to or revoked from. Possible
values include: USER, GROUP, ROLE, AMBIGUOUS, or is
TRUSTED_CONTEXT when the audit event is any of:

v ADD_DEFAULT_ROLE

v DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER

v DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

Privilege or Authority CHAR(34) Indicates the type of privilege or authority granted or revoked.
Possible values include: those shown in the topic titled “List of
possible SECMAINT privileges or authorities”.

The value is ROLE MEMBERSHIP when the audit event is any of
the following:

v ADD_DEFAULT_ROLE, DROP_DEFAULT_ROLE

v ALTER_DEFAULT_ROLE

v ADD_USER

v DROP_USER

v ALTER_USER_ADD_ROLE

v ALTER_USER_DROP_ROLE

v ALTER_USER_AUTHENTICATION

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Access Type VARCHAR(32) The access type for which a security label is granted.

Possible values:

v READ

v WRITE

v ALL

The access type for which a security policy is altered. Possible
values:

v USE GROUP AUTHORIZATIONS

v IGNORE GROUP AUTHORIZATIONS

v USE ROLE AUTHORIZATIONS

v IGNORE ROLE AUTHORIZATIONS

v OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

v RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Assumable Authid VARCHAR(128) When the privilege granted is a SETSESSIONUSER privilege this is
the authorization ID that the grantee is allowed to set as the session
user.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Chapter 11. Audit facility record layouts 313

Table 45. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Grantor Type VARCHAR(32) Type of the grantor. Possible values include: USER.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context User VARCHAR(128) Identifies a trusted context user when the audit event is
ADD_USER or DROP_USER.

Trusted Context User
Authentication

INTEGER Specifies the authentication setting for a trusted context user when
the audit event is ADD_USER, DROP_USER or
ALTER_USER_AUTHENTICATION
1 : Authentication is required
0 : Authentication is not required

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

SECMAINT privileges or authorities
The following list shows the possible SECMAINT privileges or authorities.

0x00000000000000000000000000000001 Control Table
Control privilege granted or revoked on or from a table or view.

0x00000000000000000000000000000002 ALTER
Privilege granted or revoked to alter a table or sequence.

0x00000000000000000000000000000004 ALTER with GRANT
Privilege granted or revoked to alter a table or sequence with granting of
privileges allowed.

0x00000000000000000000000000000008 DELETE TABLE
Privilege granted or revoked to drop a table or view.

0x00000000000000000000000000000010 DELETE TABLE with GRANT
Privilege granted or revoked to drop a table with granting of privileges
allowed.

0x00000000000000000000000000000020 Table Index
Privilege granted or revoked on or from an index.

0x00000000000000000000000000000040 Table Index with GRANT
Privilege granted or revoked on or from an index with granting of
privileges allowed.

0x00000000000000000000000000000080 Table INSERT
Privilege granted or revoked on or from an insert on a table or view.

314 Database Security Guide

0x00000000000000000000000000000100 Table INSERT with GRANT
Privilege granted or revoked on or from an insert on a table with granting
of privileges allowed.

0x00000000000000000000000000000200 Table SELECT
Privilege granted or revoked on or from a select on a table.

0x00000000000000000000000000000400 Table SELECT with GRANT
Privilege granted or revoked on or from a select on a table with granting
of privileges allowed.

0x00000000000000000000000000000800 Table UPDATE
Privilege granted or revoked on or from an update on a table or view.

0x00000000000000000000000000001000 Table UPDATE with GRANT
Privilege granted or revoked on or from an update on a table or view with
granting of privileges allowed.

0x00000000000000000000000000002000 Table REFERENCE
Privilege granted or revoked on or from a reference on a table.

0x00000000000000000000000000004000 Table REFERENCE with GRANT
Privilege granted or revoked on or from a reference on a table with
granting of privileges allowed.

0x00000000000000000000000000020000 CREATEIN Schema
CREATEIN privilege granted or revoked on or from a schema.

0x00000000000000000000000000040000 CREATEIN Schema with GRANT
CREATEIN privilege granted or revoked on or from a schema with
granting of privileges allowed.

0x00000000000000000000000000080000 DROPIN Schema
DROPIN privilege granted or revoked on or from a schema.

0x00000000000000000000000000100000 DROPIN Schema with GRANT
DROPIN privilege granted or revoked on or from a schema with granting
of privileges allowed.

0x00000000000000000000000000200000 ALTERIN Schema
ALTERIN privilege granted or revoked on or from a schema.

0x00000000000000000000000000400000 ALTERIN Schema with GRANT
ALTERIN privilege granted or revoked on or from a schema with granting
of privileges allowed.

0x00000000000000000000000000800000 DBADM Authority
DBADM authority granted or revoked.

0x00000000000000000000000001000000 CREATETAB Authority
Createtab authority granted or revoked.

0x00000000000000000000000002000000 BINDADD Authority
Bindadd authority granted or revoked.

0x00000000000000000000000004000000 CONNECT Authority
CONNECT authority granted or revoked.

0x00000000000000000000000008000000 Create not fenced Authority
Create not fenced authority granted or revoked.

0x00000000000000000000000010000000 Implicit Schema Authority
Implicit schema authority granted or revoked.

Chapter 11. Audit facility record layouts 315

0x00000000000000000000000020000000 Server PASSTHRU
Privilege granted or revoked to use the pass-through facility with this
server (federated database data source).

0x00000000000000000000000040000000 ESTABLISH TRUSTED CONNECTION
Trusted connection was created

0x00000000000000000000000100000000 Table Space USE
Privilege granted or revoked to create a table in a table space.

0x00000000000000000000000200000000 Table Space USE with GRANT
Privilege granted or revoked to create a table in a table space with granting
of privileges allowed.

0x00000000000000000000000400000000 Column UPDATE
Privilege granted or revoked on or from an update on one or more specific
columns of a table.

0x00000000000000000000000800000000 Column UPDATE with GRANT
Privilege granted or revoked on or from an update on one or more specific
columns of a table with granting of privileges allowed.

0x00000000000000000000001000000000 Column REFERENCE
Privilege granted or revoked on or from a reference on one or more
specific columns of a table.

0x00000000000000000000002000000000 Column REFERENCE with GRANT
Privilege granted or revoked on or from a reference on one or more
specific columns of a table with granting of privileges allowed.

0x00000000000000000000004000000000 LOAD Authority
LOAD authority granted or revoked.

0x00000000000000000000008000000000 Package BIND
BIND privilege granted or revoked on or from a package.

0x00000000000000000000010000000000 Package BIND with GRANT
BIND privilege granted or revoked on or from a package with granting of
privileges allowed.

0x00000000000000000000020000000000 EXECUTE
EXECUTE privilege granted or revoked on or from a package or a routine.

0x00000000000000000000040000000000 EXECUTE with GRANT
EXECUTE privilege granted or revoked on or from a package or a routine
with granting of privileges allowed.

0x00000000000000000000080000000000 EXECUTE IN SCHEMA
EXECUTE privilege granted or revoked for all routines in a schema.

0x00000000000000000000100000000000 EXECUTE IN SCHEMA with GRANT
EXECUTE privilege granted or revoked for all routines in a schema with
granting of privileges allowed.

0x00000000000000000000200000000000 EXECUTE IN TYPE
EXECUTE privilege granted or revoked for all routines in a type.

0x00000000000000000000400000000000 EXECUTE IN TYPE with GRANT
EXECUTE privilege granted or revoked for all routines in a type with
granting of privileges allowed.

0x00000000000000000000800000000000 CREATE EXTERNAL ROUTINE
CREATE EXTERNAL ROUTINE privilege granted or revoked.

316 Database Security Guide

0x00000000000000000001000000000000 QUIESCE_CONNECT
QUIESCE_CONNECT privilege granted or revoked.

0x00000000000000000004000000000000 SECADM Authority
SECADM authority granted or revoked

0x00000000000000000008000000000000 USAGE Authority
USAGE privilege granted or revoked on or from a sequence

0x00000000000000000010000000000000 USAGE with GRANT Authority
USAGE privilege granted or revoked on or from a sequence with granting
of privileges allowed.

0x00000000000000000020000000000000 WITH ADMIN Option
WITH ADMIN Option is granted or revoked to or from a role.

0x00000000000000000040000000000000 SETSESSIONUSER Privilege
SETSESSIONUSER granted or revoked

0x00000000000000000080000000000000 Exemption
Exemption granted or revoked

0x00000000000000000100000000000000 Security label
Security label granted or revoked

0x00000000000000000200000000000000 WRITE with GRANT
Privilege granted or revoked to write a global variable with granting of
privileges allowed.

0x00000000000000000400000000000000 Role Membership
Role membership that is granted or revoked

0x00000000000000000800000000000000 Role Membership with ADMIN Option
Role membership with ADMIN Option that is granted or revoked

0x00000000000000001000000000000000 READ
Privilege granted or revoked to read a global variable.

0x00000000000000002000000000000000 READ with GRANT
Privilege granted or revoked to read a global variable with granting of
privileges allowed.

0x00000000000000004000000000000000 WRITE
Privilege granted or revoked to write a global variable.

0x00000000000000010000000000000000 SQLADM
SQLADM authority granted or revoked.

0x00000000000000020000000000000000 WLMADM
WLMADM authority granted or revoked.

0x00000000000000040000000000000000 EXPLAIN
EXPLAIN authority granted or revoked.

0x00000000000000080000000000000000 DATAACCESS
DATAACCESS authority granted or revoked.

0x00000000000000100000000000000000 ACCESSCTRL
ACCESSCTRL authority granted or revoked.

Audit record layout for SYSADMIN events
The following table shows the audit record layout for SYSADMIN events.

Sample audit record:

Chapter 11. Audit facility record layouts 317

timestamp=1998-06-24-11.54.04.129923;
category=SYSADMIN;
audit event=DB2AUDIT;
event correlator=1;
event status=0;
userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155404;
application name=db2audit;

Table 46. Audit Record Layout for SYSADMIN Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

SYSADMIN

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the SYSADMIN
category in “Audit events” on page 327.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

318 Database Security Guide

Table 46. Audit Record Layout for SYSADMIN Events (continued)

NAME FORMAT DESCRIPTION

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Audit record layout for VALIDATE events
The format of the audit record for VALIDATE events is shown in the following
table.

Sample audit record:
timestamp=2007-05-07-10.30.51.585626;
category=VALIDATE;
audit event=AUTHENTICATION;
event correlator=1;
event status=0;
userid=newton;
authid=NEWTON;
execution id=gstager;
application id=*LOCAL.gstager.070507143051;
application name=db2bp;
auth type=SERVER;
plugin name=IBMOSauthserver;

Table 47. Audit Record Layout for VALIDATE Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

VALIDATE

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GET_GROUPS, GET_USERID,
AUTHENTICATE_PASSWORD, VALIDATE_USER, AUTHENTICATION and
GET_USERMAPPING_FROM_PLUGIN.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Chapter 11. Audit facility record layouts 319

Table 47. Audit Record Layout for VALIDATE Events (continued)

NAME FORMAT DESCRIPTION

Execution ID VARCHAR(1024) Execution ID in use at the time of the audit event.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Authentication Type VARCHAR(32) Authentication type at the time of the audit event.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Plug-in Name VARCHAR(32) The name of the plug-in in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted
connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The name of the role inherited through the trusted context.

Audit record layout for CONTEXT events
The following table shows the audit record layout for CONTEXT events.

Sample audit record:
timestamp=1998-06-24-08.42.41.476840;
category=CONTEXT;
audit event=EXECUTE_IMMEDIATE;
event correlator=3;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.newton.980624124210;

320 Database Security Guide

application name=testapp;
package schema=NULLID;
package name=SQLC28A1;
package section=203;
text=create table audit(c1 char(10), c2 integer);

Table 48. Audit Record Layout for CONTEXT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

CONTEXT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the CONTEXT
category in “Audit events” on page 327.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

When the audit event is SWITCH_USER, this field
represents the user ID that is switched to.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

When the audit event is SWITCH_USER, this field
represents the authorization ID that is switched to.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Statement Text CLOB(8M) Text of the SQL or XQuery statement, if applicable. Null if no SQL
or XQuery statement text is available.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event occurred.
This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that is
part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Chapter 11. Audit facility record layouts 321

Table 48. Audit Record Layout for CONTEXT Events (continued)

NAME FORMAT DESCRIPTION

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register
at the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the
trusted connection.

Connection Trust Type INTEGER Possible values are:
IMPLICIT_TRUSTED_CONNECTION
EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Audit record layout for EXECUTE events
The following table describes all of the fields that are audited as part of the
EXECUTE category.

Sample audit record:

Note: Unlike other audit categories, the EXECUTE category, when the audit log is
viewed in a table format, can show multiple rows describing one event. The first
record describes the main event, and its event column contains the key word
STATEMENT. The remaining rows describe the parameter markers or host
variables, one row per parameter, and their event column contains the key word
DATA. When the audit log is viewed in report format, there is one record, but it
has multiple entries for the Statement Value. The DATA key word is only be
present in table format.
timestamp=2006-04-10-13.20.51.029203;

category=EXECUTE;
audit event=STATEMENT;
event correlator=1;
event status=0;
database=SAMPLE;
userid=smith;
authid=SMITH;
session authid=SMITH;
application id=*LOCAL.prodrig.060410172044;
application name=myapp;
package schema=NULLID;
package name=SQLC2F0A;
package section=201;
uow id=2;
activity id=3;
statement invocation id=0;
statement nesting level=0;
statement text=SELECT * FROM DEPARTMENT WHERE DEPTNO = ? AND DEPTNAME = ?;
statement isolation level=CS;
compilation environment=

isolation level=CS
query optimization=5
min_dec_div_3=NO
degree=1
sqlrules=DB2
refresh age=+00000000000000.000000
schema=SMITH
maintained table type=SYSTEM
resolution timestamp=2006-04-10-13.20.51.000000

322 Database Security Guide

federated asynchrony=0;
value index=0;
value type=CHAR;
value data=C01;
value index=1;
value type=VARCHAR;
value extended indicator=-1;
value index=INFORMATION CENTER;
local_start_time=2006-04-10-13.20.51.021507

Table 49. Audit Record Layout for EXECUTE Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit
event

Category CHAR(8) Category of audit event.
Possible values are:
EXECUTE

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values,
refer to the section for the
EXECUTE category in
“Audit events” on page 327.

Event Correlator INTEGER Correlation identifier for the
operation being audited. Can
be used to identify what
audit records are associated
with a single event.

Event Status INTEGER Status of audit event,
represented by an SQLCODE
where Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for
which the event was
generated. Blank if this was
an instance level audit event

User ID VARCHAR(1024) User ID at time of audit
event.

Authorization ID VARCHAR(128) The Statement Authorization
ID at time of audit event.

Session Authorization ID VARCHAR(128) The Session Authorization ID
at the time of the audit
event.

Origin Node Number SMALLINT Member number at which
the audit event occurred

Coordinator Node Number SMALLINT Member number of the
coordinator member

Application ID VARCHAR(255) Application ID in use at the
time the audit event
occurred.

Application Name VARCHAR(1024) Application name in use at
the time the audit event
occurred.

Chapter 11. Audit facility record layouts 323

Table 49. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Client User ID VARCHAR(255) The value of the CURRENT
CLIENT USERID special
register at the time the audit
event occurred

Client Accounting String VARCHAR(255) The value of the CURRENT
CLIENT_ACCTNG special
register at the time the audit
event occurred

Client Workstation Name VARCHAR(255) The value of the CURRENT
CLIENT_WRKSTNNAME
special register at the time
the audit event occurred

Client Application Name VARCHAR(255) The value of the CURRENT
CLIENT_APPLNAME special
register at the time the audit
event occurred

Trusted Context Name VARCHAR(128) The name of the trusted
context associated with the
trusted connection.

Connection Trust type INTEGER Possible values are
IMPLICIT_TRUSTED_
CONNECTION and
EXPLICIT_TRUSTED_
CONNECTION.

Role Inherited VARCHAR(128) The role inherited through a
trusted connection.

Package Schema VARCHAR(128) Schema of the package in use
at the time of the audit
event.

Package Name VARCHAR(128) Name of package in use at
the time the audit event
occurred.

Package Section SMALLINT Section number in package
being used at the time the
audit event occurred.

Package Version VARCHAR(164) Version of the package in use
at the time the audit event
occurred.

Local Transaction ID VARCHAR(10) FOR BIT
DATA

The local transaction ID in
use at the time the audit
event occurred. This is the
SQLU_TID structure that is
part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR BIT
DATA

The global transaction ID in
use at the time the audit
event occurred. This is the
data field in the SQLP_GXID
structure that is part of the
transaction logs

324 Database Security Guide

Table 49. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

UOW ID BIGINT The unit of work identifier in
which an activity originates.
This value is unique within
an application ID for each
unit of work.

Activity ID BIGINT The unique activity ID
within the unit of work.

Statement Invocation ID BIGINT An identifier that
distinguishes one invocation
of a routine from others at
the same nesting level within
a unit of work. It is unique
within a unit of work for a
specific nesting level.

Statement Nesting Level BIGINT The level of nesting or
recursion in effect when the
statement was being run;
each level of nesting
corresponds to nested or
recursive invocation of a
stored procedure or
user-defined function (UDF).

Activity Type VARCHAR(32) The type of activity.

Possible values are:

v READ_DML

v WRITE_DML

v DDL

v CALL

v NONE

Statement Text CLOB(8M) Text of the SQL or XQuery
statement, if applicable.

Statement Isolation Level CHAR(8) The isolation value in effect
for the statement while it
was being run.

Possible values are:

v NONE (no isolation
specified)

v UR (uncommitted read)

v CS (cursor stability)

v RS (read stability)

v RR (repeatable read)

Compilation Environment
Description

BLOB(8K) The compilation environment
used when compiling the
SQL statement. You can
provide this element as input
to the COMPILATION_ENV
table function, or to the SET
COMPILATION
ENVIRONMENT SQL
statement

Chapter 11. Audit facility record layouts 325

Table 49. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Rows Modified INTEGER Contains the total number of
rows deleted, inserted, or
updated as a result of both:

v The enforcement of
constraints after a
successful delete operation

v The processing of
triggered SQL statements
from activated inlined
triggers

If compound SQL is invoked,
contains an accumulation of
the number of such rows for
all sub-statements. In some
cases, when an error is
encountered, this field
contains a negative value
that is an internal error
pointer. This value is
equivalent to the sqlerrd(5)
field of the SQLCA.

Rows Returned BIGINT Contains the total number of
rows returned by the
statement.

Savepoint ID BIGINT The Savepoint ID in effect
for the statement while it is
being run. If the Audit Event
is SAVEPOINT,
RELEASE_SAVEPOINT or
ROLLBACK_SAVEPOINT,
then the Savepoint ID is the
save point that is being set,
released, or rolled back to.

Statement Value Index INTEGER The position of the input
parameter marker or host
variable used in the SQL
statement.

Statement Value Type CHAR(16) A string representation of the
type of a data value
associated with the SQL
statement. INTEGER or
CHAR are examples of
possible values.

Statement Value Data CLOB(128K) A string representation of a
data value to the SQL
statement. LOB, LONG,
XML, and structured type
parameters are not present.
Date, time, and timestamp
fields are recorded in ISO
format.

326 Database Security Guide

Table 49. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Statement Value Extended
Indicator

INTEGER The value of the extended
indicator specified for this
statement value. The possible
values are:

v 0 if the statement value
was specified as assigned
by the indicator value,

v -1 if NULL was specified
by the indicator value,

v -5 if DEFAULT was
specified by the indicator
value,

v -7 if UNASSIGNED was
specified by the indicator
value.

Local Start Time CHAR(26) The time that this activity
began working on the
partition. This field can be an
empty string when the
activity does not require a
package, that is, for
CONNECT, CONNECT
RESET, COMMIT, and
ROLLBACK, as an example.
The value is logged in local
time.

Audit events
For each audit category, certain types of events can create audit records.

Events for the AUDIT category
v ALTER_AUDIT_POLICY
v ARCHIVE
v AUDIT_REMOVE
v AUDIT_REPLACE
v AUDIT_USING
v CONFIGURE
v CREATE_AUDIT_POLICY
v DB2AUD
v DROP_AUDIT_POLICY
v EXTRACT
v FLUSH
v LIST_LOGS
v PRUNE (not generated in Version 9.5, and later).
v START
v STOP
v UPDATE_DBM_CFG

Chapter 11. Audit facility record layouts 327

Events for the CHECKING category
v CHECKING_FUNCTION
v CHECKING_MEMBERSHIP_IN_ROLES
v CHECKING_OBJECT
v CHECKING_TRANSFER

Events for the CONTEXT category
v ADD_NODE
v ATTACH
v BACKUP_DB
v BIND
v CLOSE_CONTAINER_QUERY
v CLOSE_CURSOR
v CLOSE_HISTORY_FILE
v CLOSE_TABLESPACE_QUERY
v COMMIT
v CONNECT
v CONNECT_RESET
v CREATE_DATABASE
v DARI_START
v DARI_STOP
v DBM_CFG_OPERATION
v DESCRIBE
v DESCRIBE_DATABASE
v DETACH
v DISCOVER
v DROP_DATABASE
v ENABLE_MULTIPAGE
v ESTIMATE_SNAPSHOT_SIZE
v EXECUTE
v EXECUTE_IMMEDIATE
v EXTERNAL_CANCEL
v FETCH_CONTAINER_QUERY
v FETCH_CURSOR
v FETCH_HISTORY_FILE
v FETCH_TABLESPACE
v FORCE_APPLICATION
v GET_DB_CFG
v GET_DFLT_CFG
v GET_SNAPSHOT
v GET_TABLESPACE_STATISTIC
v IMPLICIT_REBIND
v LOAD_MSG_FILE
v LOAD_TABLE
v OPEN_CONTAINER_QUERY

328 Database Security Guide

v OPEN_CURSOR
v OPEN_HISTORY_FILE
v OPEN_TABLESPACE_QUERY
v PREPARE
v PRUNE_RECOVERY_HISTORY
v QUIESCE_TABLESPACE
v READ_ASYNC_LOG_RECORD
v REBIND
v REDISTRIBUTE
v REORG
v REQUEST_ROLLBACK
v RESET_DB_CFG
v RESET_MONITOR
v RESTORE_DB
v ROLLBACK
v ROLLFORWARD_DB
v RUNSTATS
v SET_APPL_PRIORITY
v SET_MONITOR
v SET_RUNTIME_DEGREE
v SET_TABLESPACE_CONTAINERS
v SINGLE_TABLESPACE_QUERY
v SWITCH_USER
v UNLOAD_TABLE
v UNQUIESCE_TABLESPACE
v UPDATE_AUDIT
v UPDATE_DBM_CFG
v UPDATE_RECOVERY_HISTORY

Events for the EXECUTE category
v COMMIT Execution of a COMMIT statement
v CONNECT Establishment of a database connection
v CONNECT RESET Termination of a database connection
v DATA A host variable or parameter marker data values for the statement

This event is repeated for each host variable or parameter marker that is part of
the statement. It is only present in a delimited extract of an audit log.

v GLOBAL COMMIT Execution of a COMMIT within a global transaction
v GLOBAL ROLLBACK Execution of a ROLLBACK within a global transaction
v RELEASE SAVEPOINT Execution of a RELEASE SAVEPOINT statement
v ROLLBACK Execution of a ROLLBACK statement
v SAVEPOINT Execution of a SAVEPOINT statement
v STATEMENT Execution of an SQL statement
v SWITCH USER Switching of a user within a trusted connection

Chapter 11. Audit facility record layouts 329

Events for the OBJMAINT category
v ALTER_OBJECT (generated when altering protected tables and when altering

modules)
v CREATE_OBJECT
v DROP_OBJECT
v RENAME_OBJECT

Events for the SECMAINT category
v ADD_DEFAULT_ROLE
v ADD_USER
v ALTER_DEFAULT_ROLE
v ALTER SECURITY POLICY
v ALTER_USER_ADD_ROLE
v ALTER_USER_AUTHENTICATION
v ALTER_USER_DROP_ROLE
v DROP_DEFAULT_ROLE
v DROP_USER
v GRANT
v IMPLICIT_GRANT
v IMPLICIT_REVOKE
v REVOKE
v SET_SESSION_USER
v TRANSFER_OWNERSHIP
v UPDATE_DBM_CFG

Events for the SYSADMIN category
v ACTIVATE_DB
v ADD_NODE
v ALTER_BUFFERPOOL
v ALTER_DATABASE
v ALTER_NODEGROUP
v ALTER_TABLESPACE
v ATTACH_DEBUGGER
v BACKUP_DB
v CATALOG_DB
v CATALOG_DCS_DB
v CATALOG_NODE
v CHANGE_DB_COMMENT
v CLOSE_CONTAINER_QUERY
v CLOSE_TABLESPACE_QUERY
v CREATE_BUFFERPOOL
v CREATE_DATABASE
v CREATE_DB_AT_NODE
v CREATE_EVENT_MONITOR
v CREATE_INSTANCE
v CREATE_NODEGROUP

330 Database Security Guide

v CREATE_TABLESPACE
v DB2AUD
v DB2AUDIT
v DB2REMOT
v DB2SET
v DB2TRC
v DEACTIVATE_DB
v DELETE_INSTANCE
v DESCRIBE_DATABASE
v DROP_BUFFERPOOL
v DROP_DATABASE
v DROP_EVENT_MONITOR
v DROP_NODEGROUP
v DROP_NODE_VERIFY
v DROP_TABLESPACE
v ENABLE_MULTIPAGE
v ESTIMATE_SNAPSHOT_SIZE
v FETCH_CONTAINER_QUERY
v FETCH_TABLESPACE
v FORCE_APPLICATION
v GET_SNAPSHOT
v GET_TABLESPACE_STATISTIC
v GRANT_DBADM (V97:no longer generated)
v GRANT_DB_AUTH (V97:no longer generated)
v KILLDBM
v LIST_DRDA_INDOUBT_TRANSACTIONS
v LOAD_TABLE
v MERGE_DBM_CONFIG_FILE
v MIGRATE_DB
v MIGRATE_DB_DIR
v MIGRATE_SYSTEM_DIRECTORY
v OPEN_CONTAINER_QUERY
v OPEN_TABLESPACE_QUERY
v PRUNE_RECOVERY_HISTORY
v QUIESCE_TABLESPACE
v READ_ASYNC_LOG_RECORD
v REDISTRIBUTE_NODEGROUP
v RENAME_TABLESPACE
v RESET_ADMIN_CFG
v RESET_DBM_CFG
v RESET_DB_CFG
v RESET_MONITOR
v RESTORE_DB
v REVOKE_DBADM (V97:no longer generated)
v REVOKE_DB_AUTH (V97:no longer generated)

Chapter 11. Audit facility record layouts 331

v ROLLFORWARD_DB
v SET_APPL_PRIORITY
v SET_EVENT_MONITOR_STATE
v SET_RUNTIME_DEGREE
v SET_TABLESPACE_CONTAINERS
v SINGLE_TABLESPACE_QUERY
v START_DB2
v STOP_DB2
v UNCATALOG_DB
v UNCATALOG_DCS_DB
v UNCATALOG_NODE
v UNLOAD_TABLE
v UPDATE_ADMIN_CFG
v UPDATE_CLI_CONFIGURATION
v UPDATE_DB_VERSION
v UPDATE_DBM_CFG
v UPDATE_DB_CFG
v SET_MONITOR
v UPDATE_RECOVERY_HISTORY

Events for the VALIDATE category
v AUTHENTICATE
v CHECK_GROUP_MEMBERSHIP (not generated in Version 9.5, and later)
v GET_USERMAPPING_FROM_PLUGIN
v GET_GROUPS (not generated in Version 9.5, and later)
v GET_USERID (not generated in Version 9.5, and later)

332 Database Security Guide

Chapter 12. Working with operating system security

Operating systems provide security features that you can use to support security
for your database installation.

DB2 and Windows security
A Windows domain is an arrangement of client and server computers referenced
by a specific and unique name; and, that share a single user accounts database
called the Security Access Manager (SAM). One of the computers in the domain is
the domain controller. The domain controller manages all aspects of user-domain
interactions.

The domain controller uses the information in the domain user accounts database
to authenticate users logging onto domain accounts. For each domain, one domain
controller is the primary domain controller (PDC). Within the domain, there may
also be backup domain controllers (BDC) which authenticate user accounts when
there is no primary domain controller or the primary domain controller is not
available. Backup domain controllers hold a copy of the Windows Security Account
Manager (SAM) database which is regularly synchronized against the master copy
on the PDC.

User accounts, user IDs, and passwords only need to be defined at the primary
domain controller to be able to access domain resources.

Note: Two-part user IDs are supported by the CONNECT statement and the
ATTACH command. The qualifier of the SAM-compatible user ID is a name of the
style 'Domain\User' which has a maximum length of 15 characters.

During the setup procedure when a Windows server is installed, you may select to
create:
v A primary domain controller in a new domain
v A backup domain controller in a known domain
v A stand-alone server in a known domain.

Selecting “controller” in a new domain makes that server the primary domain
controller.

The user may log on to the local machine, or when the machine is installed in a
Windows Domain, the user may log on to the Domain. To authenticate the user,
DB2 checks the local machine first, then the Domain Controller for the current
Domain, and finally any Trusted Domains known to the Domain Controller.

To illustrate how this works, suppose that the DB2 instance requires Server
authentication. The configuration is as follows:

© Copyright IBM Corp. 2013 333

Each machine has a security database, Security Access Management (SAM). DC1 is
the domain controller, in which the client machine, Ivan, and the DB2 server, Servr,
are enrolled. TDC2 is a trusted domain for DC1 and the client machine, Abdul, is a
member of TDC2's domain.

Authentication scenarios

A scenario with server authentication (Windows)
The following example demonstrates authentication of a user by a server.
1. Abdul logs on to the TDC2 domain (that is, he is known in the TDC2 SAM

database).
2. Abdul then connects to a DB2 database that is cataloged to reside on SRV3:

db2 connect to remotedb user Abdul using fredpw

3. SRV3 determines where Abdul is known. The API that is used to find this
information first searches the local machine (SRV3) and then the domain
controller (DC1) before trying any trusted domains. Username Abdul is found
on TDC2. This search order requires a single namespace for users and groups.

4. SRV3 then:
a. Validates the username and password with TDC2.
b. Finds out whether Abdul is an administrator by asking TDC2.
c. Enumerates all Abdul's groups by asking TDC2.

A scenario with client authentication and a Windows client
machine
The following example demonstrates authentication of a user by a client computer.
1. Dale, the administrator, logs on to SRV3 and changes the authentication for the

database instance to Client:
db2 update dbm cfg using authentication client
db2stop
db2start

Figure 7. Authentication Using Windows Domains

334 Database Security Guide

2. Ivan, at a Windows client machine, logs on to the DC1 domain (that is, he is
known in the DC1 SAM database).

3. Ivan then connects to a DB2 database that is cataloged to reside on SRV3:
DB2 CONNECT to remotedb user Ivan using johnpw

4. Ivan's machine validates the username and password. The API used to find this
information first searches the local machine (Ivan) and then the domain
controller (DC1) before trying any trusted domains. Username Ivan is found on
DC1.

5. Ivan's machine then validates the username and password with DC1.
6. SRV3 then:

a. Determines where Ivan is known.
b. Finds out whether Ivan is an administrator by asking DC1.
c. Enumerates all Ivan's groups by asking DC1.

Note: Before attempting to connect to the DB2 database, ensure that DB2 Security
Service has been started. The Security Service is installed as part of the Windows
installation. DB2 is then installed and “registered” as a Windows service however,
it is not started automatically. To start the DB2 Security Service, enter the NET
START DB2NTSECSERVER command.

Support for global groups (Windows)
The DB2 database system supports global groups.

To use global groups, you must include global groups inside a local group. When
the DB2 database manager enumerates all the groups that a person is a member of,
it also lists the local groups that the user is a member of indirectly (by the virtue of
being in a global group that is itself a member of one or more local groups).

Global groups are used in two possible situations:
v Included inside a local group. Permission must be granted to this local group.
v Included on a domain controller. Permission must be granted to the global

group.

User authentication and group information with DB2 on
Windows

User name and group name restrictions (Windows)
There are a few limitations that are specific to the Windows environment. Be aware
that general DB2 object naming rules also apply.
v User names under Windows are not case sensitive; however, passwords are case

sensitive.
v User names and group names can be a combination of upper- and lowercase

characters. However, they are usually converted to uppercase when used within
the DB2 database. For example, if you connect to the database and create the
table schema1.table1, this table is stored as SCHEMA1.TABLE1 within the
database. (If you want to use lowercase object names, issue commands from the
command line processor, enclosing the object names in quotation marks, or use
third-party ODBC front-end tools.)

v The DB2 database manager supports a single namespace. That is, when running
in a trusted domains environment, you should not have a user account of the
same name that exists in multiple domains, or that exists in the local SAM of the
server machine and in another domain.

Chapter 12. Working with operating system security 335

v A user name should not be the same name as a group name.
v A local group should not have the same name as a domain level group.

Groups and user authentication on Windows
Users are defined on Windows by creating user accounts using the Windows
administration tool called the “User Manager”. An account containing other
accounts, also called members, is a group.

Groups give Windows administrators the ability to grant rights and permissions to
the users within the group at the same time, without having to maintain each user
individually. Groups, like user accounts, are defined and maintained in the
Security Access Manager (SAM) database.

There are two types of groups:
v Local groups. A local group can include user accounts created in the local

accounts database. If the local group is on a machine that is part of a domain,
the local group can also contain domain accounts and groups from the Windows
domain. If the local group is created on a workstation, it is specific to that
workstation.

v Global groups. A global group exists only on a domain controller and contains
user accounts from the domain's SAM database. That is, a global group can only
contain user accounts from the domain on which it is created; it cannot contain
any other groups as members. A global group can be used in servers and
workstations of its own domain, and in trusting domains.

Trust relationships between domains on Windows
Trust relationships are an administration and communication link between two
domains. A trust relationship between two domains enables user accounts and
global groups to be used in a domain other than the domain where the accounts
are defined.

Account information is shared to validate the rights and permissions of user
accounts and global groups residing in the trusted domain without being
authenticated. Trust relationships simplify user administration by combining two
or more domains into an single administrative unit.

There are two domains in a trust relationship:
v The trusting domain. This domain trusts another domain to authenticate users

for them.
v The trusted domain. This domain authenticates users on behalf of (in trust for)

another domain.

Trust relationships are not transitive. This means that explicit trust relationships
need to be established in each direction between domains. For example, the
trusting domain may not necessarily be a trusted domain.

Authentication with groups and domain security (Windows)
The DB2 database system allows you to specify either a local group or a global
group when granting privileges or defining authority levels.

About this task

A user is determined to be a member of a group if the user's account is defined
explicitly in the local or global group, or implicitly by being a member of a global
group defined to be a member of a local group.

336 Database Security Guide

The DB2 database manager supports the following types of groups:
v Local groups
v Global groups
v Global groups as members of local groups.

The DB2 database manager enumerates the local and global groups of which the
user is a member, using the security database where the user was found. The
DB2 database system provides an override that forces group enumeration to
occur on the local Windows server where the DB2 database is installed,
regardless of where the user account was found. This override can be achieved
using the following commands:
– For global settings:

db2set -g DB2_GRP_LOOKUP=local

– For instance settings:
db2set -i instance_name DB2_GRP_LOOKUP=local

After issuing this command, you must stop and start the DB2 database
instance for the change to take effect. Then create local groups and include
domain accounts or global groups in the local group.

To view all DB2 profile registry variables that are set, type
db2set -all

If the DB2_GRP_LOOKUP profile registry variable is set to local, then the DB2 database
manager tries to enumerate the user's groups on the local machine only. If the user
is not defined as a member of a local group, or of a global group nested in a local
group, then group enumeration fails. The DB2 database manager does not try to
enumerate the user's groups on another machine in the domain or on the domain
controllers.

If the DB2 database manager is running on a machine that is a primary or backup
domain controller in the resource domain, it is able to locate any domain controller
in any trusted domain. This occurs because the names of the domains of backup
domain controllers in trusted domains are only known if you are a domain
controller.

Using an access token to acquire users' group information
(Windows)
An access token is an object that describes the security context of a process or
thread. The information in an access token includes the identity and privileges of
the user account associated with the process or thread.

When you log on, the system verifies your password by comparing it with
information stored in a security database. If the password is authenticated, the
system produces an access token. Every process run on your behalf uses a copy of
this access token.

An access token can also be acquired based on cached credentials. After you have
been authenticated to the system, your credentials are cached by the operating
system. The access token of the last logon can be referenced in the cache when it is
not possible to contact the domain controller.

The access token includes information about all of the groups you belong to: local
groups and various domain groups (global groups, domain local groups, and
universal groups).

Chapter 12. Working with operating system security 337

Note: Group lookup using client authentication is not supported using a remote
connection even though access token support is enabled.

To enable access token support, you must use the db2set command to update the
DB2_GRP_LOOKUP registry variable. DB2_GRP_LOOKUP can have up to two parameters,
separated by a comma:
v The first parameter is for conventional group lookup and can take the values: "

", "LOCAL", or "DOMAIN".
v The second parameter is for token style group lookup and can take the values:

"TOKEN", "TOKENDOMAIN", or "TOKENLOCAL".

If the second parameter (TOKEN, TOKENDOMAIN, or TOKENLOCAL) is specified, it takes
precedence over conventional group enumeration. If token group enumeration
fails, conventional group lookup occurs, if the first parameter of DB2_GRP_LOOKUP
was specified.

The meaning of the values TOKEN, TOKENDOMAIN, and TOKENLOCAL are as follows:
v TOKENLOCAL

The token is used to enumerate groups at the local machine (this is equivalent to
conventional "LOCAL" group lookup).

v TOKENDOMAIN

The token is used to enumerate groups at the location where the user is defined
(at local machine for a local user and at the domain for a domain user). This is
equivalent to conventional " ", or "DOMAIN" group lookup.

v TOKEN

The token is used to enumerate groups at both the domain and on the local
machine. For a local user, the groups returned will contain local groups. For a
domain user, the groups returned will contain both domain and local groups.
There is no equivalent in conventional group lookup.

For example, the following setting of DB2_GRP_LOOKUP enables access token support
for enumerating local groups:

db2set DB2_GRP_LOOKUP=LOCAL,TOKENLOCAL

The next example enables access token support for enumerating groups at both the
local machine as well as the location where the user ID is defined (if the account is
defined at the domain):

db2set DB2_GRP_LOOKUP=,TOKEN

This final example enables access token support for enumerating domain groups at
the location where the user ID is defined:

db2set DB2_GRP_LOOKUP=DOMAIN,TOKENDOMAIN

Note: Access token support can be enabled with all authentications types except
CLIENT authentication.

The DB2_GRP_LOOKUP environment variable and DB2 group
enumeration (Windows)
On Windows, a user can belong to groups defined at the domain level, groups
defined on the local machine, or to both.

The DB2_GRP_LOOKUP environment variable controls whether groups are enumerated
on the local machine, or where the users are defined (on the local machine if they
are a local user, or at the domain level if they are a domain user). Therefore, when

338 Database Security Guide

the security administrator grants authorities and privileges, care must be taken that
DB2_GRP_LOOKUP is set as intended and the correct users receive the intended
authorization.

If the DB2_GRP_LOOKUP profile registry variable is not set:
1. The DB2 database system first tries to find the user on the same machine.
2. If the user name is defined locally, the user is authenticated locally.
3. If the user is not found locally, the DB2 database system attempts to find the

user name on it's domain, and then on trusted domains.

For example, consider the following situation where DB2_GRP_LOOKUP is not set:
1. The domain user DUSER1 is a member of the local group, GROUP1.
2. The security administrator (who holds SECADM authority) grants DBADM

authority to group GROUP1.
GRANT DBADM ON database TO GROUP GROUP1

3. Because DB2_GRP_LOOKUP is not set, groups are enumerated where users are
defined. So, groups for DUSER1 are enumerated at the domain level. Since
DUSER1 does not belong to group GROUP1 at the domain level, DUSER1 does
not receive DBADM authority.

Further, consider this more complex scenario involving the UPGRADE DATABASE
command where DB2_GRP_LOOKUP is not set:
1. The domain user DUSER2 is a member of the local Administrators group.
2. The sysadm_group configuration parameter is not set, therefore members of the

local Administrators group automatically hold SYSADM authority.
3. User DUSER2 is able to issue the UPGRADE DATABASE command (since DUSER2

holds SYSADM authority). The UPGRADE DATABASE command grants DBADM
authority on the database being upgraded to the SYSADM group, in this case,
the Administrators group.

4. Because DB2_GRP_LOOKUP is not set, groups are enumerated where users are
defined. So, groups for DUSER2 are enumerated at the domain level. Since
DUSER2 does not belong to the Administrators group at the domain level,
DUSER2 does not receive DBADM authority.

Possible solutions for this scenario are to make one of the following changes:
v Set DB2_GRP_LOOKUP = local

v Add the users that should have DBADM authority to the Administrators or
GROUP1 group at the Domain Controller.

You can use the SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID table
function to verify the authorities held by a user, as shown in the following
example for DUSER1:
SELECT AUTHORITY, D_USER, D_GROUP, D_PUBLIC, ROLE_USER, ROLE_GROUP, ROLE_PUBLIC, D_ROLE

FROM TABLE (SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID (’DUSER1’, ’U’)) AS T
ORDER BY AUTHORITY

You can use the SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID table function to
verify the groups to which the DB2 database manager has determined a user
belongs, as shown in the following example for DUSER1:
SELECT * FROM TABLE (SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID (’DUSER1’)) AS T

Chapter 12. Working with operating system security 339

Note: If you use the same group name at both the domain level and on the local
machine, because the DB2 database manager does not fully qualify the groups, this
can lead to confusion.

Authentication using an ordered domain list
User IDs may be defined more than once in a trusted domain forest. A trusted
domain forest is a collection of domains that are interrelated through a network.

About this task

It is possible for a user on one domain to have the same user ID as that for
another user on a different domain. This may cause difficulties when attempting to
do any of the following actions:
v Authenticating multiple users having the same user ID but on different domains.
v Group lookup for the purposes of granting and revoking privileges based on

groups.
v Validation of passwords.
v Control of network traffic.

To prevent difficulties arising from the possibility of multiple users with the same
user ID across a domain forest, you should use an ordered domain list as defined
using the db2set and the registry variable DB2DOMAINLIST. When setting the order,
the domains to be included in the list are separated by a comma. You must make a
conscious decision regarding the order that the domains are searched when
authenticating users.

Those user IDs that are present on domains further down the domain list will have
to be renamed by you if they are to be authenticated for access.

Control of access can be done through the domain list. For example, if the domain
of a user is not in the list, the user will not be allowed to connect.

Note: The DB2DOMAINLIST registry variable is effective only when CLIENT
authentication is set in the database manager configuration and is needed if a
single signon from a Windows desktop is required in a Windows domain
environment. DB2DOMAINLIST is supported by some versions of DB2 servers
however DB2DOMAINLIST will not be enforced if neither the client nor the server are
in a Windows environment.

Domain security support (Windows)
The following example illustrates how the DB2 database management system can
support Windows domain security. The connection works because the user name
and local group are on the same domain.

The connection works in the following scenario because the user name and local or
global group are on the same domain.

Note that the user name and local or global group do not need to be defined on
the domain where the database server is running, but they must be on the same
domain as each other.

340 Database Security Guide

Table 50. Successful Connection Using a Domain Controller

Domain1 Domain2

A trust relationship exists with Domain2. v A trust relationship exists with Domain1.

v The local or global group grp2 is defined.

v The user name id2 is defined.

v The user name id2 is part of grp2.

The DB2 server runs in this domain. The following DB2
commands are issued from it:

REVOKE CONNECT ON db FROM public
GRANT CONNECT ON db TO GROUP grp2
CONNECT TO db USER id2

The local or global domain is scanned but id2 is not
found. Domain security is scanned.

The user name id2 is found on this domain. DB2 gets
additional information about this user name (that is, it is
part of the group grp2).

The connection works because the user name and local
or global group are on the same domain.

Defining which users hold SYSADM authority (Windows)
Certain users have SYSADM authority if the sysadm_group database manager
configuration parameter is not set (that is, it is NULL).

These users are:
v Members of the local Administrators group
v Members of the Administrators group at the Domain Controller, if the DB2

database manager is configured to enumerate groups for users at the location
where the users are defined (you can use the DB2_GRP_LOOKUP environment
variable to configure group enumeration)

v Members of the DB2ADMNS group, if Windows extended security is enabled.
The location of the DB2ADMNS group is decided during installation.

v The LocalSystem account

There are cases where the previously mentioned default behavior is not desirable.
You can use the sysadm_group database manager configuration parameter to
override this behavior by using one of the following methods:
v Create a local group on the DB2 server machine and add to it users (domain

users or local users) that you want to have SYSADM authority. The DB2
database manager should be configured to enumerate groups for the user on the
local machine.

v Create a domain group and add to it the users that you want to have SYSADM
authority. The DB2 database manager should be configured to enumerate groups
for users at the location where the users are defined.

Then update the sysadm_group database manager configuration parameter to this
group, using the following commands:

DB2 UPDATE DBM CFG USING SYSADM_GROUP group_name
DB2STOP
DB2START

Chapter 12. Working with operating system security 341

Windows LocalSystem account support
On Windows platforms, the DB2 database system supports applications running
under the context of the LocalSystem account (LSA) with local implicit connection.
The authorization ID for the LocalSystem account is SYSTEM.

If you are using a non-English version of a Windows operating system, you need
to check that the authorization ID for the LocalSystem account does not have an
invalid character. For example, if you are using a French version of a Windows
operating system, the LocalSystem account is Système, but you cannot use this
account as an authorization ID because it has an invalid character, è.

The LocalSystem account is considered a system administrator (holding SYSADM
authority) when the sysadm_group database manager configuration parameter is set
to NULL.

If there is a need for applications running under the context of the LocalSystem
account to perform database actions that are not within the scope of SYSADM, you
must grant the LocalSystem account the required database privileges or authorities.
For example, if an application requires database administrator capabilities, grant
the LocalSystem account DBADM authority using the GRANT (Database
Authorities) statement.

Developers writing applications to be run under this account need to be aware that
the DB2 database system has restrictions on objects with schema names starting
with “SYS”. Therefore if your applications contain DDL statements that create DB2
database objects, they should be written such that:
v For static queries, they should be bound with a value for the QUALIFIER

options other than the default one (SYSTEM).
v For dynamic queries, the objects to be created should be explicitly qualified with

a schema name supported by the DB2 database manager, or the CURRENT
SCHEMA register must be set to a schema name supported by the DB2 database
manager.

Group information for the LocalSystem account is gathered at the first group
lookup request after the DB2 database instance is started and is not refreshed until
the instance is restarted.

Extended Windows security using the DB2ADMNS and
DB2USERS groups

Extended security is enabled by default in all DB2 database products on Windows
operating systems except IBM Data Server Runtime Client and DB2 Drivers. IBM
Data Server Runtime Client and DB2 Drivers do not support extended security on
Windows platforms.

An Enable operating system security check box appears on the Enable operating
system security for DB2 objects panel when you install DB2 database products.
Unless you disable this option, the installer creates two new groups, DB2ADMNS
and DB2USERS. DB2ADMNS and DB2USERS are the default group names;
optionally, you can specify different names for these groups at installation time (if
you select silent install, you can change these names within the install response
file). If you choose to use groups that already exist on your system, be aware that
the privileges of these groups will be modified. They will be given the privileges,
as required, listed in the following table. It is important to understand that these
groups are used for protection at the operating-system level and are in no way

342 Database Security Guide

associated with DB2 authority levels, such as SYSADM, SYSMAINT, and SYSCTRL.
However, instead of using the default Administrator's group, your database
administrator can use the DB2ADMNS group for one or all of the DB2 authority
levels, at the discretion of the installer or administrator. It is recommended that if
you are specifying a SYSADM group, then that should be the DB2ADMNS group.
This can be established during installation or subsequently, by an administrator.

Note: You can specify your DB2 Administrators Group (DB2ADMNS or the name
you chose during installation) and DB2 Users Group (DB2USERS or the name you
chose during installation) either as local groups or as domain groups. Both groups
must be of the same type, so either both local or both domain.

If you change the computer name, and the computer groups DB2ADMNS and
DB2USERS are local computer groups, you must update the DB2_ADMINGROUP
and DB2_USERSGROUP global registries. To update the registry variables after
renaming and restarting the computer run the following command:
1. Open a command prompt.
2. Run the db2extsec command to update security settings:

db2extsec -a new computer name\DB2ADMNS -u new computer name\DB2USERS

Note: If extended security is enabled in DB2 database products on Windows Vista,
only users that belong to the DB2ADMNS group can run the graphical DB2
administration tools. In addition, members of the DB2ADMNS group need to
launch the tools with full administrator privileges. This is accomplished by
right-clicking on the shortcut and then choosing "Run as administrator".

Abilities acquired through the DB2ADMNS and DB2USERS
groups

The DB2ADMNS and DB2USERS groups provide members with the following
abilities:
v DB2ADMNS

Full control over all DB2 objects (see the following list of protected objects)
v DB2USERS

Read and Execute access for all DB2 objects located in the installation and
instance directories, but no access to objects under the database system directory
and limited access to IPC resources
For certain objects, there may be additional privileges available, as required (for
example, write privileges, add or update file privileges, and so on). Members of
this group have no access to objects under the database system directory.

Note: The meaning of Execute access depends on the object; for example, for a
.dll or .exe file having Execute access means you have authority to execute the
file, however, for a directory it means you have authority to traverse the
directory.

Ideally, all DB2 administrators should be members of the DB2ADMNS group (as
well as being members of the local Administrators group), but this is not a strict
requirement. Everyone else who requires access to the DB2 database system must
be a member of the DB2USERS group. To add a user to one of these groups:
1. Launch the Users and Passwords Manager tool.
2. Select the user name to add from the list.
3. Click Properties. In the Properties window, click the Group membership tab.

Chapter 12. Working with operating system security 343

4. Select the Other radio button.
5. Select the appropriate group from the drop-down list.

Adding extended security after installation (db2extsec command)

If the DB2 database system was installed without extended security enabled, you
can enable it by executing the command db2extsec. To execute the db2extsec
command you must be a member of the local Administrators group so that you
have the authority to modify the ACL of the protected objects.

You can run the db2extsec command multiple times, if necessary, however, if this
is done, you cannot disable extended security unless you issue the db2extsec -r
command immediately after each execution of db2extsec.

Removing extended security

CAUTION:
Do not remove extended security after it has been enabled unless absolutely
necessary.

You can remove extended security by running the command db2extsec -r,
however, this will only succeed if no other database operations (such as creating a
database, creating a new instance, adding table spaces, and so on) have been
performed after enabling extended security. The safest way to remove the extended
security option is to uninstall the DB2 database system, delete all the relevant DB2
directories (including the database directories) and then reinstall the DB2 database
system without extended security enabled.

Protected objects

The static objects that can be protected using the DB2ADMNS and DB2USERS
groups are:
v File system

– File
– Directory

v Services
v Registry keys

The dynamic objects that can be protected using the DB2ADMNS and DB2USERS
groups are:
v IPC resources, including:

– Pipes
– Semaphores
– Events

v Shared memory

Privileges owned by the DB2ADMNS and DB2USERS groups

The privileges assigned to the DB2ADMNS and DB2USERS groups are listed in the
following table:

344 Database Security Guide

Table 51. Privileges for DB2ADMNS and DB2USERS groups

Privilege DB2ADMNS DB2USERS Reason

Create a token object
(SeCreateTokenPrivilege)

Y N Token manipulation (required for certain
token manipulation operations and used in
authentication and authorization)

Replace a process level token
(SeAssignPrimaryTokenPrivilege)

Y N Create process as another user

Increase quotas
(SeIncreaseQuotaPrivilege)

Y N Create process as another user

Act as part of the operating system
(SeTcbPrivilege)

Y N LogonUser (required before Windows XP in
order to execute the LogonUser API for
authentication purposes)

Generate security audits
(SeSecurityPrivilege)

Y N Manipulate audit and security log

Take ownership of files or other
objects (SeTakeOwnershipPrivilege)

Y N Modify object ACLs

Increase scheduling priority
(SeIncreaseBasePriorityPrivilege)

Y N Modify the process working set

Backup files and directories
(SeBackupPrivilege)

Y N Profile/Registry manipulation (required to
perform certain user profile and registry
manipulation routines: LoadUserProfile,
RegSaveKey(Ex), RegRestoreKey,
RegReplaceKey, RegLoadKey(Ex))

Restore files and directories
(SeRestorePrivilege)

Y N Profile/Registry manipulation (required to
perform certain user profile and registry
manipulation routines: LoadUserProfile,
RegSaveKey(Ex), RegRestoreKey,
RegReplaceKey, RegLoadKey(Ex))

Debug programs (SeDebugPrivilege) Y N Token manipulation (required for certain
token manipulation operations and used in
authentication and authorization)

Manage auditing and security log
(SeAuditPrivilege)

Y N Generate auditing log entries

Log on as a service
(SeServiceLogonRight)

Y N Run DB2 as a service

Access this computer from the
network (SeNetworkLogonRight)

Y Y Allow network credentials (allows the DB2
database manager to use the
LOGON32_LOGON_NETWORK option to
authenticate, which has performance
implications)

Impersonate a client after
authentication
(SeImpersonatePrivilege)

Y N Client impersonation (required for
Windowsto allow use of certain APIs to
impersonate DB2 clients:
ImpersonateLoggedOnUser, ImpersonateSelf,
RevertToSelf, and so on)

Lock pages in memory
(SeLockMemoryPrivilege)

Y N Large Page support

Create global objects
(SeCreateGlobalPrivilege)

Y Y Terminal Server support (required on
Windows)

Chapter 12. Working with operating system security 345

Considerations for Windows 2008 and Windows Vista or
higher: User Access Control feature

The User Access Control (UAC) feature of Windows 2008, Windows Vista, and
Windows 7 impacts the DB2 database system in the following ways.

Starting applications with full administrative privileges

On Windows 2008, Windows Vista, and Windows 7, by default, applications start
with only standard user rights, even if the user is a local administrator. To start an
application with further privileges, you need to launch the command from a
command window that is running with full administrative privileges. The DB2
installation process creates a shortcut called "Command window - Administrator"
specifically for Windows 2008, Windows Vista, and Windows 7 users. It is
recommended that you launch this shortcut if you want to run administrative
commands.

If you do not have full administrative privileges and you attempt to perform DB2
administration tasks from a command prompt or graphical tool on Windows 2008,
Windows Vista, and Windows 7, you can encounter various error messages
implying that your access is denied and the tasks will fail to complete successfully.

To determine whether the action you are performing is considered to be an
administration task, check whether any of the following are true:
v It requires SYSADM, SYSCTRL or SYSMAINT authority
v It modifies registry keys under the HKLM branch in the registry
v It writes to the directories under the Program Files directory

For example, the following actions are all considered to be administration tasks:
v Creating and dropping DB2 instances
v Starting and stopping DB2 instances
v Creating databases
v Updating database manager configuration parameters or DB2 Administration

Server (DAS) configuration parameters
v Updating CLI configuration parameters and configuring system data source

names (DSN)
v Starting the DB2 trace facility
v Running the db2pd utility
v Changing DB2 profile registry variables

To resolve the problem, you must perform DB2 administration tasks from a
command prompt or graphical tool that is running with full administrator
privileges. To launch a command prompt or graphical tool with full administrator
privileges, right-click on the shortcut and then select Run as administrator.

Note: If extended security is enabled, you also need to be a member of the
DB2ADMNS group in order to launch the graphical administration tools (such as
the IBM Data Studio).

User data location

User data (for example, files under instance directories) is stored in
ProgramData\IBM\DB2\copy_name, where copy_name is the name of the DB2 copy (by
default, DB2COPY1 is the name of the first copy installed). On Windows versions

346 Database Security Guide

other than Windows 2008, Windows Vista, and Windows 7, user data is stored in
Documents and Settings\All Users\Application Data\IBM\DB2\copy_name.

DB2 and UNIX security
There are some security considerations specific to UNIX platforms that you need to
be aware of.

The DB2 database does not support root acting directly as a database
administrator. You should use su - <instance owner> as the database
administrator.

For security reasons, in general, do not use the instance name as the Fenced ID.
However, if you are not planning to use fenced UDFs or stored procedures, you
can set the Fenced ID to the instance name instead of creating another user ID.

The recommendation is to create a user ID that is recognized as being associated
with this group. The user for fenced UDFs and stored procedures is specified as a
parameter of the instance creation script (db2icrt ... -u <FencedID>). This is not
required if you install the DB2 Clients or the DB2 Software Developer's Kit.

DB2 and Linux security
There are some security considerations specific to Linux platforms that you might
need to be aware of.

Change password support (Linux)
DB2 database products provide support for changing passwords on Linux
operating systems.

This support is implemented through the use of security plug-in libraries called
IBMOSchgpwdclient.so and IBMOSchgpwdserver.so.

To enable password change support on Linux, set the database manager
configuration parameter clnt_pw_plugin to IBMOSchgpwdclient and
srvcon_pw_plugin to IBMOSchgpwdserver.

You must also create a PAM configuration file called "db2" in the /etc/pam.d
directory.

Deploying a change password plug-in (Linux)
To enable support for changing passwords in DB2 database products on Linux,
you must configure the DB2 instance to use the security plug-ins
IBMOSchgpwdclient and IBMOSchgpwdserver.

Before you begin

The plug-in libraries are located in the following directories:
v INSTHOME/sqllib/securityXX/plugin/IBM/client/IBMOSchgpwdclient.so

v INSTHOME/sqllib/securityXX/plugin/IBM/server/IBMOSchgpwdserver.so

where INSTHOME is the home directory of the instance owner and securityXX is
either security32 or security64, depending on the bit-width of the instance.

Chapter 12. Working with operating system security 347

Procedure

To deploy the security plug-ins in a DB2 instance, perform the following steps:
1. Log in as a user with root authority.
2. Create a PAM configuration file: /etc/pam.d/db2

Ensure that the file contains the appropriate set of rules, as defined by your
system administrator. For example, on SLES 9 this can be used:
auth required pam_unix2.so nullok
account required pam_unix2.so
password required pam_pwcheck.so nullok tries=1
password required pam_unix2.so nullok use_authtok use_first_pass
session required pam_unix2.so

And on RHEL, this can be used:
#%PAM-1.0
auth required /lib/security/$ISA/pam_env.so
auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok
auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so
account sufficient /lib/security/$ISA/pam_succeed_if.so uid < 100 quiet
account required /lib/security/$ISA/pam_permit.so

password requisite /lib/security/$ISA/pam_cracklib.so retry=3 dcredit=-1
ucredit=-1

password sufficient /lib/security/$ISA/pam_unix.so nullok use_authtok md5
shadow remember=3

password required /lib/security/$ISA/pam_deny.so

session required /lib/security/$ISA/pam_limits.so
session required /lib/security/$ISA/pam_unix.so

3. Enable the security plug-ins in the DB2 instance:
a. Update the database manager configuration parameter SRVCON_PW_PLUGIN

with the value IBMOSchgpwdserver:
db2 update dbm cfg using srvcon_pw_plugin IBMOSchgpwdserver

b. Update the database manager configuration parameter CLNT_PW_PLUGIN with
the value IBMOSchgpwdclient:
db2 update dbm cfg using CLNT_PW_PLUGIN IBMOSchgpwdclient

c. Ensure that either the database manager configuration parameter
SRVCON_AUTH is set to a value of CLIENT, SERVER, SERVER_ENCRYPT,
DATA_ENCRYPT, or DATA_ENCRYPT_CMP, or the database manager configuration
parameter SRVCON_AUTH is set to a value of NOT_SPECIFIED and
AUTHENTICATION is set to a value of CLIENT, SERVER, SERVER_ENCRYPT,
DATA_ENCRYPT, or DATA_ENCRYPT_CMP.

348 Database Security Guide

Appendix A. Overview of the DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command-line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2
technical issue that the documentation does not resolve, contact your local IBM
service center for assistance.

DB2 technical library in hardcopy or PDF format
The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 10.1 manuals in PDF format can be
downloaded from www.ibm.com/support/docview.wss?rs=71&uid=swg27009474.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2013 349

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474#manuals

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 52. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-3864-00 Yes April, 2012

Administrative Routines
and Views

SC27-3865-01 No January, 2013

Call Level Interface
Guide and Reference
Volume 1

SC27-3866-01 Yes January, 2013

Call Level Interface
Guide and Reference
Volume 2

SC27-3867-01 Yes January, 2013

Command Reference SC27-3868-01 Yes January, 2013

Database Administration
Concepts and
Configuration Reference

SC27-3871-01 Yes January, 2013

Data Movement Utilities
Guide and Reference

SC27-3869-01 Yes January, 2013

Database Monitoring
Guide and Reference

SC27-3887-01 Yes January, 2013

Data Recovery and High
Availability Guide and
Reference

SC27-3870-01 Yes January, 2013

Database Security Guide SC27-3872-01 Yes January, 2013

DB2 Workload
Management Guide and
Reference

SC27-3891-01 Yes January, 2013

Developing ADO.NET
and OLE DB
Applications

SC27-3873-01 Yes January, 2013

Developing Embedded
SQL Applications

SC27-3874-01 Yes January, 2013

Developing Java
Applications

SC27-3875-01 Yes January, 2013

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-3876-00 No April, 2012

Developing RDF
Applications for IBM
Data Servers

SC27-4462-00 Yes January, 2013

Developing User-defined
Routines (SQL and
External)

SC27-3877-01 Yes January, 2013

Getting Started with
Database Application
Development

GI13-2046-01 Yes January, 2013

350 Database Security Guide

Table 52. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2047-00 Yes April, 2012

Globalization Guide SC27-3878-00 Yes April, 2012

Installing DB2 Servers GC27-3884-01 Yes January, 2013

Installing IBM Data
Server Clients

GC27-3883-00 No April, 2012

Message Reference
Volume 1

SC27-3879-01 No January, 2013

Message Reference
Volume 2

SC27-3880-01 No January, 2013

Net Search Extender
Administration and
User's Guide

SC27-3895-01 No January, 2013

Partitioning and
Clustering Guide

SC27-3882-01 Yes January, 2013

Preparation Guide for
DB2 10.1 Fundamentals
Exam 610

SC27-4540-00 No January, 2013

Preparation Guide for
DB2 10.1 DBA for
Linux, UNIX, and
Windows Exam 611

SC27-4541-00 No January, 2013

pureXML Guide SC27-3892-01 Yes January, 2013

Spatial Extender User's
Guide and Reference

SC27-3894-00 No April, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-3896-01 Yes January, 2013

SQL Reference Volume 1 SC27-3885-01 Yes January, 2013

SQL Reference Volume 2 SC27-3886-01 Yes January, 2013

Text Search Guide SC27-3888-01 Yes January, 2013

Troubleshooting and
Tuning Database
Performance

SC27-3889-01 Yes January, 2013

Upgrading to DB2
Version 10.1

SC27-3881-01 Yes January, 2013

What's New for DB2
Version 10.1

SC27-3890-01 Yes January, 2013

XQuery Reference SC27-3893-01 No January, 2013

Table 53. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Personal Edition

SC27-3861-00 Yes April, 2012

Appendix A. Overview of the DB2 technical information 351

Table 53. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Servers

SC27-3862-01 Yes January, 2013

DB2 Connect User's
Guide

SC27-3863-01 Yes January, 2013

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
Documentation for other versions of DB2 products is found in separate information
centers on ibm.com®.

About this task

For DB2 Version 10.1 topics, the DB2 Information Center URL is
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1.

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

352 Database Security Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Before you begin

A DB2 Version 10.1 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates update existing Information Center features and languages.

One benefit of automatic updates is that the Information Center is unavailable
for a shorter time compared to during a manual update. In addition, automatic
updates can be set to run as part of other batch jobs that run periodically.

v Manual updates can be used to update existing Information Center features and
languages. Automatic updates reduce the downtime during the update process,
however you must use the manual process when you want to add features or
languages. For example, a local Information Center was originally installed with
both English and French languages, and now you want to also install the
German language; a manual update will install German, as well as, update the
existing Information Center features and languages. However, a manual update
requires you to manually stop, update, and restart the Information Center. The
Information Center is unavailable during the entire update process. In the
automatic update process the Information Center incurs an outage to restart the
Information Center after the update only.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V10.1
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 10.1 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Appendix A. Overview of the DB2 technical information 353

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system by using a machine that is connected to the internet
and has the DB2 Information Center installed. If many users on your network
will be installing the documentation updates, you can reduce the time required
for individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv10 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.

354 Database Security Guide

b. Navigate to the path where the Information Center is installed. By
default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 10.1 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
/opt/ibm/db2ic/V10.1 directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check that the selections you want to install,
then click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the doc\bin directory within the installation
directory, and run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the doc/bin directory within the installation directory,
and run the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv10 start

Results

The updated DB2 Information Center displays the new and updated topics.

Appendix A. Overview of the DB2 technical information 355

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 database products.
Lessons provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center, which contains:
v Information about how to isolate and identify problems with DB2

diagnostic tools and utilities.
v Solutions to some of the most common problem.
v Advice to help solve other problems you might encounter with your

DB2 database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

356 Database Security Guide

http://publib.boulder.ibm.com/infocenter/db2luw/10r1/
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Appendix A. Overview of the DB2 technical information 357

http://www.ibm.com/legal/copytrade.shtml

358 Database Security Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2013 359

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

360 Database Security Guide

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 361

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

362 Database Security Guide

Index

Special characters
.NET

.Net Data Provider clients 67
GSKit 67
SSL 67

A
access control

authentication 7
column-specific 159
DBADM (database administration) authority 55
fine-grained row and column

see RCAC 137
label-based access control 159
row-specific 159
tables 53
views 53

access tokens
Windows 337

ACCESSCTRL (access control) authority
details 36
overview 32

AIX
authentication methods 218
configuring transparent LDAP 217

AIX encrypted file system (EFS) 88
ALTER privilege 42, 44
alternate_auth_enc configuration parameter

encrypting using AES 256–bit algorithm 7
APIs

communication buffer exit library
db2commexitDeregister 283
db2commexitFreeErrormsg 287
db2commexitInit 280
db2commexitRecv 284
db2commexitRegister 282
db2commexitSend 285
db2commexitTerm 281
db2commexitUserIdentity 286
overview 280

group plug-in
db2secDoesGroupExist 245
db2secFreeErrormsg 246
db2secFreeGroupListMemory 246
db2secGetGroupsForUser 247
db2secGroupPluginInit 250
db2secPluginTerm 251

group retrieval plug-in 244
security plug-in

db2secClientAuthPluginInit 257
db2secClientAuthPluginTerm 258
db2secDoesAuthIDExist 259
db2secDoesGroupExist 245
db2secFreeErrormsg 246
db2secFreeGroupListMemory 246
db2secFreeInitInfo 259
db2secFreeToken 260
db2secGenerateInitialCred 260
db2secGetAuthIDs 262

APIs (continued)
security plug-in (continued)

db2secGetDefaultLoginContext 264
db2secGetGroupsForUser 247
db2secGroupPluginInit 250
db2secPluginTerm 251
db2secProcessServerPrincipalName 265
db2secRemapUserid 266
db2secServerAuthPluginInit 267
db2secServerAuthPluginTerm 270
db2secValidatePassword 270
overview 243

user ID/password plug-ins 251
archivepath parameter 97
archiving

audit log files 97
AUDIT events 327
audit facility

actions 91
archive 103
asynchronous record writing 112
audit data in tables

creating tables 101
loading tables 102

audit events table 298
authorities 91
behavior 112
CHECKING access approval reasons 303
CHECKING access attempted types 305
checking events table 302
CONTEXT events table 320
error handling 112
ERRORTYPE parameter 112
events 91
EXECUTE events 105, 322
EXECUTE timestamp 109
object record types 297
OBJMAINT events table 308
overview 91
policies 93
privileges 91
record layouts 297
record object types 297
records for EXECUTE events 322
SECMAINT authorities 314
SECMAINT events table 310
SECMAINT privileges 314
synchronous record writing 112
SYSADMIN events table 317
techniques 114
tips 114
VALIDATE events table 319

audit logs
archiving 97, 103
file names 100
location 97

audit_buf_sz configuration parameter
determining timing of writing audit records 112

authentication
details 2
domain security 336

© Copyright IBM Corp. 2013 363

authentication (continued)
groups 336
GSS-API 201
ID and password 201
Kerberos 14, 201
LDAP users 230
lookup

configuring 217, 220, 222, 223
methods 7
ordered domain list 340
overview 1
partitioned databases 13
plug-ins

API for checking whether authentication ID exists 259
API for cleaning up client authentication plug-in

resources 258
API for cleaning up resources held by

db2secGenerateInitialCred API 259
API for cleaning up server authentication plug-in

resources 270
API for getting authentication IDs 262
API for initializing client authentication plug-in 257
API for initializing server authentication plug-in 267
API for validating passwords 270
APIs for user ID/ password authentication

plug-ins 251
deploying 211, 214, 347
LDAP 215
library locations 205
security 201

remote clients 13
security plug-ins 201
two-part user IDs 207
types

CLIENT 7
DATA_ENCRYPT 7
DATA_ENCRYPT_CMP 7
GSS_SERVER_ENCRYPT 7
GSSPLUGIN 7
KERBEROS 7
KRB_SERVER_ENCRYPT 7
SERVER 7
SERVER_ENCRYPT 7

AUTHID_ATTRIBUTE 225
authorities

access control (ACCESSCTRL) 36
audit policy 93
data access (DATAACCESS) 37
database administration (DBADM) 34, 40
explain administration (EXPLAIN) 39
implicit schema (IMPLICIT_SCHEMA) 40
LOAD 39
overview 20, 26
removing DBADM from SYSCTRL 30
security administrator (SECADM) 33
SQL administration (SQLADM) 38
system administration (SYSADM) 29
system control (SYSCTRL) 30
system maintenance (SYSMAINT) 30
system monitor (SYSMON) 31
workload administration (WLMADM) 39

authorization IDs
details 3
implicit authorizations 51
LDAP 228
security model overview 1
SETSESSIONUSER privilege 40

authorization IDs (continued)
trusted client 7
types 46

authorization names
creating views for privileges information 196
retrieving

names with DBADM authority 195
names with granted privileges 194
names with table access authority 195
privileges granted to 196

B
backups

encrypting 86
security risks 56, 86

BIND command
package re-creation

ownership 51
BIND privilege 43
BINDADD authority

details 32
binding

rebinding invalid packages 49
built-in views

AUTHORIZATIONIDS
example 194
restricting access 196

OBJECTOWNERS
restricting access 196

PRIVILEGES
example 194
restricting access 196

C
certificate authorities

digital certificates 72
CHECKING events 327
cipher suites 73
client authentication plug-ins 215
CLIENT authentication type

details 7
columns

LBAC protection
adding 177
removing 191

LBAC-protected
dropping 188
inserting 182
reading 179
updating 184

communication buffer exit library
APIs

db2commexitDeregister 283
db2commexitFreeErrormsg 287
db2commexitInit 280
db2commexitRecv 284
db2commexitRegister 282
db2commexitSend 285
db2commexitTerm 281
db2commexitUserIdentity 286

deploying 276
developing

API calling sequences (connection concentrator) 294
API calling sequences (no connect reset) 293

364 Database Security Guide

communication buffer exit library (continued)
developing (continued)

API calling sequences (normal connect) 293
API calling sequences (overview) 293
API calling sequences (SET SESSION

AUTHORIZATION) 295
API calling sequences (trusted context) 294
API versions 290
buffer structure 290
connect gateway 296
control over connections 290
DATA_ENCRYPT authentication 296
error handling 291
functions structure 288
information structure 289
overview 279
restrictions 292
return codes 291
target logical node 295

enabling 277, 278
library loading 279
location 276
naming conventions 276
overview 275
permissions 276
problem determination 279

configuration
LDAP

plug-ins 225
CONNECT authority 32
CONTEXT events 327
CONTROL privilege

details 42
implicit 51
packages 43
views 42

CREATE DATABASE command
RESTRICTIVE option 196

CREATE ROLE statement
creating roles 120
granting membership in roles 120

CREATE TRUSTED CONTEXT statement
example 132

CREATE_EXTERNAL_ROUTINE authority 32
CREATE_NOT_FENCED_ROUTINE authority 32
CREATETAB authority 32
cryptography

public key 73

D
data

audit
creating tables 101
loading into tables 102

encrypting 59
indirect access 56
inserting

LBAC-protected 182
label-based access control (LBAC)

adding protection 177
inserting 182
overview 177
reading 179
unprotecting 191
updating 184

data (continued)
security

overview 1
system catalog 196

data at rest 86
DATAACCESS (data access) authority

details 37
overview 32

database authorities
granting

overview 32
overview 32
revoking 32

database directories
permissions 6

Database Encryption Expert 86
database objects

roles 119
database-level authorities

overview 26
databases

accessing
default authorities 47
default privileges 47
implicit privileges through packages 51

label-based access control (LBAC) 159
datapath parameter 97
DB2 Information Center

updating 353, 354
versions 352

DB2_GRP_LOOKUP environment variable 338, 341
DB2_GRP_LOOKUP registry variable 337
DB2ADMNS group

defining who holds SYSADM authority 341
details 342

db2audit.log file 91
db2cluster command

DB2 cluster services administrator 116
security model 116

DB2COMM registry variable
configuring Secure Sockets Layer (SSL) support 60

DB2LBACRULES LBAC rule set 171
DB2LDAPSecurityConfig environment variable

overview 225
DB2SECURITYLABEL data type

providing explicit values 176
viewing as string 176

DB2USERS user group
details 342

DBADM (database administration) authority
controlling access 55
details 34
overview 32
retrieving names 195

debugging
security plug-ins 209

default privileges 47
DELETE privilege 42
digital certificates

managing 60
overview 72

distinguished name (DN) 228
documentation

overview 349
PDF files 349
printed 349
terms and conditions of use 356

Index 365

domain controller
overview 333

domains
ordered domain list 340
security

authentication 336
trust relationships 336
Windows 340

dynamic SQL
EXECUTE privilege 51

E
efsenable command 88
efskeymgr command 88
efsmgr command 88
ENABLE_SSL parameter 225
encrypted file system (EFS) 88
encryption

data 59
Encryption Expert 86
enumeration of groups 338
error messages

security plug-ins 238
errors

switching user 135
trusted contexts 135

ExampleBANK RCAC scenario
column masks 156
data queries 156
database tables 154
database users and roles 153
introduction 152
row permissions 155
security policy 153

ExampleHMO RCAC scenario
column masks 144
data queries 146
data updates 146
database tables 140
database users and roles 139
inserting data 145
introduction 138
revoke authority 152
row permissions 143
secure functions 149
secure triggers 151
security administration 142
security policy 139
view creation 148

EXECUTE category
audit information 109
audit records 322
overview 105
replaying activities 110

EXECUTE events 327
EXECUTE privilege

database access 51
packages 43
routines 45

EXPLAIN authority
details 39
overview 32

explicit trusted connections
establishing 127
user ID switching 127, 133

extended Windows security 342

F
FGAC

see RCAC 137
file names

audit logs 100
fine-grained access control

see RCAC 137
firewalls

application proxy 199
circuit level 199
details 199
screening router 199
stateful multi-layer inspection (SMLI) 200

functions
privileges 45
scalar

DECRYPT_BIN 59
DECRYPT_CHAR 59
ENCRYPT 59
GETHINT 59

G
global group support 335
GRANT statement

example 49
implicit authorizations 51
overview 49

group lookup support
details 215, 229

GROUP_BASEDN parameter 225
GROUP_LOOKUP_ATTRIBUTE attribute 229
GROUP_LOOKUP_METHOD parameter

configuring LDAP plug-in modules 225, 229
GROUP_OBJECTCLASS parameter 225
GROUPNAME_ATTRIBUTE parameter 225
groups

access token 337
enumeration (Windows) 338
names 335
roles comparison 125
selecting 4
user authentication 336

GSKCapiCmd tool
configuring Secure Sockets Layer (SSL) support 60, 67

GSKit
configuring Secure Sockets Layer (SSL) support 60, 67
library rules 74
process rules 74
return codes 76

GSS-APIs
authentication plug-ins 273

H
handshakes

overview 71
help

SQL statements 352
HP-UX

transparent LDAP 222

366 Database Security Guide

I
IBM Database Encryption Expert 86
IBMLDAPSecurity.ini file 225
IKEYCMD tool 60, 67
iKeyman tool 60, 67
implicit authorization

managing 51
IMPLICIT_SCHEMA (implicit schema) authority

details 40
overview 32

INDEX privilege
details 44

indexes
privileges

overview 44
INSERT privilege 42
instance directories 6
instances

authorities 26
configuring

SSL communications 60

K
Kerberos authentication protocol

enabling 18
IBM i compatibility 19
mapping 16
naming 16
overview 14
plug-ins

creating 19
deploying 214

principals 16
server 7
setting up 14
System z compatibility 19
Windows compatibility 19

KRB_SERVER_ENCRYPT authentication type 7

L
label-based access control

See LBAC 159
LBAC

credentials 159
dropping columns 188
inserting data 182
overview 20, 159
protected tables 159
reading data 179
removing protection 191
rule exemptions

details 175
effect on security label comparisons 170

rule sets
comparing security labels 170
DB2LBACRULES 171
overview 171

security administrators 159
security labels

ARRAY component type 163
comparisons 170
compatible data types 167
components 162
creating 167

LBAC (continued)
security labels (continued)

details 167
dropping 167
granting 167
overview 159
revoking 167
SET component type 163
string format 169
TREE component type 164

security policies
adding to a table 177
details 161
overview 159

updating data 184
LDAP

plug-ins 225, 227
security plug-ins 215
transparent

AIX 217
HP-UX 222
Kerberos 218
Linux 220
Solaris 223

LDAP_HOST parameter 225
libraries

security plug-ins
loading in DB2 230
restrictions 232

Linux
security 347
transparent LDAP 220

LOAD authority
details 39
overview 32

LocalSystem account
authorization 29
support 342
SYSADM authority 341

logs
audit 91

M
methods

privileges 45
migration

roles 126

N
naming conventions

Windows restrictions 335
NESTED_GROUPS parameter 225
nicknames

privileges
indirect through packages 52

notices 359

O
objects

ownership 20
OBJMAINT events 327
ordered domain lists 340

Index 367

ownership
database objects 20, 193

P
packages

access privileges with queries 51
authorization IDs

derivation 46
use 46

ownership 51
privileges

overview 43
revoking (overview) 49

passwords
changing

Linux 347
maintaining on servers 20

permissions
authorization overview 3
column-specific protection 159
directories 6
row-specific protection 159

plug-ins
group retrieval 244
GSS-API authentication 273
ID authentication 251
LDAP 215
password authentication 251
security

APIs 239, 243
deploying 211, 212, 214, 347
error messages 238
naming conventions 206
restrictions (GSS-API authentication) 274
restrictions (plug-in libraries) 232
restrictions (summary) 234
return codes 235
versions 209

pluggable authentication module
PAM 217, 220, 222, 223

PRECOMPILE command
OWNER option 51

privileges
acquiring through trusted context roles 132
ALTER

sequences 44
tables 42

CONTROL 42
DELETE 42
EXECUTE

routines 45
GRANT statement 49
granting

roles 125
hierarchy 20
INDEX 42
indexes

overview 44
indirect

packages containing nicknames 52
individual 20
information about granted

retrieving 194, 196
INSERT 42
overview 20
ownership 20

privileges (continued)
packages

creating 43
implicit 20

planning 3
REFERENCES 42
revoking

overview 49
roles 122

roles 119
schemas 41
SELECT 42
SETSESSIONUSER 40
system catalog

privilege information 193
restricting access 196

table spaces 42
tables 42
UPDATE 42
USAGE

sequences 44
workloads 45

views 42
problem determination

information available 356
security plug-ins 209
tutorials 356

procedures
privileges 45

PUBLIC
database authorities automatically granted 32

public-key cryptography 73

Q
QUIESCE_CONNECT authority 32

R
RCAC

conditions in permissionsconditions in masksrule
management

scalar functionsconditions in permissionsconditions in
masks 138

ExampleBANK
see ExampleBANK RCAC scenario 152

ExampleHMO
see ExampleHMO RCAC scenario 138

overview 137
rule management

SQL statements 138
rules 138
scenario

see ExampleBANK RCAC scenario 152
see ExampleHMO RCAC scenario 138

records
audit 91

REFERENCES privilege 42
registry variables

DB2COMM 60
replay

EXECUTE timestamp 110
RESTRICTIVE option of CREATE DATABASE command

denying privileges to PUBLIC 196
return codes

GSKit 76

368 Database Security Guide

REVOKE statement
example 49
implicit issuance 51
overview 49

roles
creating 120
details 119
hierarchies 122
migrating from IBM Informix Dynamic Server 126
revoking privileges 122
versus groups 125
WITH ADMIN OPTION clause 124

routine invoker authorization IDs 46
row and column access control

see RCAC 137
rows

deleting
LBAC-protected data 188

inserting
LBAC-protected data 182

protecting with LBAC 177
reading when using LBAC 179
removing LBAC protection 191
updating

LBAC-protected data 184
rule sets (LBAC)

details 171
exemptions 175

S
Savepoint ID field 105
schemas

privileges 41
SEARCH_DN parameter 225
SEARCH_PW parameter 225
SECADM (security administrator) authority

details 33
overview 32

SECLABEL scalar function
overview 176

SECLABEL_BY_NAME scalar function
overview 176

SECLABEL_TO_CHAR scalar function
overview 176

SECMAINT events 327
security

APIs (communication buffer exit library) 280
authentication 2
CLIENT level 7
column-specific 159
communication buffer exit library

API calling sequences 293
API calling sequences connection concentrator 294
API calling sequences no connect reset 293
API calling sequences normal connect 293
API calling sequences SET SESSION

AUTHORIZATION 295
API calling sequences trusted context 294
API versions 290
buffer structure 290
connect gateway 296
control over connections 290
DATA_ENCRYPT 296
deployment 276
development 279
enabling 277, 278

security (continued)
communication buffer exit library (continued)

error handlingreturn codes 291
functions structure 288
information structure 289
library loading 279
location 276
naming conventions 276
overview 275
permissions 276
problem determination 279
restrictions 292
target logical node 295

data 1
db2extsec command 342
disabling extended security 342
enabling extended security 342
establishing explicit trusted connections 127
extended security 342
label-based access control (LBAC) 159
maintaining passwords on servers 20
plug-ins

32-bit considerations 209
64-bit considerations 209
API for validating passwords 270
APIs 243, 245, 246, 247, 250, 251, 257, 258, 259, 260,

262, 264, 265, 266, 267, 270
APIs (group retrieval) 244
APIs (GSS-API) 273
APIs (user ID/password) 251
APIs (versions) 209
calling sequence 239
deploying 201, 211, 212, 214, 234, 347
developing 201
enabling 201
error messages 238
GSS-API (deploying) 212
GSS-API (restrictions) 274
initialization 230
LDAP (Lightweight Directory Access Protocol) 215
libraries 205
loading 201, 230
naming 206
overview 201
problem determination 209
restrictions on libraries 232
return codes 235
SQLCODES 209
SQLSTATES 209
two-part user ID support 207

risks 56
row and column access controlfine-grained access control

see RCACsee RCAC 137
row-specific 159
trusted contexts 129
UNIX 347
Windows

domain security 340
extended 342
overview 333
users 341

security labels (LBAC)
ARRAY component type 163
compatible data types 167
components 162
policies

details 161

Index 369

security labels (LBAC) (continued)
SET component type 163
string format 169
TREE component type 164
use 167

SELECT privilege 42
sequences

privileges 44
server authentication plug-ins 215
SERVER authentication type

overview 7
SERVER_ENCRYPT authentication type

overview 7
session authorization IDs

overview 46
SET ENCRYPTION PASSWORD statement

encrypting passwords 59
SETSESSIONUSER privilege

details 40
Solaris operating systems

transparent LDAP 223
SQL statements

authorization IDs 46
help

displaying 352
SQLADM (SQL administration) authority

details 38
overview 32

SSL
CATALOG TCPIP NODE command 67
certificate authorities 72
cipher suites 73
CLI clients 67
CLP clients 67
configuring

DB2 clients 67
DB2 instances 60

DB2 Connect 60
digital certificates 72
embedded SQL clients 67
handshake 71
protocol 71

ssl_cipherspecs configuration parameter
specifying cipher suites 60, 73

ssl_client_keystash connection parameter
configuring SSL 67

ssl_client_keystoredb connection parameter
configuring SSL 67

ssl_clnt_keydb configuration parameter
configuring SSL 67

ssl_clnt_stash configuration parameter
configuring SSL 67

SSL_KEYFILE 225
SSL_PW 225
SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA cipher suite 60
ssl_svcename configuration parameter

configuring SSL 60
ssl_svr_keydb configuration parameter

configuring SSL 60
ssl_svr_stash configuration parameter

configuring SSL 60
ssl_versions configuration parameter

configuring SSL 60
SSLClientKeystash connection parameter

configuring SSL 67
SSLClientKeystoredb connection parameter

configuring SSL 67

Statement Value Data field 105
Statement Value Index field 105
Statement Value Type field 105
static SQL

EXECUTE privilege 51
switching

user IDs 127, 133
SYSADM (system administration) authority

details 29
Windows 341

sysadm_group configuration parameter
Windows 341

SYSADMIN events 327
SYSCAT views

security issues 193
SYSCTRL (system control) authority

details 30
SYSDEFAULTADMWORKLOAD workload 45
SYSDEFAULTUSERWORKLOAD workload 45
SYSMAINT (system maintenance) authority

details 30
SYSMON (system monitor) authority

details 31
SYSPROC.AUDIT_ARCHIVE stored procedure 97, 103
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure 97,

103
SYSPROC.AUDIT_LIST_LOGS stored procedure 103
system authorization IDs 46
system catalogs

listing privileges 193
retrieving

authorization names with privileges 194
names with DBADM authority 195
names with table access authority 195
privileges granted to names 196

security 196

T
table spaces

privileges 42
tables

access control 53
audit policy 93
inserting into LBAC-protected 182
LBAC effect on reading 179
privileges 49
protecting with LBAC 159, 177
removing LBAC protection 191
retrieving information

names with access to 195
revoking privileges 49

terms and conditions
publications 356

TLS (transport layer security) 71
TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite 60, 73
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite 60, 73
TLS_RSA_WITH_AES_256_CBC_SHA cipher suite 60, 73
Transport Layer Security (TLS)

overview 71
troubleshooting

online information 356
security plug-ins 209
tutorials 356

trust relationships
Windows 336

370 Database Security Guide

trusted clients
CLIENT level security 7

trusted connections
establishing explicit trusted connections 127
overview 129

trusted contexts
audit policies 93
overview 129
problem determination 135
role membership inheritance 132

tutorials
list 356
problem determination 356
pureXML 356
troubleshooting 356

U
UDFs

non-fenced 32
UPDATE privilege 42
updates

DB2 Information Center 353, 354
effects of LBAC on 184

USAGE privilege
details 44
workloads 45

user IDs
LDAP 228
selecting 4
switching 133
two-part 207

user names
Windows restrictions 335

USER_BASEDN 225
USER_OBJECTCLASS 225
USERID_ATTRIBUTE 225

V
VALIDATE events 327
views

access privileges examples 53
column access 53
privileges information 196
row access 53
table access control 53

Vista
User Access Control (UAC) feature 346

W
Windows

extended security 342
local system account (LSA) support 342
scenarios

client authentication 334
server authentication 334

user accounts
access tokens 337

WITH ADMIN OPTION clause
delegating role maintenance 124

WITH DATA option
details 105

WLMADM (workload administration) authority
details 39

WLMADM (workload administration) authority (continued)
overview 32

write-down
details 171

write-up
details 171

X
XQuery

dynamic
EXECUTE privilege 51

static
EXECUTE privilege 51

Index 371

372 Database Security Guide

����

Printed in USA

SC27-3872-01

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.1

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Da
ta

ba
se

Se
cu

rit
y

Gu
id

e
�
�

�

	Contents
	About this book
	Chapter 1. DB2 security model
	Authentication
	Authorization
	Security considerations when installing and using the DB2 database manager
	File permission requirements for the instance and database directories

	Authentication details
	Authentication methods for your server
	Authentication considerations for remote clients
	Partitioned database authentication considerations
	Kerberos authentication
	Setting up Kerberos for a DB2 server
	Naming and mapping for Kerberos
	Kerberos authentication enablement
	Kerberos plug-in creation
	Kerberos compatibility

	Maintaining passwords on servers

	Authorization, privileges, and object ownership
	Authorities overview
	Instance level authorities
	System administration authority (SYSADM)
	System control authority (SYSCTRL)
	System maintenance authority (SYSMAINT)
	System monitor authority (SYSMON)

	Database authorities
	Security administration authority (SECADM)
	Database administration authority (DBADM)
	Access control administration authority (ACCESSCTRL)
	Data access administration authority (DATAACCESS)
	SQL administration authority (SQLADM)
	Workload administration authority (WLMADM)
	Explain administration authority (EXPLAIN)
	LOAD authority
	Implicit schema authority (IMPLICIT_SCHEMA) considerations

	Privileges
	Authorization ID privileges: SETSESSIONUSER
	Schema privileges
	Table space privileges
	Table and view privileges
	Package privileges
	Index privileges
	Sequence privileges
	Routine privileges
	Usage privilege on workloads

	Authorization IDs in different contexts
	Default privileges granted on creating a database
	Granting and revoking access
	Granting privileges
	Revoking privileges
	Managing implicit authorizations by creating and dropping objects
	Establishing ownership of a package
	Implicit privileges through a package
	Indirect privileges through a package containing nicknames
	Controlling access to data with views

	Controlling access for database administrators (DBAs)
	Gaining access to data through indirect means

	Data encryption
	Configuring Secure Sockets Layer (SSL) support in a DB2 instance
	Configuring Secure Sockets Layer (SSL) support in non-Java DB2 clients
	Secure Sockets Layer (SSL)
	Digital certificates and certificate authorities
	Public-key cryptography
	Supported cipher suites
	Bundled library and process rules
	GSKit return codes

	IBM Database Encryption Expert for encryption of data at rest
	Database encryption using AIX encrypted file system (EFS)

	Auditing DB2 activities
	Introduction to the DB2 audit facility
	Audit policies
	Storage and analysis of audit logs
	The EXECUTE category for auditing SQL statements

	Audit facility management
	Audit facility behavior
	Audit facility tips and techniques

	Security model for the db2cluster command

	Chapter 2. Roles
	Creating and granting membership in roles
	Role hierarchies
	Effect of revoking privileges from roles
	Delegating role maintenance by using the WITH ADMIN OPTION clause
	Roles compared to groups
	Using roles after migrating from IBM Informix Dynamic Server

	Chapter 3. Using trusted contexts and trusted connections
	Trusted contexts and trusted connections
	Role membership inheritance through a trusted context
	Rules for switching the user ID on an explicit trusted connection
	Trusted context problem determination

	Chapter 4. Row and column access control (RCAC) overview
	Row and column access control (RCAC) rules
	SQL statements for managing RCAC rules
	Built-in functions for managing RCAC permissions and masks

	Scenario: ExampleHMO using row and column access control
	Scenario: ExampleHMO using row and column access control - Security policies
	Scenario: ExampleHMO using row and column access control - Database users and roles
	Scenario: ExampleHMO using row and column access control - Database tables
	Scenario: ExampleHMO using row and column access control - Security administration
	Scenario: ExampleHMO using row and column access control - Row permissions
	Scenario: ExampleHMO using row and column access control - Column masks
	Scenario: ExampleHMO using row and column access control - Data insertion
	Scenario: ExampleHMO using row and column access control - Data updates
	Scenario: ExampleHMO using row and column access control - Data queries
	Scenario: ExampleHMO using row and column access control - View creation
	Scenario: ExampleHMO using row and column access control - Secure functions
	Scenario: ExampleHMO using row and column access control - Secure triggers
	Scenario: ExampleHMO using row and column access control - Revoke authority

	Scenario: ExampleBANK using row and column access control
	Scenario: ExampleBANK using row and column access control - Security policies
	Scenario: ExampleBANK using row and column access control - Database users and roles
	Scenario: ExampleBANK using row and column access control - Database tables
	Scenario: ExampleBANK using row and column access control - Row permissions
	Scenario: ExampleBANK using row and column access control - Column masks
	Scenario: ExampleBANK using row and column access control - Data queries

	Chapter 5. Label-based access control (LBAC)
	LBAC security policies
	LBAC security label components overview
	LBAC security label component type: SET
	LBAC security label component type: ARRAY
	LBAC security label component type: TREE

	LBAC security labels
	Format for security label values
	How LBAC security labels are compared
	LBAC rule sets overview
	LBAC rule set: DB2LBACRULES

	LBAC rule exemptions
	Built-in functions for managing LBAC security labels
	Protection of data using LBAC
	Reading of LBAC protected data
	Inserting of LBAC protected data
	Updating of LBAC protected data
	Deleting or dropping of LBAC protected data
	Removal of LBAC protection from data

	Chapter 6. Using the system catalog for security information
	Retrieving authorization names with granted privileges
	Retrieving all names with DBADM authority
	Retrieving names authorized to access a table
	Retrieving all privileges granted to users
	Securing the system catalog view

	Chapter 7. Firewall support
	Screening router firewalls
	Application proxy firewalls
	Circuit level firewalls
	Stateful multi-layer inspection (SMLI) firewalls

	Chapter 8. Security plug-ins
	Security plug-in library locations
	Security plug-in naming conventions
	Security plug-in support for two-part user IDs
	Security plug-in API versioning
	32-bit and 64-bit considerations for security plug-ins
	Security plug-in problem determination
	Enabling plug-ins
	Deploying a group retrieval plug-in
	Deploying a user ID/password plug-in
	Deploying a GSS-API plug-in
	Deploying a Kerberos plug-in

	LDAP-based authentication and group lookup support
	Configuring transparent LDAP for authentication and group lookup (AIX)
	Considerations when using various authentication methods

	Configuring transparent LDAP for authentication and group lookup (Linux)
	Configuring transparent LDAP for authentication and group lookup (HP-UX)
	Configuring transparent LDAP for authentication and group lookup (Solaris)
	Configuring the LDAP plug-in modules
	Enabling the LDAP plug-in modules
	Connecting with an LDAP user ID
	Considerations for group lookup
	Troubleshooting authenticating LDAP users or retrieving groups

	Writing security plug-ins
	How DB2 loads security plug-ins
	Restrictions for developing security plug-in libraries
	Restrictions on security plug-ins
	Return codes for security plug-ins
	Error message handling for security plug-ins
	Calling sequences for the security plug-in APIs

	Chapter 9. Security plug-in APIs
	APIs for group retrieval plug-ins
	db2secDoesGroupExist API - Check if group exists
	db2secFreeErrormsg API - Free error message memory
	db2secFreeGroupListMemory API - Free group list memory
	db2secGetGroupsForUser API - Get list of groups for user
	db2secGroupPluginInit API - Initialize group plug-in
	db2secPluginTerm - Clean up group plug-in resources

	APIs for user ID/password authentication plug-ins
	db2secClientAuthPluginInit API - Initialize client authentication plug-in
	db2secClientAuthPluginTerm API - Clean up client authentication plug-in resources
	db2secDoesAuthIDExist - Check if authentication ID exists
	db2secFreeInitInfo API - Clean up resources held by the db2secGenerateInitialCred
	db2secFreeToken API - Free memory held by token
	db2secGenerateInitialCred API - Generate initial credentials
	db2secGetAuthIDs API - Get authentication IDs
	db2secGetDefaultLoginContext API - Get default login context
	db2secProcessServerPrincipalName API - Process service principal name returned from server
	db2secRemapUserid API - Remap user ID and password
	db2secServerAuthPluginInit - Initialize server authentication plug-in
	db2secServerAuthPluginTerm API - Clean up server authentication plug-in resources
	db2secValidatePassword API - Validate password

	Required APIs and definitions for GSS-API authentication plug-ins
	Restrictions for GSS-API authentication plug-ins

	Chapter 10. Communication buffer exit libraries
	Communication buffer exit library deployment
	Communication buffer exit library location
	Communication buffer exit library naming conventions and permissions
	Enabling communication buffer exit libraries outside of DB2 pureScale environments
	Enabling communication buffer exit libraries in DB2 pureScale environments
	Communication buffer exit library problem determination

	Communication buffer exit library development
	How a communication buffer exit library is loaded
	Communication buffer exit library APIs
	db2commexitInit API - Initialization
	db2commexitTerm API - Termination
	db2commexitRegister API - Registration
	db2commexitDeregister API - Deregistration
	db2commexitRecv API - Receive
	db2commexitSend API - Send
	db2commexitUserIdentity API - User identity
	db2commexitFreeErrormsg API - Free error message memory

	Communication buffer exit library functions structure
	Communication buffer exit library information structure
	Communication buffer exit library buffer structure
	Communication buffer exit library control over connections
	Communication buffer exit library API versions
	Communication buffer exit library error handing and return codes
	Communication buffer exit library development restrictions
	Communication buffer exit library API calling sequences
	API calling sequence - Normal connect in a single agent
	API calling sequence - Connect without a connect reset
	API calling sequence - Trusted context and switch user
	API calling sequence - Connection concentrator
	API calling sequence - SET SESSION AUTHORIZATION statement
	Considerations for setting the target logical node
	Considerations for a connect gateway
	Considerations for DATA_ENCRYPT

	Chapter 11. Audit facility record layouts
	Audit record object types
	Audit record layout for AUDIT events
	Audit record layout for CHECKING events
	CHECKING access approval reasons
	CHECKING access attempted types
	Audit record layout for OBJMAINT events
	Audit record layout for SECMAINT events
	SECMAINT privileges or authorities
	Audit record layout for SYSADMIN events
	Audit record layout for VALIDATE events
	Audit record layout for CONTEXT events
	Audit record layout for EXECUTE events
	Audit events

	Chapter 12. Working with operating system security
	DB2 and Windows security
	Authentication scenarios
	A scenario with server authentication (Windows)
	A scenario with client authentication and a Windows client machine

	Support for global groups (Windows)
	User authentication and group information with DB2 on Windows
	User name and group name restrictions (Windows)
	Groups and user authentication on Windows
	Trust relationships between domains on Windows
	Authentication with groups and domain security (Windows)
	Using an access token to acquire users' group information (Windows)
	The DB2_GRP_LOOKUP environment variable and DB2 group enumeration (Windows)
	Authentication using an ordered domain list
	Domain security support (Windows)

	Defining which users hold SYSADM authority (Windows)
	Windows LocalSystem account support
	Extended Windows security using the DB2ADMNS and DB2USERS groups
	Considerations for Windows 2008 and Windows Vista or higher: User Access Control feature

	DB2 and UNIX security
	DB2 and Linux security
	Change password support (Linux)
	Deploying a change password plug-in (Linux)

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and conditions

	Appendix B. Notices
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

