
IBM DB2 10.1
for Linux, UNIX, and Windows

Preparation Guide for DB2 10.1
Advanced DBA for Linux, UNIX, and
Windows Exam 614
Updated September, 2014

SC27-5574-00

���

IBM DB2 10.1
for Linux, UNIX, and Windows

Preparation Guide for DB2 10.1
Advanced DBA for Linux, UNIX, and
Windows Exam 614
Updated September, 2014

SC27-5574-00

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 705.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book ix

Part 1. Database design 1

Chapter 1. Automatic storage 3
Databases use automatic storage by default 4

Chapter 2. Table spaces 5
Table spaces for system, user and temporary data . . 7
Types of table spaces 8
Automatic storage table spaces 9

How automatic storage table spaces manage
storage expansion. 9
Container names in automatic storage table
spaces 11
Converting table spaces to use automatic storage 13

The table space high water mark 14
Reclaimable storage 16
File system caching configurations. 22
Extent sizes in table spaces 24
Page, table and table space size. 25
Disk I/O efficiency and table space design 26
Table spaces in a partitioned database environment 28
Creating table spaces 28

Creating temporary table spaces 32
Defining initial table spaces on database creation 33

Altering automatic storage table spaces 34
Reclaiming unused storage in automatic storage
table spaces 35
Scenarios: Adding and removing storage with
automatic storage table spaces 37

Monitoring a table space rebalance operation . . . 44
Table space states 44
Switching table spaces from offline to online . . . 53
Dropping table spaces 53

Chapter 3. Buffer pools 55
Designing buffer pools 56
Buffer pool hit ratios 57
Buffer pool memory protection (AIX running on
POWER6) 57
Buffer pool monitoring in a DB2 pureScale
environment 58
Buffer pool hit rates and hit ratios in a DB2
pureScale environment 59

Formulas for calculating buffer pool hit ratios . . 61
Calculating buffer pool hit ratios in a DB2
pureScale environment 62

Creating buffer pools 65
Modifying buffer pools 66
Dropping buffer pools 67

Chapter 4. Storage groups 69
Default storage groups 69

Storage group and table space media attributes . . 70
Creating storage groups 71
Altering storage groups 72

Adding storage paths 72
Dropping storage paths 73
Monitoring storage paths 74
Replacing the paths of a storage group 75

Renaming storage groups. 75
Dropping storage groups 76
Associating a table space to a storage group . . . 77
Scenario: Moving a table space to a new storage
group 77

Chapter 5. Multi-temperature storage 79

Chapter 6. IBM Data Studio 83
Using IBM Data Studio for key tasks 83

IBM Data Studio client 85
IBM Data Studio web console 88

Database administration with IBM Data Studio . . 89
Administering databases with task assistants . . 91
Database administration commands that you can
run from task assistants 96

Managing jobs in IBM Data Studio 100
Creating and managing jobs 102
Scenario: Creating and scheduling a job . . . 102
Importing tasks from DB2 Task Center 104

Diagramming access plans with Visual Explain . . 105
Diagrams of access plans 108
Query blocks 108
Setting preferences for Visual Explain 109

Part 2. Data partitioning and
clustering 111

Chapter 7. Partitioned database
environments 117
Database partitioning across multiple database
partitions 118
Database partition groups 119

Distribution maps 122
Distribution keys 123
Table collocation 124
Partition compatibility 124

Setting up partitioned database environments . . 125
Adding database partition servers to an instance
(Windows) 127
Setting up multiple logical partitions 128
Configuring multiple logical partitions 128
Enabling inter-partition query parallelism . . . 129
Enabling intrapartition parallelism for queries 131

Adding database partitions in partitioned database
environments 134

Adding an online database partition. 135

© Copyright IBM Corp. 2014 iii

Restrictions when working online to add a
database partition 136
Adding a database partition offline (Linux and
UNIX) 136
Adding a database partition offline (Windows) 138
Error recovery when adding database partitions 139

Enabling communication between database
partitions using FCM communications 140
Managing database partitions 141

Listing database partition servers in an instance
(Windows) 142
Eliminating duplicate entries from a list of
machines in a partitioned database environment. 142
Specifying the list of machines in a partitioned
database environment 143
Changing the database configuration across
multiple database partitions 144
Adding containers to SMS table spaces on
database partitions 144
Using database partition expressions 144
Changing database partitions (Windows) . . . 146
Redistributing data in a database partition
group 148
Issuing commands in partitioned database
environments 148
Dropping database partitions 159
Tables in partitioned database environments . . 160

Redistributing data across database partitions . . 162
Data redistribution 162
Determining if data redistribution is needed . . 165
Prerequisites for data redistribution 166
Restrictions on data redistribution 168
Best practices for data redistribution. 170
Data redistribution mechanism 171
Redistributing data across database partitions by
using the REDISTRIBUTE DATABASE
PARTITION GROUP command 172
Redistributing database partition groups using
the STEPWISE_REDISTRIBUTE_DBPG
procedure 173
Monitoring a data redistribution operation . . 175
Redistribution event log files 176
Scenario: Redistributing data in new database
partitions 180

Chapter 8. Multidimensional clustering
tables. 185
New insert time clustering tables 185
Comparison of regular and MDC tables 185
Block indexes for MDC tables 187

Block indexes and query performance for MDC
tables 189
Maintaining clustering automatically during
INSERT operations 193

Block maps for MDC and ITC tables 195
Updates to MDC and ITC tables 197
Deleting from MDC and ITC tables 197
Multidimensional and insert time clustering extent
management 198
Creating MDC or ITC tables 198
Load for MDC and ITC tables 204

Logging considerations for MDC and ITC tables 205
Block indexes for MDC and ITC tables 205
Choosing MDC table dimensions 206

Scenario: MDC tables. 213
Scenario: Creating an ITC table 216
Scenario: Converting an existing table to an ITC
table 216

Chapter 9. Partitioned tables 217
Table partitioning keys 217
Table partitioning and multidimensional clustering
tables 219
Optimization strategies for partitioned tables . . . 224
Partitioned materialized query table (MQT)
behavior 229
Large object behavior in partitioned tables. . . . 232
Data partitions and ranges 233

Adding data partitions to partitioned tables . . 234
Attaching data partitions 236
Detaching data partitions 246
Dropping data partitions 255

Creating partitioned tables 256
Defining ranges on partitioned tables 257
Placement of the data, index and long data of a
data partition 260

Altering partitioned tables 261
Guidelines and restrictions on altering
partitioned tables 262
Special considerations for XML indexes when
altering a table to ADD, ATTACH, or DETACH
a partition 264
Scenario: Rotating data in a partitioned table 265
Scenarios: Rolling in and rolling out partitioned
table data 267

Migrating existing tables and views to partitioned
tables 270
Converting existing indexes to partitioned indexes 272

Chapter 10. Range-clustered tables 275
Guidelines for using range-clustered tables . . . 276
Scenarios: Range-clustered tables 276
Restrictions on range-clustered tables 277

Part 3. High Availability and
Diagnostics 279

Chapter 11. Developing a backup and
recovery strategy. 281
Database logging 283

Circular logging 284
Archive logging 285
Log control files 286

Storage considerations for recovery 286
Archived log file compression 287
Backup and restore operations between different
operating systems and hardware platforms . . . 288
Log stream merging and log file management in a
DB2 pureScale environment 289

iv Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Log sequence numbers in DB2 pureScale
environments 293
Including log files with a backup image 293
Incremental backup and recovery. 295

Restoring from incremental backup images . . 296
Limitations to automatic incremental restore . . 298

Chapter 12. Backing up databases 301
Performing a snapshot backup 303
Using a split mirror as a backup image. 304
Using a split mirror as a backup image in a DB2
pureScale environment 305
Backing up to tape 306
Backing up to named pipes. 308
Backing up partitioned databases. 309
Backup and restore operations in a DB2 pureScale
environment. 310
Enabling automatic backup. 315

Configuring an automated maintenance policy
using SYSPROC.AUTOMAINT_SET_POLICY or
SYSPROC.AUTOMAINT_SET_POLICYFILE . . 316

Monitoring backup operations. 317
Optimizing backup performance 317
Compatibility of online backup and other utilities 318

Chapter 13. Recovering databases 321
Optimizing recovery performance 321
Recovering data using db2adutl 323
Recovering a dropped table 336

Chapter 14. Restoring databases . . . 339
Restoring from a snapshot backup image 341
Using incremental restore in a test and production
environment. 342
Performing a redirected restore operation 344

Redefine table space containers by restoring a
database using an automatically generated
script 348
Performing a redirected restore using an
automatically generated script 350
Cloning a production database using different
storage group paths 351

Database rebuild 352
Database rebuild and table space containers . . 356
Database rebuild and temporary table spaces 357
Choosing a target image for database rebuild 357
Rebuilding selected table spaces 361
Rebuild and incremental backup images . . . 362
Rebuilding partitioned databases 363
Restrictions for database rebuild 364
Rebuild sessions - CLP examples 365

Transporting database schemas 373
Transportable objects 375
Transport examples 377
Troubleshooting: transporting schemas 379

Monitoring the progress of restore operations . . 380
Optimizing restore performance 380

Chapter 15. Rolling forward databases 383
Rollforward sessions - CLP examples 384

Rolling forward changes in a table space 388
Database rollforward operations in a DB2
pureScale environment 392
Monitoring a rollforward operation 394

Chapter 16. DB2 Workload Manager
(WLM) 397
Workload management concepts 397
Phases of workload management 397
Frequently asked questions about DB2 workload
management 399
Integration of AIX Workload Manager with DB2
workload management 409
Integration of Linux workload management with
DB2 workload management 414
Workload management sample application . . . 420
Workload management scenarios 420

Scenario: Investigating a workload-related
system slowdown 420
Scenario: Identifying activities that are taking
too long to complete 421
Scenario: How to cancel activities queued for
more than an hour 424
Scenario: Moving table spaces to different
storage devices 427
Additional scenarios 428

DB2 workload management tutorial 428

Chapter 17. High availability disaster
recovery (HADR) 429
High Availability Disaster Recovery (HADR)
synchronization mode 431
HADR multiple standby databases 435

Restrictions for multiple standby databases . . 436
Initializing HADR in multiple standby mode 436
Enabling multiple standby mode on a
preexisting HADR setup. 438
Modifications to a multiple standby database
setup 440
Database configuration for multiple HADR
standby databases 441
Rolling upgrades in HADR multiple standby
mode 443
High availability disaster recovery (HADR)
monitoring in multiple standby mode 444
Takeover in HADR multiple standby mode . . 447
Scenario: Deploying an HADR multiple standby
database setup 448
Examples: Takeover in HADR multiple standby
mode 453

HADR reads on standby feature 458
Enabling reads on standby 458
Data concurrency on the active standby
database 459

HADR delayed replay 463
Recovering data by using HADR delayed replay 464

Performing rolling updates in a DB2 High
Availability Disaster Recovery (HADR)
environment. 466

Contents v

High availability disaster recovery (HADR)
support 469

System requirements for DB2 high availability
disaster recovery (HADR) 469
Installation and storage requirements for high
availability disaster recovery (HADR) 471
HADR and Network Address Translation (NAT)
support 472
Restrictions for High Availability Disaster
Recovery (HADR) 473

DB2 High availability disaster recovery (HADR)
management 474

DB2 High Availability Disaster Recovery
(HADR) commands 475

Initializing high availability disaster recovery
(HADR) 477
Initializing a standby database 479

Using a split mirror as a standby database . . 480
Using a split mirror as a standby database in a
DB2 pureScale environment 482

Database configuration for high availability
disaster recovery (HADR) 485

Setting the hadr_timeout and
hadr_peer_window database configuration
parameters 493
Log archiving configuration for DB2 high
availability disaster recovery (HADR) 494
HADR log spooling 496
Index logging and high availability disaster
recovery (HADR) 496
High availability disaster recovery (HADR)
performance 498
Cluster managers and high availability disaster
recovery (HADR) 500

Performing an HADR failover operation 501
Switching database roles in high availability
disaster recovery (HADR) 504
Reintegrating a database after a takeover operation 504
Monitoring high availability disaster recovery
(HADR) environments 505
Stopping DB2 High Availability Disaster Recovery
(HADR) 507

Chapter 18. Problem-determination
tools 509
DB2 diagnostic (db2diag) log files 509

Interpretation of diagnostic log file entries. . . 510
Interpreting the informational record of the
db2diag log files 513
Setting the error capture level of the diagnostic
log files 514

First occurrence data capture information 514
Collecting diagnosis information based on
common outage problems 515
First occurrence data capture configuration . . 517
Data collected as part of FODC 519
Automatic FODC data generation 525
Monitor and audit facilities using First
Occurrence Data Capture (FODC) 525

db2ckbkp command 526
db2cklog command 526

Checking archive log files with the db2cklog
tool. 526

db2ls command 528
Listing DB2 database products installed on your
system (Linux and UNIX) 529

db2mtrk command 530
Buffer pools memory allocation 530
Example 1 531
Example 2 531

db2pd command 531
Troubleshooting scripts 545

db2val command 546
Validating your DB2 copy 546

db2dart command 546
Comparison of INSPECT and db2dart 547

Part 4. Performance and
scalability 551

Chapter 19. SQL and XQuery compiler 553
Query rewriting methods and examples 556
Compiler rewrite example: Operation merging . . 557
Compiler rewrite example: Operation movement 559
Compiler rewrite example: Operation movement -
Predicate pushdown for combined SQL/XQuery
statements 561
Compiler rewrite example: Predicate translation 563
Access plan optimization 564
Optimization classes 564

Choosing an optimization class 567
Setting the optimization class 568

Optimization profiles and guidelines 569
Collecting accurate catalog statistics, including
advanced statistics features 571
Configuration parameters that affect query
optimization. 572

Chapter 20. Memory allocation 575
Database manager shared memory 577
The FCM buffer pool and memory requirements 580
Guidelines for tuning parameters that affect
memory usage 580

Chapter 21. Configuring memory and
memory heaps 583
Agent and process model configuration 585

Chapter 22. Self-tuning memory . . . 587
Self-tuning memory configuration 588
Enabling self-tuning memory 588
Disabling self-tuning memory 589
Determining which memory consumers are
enabled for self tuning 590
Self-tuning memory in partitioned database
environments 591
Using self-tuning memory in partitioned database
environments 593

vi Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 23. Automatic maintenance 595
Maintenance windows 595

Chapter 24. Automatic table and index
maintenance. 597

Chapter 25. Automatic statistics
collection 599

Chapter 26. Configuration Advisor 605
Tuning configuration parameters using the
Configuration Advisor 605
Example: Requesting configuration
recommendations using the Configuration Advisor . 606

Chapter 27. Utility throttling 609
Asynchronous index cleanup 609
Asynchronous index cleanup for MDC tables . . . 611

Chapter 28. Data compression 613
Table compression 613

Value compression 614
Row compression 615
Classic row compression 615
Adaptive compression 616
Estimating storage savings offered by adaptive
or classic row compression 619
Creating a table that uses compression 619
Enabling compression in an existing table . . . 621
Changing or disabling compression for a
compressed table 622

Compression dictionaries 623
Table-level compression dictionary creation . . 624
Impact of classic table reorganization on
table-level compression dictionaries 626
Multiple compression dictionaries for replication
source tables 627

Index compression 627
Backup compression 630

Chapter 29. Relational indexes 633
Indexes on partitioned tables 634
Relational index planning tips 639
Relational index performance tips 642
Online index defragmentation 643

Chapter 30. Parallel processing for
applications 645
Intrapartition parallelism improvements 646
Optimization strategies for intra-partition
parallelism 647

Part 5. Advanced concepts 651

Chapter 31. Federated systems. . . . 653
What is a data source? 654
The federated database 654
Wrappers and wrapper modules 655
How you interact with a federated system . . . 656
The federated server 656
Federated systems and DB2 pureScale 656
Server options that affect federated databases . . 657
Federated database query-compiler phases . . . 657

Federated database pushdown analysis. . . . 657
Guidelines for determining where a federated
query is evaluated. 661
Remote SQL generation and global optimization
in federated databases 663
Global analysis of federated database queries 665

Chapter 32. IBM Replication solutions 667
Replication tools 668

Changes to the Replication Center in DB2 10.1 669

Chapter 33. DB2 pureScale feature 671
Extreme capacity 671
Continuous availability 673
Application transparency 674
Getting started with the DB2 pureScale Feature . . 676
Management of the DB2 pureScale Feature . . . 677

Chapter 34. DB2 audit facility 679
Audit policies 681
Storage and analysis of audit logs 685
The EXECUTE category for auditing SQL
statements 688

Part 6. Appendixes 693

Appendix A. DB2 technical
information 695
DB2 technical library in hardcopy or PDF format 696
Displaying SQL state help from the command line
processor 698
Accessing different versions of the DB2
Information Center 698
Updating the DB2 Information Center installed on
your computer or intranet server 699
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 700
DB2 tutorials 702
DB2 troubleshooting information 702
Terms and conditions. 703

Appendix B. Notices 705

Index 709

Contents vii

viii Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

About this book

This book provides information from the DB2® for Linux, UNIX, and Windows
documentation to cover all the objectives that are described in the DB2 10.1
Advanced DBA for Linux, UNIX, and Windows Exam 614.
v Part 1, “Database design,” on page 1 provides information about how to design,

create, and manage database objects such as buffer pools and table spaces. It
also provides information about how to use IBM® Data Studio to manage
databases.

v Part 2, “Data partitioning and clustering,” on page 111 provides information
about the three levels of data organization which are database partitioning, data
partitioning, and table partitioning.

v Part 3, “High Availability and Diagnostics,” on page 279 provides information
about managing database logs for recovery, using advanced backup and
advanced recovery features, using Work Load Manager (WLM), using High
Availability Disaster Recovery (HADR), and choosing the appropriate diagnostic
tool for a given scenario.

v Part 4, “Performance and scalability,” on page 551 provides information about
the query optimizer, how to manage and tune databases, instances, application
memory, and I/O, how to improve performance with compression, how to
resolve performance problems for a given scenario, how to determine the
appropriate index for a given scenario, and how to exploit parallelism.

v Part 5, “Advanced concepts,” on page 651 provides information about federated
database environments, replication, DB2 pureScale® environments, and the DB2
audit facility.

Passing the DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614 is
one of the requirements to obtain the IBM Certified Advanced Database Administrator
- DB2 10.1 for Linux, UNIX, and Windows certification. For complete details about
this certification and its requirements, visit http://www.ibm.com/certify/certs/
08005004.shtml.

© Copyright IBM Corp. 2014 ix

http://www.ibm.com/certify/certs/08005004.shtml
http://www.ibm.com/certify/certs/08005004.shtml

x Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Part 1. Database design

When designing a database, you are modeling a real business system that contains
a set of entities and their characteristics, or attributes, and the rules or relationships
between those entities.

The first step is to describe the system that you want to represent. For example, if
you were creating a database for publishing system, the system would contain
several types of entities, such as books, authors, editors, and publishers.

The database needs to represent not only these types of entities and their
attributes, but you also a way to relate these entities to each other. For example,
you need to represent the relationship between books and their authors, the
relationship between books/authors and editors, and the relationship between
books/authors and publishers.

Because databases consist of tables, you must construct a set of tables that will best
hold this data, with each cell in the table holding a single view. There are many
possible ways to perform this task. As the database designer, your job is to come
up with the best set of tables possible.

For example, you could create a single table, with many rows and columns, to
hold all of the information. However, using this method, some information would
be repeated. Secondly, data entry and data maintenance would be time-consuming
and error prone. In contrast to this single-table design, a relational database allows
you to have multiple simple tables, reducing redundancy and avoiding the
difficulties posed by a large and unmanageable table. In a relational database,
tables should contain information about a single type of entity.

Also, the integrity of the data in a relational database must be maintained as
multiple users access and change the data. Whenever data is shared, ensure the
accuracy of the values within database tables in any of the following ways:
v Use isolation levels to determine how data is locked or isolated from other

processes while the data is being accessed.
v Protect data and define relationships between data by defining constraints to

enforce business rules.
v Create triggers that can do complex, cross-table data validation.
v Implement a recovery strategy to protect data so that it can be restore to a

consistent state.

Database design is a more complex task than is indicated here, and there are many
items that you must consider, such as space requirements, keys, indexes,
constraints, security and authorization, and so forth. You can find some of this
information in the DB2 Information Center, DB2 best practices, and in the many
DB2 retail books that are available on this subject.

© Copyright IBM Corp. 2014 1

2 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 1. Automatic storage

Automatic storage simplifies storage management for table spaces. You can create
storage groups consisting of a collection of storage paths on which the database
manager places your data. Then, the database manager manages the container and
space allocation for the table spaces as you create and populate them. You can
specify the storage paths of the default storage group when creating the database.

When free space is calculated for an automatic storage path for a given database
partition, the database manager checks for the existence of the following directories
or mount points within the storage path and uses the first one that it finds. You
can mount file systems at a point beneath the storage path and the database
manager recognizes that the actual amount of free space available for table space
containers might not be the same amount that is associated with the storage path
directory itself.
1. storage_path/instance_name/NODE####/database_name

2. storage_path/instance_name/NODE####

3. storage_path/instance_name

4. storage_path/

Where
v storage_path is a storage path associated with the database.
v instance_name is the instance under which the database resides.
v NODE#### corresponds to the database partition number (for example NODE0000

or NODE0001).
v database_name is the name of the database.

Consider the example where two logical database partitions exist on one physical
machine and the database is being created with a single storage path: /db2data.
Each database partition uses this storage path but you might want to isolate the
data from each partition within its own file system. In this case, you can create a
separate file system for each partition and mount it at /db2data/instance/
NODE####. When creating containers on the storage path and determining free
space, the database manager knows not to retrieve free space information for
/db2data, but instead retrieve it for the corresponding /db2data/instance/NODE####
directory.

In general, you must have the same storage paths for each partition in a
multi-partition database and they must all exist before executing the CREATE
DATABASE command. One exception to this is where database partition expressions
are used within the storage path. Doing this allows the database partition number
to be reflected in the storage path such that the resulting path name is different on
each partition.
Related concepts:
Chapter 4, “Storage groups,” on page 69
A storage group is a named set of storage paths where data can be stored. Storage
groups are configured to represent different classes of storage available to your
database system. You can assign table spaces to the storage group that best suits
the data. Only automatic storage table spaces use storage groups.
Related tasks:

© Copyright IBM Corp. 2014 3

“Adding storage paths” on page 72
You can add a storage path to a storage group by using the ALTER STOGROUP
statement.

Databases use automatic storage by default
Automatic storage can make storage management easier. Rather than managing
storage at the table space level using explicit container definitions, storage is
managed at the storage group level and the responsibility of creating, extending
and adding containers is taken over by the database manager.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.
By default, all databases are created with automatic storage. However, if the
database is created specifying the AUTOMATIC STORAGE NO clause it cannot
use automatic storage managed table spaces.

When you create a database, by default, a default storage group is automatically
created. You can establish one or more initial storage paths for it. As a database
grows, the database manager creates containers across those storage paths, and
extends them or automatically creates new ones as needed. The list of storage
paths can be displayed using the ADMIN_GET_STORAGE_PATHS administrative
view.

If a database has no storage groups, you can create a storage group using the
CREATE STOGROUP statement. The newly created storage group is the default
storage group and all new automatic storage managed table spaces are added to
the database using this storage group. You can change the default storage group
using the SET AS DEFAULT clause of the CREATE STOGROUP statement or the
ALTER STOGROUP statement.

Important:

v Adding storage paths does not convert existing non-automatic storage table
spaces to use automatic storage. You can convert database managed (DMS) table
spaces to use automatic storage. System managed (SMS) table spaces cannot be
converted to automatic storage. See “Converting table spaces to use automatic
storage” on page 13 for more information.

v Once a database has storage groups created, it always has at least one storage
group. You cannot remove the last storage group from the database manger.

v To help ensure predictable performance, the storage paths added to a storage
group should have similar media characteristics.

4 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 2. Table spaces

A table space is a storage structure containing tables, indexes, large objects, and long
data. They are used to organize data in a database into logical storage groupings
that relate to where data is stored on a system. Table spaces are stored in database
partition groups.

Using table spaces to organize storage offers a number of benefits:

Recoverability
Putting objects that must be backed up or restored together into the same
table space makes backup and restore operations more convenient, since
you can backup or restore all the objects in table spaces with a single
command. If you have partitioned tables and indexes that are distributed
across table spaces, you can backup or restore only the data and index
partitions that reside in a given table space.

More tables
There are limits to the number of tables that can be stored in any one table
space; if you have a need for more tables than can be contained in a table
space, you need only to create additional table spaces for them.

Automatic storage management
With automatic storage table spaces, storage is managed automatically. The
database manager creates and extends containers as needed.

Ability to isolate data in buffer pools for improved performance or memory
utilization

If you have a set of objects (for example, tables, indexes) that are queried
frequently, you can assign the table space in which they reside a buffer
pool with a single CREATE or ALTER TABLESPACE statement. You can
assign temporary table spaces to their own buffer pool to increase the
performance of activities such as sorts or joins. In some cases, it might
make sense to define smaller buffer pools for seldom-accessed data, or for
applications that require very random access into a very large table; in
such cases, data need not be kept in the buffer pool for longer than a
single query

Table spaces consist of one or more containers. A container can be a directory name,
a device name, or a file name. A single table space can have several containers. It
is possible for multiple containers (from one or more table spaces) to be created on
the same physical storage device (although you will get the best performance if
each container you create uses a different storage device). If you are using
automatic storage table spaces, the creation and management of containers is
handled automatically by the database manager. If you are not using automatic
storage table spaces, you must define and manage containers yourself.

Figure 1 on page 6 illustrates the relationship between tables and table spaces
within a database, and the containers associated with that database.

© Copyright IBM Corp. 2014 5

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,
which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table
space in container 4. This example shows each container existing on a separate
disk.

The database manager attempts to balance the data load across containers. As a
result, all containers are used to store data. The number of pages that the database
manager writes to a container before using a different container is called the extent
size. The database manager does not always start storing table data in the first
container.

Figure 2 on page 7 shows the HUMANRES table space with an extent size of two 4
KB pages, and four containers, each with a small number of allocated extents. The
DEPARTMENT and EMPLOYEE tables both have seven pages, and span all four
containers.

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

Figure 1. Table spaces and tables in a database

6 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table spaces for system, user and temporary data
Each database must have a minimal set of table spaces that are used for storing
system, user and temporary data.

A database must contain at least three table spaces:
v A catalog table space

v One or more user table spaces

v One or more temporary table spaces.

Catalog table spaces

A catalog table space contains all of the system catalog tables for the database. This
table space is called SYSCATSPACE, and it cannot be dropped.

User table spaces

A user table space contains user-defined tables. By default, one user table space,
USERSPACE1, is created.

If you do not specify a table space for a table at the time you create it, the database
manager will choose one for you. Refer to the documentation for the IN
tablespace-name clause of the CREATE TABLE statement for more information.

The page size of a table space determines the maximum row length or number of
columns that you can have in a table. The documentation for the CREATE TABLE
statement shows the relationship between page size, and the maximum row size
and column count. Before Version 9.1, the default page size was 4 KB. In Version
9.1 and following, the default page size can be one of the other supported values.
The default page size is declared when creating a new database. Once the default
page size has been declared, you are still free to create a table space with one page
size for the table, and a different table space with a different page size for long or
LOB data. If the number of columns or the row size exceeds the limits for a table

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

Figure 2. Containers and extents in a table space

Chapter 2. Table spaces 7

space's page size, an error is returned (SQLSTATE 42997).

Temporary table spaces

A temporary table space contains temporary tables. Temporary table spaces can be
system temporary table spaces or user temporary table spaces.

System temporary table spaces hold temporary data required by the database
manager while performing operations such as sorts or joins. These types of
operations require extra space to process the results set. A database must have at
least one system temporary table space; by default, one system temporary table
space called TEMPSPACE1 is created at database creation.

When processing queries, the database manager might need access to a system
temporary table space with a page size large enough to manipulate data related to
your query. For example, if your query returns data with rows that are 8KB long,
and there are no system temporary table spaces with page sizes of at least 8KB, the
query might fail. You might need to create a system temporary table space with a
larger page size. Defining a temporary table space with a page size equal to that of
the largest page size of your user table spaces will help you avoid these kinds of
problems.

User temporary table spaces hold temporary data from tables created with a
DECLARE GLOBAL TEMPORARY TABLE or CREATE GLOBAL TEMPORARY
TABLE statement. They are not created by default at the time of database creation.
They also hold instantiated versions of created temporary tables. To allow the
definition of declared or created temporary tables, at least one user temporary
table space should be created with the appropriate USE privileges. USE privileges
are granted using the GRANT statement.

If a database uses more than one temporary table space and a new temporary
object is needed, the optimizer will choose an appropriate page size for this object.
That object will then be allocated to the temporary table space with the
corresponding page size. If there is more than one temporary table space with that
page size, then the table space will be chosen in a round-robin fashion, starting
with one table space with that page size, and then proceeding to the next for the
next object to be allocated, and so, returning to the first table space after all
suitable table spaces have been used. In most circumstances, though, it is not
recommended to have more than one temporary table space with the same page
size.

Types of table spaces
Table spaces can be set up in different ways depending on the how you choose to
manage their storage.

The three types of table spaces are known as:
v System managed space (SMS), in which the operating system's file manager

controls the storage space once you have defined the location for storing
database files

v Database managed space (DMS), in which the database manager controls the
usage of storage space one you have allocated storage containers.

v Automatic storage table spaces, in which the database manager controls the
creation of containers as needed.

Each can be used together in any combination within a database

8 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Automatic storage table spaces
With automatic storage table spaces, storage is managed automatically. The
database manager creates and extends containers as needed.

Note: Although you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

Any table spaces that you create are managed as automatic storage table spaces
unless you specify otherwise or the database was created using the AUTOMATIC
STORAGE NO clause. With automatic storage table spaces, you are not required to
provide container definitions; the database manager looks after creating and
extending containers to make use of the storage allocated to the database. If you
add storage to a storage group, new containers are automatically created when the
existing containers reach their maximum capacity. If you want to make use of the
newly-added storage immediately, you can rebalance the table space, reallocating
the data across the new, expanded set of containers and stripe sets. Or, if you are
less concerned about I/O parallelism, and just want to add capacity to your table
space, you can forego rebalancing; in this case, as new storage is required, new
stripe sets will be created.

Automatic storage table spaces can be created in a database using the CREATE
TABLESPACE statement. By default, new tables spaces in a database are automatic
storage table spaces, so the MANAGED BY AUTOMATIC STORAGE clause is
optional. You can also specify options when creating the automatic storage table
space, such as its initial size, the amount that the table space size will be increased
when the table space is full, the maximum size that the table space can grow to,
and the storage group it uses. Following are some examples of statements that
create automatic storage table spaces:
CREATE TABLESPACE TS1
CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE
CREATE TEMPORARY TABLESPACE TEMPTS
CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE
CREATE LARGE TABLESPACE LONGTS
CREATE TABLESPACE TS3 INITIALSIZE 8K INCREASESIZE 20 PERCENT MANAGED BY AUTOMATIC STORAGE
CREATE TABLESPACE TS4 MAXSIZE 2G
CREATE TABLESPACE TS5 USING STOGROUP SG_HOT

Each of these examples assumes that the database for which these table spaces are
being created has one or more defined storage groups. When you create a table
space in a database that has no storage groups defined, you cannot use the
MANAGED BY AUTOMATIC STORAGE clause; you must create a storage group,
then try again to create your automatic storage table space.

How automatic storage table spaces manage storage
expansion

If you are using automatic storage table spaces, the database manager creates and
extends containers as needed. If you add storage to the storage group that the
table space uses, new containers are created automatically. How the new storage
space gets used, however, depends on whether you REBALANCE the table space
or not.

When an automatic storage table space is created, the database manager creates a
container on each of the storage paths of the storage group it is defined to use
(where space permits). Once all of the space in a table space is consumed, the

Chapter 2. Table spaces 9

database manager automatically grows the size of the table space by extending
existing containers or by adding a new stripe set of containers.

Storage for automatic table spaces is managed at the storage group level; that is,
you add storage to the database's storage groups, rather than to table spaces as you
do with DMS table spaces. When you add storage to a storage group used by the
table space, the automatic storage feature will create new containers as needed to
accommodate data. However, table spaces that already exist will not start
consuming storage on the new paths immediately. When a table space needs to
grow, the database manager will first attempt to extend those containers in the last
range of the table space. A range is all the containers across a given stripe set. If
this is successful, applications will start using that new space. However, if the
attempt to extend the containers fails, as might happen when one or more of the
file systems are full, for example, the database manager will attempt to create a
new stripe set of containers. Only at this point does the database manager consider
using the newly added storage paths for the table space. Figure 3 illustrates this
process.

In the preceding diagram:

/path1 /path2 /path3

/path1 /path1 /path1/path2 /path2 /path3 /path2 /path3

1 2

3

/path1 /path2 /path3 /path1 /path2 /path3

4 5

Figure 3. How automatic storage adds containers as needed

10 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

1. The table space starts out with two containers that have not yet reached their
maximum capacity. A new storage path is added to the storage group using the
ALTER STOGROUP statement with the ADD clause. However, the new storage
path is not yet being used.

2. The two original containers reach their maximum capacity.
3. A new stripe set of containers is added, and they start to fill up with data.
4. The containers in the new stripe set reaching their maximum capacity.
5. A new stripe set is added because there is no room for the containers to grow.

If you want to have the automatic storage table space start using the newly added
storage path immediately, you can perform a rebalance, using the REBALANCE
clause of the ALTER TABLESPACE command. If you rebalance your table space,
the data will be reallocated across the containers and stripe sets in the
newly-added storage. This is illustrated in Figure 4.

In this example, rather than a new stripe set being created, the rebalance expands
the existing stripe sets into the new storage path, creating containers as needed,
and then reallocates the data across all of the containers.

Container names in automatic storage table spaces
Although container names for automatic storage table spaces are assigned by the
database manager, they are visible if you run commands such as LIST TABLESPACE
CONTAINERS, or GET SNAPSHOT FOR TABLESPACES commands. This topic describes the
conventions used for container names so that you can recognize them when they
appear.

The names assigned to containers in automatic storage table spaces are structured
as follows:
storage path/instance name/NODE####/database name/T#######/C#######.EXT

where:

/path1 /path2 /path3

Second
stripe set

First
stripe set

Path being
addedExisting

paths

/path1 /path2 /path3

Figure 4. Results of adding new storage and rebalancing the table space

Chapter 2. Table spaces 11

storage path
Is a storage path associated with a storage group

instance name
Is the instance under which the database was created

database name
Is the name of the database

NODE####
Is the database partition number (for example, NODE0000)

T#######
Is the table space ID (for example, T0000003)

C#######
Is the container ID (for example, C0000012)

EXT Is an extension based on the type of data being stored:

CAT System catalog table space

TMP System temporary table space

UTM User temporary table space

USR User or regular table space

LRG Large table space

Example

For example, assume an automatic storage table space TBSAUTO has been created
in the database SAMPLE. When the LIST TABLESPACES command is run, it is
shown as having a table space ID of 10:
Tablespace ID = 10
Name = TBSAUTO
Type = Database managed space
Contents = All permanent data. Large table space.
State = 0x0000

Detailed explanation:
Normal

If you now run the LIST TABLESPACE CONTAINERS command for the table space with
the ID of 10, you can see the names assigned to the containers for this table space:
LIST TABLESPACE CONTAINERS FOR 10 SHOW DETAIL

Tablespace Containers for Tablespace 10

Container ID = 0
Name = D:\DB2\NODE0000\SAMPLE\T0000010\C0000000.LRG
Type = File
Total pages = 4096
Useable pages = 4064
Accessible = Yes

In this example, you can see the name of the container, with container ID 0, for
this table space is
D:\DB2\NODE0000\SAMPLE\T0000010\C0000000.LRG

12 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Converting table spaces to use automatic storage
You can convert some or all of your database-managed space (DMS) table spaces
in a database to use automatic storage. Using automatic storage simplifies your
storage management tasks.

Before you begin

Ensure that the database has at least one storage group. To do so, query
SYSCAT.STOGROUPS, and issue the CREATE STOGROUP statement if the result
set is empty.

Note: If you are not using the automatic storage feature, you must not use the
storage paths and naming conventions that are used by automatic storage. If you
use the same storage paths and naming conventions as automatic storage and you
alter a database object to use automatic storage, the container data for that object
might be corrupted.

Procedure

To convert a DMS table space to use automatic storage, use one of the following
methods:
v Alter a single table space. This method keeps the table space online but

involves a rebalance operation that takes time to move data from the
non-automatic storage containers to the new automatic storage containers.
1. Specify the table space that you want to convert to automatic storage.

Indicate which storage group you want the table space to use. Issue the
following statement:
ALTER TABLESPACE tbspc1 MANAGED BY AUTOMATIC STORAGE USING STOGROUP sg_medium

where tbspc1 is the table space and sg_medium is the storage group it is
defined in.

2. Move the user-defined data from the old containers to the storage paths in
the storage group sg_medium by issuing the following statement:
ALTER TABLESPACE tbspc1 REBALANCE

Note: If you do not specify the REBALANCE option now and issue the
ALTER TABLESPACE statement later with the REDUCE option, your
automatic storage containers will be removed. To recover from this problem,
issue the ALTER TABLESPACE statement, specifying the REBALANCE
option.

3. To monitor the progress of the rebalance operation, use the following
statement:
SELECT * from table (MON_GET_REBALANCE_STATUS(’tbspc1’, -2))

v Use a redirected restore operation. When the redirected restore operation is in
progress, you cannot access the table spaces being converted. For a full database
redirected restore, all table spaces are inaccessible until the recovery is
completed.
1. Run the RESTORE DATABASE command, specifying the REDIRECT parameter. If

you want to convert a single table space, also specify the TABLESPACE
parameter:
RESTORE DATABASE database_name TABLESPACE (table_space_name) REDIRECT

2. Run the SET TABLESPACE CONTAINERS command, specifying the USING
AUTOMATIC STORAGE parameter, for each table space that you want to convert:
SET TABLESPACE CONTAINERS FOR tablespace_id USING AUTOMATIC STORAGE

Chapter 2. Table spaces 13

3. Run the RESTORE DATABASE command again, this time specifying the CONTINUE
parameter:
RESTORE DATABASE database_name CONTINUE

4. Run the ROLLFORWARD DATABASE command, specifying the TO END OF LOGS and
AND STOP parameters:
ROLLFORWARD DATABASE database_name TO END OF LOGS AND STOP

If using a redirected restore operation, an additional ALTER TABLESPACE
statement must be issued to update the database catalogs with the correct
storage group association for the table space. The association between table
spaces and storage groups is recorded in the system catalog tables and is not
updated during the redirected restore. Issuing the ALTER TABLESPACE
statement updates only the catalog tables and does not require the extra
processing of a rebalance operation. If the ALTER TABLESPACE statement is not
issued then query performance can be affected. If you modified the default
storage group for the table space during the redirected restore operation, to keep
all database partitions and system catalogs consistent, issue the RESTORE
DATABASE command with the USING STOGROUP parameter.

Example

To convert a database managed table space SALES to automatic storage during a
redirected restore, do the following:
1. To set up a redirected restore to testdb, issue the following command:

RESTORE DATABASE testdb REDIRECT

2. Modify the table space SALES to be managed by automatic storage. The SALES
table space has an ID value of 5.
SET TABLESPACE CONTAINERS FOR 5 USING AUTOMATIC STORAGE

Note: To determine the ID value of a table space during a redirect restore use
the GENERATE SCRIPT option of the RESTORE DATABASE command.

3. To proceed with the restore, issue the following:
RESTORE DATABASE testdb CONTINUE

4. Update the storage group information in the catalog tables.
CONNECT TO testdb
ALTER TABLESPACE SALES MANAGED BY AUTOMATIC STORAGE

5. If you modified the storage group for the table space during the redirected
restore operation, issue the following command:
RESTORE DATABASE testdb USING STOGROUP sg_default

The table space high water mark
The high water mark refers to the page number of the first page in the extent
following the last allocated extent.

For example, if a table space has 1000 pages and an extent size of 10, there are 100
extents. If the 42nd extent is the highest allocated extent in the table space that
means that the high-water mark is 420.

Tip: Extents are indexed from 0. So the high water mark is the last page of the
highest allocated extent + 1.
Practically speaking, it's virtually impossible to determine the high water mark
yourself; there are administrative views and table functions that you can use to

14 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

determine where the current high water mark is, though it can change from
moment to moment as row operations occur.

Note that the high water mark is not an indicator of the number of used pages
because some of the extents below the high-water mark might have been freed as a
result of deleting data. In this case, even through there might be free pages below
it, the high water mark remains as highest allocated page in the table space.

You can lower the high water mark of a table space by consolidating extents
through a table space size reduction operation.

Example

Figure 5 shows a series of allocated extents in a table space.

Extent 0

Object 1

Object 2

Pages
within extent

Extent 1

Extent 2

Extent n

Extent n+1
High

water
mark

Free
space

Object 2

Drop Object 1

High
water
mark

Figure 5. High water mark

Chapter 2. Table spaces 15

When an object is dropped, space is freed in the table space. However, until any
kind of storage consolidation operation is performed, the high water mark remains
at the previous level. It might even move higher, depending how new extents to
the container are added.

Reclaimable storage
Reclaimable storage is a feature of nontemporary automatic storage and DMS table
spaces in DB2 V9.7 and later. You can use it to consolidate in-use extents below the
high water mark and return unused extents in your table space to the system for
reuse.

With table spaces created before DB2 V9.7, the only way to release storage to the
system was to drop containers, or reduce the size of containers by eliminating
unused extents above the high water mark. There was no direct mechanism for
lowering the high water mark. It could be lowered by unloading and reloading
data into an empty table space, or through indirect operations, like performing
table and index reorganizations. With this last approach, it might have been that
the high water mark could still not be lowered, even though there were free
extents below it.

During the extent consolidation process, extents that contain data are moved to
unused extents below the high water mark. After extents are moved, if free extents
still exist below the high water mark, they are released as free storage. Next, the
high water mark is moved to the page in the table space just after the last in-use
extent. In table spaces where reclaimable storage is available, you use the ALTER
TABLESPACE statement to reclaim unused extents. Figure 6 on page 17 shows a
high-level view of how reclaimable storage works.

16 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

All nontemporary automatic storage and DMS table spaces created in DB2 Version
9.7 and later provide the capability for consolidating extents below the high water
mark. For table spaces created in an earlier version, you must first replace the table
space with a new one created using DB2 V9.7. You can either unload and reload
the data or move the data with an online table move operation using the
SYSPROC.ADMIN_MOVE_TABLE procedure. Such a migration is not required,
however. Table spaces for which reclaimable storage is enabled can coexist in the
same database as table spaces without reclaimable storage.

Reducing the size of table spaces through extent movement is an online operation.
In other words, data manipulation language (DML) and data definition language
(DDL) can continue to be run while the reduce operation is taking place. Some
operations, such as a backup or restore cannot run concurrently with extent
movement operations. In these cases, the process requiring access to the extents
being moved (for example, backup) waits until a number of extents have been
moved (this number is non-user-configurable), at which point the backup process
obtains a lock on the extents in question, and continues from there.

You can monitor the progress of extent movement using the
MON_GET_EXTENT_MOVEMENT_STATUS table function.

Extent 0

Object 1

Object 2

Pages
within extent

Extent 1

Extent 2

Extent n

Extent n+1
High

water
mark

Free
space

Object 2 Object 2

Object 2
Free

space

Drop Object 1 Extents moved Free space
is reclaimed

High
water
mark

High
water
mark

High
water
mark

...
...

Figure 6. How reclaimable storage works. When reclaimable storage is enabled for a table
space, the in-use extents can be moved to occupy unused extents lower in the table space.

Chapter 2. Table spaces 17

Tip: To maximize the amount of space that the ALTER TABLESPACE statement
reclaims, first perform a REORG operation on the tables and indexes in the table
space.

Automatic storage table spaces

You can reduce automatic storage table spaces in a number of ways:

Container reduction only
With this option, no extents are moved. The database manager attempts to
reduce the size of the containers by first freeing extents for which deletes
are pending. (It is possible that some “pending delete” extents cannot be
freed for recoverability reasons, so some of these extents may remain.) If
the high water mark was among those extents freed, then the high water
mark is lowered, otherwise no change to the high water mark takes place.
Next, the containers are re-sized such that total amount of space in the
table space is equal to or slightly greater than the high water mark. This
operation is performed using the ALTER TABLESPACE with the REDUCE
clause by itself.

Lower high water mark only
With this option, the maximum number of extents are moved to lower the
high water mark, however, no container resizing operations are performed.
This operation is performed using the ALTER TABLESPACE with the
LOWER HIGH WATER MARK clause by itself.

Lower high water mark and reduce containers by a specific amount
With this option, you can specify an absolute amount in kilo-, mega-, or
gigabytes by which to reduce the table space. Or you can specify a relative
amount to reduce by entering a percentage. Either way, the database
manager first attempts to reduce space by the requested amount without
moving extents. That is, it attempts to reduce the table space by reducing
the container size only, as described in Container reduction only, by freeing
delete pending extents, and attempting to lower the high water mark. If
this approach does not yield a sufficient reduction, the database manager
then begins moving used extents lower in the table space to lower the high
water mark. After extent movement has completed, the containers are
resized such that total amount of space in the table space is equal to or
slightly greater than the high water mark. If the table space cannot be
reduced by the requested amount because there are not enough extents
that can be moved, the high water mark is lowered as much as possible.
This operation is performed using the ALTER TABLESPACE with a
REDUCE clause that includes a specified amount by which to reduce the
size the table space.

Lower high water mark and reduce containers the maximum amount possible
In this case, the database manager moves as many extents as possible to
reduce the size of the table space and its containers. This operation is
performed using the ALTER TABLESPACE with the REDUCE MAX clause.

Once the extent movement process has started, you can stop it using the ALTER
TABLESPACE statement with the REDUCE STOP clause. Any extents that have
been moved are committed, the high water mark lowered as much as possible, and
containers are re-sized to the new, lowered high water mark.

DMS table spaces

DMS table spaces can be reduced in two ways:

18 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Container reduction only
With this option, no extents are moved. The database manager attempts to
reduce the size of the containers by first freeing extents for which deletes
are pending. (It is possible that some “"pending delete"” extents cannot be
deleted for recoverability reasons, so some of these extents might remain.)
If the high water mark was among those extents freed, then the high water
mark is lowered. Otherwise no change to the high water mark takes place.
Next, the containers are resized such that total amount of space in the table
space is equal to or slightly greater than the high water mark. This
operation is performed using the ALTER TABLESPACE with the REDUCE
database-container clause by itself.

Lower high water mark only
With this option, the maximum number of extents are moved to lower the
high water mark, however, no container resizing operations are performed.
This operation is performed using the ALTER TABLESPACE with the
LOWER HIGH WATER MARK clause by itself.

Lowering the high water mark and reducing container size is a combined,
automatic operation with automatic storage table spaces. By contrast, with DMS
table spaces, to achieve both a lowered high water mark and smaller container
sizes, you must perform two operations:
1. First, you must lower the high water mark for the table space using the ALTER

TABLESPACE statement with the LOWER HIGH WATER MARK clause.
2. Next you must use the ALTER TABLESPACE statement with the REDUCE

database-container clause by itself to perform the container resizing operations.

Once the extent movement process has started, you can stop it using the ALTER
TABLESPACE statement with the LOWER HIGH WATER MARK STOP clause. Any
extents that have been moved are committed, the high water mark are reduced to
its new value.

Examples

Example 1: Reducing the size of an automatic storage table space by the maximum amount.

Assuming a database with one automatic storage table space TS and three tables
T1, T2, and T3 exists, we drop tables T1 and T3:

DROP TABLE T1
DROP TABLE T3

Now, assuming that the extents are now free, the following statement causes the
extents formerly occupied by T1 and T3 to be reclaimed, and the high water mark
of the table space reduced:

ALTER TABLESPACE TS REDUCE MAX

Example 2: Reducing the size of an automatic storage table space by a specific amount.

Assume that we have a database with one automatic storage table space TS and
two tables T1, and T2. Next, we drop table T1:

DROP TABLE T1

Now, to reduce the size of the table space by 1 MB, use the following statement:
ALTER TABLESPACE TS REDUCE SIZE 1M

Chapter 2. Table spaces 19

Alternatively, you could reduce the table space by a percentage of its existing size
with a statement such as this:

ALTER TABLESPACE TS REDUCE SIZE 5 PERCENT

Example 3: Reducing the size of an automatic storage table space when there is free space
below the high water mark.

Like Example 1, assume that we have a database with one automatic storage table
space TS and three tables T1, T2, and T3. This time, when we drop T2 and T3,
there is a set of five free extents just below the high water mark. Now, assuming
that each extent in this case was made up of two 4K pages, there is actually 40 KB
of free space just below the high water mark. If you issue a statement such as this
one:

ALTER TABLESPACE TS REDUCE SIZE 32K

the database manager can lower the high water mark and reduce the container size
without the need to perform any extent movement. This scenario is illustrated in
Figure 7 on page 21

20 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example 4: Reducing the size of a DMS table space.

Assume that we have a database with one DMS table space TS and three tables T1,
T2, and T3. Next, we drop tables T1 and T3:

DROP TABLE T1
DROP TABLE T3

To lower the high water mark and reduce the container size with DMS table space
is a two-step operation. First, lower the high water mark through extent movement
with the following statement:

ALTER TABLESPACE TS LOWER HIGH WATER MARK

Next, you would reduce the size of the containers with a statement such as this
one:

ALTER TABLESPACE TS REDUCE (ALL CONTAINERS 5 M)

Extent 0

t1

Pages
within extent

Extent 1

Extent 2

Extent n

Extent n+1
High

water
mark

Delete t2, t3 Reduce table space
operation

High
water
mark

High
water
mark

t2

t3

Free
Space

t1 t1

Figure 7. Lowering the high water mark without needing to move extents.

Chapter 2. Table spaces 21

File system caching configurations
The operating system, by default, caches file data that is read from and written to
disk.

A typical read operation involves physical disk access to read the data from disk
into the file system cache, and then to copy the data from the cache to the
application buffer. Similarly, a write operation involves physical disk access to copy
the data from the application buffer into the file system cache, and then to copy it
from the cache to the physical disk. This behavior of caching data at the file system
level is reflected in the FILE SYSTEM CACHING clause of the CREATE
TABLESPACE statement. Since the database manager manages its own data
caching using buffer pools, the caching at the file system level is not needed if the
size of the buffer pool is tuned appropriately.

Note: The database manager already prevents caching of most DB2 data, except
temporary data and LOBs on AIX®, by invalidating the pages from the cache.

In some cases, caching at the file system level and in the buffer pools causes
performance degradation because of the extra CPU cycles required for the double
caching. To avoid this double caching, most file systems have a feature that
disables caching at the file system level. This is generically referred to as
non-buffered I/O. On UNIX, this feature is commonly known as Direct I/O (or DIO).
On Windows, this is equivalent to opening the file with the
FILE_FLAG_NO_BUFFERING flag. In addition, some file systems such as IBM
JFS2 or Symantec VERITAS VxFS also support enhanced Direct I/O, that is, the
higher-performing Concurrent I/O (CIO) feature. The database manager supports
this feature with the NO FILE SYSTEM CACHING table space clause. When this is
set, the database manager automatically takes advantage of CIO on file systems
where this feature exists. This feature might help to reduce the memory
requirements of the file system cache, thus making more memory available for
other uses.

Before Version 9.5, the keyword FILE SYSTEM CACHING was implied if neither
NO FILE SYSTEM CACHING nor FILE SYSTEM CACHING was specified. With
Version 9.5, if neither keyword is specified, the default, NO FILE SYSTEM
CACHING, is used. This change affects only newly created table spaces. Existing
table spaces created prior to Version 9.5 are not affected. This change applies to
AIX, Linux, Solaris, and Windows with the following exceptions, where the default
behavior remains to be FILE SYSTEM CACHING:
v AIX JFS
v Solaris non-VxFS
v Linux for System z®

v All SMS temporary table space files
v Long Field (LF) and Large object (LOB) data files in SMS permanent table space

files.

To override the default setting, specify FILE SYSTEM CACHING or NO FILE
SYSTEM CACHING.

Important: The SMS table space type has been deprecated in Version 10.1 for
user-defined permanent table spaces and might be removed in a future release. The
SMS table space type is not deprecated for catalog and temporary table spaces. For
more information, see “SMS permanent table spaces have been deprecated” in
What's New for DB2 Version 10.1

22 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Supported configurations

Table 1 shows the supported configuration for using table spaces without file
system caching. It also indicates: (a) whether DIO or enhanced DIO will be used in
each case, and (b) the default behavior when neither NO FILE SYSTEM CACHING
nor FILE SYSTEM CACHING is specified for a table space based on the platform
and file system type.

Table 1. Supported configurations for table spaces without file system caching

Platforms File system type and
minimum level required

DIO or CIO requests
submitted by the database
manager when NO FILE
SYSTEM CACHING is
specified

Default behavior when
neither NO FILE SYSTEM
CACHING nor FILE
SYSTEM CACHING is
specified

AIX 6.1 and higher Journal File System (JFS) DIO FILE SYSTEM CACHING
(See Note 1.)

AIX 6.1 and higher General Parallel File System
(GPFS™)

DIO NO FILE SYSTEM
CACHING

AIX 6.1 and higher Concurrent Journal File
System (JFS2)

CIO NO FILE SYSTEM
CACHING

AIX 6.1 and higher VERITAS Storage
Foundation for DB2 4.1
(VxFS)

CIO NO FILE SYSTEM
CACHING

HP-UX Version 11i v3
(Itanium)

VERITAS Storage
Foundation 4.1 (VxFS)

CIO FILE SYSTEM CACHING

Solaris 10, 11 UNIX File System (UFS) CIO FILE SYSTEM CACHING
(See Note 2.)

Solaris 10, 11 VERITAS Storage
Foundation for DB2 4.1
(VxFS)

CIO NO FILE SYSTEM
CACHING

Linux distributions SLES 10
SP3 or higher, and RHEL
5.2 or higher

(on these architectures: x86,
x64, POWER®)

ext2, ext3, reiserfs DIO NO FILE SYSTEM
CACHING

Linux distributions SLES 10
SP3 or higher, and RHEL
5.2 or higher

(on these architectures: x86,
x64, POWER)

VERITAS Storage
Foundation 4.1 (VxFS)

CIO NO FILE SYSTEM
CACHING

Linux distributions SLES 10
SP3 or higher, and RHEL
5.2 or higher

(on this architecture:
zSeries)

ext2, ext3 or reiserfs on a
Small Computer System
Interface (SCSI) disks using
Fibre Channel Protocol
(FCP)

DIO FILE SYSTEM CACHING

Windows No specific requirement,
works on all DB2
supported file systems

DIO NO FILE SYSTEM
CACHING

Note:

1. On AIX JFS, FILE SYSTEM CACHING is the default.

Chapter 2. Table spaces 23

2. On Solaris UFS, NO FILE SYSTEM CACHING is the default.
3. The VERITAS Storage Foundation for the database manager might have

different operating system prerequisites. The platforms listed previously are the
supported platforms for the current release. Consult the VERITAS Storage
Foundation for DB2 support for prerequisite information.

4. If SFDB2 5.0 is used instead of the previously specified minimum levels, the
SFDB2 5.0 MP1 RP1 release must be used. This release includes fixes that are
specific to the 5.0 version.

5. If you do not want the database manager to choose NO FILE SYSTEM
CACHING for the default setting, specify FILE SYSTEM CACHING in the
relevant SQL, commands, or APIs.

Examples

Example 1: By default, this new table space will be created using non-buffered
I/O; the NO FILE SYSTEM CACHING clause is implied:

CREATE TABLESPACE table space name ...

Example 2: On the following statement, the NO FILE SYSTEM CACHING clause
indicates that file system level caching will be OFF for this particular table space:

CREATE TABLESPACE table space name ... NO FILE SYSTEM CACHING

Example 3: The following statement disables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... NO FILE SYSTEM CACHING

Example 4: The following statement enables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... FILE SYSTEM CACHING

Extent sizes in table spaces
An extent is a block of storage within a table space container. It represents the
number of pages of data that will be written to a container before writing to the
next container. When you create a table space, you can choose the extent size based
on your requirements for performance and storage management.

When selecting an extent size, consider:
v The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table one extent at a time. As the
table is populated and an extent becomes full, a new extent is allocated. DMS
table space container storage is pre-reserved which means that new extents are
allocated until the container is completely used.
Space in SMS table spaces is allocated to a table either one extent at a time or
one page at a time. As the table is populated and an extent or page becomes
full, a new extent or page is allocated until all of the extents or pages in the file
system are used. When using SMS table spaces, multipage file allocation is
allowed. Multipage file allocation allows extents to be allocated instead of a
page at a time.
Multipage file allocation is enabled by default. The value of the multipage_alloc
database configuration parameter indicate whether multipage file allocation is
enabled.

24 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note: Multipage file allocation is not applicable to temporary table spaces.
A table is made up of the following separate table objects:
– A data object. This is where the regular column data is stored.
– An index object. This is where all indexes defined on the table are stored.
– A long field (LF) data object. This is where long field data, if your table has

one or more LONG columns, is stored.
– Two large object (LOB) data objects. If your table has one or more LOB

columns, they are stored in these two table objects:
- One table object for the LOB data
- A second table object for metadata describing the LOB data.

– A block map object for multidimensional clustering (MDC) tables.
– An extra XDA object, which stores XML documents.
Each table object is stored separately, and each object allocates new extents as
needed. Each DMS table object is also paired with a metadata object called an
extent map, which describes all of the extents in the table space that belong to
the table object. Space for extent maps is also allocated one extent at a time.
Therefore, the initial allocation of space for an object in a DMS table space is two
extents. (The initial allocation of space for an object in an SMS table space is one
page.)
If you have many small tables in a DMS table space, you might have a relatively
large amount of space allocated to store a relatively small amount of data. In
such a case, specify a small extent size. However, if you have a very large table
that has a high growth rate, and you are using a DMS table space with a small
extent size, you might needlessly allocate additional extents more frequently.

v The type of access to the tables.
If access to the tables includes many queries or transactions that process large
quantities of data, prefetching data from the tables might provide significant
performance benefits.

v The minimum number of extents required.
If there is not enough space in the containers for five extents of the table space,
the table space is not created.

Page, table and table space size
For DMS, temporary DMS and nontemporary automatic storage table spaces, the
page size you choose for your database determines the upper limit for the table
space size. For tables in SMS and temporary automatic storage table spaces, page
size constrains the size of the tables themselves.

You can use a 4K, 8K, 16K or 32K page size limit. Each of these page sizes also has
maximums for each of the table space types that you must adhere to.

Table 2 shows the table space size limits for DMS and nontemporary automatic
storage table spaces, by page size:

Table 2. Size limits for DMS and nontemporary automatic storage table spaces. DMS and
nontemporary automatic storage table spaces are constrained by page size.

Table space type
4K page
size limit

8K page
size limit

16K page
size limit

32K page
size limit

DMS and nontemporary automatic storage
table spaces (regular)

64G 128G 256G 512G

Chapter 2. Table spaces 25

Table 2. Size limits for DMS and nontemporary automatic storage table
spaces (continued). DMS and nontemporary automatic storage table spaces are constrained
by page size.

Table space type
4K page
size limit

8K page
size limit

16K page
size limit

32K page
size limit

DMS, temporary DMS and nontemporary
automatic storage table spaces (large)

8192G 16 384G 32 768G 65 536G

Table 3 shows the table size limits tables in SMS and temporary automatic storage
table spaces, by page size:

Table 3. Size limits for tables in SMS and temporary automatic storage table spaces. With
tables in SMS and temporary automatic storage table spaces, it is the table objects
themselves, not the table spaces that are constrained by page size.

Table space type
4K page
size limit

8K page
size limit

16K page
size limit

32K page
size limit

SMS 64G 128G 256G 512G

Temporary SMS, temporary automatic
storage

8192G 16 384G 32 768G 65 536G

For database and index page size limits for the different types of table spaces, see
the database manager page size-specific limits in “SQL and XML limits” in the SQL
Reference.

Disk I/O efficiency and table space design
The type and design of your table space determines the efficiency of the I/O
performed against that table space.

You should understand the following concepts before considering other issues
concerning table space design and use:

Big-block reads
A read where several pages (usually an extent) are retrieved in a single
request. Reading several pages at once is more efficient than reading each
page separately.

Prefetching
The reading of pages in advance of those pages being referenced by a
query. The overall objective is to reduce response time. This can be
achieved if the prefetching of pages can occur asynchronously to the
execution of the query. The best response time is achieved when either the
CPU or the I/O subsystem is operating at maximum capacity.

Page cleaning
As pages are read and modified, they accumulate in the database buffer
pool. When a page is read in, it is read into a buffer pool page. If the
buffer pool is full of modified pages, one of these modified pages must be
written out to the disk before the new page can be read in. To prevent the
buffer pool from becoming full, page cleaner agents write out modified
pages to guarantee the availability of buffer pool pages for future read
requests.

Whenever it is advantageous to do so, the database manager performs big-block
reads. This typically occurs when retrieving data that is sequential or partially

26 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

sequential in nature. The amount of data read in one read operation depends on
the extent size - the bigger the extent size, the more pages can be read at one time.

Sequential prefetching performance can be further enhanced if pages can be read
from disk into contiguous pages within a buffer pool. Since buffer pools are
page-based by default, there is no guarantee of finding a set of contiguous pages
when reading in contiguous pages from disk. Block-based buffer pools can be used
for this purpose because they not only contain a page area, they also contain a
block area for sets of contiguous pages. Each set of contiguous pages is named a
block and each block contains a number of pages referred to as blocksize. The size
of the page and block area, as well as the number of pages in each block is
configurable.

How the extent is stored on disk affects I/O efficiency. In a DMS table space using
device containers, the data tends to be contiguous on disk, and can be read with a
minimum of seek time and disk latency. If files are being used, a large file that has
been pre-allocated for use by a DMS table space also tends to be contiguous on
disk, especially if the file was allocated in a clean file space. However, the data
might have been broken up by the file system and stored in more than one
location on disk. This occurs most often when using SMS table spaces, where files
are extended one page at a time, making fragmentation more likely.

You can control the degree of prefetching by changing the PREFETCHSIZE option
on the CREATE TABLESPACE or ALTER TABLESPACE statements, or you can set
the prefetch size to AUTOMATIC to have the database manager automatically
choose the best size to use. (The default value for all table spaces in the database is
set by the dft_prefetch_sz database configuration parameter.) The
PREFETCHSIZE parameter tells the database manager how many pages to read
whenever a prefetch is triggered. By setting PREFETCHSIZE to be a multiple of
the EXTENTSIZE parameter on the CREATE TABLESPACE statement, you can
cause multiple extents to be read in parallel. (The default value for all table spaces
in the database is set by the dft_extent_sz database configuration parameter.) The
EXTENTSIZE parameter specifies the number of 4 KB pages that will be written to
a container before skipping to the next container.

For example, suppose you had a table space that used three devices. If you set the
PREFETCHSIZE to be three times the EXTENTSIZE, the database manager can do
a big-block read from each device in parallel, thereby significantly increasing I/O
throughput. This assumes that each device is a separate physical device, and that
the controller has sufficient bandwidth to handle the data stream from each device.
Note that the database manager might have to dynamically adjust the prefetch
parameters at run time based on query speed, buffer pool utilization, and other
factors.

Some file systems use their own prefetching method (such as the Journaled File
System on AIX). In some cases, file system prefetching is set to be more aggressive
than the database manager prefetching. This might cause prefetching for SMS and
DMS table spaces with file containers to seem to outperform prefetching for DMS
table spaces with devices. This is misleading, because it is likely the result of the
additional level of prefetching that is occurring in the file system. DMS table
spaces should be able to outperform any equivalent configuration.

For prefetching (or even reading) to be efficient, a sufficient number of clean buffer
pool pages must exist. For example, there could be a parallel prefetch request that
reads three extents from a table space, and for each page being read, one modified
page is written out from the buffer pool. The prefetch request might be slowed

Chapter 2. Table spaces 27

down to the point where it cannot keep up with the query. Page cleaners should
be configured in sufficient numbers to satisfy the prefetch request.

Table spaces in a partitioned database environment
In a partitioned database environment, each table space is associated with a
specific database partition group. This allows the characteristics of the table space
to be applied to each database partition in the database partition group.

When allocating a table space to a database partition group, the database partition
group must already exist. The association between the table space and the database
partition group is defined when you create the table space using the CREATE
TABLESPACE statement.

You cannot change the association between a table space and a database partition
group. You can only change the table space specification for individual database
partitions within the database partition group using the ALTER TABLESPACE
statement.

In a single-partition environment, each table space is associated with a default
database partition group as follows:
v The catalog table spaces SYSCATSPACE is associated with IBMCATGROUP
v User table spaces are associated with IBMDEFAULTGROUP
v Temporary table spaces are associated with IBMTEMPGROUP.

In a partitioned database environment, the IBMCATGROUP partition will contain
all three default table spaces, and the other database partitions will each contain
only TEMPSPACE1 and USERSPACE1.

Creating table spaces
Creating a table space within a database assigns containers to the table space and
records its definitions and attributes in the database system catalog.

About this task

For automatic storage table spaces, the database manager assigns containers to the
table space based on the storage paths associated with the database.

For non-automatic storage table spaces, you must know the path, device or file
names for the containers that you will use when creating your table spaces. In
addition, for each device or file container you create for DMS table spaces, you
must know the how much storage space you can allocate to each container.

If you are specifying the PREFETCHSIZE, use a value that is a multiple of the
EXTENTSIZE value. For example if the EXTENTSIZE is 10, the PREFETCHSIZE
should be 20 or 30. You should let the database manager automatically determine
the prefetch size by specifying AUTOMATIC as a value.

Use the keywords NO FILE SYSTEM CACHING and FILE SYSTEM CACHING as
part of the CREATE TABLESPACE statement to specify whether the database
manager uses Direct I/O (DIO) or Concurrent I/O (CIO) to access the table space.
If you specify NO FILE SYSTEM CACHING, the database manager attempts to use
CIO wherever possible. In cases where CIO is not supported (for example, if JFS is
used), the database manager uses DIO instead.

28 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

When you issue the CREATE TABLESPACE statement, the dropped table recovery
feature is turned on by default. This feature lets you recover dropped table data
using table space-level restore and rollforward operations. This is useful because it
is faster than database-level recovery, and your database can remain available to
users. However, the dropped table recovery feature can have some performance
impact on forward recovery when there are many drop table operations to recover
or when the history file is very large.

If you plan to drop numerous tables and you use circular logging or you do not
want to recover any of the dropped tables, disable the dropped table recovery
feature by explicitly setting the DROPPED TABLE RECOVERY option to OFF
when you issue the CREATE TABLESPACE statement. Alternatively, you can turn
off the dropped table recovery feature after creating the table space by using the
ALTER TABLESPACE statement.

Procedure
v To create an automatic storage table space using the command line, enter either

of the following statements:
CREATE TABLESPACE name

or
CREATE TABLESPACE name

MANAGED BY AUTOMATIC STORAGE

Assuming the table space is created in an automatic storage database, each of
the two previously shown statements is equivalent; table spaces created in such
a database will, by default, be automatic storage table spaces unless you specify
otherwise.

v To create an SMS table space using the command line, enter:
CREATE TABLESPACE name

MANAGED BY SYSTEM
USING (’path’)

Important: The SMS table space type has been deprecated in Version 10.1 for
user-defined permanent table spaces and might be removed in a future release.
The SMS table space type is not deprecated for catalog and temporary table
spaces. For more information, see “SMS permanent table spaces have been
deprecated” in What's New for DB2 Version 10.1

v To create a DMS table space using the command line, enter:
CREATE TABLESPACE name

MANAGED BY DATABASE
USING (FILE ’path’ size)

Note that by default, DMS table spaces are created as large table spaces.
After the DMS table space is created, you can use the ALTER TABLESPACE
statement to add, drop, or resize containers to a DMS table space and modify
the PREFETCHSIZE, OVERHEAD, and TRANSFERRATE settings for a table
space. You should commit the transaction issuing the table space statement as
soon as possible following the ALTER TABLESPACE SQL statement to prevent
system catalog contention.

Important: Starting with Version 10.1 Fix Pack 1, the DMS table space type is
deprecated for user-defined permanent table spaces and might be removed in a
future release. The DMS table space type is not deprecated for catalog and
temporary table spaces. For more information, see “DMS permanent table spaces
have been deprecated” in What's New for DB2 Version 10.1.

Chapter 2. Table spaces 29

Example

Example 1: Creating an automatic storage table space on Windows.
The following SQL statement creates an automatic storage table space
called RESOURCE in the storage group called STOGROUP1:
CREATE TABLESPACE RESOURCE

MANAGED BY AUTOMATIC STORAGE
USING STOGROUP STOGROUP1

Example 2: Creating an SMS table space on Windows.
The following SQL statement creates an SMS table space called RESOURCE
with containers in three directories on three separate drives:
CREATE TABLESPACE RESOURCE

MANAGED BY SYSTEM
USING (’d:\acc_tbsp’, ’e:\acc_tbsp’, ’f:\acc_tbsp’)

Example 3: Creating a DMS table space on Windows.
The following SQL statement creates a DMS table space with two file
containers, each with 5 000 pages:
CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE
USING (FILE’d:\db2data\acc_tbsp’ 5000,

FILE’e:\db2data\acc_tbsp’ 5000)

In the previous two examples, explicit names are provided for the
containers. However, if you specify relative container names, the container
is created in the subdirectory created for the database.

When creating table space containers, the database manager creates any
directory levels that do not exist. For example, if a container is specified as
/project/user_data/container1, and the directory /project does not exist,
then the database manager creates the directories /project and
/project/user_data.

Any directories created by the database manager are created with
PERMISSION 711. Permission 711 is required for fenced process access.
This means that the instance owner has read, write, and execute access,
and others have execute access. Any user with execute access also has the
authority to traverse through table space container directories. Because
only the instance owner has read and write access, the following scenario
might occur when multiple instances are being created:
v Using the same directory structure as described previously, suppose that

directory levels /project/user_data do not exist.
v user1 creates an instance, named user1 by default, then creates a

database, and then creates a table space with /project/user_data/
container1 as one of its containers.

v user2 creates an instance, named user2 by default, then creates a
database, and then attempts to create a table space with
/project/user_data/container2 as one of its containers.

Because the database manager created directory levels /project/user_data
with PERMISSION 700 from the first request, user2 does not have access to
these directory levels and cannot create container2 in those directories. In
this case, the CREATE TABLESPACE operation fails.

There are two methods to resolve this conflict:
1. Create the directory /project/user_data before creating the table

spaces and set the permission to whatever access is needed for both

30 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

user1 and user2 to create the table spaces. If all levels of table space
directory exist, the database manager does not modify the access.

2. After user1 creates /project/user_data/container1, set the permission
of /project/user_data to whatever access is needed for user2 to create
the table space.

If a subdirectory is created by the database manager, it might also be
deleted by the database manager when the table space is dropped.

The assumption in this scenario is that the table spaces are not associated
with a specific database partition group. The default database partition
group IBMDEFAULTGROUP is used when the following parameter is not
specified in the statement:
IN database_partition_group_name

Example 4: Creating DMS table spaces on AIX.
The following SQL statement creates a DMS table space on an AIX system
using three logical volumes of 10 000 pages each, and specifies their I/O
characteristics:
CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE
USING (DEVICE ’/dev/rdblv6’ 10000,

DEVICE ’/dev/rdblv7’ 10000,
DEVICE ’/dev/rdblv8’ 10000)

OVERHEAD 7.5
TRANSFERRATE 0.06

The UNIX devices mentioned in this SQL statement must already exist,
and the instance owner and the SYSADM group must be able to write to
them.

Example 5: Creating a DMS table space on a UNIX system.
The following example creates a DMS table space on a database partition
group called ODDGROUP in a UNIX multi-partition database.
ODDGROUP must be previously created with a CREATE DATABASE
PARTITION GROUP statement. In this case, the ODDGROUP database
partition group is assumed to be made up of database partitions numbered
1, 3, and 5. On all database partitions, use the device /dev/hdisk0 for
10 000 4 KB pages. In addition, declare a device for each database partition
of 40 000 4 KB pages.
CREATE TABLESPACE PLANS IN ODDGROUP

MANAGED BY DATABASE
USING (DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n1hd01’ 40000)

ON DBPARTITIONNUM 1
(DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n3hd03’ 40000)
ON DBPARTITIONNUM 3

(DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n5hd05’ 40000)
ON DBPARTITIONNUM 5

The database manager can greatly improve the performance of sequential
I/O using the sequential prefetch facility, which uses parallel I/O.

Example 6: Creating an SMS table space with a page size larger than the
default.

You can also create a table space that uses a page size larger than the
default 4 KB size. The following SQL statement creates an SMS table space
on a Linux and UNIX system with an 8 KB page size.

Chapter 2. Table spaces 31

CREATE TABLESPACE SMS8K
PAGESIZE 8192
MANAGED BY SYSTEM
USING (’FSMS_8K_1’)
BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page
size.

The created table space cannot be used until the buffer pool it references is
activated.

Creating temporary table spaces
Temporary table spaces hold temporary data required by the database manager
when performing operations such as sorts or joins, since these activities require
extra space to process the results set. You create temporary table spaces using a
variation of the CREATE TABLESPACE statement.

About this task

A system temporary table space is used to store system temporary tables. A database
must always have at least one system temporary table space since system
temporary tables can only be stored in such a table space. When a database is
created, one of the three default table spaces defined is a system temporary table
space called "TEMPSPACE1". You should have at least one system temporary table
space of each page size for the user table spaces that exist in your database,
otherwise some queries might fail. See “Table spaces for system, user and
temporary data” on page 7 for more information.

User temporary table spaces are not created by default when a database is created. If
your application programs need to use temporary tables, you must create a user
temporary table space where the temporary tables will reside. Like regular table
spaces, user temporary table spaces can be created in any database partition group
other than IBMTEMPGROUP. IBMDEFAULTGROUP is the default database
partition group that is used when creating a user temporary table.

Restrictions

For system temporary table spaces in a partitioned environment, the only database
partition group that can be specified when creating a system temporary table space
is IBMTEMPGROUP.

Procedure
v To create a system temporary table space in addition to the default

TEMPSPACE1, use a CREATE TABLESPACE statement that includes the
keywords SYSTEM TEMPORARY. For example:

CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp
MANAGED BY SYSTEM
USING (’d:\tmp_tbsp’,’e:\tmp_tbsp’)

v To create a user temporary table space, use the CREATE TABLESPACE statement
with the keywords USER TEMPORARY. For example:

CREATE USER TEMPORARY TABLESPACE usr_tbsp
MANAGED BY AUTOMATIC STORAGE

32 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Defining initial table spaces on database creation
When a database is created, three table spaces are defined by default. The
SYSCATSPACE for the system catalog tables. The TEMPSPACE1 for system
temporary tables created during database processing. The USERSPACE1 for
user-defined tables and indexes. You can also specify additional user table spaces
or characteristics for the default table spaces to be created at the database creation.

About this task

Note: When you first create a database no user temporary table space is created.

Unless otherwise specified, the three default table spaces are managed by
automatic storage.

Using the CREATE DATABASE command, you can specify the page size for the default
buffer pool and the initial table spaces. This default also represents the default
page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE
statements. If you do not specify the page size when creating the database, the
default page size is 4 KB.

To define initial table spaces using the command line, enter:
CREATE DATABASE name

PAGESIZE page size
CATALOG TABLESPACE

MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE value PREFETCHSIZE value

USER TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE value PREFETCHSIZE value

TEMPORARY TABLESPACE
MANAGED BY AUTOMATIC STORAGE

WITH "comment"

If you do not want to use the default definition for these table spaces, you might
specify their characteristics on the CREATE DATABASE command. For example, the
following command could be used to create your database on Windows:

CREATE DATABASE PERSONL
PAGESIZE 16384
CATALOG TABLESPACE

MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE 16 PREFETCHSIZE 32

USER TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE 32 PREFETCHSIZE 64

TEMPORARY TABLESPACE
MANAGED BY AUTOMATIC STORAGE

WITH "Personnel DB for BSchiefer Co"

In this example, the default page size is set to 16 384 bytes, and the definition for
each of the initial table spaces is explicitly provided. You only need to specify the
table space definitions for those table spaces for which you do not want to use the
default definition.

Note: When working in a partitioned database environment, you cannot create or
assign containers to specific database partitions. First, you must create the database
with default user and temporary table spaces. Then you should use the CREATE
TABLESPACE statement to create the required table spaces. Finally, you can drop
the default table spaces.

Chapter 2. Table spaces 33

The coding of the MANAGED BY phrase on the CREATE DATABASE command
follows the same format as the MANAGED BY phrase on the CREATE
TABLESPACE statement.

You can add additional user and temporary table spaces if you want. You cannot
drop the catalog table space SYSCATSPACE, or create another one; and there must
always be at least one system temporary table space with a page size of 4 KB. You
can create other system temporary table spaces. You also cannot change the page
size or the extent size of a table space after it has been created.

Altering automatic storage table spaces
Much of the maintenance of automatic storage table spaces is handled
automatically. The changes that you can make to automatic storage table spaces are
limited to rebalancing, and reducing the size of the overall table space.

Automatic storage table spaces manage the allocation of storage for you, creating
and extending containers as needed up to the limits imposed by storage paths. The
only maintenance operations that you can perform on automatic storage spaces
are:
v Rebalancing
v Reclaiming unused storage by lowering the high water mark
v Reducing the size of the overall table space.
v Changing an automatic storage table space's storage group

You can rebalance an automatic storage table space when you add a storage path
to a storage group. This causes the table space to start using the new storage path
immediately. Similarly, when you drop a storage path from a storage group,
rebalancing moves data out of the containers on the storage paths you are
dropping and allocates it across the remaining containers.

Adding new storage paths, or dropping paths is handled at the storage group
level. To add storage paths to a database, you use the ADD clause of the ALTER
STOGROUP statement. You can rebalance or not, as you prefer, though if you do
not rebalance, the new storage paths are not used until the containers that existed
previously are filled to capacity. If you rebalance, any newly added storage paths
become available for immediate use.

To drop storage paths, use the DROP clause of the ALTER STORGOUP statement.
This action puts the storage paths into a “drop pending” state. Growth of
containers on the storage path you specify cease. However, before the path can be
fully removed from the database, you must rebalance all of the table spaces using
the storage path using the REBALANCE clause on the ALTER TABLESPACE
command. If a temporary table space has containers on a storage path in a drop
pending state, you can either drop and re-create the table space, or restart the
database to remove it from the storage path.

Restriction: You cannot rebalance temporary automatic storage table spaces;
rebalancing is supported only for regular and large automatic storage table spaces.

You can reclaim the storage below the high water mark of a table space using the
LOWER HIGH WATER MARK clause of the ALTER TABLESPACE statement. This
has the effect of moving as many extents as possible to unused extents lower in the
table space. The high water mark for the table space is lowered in the process,
however containers remain the size they were before the operation was performed.

34 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Automatic storage table spaces can be reduced in size using the REDUCE option of
the ALTER TABLESPACE statement. When you reduce the size of an automatic
storage table space, the database manager attempts to lower the high water mark
for the table space and reduce the size of the table space containers. In attempting
to lower the high water mark, the database manager might drop empty containers
and might move used extents to free space nearer the beginning of the table space.
Next, containers are resized such that total amount of space in the table space is
equal to or slightly greater than the high water mark.

Reclaiming unused storage in automatic storage table spaces
When you reduce the size of an automatic storage table space, the database
manager attempts to lower the high water mark for the table space and reduce the
size of the table space containers. In attempting to lower the high water mark, the
database manager might drop empty containers and might move used extents to
free space nearer the beginning of the table space. Next, containers are re-sized
such that total amount of space in the table space is equal to or slightly greater
than the high water mark.

Before you begin

You must have an automatic storage table space that was created with DB2 Version
9.7 or later. Reclaimable storage is not available in table spaces created with earlier
versions of the DB2 product. You can see which table spaces in a database support
reclaimable storage using the MON_GET_TABLESPACE table function.

About this task

You can reduce the size of an automatic storage space for which reclaimable
storage is enabled in a number of ways. You can specify that the database manager
reduce the table space by:
v The maximum amount possible
v An amount that you specify in kilobytes, megabytes or gigabytes, or pages
v A percentage of the current size of the table space.

In each case, the database manager attempts to reduce the size by moving extents
to the beginning of the table space, which, if sufficient free space is available, will
reduce the high water mark of the table space. Once the movement of extents has
completed, the table space size is reduced to the new high water mark.

You use the REDUCE clause of the ALTER TABLESPACE statement to reduce the
table space size for an automatic storage table space. You can specify an amount to
reduce the table space by, as noted previously.

Note:

v If you do not specify an amount by which to reduce the table space, the table
space size is reduced as much as possible without moving extents. The database
manager attempts to reduce the size of the containers by first freeing extents for
which deletes are pending. (It is possible that some “pending delete” extents
cannot be freed for recoverability reasons, so some of these extents may remain.)
If the high water mark was among those extents freed, then the high water mark
is lowered, otherwise no change to the high water mark takes place. Next, the
containers are re-sized such that total amount of space in the table space is equal
to or slightly greater than the high water mark. This operation is performed
using the ALTER TABLESPACE with the REDUCE clause by itself.

Chapter 2. Table spaces 35

v If you only want to lower the high water mark, consolidating in-use extents
lower in the table space without performing any container operations, you can
use the ALTER TABLESPACE statement with the LOWER HIGH WATER MARK
clause.

v Once a REDUCE or LOWER HIGH WATER MARK operation is under way, you
can stop it by using the REDUCE STOP or LOWER HIGH WATER MARK STOP
clause of the ALTER TABLESPACE statement. Any extents that have been
moved will be committed, the high water mark will be reduced to it's new value
and containers will be re-sized to the new high water mark.

Restrictions
v You can reclaim storage only in table spaces created with DB2 Version 9.7 and

later.
v When you specify either the REDUCE or the LOWER HIGH WATER MARK

clause on the ALTER TABLESPACE statement, you cannot specify other
parameters.

v If the extent holding the page currently designated as the high water mark is in
“pending delete” state, the attempt to lower the high water mark through extent
movement might fail, and message ADM6008I will be logged. Extents in
“pending delete” state cannot always be moved, for recoverability reasons.
These extents are eventually freed through normal database maintenance
processes, at which point they can be moved.

v The following clauses are not supported with the ALTER TABLESPACE
statement when executed in DB2 data sharing environments:
– ADD database-container-clause

– BEGIN NEW STRIPE SET database-container-clause

– DROP database-container-clause

– LOWER HIGH WATER MARK
– LOWER HIGH WATER MARK STOP
– REBALANCE
– REDUCE database-container-clause

– REDUCE + LOWER HIGH WATER MARK action
– RESIZE database-container-clause

– USING STOGROUP

Procedure

To reduce the size of an automatic storage table space:
1. Formulate an ALTER TABLESPACE statement that includes a REDUCE clause.

ALTER TABLESPACE table-space-name REDUCE reduction-clause

2. Run the ALTER TABLESPACE statement.

Example

Example 1: Reducing an automatic storage table space by the maximum amount possible.
ALTER TABLESPACE TS1 REDUCE MAX

In this case, the keyword MAX is specified as part of the REDUCE clause,
indicating that the database manager should attempt to move the maximum
number of extents to the beginning of the table space.

36 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example 2: Reducing an automatic storage table space by a percentage of the current table
space size.

ALTER TABLESPACE TS1 REDUCE 25 PERCENT

This attempts to reduce the size of the table space TS1 to 75% of it's original size, if
possible.

Scenarios: Adding and removing storage with automatic
storage table spaces

The three scenarios in this section illustrate the impact of adding and removing
storage paths on automatic storage table spaces.

Once storage paths have been added to or removed from storage groups, you can
use a rebalance operation to create one or more containers on the new storage
paths or remove containers from the dropped paths. The following should be
considered when rebalancing table spaces:
v If for whatever reason the database manager decides that no containers need to

be added or dropped, or if containers could not be added due to “out of space”
conditions, then you will receive a warning.

v The REBALANCE clause must be specified on its own.
v You cannot rebalance temporary automatic storage table spaces; only regular and

large automatic storage table spaces can be rebalanced.
v The invocation of a rebalance is a logged operation that is replayed during a

rollforward (although the storage layout might be different)
v In partitioned database environments, a rebalance is initiated on every database

partition in which the table space resides.
v When storage paths are added or dropped, you are not forced to rebalance. In

fact, subsequent storage path operations can be performed over time before ever
doing a rebalance operation. If a storage path is dropped and is in the “Not In
Use” state, then it is dropped immediately as part of the ALTER STOGROUP
operation. If the storage path is in the “In Use” state and dropped but table
spaces not rebalanced, the storage path (now in the “Drop Pending” state), is not
used to store additional containers or data.

Scenario: Adding a storage path and rebalancing automatic
storage table spaces
This scenario shows how storage paths are added to a storage group and how a
REBALANCE operation creates one or more containers on the new storage paths.

The assumption in this scenario is to add a new storage path to a storage group
and have an existing table space be striped across that new path. I/O parallelism is
improved by adding a new container into each of the table space's stripe sets.

Use the ALTER STOGROUP statement to add a new storage path to a storage
group. Then, use the REBALANCE clause on the ALTER TABLESPACE statement
to allocate containers on the new storage path and to rebalance the data from the
existing containers into the new containers. The number and size of the containers
to be created depend on both the definition of the current stripe sets for the table
space and on the amount of free space on the new storage paths.

Figure 8 on page 38 illustrates a storage path being added, with the "before" and
"after" layout of a rebalanced table space:

Chapter 2. Table spaces 37

Note: The diagrams that are displayed in this topic are for illustrative purposes
only. They are not intended to suggest a specific approach or best practice for
storage layout. Also, the diagrams illustrate a single table space only; in actual
practice you would likely have several automatic storage table spaces that share
the same storage path.

A similar situation could occur when an existing table space has multiple stripe
sets with differing numbers of containers in them, which could have happened due
to disk full conditions on one or more of the storage paths during the life of the
table space. In this case, it would be advantageous for the database manager to
add containers to those existing storage paths to fill in the “holes” in the stripe sets
(assuming of course that there is now free space to do so). The REBALANCE
operation can be used to do this as well.

Figure 9 on page 39 is an example where a “hole” exists in the stripe sets of a table
space (possibly caused by deleting table rows, for example) being rebalanced, with
the “before” and “after” layout of the storage paths.

/path1 /path2 /path3

Second
stripe set

First
stripe set

Path being
addedExisting

paths

/path1 /path2 /path3

Figure 8. Adding a storage path and rebalancing an automatic storage table space

38 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example

You created a storage group with two storage paths:
CREATE STOGROUP sg ON ’/path1’, ’/path2’

After creating the database, automatic storage table spaces were subsequently
created in this storage group.

You decide to add another storage path to the storage group (/path3) and you
want all of the automatic storage table spaces to use the new storage path.
1. The first step is to add the storage path to the storage group:

ALTER STOGROUP sg ADD ’/path3’

2. The next step is to determine all of the affected permanent table spaces. This
can be done by manually scanning table space snapshot output or via SQL. The
following SQL statement will generate a list of all the regular and large
automatic storage table spaces in the storage group:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

3. Once the table spaces have been identified, the next step is to perform the
following statement for each of the table spaces listed. Provided that there is
sufficient space on the remaining storage paths, it generally shouldn't matter
what order the rebalances are performed in (and they can be run in parallel).
ALTER TABLESPACE tablespace_name REBALANCE

After this, you must determine how you want to handle temporary table spaces.
One option is to stop (deactivate) and start (activate) the database. This results in
the containers being redefined. Alternatively, you can drop and re-create the
temporary table spaces, or create a new temporary table space first, then drop the
old one-this way you do not attempt to drop the last temporary table space in the
database, which is not allowed. To determine the list of affected table spaces, you
can manually scan table space snapshot output or you can execute an SQL

/path1 /path2

Second
stripe set

First
stripe set

/path1 /path2

A "hole"
exists in this

stripe set

Figure 9. Rebalancing an automatic storage table space to fill gaps

Chapter 2. Table spaces 39

statement. The following SQL statement generates a list of all the system
temporary and user temporary automatic storage table spaces in the database:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Scenario: Dropping a storage path and rebalancing automatic
storage table spaces
This scenario shows how storage paths are dropped and how the REBALANCE
operation drops containers from table spaces that are using the paths.

Before the operation of dropping a storage path can be completed, any table space
containers on that path must be removed. If an entire table space is no longer
needed, you can drop it before dropping the storage path from the storage group.
In this situation, no rebalance is required. If, however, you want to keep the table
space, a REBALANCE operation is required. In this case, when there are storage
paths in the “drop pending” state, the database manager performs a reverse
rebalance, where movement of extents starts from the high water mark extent (the
last possible extent containing data in the table space), and ends with extent 0.

When the REBALANCE operation is run:
v A reverse rebalance is performed. Data in any containers in the “drop pending”

state is moved into the remaining containers.
v The containers in the “drop pending” state are dropped.
v If the current table space is the last table space using the storage path, then the

storage path is dropped as well.

If the containers on the remaining storage paths are not large enough to hold all
the data being moved, the database manager might have to first create or extend
containers on the remaining storage paths before performing the rebalance.

Figure 10 on page 41 is an example of a storage path being dropped, with the
“before” and “after” layout of the storage paths after the table space is rebalanced:

40 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example

Create a storage group with three storage paths:
CREATE STOGROUP sg ON ’/path1’, ’/path2’, ’/path3’

After creating the storage group, automatic storage table spaces were subsequently
created using it.

You want to put the /path3 storage path into the "Drop Pending" state by
dropping it from the storage group, then rebalance all table spaces that use this
storage path so that it is dropped.
1. The first step is to drop the storage path from the storage group:

ALTER STOGROUP sg DROP ’/path3’

2. The next step is to determine all the affected non-temporary table spaces. The
following SQL statement generates a list of all the regular and large automatic
storage table spaces in the database that have containers residing on a “Drop
Pending” path:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

3. Once the table spaces have been identified, the next step is to perform the
following statement for each of the table spaces listed:
ALTER TABLESPACE <tablespace_name> REBALANCE

a. If you have dropped multiple storage paths from the storage group and
want to free up storage on a specific path, you can query the list of
containers in the storage group to find the ones that exist on the storage
path. For example, consider a path called /path3. The following query
provides a list of table spaces that have containers that reside on path
/path3:

/path1 /path2 /path3

Path being
dropped

/path1 /path2

Database manager
may need to extend
existing containers or
add new stripe set.

Figure 10. Dropping a storage path and rebalancing an automatic storage table space

Chapter 2. Table spaces 41

SELECT TBSP_NAME FROM SYSIBMADM.SNAPCONTAINER
WHERE CONTAINER_NAME LIKE ’/path3’
GROUP BY TBSP_NAME;

b. You can then issue a REBALANCE statement for each table space in the
result set.

4. To determine the list of affected table spaces, generate a list of all the system
temporary and user temporary automatic storage table spaces that are defined
on the dropped storage paths:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Scenario: Adding and removing storage paths and rebalancing
automatic storage table spaces
This scenario shows how storage paths can be both added and removed, and how
the REBALANCE operation rebalances all of the automatic storage table spaces.

It is possible for storage to be added and dropped from a storage group at the
same time. This operation can be done by using a single ALTER STOGROUP
statement or through multiple ALTER STOGROUP statements separated by some
period (during which the table spaces are not rebalanced).

As described in “Scenario: Adding a storage path and rebalancing automatic
storage table spaces” on page 37, a situation can occur in which the database
manager fills in “holes” in stripe sets when dropping storage paths. In this case the
database manager will create containers and drop containers as part of the process.
In all of these scenarios, the database manager recognizes that some containers
need to be added (where free space allows) and that some need to be removed. In
these scenarios, the database manager might need to perform a two-pass rebalance
operation (the phase and status of which is described in the snapshot monitor
output):
1. First, new containers are allocated on the new paths (or on existing paths if

filling in “holes”).
2. A forward rebalance is performed.
3. A reverse rebalance is performed, moving data off the containers on the paths

being dropped.
4. The containers are physically dropped.

Figure 11 on page 43 is an example of storage paths being added and dropped,
with the "before" and "after" layout of a rebalanced table space:

42 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example

A storage group is created with two storage paths:
CREATE STOGROUP sg ON ’/path1’, ’/path2’, ’/path4’

Assume that you want to add another storage path to the storage group (/path3)
and remove one of the existing paths (/path2), and you also want all of your
automatic storage table spaces to be rebalanced. The first step is to add the new
storage path /path3 to the storage group and to initiate the removal of /path2:
ALTER STOGROUP sg ADD ’/path3’
ALTER STOGROUP sg DROP ’/path2’

The next step is to determine all of the affected table spaces. This analysis can be
done by manually scanning table space snapshot output or using SQL statements.
The following SQL statement generates a list of all the regular and large automatic
storage table spaces in the database:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Once the table spaces are identified, the next step is to perform the following
statement for each of the table spaces listed:
ALTER TABLESPACE tablespace_name REBALANCE

where tablespace_name is the name of the table spaces identified in the previous
step.

/path1 /path2 /path3 /path4 /path1 /path3 /path4

Existing
paths

Paths being
added

First
stripe set

Path being
dropped

Figure 11. Adding and dropping storage paths, and then rebalancing an automatic storage
table space

Chapter 2. Table spaces 43

Note: You cannot rebalance temporary table spaces managed by automatic storage.
If you want to stop using the storage that was allocated to temporary table spaces,
one option is to drop the temporary table spaces and then recreate them.

Monitoring a table space rebalance operation
You can use the MON_GET_REBALANCE_STATUS table function to monitor the progress
of rebalance operations on a database.

About this task

This procedure returns data for a table space only if a rebalance operation is in
progress. Otherwise, no data is returned.

Procedure

To monitor a table space rebalance operation:

Issue the MON_GET_REBALANCE_STATUS table function with the tbsp_name and
dbpartitionnum parameters:
select

varchar(tbsp_name, 30) as tbsp_name,
dbpartitionnum,
member,
rebalancer_mode,
rebalancer_status,
rebalancer_extents_remaining,
rebalancer_extents_processed,
rebalancer_start_time

from table(mon_get_rebalance_status(NULL,-2)) as t

Results

This output is typical of the output for monitoring the progress of a table space
rebalance operation:
TBSP_NAME DBPARTITIONNUM MEMBER REBALANCER_MODE
------------------------------ -------------- ------ ------------------------------
SYSCATSPACE 0 0 REV_REBAL

REBALANCER_STATUS REBALANCER_EXTENTS_REMAINING REBALANCER_EXTENTS_PROCESSED REBALANCER_START_TIME
----------------- ---------------------------- ---------------------------- --------------------------
ACTIVE 6517 4 2011-12-01-12.08.16.000000

1 record(s) selected.

Table space states
This topic provides information about the supported table space states.

There are currently at least 25 table or table space states supported by the IBM DB2
database product. These states are used to control access to data under certain
circumstances, or to elicit specific user actions, when required, to protect the
integrity of the database. Most of them result from events related to the operation
of one of the DB2 database utilities, such as the load utility, or the backup and
restore utilities. The following table describes each of the supported table space
states. The table also provides you with working examples that show you exactly
how to interpret and respond to states that you might encounter while
administering your database. The examples are taken from command scripts that
were run on AIX; you can copy, paste and run them yourself. If you are running
the DB2 database product on a system that is not UNIX, ensure that any path
names are in the correct format for your system. Most of the examples are based

44 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

on tables in the SAMPLE database that comes with the DB2 database product. A
few examples require scenarios that are not part of the SAMPLE database, but you
can use a connection to the SAMPLE database as a starting point.

Table 4. Supported table space states

State
Hexadecimal

state value Description

Backup
Pending

0x20 A table space is in this state after a point-in-time table space rollforward operation, or
after a load operation (against a recoverable database) that specifies the COPY NO option.
The table space (or, alternatively, the entire database) must be backed up before the
table space can be used. If the table space is not backed up, tables within that table
space can be queried, but not updated.
Note: A database must also be backed up immediately after it is enabled for
rollforward recovery. A database is recoverable if the logarchmeth1 database
configuration parameter is set to any value other than OFF. You cannot activate or
connect to such a database until it has been backed up, at which time the value of the
backup_pending informational database configuration parameter is set to NO.Example

Given the staff_data.del input file with the following content:

11,"Melnyk",20,"Sales",10,70000,15000:

Load this data into the staff table specifying the copy no as follows:

update db cfg for sample using logarchmeth1 logretain;
backup db sample;
connect to sample;
load from staff_data.del of del messages load.msg insert into staff copy no;
update staff set salary = 69000 where id = 11;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Backup
Pending state.

Backup in
Progress

0x800 This is a transient state that is only in effect during a backup operation.

Example

Perform an online backup as follows:

backup db sample online;

From another session, execute one of the following scripts while the backup operation
is running:
v connect to sample;

list tablespaces show detail;
connect reset;

v connect to sample;
get snapshot for tablespaces on sample;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Backup in
Progress state.

Chapter 2. Table spaces 45

Table 4. Supported table space states (continued)

State
Hexadecimal

state value Description

DMS
Rebalance
in Progress

0x10000000 This is a transient state that is only in effect during a data rebalancing operation. When
new containers are added to a table space that is defined as database managed space
(DMS), or existing containers are extended, a rebalancing of the table space data might
occur. Rebalancing is the process of moving table space extents from one location to
another in an attempt to keep the data striped. An extent is a unit of container space
(measured in pages), and a stripe is a layer of extents across the set of containers for a
table space.

Example

Given the staffdata.del input file with 20000 or more records, create the table
newstaff, load it using this input file, and then add a new container to table space ts1:

connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001/ts1c1’ 1024);
create table newstaff like staff in ts1;
load from staffdata.del of del insert into newstaff nonrecoverable;
alter tablespace ts1 add
(file ’/home/melnyk/melnyk/NODE0000/SQL00001/ts1c2’ 1024);
list tablespaces;
connect reset;

Information returned for TS1 shows that this table space is in DMS Rebalance in
Progress state.

Disable
Pending

0x200 A table space may be in this state during a database rollforward operation and should
no longer be in this state by the end of the rollforward operation. The state is triggered
by conditions that result from a table space going offline and compensation log records
for a transaction not being written. The appearance and subsequent disappearance of
this table space state is transparent to users.

An example illustrating this table space state is beyond the scope of this document.

Drop
Pending

0x8000 A table space is in this state if one or more of its containers is found to have a problem
during a database restart operation. (A database must be restarted if the previous
session with this database terminated abnormally, such as during a power failure, for
example.) If a table space is in Drop Pending state, it will not be available, and can only
be dropped.

An example illustrating this table space state is beyond the scope of this document.

46 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 4. Supported table space states (continued)

State
Hexadecimal

state value Description

Load in
Progress

0x20000 This is a transient state that is only in effect during a load operation (against a
recoverable database) that specifies the COPY NO option. See also Load in Progress table
state.

Example

Given the staffdata.del input file with 20000 or more records, create the table
newstaff and load it specifying COPY NO and this input file:

update db cfg for sample using logarchmeth1 logretain;
backup db sample;
connect to sample;
create table newstaff like staff;
load from staffdata.del of del insert into newstaff copy no;
connect reset;

From another session, get information about table spaces while the load operation is
running by executing one of the sample scripts shown in the Backup in Progress
example.

Information returned for USERSPACE1 shows that this table space is in Load in
Progress (and Backup Pending) state.

Normal 0x0 A table space is in Normal state if it is not in any of the other (abnormal) table space
states. Normal state is the initial state of a table space after it is created.

Example

Create a table space and then get information about that table space as follows:

connect to sample;
create tablespace ts1 managed by automatic storage;
list tablespaces show detail;

Information returned for USERSPACE1 shows that this table space is in Normal state.

Chapter 2. Table spaces 47

Table 4. Supported table space states (continued)

State
Hexadecimal

state value Description

Offline and
Not
Accessible

0x4000 A table space is in this state if there is a problem with one or more of its containers. A
container might be inadvertently renamed, moved, or damaged. After the problem has
been rectified, and the containers that are associated with the table space are accessible
again, this abnormal state can be removed by disconnecting all applications from the
database and then reconnecting to the database. Alternatively, you can issue an ALTER
TABLESPACE statement, specifying the SWITCH ONLINE clause, to remove the Offline
and Not Accessible state from the table space without disconnecting other applications
from the database.

Example

Create table space ts1 with containers tsc1 and tsc2, create table staffemp, and import
data from the st_data.del file as follows:

connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001/tsc1’ 1024);
alter tablespace ts1 add
(file ’/home/melnyk/melnyk/NODE0000/SQL00001/tsc2’ 1024);
export to st_data.del of del select * from staff;
create table stafftemp like staff in ts1;
import from st_data.del of del insert into stafftemp;
connect reset;

Rename table space container tsc1 to tsc3 and then try to query the STAFFTEMP table:

connect to sample;
select * from stafftemp;

The query returns SQL0290N (table space access is not allowed), and the LIST
TABLESPACES command returns a state value of 0x4000 (Offline and Not Accessible) for
TS1. Rename table space container tsc3 back to tsc1. This time the query runs
successfully.

Quiesced
Exclusive

0x4 A table space is in this state when the application that invokes the table space quiesce
function has exclusive (read or write) access to the table space. Use the QUIESCE
TABLESPACES FOR TABLE command to explicitly set a table space to Quiesced Exclusive.

Example

Set table spaces to Normal before setting them to Quiesced Exclusive as follows:

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff exclusive;
connect reset;

From another session, execute the following script:

connect to sample;
select * from staff where id=60;
update staff set salary=50000 where id=60;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Quiesced
Exclusive state.

48 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 4. Supported table space states (continued)

State
Hexadecimal

state value Description

Quiesced
Share

0x1 A table space is in this state when both the application that invokes the table space
quiesce function and concurrent applications have read (but not write) access to the
table space. Use the QUIESCE TABLESPACES FOR TABLE command to explicitly set a table
space to Quiesced Share.

Example

Set table spaces to Normal before setting them to Quiesced Share as follows:

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff share;
connect reset;

From another session, execute the following script:

connect to sample;
select * from staff where id=40;
update staff set salary=50000 where id=40;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Quiesced Share
state.

Quiesced
Update

0x2 A table space is in this state when the application that invokes the table space quiesce
function has exclusive write access to the table space. Use the QUIESCE TABLESPACES FOR
TABLE command to explicitly set a table space to Quiesced Update state.

Example

Set table spaces to Normal before setting them to Quiesced Update as follows:

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff intent to update;
connect reset;

From another session, execute the following script:

connect to sample;
select * from staff where id=50;
update staff set salary=50000 where id=50;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Quiesced
Update state.

Chapter 2. Table spaces 49

Table 4. Supported table space states (continued)

State
Hexadecimal

state value Description

Reorg in
Progress

0x400 This is a transient state that is only in effect during a reorg operation.

Example

Reorganize the staff table as follows:

connect to sample;
reorg table staff;
connect reset;

From another session, get information about table spaces while the reorg operation is
running by executing one of the sample scripts shown in the Backup in Progress
example.

Information returned for USERSPACE1 shows that this table space is in Reorg in
Progress state.
Note: Table reorganization operations involving the SAMPLE database are likely to
complete in a short period of time and, as a result, it may be difficult to observe the
Reorg in Progress state using this approach.

Restore
Pending

0x100 Table spaces for a database are in this state after the first part of a redirected restore
operation (that is, before the SET TABLESPACE CONTAINERS command is issued). The table
space (or the entire database) must be restored before the table space can be used. You
cannot connect to the database until the restore operation has been successfully
completed, at which time the value of the restore_pending informational database
configuration parameter is set to NO.

Example

When the first part of the redirected restore operation in Storage May be Defined
completes, all of the table spaces are in Restore Pending state.

Restore in
Progress

0x2000 This is a transient state that is only in effect during a restore operation.

Example

Enable the sample database for rollforward recovery then back up the sample database
and the USERSPACE1 table space as follows:

update db cfg for sample using logarchmeth1 logretain;
backup db sample;
backup db sample tablespace (userspace1);

Restore the USERSPACE1 table space backup assuming the timestamp for this backup
image is 20040611174124:

restore db sample tablespace (userspace1) online taken at 20040611174124;

From another session, get information about table spaces while the restore operation is
running by executing one of the sample scripts shown in the Backup in Progress
example.

Information returned for USERSPACE1 shows that this table space is in Restore in
Progress state.

50 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 4. Supported table space states (continued)

State
Hexadecimal

state value Description

Roll
Forward
Pending

0x80 A table space is in this state after a restore operation against a recoverable database.
The table space (or the entire database) must be rolled forward before the table space
can be used. A database is recoverable if the logarchmeth1 database configuration
parameter is set to any value other than OFF. You cannot activate or connect to the
database until a rollforward operation has been successfully completed, at which time
the value of the rollfwd_pending informational database configuration parameter is set
to NO.

Example

When the online table space restore operation in Restore in Progress completes, the
table space USERSPACE1 is in Roll Forward Pending state.

Roll
Forward in
Progress

0x40 This is a transient state that is only in effect during a rollforward operation.

Example

Given the staffdata.del input file with 20000 or more record, create a table and
tablespace followed by a database backup:

update db cfg for sample using logarchmeth1 logretain;
backup db sample;
connect to sample;
create tablespace ts1 managed by automatic storage;
create table newstaff like staff in ts1;
connect reset;
backup db sample tablespace (ts1) online;

Assuming that the timestamp for the backup image is 20040630000715, restore the
database backup and rollforward to the end of logs as follows:

connect to sample;
load from staffdata.del of del insert into newstaff copy yes
to /home/melnyk/backups;
connect reset;
restore db sample tablespace (ts1) online taken at 20040630000715;
rollforward db sample to end of logs and stop tablespace (ts1) online;

From another session, get information about table spaces while the rollforward
operation is running by executing one of the sample scripts shown in the Backup in
Progress example.

Information returned for TS1 shows that this table space is in Roll Forward in Progress
state.

Storage
May be
Defined

0x2000000 Table spaces for a database are in this state after the first part of a redirected restore
operation (that is, before the SET TABLESPACE CONTAINERS command is issued). This
allows you to redefine the containers.

Example

Assuming that the timestamp for the backup image is 20040613204955, restore a
database backup as follows:

restore db sample taken at 20040613204955 redirect;
list tablespaces;

Information returned by the LIST TABLESPACES command shows that all of the table
spaces are in Storage May be Defined and Restore Pending state.

Chapter 2. Table spaces 51

Table 4. Supported table space states (continued)

State
Hexadecimal

state value Description

Storage
Must be
Defined

0x1000 Table spaces for a database are in this state during a redirected restore operation to a
new database if the set table space containers phase is omitted or if, during the set
table space containers phase, the specified containers cannot be acquired. The latter can
occur if, for example, an invalid path name has been specified, or there is insufficient
disk space.

Example

Assuming that the timestamp for the backup image is 20040613204955, restore a
database backup as follows:

restore db sample taken at 20040613204955 into mydb redirect;
set tablespace containers for 2 using (path ’ts2c1’);
list tablespaces;

Information returned by the LIST TABLESPACES command shows that table space
SYSCATSPACE and table space TEMPSPACE1 are in Storage Must be Defined, Storage
May be Defined, and Restore Pending state. Storage Must be Defined state takes
precedence over Storage May be Defined state.

Suspend
Write

0x10000 A table space is in this state after a write operation has been suspended.

An example illustrating this table space state is beyond the scope of this document.

Table Space
Creation in
Progress

0x40000000 This is a transient state that is only in effect during a create table space operation.

Example

Create table spaces ts1, ts2, and ts3 as follows:

connect to sample;
create tablespace ts1 managed by automatic storage;
create tablespace ts2 managed by automatic storage;
create tablespace ts3 managed by automatic storage;

From another session, get information about table spaces while the create table space
operations are running by executing one of the sample scripts shown in the Backup in
Progress example.

Information returned for TS1, TS2, and TS3 shows that these table spaces are in Table
Space Creation in Progress state.

Table Space
Deletion in
Progress

0x20000000 This is a transient state that is only in effect during a delete table space operation.

Example

Create table spaces ts1, ts2, and ts3 then drop them as follows:

connect to sample;
create tablespace ts1 managed by automatic storage;
create tablespace ts2 managed by automatic storage;
create tablespace ts3 managed by automatic storage;
drop tablespaces ts1, ts2, ts3;

From another session, get information about table spaces while the drop table space
operations are running by executing one of the sample scripts shown in the Backup in
Progress example.

Information returned for TS1, TS2, and TS3 shows that these table spaces are in Table
Space Deletion in Progress state.

52 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Switching table spaces from offline to online
The SWITCH ONLINE clause of the ALTER TABLESPACE statement can be used
to remove the OFFLINE state from a table space if the containers associated with
that table space are accessible.

Procedure

To remove the OFFLINE state from a table space using the command line, enter:
db2 ALTER TABLESPACE name

SWITCH ONLINE

Alternatively, disconnect all applications from the database and then to have the
applications connect to the database again. This removes the OFFLINE state from
the table space.

Results

The table space has the OFFLINE state removed while the rest of the database is
still up and being used.

Dropping table spaces
When you drop a table space, you delete all the data in that table space, free the
containers, remove the catalog entries, and cause all objects defined in the table
space to be either dropped or marked as invalid.

About this task

You can reuse the containers in an empty table space by dropping the table space,
but you must commit the DROP TABLESPACE statement before attempting to
reuse the containers.

Note: You cannot drop a table space without dropping all table spaces that are
associated with it. For example, if you have a table in one table space and its index
created in another table space, you must drop both index and data table spaces in
one DROP TABLESPACE statement.

Procedure
v Dropping user table spaces:

You can drop a user table space that contains all of the table data including
index and LOB data within that single user table space. You can also drop a user
table space that might have tables spanned across several table spaces. That is,
you might have table data in one table space, indexes in another, and any LOBs
in a third table space. You must drop all three table spaces at the same time in a
single statement. All of the table spaces that contain tables that are spanned
must be part of this single statement or the drop request fails.
The following SQL statement drops the table space ACCOUNTING:

DROP TABLESPACE ACCOUNTING

v Dropping user temporary table spaces:
You can drop a user temporary table space only if there are no declared or
created temporary tables currently defined in that table space. When you drop
the table space, no attempt is made to drop all of the declared or created
temporary tables in the table space.

Chapter 2. Table spaces 53

Note: A declared or created temporary table is implicitly dropped when the
application that declared it disconnects from the database.

v Dropping system temporary table spaces:
You cannot drop a system temporary table space that has a page size of 4 KB
without first creating another system temporary table space. The new system
temporary table space must have a page size of 4 KB because the database must
always have at least one system temporary table space that has a page size of 4
KB. For example, if you have a single system temporary table space with a page
size of 4 KB, and you want to add a container to it, and it is an SMS table space,
you must first add a new 4 KB page size system temporary table space with the
proper number of containers, and then drop the old system temporary table
space. (If you are using DMS, you can add a container without needing to drop
and re-create the table space.)
The default table space page size is the page size that the database was created
with (which is 4 KB by default, but can also be 8 KB, 16 KB, or 32 KB).
1. To create a system temporary table space, issue the statement:

CREATE SYSTEM TEMPORARY TABLESPACE name
MANAGED BY SYSTEM USING (’directories’)

2. Then, to drop a system table space using the command line, enter:
DROP TABLESPACE name

3. The following SQL statement creates a system temporary table space called
TEMPSPACE2:

CREATE SYSTEM TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY SYSTEM USING (’d:\systemp2’)

4. After TEMPSPACE2 is created, you can drop the original system temporary
table space TEMPSPACE1 with the statement:

DROP TABLESPACE TEMPSPACE1

54 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 3. Buffer pools

A buffer pool is an area of main memory that has been allocated by the database
manager for the purpose of caching table and index data as it is read from disk.
Every DB2 database must have a buffer pool.

Each new database has a default buffer pool defined, called IBMDEFAULTBP.
Additional buffer pools can be created, dropped, and modified, using the CREATE
BUFFERPOOL, DROP BUFFERPOOL, and ALTER BUFFERPOOL statements. The
SYSCAT.BUFFERPOOLS catalog view accesses the information for the buffer pools
defined in the database.

In a DB2 pureScale environment, each member has its own local buffer pool (LBP).
However there is an additional group buffer pool (GBP) that is maintained by the
cluster caching facility. The GBP is shared by all members. It is used as a cache for
pages used be individual members across a DB2 pureScale instance to improve
performance and ensure consistency.

How buffer pools are used

Note: The information that follows discusses buffer pools in environments other
than DB2 pureScale environments. Buffer pools work differently in DB2 pureScale
environments. For more information, see “Buffer pool monitoring in a DB2
pureScale environment”, in the Database Monitoring Guide and Reference.

When a row of data in a table is first accessed, the database manager places the
page that contains that data into a buffer pool. Pages stay in the buffer pool until
the database is shut down or until the space occupied by the page is required by
another page.

Pages in the buffer pool can be either in-use or not, and they can be dirty or clean:
v In-use pages are currently being read or updated. To maintain data consistency,

the database manager only allows one agent to be updating a given page in a
buffer pool at one time. If a page is being updated, it is being accessed
exclusively by one agent. If it is being read, it might be read by multiple agents
simultaneously.

v "Dirty" pages contain data that has been changed but has not yet been written to
disk.

v After a changed page is written to disk, it is clean and might remain in the
buffer pool.

A large part of tuning a database involves setting the configuration parameters that
control the movement of data into the buffer pool and the writing of data from the
buffer out to disk. If not needed by a recent agent, the page space can be used for
new page requests from new applications. Database manager performance is
degraded by extra disk I/O.

© Copyright IBM Corp. 2014 55

Designing buffer pools
The sizes of all buffer pools can have a major impact on the performance of your
database.

Before you create a new buffer pool, resolve the following items:
v What buffer pool name do you want to use?
v Whether the buffer pool is to be created immediately or following the next time

that the database is deactivated and reactivated?
v Whether the buffer pool should exist for all database partitions, or for a subset

of the database partitions?
v What page size you want for the buffer pool? See “Buffer pool page sizes”.
v Whether the buffer pool will be a fixed size, or whether the database manager

will automatically adjust the size of the buffer pool in response to your
workload? It is suggested that you allow the database manager to tune your
buffer pool automatically by leaving the SIZE parameter unspecified during
buffer pool creation. For details, see the SIZE parameter of the “CREATE
BUFFERPOOL statement” and “Buffer pool memory considerations” on page 57.

v Whether you want to reserve a portion of the buffer pool for block based I/O?
For details, see: “Block-based buffer pools for improved sequential prefetching”.

Relationship between table spaces and buffer pools

When designing buffer pools, you must understand the relationship between table
spaces and buffer pools. Each table space is associated with a specific buffer pool.
IBMDEFAULTBP is the default buffer pool. The database manager also allocates
these system buffer pools: IBMSYSTEMBP4K, IBMSYSTEMBP8K,
IBMSYSTEMBP16K, and IBMSYSTEMBP32K (formerly known as the “hidden
buffer pools”). To associate another buffer pool with a table space, the buffer pool
must exist and the two must have the same page size. The association is defined
when the table space is created (using the CREATE TABLESPACE statement), but it
can be changed at a later time (using the ALTER TABLESPACE statement).

Having more than one buffer pool allows you to configure the memory used by
the database to improve overall performance. For example, if you have a table
space with one or more large (larger than available memory) tables that are
accessed randomly by users, the size of the buffer pool can be limited, because
caching the data pages might not be beneficial. The table space for an online
transaction application might be associated with a larger buffer pool, so that the
data pages used by the application can be cached longer, resulting in faster
response times. Care must be taken in configuring new buffer pools.

Buffer pool page sizes

The page size for the default buffer pool is set when you use the CREATE DATABASE
command. This default represents the default page size for all future CREATE
BUFFERPOOL and CREATE TABLESPACE statements. If you do not specify the
page size when creating the database, the default page size is 4 KB.

Note: If you have determined that a page size of 8 KB, 16 KB, or 32 KB is required
by your database, you must have at least one buffer pool of the matching page size
defined and associated with table space in your database.

56 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

However, you might need a buffer pool that has different characteristics than the
system buffer pool. You can create new buffer pools for the database manager to
use. You might have to restart the database for table space and buffer pool changes
to take effect. The page sizes that you specify for your table spaces should
determine the page sizes that you choose for your buffer pools. The choice of page
size used for a buffer pool is important because you cannot alter the page size
after you create a buffer pool.

Buffer pool memory considerations

Memory requirements
When designing buffer pools, you should also consider the memory
requirements based on the amount of installed memory on your computer
and the memory required by other applications running concurrently with
the database manager on the same computer. Operating system data
swapping occurs when there is insufficient memory to hold all the data
being accessed. This occurs when some data is written or swapped to
temporary disk storage to make room for other data. When the data on
temporary disk storage is needed, it is swapped back into main memory.

Buffer pool memory protection

With Version 9.5, data pages in buffer pool memory are protected using
storage keys, which are available only if explicitly enabled by the
DB2_MEMORY_PROTECT registry variable, and only on AIX (5.3 TL06
5.4), running on POWER6®.

Buffer pool memory protection works on a per-agent level; any particular
agent will only have access to buffer pool pages when that agent needs
access. Memory protection works by identifying at which times the DB2
engine threads should have access to the buffer pool memory and at which
times they should not have access. For details, see: “Buffer pool memory
protection (AIX running on POWER6).”

Address Windowing Extensions (AWE) and Extended Storage (ESTORE)

Note: AWE and ESTORE features have been discontinued, including the
ESTORE-related keywords, monitor elements, and data structures. To
allocate more memory, you must upgrade to a 64-bit hardware operating
system, and associated DB2 products. You should also modify applications
and scripts to remove references to this discontinued functionality.

Buffer pool hit ratios
Buffer pool hit ratios reflect the extent to which data needed for queries is found in
memory, as opposed to having to be read in from external storage. You can
calculate hit rates and ratios with formulas that are based on buffer pool monitor
elements. For more information, see “Formulas for calculating buffer pool hit
ratios” at the following URL: http://publib.boulder.ibm.com/infocenter/db2luw/
v10r1/topic/com.ibm.db2.luw.admin.mon.doc/doc/r0056871.html

Buffer pool memory protection (AIX running on POWER6)
The database manager uses the buffer pool to apply additions, modifications, and
deletions to much of the database data.

Storage keys is a new feature in IBM Power6 processors and the AIX operating
system that allows the protection of ranges of memory using hardware keys at a

Chapter 3. Buffer pools 57

kernel thread level. Storage key protection reduces buffer pool memory corruption
problems and limits errors that might halt the database. Attempts to illegally access
the buffer pool by programming means cause an error condition that the database
manager can detect and deal with.

Note: Buffer pool memory protection works on a per-agent level; any particular
agent has access to buffer pool pages only when that agent needs access.

The database manager protects buffer pools by restricting access to buffer pool
memory. When an agent requires access to the buffer pools to perform its work, it
is temporarily granted access to the buffer pool memory. When the agent no longer
requires access to the buffer pools, access is revoked. This behavior ensures that
agents are only allowed to modify buffer pool contents when needed, reducing the
likelihood of buffer pool corruptions. Any illegal access to buffer pool memory
results in a segmentation error. Tools to diagnose these errors are provided, such as
the db2diag, db2fodc, db2pdcfg, and db2support commands.

To enable the buffer pool memory protection feature, in order to increase the
resilience of the database engine, enable the DB2_MEMORY_PROTECT registry variable:

DB2_MEMORY_PROTECT registry variable
This registry variable enables and disables the buffer pool memory
protection feature. When DB2_MEMORY_PROTECT is enabled (set to YES), and a
DB2 engine thread tries to illegally access buffer pool memory, that engine
thread traps. The default is NO.

Note: The buffer pool memory protection feature depends on the implementation
of AIX Storage Protect Keys and it might not work with the pinned shared
memory. If DB2_MEMORY_PROTECT is specified with DB2_PINNED_BP or
DB2_LARGE_PAGE_MEM setting, AIX Storage Protect Keys may not be enabled.
For more information about AIX Storage Protect Keys, see
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/
index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/
storage_protect_keys.htm.

You cannot use the memory protection if DB2_LGPAGE_BP is set to YES. Even
if DB2_MEMORY_PROTECT is set to YES, DB2 database manager will fail to
protect the buffer pool memory and disable the feature.

Buffer pool monitoring in a DB2 pureScale environment
Examining the number of times that pages of data requested by a member can be
found in group or local buffer pools, as opposed to the number of times they need
to be read in from disk can tell you where you might have performance problems
related to I/O.

Generally speaking, larger buffer pools increase the likelihood that a required page
of data can be found in memory.

Viewing and comparing monitor elements related to buffer pool activity can help
you understand the extent to which the group buffer pool (GBP) in the cluster
caching facility, and the local buffer pools (LBPs) for each member are reducing the
amount of disk I/O in your system.

58 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm

Buffer pool hit rates and hit ratios in a DB2 pureScale environment
One way of measuring the extent to which pages required by members are found
in memory as opposed to on disk is by calculating the buffer pool hit ratio. The
buffer pool hit ratio indicates the number of times that the database manager
found a requested page in a buffer pool (also known as the hit rate) as compared to
the number of times it had to read it from disk. In a DB2 pureScale environment,
both the local buffer pool and group buffer pool hit rates and hit ratios are
important factors in assessing overall performance.

Local buffer pool (LBP) hit ratios reflect the extent to which pages that a member
needs can be found in a valid state in the local buffer pool. A page in the LBP of a
member is deemed to be in a valid state if that page has not been changed by
another member since it was loaded into the LBP. If another member has changed
the page, which might happen before the page has been cast out to disk, then the
page is said to be invalid. If the member with the invalid page requires that page to
perform a transaction, the member has to go to the CF to request a new, valid
version of the page.

A low LBP hit ratio is an indication that the pages were not found locally, and had
to be requested from the CF.

However, in a DB2 pureScale environment, looking at the LBP hit ratios provides
only one side of the buffer pool story. You also need to consider the role that the
group buffer pool (GBP) plays in retrieving pages, and the hit ratio for the GBP
itself. If a member is unable to locate a valid copy of a page in its LBP, it makes a
request to the CF to search the GBP for a valid copy of the page. The GBP does
one of the following actions:
v If it has a valid copy of the page, the GBP provides it to the member making the

request.
v Otherwise, the GBP tells the requesting member that it must read the page from

disk.

An additional consideration for LBP usage is the concept of GBP-independent
page. A GBP-independent page is a page that is only ever accessed through a LBP
of a member, and never exists in the GBP. Pages might be GBP-independent
because the operations using the page, or the objects where the pages come from,
are only accessed by the local member.

Group buffer pool hit ratios reflect the extent to which pages required by members,
for which they do not have a valid local copy, are found in the group buffer pool,
as compared to having to be read in from disk. A low hit ratio for the GBP is an
indication that relatively few of the pages required by members across the instance
are available in the GBP. Increasing the size of the GBP can improve hit rates, and
overall performance. Therefore, when calculating the hit ratios for data pages in
the local buffer pool (LBP) for a member, you need to consider the number of
times the member attempted to read pages from the LBP in comparison to the
number of times attempted reads did not find a valid page in the LBP. See
“Formulas for calculating buffer pool hit ratios” on page 61 for details on how LBP
and GBP monitor elements are used to calculate the GBP hit rate.

Tip: Hit ratios can vary based on many factors, such as the nature of the data in
your database, the queries that are run against it, as well as hardware and software
configurations. Generally speaking, higher buffer pool hit ratios are reflective of
better query performance. If you find hit ratios seem low, or are declining over

Chapter 3. Buffer pools 59

time, increasing the size of the buffer pools can help. To increase the size of the
group buffer pool, adjust the cf_gbp_sz configuration parameter on the CF. To
adjust local buffer pools, run the ALTER BUFFERPOOL statement on the member with
the buffer pools that need correction.

Buffer pool monitor element reporting

In DB2 pureScale environments, as is the case with other DB2 environments, each
member reports on its own local buffer pools. No aggregation of data across
members takes place. You must take into account which member or members you
are interested in, and interpret the data accordingly. In some cases, you might want
to calculate the hit ratios for a specific member. In others cases, you might want to
look at the data for all members together, to form an overall view of the hit rates
and hit ratios for the DB2 pureScale environment as a whole.

For example, if you submit a query to return data for the number of times a data
page was read into a local buffer pool from disk, because it was not found in the
GBP (using the pool_data_gbp_p_reads monitor element) with the
MON_GET_BUFFERPOOL table function, and you do not specify which member
to return, you will see results like the ones that follow:

Important: In the preceding example, you can see that the data reported for
temporary buffer pools shows all zeros. This is not a coincidence; in DB2 pureScale
instances, temporary objects and table spaces are local to the member they are
associated with. They do not use the GBP on the CF.

If you are interested in the results across all members, you can use the SUM
aggregate function to add the numbers for all members together:
SELECT VARCHAR(BP_NAME,15) AS BP_NAME,

SUM(POOL_DATA_GBP_P_READS) AS TOTAL_P_READS
FROM TABLE(MON_GET_BUFFERPOOL(’’, -2))
GROUP BY BP_NAME

The preceding query returns results like the following output:
BP_NAME TOTAL_P_READS
--------------- --------------------
IBMDEFAULTBP 310
IBMSYSTEMBP16K 0
IBMSYSTEMBP32K 0
IBMSYSTEMBP4K 0
IBMSYSTEMBP8K 0

5 record(s) selected.

MEMBER BP_NAME POOL_DATA_GBP_P_READS
------ -------------------- ---------------------

0 IBMDEFAULTBP 408
0 IBMSYSTEMBP4K 0
0 IBMSYSTEMBP8K 0
0 IBMSYSTEMBP16K 0
0 IBMSYSTEMBP32K 0
1 IBMDEFAULTBP 108
1 IBMSYSTEMBP4K 0
1 IBMSYSTEMBP8K 0
1 IBMSYSTEMBP16K 0
1 IBMSYSTEMBP32K 0
2 IBMDEFAULTBP 112
2 IBMSYSTEMBP4K 0
2 IBMSYSTEMBP8K 0
2 IBMSYSTEMBP16K 0
2 IBMSYSTEMBP32K 0

15 record(s) selected.

60 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Formulas for calculating buffer pool hit ratios
Buffer pool hit ratios reflect the extent to which data needed for queries is found in
memory, as opposed to having to be read in from external storage. You can
calculate hit rates and ratios with formulas that are based on buffer pool monitor
elements.

Local buffer pools

Table 5. Formulas for local buffer pool hit ratios. The formulas shown express the hit ratios
as a percentage.

Type of page Formula for calculating buffer pool hit ratio

Data pages ((pool_data_lbp_pages_found - pool_async_data_lbp_pages_found) /
(pool_data_l_reads + pool_temp_data_l_reads)) × 100

Index pages ((pool_index_lbp_pages_found - pool_async_index_lbp_pages_found)
/ (pool_index_l_reads + pool_temp_index_l_reads)) × 100

XML storage object
(XDA) pages

((pool_xda_lbp_pages_found - pool_async_xda_lbp_pages_found) /
(pool_xda_l_reads + pool_temp_xda_l_reads)) × 100

Overall hit ratio ((pool_data_lbp_pages_found + pool_index_lbp_pages_found
+ pool_xda_lbp_pages_found
- pool_async_data_lbp_pages_found - pool_async_index_lbp_pages_found -
pool_async_xda_lbp_pages_found)
/ (pool_data_l_reads + pool_index_l_reads + pool_xda_l_reads +
pool_temp_data_l_reads + pool_temp_xda_l_reads + pool_temp_index_l_reads))
× 100

Group buffer pools (DB2 pureScale environments)

The formulas used to calculate group buffer pool hit ratios in a DB2 pureScale
environment are different from formulas for hit ratios used in other DB2
environments. This difference is because of how the group buffer pool in the
cluster caching facility works with the local buffer pools in each member to
retrieve pages of data. The following formulas, which are based on buffer pool
monitor elements, can be used to calculate hit ratios for data, index, and XML
storage object pages, for both the local and group buffer pools.

Table 6. Formulas for group buffer pool (GBP) hit ratios. The formulas shown express the hit ratios as a percentage.

Type of page Formula for calculating buffer pool hit ratio

Data pages ((pool_data_gbp_l_reads - pool_data_gbp_p_reads) / pool_data_gbp_l_reads) × 100

Index pages ((pool_index_gbp_l_reads - pool_index_gbp_p_reads) / pool_index_gbp_l_reads) × 100

XML storage object
(XDA) pages

((pool_xda_gbp_l_reads - pool_xda_gbp_p_reads) / pool_xda_gbp_l_reads) × 100

Overall hit ratio ((pool_data_gbp_l_reads + pool_index_gbp_l_reads + pool_xda_gbp_l_reads
- pool_data_gbp_p_reads - pool_index_gbp_p_reads - pool_xda_gbp_p_reads)
/ (pool_data_gbp_l_reads + pool_index_gbp_l_reads + pool_xda_gbp_l_reads)) x 100

In addition to the preceding formulas for calculating buffer pool hit ratios, you can
also use the following formulas to show what percentage of the time pages that are
prefetched are found in the GBP:

Prefetches for data pages
((pool_async_data_gbp_l_reads - pool_async_data_gbp_p_reads) /
pool_async_data_gbp_l_reads) × 100

Prefetches for index pages
((pool_async_index_gbp_l_reads - pool_async_index_gbp_p_reads) /
pool_async_index_gbp_l_reads) × 100

Chapter 3. Buffer pools 61

Prefetches for XML storage object (XDA) pages
((pool_async_xda_gbp_l_reads - pool_async_xda_gbp_p_reads) /
pool_async_xda_gbp_l_reads) × 100

Calculating buffer pool hit ratios in a DB2 pureScale
environment

Calculating buffer pool hit ratios for a DB2 pureScale instance can help you
understand where there are opportunities to tune buffer pools to improve I/O
efficiency.

Before you begin

Determine which ratio or ratios you are interested in. If you want to see a ratio
across all members in an instance, consider formulating your SQL to aggregate
data across members using the SUM aggregate function. If you are interested in
seeing the data for a specific member only, you can use specify the member for
which you want to see data in the MON_GET_BUFFERPOOL table function.

Procedure

To calculate buffer pool hit ratios, follow these steps:
1. Retrieve the information for the required monitor elements. This example uses

the MON_GET_BUFFERPOOL table function to retrieve the monitor elements
that contain the values needed to calculate the hit ratio for data pages for the
GBP, pool_data_gbp_l_reads and pool_data_gbp_p_reads.
SELECT varchar(bp_name,20) AS bp_name,

pool_data_gbp_l_reads,
pool_data_gbp_p_reads,
member

FROM TABLE(MON_GET_BUFFERPOOL(’’,-2))

The preceding query returns data like the following example:
BP_NAME POOL_DATA_GBP_L_READS POOL_DATA_GBP_P_READS MEMBER
-------------------- --------------------- --------------------- ------
IBMDEFAULTBP 1814911 456990 1
IBMSYSTEMBP4K 0 0 1
IBMSYSTEMBP8K 0 0 1
IBMSYSTEMBP16K 0 0 1
IBMSYSTEMBP32K 0 0 1
IBMDEFAULTBP 1807959 455287 3
IBMSYSTEMBP4K 0 0 3
IBMSYSTEMBP8K 0 0 3
IBMSYSTEMBP16K 0 0 3
IBMSYSTEMBP32K 0 0 3
IBMDEFAULTBP 1813932 455225 2
IBMSYSTEMBP4K 0 0 2
IBMSYSTEMBP8K 0 0 2
IBMSYSTEMBP16K 0 0 2
IBMSYSTEMBP32K 0 0 2
IBMDEFAULTBP 1113396 278845 0
IBMSYSTEMBP4K 0 0 0
IBMSYSTEMBP8K 0 0 0
IBMSYSTEMBP16K 0 0 0
IBMSYSTEMBP32K 0 0 0

20 record(s) selected.

Important: In the preceding example, you can see that the data reported for
temporary buffer pools shows all zeros. This is not a coincidence; in DB2

62 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

pureScale instances, temporary objects and table spaces are local to the member
they are associated with. They do not use the GBP on the CF.

2. Use the values returned for the monitor elements to calculate the hit ratio. The
formula for calculating the hit ratio for the GBP (expressed as a percentage) is

((pool_data_gbp_l_reads - pool_data_gbp_p_reads) ÷ pool_data_gbp_l_reads) × 100

So, using the data returned for the monitor elements in step 1 on page 62:

In this example, the hit ratio for the GBP is 74.9%

Note: The values shown in the output for queries are for illustrative purposes
only.

Example

Example 1: Find the overall hit rates across all members

This example is similar to the one shown in the preceding procedure,
except that it uses an aggregate function to provide overall hit rates across
all members.
SELECT VARCHAR(BP_NAME,20) AS BP,

SUM(POOL_DATA_GBP_L_READS) AS POOL_DATA_GBP_L_READS,
SUM(POOL_DATA_GBP_P_READS) AS POOL_DATA_GBP_L_READS

FROM TABLE(MON_GET_BUFFERPOOL(’’,-2))
GROUP BY BP_NAME

Results:
BP POOL_DATA_GBP_L_READS POOL_DATA_GBP_L_READS
-------------------- --------------------- ---------------------
IBMDEFAULTBP 6550198 1646347
IBMSYSTEMBP16K 0 0
IBMSYSTEMBP32K 0 0
IBMSYSTEMBP4K 0 0
IBMSYSTEMBP8K 0 0

5 record(s) selected.

Example 2: Determining the GBP hit ratio for all data, index, and XML storage object
(XDA) pages

To calculate the GBP hit ratio for all data, index, and XDA pages, use the
following formula:

((pool_data_gbp_l_reads + pool_index_gbp_l_reads+pool_xda_gbp_l_reads)
- (pool_data_gbp_p_reads + pool_index_gbp_p_reads+pool_xda_gbp_p_reads))
÷ (pool_data_gbp_l_reads + pool_index_gbp_l_reads+pool_xda_gbp_l_reads) × 100

The following example uses the MON_GET_BUFFERPOOL table function to
retrieve the data contained in the required monitor elements and calculates
the hit ratio for each member:
WITH BPMETRICS AS (

SELECT BP_NAME,
POOL_DATA_GBP_L_READS +

POOL_INDEX_GBP_L_READS +
POOL_XDA_GBP_L_READS

(((1,814,911+1,807,959 + 1,813,932+1,113,396) - (456,990+455,287 + 455,225+278,845))
÷ (1,814,911+1,807,959 + 1,813,932+1,113,396)) × 100

= ((6,550,198 - 1,646,347) ÷ 6,550,198) × 100
= 74.9%

Chapter 3. Buffer pools 63

AS LOGICAL_READS,
POOL_DATA_GBP_P_READS +

POOL_INDEX_GBP_P_READS +
POOL_XDA_GBP_P_READS

AS PHYSICAL_READS,
MEMBER

FROM TABLE(MON_GET_BUFFERPOOL(’’,-2)) AS METRICS)
SELECT VARCHAR(BP_NAME,20) AS BP_NAME,

LOGICAL_READS,
PHYSICAL_READS,

CASE WHEN LOGICAL_READS > 0
THEN DEC(((

FLOAT(LOGICAL_READS) - FLOAT(PHYSICAL_READS)) /
FLOAT(LOGICAL_READS))
* 100,5,2)

ELSE NULL END AS HIT_RATIO,
MEMBER

FROM BPMETRICS

Results:
BP_NAME LOGICAL_READS PHYSICAL_READS HIT_RATIO MEMBER
---------------- ------------- -------------- --------- ------
IBMDEFAULTBP 5730213 617628 89.22 1
IBMSYSTEMBP4K 0 0 - 1
IBMSYSTEMBP8K 0 0 - 1
IBMSYSTEMBP16K 0 0 - 1
IBMSYSTEMBP32K 0 0 - 1
IBMDEFAULTBP 5724845 615395 89.25 3
IBMSYSTEMBP4K 0 0 - 3
IBMSYSTEMBP8K 0 0 - 3
IBMSYSTEMBP16K 0 0 - 3
IBMSYSTEMBP32K 0 0 - 3
IBMDEFAULTBP 5731714 615814 89.25 2
IBMSYSTEMBP4K 0 0 - 2
IBMSYSTEMBP8K 0 0 - 2
IBMSYSTEMBP16K 0 0 - 2
IBMSYSTEMBP32K 0 0 - 2
IBMDEFAULTBP 5024809 409159 91.85 0
IBMSYSTEMBP4K 0 0 - 0
IBMSYSTEMBP8K 0 0 - 0
IBMSYSTEMBP16K 0 0 - 0
IBMSYSTEMBP32K 0 0 - 0

20 record(s) selected.

Example 3: Using the SUM aggregate function to compute an overall hit ratio

You can also use the SUM aggregate function to compute an overall hit
ratio across all members as follows:
WITH BPMETRICS AS (

SELECT SUM(POOL_DATA_GBP_L_READS) +
SUM(POOL_INDEX_GBP_L_READS) +
SUM(POOL_XDA_GBP_L_READS)

AS LOGICAL_READS,
SUM(POOL_DATA_GBP_P_READS) +

SUM(POOL_INDEX_GBP_P_READS) +
SUM(POOL_XDA_GBP_P_READS)

AS PHYSICAL_READS
FROM TABLE(MON_GET_BUFFERPOOL(’’,-2)) AS METRICS)
SELECT LOGICAL_READS,

PHYSICAL_READS,
CASE WHEN LOGICAL_READS > 0
THEN DEC(((FLOAT(LOGICAL_READS) - FLOAT(PHYSICAL_READS)) /

FLOAT(LOGICAL_READS))
* 100,5,2)

ELSE NULL END AS HIT_RATIO
FROM BPMETRICS

64 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Results:
LOGICAL_READS PHYSICAL_READS HIT_RATIO
-------------------- -------------------- ---------

22211581 2255996 89.84

1 record(s) selected.

What to do next

If hit ratios seem low, or if they decline over time, you might want to increase the
size of the buffer pools on either members, CFs, or both. If you are seeing lower
than expected hit rates for the LBPs overall across the DB2 pureScale instance, look
at the hit rates for each member individually, since the buffer pools on each
member can have different sizes. An smaller sized LBP on one member might be
unduly influencing the average hit rate for the instance.

Tip: Hit ratios can vary based on many factors, such as the nature of the data in
your database, the queries that are run against it, as well as hardware and software
configurations. Generally speaking, higher buffer pool hit ratios are reflective of
better query performance. If you find hit ratios seem low, or are declining over
time, increasing the size of the buffer pools can help. To increase the size of the
group buffer pool, adjust the cf_gbp_sz configuration parameter on the CF. To
adjust local buffer pools, run the ALTER BUFFERPOOL statement on the member with
the buffer pools that need correction.

Creating buffer pools
Use the CREATE BUFFERPOOL statement to define a new buffer pool to be used
by the database manager.

Before you begin

There needs to be enough real memory on the computer for the total of all the
buffer pools that you created. The operating system also needs some memory to
operate.

About this task

On partitioned databases, you can also define the buffer pool to be created
differently, including different sizes, on each database partition. The default ALL
DBPARTITIONNUMS clause creates the buffer pool on all database partitions in
the database.

Procedure

To create a buffer pool using the command line:
1. Get the list of buffer pool names that exist in the database. Issue the following

SQL statement:
SELECT BPNAME FROM SYSCAT.BUFFERPOOLS

2. Choose a buffer pool name that is not currently found in the result list.
3. Determine the characteristics of the buffer pool you are going to create.
4. Ensure that you have the correct authorization ID to run the CREATE

BUFFERPOOL statement.
5. Issue the CREATE BUFFERPOOL statement. A basic CREATE BUFFERPOOL

statement is:

Chapter 3. Buffer pools 65

CREATE BUFFERPOOL buffer-pool-name
PAGESIZE 4096

Results

If there is sufficient memory available, the buffer pool can become active
immediately. By default new buffer pools are created using the IMMEDIATE
keyword, and on most platforms, the database manager is able to acquire more
memory. The expected return is successful memory allocation. In cases where the
database manager is unable to allocate the extra memory, the database manager
returns a warning condition stating that the buffer pool could not be started. This
warning is provided on the subsequent database startup. For immediate requests,
you do not need to restart the database. When this statement is committed, the
buffer pool is reflected in the system catalog tables, but the buffer pool does not
become active until the next time the database is started. For more information
about this statement, including other options, see the “CREATE BUFFERPOOL
statement”.

If you issue a CREATE BUFFERPOOL DEFERRED, the buffer pool is not
immediately activated; instead, it is created at the next database startup. Until the
database is restarted, any new table spaces use an existing buffer pool, even if that
table space is created to explicitly use the deferred buffer pool.

Example

In the following example, the optional DATABASE PARTITION GROUP clause
identifies the database partition group or groups to which the buffer pool
definition applies:

CREATE BUFFERPOOL buffer-pool-name
PAGESIZE 4096
DATABASE PARTITION GROUP db-partition-group-name

If this parameter is specified, the buffer pool is created only on database partitions
in these database partition groups. Each database partition group must currently
exist in the database. If the DATABASE PARTITION GROUP clause is not
specified, this buffer pool is created on all database partitions (and on any
database partitions that are later added to the database).

For more information, see the “CREATE BUFFERPOOL statement”.

Modifying buffer pools
There are a number of reasons why you might want to modify a buffer pool, for
example, to enable self-tuning memory. To do this, you use the ALTER
BUFFERPOOL statement.

Before you begin

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

About this task

When working with buffer pools, you might need to do one of the following tasks:
v Enable self tuning for a buffer pool, allowing the database manager to adjust the

size of the buffer pool in response to your workload.
v Modify the block area of the buffer pool for block-based I/O.

66 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Add this buffer pool definition to a new database partition group.
v Modify the size of the buffer pool on some or all database partitions.

To alter a buffer pool using the command line, do the following:
1. To get the list of the buffer pool names that already exist in the database, issue

the following statement:
SELECT BPNAME FROM SYSCAT.BUFFERPOOLS

2. Choose the buffer pool name from the result list.
3. Determine what changes must be made.
4. Ensure that you have the correct authorization ID to run the ALTER

BUFFERPOOL statement.

Note: Two key parameters are IMMEDIATE and DEFERRED. With IMMEDIATE, the
buffer pool size is changed without having to wait until the next database
activation for it to take effect. If there is insufficient database shared memory to
allocate new space, the statement is run as DEFERRED.

With DEFERRED, the changes to the buffer pool will not be applied until the
database is reactivated. Reserved memory space is not needed; the database
manager allocates the required memory from the system at activation time.

5. Use the ALTER BUFFERPOOL statement to alter a single attribute of the buffer
pool object. For example:

ALTER BUFFERPOOL buffer pool name SIZE number of pages

v The buffer pool name is a one-part name that identifies a buffer pool described in
the system catalogs.

v The number of pages is the new number of pages to be allocated to this specific
buffer pool. You can also use a value of -1, which indicates that the size of the
buffer pool should be the value found in the buffpage database configuration
parameter.

The statement can also have the DBPARTITIONNUM <db partition number>
clause that specifies the database partition on which the size of the buffer pool is
modified. If this clause is not specified, the size of the buffer pool is modified on
all database partitions except those that have an exception entry in
SYSCAT.BUFFERPOOLDBPARTITIONS. For details on using this clause for
database partitions, see the ALTER BUFFERPOOL statement.

Changes to the buffer pool as a result of this statement are reflected in the system
catalog tables when the statement is committed. However, no changes to the actual
buffer pool take effect until the next time the database is started, except for
successful ALTER BUFFERPOOL requests specified with the default IMMEDIATE
keyword.

There must be enough real memory on the computer for the total of all the buffer
pools that you have created. There also needs to be sufficient real memory for the
rest of the database manager and for your applications.

Dropping buffer pools
When dropping buffer pools, ensure that no table spaces are assigned to those
buffer pools.

You cannot drop the IBMDEFAULTBP buffer pool.

Chapter 3. Buffer pools 67

About this task

Disk storage might not be released until the next connection to the database.
Storage memory is not released from a dropped buffer pool until the database is
stopped. Buffer pool memory is released immediately, to be used by the database
manager.

Procedure

To drop buffer pools, use the DROP BUFFERPOOL statement.
DROP BUFFERPOOL buffer-pool-name

68 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 4. Storage groups

A storage group is a named set of storage paths where data can be stored. Storage
groups are configured to represent different classes of storage available to your
database system. You can assign table spaces to the storage group that best suits
the data. Only automatic storage table spaces use storage groups.

A table space can be associated with only one storage group, but a storage group
can have multiple table space associations. To manage storage group objects you
can use the CREATE STOGROUP, ALTER STOGROUP, RENAME STOGROUP,
DROP and COMMENT statements.

With the table partitioning feature, you can place table data in multiple table
spaces. Using this feature, storage groups can store a subset of table data on fast
storage while the remainder of the data is on one or more layers of slower storage.
Use storage groups to support multi-temperature storage which prioritizes data
based on classes of storage. For example, you can create storage groups that map
to the different tiers of storage in your database system. Then the defined table
spaces are associated with these storage groups.

When defining storage groups, ensure that you group the storage paths according
to their quality of service characteristics. The common quality of service
characteristics for data follow an aging pattern where the most recent data is
frequently accessed and requires the fastest access time (hot data) while older data
is less frequently accessed and can tolerate higher access time (warm data or cold
data). The priority of the data is based on:
v Frequency of access
v Acceptable access time
v Volatility of the data
v Application requirements

Typically, the priority of data is inversely proportional to the volume, where there
is significantly more cold and warm data and only a small portion of data is hot.
You can use the DB2 Work Load Manager (WLM) to define rules about how
activities are treated based on a tag that can be assigned to accessed data through
the definition of a table space or a storage group.

Default storage groups
If a database has storage groups, the default storage group is used when an
automatic storage managed table space is created without explicitly specifying the
storage group.

When you create a database, a default storage group named IBMSTOGROUP is
automatically created. However, a database created with the AUTOMATIC
STORAGE NO clause, does not have a default storage group. The first storage
group created with the CREATE STOGROUP statement becomes the designated
default storage group. There can only be one storage group designated as the
default storage group.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

© Copyright IBM Corp. 2014 69

You can designate a default storage group by using either the CREATE
STOGROUP or ALTER STOGROUP statements. When you designate a different
storage group as the default storage group, there is no impact to the existing table
spaces using the old default storage group. To alter the storage group associated
with a table space, use the ALTER TABLESPACE statement.

You can determine which storage group is the default storage group by using the
SYSCAT.STOGROUPS catalog view.

You cannot drop the current default storage group. You can drop the
IBMSTOGROUP storage group if it is not designated as the default storage group
at that time. If you drop the IBMSTOGROUP storage group, you can create another
storage group with that name.

Storage group and table space media attributes
Automatic storage table spaces inherit media attribute values, device read rate and
data tag attributes, from the storage group that the table spaces are using by
default.

When you create a storage group by using the CREATE STOGROUP statement,
you can specify the following storage group attributes:

OVERHEAD
This attribute specifies the I/O controller time and the disk seek and
latency time in milliseconds.

DEVICE READ RATE
This attribute specifies the device specification for the read transfer rate in
megabytes per second. This value is used to determine the cost of I/O
during query optimization. If this value is not the same for all storage
paths, the number should be the average for all storage paths that belong
to the storage group.

DATA TAG
This attribute specifies a tag on the data in a particular storage group,
which WLM can use to determine the processing priority of database
activities.

The default values for the storage group attributes are as follows:

Table 7. The default settings for storage group attributes

Attribute Default setting

DATA TAG NONE

DEVICE READ RATE 100 MB/sec

OVERHEAD 6.725 ms

When creating an automatic storage table space, you can specify a tag that
identifies data contained in that table space. If that table space is associated with a
storage group, then the data tag attribute on the table space overrides any data tag
attribute that may be set on the storage group. If the user does not specify a data
tag attribute on the table space and the table space is contained in a storage group,
the table space inherits the data tag value from the storage group. The data tag
attribute can be set for any regular or large table space except the catalog table
space (SQL0109N). The data tag attribute cannot be set for temporary table spaces
and returns the SQL0109N message error.

70 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

An automatic storage table space inherits the overhead and transferrate attributes
from the storage group it uses. When a table space inherits the transferrate
attribute from the storage group it uses, the storage group's device read rate is
converted from milliseconds per page read, taking into account the pagesize
setting of the table space, as follows:
TRANSFERRATE = (1 / DEVICE READ RATE) * 1000 / 1024000 * PAGESIZE

The pagesize setting for both an automatic storage table space and a nonautomatic
table space has the corresponding default TRANSFERRATE values:

Table 8. Default TRANSFERRATE values

PAGESIZE TRANSFERRATE

4 KB 0.04 milliseconds per page read

8 KB 0.08 milliseconds per page read

16 KB 0.16 milliseconds per page read

32 KB 0.32 milliseconds per page read

The data tag, device read rate, and overhead media attributes for automatic storage
table spaces can be changed to dynamically inherit the values from its associated
storage group. To have the media attributes dynamically updated, specify the
INHERIT option for the CREATE TABLESPACE or ALTER TABLESPACE
statement.

When a table space inherits the value of an attribute from a storage group, the
SYSCAT.TABLESPACES catalog table view reports a value of -1 for that attribute.
To view the actual values at run time for the overhead, transferrate and data tag
attributes, you can use the following query:
select tbspace,
cast(case when a.datatag = -1 then b.datatag else a.datatag end as smallint)
eff_datatag,
cast(case when a.overhead = -1 then b.overhead else a.overhead end as double)
eff_overhead,
cast(case when a.transferrate = -1 then
(1 / b.devicereadrate) / 1024 * a.pagesize else a.transferrate end as double)
eff_transferrate
from syscat.tablespaces a left outer join syscat.stogroups b on a.sgid = b.sgid

If you upgrade to V10.1, the existing table spaces retain their overhead and
transferrate settings, and the overhead and device read rate attributes for the
storage group are set to undefined. The newly created table spaces in a storage
group with device read rate set to undefined use the DB2 database defaults that
were defined when the database was originally created. If the storage group's
media settings have a valid value, then the newly created table space will inherit
those values. You can set media attributes for the storage group by using the
ALTER STOGROUP statement. For nonautomatic table spaces, the media attributes
are retained.

Creating storage groups
Use the CREATE STOGROUP statement to create storage groups. Creating a
storage group within a database assigns storage paths to the storage group.

Chapter 4. Storage groups 71

Before you begin

If you create a database with the AUTOMATIC STORAGE NO clause it does not have a
default storage group. You can use the CREATE STOGROUP statement to create a
default storage group.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

Procedure

To create a storage group by using the command line, enter the following
statement:
CREATE STOGROUP operational_sg ON ’/filesystem1’, ’/filesystem2’, ’/filesystem3’...

where operational_sg is the name of the storage group and /filesystem1, /filesystem2,
/filesystem3 , ... are the storage paths to be added.

Important: To help ensure predictable performance, all the paths that you assign
to a storage group should have the same media characteristics: latency, device read
rate, and size.

Altering storage groups
You can use the ALTER STOGROUP statement to alter the definition of a storage
group, including setting media attributes, setting a data tag, or setting a default
storage group. You can also add and remove storage paths from a storage group.

If you add storage paths to a storage group and you want to stripe the extents of
their table spaces over all storage paths, you must use the ALTER TABLESPACE
statement with the REBALANCE option for each table space that is associated with
that storage group.

If you drop storage paths from a storage group, you must use the ALTER
TABLESPACE statement with the REBALANCE option to move allocated extents
off the dropped paths.

You can use the DB2 Work Load Manager (WLM) to define rules about how
activities are treated based on a tag that is associated with accessed data. You
associate the tag with data when defining a table space or a storage group.

Adding storage paths
You can add a storage path to a storage group by using the ALTER STOGROUP
statement.

About this task

When you add a storage path for a multipartition database environment, the
storage path must exist on each database partition. If the specified path does not
exist on every database partition, the statement is rolled back.

Procedure
v To add storage paths to a storage group, issue the following ALTER STOGROUP

statement:

72 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

ALTER STOGROUP sg ADD ’/hdd/path1’, ’/hdd/path2’, ...

where sg is the storage group and /hdd/path1, /hdd/path2, ... are the storage paths
being added.

Important: All the paths that you assign to a storage group should have similar
media characteristics: underlying disks, latency, device read rate, and size. If
paths have non-uniform media characteristics, performance might be
inconsistent.

v After adding one or more storage paths to the storage group, you can optionally
use the ALTER TABLESPACE statement to rebalance table spaces to immediately
start using the new storage paths. Otherwise, the new storage paths are used
only when there is no space in the containers on the existing storage paths. To
determine all of the affected permanent table spaces in the storage group, run
the following statement:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Once the table spaces have been identified, you can perform the following
statement for each of the table spaces listed:
ALTER TABLESPACE tablespace_name REBALANCE

where tablespace_name is the table space.

Dropping storage paths
You can drop one or more storage paths from a storage group or you can move
data off the storage paths and rebalance them.

Before you begin

To determine whether permanent table spaces are using the storage path, use the
ADMIN_GET_STORAGE_PATHS administrative view. This view displays current
information about the storage paths for each storage group. A storage path can be
in one of three states:

NOT_IN_USE
The storage path has been added to the database but is not in use by any
table space.

IN_USE
One or more table spaces have containers on the storage path.

DROP_PENDING
An ALTER STOGROUP stogroup_name DROP statement has been issued to
drop the path, but table spaces are still using the storage path. The path is
removed from the database when it is no longer being used by a table
space.

If the storage path you dropped has data stored on it and is in the
DROP_PENDING state, you must rebalance all permanent table spaces using the
storage path before the database manager can complete the drop of the path.

To obtain information about table spaces on specific database partitions use the
MON_GET_TABLESPACE administrative view.

Chapter 4. Storage groups 73

Restrictions

A storage group must have at least one path. You cannot drop all paths in a
storage group.

About this task

If you intend to drop a storage path, you must rebalance all permanent table
spaces that use the storage path by using ALTER TABLESPACE tablespace-name
REBALANCE, which moves data off the path to be dropped. In this situation, the
rebalance operation moves data from the storage path that you intend to drop to
the remaining storage paths and keeps the data striped consistently across those
storage paths, maximizing I/O parallelism.

Procedure
1. To drop storage paths from a storage group, issue the following ALTER

STOGROUP statement:
ALTER STOGROUP sg DROP ’/db2/filesystem1’, ’/db2/filesystem2’

where sg is the storage group and /db2/filesystem1 and /db2/filesystem2 are the
storage paths being dropped.

2. Rebalance the containers of the storage paths being dropped. To determine all
the affected permanent table spaces in the database that have containers
residing on a "Drop Pending" path, issue the following statement:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Once the table spaces have been identified, you can perform the following
statement for each of the table spaces listed:
ALTER TABLESPACE tablespace_name REBALANCE

where tablespace_name is a table space.
After the last rebalance operation is complete, /db2/filesystem1 and
/db2/filesystem2 are removed from the storage group.

3. Drop the temporary table spaces using the storage group. A table space in
DROP_PENDING state is not dropped if there is a temporary table space on it.

4. Re-create the temporary table spaces that were using the storage group.

What to do next

Query the ADMIN_GET_STORAGE_PATHS administrative view to verify that the
storage path that was dropped is no longer listed. If it is, then one or more table
spaces are still using it.

Monitoring storage paths
You can use administrative views and table functions to get information about the
storage paths used.

The following administrative views and table functions can be used:

74 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Use the ADMIN_GET_STORAGE_PATHS administrative view to get a list of
storage paths for each storage group and the file system information for each
storage path.

v Use the TBSP_USING_AUTOMATIC_STORAGE and STORAGE_GROUP_NAME
monitor elements in the MON_GET_TABLESPACE table function to understand
if a table space is using automatic storage and to identify which storage group
the table space is using.

v Use the DB_STORAGE_PATH_ID monitor element in the
MON_GET_CONTAINER table function to understand which storage path in a
storage group a container is defined on.

Replacing the paths of a storage group
Replace the storage paths in a storage group with new storage paths.

Procedure

To replace the existing storage paths in a storage group:
1. Add the new storage paths to an existing storage group.

ALTER STOGROUP sg_default ADD ’/hdd/path3’, ’/hdd/path4’

2. Drop the old storage paths.
ALTER STOGROUP sg_default DROP ’/hdd/path1’, ’/hdd/path2’

Note: All storage groups must have at least one path and that last path cannot
be dropped.
This marks the dropped storage paths as DROP PENDING.

3. Determine the affected non-temporary table spaces.
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg_default’

ORDER BY TBSP_ID

4. Perform the following statement for each of the affected non-temporary table
spaces returned.
ALTER TABLESPACE tablespace-name REBALANCE

5. If there are any temporary table spaces defined on the dropped storage paths,
you must create the new temporary table spaces first before dropping the old
ones.
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
AND STORAGE_GROUP_NAME = ’sg_default’

ORDER BY TBSP_ID

Renaming storage groups
Use the RENAME STOGROUP statement to rename a storage group.

Procedure

Use the following statement to rename a storage group:
RENAME STOGROUP sg_hot TO sg_warm

Chapter 4. Storage groups 75

where sg_warm is the new name of the storage group.

Example

When the first storage group is created at database creation time, the default
storage group name is IBMSTOGROUP. You can use the following statement to
change the designated default name:

RENAME STOGROUP IBMSTOGROUP TO DEFAULT_SG

where DEFAULT_SG is the new default name of the storage group.

Dropping storage groups
You can remove a storage group by using the DROP statement.

About this task

You must determine whether there are any table spaces that use the storage group
before dropping it. If there are, you must change the storage group that the table
spaces use and complete the rebalance operation before dropping the original
storage group.

Restrictions

You cannot drop the current default storage group.

Procedure

To drop a storage group:
1. Find the table spaces that are using the storage group.

SELECT TBSP_NAME, TBSP_CONTENT_TYPE
FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND STORAGE_GROUP_NAME = STO_GROUP
ORDER BY TBSP_ID

where STO_GROUP is the storage group that you want to drop.
2. If there are regular or large table spaces that use the storage group, assign them

to a different storage group:
ALTER TABLESPACE tablespace_name USING STOGROUP sto_group_new

where sto_group_new is a different storage group.
3. If there are temporary table spaces that use the storage group that you want to

drop, perform these steps:
a. Determine what temporary table spaces use the storage group that you

want to drop:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
AND STORAGE_GROUP_NAME = ’STO_GROUP’

ORDER BY TBSP_ID

b. Drop the temporary table spaces using the storage group:
DROP TABLESPACE table_space

c. Re-create the temporary table spaces that were using the storage group.
4. Monitor the rebalance activity for the storage group to be dropped.

76 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

SELECT * from table (MON_GET_REBALANCE_STATUS(’ ’, -2))
WHERE REBALANCER_SOURCE_STORAGE_GROUP_NAME = sto_group_old

An empty result state indicates that all table spaces have finished moving to
the new storage group.

5. Drop the storage group when all table space extents have been successfully
moved to the target storage group.
DROP STOGROUP STO_GROUP

where STO_GROUP is the name of the storage group to be dropped.

Associating a table space to a storage group
Using the CREATE TABLESPACE statement or ALTER TABLESPACE statement,
you can specify or change the storage group a table space uses. If a storage group
is not specified when creating a table space, then the default storage group is used.

About this task

When you change the storage group a table space uses, an implicit REBALANCE
operation is issued when the ALTER TABLESPACE statement is committed. It
moves the data from the source storage group to the target storage group.

When using the IBM DB2 pureScale Feature, REBALANCE is not supported and
you cannot change the assigned storage group. The REBALANCE operation is
asynchronous and does not affect the availability of data. You can use the
monitoring table function MON_GET_REBALANCE_STATUS to monitor the
progress of the REBALANCE operation.

During the ALTER TABLESPACE operation, compiled objects that are based on old
table space attributes are soft invalidated. Any new compilations after the ALTER
TABLESPACE commits use the new table space attributes specified in the ALTER
TABLESPACE statement. Soft invalidation support is limited to dynamic SQL only,
you must manually detect and recompile any static SQL dependencies for the new
values to be used.

Any table spaces that use the same storage group can have different PAGESIZE
and EXTENTSIZE values. These attributes are related to the table space definition
and not to the storage group.

Procedure

To associate a table space with a storage group, issue the following statement:
CREATE TABLESPACE tbspc USING STOGROUP storage_group

where tbspc is the new table space, and storage_group is the associated storage
group.

Scenario: Moving a table space to a new storage group
This scenarios shows how a table space can be moved from one storage group to a
different storage group.

The assumption in this scenario is that the table space data is in containers on
storage paths in a storage group. An ALTER TABLESPACE statement is used to
move the table space data to the new storage group.

Chapter 4. Storage groups 77

When the table space is moved to the new storage group, the containers in the old
storage group are marked as drop pending. After the ALTER TABLESPACE
statement is committed, containers are allocated on the new storage group's
storage paths, the existing containers residing in the old storage groups are marked
as drop pending, and an implicit REBALANCE operation is initiated. This
operation allocates containers on the new storage path and rebalances the data
from the existing containers into the new containers. The number and size of the
containers to create depend on both the number of storage paths in the target
storage group and on the amount of free space on the new storage paths. The old
containers are dropped, after all the data is moved.

The following diagram is an example of moving the table space from a storage
group to a different storage group, where:
1. New containers are allocated on the target storage group's storage paths.
2. All original containers are marked drop pending and new allocation request are

satisfied from the new containers.
3. A reverse rebalance is preformed, moving data off of the containers on the

paths being dropped.
4. The containers are physically dropped.

To move a table space to a different storage group, do the following:
1. Create two storage groups, sg_source and sg_target:

CREATE STOGROUP sg_source ON ’/path1’, ’/path2’, ’/path3’
CREATE STOGROUP sg_target ON ’/path4’, ’/path5’, ’/path6’

2. After creating the database, create an automatic storage table space that initially
uses the sg_source storage group:
CREATE TABLESPACE TbSpc USING STOGROUP sg_source

3. Move the automatic storage table space to the sg_target storage group:
ALTER TABLESPACE TbSpc USING sg_target

TbSpc TbSpc

sg_source sg_target

/path1 /path4/path2 /path5/path3 /path6

TbSpc

sg_source

/path1 /path2 /path3

TbSpc

sg_target

/path4 /path5 /path6

Table space containers
marked as drop pending

Figure 12. Moving a table space to a new storage group

78 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 5. Multi-temperature storage

You can configure your databases so that frequently accessed data (hot data) is
stored on fast storage, infrequently accessed data (warm data) is stored on slightly
slower storage, and rarely accessed data (cold data) is stored on slow, less-expensive
storage. As hot data cools down and is accessed less frequently, you can
dynamically move it to the slower storage.

In database systems, there is a strong tendency for a relatively small proportion of
data to be hot data and the majority of the data to be warm or cold data. These
sets of multi-temperature data pose considerable challenges if you want to optimize
the use of fast storage by trying not to store cold data there. As a data warehouse
consumes increasing amounts of storage, optimizing the use of fast storage
becomes increasingly important in managing storage costs.

Storage groups are groups of storage paths with similar qualities. Some critical
attributes of the underlying storage to consider when creating or altering a storage
group are available storage capacity, latency, data transfer rates, and the degree of
RAID protection. You can create storage groups that map to different classes of
storage in your database management system. You can assign automatic storage
table spaces to these storage groups, based on which table spaces have hot, warm,
or cold data. To convert database-managed table spaces to use automatic storage,
you must issue an ALTER TABLESPACE statement specifying the MANAGED BY
AUTOMATIC STORAGE option and then perform a rebalance operation.

Because current data is often considered to be hot data, it typically becomes warm
and then cold as it ages. You can dynamically reassign a table space to a different
storage group by using the ALTER TABLESPACE statement, with the USING
STOGROUP option.

The following example illustrates the use of storage groups with multi-temperature
data. Assume that you are the DBA for a business that does most of its processing
on current-fiscal-quarter data. As shown in Figure 13 on page 80, this business has
enough solid-state drive (SSD) capacity to hold data for an entire quarter and
enough Fibre Channel-based (FC) and Serial Attached SCSI (SAS) drive capacity to
hold data for the remainder of the year. The data that is older then one year is
stored on a large Serial ATA (SATA) RAID array that, while stable, does not
perform quickly enough to withstand a heavy query workload. You can define
three storage groups: one for the SSD storage (sg_hot), one for the FC and SAS
storage (sg_warm), and the other for the SATA storage (sg_cold). You then take the
following actions:
v Assign the table space containing the data for the current quarter to the sg_hot

storage group
v Assign the table space containing the data for the previous three quarters to the

sg_warm storage group
v Assign the table space containing all older data to the sg_cold storage group

After the current quarter passes, you take the following actions:
v Assign a table space for the new quarter to the sg_hot storage group
v Move the table space for the quarter that just passed to the sg_warm storage

group

© Copyright IBM Corp. 2014 79

v Move the data for the oldest quarter in the sg_warm storage group to the
sg_cold storage group

You can do all this work while the database is online.

The following steps provide more details on how to set up multi-temperature data
storage for the sales data in the current fiscal year:
1. Create two storage groups to reflect the two classes of storage, a storage group

to store hot data and a storage group to store warm data.
CREATE STOGROUP sg_hot ON ’/ssd/path1’, ’/ssd/path2’ DEVICE READ RATE 100

OVERHEAD 6.725;
CREATE STOGROUP sg_warm ON ’/hdd/path1’, ’/hdd/path2’;

These statements define an SSD storage group (sg_hot) to store hot data and an
FC and SAS storage group (sg_warm) to store warm data.

2. Create four table spaces, one per quarter of data in a fiscal year, and assign the
table spaces to the storage groups.
CREATE TABLESPACE tbsp_2010q2 USING STOGROUP sg_warm;
CREATE TABLESPACE tbsp_2010q3 USING STOGROUP sg_warm;
CREATE TABLESPACE tbsp_2010q4 USING STOGROUP sg_warm;
CREATE TABLESPACE tbsp_2011q1 USING STOGROUP sg_hot;

This association results in table spaces inheriting the storage group properties.
3. Set up your range partitions in your sales table.

CREATE TABLE sales (order_date DATE, order_id INT, cust_id BIGINT)
PARTITION BY RANGE (order_date)
(PART "2010Q2" STARTING (’2010-04-01’) ENDING (’2010-06-30’) in "tbsp_2010q2",
PART "2010Q3" STARTING (’2010-07-01’) ENDING (’2010-09-30’) in "tbsp_2010q3",
PART "2010Q4" STARTING (’2010-10-01’) ENDING (’2010-12-31’) in "tbsp_2010q4",
PART "2011Q1" STARTING (’2011-01-01’) ENDING (’2011-03-31’) in "tbsp_2011q1");

Data partition

Legend

Storage
Groups

Table
Spaces

Range
partitions

Table: Sales

TbSpc9TbSpc12 TbSpc1TbSpc11 TbSpc10TbSpc13

sg_coldsg_warm

TbSpc14

2011Q1

sg_hot

SSD RAID Array FC/SAS RAID Array SATA RAID Array

2010Q4 2010Q3 2010Q2 2010Q1 2009Q4 2007Q3

Figure 13. Managing Sales data using multi-temperature data storage

80 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The 2011Q1 data represents the current fiscal quarter and is using the sg_hot
storage group.

4. After the current quarter passes, create a table space for a new quarter, and
assign the table space to the sg_hot storage group.
CREATE TABLESPACE tbsp_2011q2 USING STOGROUP sg_hot;

5. Move the table space for the quarter that just passed to the sg_warm storage
group. To change the storage group association for the tbsp_2011q1 table space,
issue the ALTER TABLESPACE statement with the USING STOGROUP option.
ALTER TABLESPACE tbsp_2011q1 USING STOGROUP sg_warm;

Chapter 5. Data management using multi-temperature storage 81

82 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 6. IBM Data Studio

IBM Data Studio provides application developers with a single integrated
development environment that can be used to create, deploy, and debug
data-centric applications. Built to extend the Eclipse framework and SQL model
components, it combines Eclipse technology and shared repository extensions for
database development.

IBM Data Studio consist of the following components:
v The IBM Data Studio client, which is an Eclipse-based tool that provides an

integrated development environment for database and instance administration,
routine and Java application development, and query tuning tasks. It can be
installed with other IBM software products to share a common environment.

v The IBM Data Studio web console, which is a web-based tool with health and
availability monitoring, job creation, and database administration tasks.

If you previously used the Control Center tools, review the mapping between the
recommended Optim™ tools and Control Center tools that is available at “Table of
recommended tools versus Control Center tools” in What's New for DB2 Version
10.1 Version 9.7.
Related information:

IBM Data Studio documentation

Features in IBM Data Studio

IBM Data Studio product Web page

Download IBM Data Studio

Using IBM Data Studio for key tasks
IBM Data Studio includes support for key tasks across the data management
lifecycle, including administration, application development, and query tuning.

Administer databases, monitor health, and run jobs
IBM Data Studio provides database management and maintenance support,
including object, change, and authorization management, scripting, basic
health and availability monitoring, and job scheduling to automate changes
to the database.

Develop database applications
IBM Data Studio helps developers and database administrators develop,
debug, and deploy database applications and database routines (SQL or
Java stored procedures and user-defined functions).

Data access development support
If data access development support is enabled for Java
applications, developers and database administrators can use IBM
Data Studio to understand the relationship between database
objects, source code, and SQL statements that are in the source
code. Data access development support also provides client metrics
for SQL statements.

pureQuery support
If pureQuery support is enabled, developers can use the integrated

© Copyright IBM Corp. 2014 83

http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.ds.nav.doc/topics/helpindex_ds.html
http://www.ibm.com/support/docview.wss?uid=swg27020627
http://www.ibm.com/software/data/optim/data-studio/
http://www.ibm.com/developerworks/downloads/im/data/index.html

InfoSphere Optim pureQuery Runtime and the pureQuery APIs to
create Java applications. With the APIs, developers can use the
integrated Java editor and simple pureQuery syntax to create a
simple Java data access layer with the data access object (DAO)
pattern.

Tune queries
IBM Data Studio includes basic query tuning tools, such as query
formatting, access path graphs, and statistics advice to help developers and
SQL tuners create higher performance queries. You can also use IBM Data
Studio to access the tuning features of IBM InfoSphere Optim Query
Workload Tuner when you connect to a DB2 database or subsystem on
which a license for InfoSphere Optim Query Workload Tuner is active.

Scenario: IBM Data Studio in a team environment

You can install multiple instances of the Data Studio components to mirror your
organization and support the structure of your enterprise. For example, in an
organization with users with different roles and access privileges, your team can
install multiple instances of the Data Studio client.

The following illustration shows a complex use scenario that consists of a database
designer and multiple database administrators and application developers who all
have different access privileges to the test and production database and to the Data
Studio web console.

Figure 14. The review section of the Query Tuner Workflow Assistant in the IBM Data Studio
client.

84 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Most users in this scenario have access to only the test database, but the test
database administrator has additional access to the Data Studio web console.
Similarly, the production database administrator has access to both the production
database and the Data Studio web console. The administrators with access to the
Data Studio web console, can monitor database health, manage jobs, and manage
and share database connection information across the organization.

For information about other tools and solutions that can help you with the tasks
and responsibilities throughout the data management lifecycle, see InfoSphere
Optim Data Management Solutions.

IBM Data Studio client
The IBM Data Studio client is built on Eclipse technology and provides an
integrated development environment for database and instance administration,
routine and Java™ application development, and query tuning.

Java
application
developer

Application
tester

Test database

Production
database

administrator

Routine
developer

Test
database

administrator

Database
designer

Data Studio web
console and

repository database

Production database

administer
test database

develop and debug
routines

develop database
application

test database
application

deploy database
application, administer
production database

reverse engineer

monitor health, alert problems,
run and view jobs and job history

manage physical
data model

Figure 15. Topology diagram of a complex installation and use scenario.

Chapter 6. IBM Data Studio 85

The IBM Data Studio client is one of two IBM Data Studio components: the client
and the web console. For information about the IBM Data Studio web console
component, which you use for job management and health monitoring, see “IBM
Data Studio web console” on page 88.

The IBM Data Studio client includes the following features:

Activities and perspectives

The tools that you use as a database administrator or application developer
depend on your role. Data Studio provides two primary ways to access these tool
sets: activities and perspectives.

Activities

Use the activity menu in the toolbar to switch between Data Studio
activities. These preconfigured activities correspond to a subset of the Data
Studio perspectives. The following activities are available:
v Administer Databases
v Develop SQL and Routines
v Develop Java Applications
v Tune Queries
v Run SQL

You can return to your preset home activity from any perspective by
clicking the home activity button in the toolbar.

Perspectives

You can also access other tools that you need for your role by switching to
other perspectives from the Window > Open Perspective menu. For
example, the primary perspective for database administration is the
Database Administration perspective, and the perspectives for application
development are the Database Development and Java perspectives.
Depending on your role, other perspectives that you can use include the
Data, Java, SQL and Routine Development, and Query Tuning
perspectives.

Getting started tools

The following tools can help you get started with the IBM Data Studio client:
v If you are new to the Eclipse development environment, view the Eclipse Basic

tutorial. Click the link, then click the Show in Table of Contents icon in the
information center to see the entire tutorial.

v Several tutorials are available to help you get started with IBM Data Studio. To
access tutorials, expand the Tutorials category in the Contents pane of
information center.

v Use the Task Launcher in the IBM Data Studio client to view and start many
getting started tasks and other key tasks in the product. Task Launcher opens
when you start IBM Data Studio, or you can open it by clicking Help > Task
Launcher.

86 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Database object management

Changing database objects requires determining which changes need to be made,
specifying those changes, evaluating the effects of those changes, and then
deploying them.

An editable Properties view and the Review and Deploy dialog box provides a
consistent way to create, alter, and drop objects. You can also manage the
privileges objects for various types of database servers. After you define your
changes in the Properties view, IBM Data Studio automatically generates the
commands that can make the changes. The generated commands are displayed in
the Review and Deploy dialog box, where you can review the commands and run
them.

More robust change management features are provided for DB2 for Linux, UNIX,
and Windows databases because a change plan is used to manage the changes. A
change plan makes more complex changes possible and you can use it to change
more than one object at a time. IBM Data Studio manages the dependent objects
and takes resulting actions to address any side effects that are caused by your
database object changes. With change plans, you can also preserve your data across
database changes, undo your database changes, and track your changes with a
version control system.

Data application developer features

For data application developers, IBM Data Studio provides the following key
features. Working in a data development project in the Data Project Explorer, you
can:
v Create, test, debug, and deploy routines, such as stored procedures and

user-defined functions. See Developing database routines.
v Create, edit, and run SQL queries. Use the SQL Query builder and the SQL and

XQuery editor .
v View and capture performance data for SQL statements. See Import and view

SQL performance data and Run SQL statements and capture performance data.
v Use Visual Explain to diagram access plans. See Diagramming access plans with

Visual Explain.
v Use query tuning features to improve the performance of SQL statements in

applications. See Tuning single SQL statements.
v Debug stored procedures. See Use the Routine debugger.
v Create web services that expose database operations (SQL SELECT and DML

statements, XQuery expressions, or calls to stored procedures) to client
applications. See Developing and deploying Web services.

v Develop SQLJ applications in a Java project. See Developing SQLJ applications.
v Develop XML applications. See Use wizards and editors to develop XML

applications.

Query tuning features

With the IBM Data Studio client, you can format SQL statements so that they are
easier to read, generate visual representations of access plans, and get
recommendations for collecting statistics on the objects that a statement references.
You can also generate a report that summarizes information about the access plan
and includes the recommendations.

Chapter 6. IBM Data Studio 87

If you connect the IBM Data Studio client to a DB2 database or subsystem on
which a license for InfoSphere® Optim Query Workload Tuner is active, you can
use the full set of tuning features.

Team features

If you are working on a large team, you can share data development projects by
using supported code control systems, and you can share database connection
information.

For more information, see:
v Supported source code control systems.
v Share database connection information by importing and exporting this

information to XML files.

Shell-sharing with other Eclipse-based products

Shell-sharing (sharing a common environment) with other Eclipse-based products
makes it easy to share the functions between products from one interface. If you
install the IBM Data Studio client into the same product group as a compatible
product, you install only one version of Eclipse that shares the components of each
product. Shell-sharing saves disk space and avoids duplicating components that
are already built into other products.

Another benefit of shell sharing is the ability to have products interact with each
other, which makes each product stronger than if they were run alone. For
example, the following shell-sharing scenario shows the strength of using IBM
InfoSphere Data Architect and IBM Data Studio together:
1. Shell-share InfoSphere Data Architect with the IBM Data Studio client.
2. Create glossary models to standardize your naming conventions by using

InfoSphere Data Architect.
3. Use the database administration features of the IBM Data Studio client to

ensure that those naming conventions are followed.

To shell-share products, the base Eclipse versions must be the same. For example,
you cannot shell-share an Eclipse version 3.6-based product with an Eclipse
version 4.2-based product.

For more information, see:
v Coexistence considerations
v Limitations for sharing a common environment between IBM products based on

Eclipse
v IBM Software products installed together that share a common environment

For more details about the installation packages that are available for IBM Data
Studio, see the product web page.

IBM Data Studio web console
IBM Data Studio web console provides health and availability monitoring features
and job creation and management functions for DB2 for Linux, UNIX, and
Windows and DB2 for z/OS® databases. Use the health pages of the web console
to view alerts, applications, utilities, storage, and related information and use the
job manager pages to create and manage script-based jobs across your databases.

88 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.cmn.install.doc/topics/c_plan_consider_coexist_product.html
http://www.ibm.com/support/docview.wss?rs=3360&uid=swg27014124
http://www.ibm.com/support/docview.wss?rs=3360&uid=swg27014124
http://www.ibm.com/support/docview.wss?rs=2042&uid=swg21279139
http://www.ibm.com/software/data/optim/data-studio/features.html

IBM Data Studio web console is available as a stand-alone web interface or
integrated with the IBM Data Studio client.

Tip: You can use IBM Data Studio web console in single-user mode to test the
product in a controlled environment, or in multi-user mode to share monitoring
features across your production servers.
v In single-user mode, log in to the IBM Data Studio web console as a single user

with full administrative rights.
v In multi-user mode, configure access to the web console and permissions to

monitor and perform other actions on the specific databases for users and
groups.

Database administration with IBM Data Studio
You can run database administration commands for hosts, instances, and databases
that are displayed in the Administration Explorer and for databases, table spaces,
tables, and indexes that are displayed in the Object List.

As a database administrator, you might be responsible for maintaining, managing,
and administering DB2 instances, databases, and database objects such as table
spaces, tables, and views. For example, your backup and recovery strategy might
require you to take periodic backups of your databases. As another example, over
time, the data in your tables might become fragmented, which can increase the size
of your tables and indexes as the records are distributed over more and more data
pages. To reclaim wasted space and improve data access, you likely will need to
reorganize your tables and indexes.

Managing and maintaining your database systems might require you to run
database administration commands, which include:
v DB2 commands
v System commands
v Utilities
v SQL statements

When the Database Administration feature of IBM Data Studio is installed, task
assistants are available for DB2 for Linux, UNIX, and Windows databases. These
task assistants guide you through typical database administration tasks. From the
Administration Explorer, you can do the following types of administration tasks:
v Maintenance mode management for DB2 pureScale hosts
v Instance management, including starting and stopping instances
v Database management, including creating and dropping databases, configuring

logging or automatic maintenance, setting up and managing the DB2 High
Availability Disaster Recovery (HADR) feature, and backing up, restarting, and
recovering databases

When you click a data object folder (also called a flat folder in the Administration
Explorer to display database objects in the Object List, you can do the following
types of administration tasks:
v Table space management, including backing up, restoring, and recovering table

spaces
v Table management, including unloading and loading data, and setting the

integrity of tables
v Index management, including reorganizing indexes
v Package management, including rebinding packages

Chapter 6. IBM Data Studio 89

You can also manage databases in the Object List.

When you right-click an object in the Administration Explorer or the Object List, a
context-sensitive menu displays the list of the database administration commands
that are available for that object. When you select a database administration
command for that object, a database administration task assistant is displayed. The
task assistant guides you through the process of setting any options for the
database administration command, previewing the commands that are
automatically generated, and running the commands for the object.

For databases that are not DB2 for Linux, UNIX, and Windows, you can use the
SQL and XQuery editor to create and run your database administration commands.

Database administration for partitioned databases

The DB2 Database Partitioning feature (DPF) allows the partitioning of a database
into two or more partitions that can reside on either the same server or on a
different server.

For partitioned databases, the task assistants that guide you through the process of
setting up the options for the commands include the ability to specify whether to
run the commands against all of the partitions, one or more specific partitions, or
partition groups. You can also choose to run the commands against the partitions
in parallel, which is particularly useful for long-running commands. If you save
the commands to a script, the commands will be run sequentially.

The control to run commands on individual partitions gives you more flexibility in
managing your databases and resources. The granularity of an operation can
determine how long it will take. For example, if a database has hundreds of
partitions, backing up sets of partitions at different times or on different days
might make more sense than backing up all of the partitions at the same time. As
another example, depending on the system resources that are available to each
partition, you might want to set certain configuration parameters across
non-catalog partitions and customize the parameters for the catalog partition to
optimize performance.

Database administration for the DB2 pureScale Feature for DB2
Enterprise Server Edition

In a DB2 pureScale environment, task assistants provide these additional database
administration operations for members and cluster caching facilities (CFs):

Start To start members or CFs, select Start on the context-sensitive menu for the
instance object. You can start selected members or CFs, all members and
CFs, or an instance on a host.

Stop To stop members or CFs that are currently active, select Stop on the
context-sensitive menu for the instance object. You can stop selected
members or CFs, all the members and CFs, or an instance on a host.

Quiesce
To quiesce members, select Stop on the context-sensitive menu for the
instance object and select the option to Quiesce member with timeout.

Configure
To change the configuration parameters for one or more members, select
Configure on the context-sensitive menu for the instance object.

90 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

In addition, you can manage the maintenance mode for a DB2 pureScale host.

Administering databases with task assistants
IBM Data Studio provides dialogs that are called task assistants that help you
create and run database administration commands for objects in DB2 for Linux,
UNIX, and Windows databases. For example, you can use task assistants to start
and stop databases and instances, configure database parameters, reorganize tables
and indexes, back up and restore databases or table spaces, and import and export
table data.

Before you begin

To run a database administration command for an object, you must have the
appropriate permission or authorization for the object, and you must have a
connection to the database that contains the object.

For Linux operating systems
Before users who do not have DB2 instance level privileges can use the
DB2 client CLP to run commands, including commands for importing,
loading, exporting, or unloading tables, the DB2INSTANCE system
environment variable must be set.

Note: You must set the DB2INSTANCE system environment variable for
each time that you log in or open a command terminal.

To set the DB2INSTANCE system environment variable:
1. Ensure that the Data Studio client is closed and not running before you

run the script.
2. Set the environment variable at the instance level by running one of the

following scripts:
v For a Bourne or Korn shell, run: db2profile
v For a C shell, run: db2cshrc

3. Start IBM Data Studio client.

For detailed information about setting the system environment variable,
see the Setting environment variables outside the profile registries on Linux and
UNIX operating systems topic in the IBM DB2 online information for your
version of the DB2 database.

Procedure

To open the task assistant for the command, specify additional settings for the
command, and run the generated commands, complete the following steps:
1. Find the object that you want to work with. You can find the object either in

the Administration Explorer or the Object List.

Chapter 6. IBM Data Studio 91

Table 9. Which view to use to find objects

View and objects Example

Administration Explorer
Hosts
Instances
Databases

From the Administration Explorer, you can open a task
assistant for hosts, instances, and databases.

Figure 16. Example of the Administration Explorer

Object List
Databases
Table spaces
Indexes
Views
Aliases
Packages

When you click a database or a data object folder in the
Administration Explorer, the list of objects is displayed in the
Object List.

Figure 17. Example of selecting the Table Spaces folder to
display the table spaces in the Object List
Tip: If the Object List is already open for the database, you can
use the drop-down arrow that is displayed after the database
name in navigation breadcrumb trail to display other objects in
the Object List.

Figure 18. Example of using a drop-down arrow in the Object
List to select other objects to display

92 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

2. Right-click the object and select the command to run from the context-sensitive
menu.
For example, the following figure shows how to back up the GSDB database.

The task assistant opens for the database administration task that you selected.
Each task assistant has four sections: Connection, Settings, Command, and
Messages. The following graphic shows how the Connection, Command, and
Messages sections are expandable. The Settings section is always expanded.

Figure 19. Example of the context-sensitive menu for databases and selecting to back up a
database

Chapter 6. IBM Data Studio 93

3. In the Settings section, specify the options for the command:
a. Click each of the tabs to step through the process of specifying the settings

and options to use in the command.
b. Click Preview Command to shift down to and expand the Command

section, where the generated commands that are based on the options that
you specified are displayed.

For example, the following figure shows selecting the Backup Performance tab
to specify options that improve the performance of the backup operation.

4. In the Command section, review the commands that were generated and then
run them.

Figure 20. Example of a task assistant with its four sections

Figure 21. Example of selecting a tab and specifying options on that tab

94 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

If you are satisfied with the displayed commands, click Run to run them.

Tip: In some cases, you might want to edit the displayed commands. Click
Edit to open the SQL and XQuery editor where you can edit and run the
commands. You might also want to schedule a time to run the commands.
The focus of the task assistant shifts to the Messages section.

5. In the Messages section, monitor the progress of the commands that are being
run in the progress bar and review any messages that are issued.

To view detailed information about any command that does not run
successfully, click the message number or SQL code that is displayed.

Results

The commands to perform your database administration task were run.

Figure 22. Example of the commands being displayed in the Command section

Figure 23. Example of the Messages section while the commands are being run

Chapter 6. IBM Data Studio 95

Database administration commands that you can run from
task assistants

Use the numerous task assistants to guide you through the process of setting
options for common database administration commands, reviewing the
automatically generated commands, and running the commands.

For each object, the following table shows which database administration
commands are supported by a task assistant. Task assistants are available only for
databases on DB2 for Linux, UNIX, and Windows.

Table 10. Task assistant support for DB2 for Linux, UNIX, and Windows database
administration commands

Action

Database
administration
command Description

Hosts

Manage DB2
pureScale
Host
Maintenance
Mode

db2cluster with one of
the following options
v -cm -enter

-maintenance [-all]
v -cm -exit

-maintenance [-all]
v -cfs -enter

-maintenance [-all]
v -cfs -exit

-maintenance [-all]

Either puts or removes the target host or all hosts
from maintenance mode. The target host must be
in maintenance mode to apply software updates
to DB2 cluster services.

The host must have a least one DB2 pureScale
instance, and at least one connection profile was
created and connected.

Verify DB2
cluster
services status

db2cluster with one of
the following options
v -cm -verify

-resources
v -cfs -verify

-configuration
v -cm -verify

-maintenance
v -cfs -verify

-maintenance
v -cfs -verify

-configuration
-filesystem fsname

v -cfs -list -filesystem

Verify the status and configuration of DB2 cluster
services. The task assistant can do the following
tasks:

v Verify that the resource model for the instance
is correct, and that there are no inconsistencies
in the resource model.

v Verify the configuration of the current file
system cluster.

v Display if the cluster manager is offline on the
host so that the binaries can be updated.

v Display if the shared file system cluster host is
offline to allow for updates to the binaries.

v Verify the configuration of the current file
system cluster.

v List the current file systems.

96 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 10. Task assistant support for DB2 for Linux, UNIX, and Windows database
administration commands (continued)

Action

Database
administration
command Description

Manage DB2
cluster
services
configuration

db2cluster with one of
the following options

v -cm -set -option
-pprimary host name

v -cm -set –option
HostFailureDetection
Time [1..10]

v -cm -set –option
autofailback
[ON/OFF]

v -cm -set -tiebreaker
-disk [disk name |
PVID=pvid]

v -cfs -set –option
-tiebreaker -disk disk
name

Manage the configuration of the DB2 cluster
services. The task assistant can do the following
tasks:

v Set a new preferred primary value for DB2
cluster services. The option specifies which
cluster caching facility DB2 cluster services will
attempt to start in the primary role.

Attention: Make sure to check that the
preferred primary value was changed after you
run the command by looking at the output of
the command in the SQLResults view. The
db2cluster command is not recognized by DB2
CLP, so the command will run as an external
command. DB2 CLP always reports success for
any external command irrespective of the
actual result of the external command. This
behavior will be addressed in future releases.

v Set how long it takes to detect a host failure or
network partition. The value specifies the
interval for detecting host failure.

v Enable or disable automatic failback for the
cluster.

v Set the cluster manager quorum type to a disk
tiebreaker.

Instances

Configure UPDATE DATABASE
MANAGER
CONFIGURATION

Modifies individual entries in the database
manager configuration file.

Quiesce QUIESCE Forces all users off the specified instance and puts
the instance into quiesced mode.

Start db2start Starts the DB2 instance.

Stop db2stop Stops the DB2 instance.

Unquiesce UNQUIESCE Restores user access to instances that were
quiesced for maintenance or other reasons.

Databases

Backup BACKUP DATABASE Creates a backup copy of a database or table
space.

Configure UPDATE DATABASE
CONFIGURATION

Modifies individual entries in a specific database
configuration file.

Configure
Automatic
Maintenance

UPDATE DATABASE
CONFIGURATION

Enables or disables the various automatic
maintenance activities that can be performed and
defines a maintenance interval and window in
which the activities can occur. Maintenance
activities can occur during the maintenance
window only if DB2 determines that the
maintenance is required.

Chapter 6. IBM Data Studio 97

Table 10. Task assistant support for DB2 for Linux, UNIX, and Windows database
administration commands (continued)

Action

Database
administration
command Description

Configure
Database
Logging

UPDATE
CONFIGURATION
LOGGING

Modifies the data logging options for your
database, such as the type of logging to use, the
size of the log files, and the location where log
files will be stored.

Create CREATE DATABASE Creates a database with either automatic or
manual storage.

Drop DROP DATABASE Deletes the database contents and all log files for
the database, uncatalogs the database, and deletes
the database subdirectory.

Revalidate SYSCAT.
INVALIDOBJECTS
ADMIN_
REVALIDATE_DB
_OBJECTS

Lists all invalid objects for your database, and lets
you revalidate these objects. The following object
types are supported:

DB2 V10.1 and higher

v COLUMN MASK

v GLOBAL VARIABLE

v ROUTINE

v ROW PERMISSION

v TRIGGER

v USER-DEFINED DATA TYPE

v VIEW

DB2 V9.7

v GLOBAL VARIABLE

v ROUTINE

v TRIGGER

v USER-DEFINED DATA TYPE

v VIEW

HADR Setup Various Sets up the High Availability Disaster Recovery
(HADR) feature for your database. The HADR
feature ensures that changes to the database can
be replicated to one or more standby databases. A
standby database takes over in the event of a
failure on the primary system.

HADR
Manage

START HADR, STOP
HADR, TAKEOVER
HADR

Starts and stops HADR operations on either the
primary database or a standby database. You can
also instruct a standby database to take over as
the primary database in the event of a failure on
the primary system.

List or Force
Applications

FORCE
APPLICATIONS

Forces local or remote users or applications off of
the system to allow for maintenance on a server.

Manage
Storage

ALTER DATABASE
ADD STORAGE

Specifies that one or more new storage locations
are to be added to the collection of storage
locations that are used for automatic storage table
spaces.

Quiesce QUIESCE Forces all users off of the specified database and
puts the database into quiesced mode.

98 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 10. Task assistant support for DB2 for Linux, UNIX, and Windows database
administration commands (continued)

Action

Database
administration
command Description

Recover RECOVER DATABASE Restores and rolls forward a database to a
particular point in time or to the end of the logs.

Restart RESTART DATABASE Restarts a database that has been abnormally
terminated and left in an inconsistent state.

Restore RESTORE DATABASE Re-creates a damaged or corrupted database that
was backed up with the DB2 backup utility.

Roll Forward ROLLFORWARD
DATABASE

Recovers a database by applying transactions that
were recorded in the database log files.

Cancel Roll
Forward

ROLLFOWARD
DATABASE with
CANCEL option

Cancels the roll-forward recovery operation. The
database is put in restore pending status.

Complete Roll
Forward

ROLLFORWARD
DATABASE with
COMPLETE option

For databases that were archived and restored,
but did not have the logs rolled forward, rolls
forward the logs. The logs can be rolled forward
to a point in time or to the end of the log.

Start ACTIVATE DATABASE Activates the specified database and starts all
necessary database services so that the database is
available for connection and use by any
application.

Stop DEACTIVATE
DATABASE

Deactivates the specified database.

Unquiesce UNQUIESCE Restores user access databases that were quiesced
for maintenance or other reasons.

Table spaces

Backup BACKUP Creates a backup copy of a table space.

Restore RESTORE Re-creates a damaged or corrupted table space
that was backed up with the DB2 backup utility.
The task assistant does not support restoring
multiple table spaces.

Rollforward ROLLFORWARD
DATABASE

Recovers a table space by applying transactions
that were recorded in the log files.

Cancel Roll
Forward

ROLLFOWARD
DATABASE with
CANCEL option

Cancels the roll-forward recovery operation. One
or more table spaces are put in restore pending
status.

Complete Roll
Forward

ROLLFORWARD
DATABASE with
COMPLETE option

For table spaces that were archived and restored,
but did not have the logs rolled forward, rolls
forward the logs. The logs can be rolled forward
to a point in time or to the end of the log.

Tables

Convert Table ADMIN_MOVE_
TABLE

Converts row-organized tables to column
organization.

Export Table EXPORT Exports data from a table to one of several
external file formats.

Import Table IMPORT Inserts data from an external file with a
supported file format into a table.

Load Table LOAD Loads data into a DB2 table.

Chapter 6. IBM Data Studio 99

Table 10. Task assistant support for DB2 for Linux, UNIX, and Windows database
administration commands (continued)

Action

Database
administration
command Description

Optim High
Performance
Unload

db2hpu Uses Optim High Performance Unload
commands to unload data from a DB2 table or to
copy data from source tables to target tables by
using temporary files to store the data. You can
also migrate data from one database system to
another.

To specify Optim High Performance Unload as
the unload method, Optim High Performance
Unload for Linux, UNIX, and Windows must be
installed on each database system that is involved
in the unload or migration.

Reorg Table REORG TABLE Reorganizes a table.

Reorg Index REORG INDEX Reorganizes all of the indexes that are defined for
the table.

Run Statistics RUNSTATS Updates the statistics about the characteristics of
a table, its indexes, or both.

Set Integrity SET INTEGRITY Brings tables out of set integrity pending state,
places tables in set integrity pending state, places
tables into full access state, or prunes the contents
of staging tables.

Packages

Rebind REBIND PACKAGE Re-creates a package without needing the original
bind file.

Tip: To create a database by using the context-sensitive menu, another database
must exist. To create the first database in an instance, you can use the New
Database icon in the toolbar at the top of the Administration Explorer.

Managing jobs in IBM Data Studio
IBM Data Studio web console provides job creation, job scheduling, and job
management for your DB2 for Linux, UNIX, and Windows and DB2 for z/OS
databases.

With the Data Studio web console job manager you can:
v Create and schedule jobs directly from the IBM Data Studio client workbench.

– Use the workbench script editor to create your script and then schedule the
script to run as a job in the job manager.

– Access the Data Studio web console either embedded in the workbench or in
a stand-alone web browser window.

– Access the job history for a database directly from the Administration
Explorer in the workbench.

v Create and manage jobs by using the web console graphical user interface.
– View jobs, schedules, and notifications filtered by criteria such as database,

job ID, or job type.
v Create jobs based on database scripts:

100 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

SQL-only scripts
The SQL-only scripts are run by the job manager by running the SQL
commands that are outlined in the script part of the job directly against
the database.

DB2 CLP scripts
The DB2 CLP script jobs are run on the database server by the job
manager, which logs in to the database server by using SSH. For
multiple databases, the job manager logs in as the user ID that is defined
in the database connection. For a single database, based on the user's
selection, the job manager logs in by using SSH credentials that the user
supplies or the user ID that is defined in the database connection. When
logged in, the job manager runs command line processor commands
directly on the DB2 console of the server.

Important: To be able to run DB2 CLP script jobs on a database, the
user ID that is used to run the job must have permission to log in to the
database server by using SSH.

Executable/shell Scripts
The Executable/Shell script jobs are run on the database server by the
job manager, which logs in to the database server by using SSH. For
multiple databases, the job manager logs in as the user ID that is defined
in the database connection. For a single database, based on the user's
selection, the job manager logs in by using SSH credentials that the user
supplies or the user ID that is defined in the database connection. When
logged in, the job manager runs shell commands directly on the server.

Important: To be able to run Executable/Shell script jobs on a database,
the user ID that is used to run the job must have permission to log in to
the database server by using SSH.

v Schedule jobs to run at a specific time, or to repeat at certain intervals for one or
more databases.

v Run jobs for multiple databases as the default user stored in the database
connection, or specify a user ID to run the job as when running a job on one
database.

v Add jobs together in chains, where the main job is followed by a secondary job
dependent on the outcome of the main job, and where a finishing job, such as
RUNSTATS and BACKUP, is run last.

v Configure email notifications to be sent to one or more users depending on the
success or failure of the job.

v View the history of all jobs that run on your databases.
– The job history view gives you a high-level overview of the job results and

the option to drill down into each job.
– You can configure the job manager to retain job history for all jobs that were

run, or for a subset depending on the success or failure of the job.
v Manage user access to job manager tasks across your databases.

– Enable or disable job management privileges requirements for the users of the
web console.

– For each database, grant or revoke job management privileges for each user
of the web console.

Chapter 6. IBM Data Studio 101

Creating and managing jobs
With Data Studio web console job manager, you can create and manage your
database jobs from the web console.

You create and manage your jobs by using the following tabs of the Job Manager
page:

Job List
From this tab, you can create jobs for your databases or run existing jobs
directly against a database without scheduling.

When you create a job or open an existing job, the job details open in the
job editor. Use the tabs in the job editor to move between jobs, or use the
job section view selector to drill down into the script, schedule,
notification, and chain component of each job.

Tip: If you have configured your IBM Data Studio client to connect to IBM
Data Studio web console you can create jobs directly from the SQL script
editor.

Schedules
From this tab, you can create and manage schedules for the jobs that you
created for your databases.

A schedule defines when a job will be run, whether the job is repeating,
and whether the schedule is limited in number of runs or in time. The
schedule also defines one or more databases on which to run the job.

Notifications
Use this tab to manage email notifications for the execution of the jobs that
you created for your databases.

Job manager notifications help you monitor the execution results for your
jobs across multiple databases and schedules without requiring access to
the web console.

Each job can have any number of notifications configured, and each
notification can be set up with different conditions, a different set of users
to notify, and different collections of databases to monitor.

History
On this tab, you can view the status of jobs that ran on your databases.
The job history is displayed for jobs that ran according to a schedule in
addition to jobs that you ran manually over the last few days.

Tip: If you have configured your IBM Data Studio client to connect to IBM
Data Studio web console you can view job history for a database directly
from the Administration Explorer.

Scenario: Creating and scheduling a job
In this scenario, Alan, a database administrator with the Sample Company, uses
the job manager to create and schedule a job based on a script provided by Doug,
a developer, on the Sales database owned by Becky, a database administrator.

To complete the parts of the scenario, Alan uses the following web console pages
of Data Studio web console:
v Databases
v Job Manager

102 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

– Job List tab
– Schedules tab
– Notifications tab
– History tab

v Console Security

Alan is a database manager for Sample Company, and is responsible for
scheduling database jobs. Alan works with the database script developers for the
script content of the jobs and with the database owners to get the required
credentials to access the databases. Alan owns the repository database that is used
by Data Studio web console to manage user access to the web console.

Alan is approached by Doug, a script developer who asks Alan to schedule a script
to be run on the Sales database monthly, and to notify Doug and Doug's manager
if the job fails. In addition, each time the script runs, an existing Cleanup job must
be run directly afterward.

First Alan verifies with Doug that the script has been tested and verified by
development, and that it runs without problems on their test databases. Doug uses
other IBM Data Studio tools to verify the scripts.

Next, Alan opens the Databases page in the web console to verify that the Sales
database exists as a database connection. If needed, he adds a database connection
to the Sales database with information from Becky, the owner of the Sales database.
Becky wants to restrict the running of jobs on the Sales database to a specific
subset of users, so Alan configures the database connection to connect with a user
ID that has the minimum required authority of CONNECT. To schedule the job on the
Sales database Alan also needs the user credentials of a user ID that has the
authorizations on the database required by the actions that the script runs. That
user ID also needs the required authority to run the cleanup job afterward.

Alan then opens the Job Manager page in the web console, and clicks Add Job in
the Job List tab to create the job. After filling out the basic information, such as a
job name and a description of the job, Alan selects the correct type of job to match
the script and verifies that the job is enabled for scheduling.

Working through the new job wizard, Alan pastes in the script that Doug provided
into the Script component of the job, making sure that the closing character
defined for the job matches what is in the script.

Alan then creates a schedule from the Schedules component of the job, setting a
date and time for the first job run, and configuring it to run monthly on the Sales
database. As the user ID used in the database connection does not have the correct
authority to run some of the commands in the script, Alan selects to run the job as
the specific user ID with the correct authority that was provided by the database
owner.

Alan also adds the requested cleanup job to the job in the Chain component. As
the only required chained job is the cleanup, Alan adds it to run at the end of the
chain.

Finally, Alan adds the email addresses of Doug and Doug's manager to the
Notifications component of the job, and configures notifications to be sent if the job
fails.

Chapter 6. IBM Data Studio 103

The job is now scheduled, and Alan can view the job, schedule, and notification
information for the job in the corresponding job manager tabs. Once the job has
been run, any user with access to the web console can use the History page to
view the job history for the job, and get a detailed view by looking at the log entry
for the job. If Doug does not have access to the web console, Alan adds Doug as a
repository database user and uses the Console Security page to grant Doug access
the web console.

Importing tasks from DB2 Task Center
Use the Data Studio web console to import existing tasks from the Task Center in
the DB2 Control Center. Imported tasks are saved as jobs in the job manager.

About this task

The imported tasks are mapped to the appropriate job manager type as shown in
the following table:

Table 11. Mapping of Task Center script type to Job Manager job type

Task Center script type Job Manager job type

DB2 command script DB2 CLP script

OS command script Shell/Executable script

Restrictions: The following restrictions apply to importing tasks from the DB2
Task Center:
v Task types from DB2 Task Center:

Table 12. Restrictions for task types from DB2 Task Center

Task type Restrictions

MVS shell script Not supported.

Grouping Not supported.

OS command script The script interpreters and command
execution parameters are not supported. The
default script interpreter is used instead.

DB2 command script Supported.

v Schedules that are associated with tasks from DB2 Task Center:

Table 13. Restrictions for schedules from DB2 Task Center

Schedule type Restrictions

Weekly Only schedules set for 1 to 4 weeks are
supported.

Monthly Only schedules set for 1 month and
schedules set to a specific date or last date
are supported.

Yearly Only schedules set for 1 year are supported.

Expired (that is, schedules with a starting or
ending time that is earlier than the current
time)

Expired schedules will be imported but
marked as inactive.

v Task actions that are associated with tasks from DB2 Task Center:

104 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 14. Restrictions for task actions from DB2 Task Center

Task action Restrictions

Run task Only the first Run task task action
associated with the task will be imported.

Enable schedule of Not supported.

Disable schedule of Not supported.

Delete this task Not supported.

v The success code sets that are used by the DB2 Task Center when running tasks
are ignored by the job manager.

v If the tools catalog database contains a task that was previously imported to the
Data Studio web console and you choose to import the task again, the task is
saved as a new job with a new job ID.

v Contact lists are not imported from the DB2 Task Center.

Procedure

To import tasks from the DB2 Task Center:
1. Open the Data Studio web console in a web browser.
2. To open the Import Tasks page, from the Open menu, click Product Setup >

Import Tasks.
3. Follow the instructions on the Import Tasks page to start importing tasks. You

must specify a valid tools catalog database that contains the DB2 Task Center
metadata, and then select the tasks to import. Only supported tasks from the
tools catalog database are enabled in the Import Tasks page.

Results

If the task is imported successfully, a new job is created for the imported task in
the job manager with a job name that is identical to the task name of the imported
task. The job name is prefixed by “TC_toolsdb_” where toolsdb is the name of the
DB2 tools database. The script of the imported task is not modified.

If the imported task is associated with a schedule in the Task Center, a new
schedule is created for the corresponding job by the job manager and the tools
catalog database is associated with the schedule by default. The schedule date
format for the imported task is converted to the job manager schedule format.

What to do next

If the job that was generated from the imported task is not associated with a
schedule, create a schedule and add the job to the schedule.

Diagramming access plans with Visual Explain
You can generate a diagram of the current access plan for an SQL or XPATH
statement to find out how your data server processes the statement. You can use
the information available from the graph to tune your SQL statements for better
performance.

Chapter 6. IBM Data Studio 105

Before you begin

If you want to create access plan diagrams for DB2 for z/OS, you must configure
the DB2 subsystem that you are using. The steps are identical to the steps for
configuring a subsystem for use with the no-charge tuning features that are in IBM
Data Studio.

Restriction: For IBM Informix® Dynamic Server, Visual Explain cannot explain
SELECT statements that contain parameter markers or host variables.

About this task

You can use Visual Explain to:
v View the statistics that were used at the time of optimization. You can then

compare these statistics to the current catalog statistics to help you determine
whether rebinding the package might improve performance.

v Determine whether or not an index was used to access a table. If an index was
not used, Visual Explain can help you determine which columns might benefit
from being indexed.

v Obtain information about each operation in the access plan, including the total
estimated cost and number of rows retrieved (cardinality).

Procedure

To generate the diagram of the current access plan for a query:
1. Optional: Set preferences for how Visual Explain operates and for how it

displays diagrams.
2. Follow one of these steps:

v In the Data Project Explorer, right-click an SQL statement, SQL stored
procedure, or SQL user-defined function, and select Open Visual Explain.

v In the Data Source Explorer, right-click a view or right-click an SQL stored
procedure or SQL user-defined function that contains an INSERT, UPDATE,
DELETE, or SELECT statement. Select Open Visual Explain. If the
workbench finds more than one SQL statement or XQUERY statement, the
workbench uses the first statement.

v In an SQL, Routine, or Java editor, highlight and right-click the INSERT,
UPDATE, DELETE, or SELECT statement, XPATH, or XQUERY statement
and select Open Visual Explain.
Attempts to open Visual Explain from an SQL statement in a Java editor fail
if the SQL statement contains variables that are declared in your application.
For example, this SQL statement cannot be analyzed by Visual Explain
because of the two variables in the predicate:
select count(*), sum(order.price)
from order
where order.date > var_date_1
and order.date < var_date_2

However, after you bind or deploy the application, you can use InfoSphere
Optim Query Tuner or the single-query tuning features in Data Studio to
capture the SQL statement from a DB2 package or from the dynamic
statement cache and then tune it.

106 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note: Visual Explain is disabled or throws an exception if the selected SQL
statement or object is not explainable. Only the SQL statements in the following
list can be explained by Visual Explain:
v For DB2 for Linux, UNIX, and Windows: CALL, Compound SQL (Dynamic),

DELETE, INSERT, MERGE, REFRESH, SELECT, SELECT INTO, SET
INTEGRITY, UPDATE, VALUES, or VALUES INTO.

v For DB2 for z/OS: SELECT, INSERT, or the searched form of an UPDATE or
DELETE statement.

3. On the first page of the wizard, specify the terminator of the SQL, XPATH, or
XQUERY statement that you want to diagram the access plan for.

4. Optional: On the first page of the wizard, you can also specify settings for
various options.
a. Specify whether you want to store the collected explain data in explain

tables. If you choose this option, Visual Explain does not have to collect
explain data the next time that you want to diagram the access plan for the
same statement.

b. Specify the directory that you want Visual Explain to use as a working
directory.

c. If IBM Support needs a trace, specify whether to trace the creation of the
diagram of the access plan and whether to trace the collection of the explain
data.

d. Specify whether to save your settings as the defaults for all diagrams that
you create with Visual Explain. You can change these defaults with the
Preferences window.

5. On the second page of the wizard, set values for the special registers to
customize the runtime environment to influence the collection of explain data.
When Visual Explain runs the statement to gather explain data, it uses the
values that you specify.
Attention: Please be aware of the following information regarding DB2 data
servers.
v For DB2 for z/OS: If you specify different values for CURRENT SCHEMA

and CURRENT SQLID, Visual Explain searches for explain tables that are
qualified by the value of CURRENT SQLID. If Visual Explain does not find
explain tables that are qualified by the value of CURRENT SQLID, Visual
Explain attempts to create the explain tables under that value.

v For DB2 for Linux, UNIX, and Windows: If you change the value of
CURRENT SCHEMA to a value that contains special characters, you must
delimit the value with single quotation marks.

v For DB2 for Linux, UNIX, and Windows: Select the Collect column and
column group statistics check box if you want Visual Explain to collect
detailed statistics about clustered columns and columns that participate in a
GROUP BY clause.

6. Optional: On the second page of the wizard, specify whether to save your
settings as the defaults for all diagrams that you create with Visual Explain.
You can change these defaults with the Preferences window.

7. Click Finish to close the wizard and to generate the diagram.

Results

The workbench displays the diagram in the Access Plan Diagram view. In this
view, you can navigate through the diagram, view descriptions of the nodes in the
diagram, and search for nodes.

Chapter 6. IBM Data Studio 107

Diagrams of access plans
When DB2 processes a query, the DB2 optimizer generates several alternative plans
for accessing the requested data. The optimizer estimates the execution cost of each
plan and chooses the lowest-cost plan to execute. This plan is called the access
plan.

Visual Explain graphically displays the access plan for any explainable statement.
This display is called an access plan diagram, and it illustrates how DB2 accesses
the data for a specified SQL statement.

The access plan diagram consists of nodes and lines that connect those nodes. The
nodes represent data sources, operators, SQL statements, and query blocks. Nodes
can have only one parent node, but they can have unlimited child nodes. The
arrows on the edges indicate the direction of the flow. Usually, a table node is at
the bottom of the graph, and the access plan proceeds upward from there.

Some operations in the access plan, such as nested loop joins or index scans, are
represented in the graph by groups of nodes, which are called constructs. Many of
these constructs have a defining node that indicates the operation. For example,
the HBJOIN node indicates that a hybrid join operation is taking place, but the
entire hybrid join is represented in the graph by a group of nodes. This group of
nodes represents all of the other data sources and operations that are involved in
the hybrid join.

Query blocks
An SQL statement can consist of several subqueries, which are represented in the
access plan diagram by query blocks.

The subquery can be a SELECT, INSERT, UPDATE, or DELETE. A subquery can
contain other subqueries in the FROM clause, the WHERE clause, or a subselect of
a UNION or UNION ALL. A subquery within another subquery is called a child
subquery. A subquery that contains another subquery is called a parent subquery.
This parent-child relationship can be represented by a tree hierarchy.

If a subquery references at least one column of its parent subquery or of any
parent subqueries that are higher up in the tree hierarchy, the subquery is a
correlated subquery; otherwise it is a non-correlated subquery. A non-correlated
subquery can run at the same time as the highest parent subquery that is also
non-correlated. This highest parent subquery is called the "do-at-open parent
subquery" in terms of its relationship to the non-correlated subquery. The execution
of a correlated subquery is bound to the execution of its parent subquery. Such
relationships between the relative executions of parents and children can be
represented by separate trees hierarchies in the access plan graph.

Non-correlated subquery
For a non-correlated subquery, the query block node is connected to the
right of the query block node for the highest parent subquery that is also
non-correlated.

Correlated subquery
For a correlated subquery, the query block node is connected to the part
within its parent subquery where the correlated subquery is executed.

108 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Setting preferences for Visual Explain
Use the Preferences window to set default values for settings that determine how
Visual Explain operates and how it displays diagrams.

Procedure

To set preferences for Visual Explain:
1. Select Window > Preferences.
2. In the tree view of the Preferences window, select Data > Visual Explain.
3. On the Visual Explain page, set the following options:

a. Specify whether to launch the Visual Explain wizard when you right-click
an SQL statement, view, stored procedure, or user-defined function and
select Visual Explain. The wizard allows you to override preferences. If you
clear this option, Visual Explain uses the preferences.

b. If your project is associated with a DB2 data server, specify whether Visual
Explain saves in the explain tables the explain data that it collects for the
statement.

4. On the Query Explain Settings page, specify default values for special
registers. Changing these values modifies how Visual Explain gathers explain
data to use when generating the access plan diagram.
Attention: Please be aware of the following information regarding DB2 data
servers.
v For DB2 for z/OS: If you specify different values for CURRENT SCHEMA

and CURRENT SQLID, Visual Explain searches for explain tables that are
qualified by the value of CURRENT SQLID. If Visual Explain does not find
explain tables that are qualified by the value of CURRENT SQLID, Visual
Explain attempts to create the explain tables under that value.

v For DB2 for Linux, UNIX, and Windows: If you change the value of
CURRENT SCHEMA to a value that contains special characters, you must
delimit the value with single quotation marks.

v For DB2 for Linux, UNIX, and Windows: Select the Collect column and
column group statistics check box if you want Visual Explain to collect
detailed statistics about clustered columns and columns that participate in a
GROUP BY clause.

5. On the Viewer page, change various behaviors and colors of diagrams.
6. On the Nodes page, change the default appearance of nodes. You can change

the text, color, and shape of the different types of nodes. You can also choose
whether to highlight selected nodes, shadow nodes, or show information about
nodes when you move your mouse cursor over them.

Chapter 6. IBM Data Studio 109

110 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Part 2. Data partitioning and clustering

With the introduction of table partitioning, a DB2 database offers a three-level data
organization scheme. There are three clauses of the CREATE TABLE statement that
include an algorithm to indicate how the data is to be organized.

The following three clauses demonstrate the levels of data organization that can be
used together in any combination:
v DISTRIBUTE BY to spread data evenly across database partitions (to enable

intraquery parallelism and to balance the load across each database partition)
(database partitioning)

v PARTITION BY to group rows with similar values of a single dimension in the
same data partition (table partitioning)

v ORGANIZE BY to group rows with similar values on multiple dimensions in the
same table extent (multidimensional clustering) or to group rows according to
the time of the insert operation (insert time clustering table).

This syntax allows consistency between the clauses and allows for future
algorithms of data organization. Each of these clauses can be used in isolation or in
combination with one another. By combining the DISTRIBUTE BY and PARTITION
BY clauses of the CREATE TABLE statement data can be spread across database
partitions spanning multiple table spaces. This approach allows for similar
behavior to the Informix Dynamic Server and Informix Extended Parallel Server
hybrid.

In a single table, you can combine the clauses used in each data organization
scheme to create more sophisticated partitioning schemes. For example, partitioned
database environments are not only compatible, but also complementary to table
partitioning.

© Copyright IBM Corp. 2014 111

Figure 24. Demonstrating the table partitioning organization scheme where a table
representing monthly sales data is partitioned into multiple data partitions. The table also
spans two table spaces (ts1 and ts2).

112 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The salient distinction between multidimensional clustering (MDC) and table
partitioning is multi-dimension versus single dimension. MDC is suitable to cubes
(that is, tables with multiple dimensions), and table partitioning works well if there
is a single dimension which is central to the database design, such as a DATE
column. MDC and table partitioning are complementary when both of these
conditions are met. This is demonstrated in Figure 26 on page 114.

Figure 25. Demonstrating the complementary organization schemes of database partitioning
and table partitioning. A table representing monthly sales data is partitioned into multiple data
partitions, spanning two table spaces (ts1 and ts2) that are distributed across multiple
database partitions (dbpart1, dbpart2, dbpart3) of a database partition group (dbgroup1).

Part 2.Data organization schemes 113

There is another data organization scheme which cannot be used with any of the
schemes that were listed previously. This scheme is ORGANIZE BY KEY
SEQUENCE. It is used to insert each record into a row that was reserved for that
record at the time of table creation (Range-clustered table).

Data organization terminology

Database partitioning
A data organization scheme in which table data is divided across multiple
database partitions based on the hash values in one or more distribution
key columns of the table, and based on the use of a distribution map of the
database partitions. Data from a given table is distributed based on the
specifications provided in the DISTRIBUTE BY HASH clause of the
CREATE TABLE statement.

Figure 26. A representation of the database partitioning, table partitioning and
multidimensional organization schemes where data from table SALES is not only distributed
across multiple database partitions, partitioned across table spaces ts1 and ts2, but also
groups rows with similar values on both the date and region dimensions.

114 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Database partition
A portion of a database on a database partition server consisting of its own
user data, indexes, configuration file, and transaction logs. Database
partitions can be logical or physical.

Table partitioning
A data organization scheme in which table data is divided across multiple
data partitions according to values in one or more partitioning columns of
the table. Data from a given table is partitioned into multiple storage
objects based on the specifications provided in the PARTITION BY clause
of the CREATE TABLE statement. These storage objects can be in different
table spaces.

Data partition
A set of table rows, stored separately from other sets of rows, grouped by
the specifications provided in the PARTITION BY RANGE clause of the
CREATE TABLE statement.

Multidimensional clustering (MDC)
A table whose data is physically organized into blocks along one or more
dimensions, or clustering keys, specified in the ORGANIZE BY
DIMENSIONS clause.

Insert time clustering (ITC)
A table whose data is physically clustered based on row insert time,
specified by the ORGANIZE BY INSERT TIME clause.

Benefits of each data organization scheme

Understanding the benefits of each data organization scheme can help you to
determine the best approach when planning, designing, or reassessing your
database system requirements. Table 15 provides a high-level view of common
customer requirements and shows how the various data organization schemes can
help you to meet those requirements.

Table 15. Using table partitioning with the Database Partitioning Feature

Issue Recommended scheme Explanation

Data roll-out Table partitioning Uses detach to roll out large
amounts of data with
minimal disruption

Parallel query execution
(query performance)

Database Partitioning Feature Provides query parallelism
for improved query
performance

Data partition elimination
(query performance)

Table partitioning Provides data partition
elimination for improved
query performance

Maximization of query
performance

Both Maximum query performance
when used together: query
parallelism and data partition
elimination are
complementary

Heavy administrator
workload

Database Partitioning Feature Execute many tasks for each
database partition

Part 2.Data organization schemes 115

Table 16. Using table partitioning with MDC tables

Issue Recommended scheme Explanation

Data availability during
roll-out

Table partitioning Use the DETACH
PARTITION clause to roll out
large amounts of data with
minimal disruption.

Query performance Both MDC is best for querying
multiple dimensions. Table
partitioning helps through
data partition elimination.

Minimal reorganization MDC MDC maintains clustering,
which reduces the need to
reorganize.

Note: Table partitioning is now recommended over UNION ALL views.

116 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 7. Partitioned database environments

A partitioned database environment is a database installation that supports the
distribution of data across database partitions.
v A database partition is a part of a database that consists of its own data, indexes,

configuration files, and transaction logs. A partitioned database environment is a
database installation that supports the distribution of data across database
partitions.

v A single-partition database is a database having only one database partition. All
data in the database is stored in that single database partition. In this case,
database partition groups, although present, provide no additional capability.

v A multi-partition database is a database with two or more database partitions.
Tables can be located in one or more database partitions. When a table is in a
database partition group consisting of multiple database partitions, some of its
rows are stored in one database partition, and other rows are stored in other
database partitions.

Usually, a single database partition exists on each physical machine, and the
processors on each system are used by the database manager at each database
partition to manage its part of the total data in the database.

Because data is distributed across database partitions, you can use the power of
multiple processors on multiple physical machines to satisfy requests for
information. Data retrieval and update requests are decomposed automatically into
sub-requests, and executed in parallel among the applicable database partitions.
The fact that databases are split across database partitions is transparent to users
issuing SQL statements.

User interaction occurs through one database partition, known as the coordinator
partition for that user. The coordinator partition runs on the same database
partition as the application, or in the case of a remote application, the database
partition to which that application is connected. Any database partition can be
used as a coordinator partition.

The database manager allows you to store data across several database partitions
in the database. This means that the data is physically stored across more than one
database partition, and yet can be accessed as though it were located in the same
place. Applications and users accessing data in a multi-partition database are
unaware of the physical location of the data.

Although the data is physically split, it is used and managed as a logical whole.
Users can choose how to distribute their data by declaring distribution keys. Users
can also determine across which and over how many database partitions their data
is distributed by selecting the table space and the associated database partition
group in which the data is to be stored. Suggestions for distribution and
replication can be done using the DB2 Design Advisor. In addition, an updatable
distribution map is used with a hashing algorithm to specify the mapping of
distribution key values to database partitions, which determines the placement and
retrieval of each row of data. As a result, you can spread the workload across a
multi-partition database for large tables, and store smaller tables on one or more
database partitions. Each database partition has local indexes on the data it stores,
resulting in increased performance for local data access.

© Copyright IBM Corp. 2014 117

Note: You are not restricted to having all tables divided across all database
partitions in the database. The database manager supports partial declustering,
which means that you can divide tables and their table spaces across a subset of
database partitions in the system.

An alternative to consider when you want tables to be positioned on each database
partition, is to use materialized query tables and then replicate those tables. You
can create a materialized query table containing the information that you need,
and then replicate it to each database partition.

A non-root installation of a DB2 database product does not support database
partitioning. Do not manually update the db2nodes.cfg file. A manual update
returns an error (SQL6031N).

Database partitioning across multiple database partitions
The database manager allows great flexibility in spreading data across multiple
database partitions of a partitioned database.

Users can choose how to distribute their data by declaring distribution keys, and
can determine which and how many database partitions their table data can be
spread across by selecting the database partition group and table space in which
the data is to be stored.

In addition, a distribution map (which is updatable) specifies the mapping of
distribution key values to database partitions. This makes it possible for flexible
workload parallelization across a partitioned database for large tables, while
allowing smaller tables to be stored on one or a small number of database
partitions if the application designer so chooses. Each local database partition can
have local indexes on the data it stores to provide high performance local data
access.

In a partitioned database, the distribution key is used to distribute table data
across a set of database partitions. Index data is also partitioned with its
corresponding tables, and stored locally at each database partition.

Before database partitions can be used to store data, they must be defined to the
database manager. Database partitions are defined in a file called db2nodes.cfg.

The distribution key for a table in a table space on a partitioned database partition
group is specified in the CREATE TABLE statement or the ALTER TABLE
statement. If not specified, a distribution key for a table is created by default from
the first column of the primary key. If no primary key is defined, the default
distribution key is the first column defined in that table that has a data type other
than a long or a LOB data type. Tables in partitioned databases must have at least
one column that is neither a long nor a LOB data type. A table in a table space that
is in a single partition database partition group will have a distribution key only if
it is explicitly specified.

Rows are placed in a database partition as follows:
1. A hashing algorithm (database partitioning function) is applied to all of the

columns of the distribution key, which results in the generation of a
distribution map index value.

2. The database partition number at that index value in the distribution map
identifies the database partition in which the row is to be stored.

118 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The database manager supports partial declustering, which means that a table can be
distributed across a subset of database partitions in the system (that is, a database
partition group). Tables do not have to be distributed across all of the database
partitions in the system.

The database manager has the capability of recognizing when data being accessed
for a join or a subquery is located at the same database partition in the same
database partition group. This is known as table collocation. Rows in collocated
tables with the same distribution key values are located on the same database
partition. The database manager can choose to perform join or subquery processing
at the database partition in which the data is stored. This can have significant
performance advantages.

Collocated tables must:
v Be in the same database partition group, one that is not being redistributed.

(During redistribution, tables in the database partition group might be using
different distribution maps - they are not collocated.)

v Have distribution keys with the same number of columns.
v Have the corresponding columns of the distribution key be database

partition-compatible.
v Be in a single partition database partition group defined on the same database

partition.

Database partition groups
A database partition group is a named set of one or more database partitions that
belong to a database.

A database partition group that contains more than one database partition is
known as a multiple partition database partition group. Multiple partition database
partition groups can only be defined with database partitions that belong to the
same instance.

Figure 27 on page 120 shows an example of a database with five database
partitions.
v Database partition group 1 contains all but one of the database partitions.
v Database partition group 2 contains one database partition.
v Database partition group 3 contains two database partitions.
v The database partition in Group 2 is shared (and overlaps) with Group 1.
v A single database partition in Group 3 is shared (and overlaps) with Group 1.

Chapter 7. Partitioned database environments 119

When a database is created, all database partitions that are specified in the database
partition configuration file named db2nodes.cfg are created as well. Other database
partitions can be added or removed with the ADD DBPARTITIONNUM or DROP
DBPARTITIONNUM VERIFY command, respectively. Data is divided across all of the
database partitions in a database partition group.

When a database partition group is created, a distribution map is associated with the
group. The distribution map, along with a distribution key and a hashing algorithm
are used by the database manager to determine which database partition in the
database partition group will store a given row of data.

Default database partition groups

Three database partition groups are defined automatically at database creation
time:
v IBMCATGROUP for the SYSCATSPACE table space, holding system catalog

tables
v IBMTEMPGROUP for the TEMPSPACE1 table space, holding temporary tables

created during database processing
v IBMDEFAULTGROUP for the USERSPACE1 table space, holding user tables and

indexes. A user temporary table space for a declared temporary table or a
created temporary table can be created in IBMDEFAULTGROUP or any
user-created database partition group, but not in IBMTEMPGROUP.

Table spaces in database partition groups

When a table space is associated with a multiple partition database partition group
(during execution of the CREATE TABLESPACE statement), all of the tables within
that table space are partitioned across each database partition in the database
partition group. A table space that is associated with a particular database partition
group cannot later be associated with another database partition group.

Database

Database
partition

Database
partition

Database
partition group 2

Database
partition group 3

Database
partition group 1

Database
partition

Database
partition

Database
partition

Figure 27. Database partition groups in a database

120 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Creating a database partition group

Create a database partition group by using the CREATE DATABASE PARTITION
GROUP statement. This statement specifies the set of database partitions on which
the table space containers and table data are to reside. This statement also
performs the following actions:
v It creates a distribution map for the database partition group.
v It generates a distribution map ID.
v It inserts records into the following catalog views:

– SYSCAT.DBPARTITIONGROUPDEF
– SYSCAT.DBPARTITIONGROUPS
– SYSCAT.PARTITIONMAPS

Altering a database partition group

Use the ALTER DATABASE PARTITION GROUP statement to add database
partitions to (or drop them from) a database partition group. After adding or
dropping database partitions, use the REDISTRIBUTE DATABASE PARTITION GROUP
command to redistribute the data across the set of database partitions in the
database partition group.

Database partition group design considerations

Place small tables in single-partition database partition groups, except when you
want to take advantage of collocation with a larger table. Collocation is the
placement of rows from different tables that contain related data in the same
database partition. Collocated tables help the database manager to use more
efficient join strategies. Such tables can exist in a single-partition database partition
group. Tables are considered to be collocated if they are in a multiple partition
database partition group, have the same number of columns in the distribution
key, and if the data types of corresponding columns are compatible. Rows in
collocated tables with the same distribution key value are placed on the same
database partition. Tables can be in separate table spaces in the same database
partition group, and still be considered collocated.

Avoid extending medium-sized tables across too many database partitions. For
example, a 100-MB table might perform better on a 16-partition database partition
group than on a 32-partition database partition group.

You can use database partition groups to separate online transaction processing
(OLTP) tables from decision support (DSS) tables. This will help to ensure that the
performance of OLTP transactions is not adversely affected.

If you are using a multiple partition database partition group, consider the
following points:
v In a multiple partition database partition group, you can only create a unique

index if the index is a superset of the distribution key.
v Each database partition must be assigned a unique number, because the same

database partition might be found in one or more database partition groups.
v To ensure fast recovery of a database partition containing system catalog tables,

avoid placing user tables on the same database partition. Place user tables in
database partition groups that do not include the database partition in the
IBMCATGROUP database partition group.

Chapter 7. Partitioned database environments 121

Distribution maps
In a partitioned database environment, the database manager must know where to
find the data that it needs. The database manager uses a map, called a distribution
map, to find the data.

A distribution map is an internally generated array containing either 32 768 entries
for multiple-partition database partition groups, or a single entry for
single-partition database partition groups. For a single-partition database partition
group, the distribution map has only one entry containing the number of the
database partition where all the rows of a database table are stored. For
multiple-partition database partition groups, the numbers of the database partition
group are specified in a way such that each database partition is used one after the
other to ensure an even distribution across the entire map. Just as a city map is
organized into sections using a grid, the database manager uses a distribution key to
determine the location (the database partition) where the data is stored.

For example, assume that you have a database on four database partitions
(numbered 0-3). The distribution map for the IBMDEFAULTGROUP database
partition group of this database is:

0 1 2 3 0 1 2 ...

If a database partition group had been created in the database using database
partitions 1 and 2, the distribution map for that database partition group is:

1 2 1 2 1 2 1 ...

If the distribution key for a table to be loaded into the database is an integer with
possible values between 1 and 500 000, the distribution key is hashed to a number
between 0 and 32 767. That number is used as an index into the distribution map
to select the database partition for that row.

Figure 28 shows how the row with the distribution key value (c1, c2, c3) is mapped
to number 2, which, in turn, references database partition n5.

A distribution map is a flexible way of controlling where data is stored in a
multi-partition database. If you must change the data distribution across the
database partitions in your database, you can use the data redistribution utility.
This utility allows you to rebalance or introduce skew into the data distribution.

n0 n2 n5 n0 n6

1 2 3 40 32767

Row: (... c1, c2, c3, ...)

Partition number

Distribution map

Distribution key

Figure 28. Data distribution using a distribution map

122 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

You can use the db2GetDistMap API to obtain a copy of a distribution map that
you can view. If you continue to use the sqlugtpi API to obtain the distribution
information, this API might return error message SQL2768N, because it can only
retrieve distribution maps containing 4096 entries.

Distribution keys
A distribution key is a column (or group of columns) that is used to determine the
database partition in which a particular row of data is stored.

A distribution key is defined on a table using the CREATE TABLE statement. If a
distribution key is not defined for a table in a table space that is divided across
more than one database partition in a database partition group, one is created by
default from the first column of the primary key.

If no primary key is specified, the default distribution key is the first non-long
field column defined on that table. (Long includes all long data types and all large
object (LOB) data types). If you are creating a table in a table space associated with
a single-partition database partition group, and you want to have a distribution
key, you must define the distribution key explicitly. One is not created by default.

If no columns satisfy the requirement for a default distribution key, the table is
created without one. Tables without a distribution key are only allowed in
single-partition database partition groups. You can add or drop distribution keys
later, using the ALTER TABLE statement. Altering the distribution key can only be
done to a table whose table space is associated with a single-partition database
partition group.

Choosing a good distribution key is important. Take into consideration:
v How tables are to be accessed
v The nature of the query workload
v The join strategies employed by the database system

If collocation is not a major consideration, a good distribution key for a table is one
that spreads the data evenly across all database partitions in the database partition
group. The distribution key for each table in a table space that is associated with a
database partition group determines if the tables are collocated. Tables are
considered collocated when:
v The tables are placed in table spaces that are in the same database partition

group
v The distribution keys in each table have the same number of columns
v The data types of the corresponding columns are partition-compatible.

These characteristics ensure that rows of collocated tables with the same
distribution key values are located on the same database partition.

An inappropriate distribution key can cause uneven data distribution. Do not
choose columns with unevenly distributed data or columns with a small number
of distinct values for the distribution key. The number of distinct values must be
great enough to ensure an even distribution of rows across all database partitions
in the database partition group. The cost of applying the distribution algorithm is
proportional to the size of the distribution key. The distribution key cannot be
more than 16 columns, but fewer columns result in better performance. Do not
include unnecessary columns in the distribution key.

Chapter 7. Partitioned database environments 123

Consider the following points when defining a distribution key:
v Creation of a multiple-partition table that contains only BLOB, CLOB, DBCLOB,

LONG VARCHAR, LONG VARGRAPHIC, XML, or structured data types is not
supported.

v The distribution key definition cannot be altered.
v Include the most frequently joined columns in the distribution key.
v Include columns that often participate in a GROUP BY clause in the distribution

key.
v Any unique key or primary key must contain all of the distribution key

columns.
v In an online transaction processing (OLTP) environment, ensure that all columns

in the distribution key participate in a transaction through equality predicates.
For example, assume that you have an employee number column, EMP_NO,
that is often used in transactions such as:

UPDATE emp_table SET ... WHERE
emp_no = host-variable

In this case, the EMP_NO column makes a good single column distribution key
for EMP_TABLE.

Database partitioning is the method by which the placement of each row in the table
is determined. The method works as follows:
1. A hashing algorithm is applied to the value of the distribution key, and

generates a number between zero (0) and 32 767.
2. The distribution map is created when a database partition group is created.

Each of the numbers is sequentially repeated in a round-robin fashion to fill the
distribution map.

3. The number is used as an index into the distribution map. The number at that
location in the distribution map is the number of the database partition where
the row is stored.

Table collocation
If two or more tables frequently contribute data in response to certain queries, you
will want related data from these tables to be physically located as close together
as possible. In a partitioned database environment, this process is known as table
collocation.

Tables are collocated when they are stored in the same database partition group,
and when their distribution keys are compatible. Placing both tables in the same
database partition group ensures a common distribution map. The tables might be
in different table spaces, but the table spaces must be associated with the same
database partition group. The data types of the corresponding columns in each
distribution key must be partition-compatible.

When more than one table is accessed for a join or a subquery, the database
manager determines whether the data to be joined is located at the same database
partition. When this happens, the join or subquery is performed at the database
partition where the data is stored, instead of having to move data between
database partitions. This ability has significant performance advantages.

Partition compatibility
The base data types of corresponding columns of distribution keys are compared
and can be declared partition-compatible. Partition-compatible data types have the

124 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

property that two variables, one of each type, with the same value, are mapped to
the same number by the same partitioning algorithm.

Partition-compatibility has the following characteristics:
v A base data type is compatible with another of the same base data type.
v Internal formats are used for DATE, TIME, and TIMESTAMP data types. They

are not compatible with each other, and none are compatible with character or
graphic data types.

v Partition compatibility is not affected by the nullability of a column.
v Partition-compatibility is affected by collation. Locale-sensitive UCA-based

collations require an exact match in collation, except that the strength (S)
attribute of the collation is ignored. All other collations are considered equivalent
for the purposes of determining partition compatibility.

v Character columns defined with FOR BIT DATA are only compatible with
character columns without FOR BIT DATA when a collation other than a
locale-sensitive UCA-based collation is used.

v NULL values of compatible data types are treated identically; those of
non-compatible data types might not be.

v Base data types of a user-defined type are used to analyze partition-
compatibility.

v Decimals of the same value in the distribution key are treated identically, even if
their scale and precision differ.

v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC) are ignored by the hashing algorithm.

v BIGINT, SMALLINT, and INTEGER are compatible data types.
v When a locale-sensitive UCA-based collation is used, CHAR, VARCHAR,

GRAPHIC, and VARGRAPHIC are compatible data types. When another
collation is used, CHAR and VARCHAR of different lengths are compatible
types and GRAPHIC and VARGRAPHIC are compatible types, but CHAR and
VARCHAR are not compatible types with GRAPHIC and VARGRAPHIC.

v Partition-compatibility does not apply to LONG VARCHAR, LONG
VARGRAPHIC, CLOB, DBCLOB, and BLOB data types, because they are not
supported as distribution keys.

Setting up partitioned database environments
The decision to create a multi-partition database must be made before you create
your database. As part of the database design decisions you make, you will have
to determine if you should take advantage of the performance improvements
database partitioning can offer.

About this task

In a partitioned database environment, you still use the CREATE DATABASE command
or the sqlecrea() function to create a database. Whichever method is used, the
request can be made through any of the partitions listed in the db2nodes.cfg file.
The db2nodes.cfg file is the database partition server configuration file.

Except on the Windows operating system environment, any editor can be used to
view and update the contents of the database partition server configuration file
(db2nodes.cfg). On the Windows operating system environment, use db2ncrt and
db2nchg commands to create and change the database partition server
configuration file

Chapter 7. Partitioned database environments 125

Before creating a multi-partition database, you must select which database partition
will be the catalog partition for the database. You can then create the database
directly from that database partition, or from a remote client that is attached to
that database partition. The database partition to which you attach and execute the
CREATE DATABASE command becomes the catalog partition for that particular
database.

The catalog partition is the database partition on which all system catalog tables
are stored. All access to system tables must go through this database partition. All
federated database objects (for example, wrappers, servers, and nicknames) are
stored in the system catalog tables at this database partition.

If possible, you should create each database in a separate instance. If this is not
possible (that is, you must create more than one database per instance), you should
spread the catalog partitions among the available database partitions. Doing this
reduces contention for catalog information at a single database partition.

Note: You should regularly do a backup of the catalog partition and avoid putting
user data on it (whenever possible), because other data increases the time required
for the backup.

When you create a database, it is automatically created across all the database
partitions defined in the db2nodes.cfg file.

When the first database in the system is created, a system database directory is
formed. It is appended with information about any other databases that you create.
When working on UNIX, the system database directory is sqldbdir and is located
in the sqllib directory under your home directory, or under the directory where
DB2 database was installed. When working on UNIX, this directory must reside on
a shared file system, (for example, NFS on UNIX platforms) because there is only
one system database directory for all the database partitions that make up the
partitioned database environment. When working on Windows, the system
database directory is located in the instance directory.

Also resident in the sqldbdir directory is the system intention file. It is called
sqldbins, and ensures that the database partitions remain synchronized. The file
must also reside on a shared file system since there is only one directory across all
database partitions. The file is shared by all the database partitions making up the
database.

Configuration parameters have to be modified to take advantage of database
partitioning. Use the GET DATABASE CONFIGURATION and the GET DATABASE MANAGER
CONFIGURATION commands to find out the values of individual entries in a specific
database, or in the database manager configuration file. To modify individual
entries in a specific database, or in the database manager configuration file, use the
UPDATE DATABASE CONFIGURATION and the UPDATE DATABASE MANAGER CONFIGURATION
commands respectively.

The database manager configuration parameters affecting a partitioned database
environment include conn_elapse, fcm_num_buffers, fcm_num_channels,
max_connretries, max_coordagents, max_time_diff, num_poolagents, and
start_stop_time.

126 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Adding database partition servers to an instance (Windows)
On Windows, use the db2ncrt command to add a database partition server to an
instance.

About this task

Note: Do not use the db2ncrt command if the instance already contains databases.
Instead, use the START DBM ADD DBPARTITIONNUM command. This ensures that the
database is correctly added to the new database partition server. DO NOT EDIT
the db2nodes.cfg file, since changing the file might cause inconsistencies in the
partitioned database environment.

The command has the following required parameters:
db2ncrt /n:partition_number

/u:username,password
/p:logical_port

/n:partition_number
The unique database partition number to identify the database partition
server. The number can be from 1 to 999 in ascending sequence.

/u:username,password
The logon account name and password of the DB2 service.

/p:logical_port
The logical port number used for the database partition server if the logical
port is not zero (0). If not specified, the logical port number assigned is 0.

The logical port parameter is only optional when you create the first database
partition on a computer. If you create a logical database partition, you must specify
this parameter and select a logical port number that is not in use. There are several
restrictions:
v On every computer there must be a database partition server with a logical port

0.
v The port number cannot exceed the port range reserved for FCM

communications in the services file in %SystemRoot%\system32\drivers\etc
directory. For example, if you reserve a range of four ports for the current
instance, then the maximum port number would be 3 (ports 1, 2, and 3; port 0 is
for the default logical database partition). The port range is defined when
db2icrt is used with the /r:base_port, end_port parameter.

There are also several optional parameters:

/g:network_name
Specifies the network name for the database partition server. If you do not
specify this parameter, DB2 uses the first IP address it detects on your
system.

Use this parameter if you have multiple IP addresses on a computer and
you want to specify a specific IP address for the database partition server.
You can enter the network_name parameter using the network name or IP
address.

/h:host_name
The TCP/IP host name that is used by FCM for internal communications if
the host name is not the local host name. This parameter is required if you
add the database partition server on a remote computer.

Chapter 7. Partitioned database environments 127

/i:instance_name
The instance name; the default is the current instance.

/m:computer_name
The computer name of the Windows workstation on which the database
partition resides; the default name is the computer name of the local
computer.

/o:instance_owning_computer
The computer name of the computer that is the instance-owning computer;
the default is the local computer. This parameter is required when the
db2ncrt command is invoked on any computer that is not the
instance-owning computer.

For example, if you want to add a new database partition server to the instance
TESTMPP (so that you are running multiple logical database partitions) on the
instance-owning computer MYMACHIN, and you want this new database
partition to be known as database partition 2 using logical port 1, enter:

db2ncrt /n:2 /p:1 /u:my_id,my_pword /i:TESTMPP
/M:TEST /o:MYMACHIN

Setting up multiple logical partitions
There are several situations in which it is advantageous to have several database
partition servers running on the same computer.

This means that the configuration can contain more database partitions than
computers. In these cases, the computer is said to be running multiple logical
partitions if they participate in the same instance. If they participate in different
instances, this computer is not hosting multiple logical partitions.

With multiple logical partition support, you can choose from three types of
configurations:
v A standard configuration, where each computer has only one database partition

server
v A multiple logical partition configuration, where a computer has more than one

database partition server
v A configuration where several logical partitions run on each of several

computers

Configurations that use multiple logical partitions are useful when the system runs
queries on a computer that has symmetric multiprocessor (SMP) architecture. The
ability to configure multiple logical partitions on a computer is also useful if a
computer fails. If a computer fails (causing the database partition server or servers
on it to fail), you can restart the database partition server (or servers) on another
computer using the START DBM DBPARTITIONNUM command. This ensures that user
data remains available.

Another benefit is that multiple logical partitions can use SMP hardware
configurations. In addition, because database partitions are smaller, you can obtain
better performance when performing such tasks as backing up and restoring
database partitions and table spaces, and creating indexes.

Configuring multiple logical partitions
There are two methods of configuring multiple logical partitions.

128 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

About this task
v Configure the logical partitions (database partitions) in the db2nodes.cfg file.

You can then start all the logical and remote partitions with the db2start
command or its associated API.

Note: For Windows, you must use db2ncrt to add a database partition if there
is no database in the system; or, db2start addnode command if there is one or
more databases. Within Windows, the db2nodes.cfg file should never be
manually edited.

v Restart a logical partition on another processor on which other logical partitions
are already running. This allows you to override the hostname and port number
specified for the logical partition in db2nodes.cfg.

To configure a logical database partition in db2nodes.cfg, you must make an entry
in the file to allocate a logical port number for the database partition. Following is
the syntax you should use:

nodenumber hostname logical-port netname

For the IBM DB2 pureScale Feature, ensure there is a member with "nodenumber
0".

Note: For Windows, you must use db2ncrt to add a database partition if there is
no database in the system; or, db2start addnode command if there is one or more
databases. Within Windows, the db2nodes.cfg file should never be manually
edited.

The format for the db2nodes.cfg file on Windows is different when compared to
the same file on UNIX. On Windows, the column format is:

nodenumber hostname computername logical_port netname

Use the fully-qualified name for the hostname. The /etc/hosts file also should use
the fully-qualified name. If the fully-qualified name is not used in the
db2nodes.cfg file and in the/etc/hosts file, you might receive error message
SQL30082N RC=3.

You must ensure that you define enough ports in the services file of the etc
directory for FCM communications.

Enabling inter-partition query parallelism
Inter-partition parallelism occurs automatically based on the number of database
partitions and the distribution of data across these database partitions.

About this task

You must modify configuration parameters to take advantage of parallelism within
a database partition or within a non-partitioned database. For example,
intra-partition parallelism can be used to take advantage of the multiple processors
on a symmetric multi-processor (SMP) machine.

Procedure
v To enable parallelism when loading data:

The load utility automatically makes use of parallelism, or you can use the
following parameters on the LOAD command:
– CPU_PARALLELISM

Chapter 7. Partitioned database environments 129

– DISK_PARALLELISM

In a partitioned database environment, inter-partition parallelism for data
loading occurs automatically when the target table is defined on multiple
database partitions. Inter-partition parallelism for data loading can be
overridden by specifying OUTPUT_DBPARTNUMS. The load utility also intelligently
enables database partitioning parallelism depending on the size of the target
database partitions. MAX_NUM_PART_AGENTS can be used to control the maximum
degree of parallelism selected by the load utility. Database partitioning
parallelism can be overridden by specifying PARTITIONING_DBPARTNUMS when
ANYORDER is also specified.

v To enable parallelism when creating an index:
– The table must be large enough to benefit from parallelism
– Multiple processors must be enabled on an SMP computer.

v To enable I/O parallelism when backing up a database or table space:
– Use more than one target media.
– Configure table spaces for parallel I/O by defining multiple containers, or use

a single container with multiple disks, and the appropriate use of the
DB2_PARALLEL_IO registry variable. If you want to take advantage of parallel
I/O, you must consider the implications of what must be done before you
define any containers. This cannot be done whenever you see a need; it must
be planned for before you reach the point where you need to backup your
database or table space.

– Use the PARALLELISM parameter on the BACKUP command to specify the degree
of parallelism.

– Use the WITH num-buffers BUFFERS parameter on the BACKUP command to
ensure that enough buffers are available to accommodate the degree of
parallelism. The number of buffers should equal the number of target media
you have plus the degree of parallelism selected plus a few extra.
Also, use a backup buffer size that is:
- As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.
- At least as large as the largest (extent size * number of containers) product

of the table spaces being backed up.
v To enable I/O parallelism when restoring a database or table space:

– Use more than one source media.
– Configure table spaces for parallel I/O. You must decide to use this option

before you define your containers. This cannot be done whenever you see a
need; it must be planned for before you reach the point where you need to
restore your database or table space.

– Use the PARALLELISM parameter on the RESTORE command to specify the
degree of parallelism.

– Use the WITH num-buffers BUFFERS parameter on the RESTORE command to
ensure that enough buffers are available to accommodate the degree of
parallelism. The number of buffers should equal the number of target media
you have plus the degree of parallelism selected plus a few extra.
Also, use a restore buffer size that is:
- As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.
- At least as large as the largest (extent size * number of containers) product

of the table spaces being restored.
- The same as, or an even multiple of, the backup buffer size.

130 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Enabling intrapartition parallelism for queries
To enable intrapartition query parallelism, modify one or more database or
database manager configuration parameters, precompile or bind options, or a
special register. Alternatively, use the MAXIMUM DEGREE option on the CREATE
or ALTER WORKLOAD statement, or the ADMIN_SET_INTRA_PARALLEL
procedure to enable or disable intrapartition parallelism at the transaction level.

Before you begin

Use the following controls to specify what degree of intrapartition parallelism the
optimizer is to use:
v CURRENT DEGREE special register (for dynamic SQL)
v DEGREE bind option (for static SQL)
v dft_degree database configuration parameter (provides the default value for the

previous two parameters)

Use the following controls to limit the degree of intrapartition parallelism at run
time. The runtime settings override the optimizer settings.
v max_querydegree database manager configuration parameter
v SET RUNTIME DEGREE command
v MAXIMUM DEGREE workload option

Use the following controls to enable or disable intrapartition parallelism:
v intra_parallel database manager configuration parameter
v ADMIN_SET_INTRA_PARALLEL stored procedure
v MAXIMUM DEGREE workload option (set to 1)

About this task

Use the GET DATABASE CONFIGURATION or the GET DATABASE MANAGER CONFIGURATION
command to find the values of individual entries in a specific database or instance
configuration file. To modify one or more of these entries, use the UPDATE DATABASE
CONFIGURATION or the UPDATE DATABASE MANAGER CONFIGURATION command.

intra_parallel
Database manager configuration parameter that specifies whether or not
the database manager can use intrapartition parallelism. The default is NO,
which means that applications in this instance are run without
intrapartition parallelism. For example:
update dbm cfg using intra_parallel yes;
get dbm cfg;

max_querydegree
Database manager configuration parameter that specifies the maximum
degree of intrapartition parallelism that is used for any SQL statement
running on this instance. An SQL statement does not use more than this
value when running parallel operations within a database partition. The
default is -1, which means that the system uses the degree of intrapartition
parallelism that is determined by the optimizer, not the user-specified
value. For example:
update dbm cfg using max_querydegree any;
get dbm cfg;

Chapter 7. Partitioned database environments 131

The intra_parallel database manager configuration parameter must also
be set to YES for the value of max_querydegree to be used.

dft_degree
Database configuration parameter that specifies the default value for the
DEGREE precompile or bind option and the CURRENT DEGREE special
register. The default is 1. A value of -1 (or ANY) means that the system uses
the degree of intrapartition parallelism that is determined by the optimizer.
For example:
connect to sample;
update db cfg using dft_degree -1;
get db cfg;
connect reset;

DEGREE Precompile or bind option that specifies the degree of intrapartition
parallelism for the execution of static SQL statements on a symmetric
multiprocessing (SMP) system. For example:
connect to prod;
prep demoapp.sqc bindfile;
bind demoapp.bnd degree 2;
...

CURRENT DEGREE
Special register that specifies the degree of intrapartition parallelism for the
execution of dynamic SQL statements. Use the SET CURRENT DEGREE
statement to assign a value to the CURRENT DEGREE special register. For
example:
connect to sample;
set current degree = ’1’;
connect reset;

The intra_parallel database manager configuration parameter must also
be set to YES to use intrapartition parallelism. If it is set to NO, the value of
this special register is ignored, and the statement will not use intrapartition
parallelism. The value of the intra_parallel database manager
configuration parameter and the CURRENT DEGREE special register can
be overridden in a workload by setting the MAXIMUM DEGREE workload
attribute.

MAXIMUM DEGREE
CREATE WORKLOAD statement (or ALTER WORKLOAD statement)
option that specifies the maximum runtime degree of parallelism for a
workload.

For example, suppose that bank_trans is a packaged application that
mainly executes short OLTP transactions, and bank_report is another
packaged application that runs complex queries to generate a business
intelligence (BI) report. Neither application can be modified, and both are
bound with degree 4 to the database. While bank_trans is running, it is
assigned to workload trans, which disables intrapartition parallelism. This
OLTP application will run without any performance degradation associated
with intrapartition parallelism overhead. While bank_report is running, it
is assigned to workload bi, which enables intrapartition parallelism and
specifies a maximum runtime degree of 8. Because the compilation degree
for the package is 4, the static SQL statements in this application run with
only a degree of 4. If this BI application contains dynamic SQL statements,
and the CURRENT DEGREE special register is set to 16, these statements
run with a degree of 8.

132 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

connect to sample;

create workload trans
applname(’bank_trans’)
maximum degree 1
enable;

create workload bi
applname(’bank_report’)
maximum degree 8
enable;

connect reset;

ADMIN_SET_INTRA_PARALLEL
Procedure that enables or disables intrapartition parallelism for a database
application. Although the procedure is called in the current transaction, it
takes effect starting with the next transaction. For example, assume that the
following code is part of the demoapp application, which uses the
ADMIN_SET_INTRA_PARALLEL procedure with both static and dynamic
SQL statements:
EXEC SQL CONNECT TO prod;

// Disable intrapartition parallelism:
EXEC SQL CALL SYSPROC.ADMIN_SET_INTRA_PARALLEL(’NO’);
// Commit so that the effect of this call
// starts in the next statement:
EXEC SQL COMMIT;

// All statements in the next two transactions run
// without intrapartition parallelism:
strcpy(stmt, "SELECT deptname FROM org");
EXEC SQL PREPARE rstmt FROM :stmt;
EXEC SQL DECLARE c1 CURSOR FOR rstmt;
EXEC SQL OPEN c1;
EXEC SQL FETCH c1 INTO :deptname;
EXEC SQL CLOSE c1;
...
// New section for this static statement:
EXEC SQL SELECT COUNT(*) INTO :numRecords FROM org;
...
EXEC SQL COMMIT;

// Enable intrapartition parallelism:
EXEC SQL CALL SYSPROC.ADMIN_SET_INTRA_PARALLEL(’YES’);
// Commit so that the effect of this call
// starts in the next statement:
EXEC SQL COMMIT;

strcpy(stmt, "SET CURRENT DEGREE=’4’");
// Set the degree of parallelism to 4:
EXEC SQL EXECUTE IMMEDIATE :stmt;

// All dynamic statements in the next two transactions
// run with intrapartition parallelism and degree 4:
strcpy(stmt, "SELECT deptname FROM org");
EXEC SQL PREPARE rstmt FROM :stmt;
EXEC SQL DECLARE c2 CURSOR FOR rstmt;
EXEC SQL OPEN c2;
EXEC SQL FETCH c2 INTO :deptname;
EXEC SQL CLOSE c2;
...
// All static statements in the next two transactions

Chapter 7. Partitioned database environments 133

// run with intrapartition parallelism and degree 2:
EXEC SQL SELECT COUNT(*) INTO :numRecords FROM org;
...
EXEC SQL COMMIT;

The degree of intrapartition parallelism for dynamic SQL statements is
specified through the CURRENT DEGREE special register, and for static
SQL statements, it is specified through the DEGREE bind option. The
following commands are used to prepare and bind the demoapp application:
connect to prod;
prep demoapp.sqc bindfile;
bind demoapp.bnd degree 2;
...

Adding database partitions in partitioned database environments
You can add database partitions to the partitioned database system either when it
is running, or when it is stopped. Because adding a new server can be time
consuming, you might want to do it when the database manager is already
running.

Use the ADD DBPARTITIONNUM command to add a database partition to a system.
This command can be invoked in the following ways:
v As an option on the START DBM command
v With the ADD DBPARTITIONNUM command
v With the sqleaddn API
v With the sqlepstart API

If your system is stopped, use the START DBM command. If it is running, you can
use any of the other choices.

When you use the ADD DBPARTITIONNUM command to add a new database partition
to the system, all existing databases in the instance are expanded to the new
database partition. You can also specify which containers to use for temporary
table spaces for the databases. The containers can be:
v The same as those defined for the catalog partition for each database. (This is

the default.)
v The same as those defined for another database partition.
v Not created at all. You must use the ALTER TABLESPACE statement to add

temporary table space containers to each database before the database can be
used.

Note: Any uncataloged database is not recognized when adding a new database
partition. The uncataloged database will not be present on the new database
partition. An attempt to connect to the database on the new database partition
returns the error message SQL1013N.

You cannot use a database on the new database partition to contain data until one
or more database partition groups are altered to include the new database
partition.

You cannot change from a single-partition database to a multi-partition database
by adding a database partition to your system. This is because the redistribution of
data across database partitions requires a distribution key on each affected table.
The distribution keys are automatically generated when a table is created in a

134 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

multi-partition database. In a single-partition database, distribution keys can be
explicitly created with the CREATE TABLE or ALTER TABLE SQL statements.

Note: If no databases are defined in the system and you are running Enterprise
Server Edition on a UNIX operating system, edit the db2nodes.cfg file to add a
new database partition definition; do not use any of the procedures described, as
they apply only when a database exists.

Windows Considerations: If you are using Enterprise Server Edition on a
Windows operating system and have no databases in the instance, use the db2ncrt
command to scale the database system. If, however, you already have databases,
use the START DBM ADD DBPARTITIONNUM command to ensure that a database
partition is created for each existing database when you scale the system. On
Windows operating systems, do not manually edit the database partition
configuration file (db2nodes.cfg), because this can introduce inconsistencies to the
file.

Adding an online database partition
You can add new database partitions that are online to a partitioned database
environment while it is running and while applications are connected to databases.

Procedure

To add an online database partition to a running database manager using the
command line:
1. On any existing database partition, run the START DBM command.

On all platforms, specify the new database partition values for DBPARTITIONNUM,
ADD DBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters. On the Windows
platform, you also specify the COMPUTER, USER, and PASSWORD parameters.
You can also specify the source for any temporary table space container
definitions that must be created with the databases. If you do not provide table
space information, temporary table space container definitions are retrieved
from the catalog partition for each database.
For example, to add three new database partitions to an existing database, issue
the following commands:
START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAME5
PORT PORT5;

2. Optional: Alter the database partition group to incorporate the new database
partition. This action can also be an option when redistributing the data to the
new database partition.

3. Optional: Redistribute data to the new database partition. This action is not
really optional if you want to take advantage of the new database partitions.
You can also include the alter database partition group option as part of the
redistribution operation. Otherwise, altering the database partition group to
incorporate the new database partitions must be done as a separate action
before redistributing the data to the new database partition.

4. Optional: Back up all databases on the new database partition. Although
optional, this would be helpful to have for the new database partition and for
the other database partitions particularly if you redistributed the data across
both the old and the new database partitions.

Chapter 7. Partitioned database environments 135

Restrictions when working online to add a database partition
The status of the new database partition following its addition to the instance
depends on the status of the original database partition. Applications may or may
not be aware of the new database partition following its addition to the instance if
the application uses WITH HOLD cursors.

When adding a new database partition to a single-partition database instance:
v If the original database partition is up when the database partition is added,

then the new database partition is down when the add database partition
operation completes.

v If the original database partition is down when the database partition is added,
then the new database partition is up when the add database partition operation
completes.

Applications using WITH HOLD cursors that are started before the add database
partition operation runs are not aware of the new database partition when the add
database partition operation completes. If the WITH HOLD cursors are closed
before the add database partition operation runs, then applications are aware of
the new database partition when the add database partition operation completes

Adding a database partition offline (Linux and UNIX)
You can add new database partitions that are offline to a partitioned database
system. The newly added database partition becomes available to all databases
when the database manager is started again.

Before you begin
v Install the new server if it does not exist before you can create a database

partition on it.
v Make the executables accessible using shared filesystem mounts or local copies.
v Synchronize operating system files with those on existing processors.
v Ensure that the sqllib directory is accessible as a shared file system.
v Ensure that the relevant operating system parameters (such as the maximum

number of processes) are set to the appropriate values.
v Register the host name with the name server or in the hosts file in the /etc

directory on all database partitions. The host name for the computer must be
registered in .rhosts to run remote commands using rsh or rah.

v Set the default value of the DB2_FORCE_OFFLINE_ADD_PARTITION registry variable
to TRUE to enforce that the added database partitions is offline.

Procedure
v To add a database partition to a stopped partitioned database server using the

command line:
1. Issue STOP DBM to stop all the database partitions.
2. Run the ADD DBPARTITIONNUM command on the new server.

A database partition is created locally for every database that exists in the
system. The database parameters for the new database partitions are set to
the default value, and each database partition remains empty until you move
data to it. Update the database configuration parameter values to match
those on the other database partitions.

136 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

3. Run the START DBM command to start the database system. Note that the
database partition configuration file (db2nodes.cfg) has already been updated
by the database manager to include the new server during the installation of
the new server.

4. Update the configuration file on the new database partition as follows:
a. On any existing database partition, run the START DBM command.

Specify the new database partition values for DBPARTITIONNUM, ADD
DBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters as well as the
COMPUTER, USER, and PASSWORD parameters.
You can also specify the source for any temporary table space container
definitions that must be created with the databases. If you do not provide
table space information, temporary table space container definitions are
retrieved from the catalog partition for each database.
For example, to add three new database partitions to an existing
database, issue the following commands:
START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAME5
PORT PORT5;

When the START DBM command is complete, the new server is stopped.
b. Stop the entire database manager by running the STOP DBM command.

When you stop all the database partitions in the system, the node
configuration file is updated to include the new database partitions. The
node configuration file is not updated with the new server information
until STOP DBM is executed. This ensures that the ADD DBPARTITIONNUM
command, which is called when you specify the ADD DBPARTITIONNUM
parameter to the START DBM command, runs on the correct database
partition. When the utility ends, the new server partitions are stopped.

5. Start the database manager by running the START DBM command.
The newly added database partition is now started with the rest of the
system.
When all the database partitions in the system are running, you can run
system-wide activities, such as creating or dropping a database.

Note: You might have to issue the START DBM command twice for all
database partition servers to access the new db2nodes.cfg file.

6. Optional: Alter the database partition group to incorporate the new database
partition. This action might also be an option when redistributing the data to
the new database partition.

7. Optional: Redistribute data to the new database partition. This action is not
really optional if you want to take advantage of the new database partition.
You can also include the alter database partition group option as part of the
redistribution operation. Otherwise, altering the database partition group to
incorporate the new database partition must be done as a separate action
before redistributing the data to the new database partition.

8. Optional: Back up all databases on the new database partition. Although
optional, this would be helpful to have for the new database partition and
for the other database partitions particularly if you redistributed the data
across both the old and the new database partitions.

v You can also update the configuration file manually, as follows:

Chapter 7. Partitioned database environments 137

1. Edit the db2nodes.cfg file and add the new database partition to it.
2. Issue the following command to start the new database partition: START DBM

DBPARTITIONNUM partitionnum

Specify the number you are assigning to the new database partition as the
value of partitionnum.

3. If the new server is to be a logical partition (that is, it is not database
partition 0), use db2set command to update the DBPARTITIONNUM registry
variable. Specify the number of the database partition you are adding.

4. Run the ADD DBPARTITIONNUM command on the new database partition.
This command creates a database partition locally for every database that
exists in the system. The database parameters for the new database partitions
are set to the default value, and each database partition remains empty until
you move data to it. Update the database configuration parameter values to
match those on the other database partitions.

5. When the ADD DBPARTITIONNUM command completes, issue the START DBM
command to start the other database partitions in the system.
Do not perform any system-wide activities, such as creating or dropping a
database, until all database partitions are successfully started.

Adding a database partition offline (Windows)
You can add new database partitions to a partitioned database system while it is
stopped. The newly added database partition becomes available to all databases
when the database manager is started again.

Before you begin
v You must install the new server before you can create a database partition on it.
v Set the default value of the DB2_FORCE_OFFLINE_ADD_PARTITION registry variable

to TRUE to enforce that any added database partitions is offline.

Procedure

To add a database partition to a stopped partitioned database server using the
command line:
1. Issue STOP DBM to stop all the database partitions.
2. Run the ADD DBPARTITIONNUM command on the new server.

A database partition is created locally for every database that already exists in
the system. The database parameters for the new database partitions are set to
the default value, and each database partition remains empty until you move
data to it. Update the database configuration parameter values to match those
on the other database partitions.

3. Run the START DBM command to start the database system. Note that the
database partition configuration file has already been updated by the database
manager to include the new server during the installation of the new server.

4. Update the configuration file on the new database partition as follows:
a. On any existing database partitions, run the START DBM command.

Specify the new database partition values for DBPARTITIONNUM, ADD
DBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters as well as the
COMPUTER, USER, and PASSWORD parameters.
You can also specify the source for any temporary table space container
definitions that need to be created with the databases. If you do not provide

138 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

table space information, temporary table space container definitions are
retrieved from the catalog partition for each database.
For example, to add three new database partitions to an existing database,
issue the following commands:
START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAME5
PORT PORT5;

When the START DBM command is complete, the new server is stopped.
b. Stop the database manager by running the STOP DBM command.

When you stop all the database partitions in the system, the node
configuration file is updated to include the new database partitions. The
node configuration file is not updated with the new server information until
STOP DBM is executed. This ensures that the ADD DBPARTITIONNUM command,
which is called when you specify the ADD DBPARTITIONNUM parameter to the
START DBM command, runs on the correct database partitions. When the
utility ends, the new server partitions are stopped.

5. Start the database manager by running the START DBM command.
The newly added database partitions are now started with the rest of the
system.
When all the database partitions in the system are running, you can run
system-wide activities, such as creating or dropping a database.

Note: You might have to issue the START DBM command twice for all database
partition servers to access the new db2nodes.cfg file.

6. Optional: Alter the database partition group to incorporate the new database
partition. This action could also be an option when redistributing the data to
the new database partition.

7. Optional: Redistribute data to the new database partition. This action is not
really optional if you want to take advantage of the new database partition.
You can also include the alter database partition group option as part of the
redistribution operation. Otherwise, altering the database partition group to
incorporate the new database partition must be done as a separate action before
redistributing the data to the new database partition.

8. Optional: Back up all databases on the new database partition. Although
optional, this would be helpful to have for the new database partition and for
the other database partitions particularly if you have redistributed the data
across both the old and the new database partitions.

Error recovery when adding database partitions
Adding database partitions does not fail as a result of nonexistent buffer pools,
because the database manager creates system buffer pools to provide default
automatic support for all buffer pool page sizes.

However, if one of these system buffer pools is used, performance might be
seriously affected, because these buffer pools are very small. If a system buffer
pool is used, a message is written to the administration notification log. System
buffer pools are used in database partition addition scenarios in the following
circumstances:
v You add database partitions to a partitioned database environment that has one

or more system temporary table spaces with a page size that is different from

Chapter 7. Partitioned database environments 139

the default of 4 KB. When a database partition is created, only the
IBMDEFAULTDP buffer pool exists, and this buffer pool has a page size of 4 KB.
Consider the following examples:
1. You use the START DBM command to add a database partition to the current

multi-partition database:
START DBM DBPARTITIONNUM 2 ADD DBPARTITIONNUM HOSTNAME newhost PORT 2

2. You use the ADD DBPARTITIONNUM command after you manually update the
db2nodes.cfg file with the new database partition description.

One way to prevent these problems is to specify the WITHOUT TABLESPACES
clause on the ADD DBPARTITIONNUM or the START DBM commands. After doing this,
use the CREATE BUFFERPOOL statement to create the buffer pools using the
appropriate SIZE and PAGESIZE values, and associate the system temporary
table spaces to the buffer pool using the ALTER TABLESPACE statement.

v You add database partitions to an existing database partition group that has one
or more table spaces with a page size that is different from the default page size,
which is 4 KB. This occurs because the non-default page-size buffer pools
created on the new database partition have not been activated for the table
spaces.

Note: In previous versions, this command used the NODEGROUP keyword
instead of the DATABASE PARTITION GROUP keywords.
Consider the following example:
– You use the ALTER DATABASE PARTITION GROUP statement to add a

database partition to a database partition group, as follows:
START DBM
CONNECT TO mpp1
ALTER DATABASE PARTITION GROUP ng1 ADD DBPARTITIONNUM (2)

One way to prevent this problem is to create buffer pools for each page size
and then to reconnect to the database before issuing the following ALTER
DATABASE PARTITION GROUP statement:

START DBM
CONNECT TO mpp1
CREATE BUFFERPOOL bp1 SIZE 1000 PAGESIZE 8192
CONNECT RESET
CONNECT TO mpp1
ALTER DATABASE PARTITION GROUP ng1 ADD DBPARTITIONNUM (2)

Note: If the database partition group has table spaces with the default page size,
message SQL1759W is returned.

Enabling communication between database partitions using FCM
communications

In a partitioned database environment, most communication between database
partitions is handled by the fast communications manager (FCM).

To enable the FCM at a database partition and allow communication with other
database partitions, you must create a service entry in the database partition's
services file of the etc directory as shown later in this section. The FCM uses the
specified port to communicate. If you have defined multiple database partitions on
the same host, you must define a range of ports, as shown later in this section.

Before attempting to manually configure memory for the fast communications
manager (FCM), it is recommended that you start with the automatic setting,

140 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

which is also the default setting, for the number of FCM Buffers (fcm_num_buffers)
and for the number of FCM Channels (fcm_num_channels). Use the system monitor
data for FCM activity to determine if this setting is appropriate.

Windows Considerations
The TCP/IP port range is automatically added to the services file by:
v The install program when it creates the instance or adds a new database

partition
v The db2icrt utility when it creates a new instance
v The db2ncrt utility when it adds the first database partition on the

computer

The syntax of a service entry is as follows:
DB2_instance port/tcp #comment

DB2_instance
The value for instance is the name of the database manager instance. All
characters in the name must be lowercase. Assuming an instance name of
DB2PUSER, you specify DB2_db2puser.

port/tcp
The TCP/IP port that you want to reserve for the database partition.

#comment
Any comment that you want to associate with the entry. The comment
must be preceded by a pound sign (#).

If the services file of the etc directory is shared, you must ensure that the number
of ports allocated in the file is either greater than or equal to the largest number of
multiple database partitions in the instance. When allocating ports, also ensure that
you account for any processor that can be used as a backup.

If the services file of the etc directory is not shared, the same considerations
apply, with one additional consideration: you must ensure that the entries defined
for the DB2 database instance are the same in all services files of the etc directory
(though other entries that do not apply to your partitioned database environment
do not have to be the same).

If you have multiple database partitions on the same host in an instance, you must
define more than one port for the FCM to use. To do this, include two lines in the
services file of the etc directory to indicate the range of ports that you are
allocating. The first line specifies the first port, and the second line indicates the
end of the block of ports. In the following example, five ports are allocated for the
SALES instance. This means no processor in the instance has more than five
database partitions. For example:

DB2_sales 9000/tcp
DB2_sales_END 9004/tcp

Note: You must specify END in uppercase only. You must also ensure that you
include both underscore (_) characters.

Managing database partitions
You can start or stop partitions, drop partitions, or trace partitions.

Chapter 7. Partitioned database environments 141

Before you begin

To work with database partitions, you need authority to attach to an instance.
Anyone with SECADM or ACCESSCTRL authority can grant you the authority to
access a specific instance.

Procedure
v To start or to stop a specific database partition, use the START DATABASE MANAGER

command or the STOP DATABASE MANAGER command with the DBPARTITIONNUM
parameter.

v To drop a specific database partition from the db2nodes.cfg configuration file,
use the STOP DATABASE MANAGER command with the DROP DBPARTITIONNUM
parameter. Before using the DROP DBPARTITIONNUM parameter, run the DROP
DBPARTITIONNUM VERIFY command to ensure that there is no user data on this
database partition.

v To trace the activity on a database partition, use the options specified by IBM
Support.

Attention: Use the trace utility only when directed to do so by IBM Support or
by a technical support representative.
The trace utility records and formats information about DB2 for Linux, UNIX,
and Windows operations. For more details, see the “db2trc - Trace command”
topic.

Listing database partition servers in an instance (Windows)
On Windows, use the db2nlist command to obtain a list of database partition
servers that participate in an instance.

About this task

The command is used as follows:
db2nlist

When using this command as shown, the default instance is the current instance
(set by the DB2INSTANCE environment variable). To specify a particular instance, you
can specify the instance using:

db2nlist /i:instName

where instName is the particular instance name you want.

You can also optionally request the status of each database partition server by
using:

db2nlist /s

The status of each database partition server might be one of: starting, running,
stopping, or stopped.

Eliminating duplicate entries from a list of machines in a
partitioned database environment

If you are running multiple logical database partition servers on one computer,
your db2nodes.cfg file contains multiple entries for that computer.

142 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

About this task

In this situation, the rah command needs to know whether you want the command
to be executed only once on each computer or once for each logical database
partition listed in the db2nodes.cfg file. Use the rah command to specify
computers. Use the db2_all command to specify logical database partitions.

Note: On Linux and UNIX operating systems, if you specify computers, rah
normally eliminates duplicates from the computer list, with the following
exception: if you specify logical database partitions, db2_all prepends the
following assignment to your command:
export DB2NODE=nnn (for Korn shell syntax)

where nnn is the database partition number taken from the corresponding line in
the db2nodes.cfg file, so that the command is routed to the desired database
partition server.

When specifying logical database partitions, you can restrict the list to include all
logical database partitions except one, or specify only one using the <<-nnn< and
<<+nnn< prefix sequences. You might want to do this if you want to run a
command to catalog the database partition first, and when that has completed, run
the same command at all other database partition servers, possibly in parallel. This
is usually required when running the RESTART DATABASE command. You need to
know the database partition number of the catalog partition to do this.

If you execute RESTART DATABASE using the rah command, duplicate entries are
eliminated from the list of computers. However if you specify the " prefix, then
duplicates are not eliminated, because it is assumed that use of the " prefix implies
sending to each database partition server, rather than to each computer.

Specifying the list of machines in a partitioned database
environment

By default, the list of computers is taken from the database partition configuration
file, db2nodes.cfg.

About this task

Note: On Windows, to avoid introducing inconsistencies into the database
partition configuration file, do not edit it manually. To obtain the list of computers
in the instance, use the db2nlist command.

Procedure

To override the list of computers in db2nodes.cfg:
v Specify a path name to the file that contains the list of computers by exporting

(on Linux and UNIX operating systems) or setting (on Windows) the
environment variable RAHOSTFILE.

v Specify the list explicitly, as a string of names separated by spaces, by exporting
(on Linux and UNIX operating systems) or setting (on Windows) the
environment variable RAHOSTLIST.

Note: If both of these environment variables are specified, RAHOSTLIST takes
precedence.

Chapter 7. Partitioned database environments 143

Changing the database configuration across multiple
database partitions

When you have a database that is distributed across more than one database
partition, the database configuration file should be the same on all database
partitions.

About this task

Consistency is required since the SQL compiler compiles distributed SQL
statements based on information in the database partition configuration file and
creates an access plan to satisfy the needs of the SQL statement. Maintaining
different configuration files on database partitions could lead to different access
plans, depending on which database partition the statement is prepared. Use
db2_all to maintain the configuration files across all database partitions.

Adding containers to SMS table spaces on database partitions
You can add a container to an SMS table space only on a database partition that
currently has no containers.

Procedure

To add a container to an SMS table space using the command line, enter the
following:

ALTER TABLESPACE name
ADD (’path’)
ON DBPARTITIONNUM (database_partition_number)

The database partition specified by number, and every partition in the range of
database partitions, must exist in the database partition group on which the table
space is defined. A database_partition_number might only appear explicitly or within
a range in exactly one db-partitions-clause for the statement.

Example

The following example shows how to add a new container to database partition
number 3 of the database partition group used by table space “plans” on a UNIX
operating system:

ALTER TABLESPACE plans
ADD (’/dev/rhdisk0’)
ON DBPARTITIONNUM (3)

Using database partition expressions
In most cases, you must use the same storage paths for each partition in a
partitioned database environment, and all of the storage paths must exist before
you issue a statement. One exception is when you use database partition
expressions within the storage path.

Doing this allows the database partition number to be reflected in the storage path
such that the resulting path name is different on each partition.

You can specify a database partition expression for container string syntax when
creating either SMS or DMS containers. You typically specify the database partition
expression when using multiple logical database partitions in a partitioned
database system. The expression ensures that container names are unique across

144 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

database partition servers. If you specify an expression, the database partition
number is part of the container name or, if you specify additional arguments, the
result of the argument is part of the container name.

Important: The SMS table space type has been deprecated in Version 10.1 for
user-defined permanent table spaces and might be removed in a future release. The
SMS table space type is not deprecated for catalog and temporary table spaces. For
more information, see “SMS permanent table spaces have been deprecated” in
What's New for DB2 Version 10.1

Important: Starting with Version 10.1 Fix Pack 1, the DMS table space type is
deprecated for user-defined permanent table spaces and might be removed in a
future release. The DMS table space type is not deprecated for catalog and
temporary table spaces. For more information, see “DMS permanent table spaces
have been deprecated” in What's New for DB2 Version 10.1.

Use the argument " $N" ([blank]$N) to indicate a database partition expression.
You can use a database partition expression anywhere in the storage path name,
and you can specify multiple database partition expressions. Terminate the
database partition expression with a space character; whatever follows the space is
appended to the storage path name after the database partition expression is
evaluated. If there is no space character in the storage path name after the database
partition expression, it is assumed that the rest of the string is part of the
expression. If you specify a number before the N argument, ($[number]N), the
partition number is formatted with leading zeros.

You must specify the argument by using one of the forms in the following table.
Operators are evaluated from left to right. A percent sign (%) represents the
modulus operator. The database partition number in the following examples is
assumed to be 10.

Table 17. Database partition expressions

Syntax Example Value

[blank]$N "$N" 10

[blank]$[number]N "$4N" 0010

[blank]$N+[number] "$N+100" 110

[blank]$N%[number] "$N%5" 0

[blank]$N+[number]
%[number]

"$N+1%5" 1

[blank]$N
%[number]+[number]

"$N%4+2" 4

If you specified a storage path by using a database partition expression, you must
use the same storage path string, including the database partition expression, to
drop the path. This path string is in the DB_STORAGE_PATH_WITH_DPE field of
the ADMIN_GET_STORAGE_PATHS table function. This element is not shown if
you did not include a database partition expression in the original path.

Examples
1. On a system with two database partitions:

CREATE TABLESPACE TS1 MANAGED BY DATABASE USING
(device ’/dev/rcont $N’ 20000)

Chapter 7. Partitioned database environments 145

The following containers are created:
/dev/rcont0 - on database partition 0
/dev/rcont1 - on database partition 1

2. On a system with three database partitions:
ALTER STOGROUP IBMSTOGROUP ADD ’/DB2/path $N’

The following paths are added:
/DB2/path0 - on database partition 0
/DB2/path1 - on database partition 1
/DB2/path2 - on database partition 2

3. On a system with four database partitions:
CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

(file ’/DB2/containers/TS2/container $N+100’ 10000)

The following containers are created:
/DB2/containers/TS2/container100 - on database partition 0
/DB2/containers/TS2/container101 - on database partition 1
/DB2/containers/TS2/container102 - on database partition 2
/DB2/containers/TS2/container103 - on database partition 3

4. On a system with two database partitions:
CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

(’/TS3/cont $N%2’,’/TS3/cont $N%2+2’)

The following containers are created:
/TS3/cont0 - On database partition 0
/TS3/cont2 - On database partition 0
/TS3/cont1 - On database partition 1
/TS3/cont3 - On database partition 1

5. If there are 10 database partitions, the containers use the following syntax:
’/dbdir/node $N /cont1’
’/ $N+1000 /file1’
’ $N%10 /container’
’/dir/ $N2000 /dmscont’

The containers are created as:
’/dbdir/node5/cont1’
’/1005/file1’
’5/container’
’/dir/2000/dmscont’

Changing database partitions (Windows)
On Windows, use the db2nchg command to change database partitions.

About this task
v Move the database partition from one computer to another.
v Change the TCP/IP host name of the computer.

If you are planning to use multiple network adapters, you must use this
command to specify the TCP/IP address for the "netname" field in the
db2nodes.cfg file.

v Use a different logical port number.
v Use a different name for the database partition server.

The command has the following required parameter:
db2nchg /n:node_number

146 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The parameter /n: is the number of the database partition server that you want to
change. This parameter is required.

Optional parameters include:

/i:instance_name
Specifies the instance that this database partition server participates in. If you
do not specify this parameter, the default is the current instance.

/u:username,password
Changes the logon account name and password for the DB2 database service.
If you do not specify this parameter, the logon account and password remain
the same.

/p:logical_port
Changes the logical port for the database partition server. This parameter must
be specified if you move the database partition server to a different computer.
If you do not specify this parameter, the logical port number remains
unchanged.

/h:host_name
Changes the TCP/IP host name used by FCM for internal communications. If
you do not specify this parameter, the host name is unchanged.

/m:computer_name
Moves the database partition server to another computer. The database
partition server can be moved only if there are no existing databases in the
instance.

/g:network_name
Changes the network name for the database partition server.

Use this parameter if you have multiple IP addresses on a computer and you
want to use a specific IP address for the database partition server. You can
enter the network_name using the network name or the IP address.

For example, to change the logical port assigned to database partition 2, which
participates in the instance TESTMPP, to use the logical port 3, enter the following
command:

db2nchg /n:2 /i:TESTMPP /p:3

The DB2 database manager provides the capability of accessing DB2 database
system registry variables at the instance level on a remote computer. Currently,
DB2 database system registry variables are stored in three different levels:
computer or global level, instance level, and database partition level. The registry
variables stored at the instance level (including the database partition level) can be
redirected to another computer by using DB2REMOTEPREG. When DB2REMOTEPREG is
set, the DB2 database manager accesses the DB2 database system registry variables
from the computer pointed to by DB2REMOTEPREG. The db2set command would
appear as:

db2set DB2REMOTEPREG=remote_workstation

where remote_workstation is the remote workstation name.

Note:

v Care must be taken in setting this option since all DB2 database instance profiles
and instance listings will be located on the specified remote computer name.

Chapter 7. Partitioned database environments 147

v If your environment includes users from domains, ensure that the logon account
associated with the DB2 instance service is a domain account. This ensures that
the DB2 instance has the appropriate privileges to enumerate groups at the
domain level.

This feature might be used in combination with setting DBINSTPROF to point to a
remote LAN drive on the same computer that contains the registry.

Redistributing data in a database partition group
To create an effective redistribution plan for your database partition group and
redistribute your data, issue the REDISTRIBUTE DATABASE PARTITION GROUP
command or call the sqludrdt API.

Before you begin

To work with database partition groups, you must have SYSADM, SYSCTRL, or
DBADM authority.

Procedure

To redistribute data in a database partition group:
v Issue a REDISTRIBUTE DATABASE PARTITION GROUP command in the command line

processor (CLP).
v Issue the REDISTRIBUTE DATABASE PARTITION GROUP command by using the

ADMIN_CMD procedure.
v Call the sqludrdt API

Issuing commands in partitioned database environments
In a partitioned database environment, you might want to issue commands to be
run on computers in the instance, or on database partition servers. You can do so
using the rah command or the db2_all command. The rah command allows you to
issue commands that you want to run at computers in the instance.

If you want the commands to run at database partition servers in the instance, you
run the db2_all command. This section provides an overview of these commands.
The information that follows applies to partitioned database environments only.

On Windows, to run the rah command or the db2_all command, you must be
logged on with a user account that is a member of the Administrators group.

On Linux and UNIX operating systems, your login shell can be a Korn shell or any
other shell; however, there are differences in the way the different shells handle
commands containing special characters.

Also, on Linux and UNIX operating systems, rah uses the remote shell program
specified by the DB2RSHCMD registry variable. You can select between the two remote
shell programs: ssh (for additional security), or rsh (or remsh for HP-UX). If
DB2RSHCMD is not set, rsh (or remsh for HP-UX) is used. The ssh remote shell
program is used to prevent the transmission of passwords in clear text in UNIX
operating system environments.

If a command runs on one database partition server and you want it to run on all
of them, use db2_all. The exception is the db2trc command, which runs on all the

148 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

logical database partition servers on a computer. If you want to run db2trc on all
logical database partition servers on all computers, use rah.

Note: The db2_all command does not support commands that require interactive
user input.

rah and db2_all commands overview
You can run the commands sequentially at one database partition server after
another, or you can run the commands in parallel.

On Linux and UNIX operating systems, if you run the commands in parallel, you
can either choose to have the output sent to a buffer and collected for display (the
default behavior) or the output can be displayed at the computer where the
command is issued. On Windows, if you run the commands in parallel, the output
is displayed at the computer where the command is issued.

To use the rah command, type:
rah command

To use the db2_all command, type:
db2_all command

To obtain help about rah syntax, type:
rah "?"

The command can be almost anything that you can type at an interactive prompt,
including, for example, multiple commands to be run in sequence. On Linux and
UNIX operating systems, you separate multiple commands using a semicolon (;).
On Windows, you separate multiple commands using an ampersand (&). Do not
use the separator character following the last command.

The following example shows how to use the db2_all command to change the
database configuration on all database partitions that are specified in the database
partition configuration file. Because the ; character is placed inside double
quotation marks, the request runs concurrently.

db2_all ";DB2 UPDATE DB CFG FOR sample USING LOGFILSIZ 100"

Note: The db2_all command does not support commands that require interactive
user input.

rah and db2_all commands
This topic includes descriptions of the rah and db2_all commands.

Command
Description

rah Runs the command on all computers.

db2_all
Runs a non-interactive command on all database partition servers that you
specify. db2_all does not support commands that require interactive user
input.

db2_kill
Abruptly stops all processes being run on multiple database partition
servers and cleans up all resources on all database partition servers. This

Chapter 7. Partitioned database environments 149

command renders your databases inconsistent. Do not issue this command
except under direction from IBM Software Support or as directed to
recover from a sustained trap.

db2_call_stack
On Linux and UNIX operating systems, causes all processes running on all
database partition servers to write call traceback to the syslog.

On Linux and UNIX operating systems, these commands execute rah with
certain implicit settings such as:
v Run in parallel at all computers
v Buffer command output in /tmp/$USER/db2_kill, /tmp/$USER/

db2_call_stack respectively.

The command db2_call_stack is not available on Windows. Use the db2pd
-stack command instead.

Specifying the rah and db2_all commands
You can specify rah command from the command line as the parameter, or in
response to the prompt if you do not specify any parameter.

Use the prompt method if the command contains the following special characters:
| & ; < > () { } [] unsubstituted $

If you specify the command as the parameter on the command line, you must
enclose it in double quotation marks if it contains any of the special characters just
listed.

Note: On Linux and UNIX operating systems, the command is added to your
command history just as if you typed it at the prompt.

All special characters in the command can be entered normally (without being
enclosed in quotation marks, except for \). If you require a \ in your command,
you must type two backslashes (\\).

Note: On Linux and UNIX operating systems, if you are not using a Korn shell, all
special characters in the command can be entered normally (without being
enclosed in quotation marks, except for ", \, unsubstituted $, and the single
quotation mark (')). If you require one of these characters in your command, you
must precede them by three backslashes (\\\). For example, if you require a \ in
your command, you must type four backslashes (\\\\).

If you require a double quotation mark (") in your command, you must precede it
by three backslashes, for example, \\\".

Note:

1. On Linux and UNIX operating systems, you cannot include a single quotation
mark (') in your command unless your command shell provides some way of
entering a single quotation mark inside a singly quoted string.

2. On Windows, you cannot include a single quotation mark (') in your command
unless your command window provides some way of entering a single
quotation mark inside a singly quoted string.

150 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

When you run any korn-shell shell-script that contains logic to read from stdin in
the background, explicitly redirect stdin to a source where the process can read
without getting stopped on the terminal (SIGTTIN message). To redirect stdin, you
can run a script with the following form:

shell_script </dev/null &

if there is no input to be supplied.

In a similar way, always specify </dev/null when running db2_all in the
background. For example:

db2_all ";run_this_command" </dev/null &

By doing this you can redirect stdin and avoid getting stopped on the terminal.

An alternative to this method, when you are not concerned about output from the
remote command, is to use the “daemonize” option in the db2_all prefix:

db2_all ";daemonize_this_command" &

Running commands in parallel (Linux, UNIX)
By default, the command is run sequentially at each computer, but you can specify
to run the commands in parallel using background rshells by prefixing the
command with certain prefix sequences. If the rshell is run in the background, then
each command puts the output in a buffer file at its remote computer.

Note: The information in this section applies to Linux and UNIX operating
systems only.

This process retrieves the output in two pieces:
1. After the remote command completes.
2. After the rshell terminates, which might be later if some processes are still

running.

The name of the buffer file is /tmp/$USER/rahout by default, but it can be specified
by the environment variables $RAHBUFDIR or $RAHBUFNAME.

When you specify that you want the commands to be run concurrently, by default,
this script prefixes an additional command to the command sent to all hosts to
check that $RAHBUFDIR and $RAHBUFNAME are usable for the buffer file. It creates
$RAHBUFDIR. To suppress this, export an environment variable RAHCHECKBUF=no. You
can do this to save time if you know that the directory exists and is usable.

Before using rah to run a command concurrently at multiple computers:
v Ensure that a directory /tmp/$USER exists for your user ID at each computer. To

create a directory if one does not exist, run:
rah ")mkdir /tmp/$USER"

v Add the following line to your .kshrc (for Korn shell syntax) or .profile, and
also type it into your current session:

export RAHCHECKBUF=no

v Ensure that each computer ID at which you run the remote command has an
entry in its .rhosts file for the ID which runs rah; and the ID which runs rah
has an entry in its .rhosts file for each computer ID at which you run the
remote command.

Chapter 7. Partitioned database environments 151

Monitoring rah processes (Linux, UNIX)
While any remote commands are still running or buffered output is still being
accumulated, processes started by rah monitor activity to write messages to the
terminal indicating which commands have not been run, and retrieve the buffered
output.

About this task

Note: The information in this section applies to Linux and UNIX operating
systems only.

The informative messages are written at an interval controlled by the environment
variable RAHWAITTIME. Refer to the help information for details on how to specify
this. All informative messages can be suppressed by exporting RAHWAITTIME=0.

The primary monitoring process is a command whose command name (as shown
by the ps command) is rahwaitfor. The first informative message tells you the pid
(process id) of this process. All other monitoring processes appear as ksh
commands running the rah script (or the name of the symbolic link). If you want,
you can stop all monitoring processes by the command:

kill pid

where pid is the process ID of the primary monitoring process. Do not specify a
signal number. Leave the default of 15. This does not affect the remote commands
at all, but prevents the automatic display of buffered output. Note that there might
be two or more different sets of monitoring processes executing at different times
during the life of a single execution of rah. However, if at any time you stop the
current set, then no more are started.

If your regular login shell is not a Korn shell (for example /bin/ksh), you can use
rah, but there are some slightly different rules on how to enter commands
containing the following special characters:

" unsubstituted $ ’

For more information, type rah "?". Also, in a Linux or UNIX operating system, if
the login shell at the ID which executes the remote commands is not a Korn shell,
then the login shell at the ID which executes rah must also not be a Korn shell.
(rah decides whether the shell of the remote ID is a Korn shell based on the local
ID). The shell must not perform any substitution or special processing on a string
enclosed in single quotation marks. It must leave it exactly as is.

Extension of the rah command to use tree logic (AIX and Solaris)
To enhance performance, rah has been extended to use tree_logic on large systems.
That is, rah will check how many database partitions the list contains, and if that
number exceeds a threshold value, it constructs a subset of the list and sends a
recursive invocation of itself to those database partitions.

At those database partitions, the recursively invoked rah follows the same logic
until the list is small enough to follow the standard logic (now the "leaf-of-tree"
logic) of sending the command to all database partitions on the list. The threshold
can be specified by the RAHTREETHRESH environment variable, or defaults to 15.

In the case of a multiple-logical-database partitions-per-physical-database partition
system, db2_all will favor sending the recursive invocation to distinct physical
database partitions, which will then rsh to other logical database partitions on the
same physical database partition, thus also reducing inter-physical-database

152 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

partition traffic. (This point applies only to db2_all, not rah, because rah always
sends only to distinct physical database partitions.)

rah and db2_all command prefix sequences
A prefix sequence is one or more special characters.

Type one or more prefix sequences immediately preceding the characters of the
command without any intervening blanks. If you want to specify more than one
sequence, you can type them in any order, but characters within any
multicharacter sequence must be typed in order. If you type any prefix sequences,
you must enclose the entire command, including the prefix sequences in double
quotation marks, as in the following examples:
v On Linux and UNIX operating systems:

rah "};ps -F pid,ppid,etime,args -u $USER"
db2_all "};ps -F pid,ppid,etime,args -u $USER"

v On Windows operating systems:
rah "||db2 get db cfg for sample"
db2_all "||db2 get db cfg for sample"

The prefix sequences are:

Sequence
Purpose

| Runs the commands in sequence in the background.

|& Runs the commands in sequence in the background and terminates the
command after all remote commands have completed, even if some
processes are still running. This might be later if, for example, child
processes (on Linux and UNIX operating systems) or background processes
(on Windows operating systems) are still running. In this case, the
command starts a separate background process to retrieve any remote
output generated after command termination and writes it back to the
originating computer.

Note: On Linux and UNIX operating systems, specifying & degrades
performance, because more rsh commands are required.

|| Runs the commands in parallel in the background.

||& Runs the commands in parallel in the background and terminates the
command after all remote commands have completed as described
previously for the |& case.

Note: On Linux and UNIX operating systems, specifying & degrades
performance, because more rsh commands are required.

; Same as ||&. This is an alternative shorter form.

Note: On Linux and UNIX operating systems, specifying ; degrades
performance relative to ||, because more rsh commands are required.

] Prepends dot-execution of user's profile before executing command.

Note: Available on Linux and UNIX operating systems only.

} Prepends dot-execution of file named in $RAHENV (probably .kshrc) before
executing command.

Note: Available on Linux and UNIX operating systems only.

Chapter 7. Partitioned database environments 153

]} Prepends dot-execution of user's profile followed by execution of file
named in $RAHENV (probably .kshrc) before executing command.

Note: Available on Linux and UNIX operating systems only.

) Suppresses execution of user's profile and of file named in $RAHENV.

Note: Available on Linux and UNIX operating systems only.

' Echoes the command invocation to the computer.

< Sends to all the computers except this one.

<<-nnn<

Sends to all-but-database partition server nnn (all database partition servers
in db2nodes.cfg except for database partition number nnn, see the first
paragraph following the last prefix sequence in this table).

nnn is the corresponding 1-, 2-, or 3-digit database partition number to the
nodenum value in the db2nodes.cfg file.

<<-nnn< is only applicable to db2_all.

<<+nnn<

Sends to only database partition server nnn (the database partition server
in db2nodes.cfg whose database partition number is nnn, see the first
paragraph following the last prefix sequence in this table).

nnn is the corresponding 1-, 2-, or 3-digit database partition number to the
nodenum value in the db2nodes.cfg file.

<<+nnn< is only applicable to db2_all.

(blank character)
Runs the remote command in the background with stdin, stdout, and
stderr all closed. This option is valid only when running the command in
the background, that is, only in a prefix sequence which also includes \ or
;. It allows the command to complete much sooner (as soon as the remote
command has been initiated). If you specify this prefix sequence on the rah
command line, then either enclose the command in single quotation marks,
or enclose the command in double quotation marks, and precede the prefix
character by \ . For example,

rah ’; mydaemon’

or
rah ";\ mydaemon"

When run as a background process, the rah command never waits for any
output to be returned.

> Substitutes occurrences of > with the computer name.

" Substitutes occurrences of () by the computer index, and substitutes
occurrences of ## by the database partition number.
v The computer index is a number that associated with a computer in the

database system. If you are not running multiple logical partitions, the
computer index for a computer corresponds to the database partition
number for that computer in the database partition configuration file. To
obtain the computer index for a computer in a multiple logical partition
database environment, do not count duplicate entries for those

154 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

computers that run multiple logical partitions. For example, if MACH1
is running two logical partitions and MACH2 is also running two logical
partitions, the database partition number for MACH3 is 5 in the
database partition configuration file. The computer index for MACH3,
however, would be 3.
– On Windows operating systems, do not edit the database partition

configuration file. To obtain the computer index, use the db2nlist
command.

v When " is specified, duplicates are not eliminated from the list of
computers.

Usage notes
v Prefix sequences are considered to be part of the command. If you specify a

prefix sequence as part of a command, you must enclose the entire command,
including the prefix sequences, in double quotation marks.

Controlling the rah command
This topic lists the environment variables to control the rah command.

Table 18. Environment variables that control the rah command

Name Meaning Default

$RAHBUFDIR
Note: Available
on Linux and
UNIX operating
systems only.

Directory for buffer /tmp/$USER

$RAHBUFNAME
Note: Available
on Linux and
UNIX operating
systems only.

File name for buffer rahout

$RAHOSTFILE (on
Linux and UNIX
operating
systems);
RAHOSTFILE (on
Windows
operating
systems)

File containing list of hosts db2nodes.cfg

$RAHOSTLIST (on
Linux and UNIX
operating
systems);
RAHOSTLIST (on
Windows
operating
systems)

List of hosts as a string extracted from
$RAHOSTFILE

$RAHCHECKBUF
Note: Available
on Linux and
UNIX operating
systems only.

If set to "no", bypass checks not set

Chapter 7. Partitioned database environments 155

Table 18. Environment variables that control the rah command (continued)

Name Meaning Default

$RAHSLEEPTIME
(on Linux and
UNIX operating
systems);
RAHSLEEPTIME (on
Windows
operating
systems)

Time in seconds this script waits for initial output
from commands run in parallel.

86400 seconds for
db2_kill, 200
seconds for all
others

$RAHWAITTIME (on
Linux and UNIX
operating
systems);
RAHWAITTIME (on
Windows
operating
systems)

On Windows operating systems, interval in seconds
between successive checks that remote jobs are still
running.

On Linux and UNIX operating systems, interval in
seconds between successive checks that remote jobs
are still running and rah: waiting for pid> ...
messages.

On all operating systems, specify any positive integer.
Prefix value with a leading zero to suppress
messages, for example, export RAHWAITTIME=045.

It is not necessary to specify a low value as rah does
not rely on these checks to detect job completion.

45 seconds

$RAHENV
Note: Available
on Linux and
UNIX operating
systems only.

Specifies file name to be executed if $RAHDOTFILES=E
or K or PE or B

$ENV

$RAHUSER (on
Linux and UNIX
operating
systems); RAHUSER
(on Windows
operating
systems)

On Linux and UNIX operating systems, user ID
under which the remote command is to be run.

On Windows operating systems, the logon account
associated with the DB2 Remote Command Service

$USER

Note: On Linux and UNIX operating systems, the value of $RAHENV where rah is
run is used, not the value (if any) set by the remote shell.

Specifying which . files run with rah (Linux and UNIX)
This topics lists the . files that are run if no prefix sequence is specified.

Note: The information in this section applies to Linux and UNIX operating
systems only.

P .profile

E File named in $RAHENV (probably .kshrc)

K Same as E

PE .profile followed by file named in $RAHENV (probably .kshrc)

B Same as PE

N None (or Neither)

156 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note: If your login shell is not a Korn shell, any dot files you specify to be
executed are executed in a Korn shell process, and so must conform to Korn shell
syntax. So, for example, if your login shell is a C shell, to have your .cshrc
environment set up for commands executed by rah, you should either create a
Korn shell INSTHOME/.profile equivalent to your .cshrc and specify in your
INSTHOME/.cshrc:
setenv RAHDOTFILES P

or you should create a Korn shell INSTHOME/.kshrc equivalent to your .cshrc and
specify in your INSTHOME/.cshrc:
setenv RAHDOTFILES E
setenv RAHENV INSTHOME/.kshrc

Also, it is your .cshrc must not write to stdout if there is no tty (as when invoked
by rsh). You can ensure this by enclosing any lines which write to stdout by, for
example,

if { tty -s } then echo "executed .cshrc";
endif

Setting the default environment profile for rah on Windows
To set the default environment profile for the rah command, use a file called
db2rah.env, which should be created in the instance directory.

About this task

Note: The information in this section applies to Windows only.

The file should have the following format:
; This is a comment line
DB2INSTANCE=instancename
DB2DBDFT=database
; End of file

You can specify all the environment variables that you need to initialize the
environment for rah.

Determining problems with rah (Linux, UNIX)
This topic gives suggestions on how to handle some problems that you might
encounter when you are running rah.

Note: The information in this section applies to Linux and UNIX operating
systems only.
1. rah hangs (or takes a very long time)

This problem might be caused because:
v rah has determined that it needs to buffer output, and you did not export

RAHCHECKBUF=no. Therefore, before running your command, rah sends a
command to all computers to check the existence of the buffer directory, and
to create it if it does not exist.

v One or more of the computers where you are sending your command is not
responding. The rsh command will eventually time out but the time-out
interval is quite long, usually about 60 seconds.

2. You have received messages such as:
v Login incorrect
v Permission denied

Chapter 7. Partitioned database environments 157

Either one of the computers does not have the ID running rah correctly defined
in its /etc/hosts file, or the ID running rah does not have one of the
computers correctly defined in its .rhosts file. If the DB2RSHCMD registry variable
has been configured to use ssh, then the ssh clients and servers on each
computer might not be configured correctly.

Note: You might need to have greater security regarding the transmission of
passwords in clear text between database partitions. This will depend on the
remote shell program you are using. rah uses the remote shell program
specified by the DB2RSHCMD registry variable. You can select between the two
remote shell programs: ssh (for additional security), or rsh (or remsh for
HP-UX). If this registry variable is not set, rsh (or remsh for HP-UX) is used.

3. When running commands in parallel using background remote shells, although
the commands run and complete within the expected elapsed time at the
computers, rah takes a long time to detect this and put up the shell prompt.
The ID running rah does not have one of the computers correctly defined in its
.rhosts file, or if the DB2RSHCMD registry variable has been configured to use
ssh, then the ssh clients and servers on each computer might not be configured
correctly.

4. Although rah runs fine when run from the shell command line, if you run rah
remotely using rsh, for example,

rsh somewher -l $USER db2_kill

rah never completes.
This is normal. rah starts background monitoring processes, which continue to
run after it has exited. Those processes normally persist until all processes
associated with the command you ran have themselves terminated. In the case
of db2_kill, this means termination of all database managers. You can
terminate the monitoring processes by finding the process whose command is
rahwaitfor and kill process_id>. Do not specify a signal number. Instead, use
the default (15).

5. The output from rah is not displayed correctly, or rah incorrectly reports that
$RAHBUFNAME does not exist, when multiple commands of rah were issued under
the same $RAHUSER.
This is because multiple concurrent executions of rah are trying to use the same
buffer file (for example, $RAHBUFDIR or $RAHBUFNAME) for buffering the outputs.
To prevent this problem, use a different $RAHBUFNAME for each concurrent rah
command, for example in the following ksh:

export RAHBUFNAME=rahout
rah ";$command_1" &
export RAHBUFNAME=rah2out
rah ";$command_2" &

or use a method that makes the shell choose a unique name automatically such
as:

RAHBUFNAME=rahout.$$ db2_all "....."

Whatever method you use, you must ensure that you clean up the buffer files
at some point if disk space is limited. rah does not erase a buffer file at the end
of execution, although it will erase and then re-use an existing file the next time
you specify the same buffer file.

6. You entered
rah ’"print from ()’

and received the message:

158 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

ksh: syntax error at line 1 : (’ unexpected

Prerequisites for the substitution of () and ## are:
v Use db2_all, not rah.
v Ensure a RAHOSTFILE is used either by exporting RAHOSTFILE or by defaulting

to your /sqllib/db2nodes.cfg file. Without these prerequisites, rah leaves the
() and ## as is. You receive an error because the command print from () is
not valid.

For a performance tip when running commands in parallel, use | rather than
|&, and use || rather than ||& or ; unless you truly need the function
provided by &. Specifying & requires more remote shell commands and
therefore degrades performance.

Dropping database partitions
You can drop a database partition that is not being used by any database and free
the computer for other uses.

Before you begin

Verify that the database partition is not in use by issuing the DROP DBPARTITIONNUM
VERIFY command or the sqledrpn API.
v If you receive message SQL6034W (Database partition not used in any database),

you can drop the database partition.
v If you receive message SQL6035W (Database partition in use by database), use

the REDISTRIBUTE DATABASE PARTITION GROUP command to redistribute the data
from the database partition that you are dropping to other database partitions
from the database alias.

Also ensure that all transactions for which this database partition was the
coordinator have all committed or rolled back successfully. This might require
doing crash recovery on other servers. For example, if you drop the coordinator
partition, and another database partition participating in a transaction crashed
before the coordinator partition was dropped, the crashed database partition will
not be able to query the coordinator partition for the outcome of any indoubt
transactions.

Procedure

To drop a database partition using the command line:

Issue the STOP DBM command with the DROP DBPARTITIONNUM parameter to drop the
database partition.
After the command completes successfully, the system is stopped. Then start the
database manager with the START DBM command.

Dropping a database partition from an instance (Windows)
On Windows, use the db2ndrop command to drop a database partition server from
an instance that has no databases. If you drop a database partition server, its
database partition number can be reused for a new database partition server.

Chapter 7. Partitioned database environments 159

About this task

Exercise caution when you drop database partition servers from an instance. If you
drop the instance-owning database partition server zero (0) from the instance, the
instance becomes unusable. If you want to drop the instance, use the db2idrop
command.

Note: Do not use the db2ndrop command if the instance contains databases.
Instead, use the STOP DBM DROP DBPARTITIONNUM command. This ensures that the
database is correctly removed from the database partition. DO NOT EDIT the
db2nodes.cfg file, since changing the file might cause inconsistencies in the
partitioned database environment.

If you want to drop a database partition that is assigned the logical port 0 from a
computer that is running multiple logical database partitions, you must drop all
the other database partitions assigned to the other logical ports before you can
drop the database partition assigned to logical port 0. Each database partition
server must have a database partition assigned to logical port 0.

The command has the following parameters:
db2ndrop /n:dbpartitionnum /i:instance_name

/n:dbpartitionnum
The unique database partition number (dbpartitionnum) to identify the
database partition server. This is a required parameter. The number can be
from zero (0) to 999 in ascending sequence. Recall that database partition
zero (0) represents the instance-owning computer.

/i:instance_name
The instance name (instance_name). This is an optional parameter. If not
given, the default is the current instance (set by the DB2INSTANCE registry
variable).

Tables in partitioned database environments
There are performance advantages to creating a table across several database
partitions in a partitioned database environment. The work associated with the
retrieval of data can be divided among the database partitions.

Before you begin

Before creating a table that will be physically divided or distributed, you need to
consider the following:
v Table spaces can span more than one database partition. The number of database

partitions they span depends on the number of database partitions in a database
partition group.

v Tables can be collocated by being placed in the same table space or by being
placed in another table space that, together with the first table space, is
associated with the same database partition group.

About this task

Creating a table that will be a part of several database partitions is specified when
you are creating the table. There is an additional option when creating a table in a
partitioned database environment: the distribution key. A distribution key is a key
that is part of the definition of a table. It determines the database partition on
which each row of data is stored.

160 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

If you do not specify the distribution key explicitly, the following defaults are
used. Ensure that the default distribution key is appropriate.

v If a primary key is specified in the CREATE TABLE statement, the first column
of the primary key is used as the distribution key.

v For a multiple partition database partition group, if there is no primary key, the
first column that is not a long field is used.

v If no columns satisfy the requirements for a default distribution key, the table is
created without one (this is allowed only in single-partition database partition
groups).

You must be careful to select an appropriate distribution key because it cannot be
changed later. Furthermore, any unique indexes (and therefore unique or primary
keys) must be defined as a superset of the distribution key. That is, if a distribution
key is defined, unique keys and primary keys must include all of the same
columns as the distribution key (they might have more columns).

The size of a database partition of a table is the smaller amount of a specific limit
associated with the type of table space and page size used, and the amount of disk
space available. For example, assuming a large DMS table space with a 4 KB page
size, the size of a table is the smaller amount of 8 TB multiplied by the number of
database partitions and the amount of available disk space. See the related links for
the complete list of database manager page size limits.

To create a table in a partitioned database environment using the command line,
enter:

CREATE TABLE name>
(<column_name> <data_type> <null_attribute>)
IN <tagle_space_name>
INDEX IN <index_space_name>
LONG IN <long_space_name>
DISTRIBUTE BY HASH (<column_name>)

Following is an example:
CREATE TABLE MIXREC (MIX_CNTL INTEGER NOT NULL,

MIX_DESC CHAR(20) NOT NULL,
MIX_CHR CHAR(9) NOT NULL,
MIX_INT INTEGER NOT NULL,
MIX_INTS SMALLINT NOT NULL,
MIX_DEC DECIMAL NOT NULL,
MIX_FLT FLOAT NOT NULL,
MIX_DATE DATE NOT NULL,
MIX_TIME TIME NOT NULL,
MIX_TMSTMP TIMESTAMP NOT NULL)
IN MIXTS12
DISTRIBUTE BY HASH (MIX_INT)

In the preceding example, the table space is MIXTS12 and the distribution key is
MIX_INT. If the distribution key is not specified explicitly, it is MIX_CNTL. (If no
primary key is specified and no distribution key is defined, the distribution key is
the first non-long column in the list.)

A row of a table, and all information about that row, always resides on the same
database partition.

Chapter 7. Partitioned database environments 161

Redistributing data across database partitions
Redistributing data is a task that you might perform in a partitioned database
environment after adding or removing database partitions or when an undesirable
proportion of data is appearing on a particular partition so as to rebalance or
reconfigure the distribution.

Data redistribution
Data redistribution is a database administration operation that can be performed to
primarily move data within a partitioned database environment when partitions
are added or removed. The goal of this operation is typically to balance the usage
of storage space, improve database system performance, or satisfy other system
requirements.

Data redistribution can be performed by using one of the following interfaces:
v REDISTRIBUTE DATABASE PARTITION GROUP command
v ADMIN_CMD built-in procedure
v STEPWISE_REDISTRIBUTE_DBPG built-in procedure
v sqludrdt API

Data redistribution within a partitioned database is done for one of the following
reasons:
v To rebalance data whenever a new database partition is added to the database

environment or an existing database partition is removed.
v To introduce user-specific data distribution across partitions.
v To secure sensitive data by isolating it within a particular partition.

Data redistribution is performed by connecting to a database at the catalog
database partition and beginning a data redistribution operation for a specific
partition group by using one of the supported interfaces. Data redistribution relies
on the existence of distribution key definitions for the tables within the partition
group. The distribution key value for a row of data within the table is used to
determine on which partition the row of data will be stored. A distribution key is
generated automatically when a table is created in a multi-partition database
partition group. A distribution key can also be explicitly defined by using the
CREATE TABLE or ALTER TABLE statements. By default during data
redistribution, for each table within a specified database partition group, table data
is divided and redistributed evenly among the database partitions. Other
distributions, such as a skewed distribution, can be achieved by specifying an
input distribution map which defines how the data is to be distributed.
Distribution maps can be generated during a data redistribution operation for
future use or can be created manually.

Comparison of logged, recoverable redistribution and minimally
logged, not roll-forward recoverable redistribution
When performing data redistribution by using either the REDISTRIBUTE DATABASE
PARTITION GROUP command or the ADMIN_CMD built-in procedure, you can
choose between two methods of data redistribution: logged, recoverable
redistribution and minimally logged, not roll-forward recoverable redistribution.
The latter method is specified by using the NOT ROLLFORWARD RECOVERABLE
command parameter.

Data redistribution in capacity growth scenarios, during load balancing, or during
performance tuning can require precious maintenance window time, a considerable

162 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

amount of planning time, as well as log space and extra container space that can
be expensive. Your choice of redistribution methods depends on whether you
prioritize recoverability or speed:
v When the logged, recoverable redistribution method is used, extensive logging

of all row movement is performed such that the database can be recovered in
the event of any interruptions, errors, or other business need.

v The not roll-forward recoverable redistribution method offers better performance
because data is moved in bulk and log records are no longer required for insert
and delete operations.

The latter method is particularly beneficial if, in the past, large active log space
and storage requirements forced you to break a single data redistribution operation
into multiple smaller redistribution tasks, which might have resulted in even more
time required to complete the end-to-end data redistribution operation.

The not roll-forward recoverable redistribution method is the best practice in most
situations because the data redistribution takes less time, is less error prone, and
consumes fewer system resources. As a result, the total cost of performing data
redistribution is reduced, which frees up time and resources for other business
operations.

Minimally logged, not roll-forward recoverable redistribution

When the REDISTRIBUTE DATABASE PARTITION GROUP command is issued and the NOT
ROLLFORWARD RECOVERABLE parameter is specified, a minimal logging strategy is
used that minimizes the writing of log records for each moved row. This type of
logging is important for the usability of the redistribute operation since an
approach that fully logs all data movement could, for large systems, require an
impractical amount of active and permanent log space and would generally have
poorer performance characteristics.

There are also features and optional parameters that are only available when you
choose the not roll-forward recoverable redistribution method. For example, by
default this method of redistribution quiesces the database and performs a
precheck to ensure that prerequisites are met. You can also optionally specify to
rebuild indexes and collect table statistics as part of the redistribution operation.
The combination and automation of these otherwise manual tasks makes them less
error prone, faster, and more efficient, while providing you with more control over
the operations.

The not roll-forward recoverable redistribution method automatically reorganizes
the tables, which can free up disk space. This table reorganization comes at no
additional performance cost to the redistribute operation. For tables with clustering
indexes, the reorganization does not attempt to maintain clustering. If perfect
clustering is desired, it will be necessary to perform a REORG TABLE command on
tables with a clustering index after data redistribution completes. For
multi-dimensional-clustered (MDC) tables, the reorganization maintains the
clustering of the table and frees unused blocks for reuse; however the total size of
the table after redistribution appears unchanged.

Note: It is critical that you back up each affected table space or the entire database
when the redistribute operation is complete because rolling forward through this
type of redistribute operation results in all tables that were redistributed being
marked invalid. Such tables can only be dropped, which means there is no way to
recover the data in these tables. This is why, for recoverable databases, the

Chapter 7. Partitioned database environments 163

REDISTRIBUTE DATABASE PARTITION GROUP utility when issued with the NOT
ROLLFORWARD RECOVERABLE option puts all table spaces it touches into the BACKUP
PENDING state. This state forces you to back up all redistributed table spaces at
the end of a successful redistribute operation. With a backup taken after the
redistribution operation, you should not have a need to roll-forward through the
redistribute operation itself.

There is one important consequence of the lack of roll-forward recoverability: If
you choose to allow updates to be made against tables in the database (even tables
outside the database partition group being redistributed) while the redistribute
operation is running, including the period at the end of redistribute where the
table spaces touched by redistribute are being backed up, such updates can be lost
in the event of a serious failure, for example, a database container is destroyed.
The reason that such updates can be lost is that the redistribute operation is not
roll-forward recoverable. If it is necessary to restore the database from a backup
taken before the redistribution operation, then it will not be possible to
roll-forward through the logs in order to replay the updates that were made
during the redistribution operation without also rolling forward through the
redistribution which, as was described above, leaves the redistributed tables in the
UNAVAILABLE state. Thus, the only thing that can be done in this situation is to
restore the database from the backup taken before the redistribution without
rolling forward. Then the redistribute operation can be performed again.
Unfortunately, all the updates that occurred during the original redistribute
operation are lost.

The importance of this point cannot be overemphasized. In order to be certain that
there will be no lost updates during a redistribution operation, one of the
following must be true:
v You must avoid making updates during the operation of the REDISTRIBUTE

DATABASE PARTITION GROUP command, including the period after the command
finishes where the affected table spaces are being backed up.

v The redistribution operation is performed with the QUIESCE DATABASE command
parameter set to YES. You must still ensure that any applications or users that are
allowed to access the quiesced database are not making updates.

v Updates that are applied during the redistribute operation come from a
repeatable source, meaning that they can be applied again at any time. For
example, if the source of updates is data that is stored in a file and the updates
are applied during batch processing, then clearly even in the event of a failure
requiring a database restore, the updates would not be lost since they could
simply be applied again at any time.

With respect to allowing updates to the database during the redistribution
operation, you must decide whether such updates are appropriate or not based on
whether the updates can be repeated after a database restore, if necessary.

Note: Not every failure during operation of the REDISTRIBUTE DATABASE PARTITION
GROUP command results in this problem. In fact, most do not. The REDISTRIBUTE
DATABASE PARTITION GROUP command is fully restartable, meaning that if the utility
fails in the middle of its work, it can be easily continued or aborted with the
CONTINUE or ABORT options. The failures mentioned above are failures that require
the user to restore from the backup taken before the redistribute operation.

164 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Logged, recoverable redistribution

The original and default version of the REDISTRIBUTE DATABASE PARTITION GROUP
command, this method redistributes data by using standard SQL inserts and
deletes. Extensive logging of all row movement is performed such that the
database is recoverable by restoring it using the RESTORE DATABASE command then
rolling forward through all changes using the ROLLFORWARD DATABASE command.

After the data redistribution, the source table contains empty spaces because rows
were deleted and sent to new database partitions. If you want to free the empty
spaces, you must reorganize the tables. To reorganize the tables, you must use a
separate operation, after the redistribution is complete. To improve performance of
this method, drop the indexes and re-create them after the redistribution is
complete.

Determining if data redistribution is needed
Determining the current data distribution for a database partition group or table
can be helpful in determining if data redistribution is required. Details about the
current data distribution can also be used to create a custom distribution map that
specifies how to distribute data.

About this task

If a new database partition is added to a database partition group, or an existing
database partition is dropped from a database partition group, perform data
redistribution to balance data among all the database partitions.

If no database partitions have been added or dropped from a database partition
group, then data redistribution is usually only indicated when there is an unequal
distribution of data among the database partitions of the database partition group.
Note that in some cases an unequal distribution of data can be desirable. For
example, if some database partitions reside on a powerful machine, then it might
be beneficial for those database partitions to contain larger volumes of data than
other partitions.

Procedure

To determine if data redistribution is needed:
1. Get information about the current distribution of data among database

partitions in the database partition group.
Run the following query on the largest table (alternatively, a representative
table) in the database partition group:
SELECT DBPARTITIONNUM(column_name), COUNT(*) FROM table_name

GROUP BY DBPARTITIONNUM(column_name)
ORDER BY DBPARTITIONNUM(column_name) DESC

Here, column_name is the name of the distribution key for table table_name.
The output of this query shows how many records from table_name reside on
each database partition. If the distribution of data among database partitions is
not as desired, then proceed to the next step.

2. Get information about the distribution of data across hash partitions.
Run the following query with the same column_name and table_name that were
used in the previous step:

Chapter 7. Partitioned database environments 165

SELECT HASHEDVALUE(column_name), COUNT(*) FROM table_name
GROUP BY HASHEDVALUE(column_name)
ORDER BY HASHEDVALUE(column_name) DESC

The output of this query can easily be used to construct the distribution file
needed when the USING DISTFILE parameter in the REDISTRIBUTE DATABASE
PARTITION GROUP command is specified. Refer to the REDISTRIBUTE DATABASE
PARTITION GROUP command reference for a description of the format of the
distribution file.

3. Optional: If the data requires redistribution, you can plan to do this operation
during a system maintenance opportunity.
When the USING DISTFILE parameter is specified, the REDISTRIBUTE DATABASE
PARTITION GROUP command uses the information in the file to generate a new
partition map for the database partition group. This operation results in a
uniform distribution of data among database partitions.
If a uniform distribution is not desired, you can construct your own target
partition map for the redistribution operation. The target partition map can be
specified by using the USING TARGETMAP parameter in the REDISTRIBUTE
DATABASE PARTITION GROUP command.

Results

After doing this investigation, you will know if your data is uniformly distributed
or not or if data redistribution is required.

Prerequisites for data redistribution
Before data redistribution can be performed successfully for a set of tables within a
database partition group, certain prerequisites must be met.

The following is a list of mandatory prerequisites:
v Authorization to perform data redistribution from the supported data

redistribution interface of choice.
v A significant amount of time during a period of low system activity in which to

perform the redistribution operation.
v All tables containing data to be redistributed as part of a data redistribution

operation must be in a NORMAL state. For example, tables cannot be in LOAD
PENDING state or other inaccessible load table states. To check the states of
tables, establish a connection to each partition in the database partition group
and issue the LOAD QUERY command. The output of this command contains
information about the state of the table. The documentation of the LOAD QUERY
command explains the meaning of each of the table states and how to move
tables from one state to another.

v All tables within the database partition being redistributed must have been
defined with a distribution key. If a new database partition is added to a
single-partition system, data redistribution cannot be performed until all of the
tables within the partitions have a distribution key. For tables that were created
using the CREATE TABLE statement and have definitions that do not contain a
distribution key, you must alter the table by using the ALTER TABLE statement
to add a distribution key before redistributing the data.

v Replicated materialized query tables contained in a database partition group
must be dropped before you redistribute the data. Store a copy of the
materialized query table definitions so that they can be recreated after data
redistribution completes.

166 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v If a non-uniform redistribution is desired a distribution map must be created as
a target distribution map to be used a parameter to the redistribute interface.

v A backup of the database must be created by using the BACKUP DATABASE
command. This backup is not a mandatory prerequisite however it is strongly
recommended that it be done.

v A connection must be established to the database from the catalog database
partition.

v Adequate space must be available to rebuild all indexes either during or after
the data redistribution. The INDEXING MODE command parameter affects when the
indexes are rebuilt.

v When the NOT ROLLFORWARD RECOVERABLE command parameter is specified,
adequate space should be available for writing status information to control files
used by IBM Service for problem determination. The control files are generated
in the following paths and should be manually deleted when the data
redistribution operation is complete:
– On Linux and UNIX operating systems: diagpath/redist/db_name/

db_partitiongroup_name/timestamp/

– On Windows operating systems: diagpath\redist\db_name\
db_partitiongroup_name\timestamp\

You can calculate the space requirements in bytes for the control files by using
the following formula:
(number of pages for all tables in the database partition group) * 64 bytes
+ number of LOB values in the database partition group) * 600 bytes

To estimate number of LOB values in the database partition group, add the number
of LOB columns in your tables and multiply it by the number of rows in the
largest table.

v When the NOT ROLLFORWARD RECOVERABLE command parameter is not specified,
adequate log file space must be available to contain the log entries associated
with the INSERT and DELETE operations performed during data redistribution
otherwise data redistribution will be interrupted or fail.

The util_heap_sz database configuration parameter is critical to the processing of
data movement between database partitions - allocate as much memory as possible
to util_heap_sz for the duration of the redistribution operation. Sufficient sortheap
is also required if indexes are being rebuilt as part of the redistribution operation.
Increase the value of util_heap_sz and sortheap database configuration parameter,
as necessary, to improve redistribution performance.

Log space requirements for data redistribution
To successfully perform a data redistribution operation, adequate log file space
must be allocated to ensure that data redistribution is not interrupted. Log space
requirements are less of a concern when you specify the NOT ROLLFORWARD
RECOVERABLE command parameter, since there is minimal logging during that type
of data redistribution.

The quantity of log file space required depends on multiple factors including
which options of the REDISTRIBUTE DATABASE PARTITION GROUP command are used.

When the redistribution is performed from any supported interface where the data
redistribution is roll-forward recoverable:
v The log must be large enough to accommodate the INSERT and DELETE

operations at each database partition where data is being redistributed. The

Chapter 7. Partitioned database environments 167

heaviest logging requirements will be either on the database partition that will
lose the most data, or on the database partition that will gain the most data.

v If you are moving to a larger number of database partitions, use the ratio of
current database partitions to the new number of database partitions to estimate
the number of INSERT and DELETE operations. For example, consider
redistributing data that is uniformly distributed before redistribution. If you are
moving from four to five database partitions, approximately twenty percent of
the four original database partitions will move to the new database partition.
This means that twenty percent of the DELETE operations will occur on each of
the four original database partitions, and all of the INSERT operations will occur
on the new database partition.

v Consider a nonuniform distribution of the data, such as the case in which the
distribution key contains many NULL values. In this case, all rows that contain a
NULL value in the distribution key move from one database partition under the
old distribution scheme and to a different database partition under the new
distribution scheme. As a result, the amount of log space required on those two
database partitions increases, perhaps well beyond the amount calculated by
assuming uniform distribution.

v The redistribution of each table is a single transaction. For this reason, when you
estimate log space, you multiply the percentage of change, such as twenty
percent, by the size of the largest table. Consider, however, that the largest table
might be uniformly distributed but the second largest table, for example, might
have one or more inflated database partitions. In such a case, consider using the
non-uniformly distributed table instead of the largest one.

Note: After you estimate the maximum amount of data to be inserted and deleted
at a database partition, double that estimate to determine the peak size of the
active log. If this estimate is greater than the active log limit of 1024 GB, then the
data redistribution must be done in steps. For example, use the
STEPWISE_REDISTRIBUTE_DBPG procedure with a number of steps proportional
to how much the estimate is greater than active log limit. You might also set the
logsecond database configuration parameter to -1 to avoid most log space
problems.

When the redistribution is performed from any supported interface where the data
redistribution is not roll-forward recoverable:
v Log records are not created when rows are moved as part of data redistribution.

This behavior significantly reduces log file space requirements; however, when
this option is used with database roll-forward recovery, the redistribute
operation log record cannot be rolled forward, and any tables processed as part
of the roll-forward operation remain in UNAVAILABLE state.

v If the database partition group undergoing data redistribution contains tables
with long-field (LF) or large-object (LOB) data in the tables, the number of log
records generated during data redistribution will be higher, because a log record
is created for each row of data. In this case, expect the log space requirement per
database partition to be roughly one third of the amount of data moving on that
partition (that is, data being sent, received, or both).

Restrictions on data redistribution
Restrictions on data redistribution are important to note before proceeding with
data redistribution or when troubleshooting problems related to data
redistribution.

The following restrictions apply to data redistribution:

168 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Data redistribution on partitions where tables do not have partitioning key
definitions is restricted.

v When data redistribution is in progress:
– Starting another redistribution operation on the same database partition

group is restricted.
– Dropping the database partition group is restricted.
– Altering the database partition group is restricted.
– Executing an ALTER TABLE statement on any table in the database partition

group is restricted.
– Creating new indexes in the table undergoing data redistribution is restricted.
– Dropping indexes defined on the table undergoing data redistribution is

restricted.
– Querying data in the table undergoing data redistribution is restricted.
– Updating the table undergoing data redistribution is restricted.

v Updating tables in a database undergoing a data redistribution that was started
using the REDISTRIBUTE DATABASE PARTITION GROUP command where the NOT
ROLLFORWARD RECOVERABLE command parameter was specified is restricted.
Although the updates can be made, if data redistribution is interrupted the
changes made to the data might be lost and so this practice is strongly
discouraged.

v When the REDISTRIBUTE DATABASE PARTITION GROUP command is issued and the
NOT ROLLFORWARD RECOVERABLE command parameter is specified:
– Data distribution changes that occur during the redistribution are not

roll-forward recoverable.
– If the database is recoverable, the table space is put into the BACKUP

PENDING state after accessing the first table within the table space. To
remove the table from this state, you must take a backup of the table space
changes when the redistribution operation completes.

– During data redistribution, the data in the tables in the database partition
group being redistributed cannot be updated - the data is read-only. Tables
that are actively being redistributed are inaccessible.

v For typed (hierarchy) tables, if the REDISTRIBUTE DATABASE PARTITION GROUP
command is used and the TABLE parameter is specified with the value ONLY, then
the table name is restricted to being the name of the root table only. Sub-table
names cannot be specified.

v Data redistribution is supported for the movement of data between database
partitions. For partitioned tables, however, movement of data between ranges of
a data partitioned table is restricted unless both of the following are true:
– The partitioned table has an access mode of FULL ACCESS in the

SYSTABLES.ACCESS_MODE catalog table.
– The partitioned table does not have any partitions currently being attached or

detached.
v For replicated materialized query tables, if the data in a database partition group

contains replicated materialized query tables, you must drop these tables before
you redistribute the data. After data is redistributed, you can recreate the
materialized query tables.

v For database partitions that contain multi-dimensional-clustered tables (MDCs)
use of the REDISTRIBUTE DATABASE PARTITION GROUP command is restricted and
will not proceed successfully if there are any multi-dimensional-clustered tables

Chapter 7. Partitioned database environments 169

in the database partition group that contain rolled out blocks that are pending
cleanup. These MDC tables must be cleaned up before data redistribution can be
resumed or restarted.

v Dropping tables that are currently marked in the DB2 catalog views as being in
the state "Redistribute in Progress" is restricted. To drop a table in this state, first
run the REDISTRIBUTE DATABASE PARTITION GROUP command with the ABORT or
CONTINUE parameters and an appropriate table list so that redistribution of the
table is either completed or aborted.

Best practices for data redistribution
Data redistribution can be optimally performed when best practices for data
redistribution are followed.

Consider the following best practices when planning your data redistribution:
v Ensure that all documented data redistribution prerequisites have been met.

By default, redistribution operations that are not roll-forward recoverable
perform a precheck and proceed only if the verification completes successfully. To
verify the prerequisites without launching the redistribution operation, specify
the PRECHECK ONLY command parameter.

v Gather information and metrics about your database environment.
If performance changes after the redistribution, you can use the information and
metrics to identify the reason for the change.

v Back up the database before you perform the data redistribution.
This is especially important if the redistribution operation is not roll-forward
recoverable; if a catastrophic failure occurs during the redistribution and the
database is lost or a table is corrupted, you can restore the database from this
backup.

v Perform the redistribution during a planned outage, if possible. The instance
does not need to be stopped; quiescing the database is sufficient.
By default, redistribution operations that are not roll-forward recoverable force
all users off the database and put the database into a quiesced mode. You must
still ensure that any applications or users that are allowed to access the quiesced
database are not making updates, for the following reasons:
– If a disaster occurs, recovering data changes that occurred during the

redistribution is complex and, in some cases, not possible.
– Redistribution typically uses a lot of resources on the servers. Parallel

querying of data might cause both the redistribution and the queries to slow
down significantly. Redistributing the data online can also cause lock timeouts
or deadlocks.

v Perform a redistribution operation that is not roll-forward recoverable.
Data is moved in bulk instead of by internal insert and delete operations. This
reduces the number of times that a table must be scanned and accessed, which
results in better performance.
Log records are not required for each of the insert and delete operations. This
means that you do not need to manage large amounts of active log space and
log archiving space in your system when performing data redistribution.

v A uniform distribution of data might not always result in the best database
performance. If a uniform distribution is not desired, then you can construct
your own target partition map for the redistribution operation.
In general if you redistribute data in a frequently accessed table such that
infrequently accessed data is on few database partitions in the database partition

170 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

group, and the frequently accessed data is distributed over a larger number of
database partitions, you can improve data access performance and throughput
for the most frequently run applications that access this data.

Data redistribution mechanism
Data redistribution can be performed by using different methods in different
interfaces however internally the mechanism by which the data is moved is the
same. It can be helpful to understand this mechanism so that you are aware of
automatic changes being made within the DB2 database environment.

Data redistribution involves the use of the available source distribution map and
target distribution map to identify hash database partitions that have been
assigned to a new location. The new location is identified by a new database
partition number. All rows that correspond to a database partition that have a new
location are moved from the database partition specified in the source distribution
map to the database partition specified in the target distribution map.

Data redistribution internally invokes a utility that performs the following ordered
actions:
1. Obtains a new distribution map ID for the target distribution map, and inserts

it into the SYSCAT.PARTITIONMAPS catalog view.
2. Updates the REDISTRIBUTE_PMAP_ID column in the

SYSCAT.DBPARTITIONGROUPS catalog view for the database partition group
with the new distribution map ID.

3. Adds any new database partitions to the SYSCAT.DBPARTITIONGROUPDEF
catalog view.

4. Sets the IN_USE column in the SYSCAT.DBPARTITIONGROUPDEF catalog
view to 'D' for any database partition that is to be dropped, if the DROP
DBPARTITIONNUM command parameter was specified.

5. Commits all catalog updates.
6. Creates database files for all new database partitions if the ADD

DBPARTITIONNUM command parameter is specified; also might create table
spaces in the new database partitions.

7. Redistributes the data on a table-by-table basis for every table in the database
partition group, in the following steps:
a. Puts the table spaces into the BACKUP PENDING state, if the utility did

not put them into that state already.
b. Locks the row for the table in the SYSTABLES catalog table.
c. Invalidates all packages that involve this table. The distribution map ID

associated with the table changes because the table rows are redistributed.
Because the packages are invalidated, the compiler must obtain the new
database partitioning information for the table and generate packages
accordingly.

d. Locks the table in super exclusive mode (with a z-lock).
e. Redistributes data by using bulk data movement operations.
f. If the redistribution operation succeeds, the distribution map ID for the

table is updated in SYSCAT.TABLES. The utility issues a COMMIT for the
table and continues with the next table in the database partition group. If
the operation fails before the table is fully redistributed, the utility fails.
Any partially redistributed tables are left in the REDIST_IN_PGRS state
and the table is inaccessible until the redistribute operation is either
continued or aborted.

Chapter 7. Partitioned database environments 171

Deletes database files and deletes entries in the
SYSCAT.DBPARTITIONGROUPDEF catalog view for database partitions that
were previously marked to be dropped.

8. Updates the database partition group record in the
SYSCAT.DBPARTITIONGROUPS catalog view to set PMAP_ID to the value of
REDISTRIBUTE_PMAP_ID and REDISTRIBUTE_PMAP_ID to NULL.

9. Deletes the old distribution map from the SYSCAT.PARTITIONMAPS catalog
view.

10. Does a COMMIT for all changes.

When these steps are done data redistribution is complete. For more information
about the success or failure status of the data redistribution and each of the
individual data redistributions, review the redistribution log file.

Redistributing data across database partitions by using the
REDISTRIBUTE DATABASE PARTITION GROUP command

The REDISTRIBUTE DATABASE PARTITION GROUP command is the recommended
interface for performing data redistribution.

Procedure

To redistribute data across database partitions in a database partition group:
1. Optional: Perform a backup of the database. See the BACKUP DATABASE

command.
It is strongly recommended that you create a backup copy of the database
before you perform a data redistribution that is not roll-forward recoverable.

2. Connect to the database partition that contains the system catalog tables. See
the CONNECT statement.

3. Issue the REDISTRIBUTE DATABASE PARTITION GROUP command.

Note: In previous versions of the DB2 database product, this command used
the NODEGROUP keyword instead of the DATABASE PARTITION GROUP keywords.
Specify the following arguments:

database partition group name
You must specify the database partition group within which data is to
be redistributed.

UNIFORM
OPTIONAL: Specifies that data is to be evenly distributed. UNIFORM is
the default when no distribution-type is specified, so if no other
distribution type has been specified, it is valid to omit this option.

USING DISTFILE distfile-name
OPTIONAL: Specifies that a customized distribution is desired and the
file path name of a distribution file that contains data that defines the
desired data skew. The contents of this file is used to generate a target
distribution map.

USING TARGETMAP targetmap-name
OPTIONAL: Specifies that a target data redistribution map is to be
used and the name of file that contains the target redistribution map.

For details, see the REDISTRIBUTE DATABASE PARTITION GROUP command-line
utility information.

172 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

4. Allow the command to run uninterrupted. When the command completes,
perform the following actions if the data redistribution proceeded successfully:
v Take a backup of all table spaces in the database partition group that are in

the BACKUP PENDING state. Alternatively, a full database backup can be
performed.

Note: Table spaces are only put into the BACKUP PENDING state if the
database is recoverable and the NOT ROLLFORWARD RECOVERABLE command
parameter is used in the REDISTRIBUTE DATABASE PARTITION GROUP command.

v Recreate any replicated materialized query tables dropped before
redistribution.

v Execute the RUNSTATS command if the following conditions are met:
– The STATISTICS NONE command parameter was specified in the

REDISTRIBUTE DATABASE PARTITION GROUP command, or the NOT
ROLLFORWARD RECOVERABLE command parameter was omitted. Both of these
conditions mean that the statistics were not collected during data
redistribution.

– There are tables in the database partition group possessing a statistics
profile.

The RUNSTATS command collects data distribution statistics for the SQL
compiler and optimizer to use when choosing data access plans for queries.

v If the NOT ROLLFORWARD RECOVERABLE command parameter was specified,
delete the control files located in the following paths :
– On Linux and UNIX operating systems: diagpath/redist/db_name/

db_partitiongroup_name/timestamp/

– On Windows operating systems: diagpath\redist\db_name\
db_partitiongroup_name\timestamp\

Results

Data redistribution is complete and information about the data redistribution
process is available in the redistribution log file. Information about the distribution
map that was used can be found in the DB2 explain tables.

Redistributing database partition groups using the
STEPWISE_REDISTRIBUTE_DBPG procedure

Data redistribution can be performed using built-in procedures.

Procedure

To redistribute a database partition group using the
STEPWISE_REDISTRIBUTE_DBPG procedure:
1. Analyze the database partition group regarding log space availability and data

skew using the ANALYZE_LOG_SPACE procedure.
The ANALYZE_LOG_SPACE procedure returns a result set (an open cursor) of
the log space analysis results, containing fields for each of the database
partitions of the given database partition group.

2. Create a data distribution file for a given table using the GENERATE_DISTFILE
procedure.
The GENERATE_DISTFILE procedure generates a data distribution file for the
given table and saves it using the provided file name.

Chapter 7. Partitioned database environments 173

3. Create and report the content of a stepwise redistribution plan for the database
partition group using the STEPWISE_REDISTRIBUTE_DBPG procedure.

4. Create a data distribution file for a given table using the
GET_SWRD_SETTINGS and SET_SWRD_SETTINGS procedures.
The GET_SWRD_SETTINGS procedure reads the existing redistribute registry
records for the given database partition group.
The SET_SWRD_SETTINGS procedure creates or makes changes to the
redistribute registry. If the registry does not exist, it creates it and add records
into it. If the registry already exists, it uses overwriteSpec to identify which of
the field values need to be overwritten. The overwriteSpec field enables this
function to take NULL inputs for the fields that do not need to be updated.

5. Redistribute the database partition group according to the plan using the
STEPWISE_REDISTRIBUTE_DBPG procedure.
The STEPWISE_REDISTRIBUTE_DBPG procedure redistributes part of the
database partition group according to the input and the setting file.

Example

The following is an example of a CLP script on AIX:

Set the database you wish to connect to

dbName="SAMPLE"

Set the target database partition group name

dbpgName="IBMDEFAULTGROUP"

Specify the table name and schema

tbSchema="$USER"
tbName="STAFF"

Specify the name of the data distribution file

distFile="$HOME/sqllib/function/$dbName.IBMDEFAULTGROUP_swrdData.dst"

export DB2INSTANCE=$USER
export DB2COMM=TCPIP

Invoke call statements in clp

db2start
db2 -v "connect to $dbName"

Analysing the effect of adding a database partition without applying the changes - a ’what if’
hypothetical analysis
#
- In the following case, the hypothesis is adding database partition 40, 50 and 60 to the
database partition group, and for database partitions 10,20,30,40,50,60, using a respective
target ratio of 1:2:1:2:1:2.
#
NOTE: in this example only partitions 10, 20 and 30 actually exist in the database
partition group

db2 -v "call sysproc.analyze_log_space(’$dbpgName’, ’$tbSchema’, ’$tbName’, 2, ’ ’,
’A’, ’40,50,60’, ’10,20,30,40,50,60’, ’1,2,1,2,1,2’)"

174 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Analysing the effect of dropping a database partition without applying the changes
#
- In the following case, the hypothesis is dropping database partition 30 from the database
partition group, and redistributing the data in database partitions 10 and 20 using a
respective target ratio of 1 : 1
#
NOTE: In this example all database partitions 10, 20 and 30 should exist in the database
partition group

db2 -v "call sysproc.analyze_log_space(’$dbpgName’, ’$tbSchema’, ’$tbName’, 2, ’ ’,
’D’, ’30’, ’10,20’,’1,1’)"

Generate a data distribution file to be used by the redistribute process

db2 -v "call sysproc.generate_distfile(’$tbSchema’, ’$tbName’, ’$distFile’)"

Write a step wise redistribution plan into a registry
#
Setting the 10th parameter to 1, may cause a currently running step wise redistribute
stored procedure to complete the current step and stop, until this parameter is reset
to 0, and the redistribute stored procedure is called again.

db2 -v "call sysproc.set_swrd_settings(’$dbpgName’, 255, 0, ’ ’, ’$distFile’, 1000,
12, 2, 1, 0, ’10,20,30’, ’50,50,50’)"

Report the content of the step wise redistribution plan for the given database
partition group.

db2 -v "call sysproc.get_swrd_settings(’$dbpgName’, 255, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)"

Redistribute the database partition group "dbpgName" according to the redistribution
plan stored in the registry by set_swrd_settings. It starting with step 3 and
redistributes the data until 2 steps in the redistribution plan are completed.

db2 -v "call sysproc.stepwise_redistribute_dbpg(’$dbpgName’, 3, 2)"

Monitoring a data redistribution operation
You can use the LIST UTILITIES command to monitor the progress of data
redistribution operations on a database.

Procedure

Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter:
list utilities show detail

Results

The following is an example of the output from this command:
ID = 1
Type = REDISTRIBUTE
Database Name = RDST819
Partition Number = 11
Description = RDST_V10_015 UNIFORM ADD NODES

COMPACT ON SPACE REUSE RECORD LEVEL
INDEXING MODE INCREMENTAL

Start Time = 02-20-2007 23:21:33.785819
State = Executing

Chapter 7. Partitioned database environments 175

Invocation Type = User
Progress Monitoring:

Estimated Percentage Complete = 8
Summary:

Total Work = 1965600
Completed Work = 155221
Total Number Of Tables = 15
Tables Completed = 0
Tables In Progress = 3

Current Table 1:
Description = "NEWTON "."RDST_V10_015A"
Total Work = 655200 bytes
Completed Work = 55001 bytes

Current Table 2:
Description = "NEWTON "."RDST_V10_015B"
Total Work = 450200 bytes
Completed Work = 54220 bytes

Current Table 3:
Description = "NEWTON "."RDST_V10_015C"
Total Work = 978901 bytes
Completed Work = 46000 bytes

Redistribution event log files
During data redistribution event logging is performed. Event information is logged
to event log files which can later be used to perform error recovery.

When data redistribution is performed, information about each table that is
processed is logged in a pair of event log files. The event log files are named
database-name.database-partition-group-name.timestamp.log and
database-name.database-partition-group-name.timestamp.

The log files are located as follows:
v The homeinst/sqllib/redist directory on Linux and UNIX operating systems
v The db2instprof\instance\redist directory on Windows operating systems,

where db2instprof is the value of the DB2INSTPROF registry variable

The following is an example of the event log file names:
SAMPLE.IBMDEFAULTGROUP.2012012620240204
SAMPLE.IBMDEFAULTGROUP.2012012620240204.log

These files are for a redistribution operation on a database named SAMPLE with a
database partition group named IBMDEFAULTGROUP. The files were created on
January 26, 2012 at 8:24 PM local time.

The three main uses of the event log files are as follows:
v To provide general information about the redistribute operation, such as the old

and new distribution maps.
v Provide users with information that helps them determine which tables have

been redistributed so far by the utility.
v To provide information about each table that has been redistributed, including

the indexing mode being used for the table, an indication of whether the table
was successfully redistributed or not, and the starting and ending times for the
redistribution operation on the table.

176 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Recovery from errors related to data redistribution
Recovery from failures and errors that occur during data redistribution generally
requires that you consult the redistribution event log file. The log file contains
useful information about data redistribution processing, including information
about which table or tables, if any, failed to be processed successfully.

Possible reasons that a redistribution might fail include:
v A documented prerequisite for successful data redistribution was not met.
v A documented restriction on data redistribution was encountered that resulted in

the interruption of the data redistribution.
v During data redistribution a table to be processed was encountered in a

restricted access state, such as LOAD PENDING.
v Any other problem documented in the event log.

When you have identified and resolved the cause of the failure, perform the
recovery by using the same redistribution interfaces that were used when the
operation failed. For example, if the REDISTRIBUTE DATABASE PARTITION GROUP
command was used, once the problem has been addressed you can begin data
redistribution again by reissuing the command with one of the following options:

CONTINUE
This option indicates that the redistribution operation should continue
until all tables specified in the original REDISTRIBUTE DATABASE PARTITION
GROUP command are redistributed.

ABORT This option indicates that the redistribution operation should be aborted
and that all tables that have been redistributed, or partially redistributed,
so far should be returned to the state they were in before the REDISTRIBUTE
DATABASE PARTITION GROUP command was first run on the database
partition group.

These options cannot be specified unless a previous data redistribution operation
failed or completed without redistributing all tables in the database partition
group. The latter case can occur if the TABLE command parameter is used and only
a subset of tables is specified. In these cases, the value of the
REDISTRIBUTE_PMAP_ID column in the SYSCAT.DBPARTITIONGROUPS table
will have a value different from -1.

If an interface other than the REDISTRIBUTE DATABASE PARTITION GROUP command
was used, continuation or abortion of data redistribution is possible by
redistributing data again using the appropriate parameter value for the specified
interface. See the reference information for the interface for the correct parameter
values.

Examples of redistribute event log file entries
Examples of common redistribute event log files entries and descriptions of them
provide a useful reference that can be consulted when troubleshooting errors or
interruptions that occur during data redistribution.

There are two event log files created each time you redistribute a database
partition group. The file named database-name.database-partition-group-
name.timestamp provides a brief summary of the event. For example,
SAMPLE.IBMDEFAULTGROUP.2012012622083174 contains:

Data Redistribution Utility :

Chapter 7. Partitioned database environments 177

The following options have been specified :
Database partition group name : IBMDEFAULTGROUP
Data Redistribution option : U
Redistribute database partition group : uniformly
No. of partitions to be added : 0
List of partitions to be added :
No. of partitions to be dropped : 1
List of partitions to be dropped :
2
The execution of the Data Redistribution operation on :

Begun at Ended at Table (poolID;objectID)
________ ________ _______________________
22.08.32 "DB2INST1"."CL_SCHED" (2;4)

22.08.33 "DB2INST1"."CL_SCHED" (2;4)
22.08.33 "DB2INST1"."DEPARTMENT" (2;5)

22.08.35 "DB2INST1"."DEPARTMENT" (2;5)
22.08.35 "DB2INST1"."EMPLOYEE" (2;6)

22.08.36 "DB2INST1"."EMPLOYEE" (2;6)
...
22.09.13 "DB2INST1"."PRODUCTSUPPLIER" (4;10)

22.09.15 "DB2INST1"."PRODUCTSUPPLIER" (4;10)

--All tables have been successfully redistributed.--

The file named database-name.database-partition-group-name.timestamp.log
provides more detailed log entries. The following examples illustrate some
common log file entries. Although each field value in the redistribute log file
entries is not defined, the examples illustrate the main fields and most common or
most important field values.

Example 1: First event log entry dumped during a redistribute
operation
2012-01-26-22.08.32.607340-300 I1850E893 LEVEL: Event
PID : 27700 TID : 46912984049984 PROC : db2sysc 0
INSTANCE: db2inst1 NODE : 000 DB : SAMPLE
APPHDL : 0-74 APPID: *N0.db2inst1...
AUTHID : DB2INST1 HOSTNAME: ...
EDUID : 65 EDUNAME: db2agent (SAMPLE) 0
FUNCTION: DB2 UDB, relation data serv, sqlrdrin, probe:3852
CHANGE : DB PART MAP ID : IBMDEFAULTGROUP : FROM "1" : TO "3" : success
IMPACT : None
DATA #1 : String, 24 bytes
HexDump Old Map Entries:
DATA #2 : Dumped object of size 65536 bytes at offset 0, 61 bytes
/home/db2inst1/sqllib/redist/27700.65.000.dump.bin
DATA #3 : String, 24 bytes
HexDump New Map Entries:
DATA #4 : Dumped object of size 65536 bytes at offset 65672, 61 bytes
/home/db2inst1/sqllib/redist/27700.65.000.dump.bin

The first event log entry dumped during a redistribute operation provides
information about the distribution map files with which the utility will be
working. In this case, the old distribution map for partition group
IBMDEFAULTGROUP has an id of 1 and the new distribution map has an id of 3.
A hexdump of each distribution map file is made to the redist directory in the
instance path, and the names of the dump files are included in the entry. In this
example, the file named 27700.65.000.dump.bin contains both distribution maps.

178 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example 2: Event log associated with the start of the redistribute
operation
2012-01-26-22.08.32.625956-300 I2744E774 LEVEL: Event
PID : 27700 TID : 46912984049984 PROC : db2sysc 0
INSTANCE: db2inst1 NODE : 000 DB : SAMPLE
APPHDL : 0-74 APPID: *N0.db2inst1...
AUTHID : DB2INST1 HOSTNAME: ...
EDUID : 65 EDUNAME: db2agent (SAMPLE) 0
FUNCTION: DB2 UDB, relation data serv, sqlrdrInitLogfileInfo, probe:1802
START : REDIST DB PART GROUP : IBMDEFAULTGROUP : success
IMPACT : None
DATA #1 : String, 28 bytes
Partitioning Option: UNIFORM
DATA #2 : String, 23 bytes
Statistics: USE PROFILE
DATA #3 : String, 22 bytes
Indexing Mode: REBUILD
DATA #4 : String, 17 bytes
PRECHECK MODE: Y
DATA #5 : String, 16 bytes
QUIESCE MODE: Y

This entry indicates that the start of the redistribute operation has completed
successfully and that redistribution of tables is about to begin. The partitioning
option, statistics option, indexing mode, precheck mode, and quiesce mode to be
used for the redistribution operation are also shown.

In this example, the partitioning option is UNIFORM, which indicates that data will
be redistributed uniformly. Other possible values for this option include TARGETMAP,
CONTINUE and ABORT.

The statistics option is USE PROFILE, which is the default statistics collection mode
and means that if the table has a statistics profile, then statistics will be collected
according to that profile. Otherwise, statistics will not be collected. If the value of
this option is NONE, this indicates that the STATISTICS NONE option was specified,
which means that no statistics are to be collected for the table, regardless of
whether the table has a statistics profile defined or not.

In this example, the indexing mode is REBUILD, which is the default indexing mode
and means that indexes on each table will be rebuilt during data redistribution. If
the value of this option is DEFERRED, it means that the user specified the INDEXING
MODE DEFERRED option, which results in indexes being marked invalid during
redistribution. Such indexes must be rebuilt after data redistribution is complete.

In this example, the precheck mode is Y, which is the default precheck mode for
data redistributions that are NOT ROLLFORWARD RECOVERABLE. This mode indicates
that the redistribution operation begins only if the verification completes
successfully.

In this example, the quiesce mode is Y, which is the default quiesce mode for data
redistributions that are NOT ROLLFORWARD RECOVERABLE. This mode indicates that the
redistribution operation forces all users off the database and puts it into a quiesced
mode.

Example 3: Event log associated with start of redistributing a table
2012-01-26-22.08.32.843840-300 I4072E541 LEVEL: Event
PID : 27700 TID : 46912874998080 PROC : db2sysc 0
INSTANCE: db2inst1 NODE : 000 DB : SAMPLE
APPHDL : 0-113 APPID: *N0.DB2....

Chapter 7. Partitioned database environments 179

AUTHID : DB2INST1 HOSTNAME: ...
EDUID : 181 EDUNAME: db2agent (SAMPLE) 0
FUNCTION: DB2 UDB, database utilities - Redistribute, sqlurRedistributeTableByID
, probe:8743
START : REDIST TABLE : "DB2INST1"."CL_SCHED" : success
IMPACT : None

This entry indicates that the start of redistributing table "DB2INST1"."CL_SCHED"
was successful.

Example 4: Event log associated with successful completion of
redistribution for a table
2012-01-26-22.08.33.659785-300 I4614E541 LEVEL: Event
PID : 27700 TID : 46912874998080 PROC : db2sysc 0
INSTANCE: db2inst1 NODE : 000 DB : SAMPLE
APPHDL : 0-113 APPID: *N0.DB2....
AUTHID : DB2INST1 HOSTNAME: ...
EDUID : 181 EDUNAME: db2agent (SAMPLE) 0
FUNCTION: DB2 UDB, database utilities - Redistribute, sqlurRedistributeTableByID
, probe:9350
STOP : REDIST TABLE : "DB2INST1"."CL_SCHED" : success
IMPACT : None

This entry indicates that table "DB2INST1"."CL_SCHED" has been successfully
redistributed. If an error had occurred during processing of this table, this entry
would indicate failure.

Example 5: Event log associated with successful completion of
redistribution of a database partition group
2012-01-26-22.09.16.746325-300 I28994E515 LEVEL: Event
PID : 27700 TID : 46912984049984 PROC : db2sysc 0
INSTANCE: db2inst1 NODE : 000 DB : SAMPLE
APPHDL : 0-74 APPID: *N0.db2inst1....
AUTHID : DB2INST1 HOSTNAME: ...
EDUID : 65 EDUNAME: db2agent (SAMPLE) 0
FUNCTION: DB2 UDB, relation data serv, sqlrdrdt, probe:1308
STOP : REDIST DB PART GROUP : IBMDEFAULTGROUP : success
IMPACT : None

This entry indicates that redistribution of database partition group
IBMDEFAULTGROUP completed successfully. If the operation had not completed
successfully, this entry would indicate failure.

These example entries can be a helpful reference when you consult your log files
to resolve errors that occur during data redistribution or to verify that data
redistribution complete successfully.

Scenario: Redistributing data in new database partitions
This scenario shows how to add new database partitions to a database and
redistribute data between the database partitions. The REDISTRIBUTE DATABASE
PARTITION GROUP command is demonstrated as part of showing how to redistribute
data on different table sets within a database partition group.

About this task

Scenario:
A database DBPG1 has two database partitions, specified as (0, 1) and a
database partition group definition (0, 1).

180 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The following table spaces are defined on database partition group
DBPG_1:
v Table space TS1 - this table space has two tables, T1 and T2
v Table space TS2 - this table space has three tables defined, T3, T4, and

T5

Starting in Version 9.7, you can add database partitions while the database
is running and while applications are connected to it. However, the
operation can be performed offline in this scenario by changing the default
value of the DB2_FORCE_OFFLINE_ADD_PARTITION registry variable to TRUE.

Procedure

To redistribute data between the database partitions in DBPG1:
1. Identify objects that must be disabled or removed before the redistribution.

a. Replicate MQTs: This type of MQT is not supported as part of the
redistribution operation. They must be dropped before running the
redistribution and recreated afterward.
SELECT tabschema, tabname

FROM syscat.tables
WHERE partition_mode = ’R’

b. Write-to-table event monitors: Disable any automatically activated
write-to-table event monitors that have a table that resides in the database
partition group to be redistributed.
SELECT distinct evmonname

FROM syscat.eventtables E
JOIN syscat.tables T on T.tabname = E.tabname

AND T.tabschema = E.tabschema
JOIN syscat.tablespaces S on S.tbspace = T.tbspace

AND S.ngname = ’DBPG_1’

c. Explain tables: It is recommended to create the explain tables in a single
partition database partition group. If they are defined in a database
partition group that requires redistribution, however, and the data
generated to date does not need to be maintained, consider dropping
them. The explain tables can be redefined once the redistribution is
complete.

d. Table access mode and state: Ensure that all tables in the database partition
groups to be redistributed are in full access mode and normal table states.
SELECT DISTINCT TRIM(T.OWNER) || \’.\’ || TRIM(T.TABNAME)

AS NAME, T.ACCESS_MODE, A.LOAD_STATUS
FROM SYSCAT.TABLES T, SYSCAT.DBPARTITIONGROUPS
N, SYSIBMADM.ADMINTABINFO A
WHERE T.PMAP_ID = N.PMAP_ID
AND A.TABSCHEMA = T.OWNER
AND A.TABNAME = T.TABNAME
AND N.DBPGNAME = ’DBPG_1’
AND (T.ACCESS_MODE <> ’F’ OR A.LOAD_STATUS IS NOT NULL)

e. Statistics profiles: If a statistics profile is defined for the table, table
statistics can be updated as part of the redistribution process. Having the
redistribution utility update the statistics for the table reduces I/O, as all
the data is scanned for the redistribution and no additional scan of the
data is needed for RUNSTATS.
RUNSTATS on table schema.table

USE PROFILE runstats_profile
SET PROFILE ONLY

Chapter 7. Partitioned database environments 181

2. Review the database configuration. The util_heap_sz is critical to the data
movement processing between database partitions - allocate as much memory
as possible to util_heap_sz for the duration of the redistribution. Sufficient
sortheap is required, if index rebuild is done as part of the redistribution.
Increase util_heap_sz and sortheap as necessary to improve redistribution
performance.

3. Retrieve the database configuration settings to be used for the new database
partitions. When adding database partitions, a default database configuration
is used. As a result, it is important to update the database configuration on
the new database partitions before the REDISTRIBUTE DATABASE PARTITION
GROUP command is issued. This sequence of events ensures that the
configuration is balanced.
SELECT name,

CASE WHEN deferred_value_flags = ’AUTOMATIC’
THEN deferred_value_flags
ELSE substr(deferred_value,1,20)
END

AS deferred_value
FROM sysibmadm.dbcfg
WHERE dbpartitionnum = existing-node

AND deferred_value != ’’
AND name NOT IN (’hadr_local_host’,’hadr_local_svc’,’hadr_peer_window’,

’hadr_remote_host’,’hadr_remote_inst’,’hadr_remote_svc’,
’hadr_syncmode’,’hadr_timeout’,’backup_pending’,’codepage’,
’codeset’,’collate_info’,’country’,’database_consistent’,
’database_level’,’hadr_db_role’,’log_retain_status’,
’loghead’,’logpath’,’multipage_alloc’,’numsegs’,’pagesize’,
’release’,’restore_pending’,’restrict_access’,
’rollfwd_pending’,’territory’,’user_exit_status’,
’number_compat’,’varchar2_compat’,’database_memory’)

4. Back up the database (or the table spaces in the pertinent database partition
group), before starting the redistribution process. This action ensures a recent
recovery point.

5. Add three new database partitions to the database. Issue the following
commands:
START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3 WITHOUT TABLESPACES;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4 WITHOUT TABLESPACES;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAME5
PORT PORT5 WITHOUT TABLESPACES;

If the DB2_FORCE_OFFLINE_ADD_PARTITION is set to TRUE, new database
partitions are not visible to the instance until it has been shut down and
restarted. For example:
STOP DBM;
START DBM;

6. Define system temporary table space containers on the newly defined
database partitions.
ALTER TABLESPACE tablespace_name

ADD container_information
ON dbpartitionnums (3 to 5)

7. Add the new database partitions to the database partition groups. The
following command changes the DBPG_1 definition from (0, 1) to (0, 1, 3, 4,
5):
ALTER DATABASE PARTITION GROUP DBPG_1

ADD dbpartitionnums (3 to 5)
WITHOUT TABLESPACES

182 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

8. Define permanent data table space containers on the newly defined database
partitions.
ALTER TABLESPACE tablespace_name

ADD container_information
ON dbpartitionnums (3 to 5)

9. Apply the database configuration settings to the new database partitions (or
issue a single UPDATE DB CFG command against all database partitions).

10. Capture the definition of and then drop any replicated MQTs existing in the
database partition groups to be redistributed.
db2look -d DBPG1 -e -z

schema -t replicated_MQT_table_names
-o repMQTs.clp

11. Disable any write-to-table event monitors that exist in the database partition
groups to be redistributed.
SET EVENT MONITOR monitor_name STATE 0

12. Run the redistribution utility to redistribute uniformly across all database
partitions.
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
UNIFORM STOP AT 2006-03-10-07.00.00.000000;

Let us presume that the command ran successfully for tables T1, T2 and T3,
and then stopped due to the specification of the STOP AT option.
To abort the data redistribution for the database partition group and to revert
the changes made to tables T1, T2, and T3, issue the following command:
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1
NOT ROLLFORWARD RECOVERABLE ABORT;

You might abort the data redistribution when an error or an interruption
occurs and you do not want to continue the redistribute operation. For this
scenario, presume that this command was run successfully and that tables T1
and T2 were reverted to their original state.
To redistribute T5 and T4 only with 5000 4K pages as DATA BUFFER:
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
UNIFORM TABLE (T5, T4) ONLY DATA BUFFER 5000;

If the command ran successfully, the data in tables T4 and T5 have been
redistributed successfully.
To complete the redistribution of data on table T1, T2, and T3 in a specified
order, issue:
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
CONTINUE TABLE (T1) FIRST;

Specifying TABLE (T1) FIRST forces the database manager to process table T1
first so that it can return to being online (read-only) before other tables. All
other tables are processed in an order determined by the database manager.

Note:

v The ADD DBPARTITIONNUM parameter can be specified in the REDISTRIBUTE
DATABASE PARTITION GROUP command as an alternative to performing the
ALTER DATABASE PARTITION GROUP and ALTER TABLESPACE
statements in steps 7 on page 182 and 8. When a database partition is
added by using this command parameter, containers for table spaces are
based on the containers of the corresponding table space on the lowest
numbered existing partition in the database partition group.

v The REDISTRIBUTE DATABASE PARTITION GROUP command in this example is
not roll-forward recoverable.

Chapter 7. Partitioned database environments 183

v After the REDISTRIBUTE DATABASE PARTITION GROUP command finishes, all
the table spaces it accessed will be left in the BACKUP PENDING state.
Such table spaces must be backed up before the tables they contain are
accessible for write operations.

For more information, refer to the “REDISTRIBUTE DATABASE PARTITION
GROUP command”.
Consider also specifying a table list as input to the REDISTRIBUTE DATABASE
PARTITION GROUP command to enforce the order that the tables are processed.
The redistribution utility will move the data (compressed and compacted).
Optionally, indexes will be rebuilt and statistics updated if statistics profiles
are defined. Therefore instead of previous command, the following script can
be run:
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1

NOT ROLLFORWARD RECOVERABLE uniform
TABLE (t1, t2,...) FIRST;

184 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 8. Multidimensional clustering tables

Multidimensional clustering (MDC) provides an elegant method for clustering data
in tables along multiple dimensions in a flexible, continuous, and automatic way.
MDC can significantly improve query performance.

In addition, MDC can significantly reduce the overhead of data maintenance, such
as reorganization and index maintenance operations during insert, update, and
delete operations. MDC is primarily intended for data warehousing and large
database environments, but it can also be used in online transaction processing
(OLTP) environments.

New insert time clustering tables
Insert time clustering (ITC) tables provide an effective way of maintaining data
clustering and easier management of space utilization.

ITC tables have similar characteristics to MDC tables. For example, these table
types use block based allocation and block indexes. ITC and MDC tables differ in
how data is clustered. ITC tables cluster data by using a virtual column which
clusters rows, that are inserted at a similar time, together. Clustering dimensions
on MDC tables are specified by the creator.

ITC tables are created with the CREATE TABLE command by specifying the
ORGANIZE BY INSERT TIME clause.

A convenient, online way to convert existing tables to ITC tables is the
ADMIN_MOVE_TABLE procedure. Another method to convert existing tables to
ITC tables is export/import or a load from table. Existing tables cannot be altered
to become ITC tables.

Comparison of regular and MDC tables
Regular tables have indexes that are record-based. Any clustering of the indexes is
restricted to a single dimension. Prior to Version 8, the database manager
supported only single-dimensional clustering of data, through clustering indexes.
Using a clustering index, the database manager attempts to maintain the physical
order of data on pages in the key order of the index when records are inserted and
updated in the table.

Clustering indexes greatly improve the performance of range queries that have
predicates containing the key (or keys) of the clustering index. Performance is
improved with a good clustering index because only a portion of the table needs to
be accessed, and more efficient prefetching can be performed.

Data clustering using a clustering index has some drawbacks, however. First,
because space is filled up on data pages over time, clustering is not guaranteed.
An insert operation will attempt to add a record to a page nearby to those having
the same or similar clustering key values, but if no space can be found in the ideal
location, it will be inserted elsewhere in the table. Therefore, periodic table
reorganizations may be necessary to re-cluster the table and to set up pages with
additional free space to accommodate future clustered insert requests.

© Copyright IBM Corp. 2014 185

Second, only one index can be designated as the “clustering” index, and all other
indexes will be unclustered, because the data can only be physically clustered
along one dimension. This limitation is related to the fact that the clustering index
is record-based, as all indexes have been prior to Version 8.1.

Third, because record-based indexes contain a pointer for every single record in the
table, they can be very large in size.

The table in Figure 29 has two record-based indexes defined on it:
v A clustering index on “Region”
v Another index on “Year”

The “Region” index is a clustering index which means that as keys are scanned in
the index, the corresponding records should be found for the most part on the
same or neighboring pages in the table. In contrast, the “Year” index is unclustered
which means that as keys are scanned in that index, the corresponding records will
likely be found on random pages throughout the table. Scans on the clustering
index will exhibit better I/O performance and will benefit more from sequential
prefetching, the more clustered the data is to that index.

MDC introduces indexes that are block-based. “Block indexes” point to blocks or
groups of records instead of to individual records. By physically organizing data in
an MDC table into blocks according to clustering values, and then accessing these
blocks using block indexes, MDC is able not only to address all of the drawbacks
of clustering indexes, but to provide significant additional performance benefits.

First, MDC enables a table to be physically clustered on more than one key, or
dimension, simultaneously. With MDC, the benefits of single-dimensional
clustering are therefore extended to multiple dimensions, or clustering keys. Query
performance is improved where there is clustering of one or more specified
dimensions of a table. Not only will these queries access only those pages having
records with the correct dimension values, these qualifying pages will be grouped
into blocks, or extents.

Table

Clustering index

Clustering
indexRegion

Unclustered
index

Year

Figure 29. A regular table with a clustering index

186 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Second, although a table with a clustering index can become unclustered over
time, in most cases an MDC table is able to maintain and guarantee its clustering
over all dimensions automatically and continuously. This eliminates the need to
frequently reorganize MDC tables to restore the physical order of the data. While
record order within blocks is always maintained, the physical ordering of blocks
(that is, from one block to another, in a block index scan) is not maintained on
inserts (or even on the initial load, in some cases).

Third, in MDC the clustering indexes are block-based. These indexes are drastically
smaller than regular record-based indexes, so take up much less disk space and are
faster to scan.

Block indexes for MDC tables
This topic shows how records are organized in MDC tables using block indexes.

The MDC table shown in Figure 30 is physically organized such that records
having the same “Region” and “Year” values are grouped together into separate
blocks, or extents. An extent is a set of contiguous pages on disk, so these groups
of records are clustered on physically contiguous data pages. Each table page
belongs to exactly one block, and all blocks are of equal size (that is, an equal
number of pages). The size of a block is equal to the extent size of the table space,
so that block boundaries line up with extent boundaries. In this case, two block
indexes are created, one for the “Region” dimension, and another for the “Year”
dimension. These block indexes contain pointers only to the blocks in the table. A
scan of the “Region” block index for all records having “Region” equal to “East”
will find two blocks that qualify. All records, and only those records, having
“Region” equal to “East” will be found in these two blocks, and will be clustered
on those two sets of contiguous pages or extents. At the same time, and completely
independently, a scan of the “Year” index for records between 1999 and 2000 will
find three blocks that qualify. A data scan of each of these three blocks will return
all records and only those records that are between 1999 and 2000, and will find
these records clustered on the sequential pages within each of the blocks.

Multidimensional clustering index

East

97

East

99

North

98

South

99

West

00

Year
Block

Block
indexRegion

Figure 30. A multidimensional clustering table

Chapter 8. Multidimensional clustering tables 187

In addition to these clustering improvements, MDC tables provide the following
benefits:
v Probes and scans of block indexes are much faster due to their incredibly small

size in relation to record-based indexes
v Block indexes and the corresponding organization of data allows for fine-grained

“database partition elimination”, or selective table access
v Queries that utilize the block indexes benefit from the reduced index size,

optimized prefetching of blocks, and guaranteed clustering of the corresponding
data

v Reduced locking and predicate evaluation is possible for some queries
v Block indexes have much less overhead associated with them for logging and

maintenance because they only need to be updated when adding the first record
to a block, or removing the last record from a block

v Data rolled in can reuse the contiguous space left by data previously rolled out.

Note: An MDC table defined with even just a single dimension can benefit from
these MDC attributes, and can be a viable alternative to a regular table with a
clustering index. This decision should be based on many factors, including the
queries that make up the workload, and the nature and distribution of the data in
the table. Refer to “Choosing MDC table dimensions” on page 206 and “Creating
MDC or ITC tables” on page 198.

When you create a table, you can specify one or more keys as dimensions along
which to cluster the data. Each of these MDC dimensions can consist of one or
more columns similar to regular index keys. A dimension block index will be
automatically created for each of the dimensions specified, and it will be used by
the optimizer to quickly and efficiently access data along each dimension. A
composite block index will also automatically be created, containing all columns
across all dimensions, and will be used to maintain the clustering of data over
insert and update activity. A composite block index will only be created if a single
dimension does not already contain all the dimension key columns. The composite
block index may also be selected by the optimizer to efficiently access data that
satisfies values from a subset, or from all, of the column dimensions.

Note: The usefulness of this index during query processing depends on the order
of its key parts. The key part order is determined by the order of the columns
encountered by the parser when parsing the dimensions specified in the
ORGANIZE BY DIMENSIONS clause of the CREATE TABLE statement. Refer to
“Block indexes for MDC and ITC tables” on page 205 for more information.

Block indexes are structurally the same as regular indexes, except that they point
to blocks instead of records. Block indexes are smaller than regular indexes by a
factor of the block size multiplied by the average number of records on a page.
The number of pages in a block is equal to the extent size of the table space, which
can range from 2 to 256 pages. The page size can be 4 KB, 8 KB, 16 KB, or 32 KB.

188 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

As seen in Figure 31, in a block index there is a single index entry for each block
compared to a single entry for each row. As a result, a block index provides a
significant reduction in disk usage and significantly faster data access.

In an MDC table, every unique combination of dimension values form a logical
cell, which may be physically made up of one or more blocks of pages. The logical
cell will only have enough blocks associated with it to store the records having the
dimension values of that logical cell. If there are no records in the table having the
dimension values of a particular logical cell, no blocks will be allocated for that
logical cell. The set of blocks that contain data having a particular dimension key
value is called a slice.

An MDC table can be partitioned. The block index on a partitioned MDC table can
be either nonpartitioned or partitioned:
v For a partitioned MDC table created with DB2 Version 9.7 Fix Pack 1 or later

releases, the block indexes on the table are partitioned.
v For a partitioned MDC table created with DB2 V9.7 or earlier releases, the block

indexes on the table are nonpartitioned.

Nonpartitioned block index are supported after upgrading the database to DB2
V9.7 Fix Pack 1 or later releases.

Block indexes and query performance for MDC tables
Scans on any of the block indexes of an MDC table provide clustered data access,
because each block identifier (BID) corresponds to a set of sequential pages in the
table that is guaranteed to contain data having the specified dimension value.
Moreover, dimensions or slices can be accessed independently from each other
through their block indexes without compromising the cluster factor of any other
dimension or slice. This provides the multidimensionality of multidimensional
clustering.

Queries that take advantage of block index access can benefit from a number of
factors that improve performance.

…

Row index Block index

Figure 31. How row indexes differ from block indexes

Chapter 8. Multidimensional clustering tables 189

v Because block indexes are so much smaller than regular indexes, a block index
scan is very efficient.

v Prefetching of data pages does not rely on sequential detection when block
indexes are used. The DB2 database manager looks ahead in the index,
prefetching blocks of data into memory using big-block I/O, and ensuring that
the scan does not incur I/O costs when data pages are accessed in the table.

v The data in the table is clustered on sequential pages, optimizing I/O and
localizing the result set to a selected portion of the table.

v If a block-based buffer pool is used, and the block size is equal to the extent
size, MDC blocks are prefetched from sequential pages on disk into sequential
pages in memory, further increasing the positive effect of clustering on
performance.

v The records from each block are retrieved using a mini-relational scan of its data
pages, which is often faster than scanning data through RID-based retrieval.

Queries can use block indexes to narrow down a portion of the table having a
particular dimension value or range of values. This provides a fine-grained form of
“database partition elimination”, that is, block elimination. This can translate into
better concurrency for the table, because other queries, loads, inserts, updates and
deletes may access other blocks in the table without interacting with this query's
data set.

If the Sales table is clustered on three dimensions, the individual dimension block
indexes can also be used to find the set of blocks containing records which satisfy
a query on a subset of all of the dimensions of the table. If the table has
dimensions of “YearAndMonth”, “Region” and “Product”, this can be thought of
as a logical cube, as illustrated in Figure 32 on page 191.

190 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Four block indexes will be created for the MDC table shown in Figure 32: one for
each of the individual dimensions, “YearAndMonth”, “Region”, and “Product”;
and another with all of these dimension columns as its key. To retrieve all records
having a “Product” equal to “ProductA” and “Region” equal to “Northeast”, the
database manager would first search for the ProductA key from the “Product”
dimension block index. (See Figure 33.) The database manager then determines the
blocks containing all records having “Region” equal to “Northeast”, by looking up
the “Northeast” key in the “Region” dimension block index. (See Figure 34.)

Pro
duct

A
Pro

duct
B

1

5

3 16 204

2

34 4524

9

30

39

12

14 31

50 54

56

18

32 33

42

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

19

41

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

28

37

27

23

46

40

35

47

Pro
duct

Figure 32. Multidimensional table with dimensions of 'Region', 'YearAndMonth', and 'Product'

Product A 1 2 3 11 20 22 24 2625 30 56.

Figure 33. Key from dimension block index on 'Product'

Northeast 11 20 23 26 27 28 35 37 40 45 46 47 51 5453 56

Figure 34. Key from dimension block index on 'Region'

Chapter 8. Multidimensional clustering tables 191

Block index scans can be combined through the use of the logical AND and logical
OR operators and the resulting list of blocks to scan also provides clustered data
access.

Using the previous example, in order to find the set of blocks containing all
records having both dimension values, you have to find the intersection of the two
slices. This is done by using the logical AND operation on the BID lists from the
two block index keys. The common BID values are 11, 20, 26, 45, 54, 51, 53, and 56.

The following example illustrates how to use the logical OR operation with block
indexes to satisfy a query having predicates that involve two dimensions. Figure 35
assumes an MDC table where the two dimensions are “Colour” and “Nation”. The
goal is to retrieve all those records in the MDC table that meet the conditions of
having “Colour” of “blue” or having a “Nation” name “USA”.

This diagram shows how the result of two separate block index scans are
combined to determine the range of values that meet the predicate restrictions.
(The numbers indicate record identifiers (RIDs), slot fields.)

Key from the dimension block index on Colour

Key from the dimension block index on Nation

Resulting block ID (BID) list of blocks to scan

Blue

USA

4,0

4,0

12,0

12,0

12,0

48,0

48,0

92,0

52,0

52,0

76,0

92,076,0

76,0

100,0

100,0 112,0 216,0 276,0

100,0 112,0

216,0

216,0 276,0

(OR)

Figure 35. How the logical OR operation can be used with block indexes

192 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Based on the predicates from the SELECT statement, two separate dimension block
index scans are done; one for the blue slice, and another for the USA slice. A
logical OR operation is done in memory in order to find the union of the two
slices, and determine the combined set of blocks found in both slices (including the
removal of duplicate blocks).

Once the database manager has list of blocks to scan, the database manager can do
a mini-relational scan of each block. Prefetching of the blocks can be done, and will
involve just one I/O per block, as each block is stored as an extent on disk and can
be read into the buffer pool as a unit. If predicates need to be applied to the data,
dimension predicates need only be applied to one record in the block, because all
records in the block are guaranteed to have the same dimension key values. If
other predicates are present, the database manager only needs to check these on
the remaining records in the block.

MDC tables also support regular RID-based indexes. Both RID and block indexes
can be combined using a logical AND operation, or a logical OR operation, with
the index. Block indexes provide the optimizer with additional access plans to
choose from, and do not prevent the use of traditional access plans (RID scans,
joins, table scans, and others). Block index plans will be costed by the optimizer
along with all other possible access plans for a particular query, and the most
inexpensive plan will be chosen.

The DB2 Design Advisor can help to recommend RID-based indexes on MDC
tables, or to recommend MDC dimensions for a table.

Maintaining clustering automatically during INSERT
operations

Automatic maintenance of data clustering in an MDC table is ensured using the
composite block index. It is used to dynamically manage and maintain the physical
clustering of data along the dimensions of the table over the course of INSERT
operations.

A key is found in this composite block index only for each of those logical cells of
the table that contain records. This block index is therefore used during an INSERT
to quickly and efficiently determine if a logical cell exists in the table, and only if
so, determine exactly which blocks contain records having that cell's particular set
of dimension values.

When an insert occurs:
v The composite block index is probed for the logical cell corresponding to the

dimension values of the record to be inserted.
v If the key of the logical cell is found in the index, its list of block ID (BIDs) gives

the complete list of blocks in the table having the dimension values of the
logical cell. (See Figure 36 on page 194.) This limits the numbers of extents of the
table to search for space to insert the record.

v If the key of the logical cell is not found in the index; or, if the extents
containing these values are full, a new block is assigned to the logical cell. If
possible, the reuse of an empty block in the table occurs first before extending
the table by another new extent of pages (a new block).

Chapter 8. Multidimensional clustering tables 193

Data records having particular dimension values are guaranteed to be found in a
set of blocks that contain only and all the records having those values. Blocks are
made up of consecutive pages on disk. As a result, access to these records is
sequential, providing clustering. This clustering is automatically maintained over
time by ensuring that records are only inserted into blocks from cells with the
record's dimension values. When existing blocks in a logical cell are full, an empty
block is reused or a new block is allocated and added to the set of blocks for that
logical cell. When a block is emptied of data records, the block ID (BID) is
removed from the block indexes. This disassociates the block from any logical cell
values so that it can be reused by another logical cell in the future. Thus, cells and
their associated block index entries are dynamically added and removed from the
table as needed to accommodate only the data that exists in the table. The
composite block index is used to manage this, because it maps logical cell values
to the blocks containing records having those values.

Because clustering is automatically maintained in this way, reorganization of an
MDC table is never needed to re-cluster data. However, reorganization can still be
used to reclaim space. For example, if cells have many sparse blocks where data
could fit on fewer blocks, or if the table has many pointer-overflow pairs, a
reorganization of the table would compact records belonging to each logical cell
into the minimum number of blocks needed, as well as remove pointer-overflow
pairs.

The following example illustrates how the composite block index can be used for
query processing. If you want to find all records in the table in Figure 36 having
“Region” of 'Northwest' and “YearAndMonth” of '9903', the database manager
would look up the key value 9903, Northwest in the composite block index, as
shown in Figure 37 on page 195. The key is made up a key value, namely '9903,
Northwest', and a list of BIDs. You can see that the only BIDs listed are 3 and 10,
and indeed there are only two blocks in the Sales table containing records having
these two particular values.

…

9902,
Northwest

9902,
Southwest

9902,
South-central

9901,
South-central

9901,
Northeast

9903,
Northwest

1 5 329

39

12 14 31 18

32 33

42 11

6 7 1015

8 17 43

19

41

= block 1

Legend

1

9901,
Northwest

Composite block index on YearAndMonth, Region

Figure 36. Composite block index on 'YearAndMonth', 'Region'

194 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

To illustrate the use of the composite block index during insert, take the example
of inserting another record with dimension values 9903 and Northwest. The
database manager would look up this key value in the composite block index and
find BIDs for blocks 3 and 10. These blocks contain all records and the only records
having these dimension key values. If there is space available, the database
manager inserts the new record into one of these blocks. If there is no space on
any pages in these blocks, the database manager allocates a new block for the
table, or uses a previously emptied block in the table. Note that, in this example,
block 48 is currently not in use by the table. The database manager inserts the
record into the block and associates this block to the current logical cell by adding
the BID of the block to the composite block index and to each dimension block
index. See Figure 38 for an illustration of the keys of the dimension block indexes
after the addition of Block 48.

Block maps for MDC and ITC tables
For MDC tables, when a block is emptied, it is disassociated from its current
logical cell values by removing its BID from the block indexes. The block can then
be reused by another logical cell. For ITC tables, all blocks are associated with a
single cell. Freeing a block within a cell means it can be reused by a subsequent
insert. This reuse reduces the need to extend the table with new blocks.

When a new block is needed, previously emptied blocks need to be found quickly
without having to search the table for them.

The block map is a structure used to facilitate locating empty blocks in the MDC
or ITC table. The block map is stored as a separate object:
v In SMS, as a separate .BKM file
v In DMS, as a new object descriptor in the object table.

The block map is an array containing an entry for each block of the table. Each
entry comprises a set of status bits for a block.

9903, Northwest 3 10

Key value BID list

Block ID (BID)

Figure 37. Key from composite block index on 'YearAndMonth', 'Region'

Northwest

9903

9903, Northwest

1

3

3

3

4

5 6 7 8 10

10

10 48

16 20 22 26 30 36 48

1312 14 32 48

Figure 38. Keys from the dimension block indexes after addition of Block 48

Chapter 8. Multidimensional clustering tables 195

In Figure 39, the left side shows the block map array with different entries for each
block in the table. The right side shows how each extent of the table is being used:
some are free, most are in use, and records are only found in blocks marked in use
in the block map. For simplicity, only one of the two dimension block indexes is
shown in the diagram.

Note:

1. There are pointers in the block index only to blocks which are marked IN USE
in the block map.

2. The first block is reserved. This block contains system records for the table.

Free blocks are found easily for use in a cell, by scanning the block map for FREE
blocks, that is, blocks without any bits set.

Table scans also use the block map to access only extents currently containing data.
Any extents not in use do not need to be included in the table scan at all. To
illustrate, a table scan in this example (Figure 39) would start from the third extent
(extent 2) in the table, skipping the first reserved extent and the subsequent empty
extent, scan blocks 2, 3 and 4 in the table, skip the next extent (not touching the
data pages of that extent), and then continue scanning from there.

Reserved Free — no status
bits set

In use — data
assigned to a cell

Legend

Extents in the table
Block
map

00 X

X

11 F

F

22 U

33 U

44 U

U

55 F

66 U

……

North,
1996

North, 1997

South, 1999

East, 1996

Year

Figure 39. How a block map works

196 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Updates to MDC and ITC tables
In an MDC table, updates of non-dimension values are done in place just as they
are done with regular tables. If the update of a record in an MDC or ITC table
causes the record to grow in length and it no longer fits on the page, another page
with sufficient space is found.

The search for this new page begins within the same block. If there is no space in
that block, the algorithm to insert a new record is used to find a page in the logical
cell with enough space. There is no need to update the block indexes, unless no
space is found in the cell and a new block needs to be added to the cell.

For an ITC table, if there is insufficient room in the block to place the updated row,
the row is moved to a new block. This move causes the row to no longer be
clustered with rows that were inserted at a similar time.

Considerations for MDC tables only

Updates of dimension values are treated as a delete of the current record followed
by an insert of the changed record, because the record is changing the logical cell
to which it belongs. If the deletion of the current record causes a block to be
emptied, the block index needs to be updated. Similarly, if the insert of the new
record requires it to be inserted into a new block, the block index needs to be
updated.

MDC tables are treated like any existing table; that is, triggers, referential integrity,
views, and materialized query tables can all be defined upon them.

Considerations for MDC and ITC tables

Block indexes need be only updated when inserting the first record into a block or
when deleting the last record from a block. Index resources and requirements
associated with block indexes for maintenance and logging is therefore much less
than regular indexes. For every block index that would have otherwise been a
regular index, the maintenance and logging resources and requirement is greatly
reduced.

When you are reusing blocks that were recently made empty, a conditional Z lock
on the block must be used to ensure that it is not currently being scanned by a UR
scanner.

Deleting from MDC and ITC tables
When a record is deleted in an MDC or ITC table, if it is not the last record in the
block, the database manager merely deletes the record and removes its RID from
any record-based indexes defined on the table.

When a delete removes the last record in a block, the database manager frees the
block. The block is freed by changing the IN_USE status bit and removing the BID
of the block from all block indexes. If there are record-based indexes as well, the
RID is removed from them.

Note: Therefore, block index entries are removed once per entire block and only if
the block is emptied, instead of once per deleted row in a record-based index.

Chapter 8. Multidimensional clustering tables 197

Multidimensional and insert time clustering extent management
Freeing data extents from within the multidimensional (MDC) or insert time
clustering (ITC) table is done through the reorganization of the table.

Within an MDC and ITC table, a block map tracks all the data extents belonging to
a table and indicates which blocks and extents have data on them and which do
not. Blocks with data are marked as being “in use”. Whenever deletions on MDC
or ITC tables, or rollouts on MDC tables happen, block entries with the block map
are no longer marked “in use” but rather are freed for reuse by the table.

However, these blocks and extents cannot be used by other objects within the table
space. You can release these free data extents from the table through the
reorganization of the table. You can use the REORG TABLE command with the
RECLAIM EXTENTS parameter so the table is available and online to your users while
space is reclaimed. The freeing of extents from the MDC or ITC table is only
supported for tables in DMS table spaces.

The REORG TABLE command uses the RECLAIM EXTENTS parameter to free extents
from exclusive use by the MDC or ITC table and makes the space available for use
by other database objects within the table space.

The option also allows for your control of concurrent access to the MDC or ITC
table while the extents are being freed. Write access is the default, read access and
no access are also choices to control concurrent access.

If the MDC or ITC table is also range or database partitioned, by default the
freeing of extents occurs on all data or database partitions. You can run the
command to free extents only on a specific partition by specifying a partition name
(for data partitions) or a partition number (for database partitions).

Both the REORG TABLE command and the db2Reorg API can be used to free extents.

Automatic support is available to make the freeing of extents part of your
automatic maintenance activities for the database. To enable a reorganization to
free extents in an MDC or ITC table, the auto_maint, auto_tbl_maint, and
auto_reorg database configuration parameters must all have a value of ON. The
configuring of these database configuration parameters can be carried out using
the command line. On a DB2 instance where the database partitioning feature is
enabled, the configuring of the parameters must be issued on the catalog partition.

A maintenance policy controls when an automatic reorganization of an MDC or
ITC table takes place to free unused extents. The DB2 system stored procedures
AUTOMAINT_SET_POLICY and AUTOMAINT_SET_POLICYFILE are used to set
this maintenance policy. XML is used to store the automated maintenance policy.

Creating MDC or ITC tables
There are many factors to consider when creating MDC or ITC tables. Decisions on
how to create, place, and use your MDC or ITC tables can be influenced by your
current database environment (for example, whether you have a partitioned
database or not), and by your choice of dimensions.

198 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Moving data from existing tables to MDC tables

To improve query performance and reduce the requirements of data maintenance
operations in a data warehouse or large database environment, you can move data
from regular tables into multidimensional clustering (MDC) tables. To move data
from an existing table to an MDC table:
1. export your data,
2. drop the original table (optional),
3. create a multidimensional clustering (MDC) table (using the CREATE TABLE

statement with the ORGANIZE BY DIMENSIONS clause),
4. load the MDC table with your data.

An ALTER TABLE procedure called SYSPROC.ALTOBJ can be used to carry out
the translation of data from an existing table to an MDC table. The procedure is
called from the DB2 Design Advisor. The time required to translate the data
between the tables can be significant and depends on the size of the table and the
amount of data that needs to be translated.

The ALTOBJ procedure runs the following steps when altering a table:
1. drop all dependent objects of the table,
2. rename the table,
3. create the table with the new definition,
4. recreate all dependent objects of the table,
5. transform existing data in the table into the data required in the new table.

That is, the selecting of data from the old table and loading that data into the
new one where column functions can be used to transform from an old data
type to a new data type.

Moving data from existing tables to ITC tables

To reduce the requirements of data maintenance operations, you can move data
from regular tables into insert time clustering (ITC) tables. To move data from an
existing table to an ITC table use the online table move stored procedure.

The ExampleBank scenario shows how data from an existing table is moved into
an ITC table. The scenario also shows how convenient reclaiming space is when
using ITC tables. For more information, see the Related concepts links.

MDC Advisor feature on the DB2 Design Advisor

The DB2 Design Advisor (db2advis) has an MDC feature. This feature recommends
clustering dimensions for use in an MDC table, including coarsifications on base
columns in order to improve workload performance. The term coarsification refers
to a mathematical expression to reduce the cardinality (the number of distinct
values) of a clustering dimension. A common example is coarsification by date,
week of the date, month of the date, or quarter of the year.

A requirement to use the MDC feature of the DB2 Design Advisor is the existence
of at least several extents of data within the database. The DB2 Design Advisor
uses the data to model data density and cardinality.

If the database does not have data in the tables, the DB2 Design Advisor does not
recommend MDC, even if the database contains empty tables but has a mocked up
set of statistics to imply a populated database.

Chapter 8. Multidimensional clustering tables 199

The recommendation includes identifying potential generated columns that define
coarsification of dimensions. The recommendation does not include possible block
sizes. The extent size of the table space is used when making recommendations for
MDC tables. The assumption is that the recommended MDC table is created in the
same table space as the existing table, and therefore has the same extent size. The
recommendations for MDC dimensions change depending on the extent size of the
table space, because the extent size affects the number of records that can fit into a
block or cell. The extent size directly affects the density of the cells.

Only single-column dimensions, and not composite-column dimensions, are
considered, although single or multiple dimensions might be recommended for the
table. The MDC feature recommends coarsifications for most supported data types
with the goal of reducing the cardinality of cells in the resulting MDC solution.
The data type exceptions include: CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC data types. All supported data types are cast to INTEGER and are
coarsified through a generated expression.

The goal of the MDC feature of the DB2 Design Advisor is to select MDC solutions
that result in improved performance. A secondary goal is to keep the storage
expansion of the database constrained to a modest level. A statistical method is
used to determine the maximum storage expansion on each table.

The analysis operation within the advisor includes not only the benefits of block
index access but also the effect of MDC on insert, update, and delete operations
against dimensions of the table. These actions on the table have the potential to
cause records to be moved between cells. The analysis operation also models the
potential performance effect of any table expansion resulting from the organization
of data along particular MDC dimensions.

The MDC feature is run by using the -m <advise type> flag on the db2advis
utility. The “C” advise type is used to indicate multidimensional clustering tables.
The advise types are: “I” for index, “M” for materialized query tables, “C” for
MDC, and “P” for partitioned database environment. The advise types can be used
in combination with each other.

Note: The DB2 Design Advisor does not explore tables that are less than 12 extents
in size.

The advisor analyzes both MQTs and regular base tables when coming up with
recommendations.

The output from the MDC feature includes:
v Generated column expressions for each table for coarsified dimensions that

appear in the MDC solution.
v An ORGANIZE BY DIMENSIONS clause recommended for each table.

The recommendations are reported both to stdout and to the ADVISE tables that
are part of the explain facility.

MDC tables and partitioned database environments

Multidimensional clustering can be used in a partitioned database environment. In
fact, MDC can complement a partitioned database environment. A partitioned
database environment is used to distribute data from a table across multiple
physical or logical database partitions to:

200 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v take advantage of multiple machines to increase processing requests in parallel,
v increase the physical size of the table beyond the limits of a single database

partition,
v improve the scalability of the database.

The reason for distributing a table is independent of whether the table is an MDC
table or a regular table. For example, the rules for the selection of columns to make
up the distribution key are the same. The distribution key for an MDC table can
involve any column, whether those columns make up part of a dimension of the
table or not.

If the distribution key is identical to a dimension from the table, then each
database partition contains a different portion of the table. For instance, if our
example MDC table is distributed by color across two database partitions, then the
Color column is used to divide the data. As a result, the Red and Blue slices might
be found on one database partition and the Yellow slice on the other. If the
distribution key is not identical to the dimensions from the table, then each
database partition has a subset of data from each slice. When choosing dimensions
and estimating cell occupancy, note that on average the total amount of data per
cell is determined by taking all of the data and dividing by the number of
database partitions.

MDC tables with multiple dimensions

If you know that certain predicates are heavily used in queries, you can cluster the
table on the columns involved. You can do this by using the ORGANIZE BY
DIMENSIONS clause.

Example 1:
CREATE TABLE T1 (c1 DATE, c2 INT, c3 INT, c4 DOUBLE)

ORGANIZE BY DIMENSIONS (c1, c3, c4)

The table in Example 1 is clustered on the values within three columns forming a
logical cube (that is, having three dimensions). The table can now be logically
sliced up during query processing on one or more of these dimensions such that
only the blocks in the appropriate slices or cells are processed by the relational
operators involved. The size of a block (the number of pages) is the extent size of
the table.

MDC tables with dimensions based on more than one column

Each dimension can be made up of one or more columns. As an example, you can
create a table that is clustered on a dimension containing two columns.

Example 2:
CREATE TABLE T1 (c1 DATE, c2 INT, c3 INT, c4 DOUBLE)

ORGANIZE BY DIMENSIONS (c1, (c3, c4))

In Example 2, the table is clustered on two dimensions, c1 and (c3,c4). Thus, in
query processing, the table can be logically sliced up on either the c1 dimension, or
on the composite (c3, c4) dimension. The table has the same number of blocks as
the table in Example 1, but one less dimension block index. In Example 1, there are
three dimension block indexes, one for each of the columns c1, c3, and c4. In
Example 2, there are two dimension block indexes, one on the column c1 and the
other on the columns c3 and c4. The main difference between the two approaches

Chapter 8. Multidimensional clustering tables 201

is that, in Example 1, queries involving c4 can use the dimension block index on c4
to quickly and directly access blocks of relevant data. In Example 2, c4 is a second
key part in a dimension block index, so queries involving c4 involve more
processing. However, in Example 2 there is one less block index to maintain and
store.

The DB2 Design Advisor does not make recommendations for dimensions
containing more than one column.

MDC tables with column expressions as dimensions

Column expressions can also be used for clustering dimensions. The ability to
cluster on column expressions is useful for rolling up dimensions to a coarser
granularity, such as rolling up an address to a geographic location or region, or
rolling up a date to a week, month, or year. To implement the rolling up of
dimensions in this way, you can use generated columns. This type of column
definition allows the creation of columns using expressions that can represent
dimensions. In Example 3, the statement creates a table clustered on one base
column and two column expressions.

Example 3:
CREATE TABLE T1(c1 DATE, c2 INT, c3 INT, c4 DOUBLE,

c5 DOUBLE GENERATED ALWAYS AS (c3 + c4),
c6 INT GENERATED ALWAYS AS (MONTH(C1)))

ORGANIZE BY DIMENSIONS (c2, c5, c6)

In Example 3, column c5 is an expression based on columns c3 and c4, and column
c6 rolls up column c1 to a coarser granularity in time. The statement clusters the
table based on the values in columns c2, c5, and c6.

Range queries on generated column dimensions

Range queries on a generated column dimension require monotonic column
functions. Expressions must be monotonic to derive range predicates for
dimensions on generated columns. If you create a dimension on a generated
column, queries on the base column are able to take advantage of the block index
on the generated column to improve performance, with one exception. For range
queries on the base column (date, for example) to use a range scan on the
dimension block index, the expression used to generate the column in the CREATE
TABLE statement must be monotonic. Although a column expression can include
any valid expression (including user-defined functions (UDFs)), if the expression is
non-monotonic, only equality or IN predicates are able to use the block index to
satisfy the query when these predicates are on the base column.

As an example, assume that you create an MDC table with dimensions on the
generated column month, where month = INTEGER (date)/100. For queries on the
dimension (month), block index scans can be done. For queries on the base column
(date), block index scans can also be done to narrow down which blocks to scan,
and then apply the predicates on date to the rows in those blocks only.

The compiler generates additional predicates to be used in the block index scan.
For example, with the query:

SELECT * FROM MDCTABLE WHERE DATE > "1999-03-03" AND DATE < "2000-01-15"

202 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

the compiler generates the additional predicates: “month >= 199903” and “month
<= 200001” which can be used as predicates for a dimension block index scan.
When scanning the resulting blocks, the original predicates are applied to the rows
in the blocks.

A non-monotonic expression allows equality predicates to be applied to that
dimension. A good example of a non-monotonic function is MONTH() as seen in
the definition of column c6 in Example 3. If the c1 column is a date, timestamp, or
valid string representation of a date or timestamp, then the function returns an
integer value in the range of 1 to 12. Even though the output of the function is
deterministic, it actually produces output similar to a step function (that is, a cyclic
pattern):
MONTH(date(’01/05/1999’)) = 1
MONTH(date(’02/08/1999’)) = 2
MONTH(date(’03/24/1999’)) = 3
MONTH(date(’04/30/1999’)) = 4
...
MONTH(date(’12/09/1999’)) = 12
MONTH(date(’01/18/2000’)) = 1
MONTH(date(’02/24/2000’)) = 2
...

Although date in this example is continually increasing, MONTH(date) is not.
More specifically, it is not guaranteed that whenever date1 is larger than date2,
MONTH(date1) is greater than or equal to MONTH(date2). It is this condition that
is required for monotonicity. This non-monotonicity is allowed, but it limits the
dimension in that a range predicate on the base column cannot generate a range
predicate on the dimension. However, a range predicate on the expression is fine,
for example, where month(c1) between 4 and 6. This can use the index on the
dimension in the typical way, with a starting key of 4 and a stop key of 6.

To make this function monotonic, include the year as the high-order part of the
month. There is an extension to the INTEGER built-in function to help in defining
a monotonic expression on date. INTEGER(date) returns an integer representation
of the date, which then can be divided to find an integer representation of the year
and month. For example, INTEGER(date(’2000/05/24’)) returns 20000524, and
therefore INTEGER(date(’2000/05/24’))/100 = 200005. The function
INTEGER(date)/100 is monotonic.

Similarly, the built-in functions DECIMAL and BIGINT also have extensions so that
you can derive monotonic functions. DECIMAL(timestamp) returns a decimal
representation of a timestamp, and this can be used in monotonic expressions to
derive increasing values for month, day, hour, minute, and so on. BIGINT(date)
returns a big integer representation of the date, similar to INTEGER(date).

The database manager determines the monotonicity of an expression, where
possible, when creating the generated column for the table, or when creating a
dimension from an expression in the dimensions clause. Certain functions can be
recognized as monotonicity-preserving, such as DAYS() or YEAR(). Also, various
mathematical expressions such as division, multiplication, or addition of a column
and a constant are monotonicity-preserving. Where DB2 determines that an
expression is not monotonicity-preserving, or if it cannot determine this, the
dimension supports only the use of equality predicates on its base column.

Chapter 8. Multidimensional clustering tables 203

Load for MDC and ITC tables
If you roll data in to your data warehouse on a regular basis, you can use
multidimensional clustering (MDC) tables to your advantage. In MDC tables, load
first reuses previously emptied blocks in the table before extending the table and
adding new blocks for the remaining data.

After you delete a set of data, for example, all the data for a month, you can use
the load utility to roll in the next month of data and it can reuse the blocks that
were emptied after the (committed) deletion. You can also choose to use the MDC
rollout feature with deferred cleanup. After the rollout, which is also a deletion, is
committed, the blocks are not free and cannot yet be reused. A background process
is invoked to maintain the record ID (RID) based indexes. When the maintenance
is complete, the blocks are freed and can be reused. For insert time clustering (ITC)
tables, blocks that are not in use are reused where possible before the table is
extended. This includes blocks that were reclaimed. Rollout is not supported on
ITC tables.

When loading data into MDC tables, the input data can be either sorted or
unsorted. If unsorted, and the table has more than one dimension, consider doing
the following:
v Increase the util_heap_sz configuration parameter.

To improve the performance of the load utility when loading MDC tables,
increase the util_heap_sz database configuration parameter value. The mdc-load
algorithm performs better when more memory is available to the utility. This
reduces disk I/O during the clustering of data that is performed during the load
phase. If the LOAD command is being used to load several MDC tables
concurrently, util_heap_sz must be increased accordingly.

v Increase the value given with the DATA BUFFER clause of the LOAD command.
Increasing this value affects a single load request. The utility heap size must be
large enough to accommodate the possibility of multiple concurrent load
requests. Beginning in version 9.5, the value of the DATA BUFFER parameter of the
LOAD command can temporarily exceed util_heap_sz if more memory is
available in the system.

v Ensure the page size used for the buffer pool is the same as the largest page size
for the temporary table space.
During the load phase, extra logging for the maintenance of the block map is
performed. There are approximately two extra log records per extent allocated.
To ensure good performance, the logbufsz database configuration parameter
must be set to a value that takes this into account.

The following restrictions apply when loading data into MDC or ITC tables:
v The SAVECOUNT parameter in the LOAD command is not supported.
v The totalfreespace file type modifier is not supported since these tables

manage their own free space.
v The anyorder file type modifier is required for MDC or ITC tables. If a load is

executed into an MDC or ITC table without the anyorder modifier, it is explicitly
enabled by the utility.

When using the LOAD command with an MDC or ITC table, violations of unique
constraints are handled as follows:

204 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v If the table included a unique key before the load operation and duplicate
records are loaded into the table, the original record remains and the new
records are deleted during the delete phase.

v If the table did not include a unique key prior to the load operation and both a
unique key and duplicate records are loaded into the table, only one of the
records with the unique key is loaded and the others are deleted during the
delete phase.

Note: There is no explicit technique for determining which record is loaded and
which is deleted.

Load begins at a block boundary, so it is best used for data belonging to new cells,
for the initial populating of a table, and for loading additional data into ITC tables.

MDC and ITC load operations always have a build phase since all MDC and ITC
tables have block indexes.

Logging considerations for MDC and ITC tables
Index maintenance and logging is reduced when dimensions and therefore block
indexes are used, as compared to cases where RID indexes are used.

The database manager removes the BID from the block indexes only when the last
record in an entire block is deleted. This index operation is also logged at this time.
Similarly, the database manager inserts a BID into the block index only when a
record is inserted into a new block. That record must be the first record of a logical
cell or an insert to a logical cell of blocks that are currently full. This index
operation is also logged at this time.

Because blocks can be 2 - 256 pages of records, this block index maintenance and
logging is relatively small. Inserts and deletes to the table and to RID indexes are
still logged. For roll out deletions, the deleted records are not logged. Instead, the
pages that contain the records are made to look empty by reformatting parts of the
pages. The changes to the reformatted parts are logged, but the records themselves
are not logged.

Block indexes for MDC and ITC tables
Dimension block indexes are created when you define dimensions for a
multidimensional clustering (MDC) table. A composite block index is created when
you define multiple dimensions. If you define only one dimension for your MDC
table, or if your table is an insert time clustering (ITC) table, the database manager
creates only one block index, which serves as both the dimension block index and
the composite block index. If your MDC or ITC table is partitioned, the block
index is also partitioned.

If you create an MDC table that has dimensions on column A and on (column A,
column B), the database manager creates a dimension block index on column A
and a dimension block index on (column A, column B). Because a composite block
index is a block index of all the dimensions in the table, the dimension block index
on (column A, column B) also serves as the composite block index.

The composite block index for an MDC table is used in query processing to access
data with specific dimension values. The order of key parts in the composite block
index has no effect on insert processing, but might affect its use or applicability for
query processing. The order of key parts is determined by the order of columns in
the ORGANIZE BY DIMENSIONS clause when the MDC table is created.

Chapter 8. Multidimensional clustering tables 205

Multicolumn dimensions in the ORGANIZE BY DIMENSION clause take
precedence when there is a duplicate. For example, if a table is created by using
the following statement, the composite block index is created on columns (c4, c3,
c1, c2).

CREATE TABLE t1 (c1 int, c2 int, c3 int, c4 int)
ORGANIZE BY DIMENSIONS (c1, c4, (c3, c1), c2)

Although c1 is specified twice in the ORGANIZE BY DIMENSIONS clause, it is
used only once as a key part for the composite block index; (c3, c1) replaces (c1).
The following example shows you how to create a table whose composite block
index has a column order of (c1, c2, c3, c4):

CREATE TABLE t1 (c1 int, c2 int, c3 int, c4 int)
ORGANIZE BY DIMENSIONS (c2, c1, (c2, c3), c4)

Choosing MDC table dimensions
After you have decided to work with multidimensional clustering tables, the
dimensions that you choose will depend not only on the type of queries that will
use the tables and benefit from block-level clustering, but even more importantly
on the amount and distribution of your actual data.

Queries that will benefit from MDC

The first consideration when choosing clustering dimensions for your table is the
determination of which queries will benefit from clustering at a block level.
Typically, there will be several candidates when choosing dimensions based on the
queries that make up the work to be done on the data. The ranking of these
candidates is important. Columns that are involved in equality or range predicate
queries, and especially columns with low cardinalities, show the greatest benefit
from clustering dimensions. Consider creating dimensions for foreign keys in an
MDC fact table involved in star joins with dimension tables. Keep in mind the
performance benefits of automatic and continuous clustering on more than one
dimension, and of clustering at the extent or block level.

There are many queries that can take advantage of multidimensional clustering.
Examples of such queries follow. In some of these examples, assume that there is
an MDC table t1 with dimensions c1, c2, and c3. In the other examples, assume
that there is an MDC table mdctable with dimensions color and nation.

Example 1:
SELECT FROM t1 WHERE c3 < 5000

This query involves a range predicate on a single dimension, so it can be internally
rewritten to access the table using the dimension block index on c3. The index is
scanned for block identifiers (BIDs) of keys having values less than 5000, and a
mini-relational scan is applied to the resulting set of blocks to retrieve the actual
records.

Example 2:
SELECT FROM t1 WHERE c2 IN (1,2037)

This query involves an IN predicate on a single dimension, and can trigger block
index based scans. This query can be internally rewritten to access the table using
the dimension block index on c2. The index is scanned for BIDs of keys having
values of 1 and 2037, and a mini-relational scan is applied to the resulting set of
blocks to retrieve the actual records.

206 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example 3:
SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ AND NATION=’USA’

To carry out this query request, the following is done (and is shown in Figure 40):
v A dimension block index lookup is done: one for the Blue slice and another for

the USA slice.
v A block logical AND operation is carried out to determine the intersection of the

two slices. That is, the logical AND operation determines only those blocks that
are found in both slices.

v A mini-relation scan of the resulting blocks in the table is carried out.

Example 4:
SELECT ... FROM t1

WHERE c2 > 100 AND c1 = ’16/03/1999’ AND c3 > 1000 AND c3 < 5000

Key from the dimension block index on Colour

Key from the dimension block index on Nation

Resulting block ID (BID) list of blocks to scan

Blue

USA

4,0

12,0

12,0

12,0

76,0

48,0

92,0

52,0 76,0

76,0

100,0

100,0

100,0 112,0

216,0

216,0 276,0

216,0

(AND)

Figure 40. A query request that uses a logical AND operation with two block indexes

Chapter 8. Multidimensional clustering tables 207

This query involves range predicates on c2 and c3 and an equality predicate on c1,
along with a logical AND operation. This can be internally rewritten to access the
table on each of the dimension block indexes:
v A scan of the c2 block index is done to find BIDs of keys having values greater

than 100
v A scan of the c3 block index is done to find BIDs of keys having values between

1000 and 5000
v A scan of the c1 block index is done to find BIDs of keys having the value

'16/03/1999'.

A logical AND operation is then done on the resulting BIDs from each block scan,
to find their intersection, and a mini-relational scan is applied to the resulting set
of blocks to find the actual records.

Example 5:
SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ OR NATION=’USA’

To carry out this query request, the following is done:
v A dimension block index lookup is done: one for each slice.
v A logical OR operation is done to find the union of the two slices.
v A mini-relation scan of the resulting blocks in the table is carried out.

Example 6:
SELECT FROM t1 WHERE c1 < 5000 OR c2 IN (1,2,3)

This query involves a range predicate on the c1 dimension, an IN predicate on the
c2 dimension, and a logical OR operation. This can be internally rewritten to access
the table on the dimension block indexes c1 and c2. A scan of the c1 dimension
block index is done to find values less than 5000 and another scan of the c2
dimension block index is done to find values 1, 2, and 3. A logical OR operation is
done on the resulting BIDs from each block index scan, then a mini-relational scan
is applied to the resulting set of blocks to find the actual records.

Example 7:
SELECT FROM t1 WHERE c1 = 15 AND c4 < 12

This query involves an equality predicate on the c1 dimension and another range
predicate on a column that is not a dimension, along with a logical AND
operation. This can be internally rewritten to access the dimension block index on
c1, to get the list of blocks from the slice of the table having value 15 for c1. If
there is a RID index on c4, an index scan can be done to retrieve the RIDs of
records having c4 less than 12, and then the resulting list of blocks undergoes a
logical AND operation with this list of records. This intersection eliminates RIDs
not found in the blocks having c1 of 15, and only those listed RIDs found in the
blocks that qualify are retrieved from the table.

If there is no RID index on c4, then the block index can be scanned for the list of
qualifying blocks, and during the mini-relational scan of each block, the predicate
c4 < 12 can be applied to each record found.

Example 8:

Given a scenario where there are dimensions for color, year, nation and a row ID
(RID) index on the part number, the following query is possible.

208 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ AND PARTNO < 1000

To carry out this query request, the following is done (and is shown in Figure 41):
v A dimension block index lookup and a RID index lookup are done.
v A logical AND operation is used with the blocks and RIDs to determine the

intersection of the slice and those rows meeting the predicate condition.
v The result is only those RIDs that also belong to the qualifying blocks.

Example 9:
SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ OR PARTNO < 1000

Key from the dimension block index on Colour

Row IDs (RID) from RID index on Partno

Resulting row IDs to fetch

Blue

6,4

4,0

8,12

6,4

12,0

50,1

50,1

48,0

77,3

52,0 76,0

107,0

77,3

100,0

115,0

216,0

219,5

219,5

276,9

(AND)

Figure 41. A query request that uses a logical AND operation on a block index and a row ID
(RID) index

Chapter 8. Multidimensional clustering tables 209

To carry out this query request, the following is done (and is shown in Figure 42):
v A dimension block index lookup and a RID index lookup are done.
v A logical OR operation is used with the blocks and RIDs to determine the union

of the slice and those rows meeting the predicate condition.
v The result is all of the rows in the qualifying blocks, plus additional RIDs that

fall outside the qualifying blocks that meet the predicate condition. A
mini-relational scan of each of the blocks is performed to retrieve their records,
and the additional records outside these blocks are retrieved individually.

Example 10:
SELECT ... FROM t1 WHERE c1 < 5 OR c4 = 100

This query involves a range predicate on dimension c1, an equality predicate on a
non-dimension column c4, and a logical OR operation. If there is a RID index on

Key from the dimension block index on Colour

Row IDs (RID) from RID index on Partno

Resulting blocks and RIDs to fetch

Blue

6,4

4,0

4,0

8,12

12,0

8,12

12,0

50,1

48,0

107,0

48,0

77,3

52,0

52,0 76,0

107,0

76,0

115,0

100,0

115,0

100,0

216,0

219,5

216.0

276,9

276,9

,

(OR)

Figure 42. How block index and row ID using a logical OR operation works

210 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

the c4 column, this might be internally rewritten to do a logical OR operation
using the dimension block index on c1 and the RID index on c4. If there is no
index on c4, a table scan might be chosen instead, because all records must be
checked. The logical OR operation uses a block index scan on c1 for values less
than 4, and a RID index scan on c4 for values of 100. A mini-relational scan is
performed on each block that qualifies, because all records within those blocks will
qualify, and any additional RIDs for records outside of those blocks are retrieved
as well.

Example 11:
SELECT FROM t1,d1,d2,d3

WHERE t1.c1 = d1.c1 and d1.region = ’NY’
AND t2.c2 = d2.c3 and d2.year=’1994’
AND t3.c3 = d3.c3 and d3.product=’basketball’

This query involves a star join. In this example, t1 is the fact table and it has
foreign keys c1, c2, and c3, corresponding to the primary keys of d1, d2, and d3,
the dimension tables. The dimension tables do not need to be MDC tables. Region,
year, and product are columns of the dimension tables that can be indexed using
regular or block indexes (if the dimension tables are MDC tables). When accessing
the fact table on c1, c2, and c3 values, block index scans of the dimension block
indexes on these columns can be done, followed by a logical AND operation using
the resulting BIDs. When there is a list of blocks, a mini-relational scan can be
done on each block to get the records.

Density of cells

The choices made for the appropriate dimensions and for the extent size are of
critical importance to MDC design. These factors determine the table's expected
cell density. They are important because an extent is allocated for every existing
cell, regardless of the number of records in the cell. The right choices will take
advantage of block-based indexing and multidimensional clustering, resulting in
performance gains. The goal is to have densely-filled blocks to get the most benefit
from multidimensional clustering, and to get optimal space utilization.

Thus, a very important consideration when designing a multidimensional table is
the expected density of cells in the table, based on present and anticipated data.
You can choose a set of dimensions, based on query performance, that cause the
potential number of cells in the table to be very large, based on the number of
possible values for each of the dimensions. The number of possible cells in the
table is equal to the Cartesian product of the cardinalities of each of the
dimensions. For example, if you cluster the table on dimensions Day, Region and
Product and the data covers 5 years, you might have 1821 days * 12 regions * 5
products = 109 260 different possible cells in the table. Any cell that contains only
a few records still requires an entire block of pages to store its records. If the block
size is large, this table might end up being much larger than it needs to be.

There are several design factors that can contribute to optimal cell density:
v Varying the number of dimensions.
v Varying the granularity of one or more dimensions.
v Varying the block (extent) size and page size of the table space.

Carry out the following steps to achieve the best design possible:
1. Identify candidate dimensions.

Chapter 8. Multidimensional clustering tables 211

Determine which queries will benefit from block-level clustering. Examine the
potential workload for columns which have some or all of the following
characteristics:
v Range and equality of any IN-list predicates
v Roll-in or roll-out of data
v Group-by and order-by clauses
v Join clauses (especially in star schema environments).

2. Estimate the number of cells.
Identify how many potential cells are possible in a table organized along a set
of candidate dimensions. Determine the number of unique combinations of the
dimension values that occur in the data. If the table exists, an exact number can
be determined for the current data by selecting the number of distinct values in
each of the columns that will be dimensions for the table. Alternatively, an
approximation can be determined if you only have the statistics for a table, by
multiplying the column cardinalities for the dimension candidates.

Note: If your table is in a partitioned database environment, and the
distribution key is not related to any of the dimensions considered, determine
an average amount of data per cell by taking all of the data and dividing by
the number of database partitions.

3. Estimate the space occupancy or density.
On average, consider that each cell has one partially-filled block where only a
few rows are stored. There will be more partially-filled blocks as the number of
rows per cell becomes smaller. Also, note that on average (assuming little or no
data skew), the number of records per cell can be found by dividing the
number of records in the table by the number of cells. However, if your table is
in a partitioned database environment, consider how many records there are
per cell on each database partition, because blocks are allocated for data on a
database partition basis. When estimating the space occupancy and density in a
partitioned database environment, consider the average number of records per
cell on each database partition, not across the entire table.
There are several ways to improve the density:
v Reduce the block size so that partially-filled blocks take up less space.

Reduce the size of each block by making the extent size appropriately small.
Each cell that has a partially-filled block, or that contains only one block with
few records on it, wastes less space. The trade-off, however, is that for those
cells having many records, more blocks are needed to contain them. This
increases the number of block identifiers (BIDs) for these cells in the block
indexes, making these indexes larger and potentially resulting in more inserts
and deletes to these indexes as blocks are more quickly emptied and filled. It
also results in more small groupings of clustered data in the table for these
more populated cell values, versus a smaller number of larger groupings of
clustered data.

v Reduce the number of cells by reducing the number of dimensions, or by
increasing the granularity of the cells with a generated column.
You can roll up one or more dimensions to a coarser granularity to give it a
lower cardinality. For example, you can continue to cluster the data in the
previous example on Region and Product, but replace the dimension of Day
with a dimension of YearAndMonth. This gives cardinalities of 60 (12 months
times 5 years), 12, and 5 for YearAndMonth, Region, and Product, with a
possible number of cells of 3600. Each cell then holds a greater range of
values and is less likely to contain only a few records.

212 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Take into account predicates commonly used on the columns involved, such
as whether many are on Month of Date, or Quarter, or Day. This affects the
desirability of changing the granularity of the dimension. If, for example,
most predicates are on particular days and you have clustered the table on
Month, DB2 for Linux, UNIX, and Windows can use the block index on
YearAndMonth to quickly narrow down which months contain the required
days and access only those associated blocks. When scanning the blocks,
however, the Day predicate must be applied to determine which days
qualify. However, if you cluster on Day (and Day has high cardinality), the
block index on Day can be used to determine which blocks to scan, and the
Day predicate only has to be reapplied to the first record of each cell that
qualifies. In this case, it might be better to consider rolling up one of the
other dimensions to increase the density of cells, as in rolling up the Region
column, which contains 12 different values, to Regions West, North, South
and East, using a user-defined function.

Scenario: MDC tables
As a scenario of how to work with an MDC table, we will imagine an MDC table
called “Sales” that records sales data for a national retailer. The table is clustered
along the dimensions “YearAndMonth” and “Region”. Records in the table are
stored in blocks, which contain enough consecutive pages on disk to fill an extent.

In Figure 43 on page 214, a block is represented by a rectangle, and is numbered
according to the logical order of allocated extents in the table. The grid in the
diagram represents the logical database partitioning of these blocks, and each
square represents a logical cell. A column or row in the grid represents a slice for a
particular dimension. For example, all records containing the value 'South-central'
in the “Region” column are found in the blocks contained in the slice defined by
the 'South-central' column in the grid. In fact, each block in this slice also only
contains records having 'South-central' in the “Region” field. Thus, a block is
contained in this slice or column of the grid if and only if it contains records
having 'South-central' in the “Region” field.

Chapter 8. Multidimensional clustering tables 213

To determine which blocks comprise a slice, or equivalently, which blocks contain
all records having a particular dimension key value, a dimension block index is
automatically created for each dimension when the table is created.

In Figure 44 on page 215, a dimension block index is created on the
“YearAndMonth” dimension, and another on the “Region” dimension. Each
dimension block index is structured in the same manner as a traditional RID index,
except that at the leaf level the keys point to a block identifier (BID) instead of a
record identifier (RID). A RID identifies the location of a record in the table by a
physical page number and a slot number - the slot on the page where the record is
found. A BID represents a block by the physical page number of the first page of
that extent, and a dummy slot (0). Because all pages in the block are physically
consecutive starting from that one, and we know the size of the block, all records
in the block can be found using this BID.

A slice, or the set of blocks containing pages with all records having a particular
key value in a dimension, will be represented in the associated dimension block
index by a BID list for that key value.

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

1

5

3 16 204

2

34 4524

30

12

14 31

50 54

56

18

32 33

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

9

39

19

41

42

Figure 43. Multidimensional table with dimensions of 'Region' and 'YearAndMonth' that is
called Sales

214 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Figure 45 shows how a key from the dimension block index on “Region” would
appear. The key is made up of a key value, namely 'South-central', and a list of
BIDs. Each BID contains a block location. In Figure 45, the block numbers listed are
the same that are found in the 'South-central' slice found in the grid for the Sales
table (see Figure 43 on page 214).

Similarly, to find the list of blocks containing all records having '9902' for the
“YearAndMonth” dimension, look up this value in the “YearAndMonth”
dimension block index, shown in Figure 46 on page 216.

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

1

5

3 16 204

2

34 4524

30

12

14 31

50 54

56

18

32 33

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

9

39

19

41

42

Dimension block
index on Region

Dimension
block index on
YearAndMonth

Figure 44. Sales table with dimensions of 'Region' and 'YearAndMonth' showing dimension
block indexes

South-central 9 16 18 19 22 24 25 30 36 39 41 42

Key value BID list

Block ID (BID)

Figure 45. Key from the dimension block index on 'Region'

Chapter 8. Multidimensional clustering tables 215

Scenario: Creating an ITC table
Insert time clustering (ITC) tables can help Olivia, and ExampleBANK, manage
database size more effectively without manual intervention or database downtime.

Olivia creates an insert time clustering table as a test (the ORGANIZE BY INSERT
TIME clause ensures that the table is created as an ITC table):
DB2 CREATE TABLE T1(c1 int, c2 char(100), ...) IN TABLESPACE1

ORGANIZE BY INSERT TIME;
DB2 CREATE INDEX INX1 ON T1(C1);

Scenario: Converting an existing table to an ITC table
Olivia sees the benefit of using insert time clustering tables. Olivia now wants to
use this solution on existing tables in the production database. This change is
accomplished by using the online table move utility.

Olivia has a table that exists on a system with the following schema. In this
scenario, assume that the table actually has a column which is useful for placing
data in approximate insert time order (C4).
CREATE TABLE EXMP.T1 (C1 INT, C2 CHAR(50), C3 BIGINT, C4 DATE) IN TABLESPACE1

CREATE INDEX INX1 ON EXMP.T1(C4)

Olivia now creates the target table for the conversion:
DB2 CREATE TABLE EXMP.NEWT1(C1 INT, C2 CHAR(50), C3 BIGINT, C4 DATE)

IN TABLESPACE1 ORGANIZE BY INSERT TIME

The schema is identical to the original table but by using the ORGANIZE BY
INSERT TIME keywords, Olivia ensures that this table is clustered by time.

Olivia uses the online table move stored procedure to perform the conversion.

Since a clustering index exists on column C4, it gives Olivia a good approximation
of insert time ordering. For tables that do not have such a column, the space
reclamation benefits of moving to an insert time clustering table is not apparent for
some time. This benefit is not immediately apparent because newer data is
grouped together with older data.
DB2 CALL SYSPROC.ADMIN_MOVE_TABLE(’EXMP’, ’T1’, ’NEWT1’, NULL, ’MOVE’)

EXMP.T1 is now in a time clustering table format. It is ready to have extents
reclaimed after subsequent batch deletions.

9902 2 5 7 8 14 15 17 18 31 32 33 43

Key value BID list

Block ID (BID)

Figure 46. Key from the dimension block index on 'YearAndMonth'

216 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 9. Partitioned tables

Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table.

A data partition or range is part of a table, containing a subset of rows of a table,
and stored separately from other sets of rows. Data from a given table is
partitioned into multiple data partitions or ranges based on the specifications
provided in the PARTITION BY clause of the CREATE TABLE statement. These
data partitions or ranges can be in different table spaces, in the same table space,
or a combination of both. If a table is created using the PARTITION BY clause, the
table is partitioned.

All of the table spaces specified must have the same page size, extent size, storage
mechanism (DMS or SMS), and type (REGULAR or LARGE), and all of the table
spaces must be in the same database partition group.

A partitioned table simplifies the rolling in and rolling out of table data and a
partitioned table can contain vastly more data than an ordinary table. You can
create a partitioned table with a maximum of 32,767 data partitions. Data partitions
can be added to, attached to, and detached from a partitioned table, and you can
store multiple data partition ranges from a table in one table space.

Indexes on a partitioned table can be partitioned or nonpartitioned. Both
nonpartitioned and partitioned indexes can exist together on a single partitioned
table.

Restrictions

Partitioned hierarchical or temporary tables, range-clustered tables, and partitioned
views are not supported for use in partitioned tables.

Table partitioning keys
A table partitioning key is an ordered set of one or more columns in a table. The
values in the table partitioning key columns are used to determine in which data
partition each table row belongs.

To define the table partitioning key on a table use the CREATE TABLE statement
with the PARTITION BY clause.

Choosing an effective table partitioning key column is essential to taking full
advantage of the benefits of table partitioning. The following guidelines can help
you to choose the most effective table partitioning key columns for your
partitioned table.
v Define range granularity to match data roll-out. It is most common to use week,

month, or quarter.
v Define ranges to match the data roll-in size. It is most common to partition data

on a date or time column.
v Partition on a column that provides advantages in partition elimination.

© Copyright IBM Corp. 2014 217

Supported data types

Table 19 shows the data types (including synonyms) that are supported for use as a
table partitioning key column:

Table 19. Supported data types

Data type column 1 Data type column 2

SMALLINT INTEGER

INT BIGINT

FLOAT REAL

DOUBLE DECIMAL

DEC DECFLOAT

NUMERIC NUM

CHARACTER CHAR

VARCHAR DATE

TIME GRAPHIC

VARGRAPHIC CHARACTER VARYING

TIMESTAMP CHAR VARYING

CHARACTER FOR BIT DATA CHAR FOR BIT DATA

VARCHAR FOR BIT DATA CHARACTER VARYING FOR BIT DATA

CHAR VARYING FOR BIT DATA User defined types (distinct)

Unsupported data types

The following data types can occur in a partitioned table, but are not supported for
use as a table partitioning key column:
v User defined types (structured)
v LONG VARCHAR
v LONG VARCHAR FOR BIT DATA
v BLOB
v BINARY LARGE OBJECT
v CLOB
v CHARACTER LARGE OBJECT
v DBCLOB
v LONG VARGRAPHIC
v REF
v Varying length string for C
v Varying length string for Pascal
v XML

If you choose to automatically generate data partitions using the EVERY clause of
the CREATE TABLE statement, only one column can be used as the table
partitioning key. If you choose to manually generate data partitions by specifying
each range in the PARTITION BY clause of the CREATE TABLE statement,
multiple columns can be used as the table partitioning key, as shown in the
following example:

218 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

CREATE TABLE sales (year INT, month INT)
PARTITION BY RANGE(year, month)
(STARTING FROM (2001, 1) ENDING (2001,3) IN tbsp1,
ENDING (2001,6) IN tbsp2, ENDING (2001,9)
IN tbsp3, ENDING (2001,12) IN tbsp4,
ENDING (2002,3) IN tbsp5, ENDING (2002,6)
IN tbsp6, ENDING (2002,9) IN tbsp7,
ENDING (2002,12) IN tbsp8)

This results in eight data partitions, one for each quarter in year 2001 and 2002.

Note:

1. When multiple columns are used as the table partitioning key, they are treated
as a composite key (which are similar to composite keys in an index), in the
sense that trailing columns are dependent on the leading columns. Each
starting or ending value (all of the columns, together) must be specified in 512
characters or less. This limit corresponds to the size of the LOWVALUE and
HIGHVALUE columns of the SYSCAT.DATAPARTITIONS catalog view. A
starting or ending value specified with more than 512 characters will result in
error SQL0636N, reason code 9.

2. Table partitioning is multicolumn not multidimension. In table partitioning, all
columns used are part of a single dimension.

Generated columns

Generated columns can be used as table partitioning keys. This example creates a
table with twelve data partitions, one for each month. All rows for January of any
year will be placed in the first data partition, rows for February in the second, and
so on.

Example 1
CREATE TABLE monthly_sales (sales_date date,
sales_month int GENERATED ALWAYS AS (month(sales_date)))

PARTITION BY RANGE (sales_month)
(STARTING FROM 1 ENDING AT 12 EVERY 1);

Note:

1. You cannot alter or drop the expression of a generated column that is used in
the table partitioning key. Adding a generated column expression on a column
that is used in the table partitioning key is not permitted. Attempting to add,
drop or alter a generated column expression for a column used in the table
partitioning key results in error (SQL0270N rc=52).

2. Data partition elimination will not be used for range predicates if the generated
column is not monotonic, or the optimizer can not detect that it is monotonic.
In the presence of non-monotonic expressions, data partition elimination can
only take place for equality or IN predicates. For a detailed discussion and
examples of monotonicity see “Creating MDC or ITC tables” on page 198.

Table partitioning and multidimensional clustering tables
In a table that is both multidimensional clustered and data partitioned, columns
can be used both in the table partitioning range-partition-spec and in the
multidimensional clustering (MDC) key. A table that is both multidimensional
clustered and partitioned can achieve a finer granularity of data partition and
block elimination than could be achieved by either functionality alone.

Chapter 9. Partitioned tables 219

There are also many applications where it is useful to specify different columns for
the MDC key than those on which the table is partitioned. It should be noted that
table partitioning is multicolumn, while MDC is multi-dimension.

Characteristics of a mainstream DB2 data warehouse

The following recommendations were focused on typical, mainstream warehouses
that were new for DB2 V9.1. The following characteristics are assumed:
v The database runs on multiple machines or multiple AIX logical partitions.
v Partitioned database environments are used (tables are created using the

DISTRIBUTE BY HASH clause).
v There are four to fifty data partitions.
v The table for which MDC and table partitioning is being considered is a major

fact table.
v The table has 100,000,000 to 100,000,000,000 rows.
v New data is loaded at various time frames: nightly, weekly, monthly.
v Daily ingest volume is 10 thousand to 10 million records.
v Data volumes vary: The biggest month is 5X the size of the smallest month.

Likewise, the biggest dimensions (product line, region) have a 5X size range.
v 1 to 5 years of detailed data is retained.
v Expired data is rolled out monthly or quarterly.
v Tables use a wide range of query types. However, the workload is mostly

analytical queries with the following characteristics, relative to OLTP workloads:
– larger results sets with up to 2 million rows
– most or all queries are hitting views, not base tables

v SQL clauses selecting data by ranges (BETWEEN clause), items in lists, and so
on.

Characteristics of a mainstream DB2 V9.1 data warehouse fact
table

A typical warehouse fact table, might use the following design:
v Create data partitions on the Month column.
v Define a data partition for each period you roll-out, for example, 1 month, 3

months.
v Create MDC dimensions on Day and on 1 to 4 additional dimensions. Typical

dimensions are: product line and region.
v All data partitions and MDC clusters are spread across all database partitions.

MDC and table partitioning provide overlapping sets of benefits. The following
table lists potential needs in your organization and identifies a recommended
organization scheme based on the characteristics identified previously.

Table 20. Using table partitioning with MDC tables

Issue Recommended scheme Recommendation

Data availability during
roll-out

Table partitioning Use the DETACH
PARTITION clause to roll out
large amounts of data with
minimal disruption.

220 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 20. Using table partitioning with MDC tables (continued)

Issue Recommended scheme Recommendation

Query performance Table partitioning and MDC MDC is best for querying
multiple dimensions. Table
partitioning helps through
data partition elimination.

Minimal reorganization MDC MDC maintains clustering,
which reduces the need to
reorganize.

Rollout a month or more of
data during a traditional
offline window

Table partitioning Data partitioning addresses
this need fully. MDC adds
nothing and would be less
suitable on its own.

Rollout a month or more of
data during a micro-offline
window (less than 1 minute)

Table partitioning Data partitioning addresses
this need fully. MDC adds
nothing and would be less
suitable on its own.

Rollout a month or more of
data while keeping the table
fully available for business
users submitting queries
without any loss of service.

MDC MDC only addresses this
need somewhat. Table
partitioning would not be
suitable due to the short
period the table goes offline.

Load data daily (LOAD or
INGEST command)

Table partitioning and MDC MDC provides most of the
benefit here. Table
partitioning provides
incremental benefits.

Load data "continually" (LOAD
command with ALLOW
READ ACCESS or INGEST
command)

Table partitioning and MDC MDC provides most of the
benefit here. Table
partitioning provides
incremental benefits.

Query execution
performance for "traditional
BI" queries

Table partitioning and MDC MDC is especially good for
querying cubes/multiple
dimensions. Table
partitioning helps via
partition elimination.

Minimize reorganization
pain, by avoiding the need
for reorganization or
reducing the pain associated
with performing the task

MDC MDC maintains clustering
which reduces the need to
reorg. If MDC is used, data
partitioning does not provide
incremental benefits.
However if MDC is not
used, table partitioning helps
reduce the need for reorg by
maintaining some course
grain clustering at the
partition level.

Example 1:

Consider a table with key columns YearAndMonth and Province. A reasonable
approach to planning this table might be to partition by date with 2 months per
data partition. In addition, you might also organize by Province, so that all rows
for a particular province within any two month date range are clustered together,
as shown in Figure 47 on page 222.

Chapter 9. Partitioned tables 221

CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)
(STARTING 9901 ENDING 9904 EVERY 2)
ORGANIZE BY (Province);

Example 2:

Finer granularity can be achieved by adding YearAndMonth to the ORGANIZE BY
DIMENSIONS clause, as shown in Figure 48 on page 223.
CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)
(STARTING 9901 ENDING 9904 EVERY 2)
ORGANIZE BY (YearAndMonth, Province);

Figure 47. A table partitioned by YearAndMonth and organized by Province

222 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

In cases where the partitioning is such that there is only a single value in each
range, nothing is gained by including the table partitioning column in the MDC
key.

Considerations
v Compared to a basic table, both MDC tables and partitioned tables require more

storage. These storage needs are additive but are considered reasonable given
the benefits.

v If you choose not to combine table partitioning and MDC functionality in your
partitioned database environment, table partitioning is best in cases where you
can confidently predict the data distribution, which is generally the case for the
types of systems discussed here. Otherwise, MDC should be considered.

v For a data-partitioned MDC table created with DB2 Version 9.7 Fix Pack 1 or
later releases, the MDC block indexes on the table are partitioned. For a
data-partitioned MDC table created with DB2 V9.7 or earlier releases, the MDC
block indexes on the table are nonpartitioned.

Figure 48. A table partitioned by YearAndMonth and organized by Province and
YearAndMonth

Chapter 9. Partitioned tables 223

Optimization strategies for partitioned tables
Data partition elimination refers to the database server's ability to determine, based
on query predicates, that only a subset of the data partitions in a table need to be
accessed to answer a query. Data partition elimination is particularly useful when
running decision support queries against a partitioned table.

A partitioned table uses a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table. Data from a table is
partitioned into multiple storage objects based on specifications provided in the
PARTITION BY clause of the CREATE TABLE statement. These storage objects can
be in different table spaces, in the same table space, or a combination of both.

The following example demonstrates the performance benefits of data partition
elimination.

create table custlist(
subsdate date, province char(2), accountid int)
partition by range(subsdate) (

starting from ’1/1/1990’ in ts1,
starting from ’1/1/1991’ in ts1,
starting from ’1/1/1992’ in ts1,
starting from ’1/1/1993’ in ts2,
starting from ’1/1/1994’ in ts2,
starting from ’1/1/1995’ in ts2,
starting from ’1/1/1996’ in ts3,
starting from ’1/1/1997’ in ts3,
starting from ’1/1/1998’ in ts3,
starting from ’1/1/1999’ in ts4,
starting from ’1/1/2000’ in ts4,
starting from ’1/1/2001’
ending ’12/31/2001’ in ts4)

Assume that you are only interested in customer information for the year 2000.
select * from custlist

where subsdate between ’1/1/2000’ and ’12/31/2000’

As Figure 49 on page 225 shows, the database server determines that only one data
partition in table space TS4 must be accessed to resolve this query.

224 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Another example of data partition elimination is based on the following scheme:
create table multi (

sale_date date, region char(2))
partition by (sale_date) (

starting ’01/01/2005’
ending ’12/31/2005’
every 1 month)

create index sx on multi(sale_date)

create index rx on multi(region)

Assume that you issue the following query:
select * from multi

where sale_date between ’6/1/2005’
and ’7/31/2005’ and region = ’NW’

Without table partitioning, one likely plan is index ANDing. Index ANDing
performs the following tasks:
v Reads all relevant index entries from each index
v Saves both sets of row identifiers (RIDs)
v Matches RIDs to determine which occur in both indexes
v Uses the RIDs to fetch the rows

As Figure 50 on page 226 demonstrates, with table partitioning, the index is read to
find matches for both REGION and SALE_DATE, resulting in the fast retrieval of
matching rows.

Figure 49. The performance benefits of data partition elimination

Chapter 9. Partitioned tables 225

DB2 Explain

You can also use the explain facility to determine the data partition elimination
plan that was chosen by the query optimizer. The “DP Elim Predicates”
information shows which data partitions are scanned to resolve the following
query:

select * from custlist
where subsdate between ’12/31/1999’ and ’1/1/2001’

Arguments:

DPESTFLG: (Number of data partitions accessed are Estimated)

FALSE
DPLSTPRT: (List of data partitions accessed)

9-11
DPNUMPRT: (Number of data partitions accessed)

3

DP Elim Predicates:

Range 1)

Stop Predicate: (Q1.A <= ’01/01/2001’)
Start Predicate: (’12/31/1999’ <= Q1.A)

Objects Used in Access Plan:

Schema: MRSRINI
Name: CUSTLIST
Type: Data Partitioned Table
Time of creation: 2005-11-30-14.21.33.857039
Last statistics update: 2005-11-30-14.21.34.339392
Number of columns: 3
Number of rows: 100000
Width of rows: 19
Number of buffer pool pages: 1200
Number of data partitions: 12
Distinct row values: No
Tablespace name: <VARIOUS>

Figure 50. Optimizer decision path for both table partitioning and index ANDing

226 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Multi-column support

Data partition elimination works in cases where multiple columns are used as the
table partitioning key. For example:

create table sales (
year int, month int)
partition by range(year, month) (

starting from (2001,1)
ending at (2001,3) in ts1,
ending at (2001,6) in ts2,
ending at (2001,9) in ts3,
ending at (2001,12) in ts4,
ending at (2002,3) in ts5,
ending at (2002,6) in ts6,
ending at (2002,9) in ts7,
ending at (2002,12) in ts8)

select * from sales where year = 2001 and month < 8

The query optimizer deduces that only data partitions in TS1, TS2, and TS3 must
be accessed to resolve this query.

Note: In the case where multiple columns make up the table partitioning key, data
partition elimination is only possible when you have predicates on the leading
columns of the composite key, because the non-leading columns that are used for
the table partitioning key are not independent.

Multi-range support

It is possible to obtain data partition elimination with data partitions that have
multiple ranges (that is, those that are ORed together). Using the SALES table that
was created in the previous example, execute the following query:

select * from sales
where (year = 2001 and month <= 3)

or (year = 2002 and month >= 10)

The database server only accesses data for the first quarter of 2001 and the last
quarter of 2002.

Generated columns

You can use generated columns as table partitioning keys. For example:
create table sales (

a int, b int generated always as (a / 5))
in ts1,ts2,ts3,ts4,ts5,ts6,ts7,ts8,ts9,ts10
partition by range(b) (

starting from (0)
ending at (1000) every (50))

In this case, predicates on the generated column are used for data partition
elimination. In addition, when the expression that is used to generate the columns
is monotonic, the database server translates predicates on the source columns into
predicates on the generated columns, which enables data partition elimination on
the generated columns. For example:

select * from sales where a > 35

The database server generates an extra predicate on b (b > 7) from a (a > 35), thus
allowing data partition elimination.

Chapter 9. Partitioned tables 227

Join predicates

Join predicates can also be used in data partition elimination, if the join predicate
is pushed down to the table access level. The join predicate is only pushed down
to the table access level on the inner join of a nested loop join (NLJN).

Consider the following tables:
create table t1 (a int, b int)

partition by range(a,b) (
starting from (1,1)
ending (1,10) in ts1,
ending (1,20) in ts2,
ending (2,10) in ts3,
ending (2,20) in ts4,
ending (3,10) in ts5,
ending (3,20) in ts6,
ending (4,10) in ts7,
ending (4,20) in ts8)

create table t2 (a int, b int)

The following two predicates will be used:
P1: T1.A = T2.A
P2: T1.B > 15

In this example, the exact data partitions that will be accessed at compile time
cannot be determined, due to unknown outer values of the join. In this case, as
well as cases where host variables or parameter markers are used, data partition
elimination occurs at run time when the necessary values are bound.

During run time, when T1 is the inner of an NLJN, data partition elimination
occurs dynamically, based on the predicates, for every outer value of T2.A. During
run time, the predicates T1.A = 3 and T1.B > 15 are applied for the outer value
T2.A = 3, which qualifies the data partitions in table space TS6 to be accessed.

Suppose that column A in tables T1 and T2 have the following values:

Outer table T2:
column A

Inner table T1:
column A

Inner table T1:
column B

Inner table T1: data
partition location

2 3 20 TS6
3 2 10 TS3
3 2 18 TS4

3 15 TS6
1 40 TS3

To perform a nested loop join (assuming a table scan for the inner table), the
database manager performs the following steps:
1. Reads the first row from T2. The value for A is 2.
2. Binds the T2.A value (which is 2) to the column T2.A in the join predicate T1.A

= T2.A. The predicate becomes T1.A = 2.
3. Applies data partition elimination using the predicates T1.A = 2 and T1.B > 15.

This qualifies data partitions in table space TS4.
4. After applying T1.A = 2 and T1.B > 15, scans the data partitions in table space

TS4 of table T1 until a row is found. The first qualifying row found is row 3 of
T1.

5. Joins the matching row.

228 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

6. Scans the data partitions in table space TS4 of table T1 until the next match
(T1.A = 2 and T1.B > 15) is found. No more rows are found.

7. Repeats steps 1 through 6 for the next row of T2 (replacing the value of A with
3) until all the rows of T2 have been processed.

Indexes over XML data

Starting in DB2 Version 9.7 Fix Pack 1, you can create an index over XML data on
a partitioned table as either partitioned or nonpartitioned. The default is a
partitioned index.

Partitioned and nonpartitioned XML indexes are maintained by the database
manager during table insert, update, and delete operations in the same way as any
other relational indexes on a partitioned table are maintained. Nonpartitioned
indexes over XML data on a partitioned table are used in the same way as indexes
over XML data on a nonpartitioned table to speed up query processing. Using the
query predicate, it is possible to determine that only a subset of the data partitions
in the partitioned table need to be accessed to answer the query.

Data partition elimination and indexes over XML columns can work together to
enhance query performance. Consider the following partitioned table:

create table employee (a int, b xml, c xml)
index in tbspx
partition by (a) (

starting 0 ending 10,
ending 20,
ending 30,
ending 40)

Now consider the following query:
select * from employee

where a > 21
and xmlexist(’$doc/Person/Name/First[.="Eric"]’

passing "EMPLOYEE"."B" as "doc")

The optimizer can immediately eliminate the first two partitions based on the
predicate a > 21. If the nonpartitioned index over XML data on column B is
chosen by the optimizer in the query plan, an index scan using the index over
XML data will be able to take advantage of the data partition elimination result
from the optimizer and only return results belonging to partitions that were not
eliminated by the relational data partition elimination predicates.

Partitioned materialized query table (MQT) behavior
All types of materialized query tables (MQTs) are supported with partitioned
tables. When working with partitioned MQTs, there are a number of guidelines
that can help you to administer attached and detached data partitions most
effectively.

The following guidelines and restrictions apply when working with partitioned
MQTs or partitioned tables with detached dependent tables:
v If you issue an ALTER TABLE ... DETACH PARTITION statement, the DETACH

operation creates the target table for the detached partition data. If there are any
dependent tables that need to be incrementally maintained with respect to the
detached data partition (these dependent tables are referred to as detached
dependent tables), the SET INTEGRITY statement is required to be run on the
detached dependent tables to incrementally maintain the tables. With DB2 V9.7

Chapter 9. Partitioned tables 229

Fix Pack 1 or later releases, after the SET INTEGRITY statement is run on all
detached dependent tables, the asynchronous partition detach task makes the
data partition into a stand-alone target table. Until the asynchronous partition
detach operation completes, the target table is unavailable. The target table will
be marked 'L' in the TYPE column of the SYSCAT.TABLES catalog view. This is
referred to as a detached table. This prevents the target table from being read,
modified or dropped until the SET INTEGRITY statement is run to incrementally
maintain the detached dependent tables. After the SET INTEGRITY statement is
run on all detached dependent tables, the data partition is logically detached
from the source table and the asynchronous partition detach operation detaches
data partition from the source table into the target table. Until the asynchronous
partition detach operation completes, the target table is unavailable.

v To detect that a detached table is not yet accessible, query the
SYSCAT.TABDETACHEDDEP catalog view. If any inaccessible detached tables
are detected, run the SET INTEGRITY statement with the IMMEDIATE
CHECKED option on all the detached dependent tables to transition the
detached table to a regular accessible table. If you try to access a detached table
before all its detached dependents are maintained, error code SQL20285N is
returned.

v The DATAPARTITIONNUM function cannot be used in an materialized query
table (MQT) definition. Attempting to create an MQT using this function returns
an error (SQLCODE SQL20058N, SQLSTATE 428EC).

v When creating a nonpartitioned index on a table with detached data partitions
with STATUS 'D' in SYSCAT.DATAPARTITIONS, the index does not include the
data in the detached data partitions unless the detached data partition has a
dependent materialized query table (MQT) that needs to be incrementally
refreshed with respect to it. In this case, the index includes the data for this
detached data partition.

v Altering a table with attached data partitions to an MQT is not allowed.
v Partitioned staging tables are not supported.
v Attaching to an MQT is not directly supported. See Example 1 for details.

Example 1: Converting a partitioned MQT to an ordinary table

Although the ATTACH operation is not directly supported on partitioned MQTs,
you can achieve the same effect by converting a partitioned MQT to an ordinary
table, performing the desired roll-in and roll-out of table data, and then converting
the table back into an MQT. The following CREATE TABLE and ALTER TABLE
statements demonstrate the effect:
CREATE TABLE lineitem (

l_orderkey DECIMAL(10,0) NOT NULL,
l_quantity DECIMAL(12,2),
l_shipdate DATE,
l_year_month INT GENERATED ALWAYS AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate)))

PARTITION BY RANGE(l_shipdate)
(STARTING (’1/1/1992’) ENDING (’12/31/1993’) EVERY 1 MONTH);

CREATE TABLE lineitem_ex (
l_orderkey DECIMAL(10,0) NOT NULL,
l_quantity DECIMAL(12,2),
l_shipdate DATE,
l_year_month INT,
ts TIMESTAMP,
msg CLOB(32K));

CREATE TABLE quan_by_month (
q_year_month, q_count) AS

(SELECT l_year_month AS q_year_month, COUNT(*) AS q_count

230 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

FROM lineitem
GROUP BY l_year_month)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
PARTITION BY RANGE(q_year_month)
(STARTING (199201) ENDING (199212) EVERY (1),
STARTING (199301) ENDING (199312) EVERY (1));

CREATE TABLE quan_by_month_ex(
q_year_month INT,
q_count INT NOT NULL,
ts TIMESTAMP,
msg CLOB(32K));

SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED;
CREATE INDEX qbmx ON quan_by_month(q_year_month);

ALTER TABLE quan_by_month DROP MATERIALIZED QUERY;
ALTER TABLE lineitem DETACH PARTITION part0 INTO li_reuse;
ALTER TABLE quan_by_month DETACH PARTITION part0 INTO qm_reuse;

SET INTEGRITY FOR li_reuse OFF;
ALTER TABLE li_reuse ALTER l_year_month SET GENERATED ALWAYS
AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate));

LOAD FROM part_mqt_rotate.del OF DEL MODIFIED BY GENERATEDIGNORE
MESSAGES load.msg REPLACE INTO li_reuse;

DECLARE load_cursor CURSOR FOR
SELECT l_year_month, COUNT(*)

FROM li_reuse
GROUP BY l_year_month;

LOAD FROM load_cursor OF CURSOR MESSAGES load.msg
REPLACE INTO qm_reuse;

ALTER TABLE lineitem ATTACH PARTITION STARTING ’1/1/1994’
ENDING ’1/31/1994’ FROM li_reuse;

SET INTEGRITY FOR lineitem ALLOW WRITE ACCESS IMMEDIATE CHECKED
FOR EXCEPTION IN lineitem USE lineitem_ex;

ALTER TABLE quan_by_month ATTACH PARTITION STARTING 199401
ENDING 199401 FROM qm_reuse;

SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED
FOR EXCEPTION IN quan_by_month USE quan_by_month_ex;

ALTER TABLE quan_by_month ADD MATERIALIZED QUERY
(SELECT l_year_month AS q_year_month, COUNT(*) AS q_count

FROM lineitem
GROUP BY l_year_month)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

SET INTEGRITY FOR QUAN_BY_MONTH ALL IMMEDIATE UNCHECKED;

Use the SET INTEGRITY statement with the IMMEDIATE CHECKED option to
check the attached data partition for integrity violations. This step is required
before changing the table back to an MQT. The SET INTEGRITY statement with
the IMMEDIATE UNCHECKED option is used to bypass the required full refresh
of the MQT. The index on the MQT is necessary to achieve optimal performance.
The use of exception tables with the SET INTEGRITY statement is recommended,
where appropriate.

Typically, you create a partitioned MQT on a large fact table that is also
partitioned. If you do roll out or roll in table data on the large fact table, you must
adjust the partitioned MQT manually, as demonstrated in Example 2.

Chapter 9. Partitioned tables 231

Example 2: Adjusting a partitioned MQT manually

Alter the MQT (quan_by_month) to convert it to an ordinary partitioned table:
ALTER TABLE quan_by_month DROP MATERIALIZED QUERY;

Detach the data to be rolled out from the fact table (lineitem) and the MQT and
re-load the staging table li_reuse with the new data to be rolled in:
ALTER TABLE lineitem DETACH PARTITION part0 INTO li_reuse;

LOAD FROM part_mqt_rotate.del OF DEL MESSAGES load.msg REPLACE INTO li_reuse;

ALTER TABLE quan_by_month DETACH PARTITION part0 INTO qm_reuse;

Prune qm_reuse before doing the insert. This deletes the detached data before
inserting the subselect data. This is accomplished with a load replace into the MQT
where the data file of the load is the content of the subselect.
db2 load from datafile.del of del replace into qm_reuse

You can refresh the table manually using INSERT INTO ... (SELECT ...) This is only
necessary on the new data, so the statement should be issued before attaching:
INSERT INTO qm_reuse

(SELECT COUNT(*) AS q_count, l_year_month AS q_year_month
FROM li_reuse

GROUP BY l_year_month);

Now you can roll in the new data for the fact table:
ALTER TABLE lineitem ATTACH PARTITION STARTING ’1/1/1994’
ENDING ’1/31/1994’ FROM TABLE li_reuse;
SET INTEGRITY FOR lineitem ALLOW WRITE ACCESS IMMEDIATE CHECKED FOR
EXCEPTION IN li_reuse USE li_reuse_ex;

Next, roll in the data for the MQT:
ALTER TABLE quan_by_month ATTACH PARTITION STARTING 199401
ENDING 199401 FROM TABLE qm_reuse;
SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED;

After attaching the data partition, the new data must be verified to ensure that it is
in range.
ALTER TABLE quan_by_month ADD MATERIALIZED QUERY

(SELECT COUNT(*) AS q_count, l_year_month AS q_year_month
FROM lineitem

GROUP BY l_year_month)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

SET INTEGRITY FOR QUAN_BY_MONTH ALL IMMEDIATE UNCHECKED;

The data is not accessible until it has been validated by the SET INTEGRITY
statement. Although the REFRESH TABLE operation is supported, this scenario
demonstrates the manual maintenance of a partitioned MQT through the ATTACH
PARTITION and DETACH PARTITION operations. The data is marked as
validated by the user through the IMMEDIATE UNCHECKED clause of the SET
INTEGRITY statement.

Large object behavior in partitioned tables
A partitioned table uses a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table. Data from a given table
is partitioned into multiple storage objects based on the specifications provided in

232 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

the PARTITION BY clause of the CREATE TABLE statement. These storage objects
can be in different table spaces, in the same table space, or a combination of both.

A large object for a partitioned table is, by default, stored in the same table space
as its corresponding data object. This applies to partitioned tables that use only one
table space or use multiple table spaces. When a partitioned table's data is stored
in multiple table spaces, the large object data is also stored in multiple table
spaces.

Use the LONG IN clause of the CREATE TABLE statement to override this default
behavior. You can specify a list of table spaces for the table where long data is to
be stored. If you choose to override the default behavior, the table space specified
in the LONG IN clause must be a large table space. If you specify that long data
be stored in a separate table space for one or more data partitions, you must do so
for all the data partitions of the table. That is, you cannot have long data stored
remotely for some data partitions and stored locally for others. Whether you are
using the default behavior or the LONG IN clause to override the default behavior,
a long object is created to correspond to each data partition. All the table spaces
used to store long data objects corresponding to each data partition must have the
same: pagesize, extentsize, storage mechanism (DMS or AMS), and type (regular or
large). Remote large table spaces must be of type LARGE and cannot be SMS.

For example, the following CREATE TABLE statement creates objects for the CLOB
data for each data partition in the same table space as the data:
CREATE TABLE document(id INT, contents CLOB)
PARTITION BY RANGE(id)
(STARTING FROM 1 ENDING AT 100 IN tbsp1,
STARTING FROM 101 ENDING AT 200 IN tbsp2,
STARTING FROM 201 ENDING AT 300 IN tbsp3,
STARTING FROM 301 ENDING AT 400 IN tbsp4);

You can use LONG IN to place the CLOB data in one or more large table spaces,
distinct from those the data is in.
CREATE TABLE document(id INT, contents CLOB)
PARTITION BY RANGE(id)
(STARTING FROM 1 ENDING AT 100 IN tbsp1 LONG IN large1,
STARTING FROM 101 ENDING AT 200 IN tbsp2 LONG IN large1,
STARTING FROM 201 ENDING AT 300 IN tbsp3 LONG IN large2,
STARTING FROM 301 ENDING AT 400 IN tbsp4 LONG IN large2);

Note: Only a single LONG IN clause is allowed at the table level and for each
data partition.

Data partitions and ranges
Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects called data partitions according to values in one or
more table partitioning key columns of the table. The ranges specified for each
data partition can be generated automatically or manually when creating a table.

Data partitions are referred to in various ways throughout the DB2 library. The
following list represents the most common references:
v DATAPARTITIONNAME is the permanent name assigned to a data partition for

a given table at create time. This column value is stored in the
SYSCAT.DATAPARTITIONS catalog view. This name is not preserved on an
attach or detach operation.

Chapter 9. Partitioned tables 233

v DATAPARTITIONID is the permanent identifier assigned to a data partition for
a given table at create time. It is used to uniquely identify a particular data
partition in a given table. This identifier is not preserved on an attach or detach
operation. This value is system-generated and might appear in output from
various utilities.

v SEQNO indicates the order of a particular data partition range with regards to
other data partition ranges in the table, with detached data partitions sorting
after all visible and attached data partitions.

Adding data partitions to partitioned tables
You can use the ALTER TABLE statement to modify a partitioned table after the
table is created. Specifically, you can use the ADD PARTITION clause to add a new
data partition to an existing partitioned table.

About this task

Adding a data partition to a partitioned table is more appropriate than attaching a
data partition when data is added to the data partition over time, when data is
trickling in rather than rolling in from an external source, or when you are
inserting or loading data directly into a partitioned table. Specific examples include
daily loads of data into a data partition for January data or ongoing inserts of
individual rows.

To add the new data partition to a specific table space location, the IN clause is
added as an option on the ALTER TABLE ADD PARTITION statement.

To add the partitioned index of a new data partition to a specific table space
location separate from the table space location of the data partition, the partition
level INDEX IN clause is added as an option on the ALTER TABLE ADD
PARTITION statement. If the INDEX IN option is not specified, by default any
partitioned indexes on the new data partition reside in the same table space as the
data partition. If any partitioned indexes exist on the partitioned table, the ADD
PARTITION clause creates the corresponding empty index partitions for the new
partition. A new entry is inserted into the SYSCAT.INDEXPARTITIONS catalog
view for each partitioned index.

To add the LONG, LOB, or XML data of a new data partition to a specific table
space location that is separate from the table space location of the data partition,
the partition-level LONG IN clause is added as an option on the ALTER TABLE
ADD PARTITION statement.

With DB2 V10.1 and later releases, when adding a data partition to a partitioned
table by using the ALTER TABLE statement with the ADD PARTITION clause, the
target partitioned table remains online, and dynamic queries against the table,
running under the RS, CS, or UR isolation level, continue to run.

Restrictions and usage guidelines

v You cannot add a data partition to a nonpartitioned table. For details on
migrating an existing table to a partitioned table, see “Migrating existing tables
and views to partitioned tables” on page 270.

v The range of values for each new data partition are determined by the
STARTING and ENDING clauses.

v One or both of the STARTING and ENDING clauses must be supplied.
v The new range must not overlap with the range of an existing data partition.

234 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v When adding a new data partition before the first existing data partition, the
STARTING clause must be specified. Use MINVALUE to make this range open
ended.

v Likewise, the ENDING clause must be specified if you want to add a new data
partition after the last existing data partition. Use MAXVALUE to make this
range open ended.

v If the STARTING clause is omitted, then the database manufactures a starting
bound just after the ending bound of the previous data partition. Likewise, if the
ENDING clause is omitted, the database creates an ending bound just before the
starting bound of the next data partition.

v The start-clause and end-clause syntax is the same as specified in the CREATE
TABLE statement.

v If the IN, INDEX IN, or LONG IN clauses are not specified for ADD
PARTITION, the table space in which to place the data partition is chosen by
using the same method as is used by the CREATE TABLE statement.

v Packages are invalidated during the ALTER TABLE...ADD PARTITION
operation.

v The newly added data partition is available once the ALTER TABLE statement is
committed.

v If a table has a nonpartitioned index, you cannot access a new data partition in
that table within the same transaction as the add or attach operation that created
the partition, if the transaction does not have the table locked in exclusive mode
(SQL0668N, reason code 11).

Omitting the STARTING or ENDING bound for an ADD operation is also used to
fill a gap in range values. Here is an example of filling in a gap by using the ADD
operation where only the starting bound is specified:
CREATE TABLE hole (c1 int) PARTITION BY RANGE (c1)
(STARTING FROM 1 ENDING AT 10, STARTING FROM 20 ENDING AT 30);
DB20000I The SQL command completed successfully.

ALTER TABLE hole ADD PARTITION STARTING 15;
DB20000I The SQL command completed successfully.

SELECT SUBSTR(tabname, 1,12) tabname,
SUBSTR(datapartitionname, 1, 12) datapartitionname,
seqno, SUBSTR(lowvalue, 1, 4) lowvalue, SUBSTR(highvalue, 1, 4) highvalue
FROM SYSCAT.DATAPARTITIONS WHERE TABNAME=’HOLE’ ORDER BY seqno;

TABNAME DATAPARTITIONNAME SEQNO LOWVALUE HIGHVALUE
------------ ----------------- ----------- -------- ---------
HOLE PART0 0 1 10
HOLE PART2 1 15 20
HOLE PART1 2 20 30

3 record(s) selected.

Example 1: Add a data partition to an existing partitioned table that holds a range
of values 901 - 1000 inclusive. Assume that the SALES table holds nine ranges: 0 -
100, 101 - 200, and so on, up to the value of 900. The example adds a range at the
end of the table, indicated by the exclusion of the STARTING clause:
ALTER TABLE sales ADD PARTITION dp10
ENDING AT 1000 INCLUSIVE

To add the partitioned index of a new data partition to a specific table space
location separate from the table space location of the data partition, the partition
level INDEX IN clause is added as an option on the ALTER TABLE ADD
PARTITION statement. If no INDEX IN option is specified, by default any
partitioned indexes on the new data partition reside in the same table space as the

Chapter 9. Partitioned tables 235

data partition. If any partitioned indexes exist on the partitioned table, ADD
PARTITION creates the corresponding empty index partitions for the new
partition. A new entry is inserted into the SYSCAT.INDEXPARTITIONS catalog
view for each partitioned index.

Example 2: Add a data partition to an existing partitioned table by separating out
long data and indexes from the rest of the data partition.
ALTER TABLE newbusiness ADD PARTITION IN tsnewdata
INDEX IN tsnewindex LONG IN tsnewlong

Attaching data partitions
Table partitioning allows for the efficient roll-in and roll-out of table data. The
ALTER TABLE statement with the ATTACH PARTITION clause makes data roll-in
easier.

Before you begin

If data integrity checking, including range validation and other constraints
checking, can be done through application logic that is independent of the data
server before an attach operation, newly attached data can be made available for
use much sooner. You can optimize the data roll-in process by using the SET
INTEGRITY...ALL IMMEDIATE UNCHECKED statement to skip range and
constraints violation checking. In this case, the table is brought out of SET
INTEGRITY pending state, and the new data is available for applications to use
immediately, as long as all user indexes on the target table are partitioned indexes.

If there are nonpartitioned indexes (except XML column path indexes) on the table
to maintain after an attach operation, the SET INTEGRITY...ALL IMMEDIATE
UNCHECKED statement behaves as though it were a SET
INTEGRITY...IMMEDIATE CHECKED statement. All integrity processing,
nonpartitioned index maintenance, and table state transitions are performed as
though a SET INTEGRITY...IMMEDIATE CHECKED statement was issued. This
behavior ensures that a roll-in script that uses SET INTEGRITY...ALL IMMEDIATE
UNCHECKED does not stop working if a nonpartitioned index is created for the
target table some time after the roll-in script is put into service.

To alter a table to attach a data partition, the privileges held by the authorization
ID of the statement must include at least one of the following authorities or
privileges on the source table:
v SELECT privilege on the table and DROPIN privilege on the schema of the table
v CONTROL privilege on the table
v DATAACCESS authority

About this task

Attaching data partitions takes an existing table (source table) and attaches it to the
target table as a new data partition. With DB2 V10.1 and later releases, when
attaching a data partition to a partitioned table by using the ALTER TABLE
statement with the ATTACH PARTITION clause, the target partitioned table
remains online, and dynamic queries against the table, running under the RS, CS,
or UR isolation level, continue to run.

Restrictions and usage guidelines

The following conditions must be met before you can attach a data partition:

236 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v The target table to which you want to attach the new data partition must be an
existing partitioned table.

v The source table must be an existing nonpartitioned table or a partitioned table
with a single data partition and no attached data partitions or detached data
partitions. To attach multiple data partitions, you must issue multiple ATTACH
statements.

v The source table cannot be a typed table.
v The source table cannot be a range-clustered table.
v The source and target table definitions must match.
v The number, type, and ordering of source and target columns must match.
v Source and target table columns must match in terms of whether they contain

default values.
v Source and target table columns must match in terms of whether they allow null

values.
v Source and target table compression specifications, including the VALUE

COMPRESSION and COMPRESS SYSTEM DEFAULT clauses, must match.
v Source and target table specifications for the DATA CAPTURE, ACTIVATE NOT

LOGGED INITIALLY, and APPEND options must match.
v Attaching a data partition is allowed even when a target column is a generated

column and the corresponding source column is not a generated column. The
following statement generates the values for the generated column of the
attached rows:
SET INTEGRITY FOR table-name

ALLOW WRITE ACCESS
IMMEDIATE CHECKED FORCE GENERATED

The source table column that matches a generated column must match in type
and nullability; however, a default value is not required. The recommended
approach is to guarantee that the source table for the attach operation has the
correct generated value in the generated column. If you follow the
recommended approach, you are not required to use the FORCE GENERATED
option, and the following statements can be used.
SET INTEGRITY FOR table-name

GENERATED COLUMN
IMMEDIATE UNCHECKED

This statement indicates that checking of the generated column is to be
bypassed.
SET INTEGRITY FOR table-name

ALLOW WRITE ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN table-name USE table-name

This statement performs integrity checking of the attached data partition but
does not check the generated column.

v Attaching a data partition is allowed even when the target column is an identity
column and the source column is not an identity column. The statement SET
INTEGRITY IMMEDIATE CHECKED does not generate identity values for the
attached rows. The statement SET INTEGRITY FOR T GENERATE IDENTITY
ALLOW WRITE ACCESS IMMEDIATE CHECKED fills in the identity values for
the attached rows. The column that matches an identity column must match in
type and nullability. There is no requirement on the default values of this
column. The recommended approach is for you to fill in the correct identity

Chapter 9. Partitioned tables 237

values at the staging table. Then after the ATTACH, there is no requirement to
use the GENERATE IDENTITY option because the identity values are already
guaranteed in the source table.

v For tables whose data is distributed across database partitions, the source table
must also be distributed, in the same database partition group using the same
distribution key and the same distribution map.

v The source table must be dropable (that is, it cannot have RESTRICT DROP set).
v If a data partition name is specified, it must not exist in the target table.
v If the target table is a multidimensional clustering (MDC) table, the source table

must also be an MDC table.
v Using a nonpartitioned table, the data table space for the source table must

match the data table spaces for the target table in type (that is, DMS or SMS),
page size, extent size, and database partition group. A warning is returned if the
prefetch size does not match. The index table space for the source table must
match the index table spaces used by the partitioned indexes for the target table
in type, database partition group, page size, and extent size. The large table
space for the source table must match the large table spaces for the target table
in type, database partition group, and page size. Using a partitioned table, the
data table space for the source table must match the data table spaces for the
target table in type, page size, extent size, and database partition group.

v When you issue the ALTER TABLE ATTACH statement to a partitioned table
with any structured, XML, or LOB columns, the INLINE LENGTH of any
structured, XML, or LOB columns on the source table must match with the
INLINE LENGTH of the corresponding structured, XML, or LOB columns on the
target table.

v When you use the REQUIRE MATCHING INDEXES clause with the ATTACH
PARTITION clause, if there are any partitioned indexes on the target table that
do not have a match on the source table, SQL20307N is returned.

v Attaching a source table that does not have a matching index for each
partitioned unique index on the target table causes the attach operation to fail
with error SQL20307N, reason code 17.

v When a table has a deferred index cleanup operation in progress as the result of
an MDC rollout, since MDC rollout using the deferred index cleanup mechanism
is not supported for partitioned indexes, the attach operation is not allowed if
there are any RID indexes on the source table that are kept during the attach
operation, not rebuilt, and are pending asynchronous index cleanup of the
rolled-out blocks.

v Attaching a source table with an XML data format that is different from the
XML data format of the target table is not supported.

v If a table contains XML columns that use the Version 9.5 or earlier XML record
format, attaching the table to a partitioned table that contains XML columns that
use the Version 9.7 or later record format is not supported.
Before attaching the table, you must update the XML record format of the table
to match the record format of the target partitioned table. Either of the following
two methods updates the XML record format of a table:
– Perform an online table move on the table by using the

ADMIN_MOVE_TABLE procedure.
– Perform the following steps:

1. Use the EXPORT command to create a copy of the table data.
2. Use the TRUNCATE statement to delete all the rows from the table and

release the storage allocated to the table.
3. Use the LOAD command to add the data into the table.

238 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

After the XML record format of the table is updated, attach the table to the
target partitioned table.

v If a table has a nonpartitioned index, you cannot access a new data partition in
that table within the same transaction as the add or attach operation that created
the partition, if the transaction does not have the table locked in exclusive mode
(SQL0668N, reason code 11).

Before running the attach operation, create indexes on the source table that match
each of the partitioned indexes in the target table. Matching the partitioned indexes
makes the roll-in operation more efficient and less active log space is needed. If the
indexes on the source table are not properly prepared, the database manager is
required to maintain them for you. To ensure that your roll-in does not incur any
additional cost to maintain the partitioned indexes, you can specify REQUIRE
MATCHING INDEXES on the attach partition operation. Specifying REQUIRE
MATCHING INDEXES ensures that the attach operation fails if a source table does
not have indexes to match the partitioned indexes on the target. You can then take
the corrective action and reissue the attach operation.

In addition, drop any extra indexes on the source table before running the attach
operation. Extra indexes are those indexes on the source table that either do not
have a match on the target table, or that match nonpartitioned indexes on the
target table. Dropping extra indexes before running the attach operation makes it
run faster.

For example, assume that a partitioned table called ORDERS has 12 data partitions
(one for each month of the year). At the end of each month, a separate table called
NEWORDERS is attached to the partitioned ORDERS table.
1. Create partitioned indexes on the ORDERS table.

CREATE INDEX idx_delivery_date ON orders(delivery) PARTITIONED
CREATE INDEX idx_order_price ON orders(price) PARTITIONED

2. Prepare for the attach operation by creating the corresponding indexes on the
NEWORDERS table.
CREATE INDEX idx_delivery_date_for_attach ON neworders(delivery)
CREATE INDEX idx_order_price_for_attach ON neworders(price)

3. There are two steps to the attach operation:
a. ATTACH. The indexes on the NEWORDERS table that match the

partitioned indexes on the ORDERS table are kept.
ALTER TABLE orders ATTACH PARTITION part_jan2009

STARTING FROM (’01/01/2009’)
ENDING AT (’01/31/2009’) FROM TABLE neworders

The ORDERS table is automatically placed into the Set Integrity Pending
state. Both the idx_delivery_date_for_attach index and the
idx_order_price_for_attach index become part of the ORDERS table after the
completion of the attach operation. No data movement occurs during this
operation.

b. SET INTEGRITY. A range check is done on the newly attached partition.
Any constraints that exist are enforced. Upon completion, the newly
attached data becomes visible within the database.
SET INTEGRITY FOR orders IMMEDIATE CHECKED

When nonpartitioned indexes exist on the target table, the SET INTEGRITY
statement has to maintain the index along with other tasks, such as range
validation and constraints checking on the data from the newly attached partition.
Nonpartitioned index maintenance requires a large amount of active log space that

Chapter 9. Partitioned tables 239

is proportional to the data volumes in the newly attached partition, the key size of
each nonpartitioned index, and the number of nonpartitioned indexes.

Each partitioned index on the new data partition is given an entry in the
SYSINDEXPARTITIONS catalog table using the table space identifier and object
identifier from the source table. The identifier information is taken from either the
SYSINDEXES table (if the table is nonpartitioned) or the SYSINDEXPARTITIONS
table (if the table is partitioned). The index identifier is taken from the partitioned
index of the matching target table.

When the source table is partitioned, those partitioned indexes on the source table
that match the partitioned indexes on the target table are kept as part of the attach
operation. Index partition entries in the SYSINDEXPARTITIONS table are updated
to show that they are index partitions on the new target table with new index
identifiers.

When attaching data partitions, some statistics for indexes as well as data are
carried over from the source table to the target table for the new partition.
Specifically, all fields in the SYSDATAPARTITIONS and SYSINDEXPARTITIONS
tables for the new partition on the target are populated from the source. When the
source table is nonpartitioned, these statistics come from the SYSTABLES and
SYSINDEXES tables. When the source table is a single-partition partitioned table,
these statistics come from the SYSDATAPARTITIONS and SYSINDEXPARTITIONS
tables of the single source partition.

Note: Execute a runstats operation after the completion of an attach operation,
because the statistics that are carried over will not affect the aggregated statistics in
the SYSINDEXES and SYSTABLES tables.

Nonpartitioned index maintenance during SET INTEGRITY...ALL IMMEDIATE
UNCHECKED. When SET INTEGRITY...ALL IMMEDIATE UNCHECKED is issued
on a partitioned table to skip range checking for a newly attached partition, if
there are any nonpartitioned indexes (except the XML column path index) on the
table, SET INTEGRITY...ALL IMMEDIATE UNCHECKED performs as follows:
v If the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement references

one target table, the behavior is as though a SET INTEGRITY...ALLOW WRITE
ACCESS...IMMEDIATE CHECKED statement was issued instead. The SET
INTEGRITY...ALL IMMEDIATE UNCHECKED statement maintains all
nonpartitioned indexes (except XML column path indexes), performs all other
integrity processing, updates the constraints checking flag values in the
CONST_CHECKED column in the SYSCAT.TABLES catalog view, and returns
errors and stops immediately when constraints violations are detected.

v If the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement references
more than one target table, an error is returned (SQL20209N with reason code
13).

Rebuild of invalid partitioned indexes during SET INTEGRITY. The SET
INTEGRITY statement can detect whether the partitioned index object for a newly
attached partition is invalid and performs a partitioned index rebuild if necessary.

Guidelines for attaching data partitions to partitioned tables
This topic provides guidelines for correcting various types of mismatches that can
occur when attempting to attach a data partition to a partitioned table when
issuing the ALTER TABLE ...ATTACH PARTITION statement. You can achieve

240 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

agreement between tables by modifying the source table to match the
characteristics of the target table, or by modifying the target table to match the
characteristics of the source table.

The source table is the existing table you want to attach to a target table. The
target table is the table to which you want to attach the new data partition.

One suggested approach to performing a successful attach is to use the exact
CREATE TABLE statement for the source table as you did for the target table, but
without the PARTITION BY clause. In cases where it is difficult to modify the
characteristics of either the source or target tables for compatibility, you can create
a new source table that is compatible with the target table. For details on creating a
new source, see “Creating tables like existing tables”.

To help you prevent a mismatch from occurring, see the restrictions and usage
guidelines section of “Attaching data partitions”. The section outlines conditions
that must be met before you can successfully attach a data partition. Failure to
meet the listed conditions returns error SQL20408N or SQL20307N.

The following sections describe the various types of mismatches that can occur and
provides the suggested steps to achieve agreement between tables:

The (value) compression clause (the COMPRESSION column of
SYSCAT.TABLES) does not match. (SQL20307N reason code 2)

To achieve value compression agreement, use one of the following statements:
ALTER TABLE... ACTIVATE VALUE COMPRESSION
or
ALTER TABLE... DEACTIVATE VALUE COMPRESSION

To achieve row compression agreement use one of the following statements:
ALTER TABLE... COMPRESS YES
or
ALTER TABLE... COMPRESS NO

The APPEND mode of the tables does not match. (SQL20307N reason code 3)

To achieve append mode agreement use one of the following statements:
ALTER TABLE ... APPEND ON
or
ALTER TABLE ... APPEND OFF

The code pages of the source and target table do not match. (SQL20307N reason
code 4)

Create a new source

The source table is a partitioned table with more than one data partition or with
attached or detached data partitions. (SQL20307N reason code 5)

Detach data partitions from the source table until there is a single visible data
partition using the statement:
ALTER TABLE ... DETACH PARTITION

Detached partitions remain detached until each of the following steps has been
completed:

Chapter 9. Partitioned tables 241

1. Execute any necessary SET INTEGRITY statements to incrementally refresh
detached dependents.

2. In Version 9.7.1 and later, wait for the detach to complete asynchronously. To
expedite this process, ensure that all access to the table that started prior to the
detach operation either completes or is terminated.

3. If the source table has nonpartitioned indexes, wait for the asynchronous index
cleanup to complete. To expedite this process, one option might be to drop the
nonpartitioned indexes on the source table.

If you want to perform an attach operation immediately, one option might be to
create a new source table.

The source table is a system table, a view, a typed table, a table ORGANIZED
BY KEY SEQUENCE, a created temporary table, or a declared temporary table.
(SQL20307N reason code 6)

Create a new source.

The target and source table are the same. (SQL20307N reason code 7)

You cannot attach a table to itself. Determine the correct table to use as the source
or target table.

The NOT LOGGED INITIALLY clause was specified for either the source table
or the target table, but not for both. (SQL20307N reason code 8)

Either make the table that is not logged initially be logged by issuing the COMMIT
statement, or make the table that is logged be not logged initially by entering the
statement:
ALTER TABLE ... ACTIVATE NOT LOGGED INITIALLY

The DATA CAPTURE CHANGES clause was specified for either the source
table or the target table, but not both. (SQL20307N reason code 9)

To enable data capture changes on the table that does not have data capture
changes turned on, run the following statement:
ALTER TABLE ... DATA CAPTURE CHANGES

To disable data capture changes on the table that does have data capture changes
turned on, run the statement:
ALTER TABLE ... DATA CAPTURE NONE

The distribution clauses of the tables do not match. The distribution key must
be the same for the source table and the target table. (SQL20307N reason code
10)

It is recommended that you create a new source table. You cannot change the
distribution key of a table spanning multiple database partitions. To change a
distribution key on tables in single-partition database, run the following
statements:
ALTER TABLE ... DROP DISTRIBUTION;

ALTER TABLE ... ADD DISTRIBUTION(key-specification)

An error is returned when there are missing indexes during an attach operation
(SQL20307N reason code 18)

242 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The attach operation implicitly builds missing indexes on the source table
corresponding to the partitioned indexes on the target table. The implicit creation
of the missing indexes does take time to complete. You have an option to create
and error condition if the attach operation encounters any missing indexes. The
option is called ERROR ON MISSING INDEXES and is one of the attach operation
options. The error returned when this happens is SQL20307N, SQLSTATE 428GE,
reason code 18. Information on the nonmatching indexes is placed in the
administration log.

The attach operation drops indexes on the source table that do not match the
partitioned indexes on the target table. The identification and dropping of these
nonmatching indexes takes time to complete. You should drop these indexes before
attempting the attach operation.

An error is returned when the nonmatching indexes on the target table are
unique indexes, or the XML indexes are defined with the REJECT INVALID
VALUES clause, during an attach operation (SQL20307N reason code 17)

When there are partitioned indexes on the target table with no matching indexes
on the source table and the ERROR ON MISSING INDEXES is not used, then you
could expect the following results:
1. If the nonmatching indexes on the target table are unique indexes, or the XML

indexes are defined with the REJECT INVALID VALUES clause, then the attach
operation will fail and return the error message SQL20307N, SQLSTATE 428GE,
reason code 17.

2. If the nonmatching indexes on the target table do not meet the conditions in
the previous point, the index object on the source table is marked invalid
during the attach operation. The attach operation completes successfully, but
the index object on the new data partition is marked invalid. The SET
INTEGRITY operation is used to rebuild the index objects on the newly
attached partition. Typically this is the next operation you would perform
following the attaching of a data partition. The recreation of the indexes takes
time.

The administration log will have details about any mismatches between the
indexes on the source and target tables.

Only one of the tables has an ORGANIZE BY DIMENSIONS clause specified or
the organizing dimensions are different. (SQL20307N reason code 11)

Create a new source.

The data type of the columns (TYPENAME) does not match. (SQL20408N reason
code 1)

To correct a mismatch in data type, issue the statement:
ALTER TABLE ... ALTER COLUMN ... SET DATA TYPE...

The nullability of the columns (NULLS) does not match. (SQL20408N reason
code 2)

To alter the nullability of the column that does not match for one of the tables
issue one of the following statements:
ALTER TABLE... ALTER COLUMN... DROP NOT NULL
or
ALTER TABLE... ALTER COLUMN... SET NOT NULL

Chapter 9. Partitioned tables 243

The implicit default value (SYSCAT.COLUMNS IMPLICITVALUE) of the
columns are incompatible. (SQL20408N reason code 3)

Create a new source table. Implicit defaults must match exactly if both the target
table column and source table column have implicit defaults (if IMPLICITVALUE
is not NULL).

If IMPLICITVALUE is not NULL for a column in the target table and
IMPLICITVALUE is not NULL for the corresponding column in the source table,
each column was added after the original CREATE TABLE statement for the table.
In this case, the value stored in IMPLICITVALUE must match for this column.

There is a situation, where through migration from a pre-V9.1 table or through
attach of a data partition from a pre-V9.1 table, that IMPLICITVALUE is not NULL
because the system did not know whether or not the column was added after the
original CREATE TABLE statement. If the database is not certain whether the
column is added or not, it is treated as added. An added column is a column
created as the result of an ALTER TABLE ...ADD COLUMN statement. In this case,
the statement is not allowed because the value of the column could become
corrupted if the attach were allowed to proceed. You must copy the data from the
source table to a new table (with IMPLICITVALUE for this column NULL) and use
the new table as the source table for the attach operation.

The code page (COMPOSITE_CODEPAGE) of the columns does not match.
(SQL20408N reason code 4)

Create a new source table.

The system compression default clause (COMPRESS) does not match.
(SQL20408N reason code 5)

To alter the system compression of the column issue one of the following
statements to correct the mismatch:
ALTER TABLE ... ALTER COLUMN ... COMPRESS SYSTEM DEFAULT
or
ALTER TABLE ... ALTER COLUMN ... COMPRESS OFF

Conditions for matching a source table index with a target table
partitioned index during ATTACH PARTITION
All index key columns of the partitioned index on the target table must match with
the index key columns of the index on the source table. If all other properties of
the index are the same, then the index on the source table is considered a match to
the partitioned index on the target table. That is, the index on the source table can
be used as an index on the target table. The table here can be used to determine if
the indexes are considered a match or not.

The following table is only useful and applicable when the target index is
partitioned. The target index property is assumed by the source index in all cases
where they are considered a match.

Table 21. Determining whether the source index matches when the target index property is
different from the source index property.

Rule
number

Target index
property

Source index
property Does the source index match?

1. non-unique unique Yes, if the index is not an XML index.

244 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 21. Determining whether the source index matches when the target index property is
different from the source index property. (continued)

Rule
number

Target index
property

Source index
property Does the source index match?

2. unique non-unique No

3. column X is
descending

column X is
ascending

No

4. column X is
ascending

column X is
descending

No

5. partitioned nonpartitioned No. Note: this assumes the source table
is partitioned.

6. pctfree n1 pctfree n2 Yes

7. level2pctfree n1 level2pctfree n2 Yes

8. minpctused n1 minpctused n2 Yes

9. disallow reverse
scans

allow reverse
scans

Yes, the physical index structure is the
same irrespective of whether reverse
scans are allowed or not.

10. allow reverse
scans

disallow reverse
scans

Yes, the same reason as (9).

11. pagesplit
[L|H|S]

pagesplit
[L|H|S]

Yes

12. sampled statistics detailed statistics Yes

13. detailed statistics sampled statistics Yes

14. not clustered CLUSTER Yes

15. CLUSTER not clustered Yes. The index will become a clustering
index but the data will not be clustered
according to this index until the data is
reorganized. You can use a partition
level reorganization after attaching to
cluster the data according to this index
partition.

16. ignore invalid reject invalid Yes

17. reject invalid ignore invalid No. The target index property of
rejecting invalid values needs to be
respected and the source table may
have rows that violate this index
constraint.

18. Index
compression
enabled

Index
compression not
enabled

Yes. Note: compression of the
underlying index data will not occur
until the index is rebuilt.

19. Index
compression not
enabled

Index
compression
enabled

Yes. Note: decompressing the index
data will not occur until the index is
rebuilt.

Note: With rule number 5, an ALTER TABLE ... ATTACH PARTITION statement
fails returning error message SQL20307N, SQLSTATE 428GE, if you attempt to
attach a multidimensional clustering (MDC) table created using DB2 Version 9.7 or
earlier releases (having nonpartitioned block indexes) to a new MDC partitioned
table created using DB2 Version 9.7 Fix Pack 1 or later releases (having partitioned
block indexes) and the ERROR ON MISSING INDEXES clause is used. Removing

Chapter 9. Partitioned tables 245

the ERROR ON MISSING INDEXES clause allows the attachment to complete
because the database manager maintains the indexes during the attach operation. If
you received error message SQL20307N, SQLSTATE 428GE, you should consider
removing the ERROR ON MISSING INDEXES clause.

An alternative is to use the online table move procedure to convert an MDC
partitioned table that has nonpartitioned block indexes to a table that has
partitioned block indexes.

Detaching data partitions
Table partitioning allows for the efficient roll-in and roll-out of table data. This
efficiency is achieved by using the ATTACH PARTITION and DETACH
PARTITION clauses of the ALTER TABLE statement.

Before you begin

To detach a data partition from a partitioned table you must have the following
authorities or privileges:
v The user performing the DETACH PARTITION operation must have the

authority necessary to ALTER, to SELECT from and to DELETE from the source
table.

v The user must also have the authority necessary to create the target table.
Therefore, to alter a table to detach a data partition, the privilege held by the
authorization ID of the statement must include at least one of the following
authorities or privileges on the target table:
– DBADM authority
– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

Note: When detaching a data partition, the authorization ID of the statement is
going to effectively perform a CREATE TABLE statement and therefore must have
the necessary privileges to perform that operation. The authorization ID of the
ALTER TABLE statement becomes the definer of the new table with CONTROL
authority, as if the user had issued the CREATE TABLE statement. No privileges
from the table being altered are transferred to the new table. Only the
authorization ID of the ALTER TABLE statement and users with DBADM or
DATAACCESS authority have access to the data immediately after the ALTER
TABLE...DETACH PARTITION statement.

About this task

Rolling-out partitioned table data allows you to easily separate ranges of data from
a partitioned table. Once a data partition is detached into a separate table, the table
can be handled in several ways. You can drop the separate table (whereby, the data
from the data partition is destroyed); archive it or otherwise use it as a separate
table; attach it to another partitioned table such as a history table; or you can
manipulate, cleanse, transform, and reattach to the original or some other
partitioned table.

246 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

With DB2 Version 9.7 Fix Pack 1 and later releases, when detaching a data partition
from a partitioned table by using the ALTER TABLE statement with the DETACH
PARTITION clause, the source partitioned table remains online. Queries running
against the table continue to run. The data partition being detached is converted
into a stand-alone table in the following two-phase process:
1. The ALTER TABLE...DETACH PARTITION operation logically detaches the

data partition from the partitioned table.
2. An asynchronous partition detach task converts the logically detached partition

into a stand-alone table.

If there are any dependent tables that need to be incrementally maintained with
respect to the detached data partition (these dependent tables are referred to as
detached dependent tables), the asynchronous partition detach task starts only
after the SET INTEGRITY statement is run on all detached dependent tables.

In absence of detached dependent tables, the asynchronous partition detach task
starts after the transaction issuing the ALTER TABLE...DETACH PARTITION
statement commits.

Restrictions

If the source table is an MDC table created by DB2 Version 9.7 or earlier releases,
block indexes are not partitioned. Access to the newly detached table is not
allowed in the same unit of work as the ALTER TABLE...DETACH PARTITION
operation. MDC tables do not support partitioned block indexes. In that case, block
indexes are created upon first access to the table after the ALTER
TABLE...DETACH PARTITION operation is committed. If the source table had any
other partitioned indexes before detach time then the index object for the target
table is marked invalid to allow for creation of the block indexes. As a result access
time is increased while the block indexes are created and any partitioned indexes
are recreated.

When the source table is an MDC created by DB2 V9.7 Fix Pack 1 or later releases,
the block indexes are partitioned, and partitioned indexes become indexes on the
target table of detach without the need to be recreated.

You must meet the following conditions before you can perform a DETACH
PARTITION operation:
v The table to be detached from (source table) must exist and be a partitioned

table.
v The data partition to be detached must exist in the source table.
v The source table must have more than one data partition. A partitioned table

must have at least one data partition. Only visible and attached data partitions
pertain in this context. An attached data partition is a data partition that is
attached but not yet validated by the SET INTEGRITY statement.

v The name of the table to be created by the DETACH PARTITION operation
(target table) must not exist.

v DETACH PARTITION is not allowed on a table that is the parent of an enforced
referential integrity (RI) relationship. If you have tables with an enforced RI
relationship and want to detach a data partition from the parent table, a
workaround is available. In the following example, all statements are run within
the same unit of work (UOW) to lock out concurrent updates:

Chapter 9. Partitioned tables 247

// Change the RI constraint to informational:
ALTER TABLE child ALTER FOREIGN KEY fk NOT ENFORCED;

ALTER TABLE parent DETACH PARTITION p0 INTO TABLE pdet;

SET INTEGRITY FOR child OFF;

// Change the RI constraint back to enforced:
ALTER TABLE child ALTER FOREIGN KEY fk ENFORCED;

SET INTEGRITY FOR child ALL IMMEDIATE UNCHECKED;
// Assuming that the CHILD table does not have any dependencies on partition P0,
// and that no updates on the CHILD table are permitted
// until this UOW is complete, no RI violation is possible during this UOW.

COMMIT WORK;

v If there are any dependent tables that need to be incrementally maintained with
respect to the detached data partition (these dependent tables are referred to as
detached dependent tables), the SET INTEGRITY statement is required to be run
on the detached dependent tables to incrementally maintain the tables. With DB2
V9.7 Fix Pack 1 or later releases, after the SET INTEGRITY statement is run on
all detached dependent tables, the asynchronous partition detach task makes the
data partition into a stand-alone target table. Until the asynchronous partition
detach operation completes, the target table is unavailable.

Procedure
1. To alter a partitioned table and to detach a data partition from the table, issue

the ALTER TABLE statement with the DETACH PARTITION clause.
2. Optional: If you wish to have the same constraints on the newly detached

stand-alone table, run the ALTER TABLE... ADD CONSTRAINT on the target
table after completing the detach operation.
If the index was partitioned on the source table, any indexes necessary to
satisfy the constraint already exist on the target table.

Results

The detached partition is renamed with a system-generated name (using the form
SQLyymmddhhmmssxxx) so that a subsequent attach can reuse the detached partition
name immediately.

Each of the index partitions defined on the source table for the data partition being
detached becomes an index on the target table. The index object is not physically
moved during the detach partition operation. However, the metadata for the index
partitions of the table partition being detached are removed from the catalog table
SYSINDEXPARTITIONS. New index entries are added in SYSINDEXES for the new
table as a result of the detach partition operation. The original index identifier (IID)
is kept and stays unique just as it was on the source table.

The index names for the surviving indexes on the target table are system-generated
(using the form SQLyymmddhhmmssxxx). The schema for these indexes is the same as
the schema of the target table except for any path indexes, regions indexes, and
MDC or ITC block indexes, which are in the SYSIBM schema. Other
system-generated indexes like those to enforce unique and primary key constraints
will have a schema of the target table because the indexes are carried over to the
detached table but the constraints are not. You can use the RENAME statement to
rename the indexes that are not in the SYSIBM schema.

248 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The table level INDEX IN option specified when creating the source table is not
inherited by the target table. Rather, the partition level INDEX IN (if specified) or
the default index table space for the detach partition continues to be the index
table space for the target table.

When detaching data partitions, some statistics are carried over from the partition
being detached into the target table. Specifically, statistics from
SYSINDEXPARTITIONS for partitioned indexes will be carried over to the entries
SYSINDEXES for the newly detached table. Statistics from SYSDATAPARTITIONS
will be copied over to SYSTABLES for the newly detached table.

What to do next

Run RUNSTATS after the completion of the DETACH PARTITION operation on both
the new detached table and the source table, because many of the statistics will not
be carried over following the completion of the detach partition operation.

Attributes of detached data partitions
When you detach a data partition from a partitioned table using the DETACH
PARTITION clause of the ALTER TABLE statement, it becomes a stand-alone,
nonpartitioned target table. Many attributes of the new target table are inherited
from the source table. Any attributes not inherited from the source table are set as
if the user executing the DETACH operation is creating the target table.

The target table after DETACH will inherit all the partitioned indexes defined on
the source table. These indexes includes both system-generated indexes or
user-defined indexes. The index object is not physically moved during the detach
operation. The index partition metadata of the datapartition being detached is
removed from the SYSINDEXPARTITIONS catalog. New entries are added in
SYSINDEXES for the new table. The index identifier (IID) for any given partitioned
index from the source table will be the IID for the index on the target table (the IID
will remain unique with respect to the table, and unchanged during the detach).

The index name for the surviving indexes on the new table are system-generated
with the form: SQLyymmddhhmmssxxx. Path indexes, region indexes, and MDC
or ITC indexes are made part of the SYSIBM schema. All other indexes are made
part of the schema of the new table. System-generated indexes like those to enforce
unique and primary key constraints are made part of the schema of the new table
because the indexes are carried over to the new table. Constraints on the source
table will not be inherited by the target table after DETACH.

You can use the RENAME statement to rename the indexes not in the SYSIBM
schema at another time.

You can use the ALTER TABLE ... ADD CONSTRAINT statement on the new table
following the completion of the detach operation to enforce the same constraints
on the new table as on the source table.

The table space location specified by the table-level INDEX IN clause on the source
table is not inherited by the new target table. Rather, the table space location
specified by the partition-level INDEX IN clause, or the default index table space
for the new table, continues as the index table space location for the new table.

Attributes inherited by the target table

Attributes inherited by the target table include:

Chapter 9. Partitioned tables 249

v The following column definitions:
– Column name
– Data type (includes length and precision for types that have length and

precision, such as CHAR and DECIMAL)
– NULLability
– Column default values
– INLINE LENGTH
– Code page (CODEPAGE column of SYSCAT.COLUMNS catalog view)
– Logging for LOBs (LOGGED column of SYSCAT.COLUMNS catalog view)
– Compaction for LOBs (COMPACT column of SYSCAT.COLUMNS catalog

view)
– Compression (COMPRESS column of SYSCAT.COLUMNS catalog view)
– Type of hidden column (HIDDEN column of SYSCAT.COLUMNS catalog

view)
– Column order

v If the source table is a multidimensional clustering (MDC) or insert time
clustering (ITC) table, the target table is also an MDC or ITC table, defined with
the same dimension columns.

v Block index definitions. The indexes are rebuilt on first access to the newly
detached independent table after the DETACH operation is committed.

v The table space id and table object id are inherited from the data partition, not
from the source table. This is because no table data is moved during a DETACH
operation. In catalog terms, the TBSPACEID column of the
SYSCAT.DATAPARTITIONS catalog view from the source data partition becomes
the TBSPACEID column of the SYSCAT.TABLES catalog view. When translated
into a table space name, it is the TBSPACE column of SYSCAT.TABLES catalog
view in the target table. The PARTITIONOBJECTID column of the
SYSCAT.DATAPARTITIONS catalog view from the source data partition becomes
the TABLEID column of the SYSCAT.TABLES catalog view in the target table.

v The LONG_TBSPACEID column of the SYSCAT.DATAPARTITIONS catalog view
from the source data partition is translated into a table space name and becomes
the LONG_TBSPACE column of SYSCAT.TABLES of the target table.

v The INDEX_TBSPACEID column value in the SYSDATAPARTITIONS for the
source data partition (the partition level index table space) is translated into a
table space name and becomes the INDEX_TBSPACE value in SYSTABLES for
the target table. The index table space specified by table level INDEX IN <table
space> in the CREATE TABLE statement will not be inherited by the target table.

v Table space location
v ID of distribution map for a multi-partition database (PMAP_ID column of

SYSCAT.TABLES catalog view)
v Percent free (PCTFREE column of SYSCAT.TABLES catalog view)
v Append mode (APPEND_MODE column of SYSCAT.TABLES catalog view)
v Preferred lock granularity (LOCKSIZE column of SYSCAT.TABLES catalog view)
v Data Capture (DATA_CAPTURE column of SYSCAT.TABLES catalog view)
v VOLATILE (VOLATILE column of SYSCAT.TABLES catalog view)
v DROPRULE (DROPRULE column of SYSCAT.TABLES catalog view)
v Compression (COMPRESSION column of SYSCAT.TABLES catalog view)
v Maximum free space search (MAXFREESPACESEARCH column of

SYSCAT.TABLES catalog view)

250 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note: Partitioned hierarchical or temporary tables, range-clustered tables, and
partitioned views are not supported.

Attributes not inherited from the source table

Attributes not inherited from the source table include:
v The target table type is not inherited. The target table is always a regular table.
v Privileges and Authorities
v Schema
v Generated columns, identity columns, check constraints, referential constraints.

In the case where a source column is a generated column or an identity column,
the corresponding target column has no explicit default value, meaning it has a
default value of NULL.

v Table level index table space (INDEX_TBSPACE column of the SYSCAT.TABLES
catalog view). Indexes for the table resulting from the DETACH will be in the
same table space as the table.

v Triggers
v Primary key constraints and unique key constraints
v Statistics for nonpartitioned indexes will not be inherited.
v All other attributes not mentioned in the list of attributes explicitly inherited

from the source table.

Data partition detach phases
With DB2 Version 9.7 Fix Pack 1 and later releases, detaching a data partition from
a data partitioned table consists of two phases. The first phase logically detaches
the partition from the table, the second phase converts the data partition into a
stand-alone table.

The detach process is initiated when an ALTER TABLE...DETACH PARTITION
statement is issued:
1. The ALTER TABLE...DETACH PARTITION operation logically detaches the

data partition from the partitioned table.
2. An asynchronous partition detach task converts the logically detached partition

into the stand-alone table.

If there are any dependent tables that need to be incrementally maintained with
respect to the detached data partition (these dependent tables are referred to as
detached dependent tables), the asynchronous partition detach task starts only
after the SET INTEGRITY statement is run on all detached dependent tables.

In absence of detached dependent tables, the asynchronous partition detach task
starts after the transaction issuing the ALTER TABLE...DETACH PARTITION
statement commits.

DETACH operation

The ALTER TABLE...DETACH PARTITION operation performs in the following
manner:
v The DETACH operation does not wait for dynamic uncommitted read (UR)

isolation level queries before it proceeds, nor does it interrupt any currently
running dynamic UR queries. This behavior occurs even when the UR query is
accessing the partition being detached.

Chapter 9. Partitioned tables 251

v If dynamic non-UR queries (read or write queries) did not lock the partition to
be detached, the DETACH operation can complete while dynamic non-UR
queries are running against the table.

v If dynamic non-UR queries locked the partition to be detached, the DETACH
operation waits for the lock to be released.

v Hard invalidation must occur on all static packages that are dependent on the
table before the DETACH operation can proceed.

v The following restrictions that apply to data definition language (DDL)
statements also apply to a DETACH operation because DETACH requires
catalogs to be updated:
– New queries cannot be compiled against the table.
– A bind or rebind cannot be performed on queries that run against the table.

To minimize the impact of these restrictions, issue a COMMIT immediately after
a DETACH operation.

During the DETACH operation, the data partition name is changed to a
system-generated name of the form SQLyymmddhhmmssxxx, and in
SYSCAT.DATAPARTITIONS, the status of the partition is set to 'L' if there are no
detached dependent tables, or 'D' if there are detached dependent tables.

During the DETACH operation, an entry is created in SYSCAT.TABLES for the
target table. If there are detached dependent tables, the table TYPE is set to 'L'.
After SET INTEGRITY is run on all detached dependent tables, the TYPE is set to
'T', however, the target table continues to be unavailable. The asynchronous
partition detach task completes the detach and makes the target table available.

Soft invalidation of dynamic SQL during the DETACH operation allows dynamic
SQL queries that started before the ALTER TABLE...DETACH PARTITION
statement to continue running concurrently with the DETACH operation. The
ALTER TABLE...DETACH PARTITION statement acquires an IX lock on the
partitioned table and an X lock on the data partition being detached.

Asynchronous partition detach task

After the DETACH operation commits and any detached dependent tables are
refreshed, the asynchronous partition detach task converts the logically detached
partition into the stand-alone table.

The asynchronous partition detach task waits for the completion of all access on
the partitioned table that started before phase 1 of the detach operation. If the
partitioned table has nonpartitioned indexes, the asynchronous partition detach
task creates the asynchronous index cleanup task for deferred indexed cleanup.
After the access completes, the asynchronous partition detach task completes phase
2 of the detached operation, by converting the logically detached partition into a
stand-alone table.

The LIST UTILITIES command can be used to monitor the process of the
asynchronous partition detach task. The LIST UTILITIES command indicates
whether the asynchronous partition detach task is in one of the following states:
v Waiting for old access to the partitioned table to complete
v Finalizing the detach operation and making the target table available

252 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Asynchronous partition detach for data partitioned tables
For DB2 Version 9.7 Fix Pack 1 and later releases, the asynchronous partition
detach task completes the detach of a data partition from a partitioned table that
was initiated by an ALTER TABLE...DETACH operation. The task is an
asynchronous background process (ABP) that is initiated after the partition
becomes a logically detached partition.

The asynchronous partition detach task accelerates the process of detaching a data
partition from a partitioned table. If the partitioned table has dependent
materialized query tables (MQTs), the task is not initiated until after a SET
INTEGRITY statement is executed on the MQTs.

By completing the detach of the data partition asynchronously, queries accessing
the partitioned table that started prior to issuing ALTER TABLE...DETACH
PARTITION statement continue while the partition is immediately detached.

If there are any dependent tables that need to be incrementally maintained with
respect to the detached data partition (these dependent tables are referred to as
detached dependent tables), the asynchronous partition detach task starts only
after the SET INTEGRITY statement is run on all detached dependent tables.

In the absence of detached dependents, the asynchronous partition detach task
starts after the transaction issuing the ALTER TABLE...DETACH PARTITION
statement commits.

The asynchronous partition detach task performs the following operations:
v Performs hard invalidation on cached statements on which the ALTER

TABLE...DETACH operation previously performed soft invalidation.
v Updates catalog entries for source partitioned table and target stand-alone table

and makes the target table available.
v For multidimensional clustering (MDC) tables with nonpartitioned block indexes

and no other partitioned indexes, creates an index object for target table. The
block indexes are created upon first access to the target table after the
asynchronous partition detach task commits.

v Creates the system path index on the target table for table containing XML
columns.

v Updates the minimum recovery time (MRT) of the table space containing the
detached partition.

v Creates asynchronous index cleanup AIC tasks for nonpartitioned indexes. The
AIC task performs index cleanup after asynchronous partition detach completes.

v Releases the data partition ID if nonpartitioned indexes do not exist on the table.

Asynchronous partition detach task impact on performance

An asynchronous partition detach task incurs minimal performance impact. The
task waits for all access to the detached partition to complete by performing a hard
invalidation on cached statements on which the ALTER TABLE...DETACH
operation previously performed soft invalidation. Then the task acquires the
required locks on the table and on the partition and continues the process to make
the detached partition a stand-alone table.

Chapter 9. Partitioned tables 253

Monitoring the asynchronous partition detach task

The distribution daemon and asynchronous partition detach task agents are
internal system applications that appear in LIST APPLICATIONS command output
with the application names db2taskd and db2apd, respectively. To prevent
accidental disruption, system applications cannot be forced. The distribution
daemon remains online as long as the database is active. The tasks remain active
until detach completes. If the database is deactivated while detach is in progress,
the asynchronous partition detach task resumes when the database is reactivated.

The LIST UTILITIES command indicates whether the asynchronous partition detach
task is in one of the following states:
v Waiting for old access to the partitioned table to complete
v Finalizing the detach operation and making the target table available

The following sample output for the LIST UTILITIES SHOW DETAIL command shows
asynchronous partition detach task activity in the WSDB database:
ID = 1
Type = ASYNCHRONOUS PARTITION DETACH
Database Name = WSDB
Partition Number = 0
Description = Finalize the detach for partition ’4’ of table ’USER1.ORDERS’.
Start Time = 07/15/2009 14:52:14.476131
State = Executing
Invocation Type = Automatic
Progress Monitoring:

Description = Waiting for old access to the partitioned table to complete.
Start Time = 07/15/2009 14:52:51.268119

In the output of the LIST UTILITIES command, the main description for the
asynchronous partition detach task identifies the data partition being detached and
the target table created by the detach operation. The progress monitoring
description provides information about the current state of the asynchronous
partition detach task.

Note: The asynchronous partition detach task is an asynchronous process. To
know when the target table of a detach operation is available, a stored procedure
can be created that queries the STATUS column of the SYSCAT.DATAPARTITIONS
catalog view and returns when the detach operation completes.

Asynchronous partition detach processing in a partitioned database
environment

One asynchronous partition detach task is created for each DETACH operation
independent of the number of database partitions in a partitioned database
environment. The task is created on the catalog database partition and distributes
work to the remaining database partitions, as needed.

Error handling for the asynchronous partition detach task

The asynchronous partition detach task is transaction based. All the changes made
by a task will be rolled back internally if it fails. Any errors during asynchronous
partition detach processing are logged in a db2diag log file. A failed task is retried
later by the system.

254 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Dropping data partitions
To drop a data partition, you detach the partition, and drop the table created by
the detach operation. Use the ALTER TABLE statement with the DETACH
PARTITION clause to detach the partition and create a stand-alone table, and use
the DROP TABLE statement to drop the table.

Before you begin

To detach a data partition from a partitioned table the user must have the
following authorities or privileges:
v The user performing the DETACH operation must have the authority to ALTER,

to SELECT from and to DELETE from the source table.
v The user must also have the authority to CREATE the target table. Therefore, in

order to alter a table to detach a data partition, the privilege held by the
authorization ID of the statement must include at least one of the following on
the target able:
– DBADM authority
– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

To drop a table the user must have the following authorities or privileges:
v You must either be the definer as recorded in the DEFINER column of

SYSCAT.TABLES, or have at least one of the following privileges:
– DBADM authority
– DROPIN privilege on the schema for the table
– CONTROL privilege on the table

Note: The implication of the detach data partition case is that the authorization ID
of the statement is going to effectively issue a CREATE TABLE statement and
therefore must have the necessary privileges to perform that operation. The table
space is the one where the data partition that is being detached already resides.
The authorization ID of the ALTER TABLE statement becomes the definer of the
new table with CONTROL authority, as if the user issued the CREATE TABLE
statement. No privileges from the table being altered are transferred to the new
table. Only the authorization ID of the ALTER TABLE statement and DBADM or
SYSADM have access to the data immediately after the ALTER TABLE...DETACH
PARTITION operation.

Procedure

To detach a data partition of a partitioned table, issue the ALTER TABLE statement
with the DETACH PARTITION clause.

Example

In the following example, the dec01 data partition is detached from table STOCK
and placed in table JUNK. After ensuring that the asynchronous partition detach
task made the target table JUNK available, you can drop the table JUNK,
effectively dropping the associated data partition.

Chapter 9. Partitioned tables 255

ALTER TABLE stock DETACH PART dec01 INTO junk;
-- After the target table becomes available, issue the DROP TABLE statement
DROP TABLE junk;

What to do next

To make the ALTER TABLE...DETACH as fast as possible with DB2 Version 9.7 Fix
Pack 1 and later releases, the asynchronous partition detach task completes the
detach operation asynchronously. If there are detached dependent tables, the
asynchronous partition detach task does not start and the detached data partition
does not become a stand-alone table. In this case, the SET INTEGRITY statement
must be issued on all detached dependent tables. After SET INTEGRITY completes,
the asynchronous partition detach task starts and makes the target table accessible.
When the target table is accessible it can be dropped.

Creating partitioned tables
Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table. Data from a given table
is partitioned into multiple storage objects based on the specifications provided in
the PARTITION BY clause of the CREATE TABLE statement. These storage objects
can be in different table spaces, in the same table space, or a combination of both.

Before you begin

To create a table, the privileges held by the authorization ID of the statement must
include at least one of the following authorities or privileges:
v CREATETAB authority on the database and USE privilege on all the table spaces

used by the table, as well as one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema
v DBADM authority

About this task

You can create a partitioned table by using the CREATE TABLE statement.

Procedure

To create a partitioned table from the command line, issue the CREATE TABLE
statement:
CREATE TABLE NAME (column_name data_type null_attribute) IN
table_space_list PARTITION BY RANGE (column_expression)
STARTING FROM constant ENDING constant EVERY constant

For example, the following statement creates a table where rows with a ≥ 1 and a ≤
20 are in PART0 (the first data partition), rows with 21 ≤ a ≤ 40 are in PART1 (the
second data partition), up to 81 ≤ a ≤ 100 are in PART4 (the last data partition).
CREATE TABLE foo(a INT)
PARTITION BY RANGE (a) (STARTING FROM (1)
ENDING AT (100) EVERY (20))

256 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Defining ranges on partitioned tables
You can specify a range for each data partition when you create a partitioned table.
A partitioned table uses a data organization scheme in which table data is divided
across multiple data partitions according to the values of the table partitioning key
columns of the table.

About this task

Data from a given table is partitioned into multiple storage objects based on the
specifications provided in the PARTITION BY clause of the CREATE TABLE
statement. A range is specified by the STARTING FROM and ENDING AT values
of the PARTITION BY clause.

To completely define the range for each data partition, you must specify sufficient
boundaries. The following is a list of guidelines to consider when defining ranges
on a partitioned table:
v The STARTING clause specifies a low boundary for the data partition range.

This clause is mandatory for the lowest data partition range (although you can
define the boundary as MINVALUE). The lowest data partition range is the data
partition with the lowest specified bound.

v The ENDING (or VALUES) clause specifies a high boundary for the data
partition range. This clause is mandatory for the highest data partition range
(although you can define the boundary as MAXVALUE). The highest data
partition range is the data partition with the highest specified bound.

v If you do not specify an ENDING clause for a data partition, then the next
greater data partition must specify a STARTING clause. Likewise, if you do not
specify a STARTING clause, then the previous data partition must specify an
ENDING clause.

v MINVALUE specifies a value that is smaller than any possible value for the
column type being used. MINVALUE and INCLUSIVE or EXCLUSIVE cannot be
specified together.

v MAXVALUE specifies a value that is larger than any possible value for the
column type being used. MAXVALUE and INCLUSIVE or EXCLUSIVE cannot
be specified together.

v INCLUSIVE indicates that all values equal to the specified value are to be
included in the data partition containing this boundary.

v EXCLUSIVE indicates that all values equal to the specified value are NOT to be
included in the data partition containing this boundary.

v The NULLS FIRST and NULLS LAST clauses of the CREATE TABLE statement
specify whether null values are to be sorted high or low when considering data
partition placement. By default, null values are sorted high. Null values in the
table partitioning key columns are treated as positive infinity, and are placed in
a range ending at MAXVALUE. If no such data partition is defined, null values
are considered to be out-of-range values. Use the NOT NULL constraint if you
want to exclude null values from table partitioning key columns. LAST specifies
that null values are to appear last in a sorted list of values. FIRST specifies that
null values are to appear first in a sorted list of values.

v When using the long form of the syntax, each data partition must have at least
one bound specified.

Tip: Before you begin defining data partitions on a table it is important to
understand how tables benefit from table partitioning and what factors influence
the columns you choose as partitioning columns.

Chapter 9. Partitioned tables 257

The ranges specified for each data partition can be generated automatically or
manually.

Automatically generated

Automatic generation is a simple method of creating many data partitions quickly
and easily. This method is appropriate for equal sized ranges based on dates or
numbers.

Examples 1 and 2 demonstrate how to use the CREATE TABLE statement to define
and generate automatically the ranges specified for each data partition.

Example 1:

Issue a create table statement with the following ranges defined:
CREATE TABLE lineitem (

l_orderkey DECIMAL(10,0) NOT NULL,
l_quantity DECIMAL(12,2),
l_shipdate DATE,
l_year_month INT GENERATED ALWAYS AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate)))

PARTITION BY RANGE(l_shipdate)
(STARTING (’1/1/1992’) ENDING (’12/31/1992’) EVERY 1 MONTH);

This statement results in 12 data partitions each with 1 key value (l_shipdate) >=
('1/1/1992'), (l_shipdate) < ('3/1/1992'), (l_shipdate) < ('4/1/1992'), (l_shipdate) <
('5/1/1992'), ..., (l_shipdate) < ('12/1/1992'), (l_shipdate) < ('12/31/1992').

The starting value of the first data partition is inclusive because the overall starting
bound ('1/1/1992') is inclusive (default). Similarly, the ending bound of the last
data partition is inclusive because the overall ending bound ('12/31/1992') is
inclusive (default). The remaining STARTING values are inclusive and the
remaining ENDING values are all exclusive. Each data partition holds n key values
where n is given by the EVERY clause. Use the formula (start + every) to find the
end of the range for each data partition. The last data partition might have fewer
key values if the EVERY value does not divide evenly into the START and END
range.

Example 2:

Issue a create table statement with the following ranges defined:
CREATE TABLE t(a INT, b INT)
PARTITION BY RANGE(b) (STARTING FROM (1)
EXCLUSIVE ENDING AT (1000) EVERY (100))

This statement results in 10 data partitions each with 100 key values (1 < b <= 101,
101 < b <= 201, ..., 901 < b <= 1000).

The starting value of the first data partition (b > 1 and b <= 101) is exclusive
because the overall starting bound (1) is exclusive. Similarly the ending bound of
the last data partition (b > 901 b <= 1000) is inclusive because the overall ending
bound (1000) is inclusive. The remaining STARTING values are all exclusive and
the remaining ENDING values are all inclusive. Each data partition holds n key
values where n is given by the EVERY clause. Finally, if both the starting and
ending bound of the overall clause are exclusive, the starting value of the first data
partition is exclusive because the overall starting bound (1) is exclusive. Similarly
the ending bound of the last data partition is exclusive because the overall ending
bound (1000) is exclusive. The remaining STARTING values are all exclusive and

258 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

the ENDING values are all inclusive. Each data partition (except the last) holds n
key values where n is given by the EVERY clause.

Manually generated

Manual generation creates a new data partition for each range listed in the
PARTITION BY clause. This form of the syntax allows for greater flexibility when
defining ranges thereby increasing your data and LOB placement options.
Examples 3 and 4 demonstrate how to use the CREATE TABLE statement to define
and generate manually the ranges specified for a data partition.

Example 3:

This statement partitions on two date columns both of which are generated. Notice
the use of the automatically generated form of the CREATE TABLE syntax and that
only one end of each range is specified. The other end is implied from the adjacent
data partition and the use of the INCLUSIVE option:
CREATE TABLE sales(invoice_date date, inv_month int NOT NULL
GENERATED ALWAYS AS (month(invoice_date)), inv_year INT NOT
NULL GENERATED ALWAYS AS (year(invoice_date)),
item_id int NOT NULL,
cust_id int NOT NULL) PARTITION BY RANGE (inv_year,
inv_month)
(PART Q1_02 STARTING (2002,1) ENDING (2002, 3) INCLUSIVE,
PART Q2_02 ENDING (2002, 6) INCLUSIVE,
PART Q3_02 ENDING (2002, 9) INCLUSIVE,
PART Q4_02 ENDING (2002,12) INCLUSIVE,
PART CURRENT ENDING (MAXVALUE, MAXVALUE));

Gaps in the ranges are permitted. The CREATE TABLE syntax supports gaps by
allowing you to specify a STARTING value for a range that does not line up
against the ENDING value of the previous data partition.

Example 4:

Creates a table with a gap between values 101 and 200.
CREATE TABLE foo(a INT)
PARTITION BY RANGE(a)

(STARTING FROM (1) ENDING AT (100),
STARTING FROM (201) ENDING AT (300))

Use of the ALTER TABLE statement, which allows data partitions to be added or
removed, can also cause gaps in the ranges.

When you insert a row into a partitioned table, it is automatically placed into the
proper data partition based on its key value and the range it falls within. If it falls
outside of any ranges defined for the table, the insert fails and the following error
is returned to the application:
SQL0327N The row cannot be inserted into table <tablename>
because it is outside the bounds of the defined data partition ranges.

SQLSTATE=22525

Restrictions

v Table level restrictions:
– Tables created using the automatically generated form of the syntax

(containing the EVERY clause) are constrained to use a numeric or date time
type in the table partitioning key.

Chapter 9. Partitioned tables 259

v Statement level restrictions:
– MINVALUE and MAXVALUE are not supported in the automatically

generated form of the syntax.
– Ranges are ascending.
– Only one column can be specified in the automatically generated form of the

syntax.
– The increment in the EVERY clause must be greater than zero.
– The ENDING value must be greater than or equal to the STARTING value.

Placement of the data, index and long data of a data partition
By its very nature, creating a partitioned table allows you to place the various
parts of the table and the associated table objects in specific table spaces.

When creating a table you can specify in which table space the entire table data
and associated table objects will be placed. Or, you can place the table's index, long
or large data, or table partitions in specific table spaces. All of the table spaces
must be in the same database partition group.

The CREATE TABLE statement has the following clauses which demonstrate this
ability to place the table data and associated table objects within specific table
spaces:
CREATE TABLE table_name IN table_space_name1

INDEX IN table_space_name2
LONG IN table_space_name3
PARTITIONED BY ...

PARTITION partition_name | boundary specification | IN table_space_name4
INDEX IN table_space_name5
LONG IN table_space_name6

Each of the partitions of the partitioned table can be placed in different table
spaces.

You can also specify the table space for a user-created nonpartitioned index on a
partitioned table using the CREATE INDEX ... IN table_space_name1 statement,
which can be different from the index table space specified in the CREATE TABLE
... INDEX IN table_space_name2 statement. The IN clause of the CREATE INDEX
statement is used for partitioned tables only. If the INDEX IN clause is not
specified on the CREATE TABLE or CREATE INDEX statements, the index is
placed in the same table space as the first visible or attached partition of the table.

System generated nonpartitioned indexes, such as XML column paths indexes, are
placed in the table space specified in the INDEX IN clause of the CREATE TABLE
statement.

On a partitioned table with XML data, the XML region index is always partitioned
in the same way as the table data. The table space of the partitioned indexes is
defined at the partition level

XML data resides in the table spaces used by the long data for a table. XML data
placement on a partitioned table follows the long data placement rules.

The table space for long data can be specified explicitly by you or determined by
the database manager implicitly. For a partitioned table, the table level LONG IN

260 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

clause can be used together with the partition level LONG IN clause. If both are
specified, the partition level LONG IN clause takes precedence over any table level
LONG IN clauses.

Altering partitioned tables
All relevant clauses of the ALTER TABLE statement are supported for a partitioned
table. In addition, the ALTER TABLE statement allows you to add new data
partitions, roll-in (attach) new data partitions, and roll-out (detach) existing data
partitions.

Before you begin

To alter a partitioned table to detach a data partition the user must have the
following authorities or privileges:
v The user performing the DETACH PARTITION operation must have the

authority necessary to ALTER, to SELECT from, and to DELETE from the source
table.

v The user must also have the authority necessary to create the target table.
Therefore, to alter a table to detach a data partition, the privilege held by the
authorization ID of the statement must include at least one of the following
authorities or privileges on the target table:
– DBADM authority
– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

To alter a partitioned table to attach a data partition, the privileges held by the
authorization ID of the statement must include at least one of the following
authorities or privileges on the source table:
v DATAACCESS authority or SELECT privilege on the source table and DBADM

authority or DROPIN privilege on the schema of the source table
v CONTROL privilege on the source table

To alter a partitioned table to add a data partition, the privileges held by the
authorization ID of the statement must have privileges to use the table space
where the new partition is added, and include at least one of the following
authorities or privileges on the source table:
v ALTER privilege
v CONTROL privilege
v DBADM
v ALTERIN privilege on the table schema

About this task
v Each ALTER TABLE statement issued with the PARTITION clause must be in a

separate SQL statement.
v No other ALTER operations are permitted in an SQL statement containing an

ALTER TABLE ... PARTITION operation. For example, you cannot attach a data
partition and add a column to the table in a single SQL statement.

Chapter 9. Partitioned tables 261

v Multiple ALTER statements can be executed, followed by a single SET
INTEGRITY statement.

Procedure

To alter a partitioned table from the command line, issue the ALTER TABLE
statement.

Guidelines and restrictions on altering partitioned tables
This topic identifies the most common alter table actions and special considerations
in the presence of attached and detached data partitions.

The STATUS column of the SYSCAT.DATAPARTITIONS catalog view contains the
state information for the partitions of a table.
v If the STATUS is the empty string, the partition is visible and is in the normal

state.
v If the STATUS is 'A', the partition is newly attached and the SET INTEGRITY

statement must be issued to bring the attached partition into the normal state.
v If the STATUS is 'D', 'L', or 'I', the partition is being detached, but the detach

operation has not completed.
– For a partition in the 'D' state, the SET INTEGRITY statement must be issued

on all detached dependent tables in order to transition the partition to the
logically detached state.

– For a partition in the 'L' state, the partition is a logically detached partition
and the asynchronous partition detach task is completing the detach of the
partition for DB2 Version 9.7 Fix Pack 1 and later releases.

– For a partition in the 'I' state the asynchronous partition detach task has
completed and asynchronous index cleanup is updating nonpartitioned
indexes defined on the partition.

Adding or attaching a data partition - locking behavior
For information about locking behavior during an add partition or attach
partition operation, see the “Scenarios: Rolling in and rolling out
partitioned table data” topic.

Adding or altering a constraint
Adding a check or a foreign key constraint is supported with attached and
detached data partitions. When a partitioned table has detached partitions
in state 'D' or 'L', adding a primary or unique constraint will return an
error if the system has to generate a new partitioned index to enforce the
constraint. For a partition in the 'L' state, the operation returns SQL20285N
(SQLSTATE 55057). For a partition in the 'D' state, the operation returns
SQL20054 (SQLSTATE 55019).

Adding a column
When adding a column to a table with attached data partitions, the column
is also added to the attached data partitions. When adding a column to a
table with detached data partitions in the 'I' state, the column is not added
to the detached data partitions because the detached data partitions are no
longer physically associated to the table.

For a detached partition in the 'L' or 'D' state, the operation fails and an
error is returned. For a partition in the 'L' state, the operation returns
SQL20285N (SQLSTATE 55057). For a partition in the 'D' state, the
operation returns SQL20296N (SQLSTATE 55057).

262 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Altering a column
When altering a column in a table with attached data partitions, the
column will also be altered on the attached data partitions. When altering
a column in a table with detached data partitions, the column is not altered
on the detached data partitions, because the detached data partitions are
no longer physically associated to the table.

When dropping or renaming a column when a partition is detached in the
'L' or 'D' state the operation fails and an error is returned. For a partition
in the 'L' state, the operation returns SQL20285N (SQLSTATE 55057). For a
partition in the 'D' state, the operation returns SQL0270N (SQLSTATE
42997).

Adding a generated column
When adding a generated column to a partitioned table with attached or
detached data partitions, it must respect the rules for adding any other
types of columns.

Adding or modifying a nonpartitioned index
When creating, recreating, or reorganizing an index on a table with
attached data partitions, the index does not include the data in the
attached data partitions because the SET INTEGRITY statement maintains
all indexes for all attached data partitions. When creating, recreating or
reorganizing an index on a table with detached data partitions, the index
does not include the data in the detached data partitions, unless the
detached data partition has a detached dependent table or staging tables
that need to be incrementally refreshed with respect to the data partition,
the partition is in the 'D' state. In this case, the index includes the data for
this detached data partition.

Adding or modifying a partitioned index

When creating a partitioned index in the presence of attached data
partitions, an index partition for each attached data partition will be
created. The index entries for index partitions on attached data partitions
will not be visible until the SET INTEGRITY statement is run to bring the
attached data partitions online. Note that because create index includes the
attached data partitions, creation of a unique partitioned index may find
rows in the attached data partition which are duplicate key values and
thus fail the index creation. It is recommended that users do not attempt to
create partitioned indexes in the presence of attached partitions to avoid
this problem.

If the table has any detached dependent tables, creation of partitioned
indexes is not supported on partitioned tables with detached dependent
tables. Any attempt to create a partitioned index in this situation will result
in SQLSTATE 55019. When creating a partitioned index on a table that has
partitions in 'L' state, the operation returns SQL20285N (SQLSTATE 55057).

WITH EMPTY TABLE
You cannot empty a table with attached data partitions.

ADD MATERIALIZED QUERY AS
Altering a table with attached data partitions to an MQT is not allowed.

Altering additional table attributes that are stored in a data partition
The following table attributes are also stored in a data partition. Changes
to these attributes are reflected on the attached data partitions, but not on
the detached data partitions.
v DATA CAPTURE

Chapter 9. Partitioned tables 263

v VALUE COMPRESSION
v APPEND
v COMPACT/LOGGED FOR LOB COLUMNS

Creating and accessing data partitions within the same transaction
If a table has a nonpartitioned index, you cannot access a new data
partition in that table within the same transaction as the add or attach
operation that created the partition, if the transaction does not have the
table locked in exclusive mode (SQL0668N, reason code 11).

Special considerations for XML indexes when altering a table
to ADD, ATTACH, or DETACH a partition

Similar to a nonpartitioned relational index, a nonpartitioned index over an XML
column is an independent object that is shared among all data partitions of a
partitioned table. XML region indexes and column path indexes are affected when
you alter a table by adding, attaching, or detaching a partition. Indexes over XML
column paths are always nonpartitioned, and indexes over XML data are generated
as partitioned by default.

XML regions index

ADD PARTITION will create a new regions index partition for the new empty data
partition being added. A new entry for the regions index partition will be added to
the SYSINDEXPARTITIONS table. The table space for the partitioned index object
on the new partition will be determined by the INDEX IN <table space> in the
ADD PARTITION clause. If no INDEX IN <table space> is specified for the ADD
PARTITION clause, the table space for the partitioned index object will be the
same as the table space used by the corresponding data partition by default.

The system-generated XML regions index on a partitioned table is always
partitioned. A partitioned index uses an index organization scheme in which index
data is divided across multiple storage objects, called index partitions, according to
the table partitioning scheme of the table. Each index partition only refers to table
rows in the corresponding data partition.

For ATTACH, since the regions index on a partitioned table with XML column is
always partitioned, the region index on the source table can be kept as the new
regions index partition for the new table partition after completing the ATTACH
operation. Data and index objects do not move, therefore the catalog table entries
need to be updated. The catalog table entry for the regions index on the source
table will be removed on ATTACH and one regions index partition will be added
in the SYSINDEXPARTITIONS table. The pool ID and object ID will remain the
same as they were on the source table. The index ID (IID) will be modified to
match that of the regions index on the target.

After completing the DETACH operation, the regions index will be kept on the
detached table. The index partition entry associated to the partition being detached
will be removed from the SYSINDEXPARTITIONS table. One new regions index
entry will be added in the SYSINDEXES catalog table for the detached table, which
will have the same pool ID and object ID as the region index partition before the
DETACH.

264 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Index over XML data

Starting in DB2 Version 9.7 Fix Pack 1, you can create an index over XML data on
a partitioned table as either partitioned or nonpartitioned. The default is a
partitioned index.

Partitioned and nonpartitioned indexes over XML data are treated like any other
relational indexes during ATTACH and DETACH operations.

Indexes on the source table will be dropped during the ATTACH operation. This
applies to both the logical and physical XML indexes. Their entries in the system
catalogs will be removed during the ATTACH operation.

Set integrity must be run after ATTACH, to maintain the nonpartitioned indexes
over XML data on the target table.

For DETACH, nonpartitioned indexes over XML columns on the source table are
not inherited by the target table.

XML column path indexes

Indexes over XML column paths are always nonpartitioned indexes. The XML
column path indexes on the source and target tables are maintained during roll-in
and rollout operations.

For ATTACH, the DB2 database manager will maintain the nonpartitioned XML
column path indexes on the target table (this is unlike other nonpartitioned
indexes, which are maintained during SET INTEGRITY after completing the
ATTACH operation). Afterwards, the XML column path indexes on the source
table will be dropped and their catalog entries will be removed because the
column path indexes on the target table are nonpartitioned.

For rollout, recall that the XML column path indexes are nonpartitioned, and
nonpartitioned indexes are not carried along to the standalone target table.
However, XML column path indexes (one for each column) must exist on a table
with XML columns before the table can be accessible to external user, therefore
XML column path indexes must be created on the target table before it can be
used. The time at which the column path indexes will be created depends on
whether there are any detached dependent tables during the DETACH operation. If
there are no detached dependent tables, then the paths indexes will be created
during the DETACH operation, otherwise they will be created by SET INTEGRITY
or MQT refresh to maintain the detach dependent objects.

After DETACH, the XML column path indexes created on the target table will
reside in the same index object along with all other indexes on that table.

Scenario: Rotating data in a partitioned table
Rotating data in DB2 databases refers to a method of reusing space in a data
partition by removing obsolete data from a table (a detach partition operation) and
then adding new data (an attach partition operation).

Before you begin

Alternatively, you can archive the detached partition and load the new data into a
different source table before an attach operation is performed. In the following

Chapter 9. Partitioned tables 265

scenario, a detach operation precedes the other steps; it could as easily be the last
step, depending on your specific requirements.

To alter a table to detach a data partition, the authorization ID of the statement
must hold the following privileges and authorities:
v At least one of the following authorities on the target table of the detached

partition:
– CREATETAB authority on the database, and USE privilege on the table spaces

used by the table, as well as one of the following authorities or privileges:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the new table does not exist
- CREATEIN privilege on the schema, if the schema name of the new table

refers to an existing schema
– DBADM authority

v At least one of the following privileges and authorities on the source table:
– SELECT, ALTER, and DELETE privileges on the table
– CONTROL privilege on the table
– DATAACCESS authority

To alter a table to attach a data partition, the authorization ID of the statement
must include the following privileges and authorities:
v At least one of the following authorities or privileges on the source table:

– SELECT privilege on the table and DROPIN privilege on the schema of the
table

– CONTROL privilege on the table
– DATAACCESS authority

v A least one of the following authorities or privileges on the target table:
– ALTER and INSERT privileges on the table
– CONTROL privilege on the table
– DATAACCESS authority

Procedure

To rotate data in a partitioned table, issue the ALTER TABLE statement. The
following example shows how to update the STOCK table by removing the data
from December 2008 and replacing it with the latest data from December 2010.
1. Remove the old data from the STOCK table.

ALTER TABLE stock DETACH PARTITION dec08 INTO newtable;

2. Load the new data. Using the LOAD command with the REPLACE option
overwrites existing data.
LOAD FROM data_file OF DEL REPLACE INTO newtable

Note: If there are detached dependents, issue the SET INTEGRITY statement
on the detached dependents before loading the detached table. If SQL20285N is
returned, wait until the asynchronous partition detach task is complete before
issuing the SET INTEGRITY statement again.

3. If necessary, perform data cleansing activities, which can include the following
actions:
v Filling in missing values
v Deleting inconsistent and incomplete data

266 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Removing redundant data arriving from multiple sources
v Transforming data

– Normalization. Data from different sources that represents the same value
in different ways must be reconciled as part of rolling the data into the
warehouse.

– Aggregation. Raw data that is too detailed to store in the warehouse must
be aggregated before being rolled in.

4. Attach the data as a new range.
ALTER TABLE stock

ATTACH PARTITION dec10
STARTING ’12/01/2008’ ENDING ’12/31/2010’

FROM newtable;

5. Use the SET INTEGRITY statement to update indexes and other dependent
objects. Read and write access is permitted during execution of the SET
INTEGRITY statement.
SET INTEGRITY FOR stock

ALLOW WRITE ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN stock USE stock_ex;

Scenarios: Rolling in and rolling out partitioned table data
A common administrative operation in data warehouses is to periodically roll in
new data and roll out obsolete data. The following scenarios illustrate these tasks.

Scenario 1: Rolling out obsolete data by detaching a data
partition

The following example shows how to detach an unneeded data partition (DEC01)
from a partitioned table named STOCK. The detached data partition is used to
create a table named STOCK_DROP without any data movement.
ALTER TABLE stock DETACH PART dec01 INTO stock_drop;
COMMIT WORK;

To expedite the detach operation, index cleanup on the source table is done
automatically and in the background through an asynchronous index cleanup
process. If there are no detached dependent tables defined on the source table,
there is no need to issue a SET INTEGRITY statement to complete the detach
operation.

The new table can be dropped or attached to another table, or it can be truncated
and loaded with new data before being reattached to the source table. You can
perform these operations immediately, even before asynchronous index cleanup
completes, unless the source table detached dependent tables.

To determine whether a detached table is accessible, query the
SYSCAT.TABDETACHEDDEP catalog view. If a detached table is found to be
inaccessible, issue the SET INTEGRITY statement with the IMMEDIATE
CHECKED option against all of the detached dependent tables. If you try to access
a detached table before all of its detached dependent tables are maintained, an
error (SQL20285N) is returned.

Chapter 9. Partitioned tables 267

Scenario 2: Creating a new, empty range

The following example shows how to add an empty data partition (DEC02) to a
partitioned table named STOCK. The STARTING FROM and ENDING AT clauses
specify the range of values for the new data partition.
ALTER TABLE stock ADD PARTITION dec02
STARTING FROM ’12/01/2002’ ENDING AT ’12/31/2002’;

This ALTER TABLE...ADD PARTITION statement drains existing static or
repeatable-read queries that are running against the STOCK table and invalidates
packages on the table; that is, the statement allows such queries to complete
normally before it exclusively locks the table (by using a Z lock) and performs the
add operation. Existing dynamic non-repeatable-read queries against the STOCK
table continue, and can run concurrently with the add operation. Any new queries
attempting to access the STOCK table after the add operation starts must wait until
the transaction in which the statement is issued commits. The STOCK table is
Z-locked (completely inaccessible) during this period.

Tip: Issue a COMMIT statement immediately after the add operation to make the
table available for use sooner.

Load data into the table:
LOAD FROM data_file OF DEL
INSERT INTO stock
ALLOW READ ACCESS;

Issue a SET INTEGRITY statement to validate constraints and refresh dependent
materialized query tables (MQTs). Any rows that violate defined constraints are
moved to the exception table STOCK_EX.
SET INTEGRITY FOR stock
ALLOW READ ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN stock USE stock_ex;

COMMIT WORK;

Scenario 3: Rolling in new data by attaching a loaded data
partition

The following example shows how an attach operation can be used to facilitate
loading a new range of data into an existing partitioned table (the target table
named STOCK). Data is loaded into a new, empty table (DEC03), where it can be
checked and cleansed, if necessary, without impacting the target table. Data
cleansing activities include:
v Filling in missing values
v Deleting inconsistent and incomplete data
v Removing redundant data that arrived from multiple sources
v Transforming the data through normalization or aggregation:

– Normalization. Data from different sources that represents the same values in
different ways must be reconciled as part of the roll-in process.

– Aggregation. Raw data that is too detailed to store in a warehouse must be
aggregated during roll-in.

After the data is prepared in this way, the newly loaded data partition can be
attached to the target table.

268 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

CREATE TABLE dec03(...);
LOAD FROM data_file OF DEL REPLACE INTO dec03;
(data cleansing, if necessary)
ALTER TABLE stock ATTACH PARTITION dec03
STARTING FROM ’12/01/2003’ ENDING AT ’12/31/2003’
FROM dec03;

During an attach operation, one or both of the STARTING FROM and ENDING AT
clauses must be specified, and the lower bound (STARTING FROM clause) must be
less than or equal to the upper bound (ENDING AT clause). The newly attached
data partition must not overlap an existing data partition range in the target table.
If the high end of the highest existing range is defined as MAXVALUE, any
attempt to attach a new high range fails, because that new range would overlap
the existing high range. A similar restriction applies to low ranges that end at
MINVALUE. Moreover, you cannot add or attach a new data partition in the
middle, unless its new range falls within a gap in the existing ranges. If boundaries
are not specified by the user, they are determined when the table is created.

This ALTER TABLE...ATTACH PARTITION statement drains existing static or
repeatable-read queries that are running against the STOCK table and invalidates
packages on the table; that is, the statement allows such queries to complete
normally before it exclusively locks the table (by using a Z lock) and performs the
attach operation. Existing dynamic non-repeatable-read queries against the STOCK
table continue, and can run concurrently with the attach operation. Any new
queries attempting to access the STOCK table after the attach operation starts must
wait until the transaction in which the statement is issued commits. The STOCK
table is Z-locked (completely inaccessible) during this period.

Tip:

v Issue a COMMIT statement immediately after the attach operation to make the
table available for use.

v Issue a SET INTEGRITY statement immediately after the attach operation
commits to make the data from the new data partition available sooner.

The data in the attached data partition is not yet visible because it is not yet
validated by the SET INTEGRITY statement. The SET INTEGRITY statement is
necessary to verify that the newly attached data is within the defined range. It also
performs any necessary maintenance activities on indexes and other dependent
objects, such as MQTs. New data is not visible until the SET INTEGRITY statement
commits; however, if the SET INTEGRITY statement is running online, existing
data in the STOCK table is fully accessible for both read and write operations.

Tip: If data integrity checking, including range validation and other constraints
checking, can be done through application logic that is independent of the data
server before an attach operation, newly attached data can be made available for
use much sooner. You can optimize the data roll-in process by using the SET
INTEGRITY...ALL IMMEDIATE UNCHECKED statement to skip range and
constraints violation checking. In this case, the table is brought out of SET
INTEGRITY pending state, and the new data is available for applications to use
immediately, as long as there are no nonpartitioned user indexes on the target
table.

Note: You cannot execute data definition language (DDL) statements or utility
operations against the table while the SET INTEGRITY statement is running. These
operations include, but are not restricted to, the following statements and
commands:

Chapter 9. Partitioned tables 269

v LOAD command
v REDISTRIBUTE DATABASE PARTITION GROUP command
v REORG INDEXES/TABLE command
v ALTER TABLE statement

– ADD COLUMN
– ADD PARTITION
– ATTACH PARTITION
– DETACH PARTITION

v CREATE INDEX statement

The SET INTEGRITY statement validates the data in the newly attached data
partition:
SET INTEGRITY FOR stock
ALLOW WRITE ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN stock USE stock_ex;

Committing the transaction makes the table available for use:
COMMIT WORK;

Any rows that are out of range, or that violate other constraints, are moved to the
exception table STOCK_EX. You can query this table, fix the rows, and insert them
into the STOCK table.

Migrating existing tables and views to partitioned tables
You can migrate a nonpartitioned table or a UNION ALL view to an empty
partitioned table.

Before you begin

Attaching a data partition is not allowed if SYSCAT.COLUMNS.IMPLICITVALUE
for a specific column is a nonnull value for both the source column and the target
column, and the values do not match. In this case, you must drop the source table
and then recreate it.

A column can have a nonnull value in the SYSCAT.COLUMNS IMPLICITVALUE
field if any one of the following conditions is met:
v The IMPLICITVALUE field is propagated from a source table during an attach

operation.
v The IMPLICITVALUE field is inherited from a source table during a detach

operation.
v The IMPLICITVALUE field is set during migration from V8 to V9, where it is

determined to be an added column, or might be an added column. An added
column is a column that is created as the result of an ALTER TABLE...ADD
COLUMN statement.

Always create the source and target tables involved in an attach operation with the
same columns defined. In particular, never use the ALTER TABLE statement to add
columns to the target table of an attach operation.

For advice on avoiding a mismatch when working with partitioned tables, see
“Guidelines for attaching data partitions to partitioned tables” on page 240.

270 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

About this task

When migrating regular tables, unload the source table by using the EXPORT
command or high performance unload. Create a new, empty partitioned table, and
use the LOAD command to populate that partitioned table. To move the data from
the old table directly into the partitioned table without any intermediate steps, use
the LOAD FROM CURSOR command (see Step 1.

You can convert nonpartitioned data in a UNION ALL view to a partitioned table
(see Step 2). UNION ALL views are used to manage large tables and achieve easy
roll-in and roll-out of table data while providing the performance advantages of
branch elimination. Using the ALTER TABLE...ATTACH PARTITION statement,
you can achieve conversion with no movement of data in the base table.
Nonpartitioned indexes and dependent views or materialized query tables (MQTs)
must be recreated after the conversion. The recommended strategy to convert
UNION ALL views to partitioned tables is to create a partitioned table with a
single dummy data partition, then attach all of the tables of the union all view. Be
sure to drop the dummy data partition early in the process to avoid problems with
overlapping ranges.

Procedure
1. Migrate a regular table to a partitioned table. Use the LOAD FROM CURSOR

command to avoid any intermediate steps. The following example shows how
to migrate table T1 to the SALES_DP table.
a. Create and populate a regular table T1.

CREATE TABLE t1 (c1 int, c2 int);
INSERT INTO t1 VALUES (0,1), (4, 2), (6, 3);

b. Create an empty partitioned table.
CREATE TABLE sales_dp (c1 int, c2 int)

PARTITION BY RANGE (c1)
(STARTING FROM 0 ENDING AT 10 EVERY 2);

c. Use the LOAD FROM CURSOR command to pull the data from an SQL query
directly into the new partitioned table.

SELECT * FROM t1;
DECLARE c1 CURSOR FOR SELECT * FROM t1;
LOAD FROM c1 of CURSOR INSERT INTO sales_dp;SELECT * FROM sales_dp;

2. Convert nonpartitioned data in a UNION ALL view to a partitioned table. The
following example shows how to convert the UNION ALL view named
ALL_SALES to the SALES_DP table.
a. Create the UNION ALL view.

CREATE VIEW all_sales AS
(
SELECT * FROM sales_0198
WHERE sales_date BETWEEN ’01-01-1998’ AND ’01-31-1998’
UNION ALL
SELECT * FROM sales_0298
WHERE sales_date BETWEEN ’02-01-1998’ AND ’02-28-1998’
UNION ALL
...
UNION ALL
SELECT * FROM sales_1200
WHERE sales_date BETWEEN ’12-01-2000’ AND ’12-31-2000’
);

b. Create a partitioned table with a single dummy partition. Choose the range
so that it does not overlap with the first data partition to be attached.

Chapter 9. Partitioned tables 271

CREATE TABLE sales_dp (
sales_date DATE NOT NULL,
prod_id INTEGER,
city_id INTEGER,
channel_id INTEGER,
revenue DECIMAL(20,2))
PARTITION BY RANGE (sales_date)
(PART dummy STARTING FROM ’01-01-1900’ ENDING AT ’01-01-1900’);

c. Attach the first table.
ALTER TABLE sales_dp ATTACH PARTITION

STARTING FROM ’01-01-1998’ ENDING AT ’01-31-1998’
FROM sales_0198;

d. Drop the dummy partition.
ALTER TABLE sales_dp DETACH PARTITION dummy

INTO dummy;
DROP TABLE dummy;

e. Attach the remaining partitions.
ALTER TABLE sales_dp ATTACH PARTITION

STARTING FROM ’02-01-1998’ ENDING AT ’02-28-1998’
FROM sales_0298;

...
ALTER TABLE sales_dp ATTACH PARTITION

STARTING FROM ’12-01-2000’ ENDING AT ’12-31-2000’
FROM sales_1200;

f. Issue the SET INTEGRITY statement to make data in the newly attached
partition accessible to queries.
SET INTEGRITY FOR sales_dp IMMEDIATE CHECKED
FOR EXCEPTION IN sales_dp USE sales_ex;

Tip: If data integrity checking, including range validation and other
constraints checking, can be done through application logic that is
independent of the data server before an attach operation, newly attached
data can be made available for use much sooner. You can optimize the data
roll-in process by using the SET INTEGRITY...ALL IMMEDIATE
UNCHECKED statement to skip range and constraints violation checking. In
this case, the table is brought out of SET INTEGRITY pending state, and the
new data is available for applications to use immediately, as long as there
are no nonpartitioned user indexes on the target table.

g. Create indexes, as appropriate.

Converting existing indexes to partitioned indexes
System-created and user-created indexes might need to be migrated from
nonpartitioned to partitioned. User-created indexes can be converted while
maintaining availability to the table and indexes for most of the migration.
System-created indexes used to enforce primary key constraints or unique
constraints will not be able to have the constraints maintained while the
conversion is done.

Before you begin

Indexes created in an earlier release of the product might be nonpartitioned. This
could include both indexes created by you, or system-created indexes created by
the database manager. Examples of system-created indexes are indexes to enforce
unique and primary constraints and the block indexes of an MDC table.

272 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

About this task

Indexes created by you can be converted from nonpartitioned to partitioned while
having continuous availability to the data using the index. You can create a
partitioned index with the same keys as the corresponding nonpartitioned index.
While the partitioning index is created, you can still use the current indexes and
the table where the index is being created. Once the partitioned index is created,
you can drop the corresponding nonpartitioned index and rename the new
partitioned index if desired.

Results

The following examples demonstrate how to convert existing nonpartitioned
indexes into partitioned indexes.

Example

Here is an example of converting a nonpartitioned index created by you to one
that is a partitioned index:
UPDATE COMMAND OPTIONS USING C OFF;
CREATE INDEX data_part ON sales(sale_date) PARTITIONED;
DROP INDEX dateidx;
RENAME INDEX data_part TO dateidx;
COMMIT;

Here is an example of converting a nonpartitioned index created by the database
manager to one that is a partitioned index. In this case, there will be a period of
time between the dropping of the original constraint, and the creation of the new
constraint.
ALTER TABLE employees DROP CONSTRAINT emp_uniq;
ALTER TABLE employees ADD CONSTRAINT emp_uniq UNIQUE (employee_id);

MDC tables created using DB2 Version 9.7 and earlier releases have nonpartitioned
block indexes. To take advantage of partitioned table data availability features such
as data roll in and roll out and partition level reorganization of table data and
indexes, the data in the multidimensional clustering (MDC) table created using
DB2 V9.7 and earlier releases must be moved to a partitioned MDC table with
partitioned block indexes created using DB2 V9.7 Fix Pack 1 or a later release.

Online move of a partitioned MDC table to use partitioned block indexes

You can move data from a MDC table with nonpartitioned block indexes to an
MDC table with partitioned block indexes using an online table move.

In the following example, company1.parts table has region and color as the MDC
key columns; and the corresponding block indexes are nonpartitioned.
CALL SYSPROC.ADMIN_MOVE_TABLE(
’COMPANY1’, --Table schema
’PARTS’, --Table name
’ ’, --null; No change to columns definition
’ ’, --null; No additional options
’MOVE’); --Move the table in one step

Offline move of a partitioned MDC table to use partitioned block indexes

Chapter 9. Partitioned tables 273

To minimize data movement, you can move data from a MDC table with
nonpartitioned block indexes to an MDC table with partitioned block indexes
when the table is offline. The process uses the following steps:
1. Create a new, single-partition MDC table with the same definition as the table

to be converted. When specifying the range for the partition, use a range
outside the ranges of the partitioned MDC table to be converted.
The block indexes of new, single-partition MDC table are partitioned. The
partition created when specifying the range is detached in a later step.

2. Detach each partition of the MDC table. Each partition becomes a stand-alone
MDC table.
When a partition is detached, the partition data is attached to a new, target
table without moving the data in the partition.

Note: The last partition of the MDC table cannot be detached. It is a
single-partition MDC table with nonpartitioned block indexes.

3. For each stand-alone table created by detaching the MDC table partitions, and
the single-partition MDC table with nonpartitioned block indexes, attach the
table to the new partitioned MDC table created in Step 1.
When the table is attached, the table data is attached to the new partitioned
MDC table without moving the data, and the block indexes are created as
partitioned block indexes.

4. After attaching the first stand-alone MDC table, you can detach the empty
partition created when you created the new MDC table.

5. Issue SET INTEGRITY statement on the new partitioned MDC table.

What to do next

274 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 10. Range-clustered tables

A range-clustered table (RCT) has a table layout scheme in which each record in
the table has a predetermined record ID (RID). The RID is an internal identifier
that is used to locate a record in the table.

An algorithm is used to associate a record key value with the location of a specific
table row. This approach provides exceptionally fast access to specific table rows.
The algorithm does not use hashing, because hashing does not preserve key-value
order. Preserving this order eliminates the need to reorganize the table data over
time.

Each record key value in the table must be:
v Unique
v Not null
v An integer (SMALLINT, INTEGER, or BIGINT)
v Monotonically increasing
v Within a predetermined set of ranges based on each column in the key. (If

necessary, use the ALLOW OVERFLOW option on the CREATE TABLE
statement to allow rows with key values that are outside of the defined range of
values.)

In addition to direct access to specific table rows, there are other advantages to
using range-clustered tables.
v Less maintenance is required. A secondary structure, such as a B+ tree index,

which would need to be updated after every insert, update, or delete operation,
does not exist.

v Less logging is required for RCTs, when compared to similarly-sized regular
tables with B+ tree indexes.

v Less buffer pool memory is required. There is no additional memory required to
store a secondary structure, such as a B+ tree index.

Space for an RCT is pre-allocated and reserved for use by the table even when
records do not yet exist. Consequently, range-clustered tables have no need for free
space control records (FSCR). At table creation time, there are no records in the
table; however, the entire range of pages is pre-allocated. Preallocation is based on
the record size and the maximum number of records to be stored. If a
variable-length field (such as VARCHAR) is defined, the maximum length of the
field is used, and the overall record size is of fixed length. This can result in less
than optimal use of space. If key values are sparse, the unused space has a
negative impact on range scan performance. Range scans must visit all possible
rows within a range, even rows that do not yet contain data.

If a schema modification on a range-clustered table is required, the table must be
recreated with a new schema name and then populated with the data from the old
table. For example, if a table's ranges need to be altered, create a table with new
ranges and populate it with data from the old table.

If an RCT allows overflow records, and a new record has a key value that falls
outside of the defined range of values, the record is placed in an overflow area,
which is dynamically allocated. As more records are added to this overflow area,

© Copyright IBM Corp. 2014 275

operations against the table that involve the overflow area require more processing
time. The larger the overflow area, the more time is required to access it. If this
becomes a problem, consider reducing the size of the overflow area by exporting
the data to a new RCT with wider ranges.

Guidelines for using range-clustered tables
This topic lists some guidelines to follow when working with range-clustered
tables (RCT).
v Because the process of creating a range-clustered table pre-allocates the required

disk space, that space must be available.
v When defining the range of key values, the minimum value is optional; if it is

not specified, the default is 1. A negative minimum value must be specified
explicitly. For example:
ORGANIZE BY KEY SEQUENCE (f1 STARTING FROM -100 ENDING AT -10)

v You cannot create a regular index on the same key values that are used to define
the range-clustered table.

v ALTER TABLE statement options that affect the physical structure of the table
are not allowed.

Scenarios: Range-clustered tables
Range-clustered tables can have single-column or multiple-column keys, and can
allow or disallow rows with key values that are outside of the defined range of
values. This section contains scenarios that illustrate how such tables can be
created.

Scenario 1: Creating a range-clustered table (overflow allowed)

The following example shows a range-clustered table that can be used to retrieve
information about a specific student. Each student record contains the following
information:
v School ID
v Program ID
v Student number
v Student ID
v Student first name
v Student last name
v Student grade point average (GPA)
CREATE TABLE students (
school_id INT NOT NULL,
program_id INT NOT NULL,
student_num INT NOT NULL,
student_id INT NOT NULL,
first_name CHAR(30),
last_name CHAR(30),
gpa FLOAT
)
ORGANIZE BY KEY SEQUENCE
(student_id STARTING FROM 1 ENDING AT 1000000)
ALLOW OVERFLOW

;

In this example, the STUDENT_ID column, which serves as the table key, is used
to add, update, or delete student records.

276 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The size of each record is based on the sum of the column lengths. In this example,
each record is 97 bytes long (10-byte header + 4 + 4 + 4 + 4 + 30 + 30 + 8 + 3 bytes
for nullable columns). With a 4-KB (or 4096-byte) page size, after accounting for
overhead, there are 4038 bytes (enough for 41 records) available per page. A total
of 24391 such pages is needed to accommodate 1 million student records.
Assuming four pages for table overhead and three pages for extent mapping, 24384
4-KB pages would be pre-allocated when this table is created. (The extent mapping
assumes a single three-page container for the table.)

Scenario 2: Creating a range-clustered table (overflow not
allowed)

In the following example, a school board administers 200 schools, each having 20
classrooms with a capacity of 35 students per classroom. This school board can
accommodate a maximum of 140,000 students.
CREATE TABLE students (
school_id INT NOT NULL,
class_id INT NOT NULL,
student_num INT NOT NULL,
student_id INT NOT NULL,
first_name CHAR(30),
last_name CHAR(30),
gpa FLOAT
)
ORGANIZE BY KEY SEQUENCE
(school_id STARTING FROM 1 ENDING AT 200,
class_id STARTING FROM 1 ENDING AT 20,
student_num STARTING FROM 1 ENDING AT 35)
DISALLOW OVERFLOW

;

In this example, the SCHOOL_ID, CLASS_ID, and STUDENT_NUM columns
together serve as the table key, which is used to add, update, or delete student
records.

Overflow is not allowed, because school board policy restricts the number of
students in each classroom, and there is a fixed number of schools and classrooms
being administered by this school board. Some smaller schools (schools with fewer
classrooms than the largest school) will have pre-allocated space in the table that
will likely never be used.

Restrictions on range-clustered tables
There are contexts in which range-clustered tables cannot be used, and there are
certain utilities that cannot operate on range-clustered tables.

The following restrictions apply to range-clustered tables:
v Range-clustered tables cannot be specified in a DB2 pureScale environment

(SQLSTATE 42997).
v Partitioned tables cannot be range-clustered tables.
v Declared temporary tables and created temporary tables cannot be

range-clustered tables.
v Automatic summary tables (AST) cannot be range-clustered tables.
v The load utility is not supported. Data can be inserted into a range-clustered

table through the import utility or through a parallel insert application.
v The REORG utility is not supported. Range-clustered tables that are defined with

the DISALLOW OVERFLOW option do not need to be reorganized.

Chapter 10. Range-clustered tables 277

Range-clustered tables that are defined with the ALLOW OVERFLOW option
cannot have the data in this overflow region reorganized.

v The DISALLOW OVERFLOW clause on the CREATE TABLE statement cannot
be specified if the table is a range-clustered materialized query table.

v The design advisor will not recommend range-clustered tables.
v Multidimensional clustering and clustering indexes are incompatible with

range-clustered tables.
v Value and default compression are not supported.
v Reverse scans on range-clustered tables are not supported.
v The REPLACE parameter on the IMPORT command is not supported.
v The WITH EMPTY TABLE option on the ALTER TABLE...ACTIVATE NOT

LOGGED INITIALLY statement is not supported.

278 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Part 3. High Availability and Diagnostics

The availability of a database solution is a measure of how successful user
applications are at performing their required database tasks.

If user applications cannot connect to the database, or if their transactions fail
because of errors or time out because of load on the system, the database solution
is not very available. If user applications are successfully connecting to the
database and performing their work, the database solution is highly available.

Designing a highly available database solution, or increasing the availability of an
existing solution requires an understanding of the needs of the applications
accessing the database. To get the greatest benefit from the expense of additional
storage space, faster processors, or more software licenses, focus on making your
database solution as available as required to the most important applications for
your business at the time when those applications need it most.

Unplanned outages

Unexpected system failures that could affect the availability of your
database solution to users include: power interruption; network outage;
hardware failure; operating system or other software errors; and complete
system failure in the event of a disaster. If such a failure occurs at a time
when users expect to be able to do work with the database, a highly
available database solution must do the following:
v Shield user applications from the failure, so the user applications are not

aware of the failure. For example, DB2 Data Server can reroute database
client connections to alternate database servers if a database server fails.

v Respond to the failure to contain its effect. For example, if a failure
occurs on one machine in a cluster, the cluster manager can remove that
machine from the cluster so that no further transactions are routed to be
processed on the failed machine.

v Recover from the failure to return the system to normal operations. For
example, if standby database takes over database operations for a failed
primary database, the failed database might restart, recover, and take
over once again as the primary database.

These three tasks must be accomplished with a minimum effect on the
availability of the solution to user applications.

Planned outage

In a highly available database solution, the impact of maintenance
activities on the availability of the database to user applications must be
minimized as well.

For example, if the database solution serves a traditional store front that is
open for business between the hours of 9am to 5pm, then maintenance
activities can occur offline, outside of those business hours without
affecting the availability of the database for user applications. If the
database solution serves an online banking business that is expected to be
available for customers to access through the Internet 24 hours per day,
then maintenance activities must be run online, or scheduled for off-peak
activity periods to have minimal impact on the availability of the database
to the customers.

© Copyright IBM Corp. 2014 279

When you are making business decisions and design choices about the availability
of your database solution, you must weigh the following two factors:
v The cost to your business of the database being unavailable to customers
v The cost of implementing a certain degree of availability

For example, consider an Internet-based business that makes a certain amount of
revenue, X, every hour the database solution is serving customers. A high
availability strategy that saves 10 hours of downtime per year will earn the
business 10X extra revenue per year. If the cost of implementing this high
availability strategy is less than the expected extra revenue, it would be worth
implementing.

280 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 11. Developing a backup and recovery strategy

A database can become unusable because of hardware or software failure, or both.
You might, at one time or another, encounter storage problems, power
interruptions, or application failures, and each failure scenario requires a different
recovery action.

Protect your data against the possibility of loss by having a well rehearsed
recovery strategy in place.

Some of the questions that you should answer when developing your recovery
strategy are:
v Will the database be recoverable?
v How much time can be spent recovering the database?
v How much time will pass between backup operations?
v How much storage space can be allocated for backup copies and archived logs?
v Will table space level backups be sufficient, or will full database backups be

necessary?
v Should I configure a standby system, either manually or through high

availability disaster recovery (HADR)?

A database recovery strategy should ensure that all information is available when
it is required for database recovery. It should include a regular schedule for taking
database backups and, in the case of partitioned database environments, include
backups when the system is scaled (when database partition servers or nodes are
added or dropped). Your overall strategy should also include procedures for
recovering command scripts, applications, user-defined functions (UDFs), stored
procedure code in operating system libraries, and load copies.

Different recovery methods are discussed in the sections that follow, and you will
discover which recovery method is best suited to your business environment.

The concept of a database backup is the same as any other data backup: taking a
copy of the data and then storing it on a different medium in case of failure or
damage to the original. The simplest case of a backup involves shutting down the
database to ensure that no further transactions occur, and then simply backing it
up. You can then recreate the database if it becomes damaged or corrupted in some
way.

The recreation of the database is called recovery. Version recovery is the restoration of
a previous version of the database, using an image that was created during a
backup operation. Rollforward recovery is the reapplication of transactions recorded
in the database log files after a database or a table space backup image has been
restored.

Crash recovery is the automatic recovery of the database if a failure occurs before all
of the changes that are part of one or more units of work (transactions) are
completed and committed. This is done by rolling back incomplete transactions
and completing committed transactions that were still in memory when the crash
occurred.

© Copyright IBM Corp. 2014 281

Recovery log files and the recovery history file are created automatically when a
database is created (Figure 51). These log files are important if you need to recover
data that is lost or damaged.

Each database includes recovery logs, which are used to recover from application or
system errors. In combination with the database backups, they are used to recover
the consistency of the database right up to the point in time when the error
occurred.

The recovery history file contains a summary of the backup information that can be
used to determine recovery options, if all or part of the database must be
recovered to a given point in time. It is used to track recovery-related events such
as backup and restore operations, among others. This file is located in the database
directory.

The table space change history file, which is also located in the database directory,
contains information that can be used to determine which log files are required for
the recovery of a particular table space.

You cannot directly modify the recovery history file or the table space change
history file; however, you can delete entries from the files using the PRUNE HISTORY
command. You can also use the rec_his_retentn database configuration parameter
to specify the number of days that these history files will be retained.

Data that is easily re-created can be stored in a non-recoverable database. This
includes data from an outside source that is used for read-only applications, and
tables that are not often updated, for which the small amount of logging does not
justify the added complexity of managing log files and rolling forward after a
restore operation. If both the logarchmeth1 and logarchmeth2 database
configuration parameters are set toOFF then the database is Non-recoverable. This
means that the only logs that are kept are those required for crash recovery. These
logs are known as active logs, and they contain current transaction data. Version
recovery using offline backups is the primary means of recovery for a
non-recoverable database. (An offline backup means that no other application can
use the database when the backup operation is in progress.) Such a database can

Equivalent
physical object

Database

Table space
change history file

Recovery
history file

Recovery
log files

System

Instance

Database
object or concept

Figure 51. Database recovery files

282 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

only be restored offline. It is restored to the state it was in when the backup image
was taken and rollforward recovery is not supported.

Data that cannot be easily recreated should be stored in a recoverable database.
This includes data whose source is destroyed after the data is loaded, data that is
manually entered into tables, and data that is modified by application programs or
users after it is loaded into the database. Recoverable databases have the
logarchmeth1 or logarchmeth2 database configuration parameters set to a value
other than OFF. Active logs are still available for crash recovery, but you also have
the archived logs, which contain committed transaction data. Such a database can
only be restored offline. It is restored to the state it was in when the backup image
was taken. However, with rollforward recovery, you can roll the database forward
(that is, past the time when the backup image was taken) by using the active and
archived logs to either a specific point in time, or to the end of the active logs.

Recoverable database backup operations can be performed either offline or online
(online meaning that other applications can connect to the database during the
backup operation). Online table space restore and rollforward operations are
supported only if the database is recoverable. If the database is non-recoverable,
database restore and rollforward operations must be performed offline. During an
online backup operation, rollforward recovery ensures that all table changes are
captured and reapplied if that backup is restored.

If you have a recoverable database, you can back up, restore, and roll individual
table spaces forward, rather than the entire database. When you back up a table
space online, it is still available for use, and simultaneous updates are recorded in
the logs. When you perform an online restore or rollforward operation on a table
space, the table space itself is not available for use until the operation completes,
but users are not prevented from accessing tables in other table spaces.

Automated backup operations

Since it can be time-consuming to determine whether and when to run
maintenance activities such as backup operations, you can use automatic
maintenance. With automatic maintenance, you specify your maintenance
objectives, including when automatic maintenance can run. DB2 then uses these
objectives to determine if the maintenance activities need to be done and then runs
only the required maintenance activities during the next available maintenance
window (a user-defined time period for the running of automatic maintenance
activities).

Note: You can still perform manual backup operations when automatic
maintenance is configured. DB2 will only perform automatic backup operations if
they are required.

Database logging
Database logging is an important part of your highly available database solution
design because database logs make it possible to recover from a failure, and they
make it possible to synchronize primary and secondary databases.

All databases have logs associated with them. These logs keep records of database
changes. If a database needs to be restored to a point beyond the last full, offline
backup, logs are required to roll the data forward to the point of failure.

Chapter 11. Developing a backup and recovery strategy 283

Two types of database logging are supported: circular and archive. Each provides a
different level of recovery capability:
v “Circular logging”
v “Archive logging” on page 285

The advantage of choosing archive logging is that rollforward recovery can use
both archived logs and active logs to restore a database either to the end of the
logs, or to a specific point in time. The archived log files can be used to recover
changes made after the backup was taken. This is different from circular logging
where you can only recover to the time of the backup, and all changes made after
that are lost.

Circular logging
Circular logging is the default behavior when a new database is created. (The
logarchmeth1 and logarchmeth2 database configuration parameters are set to OFF.)

With this type of logging, only full, offline backups of the database are allowed.
The database must be offline (inaccessible to users) when a full backup is taken.

As the name suggests, circular logging uses a ring of online logs to provide
recovery from transaction failures and system crashes. The logs are used and
retained only to the point of ensuring the integrity of current transactions. Circular
logging does not allow you to roll a database forward through transactions
performed after the last full backup operation. All changes occurring since the last
backup operation are lost. Since this type of restore operation recovers your data to
the specific point in time at which a full backup was taken, it is called version
recovery.

Active logs are used during crash recovery to prevent a failure (system power or
application error) from leaving a database in an inconsistent state. Active logs are
located in the database log path directory.

DB2 server

Database Log Path

Transaction

Active Log Files

Circular Logs

Active

Log File

Figure 52. Circular Logging

284 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Archive logging
Archive logging is used specifically for rollforward recovery. Archived logs are log
files that are copied from the current log path or from the mirror log path to
another location.

You can use the logarchmeth1 database configuration parameter, the logarchmeth2
database configuration parameter, or both to allow you or the database manager to
manage the log archiving process.

Taking online backups is supported only if you configure the database for archive
logging. During an online backup operation, all activities against the database are
logged. After an online backup is complete, the database manager forces the
currently active log to close, and as a result, it is archived. This process ensures
that your online backup has a complete set of archived logs available for recovery.
When an online backup image is restored, the logs must be rolled forward at least
to the point in time at which the backup operation completed. To facilitate this
operation, archived logs must be made available when the database is restored.

You can use the logarchmeth1 and logarchmeth2 database configuration parameters
to specify where archived logs are stored. You can use the logarchmeth1 parameter
to archive log files from the active log path that is set by the logpath configuration
parameter. You can use the logarchmeth2 parameter to archive additional copies of
log files from the active log path to a second location. If you do not configure
mirror logging, the additional copies are taken from the same log path that the
logarchmeth1 parameter uses. If you configure mirror logging, with the
mirrorlogpath configuration parameter, the logarchmeth2 configuration parameter
archives log files from the mirror log path instead, which can improve resilience
during rollforward recovery. The newlogpath parameter affects where active logs
are stored.

In certain scenarios, you can compress archived log files to help reduce the storage
cost that is associated with these files. If the logarchmeth1 and logarchmeth2
configuration parameters are set to DISK, TSM, or VENDOR, you can enable archived
log file compression by setting the logarchcompr1 and logarchcompr2 configuration
parameters to ON. If logarchcompr1 and logarchcompr2 are set dynamically, any log
files that are already archived are not compressed.

TIME

Units of work Units of work

update update

Logs are used between backups to track the changes to the databases.

BACKUP
database

n archived logs
1 active log

n archived logs
1 active log

Figure 53. Active and archived database logs in rollforward recovery. There can be more than one active log in the
case of a long-running transaction.

Chapter 11. Developing a backup and recovery strategy 285

If you use the LOGRETAIN option to specify a value that you want to manage the
active logs, the database manager renames log files from the active log path after it
archives these files and they are no longer needed for crash recovery. If you enable
infinite logging, additional space is required for more active log files, so the
database server renames the log files after it archives them. The database manager
retains up to 8 extra log files in the active log path for renaming purposes.

Log control files
When a database restarts after a failure, the database manager applies transaction
information stored in log files to return the database to a consistent state. To
determine which records from the log files need to be applied to the database, the
database manager uses information recorded in log control files.

Redundancy for database resilience

The database manager maintains two copies of the each member's log control file,
SQLOGCTL.LFH.1 and SQLOGCTL.LFH.2, and two copies of the global log control file,
SQLOGCTL.GLFH.1 and SQLOGCTL.GLFH.2, so that if one copy is damaged, the
database manager can still use the other copy.

Performance considerations

Applying the transaction information contained in the log control files contributes
to the overhead of restarting a database after a failure. You can configure the
frequency at which the database manager writes buffer pool pages to disk in order
to reduce the number of log records that need to be processed during crash
recovery using the “softmax - Recovery range and soft checkpoint interval
configuration parameter” in Database Administration Concepts and Configuration
Reference.

Storage considerations for recovery
When deciding which recovery method to use, consider the storage space required.
Backup and archived log file compression can help reduce the storage cost in your
database environment.

The version recovery method requires space to hold the backup copy of the
database and the restored database. The roll-forward recovery method requires
space to hold the backup copy of the database or table spaces, the restored
database, and the archived database logs.

If a table contains long field or large object (LOB) columns, you might consider
placing this data into a separate table space. This action affects your storage space
considerations, as well as affect your plan for recovery. With a separate table space
for long field and LOB data, and knowing the time required to back up long field
and LOB data, you might decide to use a recovery plan that only occasionally
saves a backup of this table space. You can also choose, when creating or altering a
table to include LOB columns, not to log changes to those columns. This action
reduces the size of the required log space and the corresponding archived log file
space.

To prevent media failure from destroying a database and your ability to restore it,
keep the database backup, the database logs, and the database itself on different

286 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

devices. For this reason, it is highly recommended that you use the newlogpath
configuration parameter to put database logs on a separate device once the
database is created.

The database logs can use up a large amount of storage. If you plan to use the
roll-forward recovery method, you must decide how to manage and compress the
archived logs. Your choices are:
v Specify an archived log file method using the LOGARCHMETH1 or

LOGARCHMETH2 configuration parameters.
v Enable archived log file compression with the LOGARCHCOMPR1 and

LOGARCHCOMPR2 configuration parameters.
v Manually copy the logs to a storage device or directory other than the database

log path directory after they are no longer in the active set of logs.
v Use a user exit program to copy these logs to another storage device in your

environment.

Archived log file compression
As of DB2 V10.1, you can compress archived log files. This capability, in addition
to data and index compression, along with backup compression, reduces the
amount of disk space required for your database environment.

Archived log files are the third major space consumer for roll-forward recoverable
databases. Archived log files contain a significant amount of data and these
archives can grow quickly. If modified data is already in compressed tables,
logging is reduced by virtue of including compressed record images in log records.
Compression of archived log files further increases storage savings, even in these
environments.

To use compression for your archived log files, you can use the UPDATE DB CFG
command to set the logarchcompr1 and logarchcompr2 configuration parameters to
ON.

Restrictions
v Archived log file compression does not take effect under the following

conditions.
– The corresponding archived log file method is not set to DISK, TSM, or VENDOR.

When the corresponding archived log file method is set as described, the log
files are physically moved out of the active log path, or the mirror log path.

– Whenever archived log file compression is enabled, but the corresponding log
archiving method is set to OFF, LOGRETAIN or USEREXIT, archived log file
compression has no effect. Any update to the logarchmeth1 and logarchmeth2
or the logarchcompr1 and logarchcompr2 database configuration parameters
which results in such a scenario returns a warning, SQL1663W.

Note: When the database is activated, SQL1663W is not returned when
setting or changing archived log file compression database configuration
parameters. Instead, SQL1363W is returned, which is a higher priority
message. If the database is not activated, the SQL1663W warning message is
returned.

v Manual archiving and retrieval with db2adutl.
– The db2adutl utility does not perform compression or decompression during

UPLOAD or EXTRACT operations. Movement of compressed log files to and from
the archive location is fully supported by db2adutl.

Chapter 11. Developing a backup and recovery strategy 287

– If logs are uploaded to Tivoli® Storage Manager with db2adutl, and you want
to compress archived log files, archived log file compression must be enabled
when the logs are archived to the disk location, before db2adutl picks them
up. If compressed logs are retrieved manually with db2adutl, they are
extracted on first access.

v Archived log file compression is not supported when raw devices are used for
database logging.
– Archived log file compression is not supported when either the logpath or

the newlogpath database configuration parameters point to a raw device. Any
database configuration update that results in archived log file compression
being enabled while logpath or newlogpath database configuration parameters
point to raw devices fails, SQL1665N.

v When enabling archived log file compression using the logarchcompr1 and
logarchcompr2 database configuration parameters, logs already stored in a
backup image are not affected.

Backup and restore operations between different operating systems
and hardware platforms

DB2 database systems support some backup and restore operations between
different operating systems and hardware platforms.

The supported platforms for DB2 backup and restore operations can be grouped
into one of three families:
v Big-endian Linux and UNIX
v Little-endian Linux and UNIX
v Windows

A database backup from one platform family can only be restored on any system
within the same platform family. For Windows operating systems, you can restore
a database that was created on DB2 Version 9.7 on a DB2 Version 10.1 database
system. For Linux and UNIX operating systems, as long as the endianness (big
endian or little endian) of the backup and restore platforms is the same, you can
restore backups that were produced on down level versions.

The following table shows each of the Linux and UNIX platforms DB2 supports
and indicates whether the platforms are big endian or little endian:

Table 22. Endianness of supported Linux and UNIX operating systems DB2 supports

Platform Endianness

AIX big endian

HP on IA64 big endian

Solaris x64 little endian

Solaris SPARC big endian

Linux on zSeries big endian

Linux on pSeries big endian

Linux on IA-64 little endian

Linux on AMD64 and Intel EM64T little endian

32-bit Linux on x86 little endian

288 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The target system must have the same (or later) version of the DB2 database
product as the source system. You cannot restore a backup that was created on one
version of the database product to a system that is running an earlier version of
the database product. For example, you can restore a DB2 Version 9.7 on a DB2
Version 10.1 database system, but you cannot restore a DB2 Version 10.1 backup on
a DB2 Version 9.7 database system.

Note: You can restore a database from a backup image that was taken on a 32-bit
level into a 64-bit level, but not vice versa. The DB2 backup and restore utilities
should be used to back up and restore your databases. Moving a file set from one
machine to another is not recommended as this can compromise the integrity of
the database.

In situations where certain backup and restore combinations are not allowed, you
can move tables between DB2 databases using other methods:
v The db2move command
v The export command followed by the import or the load command

Note: Database configuration parameters are set to their defaults if the values in
the backup are outside of the allowable range for the environment in which the
database is being restored.

Log stream merging and log file management in a DB2 pureScale
environment

In a DB2 pureScale environment, each member maintains its own set of transaction
log files (that is, a log stream) on the shared disk, each set in a separate log path.
The log files for a member contain a history of all data changes that occurred on
that member.

Multiple applications, each accessing a different member simultaneously, might
generate dependent transactions during run time. A dependency between two
transactions can occur if, for example, both transactions change the same row. To
effectively interpret the log records, the DB2 data server must examine the records
from all log streams and order the records so that they reflect the order of the
updates that occurred at run time. This ordering is known as a log stream merge
operation. Several operation types in a DB2 pureScale environment require log
stream merges; these include (among others) group crash recovery, database
roll-forward operations, and table space roll-forward operations.

Logging configuration parameters in a DB2 pureScale
environment

Table 23 shows which logging-related database configuration parameters are global
in scope and which parameters are dynamically updatable.

Table 23. Logging-related database configuration parameters

Parameter Global? Dynamically updatable?

archretrydelay Yes Yes

blk_log_dsk_ful No Yes

failarchpath Yes Yes

logarchcompr1 Yes Yes

logarchcompr2 Yes Yes

Chapter 11. Developing a backup and recovery strategy 289

Table 23. Logging-related database configuration parameters (continued)

Parameter Global? Dynamically updatable?

logarchmeth1 Yes Yes

logarchmeth2 Yes Yes

logarchopt1 Yes Yes

logarchopt2 Yes Yes

logbufsz No Yes

logfilsiz Yes No

logprimary Yes No

logsecond Yes Yes

max_log No Yes

mirrorlogpath 1 Yes No

newlogpath 1 Yes No

num_log_span No Yes

numarchretry Yes Yes

overflowlogpath Yes Yes

softmax Yes No

vendoropt Yes Yes
1 The first member that connects to or activates the database processes the changes to this
log path parameter. The DB2 database manager verifies that the path exists and that it has
both read and write access to that path. It also creates member-specific subdirectories for
the log files. If any one of these operations fails, the DB2 database manager rejects the
specified path and brings the database online using the old path. If the database manager
accepts the specified path, the new value is propagated to each member. If a member fails
while trying to switch to the new path, subsequent attempts to activate the database or to
connect to it fails, and SQL5099N is returned. All members must use the same log path.

Retrieving logs for a log stream merge operation in a DB2
pureScale environment

A subdirectory is created in the path for retrieved log files. The subdirectory has
the following format: log_path/LOGSTREAMxxxx, where log_path represents the log
path, overflow log path, or mirror log path, and xxxx is a 4-digit log stream
identifier. (The log stream identifier is not necessarily equivalent to the associated
member ID.) Within this subdirectory, if a member requires log retrieval, the DB2
database manager creates another level of subdirectories for retrieved logs from
each member. For example, if you specify an overflow log path of
/home/dbuser/overflow/ on a 3-member system, and an application on member 0
must retrieve logs that are owned by other members, the path for member 0 is
/home/dbuser/overflow/NODE0000/LOGSTREAM0000, and subdirectories under this
path contain retrieved logs that are owned by other members, as shown in the
following example:
Member 0 retrieves its own logs here:

/home/dbuser/overflow/NODE0000/LOGSTREAM0000/LOGSTREAM0000
Member 0 retrieves logs that belong to member 1 here:

/home/dbuser/overflow/NODE0000/LOGSTREAM0000/LOGSTREAM0001
Member 0 retrieves logs that belong to member 2 here:

/home/dbuser/overflow/NODE0000/LOGSTREAM0000/LOGSTREAM0002

290 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note: Do not manually insert log files in to these retrieve subdirectories. If you
want to manually retrieve log files, use the overflow log path instead.

When reading archived log files that are owned by other members, a member
might need to retrieve log files in to its own log path or overflow log path. In this
case, the log stream merge operation creates a db2logmgr engine dispatchable unit
(EDU) for each log stream, as needed.

As mentioned earlier, there are three paths that can be used to store log files that
are owned by other members, as shown in the following list:
1. If you set the overflowlogpath database configuration parameter, the overflow

log path is used.

Tip: You can use ROLLFORWARD DATABASE and RECOVER DATABASE command
options to specify an alternative overflow log path; the values of these options
override the database configuration for purposes of the single recovery
operation.

2. The primary log path
3. If you set the mirrorlogpath database configuration parameter, the mirror log

path is used.

If the DB2 database manager is unable to store a log file in the first path, it
attempts to use the next path in the list. If none of these paths is available, the
utility that invoked the log stream merge operation returns an error that is specific
to that utility.

Output from the GET DATABASE CONFIGURATION command in a DB2 pureScale
environment identifies each log path followed by the name of the member. For
example, if the mirror log path was set to /home/dbuser/mirrorpath/, for member
2, the output displays /home/dbuser/mirrorpath/NODE0000/LOGSTREAM0002.

If you must manually retrieve log files that are owned by other members, ensure
that the database manager can access the log files by using the same directory
structure that is automatically created. For example, to make logs from member 2
available in the overflow log path of member 1, place the logs in the
/home/dbuser/overflow/NODE0000/LOGSTREAM0001/LOGSTREAM0002 directory.

Retrieved log files are automatically deleted when they are no longer needed.
Subdirectories that were created during a log stream merge operation are retained
for future use.

Detection of missing logs during a log stream merge operation

If you accidentally deleted, moved, or archived and lost a log file that is required
for a recovery operation, you can roll-forward recover the database to the last
consistent point before the missing log file.

If, during a log stream merge operation, the DB2 database manager determines
that there is a missing log file in one of the log streams, an error is returned. The
roll-forward utility returns SQL1273N; the db2ReadLog API returns SQL2657N.

Figure 54 on page 292 shows an example of how two members could write log
records to the log files in their active log stream. Each log file is represented by a
box.

Chapter 11. Developing a backup and recovery strategy 291

Consider a scenario where only log file 4 from log stream 1 is missing, a
roll-forward operation to time A succeeds while roll-forward operations to time B,
time C, or to the END OF LOGS fail. The ROLLFORWARD command returns
SQL1273N because log file 4 is not available. Furthermore, since the log records in
files 2 and 3 on log stream 0 were written during the same time period as the
beginning of log file 4 on log stream 1, the roll-forward operation cannot process
log files 2 and 3 until log file 4 from log stream 1 is available. The result is that the
roll-forward operation stops at time A, and any subsequent roll-forward operations
cannot proceed beyond time A until log 4 from stream 1 becomes available.

Consider another scenario where only log file 4 from log stream 0 is missing
during a roll-forward operation. If you issue a ROLLFORWARD command with the END
OF LOGS option (or anytime after time B), the operation will stop at time B and will
return SQL1273N because log file 4 on stream 0 is missing. A roll-forward
operation can replay log records from files 2 and 3 on log stream 0 and some logs
from file 4 on stream 1 up to time B. The roll-forward operation must stop at time
B even though additional logs from stream 1 are available because the log merge
process requires that all the logs from all the streams be available.

If you can find the missing log file, make it available and reissue the ROLLFORWARD
DATABASE command. If you cannot find the missing log file, issue the ROLLFORWARD
DATABASE...STOP command to complete the roll-forward operation at the last
consistent point just before the missing log file.

Although missing log detection ensures that database corruption does not occur as
a result of missing log files, the presence of missing log files prevents some
transactions from being replayed and, as a result, data loss could occur if the
missing log files are not located.

Required resources

Log stream merge operations require additional EDUs. During database activation,
one db2lfr EDU is created on each member. When a log read operation that
requires a log stream merge is initiated, one db2shred EDU and one db2lfr EDU is
created for each log stream. Although each db2lfr-db2shred group allocates its
own set of log page and log record buffers, this is not a significant amount of
additional memory or system resources; approximately 400 KB is allocated for each
member that is involved in the log stream merge.

During a log stream merge operation, a member retrieves log files that are owned
by other members into its overflow log path, primary log path, or mirror log path.
In a DB2 pureScale environment, ensure that there is adequate free disk space in

1 2 3

1 2 3 4

4 5

5

Log Stream 0

Log Stream 1

A B C

Time

Figure 54. Log files in a DB2 pureScale environment

292 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

the retrieval path before starting a roll-forward operation. This allows the
operation to retrieve the larger number of files from the archive, as required in a
DB2 pureScale environment, without affecting performance. Use the following
rule-of-thumb to calculate how much space you need to retrieve the active log files
for all members: (logprimary + logsecond) * number of members.

Examples
v Update the newlogpath global database configuration parameter:

db2 update db cfg for db mydb using newlogpath /home/dbuser/logdir

v Update the max_log per-member database configuration parameter on a single
member:
db2 update db cfg for db mydb member 1 using max_log 5

v Update the primary log path:
db2 connect to mydb
db2 update db cfg for mydb using newlogpath /home/dbuser/newlogpath
db2 get db cfg for mydb
...
Changed path to log files (NEWLOGPATH) = /home/dbuser/newlogpath/NODE0000/LOGSTREAM0000/
Path to log files = /home/dbuser/dbuser/NODE0000/LOGSTREAM0000/
...

The change does not take effect because the member is still active.
db2 terminate
db2 deactivate db mydb
db2 connect to mydb
db2 get db cfg for mydb
...
Changed path to log files (NEWLOGPATH) =
Path to log files = /home/dbuser/newlogpath/NODE0000/LOGSTREAM0000/
...

Each member uses the /home/dbuser/newlogpath/NODE0000/LOGSTREAMxxxx log
path, where xxxx is the log stream ID of the log stream that uses the path.

v Set a new primary log path while restoring a backup image:
db2 restore db mydb newlogpath ’/home/dbuser/newlogpath’ without prompting

Log sequence numbers in DB2 pureScale environments
DB2 databases use the log sequence number (LSN), a 64-bit identifier, to determine
the order of the operations that generated the log records.

The LSN is an ever-increasing value. Each member writes to its own set of log files
(a log stream), and the LSN within a single log stream is a unique number.

Because LSNs are generated independently on each member and there are multiple
log streams, it is possible to have duplicate LSN values across different log
streams. A log record identifier (LRI) is used to identify log records across log
streams; each log record in any log stream in the database is assigned a unique
LRI. Use the db2pd command to determine which LRI is being processed by a
recovery operation.

Including log files with a backup image
When performing an online backup operation, you can specify that the log files
required to restore and recover a database are included in the backup image.

Chapter 11. Developing a backup and recovery strategy 293

This means that if you need to ship backup images to a disaster recovery site, you
do not have to send the log files separately or package them together yourself.
Further, you do not have to decide which log files are required to guarantee the
consistency of an online backup. This provides some protection against the
deletion of log files required for successful recovery.

To use this feature, specify the INCLUDE LOGS option of the BACKUP DATABASE
command. When you specify this option, the backup utility truncates the currently
active log file and copies the necessary set of log extents into the backup image.

To restore the log files from a backup image, use the LOGTARGET option of the
RESTORE DATABASE command and specify a fully qualified path that exists on the
DB2 server. The restore database utility then writes the log files from the image to
the target path. If a log file with the same name exists in the target path, the
restore operation fails and an error is returned. If the LOGTARGET option is not
specified, no log files are restored from the backup image.

If the LOGTARGET option is specified and the backup image does not include any log
files, an error is returned before an attempt is made to restore any table space data.
The restore operation also fails if an invalid or read-only path is specified. During
a database or table space restore where the LOGTARGET option is specified, if one or
more log files cannot be extracted, the restore operation fails and an error is
returned.

You can also choose to restore only the log files saved in the backup image. To do
this, specify the LOGS option with the LOGTARGET option of the RESTORE DATABASE
command. If the restore operation encounters any problems when restoring log
files in this mode, the restore operation fails and an error is returned.

During an automatic incremental restore operation, only the logs included in the
target image of the restore operation are retrieved from the backup image. Any
logs that are included in intermediate images referenced during the incremental
restore process are not extracted from those backup images. During a manual
incremental restore, if you specify a log target directory when restoring a backup
image that includes log files, the log files in that backup image are restored.

If you roll a database forward that was restored from an online backup image that
includes log files, you might encounter error SQL1268N, which indicates
roll-forward recovery stopped due to an error received when retrieving a log. This
error is generated when the target system to which you are attempting to restore
the backup image does not have access to the facility used by the source system to
archive its transaction logs.

If you specify the INCLUDE LOGS option of the BACKUP DATABASE command when
you back up a database, then perform a restore operation and a roll-forward
operation that use that back up image, DB2 still searches for additional transaction
logs when rolling the database forward, even though the backup image includes
logs. It is standard rollforward behavior to continue to search for additional
transaction logs until no more logs are found. It is possible to have more than 1
log file with the same timestamp. Consequently, DB2 does not stop as soon as it
finds the first timestamp that matches the point-in-time to which you are rolling
forward the database as there might be other log files that also have that
timestamp. Instead, DB2 continues to look at the transaction log until it finds a
timestamp greater than the point-in-time specified.

294 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

When no additional logs can be found, the rollforward operation ends successfully.
However, if there is an error while searching for additional transaction log files,
error SQL1268N is returned. Error SQL1268N can occur because during the initial
restore, certain database configuration parameters were reset or overwritten. Three
of these database configuration parameters are the TSM parameters, tsm_nodename,
tsm_owner, and tsm_password. They are all reset to NULL. To rollforward to the end
of logs, you need to reset these database configuration parameters to correspond to
the source system before the rollforward operation. Alternatively, you can specify
the NORETRIEVE option when you issue the ROLLFORWARD DATABASE command. This
prevents the DB2 database system from trying to obtain potentially missing
transaction logs elsewhere.

Note:

1. This feature is not supported for offline backups.
2. When logs are included in an online backup image, the resulting image cannot

be restored on releases of DB2 database before Version 8.2.

Incremental backup and recovery
As the size of databases, and particularly warehouses, continues to expand into the
terabyte and petabyte range, the time and hardware resources required to back up
and recover these databases is also growing substantially.

Full database and table space backups are not always the best approach when
dealing with large databases, because the storage requirements for multiple copies
of such databases are enormous.

Consider the following issues:
v When a small percentage of the data in a warehouse changes, it should not be

necessary to back up the entire database.
v Appending table spaces to existing databases and then taking only table space

backups is risky, because there is no guarantee that nothing outside of the
backed up table spaces has changed between table space backups.

To address these issues, DB2 provides incremental backup and recovery.

An incremental backup is a backup image that contains only pages that have been
updated since the previous backup was taken. In addition to updated data and
index pages, each incremental backup image also contains all of the initial database
metadata (such as database configuration, table space definitions, database history,
and so on) that is normally stored in full backup images.

Note:

1. If a table space contains long field or large object data and an incremental
backup is taken, all of the long field or large object data will be copied into the
backup image if any of the pages in that table space have been modified since
the previous backup.

2. If you take an incremental backup of a table space that contains a dirty page
(that is, a page that contains data that has been changed but has not yet been
written to disk) then all large object data is backed up. Normal data is backed
up only if it has changed.

3. Data redistribution might create table spaces for all new database partitions if
the ADD DBPARTITIONNUMS parameter on the REDISTRIBUTE DATABASE PARTITION
GROUP command is specified; this can affect incremental backup operations.

Chapter 11. Developing a backup and recovery strategy 295

Two types of incremental backup are supported:
v Incremental. An incremental backup image is a copy of all database data that has

changed since the most recent, successful, full backup operation. This is also
known as a cumulative backup image, because a series of incremental backups
taken over time will each have the contents of the previous incremental backup
image. The predecessor of an incremental backup image is always the most
recent successful full backup of the same object.

v Delta. A delta, or incremental delta, backup image is a copy of all database data
that has changed since the last successful backup (full, incremental, or delta) of
the table space in question. This is also known as a differential, or
noncumulative, backup image. The predecessor of a delta backup image is the
most recent successful backup containing a copy of each of the table spaces in
the delta backup image.

The key difference between incremental and delta backup images is their behavior
when successive backups are taken of an object that is continually changing over
time. Each successive incremental image contains the entire contents of the
previous incremental image, plus any data that has changed, or is new, since the
previous full backup was produced. Delta backup images contain only the pages
that have changed since the previous image of any type was produced.

Combinations of database and table space incremental backups are permitted, in
both online and offline modes of operation. Be careful when planning your backup
strategy, because combining database and table space incremental backups implies
that the predecessor of a database backup (or a table space backup of multiple
table spaces) is not necessarily a single image, but could be a unique set of
previous database and table space backups taken at different times.

To restore the database or the table space to a consistent state, the recovery process
must begin with a consistent image of the entire object (database or table space) to
be restored, and must then apply each of the appropriate incremental backup
images in the order described in the following list.

To enable the tracking of database updates, DB2 supports a new database
configuration parameter, trackmod, which can have one of two accepted values:
v NO. Incremental backup is not permitted with this configuration. Database page

updates are not tracked or recorded in any way. This is the default value.
v YES. Incremental backup is permitted with this configuration. When update

tracking is enabled, the change becomes effective at the first successful
connection to the database. Before an incremental backup can be taken on a
particular table space, a full backup of that table space is necessary.

For SMS and DMS table spaces, the granularity of this tracking is at the table space
level. In table space level tracking, a flag for each table space indicates whether or
not there are pages in that table space that need to be backed up. If no pages in a
table space need to be backed up, the backup operation can skip that table space
altogether.

Although minimal, the tracking of updates to the database can have an impact on
the runtime performance of transactions that update or insert data.

Restoring from incremental backup images
A restore operation from incremental backup images consists of four steps.

296 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

About this task
1. Identifying the incremental target image.

Determine the final image to be restored, and request an incremental restore
operation from the DB2 restore utility. This image is known as the target image
of the incremental restore, because it is the last image to be restored. The
incremental target image is specified using the TAKEN AT parameter in the
RESTORE DATABASE command.

2. Restoring the most recent full database or table space image to establish a
baseline against which each of the subsequent incremental backup images can
be applied.

3. Restoring each of the required full or table space incremental backup images, in
the order in which they were produced, on top of the baseline image restored
in Step 2.

4. Repeating Step 3 until the target image from Step 1 is read a second time. The
target image is accessed twice during a complete incremental restore operation.
During the first access, only initial data is read from the image; none of the
user data is read. The complete image is read and processed only during the
second access.
The target image of the incremental restore operation must be accessed twice to
ensure that the database is initially configured with the correct history, database
configuration, and table space definitions for the database that is created during
the restore operation. In cases where a table space was dropped since the initial
full database backup image was taken, the table space data for that image is
read from the backup images but ignored during incremental restore
processing.

There are two ways to restore incremental backup images: automatic and manual:
v For an automatic incremental restore, the RESTORE DATABASE command is issued

only once specifying the target image to be used. DB2 for Linux, UNIX, and
Windows then uses the database history to determine the remaining required
backup images and restores them.

v For a manual incremental restore, the RESTORE DATABASE command must be
issued once for each backup image that needs to be restored (as outlined in the
steps listed previously).

Procedure
v To restore a set of incremental backup images using automatic incremental

restore, issue the RESTORE DATABASE command specifying time stamp of the last
image you want to restore with the TAKEN AT parameter, as follows:

db2 restore db sample incremental automatic taken at timestamp

This results in the restore utility performing each of the steps described at the
beginning of this section automatically. During the initial phase of processing,
the backup image with the specified time stamp (specified in the form
yyyymmddhhmmss) is read, and the restore utility verifies that the database, its
history, and the table space definitions exist and are valid.
During the second phase of processing, the database history is queried to build a
chain of backup images required to perform the requested restore operation. If,
for some reason this is not possible, and DB2 for Linux, UNIX, and Windows is
unable to build a complete chain of required images, the restore operation
terminates, and an error message is returned. In this case, an automatic
incremental restore is not possible, and you must issue the RESTORE DATABASE
command with the INCREMENTAL ABORT parameter. This will clean up any
remaining resources so that you can proceed with a manual incremental restore.

Chapter 11. Developing a backup and recovery strategy 297

Note: It is highly recommended that you not use the WITH FORCE OPTION of the
PRUNE HISTORY command. The default operation of this command prevents you
from deleting history entries that might be required for recovery from the most
recent, full database backup image, but with the WITH FORCE OPTION, it is
possible to delete entries that are required for an automatic restore operation.
During the third phase of processing, DB2 for Linux, UNIX, and Windows
restores each of the remaining backup images in the generated chain. If an error
occurs during this phase, you must issue the RESTORE DATABASE command with
the INCREMENTAL ABORT option to clean up any remaining resources. You must
then determine whether the error can be resolved before you reissue the RESTORE
DATABASE command or attempt the manual incremental restore again.

v To restore a set of incremental backup images, using manual incremental restore,
issue RESTORE DATABASE commands specifying time stamp of each image you
want to restore with the TAKEN AT parameter, as follows:
1.

db2 restore database dbname incremental taken at timestamp

where timestamp points to the last incremental backup image (the target image)
to be restored.

2.
db2 restore database dbname incremental taken at timestamp1

where timestamp1 points to the initial full database (or table space) image.
3.

db2 restore database dbname incremental taken at timestampX

where timestampX points to each incremental backup image in creation
sequence.

4.

Repeat Step 3, restoring each incremental backup image up to and including
image timestamp.

If you are performing a database restore operation, and table space backup
images have been produced, the table space images must be restored in the
chronological order of their backup time stamps.
The db2ckrst utility can be used to query the database history and generate a
list of backup image time stamps needed for an incremental restore. A simplified
restore syntax for a manual incremental restore is also generated. It is
recommended that you keep a complete record of backups, and use this utility
only as a guide.

Limitations to automatic incremental restore
The automatic incremental restore is useful when you need to restore your
database. However, you should consider the limitations of automatic incremental
restore when you are deciding how you will recover your database to prevent
unnecessary issues.

The following limitations affect automatic incremental restore:
1. If a table space name has been changed since the backup operation you want to

restore from, and you use the new name when you issue a table space level
restore operation, the required chain of backup images from the database
history will not be generated correctly and an error will occur (SQL2571N).
Example:

298 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 rename tablespace from userspace1 to t1
db2 restore db sample tablespace (’t1’) incremental automatic taken
at <ts2>

SQL2571N Automatic incremental restore is unable to proceed.
Reason code: "3".

Suggested workaround: Use manual incremental restore.
2. If you drop a database, the database history will be deleted. If you restore the

dropped database, the database history will be restored to its state at the time
of the restored backup and all history entries after that time will be lost. If you
then attempt to perform an automatic incremental restore that would need to
use any of these lost history entries, the RESTORE utility will attempt to restore
an incorrect chain of backups and will return an "out of sequence" error
(SQL2572N).
Example:
db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 backup db sample incremental delta —> <ts3>
db2 backup db sample incremental delta —> <ts4>
db2 drop db sample
db2 restore db sample incremental automatic taken at <ts2>
db2 restore db sample incremental automatic taken at <ts4>

Suggested workarounds:
v Use manual incremental restore.
v Restore the history file first from image <ts4> before issuing an automatic

incremental restore.
3. If you restore a backup image from one database into another database and

then do an incremental (delta) backup, you can no longer use automatic
incremental restore to restore this backup image.
Example:
db2 create db a
db2 create db b

db2 update db cfg for a using trackmod on

db2 backup db a —> ts1
db2 restore db a taken at ts1 into b

db2 backup db b incremental —> ts2

db2 restore db b incremental automatic taken at ts2

SQL2542N No match for a database image file was found based on the source
database alias "B" and timestamp "ts1" provided.

Suggested workaround:
v Use manual incremental restore as follows:

db2 restore db b incremental taken at ts2
db2 restore db a incremental taken at ts1 into b
db2 restore db b incremental taken at ts2

v After the manual restore operation into database B, issue a full database
backup to start a new incremental chain

Chapter 11. Developing a backup and recovery strategy 299

300 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 12. Backing up databases

Backing up a database makes a copy of the database data and stores it on a
different medium. This database backup can then be used in the case of a failure or
damage to the original data.

Before you begin

You do not need to be connected to the database that is to be backed up: the
backup database utility automatically establishes a connection to the specified
database, and this connection is terminated at the completion of the backup
operation. If you are connected to a database that is to be backed up, you will be
disconnected when the BACKUP DATABASE command is issued and the backup
operation will proceed.

The database can be local or remote. The backup image remains on the database
server, unless you are using a storage management product such as Tivoli Storage
Manager (TSM) or DB2 Advanced Copy Services (ACS).

If you are performing an offline backup and if you have activated the database by
using the ACTIVATE DATABASE command, you must deactivate the database before
you run the offline backup. If there are active connections to the database, in order
to deactivate the database successfully, a user with SYSADM authority must
connect to the database, and issue the following commands:
CONNECT TO database-alias
QUIESCE DATABASE IMMEDIATE FORCE CONNECTIONS;
UNQUIESCE DATABASE;
TERMINATE;
DEACTIVATE DATABASE database-alias

In a partitioned database environment, you can use the BACKUP DATABASE command
to back up database partitions individually, use the ON DBPARTITIONNUM command
parameter to back up several of the database partitions at once, or use the ALL
DBPARTITIONNUMS parameter to back up all of the database partitions
simultaneously. You can use the LIST DBPARTITIONNUMS command to identify the
database partitions that have user tables on them that you might want to back up.

Unless you are using a single system view (SSV) backup, if you are performing an
offline backup in a partitioned database environment, you should back up the
catalog partition separately from all other database partitions. For example, you
can back up the catalog partition first, then back up the other database partitions.
This action is necessary because the backup operation might require an exclusive
database connection on the catalog partition, during which the other database
partitions cannot connect. If you are performing an online backup, all database
partitions (including the catalog partition) can be backed up simultaneously or in
any order.

On a distributed request system, backup operations apply to the distributed
request database and the metadata stored in the database catalog (wrappers,
servers, nicknames, and so on). Data source objects (tables and views) are not
backed up, unless they are stored in the distributed request database

© Copyright IBM Corp. 2014 301

If a database was created with a previous release of the database manager, and the
database has not been upgraded, you must upgrade the database before you can
back it up.

Restrictions

The following restrictions apply to the backup utility:
v A table space backup operation and a table space restore operation cannot be

run at the same time, even if different table spaces are involved.
v If you want to be able to do rollforward recovery in a partitioned database

environment, you must regularly back up the database on the list of nodes. You
must also have at least one backup image of the rest of the nodes in the system
(even those nodes that do not contain user data for that database). Two
situations require the backed-up image of a database partition at a database
partition server that does not contain user data for the database:
– You added a database partition server to the database system after taking the

last backup, and you need to do forward recovery on this database partition
server.

– Point-in-time recovery is used, which requires that all database partitions in
the system are in rollforward pending state.

v Online backup operations for DMS table spaces are incompatible with the
following operations:
– load
– reorganization (online and offline)
– drop table space
– table truncation
– index creation
– not logged initially (used with the CREATE TABLE and ALTER TABLE

statements)
v If you attempt to perform an offline backup of a database that is currently

active, you will receive an error. Before you run an offline backup, you can make
sure that the database is not active by issuing the DEACTIVATE DATABASE
command.

Procedure

To invoke the backup utility:
v Issue the BACKUP DATABASE command in the command line processor (CLP).
v Run the ADMIN_CMD procedure with the BACKUP DATABASE parameter.
v Use the db2Backup application programming interface (API).
v Open the task assistant in IBM Data Studio for the BACKUP DATABASE command.

Example

Following is an example of the BACKUP DATABASE command issued through the
CLP:
db2 backup database sample to c:\DB2Backups

What to do next

If you performed an offline backup, after the backup completes, you must
reactivate the database:

302 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

ACTIVATE DATABASE sample

Performing a snapshot backup
A snapshot backup operation uses the fast copying technology of a storage device
to perform the data copying portion of the backup.

Before you begin

To perform snapshot backup and restore operations, you need a DB2 ACS API
driver for your storage device. For a list of supported storage hardware for the
integrated driver, refer to this tech note.

Before you can perform a snapshot backup, you must enable DB2 Advanced Copy
Services (ACS).

Restrictions

You cannot recover individual table spaces by using snapshot backups.

If you use integrated snapshot backups, you cannot perform a redirected restore. A
FlashCopy® restore reverts the complete set of volume groups containing all
database paths to a prior point in time.

Procedure

To perform a snapshot backup, use one of the following approaches:
v Issue the BACKUP DATABASE command with the USE SNAPSHOT parameter, as shown

in the following example:
db2 backup db sample use snapshot

v Call the ADMIN_CMD procedure with BACKUP DB and USE SNAPSHOT parameters,
as shown in the following example:
CALL SYSPROC.ADMIN_CMD

(’backup db sample use snapshot’)

v Issue the db2Backup API with the SQLU_SNAPSHOT_MEDIA media type, as shown in
the following example:
int sampleBackupFunction(char dbAlias[],

char user[],
char pswd[],
char workingPath[])

{
db2MediaListStruct mediaListStruct = { 0 };

mediaListStruct.locations = &workingPath;
mediaListStruct.numLocations = 1;
mediaListStruct.locationType = SQLU_SNAPSHOT_MEDIA;

db2BackupStruct backupStruct = { 0 };

backupStruct.piDBAlias = dbAlias;
backupStruct.piUsername = user;
backupStruct.piPassword = pswd;
backupStruct.piVendorOptions = NULL;
backupStruct.piMediaList = &mediaListStruct;

Chapter 12. Backing up data 303

http://www-01.ibm.com/support/docview.wss?uid=swg21455924

db2Backup(db2Version950, &backupStruct, &sqlca);

return 0;
}

Using a split mirror as a backup image
Use the following procedure to create a split mirror of a database in a different
location on the same system for use as a backup image outside of a DB2 pureScale
environment. This procedure can be used instead of performing backup database
operations on the database.

Procedure

To use a split mirror as a backup image:
1. Connect to the primary database by using the following command:

db2 connect to db_name

2. Suspend the I/O write operations on the primary database by using the
following command:
db2 set write suspend for database

While the database is in suspended state, you should not be running other
utilities or tools. You should be only making a copy of the database. You can
optionally flush all buffer pools before you issue SET WRITE SUSPEND to
minimize the recovery window. This can be achieved by using the FLUSH
BUFFERPOOLS ALL statement.

3. Create one or multiple split mirrors from the primary database by using the
appropriate operating system-level and storage-level commands.

Note:

v Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container directories
that exist outside the database directory. To gather this information, refer to
the DBPATHS administrative view, which shows all the files and directories
of the database that need to be split.

v If you specified EXCLUDE LOGS with the SET WRITE command, do not include
the log files in the copy.

4. Resume the I/O write operations on the primary database by using the
following command:
db2 set write resume for database

Assuming that a failure would occur on the system, perform the following
steps to restore the database by using the split-mirror database as the backup:
a. Stop the database instance by using the following command:

db2stop

b. Copy the split-off data by using operating system-level commands.

Important: Do not copy the split-off log files, because the original logs are
needed for rollforward recovery.

c. Start the database instance by using the following command:
db2start

d. Initialize the primary database:
db2inidb database_alias as mirror

304 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

where database_alias represents the database alias.
e. Roll forward the database to the end of the logs, or to a point-in-time, and

stop.

Using a split mirror as a backup image in a DB2 pureScale
environment

Use the following procedure to create a split mirror of a database in a different
location on the same system for use as a backup image in a DB2 pureScale
environment. This procedure can be used instead of performing backup database
operations on the database.

Procedure

To use a split mirror as a backup image:
1. Connect to the primary database by using the following command:

db2 connect to db_name

2. Configure the General Parallel File System (GPFS) on the secondary cluster by
extracting and importing the settings from the primary cluster. On the primary
cluster, run the following GPFS command:
mmfsctl filesystem syncFSconfig -n remotenodefile

where remotenodefile is the list of hosts in the secondary cluster.
3. Suspend the I/O write operations on the primary database by using the

following command:
db2 set write suspend for database

While the database is in suspended state, you should not be running other
utilities or tools. You should be only making a copy of the database. You can
optionally flush all buffer pools before you issue SET WRITE SUSPEND to
minimize the recovery window. This can be achieved by using the FLUSH
BUFFERPOOLS ALL statement.

4. Determine which file systems must be suspended and copied by using the
following command:
db2cluster -cfs -list -filesystem

5. Suspend each GPFS file system that contains container data or log data by
using the following command:
/usr/lpp/mmfs/bin/mmfsctl filesystem suspend-write

where filesystem represents a file system that contains data or log data.

Note: While the GPFS file systems are suspended, write operations are blocked.
You should only be performing the split mirror operations during this period to
minimize the amount of time that operations are blocked.

6. Create one or multiple split mirrors from the primary database by using the
appropriate operating system-level and storage-level commands.

Note:

v Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container directories
that exist outside the database directory. To gather this information, refer to
the DBPATHS administrative view, which shows all the files and directories
of the database that need to be split.

Chapter 12. Backing up data 305

v If you specified EXCLUDE LOGS with the SET WRITE command, do not include
the log files in the copy.

7. Resume the GPFS file systems that were suspended by using the following
command for each suspended file system:
/usr/lpp/mmfs/bin/mmfsctl filesystem resume

where filesystem represents a suspended file system that contains data or log
data.

8. Resume the I/O write operations on the primary database by using the
following command:
db2 set write resume for database

Assuming that a situation requires you to restore the database by using the
split mirror as the backup image, perform the following steps:
a. Stop the primary database instance by using the following command:

db2stop

b. List the cluster manager domain by using the following command:
db2cluster -cm -list -domain

c. Stop the cluster manager on each host in the cluster by using the following
command:
db2cluster -cm -stop -host host -force

Note: The last host which you shut down must be the host from which you
are issuing this command.

d. Stop the GPFS cluster on the primary database instance by using the
following command:
db2cluster -cfs -stop -all

e. Copy the split-off data off the primary database by using appropriate
operating system-level commands.

Important: Do not copy the split-off log files, because the original logs are
needed for rollforward recovery.

f. Start the GPFS cluster on the primary database instance by using the
following command:
db2cluster -cfs -start -all

g. Start the cluster manager by using the following command:
db2cluster -cm -start -domain domain

h. Start the database instance by using the following command:
db2start

i. Initialize the primary database by using the following command:
db2inidb database_alias as mirror

j. Roll forward the primary database to the end of the logs, or to a
point-in-time, and stop.

Backing up to tape
When you back up your database or table space, you must correctly set your block
size and your buffer size. This is particularly true if you are using a variable block
size (on AIX, for example, if the block size has been set to zero).

There is a restriction on the number of fixed block sizes that can be used when
backing up. This restriction exists because DB2 database systems write out the

306 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

backup image header as a 4-KB block. The only fixed block sizes DB2 database
systems support are 512, 1024, 2048, and 4096 bytes. If you are using a fixed block
size, you can specify any backup buffer size. However, you might find that your
backup operation will not complete successfully if the fixed block size is not one of
the sizes that DB2 database systems support.

If your database is large, using a fixed block size means that your backup
operations might take more time than expected to complete. To improve
performance, you can use a variable block size.

Note: When using a variable block size, ensure that you have well tested
procedures in place that enable you to recover successfully, including explicitly
specified buffer sizes for the BACKUP and RESTORE commands, with backup images
that are created using a variable block size.

When using a variable block size, you must specify a backup buffer size that is less
than or equal to the maximum limit for the tape devices that you are using. For
optimal performance, the buffer size must be equal to the maximum block size
limit of the device being used.

Before a tape device can be used on a Windows operating system, the following
command must be issued:
db2 initialize tape on device using blksize

Where:

device is a valid tape device name. The default on Windows operating systems is
\\.\TAPE0.

blksize is the blocking factor for the tape. It must be a factor or multiple of 4096.
The default value is the default block size for the device.

Restoring from a backup image with variable block size might return an error. If
this happens, you might need to rewrite the image using an appropriate block size.
Following is an example on AIX:

tctl -b 0 -Bn -f /dev/rmt0 read > backup_filename.file
dd if=backup_filename.file of=/dev/rmt0 obs=4096 conv=sync

The backup image is dumped to a file called backup_filename.file. The dd
command dumps the image back onto tape, using a block size of 4096.

There is a problem with this approach if the image is too large to dump to a file.
One possible solution is to use the dd command to dump the image from one tape
device to another. This will work as long as the image does not span more than
one tape. When using two tape devices, the dd command is:

dd if=/dev/rmt1 of=/dev/rmt0 obs=4096

If using two tape devices is not possible, you might be able to dump the image to
a raw device using the dd command, and then to dump the image from the raw
device to tape. The problem with this approach is that the dd command must keep
track of the number of blocks dumped to the raw device. This number must be
specified when the image is moved back to tape. If the dd command is used to
dump the image from the raw device to tape, the command dumps the entire
contents of the raw device to tape. The dd utility cannot determine how much of
the raw device is used to hold the image.

Chapter 12. Backing up data 307

When using the backup utility, you will need to know the maximum block size
limit for your tape devices. Here are some examples:

Device Attachment Block Size Limit DB2 Buffer Size
Limit (in 4-KB
pages)

8 mm scsi 131,072 32

3420 s370 65,536 16

3480 s370 61 440 15

3490 s370 61 440 15

3490E s370 65,536 16

7332 (4 mm)1 scsi 262,144 64

3490e scsi 262,144 64

35902 scsi 2,097,152 512

3570 (magstar MP) 262,144 64

Note:

1. The 7332 does not implement a block size limit. 256 KB is simply a suggested
value. Block size limit is imposed by the parent adapter.

2. While the 3590 does support a 2-MB block size, you could experiment with
lower values (like 256 KB), provided the performance is adequate for your
needs.

3. For information about your device limit, check your device documentation or
consult with the device vendor.

Verifying the compatibility of your tape device

On UNIX, Linux, and AIX operating systems only, to determine whether your tape
device is supported for backing up your DB2 databases, perform the following
procedure:

As the database manager instance owner, run the operating system command dd to
read from or write to your tape device. If the dd command succeeds, then you can
back up your DB2 databases using your tape device.

Backing up to named pipes
Support is now available for database backup to (and database restore from) local
named pipes on UNIX operating systems.

Before you begin

Both the writer and the reader of the named pipe must be on the same machine.
The pipe must exist on a local file system. Because the named pipe is treated as a
local device, there is no need to specify that the target is a named pipe.

Procedure
1. Create a named pipe. The following is an AIX example:

mkfifo /u/dmcinnis/mypipe

308 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

2. If this backup image is going to be used by the restore utility, the restore
operation must be invoked before the backup operation, so that it does not miss
any data:

db2 restore db sample from /u/dmcinnis/mypipe into mynewdb

3. Use this pipe as the target for a database backup operation:
db2 backup db sample to /u/dmcinnis/mypipe

Backing up partitioned databases
Backing up a database in a partitioned database environment can pose difficulties
such as tracking the success of the backup of each database partition, managing
the multiple log files and backup images, and ensuring the log files and backup
images for all the database partitions span the minimum recovery time that is
required to restore the database.

Using a single system view (SSV) backup is the easiest way to back up a
partitioned database.

About this task

There are four ways to back up a database in a partitioned database environment:
v Back up each database partition one at a time by using the BACKUP DATABASE

command, the BACKUP DATABASE command with the ADMIN_CMD procedure, or
the db2Backup API.

v Use the db2_all command with the BACKUP DATABASE command to first back up
the catalog partition and then to back up a specified list of database partitions.

v Run a single system view (SSV) backup to back up some or all of the database
partitions simultaneously, including the catalog partition.

v Use a task assistant in IBM Data Studio to guide you through the process of
backing up the database.

Backing up each database partition one at a time is time-consuming and
error-prone. Backing up all the partitions by using the db2_all command is easier
than backing up each database partition individually because you generally only
must make one command call. However, when you use db2_all to back up a
partitioned database, you sometimes still must make multiple calls to db2_all
because the database partition that contains the catalog cannot be backed up
simultaneously with non-catalog database partitions. Whether you back up each
database partition one at a time or use db2_all, managing backup images that
were created using either of these methods is difficult because the time stamp for
each database partition's backup image is different, and coordinating the minimum
recovery time across the database partitions' backup images is difficult as well.

For the previously mentioned reasons, the recommended way to back up a
database in a partitioned database environment is to use an SSV backup because
you can decide to back up all database partitions simultaneously, including the
catalog partition, and get the same time stamp for each database partition backup.
Alternatively, you can split your backup, specifying some database partitions for
which you get the same time stamp, and later take additional backups on the other
database partitions to complete the database backup. The catalog partition can be
backed up at any time with any other database partitions.

Note: For restore operations, you still must restore the catalog partition before you
restore some or all of the other database partitions.

Chapter 12. Backing up data 309

Procedure

To back up some or all of the database partitions of a partitioned database
simultaneously by using an SSV backup:
1. Optional: Allow the database to remain online, or take the database offline.

You can back up a partitioned database while the database is online or offline.
If the database is online, the backup utility acquires shared connections to the
other database partitions, so user applications are able to connect to database
partitions while they are being backed up.

2. On the database partition that contains the database catalog, perform the
backup with appropriate parameters for partitioned databases, using one of the
following methods:
v Run the BACKUP DATABASE command with the ON DBPARTITIONNUMS parameter.
v Run the BACKUP DATABASE command with the ON DBPARTITIONNUMS parameter

by using the ADMIN_CMD procedure.
v Call the db2Backup API with the iAllNodeFlag parameter.
v Open the task assistant for the BACKUP DATABASE command in IBM Data

Studio.
3. Optional: Include the log files that are required for recovery with the backup

images.
By default, log files are included with backup images if you are performing an
SSV backup (that is, if you specify the ON DBPARTITIONNUM parameter). If you do
not want log files to be included with the backup images, use the EXCLUDE LOGS
command parameter when you run the backup. Log files are excluded from the
backup image by default for non-SSV backups.
For more information, see “Including log files with a backup image” on page
293.

4. Optional: Delete previous backup images. The method that you use to delete
old backup images depends on how you store the backup images. For example,
if you store the backup images to disk, you can delete the files; if you store the
backup images using Tivoli Storage Manager, you can use the db2adutl utility
to delete the backup images. If you are using DB2 Advanced Copy Services
(ACS), you can use the db2acsutil to delete snapshot backup objects.

Backup and restore operations in a DB2 pureScale environment
In a DB2 pureScale environment, issuing a single BACKUP DATABASE or RESTORE
DATABASE command on any member initiates a backup or restore operation on
behalf of all members.

Because a DB2 pureScale environment can have only one database partition, a
backup operation has only one set of data to process and produces only one
backup image for the entire group. In the case of the other members, only the
database metadata and transaction logs must be processed, and those are included
in the single backup image.

A backup image includes data from the specified table spaces and any required
metadata and configuration information for all currently defined members. You do
not have to perform additional backup operations on any other member in the
DB2 pureScale instance. Moreover, you require only a single RESTORE DATABASE
command to restore the database and the member-specific metadata for all
members. You do not have to perform additional restore operations on any other

310 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

member to restore the cluster. The time stamps of consecutive backup images are
unique, increasing values, regardless of which member produced them.

All members must be consistent before an offline backup operation can be
attempted. Only one offline backup operation can run at one time, because the
backup utility acquires super-exclusive access to the database across all members.
Although concurrent online backup operations are supported, different backup
operations cannot copy the same table spaces simultaneously, and must wait their
turn.

All of the reading of data and metadata from the database and all of the writing to
a backup image takes place on a single member. Interactions between the backup
or restore operation and other members are limited to copying or updating
database metadata (such as table space definitions, the log file header, and the
database configuration).

Note: Before taking a backup, you need to ensure that the log archiving path is set
to a shared directory so that all the members are able to access the logs for
subsequent rollforward operations. If the archive path is not accessible from the
member on which the rollforward is being executed, SQL1273N is returned. The
following command is an example of how to set the log path to the shared
directory:
db2 update db cfg using logarchmeth1

DISK:/db2fs/gpfs1/svtdbm5/svtdbm5/ArchiveLOGS

(where gpfs1 is the shared directory for the members and ArchiveLOGS is the actual
directory that archives the logs.

Online backup operations can proceed successfully if another member is offline,
goes offline, or comes back online while the operation is executing (Table 24).
Although database restore operations are not affected by the state of other
members, backup operations might have to wait for a short duration while
member crash recovery is completed on an offline and inconsistent member.

Table 24. Effect of the state of other members in a DB2 pureScale instance on database
backup and restore operations

Operation

State of other members

Offline and consistent Offline and inconsistent

Online backup The backup operation
succeeds. The other member
cannot become active while
the backup utility is
accessing the log file header
(LFH) near the beginning of
the backup operation or
while the backup utility is
accessing the log stream near
the end of the backup
operation.

The backup operation
succeeds, but it must wait
for member crash recovery to
be completed and for the
other member to become
either active or consistent.
The other member cannot
become active while the
backup utility is accessing
the LFH near the beginning
of the backup operation or
while the backup utility is
accessing the log stream near
the end of the backup
operation.

Restore The restore operation is
completed normally.

The restore operation is
completed normally.

Chapter 12. Backing up data 311

Image and archive naming

File names for backup images that you create on disk consist of a concatenation of
several elements, separated by periods:

DB_alias.Type.Inst_name.DBPARTnnn.Timestamp.Seq_num

DB_alias
The database alias name that you specified when you invoked the backup
utility.

Type The type of backup operation, where 0 represents a full database backup, 3
represents a table space backup, and 4 represents a backup image
generated by the LOAD command with the COPY NO option.

Inst_name
The name of the current instance, which is the value of the DB2INSTANCE
environment variable.

nnn The database partition number. In a DB2 pureScale environment, the
number is always 000.

Timestamp
A 14-character representation of the date and time when you performed
the backup operation. The time stamp is in the form yyyymmddhhnnss,
where:
v yyyy represents the year.
v mm represents the month (01 to 12).
v dd represents the day of the month (01 to 31).
v hh represents the hour (00 to 23).
v nn represents the minutes (00 to 59).
v ss represents the seconds (00 to 59).

Seq_num
A 3-digit number used as a file extension.

For example:
SAMPLE.0.krodger.DBPART000.200802241234.001

Online backup with INCLUDE LOGS

An online backup operation with the INCLUDE LOGS option (the default) produces a
backup image that includes the range of log files required to restore and roll the
database forward to its minimum recovery time. If this backup image is then used
to restore to a new database (perhaps during disaster recovery), and only the logs
from the backup image are available during a subsequent roll-forward operation, a
ROLLFORWARD DATABASE command with the TO END OF LOGS parameter often returns
an error message about a missing log file (SQL1273N). This is expected in some
situations, because the database manager might have detected that additional logs
were written after the backup operation, but that those logs are not available for
the current roll-forward operation. It might also be the case that one or more of the
logs that are necessary to roll the database forward to a consistent point in time are
missing. In either case, verify that the end point of the roll-forward operation is
acceptable and then issue a ROLLFORWARD DATABASE with the AND STOP parameter. If
the roll-forward operation has reached its minimum recovery time despite the
missing log file, the ROLLFORWARD DATABASE with the AND STOP parameter should
complete successfully; otherwise, it returns SQL1276N (the roll-forward operation
did not reach its minimum recovery time using this backup image).

312 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Disaster recovery and high availability through log shipping in a
DB2 pureScale environment

Log shipping is the process of copying whole log files to a standby machine, either
from an archive device, or through a user exit program running against the
primary database. You can choose to keep a standby database up-to-date by
applying the logs to it as they are archived, or you can keep the database or table
space backup images and log archives on the standby site, and perform restore and
roll-forward operations only after a disaster has occurred. In either case, the
roll-forward operation on the standby site might detect that one or more log files
are missing and return SQL1273N. Verify that the roll-forward operation reached
an acceptable time stamp, or take appropriate action to correct the problem.

If, during a log stream merge operation, the DB2 database manager determines
that there is a missing log file in one of the log streams, an error is returned. The
roll-forward utility returns SQL1273N; the db2ReadLog API returns SQL2657N. If
you choose to keep a standby database up-to-date by applying logs to it as they
are archived, roll-forward operations might frequently detect that some logs are
missing.

Figure 55 shows an example of how two members could write log records to the
log files in their active log stream. Each log file is represented by a box. Consider a
scenario where both a primary and standby site have been set up for high
availability. A ROLLFORWARD DATABASE command with the END OF LOGS option is
attempted on the standby site at time points A, B and C. For any particular point
in time, any log files that have been closed before that time have been archived
and are accessible on the standby. Otherwise, the log file is still active on the
primary and is not available to the standby yet (as shown for log file 4 on log
stream 1 at time B).

At time A, the ROLLFORWARD DATABASE command will complete successfully as log
file 1 from log stream 0 was closed and archived at the same time as log file 3
from log stream 1. At time B however, the ROLLFORWARD DATABASE command will
return v. This happens because at the time that the command is issued on the
standby site, the standby site has access to log files 2 and 3 from log stream 0, but
not to log file 4 from log stream 1 because the log file is still open and active on
the primary site. Furthermore, since the log records in files 2 and 3 on log stream 0
were written during the same time period as the beginning of log file 4 on log
stream 1, the roll-forward operation cannot process log files 2 and 3 until log file 4
from log stream 1 is made available. At time C, when log file 4 is finally closed
and archived on log stream 1, a ROLLFORWARD DATABASE command will complete
successfully. It is possible to force the truncation and archiving of files across all

1 2 3

1 2 3 4

4 5

5

Log Stream 0

Log Stream 1

A B C

Time

Figure 55. Log files in a DB2 pureScale environment

Chapter 12. Backing up data 313

the log streams using the ARCHIVE LOG command, or by deactivating the database
across all members. In the case of the ARCHIVE LOG command, the current log file
on each log stream is truncated independently and there is no guarantee that it
will happen at the exact same point in time across all members. Therefore, even if
the ARCHIVE LOG command is issued, it is still possible to get an SQL1273N error
when executing the ROLLFORWARD DATABASE command.

While missing log conditions are common and expected when using log shipping
in a DB2 pureScale environment, in most cases, each roll-forward operation on the
standby will make additional progress over the last ROLLFORWARD DATABASE
command (even when SQL1273N is returned) and therefore the error itself should
often be expected. It is possible, however, for the primary site to have trouble
archiving a file for one log stream while successfully archiving logs for the other
log streams. This could be the result of a temporary problem accessing the archive
storage for one log stream. Such problems can cause the log merge and replay on
the standby to be held up, increasing the number of transactions that could be lost
in the event of a disaster. To ensure that your standby system is up-to-date, issue a
ROLLFORWARD DATABASE command with the QUERY STATUS parameter after each
roll-forward operation that returns SQL1273N and verify that progress is being
made over time. If a roll-forward operation on the standby is not making progress
over an extended period of time, determine why the log file reported as missing is
not available on the standby system and correct the problem. The ARCHIVE LOG
command can be used to truncate the log files that are currently being updated on
each member, making them eligible for archiving and subsequent replay on the
standby system.

In the event of a disaster (for example, fire, earthquake, vandalism, or other
catastrophic events) your plan for recovery might be to execute a roll-forward
operation through all remaining logs, or a restore and roll-forward operation
through all available logs. As mentioned previously, the roll-forward operation
might detect that one or more log file is missing, because log files were written on
the primary but not yet archived at the time of the disaster (SQL1273N). It is also
possible that a log that was archived cannot be found by the roll-forward utility
for some unexpected reason; this can also cause the roll-forward utility to return
SQL1273N. It is important to validate the end point of a roll-forward operation by
using the ROLLFORWARD DATABASE command with the QUERY STATUS parameter, and
to decide whether or not the missing log condition is expected. If the missing log
condition is expected, or the end point is acceptable, you can issue a ROLLFORWARD
DATABASE command with the STOP parameter to complete the roll-forward recovery
process.

Restrictions

Backup and restore operations between an environment where the DB2 pureScale
Feature is installed and an environment where the DB2 pureScale Feature is not
installed are not supported.

After a change in topology that involves adding or dropping a member, you
cannot perform roll-forward recovery operations through the point where the
topology change occurred. If you add or drop a member, the database is placed in
backup pending state, and you must perform a full database backup operation
before a connection to the database can be made. To recover, restore this backup
image and roll forward to the end of the logs. If you must restore a backup image
from before the topology change, you will only be able to roll forward to the point
at which the topology change occurred. This can be accomplished by issuing a
ROLLFORWARD DATABASE command with the TO END OF LOGS parameter (which

314 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

returns SQL1546N) followed by a ROLLFORWARD DATABASE command with the STOP
parameter. This operation will not recover any transactions that changed the
database after the topology change.

In a DB2 pureScale environment, the ON ALL DBPARTITIONNUMS parameter and the
ON DBPARTITION (0) parameter of the BACKUP DATABASE command are valid. If you
specify a database partition number other than 0, however, an error (SQL0270N) is
returned because no other database partitions exist.

The following restriction applies to this release:
v A database, which resides outside of a DB2 pureScale environment, can be

migrated to a DB2 pureScale environment. You cannot use database restore
operations to migrate such database to a DB2 pureScale environment.

v Delta and incremental backup operations are not supported.
v In Version 10 GA and Fix Pack 1, snapshot backup operations using DB2

Advanced Copy Services (ACS) are not supported. In Version 10 Fix Pack 2, this
restriction is removed.

Examples
v Back up a 4-member database named SAMPLE from any member:

BACKUP DB SAMPLE

v Restore a 1-member database named SAMPLE:
RESTORE DB SAMPLE

v Use the RECOVER DATABASE command to restore and roll forward a database
named SAMPLE from any member:
RECOVER DB SAMPLE TO END OF LOGS

If the database does not exist, use the RESTORE DATABASE and ROLLFORWARD
DATABASE commands instead of the RECOVER DATABASE command because an
existing database with a complete database history is required for the successful
completion of the RECOVER DATABASE command.

Enabling automatic backup
A database can become unusable due to a wide variety of hardware or software
failures. Ensuring that you have a recent, full backup of your database is an
integral part of planning and implementing a disaster recovery strategy for your
system.

Use automatic database backup as part of your disaster recovery strategy to enable
DB2 to back up your database both properly and regularly.

About this task

You can configure automatic backup using the command line interface, or the
AUTOMAINT_SET_POLICY system stored procedure. You also need to enable the
health indicator db.db_backup_req, which by default is enabled. Note that only an
active database is considered for the evaluation.

Procedure
v To configure automatic backup using the command line interface, set each of the

following database configuration parameters to ON:
– AUTO_MAINT

Chapter 12. Backing up data 315

– AUTO_DB_BACKUP

v To configure automatic backup usingIBM Data Studio, right-click the database
and select the task assistant to configure automatic backup.

v To configure automatic backup using the AUTOMAINT_SET_POLICY system
stored procedure:
1. Create configuration XML input specifying details like backup media,

whether the backup should be online or offline, and frequency of the backup.
You can copy the contents of the sample file called
DB2DefaultAutoBackupPolicy.xml in the SQLLIB/samples/automaintcfg
directory and modify the XML to satisfy your configuration requirements.

2. Optional: Create an XML input file containing your configuration XML input.
3. Call AUTOMAINT_SET_POLICY with the following parameters:

– maintenance type: AutoBackup
– configuration XML input: either a BLOB containing your configuration

XML input text; or the name of the file containing your configuration
XML input.

See the topic “Configuring an automated maintenance policy using
SYSPROC.AUTOMAINT_SET_POLICY or
SYSPROC.AUTOMAINT_SET_POLICYFILE” for more information about
using the AUTOMAINT_SET_POLICY system stored procedure.

Configuring an automated maintenance policy using
SYSPROC.AUTOMAINT_SET_POLICY or
SYSPROC.AUTOMAINT_SET_POLICYFILE

You can use the system stored procedures AUTOMAINT_SET_POLICY and
AUTOMAINT_SET_POLICYFILE to configure the automated maintenance policy
for a database.

Procedure

To configure the automated maintenance policy for a database, perform the
following steps:
1. Connect to the database
2. Call AUTOMAINT_SET_POLICY or AUTOMAINT_SET_POLICYFILE

v The parameters required for AUTOMAINT_SET_POLICY are:
a. Maintenance type, specifying the type of automated maintenance activity

to configure.
b. Pointer to a BLOB that specifies the automated maintenance policy in

XML format.
v The parameters required for AUTOMAINT_SET_POLICYFILE are:

a. Maintenance type, specifying the type of automated maintenance activity
to configure.

b. The name of an XML file that specifies the automated maintenance policy.

Valid maintenance type values are:
v AUTO_BACKUP - automatic backup
v AUTO_REORG - automatic table and index reorganization
v AUTO_RUNSTATS - automatic table RUNSTATS operations
v MAINTENANCE_WINDOW - maintenance window

316 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

What to do next

You can use the system stored procedures AUTOMAINT_GET_POLICY and
AUTOMAINT_GET_POLICYFILE to retrieve the automated maintenance policy
configured for a database.

Monitoring backup operations
You can use the LIST UTILITIES command to monitor the progress of backup
operations on a database.

Procedure

Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter:
list utilities show detail

Results

For backup operations, an initial estimate of the number of bytes to be processed
will be specified. As the backup operation progresses the number of bytes to be
processed will be updated. The bytes shown does not correspond to the size of the
image and should not be used as an estimate for backup image size. The actual
image might be much smaller depending on whether it is an incremental or
compressed backup.

Example

The following is an example of the output for monitoring the performance of an
offline database backup operation:
ID = 3
Type = BACKUP
Database Name = SAMPLE
Partition Number = 0
Description = offline db
Start Time = 08/04/2011 12:16:23.248367
State = Executing
Invocation Type = User
Throttling:

Priority = Unthrottled
Progress Monitoring:

Extimated Percentage Complete = 31
Total Work = 123147277 bytes
Completed Work = 37857269 bytes
Start Time = 08/04/2011 12:16:23.248377

Optimizing backup performance
When you perform a backup operation, the DB2 database manager automatically
chooses an optimal value for the number of buffers, the buffer size, and the
parallelism settings. The values are based on the amount of utility heap memory
available, the number of processors available, and the database configuration.

Therefore, depending on the amount of storage available on your system, consider
allocating more memory by increasing the util_heap_sz configuration parameter.

The objective is to minimize the time it takes to complete a backup operation.
Unless you explicitly enter a value for the following BACKUP DATABASE command
parameters, the DB2 database manager selects one for them:

Chapter 12. Backing up data 317

v WITH num-buffers BUFFERS

v PARALLELISM n

v BUFFER buffer-size

If the number of buffers and the buffer size are not specified, resulting in the DB2
database manager setting the values, it should have minimal effect on large
databases. However, for small databases, it can cause a large percentage increase in
backup image size. Even if the last data buffer written to disk contains little data,
the full buffer is written to the image anyway. In a small database, this means that
a considerable percentage of the image size might be empty.

You can also choose to do any of the following to reduce the amount of time
required to complete a backup operation:
v Specify table space backup.

You can back up (and subsequently recover) part of a database by using the
TABLESPACE option on the BACKUP DATABASE command. This facilitates the
management of table data, indexes, and long field or large object (LOB) data in
separate table spaces.

v Increase the value of the PARALLELISM parameter on the BACKUP DATABASE
command so that it reflects the number of table spaces being backed up.
The PARALLELISM parameter defines the number of processes or threads that are
started to read data from the database and to compress data during a
compressed backup operation. Each process or thread is assigned to a specific
table space, so there is no benefit to specifying a value for the PARALLELISM
parameter that is larger than the number of table spaces being backed up. When
it finishes backing up this table space, it requests another. Note, however, that
each process or thread requires both memory and CPU overhead.

v Increase the backup buffer size.
The ideal backup buffer size is a multiple of the table space extent size plus one
page. If you have multiple table spaces with different extent sizes, specify a
value that is a common multiple of the extent sizes plus one page.

v Increase the number of buffers.
Use at least twice as many buffers as backup targets (or sessions) to ensure that
the backup target devices do not have to wait for data.

v Use multiple target devices.

Compatibility of online backup and other utilities
Some utilities can be run at the same time as an online backup, but others cannot.

The following utilities are compatible with online backup:
v EXPORT

v INSPECT

The following SQL statements and utilities are compatible with online backup only
under certain circumstances:
v CREATE INDEX

In SMS mode, online index create and online backup do not run concurrently
due to the ALTER TABLE lock. Online index create acquires it in exclusive mode
while online backup acquires it in share.
In DMS mode, online index create and online backup can run concurrently in
most cases. There is a possibility if you have a large number of tables in the

318 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

same tablespace as the one in which you are creating the index, that the online
index create will internally acquire an online backup lock that will conflict with
any concurrent online backup.

v REORG INDEX with the ONLINE option
As with online index create, in SMS mode, online index reorganization do not
run concurrently with online backup due to the ALTER TABLE lock. Online
index reorganization acquires it in exclusive mode while online backup acquires
it in share. In addition, an online index reorganization operation, quiesces the
table before the switch phase and acquires a Z lock, which prevents an online
backup. However, the ALTER TABLE lock should prevent an online backup
from running concurrently before the Z table lock is acquired.
In DMS mode, online index reorganization and online backup can run
concurrently.
In addition, online index reorganization quiesces the table before the switch
phase and gets a Z lock, which prevents an online backup.

v IMPORT

The import utility is compatible with online backup except when the IMPORT
command is issued with the REPLACE parameter, in which case, import gets a Z
lock on the table and prevents an online backup from running concurrently.

v TRUNCATE TABLE
The TRUNCATE statement is not compatible with online backup because it gets
a Z lock on the table and prevents an online backup from running concurrently.

v ALLOW READ ACCESS LOAD

ALLOW READ ACCESS load operations are not compatible with online backup when
the LOAD command is issued with the COPY NO parameter. In this mode the
utilities both modify the table space state, causing one of the utilities to report
an error.
ALLOW READ ACCESS load operations are compatible with online backup when the
LOAD command is issued with the COPY YES option, although there might still be
some compatibility issues. In SMS mode, the utilities can execute concurrently,
but they will hold incompatible table lock modes and consequently might be
subject to table lock waits. In DMS mode, the utilities both hold incompatible
"Internal-B" (OLB) lock modes and might be subject to waits on that lock. If the
utilities execute on the same table space concurrently, the load utility might be
forced to wait for the backup utility to complete processing of the table space
before the load utility can proceed.

v REORG TABLE with the ONLINE option
The cleanup phase of online table reorganization cannot start while an online
backup is running. You can pause the table reorganization, if required, to allow
the online backup to finish before resuming the online table reorganization.
You can start an online backup of a DMS table space when a table within the
same table space is being reorganized online. There might be lock waits
associated with the reorganization operation during the truncate phase.
You cannot start an online backup of an SMS table space when a table within
the same table space is being reorganized online. Both operations require an
exclusive lock.

v DDLs that require a Z lock (such as ALTER TABLE, DROP TABLE, and DROP
INDEX)
Online DMS table space backup is compatible with DDLs that require a Z lock.
Online SMS table space backup must wait for the Z lock to be released.

v Storage group DDLs

Chapter 12. Backing up data 319

If you are modifying the database storage groups by issuing one of the
following statements, you should take care to coordinate this operation with
your online backup schedule:
– CREATE STOGROUP
– ALTER STOGROUP
– DROP STOGROUP
– RENAME STOGROUP
– ALTER DATABASE

If there is an online backup in progress, the storage group DDL waits behind
that operation until it can obtain the appropriate lock, which can potentially take
a long time. Similarly, an online backup waits behind any in-progress storage
group DDL, until that DDL is committed or rolled back.

v RUNSTATS with the ALLOW WRITE or ALLOW READ option
The RUNSTATS command is compatible with online backup except when the
system catalog table space is an SMS table space. If the system catalog resides in
an SMS table space, then the RUNSTATS command and the online backup hold
incompatible table locks on the table causing lock waits.

v ALTER TABLESPACE
Operations that enable or disable autoresize, or alter autoresize containers, are
not permitted during an online backup of a table space.

v ALTER TABLESPACE with the REBALANCE option
When online backup and rebalancer are running concurrently, online backup
pauses the rebalancer and does not wait for it to complete.

The following utilities are not compatible with online backup:
v REORG TABLE

v RESTORE DATABASE

v ROLLFORWARD DATABASE

v LOAD with the ALLOW NO ACCESS option
v SET WRITE

v BACKUP DATABASE with the ONLINE option
This applies to database-level online backups and table-space-level online
backups (if they involve the same table space or table spaces).

320 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 13. Recovering databases

Recovering a database restores a database and all its storage groups to a specified
time, by using information found in the recovery history file.

Before you begin

If you issue the RECOVER DATABASE command following an incomplete recover
operation that ended during the rollforward phase, the recover utility attempts to
continue the previous recover operation, without redoing the restore phase. If you
want to force the recover utility to redo the restore phase, issue the RECOVER
DATABASE command with the RESTART option to force the recover utility to ignore
any prior recover operation that failed to complete. If you are using the application
programming interface (API), specify the caller action DB2RECOVER_RESTART for the
iRecoverAction field to force the recover utility to redo the restore phase.

If the RECOVER DATABASE command is interrupted during the restore phase, it
cannot be continued. You must reissue the RECOVER DATABASE command.

You should not be connected to the database that is to be recovered: the recover
database utility automatically establishes a connection to the specified database,
and this connection is terminated at the completion of the recover operation.

About this task

The database can be local or remote.

Note: In a partitioned database environment, the recover utility must be invoked
from the catalog partition of the database.

Procedure

To invoke the recover utility, use the:
v RECOVER DATABASE command, or
v db2Recover application programming interface (API).

Example

The following example shows how to use the RECOVER DATABASE command through
the CLP:

db2 recover db sample

Optimizing recovery performance
There are strategies that you can use to improve DB2 performance during database
recovery and decrease the time that is required to recover from a DB2 service
outage.

The following should be considered when thinking about recovery performance:
v You can improve performance for databases that are frequently updated by

placing the logs on a separate device. In the case of an online transaction
processing (OLTP) environment, often more I/O is needed to write data to the

© Copyright IBM Corp. 2014 321

logs than to store a row of data. Placing the logs on a separate device will
minimize the disk arm movement that is required to move between a log and
the database files.
You should also consider what other files are on the disk. For example, moving
the logs to the disk used for system paging in a system that has insufficient real
memory will defeat your tuning efforts.
DB2 database products automatically attempt to minimize the time it takes to
complete a backup or restore operation by choosing an optimal value for the
number of buffers, the buffer size and the parallelism settings. The values are
based on the amount of utility heap memory available, the number of processors
available and the database configuration.

v To reduce the amount of time required to complete a restore operation, use
multiple source devices.

v If a table contains large amounts of long field and LOB data, restoring it could
be very time consuming. If the database is enabled for rollforward recovery, the
RESTORE command provides the capability to restore selected table spaces. If the
long field and LOB data is critical to your business, restoring these table spaces
should be considered against the time required to complete the backup task for
these table spaces. By storing long field and LOB data in separate table spaces,
the time required to complete the restore operation can be reduced by choosing
not to restore the table spaces containing the long field and LOB data. If the
LOB data can be reproduced from a separate source, choose the NOT LOGGED
option when creating or altering a table to include LOB columns. If you choose
not to restore the table spaces that contain long field and LOB data, but you
need to restore the table spaces that contain the table, you must roll forward to
the end of the logs so that all table spaces that contain table data are consistent.

Note: If you back up a table space that contains table data without the
associated long or LOB fields, you cannot perform point-in-time rollforward
recovery on that table space. All the table spaces for a table must be rolled
forward simultaneously to the same point in time.

v The following apply for both backup and restore operations:
– Multiple devices should be used.
– Do not overload the I/O device controller bandwidth.

v DB2 database products use multiple agents to perform both crash recovery and
database rollforward recovery. You can expect better performance during these
operations, particularly on symmetric multi-processor (SMP) machines; using
multiple agents during database recovery takes advantage of the extra CPUs that
are available on SMP machines.
The agent type introduced by parallel recovery is db2agnsc. DB2 database
managers choose the number of agents to be used for database recovery based
on the number of CPUs on the machine.
DB2 database managers distribute log records to these agents so that they can be
reapplied concurrently, where appropriate. For example, the processing of log
records associated with insert, delete, update, add key, and delete key operations
can be parallelized in this way. Because the log records are parallelized at the
page level (log records on the same data page are processed by the same agent),
performance is enhanced, even if all the work was done on one table.

v When you perform a recover operation, DB2 database managers will
automatically choose an optimal value for the number of buffers, the buffer size
and the parallelism settings. The values will be based on the amount of utility
heap memory available, the number of processors available and the database

322 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

configuration. Therefore, depending on the amount of storage available on your
system, you should consider allocating more memory by increasing the
util_heap_sz configuration parameter.

Recovering data using db2adutl
You can perform cross-node recovery using the db2adutl command, logarchopt1
and vendoropt database configuration parameters. This recovery is demonstrated
in examples from a few different Tivoli Storage Manager (TSM) environments.

For the following examples, computer 1 is called bar and is running the AIX
operating system. The user on this machine is roecken. The database on bar is
called zample. Computer 2 is called dps. This computer is also running the AIX
operating system, and the user is regress9.

Example 1: TSM server manages passwords automatically
(PASSWORDACCESS option set to GENERATE)

This cross-node recovery example shows how to set up two computers so that you
can recover data from one computer to another when log archives and backups are
stored on a TSM server and where passwords are managed using the
PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline
backup of the database.
1. To enable the database for log archiving for the bar computer to the TSM

server, update the database configuration parameter logarchmeth1 for the
zample database using the following command:

bar:/home/roecken> db2 update db cfg for zample using LOGARCHMETH1 tsm

The following information is returned:
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

2. Disconnect all users and applications from the database using the following
command:

db2 force applications all

3. Verify that there are no applications connected to the database using the
following command:

db2 list applications

You should receive a message that says that no data was returned.

Note: In a partitioned database environment, you must perform this step on
all database partitions.

4. Create a backup of the database on the TSM server using the following
command:

db2 backup db zample use tsm

Information similar to the following is returned:
Backup successful. The timestamp for this backup imagge is : 20090216151025

Note: In a partitioned database environment, you must perform this step on
all database partitions. The order in which you perform this step on the
database partitions differs depending on whether you are performing an
online backup or an offline backup. For more information, see Chapter 12,
“Backing up databases,” on page 301.

5. Connect to the zample database using the following command:

Chapter 13. Recovering data 323

db2 connect to zample

6. Generate new transaction logs for the database by creating a table and loading
data into the TSM server using the following command:

bar:/home/roecken> db2 load from mr of del modified by noheader replace
into employee copy yes use tsm

where in this example, the table is called employee, and the data is being
loaded from a delimited ASCII file called mr. The COPY YES option is specified
to make a copy of the data that is loaded, and the USE TSM option specifies
that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for
roll-forward recovery; that is, the logarchmeth1 database configuration
parameter must be set to USEREXIT, LOGRETAIN, DISK, or TSM.
To indicate its progress, the load utility returns a series of messages:

SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
15:12:13.392633".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3110N The utility has completed processing. "1" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "1".

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
15:12:13.445718".

Number of rows read = 1
Number of rows skipped = 0
Number of rows loaded = 1
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 1

7. After the data has been loaded into the table, confirm that there is one backup
image, one load copy image, and one log file on the TSM server by running
the following query on the zample database:
bar:/home/roecken/sqllib/adsm> db2adutl query db zample

The following information is returned:
Retrieving FULL DATABASE BACKUP information.

1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

324 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

8. To enable cross-node recovery, you must give access to the objects associated
with the bar computer to another computer and account. In this example, give
access to the computer dps and the user regress9 using the following
command:

bar:/home/roecken/sqllib/adsm> db2adutl grant user regress9
on nodename dps for db zample

The following information is returned:
Successfully added permissions for regress9 to access ZAMPLE on node dps.

Note: You can confirm the results of the db2adutl grant operation by issuing
the following command to retrieve the current access list for the current node:

bar:/home/roecken/sqllib/adsm> db2adutl queryaccess

The following information is returned:
Node Username Database Name Type
--
DPS regress9 ZAMPLE A
--
Access Types: B - backup images L - logs A - both

9. In this example, computer 2, dps, is not yet set up for cross-node recovery of
the zample database. Verify that there is no data associated with this user and
computer on the TSM server using the following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample

The following information is returned:
--- Database directory is empty ---

Warning: There are no file spaces created by DB2 on the ADSM server
Warning: No DB2 backup images found in ADSM for any alias.

10. Query the TSM server for a list of objects for the zample database associated
with user roecken and computer bar using the following command:
dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename

bar owner roecken

The following information is returned:
--- Database directory is empty ---

Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Chapter 13. Recovering data 325

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

This information matches the TSM information that was generated previously
and confirms that you can restore this image onto the dps computer.

11. Restore the zample database from the TSM server to the dps computer using
the following command:

dps:/home/regress9> db2 restore db zample use tsm options
"’-fromnode=bar -fromowner=roecken’" without prompting

The following information is returned:
DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter
would be omitted, and the database configuration parameter vendoropt would
be used. This configuration parameter overrides the OPTIONS parameter for a
backup or restore operation.

12. Perform a roll-forward operation to apply the transactions recorded in the
zample database log file when a new table was created and new data loaded.
In this example, the following attempt for the roll-forward operation will fail
because the roll-forward utility cannot find the log files because the user and
computer information is not specified:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The command returns the following error:
SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the
specified stop point (end-of-log or point-in-time) because of missing log
file(s) on node(s) "0".

Force the roll-forward utility to look for log files associated with another
computer using the proper logarchopt value. In this example, use the
following command to set the logarchopt1 database configuration parameter
and search for log files associated with user roecken and computer bar:

dps:/home/regress9> db2 update db cfg for zample using logarchopt1
"’-fromnode=bar -fromowner=roecken’"

13. Enable the roll-forward utility to use the backup and load copy images by
setting the vendoropt database configuration parameter using the following
command:

dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
"’-fromnode=bar -fromowner=roecken’"

14. You can finish the cross-node data recovery by applying the transactions
recorded in the zample database log file using the following command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:
Rollforward Status

Input database alias = zample
Number of members have returned status = 1

Member number Rollforward Next log to Log files processed Last committed transaction
status be read

------------- ----------- ----------- ------------------------- ------------------------------
0 not pending S0000000.LOG-S0000000.LOG 2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered
to the same point as the database on computerbar under user roecken.

326 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example 2: Passwords are user-managed (PASSWORDACCESS
option set to PROMPT)

This cross-node recovery example shows how to set up two computers so that you
can recover data from one computer to another when log archives and backups are
stored on a TSM server and where passwords are managed by the users. In these
environments, extra information is required, specifically the TSM nodename and
password of the computer where the objects were created.
1. Update the client dsm.sys file by adding the following line because computer

bar is the name of the source computer
NODENAME bar

Note: On Windows operating systems, this file is called the dsm.opt file. When
you update this file, you must reboot your system for the changes to take
effect.

2. Query the TSM server for the list of objects associated with user roecken and
computer bar using the following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename bar
owner roecken password *******

The following information is returned:
Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

3. If the zample database does not exist on computer dps, perform the following
steps:
a. Create an empty zample database using the following command:

dps:/home/regress9> db2 create db zample

b. Update the database configuration parameter tsm_nodename using the
following command:

dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

c. Update the database configuration parameter tsm_password using the
following command:

dps:/home/regress9> db2 update db cfg for zample using
tsm_password ********

4. Attempt to restore the zample database using the following command:

Chapter 13. Recovering data 327

dps:/home/regress9> db2 restore db zample use tsm options
"’-fromnode=bar -fromowner=roecken’" without prompting

The restore operation completes successfully, but a warning is issued:
SQL2540W Restore is successful, however a warning "2523" was
encountered during Database Restore while processing in No
Interrupt mode.

5. Perform a roll-forward operation using the following command:
dps:/home/regress9> db2 rollforward db zample to end of logs and stop

In this example, because the restore operation replaced the database
configuration file, the roll-forward utility cannot find the correct log files and
the following error message is returned:

SQL1268N Roll-forward recovery stopped due to error "-2112880618"
while retrieving log file "S0000000.LOG" for database "ZAMPLE" on node "0".

Reset the following TSM database configuration values to the correct values:
a. Set the tsm_nodename configuration parameter using the following

command:
dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

b. Set the tsm_password database configuration parameter using the following
command:

dps:/home/regress9> db2 update db cfg for zample using tsm_password *******

c. Set the logarchopt1 database configuration parameter so that the
roll-forward utility can find the correct log files using the following
command:

dps:/home/regress9> db2 update db cfg for zample using logarchopt1
"’-fromnode=bar -fromowner=roecken’"

d. Set the vendoropt database configuration parameter so that the load
recovery file can also be used during the roll-forward operation using the
following command:

dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
"’-fromnode=bar -fromowner=roecken’"

6. You can finish the cross-node recovery by performing the roll-forward
operation using the following command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:
Rollforward Status

Input database alias = zample
Number of members have returned status = 1

Member number Rollforward Next log to Log files processed Last committed transaction
status be read

------------- ----------- ----------- ------------------------- ------------------------------
0 not pending S0000000.LOG-S0000000.LOG 2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered to
the same point as the database on computerbar under user roecken

Example 3: TSM server is configured to use client proxy nodes

This cross-node recovery example shows how to set up two computers as proxy
nodes so that you can recover data from one computer to another when log
archives and backups are stored on a TSM server and where passwords are
managed using the PASSWORDACCESS=GENERATE option.

328 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note: After updating the database configuration, you might have to take an offline
backup of the database.

In this example, the computers bar and dps are registered under the proxy name of
clusternode. The computers are already setup as proxy nodes.
1. Register the computers bar and dps on the TSM server as proxy nodes using

the following commands:
REGISTER NODE clusternode mypassword
GRANT PROXYNODE TARGET=clusternode AGENT=bar,dps

2. To enable the database for log archiving to the TSM server, update the
database configuration parameter logarchmeth1 for the zample database using
the following command:

bar:/home/roecken> db2 update db cfg for zample using
LOGARCHMETH1 tsm logarchopt1 "’-asnodename=clusternode’"

The following information is returned:
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

3. Disconnect all users and applications from the database using the following
command:

db2 force applications all

4. Verify that there are no applications connected to the database using the
following command:

db2 list applications

You should receive a message that says that no data was returned.

Note: In a partitioned database environment, you must perform this step on
all database partitions.

5. Create a backup of the database on the TSM server using the following
command:

db2 backup db zample use tsm options "’-asnodename=clusternode’"

Information similar to the following is returned:
Backup successful. The timestamp for this backup image is : 20090216151025

Instead of specifying the -asnodename option on the BACKUP DATABASE
command, you can update the vendoropt database configuration parameter
instead.

Note: In a partitioned database environment, you must perform this step on
all database partitions. The order in which you perform this step on the
database partitions differs depending on whether you are performing an
online backup or an offline backup. For more information, see Chapter 12,
“Backing up databases,” on page 301.

6. Connect to the zample database using the following command:
db2 connect to zample

7. Generate new transaction logs for the database by creating a table and loading
data into the TSM server using the following command:
bar:/home/roecken> db2 load from mr of del modified by noheader
replace into employee copy yes use tsmwhere

where in this example, the table is called employee, and the data is being
loaded from a delimited ASCII file called mr. The COPY YES option is specified
to make a copy of the data that is loaded, and the USE TSM option specifies
that the copy of the data is stored on the TSM server.

Chapter 13. Recovering data 329

Note: You can specify the COPY YES option only if the database is enabled for
roll-forward recovery; that is, the logarchmeth1 database configuration
parameter must be set to USEREXIT, LOGRETAIN, DISK, or TSM.
To indicate its progress, the load utility returns a series of messages:

SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
15:12:13.392633".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3110N The utility has completed processing. "1" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "1".

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
15:12:13.445718".

Number of rows read = 1
Number of rows skipped = 0
Number of rows loaded = 1
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 1

8. After the data has been loaded into the table, confirm that there is one backup
image, one load copy image, and one log file on the TSM server by running
the following query on the zample database:

bar:/home/roecken/sqllib/adsm> db2adutl query db zample
options "-asnodename=clusternode"

The following information is returned:
Retrieving FULL DATABASE BACKUP information.

1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

9. In this example, computer 2, dps, is not yet set up for cross-node recovery of
the zample database. Verify that there is no data associated with this user and
computer using the following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample

The following information is returned:

330 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

--- Database directory is empty ---
Warning: There are no file spaces created by DB2 on the ADSM server
Warning: No DB2 backup images found in ADSM for any alias.

10. Query the TSM server for a list of objects for the zample database associated
with the proxy node clusternode using the following command:
dps:/home/regress9/sqllib/adsm> db2adutl query db zample

options="-asnodename=clusternode"

The following information is returned:
--- Database directory is empty ---

Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

This information matches the TSM information that was generated previously
and confirms that you can restore this image onto the dps computer.

11. Restore the zample database from the TSM server to the dps computer using
the following command:

dps:/home/regress9> db2 restore db zample use tsm options
"’-asnodename=clusternode’" without prompting

The following information is returned:
DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter
would be omitted, and the database configuration parameter vendoropt would
be used. This configuration parameter overrides the OPTIONS parameter for a
backup or restore operation.

12. Perform a roll-forward operation to apply the transactions recorded in the
zample database log file when a new table was created and new data loaded.
In this example, the following attempt for the roll-forward operation will fail
because the roll-forward utility cannot find the log files because the user and
computer information is not specified:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The command returns the following error:
SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the
specified stop point (end-of-log or point-in-time) because of missing log
file(s) on node(s) "0".

Chapter 13. Recovering data 331

Force the roll-forward utility to look for log files on another computer using
the proper logarchopt value. In this example, use the following command to
set the logarchopt1 database configuration parameter and search for log files
associated with user roecken and computer bar:

dps:/home/regress9> db2 update db cfg for zample using logarchopt1
"’-asnodename=clusternode’"

13. Enable the roll-forward utility to use the backup and load copy images by
setting the vendoropt database configuration parameter using the following
command:

dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
"’-asnodename=clusternode’"

14. You can finish the cross-node data recovery by applying the transactions
recorded in the zample database log file using the following command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:
Rollforward Status

Input database alias = zample
Number of members have returned status = 1

Member number Rollforward Next log to Log files processed Last committed transaction
status be read

------------- ----------- ----------- ------------------------- ------------------------------
0 not pending S0000000.LOG-S0000000.LOG 2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered
to the same point as the database on computer bar under user roecken.

Example 4: TSM server is configured to use client proxy nodes
in a DB2 pureScale environment

This example shows how to set up two members as proxy nodes so that you can
recover data from one member to the other when log archives and backups are
stored on a TSM server and where passwords are managed using the
PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline
backup of the database.

In this example, the members member1 and member2 are registered under the proxy
name of clusternode. In DB2 pureScale environments, you can perform backup or
data recovery operations from any member. In this example, data will be recovered
from member2

1. Register the members member1 and member2 on the TSM server as proxy nodes
using the following commands:
REGISTER NODE clusternode mypassword
GRANT PROXYNODE TARGET=clusternode AGENT=member1,member2

2. To enable the database for log archiving to the TSM server, update the
database configuration parameter logarchmeth1 for the zample database using
the following command:

member1:/home/roecken> db2 update db cfg for zample using
LOGARCHMETH1 tsm logarchopt1 "’-asnodename=clusternode’"

Note: In DB2 pureScale environments, you can set the global logarchmeth1
database configuration parameters once from any member.

332 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The following information is returned:
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

3. Disconnect all users and applications from the database using the following
command:

db2 force applications all

4. Verify that there are no applications connected to the database using the
following command:

db2 list applications global

You should receive a message that says that no data was returned.
5. Create a backup of the database on the TSM server using the following

command:
db2 backup db zample use tsm options ’-asnodename=clusternode’

Information similar to the following is returned:
Backup successful. The timestamp for this backup image is : 20090216151025

Instead of specifying the -asnodename option on the BACKUP DATABASE
command, you can update the vendoropt database configuration parameter
instead.

Note: In DB2 pureScale environments, you can run this command from any
member to back up all data for the database.

6. Connect to the zample database using the following command:
db2 connect to zample

7. Generate new transaction logs for the database by creating a table and loading
data into the TSM server using the following command:
member1:/home/roecken> db2 load from mr of del modified by noheader replace

into employee copy yes use tsmwhere

where in this example, the table is called employee, and the data is being
loaded from a delimited ASCII file called mr. The COPY YES option is specified
to make a copy of the data that is loaded, and the USE TSM option specifies
that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for
roll-forward recovery; that is, the logarchmeth1 database configuration
parameter must be set to USEREXIT, LOGRETAIN, DISK, or TSM.
To indicate its progress, the load utility returns a series of messages:

SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
15:12:13.392633".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3110N The utility has completed processing. "1" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "1".

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
15:12:13.445718".

Number of rows read = 1

Chapter 13. Recovering data 333

Number of rows skipped = 0
Number of rows loaded = 1
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 1

8. After the data has been loaded into the table, confirm that there is one backup
image, one load copy image, and one log file on the TSM server by running
the following query on the zample database:

member1:/home/roecken/sqllib/adsm> db2adutl query db zample
options "-asnodename=clusternode"

The following information is returned:
Retrieving FULL DATABASE BACKUP information.

1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.

Log file: S0000000.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.01.10

Log file: S0000000.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.01.11

Log file: S0000000.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.01.19

Log file: S0000001.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.02.49

Log file: S0000001.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.02.49

Log file: S0000001.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.02.49

Log file: S0000002.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.03.15

Log file: S0000002.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.03.15

Log file: S0000002.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.03.16

9. Query the TSM server for a list of objects for the zample database associated
with the proxy node clusternode using the following command:
member2:/home/regress9/sqllib/adsm> db2adutl query db zample

options="-asnodename=clusternode"

The following information is returned:
--- Database directory is empty ---

Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.

334 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.

Log file: S0000000.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.01.10

Log file: S0000000.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.01.11

Log file: S0000000.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.01.19

Log file: S0000001.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.02.49

Log file: S0000001.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.02.49

Log file: S0000001.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.02.49

Log file: S0000002.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.03.15

Log file: S0000002.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.03.15

Log file: S0000002.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.03.16

This information matches the TSM information that was generated previously
and confirms that you can restore this image onto the member2 member.

10. Restore the zample database on the TSM server from the member2 member
using the following command:

member2:/home/regress9> db2 restore db zample use tsm options
’-asnodename=clusternode’ without prompting

The following information is returned:
DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on member2, the OPTIONS
parameter would be omitted, and the database configuration parameter
vendoropt would be used. This configuration parameter overrides the OPTIONS
parameter for a backup or restore operation.

11. Enable the roll-forward utility to use the backup and load copy images by
setting the vendoropt database configuration parameter using the following
command:

member2:/home/regress9> db2 update db cfg for zample using VENDOROPT
"’-asnodename=clusternode’"

Note: In DB2 pureScale environments, you can set the global vendoropt
database configuration parameters once from any member.

12. You can finish the cross-member data recovery by applying the transactions
recorded in the zample database log file using the following command:

member2:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:
Rollforward Status

Input database alias = zample
Number of members have returned status = 3

Chapter 13. Recovering data 335

Member number Rollforward Next log to Log files processed Last committed transaction
status be read

------------- ----------- ----------- ------------------------- ------------------------------
0 not pending S0000001.LOG-S0000012.LOG 2009-05-06-15.28.11.000000 UTC
1 not pending S0000001.LOG-S0000012.LOG 2009-05-06-15.28.11.000000 UTC
2 not pending S0000001.LOG-S0000012.LOG 2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on member member2 under user regress9 has been
recovered to the same point as the database on member member1 under user
roecken.

Recovering a dropped table
You might occasionally drop a table that contains data you still need. If so, you
should consider making your critical tables recoverable following a drop table
operation.

You could recover the table data by invoking a database restore operation,
followed by a database rollforward operation to a point in time before the table
was dropped. The restore and rollforward operations can be time-consuming if the
database is large, and your data is unavailable during the recovery.

The dropped table recovery feature lets you recover your dropped table data by
using table space-level restore and rollforward operations.

This table space-level recovery is faster than database-level recovery, and your
database remains available to users.

Before you begin

For a dropped table to be recoverable, the table space in which the table resides
must have the DROPPED TABLE RECOVERY option turned on. This option can be
enabled during table space creation, or by invoking the ALTER TABLESPACE
statement. The DROPPED TABLE RECOVERY option is table space-specific and
limited to regular table spaces. To determine if a table space is enabled for dropped
table recovery, you can query the DROP_RECOVERY column in the
SYSCAT.TABLESPACES catalog table.

The dropped table recovery option is on by default when you create a table space.
If you do not want to enable a table space for dropped table recovery, you can
either explicitly set the DROPPED TABLE RECOVERY option to OFF when you
issue the CREATE TABLESPACE statement, or you can use the ALTER
TABLESPACE statement to disable dropped table recovery for an existing table
space. If there are many drop table operations to recover, or if the history file is
large, the dropped table recovery feature might have a performance impact on
forward recovery.

When a DROP TABLE statement is run against a table whose table space is
enabled for dropped table recovery, an additional entry (identifying the dropped
table) is made in the log files. An entry is also made in the recovery history file,
containing information that can be used to re-create the table.

For partitioned tables, dropped table recovery is always on even if the dropped
table recovery is turned off for non-partitioned tables in one or more table spaces.
Only one dropped table log record is written for a partitioned table. This log
record is sufficient to recover all the data partitions of the table.

336 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

About this task

If the table was in reorg pending state when it was dropped, the CREATE TABLE
DDL in the history file does not match exactly that of the import file. The import
file is in the format of the table before the first REORG-recommended ALTER was
performed, but the CREATE TABLE statement in the history file matches the state
of the table including the results of any ALTER TABLE statements.

File type modifiers to use with LOAD or IMPORT
To recover the table by loading or importing, specify the following file type
modifiers:
v The file type modifier usegraphiccodepage should be used in the IMPORT

or LOAD command if the data being recovered is of the GRAPHIC or
VARGRAPHIC data type. The reason is that it might include more than
one code page.

v The file type modifier delprioritychar should be used in the IMPORT or
LOAD commands. It allows LOAD and IMPORT to parse rows which contains
newline characters within character or graphic column data.

Restrictions

Only one dropped table can be recovered at a time.

There are some restrictions on the type of data that is recoverable from a dropped
table. It is not possible to recover:
v The DROPPED TABLE RECOVERY option cannot be used for temporary table.
v The metadata associated with row types. (The data is recovered, but not the

metadata.) The data in the hierarchy table of the typed table is recovered. This
data might contain more information than appeared in the typed table that was
dropped.

v XML data. If you attempt to recover a dropped table that contains XML data, the
corresponding column data is empty.

Procedure

You can recover a dropped table by doing the following:
1. Identify the dropped table by invoking the LIST HISTORY DROPPED TABLE

command. The dropped table ID is listed in the Backup ID column.
2. Restore a database- or table space-level backup image taken before the table

was dropped.
3. Create an export directory to which files containing the table data are to be

written. This directory must either be accessible to all database partitions, or
exist on each database partition. Subdirectories under this export directory are
created automatically by each database partition. These subdirectories are
named NODEnnnn, where nnnn represents the database partition or node number.
Data files containing the dropped table data as it existed on each database
partition are exported to a lower subdirectory called data. For example:
\export_directory\NODE0000\data.

4. Roll forward to a point in time after the table was dropped, by using the
RECOVER DROPPED TABLE parameter on the ROLLFORWARD DATABASE command.
Alternatively, roll forward to the end of the logs, so that updates to other tables
in the table space or database are not lost.

5. Re-create the table by using the CREATE TABLE statement from the recovery
history file.

Chapter 13. Recovering data 337

6. Import the table data that was exported during the rollforward operation into
the table. If the table was in reorg pending state when the drop took place, the
contents of the CREATE TABLE DDL might need to be changed to match the
contents of the data file.

338 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 14. Restoring databases

Restoring a database backup recovers a database or table space after a problem
such as media or storage failure, or application failure. If you back up your
database or individual table spaces, you can recreate them if they become damaged
or corrupted in some way.

Before you begin

When restoring to an existing database, you should not be connected to the
database that is to be restored: the restore utility automatically establishes a
connection to the specified database, and this connection is terminated at the
completion of the restore operation. When restoring to a new database, an instance
attachment is required to create the database. When restoring to a new remote
database, you must first attach to the instance where you want the new database
to reside. Then, create the new database, specifying the code page and the territory
of the server. Restore overwrites the code page of the destination database with the
code page of the backup image.

About this task

The database can be local or remote.

The following restrictions apply to the restore utility:
v You can only use the restore utility if the database has been previously backed

up using the DB2 backup utility.
v If users other than the instance owner (on UNIX), or members of the

DB2ADMNS or Administrators group (on Windows) attempt to restore a backup
image, they will get an error (SQL2061N). If other users need access to the
backup image, the file permissions need to be changed after the backup is
generated.

v A database restore operation cannot be started while the rollforward process is
running.

v If you do not specify the TRANSPORT option, then you can restore a table space
into an existing database only if the table space currently exists, and if it is the
same table space. In this situation, “same” means that the table space was not
dropped and then re-created between the backup and the restore operation. The
database on disk and in the backup image must be the same.

v You cannot issue a table space-level restore of a table space-level backup to a
new database.

v You cannot perform an online table space-level restore operation involving the
system catalog tables.

v You cannot restore a backup taken in a single database partition environment
into an existing partitioned database environment. Instead you must restore the
backup to a single database partition environment and then add database
partitions as required.

v When restoring a backup image with one code page into a system with a
different codepage, the system code page will be overwritten by the code page
of the backup image.

v You cannot use the RESTORE DATABASE command to convert nonautomatic storage
enabled table spaces to automatic storage enabled table space.

© Copyright IBM Corp. 2014 339

v The following restrictions apply when the TRANSPORT option is specified:
– If the backup image can be restored by a restore operation, and is supported

for upgrades, then it can be transported.
– If an online backup is used, then both source and target data servers must be

running the same DB2 version.
– The RESTORE DATABASE command must be issued against the target database.

If the remote client is of the same platform as the server, then schema
transport can be executed locally on the server or through remote instance
attachment. If a target database is a remote database cataloged in the instance
where transport runs locally, then schema transport against that remote target
database is not supported.

– You can only transport tables spaces and schemas into an existing database.
The transport operation will not create a new database. To restore a database
into a new database, you can use the RESTORE DATABASE command without
specifying the TRANSPORT option.

– If the schemas in the source database are protected by any DB2 security
settings or authorizations, then the transported schemas in the target database
will retain these same settings or authorizations.

– Transport is not supported for partitioned database environments.
– If any of the tables within the schema contains an XML column, the transport

fails.
– The TRANSPORT option is incompatible with the REBUILD option.
– The TRANSPORT option is not supported for restore from a snapshot backup

image.
– The staging database is created for transport. It cannot be used for other

operations.
– The database configuration parameters on the staging table and the target

table need to be the same, or the transport operation fails with an
incompatibility error.

– The auto_reval configuration parameter must be set to deferred_force on the
target database to transport objects listed as invalid. Otherwise, the transport
fails.

– If an online backup image is used, and the active logs are not included, then
the transport operation fails.

– If an online backup is used, then the backup image must have been created
with the INCLUDE LOGS option.

– If the backup image is from a previous release, it must be a full offline
database level backup image.

– If an error occurs on either the staging or target database, the entire restore
operation must be reissued. All failures that occur are logged in the db2diag
log file on the target server and should be reviewed before reissuing the
RESTORE command.

– If the transport client fails, then the staging database might not be properly
cleaned up. In this case, you need to drop the staging database. Before
re-issuing the RESTORE command, drop all staging databases to prevent
containers of staging database from blocking subsequent transport.

– Concurrent transport running against the same target database is not
supported.

– Generating a redirected restore script is not supported with table space
transport.

340 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v You can restore a table space if the storage group has been updated. The target
storage group during the table space restore is the storage group the table space
is currently associated with when RESTORE is executed.

v You cannot perform a point-in-time recovery to an earlier storage group
association.

Procedure

To invoke the restore utility:
v Issue the RESTORE DATABASE command.
v Call the db2Restore application programming interface (API).
v Open the task assistant in IBM Data Studio for the RESTORE DATABASE command.

Example

Following is an example of the RESTORE DATABASE command issued through the
CLP:
db2 restore db sample from D:\DB2Backups taken at 20010320122644

Restoring from a snapshot backup image
Restoring from a snapshot backup uses the fast copying technology of a storage
device to perform the data copying portion of the restore.

Before you begin

To perform snapshot backup and restore operations, you need a DB2 ACS API
driver for your storage device. For a list of supported storage hardware for the
integrated driver, refer to this tech note.

You must perform a snapshot backup before you can restore from a snapshot
backup. See: “Performing a snapshot backup” on page 303.

Procedure

You can restore from a snapshot backup using the RESTORE DATABASE command
with the USE SNAPSHOT parameter, or the db2Restore API with the
SQLU_SNAPSHOT_MEDIA media type:
v

RESTORE DATABASE command:
db2 restore db sample use snapshot

v

db2Restore API:
int sampleRestoreFunction(char dbAlias[],

char restoredDbAlias[],
char user[],
char pswd[],
char workingPath[])

{
db2MediaListStruct mediaListStruct = { 0 };

rmediaListStruct.locations = &workingPath;
rmediaListStruct.numLocations = 1;
rmediaListStruct.locationType = SQLU_SNAPSHOT_MEDIA;

Chapter 14. Restoring data 341

http://www-01.ibm.com/support/docview.wss?uid=swg21455924

db2RestoreStruct restoreStruct = { 0 };

restoreStruct.piSourceDBAlias = dbAlias;
restoreStruct.piTargetDBAlias = restoredDbAlias;
restoreStruct.piMediaList = &mediaListStruct;
restoreStruct.piUsername = user;
restoreStruct.piPassword = pswd;
restoreStruct.iCallerAction = DB2RESTORE_STORDEF_NOINTERRUPT;

struct sqlca sqlca = { 0 };

db2Restore(db2Version900, &restoreStruct, &sqlca);

return 0;
}

Using incremental restore in a test and production environment
Once a production database is enabled for incremental backup and recovery, you
can use an incremental or delta backup image to create or refresh a test database.

You can do this by using either manual or automatic incremental restore.

To restore the backup image from the production database to the test database, use
the INTO target-database-alias option on the RESTORE DATABASE command. For
example, in a production database with the following backup images:

backup db prod
Backup successful. The timestamp for this backup image is : ts1

backup db prod incremental
Backup successful. The timestamp for this backup image is : ts2

an example of a manual incremental restore would be:
restore db prod incremental taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

restore db prod incremental taken at ts1 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

restore db prod incremental taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

If the database TEST already exists, the restore operation overwrites any data that
is already there. If the database TEST does not exist, the restore utility creates it
and then populates it with the data from the backup images.

Since automatic incremental restore operations are dependent on the database
history, the restore steps change slightly based on whether the test database exists.
To perform an automatic incremental restore to the database TEST, its history must
contain the backup image history for database PROD. The database history for the
backup image replaces any database history that already exists for database TEST
if either of the following are true:
v The database TEST does not exist when the RESTORE DATABASE command is

issued.

342 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v The database TEST exists when the RESTORE DATABASE command is issued, and
the database TEST history contains no records.

The following example shows an automatic incremental restore to database TEST
which does not exist:

restore db prod incremental automatic taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

The restore utility creates the TEST database and populates it.

If the database TEST does exist and the database history is not empty, you must
drop the database before the automatic incremental restore operation as follows:

drop db test
DB20000I The DROP DATABASE command completed successfully.

restore db prod incremental automatic taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

If you do not want to drop the database, you can issue the PRUNE HISTORY
command with a timestamp far into the future and the WITH FORCE OPTION
parameter before issuing the RESTORE DATABASE command:

connect to test
Database Connection Information

Database server = server_id
SQL authorization ID = id
Local database alias = TEST

prune history 9999 with force option
DB20000I The PRUNE command completed successfully.

connect reset
DB20000I The SQL command completed successfully.
restore db prod incremental automatic taken at ts2 into test without
prompting
SQL2540W Restore is successful, however a warning "2539" was
encountered during Database Restore while processing in No
Interrupt mode.

In this case, the RESTORE DATABASE command acts in the same manner as when the
database TEST did not exist.

If the database TEST does exist and the database history is empty, you do not have
to drop the database TEST before the automatic incremental restore operation:

restore db prod incremental automatic taken at ts2 into test without
prompting
SQL2540W Restore is successful, however a warning "2539" was
encountered during Database Restore while processing in No
Interrupt mode.

You can continue taking incremental or delta backups of the test database without
first taking a full database backup. However, if you ever need to restore one of the
incremental or delta images you have to perform a manual incremental restore.
This requirement is because automatic incremental restore operations require that
each of the backup images restored during an automatic incremental restore are
created from the same database alias.

Chapter 14. Restoring data 343

If you make a full database backup of the test database after you complete the
restore operation using the production backup image, you can take incremental or
delta backups and can restore them using either manual or automatic mode.

Performing a redirected restore operation
A database restore operation uses a database backup image to recreate a database.

Use a redirected restore operation in any of the following situations:
v If you want to restore a backup image to a target machine that is different from

the source machine
v If you want to restore your table space containers into a different physical

location
v If your restore operation failed because one or more containers are inaccessible
v If you want to redefine the paths of a defined storage group

Restrictions:
You cannot use a redirected restore to move data from one operating
system to another.

You cannot create or drop a storage group during the restore process.

You cannot modify storage group paths during a table space restore
process even if you are restoring all table spaces that are associated with
the storage group.

The process for performing a redirected restore by using an incremental backup
image is similar to the process of performing a redirected restore by using a
non-incremental backup image. Use one of the following approaches:
v Issue the RESTORE DATABASE command with the REDIRECT parameter, and specify

the backup image to use for the incremental restore of the database.
v Generate a redirected restore script from a backup image, and then modify the

script as required.

Using the RESTORE DATABASE command approach is a two-step database restore
process with an intervening step for defining a table space container or storage
group path. To perform a redirected restore:
1. Issue the RESTORE DATABASE command with the REDIRECT parameter.
2. Take one of the following steps:

v Define table space containers by issuing the SET TABLESPACE CONTAINERS
command.

v Define storage group paths for the database to be restored by issuing the SET
STOGROUP PATHS command.

3. Issue the RESTORE DATABASE command again, this time specifying the CONTINUE
parameter.

After you issue the RESTORE CONTINUE command, the new path takes effect as the
table space container path for all associated table spaces. If you issue a LIST
TABLESPACE CONTAINERS command or a GET SNAPSHOT FOR TABLESPACES command
after the SET STOGROUP PATHS command and before the RESTORE CONTINUE
command, the output for the table space container paths does not reflect the new
paths that you specified by using the SET STOGROUP PATHS command.

344 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

During a redirected restore operation, directory and file containers are
automatically created if they do not exist. The database manager does not
automatically create device containers.

DB2 database products provide SQL statements for adding, changing, or removing
table space containers non-automatic-storage DMS table spaces, and storage group
paths of automatic storage table spaces. A redirected restore is the only way to
modify a non-automatic-storage SMS table space container configuration.

You can redefine table space containers or modify storage group paths by issuing
the RESTORE DATABASE command with the REDIRECT parameter.

Table space container redirection provides considerable flexibility for managing
table space containers. You can alter the storage group configuration of a database
before restoring any data pages from the backup image, similar to the way that
you can redirect table space container paths. If you renamed a storage group since
you produced the backup image, the storage group name that is specified by the
SET STOGROUP PATHS command refers to the storage group name from the backup
image, not the more recent name.

Performing a redirected restore operation in a partitioned
database environment

In a partitioned database environment, during a redirected database restore, you
can redirect the storage group paths to new storage group paths only from the
catalog database partition. For all other database partitions you must have their
storage group paths synchronized with those of the catalog partition.

Modifying any storage group paths on the catalog partition places all non-catalog
partitions into a RESTORE_PENDING state. If you redirect storage group paths,
you must restore the catalog partition before any other database partition. After
you restore the catalog database partition, you can restore the non-catalog database
partitions in parallel, without any storage group path redirection. The non-catalog
database partitions automatically acquire the new storage group paths that you
specified for the catalog database partition. New storage group paths are also
automatically acquired when the storage group paths are implicitly changed
during a database restore when you are restoring a different database (one with a
different name, instance, or seed).

If you modified the storage group paths since taking the last backup, you can still
use that backup image (with different storage group paths) for a restore on any
database partition. This restore is not considered a redirected restore. Restoring
from that backup image temporarily causes the database partition to use the
storage group paths that you defined at the time that you created the backup.
Perform a rollforward recovery to reapply the storage group path modifications
and resynchronize all of the database partitions.

Examples

Example 1

You can perform a table space container redirected restore on database
SAMPLE by using the SET TABLESPACE CONTAINERS command to define
table space containers:

db2 restore db sample redirect without prompting
SQL1277W A redirected restore operation is being performed.
During a table space restore, only table spaces being restored can

Chapter 14. Restoring data 345

have their paths reconfigured. During a database restore, storage
group storage paths and DMS table space containers can be reconfigured.

DB20000I The RESTORE DATABASE command completed successfully.

db2 set tablespace containers for 2 using (path ’userspace1.0’, path
’userspace1.1’)
DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

db2 restore db sample continue
DB20000I The RESTORE DATABASE command completed successfully.

Example 2

You can redefine the paths of the defined storage group by using the SET
STOGROUP PATHS command:

RESTORE DB SAMPLE REDIRECT

SET STOGROUP PATHS FOR sg_hot ON ’/ssd/fs1’, ’/ssd/fs2’
SET STOGROUP PATHS FOR sg_cold ON ’/hdd/path1’, ’/hdd/path2’

RESTORE DB SAMPLE CONTINUE

Example 3

Following is a typical non-incremental redirected restore scenario for a
database whose alias is MYDB:
1. Issue a RESTORE DATABASE command with the REDIRECT option.

db2 restore db mydb replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table
space whose containers you want to redefine. For example, in a
Windows environment:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones
specified in this step, issue the LIST TABLESPACE CONTAINERS
command for every table space whose container locations are being
redefined.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

This is the final step of the redirected restore operation.
4. If step 3 fails, or if the restore operation has been aborted, the

redirected restore can be restarted, beginning at step 1.

Note:

1. After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the
redirected restore can be restarted, beginning at step 1.

Example 4

Following is a typical manual incremental redirected restore scenario for a
database whose alias is MYDB and has the following backup images:

346 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

backup db mydb
Backup successful. The timestamp for this backup image is : <ts1>

backup db mydb incremental
Backup successful. The timestamp for this backup image is : <ts2>

1. Issue a RESTORE DATABASE command with the INCREMENTAL and
REDIRECT options.

db2 restore db mydb incremental taken at <ts2> replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table
space whose containers must be redefined. For example, in a Windows
environment:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones
specified in this step, issue the LIST TABLESPACE CONTAINERS
command.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

4. The remaining incremental restore commands can now be issued as
follows:

db2 restore db mydb incremental taken at <ts1>
db2 restore db mydb incremental taken at <ts2>

This is the final step of the redirected restore operation.

Note:

1. After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. After successful completion of step 3, and before issuing all the
required commands in step 4, the restore operation can be aborted by
issuing:

db2 restore db mydb incremental abort

3. If step 3 fails, or if the restore operation has been aborted, the
redirected restore can be restarted, beginning at step 1.

4. If either restore command fails in step 4, the failing command can be
reissued to continue the restore process.

Example 5

Following is a typical automatic incremental redirected restore scenario for
the same database:
1. Issue a RESTORE DATABASE command with the INCREMENTAL

AUTOMATIC and REDIRECT options.
db2 restore db mydb incremental automatic taken at <ts2>

replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table
space whose containers must be redefined. For example, in a Windows
environment:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

Chapter 14. Restoring data 347

To verify that the containers of the restored database are the ones
specified in this step, issue the LIST TABLESPACE CONTAINERS
command.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

This is the final step of the redirected restore operation.

Note:

1. After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the
redirected restore can be restarted, beginning at step 1 after issuing:

db2 restore db mydb incremental abort

Redefine table space containers by restoring a database using
an automatically generated script

When you restore a database, the restore utility assumes that the physical container
layout will be identical to that of the database when it was backed up.

If you need to change the location or size of any of the physical containers, you
must issue the RESTORE DATABASE command with the REDIRECT option. Using this
option requires that you specify the locations of physical containers stored in the
backup image and provide the complete set of containers for each non-automatic
table space that will be altered. You can capture the container information at the
time of the backup, but this can be cumbersome.

To make it easier to perform a redirected restore, the restore utility allows you to
generate a redirected restore script from an existing backup image by issuing the
RESTORE DATABASE command with the REDIRECT parameter and the GENERATE SCRIPT
parameter. The restore utility examines the backup image, extracts container
information from the backup image, and generates a CLP script that includes all of
the detailed container information. You can then modify any of the paths or
container sizes in the script, then run the CLP script to recreate the database with
the new set of containers. The script you generate can be used to restore a
database even if you only have a backup image and you do not know the layout
of the containers. The script is created on the client. Using the script as your basis,
you can decide where the restored database will require space for log files and
containers and you can change the log file and container paths accordingly.

The generated script consists of four sections:

Initialization
The first section sets command options and specifies the database
partitions on which the command will run. The following is an example of
the first section:

UPDATE COMMAND OPTIONS USING S ON Z ON SAMPLE_NODE0000.out V ON;
SET CLIENT ATTACH_DBPARTITIONNUM 0;
SET CLIENT CONNECT_DBPARTITIONNUM 0;

where
v S ON specifies that execution of the command should stop if a command

error occurs

348 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Z ON SAMPLE_NODE0000.out specifies that output should be directed to a
file named dbalias_NODEdbpartitionnum.out

v V ON specifies that the current command should be printed to standard
output.
When running the script on a partitioned database environment, it is
important to specify the database partition on which the script
commands will run.

RESTORE DATABASE command with the REDIRECT parameter
The second section starts the RESTORE DATABASE command and uses the
REDIRECT parameter. This section can use all of the RESTORE DATABASE
command parameters, except any parameters that cannot be used with the
REDIRECT parameter. The following is an example of the second section:

RESTORE DATABASE SAMPLE
-- USER ’username’
-- USING ’password’
FROM ’/home/jseifert/backups’
TAKEN AT 20050906194027
-- DBPATH ON ’target-directory’
INTO SAMPLE
-- NEWLOGPATH ’/home/jseifert/jseifert/NODE0000/SQL00001/LOGSTREAM0000/’
-- WITH num-buff BUFFERS
-- BUFFER buffer-size
-- REPLACE HISTORY FILE
-- REPLACE EXISTING
REDIRECT
-- PARALLELISM n
-- WITHOUT ROLLING FORWARD
-- WITHOUT PROMPTING
;

Table space definitions
This section contains table space definitions for each table space in the
backup image or specified on the command line. There is a section for each
table space, consisting of a comment block that contains information about
the name, type and size of the table space. The information is provided in
the same format as a table space snapshot. You can use the information
provided to determine the required size for the table space. In cases where
you are viewing output of a table space created using automatic storage,
you will not see a SET TABLESPACE CONTAINERS clause. The following
is an example of the table space definition section:

-- ***
-- ** Tablespace name = SYSCATSPACE
-- ** Tablespace ID = 0
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 5572
-- ***
SET TABLESPACE CONTAINERS FOR 0
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

PATH ’SQLT0000.0’
);
-- ***
-- ** Tablespace name = TEMPSPACE1
-- ** Tablespace ID = 1
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = System Temporary data
-- ** Tablespace Page size (bytes) = 4096

Chapter 14. Restoring data 349

-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 0
-- ***
SET TABLESPACE CONTAINERS FOR 1
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

PATH ’SQLT0001.0’
);
-- ***
-- ** Tablespace name = DMS
-- ** Tablespace ID = 2
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960
-- ** High water mark (pages) = 96
-- ***
SET TABLESPACE CONTAINERS FOR 2
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

FILE ’/tmp/dms1’ 1000
, FILE ’/tmp/dms2’ 1000
);

RESTORE DATABASE command with the CONTINUE parameter
The final section issues the RESTORE DATABASE command with the CONTINUE
parameter, to complete the redirected restore. The following is an example
of the final section:

RESTORE DATABASE SAMPLE CONTINUE;

Performing a redirected restore using an automatically
generated script

When you perform a redirected restore operation, you must specify the locations of
physical containers that are stored in the backup image and provide the complete
set of containers for each table space that you are altering.

Before you begin

You can perform a redirected restore only if the database was previously backed
up using the DB2 backup utility.

About this task
v If the database exists, you must be able to connect to it in order to generate the

script. Therefore, if the database requires an upgrade or crash recovery, this must
be done before you attempt to generate a redirected restore script.

v If you are working in a partitioned database environment, and the target
database does not exist, you cannot run the command to generate the redirected
restore script concurrently on all database partitions. Instead, the command to
generate the redirected restore script must be run one database partition at a
time, starting from the catalog partition.
Alternatively, you can first create a dummy database with the same name as
your target database. After the dummy database is created, you can then
generate the redirected restore script concurrently on all database partitions.

350 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Even if you specify the REPLACE EXISTING parameter when you issue the RESTORE
DATABASE command to generate the script, the REPLACE EXISTING parameter is
commented out in the script.

v For security reasons, your password does not appear in the generated script. You
need to enter the password manually.

v The restore script includes the storage group associations for every table space
that you restore.

Procedure

To perform a redirected restore using a script:
1. Use the restore utility to generate a redirected restore script. The restore utility

can be invoked through the command line processor (CLP) or the db2Restore
application programming interface (API). The following is an example of the
RESTORE DATABASE command with the REDIRECT parameter and the GENERATE
SCRIPT parameter:

db2 restore db test from /home/jseifert/backups taken at 20050304090733
redirect generate script test_node0000.clp

This creates a redirected restore script on the client called test_node0000.clp.
2. Open the redirected restore script in a text editor to make any modifications

that are required. You can modify:
v Restore options
v Automatic storage paths
v Container layout and paths

3. Run the modified redirected restore script. For example:
db2 -tvf test_node0000.clp

Cloning a production database using different storage group
paths

You might have to clone a production database onto a test database that uses a
different machine. The test machine and production server are likely to have
different storage group paths. The test system might not have paths backed by the
newest and fastest storage disks.

About this task

Suppose you have a production database proddb, where some data is in storage
group sg_hot, which has paths on an SSD device. You want to restore the data into
the less expensive and lower-performance test database testdb. The test system
does not have the SSD device, but the other paths are equivalent. Performing a
redirected restore can change the paths for sg_hot on the test system without
changing the other storage groups.

Procedure

To restore data from a production database to a test database:
1. Back up the production database. Issue the following command:

BACKUP DATABASE production_db TO /backup

where production_db is the production database.
2. Set up a redirected restore to the test database. Issue the following command:

Chapter 14. Restoring data 351

RESTORE DATABASE testdb REDIRECT

where testdb is the test database.
3. Modify the storage paths for sg_hot because no hot storage is available on the

test database. Issue the following command:
SET STOGROUP PATHS FOR sg_hot ON ’/hdd/path1’, ’/hdd/path2’

where sg_hot is the sg_hot storage group.
4. Proceed with the test database restore. Issue the following command:

RESTORE DATABASE testdb CONTINUE

5. Update the storage group name to correspond with the new paths. Use the
following commands:
CONNECT TO testdb
RENAME STOGROUP sg_hot TO sg_cold

Database rebuild
Rebuilding databases

The ability to rebuild a database from table space backup images means that you
no longer have to take as many full database backups. As databases grow in size,
opportunities for taking a full database backup are becoming limited. With table
space backup as an alternative, you no longer need to take full database backups
as frequently. Instead, you can take more frequent table space backups and plan to
use them, along with log files, in case of a disaster.

In a recovery situation, if you need to bring a subset of table spaces online faster
than others, you can use rebuild to accomplish this. The ability to bring only a
subset of table spaces online is especially useful in a test and production
environment.

Rebuilding a database involves a series of potentially many restore operations. A
rebuild operation can use a database image, or table space images, or both. It can
use full backups, or incremental backups, or both. The initial restore operation
restores the target image, which defines the structure of the database that can be
restored (such as the table space set, the storage groups and the database
configuration). For recoverable databases, rebuilding allows you to build a
database that is connectable and that contains the subset of table spaces that you
need to have online, while keeping table spaces that can be recovered at a later
time offline.

The method you use to rebuild your database depends on whether it is recoverable
or non-recoverable.
v If the database is recoverable, use one of the following methods:

– Using a full or incremental database or table space backup image as your
target, rebuild your database by restoring SYSCATSPACE and any other table
spaces from the target image only using the REBUILD option. You can then roll
your database forward to a point in time.

– Using a full or incremental database or table space backup image as your
target, rebuild your database by specifying the set of table spaces defined in
the database at the time of the target image to be restored using the REBUILD
option. SYSCATSPACE must be part of this set. This operation will restore
those table spaces specified that are defined in the target image and then use
the recovery history file to find and restore any other required backup images

352 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

for the remaining table spaces not in the target image automatically. Once the
restores are complete, roll your database forward to a point in time.

v If the database is non-recoverable:
– Using a full or incremental database backup image as your target, rebuild

your database by restoring SYSCATSPACE and any other table spaces from
the target image using the appropriate REBUILD syntax. When the restore
completes you can connect to the database.

Specifying the target image

To perform a rebuild of a database, you start by issuing the RESTORE command,
specifying the most recent backup image that you use as the target of the restore
operation. This image is known as the target image of the rebuild operation,
because it defines the structure of the database to be restored, including the table
spaces that can be restored, the database configuration, and the log sequence. The
rebuild target image is specified using the TAKEN AT parameter in the RESTORE
DATABASE command. The target image can be any type of backup (full, table space,
incremental, online or offline). The table spaces defined in the database at the time
the target image was created will be the table spaces available to rebuild the
database.

You must specify the table spaces you want restored using one of the following
methods:
v Specify that you want all table spaces defined in the database to be restored and

provide an exception list if there are table spaces you want to exclude
v Specify that you want all table spaces that have user data in the target image to

be restored and provide an exception list if there are table spaces you want to
exclude

v Specify the list of table spaces defined in the database that you want to restore

Once you know the table spaces you want the rebuilt database to contain, issue the
RESTORE command with the appropriate REBUILD option and specify the target
image to be used.

Rebuild phase

After you issue the RESTORE command with the appropriate REBUILD option and the
target image has been successfully restored, the database is considered to be in the
rebuild phase. After the target image is restored, any additional table space restores
that occur will restore data into existing table spaces, as defined in the rebuilt
database. These table spaces will then be rolled forward with the database at the
completion of the rebuild operation.

If you issue the RESTORE command with the appropriate REBUILD option and the
database does not exist, a new database is created based on the attributes in the
target image. If the database does exist, you will receive a warning message
notifying you that the rebuild phase is starting. You will be asked if you want to
continue the rebuild operation or not.

The rebuild operation restores all initial metadata from the target image. This
includes all data that belongs to the database and does not belong to the table
space data or the log files. Examples of initial metadata are:
v Table spaces definitions
v The history file, which is a database file that records administrative operations

Chapter 14. Restoring data 353

The rebuild operation also restores the database configuration. The target image
sets the log chain that determines what images can be used for the remaining
restores during the rebuild phase. Only images on the same log chain can be used.

If a database already exists on disk and you want the history file to come from the
target image, then you should specify the REPLACE HISTORY FILE option. The
history file on disk at this time is used by the automatic logic to find the remaining
images needed to rebuild the database.

Once the target image is restored:
v if the database is recoverable, the database is put into rollforward pending state

and all table spaces that you restore are also put into rollforward pending state.
Any table spaces defined in the database but not restored are put in restore
pending state.

v If the database is not recoverable, then the database and the table spaces
restored will go into normal state. Any table spaces not restored are put in drop
pending state, as they can no longer be recovered. For this type of database, the
rebuild phase is complete.

For recoverable databases, the rebuild phase ends when the first ROLLFORWARD
DATABASE command is issued and the rollforward utility begins processing log
records. If a rollforward operation fails after starting to process log records and a
restore operation is issued next, the restore is not considered to be part of the
rebuild phase. Such restores should be considered as normal table space restores
that are not part of the rebuild phase.

Automatic processing

After the target image is restored, the restore utility determines if there are
remaining table spaces that need to be restored. If there are, they are restored using
the same connection that was used for running the RESTORE DATABASE command
with the REBUILD option. The utility uses the history file on disk to find the most
recent backup images taken prior to the target image that contains each of the
remaining table spaces that needs to be restored. The restore utility uses the
backup image location data stored in the history file to restore each of these
images automatically. These subsequent restores, which are table space level
restores, can be performed only offline. If the image selected does not belong on
the current log chain, an error is returned. Each table space that is restored from
that image is placed in rollforward pending state.

The restore utility tries to restore all required table spaces automatically. In some
cases, it will not be able to restore some table spaces due to problems with the
history file, or an error will occur restoring one of the required images. In such a
case, you can either finish the rebuild manually or correct the problem and reissue
the rebuild.

If automatic rebuilding cannot complete successfully, the restore utility writes to
the diagnostics log (db2diag log file) any information it gathered for the remaining
restore steps. You can use this information to complete the rebuild manually.

If a database is being rebuilt, only containers belonging to table spaces that are
part of the rebuild process will be acquired.

354 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

If any containers need to be redefined through redirected restore, you will need to
set the new path and size of the new container for the remaining restores and the
subsequent rollforward operation.

If the data for a table space restored from one of these remaining images cannot fit
into the new container definitions, the table space is put into restore pending state
and a warning message is returned at the end of the restore. You can find
additional information about the problem in the diagnostic log.

Completing the rebuild phase

Once all the intended table spaces have been restored you have two options based
on the configuration of the database. If the database is nonrecoverable, the
database will be connectable and any table spaces restored will be online. Any
table spaces that are in drop pending state can no longer be recovered and should
be dropped if future backups will be performed on the database.

If the database is recoverable, you can issue the rollforward command to bring the
table spaces that were restored online. If SYSCATSPACE has not been restored, the
rollforward will fail and this table space will have to be restored before the
rollforward operation can begin. This means that during the rebuild phase,
SYSCATSPACE must be restored.

Note: In a partitioned database environment, SYSCATSPACE does not exist on
non-catalog partitions so it cannot be rebuilt there. However, on the catalog
partition, SYSCATSPACE must be one of the table spaces that is rebuilt, or the
rollforward operation will not succeed.

Rolling the database forward brings the database out of rollforward pending state
and rolls any table spaces in rollforward pending state forward. The rollforward
utility will not operate on any table space in restore pending state.

The stop time for the rollforward operation must be a time that is later than the
end time of the most recent backup image restored during the rebuild phase. An
error will occur if any other time is given. If the rollforward operation is not able
to reach the backup time of the oldest image that was restored, the rollforward
utility will not be able to bring the database up to a consistent point, and the
rollforward fails.

You must have all log files for the time frame between the earliest and most recent
backup images available for the rollforward utility to use. The logs required are
those logs which follow the log chain from the earliest backup image to the target
backup image, as defined by the truncation array in the target image, otherwise
the rollforward operation will fail. If any backup images more recent than the
target image were restored during the rebuild phase, then the additional logs from
the target image to the most recent backup image restored are required. If the logs
are not made available, the rollforward operation will put those table spaces that
were not reached by the logs into restore pending state. You can issue the LIST
HISTORY command to show the restore rebuild entry with the log range that will be
required by roll forward.

The correct log files must be available. If you rely on the rollforward utility to
retrieve the logs, you must ensure that the DB2 Log Manager is configured to
indicate the location from which log files can be retrieved. If the log path or
archive path has changed, you need to use the OVERFLOW LOG PATH option of the
ROLLFORWARD DATABASE command.

Chapter 14. Restoring data 355

Use the AND STOP option of the ROLLFORWARD DATABASE command to make the
database available when the rollforward command successfully completes. At this
point, the database is no longer in rollforward pending state. If the rollforward
operation begins, but an error occurs before it successfully completes, the
rollforward operation stops at the point of the failure and an error is returned. The
database remains in rollforward pending state. You must take steps to correct the
problem (for example, fix the log file) and then issue another rollforward operation
to continue processing.

If the error cannot be fixed, you will be able to bring the database up at the point
of the failure by issuing the ROLLFORWARD STOP command. Any log data beyond that
point in the logs will no longer be available once the STOP option is used. The
database comes up at that point and any table spaces that have been recovered are
online. Table spaces that have not yet been recovered are in restore pending state.
The database is in the normal state.

You will have to decide what is the best way to recover the remaining table spaces
in restore pending state. This could be by doing a new restore and roll forward of
a table space or by reissuing the whole rebuild operation again. This will depend
on the type of problems encountered. In the situation where SYSCATSPACE is one
of the table spaces in restore pending state, the database will not be connectable.

Database rebuild and table space containers
During a database rebuild, only those table spaces that are part of the rebuild
process have their containers acquired. The containers belonging to each table
space are acquired at the time the table space user data is restored out of an image.

When the target image is restored, each table space known to the database at the
time of the backup has its definitions restored. This means the database created by
the rebuild has knowledge of the same table spaces it did at backup time. For
those table spaces that should also have their user data restored from the target
image, their containers are also be acquired at this time.

Any remaining table spaces that are restored through intermediate table space
restores have their containers acquired at the time the image that contains the table
space data is restored.

Rebuild with redirected restore

In the case of redirected restore, all table space containers must be defined during
the restore of the target image. If you specify the REDIRECT option, control is given
back to you to redefine your table space containers. If you have redefined table
space containers using the SET TABLESPACE CONTAINERS command then those new
containers are acquired at that time. Any table space containers that you have not
redefined are acquired as normal, at the time the table space user data is restored
out of an image.

If the data for a table space that is restored cannot fit into the new container
definitions, the table space is put into restore-pending state and a warning
(SQL2563W) is returned to you at the end of the restore. There will also be a
message in the DB2 diagnostics log detailing the problem.

356 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Database rebuild and temporary table spaces
Temporary table spaces are stored differently than other database components in a
backup image. Because they are stored differently, temporary table spaces are
rebuilt differently during a database restoration.

In general, a DB2 backup image is made up of the following components:
v Initial database metadata, such as the table space definitions, database

configuration file, and history file.
v Data for non-temporary table spaces specified to the BACKUP utility
v Final database metadata such as the log file header
v Log files (if the INCLUDE LOGS option was specified)

In every backup image, whether it is a database or table space backup, a full or
incremental (delta) backup, these core components can always be found.

A database backup image will contain all of the previously listed components, as
well as data for every table space defined in the database at the time of the
backup.

A table space backup image will always include the database metadata listed
previously, but it will only contain data for those table spaces that are specified to
the backup utility.

Temporary table spaces are treated differently than nontemporary table spaces.
Temporary table space data is never backed up, but their existence is important to
the framework of the database. Although temporary table space data is never
backed up, the temporary table spaces are considered part of the database, so they
are specially marked in the metadata that is stored with a backup image. This
makes it look like they are in the backup image. In addition, the table space
definitions hold information about the existence of any temporary table spaces.

Although no backup image ever contains data for a temporary table space, during
a database rebuild operation when the target image is restored (regardless the type
of image), temporary table spaces are also restored, only in the sense that their
containers are acquired and allocated. The acquisition and allocation of containers
is done automatically as part of the rebuild processing. As a result, when
rebuilding a database, you cannot exclude temporary table spaces.

Choosing a target image for database rebuild
The rebuild target image should be the most recent backup image that you want to
use as the starting point of your restore operation.

This image is known as the target image of the rebuild operation, because it
defines the structure of the database to be restored, including the table spaces that
can be restored, the database configuration, and the log sequence.It can be any
type of backup (full, table space, incremental, online or offline).

The target image sets the log sequence (or log chain) that determines what images
can be used for the remaining restores during the rebuild phase. Only images on
the same log chain can be used.

The following examples illustrate how to choose the image you should use as the
target image for a rebuild operation.

Chapter 14. Restoring data 357

Suppose there is a database called SAMPLE that has the following table spaces in
it:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)
v USERSP2 (user data table space)
v USERSP3 (user data table space)

Figure 56 on page 359 shows that the following database-level backups and table
space-level backups that have been taken, in chronological order:
1. Full database backup DB1
2. Full table space backup TS1
3. Full table space backup TS2
4. Full table space backup TS3
5. Database restore and roll forward to a point between TS1 and TS2
6. Full table space backup TS4
7. Full table space backup TS5

358 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example 1

The following example demonstrates the CLP commands you need to issue to
rebuild database SAMPLE to the current point of time. First you need to choose
the table spaces you want to rebuild. Since your goal is to rebuild the database to
the current point of time you need to select the most recent backup image as your
target image. The most recent backup image is image TS5, which is on log chain 2:

db2 restore db sample rebuild with all tablespaces in database taken at
TS5 without prompting

db2 rollforward db sample to end of logs
db2 rollforward db sample stop

This restores backup images TS5, TS4, TS1 and DB1 automatically, then rolls the
database forward to the end of log chain 2.

Note: All logs belonging to log chain 2 must be accessible for the rollforward
operations to complete.

Figure 56. Database and table space-level backups of database SAMPLE

Chapter 14. Restoring data 359

Example 2

This second example demonstrates the CLP commands you need to issue to
rebuild database SAMPLE to the end of log chain 1. The target image you select
should be the most recent backup image on log chain 1, which is TS3:

db2 restore db sample rebuild with all tablespaces in database
taken at TS3 without prompting

db2 rollforward db sample to end of logs
db2 rollforward db sample stop

This restores backup images TS3, TS2, TS1, and DB1 automatically, then rolls the
database forward to the end of log chain 1.

Note:

v All logs belonging to log chain 1 must be accessible for the rollforward
operations to complete.

v This command may fail because a log file is retrieved from a higher log chain
(the rollforward utility always attempts to get log files from the highest log
chain), you need to do the following steps:
1. Extract the log files manually to the overflow log path.
2. Run the ROLLFORWARD command. Include the parameters -OVERFLOW LOG PATH,

to specify the location of the extracted log files, and -NORETRIEVE, to disable
the retrieval of archived logs.

Choosing the wrong target image for rebuild

Suppose there is a database called SAMPLE2 that has the following table spaces in
it:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)
v USERSP2 (user data table space)

Figure 57 on page 361 shows the backup log chain for SAMPLE2, which consists of
the following backups:
1. BK1 is a full database backup, which includes all table spaces
2. BK2 is a full table space backup of USERSP1
3. BK3 is a full table space backup of USERSP2

360 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The following example demonstrates the CLP command you need to issue to
rebuild the database from BK3 using table spaces SYSCATSPACE and USERSP2:

db2 restore db sample2 rebuild with tablespace (SYSCATSPACE,
USERSP2) taken at BK3 without prompting

Now suppose that after this restore completes, you decide that you also want to
restore USERSP1, so you issue the following command:

db2 restore db sample2 tablespace (USERSP1) taken at BK2

This restore fails and provides a message that says BK2 is from the wrong log
chain (SQL2154N). As you can see in Figure 57, the only image that can be used to
restore USERSP1 is BK1. Therefore, you need to type the following command:

db2 restore db sample2 tablespace (USERSP1) taken at BK1

This succeeds so that database can be rolled forward accordingly.

Rebuilding selected table spaces
Rebuilding a database allows you to build a database that contains a subset of the
table spaces that make up the original database.

About this task

Rebuilding only a subset of table spaces within a database can be useful in the
following situations:
v In a test and development environment in which you want to work on only a

subset of table spaces.
v In a recovery situation in which you need to bring table spaces that are more

critical online faster than others, you can first restore a subset of table spaces
then restore other table spaces at a later time.

To rebuild a database that contains a subset of the table spaces that make up the
original database, consider the following example.

In this example, there is a database named SAMPLE that has the following table
spaces:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)

Figure 57. Backup log chain for database SAMPLE2

Chapter 14. Restoring data 361

v USERSP2 (user data table space)
v USERSP3 (user data table space)

Figure 58 shows that the following backups have been taken:
v BK1 is a backup of SYSCATSPACE and USERSP1
v BK2 is a backup of USERSP2 and USERSP3
v BK3 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and
ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild just
SYSCATSPACE and USERSP1 to end of logs:
db2 restore db mydb rebuild with all tablespaces in image

taken at BK1 without prompting
db2 rollforward db mydb to end of logs
db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP1
are in NORMAL state. USERSP2 and USERSP3 are in restore-pending state. You
can still restore USERSP2 and USERSP3 at a later time.

Rebuild and incremental backup images
You can rebuild a database using incremental images.

By default, the restore utility tries to use automatic incremental restore for all
incremental images. This means that if you do not use the INCREMENTAL option of
the RESTORE DATABASE command, but the target image is an incremental backup
image, the restore utility will issue the rebuild operation using automatic
incremental restore. If the target image is not an incremental image, but another
required image is an incremental image then the restore utility will make sure
those incremental images are restored using automatic incremental restore. The
restore utility will behave in the same way whether you specify the INCREMENTAL
option with the AUTOMATIC option or not.

Figure 58. Backup images available for database SAMPLE

362 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

If you specify the INCREMENTAL option but not the AUTOMATIC option, you will need
to perform the entire rebuild process manually. The restore utility will just restore
the initial metadata from the target image, as it would in a regular manual
incremental restore. You will then need to complete the restore of the target image
using the required incremental restore chain. Then you will need to restore the
remaining images to rebuild the database.

It is recommended that you use automatic incremental restore to rebuild your
database. Only in the event of a restore failure, should you attempt to rebuild a
database using manual methods.

Rebuilding partitioned databases
To rebuild a partitioned database, rebuild each database partition separately. For
each database partition, beginning with the catalog partition, first restore all the
table spaces that you require. Any table spaces that are not restored are placed in
restore pending state.

Once all the database partitions are restored, you then issue the ROLLFORWARD
DATABASE command on the catalog partition to roll all of the database partitions
forward.

About this task

Note: If, at a later date, you need to restore any table spaces that were not
originally included in the rebuild phase, you need to make sure that when you
subsequently roll the table space forward that the rollforward utility keeps all the
data across the database partitions synchronized. If a table space is missed during
the original restore and rollforward operation, it might not be detected until there
is an attempt to access the data and a data access error occurs. You will then need
to restore and roll the missing table space forward to get it back in sync with the
rest of the partitions.

To rebuild a partitioned database using table space level backup images, consider
the following example.

In this example, there is a recoverable database called SAMPLE with three
database partitions:
v Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and

USERSP2, and is the catalog partition
v Database partition 2 contains table spaces USERSP1 and USERSP3
v Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x
on partition y:
v BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2
v BK12 is a backup of USERSP2 and USERSP3
v BK13 is a backup of USERSP1, USERSP2 and USERSP3
v BK21 is a backup of USERSP1
v BK22 is a backup of USERSP1
v BK23 is a backup of USERSP1
v BK31 is a backup of USERSP2
v BK33 is a backup of USERSP2

Chapter 14. Restoring data 363

v BK42 is a backup of USERSP3
v BK43 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and
ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild the entire
database to the end of logs.

Procedure
1. On database partition 1, issue a RESTORE DATABASE command with the REBUILD

option:
db2 restore db sample rebuild with all tablespaces in database

taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the REBUILD
option:

db2 restore db sample rebuild with tablespaces in database
taken at BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the REBUILD
option:

db2 restore db sample rebuild with all tablespaces in database
taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with the TO
END OF LOGS option:

db2 rollforward db sample to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db sample stop

What to do next

At this point the database is connectable on all database partitions and all table
spaces are in NORMAL state.

Restrictions for database rebuild
You can use the REBUILD option to complete a set of restore commands, but it has
restrictions that you need to be aware of.

The following list is a summary of database rebuild restrictions:
v One of the table spaces you rebuild must be SYSCATSPACE on the catalog

partition.
v You must either issue commands using the command line processor (CLP) or

use the corresponding application programming interfaces (APIs) to perform a
rebuild operation.

v The REBUILD option cannot be used against a pre-Version 9.1 target image unless
the image is that of an offline database backup. If the target image is an offline
database backup, then only the table spaces in this image can be used for the
rebuild. The database needs to be migrated after the rebuild operation
successfully completes. Attempts to rebuild using any other type of pre-Version
9.1 target image result in an error.

v The REBUILD option cannot be issued against a target image from a different
operating system than the one being restored on unless the target image is a full
database backup. If the target image is a full database backup, then only the
table spaces in this image can be used for the rebuild. Attempts to rebuild using
any other type of target image from a different operating system than the one
being restored on result in an error.

364 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v The TRANSPORT option is incompatible with the REBUILD option.

Rebuild sessions - CLP examples
This topic provides a number of examples of rebuild operations.

Scenario 1

In the following examples, there is a recoverable database called MYDB with the
following table spaces in it:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)
v USERSP2 (user data table space)
v USERSP3 (user data table space)

The following backups have been taken:
v BK1 is a backup of SYSCATSPACE and USERSP1
v BK2 is a backup of USERSP2 and USERSP3
v BK3 is a backup of USERSP3

Example 1

The following rebuilds the entire database to the most recent point in time:
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Example 2

The following rebuilds just SYSCATSPACE and USERSP2 to a point in time
(where end of BK3 is less recent than the point in time, which is less recent
than end of logs):
1. Issue a RESTORE DATABASE command with the REBUILD option and

specify the table spaces you want to include.
db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)

taken at BK2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO PIT option (this
assumes all logs have been saved and are accessible):

db2 rollforward db mydb to PIT

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and
USERSP2 are in NORMAL state. USERSP1 and USERSP3 are in
RESTORE_PENDING state.

To restore USERSP1 and USERSP3 at a later time, using normal table space
restores (without the REBUILD option):

Chapter 14. Restoring data 365

1. Issue the RESTORE DATABASE command without the REBUILD option and
specify the table space you want to restore. First restore USERSPI:

db2 restore db mydb tablespace (USERSP1) taken at BK1 without prompting

2. Then restore USERSP3:
db2 restore db mydb tablespace taken at BK3 without prompting

3. Issue a ROLLFORWARD DATABASE command with the END OF LOGS option
and specify the table spaces to be restored (this assumes all logs have
been saved and are accessible):

db2 rollforward db mydb to end of logs tablespace (USERSP1, USERSP3)

The rollforward will replay all logs up to the PIT and then stop for
these two table spaces since no work has been done on them since the
first rollforward.

4. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

Example 3

The following rebuilds just SYSCATSPACE and USERSP1 to end of logs:
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in image
taken at BK1 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and
USERSP1 are in NORMAL state. USERSP2 and USERSP3 are in
RESTORE_PENDING state.

Example 4

In the following example, the backups BK1 and BK2 are no longer in the
same location as stated in the history file, but this is not known when the
rebuild is issued.
1. Issue a RESTORE DATABASE command with the REBUILD option, specifying

that you want to rebuild the entire database to the most recent point in
time:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK3 without prompting

At this point, the target image is restored successfully, but an error is
returned from the restore utility stating it could not find a required
image.

2. You must now complete the rebuild manually. Since the database is in
the rebuild phase this can be done as follows:
a. Issue a RESTORE DATABASE command and specify the location of the

BK1 backup image:
db2 restore db mydb tablespace taken at BK1 from location

without prompting

b. Issue a RESTORE DATABASE command and specify the location of the
BK2 backup image:

db2 restore db mydb tablespace (USERSP2) taken at BK2 from
location without prompting

366 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

c. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

d. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Example 5

In this example, table space USERSP3 contains independent data that is
needed for generating a specific report, but you do not want the report
generation to interfere with the original database. In order to gain access to
the data but not affect the original database, you can use REBUILD to
generate a new database with just this table space and SYSCATSPACE.
SYSCATSPACE is also required so that the database will be connectable
after the restore and roll forward operations.

To build a new database with the most recent data in SYSCATSPACE and
USERSP3:
1. Issue a RESTORE DATABASE command with the REBUILD option, and

specify that table spaces SYSCATSPACE and USERSP3 are to be
restored to a new database, NEWDB:

db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP3)
taken at BK3 into newdb without prompting

2. Issue a ROLLFORWARD DATABASE command on NEWDB with the TO END
OF LOGS option (this assumes all logs have been saved and are
accessible):

db2 rollforward db newdb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db newdb stop

At this point the new database is connectable and only SYSCATSPACE and
USERSP3 are in NORMAL state. USERSP1 and USERSP2 are in
RESTORE_PENDING state.

Note: If container paths are an issue between the current database and the
new database (for example, if the containers for the original database need
to be altered because the file system does not exist or if the containers are
already in use by the original database) then you will need to perform a
redirected restore. This example assumes the default autostorage database
paths are used for the table spaces.

Scenario 2

In the following example, there is a recoverable database called MYDB that has
SYSCATSPACE and one thousand user table spaces named Txxxx, where xxxx
stands for the table space number (for example, T0001). There is one full database
backup image (BK1)

Example 6

The following restores all table spaces except T0999 and T1000:
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in image except
tablespace (T0999, T1000) taken at BK1 without prompting

Chapter 14. Restoring data 367

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database will be connectable and all table spaces except
T0999 and T1000 will be in NORMAL state. T0999 and T1000 will be in
RESTORE_PENDING state.

Scenario 3

The examples in this scenario demonstrate how to rebuild a recoverable database
using incremental backups. In the following examples, there is a database called
MYDB with the following table spaces in it:
v SYSCATSPACE (system catalogs)
v USERSP1 (data table space)
v USERSP2 (user data table space)
v USERSP3 (user data table space)

The following backups have been taken:
v FULL1 is a full backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3
v DELTA1 is a delta backup of SYSCATSPACE and USERSP1
v INCR1 is an incremental backup of USERSP2 and USERSP3
v DELTA2 is a delta backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3
v DELTA3 is a delta backup of USERSP2
v FULL2 is a full backup of USERSP1

Example 7

The following rebuilds just SYSCATSPACE and USERSP2 to the most
recent point in time using incremental automatic restore.
1. Issue a RESTORE DATABASE command with the REBUILD option. The

INCREMENTAL AUTO option is optional. The restore utility will detect what
the granularity of the image is and use automatic incremental restore if
it is required.

db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)
incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and
USERSP2 are in NORMAL state. USERSP1 and USERSP3 are in
RESTORE_PENDING state.

Example 8

The following rebuilds the entire database to the most recent point in time
using incremental automatic restore.

368 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

1. Issue a RESTORE DATABASE command with the REBUILD option. The
INCREMENTAL AUTO option is optional. The restore utility will detect what
the granularity of the image is and use automatic incremental restore if
it is required.

db2 restore db mydb rebuild with all tablespaces in database
incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Example 9

The following rebuilds the entire database, except for USERSP3, to the
most recent point in time.
1. Issue a RESTORE DATABASE command with the REBUILD option. Although

the target image is a non-incremental image, the restore utility will
detect that the required rebuild chain includes incremental images and
it will automatically restore those images incrementally.

db2 restore db mydb rebuild with all tablespaces in database except
tablespace (USERSP3) taken at FULL2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

Scenario 4

The examples in this scenario demonstrate how to rebuild a recoverable database
using backup images that contain log files. In the following examples, there is a
database called MYDB with the following table spaces in it:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)
v USERSP2 (user data table space)

Example 10

The following rebuilds the database with just SYSCATSPACE and
USERSP2 to the most recent point in time. There is a full online database
backup image (BK1), which includes log files.
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)
taken at BK1 logtarget /logs without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs after the end of BK1 have been saved and
are accessible):

db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

Chapter 14. Restoring data 369

At this point the database is connectable and only SYSCATSPACE and
USERSP2 are in NORMAL state. USERSP1 is in RESTORE_PENDING state.

Example 11

The following rebuilds the database to the most recent point in time. There
are two full online table space backup images that include log files:
v BK1 is a backup of SYSCATSPACE, using log files 10-45
v BK2 is a backup of USERSP1 and USERSP2, using log files 64-80
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK2 logtarget /logs without prompting

The rollforward operation will start at log file 10, which it will always
find in the overflow log path if not in the primary log file path. The log
range 46-63, since they are not contained in any backup image, will
need to be made available for roll forward.

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option, using the overflow log path for log files 64-80:

db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Scenario 5

In the following examples, there is a recoverable database called MYDB with the
following table spaces in it:
v SYSCATSPACE (0), SMS system catalog (relative container)
v USERSP1 (1) DMS user data table space (absolute container /usersp2)
v USERSP2 (2) DMS user data table space (absolute container /usersp3)

The following backups have been taken:
v BK1 is a backup of SYSCATSPACE
v BK2 is a backup of USERSP1 and USERSP2
v BK3 is a backup of USERSP2

Example 12

The following rebuilds the entire database to the most recent point in time
using redirected restore.
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK3 redirect without prompting

2. Issue a SET TABLESPACE CONTAINERS command for each table space
whose containers you want to redefine. For example:

db2 set tablespace containers for 3 using (file ’/newusersp1’ 10000)

3.
db2 set tablespace containers for 4 using (file ’/newusersp2’ 15000)

4. Issue a RESTORE DATABASE command with the CONTINUE option:
db2 restore db mydb continue

370 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

5. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

6. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Scenario 6

In the following examples, there is a database called MYDB with three database
partitions:
v Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and

USERSP2, and is the catalog partition
v Database partition 2 contains table spaces USERSP1 and USERSP3
v Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x
on partition y:
v BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2
v BK12 is a backup of USERSP2 and USERSP3
v BK13 is a backup of USERSP1, USERSP2 and USERSP3
v BK21 is a backup of USERSP1
v BK22 is a backup of USERSP1
v BK23 is a backup of USERSP1
v BK31 is a backup of USERSP2
v BK33 is a backup of USERSP2
v BK42 is a backup of USERSP3
v BK43 is a backup of USERSP3

Example 13

The following rebuilds the entire database to the end of logs.
1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:
db2 restore db mydb rebuild with all tablespaces in database

taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the
REBUILD option:

db2 restore db mydb rebuild with tablespaces in database taken at
BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the
REBUILD option:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with
the TO END OF LOGS option (assumes all logs have been saved and are
accessible on all database partitions):

db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

Chapter 14. Restoring data 371

At this point the database is connectable on all database partitions and all
table spaces are in NORMAL state.

Example 14

The following rebuilds SYSCATSPACE, USERSP1 and USERSP2 to the
most recent point in time.
1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:
db2 restore db mydb rebuild with all tablespaces in database

taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the
REBUILD option:

db2 restore db mydb rebuild with all tablespaces in image taken at
BK22 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the
REBUILD option:

db2 restore db mydb rebuild with all tablespaces in image taken at
BK33 without prompting

Note: this command omitted USERSP1, which is needed to complete
the rebuild operation.

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with
the TO END OF LOGS option:

db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

The rollforward succeeds and the database is connectable on all
database partitions. All table spaces are in NORMAL state, except
USERSP3, which is in RESTORE PENDING state on all database
partitions on which it exists, and USERSP1, which is in RESTORE
PENDING state on database partition 3.
When an attempt is made to access data in USERSP1 on database
partition 3, a data access error will occur. To fix this, USERSP1 will
need to be recovered:
a. On database partitions 3, issue a RESTORE DATABASE command,

specifying a backup image that contains USERSP1:
db2 restore db mydb tablespace taken at BK23 without prompting

b. On the catalog partition, issue a ROLLFORWARD DATABASE command
with the TO END OF LOGS option and the AND STOP option:

db2 rollforward db mydb to end of logs on dbpartitionnum (3) and stop

At this point USERSP1 on database partition 3 can have its data accessed
since it is in NORMAL state.

Scenario 7

In the following examples, there is a nonrecoverable database called MYDB with the
following table spaces:
v SYSCATSPACE (0), SMS system catalog
v USERSP1 (1) DMS user data table space
v USERSP2 (2) DMS user data table space

372 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

There is just one backup of the database, BK1:

Example 15

The following demonstrates using rebuild on a nonrecoverable database.

Rebuild the database using only SYSCATSPACE and USERSP1:
db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP1)

taken at BK1 without prompting

Following the restore, the database is connectable. If you issue the LIST
TABLESPACES command or the MON_GET_TABLESPACE table function,
you see that the SYSCATSPACE and USERSP1 are in NORMAL state,
while USERSP2 is in DELETE_PENDING/OFFLINE state. You can now
work with the two table spaces that are in NORMAL state.

If you want to do a database backup, you will first need to drop USERSP2
using the DROP TABLESPACE statement, otherwise, the backup will fail.

To restore USERSP2 at a later time, you need to reissue a database restore
from BK1.

Transporting database schemas
Transporting a database schema involves taking a backup image of a database and
restoring the database schema to a different, existing database.

When you transport a database schema, the database objects in the transported
schema are re-created to reference the new database, and the data is restored to the
new database.

A database schema must be transported in its entirety. If a table space contains
both the schema you want to transport, as well as another schema, you must
transport all data objects from both schemas. These sets of schemas that have no
references to other database schemas are called transportable sets. The data in the
table spaces and logical objects in the schemas in a transportable set reference only
table spaces and schemas in the transportable set. For example, tables have table
dependencies only on other tables in the transportable set.

The following diagram illustrates a database with several table spaces and
schemas. In the diagram, the table spaces that are referenced by the schemas are
above the schemas. Some schemas reference multiple table spaces and some table
spaces are referenced by multiple schemas.

Chapter 14. Restoring data 373

The following combinations of table spaces and schemas are valid transportable
sets:
v tablespace1 with schema1 and schema2
v tablespace2 and tablespace3 with schema3
v tablespace4, tablespace5, and tablespace6, with schema4 and schema5
v A combination of valid transportable sets also constitutes a valid transportable

set:
– tablespace1, tablespace2, and tablespace3, with schema1, schema2, and

schema3

The set tablespace4 and tablespace5 with schema4 is not a valid transportable set
because there are references between tablespace5 and schema5 and between
schema5 and tablespace6. The set requires tablespace6 with schema5 to be a valid
transportable set.

You can transport database schemas by using the RESTORE command with the
TRANSPORT parameter.

When you transport database schemas, a temporary database is created and named
as a part of the transport operation. This transport staging database is used to extract
logical objects from the backup image so that they can be re-created on the target
database. If logs are included in the backup image, they are also used to bring the
staging database to a point of transactional consistency. The ownership of the
transported table spaces is then transferred to the target database.

Considerations about the database objects re-created when
transporting database schemas

Review the following information related to the re-creation of database objects
when you are transporting database schemas:

Table 25. Transport considerations for specific database objects

Database object Consideration when transporting schemas

SQL routines (not
external routines
using SQL)

A new copy of the SQL routine is created in the target database.
For SQL stored procedures, additional catalog space is consumed
because an additional copy of the stored procedure byte code is
created in the new database.

Index table Index table Index tableIndex table Index table

tablespace1 tablespace2 tablespace4tablespace3 tablespace5

schema1 schema3 schema4

schema2

Index table

tablespace6

schema5

Not a valid transport set

Figure 59. Sets of table spaces and schemas

374 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 25. Transport considerations for specific database objects (continued)

Database object Consideration when transporting schemas

External routines A new catalog entry is created for each routine. This catalog entry
references the same binary file as the original source routine. The
RESTORE command does not copy the external routine binary file
from the source system.

Source tables in states
causing access
problems

For tables that are not in normal state at the time the backup image
was generated, such as tables in check pending state or load
pending state, the data from those tables might not be accessible in
the target database. To avoid having this inaccessible data, you can
move the tables to normal state in the source database before
schema transport.

Tables containing the
data capture attribute

Source tables with data capture enabled are transported to the
target database with the data capture attribute and continue to log
interdatabase data replication information. However, replicated
tables do not extract information from this table. You have the
option of registering the new target table to act as a replication
source after the RESTORE command completes.

Tables using
label-based access
control (LBAC)

When transporting data that is protected by LBAC, the transport
operation re-creates the LBAC objects on the target database. If
LBAC objects of the same name exist on the target database, the
transport operation fails. To ensure that restricted data access is not
compromised, the transport operation does not use existing LBAC
objects on the target database.

Temporary table
spaces

If there are any system temporary table spaces that are defined
with the source backup image and the transport operation excludes
them from the table space list, these system temporary table spaces
are still created in the staging database but not the final target
database. As a result, you must issue the SET TABLESPACE
CONTAINERS command for these system temporary table spaces in
order to provide valid containers to complete the restore operation,
just as you would for any table spaces that are specified within the
table space list.

When you transport table spaces, a log record with a special format is created on
the target database. This format cannot be read by previous DB2 versions. If you
transport table spaces and then downgrade to a version earlier than DB2 Version
9.7 Fix Pack 2, then you cannot recover the target database that contains the table
spaces that were transported. To ensure that the target database is compatible with
earlier DB2 versions, you can roll forward the target database to a point in time
before the transport operation.

Important: If database rollforward detects a table space schema transport log
record, the corresponding transported table space is taken offline and moved into
drop pending state. This is because database does not have complete logs of
transported table spaces to rebuild transported table spaces and their contents. You
can take a full backup of the target database after transport completes, so
subsequent rollforward does not pass the point of schema transport in the log
stream.

Transportable objects
When you transport data from a backup image to a target database, there are two
main results. The physical and logical objects in the table spaces that you are
restoring are re-created in the target database, and the table space definitions and
containers are added to the target database.

Chapter 14. Restoring data 375

The following logical objects are re-created:
v Tables, created global temporary tables, and materialized query tables
v Normal and statistical views
v The following types of generated columns:

– Expression
– Identity
– Row change timestamp
– Row change token

v User-defined functions and generated functions
v Functions and procedures except for external routine executables
v User-defined types
v The following types of constraints:

– Check
– Foreign key
– Functional dependency
– Primary
– Unique

v Indexes
v Triggers
v Sequences
v Object authorizations, privileges, security, access control, and audit configuration
v Table statistics, profiles, and hints
v Packages

The following components of a schema are not created on the target database:
v Aliases
v Created global variables
v External routine executable files
v Functional mappings and templates
v Hierarchy tables
v Index extensions
v Jobs
v Methods
v Nicknames
v OLE DB external functions
v Range-partitioned tables
v Servers
v Sourced procedures
v Structured types
v System catalogs
v Typed tables and typed views
v Usage lists
v Wrappers

376 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Transport examples
You can use the RESTORE DATABASE command with the TRANSPORT option to copy a
set of table spaces and SQL schemas from one database to another database.

The following examples use a database named ORIGINALDB as source of the
backup image and the target database TARGETDB.

The following illustration shows the ORIGINALDB table spaces and schemas:

The originalDB database contains the following valid transportable sets:
v mydata1; schema1 + schema2
v mydata2 + myindex; schema3
v multidata1 + multiindex1 + multiuser2; schema4 + schema5
v A combination of valid transportable sets also constitutes a valid transportable

set:
– mydata1 + mydata2 + myindex; schema1 + schema + schema3

The following illustration shows the TARGETDB table spaces and schemas:

If the sources and target databases contain any schemas with the same schema
name, or any table spaces of the table space name, then you cannot transport that
schema or table space to the target database. Issuing a transport operation that
contains a schema or a table space that has the same name as a schema or a table
space on the target database will cause the transport operation to fail. For example,

Index table Index table Index table Index table Index table Index table Index table

Tablespace ID 0 Tablespace ID 1 Tablespace ID 2 Tablespace ID 3 Tablespace ID 4 Tablespace ID 5 Tablespace ID 6

syscatspace mydata1 mydata2 myindex multidata1 multiindex1 multiuser2
/mydb/syscats /mydb/data1 /mydb/data2 /mydb/indexes /mydb/multidata1 /mydb/multiindex /mydb/multiuser2

sysibm schema1 schema3 schema4

schema2 schema5

Figure 60. ORIGINALDB database

Index table Index table Index table Index table Index table Index table

Tablespace ID 0 Tablespace ID 1 Tablespace ID 2 Tablespace ID 3 Tablespace ID 4 Tablespace ID 5

syscatspace 4kpagesize 8kdata 8kindex multiuser2 16kindex
/db2DB/syscats /db2DB/4kdata /db2DB/8kdata /db2DB/8kindex /db2DB/16kdata /db2DB/16kindex

sysibm schema6 schema7 schema3

Figure 61. TARGETDB database

Chapter 14. Restoring data 377

even though the following grouping is a valid transportable set, it cannot be
directly transported to the target database:
v mydata2 + myindex; schema3 (schema3 exists in both the source and target

databases)

If there exists a single online backup image for ORIGINALDB that contains all of
the table spaces in the database, then this will be the source for the transport. This
also applies to table space level backup images.

You can redirect the container paths for the table spaces being transported. This is
especially important if database relative paths were used.

Examples

Example 1: Successfully transport the schemas schema1 and schema2 in the
mydata1 table space into TARGETDB.
db2 restore db originaldb tablespace (mydata1) schema(schema1,schema2)

from <Media_Target_clause> taken at <date-time>
transport into targetdb redirect

db2 list tablespaces
db2 set tablespace containers for <tablespace ID for mydata1>

using (path ’/db2DB/data1’)

db2 restore db originaldb continue

The resulting TARGETDB will contain the mydata1 table space and schema1 and
schema2.

Example 2: Transport the schema schema3 in the mydata2 and myindex table
spaces into TARGETDB. You cannot transport a schema that already exists on the
target database.
db2 restore db originaldb tablespace (mydata2,myindex) schema(schema3)

transport into targetdb

The transport operation will fail because the schema schema3 already exists on the
target database. TARGETDB will remain unchanged. SQLCODE=SQL2590N rc=3.

Example 3: Transport the schemas schema4 and schema5 in the multidata1,
multiindex1, and multiuser2 table spaces into TARGETDB. You cannot transport a
table space that already exists on the target database.
db2 restore db originaldb tablespace (multidata1,multiindex1,multiuser2)

schema(schema4,schema5) transport into targetdb

Index table Index table Index table Index table Index table Index table Index table

Tablespace ID 0 Tablespace ID 1 Tablespace ID 2 Tablespace ID 3 Tablespace ID 4 Tablespace ID 5 Tablespace ID 6

syscatspace 4kpagesize 8kdata 8kindex 16kdata multiuser2 mydata1
/db2DB/syscats / /db2DB 4kdata / /db2DB 8kdata / /db2DB 8kindex / /db2DB 16kdata / /db2DB 16kindex / /db2DB data1

sysibm schema6 schema7 schema3

schema2

schema1

Figure 62. TARGETDB database after transport

378 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The transport operation will fail and TARGETDB will remain unchanged because
table space multiuser2 already exists on the target database. SQLCODE=SQL2590N
rc=3.

Example 4: Transport the myindex table space into TARGETDB. You cannot
transport partial schemas.
db2 restore db originaldb tablespace (myindex) schema(schema3)

transport into targetdb

The list of table spaces and schemas being transported is not a valid transportable
set. The transport operation will fail and TARGETDB will remain unchanged.
SQLCODE=SQL2590N rc=1.

Example 5: Restore the syscatspace table space into TARGETDB. You cannot
transport system catalogs.
db2 restore db originaldb tablespace (syscatspace) schema(sysibm)

transport into targetdb

The transport operation will fail because the system catalogs can not be
transported. SQLCODE=SQL2590N rc=4. You can transport user defined table
spaces or restore the system catalogs with the RESTORE DATABASE command
without specifying the transport option.

Example 6: You cannot restore into a target database that does not exist on the
system.
db2 restore db originaldb tablespace (mydata1) schema(schema1,schema2)

transport into notexists

The transport operation will fail. Table spaces cannot be transported to a target
database that does not exist.

Troubleshooting: transporting schemas
If an error occurs on either the staging or target database, you must redo the entire
restore operation. All failures that occur are logged in the db2diag log file on the
target server. Review the db2diag log before reissuing the RESTORE command.

Dealing with errors

Errors occurring during restore are handled in various ways depending on the
type of object being copied and the phase of transport. There might be
circumstances, such as a power failure, in which not everything is cleaned up.

The transport operation consists of the following phases:
v Staging database creation
v Physical table space container restoration
v Rollforward processing
v Schema validation
v Transfer of ownership of the table space containers
v Schema re-creation in target database
v Dropping the staging database (if the STAGE IN parameter is not specified)

If any errors are logged at the end of the schema re-creation phase, about
transporting physical objects, then the restore operation fails and an error is
returned. All object creation on the target database is rolled back, and all internally

Chapter 14. Restoring data 379

created tables are cleaned up on the staging database. The rollback occurs at the
end of the re-create phase, to allow all possible errors to be recorded into the
db2diag log file. You can investigate all errors returned before reissuing the
command.

The staging database is dropped automatically after success or failure. However, it
is not dropped in the event of failure if the STAGE IN parameter is specified. The
staging database must be dropped before the staging database name can be reused.

Monitoring the progress of restore operations
You can use the LIST UTILITIES command to monitor restore operations on a
database.

Procedure

Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter
LIST UTILITIES SHOW DETAIL

Results

For restore operations, an initial estimate is not given. Instead, UNKNOWN is specified.
As each buffer is read from the image, the actual number of bytes read is updated.
For automatic incremental restore operations where multiple images might be
restored, the progress is tracked by using phases. Each phase represents an image
to be restored from the incremental chain. Initially, only one phase is indicated.
After the first image is restored, the total number of phases will be indicated. As
each image is restored the number of phases completed is updated, as is the
number of bytes processed.

Example

The following is an example of the output for monitoring the performance of a
restore operation:
ID = 6
Type = RESTORE
Database Name = SAMPLE
Partition Number = 0
Description = db
Start Time = 08/04/2011 12:24:47.494191
State = Executing
Invocation Type = User
Progress Monitoring:

Completed Work = 4096 bytes
Start Time = 08/04/2011 12:24:47.494197

Optimizing restore performance
When you perform a restore operation, DB2 database products will automatically
choose an optimal value for the number of buffers, the buffersize and the
parallelism settings. The values will be based on the amount of utility heap
memory available, the number of processors available and the database
configuration.

Therefore, depending on the amount of storage available on your system, you
should consider allocating more memory by increasing the util_heap_sz
configuration parameter. The objective is to minimize the time it takes to complete

380 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

a restore operation. Unless you explicitly enter a value for the following RESTORE
DATABASE command parameters, DB2 database products will select one for them:
v WITH num-buffers BUFFERS

v PARALLELISM n

v BUFFER buffer-size

For restore operations, a multiple of the buffer size used by the backup operation
will always be used. You can specify a buffer size when you issue the RESTORE
DATABASE command but you need to make sure that it is a multiple of the backup
buffer size.

You can also choose to do any of the following to reduce the amount of time
required to complete a restore operation:
v Increase the restore buffer size.

The restore buffer size must be a positive integer multiple of the backup buffer
size specified during the backup operation. If an incorrect buffer size is
specified, the buffers allocated will be the smallest acceptable size.

v Increase the number of buffers.
The value you specify must be a multiple of the buffersize that was used for the
backup, otherwise it will be rounded down to the closest multiple of the backup
buffersize.

v Increase the value of the PARALLELISM parameter.
This will increase the number of buffer manipulators (BM) that will be used to
write to the database during the restore operation.

v Increase the utility heap size
This will increase the memory that can be used simultaneously by the other
utilities.

Chapter 14. Restoring data 381

382 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 15. Rolling forward databases

Rolling forward a database recovers the transactions that were logged after the last
backup command. Database logging must be enabled to issue a roll forward
database.

Before you begin

You should not be connected to the database that is to be rollforward recovered.
The rollforward utility automatically establishes a connection to the specified
database, and this connection is terminated at the completion of the rollforward
operation.

About this task

Do not restore table spaces without canceling a rollforward operation that is in
progress. Otherwise, you might have a table space set in which some table spaces
are in rollforward in progress state, and some table spaces are in rollforward
pending state. A rollforward operation that is in progress only operates on the
tables spaces that are in rollforward in progress state.

The database can be local or remote.

The following restrictions apply to the rollforward utility:
v You can invoke only one rollforward operation at a time. If there are many table

spaces to recover, you can specify all of them in the same operation.
v If you have renamed a table space following the most recent backup operation,

ensure that you use the new name when rolling the table space forward. The
previous table space name is not recognized.

v You cannot cancel a rollforward operation that is running. You can only cancel a
rollforward operation that has completed, but for which the STOP parameter has
not been specified, or a rollforward operation that has failed before completing.

v You cannot continue a table space rollforward operation to a point in time,
specifying a time stamp that is less than the previous one. If a point in time is
not specified, the previous one is used. You can issue a rollforward operation
that ends at a specified point in time by just specifying STOP, but this is only
allowed if the table spaces involved were all restored from the same offline
backup image. In this case, no log processing is required. If you start another
rollforward operation with a different table space list before the in-progress
rollforward operation is either completed or cancelled, an error message
(SQL4908) is returned. Invoke the LIST TABLESPACES command on all database
partitions (or use the MON_GET_TABLESPACE table function) to determine
which table spaces are currently being rolled forward (rollforward in progress
state), and which table spaces are ready to be rolled forward (rollforward
pending state). You have three options:
– Finish the in-progress rollforward operation on all table spaces.
– Finish the in-progress rollforward operation on a subset of table spaces. (This

might not be possible if the rollforward operation is to continue to a specific
point in time, which requires the participation of all database partitions.)

– Cancel the in-progress rollforward operation.

© Copyright IBM Corp. 2014 383

v In a partitioned database environment, the rollforward utility must be invoked
from the catalog partition of the database.

v Point in time rollforward of a table space was introduced in DB2 Version 9.1
clients. You should upgrade to Version 10.1 any clients in order to roll a table
space forward to a point in time.

v You cannot roll forward logs from a previous release version.

Procedure

To invoke the rollforward utility, use the:
v ROLLFORWARD DATABASE command, or
v db2Rollforward application programming interface (API).
v Open the task assistant inIBM Data Studio for the ROLLFORWARD DATABASE

command.

Example

The following is an example of the ROLLFORWARD DATABASE command issued
through the CLP:
db2 rollforward db sample to end of logs and stop

Rollforward sessions - CLP examples
You can issue rollforward commands from the Command Line Prompt. Before
issuing a rollforward command, you might find it helpful to review some sample
sessions.

Example 1

The ROLLFORWARD DATABASE command permits specification of multiple
operations at once, each being separated with the keyword AND. For example, to
roll forward to the end of logs, and complete, the separate commands are:

db2 rollforward db sample to end of logs
db2 rollforward db sample complete

can be combined as follows:
db2 rollforward db sample to end of logs and complete

Although the two are equivalent, it is recommended that such operations be done
in two steps. It is important to verify that the rollforward operation has progressed
as expected before you stop it, so that you do not miss any logs.

If the rollforward command encounters an error, the rollforward operation will not
complete. The error will be returned, and you will then be able to fix the error and
reissue the command. If, however, you are unable to fix the error, you can force the
rollforward to complete by issuing the following:

db2 rollforward db sample complete

This command brings the database online at the point in the logs before the failure.

Example 2

Roll the database forward to the end of the logs (two table spaces have been
restored):

384 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

db2 rollforward db sample to end of logs
db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND COMPLETE is
needed for table space rollforward recovery to the end of the logs. Table space
names are not required. If not specified, all table spaces requiring rollforward
recovery will be included. If only a subset of these table spaces is to be rolled
forward, their names must be specified.

Example 3

After three table spaces have been restored, roll one forward to the end of the logs,
and the other two to a point in time, both to be done online:

db2 rollforward db sample to end of logs tablespace(TBS1) online
db2 rollforward db sample to 1998-04-03-14.21.56 and stop

tablespace(TBS2, TBS3) online

Note that two rollforward operations cannot be run concurrently. The second
command can only be invoked after the first rollforward operation completes
successfully.

Example 4

After restoring the database, roll forward to a point in time, using OVERFLOW
LOG PATH to specify the directory where the user exit saves archived logs:

db2 rollforward db sample to 1998-04-03-14.21.56 and stop
overflow log path (/logs)

Example 5

In the following example, there is a database called sample. The database is backed
up and the recovery logs are included in the backup image; the database is
restored; and the database is rolled forward to the end of backup timestamp.

Back up the database, including the recovery logs in the backup image:
db2 backup db sample online include logs

Restore the database using that backup image:
db2 restore db sample

Roll forward the database to the end of backup timestamp:
db2 rollforward db sample to end of backup

Example 6 (partitioned database environments)

There are three database partitions: 0, 1, and 2. Table space TBS1 is defined on all
database partitions, and table space TBS2 is defined on database partitions 0 and 2.
After restoring the database on database partition 1, and TBS1 on database
partitions 0 and 2, roll the database forward on database partition 1:

db2 rollforward db sample to end of logs and stop

This returns warning SQL1271 (“Database is recovered but one or more table
spaces are offline on database partitions 0 and 2.”).

db2 rollforward db sample to end of logs

Chapter 15. Rolling forward data 385

This rolls TBS1 forward on database partitions 0 and 2. The clause
TABLESPACE(TBS1) is optional in this case.

Example 7 (partitioned database environments)

In the following example, there is a partitioned database called sample. All the
database partitions are backed up with a single system view backup; the database
is restored on all database partitions; and the database is rolled forward to the end
of backup timestamp.

Perform a single system view (SSV) backup:
db2 backup db sample on all nodes online include logs

Restore the database on all database partitions:
db2_all "db2 restore db sample taken at 1998-04-03-14.21.56"

Roll forward the database to the end of backup timestamp:
db2 rollforward db sample to end of backup on all nodes

Example 8 (partitioned database environments)

In the following example, there is a partitioned database called sample. All the
database partitions are backed up with one command using db2_all; the database
is restored on all database partitions; and the database is rolled forward to the end
of backup timestamp.

Back up all the database partitions with one command using db2_all:
db2_all "db2 backup db sample include logs to //dir/"

Restore the database on all database partitions:
db2_all "db2 restore db sample from //dir/"

Roll forward the database to the end of backup timestamp:
db2 rollforward db sample to end of backup on all nodes

Example 9 (partitioned database environments)

After restoring table space TBS1 on database partitions 0 and 2 only, roll TBS1
forward on database partitions 0 and 2:

db2 rollforward db sample to end of logs

Database partition 1 is ignored.
db2 rollforward db sample to end of logs tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition
1. Reports SQL4906N.

db2 rollforward db sample to end of logs on
dbpartitionnums (0, 2) tablespace(TBS1)

This completes successfully.
db2 rollforward db sample to 1998-04-03-14.21.56 and stop

tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition
1; all pieces must be rolled forward together.

386 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note: With table space rollforward to a point in time, the dbpartitionnum clause
is not accepted. The rollforward operation must take place on all the database
partitions on which the table space resides.

After restoring TBS1 on database partition 1:
db2 rollforward db sample to 1998-04-03-14.21.56 and stop

tablespace(TBS1)

This completes successfully.

Example 10 (partitioned database environments)

After restoring a table space on all database partitions, roll forward to PIT2, but do
not specify AND STOP. The rollforward operation is still in progress. Cancel and roll
forward to PIT1:

db2 rollforward db sample to pit2 tablespace(TBS1)
db2 rollforward db sample cancel tablespace(TBS1)

** restore TBS1 on all dbpartitionnums **

db2 rollforward db sample to pit1 tablespace(TBS1)
db2 rollforward db sample stop tablespace(TBS1)

Example 11 (partitioned database environments)

Rollforward recover a table space that resides on eight database partitions (3 to 10)
listed in the db2nodes.cfg file:

db2 rollforward database dwtest to end of logs tablespace (tssprodt)

This operation to the end of logs (not point in time) completes successfully. The
database partitions on which the table space resides do not have to be specified.
The utility defaults to the db2nodes.cfg file.

Example 12 (partitioned database environments)

Rollforward recover six small table spaces that reside on a single database partition
database partition group (on database partition 6):

db2 rollforward database dwtest to end of logs on dbpartitionnum (6)
tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

Example 13 (Partitioned tables - Rollforward to end of log on all
data partitions)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index
in tbsp0. Later on, a user adds data partitions to the table in tbsp4, and attaches
data partitions from the table in tbsp5. All table spaces can be rolled forward to
END OF LOGS.

db2 rollforward db PBARDB to END OF LOGS and stop
tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

This completes successfully.

Chapter 15. Rolling forward data 387

Example 14 (Partitioned tables - Rollforward to end of logs on
one table space)

A partitioned table is created initially using table spaces tbsp1, tbsp2, tbsp3 with an
index in tbsp0. Later on, a user adds data partitions to the table in tbsp4, and
attaches data partitions from the table in tbsp5. Table space tbsp4 becomes corrupt
and requires a restore and rollforward to end of logs.

db2 rollforward db PBARDB to END OF LOGS and stop tablespace(tbsp4)

This completes successfully.

Example 15 (Partitioned tables - Rollforward to PIT of all data
partitions including those added, attached, detached or with
indexes)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index
in tbsp0. Later on, a user adds data partitions to the table in tbsp4, attaches data
partitions from the table in tbsp5, and detaches data partitions from tbsp1. The
user performs a rollforward to PIT with all the table spaces used by the partitioned
table including those table spaces specified in the INDEX IN clause.

db2 rollforward db PBARDB to 2005-08-05-05.58.53 and stop
tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

This completes successfully.

Example 16 (Partitioned tables - Rollforward to PIT on a subset
of the table spaces)

A partitioned table is created using three table spaces (tbsp1, tbsp2, tbsp3). Later,
the user detaches all data partitions from tbsp3. The rollforward to PIT is only
permitted on tbsp1 and tbsp2.

db2 rollforward db PBARDB to 2005-08-05-06.02.42 and stop
tablespace(tbsp1, tbsp2)

This completes successfully.

Rolling forward changes in a table space
If the database is enabled for rollforward recovery, you have the option of backing
up, restoring, and rolling forward table spaces instead of the entire database.

You can roll forward changes to a table space independently of other table spaces
in your database, or you can roll forward changes to all table spaces at the same
time.

Implementing a recovery strategy for individual table spaces can save time because
it takes less time to recover a portion of the database than it does to recover the
entire database. For example, if a disk is bad, and it contains only one table space,
you can restore that table space and roll it forward without having to recover the
entire database, and without impacting user access to the rest of the database,
unless the damaged table space contains the system catalog tables; in this situation,
you cannot connect to the database. (You can restore the system catalog table space
independently if a table space-level backup image containing the system catalog
table space is available.) Table space-level backups also allow you to back up
critical parts of the database more frequently than other parts, and requires less
time than backing up the entire database.

388 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

After a table space is restored, it is always in rollforward pending state. To make
the table space usable, you must perform rollforward recovery on it. In most cases,
you have the option of rolling forward to the end of the logs, or rolling forward to
a point in time. You cannot, however, roll table spaces containing system catalog
tables forward to a point in time. These table spaces must be rolled forward to the
end of the logs to ensure that all table spaces in the database remain consistent.

Ensure that the DB2_COLLECT_TS_REC_INFO registry variable is set to ON (the default)
if you want to skip the log files known not to contain any log records affecting the
table space. This registry variable must be set before the log files are created and
used so that the information required for skipping log files is collected. If
DB2_COLLECT_TS_REC_INFO is set to OFF, all log files are processed even if they do
not contain log records that affect that table space when that table space is rolled
forward.

The table space change history file (DB2TSCHG.HIS), which is located in the database
directory, tracks which logs to process for each table space. You can view the
contents of this file with the db2logsForRfwd utility, and delete entries from it with
the PRUNE HISTORY command. During a database restore operation, the
DB2TSCHG.HIS file is restored from the backup image and then brought up to date
during the database rollforward operation. If no information is available for a log
file, it is treated as though it is required for the recovery of every table space.

Because information for each log file is flushed to disk after the log becomes
inactive, this information can be lost as a result of a crash. To prevent this loss
from occurring, if a recovery operation begins in the middle of a log file, the entire
log is treated as though it contains modifications to every table space in the
system. All active logs are processed and the information for them is rebuilt. If
information for older or archived log files is lost in a crash situation and no
information for them exists in the data file, they are treated as though they contain
modifications for every table space during the table space recovery operation.

Before you roll a table space forward, use the MON_GET_TABLESPACE table
function to determine the minimum recovery time, which is the earliest point in time
to which the table space can be rolled forward. The minimum recovery time is
updated when data definition language (DDL) statements are run against the table
space, or against tables in the table space. The table space must be rolled forward
to at least the minimum recovery time so that it becomes synchronized with the
information in the system catalog tables. If you are recovering more than one table
space, the table spaces must be rolled forward to at least the highest minimum
recovery time of all the table spaces that are being recovered. You cannot roll
forward a table space to a time that is earlier than the backup timestamp. In a
partitioned database environment, you must roll forward the table spaces to at
least the highest minimum recovery time of all the table spaces on all database
partitions.

If you are rolling table spaces forward to a point in time, and a table is contained
in multiple table spaces, all of these table spaces must be rolled forward
simultaneously. If, for example, the table data is contained in one table space, and
the index for the table is contained in another table space, you must roll both table
spaces forward simultaneously to the same point in time.

If the data and the long objects in a table are in separate table spaces, and the long
object data was reorganized, the table spaces for both the data and the long objects
must be restored and rolled forward together. Take a backup of the affected table
spaces after the table is reorganized.

Chapter 15. Rolling forward data 389

If you want to roll forward a table space to a point in time, and a table in the table
space is either:
v an underlying table for a materialized query or staging table that is in another

table space
v a materialized query or staging table for a table in another table space

then roll both table spaces forward to the same point in time. If you do not, the
materialized query or staging table is placed in set integrity pending state at the
end of the rollforward operation. The materialized query table needs to be fully
refreshed, and the staging table is marked as incomplete.

If you want to roll forward a table space to a point in time, and a table in the table
space participates in a referential integrity relationship with another table that is
contained in another table space, roll forward both table spaces simultaneously to
the same point in time. If you do not roll forward both table spaces, the child table
in the referential integrity relationship is placed in set integrity pending state at the
end of the rollforward operation. When the child table is later checked for
constraint violations, a check on the entire table is required. If any of the following
tables exist, they are also placed in set integrity pending state with the child table:
v any descendant materialized query tables for the child table
v any descendant staging tables for the child table
v any descendant foreign key tables of the child table

These tables require full integrity processing to bring them out of the set integrity
pending state. If you roll forward both table spaces simultaneously, the constraint
remains active at the end of the point-in-time rollforward operation.

Ensure that a point-in-time table space rollforward operation does not cause a
transaction to be rolled back in some table spaces, and committed in others. This
inconsistency can happen in the following cases:
v A point-in-time rollforward operation is performed on a subset of the table

spaces that were updated by a transaction, and that point in time precedes the
time at which the transaction was committed.

v Any table that is contained in the table space being rolled forward to a point in
time has an associated trigger, or is updated by a trigger that affects table spaces
other than the one that is being rolled forward.

The solution is to find a suitable point in time that prevents this from happening.

You can issue the QUIESCE TABLESPACES FOR TABLE command to create a
transaction-consistent point in time for rolling table spaces forward. The quiesce
request (in share, intent to update, or exclusive mode) waits (through locking) for
all running transactions against those table spaces to complete, and blocks new
requests. When the quiesce request is granted, the table spaces are in a consistent
state. To determine a suitable time to stop the rollforward operation, you can look
in the recovery history file to find quiesce points, and check whether they occur
after the minimum recovery time.

After a table space point-in-time rollforward operation completes, the table space is
put in backup pending state. You must take a backup of the table space because all
updates made to it between the point in time to which you rolled forward and the
current time were removed. You can no longer roll forward the table space to the
current time from a previous database- or table space-level backup image. The
following example shows why the table space-level backup image is required, and
how it is used. (To make the table space available, you can either back up the
entire database, the table space that is in backup pending state, or a set of table

390 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

spaces that includes the table space that is in backup pending state.)

In the preceding example, the database is backed up at time T1. Then, at time T3,
table space TABSP1 is rolled forward to a specific point in time (T2), The table
space is backed up after time T3. Because the table space is in backup pending
state, this backup operation is mandatory. The timestamp of the table space backup
image is after time T3, but the table space is at time T2. Log records from between
T2 and T3 are not applied to TABSP1. At time T4, the database is restored, using
the backup image that was created at T1, and rolled forward to the end of the logs.
Table space TABSP1 is put in restore pending state at time T3, because the
database manager assumes that operations were performed on TABSP1 between T3
and T4 without the log changes between T2 and T3 being applied to the table
space. If these log changes were in fact applied as part of the rollforward operation
against the database, this assumption would be incorrect. The table space-level
backup that must be taken after the table space is rolled forward to a point in time
allows you to roll forward that table space past a previous point-in-time
rollforward operation (T3 in the example).

Assuming that you want to recover table space TABSP1 to T4, you would restore
the table space from a backup image that was taken after T3 (either the required
backup, or a later one), then roll forward TABSP1 to the end of the logs.

In the preceding example, the most efficient way of restoring the database to time
T4 would be to perform the required steps in the following order:
1. Restore the database.
2. Restore the table space.
3. Roll forward the database.

Because you restore the table space before you roll forward the database, resources
are not used to apply log records to the table space when the database is rolled
forward.

If you cannot find the TABSP1 backup image that follows time T3, or you want to
restore TABSP1 to T3 (or earlier), you can do one of the following actions:
v Roll forward the table space to T3. You do not need to restore the table space

again because it was restored from the database backup image.
v Restore the table space again by restoring the database backup that was taken at

time T1, and then roll forward the table space to a time that precedes time T3.
v Drop the table space.

In a partitioned database environment:

Database Time of rollforward of Restore
backup table space TABSP1 to database.

T2. Back up TABSP1. Roll forward
to end of logs.

T1 T2 T3 T4
| | | |
| | | |
|---

| Logs are not
applied to TABSP1
between T2 and T3
when it is rolled
forward to T2.

Figure 63. Table space backup requirement

Chapter 15. Rolling forward data 391

v You must simultaneously roll forward all parts of a table space to the same point
in time at the same time. This ensures that the table space is consistent across
database partitions.

v If some database partitions are in rollforward pending state, and on other
database partitions, some table spaces are in rollforward pending state (but the
database partitions are not), you must first roll forward the database partitions,
and then roll forward the table spaces.

v If you intend to roll forward a table space to the end of the logs, you do not
have to restore it at each database partition; you must restore it at the database
partitions that require recovery. If you intend to roll forward a table space to a
point in time, however, you must restore it at each database partition.

In a database with partitioned tables:
v If you are rolling a table space that contains any piece of a partitioned table

forward to a point in time, you must also roll forward all of the other table
spaces in which that table resides to the same point in time. However, rolling
forward a single table space containing a piece of a partitioned table to the end
of logs is allowed. If a partitioned table has any attached, detached, or dropped
data partitions, then a point-in-time rollforward operation must also include all
table spaces for these data partitions. In order to determine if a partitioned table
has any attached, detached, or dropped data partitions, query the
SYSCAT.DATAPARTITIONS catalog view.

Database rollforward operations in a DB2 pureScale environment
In a DB2 pureScale environment, each member has its own log stream; however,
log streams from all members are required for successful execution of the
ROLLFORWARD DATABASE command.

During a database rollforward operation, log records from all of the log streams
are merged and replayed to make the database consistent. The point in time that
you specify on the ROLLFORWARD DATABASE command is relative to the merged log
stream. To restore the database to a consistent state, the specified time must be
later than the minimum recovery time (MRT). The MRT is the earliest time during a
rollforward operation when objects that are listed in the database catalog match the
objects that physically exist on disk. For example, if you are restoring from an
image that was created during an online backup operation, the specified point in
time for the rollforward operation must be later than the time at which the online
backup operation completed. This will ensure database consistency.

The specified point in time for the subsequent database rollforward operation must
be greater than or equal to the MRT in the merged log stream; otherwise, the
rollforward operation fails (SQL1276N), and the timestamp of the MRT is returned
with the error message. Alternatively, you can use the END OF BACKUP option to
automatically roll forward to the MRT.

It is recommended that the member clocks be synchronized; however, it might not
be possible to synchronize them at all times. This can result in log records having
the same time stamp, and merged log streams with log records that appear to be
out of time stamp order. In a DB2 pureScale environment, a point-in-time database
rollforward operation stops when it encounters the first log record whose time
stamp is greater than the specified time stamp from any log stream, and it has
processed the log record that corresponds to the MRT for the database.

392 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

An incomplete or interrupted rollforward operation leaves the database in
rollforward pending state. In this case, issue another ROLLFORWARD DATABASE
command. In a DB2 pureScale environment, subsequent ROLLFORWARD DATABASE
commands can be run on the same or on a different member.

In a DB2 pureScale environment, if you want to perform a database restore
operation into a new database using an online database backup image, the correct
approach depends on whether all of the log files are available, or only log files
from the backup image are available.
v If pre-existing log files or archived log files can be accessed, the following

rollforward operation is appropriate:
db2 rollforward db dbname to end of logs and stop

Note: Before taking a backup, you need to ensure that the log archiving path is
set to a shared directory so that all the members are able to access the logs for
subsequent rollforward operations. If the archive path is not accessible from the
member on which the rollforward is being executed, SQL1273N is returned. The
following command is an example of how to set the log path to the shared
directory:
db2 update db cfg using logarchmeth1

DISK:/db2fs/gpfs1/svtdbm5/svtdbm5/ArchiveLOGS

(where gpfs1 is the shared directory for the members and ArchiveLOGS is the
actual directory that archives the logs.

v If the only log files that can be accessed come from the backup image, the
following rollforward operation is appropriate:

db2 rollforward db dbname to end of backup and stop

This command replays all required log records to achieve the consistent database
state that was in effect when the backup operation ended. You can also use this
command if pre-existing log files or archived log files can be accessed, but it will
stop at the point at which the backup operation ended; it will not use any extra
logs that were generated after the backup operation ended.
A ROLLFORWARD DATABASE command specifying the END OF LOGS option in this
case would return SQL1273N. A subsequent ROLLFORWARD DATABASE command
with the STOP option is successful, and the database will be available, if the
missing log files are not needed. However, if the missing log files are needed
(and it is not safe to stop), the rollforward operation will again return
SQL1273N.

Example

Suppose that there are two members, M1 and M2. M2's clock is ahead of M1's
clock by five seconds. M2's log stream contains the following log records:

A1 at 2010-04-03-14.21.56
A2 at 2010-04-03-14.21.56
B at 2010-04-03-14.21.58
C at 2010-04-03-14.22.01

M1's log stream contains the following log records:
D at 2010-04-03-14.21.55
E at 2010-04-03-14.21.56
F at 2010-04-03-14.21.57

Chapter 15. Rolling forward data 393

The minimum recovery time (MRT) for the database on M2 is at time
2010-04-03-14.21.55. Because M1's clock is five seconds slow, log records D, E, and
F appear later in the merged log stream:
MRT: 2010-04-03-14.21.55 (M2)
A1: 2010-04-03-14.21.56 (M2)
A2: 2010-04-03-14.21.56 (M2)
B: 2010-04-03-14.21.58 (M2)
D: 2010-04-03-14.21.55 (M1) --> corresponding time on M2 is 14.22.00
C: 2010-04-03-14.22.01 (M2)
E: 2010-04-03-14.21.56 (M1) --> corresponding time on M2 is 14.22.01
F: 2010-04-03-14.21.57 (M1) --> corresponding time on M2 is 14.22.02

The alphabetic characters (A1, A2, B, and so on) represent the order in which the
corresponding log records were actually written at run time (across members).
Note that log records A1 and A2 from member M2 have the same time stamp; this
can happen when the DB2 data server tries to optimize performance by including
the commit log record from multiple transactions when data is written from the
log buffer to a log file.

The following command returns SQL1276N (Database "test" cannot be brought out
of rollforward pending state until rollforward has passed a point in time greater
than or equal to "2010-04-03-14.21.55"):
db2 rollforward db test to 2010-04-03-14.21.54

But the following command rolls forward the database up to and including log
record A2:
db2 rollforward db test to 2010-04-03-14.21.56

Because log records A1 and A2 both have a time stamp that is less than or equal to
the time that was specified in the command, both are replayed. Log record B,
whose time stamp (2010-04-03-14.21.58) is greater than the specified value
(2010-04-03-14.21.56), stops the rollforward operation and is not replayed. Log
record D is not replayed either, even though its time stamp is less than the
specified value, because log record B's higher value (2010-04-03-14.21.58) was
encountered first. The following command rolls forward the database up to and
including log record D:
db2 rollforward db test to 2010-04-03-14.21.58

Log record C, whose time stamp (2010-04-03-14.22.01) is greater than the specified
value (2010-04-03-14.21.58), stops the rollforward operation and is not replayed.
Log record E is not replayed either, even though its time stamp is less than the
specified value.

Monitoring a rollforward operation
You can use the db2pd or the LIST UTILITIES command to monitor the progress of
rollforward operations on a database.

Procedure
v Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter

LIST UTILITIES SHOW DETAIL

v Issue the db2pd command and specify the -recovery parameter:
db2pd -recovery

394 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Results

For rollforward recovery, there are two phases of progress monitoring: FORWARD
and BACKWARD. During the FORWARD phase, log files are read and the log
records are applied to the database. For rollforward recovery, when this phase
begins UNKNOWN is specified for the total work estimate. The amount of work
processed in bytes is updated as the process continues.

During the BACKWARD phase, any uncommitted changes applied during the
FORWARD phase are rolled back. An estimate for the amount of log data to be
processed, in bytes, is provided. The amount of work processed, in bytes, is
updated as the process continues.

Example

The following is an example of the output for monitoring the performance of a
rollforward operation using the db2pd command:
Recovery:
Recovery Status 0x00000401
Current Log S0000005.LOG
Current LSN 0000001F07BC
Current LSO 000002551BEA
Job Type ROLLFORWARD RECOVERY
Job ID 7
Job Start Time (1107380474) Wed Feb 2 16:41:14 2005
Job Description Database Rollforward Recovery
Invoker Type User
Total Phases 2
Current Phase 1

Progress:
Address PhaseNum Description StartTime CompletedWork TotalWork
0x0000000200667160 1 Forward Wed Feb 2 16:41:14 2005 2268098 bytes Unknown
0x0000000200667258 2 Backward NotStarted 0 bytes Unknown

The following is an example of the output for monitoring the performance of a
database rollforward operation using the LIST UTILITIES command with the SHOW
DETAIL option:
ID = 7
Type = ROLLFORWARD RECOVERY
Database Name = TESTDB
Member Number = 0
Description = Database Rollforward Recovery
Start Time = 01/11/2012 16:56:53.770404
State = Executing
Invocation Type = User
Progress Monitoring:

Estimated Percentage Complete = 50
Phase Number = 1

Description = Forward
Total Work = 928236 bytes
Completed Work = 928236 bytes
Start Time = 01/11/2012 16:56:53.770492

Phase Number [Current] = 2
Description = Backward
Total Work = 928236 bytes
Completed Work = 0 bytes
Start Time = 01/11/2012 16:56:56.886036

The following is an example of the output for monitoring the performance of a
table space rollforward operation using the LIST UTILITIES command with the
SHOW DETAIL option:

Chapter 15. Rolling forward data 395

ID = 17
Type = ROLLFORWARD RECOVERY
Database Name = TESTDB
Member Number = 0
Description = Offline Tablespace Rollforward Recovery: 3
Start Time = 01/11/2012 17:04:27.269171
State = Executing
Invocation Type = User
Progress Monitoring:

Estimated Percentage Complete = 63
Phase Number = 1

Description = Forward
Total Work = 142
Completed Work = 90
Start Time = 01/11/2012 17:04:27.269283

Phase Number [Current] = 2
Description = Backward
Total Work = 0
Completed Work = 0
Start Time = Not Started

396 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 16. DB2 Workload Manager (WLM)

DB2 Workload Manager (WLM) introduces significant capabilities for controlling
and monitoring executing-workloads within DB2. This technology is directly
incorporated into the DB2 engine infrastructure to allow handling higher volumes
with minimal overhead. It is also enabled for tighter integration with external
workload management products such as AIX WLM.

Workload management concepts
A good workload management system helps to efficiently meet goals in the
environment where work occurs. You can see examples of the need for a good
workload management system all around you.

For example, look at a grocery store. Different activities must be considered:
serving customers, stocking shelves, maintaining inventories, and so on. And some
simple goals must be set. Store owners want to maximize both the number of
customers who move through the store, and the amount that customers purchase,
achieving both goals in a way that customers leave both satisfied and wanting to
come back. Store owners must also ensure that they have sufficient stock for their
customers to buy (but not too much stock, because waste becomes an issue). Store
owners also track what their customers purchase, and use this information to
create advertisements that are designed to induce their customers to return.
Monitoring mechanisms track inventory and send notifications when stocks run
low. Security devices are in place to detect shoplifting. Special fast checkout lanes
are created so that shoppers who only want to purchase a few items can do so
without having to wait behind other customers who are purchasing many items. If
all of these goals are met and all of these operational procedures work well,
customers are satisfied, and are likely to return rather than to go to another store.
These goals and operational procedures are all aspects of workload management.

In a data server environment, you can see even more of a need for effective
management of work, especially now that data servers are being stressed like
never before. Cash registers generate thousands of data inserts, reports are
constantly being generated to determine whether sales targets are being met, batch
applications run to load collected data, and administration tasks such as backups
and reorganizations run to protect the data and make the server run optimally. All
these operations are using the same database system and competing for the same
resources.

To ensure the best chance of meeting goals for running a data server, an efficient
workload management system is critical.

Phases of workload management
The phases of workload management are identification of the work entering the
data server, management of the work when it is running, and monitoring to ensure
that the data server is being used efficiently.

A number of aspects must be considered for successful workload management
with DB2 workload manager, starting with understanding your goals. In the
grocery store example described in “Workload management concepts,” goals might

© Copyright IBM Corp. 2014 397

include maximizing customer spending, minimizing shoplifting, and ensuring that
customers leave the store satisfied so that they will return again.

In a data server environment, you must also define goals. Sometimes the goals are
clear, especially when they originate from service level agreement (SLA) objectives.
For example, queries from a particular application can consume no more than 10%
of the total processor resource. Goals can also be tied to a particular time of day.
For example, an overnight batch utility might have to complete loading data by 8
a.m. so that the daily sales reports are on time. In other situations, the goals can be
difficult to quantify. A goal might be to keep the database users satisfied and to
prevent aberrant database activity from hampering their day-to-day work. Whether
the goals are quantifiable or not, understanding them is critical when considering
the following stages of workload management:

Identification
If you want to achieve a goal for some kind of work, you first must be
able to identify details about the work. In the grocery store, you can
identify shopper information through credit cards and debit cards, or an
unpaid-for item through an active security tag on the item. For the data
server, you need to decide how you want to identify the work that enters
the system. You can use the name of the application that submits the work,
the authorization ID that submits the work, or a combination of elements
that provide some form of identification.

Management
The management phase includes mechanisms for making steady progress
towards your goal, and actions to take if a goal is not being met. An
example of a mechanism is managing price checks in fast checkout lanes.
Fast checkout lanes should result in faster throughput and satisfied
customers, but if a carton of milk has the wrong price and a price check is
required, the fast checkout lane could slow down. The problem is managed
by performing a fast price check, possibly opening up another checkout
lane, and trying to fix the pricing problem so that it does not occur again.
On the data server, you might find that overall performance is suffering
when a few poorly written SQL statements are running, a surge in volume
occurs during peak times, or there is too much competition between
different applications for the same resources. The management phase
includes mechanisms for assigning resources to achieve your goals and
actions to take if a goal is not being met. These workload management
mechanisms, which indirectly and directly control CPU resources, include
the following:
1. Concurrency thresholds, applied with a work action set defined on the

workload, to control the concurrency of incoming work
2. The ability to move work form one service class to another, currently

only effective when workload management dispatcher is being used on
those service classes

3. Workload management dispatcher to specifically allocate CPU resources
for workloads assigned to service classes for more granular control of
CPU resources when the first two workload management mechanisms
are not adequate

Monitoring
Monitoring is important for a couple of reasons. First, to determine
whether you are achieving a goal, you must have a mechanism to track
progress toward that goal. Also, monitoring helps to identify the problems
that might be preventing you from achieving your goal. In a store, the
store manager can watch the flow of customers, automatically be alerted to

398 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

problems such as shoplifting or dangerously low inventory of a particular
sale item, or perform analysis on historical purchase patterns to determine
optimal product placement in the store. For a data server, there are often
explicit goals for response times of database activities and it is important to
have a way to measure this metric, and watch for trends.

The following figure represents the workload management phases:

Frequently asked questions about DB2 workload management
This FAQ provides you with answers to common questions about DB2 workload
management.

General

v On which DB2 platforms can I use DB2 workload management?
v I am not on AIX. Does this mean I do not have any control over

processor resource or I/O activity?
v Now that Query Patroller is discontinued and DB2 Governor are

deprecated, how do I migrate to DB2 workload manager?
v Is there a way for WebSphere® Application Server to pass the client

information fields used by the DB2 workload?
v Why is my work not assigned to the correct workload?
v Why does DB2 workload manager affect REORGCHK, IMPORT,

EXPORT and other CLP commands?
v Is there a way to change the service class to which an activity is

assigned while it is executing?
v Much of my batch work is done using CLP scripts under the same ID,

how can I go about uniquely identifying these so I can manage them
differently from each other?

v When should I use the COLLECT AGGREGATE ACTIVITY DATA clause
versus the COLLECT ACTIVITY DATA clause?

Definition of goals

Identification
of activities

Management

Monitoring

Figure 64. Phases of workload management

Chapter 16. DB2 Workload Manager (WLM) 399

v How does DB2 workload management work with the new AIX WPAR
feature?

v What is the relationship between the DB2_OPT_MAX_TEMP_SIZE
registry variable and a DB2 threshold based on SQLTEMPSPACE?

Licensing

v What are the licensing requirements for DB2 workload manager?

Monitoring

v What information do you get from the different event monitors that are
associated with workload management?

OS workload management (AIX WLM and Linux WLM)

v Why would I ever want to use AIX WLM or Linux WLM?
v I am not on AIX. Does this mean I do not have any control over

processor resources or I/O activity?
v Can I use AIX WLM to manage I/O activity?
v Can I use AIX WLM to manage memory use?
v How does DB2 WLM work with the new AIX WPAR feature?

Platforms

v On which DB2 platforms can I use DB2 workload manager?
v I am not on AIX. Does this mean I do not have any control over

processor resource or I/O activity?
v How does DB2 workload management work with the new AIX WPAR

feature?
v Why would I ever want to use AIX WLM or Linux WLM?

Query Patroller and Governor

v How does this new functionality affect Query Patroller and DB2
Governor?

v Now that Query Patroller and DB2 Governor are deprecated, how do I
migrate to DB2 workload manager?

Thresholds

v Can I create multiple CONCURRENTDBCOORDACTIVITIES
concurrency thresholds for the same set of work?

v How do I determine which activities are queued by a workload
management threshold and the order of the activities in the queue?

Workload management dispatcher

v Do I need to use workload management dispatcher?
v What changes in behavior might I see when I turn ON the workload

management dispatcher?
v With the introduction of the workload management dispatcher, are

concurrency thresholds such as CONCURRENTDBCOORDACTIVITIES
no longer needed or useful?

On which DB2 platforms can I use DB2 workload management?

DB2 workload management is available on all platforms supported by DB2 9.5 for
Linux, UNIX, and Windows or later. The optional tight integration-offered between
DB2 workload management at the service class level and operating system
workload management capabilities-is available on AIX platforms and any Linux
platform based on the 2.6.26 kernel or higher.

400 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Do I need to use workload management dispatcher?

Most workload management configurations begin with concurrency thresholds,
which affect the consumption of all resources by controlling how much work can
begin executing at any one time. In some situations, however, a concurrency
threshold is not able to effectively limit the total amount of processing resource
that is consumed, and high priority work is affected; for example, a scenario in
which complex work is restricted to one running query that nevertheless consumes
enough resource to disrupt higher priority work. In such cases, the workload
management dispatcher is used to explicitly control CPU consumption and protect
the higher priority work.

You can use the workload management dispatcher for any or all of the following
situations:
v You want to manage the share of CPU resources among multiple users or

applications and you are using an operating system that does not have an
operating system (OS) workload manager that integrates with DB2 workload
management through the outbound_correlator field on each service class.

v You want to manage the share of CPU resources among multiple users or
applications and you do not have root privilege on the operating system.

v You want to manage the share of CPU resources among multiple users or
applications in a multiple member environment across multiple systems and
managing this through the OS WLM on each system requires too much
administration.

v You want to manage the share of CPU resources among multiple users or
applications using hard shares to limit certain service classes, even when the
CPU is under-utilized, and this is not available in your OS WLM or does not
produce the desired result.

How does this new functionality affect Query Patroller and DB2
Governor?

The DB2 workload manager introduces an independent approach to workload
management and does not rely on or interact with Query Patroller or DB2
Governor in any way. Query Patroller has been discontinued starting with the
Version 10.1 release. DB2 Governor was deprecated in the DB2 Version 9.7 release
and, although still functional, it is no longer central to the DB2 workload
management strategy. No further investment is planned for DB2 Governor in
future releases.

When DB2 9.5 or later is first installed, the default user service class is
automatically defined and all incoming work is sent to it for execution. Although
DB2 Governor can watch agents in any service class, it is permitted to adjust the
agent priority only for agents in the default user service class.

I am not on AIX. Does this mean I do not have any control over
processor resources or I/O activity?

Users on all platforms have the same ability to control processor resources and I/O
activity between service classes using SQL, such as the CREATE and ALTER
SERVICE CLASS statements, for example.

To control CPU usage when the workload management dispatcher is enabled, use
the CPU limit attribute of the DB2 service class to limit the amount of CPU
resources a service class can consume. If the workload management dispatcher

Chapter 16. DB2 Workload Manager (WLM) 401

CPU shares (wlm_disp_cpu_shares) database manager configuration parameter is
also enabled, you can use the CPU shares attribute of the DB2 service class to
specify the share of CPU resources that a service class can consume relative to the
CPU consumption of other service classes. On AIX and some Linux platforms, you
can supplement (or replace) these approaches by taking advantage of the workload
management capabilities that are offered by those operating systems to control
CPU consumption.

For I/O activity, users on all platforms can set the buffer pool or prefetcher priority
attribute of a DB2 service class to a value of high, medium, or low. All service
classes run with a medium priority by default.

Can I use AIX or Linux WLM or the DB2 workload management
dispatcher to manage I/O activity?

Currently, neither AIX WLM nor Linux WLM support direct I/O activity controls
at the thread level. However, it is possible to indirectly control I/O activity by
means of concurrency thresholds, or to use the DB2 workload management
dispatcher, AIX WLM, or Linux WLM to manipulate CPU resources. The more
CPU resource that is available to an executing thread, the less frequently that
thread will request I/O resources.

You can influence buffer pool behavior by using the BUFFERPOOL PRIORITY
attribute of any DB2 service class. You can also control DB2 prefetcher I/O activity
by using the PREFETCH PRIORITY attribute of any DB2 service class.

Can I use AIX or Linux WLM to manage memory use?

DB2 data server uses primarily shared memory, which is accessed by more than
one agent from different service classes. For this reason, it is not possible to divide
memory allocation between different service classes using either AIX or Linux
WLM.

Memory (such as sortheap) that is consumed during the execution of an SQL
statement can be indirectly influenced through the use of concurrency thresholds,
because consumption does not begin until the statement is allowed to execute.
However, unlike I/O activity, restricting CPU consumption does not affect the
amount of memory that is consumed. In fact, restricting CPU consumption can
exacerbate the memory situation, because queries will be running more slowly and
holding onto their allocated memory longer.

Is there a way for WebSphere Application Server to pass the
client information fields used by the DB2 workload?

WebSphere Application Server Version 6.0 and Version 6.1 can set or pass in the
CLIENT INFO fields to DB2 data server, either explicitly by your applications (see:
Passing client information to a database) or implicitly by having WebSphere
Application Server do it for you (see: Implicitly set client information).

Can I create multiple CONCURRENTDBCOORDACTIVITIES
concurrency thresholds for the same set of work?

You can create one or more CONCURRENTDBCOORDACTIVITIES concurrency
thresholds that apply to the same set of activities by defining them at the level of
the database, the service class in which the work executes, or within a work action
set applied at the database or workload level. Be aware that each new concurrency

402 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.base.doc/info/aes/ae/tdat_clientinfotask.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.base.doc/info/aes/ae/rdat_impclientinfo.html

threshold that applies to an activity implies additional overhead to enforce that
concurrency threshold. Verify that you really need more than one concurrency
threshold level.

Why is my work not assigned to the correct workload?

There are a number of reasons why a connection may not be mapped to the
desired workload. The most common ones are the failure to grant USAGE
privilege on the workload, incorrect spelling of the case sensitive connection
attributes, or the existence of a matching workload definition that is positioned
earlier in the evaluation order.

Before a connection can be assigned to a workload, the connection attributes must
match those of the workload definition, and the session authorization ID must
have USAGE privilege on the workload. A common omission is to create the
workload but not to grant USAGE privilege on the workload to users (See
“GRANT (Workload Privileges) statement” in SQL Reference). Only users with
ACCESSCTRL, SECADM, or WLMADM authority can grant workload usage
privilege to other users. Users with ACCESSCTRL, DATAACCESS, DBADM,
SECADM, or WLMADM authority have implicit usage privilege on all workloads.

Connection attributes for workloads are case sensitive. For example: If the system
user ID is uppercased, then the SYSTEM_USER connection attribute you specify
must be in uppercase as well.

To establish why a connection is not being mapped to the expected workload, you
should gather some information. Which workload is the work being mapped to? Is
that workload before or after the one that you thought would be used when you
look at the workload definitions in the order of evaluation? (Hint: try selecting the
workload definitions ordered in ascending order by the value of the
EVALUATIONORDER column in SYSCAT.WORKLOADS).

If you do not know what the connection attributes are for the target connection,
you can find out the values for the connection in a number of different ways:
v Issue a query against the system using the

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function
while the connection is active

v Open a cursor on a connection and use the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure against that
cursor to have the activity information captured to the activities event monitor
(Hint: do not forget to create and activate the activities information event
monitor)

v Turn on the collection of detailed activity information for the workload being
used by the connection, issue one statement in order to capture the activity
information, and then turn off the collection.

Why does DB2 workload manager affect REORGCHK, IMPORT,
EXPORT and other CLP commands?

These CLP commands are affected by DB2 workload management thresholds,
because the database engine cannot distinguish system requests originating with
these utilities from other requests directly initiated by users within the CLP
interactive front-end.

Chapter 16. DB2 Workload Manager (WLM) 403

Is there a way to change the service class to which an activity is
assigned while it is executing?

Yes, you can change the service subclass an activity is executing in to another
service subclass within the same parent service superclass by defining a
CPUTIMEINSC, DATATAGINSC, or SQLROWSINSC threshold with the REMAP
ACTIVITY action on the original service subclass. Initially, DB2 workload
management maps an activity to a service class based on the relevant workload
definition for the connection, modifies it as required if a work action set exists on
that service class, and then sets up the DB2 agent to execute in the assigned service
class. When an activity violates a threshold that has a REMAP ACTIVITY action
defined, the agent remaps itself to the specified target service subclass (under the
same superclass) once the threshold violation has been detected and the activity
continues executing in the new service subclass.

Much of my batch work is done using CLP scripts under the
same ID, how can I go about uniquely identifying these so I can
manage them differently?

You have a couple of options:

An enhancement has been added to CLP so that the client application name is
automatically set to the CLP script filename, with a CLP prefix preceding it (the
value of this field at the server can be seen in the CURRENT
CLIENT_APPLNAME special register). For example, if the CLP script filename is
batch.db2, the CURRENT CLIENT_APPLNAME special register value is set to CLP
batch.db2 by CLP when that script is run. With this feature, it is possible for
different CLP scripts to be associated with different workloads based on the client
application name.

For example, to create a workload for CLP file batch1.db2, you can issue the
following DDL statement:
CREATE WORKLOAD batch1 CURRENT CLIENT_APPLNAME (’CLP batch1.db2’)
SERVICE CLASS class1

To create a workload for CLP file batch2.db2, you can issue the following DDL
statement:
CREATE WORKLOAD batch2 CURRENT CLIENT_APPLNAME (’CLP batch2.db2’)
SERVICE CLASS class2

Since these two batch files are associated with different workloads, they can be
assigned to different service classes and managed differently.

Another option is the new stored procedure WLM_SET_CLIENT_INFO, which
permits you to set the values of any of the client information fields at the server
using a simple CALL SQL statement. By inserting a CALL statement into any of
your existing CLP scripts, you can uniquely identify them using these fields and
map them to different workload definitions.

For more information, see “WLM_SET_CLIENT_INFO procedure” in Administrative
Routines and Views.

404 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

When should I use the COLLECT AGGREGATE ACTIVITY DATA
clause versus the COLLECT ACTIVITY DATA clause?

The answer depends on why the monitoring is desired and what is to be done
with the information.

Aggregate activity information spans the entire set of work that has executed
within the scope covered by the clause, and it captures summary characteristics of
this set; it does not capture specific details about individual activities. The
COLLECT AGGREGATE ACTIVITY DATA clause can be specified on DB2
workloads, DB2 service classes, and DB2 work action sets. For normal operational
monitoring, use the COLLECT AGGREGATE ACTIVITY DATA clause, because it is
very lightweight, it can be gathered automatically by the statistics event monitor
for a historical record, and it provides important information on overall response
time patterns. If further insight is required on a specific type of work, use the
COUNT ACTIVITY or COLLECT AGGREGATE ACTIVITY DATA actions within a
DB2 work action set to gather more granular information (with minimal overhead)
about different types of work executing in a workload, service class, or database.

In contrast, activity information contains detailed information about each and
every activity that executes within the scope covered by the COLLECT ACTIVITY
DATA clause. This clause can be specified on DB2 workloads, DB2 service classes,
DB2 work action sets, and DB2 thresholds. It permits further in-depth analysis of
the individual activities that are captured, in order to understand the flow and
type of SQL statements submitted by a new application, for example, or to look
into performance tuning opportunities with tools such as the Explain facility or the
Design Advisor. Because it captures much more information for each activity
affected by it, the impact of using this clause is higher on affected activities than
other monitoring methods and it should be carefully controlled.

How does DB2 workload management work with the new AIX
WPAR feature?

All aspects of DB2 workload management will work within an AIX WPAR but
because AIX WPARs do not support the use of AIX WLM features, the option to
tightly integrate DB2 service classes with AIX WLM service classes is of no benefit
in this environment.

What is the relationship between the DB2_OPT_MAX_TEMP_SIZE
registry variable and DB2 thresholds based on
SQLTEMPSPACE?

There is no direct relationship between these two things. The
DB2_OPT_MAX_TEMP_SIZE registry variable is a directive to the query compiler to
limit the amount of temporary table space that a query can use. This can cause the
optimizer to choose a plan that is more expensive (potentially less efficient) but
which uses less space in the system temporary table spaces. A DB2 threshold
based on SQLTEMPSPACE does not affect the type of plan chosen by the
optimizer. It simply causes DB2 data server to monitor the usage of system
temporary table space by that query at each member and generates a threshold
violation if the stated limit is exceeded during normal processing.

Chapter 16. DB2 Workload Manager (WLM) 405

Now that Query Patroller is discontinued and DB2 Governor is
deprecated, how do I migrate to DB2 workload manager?

Following the introduction of DB2 workload manager as the strategic workload
management solution in DB2 Version 9.5, Query Patroller has been discontinued in
the Version 10.1 release and the DB2 Governor has been deprecated since the DB2
Version 9.7 release and might be removed in a future release.

Although DB2 Governor is still supported in this release, you should begin
adopting the new features and capabilities of DB2 workload manager, including
those introduced in this release. Note that with DB2 workload manager, you have
many more options, and you should explore them, which might require you to
rethink your approach to controlling work on your DB2 data server in current
workload management terms. The DB2 best practices article Implementing DB2
workload management in a data warehouse contains a supplement that is
specifically designed for those who are migrating from Query Patroller. Pertinent
task topics are also available in the Related tasks section.

To facilitate migration from DB2 Query Patroller to DB2 workload manager, a
sample script (qpwlmmig.pl) has been included starting with DB2 V9.7 Fix Pack 1.
For additional information, see one of the following tasks for details on how to
migrate from Query Patroller to DB2 workload manager:
v Migrating from Query Patroller to DB2 workload manager using the sample

script
v Migrating from Query Patroller to DB2 workload manager

What are the licensing requirements for DB2 workload manager?

A subset of the workload management capabilities in DB2 data server has its use
restricted through licensing. This licensed subset is referred to as DB2 workload
manager, and it controls the creation of any service class, workload, threshold, or
work action set. Access to this subset of workload management capabilities
requires one of the following licensed products:
v DB2 Enterprise Server Edition for Linux, UNIX, and Windows
v DB2 Advanced Enterprise Server Edition for Linux, UNIX, and Windows
v Database Enterprise Developer Edition for Linux, UNIX, and Windows
v IBM InfoSphere Warehouse, all editions
v IBM Smart Analytics System

The following workload management functions are not restricted by license:
v Using or altering the default service classes and workloads; this includes all

monitoring capabilities
v Creating, altering, or dropping histogram templates
v Using the DB2 workload management table functions or stored procedures
v Creating, activating, stopping, or dropping workload management event

monitors
v Granting, altering, or revoking workload privileges

406 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/t0056572.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/t0056572.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.qb.upgrade.doc/doc/t0053461.html

What information do you get from the different event monitors
that are associated with workload management?

The threshold violations, statistics, and activities event monitors capture
information about threshold violations, operational statistics and aggregate activity
data, and individual activity data.

Each event monitor collects one or more logical data groups (see: “Event type
mappings to logical data groups” in Database Monitoring Guide and Reference) and
there are one or more monitoring elements in each logical data group (see: “Event
monitor logical data groups and monitor elements” in Database Monitoring Guide
and Reference).

For example, to discover what information is collected by the threshold violations
event monitor, start by looking in Table 3 in “Event type mappings to logical data
groups” topic. This table shows that the threshold violations event monitor collects
information into a single logical data group called event_thresholdviolations
(note that some event monitors, like the activity event monitor, collect information
into multiple logical data groups). Next, find the event_thresholdviolations
logical data group in “Event monitor logical data groups and monitor elements”
topic. This topic shows which monitor elements are reported in the
event_thresholdviolations logical data group, which includes the following:
v activate_timestamp - Activate timestamp
v activity_collected - Activity collected
v activity_id - Activity ID
v agent_id - Application Handle (agent ID)
v appl_id - Application ID
v coord_partition_num - Coordinator partition number
v destination_service_class_id - Destination service class ID
v source_service_class_id - Source service class ID
v threshold_action - Threshold action
v threshold_maxvalue - Threshold maximum value
v threshold_predicate - Threshold predicate
v threshold_queuesize - Threshold queue size
v thresholdid - Threshold ID
v time_of_violation - Time of violation
v uow_id - Unit of work ID

The approach outlined in this example can be used to discover what data is
collected by each event monitor.

How do I determine which activities are queued by a workload
management threshold and the order of the activities in the
queue?

You can do this by first creating a view using the
WLM_GET_SERVICE_CLASS_AGENTS table function and then running statements
to list the queued activities in the order of the queue entry time.

Chapter 16. DB2 Workload Manager (WLM) 407

What changes in behavior might I see when I turn ON the
workload management dispatcher?

When you turn ON the workload management dispatcher via the wlm_dispatcher
database manager configuration parameter and if you had been relying on agent
priority to prioritize the work of one service class over another, then this agent
priority cannot be used while the workload management dispatcher is enabled. As
a result, all service classes are treated as if they have the default agent priority.

If you enable CPU shares via the wlm_disp_cpu_shares database manager
configuration parameter and do not specify CPU shares or CPU limits for your
service classes, all service classes receive an equal soft share of the CPU resources
on your system. The effect of all service classes receiving an equal soft share of the
CPU resources might result in a different allocation of CPU resources to services
classes than in previous DB2 releases. As a result, you should consider setting CPU
shares or CPU limit values appropriate for your workload.

With the introduction of the workload management dispatcher,
are concurrency thresholds such as
CONCURRENTDBCOORDACTIVITIES no longer needed or
useful?

The DB2 workload management dispatcher and concurrency thresholds can be
used together. Concurrency thresholds are still very useful for controlling how
much work is running. For each activity that starts running, the DB2 database
manager provides other resources to that activity, in addition to CPU resources,
which the activity usually retains for as long as it is running. Such non-CPU
resources include (among others) the DB2 agent, sort memory, temporary table
space, locks, and I/O. By preventing an activity from starting to run, those
additional non-CPU resources are not consumed and are available for other
activities.

In addition, concurrency thresholds can be applied at different points within the
DB2 database manager to determine the origin of the work that is running. For
example, putting a concurrency threshold on large queries coming from a specific
workload limits the consumption or share of the resources available to that
particular workload in a service class, as compared to other workloads
contributing to the same service class.

In summary, concurrency thresholds can be used to control when activities start to
run and consume the CPU and non-CPU resources on the system. The workload
management dispatcher can be used to control how much of the CPU resources
such activities get to consume once they start running.

Why would I ever want to use AIX WLM or Linux WLM?

Even if you use the DB2 workload management dispatcher for controlling the CPU
consumption of your DB2 workloads, the following are reasons to use AIX WLM
or Linux WLM as well:
v Operating system (OS) workload managers provide monitoring of resource

consumption at the level of the operating system.
v OS workload managers can provide control for all processes or threads on the

entire host or LPAR, not just DB2 database manager threads. This can help when
there is a need to control processes that compete for resources with DB2
database manager.

408 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Integration of AIX Workload Manager with DB2 workload management
On the AIX operating system, the optional integration between DB2 service classes
and AIX WLM classes permits you to control the amount of processor resource
allocated to each service class.

Implementing AIX WLM controls may not be needed to meet your performance
objectives, but even if you do not need to exercise AIX WLM, the operating system
statistics provided by AIX WLM per AIX class are often useful for monitoring and
tuning efforts.

AIX WLM assigns relative or absolute amounts of processor resource as shares to
classes which benefit from controls that you can change dynamically and that
become effective immediately. If relative AIX CPU shares do not provide the level
of control you require, you also have the choice of assigning hard maximum
percentage of CPU resource. By doing so, you surrender some of the flexibility of
relative CPU allocation, which is useful during off-peak times, but you also gain
excellent and guaranteed control with a hard maximum limit on CPU time
resource allocation.

Recommended mappings between DB2 service classes and AIX
classes

Use a 1:1 mapping of DB2 service classes to AIX Workload Manager service classes
to take advantage of AIX WLM processor controls. By having a 1:1 mapping
between DB2 service classes and AIX Workload Manager service classes, you can
adjust the AIX processor resource for each DB2 service class individually to meet
your business priority goals.

The following figure shows the integration of DB2 workload management with the
AIX Workload Manager. Note the 1:1 mapping between each DB2 service class and
AIX Workload Manager service class at the service superclass and service subclass
levels.

Chapter 16. DB2 Workload Manager (WLM) 409

When a DB2 environment consists of a single database in a single DB2 instance,
such as the example portrayed in the previous figure, it is possible to map directly
between DB2 service classes and AIX Workload Manager classes. Each DB2 service
superclass can have a corresponding AIX Workload Manager service superclass
and each DB2 service subclass can map to a corresponding AIX service subclass.

In situations where the DB2 environment consists of multiple databases and DB2
instances, several levels might be candidates for resource control. Because the AIX
Workload Manager supports a two-level hierarchy, that is, superclass and subclass,
only two levels of a DB2 environment can be mapped to AIX Workload Manager
classes at any time. The following figure shows one way to achieve a 1:1 mapping
with multiple databases, each with multiple superclasses. Here, each database has
its own AIX Workload Manager superclass and each DB2 service superclass is
mapped to an AIX Workload Manager subclass.

Data serverUser requests

System requests

Service superclass 1

Requests

Requests

Requests

Requests

Requests

Requests

Workload B

Workload C

Workload D

Default user
workload

Workload A

AIX WLM service classes

_DB2_SUPERCLASS1

_DB2_DEF_USER

_DB2_DEF _SYSTEM

_DB2_SUBCLASSA

_DB2_SUBCLASSB

Default user
class

Default system
class

Service
subclass B

Service
subclass A

Maintenance requests

Requests _DB2_DEF _MAINTDefault maintenance
class

Figure 65. Integration of DB2 workload management with the AIX Workload Manager

410 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

An alternative configuration is to map each DB2 service superclass to its own AIX
Workload Manager superclass, which results in four superclasses in this example.
In this situation, the database level of resource control is represented explicitly in
the AIX Workload Manager service class definitions.

The following figure shows one way to achieve the 1:1 mapping in the situation
where you have multiple databases, each with service superclasses and service
subclasses. Here, each database corresponds to an AIX superclass and each DB2
service subclass is mapped to an AIX Workload Manager subclass. The DB2 service
superclass is not shown explicitly in the AIX Workload Manager service class

Service superclass A

Service superclass B

Database 1

Service superclass A

Service superclass B

Database 2

DB2 Instance

Database 1

DB2 instance

Database 2

AIX workload manager classes

Other application 1

Other application 2

Superclass A

Superclass A

Superclass B

Superclass B

Figure 66. DB2 service classes mapped to AIX classes (with DB2 service superclasses only)

Chapter 16. DB2 Workload Manager (WLM) 411

definitions.

Service subclass 1

Service subclass 2

Service superclass A

Service subclass 1

Service subclass 2

Service superclass B

Database 1

Service subclass 1

Service subclass 2

Service superclass A

Service subclass 1

Service subclass 2

Service superclass B

Database 2

DB2 Instance

Database 1

DB2 instance

Database 2

AIX workload manager classes

Other application 1

Other application 2

Subclass 1

Subclass 1

Subclass 1

Subclass 2

Subclass 2

Subclass 1

Subclass 2

Subclass 2

Figure 67. DB2 service classes mapped to AIX Workload Manager classes (with DB2 service
subclasses)

412 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Defining mappings between DB2 service classes and AIX classes

Mapping between DB2 service classes and AIX Workload Manager classes is
specified for the DB2 service class using the OUTBOUND CORRELATOR keyword
of the CREATE SERVICE CLASS or the ALTER SERVICE CLASS statements.

The steps for setting up the AIX Workload Manager classes with the DB2 data
server are:
1. Create the DB2 service superclasses and service subclasses, and specify the

OUTBOUND CORRELATOR tags.
2. Create the corresponding AIX classes.
3. Create the associated AIX Workload Manager rules files to contain the DB2

workload management to AIX Workload Manager mappings using the
OUTBOUND CORRELATOR tags under the tag columns.

4. Start the AIX Workload Manager.
5. If required, set this AIX Workload Manager configuration as active.

When a thread joins a DB2 service class, the DB2 data server calls the appropriate
AIX Workload Manager API to associate the thread to the corresponding AIX
service class. The DB2 data server sends the thread's target AIX service class to the
AIX Workload Manager by passing it the application tag set in the OUTBOUND
CORRELATOR parameter.

You must ensure that the AIX Workload Manager is properly installed, configured,
and active. If the DB2 data server cannot communicate with the AIX Workload
Manager, a message is logged to the db2diag log files and DB2 administrator log.
The database activity continues.

The DB2 data server cannot detect whether the OUTBOUND CORRELATOR value
that it passes to the AIX Workload Manager is recognized by the AIX Workload
Manager. You must verify that the value specified for the DB2 service class
matches the application tags that map DB2 threads to the AIX service classes. If the
OUTBOUND CORRELATOR value is not recognized by the AIX Workload
Manager, the database activity continues to execute.

Other points to note are:
v DB2 service classes cannot work with the AIX Workload Manager inheritance

feature. Inheritance is the default setting for an AIX service class; inheritance
must be explicitly disabled by setting the inheritance attribute to NO. AIX
Workload Manager inheritance forces all child threads and processes to map to
the same class as the parent thread or process. If inheritance is enabled, DB2
workload management cannot change the AIX Workload Manager class of a
thread by using tagging. This restriction makes any integration of DB2 workload
management and the AIX Workload Manager unusable. The DB2 data server
cannot detect whether AIX Workload Manager inheritance is enabled and does
not issue an error message if inheritance is enabled.

v DB2 service classes are not compatible with the AIX Workload Manager manual
assignment feature. With the manual assignment feature, users can manually
assign a process to a specific AIX Workload Manager class. By manually
assigning the DB2 process, all threads in the process are assigned to a target AIX
Workload Manager class, the DB2 service class mapping logic is defeated and
results are not predictable.

Chapter 16. DB2 Workload Manager (WLM) 413

For more information on the AIX Workload Manager, see the AIX Information
Center at http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp

Setting processor controls on AIX classes

The AIX Workload Manager can be used to control the amount of processor
resource allocated to each service class. Options include setting a minimum,
maximum, or relative proportion share of processor resource for each service class.

When integrating the AIX Workload Manager with DB2 Workload Management,
only processor resource allocation is supported. You should not set memory and
I/O settings for the AIX classes. DB2 database-level memory is shared among all
agents from different DB2 service classes, so you cannot divide memory allocation
between different service classes. AIX-level I/O control does not support the DB2
engine threaded model. To control I/O, you can use the prefetcher priority
attribute of a DB2 service class to differentiate I/O priorities between different DB2
service classes.

If you use AIX to control the amount of processor resource allocated to a service
class, do not also change the agent priority setting for that DB2 service class. Use
only one of these mechanisms to govern the access to processor resource. You
cannot set both the AGENT PRIORITY and the OUTBOUND CORRELATOR value
for a service class.

AIX Workload Manager settings should be consistent on all physical computers
that participate in an instance. For example, if the resource setting for an AIX
service class is set high on one computer, the same setting should be used for that
AIX service class on all other computers. If the resource usage settings are
inconsistent across computers, requests running in the same AIX service class will
exhibit different performance levels on different database members. This situation
can lead to poor overall throughput for connections in an AIX service class.

Integration of Linux workload management with DB2 workload
management

On the Linux operating system, the optional integration between DB2 service
classes and Linux classes (control groups) permits you to control the amount of
processor resource allocated to each service class. If enabled, all threads running in
a DB2 service class are mapped to a Linux class where they are subject to the
processor resource controls you define.

To make use of Linux workload management support, you require a Linux kernel
version 2.6.26 or later on a 64-bit system and the libcgroup library package.

Linux workload management supports a hierarchy of classes with superclasses and
subclasses, with processor shares for subclasses divided in proportion to the shares
of the parent class. These shares provide a method of control over processor
resource such that all threads in the system will always run, but the amount of
processor time each thread receives is dependent on the number of shares assigned
to the Linux class.

Processor resource on the Linux operating system is assigned in shares relative to
the Linux workload management default class, which by default has a processor
share at a value of 1024. If you define no other Linux classes, all threads run in
this default class. If you define a class that has a share value equal to 1024, then

414 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

this class receives the same amount of processor resource as the Linux default class
with the default processor share. Similarly, a class with a share of 2048 receives a
target processor usage quota twice that of the default class. On more complex
systems, you should consider raising the processor share of the Linux default class,
which improves the granularity for shares across the system so that you can assign
processor resources more accurately.

Recommended mappings between DB2 service classes and
Linux classes

You should use a 1:1 mapping between DB2 service classes and Linux classes
which permits you to adjust the Linux processor shares assigned to activities in
each DB2 service class individually according to business priority. It is important
that you associate every DB2 service class with a Linux WLM class, either by
setting an outbound correlator for each service superclass and subclass, or through
inheritance from the parent service class for subclasses. This includes the default
SYSDEFAULTSYSTEMCLASS, SYSDEFAULTMAINTENANCECLASS and
SYSDEFAULTUSERCLASS service classes.

The following figure shows how two DB2 service subclasses under the same user
defined service superclass can get mapped 1:1 to Linux subclasses under a
common superclass. In this example, the work identified and assigned by two
workloads for each DB2 service subclass is subject to the processor resource
controls imposed by the corresponding Linux subclasses (_DB2_SUBCLASSA,
_DB2_SUBCLASSB). Also shown are three Linux classes that correspond to the
default DB2 workload management service classes (_DB2_DEF_USER,
_DB2_DEF_SYSTEM, _DB2_DEF_MAINT). If you integrate DB2 workload
management with Linux workload management, you should always create these
additional Linux classes to match the default DB2 service classes. To avoid any
bottleneck, the Linux class corresponding to the DB2 default system class should
receive more processor shares than any other Linux class that DB2 activities map
to, whilst the Linux class corresponding to the default maintenance class should
receive less processor shares.

Figure 68. Integration of DB2 workload management with Linux workload management

Chapter 16. DB2 Workload Manager (WLM) 415

Data serverUser requests

System requests

Service superclass 1

Requests

Requests

Requests

Requests

Requests

Requests

Workload B

Workload C

Workload D

Default user
workload

Workload A

Linux classes

_DB2_DEF_USER

_DB2_DEF _SYSTEM

Default user
class

Default system
class

Maintenance requests

Requests _DB2_DEF _MAINTDefault maintenance
class

Default class

_DB2_SUPERCLASS1

_DB2_SUBCLASSA

_DB2_SUBCLASSB

Service
subclass A

Service
subclass B

Defining mappings between DB2 service classes and Linux
workload management classes

The steps for integrating DB2 workload management with Linux workload
management, which runs as an operating system service, are as follows:
1. Define the Linux classes, class permissions, and processor shares by editing the

/etc/cgconfig.conf control groups configuration file. What Linux classes you
create depends on the conditions dictated by your business priorities for the
work your data server performs. If you want to apply processor resource based
on the source of certain work, for example, create a Linux class to match the
DB2 service class that work is going to be assigned to by the workload
identifying the work. Define an entry for each Linux class corresponding to the
DB2 service class to be created that you want to use for the mapping. The
following sections must be provided in the /etc/cgconfig.conf configuration
file:
v group: The Linux class name. For example, if you specify group _class1, you

create a superclass _class1. If you specify group _class1/_subclass1, you
create the subclass _subclass1 under the superclass _class1.
– perm: The permissions section that determines who can control what

threads are assigned to a Linux class and who can change the processor
shares of classes in the /etc/cgconfig.conf configuration file.

416 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

- task: The user ID (uid) and group ID (gid) whose threads can run in
the Linux workload management class. To enable Linux workload
management to work with DB2 workload management, you should set
uid to the DB2 instance owner user ID.

- admin: The user ID (uid) and group ID (gid) that can change processor
shares for a Linux workload management class.

– cpu: The processor shares definition section
- cpu.shares: The share assigned to this Linux class relative to the default

class

The /etc/cgconfig.conf configuration file must contain these sections in the
following format:
Superclass name
group _name
{

perm
{

task
{

uid = db2inst1;
gid = db2iadm1;

}
admin
{

uid = db2inst1;
gid = db2iadm1;

}
}

cpu
{

cpu.shares = 1024;
}

}

2. Start the Linux workload management service daemon with the service
cgconfig start command, then start your DB2 data server with the db2start
command.

3. To map a DB2 service class to one of the Linux classes, include the Linux class
name in the OUTBOUND CORRELATOR clause when you create or alter the
service class, which associates threads from the DB2 service class with the
external Linux class.

4. If you want to find out what threads are assigned to a particular Linux class,
you can use the cat command on the /cgroup/class_name/tasks file, where
class_name represents the name of the Linux class you are interested in. All
threads that are not mapped to a user-defined Linux class are assigned to the
Linux default class, which you can find at MOUNTPOINT/sysdefault, where
MOUNTPOINT is defined in the cgconfig.conf configuration file.

5. To add or remove Linux classes, you must stop with the Linux workload
management service with the service cgconfig stop command, make your
changes, and then restart the service. Note that stopping the service affects the
entire system, because all tasks are moved to the default class. If you used the
/etc/init.d/cgred script to start the service daemon, issue /etc/init.d/cgred
stop to stop it.

For the integration with DB2 workload management to work, you must ensure that
the Linux workload management service is properly installed, configured, and
active. If the DB2 data server cannot communicate with the Linux workload

Chapter 16. DB2 Workload Manager (WLM) 417

management service, a message is logged to the db2diag log files and DB2
administrator log. Database activities will continue to execute.

The DB2 data server cannot detect whether the outbound correlator that it passes
to external workload managers is recognized by Linux workload management. You
must verify that the OUTBOUND CORRELATOR value specified for a DB2 service
class matches the Linux class name so that DB2 threads are mapped to the Linux
class. If an outbound correlator is not recognized, database activities will continue
to execute.

Example

The following example illustrates how you can make use of Linux workload
management processor controls by integrating with DB2 workload management. In
this example, we create two user-defined DB2 service classes, one for batch
applications (BATCHAPPS) and one for online applications (ONLINEAPPS). For
simplicity, this example does not show the default service classes, which should be
included in an implementation that creates the recommended 1:1 mapping between
DB2 service classes and Linux classes. Because response time is critical for the
online applications, we want the ONLINEAPPS service class to receive three times
the amount of processor shares relative to work that runs in the Linux default class
(3 x 1024 = 3072 shares). Batch applications have a lower business priority, and the
BATCHAPPS class should be assigned half the processor resource of work that
runs in the Linux default class (1024 / 2 = 512 shares). All other work on the
system will run in the Linux default class. Note that this example does not create
Linux classes corresponding to the three default DB2 workload management
service classes.

To create this setup, first create the two corresponding Linux classes _BATCHAPPS
and _ONLINEAPPS and set their relative processor shares by editing the
/etc/cgconfig.conf tasks file. After editing, the tasks file contains the following
two entries, one for each Linux class:
Superclass ONLINEAPPS
group _ONLINEAPPS
{

perm
{

task
{

uid = db2inst1;
gid = db2iadm1;

}
admin
{

uid = db2inst1;
gid = db2iadm1;

}
}

cpu
{

3 x 1024 = 3072 shares
cpu.shares = 3072;

}
}

Superclass BATCHAPPS
group _BATCHAPPS
{

perm

418 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

{
task
{

uid = db2inst1;
gid = db2iadm1;

}
admin
{

uid = db2inst1;
gid = db2iadm1;

}
}

cpu
{

1024 / 2 = 512 shares
cpu.shares = 512;

}
}

The absolute processor time in percent assigned to each Linux class as processor
shares is as follows:

Table 26. Processor shares and absolute processor time assigned to Linux classes

Linux class Shares
Absolute processor time in
percent

Default class 1024 (default) 1024 / 4608 = 22%

_ONLINEAPPS 1024 x 3 = 3072 3072 / 4608 = 67%

_BATCHAPPS 1024 x ½ = 512 512 / 4608 = 11%

Total = 1024 + 3072 + 512 =
4608 shares

Once the Linux WLM classes are created, you can start the Linux workload
management service:
service cgconfig start

Next, create the associated DB2 service classes with the following statements:
DB2 CREATE SERVICE CLASS BATCHAPPS OUTBOUND CORRELATOR ’_BATCHAPPS’
DB2 CREATE SERVICE CLASS ONLINEAPPS OUTBOUND CORRELATOR ’_ONLINEAPPS’

To find out which threads are running in a Linux class, issue the cat command. For
the business critical _ONLINEAPPS Linux class, the command and output look as
follows. You can see that there are six thread running in this Linux class:
cat /cgroup/_ONLINEAPPS/tasks

1056
1087
1107
985
1036
1205

Chapter 16. DB2 Workload Manager (WLM) 419

Workload management sample application
Comprehensive workload management features have been integrated into your
DB2 data server with DB2 workload management, giving you finer control over
activities, resources and performance, and deeper insight into how your system is
running. A workload management sample application is now available on
developerWorks®.

The workload management sample application demonstrates how you can use DB2
workload management features to achieve the following objectives:

Protect the system from runaway queries
Runaway queries are costly and cause poor performance. The workload
management sample application identifies queries with the potential to
become runaway queries, and then stops these queries from running after
they have violated a specified threshold.

Limit concurrent resource consumption by individual applications
The sample application shows how to use DB2 workload management
features to prevent applications that submit large amounts of concurrent
work from negatively affecting the performance of other applications.

Achieve a specific response time
Workload management features permit you to achieve a specific response
time objective of the form: "transaction X from application Y shall complete
within 1 second in 90% of cases," regardless of what other activity is
running concurrently on the system. The sample application will
demonstrate how to achieve a response time objective.

Consistent response time for short queries
Queries that typically have a response time of less than 1 second should
have a relatively consistent response time regardless of what other
workloads are running on the system. The sample application uses the
query execution time histogram to monitor consistency.

Protect the system during periods of peak demand
Workload management policy features protect the system from capacity
overload during bursts of peak demand by queuing work once the system
is sufficiently loaded.

Enable concurrent batch extract, transform, and load (ETL) processing and user
queries

Workload management features permit you to run ETL jobs (like loading
data into tables) while controlling the performance impact for users
running queries concurrently.

To obtain the sample application, see Workload management sample on
developerWorks.

Workload management scenarios
These scenario illustrates the different uses of WLM to monitor activities.

Scenario: Investigating a workload-related system slowdown
If you notice a system slowdown (for example, some applications take much
longer to complete than expected) and are unsure whether the problem is related
to the configuration of the workloads, you can use table function data to
investigate and, if necessary, correct the problem.

420 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

https://www.ibm.com/developerworks/mydeveloperworks/files/app?lang=en#/person/270002YHXT/file/fddaac5b-546c-4e8c-9847-d6ee43f4cc9c

First, create a query that aggregates data across service classes and database
members using data from the WLM_GET_SERVICE_SUBCLASS_STATS table
function. Set the first and second arguments to empty strings and the third
argument to -2 to indicate that data is to be gathered for all service classes on all
database members.

Your query might resemble the following one:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(SUM(COORD_ACT_COMPLETED_TOTAL)),1,13) AS ACTSCOMPLETED,
SUBSTR(CHAR(SUM(COORD_ACT_ABORTED_TOTAL)),1,11) AS ACTSABORTED,
SUBSTR(CHAR(MAX(CONCURRENT_ACT_TOP)),1,6) AS ACTSHW,
CAST(CASE WHEN SUM(COORD_ACT_COMPLETED_TOTAL) = 0 THEN 0

ELSE SUM(COORD_ACT_COMPLETED_TOTAL * COORD_ACT_LIFETIME_AVG)
/ SUM(COORD_ACT_COMPLETED_TOTAL) END / 1000 AS DECIMAL(9,3))

AS ACTAVGLIFETIME
FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS SCSTATS
GROUP BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME
ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME

SUPERCLASS_NAME SUBCLASS_NAME ACTSCOMPLETED ACTSABORTED ACTSHW ACTAVGLIFETIME
------------------- ------------------ ------------- ----------- ------ --------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 20 0 1 3.750
SUP1 SUB1 40 0 8 7.223

In the preceding example data, the SUB1 service subclass in the SUP1 service
superclass is running more simultaneous activities than usual. To investigate
further, you might want to examine the statistics for workloads that map to this
service class. Your query might resemble the following one:
SELECT SUBSTR(WLSTATS.WORKLOAD_NAME,1,22) AS WL_NAME,

SUBSTR(CHAR(WLSTATS.MEMBER),1,4) AS MEMB,
CONCURRENT_WLO_TOP AS WLO_HIGH_WTRMRK,
CONCURRENT_WLO_ACT_TOP AS WLO_ACT_HIGH_WTRMRK

FROM TABLE(WLM_GET_WORKLOAD_STATS(’’, -2)) AS WLSTATS,
TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, -2)) AS SCWLOS

WHERE WLSTATS.WORKLOAD_NAME = SCWLOS.WORKLOAD_NAME
AND SCWLOS.SERVICE_SUPERCLASS_NAME = ’SUP1’
AND SCWLOS.SERVICE_SUBCLASS_NAME = ’SUB1’
ORDER BY WL_NAME, MEMB;

WL_NAME MEMB WLO_HIGH_WTRMRK WLO_ACT_HIGH_WTRMRK
---------------------- ---- --------------- -------------------
LYNNSALES 0 2 8
LYNNSALES 1 0 0
SYSDEFAULTUSERWORKLOAD 0 1 1
SYSDEFAULTUSERWORKLOAD 1 0 0

The output shows that an application in the LYNNSALES workload submitted 8
activities concurrently. Consider adding a threshold to restrict concurrency of
coordinator activities for each workload occurrence.

Scenario: Identifying activities that are taking too long to
complete

Workload management table functions simplify the task of identifying a specific
activity inside the data server and, if necessary, canceling it without having to end
the entire application.

Chapter 16. DB2 Workload Manager (WLM) 421

Identifying an activity that is taking too long to complete

Following is an example of identifying a long-running query. Assume that a user
from the Sales department who is running the SalesReport application complains
that the application is taking too long to complete.

After identifying the application handle, use the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to look up
all activities currently running in this application. For example, if the application
handle is 1, your query might resemble the following one:
SELECT SUBSTR(CHAR(COORD_MEMBER),1,5) AS COORD,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,
SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,
SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,
SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,
SUBSTR(ACTIVITY_TYPE,1,8) AS ACTTYPE,
SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(1, -2))
AS WLOACTS

ORDER BY MEMB, UOWID, ACTID

COORD MEMB UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING
----- ---- ----- ----- -------- -------- -------- -------

0 0 2 3 - - CALL 0
0 0 2 5 2 3 READ_DML 1

The activity is identified as having a unit of work ID of 2 and an activity ID of 5.
You can then use the WLM_GET_SERVICE_CLASS_AGENTS table function to
discover what the agents that work on this activity are doing:
SELECT APPLICATION_HANDLE, UOW_ID, ACTIVITY_ID,

SUBSTR(REQUEST_TYPE,1,8) AS REQUEST_TYPE,
SUBSTR(EVENT_TYPE,1,8) AS EVENT_TYPE,
SUBSTR(EVENT_OBJECT,1,8) AS EVENT_OBJECT

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, CAST(NULL AS BIGINT),-2))
AS AGENTS

WHERE APPLICATION_HANDLE = 1
AND UOW_ID = 2
AND ACTIVITY_ID = 5

For example, the activity might be queued, executing, or waiting on a lock. If the
activity were queued, the result would be:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID REQUEST_TYPE EVENT_TYPE EVENT_OBJECT
------------------ ------ ----------- ------------ ---------- ------------

1 2 5 OPEN WAIT WLM_QUEUE

If the activity were executing, the result would be:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID REQUEST_TYPE EVENT_TYPE EVENT_OBJECT
------------------ ------ ----------- ------------ ---------- ------------

1 2 5 OPEN PROCESS REQUEST

If the activity were waiting on a lock, the result would be:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID REQUEST_TYPE EVENT_TYPE EVENT_OBJECT
------------------ ------ ----------- ------------ ---------- ------------

1 2 5 OPEN ACQUIRE LOCK

When you know what the activity is doing, you can proceed appropriately:
v If the activity is queued, if the user indicates that the query is taking so long

that they no longer care about the results, or you think the query is consuming
too many resources, you can cancel it.

422 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v If the activity is important and it is queued, consider cancelling some other less
important work that is currently running (reducing the concurrency so that
activities leave queue), or maybe the user will be satisfied to know that work is
not hanging and is just waiting for chance to run.

v If the activity is waiting for a lock, you can use the snapshot monitor to
investigate which locks the application is waiting for.

v If the activity is waiting for a lock held by lower priority activity, consider
cancelling that activity.

You might also find it useful to know the DML statement that activity 5 is running.
Assuming that you have an active activities event monitor, you can run the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure to capture information
about the DML statement and other information about activity 5 while it is
running. Unlike the statement event monitor, the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure permits you to capture
information about a specific query, as opposed to every statement running at the
time. You can also obtain the statement text by using
MON_GET_ACTIVITY_DETAILS.

If you decide that you must cancel the activity, you can use the
WLM_CANCEL_ACTIVITY routine to cancel the activity without having to end
the application that issued it:
CALL WLM_CANCEL_ACTIVITY (1, 2, 5)

The application that issued the activity receives an SQL4725N error. Any
application that handles negative SQL codes is able to handle this SQL code.

Identifying an activity hang caused by lock contention

Assume that you have a situation in which a user is complaining about an
application that is taking too long. Also assume that you have either the
application name or the authorization ID of the long-running application. With this
information, you can use the LIST APPLICATIONS command to obtain the
application handle. Assuming that application handle returned by the LIST
APPLICATIONS command is 2, you can use the
WLM_GET_SERVICE_CLASS_AGENTS table function to determine which agents
are working on this activity. Your query might resemble the following one:
SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,
SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,
SUBSTR(EVENT_OBJECT,1,11) AS EVENTOBJECT,
SUBSTR(REQUEST_TYPE,1,7) AS REQTYPE,
SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,
SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, 2, -2)) AS SCDETAILS
ORDER BY APPHANDLE, MEMB, AGENT_TID

APPHANDLE MEMB AGENT_TID AGENTTYPE EVENTOBJECT REQTYPE UOW_ID ACT_ID
--------- ---- --------- ----------- ----------- ------- ------ ------
2 0 1 COORDINATOR REQUEST OPEN 2 1
2 1 3 SUBAGENT LOCK - 2 1

The results indicate that agent 1 is waiting on a remote response. Looking at the
agent on the remote member that is working on the same activity, the
EVENTOBJECT field indicates that the agent is waiting to obtain a lock.

Chapter 16. DB2 Workload Manager (WLM) 423

The next step is to determine who owns the lock. You can obtain this information
by turning on the monitor switches and using the snapshot monitor table function,
as shown in the following example:
SELECT AGENT_ID AS WAITING_FOR_LOCK,

SUBSTR(APPL_ID_HOLDING_LK,1,40) AS HOLDING_LOCK,
CAST(LOCK_MODE_REQUESTED AS SMALLINT) AS WANTED,
CAST(LOCK_MODE AS SMALLINT) AS HELD

FROM TABLE(SNAPSHOT_LOCKWAIT(’SAMPLE’,-1)) AS SLW

WAITING_FOR_LOCK HOLDING_LOCK WANTED HELD
-------------------- -- ------ ------

2 *LOCAL.DB2.060131021547 9 5

You can also determine the lock owner by using the following sequence of
commands:
db2pd -db database alias -locks
db2pd -db database alias -transactions

If you want to cancel the long-running activity, you can use the
WLM_CANCEL_ACTIVITY procedure. If the successful completion of the
long-running application is more important than the successful completion of the
lock-owning application, you can force the lock-owning application.

Scenario: How to cancel activities queued for more than an
hour

Using the example scripts described here, you can create a procedure to cancel
activities that have been queued for more than an hour. In addition, an example
script is provided that can be used to schedule the queued-activity-cancelling
procedure to run every 10 minutes using the DB2 Administrative Task Scheduler.

The queued-activity-cancelling procedure also captures information about the
cancelled activities (if an activity event monitor is active), and maintains a small
history table of cancelled activities. Both of these informational components are
optional and comments in the example script indicate where to comment out the
components, if they are not required.

The statements contained in the example procedure are themselves activities and
subject to threshold control (depending on how thresholds are configured on your
system). Consider running the example queued-activity-cancelling procedure in a
service class that does not have any queuing thresholds applied.
1. Copy the following example script, that creates the procedure to cancel

activities queued for more than 1 hour, into a file you have created (for
example, a file named x.clp):
-- Simple history table to track cancelled
-- activities

CREATE TABLE SAMPLE.CANCELED_ACTIVITIES(
APPLICATION_HANDLE BIGINT,
UOW_ID BIGINT,
ACTIVITY_ID BIGINT)@

-- Cancel any activities that have been queued
-- for more than 1 hour

CREATE PROCEDURE SAMPLE.CANCEL_QUEUED_ACTIVITIES()
LANGUAGE SQL
BEGIN

DECLARE APPHANDLE BIGINT;

424 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

DECLARE UOWID BIGINT;
DECLARE ACTIVITYID BIGINT;
DECLARE QUEUETIME BIGINT;
DECLARE AT_END INT DEFAULT 0;

DECLARE QUEUEDAPPS CURSOR WITH HOLD FOR SELECT APPLICATION_HANDLE,
UOW_ID, ACTIVITY_ID
FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(NULL,-2)) AS T
WHERE ACTIVITY_STATE = ’QUEUED’ AND LOCAL_START_TIME IS NULL;

DECLARE QTIMECUR CURSOR FOR SELECT TIMESTAMPDIFF(8, CHAR
(CURRENT TIMESTAMP - TIMESTAMP(VALUE)))
FROM TABLE(WLM_GET_ACTIVITY_DETAILS(APPHANDLE ,
UOWID , ACTIVITYID , -2)) AS T WHERE NAME = ’ENTRY_TIME’;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET AT_END = 1;

-- Ignore errors for activity not found and activity event
-- monitor does not exist.
DECLARE CONTINUE HANDLER FOR SQLSTATE ’5U035’, SQLSTATE ’01H53’

BEGIN
END;

-- Find all activities that are queued by WLM
-- thresholds where (ACTIVITY_STATE = ’QUEUED’)
OPEN QUEUEDAPPS;
FETCH QUEUEDAPPS INTO APPHANDLE, UOWID, ACTIVITYID;

WHILE AT_END = 0 DO

-- Now use activity entry time to estimate the time spend queued.
-- Queuing occurs before an activity begins execution, so queue
-- time is approximated using current time - entry time

OPEN QTIMECUR;
FETCH QTIMECUR INTO QUEUETIME;
CLOSE QTIMECUR;

IF (QUEUETIME >= 1) THEN

-- Optional: Insert a record into a table to record the
-- cancellation of the statement (for monitoring purposes, to
-- understand how many statements were cancelled). Modify this
-- insert as required to capture more info such as the name of
-- the application that submitted the cancelled query. Comment out
-- these 2 lines if the monitoring is not important to you.

INSERT INTO SAMPLE.CANCELED_ACTIVITIES VALUES (APPHANDLE,
UOWID, ACTIVITYID);

-- Optional: Send details about activity to any activity activities
-- event monitor before cancelling. Comment out
-- this line if you don’t care about the details of the
-- statements that were cancelled

CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS(APPHANDLE, UOWID,
ACTIVITYID);

-- Cancel the activity
CALL WLM_CANCEL_ACTIVITY(APPHANDLE, UOWID, ACTIVITYID);

-- Explicit commit, required for the insert statement above. The
-- admin task scheduler will not perform a commit. Comment out this
-- line if the insert statement is removed.

COMMIT;

END IF;

FETCH QUEUEDAPPS INTO APPHANDLE, UOWID, ACTIVITYID;

Chapter 16. DB2 Workload Manager (WLM) 425

END WHILE;

CLOSE QUEUEDAPPS;

END@

2. Create the queued-activity-cancelling procedure by executing script x.clp using
the following command:
db2 -td@ -f x.clp

3. Execute the queued-activity-cancelling procedure by issuing the following
command:
db2 "call sample.cancel_queued_activities()"

Any activities that have been queued for more than 1 hour will be cancelled.
4. The following example script schedules the queued-activity-cancelling

procedure to run every 10 minutes using the DB2 Administrative Task
Scheduler. Copy the example script into a file you have created (for example, a
file named y.clp):

-- Enable DB2 Admin Task Scheduler if
-- not already enabled.

!db2set DB2_ATS_ENABLE=YES@

-- Create SYSTOOLSPACE tablespace.
-- Enable if SYSTOOLSPACE does not already
-- exist on your database.

-- CREATE TABLESPACE SYSTOOLSPACE IN IBMCATGROUP MANAGED BY AUTOMATIC STORAGE
-- EXTENTSIZE 4@

-- Add a task to automatically cancel
-- activities that have been queued
-- for more than 1 hour. Task is scheduled
-- to run every 10 minutes. Adjust the
-- schedule as necessary using the
-- schedule input parameter (specified in
-- cron format).

CALL SYSPROC.ADMIN_TASK_ADD(
’CANCEL ACTIVITIES QUEUED FOR MORE 1 HOUR’,
NULL,
NULL,
NULL,
’*/10 * * * *’,
’SAMPLE’,
’CANCEL_QUEUED_ACTIVITIES’,
NULL,
NULL,
NULL)@

5. Schedule the queued-activity-cancelling procedure to run every 10 minutes by
executing script y.clp using the following command:
db2 -td@ -f y.clp

426 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Scenario: Moving table spaces to different storage devices
This scenario uses multi-temperature storage to set up a database system that uses
service classes of different priorities, each class using a different type of storage
device.

Assume there are two storage devices: disk and SSD. You can set up a system to
run short queries, based on the estimated cost, in a high-priority service class and
large queries, based on the estimated cost, in a low-priority service class. In the
low-priority service class, the number of large queries that can run concurrently is
throttled. Initially, the table space data is on SSD storage, but as the data ages, you
move it to slower storage.

To set up your database to use multi-temperature storage:
1. Create the storage group SSDGROUP for SSD and the storage group

DISKGROUP for disk.
CREATE STOGROUP SSDGROUP on ’/db2/ssdsystem’ DEVICE READ RATE 350;
CREATE STOGROUP DISKGROUP on ’/db2/disksystem’ DEVICE READ RATE 70;

2. Create the initial table space, initially in the SSDGROUP storage group.
CREATE TABLESPACE Q1_2010_TBSPC MANAGED BY AUTOMATIC STORAGE

USING SSDGROUP PAGESIZE 8K

3. Create a service superclass that contains two subclasses: one for short queries
and one for long queries:
CREATE SERVICE CLASS SC_SUPER;
CREATE SERVICE CLASS SC_HIGH UNDER SC_SUPER SOFT CPU SHARES 5000;
CREATE SERVICE CLASS SC_LOW UNDER SC_SUPER HARD CPU SHARES 2000;

Note: You can alternatively use AIX WLM or Linux WLM integration to limit
the impact of low-priority work.

4. Map all user work to the SC_SUPER service superclass by altering the
SYSDEFAULTUSERWORKLOAD workload:
ALTER WORKLOAD SYSDEFAULTUSERWORKLOAD SERVICE CLASS SC_SUPER

5. Create a work class set to isolate long queries from short queries based on the
estimated cost:
CREATE WORK CLASS SET WLM_WCS
(WORK CLASS WLM_DML_SHORT WORK TYPE DML FOR TIMERONCOST FROM 1 to 1000,
WORK CLASS WLM_DML_LONG WORK TYPE DML FOR TIMERONCOST FROM 1001 to UNBOUNDED)

6. Create a work action set that maps the short queries to the high-priority service
class and the long queries to the low-priority service class:
CREATE WORK ACTION SET WLM_WAS for SERVICE CLASS SC_SUPER

USING WORK CLASS SET WLM_WCS
(WORK ACTION WLM_MAP_HIGH_WA ON WORK CLASS WLM_DML_SHORT

MAP ACTIVITY TO SC_HIGH,
WORK ACTION WLM_MAP_LOW_WA ON WORK CLASS WLM_DML_LONG

MAP ACTIVITY TO SC_LOW)

7. Create a threshold named LIMITLOW that limits the number of concurrent
long activities to five:
CREATE THRESHOLD LIMITLOW FOR SERVICE CLASS SC_LOW

UNDER SC_SUPER ACTIVITIES ENFORCEMENT DATABASE
WHEN CONCURRENTDBCOORDACTIVITIES > 5 CONTINUE

8. Create a new table space to hold the data for the new quarter and move the
data from last quarter from SSD storage to disk storage:
CREATE TABLESPACE Q2_2010_TBSPC MANAGED BY AUTOMATIC STORAGE

USING SSDGROUP PAGESIZE 8K;
ALTER TABLESPACE Q1_2010_TBSPC USING STOGROUP DISKGROUP;

Chapter 16. DB2 Workload Manager (WLM) 427

Note: If the transfer rate of the SSD device is slower than what is noted in the
catalog table, the estimated cost of queries using the device increases, and the
queries using that device are mapped to the low-priority service class.

Additional scenarios
For more information about additional scenarios, visit http://pic.dhe.ibm.com/
infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.wlm.doc/doc/
c0052465.html.

DB2 workload management tutorial
You can use this tutorial to learn how to set up DB2 workload management and to
perform basic operations with it. Each exercise highlights one or more of the
workload management capabilities that are available with DB2 workload
management. The tutorial is available at http://pic.dhe.ibm.com/infocenter/
db2luw/v10r1/topic/com.ibm.db2.luw.admin.wlm.doc/doc/c0053139.html.

428 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 17. High availability disaster recovery (HADR)

The high availability disaster recovery (HADR) feature provides a high availability
solution for both partial and complete site failures. HADR protects against data
loss by replicating data changes from a source database, called the primary database,
to one or more target databases, called the standby databases.

A partial site failure can be caused by a hardware, network, or software (DB2
database system or operating system) failure. Without HADR, a partial site failure
requires restarting the database management system (DBMS) server that contains
the database. The length of time that it takes to restart the database and the server
where it is located is unpredictable. It can take several minutes before the database
is brought back to a consistent state and made available. With HADR, a standby
database can take over in seconds. Further, you can redirect the clients that used
the original primary database to the new primary database by using automatic
client reroute or retry logic in the application.

A complete site failure can occur when a disaster, such as a fire, causes the entire
site to be destroyed. However, because HADR uses TCP/IP for communication
between the primary and standby databases, they can be situated in different
locations. For example, the primary database might be located at your head office
in one city, and a standby database might be located at your sales office in another
city. If a disaster occurs at the primary site, data availability is maintained by
having the remote standby database take over as the primary database with full
DB2 functionality. After a takeover operation occurs, you can bring the original
primary database back up and return it to its primary database status; this is
known as failback. You can initiate a failback if you can make the old primary
database consistent with the new primary database. After you reintegrate the old
primary database into the HADR setup as a standby database, you can switch the
roles of the databases to enable the original primary database to once again be the
primary database.

With HADR, you base the level of protection from potential loss of data on your
configuration and topology choices. Some of the key choices that you must make
are as follows:

What level of synchronization will you use?

Standby databases are synchronized with the primary database through log
data that is generated on the primary and shipped to the standbys. The
standbys constantly roll forward through the logs. You can choose from
four different synchronization modes. In order of most to least protection,
these are SYNC, NEARSYNC, ASYNC, and SUPERASYNC. For more
information, see “High Availability Disaster Recovery (HADR)
synchronization mode” on page 431.

Will you use a peer window?
The peer window feature specifies that the primary and standby databases
are to behave as though they are still in peer state for a configured amount
of time if the primary loses the HADR connection in peer state. If primary
fails in peer or this "disconnected peer" state, the failover to standby will
have zero data loss. This feature provides the greatest protection. For more
information, see “Setting the hadr_timeout and hadr_peer_window
database configuration parameters” on page 493.

© Copyright IBM Corp. 2014 429

How many standbys will you deploy?
With HADR, you can use either single standby mode or multiple standby
mode. With multiple standbys, you can achieve both your high availability
and disaster recovery objectives with a single technology. For more
information, see “HADR multiple standby databases” on page 435.

There are a number of ways that you can use your HADR standby or standbys
beyond their HA or DR purpose:

Reads on standby
You can use the reads on standby feature to direct read-only workload to
one or more standby databases without affecting the HA or DR
responsibility of the standby. This feature can help reduce the workload on
the primary without affecting the main responsibility of the standby. For
more information on this topic, see “HADR reads on standby feature” on
page 458.

Unless you have reads on standby enabled, applications can access the
current primary database only. If you have reads on standby enabled,
read-only applications can be redirected to the standby. Applications
connecting to the standby database do not affect the availability of the
standby in the case of a failover.

Delayed replay
You can use delayed replay to specify that a standby database is to remain
at an earlier point in time than the primary, in terms of log replay. If data
is lost or corrupted on the primary, you can recovery this data on the time
delayed standby. For more information, see “HADR delayed replay” on
page 463.

Rolling updates and upgrades
Using an HADR setup, you can make various types of upgrades and DB2
fix pack updates to your databases without an outage. If you are using
multiple standby mode enabled, you can perform an upgrade while at the
same time keeping the protection provided by HADR. For more
information, see “Performing rolling updates in a DB2 High Availability
Disaster Recovery (HADR) environment” on page 466.

HADR might be your best option if most or all data in your database requires
protection or if you perform DDL operations that must be automatically replicated
on a standby database. However, HADR is only one of several replication solutions
that are offered in the DB2 product family. The InfoSphere Federation Server
software and the DB2 database system include SQL replication and Q replication
solutions that you can also use, in some configurations, to provide high
availability. These solutions maintain logically consistent copies of database tables
at multiple locations. In addition, they provide flexibility and complex functionality
such as support for column and row filtering, data transformation, and updates to
any copy of a table. You can also use these solutions in partitioned database
environments.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for setting
up HADR. Task assistants can guide you through the process of setting options,
reviewing the automatically generated commands to perform the task, and running
these commands. For more details, see Administering databases with task
assistants.

430 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

High Availability Disaster Recovery (HADR) synchronization mode
The HADR synchronization mode determines the degree of protection your DB2
High Availability Disaster Recovery (HADR) database solution has against
transaction loss. The synchronization mode determines when the primary database
server considers a transaction complete, based on the state of the logging on the
standby database.

The more strict the synchronization mode configuration parameter value, the more
protection your database solution has against transaction data loss, but the slower
your transaction processing performance. You must balance the need for protection
against transaction loss with the need for performance.

Figure 69 shows the DB2 HADR synchronization modes that are available and also
when transactions are considered committed based on the synchronization mode
chosen:

In multiple standby mode, the setting for hadr_syncmode does not need to be the
same on the primary and standby databases. Whatever setting for hadr_syncmode is
specified on a standby is considered its configured synchronization mode; this setting
only has relevance if the standby becomes a primary. Instead, the standby is
assigned an effective synchronization mode. For any auxiliary standby, the effective
synchronization mode is always SUPERASYNC. For the principal standby, the
effective synchronization mode is the primary's setting for hadr_syncmode. A
standby's effective synchronization mode is the value that is displayed by any
monitoring interface.

Use the hadr_syncmode database configuration parameter to set the synchronization
mode. The following values are valid:

SYNC (synchronous)
This mode provides the greatest protection against transaction loss, and
using it results in the longest transaction response time among the four
modes.

In this mode, log writes are considered successful only when logs have
been written to log files on the primary database and when the primary
database has received acknowledgement from the standby database that

HADR
receive buffer

Standby database

Log file

HADR
send buffer

Primary database

Near synchronousAsynchronous

Super asynchronous

Commit request

Synchronous

Log shipping

log writer

Log file Applications

- Commit
succeeded

Figure 69. Synchronization modes for high availability and disaster recovery (HADR)

Chapter 17. High availability disaster recovery (HADR) 431

the logs have also been written to log files on the standby database. The
log data is guaranteed to be stored at both sites.

If the standby database crashes before it can replay the log records, the
next time it starts it can retrieve and replay them from its local log files. If
the primary database fails, a failover to the standby database guarantees
that any transaction that has been committed on the primary database has
also been committed on the standby database. After the failover operation,
when the client reconnects to the new primary database, there can be
transactions committed on the new primary database that were never
reported as committed to the application on the original primary. This
occurs when the primary database fails before it processes an
acknowledgement message from the standby database. Client applications
should consider querying the database to determine whether any such
transactions exist.

If the primary database loses its connection to the standby database, what
happens next depends on the configuration of the hadr_peer_window
database configuration parameter. If hadr_peer_window is set to a non-zero
time value, then upon losing connection with the standby database the
primary database will move into disconnected peer state and continue to
wait for acknowledgement from the standby database before committing
transactions. If the hadr_peer_window database configuration parameter is
set to zero, the primary and standby databases are no longer considered to
be in peer state and transactions will not be held back waiting for
acknowledgement from the standby database. If the failover operation is
performed when the databases are not in peer or disconnected peer state,
there is no guarantee that all of the transactions committed on the primary
database will appear on the standby database.

If the primary database fails when the databases are in peer or
disconnected peer state, it can rejoin the HADR pair as a standby database
after a failover operation. Because a transaction is not considered to be
committed until the primary database receives acknowledgement from the
standby database that the logs have also been written to log files on the
standby database, the log sequence on the primary will be the same as the
log sequence on the standby database. The original primary database (now
a standby database) just needs to catch up by replaying the new log
records generated on the new primary database since the failover
operation.

If the primary database is not in peer state when it fails, its log sequence
might be different from the log sequence on the standby database. If a
failover operation has to be performed, the log sequence on the primary
and standby databases might be different because the standby database
starts its own log sequence after the failover. Because some operations
cannot be undone (for example, dropping a table), it is not possible to
revert the primary database to the point in time when the new log
sequence was created. If the log sequences are different and you issue the
START HADR command with the AS STANDBY parameter on the original
primary, you will receive a message that the command was successful.
However, this message is issued before reintegration is attempted. If
reintegration fails, pair validation messages will be issued to the
administration log and the diagnostics log on both the primary and the
standby. The reintegrated standby will remain the standby, but the primary
will reject the standby during pair validation causing the standby database
to shut down. If the original primary database successfully rejoins the
HADR pair, you can achieve failback of the database by issuing the

432 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

TAKEOVER HADR command without specifying the BY FORCE parameter. If the
original primary database cannot rejoin the HADR pair, you can reinitialize
it as a standby database by restoring a backup image of the new primary
database.

NEARSYNC (near synchronous)
While this mode has a shorter transaction response time than synchronous
mode, it also provides slightly less protection against transaction loss.

In this mode, log writes are considered successful only when the log
records have been written to the log files on the primary database and
when the primary database has received acknowledgement from the
standby system that the logs have also been written to main memory on
the standby system. Loss of data occurs only if both sites fail
simultaneously and if the target site has not transferred to nonvolatile
storage all of the log data that it has received.

If the standby database crashes before it can copy the log records from
memory to disk, the log records will be lost on the standby database.
Usually, the standby database can get the missing log records from the
primary database when the standby database restarts. However, if a failure
on the primary database or the network makes retrieval impossible and a
failover is required, the log records will never appear on the standby
database, and transactions associated with these log records will never
appear on the standby database.

If transactions are lost, the new primary database is not identical to the
original primary database after a failover operation. Client applications
should consider resubmitting these transactions to bring the application
state up to date.

If the primary database fails when the primary and standby databases are
in peer state, it is possible that the original primary database cannot to
rejoin the HADR pair as a standby database without being reinitialized
using a full restore operation. If the failover involves lost log records
(because both the primary and standby databases have failed), the log
sequences on the primary and standby databases will be different and
attempts to restart the original primary database as a standby database
without first performing a restore operation will fail. If the original
primary database successfully rejoins the HADR pair, you can achieve
failback of the database by issuing the TAKEOVER HADR command without
specifying the BY FORCE parameter. If the original primary database cannot
rejoin the HADR pair, you can reinitialize it as a standby database by
restoring a backup image of the new primary database.

ASYNC (asynchronous)
Compared with the SYNC and NEARSYNC modes, the ASYNC mode results in
shorter transaction response times but might cause greater transaction
losses if the primary database fails

In ASYNC mode, log writes are considered successful only when the log
records have been written to the log files on the primary database and
have been delivered to the TCP layer of the primary system's host
machine. Because the primary system does not wait for acknowledgement
from the standby system, transactions might be considered committed
when they are still on their way to the standby database.

A failure on the primary database host machine, on the network, or on the
standby database can cause log records in transit to be lost. If the primary
database is available, the missing log records can be resent to the standby

Chapter 17. High availability disaster recovery (HADR) 433

database when the pair reestablishes a connection. However, if a failover
operation is required while there are missing log records, those log records
will never reach the standby database, causing the associated transactions
to be lost in the failover.

If transactions are lost, the new primary database is not exactly the same as
the original primary database after a failover operation. Client applications
should consider resubmitting these transactions to bring the application
state up to date.

If the primary database fails when the primary and standby databases are
in peer state, it is possible that the original primary database will not be
able to rejoin the HADR pair as a standby database without being
reinitialized using a full restore operation. If the failover involves lost log
records, the log sequences on the primary and standby databases will be
different, and attempts to restart the original primary database as a
standby database will fail. Because there is a greater possibility of log
records being lost if a failover occurs in asynchronous mode, there is also a
greater possibility that the primary database will not be able to rejoin the
HADR pair. If the original primary database successfully rejoins the HADR
pair, you can achieve failback of the database by issuing the TAKEOVER HADR
command without specifying the BY FORCE parameters. If the original
primary database cannot rejoin the HADR pair, you can reinitialize it as a
standby database by restoring a backup image of the new primary
database.

SUPERASYNC (super asynchronous)
This mode has the shortest transaction response time but has also the
highest probability of transaction losses if the primary system fails. This
mode is useful when you do not want transactions to be blocked or
experience elongated response times due to network interruptions or
congestion.

In this mode, the HADR pair can never be in peer state or disconnected
peer state. The log writes are considered successful as soon as the log
records have been written to the log files on the primary database. Because
the primary database does not wait for acknowledgement from the standby
database, transactions are considered committed irrespective of the state of
the replication of that transaction.

A failure on the primary database host machine, on the network, or on the
standby database can cause log records in transit to be lost. If the primary
database is available, the missing log records can be resent to the standby
database when the pair reestablishes a connection. However, if a failover
operation is required while there are missing log records, those log records
will never reach the standby database, causing the associated transactions
to be lost in the failover.

If transactions are lost, the new primary database is not exactly the same as
the original primary database after a failover operation. Client applications
should consider resubmitting these transactions to bring the application
state up to date.

Since the transaction commit operations on the primary database are not
affected by the relative slowness of the HADR network or the standby
HADR server, the log gap between the primary database and the standby
database might continue to increase. It is important to monitor the log gap
as it is an indirect measure of the potential number of transactions that
might be lost should a true disaster occur on the primary system. In

434 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

disaster recovery scenarios, any transactions committed during the log gap
would not be available to the standby database. Therefore, monitor the log
gap by using the hadr_log_gap monitor element; if it occurs that the log
gap is not acceptable, investigate the network interruptions or the relative
speed of the standby database node and take corrective measures to reduce
the log gap.

If the primary database fails, it is possible that the original primary
database will not be able to rejoin the HADR pair as a standby database
without being reinitialized using a full restore operation. If the failover
involves lost log records, the log sequences on the primary and standby
databases will be different, and attempts to restart the original primary
database as a standby database will fail. Because there is a greater
probability of log records being lost if a failover occurs in super
asynchronous mode, there is also a greater probability that the primary
database will not be able to rejoin the HADR pair. If the original primary
database successfully rejoins the HADR pair, you can achieve failback of
the database by issuing the TAKEOVER HADR command without specifying
the BY FORCE parameter. If the original primary database cannot rejoin the
HADR pair, you can reinitialize it as a standby database by restoring a
backup image of the new primary database.

HADR multiple standby databases
The high availability disaster recover (HADR) feature supports multiple standby
databases. Using multiple standbys, you can have your data in more than two
sites, which provides improved data protection with a single technology.

When you deploy the HADR feature in multiple standby mode, you can have up
to three standby databases in your setup. You designate one of these databases as
the principal HADR standby database; any other standby database is an auxiliary
HADR standby database. Both types of HADR standbys are synchronized with the
HADR primary database through a direct TCP/IP connection, both types support
reads on standby, and you can configure both types for time-delayed log replay. In
addition, you can issue a forced or non-forced takeover on any standby. There are
a couple of important distinctions between the principal and auxiliary standbys,
however:
v IBM Tivoli System Automation for Multiplatforms (SA MP) automated failover is

supported only for the principal standby. You must issue a takeover manually
on one of the auxiliary standbys to make one of them the primary. Before
issuing a manual takeover, you should disable SA MP.

v All of the HADR sync modes are supported on the principal standby, but the
auxiliary standbys can only be in SUPERASYNC mode.

There are a number of benefits to using a multiple HADR standby setup. Instead
of employing the HADR feature to achieve your high availability objectives and
another technology to achieve your disaster recovery objectives, you can use
HADR for both. You can deploy your principal standby in the same location as the
primary. If there is an outage on the primary, the principal standby can take over
the primary role within your recovery time objectives. You can also deploy
auxiliary standbys in a distant location, which provides protection against a
widespread disaster that affects both the primary and the principal standby. The
distance, and the potential for network delays between the primary and the
auxiliaries, has no effect on activity on the primary because the auxiliaries use
SUPERASYNC mode. If a disaster affects the primary and principal standby, you
can issue a takeover on either of the auxiliaries. You can configure the other

Chapter 17. High availability disaster recovery (HADR) 435

auxiliary standby database to become the new principal standby using the
hadr_target_list database configuration parameter. However, an auxiliary
standby can take over as the primary even if that auxiliary does not have an
available standby. For example, if there is an outage on the primary and principal
standby, one auxiliary can take over as the primary even if it does not have a
corresponding standby. However, if you stop that database after it becomes the
new primary, it cannot start again as an HADR primary unless its principal
standby is started.

Restrictions for multiple standby databases
There are a number of restrictions that you should be aware of if you are planning
to deploy the HADR feature in multiple standby mode.

The restrictions are as follows:
v You can have a maximum of three standby databases: one principal standby and

up to two auxiliary standbys.
v Only the principal standby supports all the HADR synchronization modes; all

auxiliary standbys will be in SUPERASYNC mode.
v IBM Tivoli System Automation for Multiplatforms (SA MP) support applies only

between the primary HADR database and its principal standby.
v The hadr_target_list database configuration parameter must be set on all the

databases in the multiple standby setup. Each standby must include the primary
in its hadr_target_list setting.

Initializing HADR in multiple standby mode
Initializing an HADR system in multiple standby mode is similar to single standby
mode. The main difference is that you must enable multiple standby mode by
setting the hadr_target_list database configuration parameter on all the databases
in your setup.

About this task

This task covers how to initialize HADR in multiple standby mode. If you want to
convert a single standby setup to a multiple standby setup, see “Enabling multiple
standby mode on a preexisting HADR setup” on page 438.

Multiple standby mode requires the hadr_target_list configuration parameter to
be set on all participating databases. This parameter lists the standbys in the
scenario when the database becomes a primary. It is required even on a standby.
Mutual inclusion is required (that is, if A has B in its target list, B must have A in
its target list). This ensures that after a takeover from any standby, the new
primary can always keep the old primary as its standby. The first standby that you
specify in the target list is designated as the principal HADR standby database.
Additional standbys are auxiliary HADR standby databases. The target list need not
always include all participants. As well, there is no requirement for symmetry or
reciprocity if there is more than one standby; even if you designate that database A
has database B as its principal standby, database B does not have to designate A as
its principal standby. Each standby specified in the target list of database A, must
also have database A in its target list. Working out the target list for each database
is an important step.

As a special case, multiple standby mode can be configured with only one standby.
For example, you can configure two databases as primary and standby in multiple
standby mode. The behavior is not same as single standby setup because multiple

436 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

standby behavior such as automated configuration will be in effect and because
standby targets can be added or removed dynamically.

Tip: You can perform steps 2 to 4 in a single update on each database.

Procedure

To initialize HADR in multiple standby mode:
1. Create your standby database or databases by using either a restored backup or

split mirror. For instructions on how to do this, see “Initializing a standby
database” on page 479 or step 2 of “Initializing high availability disaster
recovery (HADR)” on page 477.
a. On the primary, issue the following command:

BACKUP DB dbname

b. If the database already exists on a standby instance, drop it first for a clean
start. Files from the existing database can interfere with HADR operation.
For example, left over log files can lead the standby onto a log chain not
compatible with the primary. Issue the following command to drop the
database:
DROP DB dbname

c. On each standby instance, issue the following command :
RESTORE DB dbname

2. On each of the databases, set the hadr_local_host, hadr_local_svc,
hadr_local_svc, and hadr_syncmode configuration parameters:
UPDATE DB CFG FOR dbname USING
HADR_LOCAL_HOST hostname
HADR_LOCAL_SVC servicename
HADR_SYNCMODE syncmode

3. Set the hadr_target_list configuration parameter on all of the standbys and
the primary:
UPDATE DB CFG FOR dbname USING
HADR_TARGET_LIST principalhostname:principalservicename|
auxhostname1:auxservicename1|auxhostname2:auxservicename2

4. Optional: On all the databases, set the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters.
This step is not required because these values are automatically set if you do
not set them and are automatically reset if you set them incorrectly. However,
explicitly setting them to the correct values makes correct values available
immediately. These values are helpful for the IBM Tivoli System Automation
for Multiplatforms (SA MP) software, which might require the
hadr_remote_inst value to construct the resource name.
v On the primary, set the parameters to the corresponding values on the

principal standby by issuing the following command:
UPDATE DB CFG FOR dbname USING

HADR_REMOTE_HOST principalhostname
HADR_REMOTE_SVC principalservicename
HADR_REMOTE_INST principalinstname

v On each standby, set the parameters to the corresponding values on the
primary by issuing the following command:
UPDATE DB CFG FOR dbname USING

HADR_REMOTE_HOST primaryhostname
HADR_REMOTE_SVC primaryservicename
HADR_REMOTE_INST primaryinstname

5. Connect to each standby instance.

Chapter 17. High availability disaster recovery (HADR) 437

6. On the standby instance, issue the START HADR command with the AS STANDBY
parameter:
START HADR ON DB dbname AS STANDBY

7. Connect to the primary instance.
8. On the primary instance, issue the START HADR command with the AS PRIMARY

parameter:
START HADR ON DB dbname AS PRIMARY

Results

The standby databases start in local catchup state, in which locally available log
files are read and replayed. After all local logs have been replayed, the databases
enter remote catchup pending state. After the primary starts, the standbys enter
remote catchup state, in which log pages are received from the primary and
replayed. After all of the log files that are on the disk of the primary database have
been replayed on the standbys, what happens depends on the type of what
happens next depends on the type of synchronization mode. A principal standby
in SUPERASYNC and any auxiliary standby will stay in remote catchup mode. A
principal standby with a SYNC, NEARSYNC, or ASYNC mode will enter peer
mode.

Enabling multiple standby mode on a preexisting HADR setup
Initializing an HADR system in multiple standby mode is similar to s single
standby mode. The main difference is that you must enable multiple standby mode
by setting the hadr_target_list database configuration parameter on all the
databases in your setup.

Before you begin
v Determine the host name or host IP address (to be used for the hadr_local_host

setting), service name or port number (to be used for the hadr_local_svc setting)
of all participating databases.

v Determine the target list for each database.
v Determine the synchronization mode and peer window for each database's

principal standby in the event that the database becomes the primary.
v Determine the setting for the hadr_timeout configuration parameter; this

parameter must have the same setting on all databases.
v Determine if there is sufficient network bandwidth between the primary and

each standby. Upgrade if necessary.
v Determine if the primary network interface can support outgoing data flow of

the additional standbys. Upgrade if needed.

About this task

Multiple standby mode requires the hadr_target_list configuration parameter to
be set on all participating databases. This parameter lists the standbys in the
scenario when the database becomes a primary. It is required even on a standby.
Mutual inclusion is required (that is, if A has B in its target list, B must have A in
its target list). This ensures that after a takeover from any standby, the new
primary can always keep the old primary as its standby. The first standby that you
specify in the target list is designated as the principal HADR standby database.
Additional standbys are auxiliary HADR standby databases. The target list need not
always include all participants. As well, there is no requirement for symmetry or
reciprocity if there is more than one standby; even if you designate that database A

438 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

has database B as its principal standby, database B does not have to designate A as
its principal standby. Each standby specified in the target list of database A, must
also have database A in its target list. Working out the target list for each database
is an important step.

As a special case, multiple standby mode can be configured with only one standby.
For example, you can configure two databases as primary and standby in multiple
standby mode. The behavior is not same as single standby setup because multiple
standby behavior such as automated configuration will be in effect and because
standby targets can be added or removed dynamically.

In this task, you first create and configure the new standbys only. By keeping the
original configuration until the final steps, you can keep your primary-standby
pair functioning for as long as possible. If you change the original standby's
configuration too early, you can break the old HADR pair if the standby is
deactivated and reactivated unintentionally to pick up the new configuration.

Procedure

To enable HADR in multiple standby mode:
1. Create any additional standby databases using either a restored backup or split

mirror. For instructions on how to do this, see “Initializing a standby database”
on page 479 or step 2 of “Initializing high availability disaster recovery
(HADR)” on page 477.
v On the primary:

DB2 BACKUP DB dbname

v On the standbys:
DB2 RESTORE DB dbname

2. Configure each of the new standby databases as follows:
a. Set the hadr_local_host and hadr_local_svc to the TCP address used by

the HADR connection.
b. Set the hadr_remote_host, hadr_remote_svc, hadr_remote_inst configuration

parameters to point to the primary database.
c. Set the hadr_timeout configuration, with the same setting on all of the

databases.
d. Set the hadr_target_list configuration parameter, as previously planned.
e. Set the hadr_syncmode and hadr_peer_window configuration parameters for

the principal standby in case this database becomes the primary.
f. Set any other HADR-specific parameters such as hadr_spool_limit or

hadr_replay_delay, depending on your desired setup.
3. Reconfigure the original standby by following the same instructions as in Step

2.
4. Reconfigure the primary as follows:

a. Set the hadr_local_host and hadr_local_svc to the TCP address used by
the HADR connection. You might need to make an update if you are using
a new network interface card (NIC) to support higher network bandwidth
to accommodate more standbys.

b. Set the hadr_remote_host, hadr_remote_svc, hadr_remote_inst configuration
parameters to point to the principal standby database.

c. Set the hadr_timeout configuration, with the same setting as on all of the
standby databases.

d. Set the hadr_target_list configuration parameter, as previously planned.

Chapter 17. High availability disaster recovery (HADR) 439

e. Set the hadr_syncmode and hadr_peer_window configuration parameters,
which the principal standby will use.

f. Set any other HADR-specific parameters such as hadr_spool_limit or
hadr_replay_delay, depending on your desired setup.

5. Stop HADR on the primary.
STOP HADR ON DB dbname

If a primary (in single standby mode) is still running when a new HADR
standby is started, the standby is found incompatible and shut down when it
attempts to connect to the primary.

6. Deactivate and then reactivate the original standby to pick up the new
configuration.

7. Connect to each new standby instance and issue the START HADR command with
the AS STANDBY option.
START HADR ON DB dbname AS STANDBY

8. Stop HADR on the primary.
START HADR ON DB dbname AS PRIMARY

Results

All of the standbys should connect to the primary within seconds. You can monitor
their status using the db2pd command with the -hadr option or the
MON_GET_HADR table function.

Modifications to a multiple standby database setup
After your multiple HADR standby setup is up and running, you might want to
make additional changes, such as adding or removing auxiliary standby databases
or changing the principal standby database designation. You can make these kinds
of modifications without causing an outage on your primary database.

Adding auxiliary standbys

There are a few reasons why you might want to add an auxiliary standby:
v To deploy an additional standby for processing read-only workloads
v To deploy an additional standby for time-delayed replay
v To deploy an additional standby for disaster recovery purposes
v To add a standby that was a part of a previously active HADR deployment but

was orphaned because the hadr_target_list configuration parameter for the new
primary does not specify that standby

You can add an auxiliary standby only if your HADR deployment is in multiple
standby mode. That is, thehadr_target_list configuration parameter must already
be set to at least one standby.

To add an auxiliary standby to your HADR deployment, update the target list of
the primary with the host and port information from the standby. This information
corresponds to the settings for the hadr_local_host and hadr_local_svc
parameters on the standby. You must also add the host and port information for
the primary to the target list of the new standby.

Tip: Although it is not required, a best practice is to also add the host and port
information for the new standby to the target lists of the other standbys in the
deployment. You should also specify the host and port information for those

440 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

standbys in the target list of the new standby. If you do not make these additional
updates and one of the other standbys takes over as the new primary, the new
standby is rejected as a standby target and is shut down.

Removing auxiliary standbys

The only standbys that you can remove dynamically are auxiliary standbys. If you
dynamically remove an auxiliary standby from your multiple standby deployment,
there is no effect on normal HADR operations on the primary and the principal
standby. To remove an auxiliary standby, issue the STOP HADR command on the
standby; afterward, you can remove it from the target lists of the primary and any
other standby.

Changing the principal standby

You can change the principal standby only if you first stop HADR on the primary
database; this does not cause an outage, because you do not have to deactivate the
primary.

To change the principal standby, you must stop HADR on the primary database.
Then, update the target list of the primary database to list the new principal
standby first. If the new principal standby is not already a standby, add the
primary database's address to its target list, configure the other HADR parameters,
and activate the standby. If it is already a standby, no action is needed.

Tip: Although it is not required, it is a best practice to also add the host and port
information for the new principal standby to the target list of the other standby in
the deployment. You should also specify the host and port information for that
standby in the target list of the new principal standby. If you do not make these
additional updates and either one of the standbys takes over as the new primary,
the other standby is rejected as a standby target and is shut down.

Database configuration for multiple HADR standby databases
There are a number of considerations for database configuration in a multiple
HADR standby setup.

Automatic reconfiguration of HADR parameters

Reconfiguration after HADR starts

In multiple standby mode, the configuration parameters that identify the
primary database for the standbys and identify the principal standby for
the primary are automatically reset when HADR starts if you did not
correctly set them; however, an initial non-NULL value is required. This
behavior applies to the following configuration parameters:
v hadr_remote_host

v hadr_remote_inst

v hadr_remote_svc

Tip: Even though this automatic reconfiguration occurs, you should
always try to set the correct initial values because that reconfiguration
might not take effect until a connection is made between a standby and its
primary. In some HADR deployments, those initial values might be
needed. For example, if you are using the IBM Tivoli System Automation
for Multiplatforms software, the value for the hadr_remote_inst
configuration parameter is needed to construct a resource name.

Chapter 17. High availability disaster recovery (HADR) 441

Note: If the DB2_HADR_NO_IP_CHECK registry variable is set to ON, the
hadr_remote_host and hadr_remote_svc are not automatically updated.

Reconfiguration is predicated on the values of the hadr_target_list
configuration parameter being correct; if anything is wrong in a target list
entry, you must correct it manually.

On the primary, the reconfiguration occurs in the following manner:
v If the values for the hadr_remote_host and hadr_remote_svc

configuration parameters do not match the host:port pair that is the first
entry of the hadr_target_list configuration parameter (namely, the
principal standby), the hadr_remote_host and hadr_remote_svc
configuration parameters are updated with the values from the target
list.

v If the value for the hadr_remote_inst configuration parameter does not
match the instance name of the principal standby, the correct instance
name is copied to the hadr_remote_inst configuration parameter for the
primary after the principal standby connects to it.

On a standby database, the reconfiguration occurs in the following manner:
v When a standby starts, it attempts to connect to the database that you

specified for its hadr_remote_host, hadr_remote_inst, and
hadr_remote_svc configuration parameters.

v If the standby cannot connect to the primary, it waits for the primary to
connect to it.

v The primary attempts to connect to its standbys using addresses listed in
its hadr_target_list parameter. After the primary connects to a standby,
the hadr_remote_host, hadr_remote_inst, and hadr_remote_svc
configuration parameters for the standby are updated with the correct
values for the primary.

Reconfiguration during and after a takeover

In a non-forced takeover, the values for the hadr_remote_host,
hadr_remote_inst, and hadr_remote_svc configuration parameters on the
new primary are automatically updated to its principal standby, and these
parameters on the standbys listed in the new primary's hadr_target_list
are automatically updated to point to the new primary. Any database that
is not listed in the new primary's hadr_target_list is not updated. Those
databases continue to attempt to connect to the old primary and get
rejected because the old primary is now a standby. The old primary is
guaranteed to be in the new primary's target list because of the
requirement of mutual inclusion in the target list.

In a forced takeover, automatic update on the new primary and its
standbys (excluding the old primary) work the same way as non-forced
takeover. However, automatic update on the old primary does not happen
until it is shut down and restarted as a standby for reintegration.

Any database that is not online during the takeover will be automatically
reconfigured after it starts. Automatic reconfiguration might not take effect
immediately on startup, because it relies on the new primary to
periodically contact the standby. On startup, a standby might attempt to
connect to the old primary and follow the log stream of the old primary,
causing it to diverge from the new primary's log stream and, making that
standby unable to pair with the new primary. As a result, you must shut
down the old primary before takeover to avoid that kind of split brain
scenario.

442 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Lack of standby control of the synchronization mode and peer
window

In multiple standby mode, only the settings of the hadr_syncmode and
hadr_peer_window configuration parameters of the current primary are relevant.
The standby databases either have the settings for those parameters defined by the
primary, in the case of the principal standby, or by their role as an auxiliary
standby.

Synchronization mode

In multiple standby mode, the setting for the hadr_syncmode configuration
parameter do not have to be the same on the primary and standby
databases. Whatever setting you specify for the hadr_syncmode
configuration parameter on a standby is considered its configured
synchronization mode; this setting has relevance only if the standby becomes
a primary. The standby is assigned an effective synchronization mode. For any
auxiliary standby, the effective synchronization mode is always
SUPERASYNC. For the principal standby, the effective synchronization
mode is the setting for the hadr_syncmode configuration parameter for the
primary. For a standby, the monitoring interfaces display the effective
synchronization mode as the synchronization mode.

Peer window
In multiple standby mode, the setting for the hadr_peer_window
configuration parameter does not have to be the same on the primary and
standby databases. In fact, any setting for the hadr_peer_window
configuration parameter on the auxiliary standbys is ignored because peer
window functionality is incompatible with SUPERASYNC mode. The
principal standby uses the peer window setting of the primary, which is
applicable only if the value of the hadr_syncmode configuration parameter
for the standby is SYNC or NEARSYNC, just as with single standby mode.

Rolling upgrades in HADR multiple standby mode
As with HADR single standby mode, you can use a rolling upgrade. The crucial
difference is that with multiple standbys you can use this procedure while
maintaining HADR protection by keeping a primary and a standby active.

There is always a primary to provide database service and this primary always has
at least one standby providing HA and DR protection.

With multiple standbys, you should perform the update or upgrade on all of the
standbys before doing so on the primary. This is particularly important if you are
updating the fixpack level because HADR does not allow the primary to be at a
higher fixpack level than the standby.

The procedure is essentially the same as with single standby mode, except you
should perform the upgrade on one database at a time and starting with an
auxiliary standby. For example, consider the following HADR setup:
v host1 is the primary
v host2 is the principal standby
v host 3 is the auxiliary standby

For this setup, perform the rolling upgrade or update according to the following
sequence:

Chapter 17. High availability disaster recovery (HADR) 443

1. Deactivate host3, make the required changes, activate host3, and start HADR
on host3 (as a standby).

2. After host3 is caught up in log replay, deactivate host2, make the required
changes, activate host2, and start HADR on host2 (as a standby).

3. After host2 is caught up in log replay and in peer state with host1, issue a
takeover on host2.

4. Deactivate host1, make the required changes, activate host1, and start HADR
on host1 (as a standby).

5. After host1 is in peer state with host 2, issue a takeover on host1 so that it
becomes the primary again and host2 becomes the principal standby again.

High availability disaster recovery (HADR) monitoring in
multiple standby mode

HADR multiple standby mode supports the same monitoring interfaces as in
single standby mode; however, you should only use the db2pd command and the
MON_GET_HADR table function because other monitoring interfaces do not give
a complete view of all of the standbys.

The information returned by the monitoring interface depends on where it is
issued. Monitoring on a standby returns information about that standby and the
primary only; no information is provided about any other standbys. Monitoring on
the primary returns information about all of the standbys if you are using the
db2pd command or the MON_GET_HADR table function. Even standbys that are
not connected, but are configured in the primary's hadr_target_list configuration
parameter are displayed. Other interfaces like the GET SNAPSHOT FOR DATABASE
command report the primary and the principal standby only.

The db2pd command and the MON_GET_HADR table function return essentially
the same information, but the db2pd command does not require reads on standby
to be enabled (for reporting from a standby). As well, the db2pd command is
preferred during takeover because there could be a time window where neither the
primary nor the standby allows client connections.

db2pd command

In the following example, the DBA issues the db2pd command on a primary
database with three standbys. Three sets of data are returned, with each
representing a primary-standby log shipping channel. The HADR_ROLE field
represents the role of the database to which db2pd is issued, so it is listed as
PRIMARY in all sets. The HADR_STATE for the two auxiliary standbys (hostS2
and hostS3) is REMOTE_CATCHUP because they automatically run in
SUPERASYNC mode (which is also reflected in the db2pd output) regardless of
their configured setting for hadr_syncmode. The STANDBY_ID differentiates the
standbys. It is system generated and the ID-to-standby mapping can change from
query to query; however, the ID "1" is always assigned to the principal standby.

Note: Fields not relevant to current status might be omitted in the output. For
example, in the following output, information about the replay-only window (like
start time and transaction count) is not included because the replay-only window
is not active.
db2pd -db hadr_db -hadr

Database Member 0 -- Database hadr_db -- Active -- Up 0 days 00:23:17 --
Date 06/08/2011 13:57:23

444 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SYNC
STANDBY_ID = 1

LOG_STREAM_ID = 0
HADR_STATE = PEER

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = hostS1.ibm.com
STANDBY_INSTANCE = db2inst2
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 3
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SUPERASYNC
STANDBY_ID = 2

LOG_STREAM_ID = 0
HADR_STATE = REMOTE_CATCHUP

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = hostS2.ibm.com
STANDBY_INSTANCE = db2ins3t
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:35:51.724447 (1307565351)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 16
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

Chapter 17. High availability disaster recovery (HADR) 445

STANDBY_RECV_BUF_SIZE(pages) = 16
STANDBY_RECV_BUF_PERCENT = 0

STANDBY_SPOOL_LIMIT(pages) = 0
PEER_WINDOW(seconds) = 0

READS_ON_STANDBY_ENABLED = Y

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SUPERASYNC
STANDBY_ID = 3

LOG_STREAM_ID = 0
HADR_STATE = REMOTE_CATCHUP

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = hostS3.ibm.com
STANDBY_INSTANCE = db2inst3
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:46:51.561873 (1307566011)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 6
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = N

MON_GET_HADR table function

In the following example, the DBA calls the MON_GET_HADR table function on the
primary database with three standbys. Three rows are returned. Each row
represents a primary-standby log shipping channel. The HADR_ROLE column
represents the role of the database to which the query is issued. Therefore it is
PRIMARY on all rows. The HADR_STATE for the two auxiliary standbys (hostS2
and hostS3) is REMOTE_CATCHUP because they automatically run in
SUPERASYNC mode regardless of their configured setting for hadr_syncmode.
db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE, varchar(PRIMARY_MEMBER_HOST,20)
as PRIMARY_MEMBER_HOST, varchar(STANDBY_MEMBER_HOST,20)
as STANDBY_MEMBER_HOST from table (mon_get_hadr(NULL))"

HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST STANDBY_MEMBER_HOST
--------- ---------- -------------- ------------------- --------------------
PRIMARY 1 PEER hostP.ibm.com hostS1.ibm.com
PRIMARY 2 REMOTE_CATCHUP hostP.ibm.com hostS2.ibm.com
PRIMARY 3 REMOTE_CATCHUP hostP.ibm.com hostS3.ibm.com

3 record(s) selected.

446 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Takeover in HADR multiple standby mode
When an HADR standby database takes over as the primary database in a multiple
standby environment, there are a number of important differences from single
standby mode.

With HADR, there are two types of takeover: role switch and failover. Role switch,
sometimes called graceful takeover or non-forced takeover, can be performed only
when the primary is available and it switches the role of primary and standby.
Failover, or forced takeover, can be performed when the primary is not available. It
is commonly used in primary failure cases to make the standby the new primary.
The old primary remains in primary role in a forced takeover. Both types of
takeover are supported in multiple standby mode, and any of the standby
databases can take over as the primary. A crucial thing to remember, though, is
that if a standby is not included in the new primary's target list, it is considered to
be orphaned and cannot connect to the new primary.

In a takeover, DB2 automatically makes a number of configuration changes for you
so that the standbys listed in new primary's target list can connect to the new
primary. The hadr_remote_host, hadr_remote_svc, and hadr_remote_inst
configuration parameters are updated on the new primary and listed standbys in
the following way:
v On the new primary: They refer to the principal standby (the first database

listed in the new primary's target list).
v On the standbys: They refer to the new primary. When an old primary is

reintegrated to become standby, the START HADR AS STANDBY command first
converts it to a standby. Thus it can also be automatically redirected to the new
primary if it is listed in the target list of the new primary.

Note: Orphaned standbys are not automatically updated in this way. If you
want them to join as standbys, you need to ensure they are in the new primary's
target list and that they include the new primary in their target lists.

Role switch
Just as in single standby mode, role switch in multiple standby mode
guarantees no data is lost between the old primary and new primary.
Other standbys configured in the new primary's hadr_target_list
configuration parameter are automatically redirected to the new primary
and continue receiving logs. If you are issuing the TAKEOVER HADR
command on an auxiliary standby and you have IBM Tivoli System
Automation for Multiplatforms (SA MP) configured, you must ensure that
you disable SA MP before attempting the takeover. You cannot failback the
primary role to the auxiliary primary if SA MP is enabled.

Failover

Just as in single standby mode, if a failover results in any data loss in
multiple standby mode (meaning that the new primary does not have all
of the data of the old primary), the old and new primary's log streams
diverge and the old primary has to be reinitialized. For the other standbys,
if a standby received logs from the old primary beyond the diverge point,
it has to be reinitialized. Otherwise, it can connect to the new primary and
continue log shipping and replay. As a result, it is very important that you
check the log positions of all of the standbys and choose the standby with
the most data as the failover target. You can query this information using
the db2pd command or the MON_GET_HADR table function.

Chapter 17. High availability disaster recovery (HADR) 447

Note: Successful automatic reconfiguration of a standby's
hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration
parameters to point to the new primary does not mean the standby will be
accepted to pair with the new primary. It only allows the standby to make
a TCP connection to the primary. Upon connection, if DB2 determines that
the two databases have diverging log streams, the pairing request will be
rejected and the connection closed.

Scenario: Deploying an HADR multiple standby database
setup

This scenario describes the planning, configuring, and deploying of an HADR
setup for a bank called ExampleBANK. The setup has three standby databases: one
principal standby and two auxiliary standbys.

Background

Because banking is a 24x7 business, high availability is crucial to ExampleBANK's
technology strategy. In addition, ExampleBANK experienced a close call with a
hurricane hitting City A, where its head office is located, so the bank also requires
a disaster recovery strategy. High availability disaster recovery (HADR) offers a
solution that can help the bank achieve both of these goals with a single
technology: HADR multiple standby databases.

ExampleBANK considers the following requirements essential for its HADR
solution:

An aggressive recovery time objective
As a bank that offers 24-hour online service, ExampleBANK wants to
minimize the time that applications cannot connect to their database.

An aggressive recovery point objective
ExampleBANK cannot tolerate data loss, so the RPO should be as close to
0 as possible.

Near-zero planned downtime
ExampleBANK's database should be available as much as possible, even
through planned activities such as upgrades and maintenance.

Data protection through geographic dispersion
As part of its compliance standards, ExampleBANK wants the capability to
recover operations at a remote location.

Easy deployment and management
ExampleBANK's overburdened IT department wants a solution that is
relatively simple to configure and that has automation capabilities.

As the following scenarios illustrate, using the HADR feature in multiple standby
mode helps ExampleBANK meet all these requirements.

Planning for a multiple standby setup

ExampleBANK wants to have both high availability and disaster recovery
protection from its HADR setup, so the bank decides to use the maximum number
of standbys: three. To achieve the RTO, the bank must have a standby that is in
close synchronization with the primary (a standby that uses SYNC or NEARSYNC
mode) and is collocated with the primary. It makes the most sense to have this
standby be the principal standby because only that standby supports all

448 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

synchronization modes. Both the primary and the principal standby are located in
ExampleBANK's head office in City A and are connected by a LAN.

In addition, to protect the bank's data from being lost because of a disaster, the
ExampleBANK DBA chooses to set up two standbys in the bank's regional office in
City B. The regional office is connected to the head office in City A by a WAN. The
distance between the two cities will not affect the primary because the standbys
are auxiliary standbys, which automatically run in SUPERASYNC mode. The DBA
can provide additional justification for the costs of these additional databases by
setting up one of them to use the reads on standby feature and the other to use the
time-delayed replay feature. Also, these standbys can help maintain database
availability through a rolling update or maintenance scenario, preventing the loss
of HADR protection.

Configuring a multiple standby setup

The ExampleBANK DBA takes a backup of the intended primary database,
HADR_DB:
DB2 BACKUP DB hadr_db TO backup_dir

The DBA then restores the backup onto each of the intended standby hosts by
issuing the following command:
DB2 RESTORE DB hadr_db FROM backup_dir

Tip: For more information about options for creating a standby, see “Initializing a
standby database” on page 479.

For the initial setup, the ExampleBANK DBA decides that most of the default
configuration settings are sufficient. However, as in a regular HADR setup, the
following database configuration parameters must be explicitly set:
v hadr_local_host

v hadr_local_svc

v hadr_remote_host

v hadr_remote_inst

v hadr_remote_svc

To obtain the correct values for those configuration parameters, the DBA
determines the host name, port number, and instance name of the four databases
that will be in the HADR setup:

Table 27. Host name, port number, and instance name for databases

Intended role Host name Port number Instance name

Primary host1 10 dbinst1

Principal standby host2 40 dbinst2

Auxiliary standby host3 41 dbinst3

Auxiliary standby host4.ibm.com 42 dbinst4

On the primary, the settings for the hadr_remote_host, hadr_remote_inst, and
hadr_remote_svc configuration parameters correspond to the host name, instance
name, and port number of the principal standby. On the standbys, the values of
these configuration parameters correspond to the host name, port number, and
instance name of the primary. In addition, the DBA uses the host name and port
values to set the hadr_target_list configuration parameter on all the databases.
Also, although it is not required, the DBA adds the information about all the

Chapter 17. High availability disaster recovery (HADR) 449

standbys in the setup to the target list of each of the other standbys. For more
information about this topic, see “Database configuration for high availability
disaster recovery (HADR)” on page 485.

As mentioned earlier, the bank wants the closest possible synchronization between
the primary and principal standby, so the DBA sets the hadr_syncmode parameter
on the primary to SYNC. Although the principal standby will automatically have
its effective synchronization mode set to SYNC after it connects to the primary, the
DBA still sets the hadr_syncmode parameter to SYNC on the principal standby. The
reason is that if the principal standby switches role with the primary, the
synchronization mode for the new primary and principal standby pair will also be
SYNC.

The DBA decides to specify host2, which is in a different city from the auxiliary
standbys, as the principal standbys for the auxiliary standbys. If one of the
auxiliaries becomes the primary, SUPERASYNC would be a good synchronization
mode between the primary and the remotely located host2. Thus DBA sets the
hadr_syncmode parameter on the auxiliary standbys to SUPERASYNC, although the
auxiliary standbys will automatically have their effective synchronization modes
set to SUPERASYNC after they connect to the primary. For more information about
this topic, see “High Availability Disaster Recovery (HADR) synchronization
mode” on page 431.

Finally, the DBA has read about the new HADR delayed replay feature, which can
be used to intentionally keep a standby database at a point in time that is earlier
than the primary by delaying replay of logs. The DBA decides that enabling this
feature would improve ExampleBANK's data protection against errant transactions
on the primary. The DBA chooses host4, an auxiliary standby, for this feature, and
makes a note that this feature must be disabled before host4 can take over as the
primary database. For more information about this topic, see “HADR delayed
replay” on page 463.

The DBA issues the following commands to update the configuration parameters
on each of the databases:
v On host1 (the primary):

DB2 "UPDATE DB CFG FOR hadr_db USING
HADR_TARGET_LIST host2:40|host3:41|host4:42
HADR_REMOTE_HOST host2
HADR_REMOTE_SVC 40
HADR_LOCAL_HOST host1
HADR_LOCAL_SVC 10
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst2"

v On host2 (the principal standby):
DB2 "UPDATE DB CFG FOR hadr_db USING

HADR_TARGET_LIST host1:10|host3:41|host4:42
HADR_REMOTE_HOST host1
HADR_REMOTE_SVC 10
HADR_LOCAL_HOST host2
HADR_LOCAL_SVC 40
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst1"

v On host3 (an auxiliary standby):
DB2 "UPDATE DB CFG FOR hadr_db USING

HADR_TARGET_LIST host2:40|host1:10|host4:42
HADR_REMOTE_HOST host1
HADR_REMOTE_SVC 10

450 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

HADR_LOCAL_HOST host3
HADR_LOCAL_SVC 41
HADR_SYNCMODE superasync
HADR_REMOTE_INST db2inst1"

v On host4 (an auxiliary standby):
DB2 "UPDATE DB CFG FOR hadr_db USING

HADR_TARGET_LIST host2.:40|host1:10|host3:41
HADR_REMOTE_HOST host2
HADR_REMOTE_SVC 10
HADR_LOCAL_HOST host4
HADR_LOCAL_SVC 42
HADR_SYNCMODE superasync
HADR_REMOTE_INST db2inst1
HADR_REPLAY_DELAY 86400"

Finally, the ExampleBANK DBA wants to enable the HADR reads on standby
feature for the following reasons:
v To make online changes to some of the HADR configuration parameters on the

standbys
v To call the MON_GET_HADR table function on the standbys
v To divert some of the read-only workload from the primary

The DBA updates the registry variables on the standby databases by issuing the
following commands on each of host2, host3, and host4:
DB2SET DB2_HADR_ROS=ON
DB2SET DB2_STANDBY_ISO=UR

Starting the HADR databases

The DBA starts the standby databases first, by issuing the following command on
each of host2, host3, and host 4:
DB2 START HADR ON DB hadr_db AS STANDBY

Next, the DBA starts HADR on the primary database, on host1:
DB2 START HADR ON DB hadr_db AS PRIMARY

To verify that HADR is up and running, the DBA queries the status of the
databases from the primary on host1 by issuing the db2pd command, which returns
information about all of the standbys:
db2pd -db hadr_db -hadr

Database Member 0 -- Database hadr_db -- Active -- Up 0 days 00:23:17 --
Date 06/08/2011 13:57:23

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SYNC
STANDBY_ID = 1

LOG_STREAM_ID = 0
HADR_STATE = PEER

PRIMARY_MEMBER_HOST = host1
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = host2
STANDBY_INSTANCE = db2inst2
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 3

Chapter 17. High availability disaster recovery (HADR) 451

PEER_WAIT_LIMIT(seconds) = 0
LOG_HADR_WAIT_CUR(seconds) = 0.000

LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SUPERASYNC
STANDBY_ID = 2

LOG_STREAM_ID = 0
HADR_STATE = REMOTE_CATCHUP

PRIMARY_MEMBER_HOST = host1
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = host3
STANDBY_INSTANCE = db2inst3
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:35:51.724447 (1307565351)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 16
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SUPERASYNC
STANDBY_ID = 3

LOG_STREAM_ID = 0
HADR_STATE = REMOTE_CATCHUP

PRIMARY_MEMBER_HOST = host1
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = host4

452 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

STANDBY_INSTANCE = db2inst4
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:46:51.561873 (1307566011)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 6
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

Examples: Takeover in HADR multiple standby mode
This set of examples of takeovers (both forced and unforced) in HADR multiple
standby mode is based on a three-standby setup. The purpose of these examples is
to show how the multiple standby automatic reconfiguration works in a takeover
situation.
v “A principal standby takes over gracefully (role switch)” on page 454
v “An auxiliary standby takes over by force (failover)” on page 455
v “An auxiliary standby takes over by force (failover) in a SA MP environment”

on page 457

The initial setup for each of the examples is as follows:
v a primary database (host1)
v a principal standby (host2)
v two auxiliary standbys (host3 and host4)

All of the databases are called hadr_db. The primary and principal standby have
their synchronization mode set to SYNC and the standbys have theirs set to
SUPERASYNC.

The configuration for each database is shown in Table 28.

Table 28. Configuration values for each HADR database

Configuration
parameter Host1 Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host1 host1 host1

hadr_remote_svc 40 10 10 10

hadr_remote_inst dbinst2 dbinst1 dbinst1 dbinst1

Chapter 17. High availability disaster recovery (HADR) 453

Table 28. Configuration values for each HADR database (continued)

Configuration
parameter Host1 Host2 Host3 Host4

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode
(Refers to the
explicitly set
synchronization
mode, which is
used if the database
becomes a primary)

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode
(Refers to the
synchronization
mode that is used if
the database is
currently a standby)

n/a SYNC SUPERASYNC SUPERASYNC

A principal standby takes over gracefully (role switch)

The DBA performs a takeover on the principal standby by issuing the following
command on host2:
DB2 TAKEOVER HADR ON DB hadr_db

After the takeover is completed successfully, host2 becomes the new primary and
host1, which is the first entry in the hadr_target_list of host2 (as shown in
Table 28 on page 453), becomes its principal standby. Their sync mode is SYNC
mode because host2 is configured with an hadr_syncmode of SYNC. The auxiliary
standby targets, host3 and host4, have their hadr_remote_host and
hadr_remote_svc pointing at the old primary, host1, but are automatically
redirected to the new primary, host2. In this redirection, host3 and host4 update
(persistently) their hadr_remote_host, hadr_remote_svc, and hadr_remote_inst
configuration parameters. They reconnect to host2 as auxiliary standbys, and are
told by host2 to use an effective synchronization mode of SUPERASYNC
(regardless of what they have locally configured for hadr_syncmode). They do not
update their settings for hadr_syncmode persistently. The configuration for each
database is shown inTable 29.

Table 29. Configuration values for each HADR database after a role switch. Rows 3 to 5 in
columns 4 and 5 have been bolded to show that they have been auto-reconfigured

Configuration
parameter Host1 Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host1 host2 host2

hadr_remote_svc 40 10 40 40

hadr_remote_inst dbinst2 dbinst1 dbinst2 dbinst2

hadr_local_host host1 host2 host3 host4

454 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 29. Configuration values for each HADR database after a role
switch (continued). Rows 3 to 5 in columns 4 and 5 have been bolded to show that they
have been auto-reconfigured

Configuration
parameter Host1 Host2 Host3 Host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

SYNC n/a SUPERASYNC SUPERASYNC

Note: A number of values are not updated for the following reasons
v Because host2 already has its hadr_remote_host and hadr_remote_svc

configuration parameters pointing at its principal standby, host1, these values
are not updated on host2.

v Because host1 already has its hadr_remote_host and hadr_remote_svc
configuration parameters pointing at the new primary, these values are not
updated on host1.

v Because host1's operational synchronization mode is SYNC and host3 and
host4's operational synchronization modes are SUPERASYNC, there is no change
for the effective synchronization mode.

An auxiliary standby takes over by force (failover)

A widespread power outage in City A results in the primary (host1) becoming
unavailable. Normally, the principal standby (host2) which is in SYNC mode
would be the best candidate for taking over and becoming the new primary, but
the power outage means that host2 is momentarily unavailable as well. The DBA
queries the two auxiliary standbys to determine which one has the most log data:
db2pd -hadr -db hadr_db | grep ’PRIMARY_LOG_FILE,PAGE,POS|STANDBY_LOG_FILE,PAGE,POS’

The DBA determines that host3 is the most up to date (although it is still a little
behind in log replay) and picks that host as the new primary:
DB2 TAKEOVER HADR ON DB hadr_db BY FORCE

After the takeover is completed successfully, host3 becomes the new primary.
Meanwhile, host2 becomes available again. host3 informs host2 and host4 that it is
now the primary. On host3, the values for hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst are reconfigured to point to host2, which is the principal standby
because it is the first entry in the hadr_target_list on host3. On host2, the
synchronization mode is reconfigured to SUPERASYNC because that is the setting
for hadr_syncmode on host3; in addition, the hadr_remote_host, hadr_remote_svc,
and hadr_remote_inst are updated (persistently). host4 is automatically redirected
to the new primary, host3. In this redirection, host4 updates (persistently) its
hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration
parameters. There is no automatic reconfiguration on host1 until it becomes
available again. The configuration for each database is shown inTable 30 on page
456.

Chapter 17. High availability disaster recovery (HADR) 455

Table 30. Configuration values for each HADR database after a failover. Rows 3 to 5 in
columns 3 to 5 have been bolded to show that they have been auto-reconfigured

Configuration
parameter

Host1
(unavailable) Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host3 host2 host3

hadr_remote_svc 40 41 40 41

hadr_remote_inst dbinst2 dbinst3 dbinst2 dbinst3

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

n/a SUPERASYNC n/a SUPERASYNC

After a short period of time, host1 becomes available. The DBA tries to start host1
as a standby, but because host1 has more logs than were propagated to host3,
host1 is rejected as part of the initial handshake with the new primary. The DBA
takes a backup of the new primary, restores it to host1, and starts HADR on that
host:
DB2 BACKUP DB hadr_db

DB2 RESTORE DB hadr_db

DB2 START HADR ON DB hadr_db AS STANDBY

As is shown inTable 31, host1 is reconfigured.

Table 31. Configuration values for a reintegrated standby. Various rows in column 2 have
been bolded to show that they have been auto-reconfigured

Configuration
parameter Host1 Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host3 host3 host2 host3

hadr_remote_svc 41 41 40 41

hadr_remote_inst dbinst3 dbinst3 dbinst2 dbinst3

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

SUPERASYNC SUPERASYNC n/a SUPERASYNC

If the DBA wants to make host1 the primary again, then all that is required is a
failback, which will restore the original configuration shown in Table 28 on page
453.

456 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

An auxiliary standby takes over by force (failover) in a SA MP
environment

This example is similar to the previous one, but HADR has been deployed with
IBM Tivoli System Automation for Multiplatforms (SA MP) to automate failover.

A power failure in City A results in the principal standby (host2) becoming
unavailable. Following that, there is an outage on the primary (host1). Normally,
SA MP, the cluster manager, would automatically fail over to the principal standby
(host2), but the power outage means that one of the auxiliary standbys needs to be
the takeover target. Failover cannot be automated to auxiliary standbys, so the
DBA must do it manually. However, before doing this, the DBA needs to ensure
that TSA is disabled so that if host1 or host2 become available, there is no
possibility for a split brain situation, in which more than one database is operating
independently as a primary. To do this, the DBA issues the following command on
host1 and host2 (whenever they become available):
db2haicu -disable

In addition, the DBA needs to keep host1 offline to eliminate the possibility that
the old primary will restart if a client connects to it.

The DBA queries the two auxiliary standbys to determine which one has the most
log data:
db2pd -hadr -db hadr_db | grep ’STANDBY_LOG_FILE,PAGE,POS’

The DBA determines that host3 is the most up to date and picks that host as the
new primary.

Then, the DBA issues the force takeover on host3:
DB2 TAKEOVER HADR ON DB hadr_db BY FORCE

After the takeover is completed successfully, host3 becomes the new primary.
Meanwhile, host2 becomes available again. host3 informs host2 and host4 that it is
now the primary. On host3, the values for hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst are reconfigured to point to host2, which is the principal standby
because it is the first entry in the hadr_target_list on host3. On host2, the
synchronization mode is reconfigured to SUPERASYNC because that is the setting
for hadr_syncmode on host3; in addition, the hadr_remote_host, hadr_remote_svc,
and hadr_remote_inst are updated (persistently). host4 is automatically redirected
to the new primary, host3. In this redirection, host4 updates (persistently) its
hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration
parameters. There is no automatic reconfiguration on host1. The configuration for
each database is shown inTable 32.

Table 32. Configuration values for each HADR database after a failover. Rows 3 to 5 in
columns 3 to 5 have been bolded to show that they have been auto-reconfigured

Configuration
parameter

Host1
(unavailable) Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host3 host2 host3

hadr_remote_svc 40 41 40 41

hadr_remote_inst dbinst2 dbinst3 dbinst2 dbinst3

Chapter 17. High availability disaster recovery (HADR) 457

Table 32. Configuration values for each HADR database after a failover (continued). Rows
3 to 5 in columns 3 to 5 have been bolded to show that they have been auto-reconfigured

Configuration
parameter

Host1
(unavailable) Host2 Host3 Host4

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

n/a SUPERASYNC n/a SUPERASYNC

HADR reads on standby feature
You can use the reads on standby capability to run read-only operations on the
standby database in your High Availability and Disaster Recovery (HADR)
solution. Read operations running on a standby do not affect the standby's main
role of replaying logs shipped from the primary database.

The reads on standby feature reduces the total cost of ownership of your HADR
setup. This expanded role of the standby database allows you to utilize the
standby in new ways, such as running some of the workload that would otherwise
be running on your primary database. This, in turn frees up the primary for
additional workloads.

Read and write clients continue to connect to the primary database; however read
clients can also connect to the read-enabled standby, or active standby, as long as it
is not in the local catchup state or the replay-only window. An active standby's
main role is still to replay logs shipped from the primary. As a result, the data on
the standby should be virtually identical to the data on the primary. In the event of
a failover, any user connections to the standby will be terminated while the
standby takes over as the new primary database.

All types of read queries, including scrollable and non-scrollable cursors, are
supported on the standby. Read capability is supported in all four HADR
synchronization modes (SYNC, NEARSYNC, ASYNC, and SUPERASYNC) and in
all HADR states except local catchup.

Enabling reads on standby
You can enable the reads on standby feature on your High Availability and
Disaster Recovery (HADR) standby database using the DB2_HADR_ROS registry
variable.

Before you begin

It is recommended that database configuration parameter logindexbuild be set to
ON. This will prevent a performance impact from query access plans avoiding any
invalid indexes.

It is also recommended that you use a virtual IP when you have reads on standby
enabled. Client reroute does not differentiate between writable databases (primary
and standard databases) and read-only databases (standby databases). Configuring
client reroute between the primary and standby might route applications to the
database on which they are not intended to be run.

458 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

About this task

You cannot use automatic client reroute (ACR) if you enable reads on standby.

Procedure
1. Set the DB2_HADR_ROS registry variable to ON.
2. Set up and initialize the primary and standby databases for HADR. Refer to

“Initializing high availability disaster recovery (HADR)” on page 477.

Results

Your standby database is now considered an active standby, meaning that it will
accept read-only workloads.

What to do next

You can now utilize your standby database as you see fit, such as configuring
some of your read-only workload to run on it.

To enable your applications to maintain access to your standby database, follow
the steps described in the “Continuous access to Read on Standby databases using
Virtual IP addresses” white paper.

Data concurrency on the active standby database
Changes on the HADR primary database may not necessarily be reflected on the
HADR active standby database. Uncommitted changes on the primary may not
replicate to the standby until the primary flushes, or sends, its logs to disk.

Logs are only guaranteed to be flushed to disk-and, therefore sent to the
standby-after they have been committed. Log flushes can also be triggered by
undeterministic conditions such as a log buffer full situation. As a result, it is
possible for uncommitted changes on the primary to remain in the primary's log
buffer for a long time. Because the logger avoids flushing partial pages, this
situation may particularly affect small uncommitted changes on the primary.

If your workload running on the standby requires the data to be virtually identical
to the data on the primary, you should consider committing your transactions
more frequently.

Isolation level on the active standby database
The only isolation level that is supported on an active standby database (an HADR
standby database that is read enabled) is Uncommitted Read (UR). If the isolation
level requested by an application, statement, or sub-statement is higher than UR,
an error will be returned (SQL1773N Reason Code 1).

If you require an isolation level other than UR, consider using the HADR primary
instead of the standby for this application. If you simply want to avoid receiving
this message, set the DB2_STANDBY_ISO registry variable to UR. When
DB2_STANDBY_ISO is set to UR, the isolation level will be silently coerced to UR. This
setting takes precedence over all other isolation settings such as statement isolation
and package isolation.

Replay-only window on the active standby database
When an HADR active standby database is replaying DDL log records or
maintenance operations, the standby enters the replay-only window. When the

Chapter 17. High availability disaster recovery (HADR) 459

https://www.ibm.com/support/docview.wss?uid=swg27020912
https://www.ibm.com/support/docview.wss?uid=swg27020912

standby is in the replay-only window, existing connections to the standby are
terminated and new connections to the standby are blocked (SQL1776N).

New connections are allowed on the standby after the replay of all active DDL or
maintenance operations has completed.

The only user connections that can remain active on a standby in the replay-only
window are connections that are executing DEACTIVATE DATABASE or TAKEOVER
commands. When applications are forced off at the outset of the replay-only
window, an error is returned (SQL1224N). Depending on the number of readers
connected to the active standby, there may be a slight delay before the DDL log
records or maintenance operations are replayed on the standby.

There are a number of DDL statements and maintenance operations that, when run
on the HADR primary, will trigger a replay-only window on the standby. The
following lists are not exhaustive.

DDL statements

v CREATE, ALTER, or DROP TABLE (except DROP TABLE for DGTT)
v CREATE GLOBAL TEMP TABLE
v TRUNCATE TABLE
v RENAME TABLE
v RENAME TABLESPACE
v CREATE, DROP, or ALTER INDEX
v CREATE or DROP VIEW
v CREATE, ALTER, or DROP TABLESPACE
v CREATE, ALTER, or DROP BUFFER POOL
v CREATE, ALTER, or DROP FUNCTION
v CREATE, ALTER, or DROP PROCEDURE
v CREATE or DROP TRIGGER
v CREATE, ALTER, or DROP TYPE
v CREATE, ALTER, or DROP ALIAS
v CREATE or DROP SCHEMA
v CREATE, ALTER, or DROP METHOD
v CREATE, ALTER, or DROP MODULE
v CREATE, ALTER, or DROP NICKNAME
v CREATE, ALTER, or DROP SEQUENCE
v CREATE, ALTER, or DROP WRAPPER
v CREATE, ALTER, or DROP FUNCTION MAPPING
v CREATE or DROP INDEX EXTENSION
v CREATE or DROP INDEX FOR TEXT
v CREATE or DROP EVENT MONITOR
v CREATE, ALTER, or DROP SECURITY LABEL
v CREATE, ALTER, or DROP SECURITY LABEL COMPONENT
v CREATE, ALTER, or DROP SECURITY POLICY
v CREATE or DROP TRANSFORM
v CREATE, ALTER, or DROP TYPE MAPPING
v CREATE, ALTER, or DROP USER MAPPING

460 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v CREATE or DROP VARIABLE
v CREATE, ALTER, or DROP WORKLOAD
v GRANT USAGE ON WORKLOAD
v REVOKE USAGE ON WORKLOAD
v CREATE, ALTER, or DROP SERVICE CLASS
v CREATE, ALTER, or DROP WORK CLASS SET
v CREATE, ALTER, or DROP WORK ACTION SET
v CREATE, ALTER, or DROP THRESHOLD
v CREATE, ALTER, or DROP HISTOGRAM TEMPLATE
v AUDIT
v CREATE, ALTER, or DROP AUDIT POLICY
v CREATE or DROP ROLE
v CREATE, ALTER, or DROP TRUSTED CONTEXT
v REFRESH TABLE
v SET INTEGRITY

Maintenance operations

v Classic, or offline, reorg
v Inplace, or online, reorg
v Index reorg (indexes all, individual index)
v MDC and ITC reclaim reorg
v Load
v Bind or rebind
v db2rbind
v Runstats
v Table move
v Auto statistics
v Auto reorg
v Real Time Statistics

Other operation or actions

v Automatic Dictionary Creation for tables with COMPRESS YES attribute
v Asynchronous Index Cleanup on detached table partition
v Implicit rebind
v Implicit index rebuild
v Manual update of statistics.
v Deferred MDC rollout
v Asynchronous Index cleanup after MDC rollout
v Reuse of a deleted MDC or ITC block on insert into MDC or ITC table
v Asynchronous background processes updating catalog tables SYSJOBS and

SYSTASKS for inserting, updating, and deleting tasks

Monitoring the replay-only window

You can monitor the replay-only window using the db2pd command with the -hadr
option (on either the standby or the primary) or the MON_GET_HADR table

Chapter 17. High availability disaster recovery (HADR) 461

function (from the primary). The standby's status, including information about the
replay-only window, is sent to the primary on every heartbeat.

There are three pertinent elements to monitor:
v STANDBY_REPLAY_ONLY_WINDOW_ACTIVE, which indicates whether DDL

or maintenance-operation replay is in progress on the standby. Normally, the
value is N, but when the replay-only window is active, the value is Y.

v STANDBY_REPLAY_ONLY_WINDOW_START, which indicates the time at
which the current replay-only window (if there is one) became active.

v STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT, which indicates the
total number of existing uncommitted DDL or maintenance transactions
executed so far in the current replay-only window (if there is one).

To use the table function, issue something similar to the following query on the
primary:
select STANDBY_ID, STANDBY_REPLAY_ONLY_WINDOW_ACTIVE, STANDBY_REPLAY_ONLY_WINDOW_START,
STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT from table (mon_get_hadr(NULL))

Here is an example using the db2pd command on a standby that is currently in a
replay-only window:
db2pd -hadr db HADRDB

Database Member 0 -- Database HADRDB -- Active -- Up 0 days 00:23:17 -- Date 06/08/2011 13:57:23

HADR_ROLE = STANDBY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = NEARSYNC
STANDBY_ID = 1

LOG_STREAM_ID = 0
HADR_STATE = PEER

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst

PRIMARY_MEMBER = 0
STANDBY_MEMBER_HOST = hostS1.ibm.com

STANDBY_INSTANCE = db2inst
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)

HEARTBEAT_INTERVAL(seconds) = 25
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 3
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

STANDBY_RECV_REPLAY_GAP(bytes) = 0
PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

462 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = Y
STANDBY_REPLAY_ONLY_WINDOW_START = 06/08/2011 13:50:23

STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT = 5

Recommendations for minimizing the impact of the replay-only window

Because replay operations on an HADR standby take priority over readers,
frequent read-only windows can be disruptive to readers connected to or
attempting to connect to the standby. To avoid or minimize this impact, consider
the following recommendations:
v Run DDL and maintenance operations during a scheduled maintenance window,

preferably at off-peak hours.
v Run DDL operations collectively rather than in multiple groups.
v Run REORG or RUNSTATS only on the required tables instead of all tables.
v Terminate applications on the active standby using the FORCE APPLICATION

command with the ALL option before running the DDL or maintenance
operations on the primary. Monitor the replay-only window to determine when
it is inactive, and redeploy the applications on the standby.

HADR delayed replay
HADR delayed replay helps prevent data loss due to errant transactions. To
implement HADR delayed replay, set the hadr_replay_delay database
configuration parameter on the HADR standby database.

Delayed replay intentionally keeps the standby database at a point in time that is
earlier than that of the primary database by delaying replay of logs on that
standby. If an errant transaction is executed on the primary, you have until the
configured time delay has elapsed to take action to prevent the errant transaction
from being replayed on the standby. To recover the lost data, you can either copy
this data back to the primary, or you can have the standby take over as the new
primary database.

Delayed replay works by comparing timestamps in the log stream, which is
generated on the primary, and the current time of the standby. As a result, it is
important to synchronize the clocks of the primary and standby databases.
Transaction commit is replayed on the standby according to the following
equation:
(current time on the standby - value of the hadr_replay_delay configuration parameter) >=
timestamp of the committed log record

You should set the hadr_replay_delay database configuration parameter to a large
enough value to allow time to detect and react to errant transactions on the
primary.

You can use this feature in either single standby mode or multiple standby mode.
In multiple standby mode, typically one or more standbys stays current with the
primary for high availability or disaster recovery purposes, and one standby is
configured with delayed replay for protection against errant transactions. If you
use this feature in single standby mode, you should not enable IBM Tivoli System
Automation for Multiplatforms because the takeover will fail.

There are several important restrictions for delayed replay:
v You can set the hadr_replay_delay configuration parameter only on a standby

database.

Chapter 17. High availability disaster recovery (HADR) 463

v A TAKEOVER command on a standby with replay delay enabled will fail. You
must first set the hadr_replay_delay configuration parameter to 0 and then
deactivate and reactivate the standby to pick up the new value, and then issue
the TAKEOVER command.

v The delayed replay feature is supported only in SUPERASYNC mode. Because
log replay is delayed, a lot of unreplayed log data might accumulate on the
standby, filling up receive buffer and spool (if configured). In other
synchronization modes, this would cause the primary to be blocked.
The objective of this feature is to protect against application error. If you want to
use this feature and ensure that there is no data loss in the event of a primary
failure, consider a multiple standby setup with a more synchronous setting on
the principal standby.

Recommendations

Delayed replay and disaster recovery
Consider using a small delay if you are using the standby database for
disaster recovery purposes and errant transaction protection.

Delayed replay and the HADR reads on standby feature
Consider using a small delay if you are using the standby database for
reads on standby purposes, so that reader sessions can see more up-to-date
data. Additionally, because reads on standby runs in “uncommitted read”
isolation level, it can see applied, but not yet committed changes that are
technically still delayed from replay. These uncommitted transactions can
be rolled back in errant transaction recovery procedure when you roll
forward the standby to the PIT that you want and then stop.

Delayed replay and log spooling
If you enable delayed replay, it is recommended that you also enable log
spooling by setting the hadr_spool_limit database configuration
parameter. Because of the intentional delay, the replay position can be far
behind the log receive position on the standby. Without spooling, log
receive can only go beyond replay by the amount of the receive buffer.
With spooling, the standby can receive many more logs beyond the replay
position, providing more protection against data loss in case of primary
failure. Note that in either case, because of the mandatory SUPERASYNC
mode, the primary won't be blocked by the delayed replay.

Recovering data by using HADR delayed replay
Using the HADR time-delayed replay feature, you can recover data that was lost
because of an errant transaction on the primary database by stopping HADR on a
standby before that transaction is replayed.

Before you begin

Delayed replay must have already been enabled for your standby database.

If log replay on the standby, indicated by STANDBY_REPLAY_LOG_TIME, has
passed the commit time for the errant transaction on the standby, you cannot
recover the data using the following procedure. You can determine the
STANDBY_REPLAY_LOG_TIME by using the db2pd command with the -hadr
parameter or the MON_GET_HADR table function.

464 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Restriction: A standby database for which you set the hadr_replay_delay
configuration parameter cannot take over as a primary; you must first disable
delayed replay on that standby.

Procedure

To recover from an errant transaction, perform the following steps on the standby
on which you enabled delayed replay:
1. Verify the timing:

a. Ensure that standby has not yet replayed the transaction. The
STANDBY_REPLAY_LOG_TIME value must not have reached the errant
transaction commit time.

b. Ensure that the standby has received the relevant logs. The
STANDBY_LOG_TIME value, which indicates logs received, must have
reached a PIT before the errant transaction commit time, but close to the
errant transaction commit time. This will be the rollforward PIT used in
step 3. If the standby has not yet received enough log files, you can wait
until more logs are shipped over, but you run the risk of the replay time
reaching the errant transaction time. For example, if the delay is 1 hour, you
should stop HADR no later than 50 minutes after the errant transaction
time (allowing a 10-minute safety margin), even if log shipping has yet not
reached the PIT that you want.
Alternatively, if a shared log archive is available and the logs are already
archived, then there is no need to wait. If the logs are not archived yet, the
logs can be archived using the ARCHIVE LOG command. Otherwise, the user
can manually copy complete log files from the primary to the time-delayed
standby (the overflow log path is preferred, otherwise, use the log path).
For these alternate methods, deactivate the standby first to avoid
interference with standby log shipping and replay.

You can determine these times by issuing db2pd -db dbname -hadr or by
enabling the reads on standby feature on the standby and then issuing the
following query, which uses the MON_GET_HADR table function:
DB2 "select HADR_ROLE, STANDBY_ID, STANDBY_LOG_TIME, STANDBY_REPLAY_LOG_TIME,
varchar(PRIMARY_MEMBER_HOST,20) as PRIMARY_MEMBER_HOST,
varchar(STANDBY_MEMBER_HOST,20) as STANDBY_MEMBER_HOST
from table (mon_get_hadr(NULL))"

2. Stop HADR on the standby database:
DB2 STOP HADR ON DATABASE dbname

3. Roll forward the standby to the PIT that you want and then stop:
DB2 ROLLFORWARD DB dbname to time-stamp and STOP

4. Use one of the following approaches:
v Restore the lost data on the primary:

a. Copy the affected data from the standby and send it back to the primary.
If the errant transaction dropped a table, you could export it on the
standby and import it to the primary. If the errant transaction deleted
rows from a table, you could export the table on the standby and use an
import replace operation on the primary.

b. Reinitialize the delayed-replay standby because its log stream has
diverged from the primary's. No action is needed on any other standbys
because they continue to follow the primary and any data repair on the
primary is also replicated to them.

Chapter 17. High availability disaster recovery (HADR) 465

c. Restore the database using a backup image taken on the primary. The
image can be one taken at any time.

d. Remove all log files in standby log path. This step is important. The
ROLLFORWARD... STOP command in step 3 made the database log stream
diverge from the primary. If the files are left alone, the newly restored
database would follow that log stream and also diverge from the primary.
Alternatively, you can drop the database before the restore for a clean
start, but then you will also lose the current configuration including
HADR configuration.

e. Issue the START HADR command with the AS STANDBY option on the
database. The database should then activate and connect to the primary.

v Have the standby with the intact data become the primary:
a. Shut down the old primary to avoid split brain
b. On the delayed-replay database, set the hadr_replay_delay configuration

parameter to 0. Reconfigure the other parameters like hadr_target_list if
needed. Then run START HADR command with the AS PRIMARY BY FORCE
options on the database to convert it to the new primary. Use the BY
FORCE option because there is no guarantee that the configured principal
standby (which could be the old primary) will be able to connect.

c. Redirect clients to the new primary.
d. The other standbys will be automatically redirected to the new primary.

However, if a standby received logs from the old primary beyond the
point where old and new primary diverge (the PIT used in step 3), it will
be rejected by the new primary. If this happens, reinitialize this standby
using the same procedure as reinitializing the old primary.

e. Reinitialize the old primary because its log stream has diverged from the
new primary's.

f. Restore database using a backup image taken on the new primary, or
taken on the old primary before the PIT used in step 3.

g. Remove all log files in the log path. If you do not do this, the newly
restored database will follow the old primary's log stream and diverge
from the new primary. Alternatively, you can drop the database before
the restore for a clean start, but then you also lose the current
configuration including HADR configuration.

h. Issue the START HADR command with the AS STANDBY option on the
database. The database should then activate and connect to the primary.

Performing rolling updates in a DB2 High Availability Disaster
Recovery (HADR) environment

Use this procedure in a high availability disaster recovery (HADR) environment
when you upgrade software or hardware, update your DB2 database product
software, or change database configuration parameters.

This procedure keeps database service available throughout the rolling update
process, with only a momentary service interruption when processing is switched
from one database to the other.With multiple standbys, you can provide continued
HA and DR protection throughout the rolling update process.

Before you begin

Review the system requirements for HADR. See “System requirements for DB2
high availability disaster recovery (HADR)” on page 469.

466 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The HADR pair should be in peer state before starting the rolling update.

If you have two HADR databases (databaseA and database B) set up the following
way, perform a role switch on one database so that both primaries are on the same
system during the fix pack update:
v The primary for databaseA runs on system1, and the standby runs on system2
v The primary for databaseB runs on system2, and the standby runs on system1

The overall capacity of the databases might be reduced, but it keeps both database
online during the procedure.

Note: All DB2 fix pack updates, hardware upgrades, and software upgrades
should be implemented in a test environment before being applied to your
production system.

About this task

Use this procedure to perform a rolling update on your DB2 database system and
update the DB2 database product software from one modification level to another.
For example, applying a fix pack to a DB2 database product software. During
rolling updates, the modification level or fix pack level of the standby database can
be later than that of the primary database while testing the new level. However,
you should not keep this configuration for an extended period to reduce the risk of
using features that might be incompatible between the levels. The primary and
standby databases will not connect to each other if the modification level of the
DB2 database product software for the primary database is later than that of the
standby database.

A rolling update cannot be used to upgrade from an earlier version to a later
version of a DB2 database product software. For example, you cannot use this
procedure to upgrade a DB2 database product from Version 9.7 to Version 10.1.

You cannot use this procedure to update the DB2 HADR configuration parameters.
Updates to HADR configuration parameters should be made separately. Because
HADR requires the parameters on the primary and standby to be the same, this
might require both the primary and standby databases to be deactivated and
updated at the same time.

Procedure

To perform a rolling update in an HADR environment:
1. Update the standby database by issuing the following steps:

a. Use the DEACTIVATE DATABASE command to shut down the standby database.
b. If necessary, shut down the instance on the standby database.
c. Change one or more of the following: the software, the hardware, or the

DB2 configuration parameters.

Note: You cannot change any HADR configuration parameters when
performing a rolling update.

d. If necessary, restart the instance on the standby database.
e. Use the ACTIVATE DATABASE command to restart the standby database.
f. Ensure that HADR enters peer state. Use the MON_GET_HADR table

function (on the primary or a read-enabled standby) or the db2pd command
with the -hadr option to check this.

Chapter 17. High availability disaster recovery (HADR) 467

2. Switch the roles of the primary and standby databases:
a. Issue the TAKEOVER HADR command on the standby database.
b. Direct clients to the new primary database. This can be done using

automatic client reroute.

Note: Because the standby database takes over as the primary database, the
new primary database is now updated. If you are applying a DB2 fix pack,
the TAKEOVER HADR command changes the role of the original primary
database to standby database. However, the command does not let the new
standby database connect to the newly updated primary database. Because
the new standby database uses an older version of the DB2 database
system, it might not understand the new log records generated by the
updated primary database, and it will be shut down. In order for the new
standby database to reconnect with the new primary database (that is, for
the HADR pair to reform), the new standby database must also be updated.

3. Update the original primary database (which is now the standby database)
using the same procedure as in step 1 on page 467. When you have done this,
both databases are updated and connected to each other in HADR peer state.
The HADR system provides full database service and full high availability
protection.

4. Optional: To enable the HADR reads on standby feature during the rolling
update perform the following steps to ensure the consistency of the internal
DB2 packages on the standby database before read operations are introduced.
The binding of internal DB2 packages occurs at first connection time, and can
complete successfully only on the primary database.
a. Enable the HADR reads on standby feature on the standby database as

follows:
1) Set the DB2_HADR_ROS registry variable to ON on the standby database.
2) Use the DEACTIVATE DATABASE command to shut down the standby

database.
3) Restart the instance on the standby database.
4) Use the ACTIVATE DATABASE command to restart the standby database.
5) Ensure that HADR enters peer state. Use the MON_GET_HADR table

function (on the primary or a read-enabled standby) or the db2pd
command with the -hadr option to check this.

b. Switch the roles of the primary and standby database as follows:
1) Issue the TAKEOVER HADR command on the standby database.
2) Direct clients to the new primary database.

c. Repeat the same procedure in substep a to enable the HADR reads on
standby feature on the new standby database.

5. Optional: If did not perform step 4 and you want to return to your original
configuration, switch the roles of the primary and standby database as you did
in step 2.

6. Optional: In an HADR environment, run db2updv10 only on the primary
database. After running the db2updv10 command, you might have to restart the
database for changes from db2updv10 command to take effect. To perform a
restart:
a. Restart the standby database by deactivating and reactivating it. The

standby database is restarted to prevent the disruption of primary database
service.
1) Run the following command on the standby database:

468 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

DEACTIVATE
db dbname

where dbname is the name of the standby database.
2) Run the following command on the standby database:

ACTIVATE
db dbname

where dbname is the name of the standby database.
b. Switch the roles of the primary and standby databases:

1) Run the following command on the standby database:
TAKEOVER
hadr on db dbname

where dbname is the name of the standby database.
2) Direct clients to the new primary database.

Note: The databases have switched roles. The primary database was
previously the standby database and the standby database was
previously the primary database.

c. Restart the standby database (formerly the primary database), using the
same method as in Step 1.

d. Switch the roles of the primary and standby databases to return the
database to their original roles. Switch the roles using the same method as
in step 2.

High availability disaster recovery (HADR) support
Consider system requirements and feature limitations when designing your high
availability database solution.

System requirements for DB2 high availability disaster
recovery (HADR)

To achieve optimal performance with high availability disaster recovery (HADR),
ensure that your system meets the following requirements for hardware, operating
systems, and for the DB2 database system.

Recommendation: For better performance, use the same hardware and software for
the system where the primary database resides and for the system where the
standby database resides. If the system where the standby database resides has
fewer resources than the system where the primary database resides, it is possible
that the standby database will be unable to keep up with the transaction load
generated by the primary database. This can cause the standby database to fall
behind or the performance of the primary database to degrade. In a failover
situation, the new primary database should have the resources to service the client
applications adequately.

If you enable reads on standby and use the standby database to run some of your
read-only workload, ensure that the standby has sufficient resources. An active
standby requires additional memory and temporary table space usage to support
transactions, sessions, and new threads as well as queries that involve sort and join
operations.

Chapter 17. High availability disaster recovery (HADR) 469

Hardware and operating system requirements

Recommendation: Use identical host computers for the HADR primary and
standby databases. That is, they should be from the same vendor and have the
same architecture.

The operating system on the primary and standby databases should be the same
version, including patches. When the rolling update procedure is used to upgrade
the operating system, the operating system versions can be different on the
primary and standby during the procedure. To minimize risks, plan ahead to have
the procedure completed in a short time and try it out first in a test environment

A TCP/IP interface must be available between the HADR host machines, and a
high-speed, high-capacity network is recommended.

DB2 database requirements

The versions of the database systems for the primary and standby databases must
be identical; for example, both must be either version 8 or version 9. During rolling
updates, the modification level (for example, the fix pack level) of the database
system for the standby database can be later than that of the primary database for
a short while to test the new level. However, you should not keep this
configuration for an extended period of time. The primary and standby databases
will not connect to each other if the modification level of the database system for
the primary database is later than that of the standby database. In order to use the
reads on standby feature, both the primary and the standby databases need to be
Version 9.7 Fix Pack 1.

The DB2 database software for both the primary and standby databases must have
the same bit size (32 or 64 bit). Table spaces and their containers must be identical
on the primary and standby databases. Properties that must be identical include
the table space type (DMS or SMS), table space size, container path, container size,
and container file type (raw device or file system). The amount of space allocated
for log files should also be the same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE
TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the
standby database. You must ensure that the devices involved are set up on both of
the databases before you issue the table space statement on the primary database.

The primary and standby databases do not require the same database path. If
relative container paths are used, the same relative path might map to different
absolute container paths on the primary and standby databases.

Storage groups are fully supported by HADR, including replication of the CREATE
STOGROUP, ALTER STOGROUP and DROP STOGROUP statements. Similar to
table space containers, the storage paths must exist on both primary and standby.

The primary and standby databases must have the same database name. This
means that they must be in different instances.

Redirected restore is not supported. That is, HADR does not support redirecting
table space containers. However, database directory and log directory changes are
supported. Table space containers created by relative paths will be restored to
paths relative to the new database directory.

470 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Buffer pool requirements

Since buffer pool operations are also replayed on the standby database, it is
important that the primary and standby databases have the same amount of
memory. If you are using reads on standby, you will need to configure the buffer
pool on the primary so that the active standby can accommodate log replay and
read applications.

Installation and storage requirements for high availability
disaster recovery (HADR)

To achieve optimal performance with high availability disaster recovery (HADR),
ensure that your system meets the following installation and storage requirements.

Installation requirements

For HADR, instance paths should be the same on the primary and the standby
databases. Using different instance paths can cause problems in some situations,
such as if an SQL stored procedure invokes a user-defined function (UDF) and the
path to the UDF object code is expected to be on the same directory for both the
primary and standby server.

Storage requirements

Storage groups are fully supported by HADR, including replication of the CREATE
STOGROUP, ALTER STOGROUP and DROP STOGROUP statements. Similar to
table space containers, the storage path must exist on both primary and standby.
Symbolic links can be used to create identical paths. The primary and standby
databases can be on the same computer. Even though their database storage starts
at the same path, they do not conflict because the actual directories used have
instance names embedded in them (since the primary and standby databases must
have the same database name, they must be in different instances). The storage
path is formulated as storage_path_name/inst_name/dbpart_name/db_name/
tbsp_name/container_name.

Table spaces and their containers must be identical on the primary and standby
databases. Properties that must be identical include: the table space type (DMS or
SMS), table space size, container path, container size, and container file type (raw
device or file system). Storage groups and their storage paths must be identical.
This includes the path names and the amount of space on each that is devoted to
each storage group. The amount of space allocated for log files should also be the
same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE
TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the
standby database. You must ensure that the devices involved are set up on both of
the databases before you issue the table space statement on the primary database.

If the table space setup is not identical on the primary and standby databases, log
replay on the standby database might encounter errors such as OUT OF SPACE or
TABLE SPACE CONTAINER NOT FOUND. Similarly, if the storage groups's
storage path setup is not identical on the primary and standby databases, log
records associated with the CREATE STOGROUP or ALTER STOGROUP are not be
replayed. As a result, the existing storage paths might prematurely run out of
space on the standby system and automatic storage table spaces are not be able to
increase in size. If any of these situations occurs, the affected table space is put in

Chapter 17. High availability disaster recovery (HADR) 471

rollforward pending state and is ignored in subsequent log replay. If a takeover
operation occurs, the table space is not available to applications.

If the problem is noticed on the standby system prior to a takeover then the
resolution is to re-establish the standby database while addressing the storage
issues. The steps to do this include:
v Deactivating the standby database.
v Dropping the standby database.
v Ensuring the necessary file systems exist with enough free space for the

subsequent restore and rollforward.
v Restoring the database at the standby system using a recent backup of the

primary database (or, reinitialize using split mirror or flash copy with the
db2inidb command). Storage group storage paths should not be redefined
during the restore. Also, table space containers should not be redirected as part
of the restore.

v Restarting HADR on the standby system.

However, if the problem is noticed with the standby database after a takeover has
occurred (or if a choice was made to not address the storage issues until this time)
then the resolution is based on the type of problem that was encountered.

If the database is enabled for automatic storage and space is not available on the
storage paths associated with the standby database then follow these steps:
1. Make space available on the storage paths by extending the file systems, or by

removing unnecessary non-DB2 files on them.
2. Perform a table space rollforward to the end of logs.

In the case where the addition or extension of containers as part of log replay
could not occur, if the necessary backup images and log file archives are available,
you might be able to recover the table space by first issuing the SET TABLESPACE
CONTAINERS statement with the IGNORE ROLLFORWARD CONTAINER
OPERATIONS option and then issuing the ROLLFORWARD command.

The primary and standby databases do not require the same database path. If
relative container paths are used, the same relative path might map to different
absolute container paths on the primary and standby databases. Consequently, if
the primary and standby databases are placed on the same computer, all table
space containers must be defined with relative paths so that they map to different
paths for primary and standby.

HADR and Network Address Translation (NAT) support
NAT, which is supported in an HADR environment, is usually used for firewall
and security because it hides the server's real address.

In an HADR setup, the local and remote host configurations on the primary and
standby nodes are cross-checked to ensure they are correct. In a NAT environment,
a host is known to itself by a particular IP address but is known to the other hosts
by a different IP address. This behavior causes the HADR host cross-check to fail
unless you set the DB2_HADR_NO_IP_CHECK registry variable to ON. Using this setting
causes the host cross-check to be bypassed, enabling the primary and standby to
connect in a NAT environment.

472 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

If you are not running in a NAT environment, use the default setting of OFF for the
DB2_HADR_NO_IP_CHECK registry variable. Disabling the cross-check weakens the
HADR validation of your configuration.

Considerations for HADR multiple standby mode

In a NAT environment with a multiple standby setup, each standby's settings for
hadr_local_host and hadr_local_svc must still be listed in the primary's
hadr_target_list or the primary does not accept the connection from that standby.

Normally, in multiple standby mode, on start up, a standby checks that its settings
for hadr_remote_host and hadr_remote_svc are in its hadr_target_list, to ensure
that on role switch, the old primary can become a new standby. In NAT scenarios,
that check fails unless the DB2_HADR_NO_IP_CHECK registry variable to ON. Because
this check is bypassed, the standby waits until it connects to the primary to check
that the primary's hadr_local_host and hadr_local_svc are in the standby's
hadr_target_list. The check still ensures role switch can succeed on this pair.

Note: If the DB2_HADR_NO_IP_CHECK registry variable is set to ON, the
hadr_remote_host and hadr_remote_svc are not automatically updated.

In a multiple standby setup, DB2_HADR_NO_IP_CHECK should be set on all databases
that might be making a connection to another database across a NAT boundary. If
a database will never cross a NAT boundary to connect to another database (that
is, if no such link is configured), then you should not set this registry variable on
that database. When DB2_HADR_NO_IP_CHECK is set, it prevents a standby from
automatically discovering the new primary after a takeover has occurred, and you
have to manually reconfigure the standby to have it connect to the new primary.

Restrictions for High Availability Disaster Recovery (HADR)
To achieve optimal performance with High Availability Disaster Recovery (HADR),
consider HADR restrictions when designing your high availability DB2 database
solution.

The following list is a summary of High Availability Disaster Recovery (HADR)
restrictions:
v HADR is not supported in a partitioned database environment.
v HADR is not supported in DB2 pureScale environments.
v The primary and standby databases must have the same operating system

version and the same version of the DB2 database system, except for a short
time during a rolling upgrade.

v The DB2 database system software on the primary and standby databases must
be the same bit size (32 or 64 bit).

v Clients cannot connect to the standby database unless you have reads on
standby enabled. Reads on standby enables clients to connect to the active
standby database and issue read-only queries.

v If reads on standby is enabled, operations on the standby database that write a
log record are not permitted; only read clients can connect to the active standby
database.

v If reads on standby is enabled, write operations that would modify database
contents are not allowed on the standby database. Any asynchronous threads
such as real-time statistics collection, Auto Index rebuild and utilities that

Chapter 17. High availability disaster recovery (HADR) 473

attempt to modify database objects will not be supported. Real-time statistics
collection and Auto Index rebuild should not be running on the standby
database.

v Log files are only archived by the primary database.
v The self tuning memory manager (STMM) can be run only on the current

primary database. After the primary database is started or the standby database
is converted to a primary database by takeover, the STMM EDU may not start
until the first client connection comes in.

v Backup operations are not supported on the standby database.
v The SET WRITE command cannot be issued on the standby database
v Non-logged operations, such as changes to database configuration parameters

and to the recovery history file, as well as LOB table columns that have the NOT
LOGGED option, are not replicated to the standby database.

v Load operations with the COPY NO option specified are not supported.
v HADR does not support the use of raw I/O (direct disk access) for database log

files. If HADR is started via the START HADR command, or the database is
activated (restarted) with HADR configured, and raw logs are detected, the
associated command will fail.

v Federated server does not fully support HADR in federated two phase commit
(F2PC) scenarios. When a HADR database is configured as a federated database,
it only supports F2PC with type-1 inbound connections.

v HADR does not support infinite logging.
v The system clock of the HADR primary database must be synchronized with the

HADR standby database's system clock.

DB2 High availability disaster recovery (HADR) management
DB2 High availability disaster recovery (HADR) management involves configuring
and maintaining the status of your HADR system.

Managing HADR includes such tasks as:
v Cataloging an HADR database.
v “Initializing high availability disaster recovery (HADR)” on page 477
v Checking or altering database configuration parameters related to HADR.
v “Switching database roles in high availability disaster recovery (HADR)” on

page 504
v “Performing an HADR failover operation” on page 501
v “Monitoring high availability disaster recovery (HADR) environments” on page

505
v “Stopping DB2 High Availability Disaster Recovery (HADR)” on page 507

You can manage HADR using the following methods:
v Command line processor
v DB2 administrative API
v Task assistants for managing HADR in IBM Data Studio Version 3.1 or later.
Related information:

Administering databases with task assistants

474 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

DB2 High Availability Disaster Recovery (HADR) commands
The DB2 High Availability Disaster Recovery (HADR) feature provides complex
logging, failover, and recovery functionality for DB2 high availability database
solutions.

Despite the complexity of the functionality HADR provides, there are only a few
actions you need to directly command HADR to perform: starting HADR; stopping
HADR; and causing the standby database to take over as the primary database.

There are three high availability disaster recover (HADR) commands used to
manage HADR:
v START HADR

v STOP HADR

v TAKEOVER HADR

To invoke these commands, use the command line processor or the administrative
API.

Issuing the START HADR command with either the AS PRIMARY or AS STANDBY option
changes the database role to the one specified if the database is not already in that
role. This command also activates the database, if it is not already activated.

The STOP HADR command changes an HADR database (either primary or standby)
into a standard database. Any database configuration parameters related to HADR
remain unchanged so that the database can easily be reactivated as an HADR
database.

The TAKEOVER HADR command, which you can issue on the standby database only,
changes the standby database to a primary database. When you do not specify the
BY FORCE option, the primary and standby databases switch roles. When you do
specify the BY FORCE option, the standby database unilaterally switches to become
the primary database. In this case, the standby database attempts to stop
transaction processing on the old primary database. However, there is no
guarantee that transaction processing will stop. Use the BY FORCE option to force a
takeover operation for failover conditions only. To whatever extent possible, ensure
that the current primary has definitely failed, or shut it down yourself, prior to
issuing the TAKEOVER HADR command with the BY FORCE option.

HADR database role switching

A database can be switched between primary and standard roles dynamically and
repeatedly. When the database is either online or offline, you can issue both the
START HADR command with the AS PRIMARY option and the STOP HADR command.

You can switch a database between standby and standard roles statically. You can
do so repeatedly only if the database remains in rollforward pending state. You can
issue the START HADR command with the AS STANDBY option to change a standard
database to standby while the database is offline and in rollforward pending state.
Use the STOP HADR command to change a standby database to a standard database
while the database is offline. The database remains in rollforward pending state
after you issue the STOP HADR command. Issuing a subsequent START HADR
command with the AS STANDBY option returns the database to standby. If you issue
the ROLLFORWARD DATABASE command with the STOP option after stopping HADR on
a standby database, you cannot bring it back to standby. Because the database is
out of rollforward pending state, you can use it as a standard database. This is

Chapter 17. High availability disaster recovery (HADR) 475

referred to as taking a snapshot of the standby database. After changing an
existing standby database into a standard database, consider creating a new
standby database for high availability purposes.

To switch the role of the primary and standby databases, perform a takeover
operation without using the BY FORCE option.

To change the standby to primary unilaterally (without changing the primary to
standby), use forced takeover. Subsequently, you might be able to reintegrate the
old primary as a new standby.

HADR role is persistent. Once an HADR role is established, it remains with the
database, even through repeated stopping and restarting of the DB2 instance or
deactivation and activation of the DB2 database.

Starting the standby is asynchronous

When you issue the START HADR command with the AS STANDBY option, the
command returns as soon as the relevant engine dispatchable units (EDUs) are
successfully started. The command does not wait for the standby to connect to the
primary database. In contrast, the primary database is not considered started until
it connects to a standby database (with the exception of when the START HADR
command is issued on the primary with the BY FORCE option). If the standby
database encounters an error, such as the connection being rejected by the primary
database, the START HADR command with the AS STANDBY option might have already
returned successfully. As a result, there is no user prompt to which HADR can
return an error indication. The HADR standby will write a message to the DB2
diagnostic log and shut itself down. You should monitor the status of the HADR
standby to ensure that it successfully connects with the HADR primary.

Replay errors, which are errors that the standby encounters while replaying log
records, can also bring down the standby database. These errors might occur, for
example, when there is not enough memory to create a buffer pool, or if the path
is not found while creating a table space. You should continuously monitor the
status of the standby database.

Do not run HADR commands from a client using a database alias
enabled for client reroute

When automatic client reroute is set up, the database server has a predefined
alternate server so that client applications can switch between working with either
the original database server or the alternative server with only minimal
interruption of the work. In such an environment, when a client connects to the
database via TCP, the actual connection can go to either the original database or to
the alternate database. HADR commands are implemented to identify the target
database through regular client connection logic. Consequently, if the target
database has an alternative database defined, it is difficult to determine the
database on which the command is actually operating. Although an SQL client
does not need to know which database it is connecting to, HADR commands must
be applied on a specific database. To accommodate this limitation, HADR
commands should be issued locally on the server machine so that client reroute is
bypassed (client reroute affects only TCP/IP connections).

476 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

HADR commands must be run on a server with a valid license

The START HADR, STOP HADR, and TAKEOVER HADR commands require that a valid
HADR license has been installed on the server where the command is executed. If
the license is not present, these commands will fail and return a command-specific
error code (SQL1767N, SQL1769N, or SQL1770N, respectively) along with a reason
code of 98. To correct the problem, either install a valid HADR license using
db2licm, or install a version of the server that contains a valid HADR license as
part of its distribution.

Initializing high availability disaster recovery (HADR)
Use this procedure to set up and initialize a DB2 high availability disaster recovery
(HADR) primary database and one standby database.

About this task

HADR can be initialized through the command line processor (CLP), or by calling
the db2HADRStart API.

Procedure

To use the CLP to initialize HADR on your system for the first time:
1. Determine the host name, host IP address, and the service name or port

number for each of the HADR databases.
If a host has multiple network interfaces, ensure that the HADR host name or
IP address maps to the intended one. You need to allocate separate HADR
ports in /etc/services for each protected database. These cannot be the same
as the ports allocated to the instance. The host name can only map to one IP
address.

Note: The instance names for the primary and standby databases do not have
to be the same.

2. Configure the recommended index logging and re-creation settings on the
intended primary, by issuing the following command:
"UPDATE DB CFG FOR dbname USING

LOGINDEXBUILD ON
LOGARCHMETH1 method"

3. Create the standby database by restoring a backup image or by initializing a
split mirror, based on the existing database that is to be the primary.
In the following example, the BACKUP DATABASE and RESTORE DATABASE
commands are used to initialize a standby database. In this case, an NFS
mounted file system is accessible at both sites.
Issue the following command at the primary database:
BACKUP DB dbname TO /nfs1/backups/db2/dbname

If the database already exists on the standby instance, drop it first for a clean
start. Files from the existing database can interfere with HADR operation. For
example, left over log files can lead the standby onto a log chain not
compatible with the primary. Issue the following command to drop the
database:
DROP DB dbname

Issue the following command at the standby database:
RESTORE DB dbname FROM /nfs1/backups/db2/dbname

Chapter 17. High availability disaster recovery (HADR) 477

The following example illustrates how to use the db2inidb utility to initialize
the standby database using a split mirror of the primary database. This
procedure is an alternative to the backup and restore procedure illustrated
previously.
Issue the following command at the standby database:
DB2INIDB dbname AS STANDBY

Note:

a. The database names for the primary and standby databases must be the
same.

b. Do not issue the ROLLFORWARD DATABASE command on the standby database
after the restore operation or split mirror initialization. The results of using
a rollforward operation might differ slightly from replaying the logs using
HADR on the standby database. If the databases are not identical, attempts
to start the standby will fail.

c. When creating the standby database using the RESTORE DATABASE command,
ensure that the standby remains in rollforward-pending or
rollforward-in-progress mode. This means that you cannot issue the
ROLLFORWARD DATABASE command with either the COMPLETE option or the STOP
option. An error will be returned if the START HADR command with the AS
STANDBY option is attempted on the database after rollforward is stopped.

d. The following RESTORE DATABASE command options should be avoided when
setting up the standby database: TABLESPACE, INTO, REDIRECT, and WITHOUT
ROLLING FORWARD.

e. When setting up the standby database using the db2inidb utility, do not use
the SNAPSHOT or MIRROR options. You can specify the RELOCATE USING option
to change one or more of the following configuration attributes: instance
name, log path, and database path. However, you must not change the
database name or the table space container paths.

4. On each of the databases, set the hadr_local_host, hadr_local_svc, and
hadr_syncmode configuration parameters:
"UPDATE DB CFG FOR dbname USING

HADR_LOCAL_HOST hostname
HADR_LOCAL_SVC servicename
HADR_SYNCMODE syncmode"

The configuration parameters in this step, step 5, and step 6 on page 479 must
be set after the standby databases has been created. If they are set prior to
creating the standby database, the settings on the standby database will reflect
what is set on the primary database.

Note: This is a generic HADR setup; for more advanced configuration options
and settings, see the related links.

5. Optional: Set the hadr_target_list configuration parameter on the standby and
the primary:
UPDATE DB CFG FOR dbname USING

HADR_TARGET_LIST principalhostname:principalservicename1

This is an optional, but recommended, step if you are only using one standby
database. If you set the hadr_target_list parameter, you can add additional

1.

478 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

standby database dynamically. You can also take advantage of the
autoconfiguration behavior and specify a different synchronization mode on the
standby.

6. On each of the databases, set the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters.
On the primary, set the parameters to the corresponding values on the standby
by issuing the following command:
"UPDATE DB CFG FOR dbname USING

HADR_REMOTE_HOST principalhostname
HADR_REMOTE_SVC principalservicename
HADR_REMOTE_INST principalinstname"

On the standby, set the parameters to the corresponding values on the primary
by issuing the following command:
"UPDATE DB CFG FOR dbname USING

HADR_REMOTE_HOST primaryhostname
HADR_REMOTE_SVC primaryservicename
HADR_REMOTE_INST primaryinstname"

If you have configured hadr_target_list, the values for these parameters are
automatically given the proper values if they were set incorrectly. However,
explicitly setting them to the correct values makes correct values available
immediately. These values are helpful for the IBM Tivoli System Automation
for Multiplatforms (SA MP) software, which might require the
hadr_remote_host value to construct the resource name.

7. Connect to the standby instance and start HADR on the standby database, as in
the following example:

START HADR ON DB dbname AS STANDBY

Note: Usually, the standby database is started first. If you start the primary
database first, this startup procedure will fail if the standby database is not
started within the time period specified by the hadr_timeout database
configuration parameter.
After the standby starts, it enters local catchup state in which locally available
log files are read and replayed. After it has replayed all local logs, it enters
remote catchup pending state.

8. Connect to the primary instance and start HADR on the primary database, as
in the following example:

START HADR ON DB dbname AS PRIMARY

9. Use a monitoring interface (the MON_GET_HADR table function or the db2pd
command with the -hadr option) to verify that the HADR pair enters the
expected state. After the primary starts, the standby enters remote catchup state
in which receives log pages from the primary and replays them. After it has
replayed all log files that are on the disk of the primary database machine, both
databases enter peer state (unless you have chosen SUPERASYNC as the
synchronization mode).

Initializing a standby database
One strategy for making a database solution highly available is maintaining a
primary database to respond to user application requests, and a secondary or
standby database that can take over database operations for the primary database
if the primary database fails.

Initializing the standby database entails copying the primary database to the
standby database.

Chapter 17. High availability disaster recovery (HADR) 479

Procedure

There are several ways to initialize the standby database. For example:
v Use disk mirroring to copy the primary database, and use DB2 database

suspended I/O support to split the mirror to create the second database.
v Create a backup image of the primary database and recovery that image to the

standby database.
v Use SQL replication to capture data from the primary database and apply that

data to the standby database.

What to do next

After initializing the standby database, you must configure your database solution
to synchronize the primary database and standby database so the standby database
can take over for the primary database if the primary database fails.

Using a split mirror as a standby database
Use the following procedure to create a split mirror of a database for use as a
standby database outside of a DB2 pureScale environment.

If a failure occurs on the primary database and it becomes inaccessible, you can
use the standby database to take over for the primary database.

About this task

If the primary database was configured for log archiving, the standby database will
share the same log archiving configuration. If the log archiving destination is
accessible to the standby database, the standby database will automatically retrieve
log files from it during rollforward operations. However, once the database is
brought out of the rollforward pending state, the standby database will attempt to
archive log files to the same location used by the primary database. While the
standby database will initially use a different log chain from the primary database,
the primary database could eventually use the same log chain value as the standby
database. This could cause the primary database to archive log files on top of the
log files archived by the standby database, or vice versa , and can affect the
recoverability of both databases. You should change the log archiving destination
for the standby database to be different from that of the primary database to avoid
recoverability issues.

Procedure

To use a split mirror as a standby database:
1. Connect to the primary database using the following command:

db2 connect to db_name

2. Suspend the I/O write operations on the primary database using the
following command:

db2 set write suspend for database

Note: While the database is in suspended state, you should not be running
other utilities or tools. You should only be making a copy of the database. You
can optionally use the FLUSH BUFFERPOOLS ALL statement before issuing
SET WRITE SUSPEND to minimize the recovery time of the standby database.

3. Create one or multiple split mirrors from the primary database using
appropriate operating system-level and storage-level commands.

480 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note:

v Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container
directories that exist outside the database directory. To gather this
information, refer to the DBPATHS administrative view, which shows all the
files and directories of the database that need to be split.

v If you specified the EXCLUDE LOGS with the SET WRITE command, do not
include the log files in the copy.

4. Resume the I/O write operations on the primary database using the following
command:

db2 set write resume for database

5. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the
primary database. It must be located on a secondary system that has the same
directory structure and uses the same instance name as the primary database.
If the mirrored database must exist on the same system as the primary
database, you can use the db2relocatedb utility or the RELOCATE USING option
of the db2inidb command to accomplish this.

6. Start the database instance on the secondary system using the following
command:

db2start

7. Initialize the mirrored database on the secondary system by placing it in
rollforward pending state using the following command:

db2inidb <database_alias> as standby

If required, specify the RELOCATE USING option of the db2inidb command to
relocate the standby database:

db2inidb <database_alias> as standby relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate
the database.

Note: You can take a full database backup using the split mirror if you have
DMS table spaces (database managed space) or automatic storage table spaces.
Taking a backup using the split mirror reduces the overhead of taking a
backup on the production database. Such backups are considered to be online
backups and will contain in-flight transactions, but you cannot include log
files from the standby database. When such a backup is restored, you must
rollforward to at least the end of the backup before you can issue a
ROLLFORWARD command with the STOP option. Because the backup will not
contain any log files, the log files from the primary database that were in use
at the time the SET WRITE SUSPEND command was issued must be available or
the rollforward operation will not be able to reach the end of the backup.

8. Make the archived log files from the primary database available to the
standby database either by configuring the log archiving parameters on the
standby database or by shipping logs to the standby database.

9. Rollforward the database to the end of the logs or to a point-in-time.
10. Continue retrieving log files and rollforwarding the database through the logs

until you reach the end of the logs or the point-in-time required for the
standby database.

11. Bring the standby database online by issuing the ROLLFORWARD command with
the STOP option specified.

Chapter 17. High availability disaster recovery (HADR) 481

Note:

v The logs from the primary database cannot be applied to the mirrored
database after it has been taken out of rollforward pending state.

v If the primary database was configured for log archiving, the standby
database will share the same log archiving configuration. If the log
archiving destination is accessible to the standby database, the standby
database will automatically retrieve log files from it while rollforward is
being performed. However, once the database is brought out of rollforward
pending state, the standby database will attempt to archive log files to the
same location used by the primary database. Although the standby database
will initially use a different log chain from the primary database, there is
nothing to prevent the primary database from eventually using the same log
chain value as the standby database. This may cause the primary database
to archive log files on top of the log files archived by the standby database,
or vice versa. This could affect the recoverability of both databases. You
should change the log archiving destination for the standby database to be
different from that of the primary database to avoid these issues.

Using a split mirror as a standby database in a DB2 pureScale
environment

Use the following procedure to create a split mirror of a database for use as a
standby database in a DB2 pureScale environment. If a failure occurs on the
primary database and it becomes inaccessible, you can use the standby database to
take over for the primary database.

About this task

If the primary database was configured for log archiving, the standby database will
share the same log archiving configuration. If the log archiving destination is
accessible to the standby database, the standby database will automatically retrieve
log files from it during rollforward operations. However, once the database is
brought out of the rollforward pending state, the standby database will attempt to
archive log files to the same location used by the primary database. While the
standby database will initially use a different log chain from the primary database,
the primary database could eventually use the same log chain value as the standby
database. This could cause the primary database to archive log files on top of the
log files archived by the standby database, or vice versa , and can affect the
recoverability of both databases. You should change the log archiving destination
for the standby database to be different from that of the primary database to avoid
recoverability issues.

Procedure

To use a split mirror as a standby database:
1. Connect to the primary database using the following command:

db2 connect to <db_namd>

2. Configure the General Parallel File System (GPFS) on the secondary cluster by
extracting and importing the primary cluster's settings. On the primary
cluster, run the following GPFS command:
mmfsctl <filesystem> syncFSconfig -n <remotenodefile>

where <remotenodefile> is the list of hosts in the secondary cluster.
3. List the cluster manager domain using the following command:

482 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

db2cluster -cm -list -domain

4. Stop the cluster manager on each host in the cluster using the following
command:
db2cluster -cm -stop -host <host> -force

Note: The last host which you shut down must be the host from which you
are issuing this command.

5. Stop the GPFS cluster on the secondary system using the following command:
db2cluster -cfs -stop -all

6. Suspend the I/O write operations on the primary database using the
following command:
db2 set write suspend for database

Note: While the database is in suspended state, you should not be running
other utilities or tools. You should only be making a copy of the database. You
can optionally flush all buffer pools before issuing SET WRITE SUSPEND to
minimize the recovery window. This can be achieved using the FLUSH
BUFFERPOOLS ALL statement.

7. Determine which file systems must be suspended and copied using the
following command:
db2cluster -cfs -list -filesystem

8. Suspend each GPFS file system that contains data or log data using the
following command:
/usr/lpp/mmfs/bin/mmfsctl <filesystem> suspend

where <filesystem> represents a file system that contains data or log data.

Note: While the GPFS file systems are suspended, both read and write
operations are blocked. You should only be performing the split mirror
operations during this period to minimize the amount of time that read
operations are blocked.

9. Create one or multiple split mirrors from the primary database using
appropriate operating system-level and storage-level commands.

Note:

v Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container
directories that exist outside the database directory. To gather this
information, refer to the DBPATHS administrative view, which shows all the
files and directories of the database that need to be split.

v If you specified the EXCLUDE LOGS with the SET WRITE command, do not
include the log files in the copy.

10. Resume the GPFS file systems that were suspended using the following
command for each suspended file system:
/usr/lpp/mmfs/bin/mmfsctl <filesystem> resume

where filesystem represents a suspended file system that contains data or log
data.

11. Resume the I/O write operations on the primary database using the following
command:
db2 set write resume for database

12. Start the GPFS cluster on the secondary system using the following command:

Chapter 17. High availability disaster recovery (HADR) 483

db2cluster -cfs -start -all

13. Start the cluster manager using the following command
db2cluster -cm -start -domain <domain>

14. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the
primary database. It must be located on a secondary system that has the same
directory structure and uses the same instance name as the primary database.
If the mirrored database must exist on the same system as the primary
database, you can use the db2relocatedb utility or the RELOCATE USING option
of the db2inidb command to accomplish this.

15. Start the database instance on the secondary system using the following
command:
db2start

16. Initialize the database on the secondary system by placing it in rollforward
pending state:
db2inidb <database_alias> as standby

If required, specify the RELOCATE USING option of the db2inidb command to
relocate the database:
db2inidb database_alias as standby relocate using relocatedbcfg.txt

where relocatedbcfg.txt contains the information required to relocate the
database.

Note: You can take a full database backup using the split mirror if you have
DMS table spaces (database managed space) or automatic storage table spaces.
Taking a backup using the split mirror reduces the overhead of taking a
backup on the production database. Such backups are considered to be online
backups and will contain in-flight transactions, but you cannot include log
files from the standby database. When such a backup is restored, you must
rollforward to at least the end of the backup before you can issue a
ROLLFORWARD STOP command. Because the backup will not contain any log files,
the log files from the primary database that were in use at the time the SET
WRITE SUSPEND command was issued must be available or the rollforward
operation will not be able to reach the end of the backup.

17. Make the archived log files from the primary database available to the
standby database either by configuring the log archiving parameters on the
standby database or by shipping logs to the standby database.

18. Rollforward the database to the end of the logs or to a point-in-time.

Note: When executing rollforward operations, you might encounter SQL1273
errors. These errors are expected if some of the log files were not copied from
the primary system when the database was split or if one member generates
log files faster than other members. SQL1273 is generated in some cases when
the rollforward operation must stop to preserve data consistency because the
contents of the log files depends on the contents of unavailable log files from
other members. If the standby database is configured to retrieve log files
archived by the primary database, you can either wait for the primary system
to archive the necessary log file or you can use the ARCHIVE LOG command on
the primary system to force the log file to be archived. Otherwise, you must
ship the required log files to the standby database. After the necessary log file
is available on the standby database, the rollforward operation can read
further ahead in the logs, although SQL1273 might be encountered again if
some members are still generating log files faster than other members. For

484 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

more information, see the “Disaster recovery and high availability through log
shipping in a DB2 pureScale environment” section of the “Backup and restore
operations in a DB2 pureScale environment” Information Center topic.

19. Continue the rollforward operation through the logs until you reach the end
of the logs or the point-in-time required for the standby database, shipping
new log files to the standby database if required.

20. Bring the standby database online by issuing the ROLLFORWARD DATABASE
command with the STOP option specified.

Note:

v The logs from the primary database cannot be applied to the mirrored
database once it has been taken out of rollforward pending state.

v If the primary database was configured for log archiving, the standby
database will share the same log archiving configuration. If the log
archiving destination is accessible to the standby database, the standby
database will automatically retrieve log files from it while rollforward is
being performed. However, once the database is brought out of rollforward
pending state, the standby database will attempt to archive log files to the
same location used by the primary database. Although the standby database
will initially use a different log chain from the primary database, there is
nothing to prevent the primary database from eventually using the same
log chain value as the standby database. This may cause the primary
database to archive log files on top of the log files archived by the standby
database, or vice versa. This could affect the recoverability of both
databases. You should change the log archiving destination for the standby
database to be different from that of the primary database to avoid these
issues.

Database configuration for high availability disaster recovery (HADR)
You can use database configuration parameters to help achieve optimal
performance with DB2 HADR.

In most cases, you should use the same database configuration parameter settings
and database manager configuration parameter settings on the systems where the
primary and standby databases are located. If the settings for the configuration
parameters on the standby database are different from the settings on the primary,
the following problems might occur:
v Error messages might be returned for the standby database while the log files

that were shipped from the primary database are being replayed.
v After a takeover operation, the new primary database might be unable to handle

the workload, resulting in performance problems or in applications receiving
error messages that they did not receive when they were connected to the
original primary database.

Changes to the configuration parameters on the primary database are not
automatically propagated to the standby database. You must manually make
changes on the standby database. For dynamic configuration parameters, changes
take effect without the need to shut down and restart the database management
system (DBMS) or the database. For non-dynamic configuration parameters,
changes take effect after the standby database is restarted.

Following are sections on specific configuration topics for HADR:
v “Size of log files configuration parameter on the standby database” on page 486

Chapter 17. High availability disaster recovery (HADR) 485

v “Database configuration parameter autorestart”
v “Log receive buffer size on a standby database” on page 487
v “Load operations and HADR” on page 487
v “DB2_HADR_PEER_WAIT_LIMIT registry variable” on page 488
v “HADR configuration parameters” on page 489

Size of log files configuration parameter on the standby
database

One exception to the configuration parameter behavior that is described in the
previous paragraph is the behavior of the logfilsiz database configuration
parameter. Although the value of this parameter is not replicated to the standby
database, to guarantee identical log files on both databases, the setting for the
logfilsiz configuration parameter on the standby is ignored. Instead, the database
creates local log files whose sizes match the size of the log files on the primary
database.

After a takeover, the original standby (new primary) uses the logfilsiz parameter
value that you set on the original primary until you restart the database. At that
point, the new primary reverts to using the value that you set locally. In addition,
the current log file is truncated and any pre-created log files are resized on the
new primary.

If the databases keep switching roles as a result of a non-forced takeover and
neither database is deactivated, the log file size that is used is always the one from
the original primary database. However, if there is a deactivation and then a restart
on the original standby (new primary), the new primary uses the log file size that
you configured locally. This log file size continues to be used if the original
primary takes over again. Only after a deactivation and restart on the original
primary would the log file size revert to the settings on the original primary.

Database configuration parameter autorestart

The recommended configuration for the autorestart parameter on HADR systems
is ON. If the autorestart parameter is set to OFF, and the server fails, your response
depends on whether or not you want to restart or fail over to the standby:
v If you want to restart, run the RESTART DATABASE command manually. If the

restart fails, perform failover.
v If you want to fail over, perform the following steps:

1. Shut down the old primary to prevent a “split brain”. Do this by either
stopping the DB2 instance or powering off the host machine. If the server is
not accessible for administration, fence it off from clients by disabling the
client/server network.

Note: Deactivating the database is not sufficient because client connections
can bring it back online. If it failed in a consistent state, then even if the
autorestart parameter is set to OFF, this does not prevent client connections
from bringing it back online.

2. After shutting down old primary, issue the TAKEOVER HADR command with the
BY FORCE option on the standby.

486 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Log receive buffer size on a standby database

By default, the log receive buffer size on a standby database is two times the value
that you specify for the logbufsz configuration parameter on the primary database.
This size might not be sufficient. For example, consider what might happen when
the HADR synchronization mode is set to ASYNC and the primary and standby
databases are in peer state. If the primary database is also experiencing a high
transaction load, the log receive buffer on the standby database might fill to
capacity, and the log shipping operation from the primary database might stall. To
manage these temporary peaks, you can make either of the following configuration
changes:
v Increase the size of the log receive buffer on the standby database by modifying

the value of the DB2_HADR_BUF_SIZE registry variable.
v Enable log spooling on a standby database by setting the hadr_spool_limit

configuration parameter.

Load operations and HADR

If you issue the LOAD command on the primary database with the COPY YES
parameter, the command executes on the primary database, and the data is
replicated to the standby database if the load copy can be accessed through the
path or device that is specified by the command. If load copy data cannot be
accessed from the standby database, the table space in which the table is stored is
marked invalid on the standby database. Any future log records that pertain to this
table space are skipped. To ensure that the load operation can access the load copy
on the standby database, use a shared location for the output file from the COPY
YES parameter. Alternatively, you can deactivate the standby database while
performing the load on the primary, place a copy of the output file in the standby
path, and then activate the standby database.

If you issue the LOAD command with the NONRECOVERABLE parameter on the primary
database, the command executes on the primary database, and the table on the
standby database is marked invalid. Any future log records that pertain to this
table are skipped. You can issue the LOAD command with the COPY YES and REPLACE
parameters to bring the table back, or you can drop the table to recover the space.

Note: You cannot bring a table back using the LOAD command with the COPY YES
and REPLACE options if the table has one of the following characteristics:
v The table was created with the NOT LOGGED INITIALLY attribute.
v The table is a multidimensional clustered (MDC) table.
v The table has compression dictionaries.
v The table has XML columns.

Because a load operation with the COPY NO parameter is not supported with
HADR, the operation is automatically converted to a load operation with the
NONRECOVERABLE parameter. To enable a load operation with the COPY NO parameter
to be converted to a load operation with the COPY YES parameter, set the
DB2_LOAD_COPY_NO_OVERRIDE registry variable on the primary database. This registry
variable is ignored on the standby database. Ensure that the device or directory
that you specify for the primary database can be accessed by the standby database
by using the same path, device, or load library.

If you are using the Tivoli Storage Manager (TSM) software to perform a load
operation with the COPY YES parameter, you might have to set the vendoropt

Chapter 17. High availability disaster recovery (HADR) 487

configuration parameter on the primary and standby databases. Depending on
how you configured TSM, the values on the primary and standby databases might
not be the same. Also, when using TSM to perform a load operation with the COPY
YES parameter, you must issue the db2adutl command with the GRANT parameter to
give the standby database read access to the files that are loaded.

If table data is replicated by a load operation with the COPY YES parameter, the
indexes are replicated as follows:
v If you specify the REBUILD indexing mode option with the LOAD command and

the LOG INDEX BUILD table attribute is set to ON (using the ALTER TABLE
statement), or if it is set to NULL and the logindexbuild database configuration
parameter is set to ON, the primary database includes the rebuilt index object
(that is, all of the indexes defined on the table) in the copy file to enable the
standby database to replicate the index object. If the index object on the standby
database is marked invalid before the load operation, it becomes usable again
after the load operation as a result of the index rebuild.

v If you specify the INCREMENTAL indexing mode option with the LOAD command
and the LOG INDEX BUILD table attribute is set to ON (using the ALTER TABLE
statement), or if it is set to NULL and the logindexbuild database configuration
parameter on the primary database is set to ON, the index object on the standby
database is updated only if it is not marked invalid before the load operation.
Otherwise, the index is marked invalid on the standby database.

DB2_HADR_PEER_WAIT_LIMIT registry variable

Restriction: In multiple standby mode, none of this section applies to the auxiliary
standbys because they are in SUPERASYNC synchronization mode, so they do not
ever enter peer state.

If you set the DB2_HADR_PEER_WAIT_LIMIT registry variable, the HADR primary
database breaks out of peer state if logging on the primary database has been
blocked for the specified number of seconds because of log replication to the
standby. When this limit is reached, the primary database breaks the connection to
the standby database. If you disable the peer window by setting the
hadr_peer_window configuration parameter to 0, the primary enters the
disconnected state, and logging resumes. If you enable the peer window, the
primary database enters disconnected peer state, in which logging continues to be
blocked. The primary leaves disconnected peer state upon reconnection or peer
window expiration. Logging resumes after the primary leaves disconnected peer
state.

Note: If you set DB2_HADR_PEER_WAIT_LIMIT, use a minimum value of 10 to avoid
triggering false alarms.

Honoring peer window transition when a database breaks out of peer state ensures
peer window semantics for safe takeover in all cases. If the primary fails during
the transition, normal peer window protection still applies: safe takeover from the
standby if it is still in disconnected peer state.

On the standby side, after disconnection, the database continues replaying already
received logs. After the received logs have been replayed, the standby reconnects
to the primary. After replaying the received logs, the standby reconnects to the
primary. Upon reconnection, normal state transition follows: first remote catchup
state, then peer state.

Relationship to hadr_timeout database configuration parameter

488 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The hadr_timeout database configuration parameter does not break the
primary out of peer state if the primary keeps receiving heartbeat messages
from the standby while blocked. The hadr_timeout database configuration
parameter specifies a timeout value for the HADR network layer. An
HADR database breaks the connection to its partner database if it has not
received any message from its partner for the period that is specified by
the hadr_timeout configuration parameter. The timeout does not control
timeout for higher-layer operations such as log shipping and ack
(acknowledgement) signals. If log replay on the standby database is stuck
on a large operation such as load or reorganization, the HADR component
still sends heartbeat messages to the primary database on the normal
schedule. In such a scenario, the primary is blocked as long as the standby
replay is blocked unless you set the DB2_HADR_PEER_WAIT_LIMIT registry
variable.

The DB2_HADR_PEER_WAIT_LIMIT registry variable unblocks primary logging
regardless of connection status. Even if you do not set the
DB2_HADR_PEER_WAIT_LIMIT registry variable, the primary always breaks out
of peer state when a network error is detected or the connection is closed,
possibly as result of the hadr_timeout configuration parameter.

HADR configuration parameters

Some HADR configuration parameters are static, such as hadr_local_host and
hadr_remote_host . Static parameters are loaded on database startup, and changes
are ignored during run time. HADR parameters are also loaded when the START
HADR command completes. On the primary database, HADR can be started and
stopped dynamically, with the database remaining online. Thus, one way to refresh
the effective value of an HADR configuration parameter without shutting down
the database is to stop and restart HADR. In contrast, the STOP HADR brings down
the database on the standby, so the standby's parameters cannot be refreshed with
database online.

Host name parameters and service and port name parameters (single standby
mode) An HADR pair has five interrelated configuration parameters that you

should set:
v hadr_local_host

v hadr_remote_host

v hadr_local_svc

v hadr_remote_svc

v hadr_remote_inst

TCP connections are used for communication between the primary and
standby databases. The “local” parameters specify the local address and
the “remote” parameters specify the remote address. A primary database
listens on its local address for new connections. A standby database that is
not connected to a primary database retries connection to its remote
address.

The standby database also listens on its local address. In some scenarios,
another HADR database can contact the standby database on this address
and send it messages.

Unless the HADR_NO_IP_CHECK registry variable is set, HADR does the
following cross-checks of local and remote addresses on connection:
my local address = your remote address

Chapter 17. High availability disaster recovery (HADR) 489

and
my remote address = your local address

The check is done using the IP address and port number, rather than the
literal string in the configuration parameters. You need to set the
HADR_NO_IP_CHECK registry variable in NAT (Network Address Translation)
environment to bypass the check.

You can configure an HADR database to use either IPv4 or IPv6 to locate
its partner database. If the host server does not support IPv6, you must use
IPv4. If the server supports IPv6, whether the database uses IPv4 or IPv6
depends upon the format of the address that you specify for the
hadr_local_host and hadr_remote_host configuration parameters. The
database attempts to resolve the two parameters to the same IP format and
use IPv6 when possible. The following table shows how the IP mode is
determined for IPv6-enabled servers:

IP mode used for
hadr_local_host parameter

IP mode used for
hadr_remote_host parameter

IP mode used for HADR
communications

IPv4 address IPv4 address IPv4

IPv4 address IPv6 address Error

IPv4 address host name, maps to IPv4
only

IPv4

IPv4 address host name, maps to IPv6
only

Error

IPv4 address host name, maps to IPv4 and
v6

IPv4

IPv6 address IPv4 address Error

IPv6 address IPv6 address IPv6

IPv6 address host name, maps to IPv4
only

Error

IPv6 address host name, maps to IPv6
only

IPv6

IPv6 address host name, maps to IPv4 and
IPv6

IPv6

hostname, maps to IPv4 only IPv4 address IPv4

hostname, maps to IPv4 only IPv6 address Error

hostname, maps to IPv4 only hostname, maps to IPv4 only IPv4

hostname, maps to IPv4 only hostname, maps to IPv6 only Error

hostname, maps to IPv4 only hostname, maps to IPv4 and
IPv6

IPv4

hostname, maps to IPv6 only IPv4 address Error

hostname, maps to IPv6 only IPv6 address IPv6

hostname, maps to IPv6 only hostname, maps to IPv4 only Error

hostname, maps to IPv6 only hostname, maps to IPv6 only IPv6

hostname, maps to IPv6 only hostname, maps to IPv4 and
IPv6

IPv6

hostname, maps to IPv4 and
IPv6

IPv4 address IPv4

490 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

IP mode used for
hadr_local_host parameter

IP mode used for
hadr_remote_host parameter

IP mode used for HADR
communications

hostname, maps to IPv4 and
IPv6

IPv6 address IPv6

hostname, maps to IPv4 and
IPv6

hostname, maps to IPv4 only IPv4

hostname, maps to IPv4 and
IPv6

hostname, maps to IPv6 only IPv6

hostname, maps to IPv4 and
IPv6

hostname, maps to IPv4 and
IPv6

IPv6

The primary and standby databases can make HADR connections only if
they use the same IPv4 or IPv6 format. If one server is IPv6 enabled (but
also supports IPv4) and the other server supports IPv4 only, at least one of
the hhadr_local_host and hadr_remote_host parameters on the IPv6 server
must specify an IPv4 address to force database on this server to use IPv4.

You can set the HADR local service and remote service parameters
(hadr_local_svc and hadr_remote_svc) to either a port number or a service
name. The values that you specify must map to ports that are not being
used by any other service, including other DB2 components or other
HADR databases. In particular, you cannot set either parameter value to
the TCP/IP port that is used by the server to await communications from
remote clients (the value of the svcename database manager configuration
parameter) or the next port (the value of the svcename parameter + 1).

If the primary and standby databases are on different servers, they can use
the same port number or service name; otherwise, they must have different
values.

Host name, service or port name, and target list parameters (multiple standby
mode)

In multiple standby mode, you should still set the hadr_local_host,
hadr_local_svc, hadr_remote_host, hadr_remote_host, and
hadr_remote_inst configuration parameters. If you set those parameters
incorrectly, they are automatically updated after the primary connects to
the standbys by using the settings of the hadr_target_list configuration
parameter. This parameter specifies the host and port names of all the
standbys. The first standby that you specify in the target list is considered
to be the principal HADR standby database.

In multiple standby mode, you should still set the hadr_local_host,
hadr_local_svc, hadr_remote_host, hadr_remote_host, and
hadr_remote_inst configuration parameters. The hadr_local_host and
hadr_local_svc parameters have the same meaning as in single standby
mode. On the primary, sethadr_remote_host, hadr_remote_host, and
hadr_remote_inst to indicate its principal standby. A new parameter,
hadr_target_list is used to list all standbys, with the first entry being the
principal standby. On standby, set the “remote” parameters to indicate the
primary. In certain conditions, the “remote” parameters (on both the
primary and the standby) can be automatically updated. For more
information, see the “Automatic reconfiguration of HADR parameters”
section in “Database configuration for multiple HADR standby databases”
on page 441.

Synchronization mode

Chapter 17. High availability disaster recovery (HADR) 491

In single standby mode, the synchronization mode, which you specify with
the hadr_syncmode configuration parameter must be identical on the
primary and standby databases. The consistency of the value of this
configuration parameter is checked when an HADR pair establishes a
connection.

In multiple standby mode, the synchronization mode does not have to be
the same. All standbys have an effective synchronization mode that is
determined by the type of standby that they are. The principal standby
uses the synchronization mode of the primary, and the auxiliary standbys
use SUPERASYNC. All standbys have a configured synchronization mode,
which is the explicit setting for hadr_syncmode and is used if a standby
becomes the new primary.

For more detailed information, see “DB2 high availability disaster recovery
(HADR) synchronization mode”.

HADR timeout and peer window

The timeout period, which you specify with the hadr_timeout
configuration parameter, must be identical on the primary and standby
databases. The consistency of the values of these configuration parameters
is checked when an HADR pair establishes a connection.

With one exception, when the primary database starts, it waits for the
longer of the two following periods for a standby to connect:
v For a minimum of 30 seconds
v For the number of seconds that is specified by the hadr_timeout

database configuration parameter.

If the standby does not connect in the specified time, the startup fails. The
one exception to this behavior is when you issue the START HADR command
with the BY FORCE parameter. In this case, the primary database starts
without waiting for the standby database to connect to it.

In multiple standby mode, the primary only waits for the principal
standby to connect; a connection to an auxiliary standby is optional.

After an HADR pair establishes a connection, they exchange heartbeat
messages. The heartbeat interval is computed from factors like the
hadr_timeout and hadr_peer_window configuration parameters. It is
reported by the HEARTBEAT_INTERVAL field in MON_GET_HADR table
function. If one database does not receive any message from the other
database within the number of seconds that is specified by the
hadr_timeout configuration parameter, it initiates a disconnect. This
behavior means that at most, it takes the number of seconds that is
specified by the hadr_timeout configuration parameter for an HADR
database to detect the failure of either its partner database or the
intervening network. If you set the hadr_timeout configuration parameter
too low, you will receive false alarms and frequent disconnections.

If you have the hadr_peer_window configuration parameter set to a nonzero
value and the primary loses connection to the standby in peer state, the
primary database does not commit transactions until the connection with
the standby database is restored or the time value of the hadr_peer_window
configuration parameter elapses, whichever happens first.

For maximal availability, the default value for the hadr_peer_window
database configuration parameter is 0. When this parameter is set to 0, as
soon as the connection between the primary and the standby is closed, the

492 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

primary drops out of peer state to avoid blocking transactions. The
connection can close because the standby closed the connection, a network
error is detected, or timeout is reached. For increased data consistency, but
reduced availability, you can set the hadr_peer_window database
configuration parameter to a nonzero value.

For more information, see “Setting the hadr_timeout and hadr_peer_window
database configuration parameters”.

The following sample configuration is for the primary and standby databases:

Primary database:
HADR_LOCAL_HOST host1.ibm.com
HADR_LOCAL_SVC hadr_service
HADR_REMOTE_HOST host2.ibm.com
HADR_REMOTE_SVC hadr_service
HADR_REMOTE_INST dbinst2
HADR_TIMEOUT 120
HADR_SYNCMODE NEARSYNC
HADR_PEER_WINDOW 120

Standby database:
HADR_LOCAL_HOST host2.ibm.com
HADR_LOCAL_SVC hadr_service
HADR_REMOTE_HOST host1.ibm.com
HADR_REMOTE_SVC hadr_service
HADR_REMOTE_INST dbinst1
HADR_TIMEOUT 120
HADR_SYNCMODE NEARSYNC
HADR_PEER_WINDOW 120

Setting the hadr_timeout and hadr_peer_window database
configuration parameters

You can configure the hadr_timeout and hadr_peer_window database configuration
parameters for optimal response to a connection failure.

hadr_timeout database configuration parameter
If an HADR database does not receive any communication from its partner
database for longer than the length of time specified by the hadr_timeout
database configuration parameter, then the database concludes that the
connection with the partner database is lost. If the database is in peer state
when the connection is lost, then it moves into disconnected peer state if
the hadr_peer_window database configuration parameter is greater than
zero, or into remote catchup pending state if hadr_peer_window is not
greater than zero. The state change applies to both primary and standby
databases.

hadr_peer_window database configuration parameter
The hadr_peer_window configuration parameter does not replace the
hadr_timeout configuration parameter. The hadr_timeout configuration
parameter determines how long an HADR database waits before
considering its connection with the partner database as failed. The
hadr_peer_window configuration parameter determines whether the
database goes into disconnected peer state after the connection is lost, and
how long the database should remain in that state. HADR breaks the
connection as soon as a network error is detected during send, receive, or
poll on the TCP socket. HADR polls the socket every 100 milliseconds.
This allows it to respond quickly to network errors detected by the OS.
Only in the worst case does HADR wait until the timeout to break a bad

Chapter 17. High availability disaster recovery (HADR) 493

connection. In this case, a database application that is running at the time
of failure can be blocked for a period of time equal to the sum of the
hadr_timeout and hadr_peer_window database configuration parameters.

Setting the hadr_timeout and hadr_peer_window database configuration
parameters

It is desirable to keep the waiting time that a database application
experiences to a minimum. Setting the hadr_timeout and hadr_peer_window
configuration parameters to small values would reduce the time that a
database application must wait if a HADR standby databases loses its
connection with the primary database. However, there are two other details
that should be considered when choosing values to assign to the
hadr_timeout and hadr_peer_window configuration parameters:
v The hadr_timeout database configuration parameter should be set to a

value that is long enough to avoid false alarms on the HADR connection
caused by short, temporary network interruptions. For example, the
default value of hadr_timeout is 120 seconds, which is a reasonable
value on many networks.

v The hadr_peer_window database configuration parameter should be set to
a value that is long enough to allow the system to perform automated
failure responses. If the HA system, for example a cluster manager,
detects primary database failure before disconnected peer state ends, a
failover to the standby database takes place. Data is not lost in the
failover as all data from old primary is replicated to the new primary. If
hadr_peer_window is too short, HA system may not have enough time to
detect the failure and respond.

Note: In HADR multiple standby mode, the principal standby uses the
primary's setting for hadr_peer_window (the effective peer window). The
setting for hadr_peer_window on any auxiliary standby is meaningless
because that type of standby always runs in SUPERASYNC mode.

Log archiving configuration for DB2 high availability disaster
recovery (HADR)

To use log archiving with DB2 high availability disaster recovery (HADR),
configure both the primary database and the standby database for automatic log
retrieval capability from all log archive locations. For multiple standby systems,
configure archiving on primary and all standby databases.

Only the current primary database can perform log archiving. If the primary and
standby databases are set up with separate archiving locations, logs are archived
only to the primary database's archiving location. In the event of a takeover, the
standby database becomes the new primary database and any logs archived from
that point on are saved to the original standby database's archiving location. In
such a configuration, logs are archived to one location or the other, but not both;
with the exception that following a takeover, the new primary database might
archive a few logs that the original primary database had already archived. In a
multiple standby system, the archived log files can be scattered among all
databases' (primary and standbys) archive devices. A shared archive is preferred
because all files are stored in a single location.

Many operations need to retrieve archived log files. These operations include:
database roll forward, the HADR primary database retrieving log files to send to
the standby database in remote catch up, and replication programs (such as Q
Replication) reading logs. As a result, a shared archive for an HADR system is

494 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

preferred, otherwise, the needed files can be distributed on multiple archive
devices, and user intervention is needed to locate the needed files and copy them
to the requesting database. The recommended copy destination is an archive
device. If copying into an archive is not feasible, copy the logs into the overflow
log path. As a last resort, copy them into the log path (but you should be aware
that there is a risk of damaging the active log files). DB2 does not auto delete user
copied files in the overflow and active log path, so you should manually remove
the files when they are no longer needed by any HADR standby or any
application.

A specific scenario is a takeover in multiple standby mode. After the takeover, the
new primary might not have all log files needed by other standbys (because a
standby is at an older log position). If the primary cannot find a requested log file,
it notifies the standby, which closes the connection and then reconnects in a few
seconds to retry. The retry duration is limited to a few minutes. When retry time is
exhausted, the standby shuts down. In this case, you should copy the files to the
primary to ensure it has files from the first missing file to its current log file. After
the files are copied, restart the standby if needed.

The standby database automatically manages log files in its log path. The standby
database does not delete a log file from its local log path until it has been notified
by the primary database that the primary database has archived it. This behavior
provides added protection against the loss of log files. If the primary database fails
and its log disk becomes corrupted before a particular log file is archived on the
primary database, the standby database does not delete that log file from its own
disk because it has not received notification that the primary database successfully
archived the log file. If the standby database then takes over as the new primary
database, it archives that log file before recycling it. If both the logarchmeth1 and
logarchmeth2 configuration parameters are in use, the standby database does not
recycle a log file until the primary database has archived it using both methods.

In addition to the benefits previously listed, a shared log archive device improves
the catchup process by allowing the standby database to directly retrieve older log
files from the archive in local catchup state, instead of retrieving those files
indirectly through the primary in remote catchup state. However, it is
recommended that you not use a serial archive device such as a tape drive for
HADR databases. With serial devices, you might experience performance
degradation on both the primary and standby databases because of mixed read
and write operations. The primary writes to the device when it archives log files
and the standby reads from the device to replay logs. This performance impact can
occur even if the device is not configured as shared.

Shared log archives on Tivoli Storage Manager

Using a shared log archive with IBM Tivoli Storage Manager (TSM) allows one or
more nodes to appear as a single node to the TSM server, which is especially
useful in an HADR environment where either machine can be the primary at any
one time.

To set up a shared log archive, you need to use proxy nodes which allow the TSM
client nodes to perform data protection operations against a centralized name
space on the TSM server. The target client node owns the data and agent nodes act
on behalf of the target nodes to manage the backup data. The proxy node target is
the node name defined on the TSM server to which backup versions of distributed
data are associated. The data is managed in a single namespace on the TSM server
as if it is entirely the data for this node. The proxy node target name can be a real

Chapter 17. High availability disaster recovery (HADR) 495

node (for example, one of the application hosts) or a virtual node name (that is,
with no corresponding physical node). To create a virtual proxy node name, use
the following commands on the TSM server:

Grant proxynode target=virtual-node-name agent=HADR-primary-name
Grant proxynode target=virtual-node-name agent=HADR-standby-name

Next, you need to set these database configuration parameters on the primary and
standby databases to the virtual-node-name:
v vendoropt

v logarchopt

In a multiple standby setup, you need to grade proxynode access to all machines
on the TSM server and configure the vendoropt and logarchopt configuration
parameters on all of the standbys.

HADR log spooling
The high availability disaster recovery (HADR) log spooling feature allows
transactions on primary to make progress without having to wait for the log replay
on the standby.

When this feature is enabled, log data sent by the primary is spooled, or written, to
disk on the standby, and that log data is later read by log replay.

Log spooling, which is enabled by setting the hadr_spool_limit database
configuration parameter, is an improvement to the HADR feature. When replay is
slow, it is possible that new transactions on the primary can be blocked because it
is not able to send log data to the standby system if there is no room in the buffer
to receive the data. The log spooling feature means that the standby is not limited
by the size of its buffer. When there is an increase in data received that cannot be
contained in the buffer, the log replay reads the data from disk. This allows the
system to better tolerate either a spike in transaction volume on the primary, or a
slow down of log replay (due to the replay of particular type of log records) on the
standby.

This feature could potentially lead to a larger gap between the log position of
received logs on the standby and the log replay position on the standby, which can
lead to longer takeover time. Use the db2pd command with the -hadr option or the
MON_GET_HADR table function to monitor this gap by comparing the
STANDBY_LOG_POS field, which shows receive position, and the
STANDBY_REPLAY_LOG_POS field. You should consider your spool limit setting
carefully because the old standby cannot start up as the new primary and receive
transactions until the replay of the spooled logs has finished.

Index logging and high availability disaster recovery (HADR)
You should consider setting the database configuration parameters logindexbuild
and indexrec for high availability disaster recovery (HADR) databases.

Using the logindexbuild database configuration parameter

Recommendation: For HADR databases, set the logindexbuild database
configuration parameter to ON to ensure that complete information is logged for
index creation, re-creation, and reorganization. Although this means that index
builds might take longer on the primary system and that more log space is
required, the indexes will be rebuilt on the standby system during HADR log
replay and will be available when a failover takes place. Otherwise, when

496 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

replaying an index build or rebuild event, the standby marks the index invalid,
because the log records do not contain enough information to populate the new
index. If index builds on the primary system are not logged and a failover occurs,
any invalid indexes that remain after the failover is complete have to be rebuilt
before they can be accessed. While the indexes are being re-created, they cannot be
accessed by any applications.

Note: If the LOG INDEX BUILD table attribute is set to its default value of NULL,
DB2 uses the value specified for the logindexbuild database configuration
parameter. If the LOG INDEX BUILD table attribute is set to ON or OFF, the value
specified for the logindexbuild database configuration parameter is ignored.

You might choose to set the LOG INDEX BUILD table attribute to OFF on one or
more tables for either of the following reasons:
v You do not have enough active log space to support logging of the index builds.
v The index data is very large and the table is not accessed often; therefore, it is

acceptable for the indexes to be re-created at the end of the takeover operation.
In this case, set the indexrec configuration parameter to RESTART. Because the
table is not frequently accessed, this setting causes the system to re-create the
indexes at the end of the takeover operation instead of waiting for the first time
the table is accessed after the takeover operation.

If the LOG INDEX BUILD table attribute is set to OFF on one or more tables, any
index build operation on those tables might cause the indexes to be re-created any
time a takeover operation occurs. Similarly, if the LOG INDEX BUILD table
attribute is set to its default value of NULL, and the logindexbuild database
configuration parameter is set to OFF, any index build operation on a table might
cause the indexes on that table to be re-created any time a takeover operation
occurs. You can prevent the indexes from being re-created by taking one of the
following actions:
v After all invalid indexes are re-created on the new primary database, take a

backup of the database and apply it to the standby database. As a result of
doing this, the standby database does not have to apply the logs used for
re-creating invalid indexes on the primary database, which would mark those
indexes as rebuild required on the standby database.

v Set the LOG INDEX BUILD table attribute to ON, or set the LOG INDEX BUILD
table attribute to NULL and the logindexbuild configuration parameter to ON
on the standby database to ensure that the index re-creation will be logged.

Using the indexrec database configuration parameter

Recommendation: Set the indexrec database configuration parameter to RESTART
(the default) on both the primary and standby databases. This causes invalid
indexes to be rebuilt after a takeover operation is complete. If any index builds
have not been logged, this setting allows DB2 to check for invalid indexes and to
rebuild them. This process takes place in the background, and the database is
accessible after the takeover operation has completed successfully.

If a transaction accesses a table that has invalid indexes before the indexes have
been rebuilt by the background re-create index process, the invalid indexes are
rebuilt by the first transaction that accesses it.

Chapter 17. High availability disaster recovery (HADR) 497

High availability disaster recovery (HADR) performance
Configuring different aspects of your database system, including network
bandwidth, CPU power, and buffer size, can improve the performance of your DB2
high availability disaster recovery (HADR) databases.

The network is the key part of your HADR setup because network connectivity is
required to replicate database changes from the primary to the standby, keeping
the two databases in sync.

Recommendations for maximizing network performance:

v Ensure that network bandwidth is greater than the database log generation
rate.

v Consider network delays when you choose the HADR synchronization
mode. Network delays affect the primary only in SYNC and NEARSYNC
modes.
The slowdown in system performance as a result of using SYNC mode can
be significantly larger than that of the other synchronization modes. In
SYNC mode, the primary database sends log pages to the standby database
only after the log pages are successfully written to the primary database log
disk. To protect the integrity of the system, the primary database waits for
an acknowledgment from the standby before it notifies an application that a
transaction was prepared or committed. The standby database sends the
acknowledgment only after it writes the received log pages to the standby
database disk. The performance overhead equals the time that is needed for
writing the log pages on the standby database plus the time that is needed
for sending the messages back to the primary.
In NEARSYNC mode, the primary database writes and sends log pages in
parallel. The primary then waits for an acknowledgment from the standby.
The standby database acknowledges as soon as the log pages are received
into its memory. On a fast network, the overhead to the primary database is
minimal. The acknowledgment might have already arrived by the time the
primary database finishes local log write.
For ASYNC mode, the log write and send are also in parallel; however, in
this mode the primary database does not wait for an acknowledgment from
the standby. Therefore, network delay is not an issue. Performance overhead
is even smaller with ASYNC mode than with NEARSYNC mode.
For SUPERASYNC mode, transactions are never blocked or experience
elongated response times because of network interruptions or congestion.
New transactions can be processed as soon as previously submitted
transactions are written to the primary database. Therefore, network delay is
not an issue. The elapsed time for the completion of non-forced takeover
operations might be longer than in other modes because the log gap
between the primary and the standby databases might be relatively larger.

v Consider tuning the DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF registry
variables.
HADR log shipping workload, network bandwidth, and transmission delay
are important factors to consider when you are tuning the TCP socket buffer
sizes. Two registry variables, DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF
allow tuning of the TCP socket send and receive buffer size for HADR
connections only. These two variables have the value range of 1024 to
4294967295 and default to the socket buffer size of the operating system,
which varies depending on the operating system. It is strongly
recommended that you use a minimum value of 16384 (16 K) for your

498 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF settings. Some operating systems
automatically round or silently cap the user specified value.

You can use the HADR simulator (a command-line tool that generates a
simulated HADR workload) to measure network performance and to
experiment with various network tuning options. You can download the
simulator at https://www.ibm.com/developerworks/community/wikis/
home/wiki/DB2HADR/page/HADR%20simulator.

Network congestion

For each log write on the primary, the same log pages are also sent to the standby.
Each write operation is called a flush. The size of the flush is limited to the log
buffer size on the primary database (which is controlled by the database
configuration parameter logbufsz). The exact size of each flush is nondeterministic.
A larger log buffer does not necessarily lead to a larger flush size.

If the standby database is too slow replaying log pages, its log-receiving buffer
might fill up, thereby preventing the buffer from receiving more log pages. In
SYNC and NEARSYNC modes, if the primary database flushes its log buffer one
more time, the data is likely to be buffered in the network pipeline consisting of
the primary machine, the network, and the standby database. Because the standby
database does not have free buffer to receive the data, it cannot acknowledge, so
the primary database becomes blocked while it is waiting for the standby
database's acknowledgement.

In ASYNC mode, the primary database continues to send log pages until the
pipeline fills up and it cannot send additional log pages. This condition is called
congestion. Congestion is reported by the hadr_connect_status monitor element.
For SYNC and NEARSYNC modes, the pipeline can usually absorb a single flush
and congestion does not occur. However, the primary database remains blocked
waiting for an acknowledgment from the standby database on the flush operation.

Congestion can also occur if the standby database is replaying log records that take
a long time to replay, such as database or table reorganization log records.

In SUPERASYNC mode, since the transaction commit operations on the primary
database are not affected by the relative slowness of the HADR network or the
standby HADR server, the log gap between the primary database and the standby
database might continue to increase. It is important to monitor the log gap as it is
an indirect measure of the potential number of transactions that might be lost
should a true disaster occur on the primary system. In disaster recovery scenarios,
any transactions that are committed during the log gap would not be available to
the standby database. Therefore, monitor the log gap by using the hadr_log_gap
monitor element; if it occurs that the log gap is not acceptable, investigate the
network interruptions or the relative speed of the standby HADR server and take
corrective measures to reduce the log gap.

Recommendations for minimizing network congestion:

v The standby database should be powerful enough to replay the logged
operations of the database as fast as they are generated on the primary.
Identical primary and standby hardware is recommended.

v Consider tuning the size of the standby database log-receiving buffer by
using the DB2_HADR_BUF_SIZE registry variable.
A larger buffer can help to reduce congestion, although it might not remove
all of the causes of congestion. By default, the size of the standby database

Chapter 17. High availability disaster recovery (HADR) 499

https://www.ibm.com/developerworks/community/wikis/home/wiki/DB2HADR/page/HADR%20simulator
https://www.ibm.com/developerworks/community/wikis/home/wiki/DB2HADR/page/HADR%20simulator

log-receiving buffer is two times the size of the primary database log-writing
buffer. The database configuration parameter logbufsz specifies the size of
the primary database log-writing buffer.
You can determine if the standbys log-receiving buffer is inadequate by
using the db2pd command with the -hadr option or the MON_GET_HADR
table function. If the value for the STANDBY_RECV_BUF_PERCENT field, which
indicates the percentage of standby log receiving buffer that is being used, is
close to 100, increase the DB2_HADR_BUF_SIZE setting.

v Consider setting the DB2_HADR_PEER_WAIT_LIMIT registry variable, which
allows you to prevent primary database logging from blocking because of a
slow or blocked standby database.
When the DB2_HADR_PEER_WAIT_LIMIT registry variable is set, the HADR
primary database breaks out of the peer state if logging on the primary
database is blocked for the specified number of seconds because of log
replication to the standby. When this limit is reached, the primary database
breaks the connection to the standby database. If the peer window is
disabled, the primary enters disconnected state and logging resumes. If the
peer window is enabled, the primary database enters disconnected peer
state, in which logging continues to be blocked. The primary database leaves
disconnected peer state upon re-connection or peer window expiration.
Logging resumes after the primary database leaves disconnected peer state.

Note: If you set DB2_HADR_PEER_WAIT_LIMIT, use a minimum value of 10 to
avoid triggering false alarms.
Honoring peer window transition when breaking out of peer state ensures
peer window semantics for safe takeover in all cases. If the primary fails
during the transition, normal peer window protection still applies (safe
takeover from standby as long as it is still in disconnected-peer state).

v In most systems, the logging capability is not driven to its limit. Even in
SYNC mode, there might not be an observable slow down on the primary
database. For example, if the limit of logging is 40 MB per second with
HADR enabled, but the system was just running at 30 MB per second before
HADR is enabled, then you might not notice any difference in overall
system performance.

v To speed up the catchup process, you can use a shared log archive device.
However, if the shared device is a serial device such as a tape drive, you
might experience performance degradation on both the primary and standby
databases because of mixed read and write operations.

v If you are going to use the reads on standby feature, the standby must have
the resources to accommodate this additional work.

v If you are going to use the reads on standby feature, configure your buffer
pools on the primary, and that information is shipped to the standby
through logs.

v If you are going to use the reads on standby feature, Tune the pckcachesz,
catalogcache_sz, applheapsz, and sortheap configuration parameters on the
standby.

Cluster managers and high availability disaster recovery
(HADR)

You can implement DB2 High Availability Disaster Recovery (HADR) databases on
nodes of a cluster, and use a cluster manager to improve the availability of your
database solution.

500 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

You can have both the primary database and the standby database managed by the
same cluster manager, or you can have the primary database and the standby
database managed by different cluster managers.

Set up an HADR pair where the primary and standby databases
are serviced by the same cluster manager

This configuration is best suited to environments where the primary and standby
databases are located at the same site and where the fastest possible failover is
required. These environments would benefit from using HADR to maintain DBMS
availability, rather using crash recovery or another recovery method.

You can use the cluster manager to quickly detect a problem and to initiate a
takeover operation. Because HADR requires separate storage for the DBMS, the
cluster manager should be configured with separate volume control. This
configuration prevents the cluster manager from waiting for failover to occur on
the volume before using the DBMS on the standby system. You can use the
automatic client reroute feature to redirect client applications to the new primary
database.

Set up an HADR pair where the primary and standby databases
are not serviced by the same cluster manager

This configuration is best suited to environments where the primary and standby
databases are located at different sites and where high availability is required for
disaster recovery in the event of a complete site failure. There are several ways you
can implement this configuration. When an HADR primary or standby database is
part of a cluster, there are two possible failover scenarios.
v If a partial site failure occurs and a node to which the DBMS can fail over

remains available, you can choose to perform a cluster failover. In this case, the
IP address and volume failover is performed using the cluster manager; HADR
is not affected.

v If a complete site failure occurs where the primary database is located, you can
use HADR to maintain DBMS availability by initiating a takeover operation. If a
complete site failure occurs where the standby database is located, you can
repair the site or move the standby database to another site.

Performing an HADR failover operation
When you want the current standby database to become the new primary database
because the current primary database is not available, you can perform a failover.

About this task

Warning:

This procedure might cause a loss of data. Review the following information before
performing this emergency procedure:
v Ensure that the primary database is no longer processing database transactions.

If the primary database is still running, but cannot communicate with the
standby database, executing a forced takeover operation (issuing the TAKEOVER
HADR command with the BY FORCE option) could result in two primary databases.
When there are two primary databases, each database will have different data,
and the two databases can no longer be automatically synchronized.

Chapter 17. High availability disaster recovery (HADR) 501

– Deactivate the primary database or stop its instance, if possible. (This might
not be possible if the primary system has hung, crashed, or is otherwise
inaccessible.) After a takeover operation is performed, if the failed database is
later restarted, it will not automatically assume the role of primary database.

v The likelihood and extent of transaction loss depends on your specific
configuration and circumstances:
– If the primary database fails while in peer state or disconnected peer state

and the synchronization mode is synchronous (SYNC), the standby database
will not lose transactions that were reported committed to an application
before the primary database failed.

– If the primary database fails while in peer state or disconnected peer state
and the synchronization mode is near synchronous (NEARSYNC), the
standby database can only lose transactions committed by the primary
database if both the primary and the standby databases fail at the same time.

– If the primary database fails while in peer state or disconnected peer state
and the synchronization mode is asynchronous (ASYNC), the standby
database can lose transactions committed by the primary database if the
standby database did not receive all of the log records for the transactions
before the takeover operation was performed. The standby database can also
lose transactions committed by the primary database if the standby database
crashes before it was able to write all the received logs to disk.

Note: Peer window is not allowed in ASYNC mode, therefore the primary
database will never enter disconnected peer state in that mode.

– If the primary database fails while in remote catchup state and the
synchronization mode is super asynchronous (SUPERASYNC), the standby
database can lose transactions committed by the primary database if the
standby database did not receive all of the log records for the transactions
before the takeover operation was performed. The standby database can also
lose transactions committed by the primary database if the standby database
crashes before it was able to write all the received logs to disk.

Note: Databases can never be in peer or disconnected peer state in
SUPERASYNC mode. Failover (forced takeover) is allowed in remote catchup
state only if the synchronization mode is SUPERASYNC.

– If the primary database fails while in remote catchup pending state,
transactions that have not been received and processed by the standby
database will be lost.

Note: Any log gap shown in the database snapshot will represent the gap at
the last time the primary and standby databases were communicating with
each other; the primary database might have processed a very large number
of transactions since that time.

v Ensure that any application that connects to the new primary (or that is rerouted
to the new primary by client reroute), is prepared to handle the following:
– There is data loss during failover. The new primary does not have all of the

transactions committed on the old primary. This can happen even when the
hadr_syncmode configuration parameter is set to SYNC. Because an HADR
standby applies logs sequentially, you can assume that if a transaction in an
SQL session is committed on the new primary, all previous transactions in the
same session have also been committed on the new primary. The commit
sequence of transactions across multiple sessions can be determined only with
detailed analysis of the log stream.

502 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

– It is possible that a transaction can be issued to the original primary,
committed on the original primary and replicated to the new primary
(original standby), but not be reported as committed because the original
primary crashed before it could report to the client that the transaction was
committed. Any application you write should be able to handle that
transactions issued to the original primary, but not reported as committed on
the original primary, are committed on the new primary (original standby).

– Some operations are not replicated, such as changes to database configuration
and to external UDF objects.

v The TAKEOVER HADR command can only be issued on the standby database.
v HADR does not interface with the DB2 fault monitor (db2fm) which can be used

to automatically restart a failed database. If the fault monitor is enabled, you
should be aware of possible fault monitor action on a presumably failed primary
database.

v A takeover operation can only take place if the primary and standby databases
are in peer state or the standby database is in remote catchup pending state. If
the standby database is in any other state, an error will be returned.

Note: You can make a standby database that is in local catchup state available
for normal use by converting it to a standard database. To do this, shut the
database down by issuing the DEACTIVATE DATABASE command, and then issue
the STOP HADR command. Once HADR has been stopped, you must complete a
rollforward operation on the former standby database before it can be used. A
database cannot rejoin an HADR pair after it has been converted from a standby
database to a standard database. To restart HADR on the two servers, follow the
procedure for initializing HADR.
If you have configured a peer window, shut down the primary before the
window expires to avoid potential transaction loss in any related failover.

In a failover scenario, a takeover operation can be performed through the
command line processor (CLP), or the db2HADRTakeover application
programming interface (API).

Procedure

The following procedure shows you how to initiate a failover on the primary or
standby database using the CLP:
1. Completely disable the failed primary database. When a database encounters

internal errors, normal shutdown commands might not completely shut it
down. You might need to use operating system commands to remove resources
such as processes, shared memory, or network connections.

2. Issue the TAKEOVER HADR command with the BY FORCE option on the standby
database. In the following example the failover takes place on database LEAFS:
TAKEOVER HADR ON DB LEAFS BY FORCE

The BY FORCE option is required because the primary is expected to be offline.
If the primary database is not completely disabled, the standby database will
still have a connection to the primary and will send a message to the primary
database asking it to shutdown. The standby database will still switch to the
role of primary database whether or not it receives confirmation from that the
primary database has been shutdown.

Chapter 17. High availability disaster recovery (HADR) 503

Switching database roles in high availability disaster recovery (HADR)
During high availability disaster recovery (HADR), use the TAKEOVER HADR
command to switch the roles of the primary and standby databases.

About this task
v The TAKEOVER HADR command can only be issued on the standby database. If the

primary database is not connected to the standby database when the command
is issued, the takeover operation will fail.

v The TAKEOVER HADR command can only be used to switch the roles of the
primary and standby databases if the databases are in peer state. If the standby
database is in any other state, an error message will be returned.

Procedure

To switch the HADR database roles:
v Use the CLP to initiate a takeover operation on the standby database, issue the

TAKEOVER HADR command without the BY FORCE option on the standby database.
In the following example, the takeover operation takes place on the standby
database LEAFS:
TAKEOVER HADR ON DB LEAFS

A log full error is slightly more likely to occur immediately following a takeover
operation. To limit the possibility of such an error, an asynchronous buffer pool
flush is automatically started at the end of each takeover. The likelihood of a log
full error decreases as the asynchronous buffer pool flush progresses.
Additionally, if your configuration provides a sufficient amount of active log
space, a log full error is even more unlikely. If a log full error does occur, the
current transaction is aborted and rolled back.

Note: Issuing the TAKEOVER HADR command without the BY FORCE option will
cause any applications currently connected to the HADR primary database to be
forced off. This action is designed to work in coordination with automatic client
reroute to assist in rerouting clients to the new HADR primary database after a
role switch. However, if the forcing off of applications from the primary would
be disruptive in your environment, you might want to implement your own
procedure to shut down such applications prior to performing a role switch, and
then restart them with the new HADR primary database as their target after the
role switch is completed.

v Call the db2HADRTakeover application programming interface (API) from an
application.

v Open the task assistant for the TAKEOVER HADR command in IBM Data Studio.

Reintegrating a database after a takeover operation
If you executed a takeover operation in a high availability disaster recovery
(HADR) environment because the primary database failed, you can bring the failed
database back online and use it as a standby database or return it to its status as
primary database.

Procedure

To reintegrate the failed primary database into the HADR pair as the new standby
database:

504 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

1. Repair the system where the original primary database resided. This could
involve repairing failed hardware or rebooting the crashed operating system.

2. Restart the failed primary database as a standby database. In the following
example, database LEAFS is started as a standby database:
START HADR ON DB LEAFS AS STANDBY

Note: Reintegration will fail if the two copies of the database have
incompatible log streams. In particular, HADR requires that the original
primary database did not apply any logged operation that was never reflected
on the original standby database before it took over as the new primary
database. If this did occur, you can restart the original primary database as a
standby database by restoring a backup image of the new primary database or
by initializing a split mirror.

Successful return of this command does not indicate that reintegration has
succeeded; it means only that the database has been started. Reintegration is
still in progress. If reintegration subsequently fails, the database will shut itself
down. You should monitor standby states using the GET SNAPSHOT FOR DATABASE
command or the db2pd tool to make sure that the standby database stays online
and proceeds with the normal state transition. If necessary, you can check the
administration notification log file and the db2diag log file to find out the
status of the database.

What to do next

After the original primary database has rejoined the HADR pair as the standby
database, you can choose to perform a failback operation to switch the roles of the
databases to enable the original primary database to be once again the primary
database. To perform this failback operation, issue the following command on the
standby database:
TAKEOVER HADR ON DB LEAFS

Note:

1. If the HADR databases are not in peer state or the pair is not connected, this
command will fail.

2. Open sessions on the primary database are forced closed and inflight
transactions are rolled back.

3. When switching the roles of the primary and standby databases, the BY FORCE
option of the TAKEOVER HADR command cannot be specified.

Monitoring high availability disaster recovery (HADR) environments
Monitoring is an integral part of setting up and maintaining your HADR setup.
The DB2 monitoring interfaces provide a detailed picture of the configuration and
health of your environment.

You can use a number of methods to monitor the status of your HADR databases.
There are two preferred ways of monitoring HADR:
v The db2pd command
v The MON_GET_HADR table function

You can also use the following methods, but starting in Version 10.1, they are
deprecated, and they might be removed in a future release:
v The GET SNAPSHOT FOR DATABASE command

Chapter 17. High availability disaster recovery (HADR) 505

v The db2GetSnapshot API
v The SNAPHADR administrative view
v The SNAP_GET_HADR table function
v Other snapshot administrative views and table functions

db2pd command

This command retrieves information from the DB2 memory sets. You can
issue this command from either a primary database or a standby database.
If you are using multiple standby mode and you issue this command from
a standby, it does not return any information about the other standbys. If
you issue this command from the primary, it returns information on all
standbys

To view information about high availability disaster recovery for database
HADRDB, you could issue the following command:

db2pd -db HADRDB -hadr

Assuming you issued that command from the primary, you would receive
something like the following sample output:
Database Member 0 -- Database HADRDB -- Active -- Up 0 days 00:23:17 --

Date 06/08/2011 13:57:23

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SYNC
STANDBY_ID = 1

LOG_STREAM_ID = 0
HADR_STATE = PEER

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = hostS1.ibm.com
STANDBY_INSTANCE = db2inst
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)

HEARTBEAT_INTERVAL(seconds) = 25
HADR_TIMEOUT(seconds) = 100

TIME_SINCE_LAST_RECV(seconds) = 3
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

MON_GET_HADR table function

If you issue this query on the primary, it will return information on all
standbys. If you want to issue the MON_GET_HADR function against a
standby database, be aware of the following points:
v You must enable reads on standby on the standby.

506 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Even if your HADR setup is in multiple standby mode, the table
function does not return any information about any other standbys.

For example, you could issue the following query on the primary database:
db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE,

varchar(PRIMARY_MEMBER_HOST,20) as PRIMARY_MEMBER_HOST,
varchar(STANDBY_MEMBER_HOST,20) as STANDBY_MEMBER_HOST

from table (mon_get_hadr(NULL))"

Sample output is as follows:
HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST STANDBY_MEMBER_HOST
--------- ---------- ---------- ------------------- -------------------
PRIMARY 1 PEER hostP.ibm.com hostS1.ibm.com

1 record(s) selected.

GET SNAPSHOT FOR DATABASE command

This command collects status information and formats the output. The
information that is returned is a snapshot of the database manager
operational status at the time that you issued the command. HADR
information is displayed in the output under the heading HADR status.

db2GetSnapshot API

This API collects database manager monitor information and writes it to a
user-allocated data buffer. The information that is returned is a snapshot of
the database manager operational status at the time that the API was
called.

SNAPHADR administrative view and SNAP_GET_HADR table function
This administrative view and this table function return information about
HADR from a database snapshot, in particular, the HADR logical data
group.

Other snapshot administrative views and table functions
You can use the following snapshot administrative views and table
functions, which are not HADR specific and return a wider set of
information, to query a subsection of the HADR information:
v ADMIN_GET_STORAGE_PATHS
v MON_GET_TRANSACTION_LOG
v SNAPDB
v SNAPDB_MEMORY_POOL
v SNAPDETAILLOG
v SNAP_GET_DB
v SNAP_GET_DB_MEMORY_POOL

Stopping DB2 High Availability Disaster Recovery (HADR)
If you are using the DB2 High Availability Disaster Recovery (HADR) feature,
stopping HADR operations to perform maintenance on the primary or standby
databases might be necessary. Stop HADR operations only on the database that
you are performing maintenance. To stop using HADR completely, stop HADR on
both databases.

Chapter 17. High availability disaster recovery (HADR) 507

About this task

Warning: If you want to stop the specified database but you still want it to
maintain its role as either an HADR primary or standby database, do not issue the
STOP HADR command. If you issue the STOP HADR command the database will
become a standard database and might require reinitialization in order to resume
operations as an HADR database. Instead, issue the DEACTIVATE DATABASE
command.

If you issue the STOP HADR command against a standard database, an error will be
returned.

Procedure

To stop HADR operations on the primary or standby database:
v From the CLP, issue the STOP HADR command on the database where you want to

stop HADR operations.
In the following example, HADR operations are stopped on database SOCKS:
STOP HADR ON DATABASE SOCKS

If you issue this command against an inactive primary database, the database
switches to a standard database and remains offline.
If you issue this command against an inactive standby database the database
switches to a standard database, is placed in rollforward pending state, and
remains offline.
If you issue this command on an active primary database, logs stop being
shipped to the standby database and all HADR engine dispatchable units
(EDUs) are shut down on the primary database. The database switches to a
standard database and remains online. Transaction processing can continue. You
can issue the START HADR command with the AS PRIMARY option to switch
the role of the database back to primary database.
If you issue this command on an active standby database, an error message is
returned, indicating that you must deactivate the standby database before
attempting to convert it to a standard database.

v From an application, call the db2HADRStop application programming interface
(API).

v From IBM Data Studio, open the task assistant for the STOP HADR command.

508 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 18. Problem-determination tools

Use the problem-determination tools and resources that are provided with your
DB2 products to help you understand, isolate, and resolve problems.

DB2 diagnostic (db2diag) log files
The DB2 diagnostic db2diag log files are primarily intended for use by IBM
Software Support for troubleshooting purposes. The administration notification log
is primarily intended for troubleshooting use by database and system
administrators. Administration notification log messages are also logged to the
db2diag log files using a standardized message format.

Overview

With DB2 diagnostic and administration notification messages both logged within
the db2diag log files, this often makes the db2diag log files the first location to
examine in order to obtain information about the operation of your databases.
Help with the interpretation of the contents of these diagnostic log files is provided
in the topics listed in the "Related links" section. If your troubleshooting attempts
are unable to resolve your problem and you feel you require assistance, you can
contact IBM Software Support (for details, see the "Contacting IBM Software
Support" topic). In gathering relevant diagnostic information that will be requested
to be sent to IBM Software Support, you can expect to include your db2diag log
files among other sources of information which includes other relevant logs,
storage dumps, and traces.

The db2diag log file can exist in two different forms:

Single diagnostic log file
One active diagnostic log file, named db2diag.log, that grows in size
indefinitely. This is the default form and it exists whenever the diagsize
database manager configuration parameter has the value of 0 (the default
value for this parameter is 0).

Rotating diagnostic log files
A single active log file (named db2diag.N.log, where N is the file name
index that is a continuously growing number starting from 0), although a
series of diagnostic log files can be found in the location defined by the
diagpath configuration parameter, each growing until reaching a limited
size, at which time the log file is closed and a new one is created and
opened for logging with an incremented file name index
(db2diag.N+1.log). It exists whenever the diagsize database manager
configuration parameter has a nonzero value.

You can choose which of these two forms exist on your system by appropriately
setting the diagsize database manager configuration parameter.

Configuration

The db2diag log files can be configured in size, location, and the types of
diagnostic errors recorded by setting the following database manager configuration
parameters:

© Copyright IBM Corp. 2014 509

diagsize
The value of diagsize decides what form of diagnostic log file will be
adopted. If the value is 0, a single diagnostic log file will be adopted. If the
value is not 0, rotating diagnostic log files will be adopted, and this
nonzero value also specifies the total size of all rotating diagnostic log files
and all rotating administration notification log files. The instance must be
restarted for the new value of the diagsize parameter to take effect. See
the "diagsize - Diagnostic log file size configuration parameter" topic for
complete details.

diagpath
Diagnostic information can be specified to be written to db2diag log files in
the location defined by the diagpath configuration parameter. See the
"diagpath - Diagnostic data directory path configuration parameter" topic
for complete details.

alt_diagpath
The alt_diagpath database manager configuration parameter provides an
alternate diagnostic data directory path for storing diagnostic information.
If the database manager fails to write to the path specified by diagpath, the
path specified by alt_diagpath is used to store diagnostic information.

diaglevel
The types of diagnostic errors written to the db2diag log files can be
specified with the diaglevel configuration parameter. See the "diaglevel -
Diagnostic error capture level configuration parameter" topic for complete
details.

Note: If the diagsize configuration parameter is set to a non-zero value, that value
specifies the total size of the combination of all rotating administration notification
log files and all rotating diagnostic log files contained within the diagnostic data
directory. For example, if a system with 4 database partitions has diagsize set to 1
GB, the maximum total size of the combined notification and diagnostic logs can
reach is 4 GB (4 x 1 GB).

Interpretation of diagnostic log file entries
Use the db2diag log files analysis tool (db2diag) to filter and format the db2diag
log files. With the addition of administration notification log messages being
logged to the db2diag log files using a standardized message format, viewing the
db2diag log files first is a recommended choice to understand what has been
happening to the database.

As an alternative to using db2diag, you can use a text editor to view the diagnostic
log file on the machine where you suspect a problem to have occurred. The most
recent events recorded are the furthest down the file.

Note: The administration notification (instance_name.nfy) and diagnostic (db2diag)
logs grow continuously as single log files. When the diagsize database manager
configuration parameter is set to a nonzero value, both the administration
notification and the db2diag log files become a series of rotating log files
(instance_name.N.nfy and db2diag.N.log) having a limited total size which is
determined by the value of the diagsize configuration parameter.

The following example shows the header information for a sample log entry, with
all the parts of the log identified.

510 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note: Not every log entry will contain all of these parts. Only the first several
fields (timestamp to TID) and FUNCTION will be present in all the db2diag log
file records.
2007-05-18-14.20.46.973000-240�1� I27204F655�2� LEVEL: Info�3�
PID : 3228�4� TID : 8796�5� PROC : db2syscs.exe�6�
INSTANCE: DB2MPP�7� NODE : 002�8� DB : WIN3DB1�9�
APPHDL : 0-51�10� APPID: 9.26.54.62.45837.070518182042�11�
AUTHID : UDBADM�12�
EDUID : 8796�13� EDUNAME: db2agntp�14� (WIN3DB1) 2
FUNCTION:�15� DB2 UDB, data management, sqldInitDBCB, probe:4820
DATA #1 :�16� String, 26 bytes
Setting ADC Threshold to:
DATA #2 : unsigned integer, 8 bytes
1048576

Legend:

1. A timestamp and timezone for the message.

Note: Timestamps in the db2diag log files contain a time zone. For
example: 2006-02-13-14.34.35.965000-300, where "-300" is the difference
between UTC (Coordinated Universal Time, formerly known as GMT) and
local time at the application server in minutes. Thus -300 represents UTC -
5 hours, for example, EST (Eastern Standard Time).

2. The record ID field. The recordID of the db2diag log files specifies the file
offset at which the current message is being logged (for example, “27204”)
and the message length (for example, “655”) for the platform where the
DB2 diagnostic log was created.

3. The diagnostic level of the message. The levels are Info, Warning, Error,
Severe, Critical, and Event.

4. The process ID

5. The thread ID

6. The process name

7. The name of the instance generating the message.

8. For multi-partition systems, the database partition generating the message.
(In a non-partitioned database, the value is "000".)

9. The database name

10. The application handle. This value aligns with that used in db2pd output
and lock dump files. It consists of the coordinator partition number
followed by the coordinator index number, separated by a dash.

11. Identification of the application for which the process is working. In this
example, the process generating the message is working on behalf of an
application with the ID 9.26.54.62.45837.070518182042.

A TCP/IP-generated application ID is composed of three sections
1. IP address: It is represented as a 32-bit number displayed as a

maximum of 8 hexadecimal characters.
2. Port number: It is represented as 4 hexadecimal characters.
3. A unique identifier for the instance of this application.

Note: When the hexadecimal versions of the IP address or port number
begin with 0 through to 9, they are changed to G through to P. For
example, "0" is mapped to "G", "1" is mapped to "H", and so on. The IP

Chapter 18. Problem-determination tools 511

address, AC10150C.NA04.006D07064947 is interpreted as follows: The IP
address remains AC10150C, which translates to 172.16.21.12. The port
number is NA04. The first character is "N", which maps to "7". Therefore,
the hexadecimal form of the port number is 7A04, which translates to
31236 in decimal form.

This value is the same as the appl_id monitor element data. For detailed
information about how to interpret this value, see the documentation for
the appl_id monitor element.

To identify more about a particular application ID, either:
v Use the LIST APPLICATIONS command on a DB2 server or LIST DCS

APPLICATIONS on a DB2 Connect™ gateway to view a list of
application IDs. From this list, you can determine information about the
client experiencing the error, such as its database partition name and its
TCP/IP address.

v Use the GET SNAPSHOT FOR APPLICATION command to view a list of
application IDs.

v Use the db2pd -applications -db <dbname> command.

12 The authorization identifier.

13 The engine dispatchable unit identifier.

14 The name of the engine dispatchable unit.

15. The product name ("DB2"), component name (“data management”), and
function name (“sqlInitDBCB”) that is writing the message (as well as the
probe point (“4820”) within the function).

16. The information returned by a called function. There may be multiple data
fields returned.

Now that you have seen a sample db2diag log file entry, here is a list of all of the
possible fields:
<timestamp><timezone> <recordID> LEVEL: <level> (<source>)
PID : <pid> TID : <tid> PROC : <procName>
INSTANCE: <instance> NODE : <node> DB : <database>
APPHDL : <appHandle> APPID: <appID>
AUTHID : <authID>
EDUID : <eduID> EDUNAME: <engine dispatchable unit name>
FUNCTION: <prodName>, <compName>, <funcName>, probe:<probeNum>
MESSAGE : <messageID> <msgText>
CALLED : <prodName>, <compName>, <funcName> OSERR: <errorName> (<errno>)
RETCODE : <type>=<retCode> <errorDesc>
ARG #N : <typeTitle>, <typeName>, <size> bytes
... argument ...
DATA #N : <typeTitle>, <typeName>, <size> bytes
... data ...

The fields which were not already explained in the example, are:
v

<source> Indicates the origin of the logged error. (You can find it at the end of
the first line in the sample.) The possible values are:
– origin - message is logged by the function where error originated (inception

point)
– OS - error has been produced by the operating system
– received - error has been received from another process (client/server)
– sent - error has been sent to another process (client/server)

512 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v

MESSAGE Contains the message being logged. It consists of:
– <messageID> - message number, for example, ECF=0x9000004A or DIA8604C
– <msgText> - error description
When the CALLED field is also present, <msgText> is an impact of the error
returned by the CALLED function on the function logging a message (as specified
in the FUNCTION field)

v

CALLED This is the function that returned an error. It consists of:
– <prodName> - The product name: "OS", "DB2", "DB2 Tools" or "DB2 Common"
– <compName> - The component name ('-' in case of a system call)
– <funcName> - The called function name

v OSERR This is the operating system error returned by the CALLED system call.
(You can find it at the end of the same line as CALLED.) It consists of:
– <errorName> - the system specific error name
– <errno> - the operating system error number

v ARG This section lists the arguments of a function call that returned an error. It
consists of:
– <N> - The position of an argument in a call to the "called" function
– <typeTitle> - The label associated with the Nth argument typename
– <typeName> - The name of the type of argument being logged
– <size> - The size of argument to be logged

v DATA This contains any extra data dumped by the logging function. It consists of:
– <N> - The sequential number of data object being dumped
– <typeTitle> - The label of data being dumped
– <typeName> - The name of the type of data field being logged, for example,

PD_TYPE_UINT32, PD_TYPE_STRING
– <size> - The size of a data object

Interpreting the informational record of the db2diag log files
The first message in the db2diag log files should always be an informational
record.

An example of an informational record is as follows:
2006-02-09-18.07.31.059000-300 I1H917 LEVEL: Event
PID : 3140 TID : 2864 PROC : db2start.exe
INSTANCE: DB2 NODE : 000
FUNCTION: DB2 UDB, RAS/PD component, _pdlogInt, probe:120
START : New Diagnostic Log file
DATA #1 : Build Level, 124 bytes
Instance "DB2" uses "32" bits and DB2 code release "SQL09010"
with level identifier "01010107".
Informational tokens are "DB2 v9.1.0.190", "s060121", "", Fix Pack "0".
DATA #2 : System Info, 1564 bytes
System: WIN32_NT MYSRVR Service Pack 2 5.1 x86 Family 15, model 2, stepping 4
CPU: total:1 online:1 Cores per socket:1 Threading degree per core:1
Physical Memory(MB): total:1024 free:617 available:617
Virtual Memory(MB): total:2462 free:2830
Swap Memory(MB): total:1438 free:2213
Information in this record is only valid at the time when this file was created
(see this record’s time stamp)

Chapter 18. Problem-determination tools 513

The Informational record is output for db2start on every logical partition. This
results in multiple informational records: one per logical partition. Since the
informational record contains memory values which are different on every
partition, this information might be useful.

Setting the error capture level of the diagnostic log files
The DB2 diagnostic (db2diag) log files are files that contain text information logged
by DB2 database systems. This information is used for troubleshooting and much
of it is primarily intended for IBM Software Support.

About this task

The types of diagnostic errors that are recorded in the db2diag log files are
determined by the diaglevel database manager configuration parameter setting.

Procedure
v To check the current setting, issue the command GET DBM CFG.

Look for the following variable:
Diagnostic error capture level (DIAGLEVEL) = 3

v To change the value dynamically, use the UPDATE DBM CFG command.
To change a database manager configuration parameter online:
db2 attach to instance-name
db2 update dbm cfg using parameter-name value
db2 detach

For example:
DB2 UPDATE DBM CFG USING DIAGLEVEL X

where X is the notification level you want. If you are diagnosing a problem that
can be reproduced, IBM Software Support personnel might suggest that you use
diaglevel 4 while performing troubleshooting.

First occurrence data capture information
First occurrence data capture (FODC) collects diagnostic information about a DB2
instance, host or member when a problem occurs. FODC reduces the need to
reproduce a problem to obtain diagnostic information, because diagnostic
information can be collected as the problem occurs.

FODC can be invoked manually with the db2fodc command when you observe a
problem or invoked automatically whenever a predetermined scenario or symptom
is detected. After the diagnostic information has been collected, it is used to help
determine the potential causes of the problem. In some cases, you might be able to
determine the problem cause yourself, or involvement from IBM support personnel
will be required.

Once execution of the db2fodc command has finished, the db2support tool must be
executed to collect the resulting diagnostic files and prepare the FODC package to
be submitted to IBM Support. The db2support command will collect the contents of
all FODC package directories found or specified with the -fodcpath parameter.
This is done to avoid additional requests, from IBM Support for diagnostic
information.

514 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Collecting diagnosis information based on common outage
problems

Diagnostic information can be gathered automatically in a first occurrence data
collection (FODC) package as the problem that affects an instance, host, or member
is occurring. The information in the FODC package can also be collected manually.

Automatic collection of diagnostic information

The database manager invokes the db2fodc command for automatic First
Occurrence Data Capture (FODC), which in turn invokes one of the DB2 call-out
scripts (COS).

To correlate the outage with the DB2 diagnostic logs and the other troubleshooting
files, a diagnostic message is written to both the administration notification and the
db2diag log files. The FODC package directory name includes the FODC_ prefix, the
outage type, the timestamp when the FODC directory was created, and the member
or partition number where the problem occurred. The FODC package description
file is placed in the new FODC package directory.

Table 33. Automatic FODC types and packages

Package Description Script executed

FODC_Trap_timestamp_
memberNumber

An instance wide trap has
occurred

db2cos_trap (.bat)

FODC_Panic_timestamp_
memberNumber

Engine detected an incoherence
and decided not to continue

db2cos_trap (.bat)

FODC_BadPage_timestamp
_memberNumber

A Bad Page has been detected db2cos_datacorruption
(.bat)

FODC_DBMarkedBad_
timestamp_
memberNumber

A database has been marked bad
due to an error

db2cos (.bat)

FODC_IndexError_
timestamp_PID_EDUID
_memberNumber

An EDU wide index error
occurred.

db2cos_indexerror_short
(.bat) or
db2cos_indexerror_long
(.bat)

FODC_Member_timestamp
_memberNumber

A member or partition has failed
or has received a kill signal

db2cos_member (.bat)

Manual collection of diagnostic information

You use the db2fodc command manually when you suspect a problem is occurring.
Problem scenarios that you can collect diagnostic data for include apparent system
hangs, performance issues, or when an upgrade operation or instance creation did
not complete as expected. When the db2fodc command is run manually, a new
FODC package directory is created. The FODC package directory name includes
the FODC_ prefix, the problem scenario, the timestamp when the FODC directory was
created, and the member(s) or partition number(s) where FODC was performed.

Chapter 18. Problem-determination tools 515

Table 34. Manual FODC types and packages

Package Description Script executed

FODC_Clp_timestamp_
member

User invoked db2fodc -clp to
collect environment and
configuration related
information, used to troubleshoot
problems related to instance
creation.

db2cos_clp script (.bat)

FODC_Connections_
timestamp_member

User invoked db2fodc
-connections to collect
connection-related diagnostic
data, used to diagnose problems
such as sudden spikes in the
number of applications in the
executing or compiling state or
new database connections being
denied.

db2cos_threshold script
(.bat)

FODC_Cpu_timestamp_
member

User invoked db2fodc -cpu to
collect processor-related
performance and diagnostic data,
used to diagnose problems such
as high processor utilization
rates, a high number of running
processes, or high processor wait
times.

db2cos_threshold script
(.bat)

FODC_Hang_timestamp_
memberList

User invoked db2fodc -hang to
collect data for hang
troubleshooting (or severe
performance)

db2cos_hang (.bat)

FODC_Memory_timestamp
_member

User invoked db2fodc -memory to
collect memory-related diagnostic
data, used to diagnose problems
such as no free memory
available, swap space being used
at a high rate, excessive paging
or a suspected a memory leak.

db2cos_threshold script
(.bat)

FODC_Perf_timestamp_
memberList

User invoked db2fodc -perf to
collect data for performance
troubleshooting

db2cos_perf (.bat)

FODC_Preupgrade_
timestamp_member

User invoked db2fodc
-preupgrade to collect
performance related information
before a critical upgrade or
update such as upgrading an
instance or updating to the next
fix pack

db2cos_preupgrade (.bat)

516 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 34. Manual FODC types and packages (continued)

Package Description Script executed

Scripts located in
FODC_IndexError_
timestamp_PID_EDUID_
memberList

User could issue db2fodc
-indexerror
FODC_IndexError_directory [basic
| full] (default is basic) to
invoke the db2dart commands in
the script(s).

On partitioned database
environments, use db2_all
"<<+node#< db2fodc -indexerror
FODC_IndexError_directory [basic
| full]". The node# is the last
number in the
FODC_IndexError_directory
directory name. An absolute path
is required when using db2fodc
-indexerror with the db2_all
command.

db2cos_indexerror_long
(.bat) or
db2cos_indexerror_short
(.bat)

First occurrence data capture configuration
First occurrence data capture configuration (FODC) behaviour, including the path
used to store the FODC package, is controlled by the DB2FODC registry variable,
which can be set persistently with the db2set command or changed dynamically
(in-memory only) through the db2pdcfg command. FODC behavior can also be
customized by updating the call-out scripts (COS) invoked during FODC.

Each partition or member in the instance has its own FODC settings, and you can
control how FODC takes place at the partition or member level. If FODC settings
exist both at the member or partition level and at the instance level, the member or
partition level settings override the instance level settings. For manual FODC,
settings can also be overridden by command line parameters you specify, such as
the -fodcpath parameter. In partitioned or DB2 pureScale database environments,
if you specify a list of members or partitions for manual FODC, the settings for the
first member or partition specified are used.

Persistent settings made with the db2set command do not become effective until
the instance is recycled; dynamic settings made with the db2pdcfg command are
effective immediately and remain effective in memory until the instance is
recycled.

To help you control how FODC packages are handled, several DB2FODC registry
variable settings are available, but not all settings are available on all platforms.
You can control the following behaviors through the DB2FODC registry variable:
v Where the generated FODC packages are stored (with the FODCPATH setting)
v Whether core dump files are generated or not (with the DUMPCORE setting)
v How big core dump files can become (with the CORELIMIT setting)
v Where the generated core files are stored (with the DUMPDIR setting)

FODC by default invokes a db2cos call-out script to collect diagnostic information
when the database manager cannot continue processing due to a panic, trap,
segmentation violation or exception. To help you control the call-out script that is

Chapter 18. Problem-determination tools 517

invoked during FODC, several COS parameter settings are available. You can
control the following behaviors through the COS parameter of the DB2FODC
registry variable:
v Whether the db2cos script is invoked when the database manager cannot

continue processing (with the ON and OFF setting; the default is ON)
v How often the db2cos script checks the size of the output files generated (with

the COS_SLEEP setting)
v How long FODC should wait for the db2cos script to finish (with the

COS_TIMEOUT setting)
v How often the db2cos script is invoked during a database manager trap (with

the COS_COUNT setting)
v Whether the db2cos script is enabled when the SQLO_SIG_DUMP signal is

received (with the COS_SQLO_SIG_DUMP setting)

FODC package directory settings (FODCPATH)

FODC packages can result in the generation of large volumes of diagnostic data
that require space to store and can impose a significant processor usage on the
system. You can control what directory path FODC sends diagnostic data to, so
that you can pick a directory path with sufficient free space available.

The following order is used to determine what FODC path to use:

Automatic FODC

FODCPATH registry variable setting
The FODCPATH parameter for the DB2FODC registry variable can be set
at the member or partition level and at the instance level. FODC
uses the FODCPATH parameter setting for each partition or member,
if set. If a partition or member level setting does not exist, the
instance level setting is used.

No FODC path settings
By default, if you do not specify any FODCPATH setting at either the
member or instance level, FODC sends diagnostic information to
the current diagnostic directory path (diagpath or alt_diagpath).

Manual FODC

db2fodc -fodcpath command parameter option
When manually invoking the db2fodc command, you can indicate
the location where the FODC package directory is created by
specifying the -fodcpath parameter option together with the
command. If you specify the -fodcpath parameter with a valid
path name, the FODCpackage directory is created in that path.

FODCPATH registry variable setting
If you do not specify the -fodcpath parameter with the db2fodc
command, and you specified a list of partitions or members, the
db2fodc command uses the FODCPATH parameter setting for the
DB2FODC registry variable of the first partition or member from the
list specified. If the value for that FODCPATH parameter is not set,
db2fodc uses the instance level FODCPATH setting. If you do not
specify the -fodcpath parameter and do no specify a list of
partitions or members, the db2fodc command first tries to use the
FODCPATH parameter setting for the current partition or member; if
not set, the instance level setting is used.

518 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

No FODC path settings
By default, if you do not specify any FODC path, first occurrence
data capture sends diagnostic information to the current diagnostic
directory path (diagpath or alt_diagpath).

Assume that you have a partitioned database environment with 3 members or
partitions (0, 1, and 2). The following example shows how to set the FODC path
persistently at the instance level for all 3 partitions or members using the db2set
command:
db2set DB2FODC=FODCPATH=/home/hotel49/juntang/FODC

FODC path settings can also be performed persistently at the member level for
each member, overriding the instance level setting. To make these settings effective,
the instance must be recycled. For example, to change the FODC path on member
0, issue the following command:
db2set DB2FODC=FODCPATH=/home/hotel49/juntang/FODC/FODC0 -i juntang 0

If you now want to change the FODC path dynamically on member 1 and member
2, you use the following db2pdcfg commands. These settings are effective
immediately and remain in memory until the instance is recycled.
db2pdcfg -fodc FODCPATH=/home/hotel49/juntang/FODC/FODC1 -member 1

db2pdcfg -fodc FODCPATH=/home/hotel49/juntang/FODC/FODC2 -member 2

If you want to know what the current FODC settings are for each member or
partition in a system, you can use the db2pdcfg -fodc -member all command (in
the example, output is abridged and only the FODC path output is shown):
Database Member 0
FODC package path (FODCPATH)= /home/hotel49/juntang/FODC/FODC0/

Database Member 1
FODC package path (FODCPATH)= /home/hotel49/juntang/FODC/FODC1/

Database Member 2
FODC package path (FODCPATH)= /home/hotel49/juntang/FODC/FODC2/

Customized data collection

The behavior of data collection by db2fodc -hang and db2fodc -perf is also
controlled by parameters defined in the TOOL OPTIONS section of the DB2
call-out script that is invoked during FODC. These parameters can be customized
by changing the script that is executed during FODC.

To customize the data collection on UNIX systems, copy the script placed in
/bin/db2cos_symptom to /adm/db2cos_symptom, where symptom is either hang or
perf. Once in this new directory, modify the script as you like. On Windows
systems, simply modify the default script \bin\db2cos_symptom.bat. On UNIX
systems, db2fodc first tries to execute the script in /adm/db2cos_symptom, and, if it
is not found, executes the original script in /bin/db2cos_symptom. On Windows
systems, the script \bin\db2cos_symptom.bat is always executed.

Data collected as part of FODC
First occurrence data capture (FODC) results in the creation of a FODC package
directory and subdirectories where diagnostic information is collected. The parent
package directory, subdirectories and files that get collected are collectively known
as a FODC package.

Chapter 18. Problem-determination tools 519

Files containing diagnostic information that are collected by
FODC

FODC collects diagnostic information from a number of sources. The exact
diagnostic information captured by FODC depends on the type of problem
encountered and might include:

Administration notification log (instance_name.nfy)

v Operating system: All
v Default location:

– Linux and UNIX: Located in the directory specified by the diagpath
database manager configuration parameter.

– Windows: Use the Event Viewer Tool (Start > Control Panel >
Administrative Tools > Event Viewer)

v Created automatically when the instance is created.
v When significant events occur, DB2 writes information to the

administration notification log. The information is intended for use by
database and system administrators. The type of message recorded in
this file is determined by the notifylevel configuration parameter.

Note: When the diagsize database manager configuration parameter is
set to a nonzero value, the single administration notification log file
behavior (instance_name.nfy) will be changed to a rotating log behavior
(instance_name.N.nfy).

DB2 diagnostic log (db2diag log file)

v Operating system: All
v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.
v Created automatically when the instance is created.
v This text file contains diagnostic information about error and warnings

encountered by the instance. This information is used for
troubleshooting and is intended for technicians at IBM Software Support.
The type of message recorded in this file is determined by the diaglevel
database manager configuration parameter.

Note: When the diagsize database manager configuration parameter is
set to a nonzero value, the single diagnostic log file behavior (a single
db2diag.log file) will be changed to a rotating log behavior
(db2diag.N.log).

DB2 administration server (DAS) diagnostic log (db2dasdiag.log)

v Operating system: All
v Default location:

– Linux and UNIX: Located in DASHOME/das/dump, where DASHOME is the
home directory of the DAS owner

– Windows: Located in "dump" folder, in the DAS home directory. For
example: C:\Program Files\IBM\SQLLIB\DB2DAS00\dump

v Created automatically when the DAS is created.
v This text file contains diagnostic information about errors and warnings

encountered by the DAS.

DB2 event log (db2eventlog.xxx, where xxx is the database partition number)

v Operating system: All

520 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Default location: Located in the directory specified by the diagpath
database manager configuration parameter

v Created automatically when the instance is created.
v The DB2 event log file is a circular log of infrastructure-level events

occurring in the database manager. The file is fixed in size, and acts as
circular buffer for the specific events that are logged as the instance
runs. Every time you stop the instance, the previous event log will be
replaced, not appended. If the instance traps, a db2eventlog.XXX.crash
file is also generated. These files are intended for use by IBM Software
Support.

DB2 callout script (db2cos) output files

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If db2cos scripts are executed as a consequence of an FODC outage,

db2cos output files will be placed under the FODC directory that was
created in the location specified by the diagpath database manager
configuration parameter.

v Created automatically when a panic, trap or segmentation violation
occurs. Can also be created during specific problem scenarios, as
specified using the db2pdcfg command.

v The default db2cos script will invoke db2pd commands to collect
information in an unlatched manner. The contents of the db2cos output
files will vary depending on the commands contained in the db2cos
script, such as operating system commands and other DB2 diagnosing
tools. For more details on the tools that are executed with the db2cos
script, open the script file in a text editor.

v The db2cos script is shipped under the bin/ directory. On UNIX, this
directory is read-only. To create your own modifiable version of this
script, copy the db2cos script to the adm/ directory. You are free to
modify this version of the script. If the script is found in the adm/
directory, it is that version that is run. Otherwise, the default version in
the bin/ directory is run.

Dump files

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.
v Created automatically when particular problem scenarios arise.
v For some error conditions, extra information is logged in binary files

named after the failing process ID. These files are intended for use by
IBM Software Support.

Trap files

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.

Chapter 18. Problem-determination tools 521

v Created automatically when the instance ends abnormally. Can also be
created at will using the db2pd command.

v The database manager generates a trap file if it cannot continue
processing due to a trap, segmentation violation, or exception.

Core files

v Operating system: Linux and UNIX
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.
v Created by the operating system when the DB2 instance terminates

abnormally.
v Among other things, the core image will include most or all of the

memory allocations of DB2, which may be required for problem
descriptions.

FODC package path and contents

FODC creates the FODC package directory in the FODC path specified. You
specify the FODC path through the FODCPATH registry variable setting or the
db2fodc -fodcpath command parameter option. If you do not specify any FODC
path, first occurrence data capture sends diagnostic information to the current
diagnostic directory path (diagpath or alt_diagpath). A db2diag log file diagnostic
message is logged to identify the directory name used for FODC. The capture of
diagnostic information can generate a significant volume of diagnostic data,
depending on what parameters are specified, and enough space must be available
in the directory path where FODC stores diagnostic information. To avoid a
scenario where FODC fills all the available space in the file system and impacts
your data server, it is recommended that you specify a FODC path where FODC
can store the diagnostic data.

For automatic FODC, a package is collected for the member or partition where the
problem is occurring; if the problem is occurring on multiple members, multiple
packages are collected in separate FODC package directories. The FODC package
directory follows the naming convention
FODC_outageType_timestamp_member_number, where outageType is the problem
symptom, timestamp is the time of FODC invocation, and member_number is the
member or partition number where the problem occurred. For example, when a
trap occurs on member 1, FODC might automatically create a package named like
FODC_Trap_ 2010-11-17-20.58.30.695243_0001.

For manual FODC, a package is collected for the member(s) or partition(s) you
specify. The naming convention for the FODC package directory is
FODC_manualOutageType_timestamp_memberList, where manualOutageType is the
problem symptom, timestamp is the time of FODC invocation, and memberList is a
list of the members or partitions where the problem occurred. For example, the
manually issued command db2fodc -hang -basic -member 1,2,3 -db sample
creates a manual FODC package for members 1,2 and 3, and might be named like
FODC_hang_ 2010-11-17-20.58.30.695243_0001.0002.0003.

One or more of the following subdirectories is created under the FODC package
directory:
v DB2CONFIG containing DB2 configuration output and files

522 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v DB2PD containing db2pd output or output files
v DB2SNAPS containing DB2 snapshots
v DB2TRACE containing DB2 traces
v OSCONFIG containing operating system configuration files
v OSSNAPS containing operating system monitor information
v OSTRACE containing operating system traces

Not all of these directories might exist, depending on your FODC configuration
and the outage type for which the db2fodc command is run.

FODC sends the following diagnostic information to the FODC package directory:

db2fodc -clp collects the following information:

v Operating system information
v Instance and database configuration information

db2fodc -hang collects the following information:
db2fodc -hang collects the following info:
v Basic operating system information. The problem could be due to OS

level, patches, and so on.
v Basic DB2 configuration information.
v Operating system monitor information: vmstat, netstat, iostat, and so on.

– 2 iterations at least: with timestamps saved
v Partial call stacks: DB2 stack traces of top CPU agents.
v Operating system trace: trace on AIX.
v Diagnostic information collected by db2pd.
v DB2 trace.
v Full DB2 call stacks.
v Second round of DB2 configuration information.

– Including second DB2 trace collection.
v Snapshot information: db2 get snapshot for database, applications,

tables, and so on.
– Information will be collected per node in case of multiple logical

nodes.

db2fodc -perf monitors the system possibly collecting the following
information:

v Snapshots
v Stacktraces
v Virtual Memory (Vmstat)
v Input/Output information (Iostat)
v traces
v Some other information depending on the case. See the script for more

details.

db2fodc -indexerror collects the following information:

v Basic Mode
– db2cos_indexerror_short(.bat) script is run. See script for additional

details.

Chapter 18. Problem-determination tools 523

– If applicable db2dart commands exist in the script, the db2dart /DD,
db2dart /DI, or both data formatting actions are run with number of
pages limited to 100.

v Full Mode
– db2cos_indexerror_short(.bat) and db2cos_indexerror_long(.bat)

scripts are run. See scripts for additional details.
– If applicable db2dart commands exist in the script

db2cos_indexerror_short(.bat), the db2dart /DD, db2dart /DI, or
both data formatting actions are run with number of pages limited to
100.

– If applicable db2dart commands exist in the script
db2cos_indexerror_long(.bat), the db2dart /DD, db2dart /DI, or both
data formatting actions are run with no limit to the number of pages.

– If applicable db2dart commands exist in the
db2cos_indexerror_long(.bat) script, the db2dart /T command is
run. This command requires the database be offline.

db2fodc -preupgrade collects the following information:

v Operating system information
v Instance and database configuration information, such as output of the

db2level command, environment variables, output of the db2 get dbm
cfg command, and the db2nodes.cfg file

v System catalog data and statistics, such as optimizer information
collected by the db2support -d dbname -c -s -cl 0 command

v Operating system monitoring data, such as output of the netstat -v and
ps -elf commands

v System files
v Package information, as returned by the DB2 LIST PACKAGES FOR

SCHEMA schema-name SHOW DETAIL command for all schema names
v Any FODC_Preupgrade directories found in db2dump/. These directories

contain information such as performance data, top dynamic SQL queries,
and explain plans

v The logfile from the db2ckupgrade command in /tmp/
db2ckupgrade.log.processID, if it exists

v Output from the db2prereqcheck command

The following diagnostic information is also included when you specify the
members on which to collect:
v Snapshots (after turning on all monitor switches)
v The db2pd command output for the -everything, -agents, -applications,

-mempools, and -fcm parameters
v The dynamic SQL statements used most frequently
v The query plans for SQL statements
v The explain plans for static packages

Manual db2fodc command invocation results in the creation of a log file named
db2fodc_symptom.log in the FODC_symptom directory, where symptom is one of the
collection types, such as hang or perf. Inside this file, the db2fodc command also
stores status information and metadata describing the FODC package inside the
FODC subdirectory. This file contains information about the type of FODC, the
timestamp of the start and end of data collection, and other information useful for
the analysis of the FODC package.

524 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Automatic FODC data generation
When an outage occurs and automatic first occurrence data capture (FODC) is
enabled, data is collected based on symptoms. The data collected is specific to
what is needed to diagnose the outage.

One or many messages, including those defined as "critical" are used to mark the
origin of an outage.

Trap files contain information such as:
v The amount of free virtual storage
v Values associated with the product's configuration parameters and registry

variables at the time the trap occurred
v Estimated amount of memory used by the DB2 product at the time of the trap
v Information that provides a context for the outage

The raw stack dump might be included in an ASCII trap file.

Dump files that are specific to components within the database manager are stored
in the appropriate FODC package directory.

Monitor and audit facilities using First Occurrence Data
Capture (FODC)

If you find you are required to investigate monitor or audit facility problems, there
are logs that contain information about the probable cause for the difficulties you
may be experiencing.

DB2 audit log ("db2audit.log")

v Operating system: All
v Default location:

– Windows: Located in the $DB2PATH\instance_name\security directory
– Linux and UNIX: Located in the $HOME\sqllib\security directory,

where $HOME is the instance owner's home directory
v Created when the db2audit facility is started.
v Contains audit records generated by the DB2 audit facility for a series of

predefined database events.

DB2 governor log ("mylog.x", where x is the number of database partitions on
which the governor is running)

v Operating system: All
v Default location:

– Windows: Located in the $DB2PATH\instance_name\log directory
– Linux and UNIX: Located in the $HOME\sqllib\log directory, where

$HOME is the instance owner's home directory
v Created when using the governor utility. The base of the log file name is

specified in the db2gov command.
v Records information about actions performed by the governor daemon

(for example, forcing an application, reading the governor configuration
file, starting or ending the utility) as well as errors and warnings.

Event monitor file (for example, "00000000.evt")

v Operating system: All

Chapter 18. Problem-determination tools 525

v Default location: When you create a file event monitor, all of the event
records are written to the directory specified in the CREATE EVENT
MONITOR statement.

v Generated by the event monitor when events occur.
v Contains event records that are associated with the event monitor.

db2ckbkp command
Use the db2ckbkp command to test the integrity of a backup image and to
determine whether it can be restored. Also, use this command to display the
metadata stored in the backup header and information about the objects stored in
the backup image such as storage paths and table spaces.

db2cklog command
Use the db2cklog command to check the validity of one or a range of archive log
files to determine whether to use the log files during the rollforward recovery of a
database or table space.

Checking archive log files with the db2cklog tool
Checking your archive log files ensures that known good log files are available in
case a rollforward recovery becomes necessary and that the recovery operation
does not fail because of a problem with a log file. Also, if the validation fails, you
can determine what options are available and decide the course of action.

Before you begin

You need to have read permission on the archive log files, so that the db2cklog tool
can read the log files and perform its checks. Only log files that are closed, such as
archive log files, can be validated successfully. If you run the tool on a log file that
is still active, the tool cannot check that file accurately and you will receive a
warning to let you know that the file is still active.

About this task

The db2cklog tool reads either single log files or a range of numbered log files and
performs checks on the internal validity of the files. Log files that pass validation
without any error messages or warnings are known good files and you can use
them during a rollforward recovery operation. If an archive log file fails validation
with an error message or if a warning is returned, then you must not use that log
file during rollforward recovery. An archive log file that fails validation cannot be
repaired and you should follow the response outlined in this task for what to do
next.

Checking your archive log files is useful in the following scenarios:
v Immediately before a rollforward operation is started: If it becomes necessary to

perform a rollforward recovery operation, you can first run the db2cklog tool
against all the archive log files that are required to perform the rollforward
operation to ensure that the log files are valid. Running the db2cklog tool
against the log files beforehand helps avoid a situation where a recovery
operation fails partway through because of a problem with a log file,
necessitating a follow-on recovery operation.

v Every time a log file is closed and copied to the log archive directory: As part of
your day-to-day operations, archive log files can be checked as an added

526 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

precaution to make sure that known good log files are always available. With
this preventive measure, you know right away whether you need to locate a
copy of a log file or if a full database backup to establish a new recovery point
is needed. This helps to reduce any delay in the event that a rollforward
recovery becomes necessary.

Procedure

To check your archive log files, you issue the db2cklog command from the
command line and include the log file or files you want checked. Note that you do
not specify full log file names with the db2cklog command but only the numeric
identifiers that are part of the log file names. The numeric identifier of the
S0000001.LOG log file is 1, for example; to check that log file, you specify db2cklog
1. If the archive log files are not in the current directory, include the relative or
absolute path to the log files with the optional ARCHLOGPATH parameter.
1. If you want to check the validity of a single archive log file, you specify the

numeric identifier of that log file as log-file-number1 with the command. For
example, to check the validity of the S0000000.LOG log file in the
/home/amytang/tests directory, you issue the command db2cklog 0
ARCHLOGPATH /home/amytang/tests.

2. If you want to check the validity of a range of archive log files, you include the
first and last numeric identifier of that range with the command (from
log-file-number1 to log-file-number2). All log files in the range are checked, unless
the upper end of the range specified with log-file-number2 is numerically lower
than the beginning of the range (specified with log-file-number1). In that case,
only log-file-number1 is checked. For example, to check the validity of the log
files ranging from S0000000.LOG to S0000005.LOG in the /home/nrichers/tests
directory, you issue the command db2cklog 0 TO 5 ARCHLOGPATH
/home/nrichers/tests

Results

The db2cklog tool will return a return code of zero for any file that passes
validation. If a range of numbered archive log files is specified, the db2cklog tool
will read each file in sequence, perform its checks and issue a return code for each
file. The tool stops at the first error it encounters, even if a range of log files was
specified and there are additional files the tool has not yet checked. The DBT
message that is returned when an error is found can provide you with some more
information about why an archive log file failed validation, but you cannot fix an
invalid log file. If you receive a DBT warning message that a log file might still be
active but know for certain that the file is an archive log file, then you should treat
the archive log file as invalid and follow the response for what to do next outlined
in this task.

Example

The following example shows the typical output of the db2cklog command as it
parses a log file, in this case S0000002.LOG. This file passes validation with a return
code of zero.
$ db2cklog 2

__

_____ D B 2 C K L O G _____

DB2 Check Log File tool
I B M

Chapter 18. Problem-determination tools 527

The db2cklog tool is a utility can be used to test the integrity
of an archive log file and to determine whether or not the log file

can be used in the rollforward database command.

__

__

==
"db2cklog": Processing log file header of "S0000002.LOG"

"db2cklog": Processing log pages of "S0000002.LOG" (total log pages: "316840")
==> page "1" ...
==> page "25001" ...
==> page "50001" ...
==> page "75001" ...
==> page "100001" ...
==> page "125001" ...
==> page "150001" ...
==> page "175001" ...
==> page "200001" ...
==> page "225001" ...
==> page "250001" ...
==> page "275001" ...
==> page "300001" ...

"db2cklog": Finished processing log file "S0000002.LOG". Return code: "0".
==

What to do next

If an archive log file fails validation, your response depends on whether or not you
have a copy of the log file that can pass validation by the db2cklog tool. If you are
not sure whether you have a copy of the log file, check the setting for the
logarchmeth2 configuration parameter, which determines whether your database
server archives a secondary copy of each log file. If you are validating logs as they
are being archive and log mirroring is also configured on your data server, you
might still be able to locate a copy of the log file in the log mirror path, as your
data server does not recycle log files immediately after archiving.
v If you have a copy of the archive log file, use the db2cklog command against

that copy. If the copy of the log file passes validation, replace the log file that
cannot be read with the valid copy of the log file.

v If you have only one copy of the archive log file and that copy cannot be
validated, the log file is beyond repair and cannot be used for rollforward
recovery purposes. In this case, you must make a full database backup as soon
as possible to establish a new, more recent recovery point that does not depend
on the unusable log file for rollforward recovery.

db2ls command
The db2ls command lists where DB2 products are installed on your system and the
DB2 product level. It can also list all or specific DB2 products and features for a
particular installation path.

528 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Listing DB2 database products installed on your system
(Linux and UNIX)

On Linux and UNIX operating systems, use the db2ls command to list the DB2
database products and features installed on your system.

Before you begin

At least one DB2 Version 9 (or later) database product must already be installed by
a root user for a symbolic link to the db2ls command to be available in the
/usr/local/bin directory.

About this task

With the ability to install multiple copies of DB2 database products on your system
and the flexibility to install DB2 database products and features in the path of your
choice, you need a tool to help you keep track of what is installed and where it is
installed. On supported Linux and UNIX operating systems, the db2ls command
lists the DB2 products and features installed on your system, including the DB2
HTML documentation.

The db2ls command can be found both in the installation media and in a DB2
install copy on the system. The db2ls command can be run from either location.
The db2ls command can be run from the installation media for all products except
IBM Data Server Driver Package.

The db2ls command can be used to list:
v Where DB2 database products are installed on your system and list the DB2

database product level
v All or specific DB2 database products and features in a particular installation

path

Restrictions

The output that the db2ls command lists is different depending on the ID used:
v When the db2ls command is run with root authority, only root DB2 installations

are queried.
v When the db2ls command is run with a non-root ID, root DB2 installations and

the non-root installation owned by matching non-root ID are queried. DB2
installations owned by other non-root IDs are not queried.

The db2ls command is the only method to query a DB2 database product. You
cannot query DB2 database products using Linux or UNIX operating system native
utilities, such as pkginfo, rpm, SMIT, or swlist. Any existing scripts containing a
native installation utility that you use to query and interface with DB2 installations
must change.

You cannot use the db2ls command on Windows operating systems.

Procedure
v To list the path where DB2 database products are installed on your system and

list the DB2 database product level, enter:
db2ls

Chapter 18. Problem-determination tools 529

The command lists the following information for each DB2 database product
installed on your system:
– Installation path
– Level
– Fix pack
– Special Install Number. This column is used by IBM DB2 Support.
– Installation date. This column shows when the DB2 database product was last

modified.
– Installer UID. This column shows the UID with which the DB2 database

product was installed.
v To list information about DB2 database products or features in a particular

installation path the q parameter must be specified:
db2ls -q -p -b baseInstallDirectory

where:
– q specifies that you are querying a product or feature. This parameter is

mandatory.
– p specifies that the listing displays products rather than listing the features.
– b specifies the installation directory of the product or feature. This parameter

is mandatory if you are not running the command from the installation
directory.

Results

Depending on the parameters provided, the command lists the following
information:
v Installation path. This is specified only once, not for each feature.
v The following information is displayed:

– Response file ID for the installed feature, or if the p option is specified, the
response file ID for the installed product. For example,
ENTERPRISE_SERVER_EDITION.

– Feature name, or if the p option is specified, product name.
– Product version, release, modification level, fix pack level (VRMF). For

example, 10.1.0.0
– Fix pack, if applicable. For example, if Fix Pack 1 is installed, the value

displayed is 1. This includes interim fix packs, such as Fix Pack 1a.
v If any of the product's VRMF information do not match, a warning message

displays at the end of the output listing. The message suggests the fix pack to
apply.

db2mtrk command
You can use the db2mtrk command to generate a complete report of memory
status, for instances, databases, agents, and applications. The command output
includes memory pool allocation information such as current size, maximum size,
and type of function for which memory is used.

Buffer pools memory allocation
You can use the db2mtrk command to view the amount of database memory that
has been allocated to buffer pools. The bufferpool heaps are always fully allocated
so the memory tracker reports the same values for the current and maximum sizes

530 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

of these heaps. If a bufferpool size is set to automatic then the current and
maximum size of the bufferpool heap will be adjusted over time based on
workload and available memory.

Example 1
To report the database and instance memory usage every 10 seconds, issue the
following command: db2mtrk -v -i -d -r 10.

Example 2
In addition to database and instance memory usage, to report detailed application
memory usage grouped by application ID, issue the following command: db2mtrk
-a -v -i -d.

db2pd command
You can use the db2pd command for monitoring and troubleshooting because it
can return quick and immediate information from the DB2 memory sets.

Overview

The tool collects information without acquiring any latches or using any engine
resources. It is therefore possible (and expected) to retrieve information that is
changing while db2pd is collecting information; hence the data might not be
completely accurate. If changing memory pointers are encountered, a signal
handler is used to prevent db2pd from ending abnormally. This can result in
messages such as "Changing data structure forced command termination" to
appear in the output. Nonetheless, the tool can be helpful for troubleshooting. Two
benefits to collecting information without latching include faster retrieval and no
competition for engine resources.

If you want to capture information about the database management system when a
specific SQLCODE, ZRC code or ECF code occurs, this can be accomplished using
the db2pdcfg -catch command. When the errors are caught, the db2cos (callout
script) is launched. The db2cos script can be dynamically altered to run any db2pd
command, operating system command, or any other command needed to resolve
the problems. The template db2cos script file is located in sqllib/bin on UNIX
and Linux. On the Windows operating system, db2cos is located in the
$DB2PATH\bin directory.

When adding a new node, you can monitor the progress of the operation on the
database partition server, that is adding the node, using the db2pd -addnode
command with the optional oldviewapps and detail parameters for more detailed
information.

If you require a list of event monitors that are currently active or have been, for
some reason, deactivated, run the db2pd -gfw command. This command also
returns statistics and information about the targets, into which event monitors
write data, for each fast writer EDU.

Examples

The following list is a collection of examples in which the db2pd command can be
used to expedite troubleshooting:
v Example 1: Diagnosing a lockwait

Chapter 18. Problem-determination tools 531

v Example 2: Using the -wlocks parameter to capture all the locks being waited on
v Example 3: Using the -apinfo parameter to capture detailed runtime information

about the lock owner and the lock waiter
v Example 4: Using the callout scripts when considering a locking problem
v Example 5: Mapping an application to a dynamic SQL statement
v Example 6: Monitoring memory usage
v Example 7: Determine which application is using up your table space
v Example 8: Monitoring recovery
v Example 9: Determining the amount of resources a transaction is using
v Example 10: Monitoring log usage
v Example 11: Viewing the sysplex list
v Example 12: Generating stack traces
v Example 13: Viewing memory statistics for a database partition
v Example 14: Monitoring the progress of index reorganization
v Example 15: Displaying the top EDUs by processor time consumption and

displaying EDU stack information
v Example 16: Displaying agent event metrics

The results text show in the examples is an extract of the the db2cmd command
ouput for better readability.

Example 1: Diagnosing a lockwait

If you run db2pd -db databasename -locks -transactions -applications -dynamic,
the results are similar to the following ones:
Locks:
TranHdl Lockname Type Mode Sts Owner Dur HldCnt Att ReleaseFlg
3 00020002000000040000000052 Row ..X G 3 1 0 0x0000 0x40000000
2 00020002000000040000000052 Row ..X W* 2 1 0 0x0000 0x40000000

For the database that you specified using the -db database name option, the first
results show the locks for that database. The results show that TranHdl 2 is
waiting on a lock held by TranHdl 3.
Transactions:
AppHandl [nod-index] TranHdl Locks State Tflag Tflag2 ...
11 [000-00011] 2 4 READ 0x00000000 0x00000000 ...
12 [000-00012] 3 4 WRITE 0x00000000 0x00000000 ...

We can see that TranHdl 2 is associated with AppHandl 11 and TranHdl 3 is
associated with AppHandl 12.
Applications:
AppHandl NumAgents CoorPid Status C-AnchID C-StmtUID L-AnchID L-StmtUID Appid

12 1 1073336 UOW-Waiting 0 0 17 1 ...5602
11 1 1040570 UOW-Executing 17 1 94 1 ...5601

We can see that AppHandl 12 last ran dynamic statement 17, 1. AppHandl 11 is
currently running dynamic statement 17, 1 and last ran statement 94, 1.
Dynamic SQL Statements:
AnchID StmtUID NumEnv NumVar NumRef NumExe Text
17 1 1 1 2 2 update pdtest set c1 = 5
94 1 1 1 2 2 set lock mode to wait 1

We can see that the text column shows the SQL statements that are associated with
the lock timeout.

532 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example 2: Using the -wlocks parameter to capture all the locks being waited on

If you run db2pd -wlocks -db pdtest, results similar to the following ones are
generated. They show that the first application (AppHandl 47) is performing an
insert on a table and that the second application (AppHandl 46) is performing a
select on that table:
venus@boson:/home/venus =>db2pd -wlocks -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:22

Locks being waited on :
AppHandl TranHdl Lockname Type Mode Conv Sts CoorEDU AppName AuthID AppID
47 8 00020004000000000840000652 Row ..X G 5160 db2bp VENUS ...13730
46 2 00020004000000000840000652 Row .NS W 5913 db2bp VENUS ...13658

Example 3: Using the -apinfo parameter to capture detailed runtime information
about the lock owner and the lock waiter

The following sample output was generated under the same conditions as those
for Example 2:
venus@boson:/home/venus =>db2pd -apinfo 47 -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:30

Application :
Address : 0x0780000001676480
AppHandl [nod-index] : 47 [000-00047]
Application PID : 876558
Application Node Name : boson
IP Address: n/a
Connection Start Time : (1197063450)Fri Dec 7 16:37:30 2007
Client User ID : venus
System Auth ID : VENUS
Coordinator EDU ID : 5160
Coordinator Partition : 0
Number of Agents : 1
Locks timeout value : 4294967294 seconds
Locks Escalation : No
Workload ID : 1
Workload Occurrence ID : 2
Trusted Context : n/a
Connection Trust Type : non trusted
Role Inherited : n/a
Application Status : UOW-Waiting
Application Name : db2bp
Application ID : *LOCAL.venus.071207213730

ClientUserID : n/a
ClientWrkstnName : n/a
ClientApplName : n/a
ClientAccntng : n/a

List of inactive statements of current UOW :
UOW-ID : 2
Activity ID : 1
Package Schema : NULLID
Package Name : SQLC2G13
Package Version :
Section Number : 203
SQL Type : Dynamic
Isolation : CS
Statement Type : DML, Insert/Update/Delete
Statement : insert into pdtest values 99

Chapter 18. Problem-determination tools 533

venus@boson:/home/venus =>db2pd -apinfo 46 -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:39

Application :
Address : 0x0780000000D77A60
AppHandl [nod-index] : 46 [000-00046]
Application PID : 881102
Application Node Name : boson
IP Address: n/a
Connection Start Time : (1197063418)Fri Dec 7 16:36:58 2007
Client User ID : venus
System Auth ID : VENUS
Coordinator EDU ID : 5913
Coordinator Partition : 0
Number of Agents : 1
Locks timeou t value : 4294967294 seconds
Locks Escalation : No
Workload ID : 1
Workload Occurrence ID : 1
Trusted Context : n/a
Connection Trust Type : non trusted
Role Inherited : n/a
Application Status : Lock-wait
Application Name : db2bp
Application ID : *LOCAL.venus.071207213658

ClientUserID : n/a
ClientWrkstnName : n/a
ClientApplName : n/a
ClientAccntng : n/a

List of active statements :
*UOW-ID : 3
Activity ID : 1
Package Schema : NULLID
Package Name : SQLC2G13
Package Version :
Section Number : 201
SQL Type : Dynamic
Isolation : CS
Statement Type : DML, Select (blockable)
Statement : select * from pdtest

Example 4: Using the callout scripts when considering a locking problem

To use the callout scripts, find the db2cos output files. The location of the files is
controlled by the database manager configuration parameter diagpath. The
contents of the output files will differ depending on what commands you enter in
the db2cos script file. An example of the output provided when the db2cos script
file contains a db2pd -db sample -locks command is as follows:
Lock Timeout Caught
Thu Feb 17 01:40:04 EST 2006
Instance DB2
Database: SAMPLE
Partition Number: 0
PID: 940
TID: 2136
Function: sqlplnfd
Component: lock manager
Probe: 999
Timestamp: 2006-02-17-01.40.04.106000
AppID: *LOCAL.DB2...
AppHdl:
...
Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:06:53

534 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Locks:
Address TranHdl Lockname Type Mode Sts Owner Dur HldCnt Att Rlse
0x402C6B30 3 00020003000000040000000052 Row ..X W* 3 1 0 0 0x40

In the output, W* indicates the lock that experienced the timeout. In this case, a
lockwait has occurred. A lock timeout can also occur when a lock is being
converted to a higher mode. This is indicated by C* in the output.

You can map the results to a transaction, an application, an agent, or even an SQL
statement with the output provided by other db2pd commands in the db2cos file.
You can narrow down the output or use other commands to collect the information
that you need. For example, you can use the db2pd -locks wait parameters to
print only locks with a wait status. You can also use the -app and -agent
parameters.

Example 5: Mapping an application to a dynamic SQL statement

The command db2pd -applications -dynamic reports the current and last anchor
ID and statement unique ID for dynamic SQL statements. This allows direct
mapping from an application to a dynamic SQL statement.
Applications:
Address AppHandl [nod-index] NumAgents CoorPid Status
0x00000002006D2120 780 [000-00780] 1 10615 UOW-Executing

C-AnchID C-StmtUID L-AnchID L-StmtUID Appid
163 1 110 1 *LOCAL.burford.050202200412

Dynamic SQL Statements:
Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text
0x0000000220A02760 163 1 2 2 2 1 CREATE VIEW MYVIEW
0x0000000220A0B460 110 1 2 2 2 1 CREATE VIEW YOURVIEW

Example 6: Monitoring memory usage

The db2pd -memblock command can be useful when you are trying to understand
memory usage, as shown in the following sample output:
All memory blocks in DBMS set.

Address PoolID PoolName BlockAge Size(Bytes) I LOC File
0x0780000000740068 62 resynch 2 112 1 1746 1583816485
0x0780000000725688 62 resynch 1 108864 1 127 1599127346
0x07800000001F4348 57 ostrack 6 5160048 1 3047 698130716
0x07800000001B5608 57 ostrack 5 240048 1 3034 698130716
0x07800000001A0068 57 ostrack 1 80 1 2970 698130716
0x07800000001A00E8 57 ostrack 2 240 1 2983 698130716
0x07800000001A0208 57 ostrack 3 80 1 2999 698130716
0x07800000001A0288 57 ostrack 4 80 1 3009 698130716
0x0780000000700068 70 apmh 1 360 1 1024 3878879032
0x07800000007001E8 70 apmh 2 48 1 914 1937674139
0x0780000000700248 70 apmh 3 32 1 1000 1937674139
...

This is followed by the sorted 'per-pool' output:
Memory blocks sorted by size for ostrack pool:
PoolID PoolName TotalSize(Bytes) TotalCount LOC File
57 ostrack 5160048 1 3047 698130716
57 ostrack 240048 1 3034 698130716
57 ostrack 240 1 2983 698130716
57 ostrack 80 1 2999 698130716
57 ostrack 80 1 2970 698130716
57 ostrack 80 1 3009 698130716

Chapter 18. Problem-determination tools 535

Total size for ostrack pool: 5400576 bytes

Memory blocks sorted by size for apmh pool:
PoolID PoolName TotalSize(Bytes) TotalCount LOC File
70 apmh 40200 2 121 2986298236
70 apmh 10016 1 308 1586829889
70 apmh 6096 2 4014 1312473490
70 apmh 2516 1 294 1586829889
70 apmh 496 1 2192 1953793439
70 apmh 360 1 1024 3878879032
70 apmh 176 1 1608 1953793439
70 apmh 152 1 2623 1583816485
70 apmh 48 1 914 1937674139
70 apmh 32 1 1000 1937674139
Total size for apmh pool: 60092 bytes
...

The final section of output sorts the consumers of memory for the entire memory
set:
All memory consumers in DBMS memory set:
PoolID PoolName TotalSize(Bytes) %Bytes TotalCount %Count LOC File
57 ostrack 5160048 71.90 1 0.07 3047 698130716
50 sqlch 778496 10.85 1 0.07 202 2576467555
50 sqlch 271784 3.79 1 0.07 260 2576467555
57 ostrack 240048 3.34 1 0.07 3034 698130716
50 sqlch 144464 2.01 1 0.07 217 2576467555
62 resynch 108864 1.52 1 0.07 127 1599127346
72 eduah 108048 1.51 1 0.07 174 4210081592
69 krcbh 73640 1.03 5 0.36 547 4210081592
50 sqlch 43752 0.61 1 0.07 274 2576467555
70 apmh 40200 0.56 2 0.14 121 2986298236
69 krcbh 32992 0.46 1 0.07 838 698130716
50 sqlch 31000 0.43 31 2.20 633 3966224537
50 sqlch 25456 0.35 31 2.20 930 3966224537
52 kerh 15376 0.21 1 0.07 157 1193352763
50 sqlch 14697 0.20 1 0.07 345 2576467555
...

You can also report memory blocks for private memory on UNIX and Linux
operating systems. For example, if you run db2pd -memb pid=159770, results similar
to the following ones are generated:
All memory blocks in Private set.

PoolID PoolName BlockAge Size(Bytes) I LOC File
88 private 1 2488 1 172 4283993058
88 private 2 1608 1 172 4283993058
88 private 3 4928 1 172 4283993058
88 private 4 7336 1 172 4283993058
88 private 5 32 1 172 4283993058
88 private 6 6728 1 172 4283993058
88 private 7 168 1 172 4283993058
88 private 8 24 1 172 4283993058
88 private 9 408 1 172 4283993058
88 private 10 1072 1 172 4283993058
88 private 11 3464 1 172 4283993058
88 private 12 80 1 172 4283993058
88 private 13 480 1 1534 862348285
88 private 14 480 1 1939 862348285
88 private 80 65551 1 1779 4231792244
Total set size: 94847 bytes

Memory blocks sorted by size:
PoolID PoolName TotalSize(Bytes) TotalCount LOC File
88 private 65551 1 1779 4231792244

536 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

88 private 28336 12 172 4283993058
88 private 480 1 1939 862348285
88 private 480 1 1534 862348285
Total set size: 94847 bytes

Example 7: Determine which application is using up your table space

Using db2pd -tcbstats command, you can identify the number of inserts for a
table. The following example shows sample information for a user-defined global
temporary table called TEMP1:
TCB Table Information:
TbspaceID TableID PartID ... TableName SchemaNm ObjClass DataSize LfSize LobSize XMLSize
3 2 n/a ... TEMP1 SESSION Temp 966 0 0 0

TCB Table Stats:
TableName Scans UDI PgReorgs ... Reads FscrUpdates Inserts Updates Deletes OvFlReads OvFlCrtes
TEMP1 0 0 0 ... 0 0 43968 0 0 0 0

You can then obtain the information for table space 3 by using the db2pd
-tablespaces command. Sample output is as follows:
Tablespace 3 Configuration:
Type Content PageSz ExtentSz Auto Prefetch BufID FSC NumCntrs MaxStripe LastConsecPg Name
DMS UsrTmp 4096 32 Yes 32 1 On 1 0 31 TEMPSPACE2

Tablespace 3 Statistics:
TotalPgs UsablePgs UsedPgs PndFreePgs FreePgs HWM State MinRecTime NQuiescers
5000 4960 1088 0 3872 1088 0x00000000 0 0

Tablespace 3 Autoresize Statistics:
AS AR InitSize IncSize IIP MaxSize LastResize LRF
No No 0 0 No 0 None No

Containers:
ContainNum Type TotalPgs UseablePgs StripeSet Container
0 File 5000 4960 0 /home/db2inst1/tempspace2a

The MinRecTime column returns a value that is a UNIX time stamp in a
Coordinated Universal Time (UTC) timezone format. To convert the value to a
GMT time zone format, you can use the DB2 time stamp function. For example, if
MinRecTime returns a value of 1369626329, to convert this value to a GMT format
run the following statement:
db2 "values timestamp(’1970-01-01-00.00.00’) + 1369626329 seconds"

The query will return a GMT value of 2013-05-27-03.45.29.000000.

The FreePgs column shows that space is filling up. As the free pages value
decreases, there is less space available. Notice also that the value for FreePgs plus
the value for UsedPgs equals the value of UsablePgs.

Once this is known, you can identify the dynamic SQL statement that is using the
table TEMP1 by running the db2pd -db sample -dyn:
Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:13:06

Dynamic Cache:
Current Memory Used 1022197
Total Heap Size 1271398
Cache Overflow Flag 0
Number of References 237
Number of Statement Inserts 32
Number of Statement Deletes 13
Number of Variation Inserts 21
Number of Statements 19

Dynamic SQL Statements:

Chapter 18. Problem-determination tools 537

AnchID StmtUID NumEnv NumVar NumRef NumExe Text
78 1 2 2 3 2 declare global temporary table temp1 ...
253 1 1 1 24 24 insert into session.temp1 values(’TEST’)

Finally, you can map the information from the preceding output to the applications
output to identify the application by running db2pd -db sample -app.
Applications:
AppHandl [nod-index] NumAgents CoorPid Status C-AnchID C-StmtUID
501 [000-00501] 1 11246 UOW-Waiting 0 0

L-AnchID L-StmtUID Appid
253 1 *LOCAL.db2inst1.050202160426

You can use the anchor ID (AnchID) value that identified the dynamic SQL
statement to identify the associated application. The results show that the last
anchor ID (L-AnchID) value is the same as the anchor ID (AnchID) value. You use
the results from one run of db2pd in the next run of db2pd.

The output from db2pd -agent shows the number of rows read (in the Rowsread
column) and rows written (in the Rowswrtn column) by the application. These
values give you an idea of what the application has completed and what the
application still has to complete, as shown in the following sample output:
AppHandl [nod-index] AgentPid Priority Type DBName
501 [000-00501] 11246 0 Coord SAMPLE

State ClientPid Userid ClientNm Rowsread Rowswrtn LkTmOt
Inst-Active 26377 db2inst1 db2bp 22 9588 NotSet

You can map the values for AppHandl and AgentPid resulting from running the
db2pd -agent command to the corresponding values for AppHandl and CoorPiid
resulting from running the db2pd -app command.

The steps are slightly different if you suspect that an internal temporary table is
filling up the table space. You still use db2pd -tcbstats to identify tables with
large numbers of inserts, however. Following is sample information for an implicit
temporary table:
TCB Table Information:
TbspaceID TableID PartID MasterTbs MasterTab TableName SchemaNm ObjClass DataSize ...
1 2 n/a 1 2 TEMP (00001,00002) <30> <JMC Temp 2470 ...
1 3 n/a 1 3 TEMP (00001,00003) <31> <JMC Temp 2367 ...
1 4 n/a 1 4 TEMP (00001,00004) <30> <JMC Temp 1872 ...

TCB Table Stats:
TableName Scans UDI PgReorgs NoChgUpdts Reads FscrUpdates Inserts ...
TEMP (00001,00002) 0 0 0 0 0 0 43219 ...
TEMP (00001,00003) 0 0 0 0 0 0 42485 ...
TEMP (00001,00004) 0 0 0 0 0 0 0 ...

In this example, there are a large number of inserts for tables with the naming
convention TEMP (TbspaceID, TableID). These are implicit temporary tables. The
values in the SchemaNm column have a naming convention of the value for AppHandl
concatenated with the value for SchemaNm, which makes it possible to identify the
application doing the work.

You can then map that information to the output from db2pd -tablespaces to see
the used space for table space 1. Take note of the relationship between the UsedPgs
and UsablePgs values in the table space statistics in the following output:
Tablespace Configuration:
Id Type Content PageSz ExtentSz Auto Prefetch ... FSC NumCntrs MaxStripe LastConsecPg Name
1 SMS SysTmp 4096 32 Yes 320 ... On 10 0 31 TEMPSPACE1

Tablespace Statistics:

538 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Id TotalPgs UsablePgs UsedPgs PndFreePgs FreePgs HWM State MinRecTime NQuiescers
1 6516 6516 6516 0 0 0 0x00000000 0 0

Tablespace Autoresize Statistics:
Address Id AS AR InitSize IncSize IIP MaxSize LastResize LRF
0x07800000203FB5A0 1 No No 0 0 No 0 None No

Containers:
...

You can then identify application handles 30 and 31 (because you saw them in the
-tcbstats output) by using the command db2pd -app:
Applications:
AppHandl NumAgents CoorPid Status C-AnchID C-StmtUID L-AnchID L-StmtUID Appid
31 1 4784182 UOW-Waiting 0 0 107 1 ...4142
30 1 8966270 UOW-Executing 107 1 107 1 ...4013

Finally, map the information from the preceding output to the Dynamic SQL
output obtained by running the db2pd -dyn command:
Dynamic SQL Statements:
AnchID StmtUID NumEnv NumVar NumRef NumExe Text
107 1 1 1 43 43 select c1, c2 from test group by c1,c2

Example 8: Monitoring recovery

If you run the command db2pd -recovery, the output shows several counters that
you can use to verify that recovery is progressing, as shown in the following
sample output. The Current Log and Current LSO values provide the log position.
The CompletedWork value is the number of bytes completed thus far.
Recovery:
Recovery Status 0x00000401
Current Log S0000005.LOG
Current LSN 0000001F07BC
Current LSO 000002551BEA
Job Type ROLLFORWARD RECOVERY
Job ID 7
Job Start Time (1107380474) Wed Feb 2 16:41:14 2005
Job Description Database Rollforward Recovery
Invoker Type User
Total Phases 2
Current Phase 1

Progress:
Address PhaseNum Description StartTime CompletedWork TotalWork
0x0000000200667160 1 Forward Wed Feb 2 16:41:14 2005 2268098 bytes Unknown
0x0000000200667258 2 Backward NotStarted 0 bytes Unknown

Example 9: Determining the amount of resources a transaction is using

If you run the command db2pd -transactions, the output shows the number of
locks, the first log sequence number (LSN), the last LSN, the first LSO, the last
LSO, the log space used, and the space reserved, as shown in the following sample
output. This can be useful for understanding the behavior of a transaction.
Transactions:
Address AppHandl [nod-index] TranHdl Locks State Tflag
0x000000022026D980 797 [000-00797] 2 108 WRITE 0x00000000
0x000000022026E600 806 [000-00806] 3 157 WRITE 0x00000000
0x000000022026F280 807 [000-00807] 4 90 WRITE 0x00000000

Tflag2 Firstlsn Lastlsn Firstlso Lastlso
0x00000000 0x0000001A4212 0x0000001C2022 0x000001072262 0x0000010B2C8C
0x00000000 0x000000107320 0x0000001S3462 0x000001057574 0x0000010B3340
0x00000000 0x0000001BC00C 0x0000001X2F03 0x00000107CF0C 0x0000010B2FDE
LogSpace SpaceReserved TID AxRegCnt GXID

Chapter 18. Problem-determination tools 539

4518 95450 0x000000000451 1 0
6576 139670 0x0000000003E0 1 0
3762 79266 0x000000000472 1 0

Example 10: Monitoring log usage

The command db2pd -logs is useful for monitoring log usage for a database. By
using thePages Written value, as shown in the following sample output, you can
determine whether the log usage is increasing:
Logs:
Current Log Number 2
Pages Written 846
Method 1 Archive Status Success
Method 1 Next Log to Archive 2
Method 1 First Failure n/a
Method 2 Archive Status Success
Method 2 Next Log to Archive 2
Method 2 First Failure n/a

Address StartLSN StartLSO State Size Pages Filename
0x000000023001BF58 0x00000022F032 0x000001B58000 0x00000000 1000 1000 S0000002.LOG
0x000000023001BE98 0x000000000000 0x000001F40000 0x00000000 1000 1000 S0000003.LOG
0x0000000230008F58 0x000000000000 0x000002328000 0x00000000 1000 1000 S0000004.LOG

You can identify two types of problems by using this output:
v If the most recent log archive fails, Archive Status is set to a value of Failure. If

there is an ongoing archive failure, preventing logs from being archived at all,
Archive Status is set to a value of First Failure.

v If log archiving is proceeding very slowly, the Next Log to Archive value is
lower than the Current Log Number value. If archiving is very slow, space for
active logs might run out, which in turn might prevent any data changes from
occurring in the database.

Note: S0000003.LOG and S0000004.LOG do not contain any log records yet and
therefore the StartLSN is 0x0

Example 11: Viewing the sysplex list

Without the db2pd -sysplex command showing the following sample output, the
only other way to report the sysplex list is by using a DB2 trace.
Sysplex List:
Alias: HOST
Location Name: HOST1
Count: 1

IP Address Port Priority Connections Status PRDID
1.2.34.56 400 1 0 0

Example 12: Generating stack traces

You can use the db2pd -stack all command for Windows operating systems or
the -stack command for UNIX operating systems to produce stack traces for all
processes in the current database partition. You might want to use this command
iteratively when you suspect that a process or thread is looping or hanging.

You can obtain the current call stack for a particular engine dispatchable unit
(EDU) by issuing the command db2pd -stack eduid, as shown in the following
example:

540 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Attempting to dump stack trace for eduid 137.
See current DIAGPATH for trapfile.

If the call stacks for all of the DB2 processes are desired, use the command db2pd
-stack all, for example (on Windows operating systems):

Attempting to dump all stack traces for instance.
See current DIAGPATH for trapfiles.

If you are using a partitioned database environment with multiple physical nodes,
you can obtain the information from all of the partitions by using the command
db2_all "; db2pd -stack all". If the partitions are all logical partitions on the
same machine, however, a faster method is to use db2pd -alldbp -stacks.

You can also redirect the output of the db2pdb -stacks command for db2sysc
processes to a specific directory path with the dumpdir parameter. The output can
be redirected for a specific duration only with the timeout parameter. For example,
to redirect the output of stack traces for all EDUs in db2sysc processes to
/home/waleed/mydir for 30 seconds, issue the following command:
db2pd -alldbp -stack all dumpdir=/home/waleed/mydir timeout=30

Example 13: Viewing memory statistics for a database partition

The db2pd -dbptnmem command shows how much memory the DB2 server is
currently consuming and, at a high level, which areas of the server are using that
memory.

The following example shows the output from running db2pd -dbptnmem on an AIX
machine:
Database Partition Memory Controller Statistics

Controller Automatic: Y
Memory Limit: 122931408 KB
Current usage: 651008 KB
HWM usage: 651008 KB
Cached memory: 231296 KB

The descriptions of these data fields and columns are as follows:

Controller Automatic
Indicates the memory controller setting. It shows the value "Y" if the
instance_memory configuration parameter is set to AUTOMATIC. This means
that database manager automatically determines the upper boundary of
memory consumption.

Memory Limit
If an instance memory limit is enforced, the value of the instance_memory
configuration parameter is the upper bound limit of DB2 server memory
that can be consumed.

Current usage
The amount of memory the server is currently consuming.

HWM usage
The high water mark (HWM) or peak memory usage that has been
consumed since the activation of the database partition (when the db2start
command was run).

Chapter 18. Problem-determination tools 541

Cached memory
The amount of the current usage that is not currently being used but is
cached for performance reasons for future memory requests.

Following is the continuation of the sample output from running db2pd -dbptnmem
on an AIX operating system:
Individual Memory Consumers:
Name Mem Used (KB) HWM Used (KB) Cached (KB)
===
APPL-DBONE 160000 160000 159616
DBMS-name 38528 38528 3776
FMP_RESOURCES 22528 22528 0
PRIVATE 13120 13120 740
FCM_RESOURCES 10048 10048 0
LCL-p606416 128 128 0
DB-DBONE 406656 406656 67200

All registered “consumers” of memory within the DB2 server are listed with the
amount of the total memory they are consuming. The column descriptions are as
follows:

Name A short, distinguishing name of a consumer of memory, such as the
following ones:

APPL-dbname
Application memory consumed for database dbname

DBMS-name
Global database manager memory requirements

FMP_RESOURCES
Memory required to communicate with db2fmps

PRIVATE
Miscellaneous private memory requirements

FCM_RESOURCES
Fast Communication Manager resources

LCL-pid
The memory segment used to communicate with local applications

DB-dbname
Database memory consumed for database dbname

Mem Used (KB)
The amount of memory that is currently allotted to the consumer

HWM Used (KB)
The high-water mark (HWM) of the memory, or the peak memory, that the
consumer has used

Cached (KB)
Of the Mem Used (KB), the amount of memory that is not currently being
used but is immediately available for future memory allocations

Example 14: Monitoring the progress of index reorganization

In DB2 Version 9.8 Fix Pack 3 and later fix packs, the progress report of an index
reorganization has the following characteristics:
v The db2pd -reorgs index command reports index reorg progress for partitioned

indexes (Fix Pack 1 introduced support for only non-partitioned indexes).

542 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v The db2pd -reorgs index command supports the monitoring of index reorg at
the partition level (that is, during reorganization of a single partition).

v The reorg progress for non-partitioned and partitioned indexes is reported in
separate outputs. One output shows the reorg progress for non-partitioned
indexes, and the following outputs show the reorg progress for partitioned
indexes on each table partition; the index reorg statistics of only one partition is
reported in each output.

v Non-partitioned indexes are processed first, followed by partitioned indexes in
serial fashion.

v The db2pd -reorgs index command displays the following additional
information fields in the output for partitioned indexes:
– MaxPartition - Total number of partitions for the table being processed. For

partition-level reorg, MaxPartition will always have a value of 1 since only a
single partition is being reorganized.

– PartitionID - The data partition identifier for the partition being processed.

The following example shows an output obtained using the db2pd -reorgs index
command which reports the index reorg progress for a range-partitioned table with
2 partitions.

Note: The first output reports the Index Reorg Stats of the non-partitioned indexes.
The following outputs report the Index Reorg Stats of the partitioned indexes on
each partition.
Index Reorg Stats:
Retrieval Time: 02/08/2010 23:04:21
TbspaceID: -6 TableID: -32768
Schema: ZORAN TableName: BIGRPT
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:03:55 End Time: 02/08/2010 23:04:04
Total Duration: 00:00:08
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 750000

Retrieval Time: 02/08/2010 23:04:21
TbspaceID: 2 TableID: 5
Schema: ZORAN TableName: BIGRPT
PartitionID: 0 MaxPartition: 2
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:04:04 End Time: 02/08/2010 23:04:08
Total Duration: 00:00:04
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 375000

Retrieval Time: 02/08/2010 23:04:21
TbspaceID: 2 TableID: 6
Schema: ZORAN TableName: BIGRPT
PartitionID: 1 MaxPartition: 2
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:04:08 End Time: 02/08/2010 23:04:12
Total Duration: 00:00:04
Prev Index Duration: -

Chapter 18. Problem-determination tools 543

Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 375000

Example 15: Displaying the top EDUs by processor time consumption and
displaying EDU stack information

If you issue the db2pd command with the -edus parameter option, the output lists
all engine dispatchable units (EDUs). Output for EDUs can be returned at the level
of granularity you specify, such as at the instance level or at the member. On Linux
and UNIX operating systems only, you can also specify the interval parameter
suboption so that two snapshots of all EDUs are taken, separated by an interval
you specify. When the interval parameter is specified, two additional columns in
the output indicate the delta of processor user time (USR DELTA column) and the
delta of processor system time (SYS DELTA column) across the interval.

In the following example, the deltas for processor user time and processor system
time are given across a five-second interval:
$ db2pd -edus interval=5

Database Partition 0 -- Active -- Up 0 days 00:53:29 -- Date 06/04/2010 03:34:59

List of all EDUs for database partition 0

db2sysc PID: 1249522
db2wdog PID: 2068678

EDU ID TID Kernel TID EDU Name USR SYS USR DELTA SYS DELTA
==
6957 6957 13889683 db2agntdp (SAMPLE) 0 58.238506 0.820466 1.160726 0.014721
6700 6700 11542589 db2agent (SAMPLE) 0 52.856696 0.754420 1.114821 0.015007
5675 5675 4559055 db2agntdp (SAMPLE) 0 60.386779 0.854234 0.609233 0.014304
3088 3088 13951225 db2agntdp (SAMPLE) 0 80.073489 2.249843 0.499766 0.006247
3615 3615 2887875 db2loggw (SAMPLE) 0 0.939891 0.410493 0.011694 0.004204
4900 4900 6344925 db2pfchr (SAMPLE) 0 1.748413 0.014378 0.014343 0.000103
7986 7986 13701145 db2agntdp (SAMPLE) 0 1.410225 0.025900 0.003636 0.000074
2571 2571 8503329 db2ipccm 0 0.251349 0.083787 0.002551 0.000857
7729 7729 14168193 db2agntdp (SAMPLE) 0 1.717323 0.029477 0.000998 0.000038
7472 7472 11853991 db2agnta (SAMPLE) 0 1.860115 0.032926 0.000860 0.000012
3358 3358 2347127 db2loggr (SAMPLE) 0 0.151042 0.184726 0.000387 0.000458
515 515 13820091 db2aiothr 0 0.405538 0.312007 0.000189 0.000178
7215 7215 2539753 db2agntdp (SAMPLE) 0 1.165350 0.019466 0.000291 0.000008
6185 6185 2322517 db2wlmd (SAMPLE) 0 0.061674 0.034093 0.000169 0.000100
6442 6442 2756793 db2evmli (DB2DETAILDEADLOCK) 0 0.072142 0.052436 0.000092 0.000063
4129 4129 15900799 db2glock (SAMPLE) 0 0.013239 0.000741 0.000064 0.000001
2 2 11739383 db2alarm 0 0.036904 0.028367 0.000009 0.000009
4386 4386 13361367 db2dlock (SAMPLE) 0 0.015653 0.001281 0.000014 0.000003
1029 1029 15040579 db2fcms 0 0.041929 0.016598 0.000010 0.000004
5414 5414 14471309 db2pfchr (SAMPLE) 0 0.000093 0.000002 0.000000 0.000000
258 258 13656311 db2sysc 0 8.369967 0.263539 0.000000 0.000000
5157 5157 7934145 db2pfchr (SAMPLE) 0 0.027598 0.000177 0.000000 0.000000
1543 1543 2670647 db2fcmr 0 0.004191 0.000079 0.000000 0.000000
1286 1286 8417339 db2extev 0 0.000312 0.000043 0.000000 0.000000
2314 2314 14360813 db2licc 0 0.000371 0.000051 0.000000 0.000000
5928 5928 3137537 db2taskd (SAMPLE) 0 0.004903 0.000572 0.000000 0.000000
3872 3872 2310357 db2lfr (SAMPLE) 0 0.000126 0.000007 0.000000 0.000000
4643 4643 11694287 db2pclnr (SAMPLE) 0 0.000094 0.000002 0.000000 0.000000
1800 1800 5800175 db2extev 0 0.001212 0.002137 0.000000 0.000000
772 772 7925817 db2thcln 0 0.000429 0.000072 0.000000 0.000000
2057 2057 6868993 db2pdbc 0 0.002423 0.001603 0.000000 0.000000
2828 2828 10866809 db2resync 0 0.016764 0.003098 0.000000 0.000000

To provide information only about the EDUs that are the top consumers of
processor time and to reduce the amount of output returned, you can further
include the top parameter option. In the following example, only the top five

544 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

EDUs are returned, across an interval of 5 seconds. Stack information is also
returned, and can be found stored separately in the directory path specified by
DUMPDIR, which defaults to diagpath.
$ db2pd -edus interval=5 top=5 stacks

Database Partition 0 -- Active -- Up 0 days 00:54:00 -- Date 06/04/2010 03:35:30

List of all EDUs for database partition 0

db2sysc PID: 1249522
db2wdog PID: 2068678

EDU ID TID Kernel TID EDU Name USR SYS USR DELTA SYS DELTA
==
3358 3358 2347127 db2loggr (SAMPLE) 0 0.154906 0.189223 0.001087 0.001363
3615 3615 2887875 db2loggw (SAMPLE) 0 0.962744 0.419617 0.001779 0.000481
515 515 13820091 db2aiothr 0 0.408039 0.314045 0.000658 0.000543
258 258 13656311 db2sysc 0 8.371388 0.264812 0.000653 0.000474
6700 6700 11542589 db2agent (SAMPLE) 0 54.814420 0.783323 0.000455 0.000310

$ ls -ltr
total 552
drwxrwxr-t 2 vbmithun build 256 05-31 09:59 events/
drwxrwxr-t 2 vbmithun build 256 06-04 03:17 stmmlog/
-rw-r--r-- 1 vbmithun build 46413 06-04 03:35 1249522.3358.000.stack.txt
-rw-r--r-- 1 vbmithun build 22819 06-04 03:35 1249522.3615.000.stack.txt
-rw-r--r-- 1 vbmithun build 20387 06-04 03:35 1249522.515.000.stack.txt
-rw-r--r-- 1 vbmithun build 50426 06-04 03:35 1249522.258.000.stack.txt
-rw-r--r-- 1 vbmithun build 314596 06-04 03:35 1249522.6700.000.stack.txt
-rw-r--r-- 1 vbmithun build 94913 06-04 03:35 1249522.000.processObj.txt

Example 16: Displaying agent event metrics

The db2pd command supports returning event metrics for agents. If you need to
determine whether an agent changed state during a specific period of time, use the
event option together with the -agents parameter. The
AGENT_STATE_LAST_UPDATE_TIME(Tick Value) column that is returned shows
the last time that the event being processed by the agent was changed. Together
with a previously obtained value for AGENT_STATE_LAST_UPDATE_TIME(Tick
Value), you can determine whether an agent has moved on to a new task or
whether it continues to process the same task over an extended period of time.
db2pd -agents event
Database Partition 0 -- Active -- Up 0 days 03:18:52 -- Date 06/27/2011 11:47:10

Agents:
Current agents: 12
Idle agents: 0
Active coord agents: 10
Active agents total: 10
Pooled coord agents: 2
Pooled agents total: 2

AGENT_STATE_LAST_UPDATE_TIME(Tick Value) EVENT_STATE EVENT_TYPE EVENT_OBJECT EVENT_OBJECT_NAME
2011-06-27-14.44.38.859785(...968075) IDLE WAIT REQUEST n/a

Troubleshooting scripts
You may have internal tools or scripts that are based on the processes running in
the database engine. These tools or scripts may no longer work because all agents,
prefetchers, and page cleaners are now considered threads in a single,
multi-threaded process.

Chapter 18. Problem-determination tools 545

Your internal tools and scripts will have to be modified to account for a threaded
process. For example, you may have scripts that start the ps command to list the
process names; and then perform tasks against certain agent processes. Your scripts
must be rewritten.

The problem determination database command db2pd will have a new option -edu
(short for “engine dispatchable unit”) to list all agent names along with their
thread IDs. The db2pd -stack command continues to work with the threaded
engine to dump individual EDU stacks or to dump all EDU stacks for the current
node.

db2val command
The db2val command verifies the basic functions of a DB2 copy by checking the
state of installation files, instance setup, and local database connections.

Validating your DB2 copy
Use the db2val command to determine whether your DB2 copy is functioning
properly.

About this task

The db2val tool verifies the core function of a DB2 copy by validating installation
files, instances, database creation, connections to that database, and the state of
partitioned database environments. This validation can be helpful if you have
manually deployed a DB2 copy on Linux and UNIX operating systems using
tar.gz files. The db2val command can quickly ensure that all the configuration has
been correctly done and ensure that the DB2 copy is what you expect it to be. You
can specify instances and databases or you can run db2val against all of the
instances. The db2val command can be found in the DB2-install-path\bin and
sqllib/bin directories.

Example

For example, to validate all the instances for the DB2 copy, run the following
command:

db2val -a

For complete db2val command details and further example, refer to the “db2val -
DB2 copy validation tool command” topic.

db2dart command
The db2dart command can be used to verify the architectural correctness of
databases and the objects within them. It can also be used to display the contents
of database control files in order to extract data from tables that might otherwise
be inaccessible.

To display all of the possible options, issue the db2dart command without any
parameters. Some options that require parameters, such as the table space ID, are
prompted for if they are not explicitly specified on the command line.

By default, the db2dart utility will create a report file with the name
databaseName.RPT. For single-partition database partition environments, the file is
created in the current directory. For multiple-partition database partition

546 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

environments, the file is created under a subdirectory in the diagnostic directory.
The subdirectory is called DART####, where #### is the database partition number.

In a DB2 pureScale environment, some metadata files (such as bufferpool
configuration files) exist for each member and are validated or updated on a
per-member basis (rather than per-database).

The db2dart utility accesses the data and metadata in a database by reading them
directly from disk. Because of that, you should never run the tool against a
database that still has active connections. If there are connections, the tool will not
know about pages in the buffer pool or control structures in memory, for example,
and might report false errors as a result. Similarly, if you run db2dart against a
database that requires crash recovery or that has not completed rollforward
recovery, similar inconsistencies might result due to the inconsistent nature of the
data on disk.

Comparison of INSPECT and db2dart
The INSPECT command inspects a database for architectural integrity, checking the
pages of the database for page consistency. The INSPECT command checks that the
structures of table objects and structures of table spaces are valid. Cross object
validation conducts an online index to data consistency check. The db2dart
command examines databases for architectural correctness and reports any
encountered errors.

The INSPECT command is similar to the db2dart command in that it allows you to
check databases, table spaces, and tables. A significant difference between the two
commands is that the database needs to be deactivated before you run db2dart,
whereas INSPECT requires a database connection and can be run while there are
simultaneous active connections to the database.

If you do not deactivate the database, db2dart will yield unreliable results.

The following tables list the differences between the tests that are performed by the
db2dart and INSPECT commands.

Table 35. Feature comparison of db2dart and INSPECT for table spaces

Tests performed db2dart INSPECT

SMS table spaces

Check table space files YES NO

Validate contents of internal
page header fields

YES YES

DMS table spaces

Check for extent maps
pointed at by more than one
object

YES NO

Check every extent map
page for consistency bit
errors

NO YES

Check every space map page
for consistency bit errors

NO YES

Validate contents of internal
page header fields

YES YES

Chapter 18. Problem-determination tools 547

Table 35. Feature comparison of db2dart and INSPECT for table spaces (continued)

Tests performed db2dart INSPECT

Verify that extent maps agree
with table space maps

YES NO

Table 36. Feature comparison of db2dart and INSPECT for data objects

Tests performed db2dart INSPECT

Check data objects for
consistency bit errors

YES YES

Check the contents of special
control rows

YES NO

Check the length and
position of variable length
columns

YES NO

Check the LONG
VARCHAR, LONG
VARGRAPHIC, and large
object (LOB) descriptors in
table rows

YES NO

Check the summary total
pages, used pages and free
space percentage

NO YES

Validate contents of internal
page header fields

YES YES

Verify each row record type
and its length

YES YES

Verify that rows are not
overlapping

YES YES

Table 37. Feature comparison of db2dart and INSPECT for index objects

Tests performed db2dart INSPECT

Check for consistency bit
errors

YES YES

Check the location and
length of the index key and
whether there is overlapping

YES YES

Check the ordering of keys
in the index

YES NO

Determine the summary total
pages and used pages

NO YES

Validate contents of internal
page header fields

YES YES

Verify the uniqueness of
unique keys

YES NO

Check for the existence of
the data row for a given
index entry

NO YES

Verify each key to a data
value

NO YES

548 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Table 38. Feature comparison of db2dart and INSPECT for block map objects

Tests performed db2dart INSPECT

Check for consistency bit
errors

YES YES

Determine the summary total
pages and used pages

NO YES

Validate contents of internal
page header fields

YES YES

Table 39. Feature comparison of db2dart and INSPECT for long field and LOB objects

Tests performed db2dart INSPECT

Check the allocation
structures

YES YES

Determine the summary total
pages and used pages (for
LOB objects only)

NO YES

In addition, the following actions can be performed using the db2dart command:
v Format and dump data pages
v Format and dump index pages
v Format data rows to delimited ASCII
v Mark an index invalid

The INSPECT command cannot be used to perform those actions.

Chapter 18. Problem-determination tools 549

550 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Part 4. Performance and scalability

The performance improvement process is an iterative approach to monitoring and
tuning aspects of performance. Depending on the results of this performance
monitoring, you will adjust the configuration of the database server and make
changes to the applications that use the database server. Scalability refers to the
ability of a database to grow and continue to exhibit the same operating
characteristics and response times.

© Copyright IBM Corp. 2014 551

552 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 19. SQL and XQuery compiler

The SQL and XQuery compiler performs several steps to produce an access plan
that can be executed.

The query graph model is an internal, in-memory database that represents the query
as it is processed through these steps, which are shown in Figure 70 on page 554.
Note that some steps occur only for queries that will run against a federated
database.

© Copyright IBM Corp. 2014 553

1. Parse query
The SQL and XQuery compiler analyzes the query to validate the syntax. If any
syntax errors are detected, the query compiler stops processing and returns an
appropriate error to the application that submitted the query. When parsing is
complete, an internal representation of the query is created and stored in the
query graph model.

2. Check semantics
The compiler ensures that there are no inconsistencies among parts of the
statement. For example, the compiler verifies that a column specified for the
YEAR scalar function has been defined with a datetime data type.

Figure 70. Steps performed by the SQL and XQuery compiler

554 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The compiler also adds behavioral semantics to the query graph model,
including the effects of referential constraints, table check constraints, triggers,
and views. The query graph model contains all of the semantics for the query,
including query blocks, subqueries, correlations, derived tables, expressions,
data types, data type conversions, code page conversions, and distribution
keys.

3. Rewrite query
The compiler uses the global semantics that are stored in the query graph
model to transform the query into a form that can be optimized more easily. It
then stores the result in the query graph model.
For example, the compiler might move a predicate, altering the level at which it
is applied, thereby potentially improving query performance. This type of
operation movement is called general predicate pushdown. In a partitioned
database environment, the following query operations are more
computationally intensive:
v Aggregation
v Redistribution of rows
v Correlated subqueries, which are subqueries that contain a reference to a

column in a table that is outside of the subquery
For some queries in a partitioned database environment, decorrelation might
occur as part of rewriting the query.

4. Pushdown analysis (federated databases only)
The major task in this step is to recommend to the optimizer whether an
operation can be remotely evaluated or pushed down at a data source. This type
of pushdown activity is specific to data source queries and represents an
extension to general predicate pushdown operations.

5. Optimize access plan
Using the query graph model as input, the optimizer portion of the compiler
generates many alternative execution plans for satisfying the query. To estimate
the execution cost of each of these plans, the optimizer uses statistics for tables,
indexes, columns and functions. It then chooses the plan with the smallest
estimated execution cost. The optimizer uses the query graph model to analyze
the query semantics and to obtain information about a wide variety of factors,
including indexes, base tables, derived tables, subqueries, correlations, and
recursion.
The optimizer can also consider another type of pushdown operation,
aggregation and sort, which can improve performance by pushing the evaluation
of these operations to the Data Management Services (DMS) component.
The optimizer also considers whether there are buffer pools of different sizes
when determining page size selection. It considers whether the database is
partitioned, or whether intraquery parallelism in a symmetric multiprocessor
(SMP) environment is an option. This information is used by the optimizer to
help select the best access plan for the query.
The output of this step is an access plan, and details about this access plan are
captured in the explain tables. The information that is used to generate an
access plan can be captured by an explain snapshot.

6. Remote SQL generation (federated databases only)
The final plan that is selected by the optimizer might consist of a set of steps
that operate on a remote data source. The remote SQL generation step creates
an efficient SQL statement for operations that are performed by each data
source, based on the SQL dialect at that data source.

7. Generate executable code

Chapter 19. The SQL and XQuery compiler process 555

In the final step, the compiler uses the access plan and the query graph model
to create an executable access plan, or section, for the query. This code
generation step uses information from the query graph model to avoid
repetitive execution of expressions that need to be computed only once. This
type of optimization is possible for code page conversions and when host
variables are used.
To enable query optimization or reoptimization of static or dynamic SQL or
XQuery statements that have host variables, special registers, or parameter
markers, bind the package with the REOPT bind option. The access path for a
statement belonging to such a package, and containing host variables, special
registers, or parameter markers, will be optimized using the values of these
variables rather than default estimates that are chosen by the compiler. This
optimization takes place at query execution time when the values are available.
Information about access plans for static SQL and XQuery statements is stored
in the system catalog tables. When a package is executed, the database manager
uses the information that is stored in the system catalog to determine how to
access the data and provide results for the query. This information is used by
the db2expln tool.

Note: Execute the RUNSTATS command at appropriate intervals against tables that
change often. The optimizer needs up-to-date statistical information about tables
and their data to create the most efficient access plans. Rebind your application to
take advantage of updated statistics. If RUNSTATS is not executed, or the optimizer
assumes that this command was executed against empty or nearly empty tables, it
might use default values or attempt to derive certain statistics based on the
number of file pages that are used to store the table on disk. See also “Automatic
statistics collection”.

Query rewriting methods and examples
During the query rewrite stage, the query compiler transforms SQL and XQuery
statements into forms that can be optimized more easily; this can improve the
possible access plans. Rewriting queries is particularly important for very complex
queries, including those queries that have many subqueries or many joins. Query
generator tools often create these types of very complex queries.

To influence the number of query rewrite rules that are applied to an SQL or
XQuery statement, change the optimization class. To see some of the results of the
query rewrite process, use the explain facility.

Queries might be rewritten in any one of the following ways:
v Operation merging

To construct a query so that it has the fewest number of operations, especially
SELECT operations, the SQL and XQuery compiler rewrites queries to merge
query operations. The following examples illustrate some of the operations that
can be merged:
– Example - View merges

A SELECT statement that uses views can restrict the join order of the table
and can also introduce redundant joining of tables. If the views are merged
during query rewrite, these restrictions can be lifted.

– Example - Subquery to join transforms
If a SELECT statement contains a subquery, selection of order processing of
the tables might be restricted.

– Example - Redundant join elimination

556 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

During query rewrite, redundant joins can be removed to simplify the
SELECT statement.

– Example - Shared aggregation
When a query uses different functions, rewriting can reduce the number of
calculations that need to be done.

v Operation movement
To construct a query with the minimum number of operations and predicates,
the compiler rewrites the query to move query operations. The following
examples illustrate some of the operations that can be moved:
– Example - DISTINCT elimination

During query rewrite, the optimizer can move the point at which the
DISTINCT operation is performed, to reduce the cost of this operation. In
some cases, the DISTINCT operation can be removed completely.

– Example - General predicate pushdown
During query rewrite, the optimizer can change the order in which predicates
are applied, so that more selective predicates are applied to the query as early
as possible.

– Example - Decorrelation
In a partitioned database environment, the movement of result sets among
database partitions is costly. Reducing the size of what must be broadcast to
other database partitions, or reducing the number of broadcasts, or both, is an
objective of the query rewriting process.

v Predicate translation
The SQL and XQuery compiler rewrites queries to translate existing predicates
into more optimal forms. The following examples illustrate some of the
predicates that might be translated:
– Example - Addition of implied predicates

During query rewrite, predicates can be added to a query to enable the
optimizer to consider additional table joins when selecting the best access
plan for the query.

– Example - OR to IN transformations
During query rewrite, an OR predicate can be translated into an IN predicate
for a more efficient access plan. The SQL and XQuery compiler can also
translate an IN predicate into an OR predicate if this transformation would
create a more efficient access plan.

Compiler rewrite example: Operation merging
A SELECT statement that uses views can restrict the join order of the table and can
also introduce redundant joining of tables. If the views are merged during query
rewrite, these restrictions can be lifted.

Suppose you have access to the following two views that are based on the
EMPLOYEE table: one showing employees that have a high level of education and
the other showing employees that earn more than $35,000 per year:

create view emp_education (empno, firstnme, lastname, edlevel) as
select empno, firstnme, lastname, edlevel

from employee
where edlevel > 17

Chapter 19. The SQL and XQuery compiler process 557

create view emp_salaries (empno, firstname, lastname, salary) as
select empno, firstnme, lastname, salary

from employee
where salary > 35000

The following user-written query lists those employees who have a high level of
education and who earn more than $35,000 per year:

select e1.empno, e1.firstnme, e1.lastname, e1.edlevel, e2.salary
from emp_education e1, emp_salaries e2
where e1.empno = e2.empno

During query rewrite, these two views could be merged to create the following
query:

select e1.empno, e1.firstnme, e1.lastname, e1.edlevel, e2.salary
from employee e1, employee e2
where

e1.empno = e2.empno and
e1.edlevel > 17 and
e2.salary > 35000

By merging the SELECT statements from the two views with the user-written
SELECT statement, the optimizer can consider more choices when selecting an
access plan. In addition, if the two views that have been merged use the same base
table, additional rewriting might be performed.

Example - Subquery to join transformations

The SQL and XQuery compiler will take a query containing a subquery, such as:
select empno, firstnme, lastname, phoneno

from employee
where workdept in

(select deptno
from department
where deptname = ’OPERATIONS’)

and convert it to a join query of the form:
select distinct empno, firstnme, lastname, phoneno

from employee emp, department dept
where

emp.workdept = dept.deptno and
dept.deptname = ’OPERATIONS’

A join is generally much more efficient to execute than a subquery.

Example - Redundant join elimination

Queries sometimes have unnecessary joins.
select e1.empno, e1.firstnme, e1.lastname, e1.edlevel, e2.salary

from employee e1,
employee e2

where e1.empno = e2.empno
and e1.edlevel > 17
and e2.salary > 35000

The SQL and XQuery compiler can eliminate the join and simplify the query to:
select empno, firstnme, lastname, edlevel, salary

from employee
where

edlevel > 17 and
salary > 35000

558 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The following example assumes that a referential constraint exists between the
EMPLOYEE and DEPARTMENT tables on the department number. First, a view is
created.

create view peplview as
select firstnme, lastname, salary, deptno, deptname, mgrno

from employee e department d
where e.workdept = d.deptno

Then a query such as the following:
select lastname, salary

from peplview

becomes:
select lastname, salary

from employee
where workdept not null

Note that in this situation, even if you know that the query can be rewritten, you
might not be able to do so because you do not have access to the underlying
tables. You might only have access to the view (shown previously). Therefore, this
type of optimization has to be performed by the database manager.

Redundancy in referential integrity joins likely occurs when:
v Views are defined with joins
v Queries are automatically generated

Example - Shared aggregation

Using multiple functions within a query can generate several calculations that take
time. Reducing the number of required calculations improves the plan. The
compiler takes a query that uses multiple functions, such as the following:

select sum(salary+bonus+comm) as osum,
avg(salary+bonus+comm) as oavg,
count(*) as ocount

from employee

and transforms it:
select osum, osum/ocount ocount

from (
select sum(salary+bonus+comm) as osum,

count(*) as ocount
from employee

) as shared_agg

This rewrite halves the required number of sums and counts.

Compiler rewrite example: Operation movement
During query rewrite, the optimizer can move the point at which the DISTINCT
operation is performed, to reduce the cost of this operation. In some cases, the
DISTINCT operation can be removed completely.

For example, if the EMPNO column of the EMPLOYEE table were defined as the
primary key, the following query:

select distinct empno, firstnme, lastname
from employee

Chapter 19. The SQL and XQuery compiler process 559

could be rewritten by removing the DISTINCT clause:
select empno, firstnme, lastname

from employee

In this example, because the primary key is being selected, the compiler knows
that each returned row is unique. In this case, the DISTINCT keyword is
redundant. If the query is not rewritten, the optimizer must build a plan with
necessary processing (such as a sort) to ensure that the column values are unique.

Example - General predicate pushdown

Altering the level at which a predicate is normally applied can result in improved
performance. For example, the following view provides a list of all employees in
department D11:

create view d11_employee
(empno, firstnme, lastname, phoneno, salary, bonus, comm) as

select empno, firstnme, lastname, phoneno, salary, bonus, comm
from employee
where workdept = ’D11’

The following query against this view is not as efficient as it could be:
select firstnme, phoneno

from d11_employee
where lastname = ’BROWN’

During query rewrite, the compiler pushes the lastname = ’BROWN’ predicate down
into the D11_EMPLOYEE view. This allows the predicate to be applied sooner and
potentially more efficiently. The actual query that could be executed in this
example is as follows:

select firstnme, phoneno
from employee
where

lastname = ’BROWN’ and
workdept = ’D11’

Predicate pushdown is not limited to views. Other situations in which predicates
can be pushed down include UNION, GROUP BY, and derived tables (nested table
expressions or common table expressions).

Example - Decorrelation

In a partitioned database environment, the compiler can rewrite the following
query, which is designed to find all of the employees who are working on
programming projects and who are underpaid.

select p.projno, e.empno, e.lastname, e.firstname,
e.salary+e.bonus+e.comm as compensation

from employee e, project p
where

p.empno = e.empno and
p.projname like ’%PROGRAMMING%’ and
e.salary+e.bonus+e.comm <

(select avg(e1.salary+e1.bonus+e1.comm)
from employee e1, project p1
where

p1.projname like ’%PROGRAMMING%’ and
p1.projno = p.projno and
e1.empno = p1.empno)

560 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Because this query is correlated, and because both PROJECT and EMPLOYEE are
unlikely to be partitioned on PROJNO, the broadcasting of each project to each
database partition is possible. In addition, the subquery would have to be
evaluated many times.

The compiler can rewrite the query as follows:
v Determine the distinct list of employees working on programming projects and

call it DIST_PROJS. It must be distinct to ensure that aggregation is done only
once for each project:

with dist_projs(projno, empno) as
(select distinct projno, empno

from project p1
where p1.projname like ’%PROGRAMMING%’)

v Join DIST_PROJS with the EMPLOYEE table to get the average compensation
per project, AVG_PER_PROJ:

avg_per_proj(projno, avg_comp) as
(select p2.projno, avg(e1.salary+e1.bonus+e1.comm)

from employee e1, dist_projs p2
where e1.empno = p2.empno
group by p2.projno)

v The rewritten query is:
select p.projno, e.empno, e.lastname, e.firstname,

e.salary+e.bonus+e.comm as compensation
from project p, employee e, avg_per_prog a
where

p.empno = e.empno and
p.projname like ’%PROGRAMMING%’ and
p.projno = a.projno and
e.salary+e.bonus+e.comm < a.avg_comp

This query computes the avg_comp per project (avg_per_proj). The result can then
be broadcast to all database partitions that contain the EMPLOYEE table.

Compiler rewrite example: Operation movement - Predicate pushdown
for combined SQL/XQuery statements

One fundamental technique for the optimization of relational SQL queries is to
move predicates in the WHERE clause of an enclosing query block into an
enclosed lower query block (for example, a view), thereby enabling early data
filtering and potentially better index usage.

This is even more important in partitioned database environments, because early
filtering potentially reduces the amount of data that must be shipped between
database partitions.

Similar techniques can be used to move predicates or XPath filters inside of an
XQuery. The basic strategy is always to move filtering expressions as close to the
data source as possible. This optimization technique is called predicate pushdown in
SQL and extraction pushdown (for filters and XPath extractions) in XQuery.

Because the data models employed by SQL and XQuery are different, you must
move predicates, filters, or extractions across the boundary between the two
languages. Data mapping and casting rules have to be considered when
transforming an SQL predicate into a semantically equivalent filter and pushing it
down into the XPath extraction. The following examples address the pushdown of
relation predicates into XQuery query blocks.

Chapter 19. The SQL and XQuery compiler process 561

Consider the following two XML documents containing customer information:
Document 1 Document 2

<customer> <customer>
<name>John</name> <name>Michael</name>
<lastname>Doe</lastname> <lastname>Miller </lastname>
<date_of_birth> <date_of_birth>
1976-10-10 1975-01-01
</date_of_birth> </date_of_birth>
<address> <address>

<zip>95141.0</zip> <zip>95142.0</zip>
</address> </address>

<volume>80000.0</volume> <volume>100000.00</volume>
</customer> </customer>
<customer> <customer>

<name>Jane</name> <name>Michaela</name>
<lastname>Doe</lastname> <lastname>Miller</lastname>
<date_of_birth> <date_of_birth>

1975-01-01 1980-12-23
</date_of_birth> </date_of_birth>
<address> <address>

<zip>95141.4</zip> <zip>95140.5</zip>
</address> </address>

<volume>50000.00</volume> <volume>100000</volume>
</customer> </customer>

Example - Pushing INTEGER predicates

Consider the following query:
select temp.name, temp.zip

from xmltable(’db2-fn:xmlcolumn("T.XMLDOC")’
columns name varchar(20) path ’customer/name’,
zip integer path ’customer/zip’
) as temp

where zip = 95141

To use possible indexes on T.XMLDOC and to filter out records that are not
needed early on, the zip = 95141 predicate will be internally converted into the
following equivalent XPATH filtering expression:
T.XMLCOL/customer/zip[. >= 95141.0 and . < 95142.0]

Because schema information for XML fragments is not used by the compiler, it
cannot be assumed that ZIP contains integers only. It is possible that there are
other numeric values with a fractional part and a corresponding double XML index
on this specific XPath extraction. The XML2SQL cast would handle this
transformation by truncating the fractional part before casting the value to
INTEGER. This behavior must be reflected in the pushdown procedure, and the
predicate must be changed to remain semantically correct.

Example - Pushing DECIMAL(x,y) predicates

Consider the following query:
select temp.name, temp.volume

from xmltable(’db2-fn:xmlcolumn("T.XMLDOC")’
columns name varchar(20) path ’customer/name’,
volume decimal(10,2) path ’customer/volume’
) as temp

where volume = 100000.00

To use possible DECIMAL or DOUBLE indexes on T.XMLDOC and to filter out
records that are not needed early on, similar to the handling for the INTEGER

562 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

type, the volume = 100000.00 predicate will be internally converted into the
following XPATH range filtering expression:
T.XMLCOL/customer/volume[.>=100000.00 and .<100000.01]

Example - Pushing VARCHAR(n) predicates

Consider the following query:
select temp.name, temp.lastname

from xmltable(’db2-fn:xmlcolumn("T.XMLDOC")’
columns name varchar(20) path ’customer/name’,
lastname varchar(20) path ’customer/lastname’
) as temp

where lastname = ’Miller’

To use possible indexes on T.XMLDOC and to filter out records that are not
needed early on, the lastname = ’Miller’ predicate will be internally converted
into an equivalent XPATH filtering expression. A high-level representation of this
expression is: :
T.XMLCOL/customer/lastname[. >= rtrim("Miller") and . <

RangeUpperBound("Miller", 20)]

Trailing blanks are treated differently in SQL than in XPath or XQuery. The original
SQL predicate will not distinguish between the two customers whose last name is
“Miller”, even if one of them (Michael) has a trailing blank. Consequently, both
customers are returned, which would not be the case if an unchanged predicate
were pushed down.

The solution is to transform the predicate into a range filter.
v The first boundary is created by truncating all trailing blanks from the

comparison value, using the RTRIM() function.
v The second boundary is created by looking up all possible strings that are

greater than or equal to “Miller”, so that all strings that begin with “Miller” are
located. Therefore, the original string is replaced with an upperbound string that
represents this second boundary.

Compiler rewrite example: Predicate translation
During query rewrite, predicates can be added to a query to enable the optimizer
to consider additional table joins when selecting the best access plan for the query.

The following query returns a list of the managers whose departments report to
department E01, and the projects for which those managers are responsible:

select dept.deptname dept.mgrno, emp.lastname, proj.projname
from department dept, employee emp, project proj
where

dept.admrdept = ’E01’ and
dept.mgrno = emp.empno and
emp.empno = proj.respemp

This query can be rewritten with the following implied predicate, known as a
predicate for transitive closure:

dept.mgrno = proj.respemp

The optimizer can now consider additional joins when it tries to select the best
access plan for the query.

Chapter 19. The SQL and XQuery compiler process 563

During the query rewrite stage, additional local predicates are derived on the basis
of the transitivity that is implied by equality predicates. For example, the following
query returns the names of the departments whose department number is greater
than E00, and the employees who work in those departments.

select empno, lastname, firstname, deptno, deptname
from employee emp, department dept
where

emp.workdept = dept.deptno and
dept.deptno > ’E00’

This query can be rewritten with the following implied predicate:
emp.workdept > ’E00’

This rewrite reduces the number of rows that need to be joined.

Example - OR to IN transformations

Suppose that an OR clause connects two or more simple equality predicates on the
same column, as in the following example:

select *
from employee
where

deptno = ’D11’ or
deptno = ’D21’ or
deptno = ’E21’

If there is no index on the DEPTNO column, using an IN predicate in place of OR
causes the query to be processed more efficiently:

select *
from employee
where deptno in (’D11’, ’D21’, ’E21’)

In some cases, the database manager might convert an IN predicate into a set of
OR clauses so that index ORing can be performed.

Access plan optimization
Access plans can be optimized in an attempt to improve query performance. The
degree of improvement depends on the type of optimization chosen. Optimizing
access plans is one of the best ways to ensure that the query compiler behaves the
way you expect and design it to.

Optimization classes
When you compile an SQL or XQuery statement, you can specify an optimization
class that determines how the optimizer chooses the most efficient access plan for
that statement.

The optimization classes differ in the number and type of optimization strategies
that are considered during the compilation of a query. Although you can specify
optimization techniques individually to improve runtime performance for the
query, the more optimization techniques that you specify, the more time and
system resources query compilation will require.

You can specify one of the following optimization classes when you compile an
SQL or XQuery statement.

564 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

0 This class directs the optimizer to use minimal optimization when
generating an access plan, and has the following characteristics:
v Frequent-value statistics are not considered by the optimizer.
v Only basic query rewrite rules are applied.
v Greedy join enumeration is used.
v Only nested loop join and index scan access methods are enabled.
v List prefetch is not used in generated access methods.
v The star-join strategy is not considered.

This class should only be used in circumstances that require the lowest
possible query compilation overhead. Query optimization class 0 is
appropriate for an application that consists entirely of very simple dynamic
SQL or XQuery statements that access well-indexed tables.

1 This optimization class has the following characteristics:
v Frequent-value statistics are not considered by the optimizer.
v Only a subset of query rewrite rules are applied.
v Greedy join enumeration is used.
v List prefetch is not used in generated access methods.

Optimization class 1 is similar to class 0, except that merge scan joins and
table scans are also available.

2 This class directs the optimizer to use a degree of optimization that is
significantly higher than class 1, while keeping compilation costs for
complex queries significantly lower than class 3 or higher. This
optimization class has the following characteristics:
v All available statistics, including frequent-value and quantile statistics,

are used.
v All query rewrite rules (including materialized query table routing) are

applied, except computationally intensive rules that are applicable only
in very rare cases.

v Greedy join enumeration is used.
v A wide range of access methods is considered, including list prefetch

and materialized query table routing.
v The star-join strategy is considered, if applicable.

Optimization class 2 is similar to class 5, except that it uses greedy join
enumeration instead of dynamic programming join enumeration. This class
has the most optimization of all classes that use the greedy join
enumeration algorithm, which considers fewer alternatives for complex
queries, and therefore consumes less compilation time than class 3 or
higher. Class 2 is recommended for very complex queries in a decision
support or online analytic processing (OLAP) environment. In such
environments, a specific query is not likely to be repeated in exactly the
same way, so that an access plan is unlikely to remain in the cache until
the next occurrence of the query.

3 This class represents a moderate amount of optimization, and comes
closest to matching the query optimization characteristics of DB2 for z/OS.
This optimization class has the following characteristics:
v Frequent-value statistics are used, if available.
v Most query rewrite rules are applied, including subquery-to-join

transformations.

Chapter 19. The SQL and XQuery compiler process 565

v Dynamic programming join enumeration is used, with:
– Limited use of composite inner tables
– Limited use of Cartesian products for star schemas involving lookup

tables
v A wide range of access methods is considered, including list prefetch,

index ANDing, and star joins.

This class is suitable for a broad range of applications, and improves access
plans for queries with four or more joins.

5 This class directs the optimizer to use a significant amount of optimization
to generate an access plan, and has the following characteristics:
v All available statistics, including frequent-value and quantile statistics,

are used.
v All query rewrite rules (including materialized query table routing) are

applied, except computationally intensive rules that are applicable only
in very rare cases.

v Dynamic programming join enumeration is used, with:
– Limited use of composite inner tables
– Limited use of Cartesian products for star schemas involving lookup

tables
v A wide range of access methods is considered, including list prefetch,

index ANDing, and materialized query table routing.

Optimization class 5 (the default) is an excellent choice for a mixed
environment with both transaction processing and complex queries. This
optimization class is designed to apply the most valuable query
transformations and other query optimization techniques in an efficient
manner.

If the optimizer detects that additional resources and processing time for
complex dynamic SQL or XQuery statements are not warranted,
optimization is reduced. The extent of the reduction depends on the
machine size and the number of predicates. When the optimizer reduces
the amount of query optimization, it continues to apply all of the query
rewrite rules that would normally be applied. However, it uses greedy join
enumeration and it reduces the number of access plan combinations that
are considered.

7 This class directs the optimizer to use a significant amount of optimization
to generate an access plan. It is similar to optimization class 5, except that
in this case, the optimizer never considers reducing the amount of query
optimization for complex dynamic SQL or XQuery statements.

9 This class directs the optimizer to use all available optimization techniques.
These include:
v All available statistics
v All query rewrite rules
v All possibilities for join enumeration, including Cartesian products and

unlimited composite inners
v All access methods

This class increases the number of possible access plans that are considered
by the optimizer. You might use this class to determine whether more
comprehensive optimization would generate a better access plan for very

566 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

complex or very long-running queries that use large tables. Use explain
and performance measurements to verify that a better plan has actually
been found.

Choosing an optimization class
Setting the optimization class can provide some of the advantages of explicitly
specifying optimization techniques.

This is true, particularly when:
v Managing very small databases or very simple dynamic queries
v Accommodating memory limitations on your database server at compile time
v Reducing query compilation time; for example, during statement preparation

Most statements can be adequately optimized with a reasonable amount of
resource by using the default optimization class 5. Query compilation time and
resource consumption are primarily influenced by the complexity of a query; in
particular, by the number of joins and subqueries. However, compilation time and
resource consumption are also affected by the amount of optimization that is
performed.

Query optimization classes 1, 2, 3, 5, and 7 are all suitable for general use.
Consider class 0 only if you require further reductions in query compilation time,
and the SQL and XQuery statements are very simple.

Tip: To analyze a long-running query, run the query with db2batch to determine
how much time is spent compiling and executing the query. If compilation time is
excessive, reduce the optimization class. If execution time is a problem, consider a
higher optimization class.

When you select an optimization class, consider the following general guidelines:
v Start by using the default query optimization class 5.
v When choosing a class other than the default, try class 1, 2, or 3 first. Classes 0,

1, and 2 use the greedy join enumeration algorithm.
v Use optimization class 1 or 2 if you have many tables with many join predicates

on the same column, and if compilation time is a concern.
v Use a low optimization class (0 or 1) for queries that have very short run times

of less than one second. Such queries tend to:
– Access a single table or only a few tables
– Fetch a single row or only a few rows
– Use fully qualified and unique indexes
– Be involved in online transaction processing (OLTP)

v Use a higher optimization class (3, 5, or 7) for queries that have longer run times
of more than 30 seconds.

v Class 3 or higher uses the dynamic programming join enumeration algorithm,
which considers many more alternative plans, and might incur significantly
more compilation time than classes 0, 1, or 2, especially as the number of tables
increases.

v Use optimization class 9 only if you have extraordinary optimization
requirements for a query.

Complex queries might require different amounts of optimization to select the best
access plan. Consider using higher optimization classes for queries that have:

Chapter 19. The SQL and XQuery compiler process 567

v Access to large tables
v A large number of views
v A large number of predicates
v Many subqueries
v Many joins
v Many set operators, such as UNION or INTERSECT
v Many qualifying rows
v GROUP BY and HAVING operations
v Nested table expressions

Decision support queries or month-end reporting queries against fully normalized
databases are good examples of complex queries for which at least the default
query optimization class should be used.

Use higher query optimization classes for SQL and XQuery statements that were
produced by a query generator. Many query generators create inefficient queries.
Poorly written queries require additional optimization to select a good access plan.
Using query optimization class 2 or higher can improve such queries.

For SAP applications, always use optimization class 5. This optimization class
enables many DB2 features optimized for SAP, such as setting the
DB2_REDUCED_OPTIMIZATION registry variable.

In a federated database, the optimization class does not apply to the remote
optimizer.

Setting the optimization class
When you specify an optimization level, consider whether a query uses static or
dynamic SQL and XQuery statements, and whether the same dynamic query is
repeatedly executed.

About this task

For static SQL and XQuery statements, the query compilation time and resources
are expended only once, and the resulting plan can be used many times. In
general, static SQL and XQuery statements should always use the default query
optimization class (5). Because dynamic statements are bound and executed at run
time, consider whether the overhead of additional optimization for dynamic
statements improves overall performance. However, if the same dynamic SQL or
XQuery statement is executed repeatedly, the selected access plan is cached. Such
statements can use the same optimization levels as static SQL and XQuery
statements.

If you are not sure whether a query might benefit from additional optimization, or
you are concerned about compilation time and resource consumption, consider
benchmark testing.

Procedure

To specify a query optimization class:
1. Analyze performance factors.

568 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v For a dynamic query statement, tests should compare the average run time
for the statement. Use the following formula to estimate the average run
time:

compilation time + sum of execution times for all iterations
--

number of iterations

The number of iterations represents the number of times that you expect the
statement might be executed each time that it is compiled.

Note: After initial compilation, dynamic SQL and XQuery statements are
recompiled whenever a change to the environment requires it. If the
environment does not change after a statement is cached, subsequent
PREPARE statements reuse the cached statement.

v For static SQL and XQuery statements, compare the statement run times.
Although you might also be interested in the compilation time of static SQL
and XQuery statements, the total compilation and execution time for a static
statement is difficult to assess in any meaningful context. Comparing the
total times does not recognize the fact that a static statement can be executed
many times whenever it is bound, and that such a statement is generally not
bound during run time.

2. Specify the optimization class.
v Dynamic SQL and XQuery statements use the optimization class that is

specified by the CURRENT QUERY OPTIMIZATION special register. For
example, the following statement sets the optimization class to 1:

SET CURRENT QUERY OPTIMIZATION = 1

To ensure that a dynamic SQL or XQuery statement always uses the same
optimization class, include a SET statement in the application program.
If the CURRENT QUERY OPTIMIZATION special register has not been set,
dynamic statements are bound using the default query optimization class.
The default value for both dynamic and static queries is determined by the
value of the dft_queryopt database configuration parameter, whose default
value is 5. The default values for the bind option and the special register are
also read from the dft_queryopt database configuration parameter.

v Static SQL and XQuery statements use the optimization class that is specified
on the PREP and BIND commands. The QUERYOPT column in the
SYSCAT.PACKAGES catalog view records the optimization class that is used
to bind a package. If the package is rebound, either implicitly or by using the
REBIND PACKAGE command, this same optimization class is used for static
statements. To change the optimization class for such static SQL and XQuery
statements, use the BIND command. If you do not specify the optimization
class, the data server uses the default optimization class, as specified by the
dft_queryopt database configuration parameter.

Optimization profiles and guidelines
An optimization profile is an XML document that can contain optimization
guidelines for one or more SQL statements. The correspondence between each SQL
statement and its associated optimization guidelines is established using the SQL
text and other information that is needed to unambiguously identify an SQL
statement.

The DB2 optimizer is one of the most sophisticated cost-based optimizers in the
industry. However, in rare cases the optimizer might select a less than optimal
execution plan. As a DBA familiar with the database, you can use utilities such as

Chapter 19. The SQL and XQuery compiler process 569

db2advis, runstats, and db2expln, as well as the optimization class setting to help
you tune the optimizer for better database performance. If you do not receive
expected results after all tuning options have been exhausted, you can provide
explicit optimization guidelines to the DB2 optimizer.

For example, suppose that even after you had updated the database statistics and
performed all other tuning steps, the optimizer still did not choose the I_SUPPKEY
index to access the SUPPLIERS table in the following subquery:

SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM PARTS P, SUPPLIERS S, PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY

AND S.S_SUPPKEY = PS.PS_SUPPKEY
AND P.P_SIZE = 39
AND P.P_TYPE = ’BRASS’
AND S.S_NATION = ’MOROCCO’
AND S.S_NATION IN (’MOROCCO’, ’SPAIN’)
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

FROM PARTSUPP PS1, SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY

AND S1.S_SUPPKEY = PS1.PS_SUPPKEY
AND S1.S_NATION = S.S_NATION))

In this case, an explicit optimization guideline can be used to influence the
optimizer. For example:
<OPTGUIDELINES><IXSCAN TABLE="S" INDEX="I_SUPPKEY"/></OPTGUIDELINES>

Optimization guidelines are specified using a simple XML specification. Each
element within the OPTGUIDELINES element is interpreted as an optimization
guideline by the DB2 optimizer. There is one optimization guideline element in this
example. The IXSCAN element requests that the optimizer use index access. The
TABLE attribute of the IXSCAN element indicates the target table reference (using
the exposed name of the table reference) and the INDEX attribute specifies the
index.

The following example is based on the previous query, and shows how an
optimization guideline can be passed to the DB2 optimizer using an optimization
profile.
<?xml version="1.0" encoding="UTF-8"?>

<OPTPROFILE VERSION="9.1.0.0">
<STMTPROFILE ID="Guidelines for SAMP Q9">

<STMTKEY SCHEMA="SAMP">
SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM PARTS P, SUPPLIERS S, PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY

AND S.S_SUPPKEY = PS.PS_SUPPKEY
AND P.P_SIZE = 39
AND P.P_TYPE = ’BRASS’
AND S.S_NATION = ’MOROCCO’
AND S.S_NATION IN (’MOROCCO’, ’SPAIN’)
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

FROM PARTSUPP PS1, SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY

AND S1.S_SUPPKEY = PS1.PS_SUPPKEY
AND S1.S_NATION = S.S_NATION))

</STMTKEY>
<OPTGUIDELINES><IXSCAN TABLE="S" INDEX="I_SUPPKEY"/></OPTGUIDELINES>

</STMTPROFILE>
</OPTPROFILE>

Each STMTPROFILE element provides a set of optimization guidelines for one
application statement. The targeted statement is identified by the STMTKEY
subelement. The optimization profile is then given a schema-qualified name and
inserted into the database. The optimization profile is put into effect for the
statement by specifying this name on the BIND or PRECOMPILE command.

Optimization profiles allow optimization guidelines to be provided to the
optimizer without application or database configuration changes. You simply
compose the simple XML document, insert it into the database, and specify the

570 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

name of the optimization profile on the BIND or PRECOMPILE command. The
optimizer automatically matches optimization guidelines to the appropriate
statement.

Optimization guidelines do not need to be comprehensive, but should be targeted
to a desired execution plan. The DB2 optimizer still considers other possible access
plans using the existing cost-based methods. Optimization guidelines targeting
specific table references cannot override general optimization settings. For example,
an optimization guideline specifying the merge join between tables A and B is not
valid at optimization class 0.

The optimizer ignores invalid or inapplicable optimization guidelines. If any
optimization guidelines are ignored, an execution plan is created and SQL0437W
with reason code 13 is returned. You can then use the EXPLAIN statement to get
detailed diagnostic information regarding optimization guidelines processing.

Collecting accurate catalog statistics, including advanced statistics
features

Accurate database statistics are critical for query optimization. Perform RUNSTATS
command operations regularly on any tables that are critical to query performance.

You might also want to collect statistics on system catalog tables, if an application
queries these tables directly and if there is significant catalog update activity, such
as that resulting from the execution of data definition language (DDL) statements.
Automatic statistics collection can be enabled to allow the DB2 data server to
automatically perform a RUNSTATS command operation. Real-time statistics
collection can be enabled to allow the DB2 data server to provide even more timely
statistics by collecting them immediately before queries are optimized.

If you are collecting statistics manually by using the RUNSTATS command, use the
following options at a minimum:
RUNSTATS ON TABLE DB2USER.DAILY_SALES

WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL

Distribution statistics make the optimizer aware of data skew. Detailed index
statistics provide more details about the I/O required to fetch data pages when the
table is accessed by using a particular index. Collecting detailed index statistics
uses considerable processing time and memory for large tables. The SAMPLED option
provides detailed index statistics with nearly the same accuracy but requires a
fraction of the CPU and memory. These options are used by automatic statistics
collection when a statistical profile is not provided for a table.

To improve query performance, consider collecting more advanced statistics, such
as column group statistics or LIKE statistics, or creating statistical views.

Statistical views are helpful when gathering statistics for complex relationships.
Gathering statistics for statistical views can be automated through the automatic
statistics collection feature in DB2 for Linux, UNIX, and Windows. Enabling or
disabling the automatic statistic collection of statistical views is done by using the
auto_stats_views database configuration parameter. To enable this function, issue
the following command:
update db cfg for dbname using auto_stats_views on

To disable this feature, issue the following command:

Chapter 19. The SQL and XQuery compiler process 571

update db cfg for dbname using auto_stats_views off

This database configuration parameter is off by default. The command that is
issued to automatically collect statistics on statistical views is equivalent to the
following command:
runstats on view view_name with distribution

Collecting statistics for a large table or statistical view can be time consuming.
Statistics of the same quality can often be collected by considering just a small
sample of the overall data. Consider enabling automatic sampling for all
background statistic collections; this may reduce the statistic collection time. To
enable this function, issue the following command:
update db cfg for dbname using auto_sampling on

Collected statistics are not always exact. In addition to providing more efficient
data access, an index can help provide more accurate statistics for columns which
are often used in query predicates. When statistics are collected for a table and its
indexes, index objects can provide accurate statistics for the leading index columns.

Configuration parameters that affect query optimization
Several configuration parameters affect the access plan chosen by the SQL or
XQuery compiler. Many of these are appropriate to a single-partition database
environment and some are only appropriate to a partitioned database environment.

Assuming a homogeneous partitioned database environment, where the hardware
is the same, the values used for each parameter should be the same on all database
partitions.

Note: When you change a configuration parameter dynamically, the optimizer
might not read the changed parameter values immediately because of older access
plans in the package cache. To reset the package cache, execute the FLUSH PACKAGE
CACHE command.

In a federated system, if the majority of your queries access nicknames, evaluate
the types of queries that you send before you change your environment. For
example, in a federated database, the buffer pool does not cache pages from data
sources, which are the DBMSs and data within the federated system. For this
reason, increasing the size of the buffer does not guarantee that the optimizer
considers additional access-plan alternatives when it chooses an access plan for
queries that contain nicknames. However, the optimizer might decide that local
materialization of data source tables is the least-cost route or a necessary step for a
sort operation. In that case, increasing the resources available might improve
performance.

The following configuration parameters or factors affect the access plan chosen by
the SQL or XQuery compiler:
v The size of the buffer pools that you specified when you created or altered them.

When the optimizer chooses the access plan, it considers the I/O cost of fetching
pages from disk to the buffer pool and estimates the number of I/Os required to
satisfy a query. The estimate includes a prediction of bufferpool usage, because
additional physical I/Os are not required to read rows in a page that is already
in the buffer pool.

572 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The optimizer considers the value of the npages column in the
SYSCAT.BUFFERPOOLS system catalog tables and, in partitioned database
environments, the SYSCAT.BUFFERPOOLDBPARTITIONS system catalog tables.
The I/O costs of reading the tables can have an impact on how two tables are
joined and if an unclustered index is used to read the data

v Default Degree (dft_degree)
The dft_degree configuration parameter specifies parallelism by providing a
default value for the CURRENT DEGREE special register and the DEGREE bind option.
A value of one (1) means no intrapartition parallelism. A value of minus one (-1)
means the optimizer determines the degree of intrapartition parallelism based on
the number of processors and the type of query.

Note: Intra-parallel processing does not occur unless you enable it by setting the
intra_parallel database manager configuration parameter.

v Default Query Optimization Class (dft_queryopt)
Although you can specify a query optimization class when you compile SQL or
XQuery queries, you can also set a default query optimization class.

v Average Number of Active Applications (avg_appls)
The optimizer uses the avg_appls parameter to help estimate how much of the
buffer pool might be available at run-time for the access plan chosen. Higher
values for this parameter can influence the optimizer to choose access plans that
are more conservative in buffer pool usage. If you specify a value of one (1), the
optimizer considers that the entire buffer pool is available to the application.

v Sort Heap Size (sortheap)
If the rows to be sorted occupy more than the space available in the sort heap,
several sort passes are performed, where each pass sorts a subset of the entire
set of rows. Each sort pass is stored in a system temporary table in the buffer
pool, which might be written to disk. When all the sort passes are complete,
these sorted subsets are merged into a single sorted set of rows. A sort that does
not require a system temporary table to store the list of data always results in
better performance and is used if possible.
When choosing an access plan, the optimizer estimates the cost of the sort
operations, including evaluating whether a sort can be read in a single,
sequential access, by estimating the amount of data to be sorted and looking at
the sortheap parameter to determine if there is enough space to read a sort in a
single, sequential access.

v Maximum Storage for Lock List (locklist) and Maximum Percent of Lock List
Before Escalation (maxlocks)
When the isolation level is repeatable read (RR), the optimizer considers the
values of the locklist and maxlocks parameters to determine whether row level
locks might be escalated to a table level lock. If the optimizer estimates that lock
escalation might occur for a table access, then it chooses a table level lock for the
access plan, instead of incurring the overhead of lock escalation during the
query execution.

v CPU Speed (cpuspeed)
The optimizer uses the CPU speed to estimate the cost of performing certain
operations. CPU cost estimates and various I/O cost estimates help select the
best access plan for a query.
The CPU speed of a machine can have a significant influence on the access plan
chosen. This configuration parameter is automatically set to an appropriate value
when the database is installed or upgraded. Do not adjust this parameter unless
you are modelling a production environment on a test system or assessing the

Chapter 19. The SQL and XQuery compiler process 573

impact of a hardware change. Using this parameter to model a different
hardware environment allows you to find out the access plans that might be
chosen for that environment. To have the database manager recompute the value
of this automatic configuration parameter, set it to minus one (-1).

v Statement Heap Size (stmtheap)
Although the size of the statement heap does not influence the optimizer in
choosing different access paths, it can affect the amount of optimization
performed for complex SQL or XQuery statements.
If the stmtheap parameter is not set to a sufficient value, you might receive a
warning indicating that there is not enough memory available to process the
statement. For example, SQLCODE +437 (SQLSTATE 01602) might indicate that
the amount of optimization that has been used to compile a statement is less
than the amount that you requested.

v Communications Bandwidth (comm_bandwidth)
Communications bandwidth is used by the optimizer to determine access paths.
The optimizer uses the value in this parameter to estimate the cost of
performing certain operations between the database partition servers in a
partitioned database environment.

v Application Heap Size (applheapsz)
Large schemas require sufficient space in the application heap.

574 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 20. Memory allocation

Memory allocation and deallocation occurs at various times. Memory might be
allocated to a particular memory area when a specific event occurs (for example,
when an application connects), or it might be reallocated in response to a
configuration change.

Figure 71 shows the different memory areas that the database manager allocates for
various uses and the configuration parameters that enable you to control the size
of these memory areas. Note that in a partitioned database environment, each
database partition has its own database manager shared memory set.

Memory is allocated by the database manager whenever one of the following
events occurs:

When the database manager starts (db2start)
Database manager shared memory (also known as instance shared memory)
remains allocated until the database manager stops (db2stop). This area
contains information that the database manager uses to manage activity
across all database connections. DB2 automatically controls the size of the
database manager shared memory.

When a database is activated or connected to for the first time
Database global memory is used across all applications that connect to the
database. The size of the database global memory is specified by the
database_memory database configuration parameter. By default, this
parameter is set to automatic, allowing DB2 to calculate the initial amount

Database Manager
Shared Memory

(1)

Application Global Memory

Application
Heap

Application
Heap

(1) (numdb)

(max_connections)

Database Global Memory

Application
Global Memory

Database
Global Memory

Figure 71. Types of memory allocated by the database manager

© Copyright IBM Corp. 2014 575

of memory allocated for the database and to automatically configure the
database memory size during run time based on the needs of the database.

The following memory areas can be dynamically adjusted:
v Buffer pools (using the ALTER BUFFERPOOL statement)
v Database heap (including log buffers)
v Utility heap
v Package cache
v Catalog cache
v Lock list

The sortheap, sheapthres_shr, and sheapthres configuration parameters
are also dynamically updatable. The only restriction is that sheapthres
cannot be dynamically changed from 0 to a value that is greater than zero,
or vice versa.

Shared sort operations are performed by default, and the amount of
database shared memory that can be used by sort memory consumers at
any one time is determined by the value of the sheapthres_shr database
configuration parameter. Private sort operations are performed only if
intra-partition parallelism, database partitioning, and the connection
concentrator are all disabled, and the sheapthres database manager
configuration parameter is set to a non-zero value.

When an application connects to a database
Each application has its own application heap, part of the application global
memory. You can limit the amount of memory that any one application can
allocate by using the applheapsz database configuration parameter, or limit
overall application memory consumption by using the appl_memory
database configuration parameter.

When an agent is created
Agent private memory is allocated for an agent when that agent is assigned
as the result of a connect request or a new SQL request in a partitioned
database environment. Agent private memory contains memory that is
used only by this specific agent. If private sort operations have been
enabled, the private sort heap is allocated from agent private memory.

The following configuration parameters limit the amount of memory that is
allocated for each type of memory area. Note that in a partitioned database
environment, this memory is allocated on each database partition.

numdb This database manager configuration parameter specifies the maximum
number of concurrent active databases that different applications can use.
Because each database has its own global memory area, the amount of
memory that can be allocated increases if you increase the value of this
parameter.

maxappls
This database configuration parameter specifies the maximum number of
applications that can simultaneously connect to a specific database. The
value of this parameter affects the amount of memory that can be allocated
for both agent private memory and application global memory for that
database.

576 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

max_connections
This database manager configuration parameter limits the number of
database connections or instance attachments that can access the data
server at any one time.

max_coordagents
This database manager configuration parameter limits the number of
database manager coordinating agents that can exist simultaneously across
all active databases in an instance (and per database partition in a
partitioned database environment). Together with maxappls and
max_connections, this parameter limits the amount of memory that is
allocated for agent private memory and application global memory.

You can use the memory tracker, invoked by the db2mtrk command, to view the
current allocation of memory within the instance. You can also use the
ADMIN_GET_MEM_USAGE table function to determine the total memory
consumption for the entire instance or for just a single database partition. Use the
MON_GET_MEMORY_SET and MON_GET_MEMORY_POOL table functions to
examine the current memory usage at the instance, database, or application level.

On UNIX and Linux operating systems, although the ipcs command can be used
to list all the shared memory segments, it does not accurately reflect the amount of
resources consumed. You can use the db2mtrk command as an alternative to ipcs.

Database manager shared memory
Database manager shared memory is organized into several different memory
areas. Configuration parameters enable you to control the sizes of these areas.

Figure 72 on page 578 shows how database manager shared memory is allocated.

Chapter 20. Memory allocation 577

Database Manager Shared Memory
Database Manager Shared Memory is affected by the following
configuration parameters:
v The audit_buf_sz configuration parameter determines the size of the

buffer used in database auditing activities.

Database manager shared memory (including FCM)

Monitor heap ()mon_heap_sz

Database global memory (database_memory)

Lock list ()locklist

Application global memory (appl_memory)

Agent stack
()agent_stack_sz

Client I/O block
()rqrioblk (remote)

Java heap
()java_heap_sz

Agent/Application shared memory

Note: Box size does not indicate relative size of memory.

Agent private memory

Application support
layer heap (aslheapsz)

Client I/O block
()rqrioblk (local)

Utility heap
()util_heap_sz

Backup buffer

Package cache
()pckcachesz

Database heap
()dbheap

Log buffer ()logbufsz

Sort heap threshold
for private sort
memory consumers
(sheapthres)

Sort heap ()sortheap

Catalog cache
()catalogcache_sz

Audit buffer size ()audit_buf_sz

Sort heap threshold
for shared sort
memory consumers
(sheapthres_shr)

Sort heap ()sortheap

Buffer pools

Shared application memory Application-specific memory

Application heap (applheapsz)

Statistics heap (stat_heap_sz)

Statement heap (stmtheap)

Figure 72. How memory is used by the database manager

578 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v The mon_heap_sz configuration parameter determines the size of the
memory area used for database system monitoring data.

v For partitioned database systems, the Fast Communications Manager
(FCM) requires substantial memory space, especially if the value of
fcm_num_buffers is large. The FCM memory requirements are allocated
from the FCM Buffer Pool.

Database global memory
Database global memory is affected by the size of the buffer pools and by
the following database configuration parameters:
v catalogcache_sz

v database_memory

v dbheap

v locklist

v pckcachesz

v sheapthres_shr

v util_heap_sz

Application global memory
Application global memory can be controlled by the appl_memory
configuration parameter. The following database configuration parameters
can be used to limit the amount of memory that any one application can
consume:
v applheapsz

v stat_heap_sz

v stmtheap

Agent private memory
Each agent requires its own private memory region. The data server creates
as many agents as it needs and in accordance with configured memory
resources. You can control the maximum number of coordinator agents
using the max_coordagents database manager configuration parameter. The
maximum size of each agent's private memory region is determined by the
values of the following configuration parameters:
v agent_stack_sz

v sheapthres and sortheap

Agent/Application shared memory
The total number of agent/application shared memory segments for local
clients is limited by the lesser of the following two values:
v The total value of the maxappls database configuration parameter for all

active databases
v The value of the max_coordagents database configuration parameter

Note: In configurations where engine concentration is enabled
(max_connections > max_coordagents), application memory consumption is
limited by max_connections.

Agent/Application shared memory is also affected by the following
database configuration parameters:
v aslheapsz

v rqrioblk

Chapter 20. Memory allocation 579

The FCM buffer pool and memory requirements
In a partitioned database system, the fast communication manager (FCM) buffer
shared memory is allocated from the database manager shared memory.

This is shown in Figure 73.

The number of FCM buffers for each database partition is controlled by the
fcm_num_buffers database manager configuration parameter. By default, this
parameter is set to automatic. To tune this parameter manually, use data from the
buff_free and buff_free_bottom system monitor elements.

The number of FCM channels for each database partition is controlled by the
fcm_num_channels database manager configuration parameter. By default, this
parameter is set to automatic. To tune this parameter manually, use data from the
ch_free and ch_free_bottom system monitor elements.

The DB2 database manager can automatically manage FCM memory resources by
allocating more FCM buffers and channels as needed. This leads to improved
performance and prevents “out of FCM resource” runtime errors. On the Linux
operating system, the database manager can preallocate a larger amount of system
memory for FCM buffers and channels, up to a maximum default amount of 4 GB.
Memory space is impacted only when additional FCM buffers or channels are
required. To enable this behavior, set the FCM_MAXIMIZE_SET_SIZE option of the
DB2_FCM_SETTINGS registry variable to YES (or TRUE). YES is the default value.

Guidelines for tuning parameters that affect memory usage
When tuning memory manually (that is, when not using the self-tuning memory
manager), benchmark tests provide the best information about setting appropriate
values for memory parameters.

In benchmark testing, representative and worst-case SQL statements are run
against the server, and the values of memory parameters are changed until a point

Database Manager Shared Memory**

FCM Buffer
Shared Memory*

FCM Buffers ()*fcm_num_buffers

FCM Channels**

Legend

* one shared by all logical partitions
** one for each logical partition

Figure 73. The FCM buffer pool when multiple logical partitions are used

580 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

of diminishing returns for performance is found. This is the point at which
additional memory allocation provides no further performance value to the
application.

The upper memory allocation limits for several parameters might be beyond the
scope of existing hardware and operating systems. These limits allow for future
growth. It is good practice to not set memory parameters at their highest values
unless those values can be justified. This applies even to systems that have plenty
of available memory. The idea is to prevent the database manager from quickly
taking up all of the available memory on a system. Moreover, managing large
amounts of memory incurs additional overhead.

For most configuration parameters, memory is committed as it is required, and the
parameter settings determine the maximum size of a particular memory heap. For
buffer pools and the following configuration parameters, however, all of the
specified memory is allocated:
v aslheapsz

v fcm_num_buffers

v fcm_num_channels

v locklist

For valid parameter ranges, refer to the detailed information about each parameter.

Chapter 20. Memory allocation 581

582 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 21. Configuring memory and memory heaps

With the simplified memory configuration feature, you can configure memory and
memory heaps required by the DB2 data server by using the default AUTOMATIC
setting for most memory-related configuration parameters, thereby, requiring much
less tuning.

The simplified memory configuration feature provides the following benefits:
v You can use a single parameter, instance_memory, to specify all of the memory

that the database manager is allowed to allocate from its private and shared
memory heaps. Also, you can use the appl_memory configuration parameter to
control the maximum amount of application memory that is allocated by DB2
database agents to service application requests.

v You are not required to manually tune parameters used solely for functional
memory.

v You can use the db2mtrk command to monitor heap usage and the
ADMIN_GET_MEM_USAGE table function to query overall memory
consumption.

v The default DB2 configuration requires much less tuning, a benefit for new
instances that you create.

The following table lists the memory configuration parameters whose values
default to the AUTOMATIC setting. These parameters can also be configured
dynamically, if necessary. Note that the meaning of the AUTOMATIC setting differs
with each parameter, as described in the rightmost column.

Table 40. Memory configuration parameters whose values default to AUTOMATIC

Configuration
parameter name Description

Meaning of the AUTOMATIC
setting

appl_memory Controls the maximum amount of
application memory that is
allocated by DB2 database agents
to service application requests.

If an instance_memory limit is
enforced, the AUTOMATIC setting
allows all application memory
requests as long as the total
amount of memory allocated by the
database partition is within the
instance_memory limit. Otherwise,
it allows request as long as there
are system resources available.

applheapsz Starting with Version 9.5, this
parameter refers to the total
amount of application memory that
can be consumed by the entire
application. For partitioned
database environments,
Concentrator, or SMP
configurations, this means that you
might need to increase the
applheapsz value used in previous
releases unless you use the
AUTOMATIC setting.

The AUTOMATIC setting allows the
application heap size to increase. as
needed. A limit might be enforced
if there is an appl_memory limit or
an instance_memory limit.

© Copyright IBM Corp. 2014 583

Table 40. Memory configuration parameters whose values default to
AUTOMATIC (continued)

Configuration
parameter name Description

Meaning of the AUTOMATIC
setting

database_memory Specifies the amount of shared
memory that is reserved for the
database shared memory region.

When enabled, the memory tuner
determines the overall memory
requirements for the database and
increases or decreases the amount
of memory allocated for database
shared memory depending on the
current database requirements.
Starting with Version 9.5, AUTOMATIC
is the default setting for all DB2
server products.

dbheap Determines the maximum memory
used by the database heap.

The AUTOMATIC setting allows the
database heap to increase as
needed. A limit might be enforced
if there is a database_memory limit
or an instance_memory limit.

instance_memory If you are using a DB2 database
products with memory usage
restrictions or if you set this
parameter to a specific value, this
parameter specifies the maximum
amount of memory that can be
allocated for a database partition.

The AUTOMATIC setting allows the
overall memory consumed by the
entire database manager instance to
grow as needed, and STMM
ensures that sufficient system
memory is available to prevent
memory overcommitment. For DB2
database products with memory
usage restrictions, the AUTOMATIC
setting enforces a limit based on
the lower of a computed value
(75-95% of RAM) and the allowable
memory usage under the license.
See instance_memory for details on
when it is enforced as a limit.

mon_heap_sz Determines the amount of the
memory, in pages, to allocate for
database system monitor data.

The AUTOMATIC setting allows the
monitor heap to increase as needed.
A limit might be enforced if there is
an instance_memory limit.

stat_heap_sz Indicates the maximum size of the
heap used in collecting statistics
using the RUNSTATS command.

The AUTOMATIC setting allows the
statistics heap size to increase as
needed. A limit might be enforced
if there is an appl_memory limit or
an instance_memory limit.

stmtheap Specifies the size of the statement
heap which is used as a work space
for the SQL or XQuery compiler to
compile an SQL or XQuery
statement.

The AUTOMATIC setting allows the
statement heap to increase as
needed. A limit might be enforced
if there is an appl_memory limit or
an instance_memory limit.

Note: The DBMCFG and DBCFG administrative views retrieve database manager
configuration parameter information for the currently connected database for all
database partitions. For the mon_heap_sz, stmtheap, and stat_heap_sz configuration
parameters, the DEFERRED_VALUE column on this view does not persist across
database activations. That is, when you issue the get dbm cfg show detail or get
db cfg show detail command, the output from the query shows updated (in
memory) values.

584 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The following table shows whether configuration parameters are set to the default
AUTOMATIC value during instance upgrade or creation and during database upgrade
or creation.

Table 41. Configuration parameters set to AUTOMATIC during instance and database
upgrade and creation

Configuration
parameters

Set to AUTOMATIC
upon instance
upgrade or creation

Set to AUTOMATIC
upon database
upgrade

Set to AUTOMATIC
upon database
creation

applheapsz1 X X

dbheap X X

instance_memory X

mon_heap_sz1 X

stat_heap_sz1 X X

stmtheap1 X

As part of the move to simplified memory configuration, the following elements
have been deprecated:
v Configuration parameters appgroup_mem_sz, groupheap_ratio, and

app_ctl_heap_sz. These configuration parameters are replaced with the new
appl_memory configuration parameter.

v The -p parameter of the db2mtrk memory tracker command. This option, which
lists private agent memory heaps, is replaced with the -a parameter, which lists
all application memory consumption.

Agent and process model configuration
Starting with Version 9.5, DB2 databases feature a less complex and more flexible
mechanism for configuring process model-related parameters. This simplified
configuration eliminates the need for regular adjustments to these parameters and
reduces the time and effort required to configure them. It also eliminates the need
to shut down and restart DB2 instances to have the new values take effect.

To allow for dynamic and automatic agent and memory configuration, slightly
more memory resources are required when an instance is activated.

Chapter 21. Configuring memory and memory heaps 585

586 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 22. Self-tuning memory

A memory-tuning feature simplifies the task of memory configuration by
automatically setting values for several memory configuration parameters. When
enabled, the memory tuner dynamically distributes available memory resources
among the following memory consumers: buffer pools, locking memory, package
cache, and sort memory.

The tuner works within the memory limits that are defined by the
database_memory configuration parameter. The value of this parameter can be
automatically tuned as well. When self-tuning is enabled (when the value of
database_memory has been set to AUTOMATIC), the tuner determines the overall
memory requirements for the database and increases or decreases the amount of
memory allocated for database shared memory, depending on current database
requirements. For example, if current database requirements are high and there is
sufficient free memory on the system, more memory is allocated for database
shared memory. If the database memory requirements decrease, or if the amount of
free memory on the system becomes too low, some database shared memory is
released.

If the database_memory configuration parameter is not set to AUTOMATIC, the
database uses the amount of memory that has been specified for this parameter,
distributing it across the memory consumers as required. You can specify the
amount of memory in one of two ways: by setting database_memory to some
numeric value or by setting it to COMPUTED. In the latter case, the total amount
of memory is based on the sum of the initial values of the database memory heaps
at database startup time.

You can also enable the memory consumers for self tuning as follows:
v For buffer pools, use the ALTER BUFFERPOOL or the CREATE BUFFERPOOL

statement (specifying the AUTOMATIC keyword)
v For locking memory, use the locklist or the maxlocks database configuration

parameter (specifying a value of AUTOMATIC)
v For the package cache, use the pckcachesz database configuration parameter

(specifying a value of AUTOMATIC)
v For sort memory, use the sheapthres_shr or the sortheap database configuration

parameter (specifying a value of AUTOMATIC)

Changes resulting from self-tuning operations are recorded in memory tuning log
files that are located in the stmmlog subdirectory. These log files contain summaries
of the resource demands from each memory consumer during specific tuning
intervals, which are determined by timestamps in the log entries.

If little memory is available, the performance benefits of self tuning will be limited.
Because tuning decisions are based on database workload, workloads with rapidly
changing memory requirements limit the effectiveness of the self-tuning memory
manager (STMM). If the memory characteristics of your workload are constantly
changing, the STMM will tune less frequently and under shifting target conditions.
In this scenario, the STMM will not achieve absolute convergence, but will try
instead to maintain a memory configuration that is tuned to the current workload.

© Copyright IBM Corp. 2014 587

Self-tuning memory configuration
Enablement of self-tuning memory and memory consumers is controlled by
database configuration parameters.

Self-tuning memory is enabled through the self_tuning_mem database
configuration parameter.

The following memory-related database configuration parameters can be
automatically tuned:
v database_memory - Database shared memory size
v locklist - Maximum storage for lock list
v maxlocks - Maximum percent of lock list before escalation
v pckcachesz - Package cache size
v sheapthres_shr - Sort heap threshold for shared sorts
v sortheap - Sort heap size

Enabling self-tuning memory
Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools.

About this task

When enabled, the memory tuner dynamically distributes available memory
resources between several memory consumers, including buffer pools, locking
memory, package cache, and sort memory.

Procedure
1. Enable self-tuning memory for the database by setting the self_tuning_mem

database configuration parameter to ON using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

2. To enable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
AUTOMATIC using the UPDATE DATABASE CONFIGURATION command or the
db2CfgSet API.

3. To enable the self tuning of a buffer pool, set the buffer pool size to AUTOMATIC
using the CREATE BUFFERPOOL statement or the ALTER BUFFERPOOL
statement. In a partitioned database environment, that buffer pool should not
have any entries in SYSCAT.BUFFERPOOLDBPARTITIONS.

Results

Note:

1. Because self-tuned memory is distributed between different memory
consumers, at least two memory areas must be concurrently enabled for self
tuning at any given time; for example, locking memory and database shared
memory. The memory tuner actively tunes memory on the system (the value of
the self_tuning_mem database configuration parameter is ON) when one of the
following conditions is true:
v One configuration parameter or buffer pool size is set to AUTOMATIC, and the

database_memory database configuration parameter is set to either a numeric
value or to AUTOMATIC

588 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Any two of locklist, sheapthres_shr, pckcachesz, or buffer pool size is set
to AUTOMATIC

v The sortheap database configuration parameter is set to AUTOMATIC

2. The value of the locklist database configuration parameter is tuned together
with the maxlocks database configuration parameter. Disabling self tuning of
the locklist parameter automatically disables self tuning of the maxlocks
parameter, and enabling self tuning of the locklist parameter automatically
enables self tuning of the maxlocks parameter.

3. Automatic tuning of sortheap or the sheapthres_shr database configuration
parameter is allowed only when the database manager configuration parameter
sheapthres is set to 0.

4. The value of sortheap is tuned together with sheapthres_shr. Disabling self
tuning of the sortheap parameter automatically disables self tuning of the
sheapthres_shr parameter, and enabling self tuning of the sheapthres_shr
parameter automatically enables self tuning of the sortheap parameter.

5. Self-tuning memory runs only on the high availability disaster recovery
(HADR) primary server. When self-tuning memory is activated on an HADR
system, it will never run on the secondary server, and it runs on the primary
server only if the configuration is set properly. If the HADR database roles are
switched, self-tuning memory operations will also switch so that they run on
the new primary server. After the primary database starts, or the standby
database converts to a primary database through takeover, the self-tuning
memory manager (STMM) engine dispatchable unit (EDU) might not start until
the first client connects.

Disabling self-tuning memory
Self-tuning memory can be disabled for the entire database or for one or more
configuration parameters or buffer pools.

About this task

If self-tuning memory is disabled for the entire database, the memory
configuration parameters and buffer pools that are set to AUTOMATIC remain
enabled for automatic tuning; however, the memory areas remain at their current
size.

Procedure
1. Disable self-tuning memory for the database by setting the self_tuning_mem

database configuration parameter to OFF using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

2. To disable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
MANUAL or specify numeric parameter values using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

3. To disable the self tuning of a buffer pool, set the buffer pool size to a specific
value using the ALTER BUFFERPOOL statement.

Results

Note:

v In some cases, a memory configuration parameter can be enabled for self tuning
only if another related memory configuration parameter is also enabled. This
means that, for example, disabling self-tuning memory for the locklist or the

Chapter 22. Self-tuning memory 589

sortheap database configuration parameter disables self-tuning memory for the
maxlocks or the sheapthres_shr database configuration parameter, respectively.

Determining which memory consumers are enabled for self tuning
You can view the self-tuning memory settings that are controlled by configuration
parameters or that apply to buffer pools.

About this task

It is important to note that responsiveness of the memory tuner is limited by the
time required to resize a memory consumer. For example, reducing the size of a
buffer pool can be a lengthy process, and the performance benefits of trading
buffer pool memory for sort memory might not be immediately realized.

Procedure
v To view the settings for configuration parameters, use one of the following

methods:
– Use the GET DATABASE CONFIGURATION command, specifying the SHOW DETAIL

parameter.
The memory consumers that can be enabled for self tuning are grouped
together in the output as follows:
Description Parameter Current Value Delayed Value
--
Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON
Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200) AUTOMATIC(37200)
Max storage for lock list (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)
Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)
Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC(5600)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000) AUTOMATIC(5000)
Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC(256)

– Use the db2CfgGet API.
The following values are returned:
SQLF_OFF 0
SQLF_ON_ACTIVE 2
SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE indicates that self tuning is both enabled and active, whereas
SQLF_ON_INACTIVE indicates that self tuning is enabled but currently inactive.

v To view the self-tuning settings for buffer pools, use one of the following
methods:
– To retrieve a list of the buffer pools that are enabled for self tuning from the

command line, use the following query:
SELECT BPNAME, NPAGES FROM SYSCAT.BUFFERPOOLS

When self tuning is enabled for a buffer pool, the NPAGES field in the
SYSCAT.BUFFERPOOLS view for that particular buffer pool is set to -2. When
self tuning is disabled, the NPAGES field is set to the current size of the
buffer pool.

– To determine the current size of buffer pools that are enabled for self tuning,
use the GET SNAPSHOT command and examine the current size of the buffer
pools (the value of the bp_cur_buffsz monitor element):
GET SNAPSHOT FOR BUFFERPOOLS ON database-alias

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on
a particular database partition creates an exception entry (or updates an

590 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

existing entry) for that buffer pool in the
SYSCAT.BUFFERPOOLDBPARTITIONS catalog view. If an exception entry for
a buffer pool exists, that buffer pool does not participate in self-tuning
operations when the default buffer pool size is set to AUTOMATIC.

Self-tuning memory in partitioned database environments
When using the self-tuning memory feature in partitioned database environments,
there are a few factors that determine whether the feature will tune the system
appropriately.

When self-tuning memory is enabled for partitioned databases, a single database
partition is designated as the tuning partition, and all memory tuning decisions are
based on the memory and workload characteristics of that database partition. After
tuning decisions on that partition are made, the memory adjustments are
distributed to the other database partitions to ensure that all database partitions
maintain similar configurations.

The single tuning partition model assumes that the feature will be used only when
all of the database partitions have similar memory requirements. Use the following
guidelines when determining whether to enable self-tuning memory on your
partitioned database.

Cases where self-tuning memory for partitioned databases is
recommended

When all database partitions have similar memory requirements and are running
on similar hardware, self-tuning memory can be enabled without any
modifications. These types of environments share the following characteristics:
v All database partitions are on identical hardware, and there is an even

distribution of multiple logical database partitions to multiple physical database
partitions

v There is a perfect or near-perfect distribution of data
v Workloads are distributed evenly across database partitions, meaning that no

database partition has higher memory requirements for one or more heaps than
any of the others

In such an environment, if all database partitions are configured equally,
self-tuning memory will properly configure the system.

Cases where self-tuning memory for partitioned databases is
recommended with qualification

In cases where most of the database partitions in an environment have similar
memory requirements and are running on similar hardware, it is possible to use
self-tuning memory as long as some care is taken with the initial configuration.
These systems might have one set of database partitions for data, and a much
smaller set of coordinator partitions and catalog partitions. In such environments,
it can be beneficial to configure the coordinator partitions and catalog partitions
differently than the database partitions that contain data.

Self-tuning memory should be enabled on all of the database partitions that
contain data, and one of these database partitions should be designated as the
tuning partition. And because the coordinator and catalog partitions might be
configured differently, self-tuning memory should be disabled on those partitions.
To disable self-tuning memory on the coordinator and catalog partitions, set the

Chapter 22. Self-tuning memory 591

self_tuning_mem database configuration parameter on these partitions to OFF.

Cases where self-tuning memory for partitioned databases is not
recommended

If the memory requirements of each database partition are different, or if different
database partitions are running on significantly different hardware, it is good
practice to disable the self-tuning memory feature. You can disable the feature by
setting the self_tuning_mem database configuration parameter to OFF on all
partitions.

Comparing the memory requirements of different database
partitions

The best way to determine whether the memory requirements of different database
partitions are sufficiently similar is to consult the snapshot monitor. If the
following snapshot elements are similar on all database partitions (differing by no
more than 20%), the memory requirements of the database partitions can be
considered sufficiently similar.

Collect the following data by issuing the command: get snapshot for database on
<dbname>

Locks held currently = 0
Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 4968
Lock escalations = 0
Exclusive lock escalations = 0

Total Shared Sort heap allocated = 0
Shared Sort heap high water mark = 0
Post threshold sorts (shared memory) = 0
Sort overflows = 0

Package cache lookups = 13
Package cache inserts = 1
Package cache overflows = 0
Package cache high water mark (Bytes) = 655360

Number of hash joins = 0
Number of hash loops = 0
Number of hash join overflows = 0
Number of small hash join overflows = 0
Post threshold hash joins (shared memory) = 0

Number of OLAP functions = 0
Number of OLAP function overflows = 0
Active OLAP functions = 0

Collect the following data by issuing the command: get snapshot for bufferpools
on <dbname>

Buffer pool data logical reads = 0
Buffer pool data physical reads = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Total buffer pool read time (milliseconds) = 0
Total buffer pool write time (milliseconds)= 0

592 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Using self-tuning memory in partitioned database environments
When self-tuning memory is enabled in partitioned database environments, there is
a single database partition (known as the tuning partition) that monitors the
memory configuration and propagates any configuration changes to all other
database partitions to maintain a consistent configuration across all the
participating database partitions.

The tuning partition is selected on the basis of several characteristics, such as the
number of database partitions in the partition group and the number of buffer
pools.
v To determine which database partition is currently specified as the tuning

partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD(’get stmm tuning dbpartitionnum’)

v To change the tuning partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD(’update stmm tuning dbpartitionnum <partitionnum>’)

The tuning partition is updated asynchronously or at the next database startup.
To have the memory tuner automatically select the tuning partition, enter -1 for
the partitionnum value.

Starting the memory tuner in partitioned database environments

In a partitioned database environment, the memory tuner will start only if the
database is activated by an explicit ACTIVATE DATABASE command, because
self-tuning memory requires that all partitions be active.

Disabling self-tuning memory for a specific database partition
v To disable self-tuning memory for a subset of database partitions, set the

self_tuning_mem database configuration parameter to OFF for those database
partitions.

v To disable self-tuning memory for a subset of the memory consumers that are
controlled by configuration parameters on a specific database partition, set the
value of the relevant configuration parameter or the buffer pool size to
MANUAL or to some specific value on that database partition. It is
recommended that self-tuning memory configuration parameter values be
consistent across all running partitions.

v To disable self-tuning memory for a particular buffer pool on a specific database
partition, issue the ALTER BUFFERPOOL statement, specifying a size value and
the partition on which self-tuning memory is to be disabled.
An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a
particular database partition will create an exception entry (or update an existing
entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog
view. If an exception entry for a buffer pool exists, that buffer pool will not
participate in self-tuning operations when the default buffer pool size is set to
AUTOMATIC. To remove an exception entry so that a buffer pool can be
enabled for self tuning:
1. Disable self tuning for this buffer pool by issuing an ALTER BUFFERPOOL

statement, setting the buffer pool size to a specific value.
2. Issue another ALTER BUFFERPOOL statement to set the size of the buffer

pool on this database partition to the default.
3. Enable self tuning for this buffer pool by issuing another ALTER

BUFFERPOOL statement, setting the buffer pool size to AUTOMATIC.

Chapter 22. Self-tuning memory 593

Enabling self-tuning memory in nonuniform environments

Ideally, data should be distributed evenly across all database partitions, and the
workload that is run on each partition should have similar memory requirements.
If the data distribution is skewed, so that one or more of your database partitions
contain significantly more or less data than other database partitions, these
anomalous database partitions should not be enabled for self tuning. The same is
true if the memory requirements are skewed across the database partitions, which
can happen, for example, if resource-intensive sorts are only performed on one
partition, or if some database partitions are associated with different hardware and
more available memory than others. Self tuning memory can still be enabled on
some database partitions in this type of environment. To take advantage of
self-tuning memory in environments with skew, identify a set of database
partitions that have similar data and memory requirements and enable them for
self tuning. Memory in the remaining partitions should be configured manually.

594 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 23. Automatic maintenance

The database manager provides automatic maintenance capabilities for performing
database backups, keeping statistics current, and reorganizing tables and indexes
as necessary. Performing maintenance activities on your databases is essential in
ensuring that they are optimized for performance and recoverability.

Maintenance of your database includes some or all of the following activities:
v Backups. When you back up a database, the database manager takes a copy of

the data in the database and stores it on a different medium in case of failure or
damage to the original. Automatic database backups help to ensure that your
database is backed up properly and regularly so that you don't have to worry
about when to back up or know the syntax of the BACKUP command.

v Data defragmentation (table or index reorganization). This maintenance activity
can increase the efficiency with which the database manager accesses your
tables. Automatic reorganization manages an offline table and index
reorganization so that you don't need to worry about when and how to
reorganize your data.

v Data access optimization (statistics collection). The database manager updates
the system catalog statistics on the data in a table, the data in indexes, or the
data in both a table and its indexes. The optimizer uses these statistics to
determine which path to use to access the data. Automatic statistics collection
attempts to improve the performance of the database by maintaining up-to-date
table statistics. The goal is to allow the optimizer to choose an access plan based
on accurate statistics.

v Statistics profiling. Automatic statistics profiling advises when and how to
collect table statistics by detecting outdated, missing, or incorrect statistics, and
by generating statistical profiles based on query feedback.

It can be time-consuming to determine whether and when to run maintenance
activities, but automatic maintenance removes the burden from you. You can
manage the enablement of the automatic maintenance features simply and flexibly
by using the automatic maintenance database configuration parameters. By setting
the automatic maintenance database configuration parameters, you can specify
your maintenance objectives The database manager uses these objectives to
determine whether the maintenance activities need to be done and runs only the
required ones during the next available maintenance window (a time period that
you define).

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
configuring automatic maintenance. Task assistants can guide you through the
process of setting options, reviewing the automatically generated commands to
perform the task, and running these commands. For more details, see
Administering databases with task assistants.

Maintenance windows
A maintenance window is a time period that you define for the running of
automatic maintenance activities, which are backups, statistics collection, statistics
profiling, and reorganizations. An offline window might be the time period when
access to a database is unavailable. An online window might be the time period
when users are permitted to connect to a database.

© Copyright IBM Corp. 2014 595

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

A maintenance window is different from a task schedule. During a maintenance
window, each automatic maintenance activity is not necessarily run. Instead, the
database manager evaluates the system to determine the need for each
maintenance activity to be run. If the maintenance requirements are not met, the
maintenance activity is run. If the database is already well maintained, the
maintenance activity is not run.

Think about when you want the automatic maintenance activities to be run.
Automatic maintenance activities consume resources on your system and might
affect the performance of your database when the activities are run. Some of these
activities also restrict access to tables, indexes, and databases. Therefore, you must
provide appropriate windows when the database manager can run maintenance
activities.

Offline maintenance activities
Offline maintenance activities (offline database backups and table and
index reorganizations) are maintenance activities that can occur only in the
offline maintenance window. The extent to which user access is affected
depends on which maintenance activity is running:
v During an offline backup, no applications can connect to the database.

Any currently connected applications are forced off.
v During an offline table or index reorganization (data defragmentation),

applications can access but not update the data in tables.

Offline maintenance activities run to completion even if they go beyond
the window specified. Over time, the internal scheduling mechanism learns
how to best estimate job completion times. If the offline maintenance
window is too small for a particular database backup or reorganization
activity, the scheduler will not start the job the next time and relies on the
health monitor to provide notification of the need to increase the offline
maintenance window.

Online maintenance activities
Online maintenance activities (automatic statistics collection and profiling,
online index reorganizations, and online database backups) are
maintenance activities that can occur only in the online maintenance
window. When online maintenance activities run, any currently connected
applications are allowed to remain connected, and new connections can be
established. To minimize the impact on the system, online database
backups and automatic statistics collection and profiling are throttled by
the adaptive utility throttling mechanism.

Online maintenance activities run to completion even if they go beyond the
window specified.

596 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 24. Automatic table and index maintenance

After many changes to table data, a table and its indexes can become fragmented.
Logically sequential data might be found on nonsequential pages, forcing
additional read operations by the database manager to access data.

The statistical information that is collected by the RUNSTATS utility shows the
distribution of data within a table. Analysis of these statistics can indicate when
and what type of reorganization is necessary.

The automatic reorganization process determines the need for table or index
reorganization by using formulas that are part of the REORGCHK utility. It
periodically evaluates tables and indexes that had their statistics updated to see
whether reorganization is required, and schedules such operations whenever they
are necessary.

The automatic reorganization feature can be enabled or disabled through the
auto_reorg, auto_tbl_maint, and auto_maint database configuration parameters.

In a partitioned database environment, the initiation of automatic reorganization is
done on the catalog database partition. These configuration parameters are enabled
only on the catalog database partition. The REORG operation, however, runs on all
of the database partitions on which the target tables are found.

If you are unsure about when and how to reorganize your tables and indexes, you
can incorporate automatic reorganization as part of your overall database
maintenance plan.

You can also reorganize multidimensional clustering (MDC) and insert time
clustering (ITC) tables to reclaim space. The freeing of extents from MDC and ITC
tables is only supported for tables in DMS table spaces and automatic storage.
Freeing extents from your MDC and ITC tables can be done in an online fashion
with the RECLAIM EXTENTS option of the REORG TABLE command.

You can also schedule an alternate means to reclaim space from your indexes. The
REORG INDEX command has an index clause in which you can specify
space-reclaim-options. When you specify RECLAIM EXTENTS in
space-reclaim-options, space is released back to the table space in an online
fashion. This operation provides space reclamation without the need for a full
rebuild of the indexes. The REBUILD option of the REORG INDEX command also
reclaims space, but not necessarily in an online fashion.

Automatic reorganization on data partitioned tables

For DB2 Version 9.7 Fix Pack 1 and earlier releases, automatic reorganization
supports reorganization of a data partitioned table for the entire table. For DB2
V9.7 Fix Pack 1 and later releases, automatic reorganization supports reorganizing
data partitions of a partitioned table and reorganizing the partitioned indexes on a
data partition of a partitioned table.

To avoid placing an entire data partitioned table into ALLOW NO ACCESS mode,
automatic reorganization performs REORG INDEXES ALL operations at the data

© Copyright IBM Corp. 2014 597

partition level on partitioned indexes that need to be reorganized. Automatic
reorganization performs REORG INDEX operations on any nonpartitioned index that
needs to be reorganized.

Automatic reorganization performs the following REORG TABLE operations on data
partitioned tables:
v If any nonpartitioned indexes (except system-generated XML path indexes) are

defined on the table and there is only one partition that needs to be reorganized,
automatic reorganization performs a REORG TABLE operation with the ON DATA
PARTITION clause to specify the partition that needs to be reorganized.
Otherwise, automatic reorganization performs a REORG TABLE on the entire table
without the ON DATA PARTITION clause.

v If no nonpartitioned indexes (except system-generated XML path indexes) are
defined on the table, automatic reorganization performs a REORG TABLE operation
with the ON DATA PARTITION clause on each partition that needs to be
reorganized.

Automatic reorganization on volatile tables

You can enable automatic index reorganization for volatile tables. The automatic
reorganization process determines whether index reorganization is required for
volatile tables and schedules a REORG INDEX CLEANUP. Index reorganization is
performed periodically on volatile tables and releases space that can be reused by
the indexes defined on these tables.

Statistics cannot be collected in volatile tables because they are updated frequently.
To determine what indexes need to be reorganized, automatic reorganization uses
the numInxPseudoEmptyPagesForVolatile attribute instead of REORGCHK. The
number of pseudo empty pages is maintained internally, visible through
mon_get_index, and does not require a RUNSTATS operation like REORGCHK.
This attribute in the AUTO_REORG policy indicates how many empty index pages
with pseudo deleted keys an index must have so index reorganization is triggered.

To enable automatic index reorganization in volatile tables:
v The DB2_WORKLOAD registry variable must be set to SAP.
v Automatic reorganization must be enabled.
v The numInxPseudoEmptyPagesForVolatile attribute must be set.

598 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 25. Automatic statistics collection

The DB2 optimizer uses catalog statistics to determine the most efficient access
plan for a query. Out-of-date or incomplete table or index statistics might lead the
optimizer to select a suboptimal plan, which slows down query execution.
However, deciding which statistics to collect for a given workload is complex, and
keeping these statistics up-to-date is time-consuming.

With automatic statistics collection, part of the DB2 automated table maintenance
feature, you can let the database manager determine whether statistics need to be
updated. Automatic statistics collection can occur synchronously at statement
compilation time by using the real-time statistics (RTS) feature, or the RUNSTATS
command can be enabled to simply run in the background for asynchronous
collection. Although background statistics collection can be enabled while real-time
statistics collection is disabled, background statistics collection must be enabled for
real-time statistics collection to occur. Automatic background statistics collection
auto_runstats and automatic real-time statistics collection auto_stmt_stats are
enabled by default when you create a database.

Starting with DB2 Version 9, you can use the Configuration Advisor to determine
the initial configuration for new databases including the appropriate setting for the
auto_stmt_stats database configuration parameter.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
configuring automatic statistics collection. Task assistants can guide you through
the process of setting options, reviewing the automatically generated commands to
perform the task, and running these commands. For more details, see
Administering databases with task assistants.

Understanding asynchronous and real-time statistics collection

When real-time statistics collection is enabled, statistics can be fabricated by using
certain metadata. Fabrication means deriving or creating statistics, rather than
collecting them as part of normal RUNSTATS command activity. For example, the
number of rows in a table can be derived from knowing the number of pages in
the table, the page size, and the average row width. In some cases, statistics are
not derived, but are maintained by the index and data manager and can be stored
directly in the catalog. For example, the index manager maintains a count of the
number of leaf pages and levels in each index.

The query optimizer determines how statistics are collected, based on the needs of
the query and the amount of table update activity (the number of update, insert, or
delete operations).

Real-time statistics collection provides more timely and more accurate statistics.
Accurate statistics can result in better query execution plans and improved
performance. Regardless of whether real-time statistics is enabled, asynchronous
statistics collection occurs at two-hour intervals. This interval might not be
frequent enough to provide accurate statistics for some applications.

Real-time statistics collection also initiates asynchronous collection requests when:
v Table activity is not high enough to require synchronous collection, but is high

enough to require asynchronous collection

© Copyright IBM Corp. 2014 599

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

v Synchronous statistics collection used sampling because the table was large
v Synchronous statistics were fabricated
v Synchronous statistics collection failed because the collection time was exceeded

At most, two asynchronous requests can be processed at the same time, but only
for different tables. One request must have been initiated by real-time statistics
collection, and the other must have been initiated by asynchronous statistics
collection checking.

The performance impact of automatic statistics collection is minimized in several
ways:
v Asynchronous statistics collection is performed by using a throttled RUNSTATS

utility. Throttling controls the amount of resource that is consumed by the
RUNSTATS utility, based on current database activity: as database activity
increases, the utility runs more slowly, reducing its resource demands.

v Synchronous statistics collection is limited to 5 seconds per query. This value can
be controlled by the RTS optimization guideline. If synchronous collection
exceeds the time limit, an asynchronous collection request is submitted.

v Synchronous statistics collection does not store the statistics in the system
catalog. Instead, the statistics are stored in a statistics cache and are later stored
in the system catalog by an asynchronous operation. This storage sequence
avoids the overhead and possible lock contention involved when updating the
system catalog. Statistics in the statistics cache are available for subsequent SQL
compilation requests.

v Only one synchronous statistics collection operation occurs per table. Other
agents requiring synchronous statistics collection fabricate statistics, if possible,
and continue with statement compilation. This behavior is also enforced in a
partitioned database environment, where agents on different database partitions
might require synchronous statistics.

v You can customize the type of statistics that are collected by enabling statistics
profiling, which uses information about previous database activity to determine
which statistics are required by the database workload, or by creating your own
statistics profile for a particular table.

v Only tables with missing statistics or high levels of activity (as measured by the
number of update, insert, or delete operations) are considered for statistics
collection. Even if a table meets the statistics collection criteria, synchronous
statistics are not collected unless query optimization requires them. In some
cases, the query optimizer can choose an access plan without statistics.

v For asynchronous statistics collection checking, large tables (tables with more
than 4000 pages) are sampled to determine whether high table activity changed
the statistics. Statistics for such large tables are collected only if warranted.

v For asynchronous statistics collection, the RUNSTATS utility is automatically
scheduled to run during the online maintenance window that is specified in
your maintenance policy. This policy also specifies the set of tables that are
within the scope of automatic statistics collection, further minimizing
unnecessary resource consumption.

v Synchronous statistics collection and fabrication do not follow the online
maintenance window that is specified in your maintenance policy, because
synchronous requests must occur immediately and have limited collection time.
Synchronous statistics collection and fabrication follow the policy that specifies
the set of tables that are within the scope of automatic statistics collection.

v While automatic statistics collection is being performed, the affected tables are
still available for regular database activity (update, insert, or delete operations).

600 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Real-time statistics (synchronous or fabricated) are not collected for nicknames.
To refresh nickname statistics in the system catalog for synchronous statistics
collection, call the SYSPROC.NNSTAT procedure. For asynchronous statistics
collection, DB2 for Linux, UNIX, and Windows automatically calls the
SYSPROC.NNSAT procedure to refresh the nickname statistics in the system
catalog.

v Real-time statistics (synchronous or fabricated) are not collected for statistical
views.

v Declared temporary tables (DGTTs) can have only Real-time statistics collected.

Although real-time statistics collection is designed to minimize statistics collection
overhead, try it in a test environment first to ensure that there is no negative
performance impact. There might be a negative performance impact in some online
transaction processing (OLTP) scenarios, especially if there is an upper boundary
for how long a query can run.

Real-time synchronous statistics collection is performed for regular tables,
materialized query tables (MQTs), and global temporary tables. Asynchronous
statistics are not collected for global temporary tables. Global temporary tables
cannot be excluded from real-time statistics via the automatic maintenance policy
facility.

Automatic statistics collection (synchronous or asynchronous) does not occur for:
v Tables that are marked VOLATILE (tables that have the VOLATILE field set in

the SYSCAT.TABLES catalog view)
v Created temporary tables (CGTTs)
v Tables that had their statistics manually updated, by issuing UPDATE statements

directly against SYSSTAT catalog views
When you modify table statistics manually, the database manager assumes that
you are now responsible for maintaining their statistics. To induce the database
manager to maintain statistics for a table that had its statistics manually
updated, collect statistics by using the RUNSTATS command or specify statistics
collection when using the LOAD command. Tables created before Version 9.5 that
had their statistics updated manually before upgrading are not affected, and
their statistics are automatically maintained by the database manager until they
are manually updated.

Statistics fabrication does not occur for:
v Statistical views
v Tables that had their statistics manually updated, by issuing UPDATE statements

directly against SYSSTAT catalog views. If real-time statistics collection is not
enabled, some statistics fabrication still occurs for tables that had their statistics
manually updated.

In a partitioned database environment, statistics are collected on a single database
partition and then extrapolated. The database manager always collects statistics
(both synchronous and asynchronous) on the first database partition of the
database partition group.

No real-time statistics collection activity will occur until at least five minutes after
database activation.

Real-time statistics processing occurs for both static and dynamic SQL.

Chapter 25. Automatic statistics collection 601

A table that was truncated, either by using the TRUNCATE statement or by using
the IMPORT command, is automatically recognized as having out of date statistics.

Automatic statistics collection, both synchronous and asynchronous, invalidates
cached dynamic statements that reference tables for which statistics were collected.
This is done so that cached dynamic statements can be re-optimized with the latest
statistics.

Asynchronous automatic statistics collection operations might be interrupted when
the database is deactivated. If the database was not explicitly activated using the
ACTIVATE DATABASE command or API, then the database is deactivated when the
last user disconnects from the database. If operations are interrupted, then error
messages might be recorded in the DB2 diagnostic log file. To avoid interrupting
asynchronous automatic statistics collection operations, explicitly activate the
database.

Real-time statistics and explain processing

There is no real-time processing for a query that is only explained (not executed)
by using the EXPLAIN facility. The following table summarizes the behavior under
different values of the CURRENT EXPLAIN MODE special register.

Table 42. Real-time statistics collection as a function of the value of the CURRENT
EXPLAIN MODE special register

CURRENT EXPLAIN MODE value Real-time statistics collection considered

YES Yes

EXPLAIN No

NO Yes

REOPT Yes

RECOMMEND INDEXES No

EVALUATE INDEXES No

Automatic statistics collection and the statistics cache

A statistics cache was introduced in DB2 Version 9.5 to make synchronously
collected statistics available to all queries. This cache is part of the catalog cache. In
a partitioned database environment, the statistics cache resides only on the catalog
database partition even though each database partition has a catalog cache. When
real-time statistics collection is enabled, catalog cache requirements are higher.
Consider tuning the value of the catalogcache_sz database configuration
parameter when real-time statistics collection is enabled.

Automatic statistics collection and statistical profiles

Synchronous and asynchronous statistics are collected according to a statistical
profile that is in effect for a table, with the following exceptions:
v To minimize the overhead of synchronous statistics collection, the database

manager might collect statistics by using sampling. In this case, the sampling
rate and method might be different from those rates and methods that are
specified in the statistical profile.

v Synchronous statistics collection might choose to fabricate statistics, but it might
not be possible to fabricate all statistics that are specified in the statistical profile.

602 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

For example, column statistics such as COLCARD, HIGH2KEY, and LOW2KEY
cannot be fabricated unless the column is leading in some index.

If synchronous statistics collection cannot collect all statistics that are specified in
the statistical profile, an asynchronous collection request is submitted.

The following sections explain different operating characteristics of automatic
statistics collection.

Chapter 25. Automatic statistics collection 603

604 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 26. Configuration Advisor

You can use the Configuration Advisor to obtain recommendations for the initial
values of the buffer pool size, database configuration parameters, and database
manager configuration parameters.

To use the Configuration Advisor, specify the AUTOCONFIGURE command for an
existing database, or specify AUTOCONFIGURE as an option of the CREATE DATABASE
command. To configure your database, you must have SYSADM, SYSCTRL, or
SYSMAINT authority.

You can display the recommended values or apply them by specifying the APPLY
parameter in the CREATE DATABASE and AUTOCONFIGURE commands. The
recommendations are based on input that you provide and system information that
the advisor gathers.

The values suggested by the Configuration Advisor are relevant for only one
database per instance. If you want to use this advisor on more than one database,
each database must belong to a separate instance.

Tuning configuration parameters using the Configuration Advisor
The Configuration Advisor helps you to tune performance and to balance memory
requirements for a single database per instance by suggesting which configuration
parameters to modify and suggesting values for them. The Configuration Advisor
is automatically run when you create a database.

About this task

To disable this feature or to explicitly enable it, use the db2set command before
creating a database, as follows:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

To define values for several of the configuration parameters and to determine the
scope of the application of those parameters, use the AUTOCONFIGURE command,
specifying one of the following options:
v NONE, meaning that none of the values are applied
v DB ONLY, meaning that only database configuration and buffer pool values are

applied
v DB AND DBM, meaning that all parameters and their values are applied

Note: Even if you automatically enabled the Configuration Advisor when you ran
the CREATE DATABASE command, you can still specify AUTOCONFIGURE command
options. If you did not enable the Configuration Advisor when you ran the CREATE
DATABASE command, you can run the Configuration Advisor manually afterwards.

© Copyright IBM Corp. 2014 605

Example: Requesting configuration recommendations using the
Configuration Advisor

This scenario demonstrates to run the Configuration Advisor from the command
line to generate recommendations and shows the output that the Configuration
Advisor produces.

To run the Configuration Advisor:
1. Connect to the PERSONL database by specifying the following command from

the command line:
DB2 CONNECT TO PERSONL

2. Issue the AUTOCONFIGURE command from the CLP, specifying how the database
is used. As shown in the following example, set a value of NONE for the APPLY
option to indicate that you want to view the configuration recommendations
but not apply them:

DB2 AUTOCONFIGURE USING
MEM_PERCENT 60
WORKLOAD_TYPE MIXED
NUM_STMTS 500
ADMIN_PRIORITY BOTH
IS_POPULATED YES
NUM_LOCAL_APPS 0
NUM_REMOTE_APPS 20
ISOLATION RR
BP_RESIZEABLE YES

APPLY NONE

If you are unsure about the value of a parameter for the command, you can
omit it, and the default will be used. You can pass up to 10 parameters without
values: MEM_PERCENT, WORKLOAD_TYPE, and so on, as shown in the previous
example.

The recommendations generated by the AUTOCONFIGURE command are displayed on
the screen in table format, as shown in Figure 74 on page 607

606 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

If you agree with all of the recommendations, either reissue the AUTOCONFIGURE
command but specify that you want the recommended values to be applied by
using the APPLY option, or update individual configuration parameters using the
UPDATE DATABASE MANAGER CONFIGURATION command and the UPDATE DATABASE
CONFIGURATION command.

Former and Applied Values for Database Manager Configuration
Description Parameter Current Value Recommended Value

Application support layer heap size (4KB) (ASLHEAPSZ) = 15 15
No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) = AUTOMATIC AUTOMATIC
Enable intra-partition parallelism (INTRA_PARALLEL) = NO NO
Maximum query degree of parallelism (MAX_QUERYDEGREE) = ANY 1
Agent pool size (NUM_POOLAGENTS) = 100(calculated) 200
Initial number of agents in pool (NUM_INITAGENTS) = 0 0
Max requester I/O block size (bytes) (RQRIOBLK) = 32767 32767
Sort heap threshold (4KB) (SHEAPTHRES) = 0 0

Former and Applied Values for Database Configuration
Description Parameter Current Value Recommended Value

Default application heap (4KB) (APPLHEAPSZ) = 256 256
Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4) 260
Changed pages threshold (CHNGPGS_THRESH) = 60 80
Database heap (4KB) (DBHEAP) = 1200 2791
Degree of parallelism (DFT_DEGREE) = 1 1
Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32
Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC AUTOMATIC
Default query optimization class (DFT_QUERYOPT) = 5 5
Max storage for lock list (4KB) (LOCKLIST) = 100 AUTOMATIC
Log buffer size (4KB) (LOGBUFSZ) = 8 99
Log file size (4KB) (LOGFILSIZ) = 1000 1024
Number of primary log files (LOGPRIMARY) = 3 8
Number of secondary log files (LOGSECOND) = 2 3
Max number of active applications (MAXAPPLS) = AUTOMATIC AUTOMATIC
Percent. of lock lists per application (MAXLOCKS) = 10 AUTOMATIC
Group commit count (MINCOMMIT) = 1 1
Number of asynchronous page cleaners (NUM_IOCLEANERS) = 1 1
Number of I/O servers (NUM_IOSERVERS) = 3 4
Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8) 1533
Percent log file reclaimed before soft chckpt (SOFTMAX) = 100 320
Sort list heap (4KB) (SORTHEAP) = 256 AUTOMATIC
statement heap (4KB) (STMTHEAP) = 4096 4096
Statistics heap size (4KB) (STAT_HEAP_SZ) = 4384 4384
Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000 113661
Self tuning memory (SELF_TUNING_MEM) = ON ON

Automatic runstats (AUTO_RUNSTATS) = ON ON
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = 5000 AUTOMATIC

Former and Applied Values for Bufferpool(s)
Description Parameter Current Value Recommended Value

IBMDEFAULTBP Bufferpool size = -2 340985

DB210203I AUTOCONFIGURE completed successfully. Database manager or database
configuration values may have been changed. The instance must be restarted before
any changes come into effect. You may also want to rebind your packages after the
new configuration parameters take effect so that the new values will be used.

Figure 74. Configuration Advisor sample output

Chapter 26. Configuration Advisor 607

608 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 27. Utility throttling

Utility throttling regulates the performance impact of maintenance utilities so that
they can run concurrently during production periods. Although the impact policy,
a setting that allows utilities to run in throttled mode, is defined by default, you
must set the impact priority, a setting that each cleaner has indicating its throttling
priority, when you run a utility if you want to throttle it.

The throttling system ensures that the throttled utilities are run as frequently as
possible without violating the impact policy. You can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index cleanups.

You define the impact policy by setting the util_impact_lim configuration
parameter.

Cleaners are integrated with the utility throttling facility. By default, each (index)
cleaner has a utility impact priority of 50 (acceptable values are between 1 and 100,
with 0 indicating no throttling). You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Asynchronous index cleanup
Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following
operations that invalidate index entries. Depending on the type of index, the
entries can be record identifiers (RIDs) or block identifiers (BIDs). Invalid index
entries are removed by index cleaners, which operate asynchronously in the
background.

AIC accelerates the process of detaching a data partition from a partitioned table,
and is initiated if the partitioned table contains one or more nonpartitioned
indexes. In this case, AIC removes all nonpartitioned index entries that refer to the
detached data partition, and any pseudo-deleted entries. After all of the indexes
have been cleaned, the identifier that is associated with the detached data partition
is removed from the system catalog. In DB2 Version 9.7 Fix Pack 1 and later
releases, AIC is initiated by an asynchronous partition detach task.

Prior to DB2 Version 9.7 Fix Pack 1, if the partitioned table has dependent
materialized query tables (MQTs), AIC is not initiated until after a SET INTEGRITY
statement is executed.

Normal table access is maintained while AIC is in progress. Queries accessing the
indexes ignore any invalid entries that have not yet been cleaned.

In most cases, one cleaner is started for each nonpartitioned index that is
associated with the partitioned table. An internal task distribution daemon is
responsible for distributing the AIC tasks to the appropriate table partitions and
assigning database agents. The distribution daemon and cleaner agents are internal
system applications that appear in LIST APPLICATIONS command output with the
application names db2taskd and db2aic, respectively. To prevent accidental
disruption, system applications cannot be forced. The distribution daemon remains
online as long as the database is active. The cleaners remain active until cleaning
has been completed. If the database is deactivated while cleaning is in progress,
AIC resumes when you reactivate the database.

© Copyright IBM Corp. 2014 609

AIC impact on performance

AIC incurs minimal performance impact.

An instantaneous row lock test is required to determine whether a pseudo-deleted
entry has been committed. However, because the lock is never acquired,
concurrency is unaffected.

Each cleaner acquires a minimal table space lock (IX) and a table lock (IS). These
locks are released if a cleaner determines that other applications are waiting for
locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner
has a utility impact priority of 50. You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring AIC

You can monitor AIC with the LIST UTILITIES command. Each index cleaner
appears as a separate utility in the output. The following is an example of output
from the LIST UTILITIES SHOW DETAIL command:
ID = 2
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = Table: USER1.SALES, Index: USER1.I2
Start Time = 12/15/2005 11:15:01.967939
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Total Work = 5 pages
Completed Work = 0 pages
Start Time = 12/15/2005 11:15:01.979033

ID = 1
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = Table: USER1.SALES, Index: USER1.I1
Start Time = 12/15/2005 11:15:01.978554
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Total Work = 5 pages
Completed Work = 0 pages
Start Time = 12/15/2005 11:15:01.980524

In this case, there are two cleaners operating on the USERS1.SALES table. One
cleaner is processing index I1, and the other is processing index I2. The progress
monitoring section shows the estimated total number of index pages that need
cleaning and the current number of clean index pages.

The State field indicates the current state of a cleaner. The normal state is
Executing, but the cleaner might be in Waiting state if it is waiting to be assigned
to an available database agent or if the cleaner is temporarily suspended because
of lock contention.

610 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note that different tasks on different database partitions can have the same utility
ID, because each database partition assigns IDs to tasks that are running on that
database partition only.

Asynchronous index cleanup for MDC tables
You can enhance the performance of a rollout deletion-an efficient method for
deleting qualifying blocks of data from multidimensional clustering (MDC)
tables-by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of
indexes following operations that invalidate index entries.

Indexes are cleaned up synchronously during a standard rollout deletion. When a
table contains many record ID (RID) indexes, a significant amount of time is spent
removing the index keys that reference the table rows that are being deleted. You
can speed up the rollout by specifying that these indexes are to be cleaned up after
the deletion operation commits.

To take advantage of AIC for MDC tables, you must explicitly enable the deferred
index cleanup rollout mechanism. There are two methods of specifying a deferred
rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER or issuing the SET
CURRENT MDC ROLLOUT MODE statement. During a deferred index cleanup
rollout operation, blocks are marked as rolled out without an update to the RID
indexes until after the transaction commits. Block identifier (BID) indexes are
cleaned up during the delete operation because they do not require row-level
processing.

AIC rollout is invoked when a rollout deletion commits or, if the database was
shut down, when the table is first accessed following database restart. While AIC is
in progress, queries against the indexes are successful, including those that access
the index that is being cleaned up.

There is one coordinating cleaner per MDC table. Index cleanup for multiple
rollouts is consolidated within the cleaner, which spawns a cleanup agent for each
RID index. Cleanup agents update the RID indexes in parallel. Cleaners are also
integrated with the utility throttling facility. By default, each cleaner has a utility
impact priority of 50 (acceptable values are between 1 and 100, with 0 indicating
no throttling). You can change this priority by using the SET UTIL_IMPACT_PRIORITY
command or the db2UtilityControl API.

Note: In DB2 Version 9.7 and later releases, deferred cleanup rollout is not
supported on range-partitioned tables with partitioned RID indexes. Only the
NONE and IMMEDIATE modes are supported. The cleanup rollout type is
IMMEDIATE if the DB2_MDC_ROLLOUT registry variable is set to DEFER, or if the
CURRENT MDC ROLLOUT MODE special register is set to DEFERRED to
override the DB2_MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the table, deferred index cleanup
rollout is supported. The MDC block indexes can be partitioned or nonpartitioned.

Monitoring the progress of deferred index cleanup rollout
operation

Because the rolled-out blocks on an MDC table are not reusable until after the
cleanup is complete, it is useful to monitor the progress of a deferred index
cleanup rollout operation. Use the LIST UTILITIES command to display a utility
monitor entry for each index being cleaned up. You can also retrieve the total

Chapter 27. Utility throttling 611

number of MDC table blocks in the database that are pending asynchronous
cleanup following a rollout deletion (BLOCKS_PENDING_CLEANUP) by using the
ADMIN_GET_TAB_INFO table function or the GET SNAPSHOT command.

In the following sample output for the LIST UTILITIES SHOW DETAIL command,
progress is indicated by the number of pages in each index that have been cleaned
up. Each phase represents one RID index.
ID = 2
Type = MDC ROLLOUT INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = TABLE.<schema_name>.<table_name>
Start Time = 06/12/2006 08:56:33.390158
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Estimated Percentage Complete = 83
Phase Number = 1

Description = <schema_name>.<index_name>
Total Work = 13 pages
Completed Work = 13 pages
Start Time = 06/12/2006 08:56:33.391566

Phase Number = 2
Description = <schema_name>.<index_name>
Total Work = 13 pages
Completed Work = 13 pages
Start Time = 06/12/2006 08:56:33.391577

Phase Number = 3
Description = <schema_name>.<index_name>
Total Work = 9 pages
Completed Work = 3 pages
Start Time = 06/12/2006 08:56:33.391587

612 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 28. Data compression

You can reduce storage needed for your data by using the compression capabilities
built into DB2 for Linux, UNIX, and Windows to reduce the size of tables, indexes
and even your backup images.

Tables and indexes often contain repeated information. This repetition can range
from individual or combined column values, to common prefixes for column
values, or to repeating patterns in XML data. There are a number of compression
capabilities that you can use to reduce the amount of space required to store your
tables and indexes, along with features you can employ to determine the savings
compression can offer.

You can also use backup compression to reduce the size of your backups. 2

Compression capabilities included with most editions of DB2 for Linux, UNIX, and
Windows include:
v Value compression
v Backup compression.

The following additional compression capabilities are available with the a license
for the DB2 Storage Optimization Feature:
v Row compression, including compression for XML storage objects.
v Temporary table compression
v Index compression.

For more details about index compression, see “Index compression” on page 627.

For more details about backup compression, see “Backup compression” on page
630.

Table compression
You can use less disk space for your tables by taking advantage of the DB2 table
compression capabilities. Compression saves disk storage space by using fewer
database pages to store data.

Also, because you can store more rows per page, fewer pages must be read to
access the same amount of data. Therefore, queries on a compressed table need
fewer I/O operations to access the same amount of data. Since there are more rows
of data on a buffer pool page, the likelihood that needed rows are in the buffer
pool increases. For this reason, compression can improve performance through
improved buffer pool hit ratios. In a similar way, compression can also speed up
backup and restore operations, as fewer pages of need to be transferred to the
backup or restore the same amount of data.

You can use compression with both new and existing tables. Temporary tables are
also compressed automatically, if the database manager deems it to be
advantageous to do so.

2. See “Backup compression” in Data Recovery and High Availability Guide and Reference for more information.

© Copyright IBM Corp. 2014 613

There are two main types of data compression availble for tables:
v Row compression (available with a license for the DB2 Storage Optimization

Feature).
v Value compression

For a particular table, you can use row compression and value compression
together or individually. However, you can use only one type of row compression
for a particular table.

Value compression
Value compression optimizes space usage for the representation of data, and the
storage structures used internally by the database management system to store
data. Value compression involves removing duplicate entries for a value, and only
storing one copy. The stored copy keeps track of the location of any references to
the stored value.

When creating a table, you can use the optional VALUE COMPRESSION clause of
the CREATE TABLE statement to specify that the table is to use value compression.
You can enable value compression in an existing table with the ACTIVATE VALUE
COMPRESSION clause of the ALTER TABLE statement. To disable value
compression in a table, you use the DEACTIVATE VALUE COMPRESSION clause
of the ALTER TABLE statement.

When VALUE COMPRESSION is used, NULLs and zero-length data that has been
assigned to defined variable-length data types (VARCHAR, VARGRAPHICS,
LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, and DBCLOB) will not be
stored on disk.

If VALUE COMPRESSION is used then the optional COMPRESS SYSTEM
DEFAULT option can also be used to further reduce disk space usage. Minimal
disk space is used if the inserted or updated value is equal to the system default
value for the data type of the column, as the default value will not be stored on
disk. Data types that support COMPRESS SYSTEM DEFAULT include all numeric
type columns, fixed-length character, and fixed-length graphic string data types.
This means that zeros and blanks can be compressed.

When using value compression, the byte count of a compressed column in a row
might be larger than that of the uncompressed version of the same column. If your
row size approaches the maximum allowed for your page size, you must ensure
that sum of the byte counts for compressed and uncompressed columns does not
exceed allowable row length of the table in the table space. For example, in a table
space with 4 KB page size, the allowable row length is 4005 bytes. If the allowable
row length is exceeded, the error message SQL0670N is returned. The formula
used to determine the byte counts for compressed and uncompressed columns is
documented as part of the CREATE TABLE statement.

If you deactivate value compression:
v COMPRESS SYSTEM DEFAULTS will also be deactivated implicitly, if it had

previously been enabled
v The uncompressed columns might cause the row size to exceed the maximum

allowed by the current page size of the current table space. If this occurs, the
error messasge SQL0670N will be returned.

v Existing compressed data will remain compressed until the row is updated or
you perform a table reorganization with the REORG command.

614 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Row compression
Row compression uses a dictionary-based compression algorithm to replace
recurring strings with shorter symbols within data rows.

There are two types of row compression that you can choose from:
v “Classic” row compression.
v Adaptive compression

Row compression is available with a license for the DB2 Storage Optimization
Feature. Depending on the DB2 product edition that you have, this feature might
be included, or it might be an option that you order separately.

Classic row compression
Classic row compression, sometimes referred to as static compression , compresses
data rows by replacing patterns of values that repeat across rows with shorter
symbol strings.

The benefits of using classic row compression are similar to those of adaptive
compression, in that you can store data in less space, which can significantly save
storage costs. Unlike adaptive compression, however, classic row compression uses
only a table-level dictionary to store globally recurring patterns; it doesn't use the
page-level dictionaries that are used to compress data dynamically.

How classic row compression works

Classic row compression uses a table-level compression dictionary to compress
data by row. The dictionary is used to map repeated byte patterns from table rows
to much smaller symbols; these symbols then replace the longer byte patterns in
the table rows. The compression dictionary is stored with the table data rows in
the data object portions of the table.

What data gets compressed?

Data that is stored in base table rows and log records is eligible for classic row
compression. In addition, the data in XML storage objects is eligible for
compression. You can compress LOB data that you place inline in a table row;
however, storage objects for long data objects are not compressed.

Restriction: You cannot compress data in XML columns that you created with DB2
Version 9.5 or DB2 Version 9.1. However, you can compress inline XML columns
that you add to a table using DB2 Version 9.7 or later, provided the table was
created without XML columns in an earlier release of the product. If a table that
you created in an earlier release already has one or more XML columns and you
want to add a compressed XML column by using DB2 Version 9.7 or later, you
must use the ADMIN_MOVE_TABLE stored procedure to migrate the table before
you can use compression.

Turning classic row compression on or off

To use classic row compression, you must have a license for the DB2 Storage
Optimization Feature. You compress table data by setting the COMPRESS attribute
of the table to YES STATIC. You can set this attribute when you create the table by
specifying the COMPRESS YES STATIC option for the CREATE TABLE statement.
You can also alter an existing table to use compression by using the same option
for the ALTER TABLE statement. After you enable compression, operations that

Chapter 28. Data compression 615

add data to the table, such as an INSERT, LOAD INSERT, or IMPORT INSERT command
operation, can use classic row compression. In addition, index compression is
enabled for new indexes on the table. Indexes are created as compressed indexes
unless you specify otherwise and if they are the types of indexes that can be
compressed.

Important: When you enable classic row compression for a table, you enable it for
the entire table, even if a table comprises more than one table partition.

To disable compression for a table, use the ALTER TABLE statement with the
COMPRESS NO option; rows that you subsequently add are not compressed. To
extract the entire table, you must perform a table reorganization with the REORG
TABLE command.

If you have a license for theDB2 Storage Optimization Feature, compression for
temporary tables is enabled automatically. You cannot enable or disable
compression for temporary tables.

Effects of update activity on logs and compressed tables

Depending upon update activity and which columns are updated within a data
row, log usage might increase.

If a row increases in size, the new version of the row might not fit on the current
data page. Rather, the new image of the row is stored on an overflow page. To
minimize the creation of pointer-overflow records, increase the percentage of each
page that is to be left as free space after a reorganization by using the ALTER
TABLE statement with the PCTFREE option. For example, if you set the PCTFREE
option to 5% before you enabled compression, you might change it to 10% when
you enable compression. Increasing the percentage of each page to be left as free
space is especially important for data that is heavily updated.

Classic row compression for temporary tables

Compression for temporary tables is enabled automatically with the DB2 Storage
Optimization Feature. When executing queries, the DB2 optimizer considers the
storage savings and the impact on query performance that compression of
temporary tables offers to determine whether it is worthwhile to use compression.
If it is worthwhile, compression is used automatically. The minimum size that a
table must be before compression is used is larger for temporary tables than for
regular tables.

You can use the explain facility or the db2pd tool to see whether the optimizer used
compression for temporary tables.

Reclaiming space that was freed by compression

You can reclaim space that was freed by compressing data. For more information,
see “Reclaimable storage” on page 16.

Adaptive compression
Adaptive compression improves upon the compression rates that can be achieved
using classic row compression by itself. Adaptive compression incorporates classic
row compression; however, it also works on a page-by-page basis to further

616 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

compress data. Of the various data compression techniques in the DB2 product,
adaptive compression offers the most dramatic possibilities for storage savings.

How adaptive compression works

Adaptive compression actually uses two compression approaches. The first
employs the same table-level compression dictionary used in classic row
compression to compress data based on repetition within a sampling of data from
the table as a whole. The second approach uses a page-level dictionary-based
compression algorithm to compress data based on data repetition within each page
of data. The dictionaries map repeated byte patterns to much smaller symbols;
these symbols then replace the longer byte patterns in the table. The table-level
compression dictionary is stored within the table object for which it is created, and
is used to compress data throughout the table. The page-level compression
dictionary is stored with the data in the data page, and is used to compression
only the data within that page. For more information about the role each of these
dictionaries in compressing data, see “Compression dictionaries” on page 623.

Note: You can specify that a table be compressed with classic row compression
only by using a table-level compression dictionary. However, you cannot specify
that tables be compressed by using only page-level compression dictionaries.
Adaptive compression uses both table-level and page-level compression
dictionaries.

Data that is eligible for compression

Data that is stored within data rows, including inlined LOB or XML values, can be
compressed with both adaptive and classic row compression. XML storage objects
can be compressed using static compression. However storage objects for long data
objects that are stored outside table rows is not compressed. In addition, though
log records themselves are not compressed, the amount of log data written as a
result of insert, update or delete operations is reduced by virtue of the rows being
compressed.

Restriction: You cannot compress data in XML columns that you created with DB2
Version 9.5 or DB2 Version 9.1. However, you can compress inline XML columns
that you add to a table using DB2 Version 9.7 or later, provided the table was
created without XML columns in an earlier release of the product. If a table that
you created in an earlier release already has one or more XML columns and you
want to add a compressed XML column by using DB2 Version 9.7 or later, you
must use the ADMIN_MOVE_TABLE stored procedure to migrate the table before
you can use compression.

Turning adaptive compression on or off

To use adaptive compression, you must have a license for the DB2 Storage
Optimization Feature. You compress table data by setting the COMPRESS attribute
of the table to YES. You can set this attribute when you create the table by
specifying the COMPRESS YES option for the CREATE TABLE statement. You can
also alter an existing table to use compression by using the same option for the
ALTER TABLE statement. After you enable compression, operations that add data
to the table, such as an INSERT, LOAD INSERT, or IMPORT INSERT command operation,
can use adaptive compression. In addition, index compression is enabled for new
indexes on the table. Indexes are created as compressed indexes unless you specify
otherwise and if they are the types of indexes that can be compressed.

Chapter 28. Data compression 617

Important: When you enable adaptive compression for a table, you enable it for
the entire table, even if the table comprises more than one table partition.

To disable compression for a table, use the ALTER TABLE statement with the
COMPRESS NO option; rows that you later add are not compressed. Existing rows
remain compressed. To extract the entire table after you turn off compression, you
must perform a table reorganization with the REORG TABLE command.

If you apply the licence for the DB2 Storage Optimization Feature, compression for
temporary tables is enabled automatically if the database manager deems it
valuable. You cannot enable or disable compression for temporary tables.

Effects of update activity on logs and compressed tables

Depending upon update activity and the position of updates in a data row, log
usage might increase.

If a row increases in size after adding new data to it, the new version of the row
might not fit on the current data page. Rather, the new image of the row is stored
on an overflow page. To minimize the creation of pointer-overflow records,
increase the percentage of each page that is to be left as free space after a
reorganization by using the ALTER TABLE statement with the PCTFREE option.
For example, if you set the PCTFREE option to 5% before you enabled
compression, you might change it to 10% when you enable compression.
Increasing the percentage of each page to be left as free space is especially
important for data that is heavily updated.

Compression for temporary tables

Compression for temporary tables is enabled automatically with the DB2 Storage
Optimization Feature. Only classic row compression is used for temporary tables.

System temporary tables
When executing queries, the DB2 optimizer considers the storage savings
and the impact on query performance that compression of system-created
temporary tables offers to determine whether it is worthwhile to use
compression. If it is worthwhile, classic row compression is used
automatically. The minimum size that a table must be before compression
is used is larger for temporary tables than for regular tables.

User-created temporary tables
Created global temporary tables (CGTTs) and declared global temporary
tables (DGTTs) are always compressed using classic row compression.

You can use the explain facility or the db2pd tool to see whether the optimizer used
compression for system temporary tables.

Reclaiming space that was freed by compression

You can reclaim space that has been freed by compressing data. For more
information, see “Reclaimable storage” on page 16.

618 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Estimating storage savings offered by adaptive or classic row
compression

You can view an estimate of the storage savings adaptive or classic row
compression can provide for a table by using the
ADMIN_GET_TAB_COMPRESS_INFO table function.

Before you begin

The estimated savings that adaptive or classic row compression offers depend on
the statistics generated by running the RUNSTATS command. To get the most
accurate estimate of the savings that can be achieved, run the RUNSTATS command
before you perform the following steps.

Procedure

To estimate the storage savings adaptive or classic row compression can offer using
the ADMIN_GET_TAB_COMPRESS_INFO table function:
1. Formulate a SELECT statement that uses the

ADMIN_GET_TAB_COMPRESS_INFO table function. For example, for a table
named SAMPLE1.T1, enter:
SELECT * FROM TABLE(SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO(’SAMPLE1’, ’T1’))

2. Execute the SELECT statement. Executing the statement shown in Step 1 might
yield a report like the following:
TABSCHEMA TABNAME DBPARTITIONNUM DATAPARTITIONID OBJECT_TYPE ROWCOMPMODE ...
--------- ---------- -------------- --------------- ----------- ----------- ...
SAMPLE1 T1 0 0 DATA A ...

1 record(s) selected.

PCTPAGESSAVED_CURRENT AVGROWSIZE_CURRENT PCTPAGESSAVED_STATIC ...
--------------------- ------------------ -------------------- ...

96 24 81 ...

AVGROWSIZE_STATIC PCTPAGESSAVED_ADAPTIVE AVGROWSIZE_ADAPTIVE
----------------- ---------------------- -------------------

148 93 44

Creating a table that uses compression
When you create a new table by issuing the CREATE TABLE statement, you have
the option to compress the data contained in table rows.

Before you begin

You must decide which type of compression you want to use: adaptive
compression, classic row compression, value compression, or a combination of
value compression with either of the two types of row compression. Adaptive
compression and classic row compression almost always save storage because they
attempt to replace data patterns that span multiple columns with shorter symbol
strings. Value compression can offer savings if you have many rows with columns
that contain the same value, such as a city or country name, or if you have
columns that contain the default value for the data type of the column.

Procedure

To create a table that uses compression, issue a CREATE TABLE statement.
v If you want to use adaptive compression, include the COMPRESS YES

ADAPTIVE clause.

Chapter 28. Data compression 619

v If you want to use classic row compression, include the COMPRESS YES STATIC
clause.

v If you want to use value compression, include the VALUE COMPRESSION
clause. If you want to compress data that represents system default column
values, also include the COMPRESS SYSTEM DEFAULT clause.

Results

After you create the table, all data that you add to the table from that point in time
on is compressed. Any indexes that are associated with the table are also
compressed, unless you specify otherwise by using the COMPRESS NO clause of
the CREATE INDEX or ALTER INDEX statements.

Examples

Example 1: The following statement creates a table for customer information with
adaptive compression enabled. In this example, the table is compressed by using
both table-level and page-level compression dictionaries.

CREATE TABLE CUSTOMER
(CUSTOMERNUM INTEGER,
CUSTOMERNAME VARCHAR(80),
ADDRESS VARCHAR(200),
CITY VARCHAR(50),
COUNTRY VARCHAR(50),
CODE VARCHAR(15),
CUSTOMERNUMDIM INTEGER)
COMPRESS YES ADAPTIVE;

Example 2: The following statement creates a table for customer information with
classic row compression enabled. In this example, the table is compressed by using
only a table-level compression dictionary.

CREATE TABLE CUSTOMER
(CUSTOMERNUM INTEGER,
CUSTOMERNAME VARCHAR(80),
ADDRESS VARCHAR(200),
CITY VARCHAR(50),
COUNTRY VARCHAR(50),
CODE VARCHAR(15),
CUSTOMERNUMDIM INTEGER)
COMPRESS YES STATIC;

Example 3: The following statement creates a table for employee salaries. The
SALARY column has a default value of 0, and row compression and system
default compression are specified for the column.

CREATE TABLE EMPLOYEE_SALARY
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT COMPRESS SYSTEM DEFAULT)
COMPRESS YES ADAPTIVE;

Note that the VALUE COMPRESSION clause was omitted from this statement.
This statement creates a table that is called EMPLOYEE_SALARY; however, a
warning message is returned:
SQL20140W COMPRESS column attribute ignored because VALUE COMPRESSION is
deactivated for the table. SQLSTATE=01648

In this case, the COMPRESS SYSTEM DEFAULT clause is not applied to the
SALARY column.

620 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Example 4: The following statement creates a table for employee salaries. The
SALARY column has a default value of 0, and row compression and system
default compression are enabled for the column.

CREATE TABLE EMPLOYEE_SALARY
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT COMPRESS SYSTEM DEFAULT)
VALUE COMPRESSION COMPRESS YES ADAPTIVE;

In this example, the VALUE COMPRESSION clause is included in the statement,
which compresses the default value for the SALARY column.

Enabling compression in an existing table
By using the ALTER TABLE statement, you can modify an existing table to take
advantage of the storage-saving benefits of compression.

Before you begin

You must decide which type of compression you want to use: adaptive
compression, classic row compression, value compression, or a combination of
value compression with either of the two types of row compression. Adaptive
compression and classic row compression almost always save storage because they
attempt to replace data patterns that span multiple columns with shorter symbol
strings. Value compression can offer savings if you have many rows with columns
that contain the same value, such as a city or country name, or if you have
columns that contain the default value for the data type of the column.

Procedure

To enable compression in an existing table:
1. Issue the ALTER TABLE statement.

v If you want to use adaptive compression, include the COMPRESS YES
ADAPTIVE clause.

v If you want to use classic row compression, include the COMPRESS YES
STATIC clause.

v If you want to use value compression, include the ACTIVATE VALUE
COMPRESSION clause for each column that contains a value you want
compressed. If you want to compress data in columns that contain system
default values, also include the COMPRESS SYSTEM DEFAULT clause.

All rows that you subsequently append, insert, load, or update use the new
compressed format.

2. Optional: To immediately apply compression to all the existing rows of a table,
perform a table reorganization by using the REORG TABLE command. If you do
not apply compression to all rows at this point, uncompressed rows will not be
stored in the new compressed format until the next time that you update them,
or the next time the REORG TABLE command runs.

Examples

Example 1: The following statement applies adaptive compression to an existing
table that is named CUSTOMER:

ALTER TABLE CUSTOMER COMPRESS YES ADAPTIVE

Chapter 28. Data compression 621

Example 2: The following statement applies classic row compression to an existing
table that is named CUSTOMER:

ALTER TABLE CUSTOMER COMPRESS YES STATIC

Example 3: The following statements apply row, value, and system default
compression to the SALARY column of an existing table that is named
EMPLOYEE_SALARY. The table is then reorganized.
ALTER TABLE EMPLOYEE_SALARY
ALTER SALARY COMPRESS SYSTEM DEFAULT
COMPRESS YES ACTIVATE VALUE COMPRESSION;

REORG TABLE EMPLOYEE_SALARY

Changing or disabling compression for a compressed table
You can change how a table is compressed or disable compression entirely for a
table that has adaptive, classic row, or value compression enabled by using one or
more of the various compression-related clauses of the ALTER TABLE statement.

About this task

If you deactivate adaptive or classic row compression, index compression is not
affected. If you want to uncompress an index, you must use the ALTER INDEX
statement.

Procedure

To deactivate compression for a table, or to change from one type of row
compression to another:
1. Issue an ALTER TABLE statement.

v If you want to deactivate adaptive or classic row compression, include the
COMPRESS NO clause.

v If you want to change to a different type of row compression, specify the
type of compression you want using the COMPRESS YES ADAPTIVE or
COMPRESS YES STATIC clauses. For example, if you have a table that
currently uses classic row compression, and you want to change to adaptive
compression, execute the ALTER TABLE statement with the COMPRESS YES
ADAPTIVE clause

v If you want to deactivate value compression, include the DEACTIVATE
VALUE COMPRESSION clause.

v If you want to deactivate the compression of system default values, include
the COMPRESS OFF option for the ALTER column name clause.

2. Perform an offline table reorganization using the REORG TABLE command.

Results
v If you turned off row compression using the COMPRESS NO clause, all row

data is uncompressed.
v If you changed from one type of row compression to another, the entire table is

compressed using the type of row compression you specified in the ALTER
TABLE statement. (See Example 2.)

v Deactivating value compression has the following effects:
– If a table had columns with COMPRESS SYSTEM DEFAULT enabled,

compression is no longer enabled for these columns.

622 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

– Uncompressed columns might cause the row size to exceed the maximum
that the current page size of the current table space allows. If this occurs,
error message SQL0670N is returned.

Examples

Example 1: Turning off row compression: The following statements turn off adaptive
or classic row compression in an table named CUSTOMER and then reorganizes
the table to uncompress that data that was previously compressed:

ALTER TABLE CUSTOMER COMPRESS NO
REORG TABLE CUSTOMER

Example 2: Changing from static to adaptive compression: Assumes that the SALES
table currently uses classic row compression. The following statements change the
type of compression used to adaptive compression:

ALTER TABLE SALES COMPRESS ADAPTIVE YES
REORG TABLE SALES

Compression dictionaries
The database manager creates a table-level compression dictionary for each table
that you enable for either adaptive or classic row compression. For tables that you
enable for adaptive compression, the database manager also creates page-level
compression dictionaries.

Both types of dictionaries are used to map repeated byte patterns from table rows
to much smaller symbols; these symbols then replace the longer byte patterns in
the table rows.

Table-level compression dictionaries

To build table-level dictionaries, the table is scanned for repeating patterns. Entire
rows, not just certain fields or parts of rows, are examined for repeating entries or
patterns. After collecting the repetitive entries, the database manager builds a
compression dictionary, assigning short, numeric keys to those entries. Generally
speaking, text strings provide greater opportunities for compression than numeric
data; compressing numeric data involves replacing one number with another.
Depending on the size of the numbers being replaced, the storage savings might
not be as significant as those achieved by compressing text.

When a table-level dictionary is first created, it is built using a sample of data in
the table. The dictionary is not updated again unless you explicitly cause the
dictionary to be rebuilt using a classic, offline table reorganization. Even if you
rebuild the dictionary, the dictionary reflects only a sample of the data from the
entire table.

Remember: The table-level dictionary is static; unless you manually rebuild it, it
does not change after it is initially created. Even if you do rebuild it, because of the
sampling techniques used to create it, the dictionary might not reflect strings that
recur within a single page.

The table-level compression dictionary is stored in hidden rows in the same object
that they apply to and is cached in memory for quick access. This dictionary does
not occupy much space. Even for extremely large tables, the compression
dictionary typically occupies only approximately 100 KB.

Chapter 28. Data compression 623

Page-level compression dictionaries

Adaptive compression uses page-level dictionaries in addition to table-level
dictionaries. However, unlike table-level dictionaries, page-level dictionaries are
automatically created or recreated as pages are filled by the database manager.
Like table-level compression dictionaries, page-level dictionaries are also stored in
hidden rows within the table.

Table-level compression dictionary creation
Table-level compression dictionaries for tables that you enable for adaptive or
classic row compression can be built automatically or manually. Tables that you
enable for adaptive compression include page-level data dictionaries, which are
always automatically created.

Automatic dictionary creation

Starting with DB2 Version 9.5, a table-level compression dictionary is created
automatically if each of the following conditions is met:
v You set the COMPRESS attribute for the table by using the CREATE TABLE or

ALTER TABLE statement with the COMPRESS YES ADAPTIVE or COMPRESS
YES STATIC clause.

v A table-level compression dictionary does not already exist for the table.
v The table contains sufficient data for constructing a dictionary of repeated data.

Data that you move into the table after the dictionary is created is compressed
using the dictionary if compression remains enabled.

The following diagram shows the process by which the compression dictionary is
automatically created:

1 2 33 4

6 75

EMPTY TABLE
Uncompressed
Row Data

Uncompressed
Row Data

Uncompressed
Row Data

INSERT INSERT INSERT

LOAD LOAD LOAD

Synchronous
Dictionary
Build

Uncompressed
Row Data

Dictionary

Compressed
Row Data

The sequence of events illustrated in the diagram is as follows:

624 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

1. A compression dictionary is not yet created, because the table is empty.
2. Data is inserted into the table by using insert or load operations and remains

uncompressed.
3. As more data is inserted or loaded into the table, the data remains

uncompressed.
4. After a threshold is reached, dictionary creation is triggered automatically if the

COMPRESS attribute is set to YES ADAPTIVE or YES STATIC.
5. The dictionary is created.
6. The dictionary is appended to the table.
7. From this point forward, table-level compression is enabled, and the rows that

are later inserted or added are compressed by the table-level compression
dictionary.

Important: The rows that existed in a table before the dictionary was created
remain uncompressed unless you change them or manually rebuild the dictionary.

If you create a table with DB2 Version 9.7 or later and the table contains at least
one column of type XML, a second compression dictionary is created. This
dictionary is used to compress the XML data that is stored in the default XML
storage object that is associated with the table. Compression dictionary creation for
XML data occurs automatically if each of the following conditions is met:
v You set the COMPRESS attribute on the table to YES ADAPTIVE or YES

STATIC.
v A compression dictionary does not exist within that XML storage object.
v There is sufficient data in the XML storage object.

Restriction: You cannot compress data in XML columns that you created with DB2
Version 9.5 or DB2 Version 9.1. However, you can compress inline XML columns
that you add to a table using DB2 Version 9.7 or later, provided the table was
created without XML columns in an earlier release of the product. If a table that
you created in an earlier release already has one or more XML columns and you
want to add a compressed XML column by using DB2 Version 9.7 or later, you
must use the ADMIN_MOVE_TABLE stored procedure to migrate the table before
you can use compression.

The mechanism for creating table-level compression dictionaries for temporary
tables is similar to the mechanism that is used for permanent tables. However, the
database manager automatically makes the determination whether to use classic
row compression for temporary tables, based on factors such as query complexity
and the size of the result set.

Manual dictionary creation

Although dictionaries are created automatically when compression-enabled tables
grow to a sufficient size, you can also force a table-level compression dictionary to
be created if none exists by using the REORG TABLE command with the
RESETDICTIONARY parameter. This command forces the creation of a compression
dictionary if there is at least one row of data in the table. Table reorganization is an
offline operation; one benefit of using automatic dictionary creation is that the
table remains online as the dictionary is built.

Instead of using the REORG TABLE command to force the creation of a new
dictionary, you can also use the INSPECT command with the ROWCOMPESTIMATE
parameter. This command creates a compression dictionary if the table does not

Chapter 28. Data compression 625

already have one. The advantage of this approach over performing a table
reorganization is that the table remains online. Rows that you add later are subject
to compression; however, rows that existed before you ran the INSPECT command
remain uncompressed until you perform a table reorganization. However, if
compression is enabled, automatic dictionary creation will usually take place
shortly after you activate compression, likely before you even have a chance to use
the INSPECT command.

Resetting compression dictionaries

Whether a table-level compression dictionary is created automatically or manually,
the dictionary is static; after it is built, it does not change. As you add or update
rows, they are compressed based on the data that exists in the compression
dictionary. For many situations, this behavior is appropriate. Consider, for example,
a table in a database that is used for maintaining customer accounts for a city
water utility. Such a table might have columns such as STREET_ADDRESS, CITY,
PROVINCE, TELEPHONE_NUM, POSTAL_CODE, and ACCOUNT_TYPE. If a
compression dictionary is built with data from a such table, even if it is only a
modestly sized table, there is likely sufficient repetitive information for classic row
compression to yield significant space savings. Much of the data might be common
from customer to customer, for example, the values of the CITY, POSTAL_CODE,
or PROVINCE column or portions of the value in the STREET_ADDRESS or
TELEPHONE_NUM column.

However, other tables might change significantly over time. Consider a table that is
used for retail sales data as follows:
v A master table is used to accumulate data on a month-by-month basis.
v Each month, a new set of records is loaded into the table.

In this case, a compression dictionary created in, for example, April might not
reflect repeating data from sales in later parts of the year. In situations where data
in a table changes significantly over time, you might want to reset your
compression dictionaries by using the REORG TABLE command with the
RESETDICTIONARY parameter. The advantage of resetting the compression dictionary
is that data from the entire table is considered when the dictionary is built.

Impact of classic table reorganization on table-level
compression dictionaries

When you reorganize a table that you enabled for adaptive compression or classic
row compression using classic, offline table reorganization, you can retain the
table-level compression dictionary or force the database manager to create a new
one.

In DB2 Version 9.5 and later, a table-level compression dictionary is automatically
created for a table that you enable for adaptive or classic row compression by
using the CREATE TABLE or ALTER TABLE statement with the COMPRESS YES
subclause. For a new table, the database manager waits until the table grows to a
minimal size before creating the dictionary. For an existing table, the compression
dictionary is created when the table grows to a sufficient size to allow pattern
repetition to become apparent. Compression is applied only to rows that you insert
or update after enabling compression.

If you reorganize a table with a classic table reorganization, and a table-level
compression dictionary exists, the KEEPDICTIONARY parameter of the REORG TABLE
command is applied implicitly, which retains the dictionary. When you perform the

626 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

reorganization, all the rows that are processed are subject to compression using
that dictionary. If a compression dictionary does not exist and if the table is large
enough, a compression dictionary is created, and the rows are subject to
compression using that dictionary.

You can force a new table-level compression dictionary to be built by performing a
classic table reorganization that uses the RESETDICTIONARY parameter of the REORG
TABLE command. When you specify the RESETDICTIONARY parameter, a new
compression dictionary is built if there is at least one row in the table, replacing
any existing dictionary.

Note: Table-level dictionaries can be rebuilt using only classic table reorganization.
If you attempt to perform an inplace table reorganization of a table that has any
rows compressed using a page-level compression dictionary, the REORG command
fails with a SQL2219 error.

Multiple compression dictionaries for replication source tables
You can combine the DATA CAPTURE CHANGES clause with the COMPRESS
YES STATIC or COMPRESS YES ADAPTIVE option for the CREATE TABLE and
ALTER TABLE statements to enable row compression on source tables for
replication.

When you enable compression, if you also specify the DATA CAPTURE
CHANGES clause as part of the commands REORG TABLE or LOAD REPLACE, a source
table can have two table-level compression dictionaries: an active table-level
compression dictionary and a historical compression dictionary. In other words, if DATA
CAPTURE CHANGES is enabled, the table-level compression dictionary is not
replaced when you run the REORG TABLE or LOAD REPLACE commands. Instead, a
new dictionary is generated, and the previous dictionary is retained.

The historical compression dictionary makes it possible for the db2ReadLog API to
extract the row contents in log records that were written before the active
dictionary was rebuilt as a result of specifying the RESETDICTIONARY option with a
REORG TABLE or LOAD command.

Note: To have log readers return the data within log records in an uncompressed
format instead of a raw compressed format, you must set the iFilterOption
parameter of the db2ReadLog API to DB2READLOG_FILTER_ON.

If you specified the DATA CAPTURE NONE option as part of the CREATE TABLE
statement used to create the table, then issuing the REORG TABLE command or
performing table truncate operations by issuing the LOAD REPLACE, IMPORT REPLACE,
or TRUNCATE TABLE command removes the historical compression dictionary for the
table.

To see whether there is a historical dictionary present for the table, check the
HISTORICAL_DICTIONARY column in the result set of the
ADMIN_GET_TAB_DICTIONARY_INFO table function.

Index compression
Indexes, including indexes on declared or created temporary tables, can be
compressed in order to reduce storage costs. This is especially useful for large
OLTP and data warehouse environments.

Chapter 28. Data compression 627

By default, index compression is enabled for compressed tables, and disabled for
uncompressed tables. You can override this default behavior by using the COMPRESS
YES option of the CREATE INDEX statement. When working with existing indexes,
use the ALTER INDEX statement to enable or disable index compression; you must
then perform an index reorganization to rebuild the index.

Restriction: Index compression is not supported for the following types of indexes:
v block indexes
v XML path indexes.

In addition:
v Index specifications cannot be compressed
v Compression attributes for indexes on temporary tables cannot be altered with

the ALTER INDEX command.

When index compression is enabled, the on-disk and memory format of index
pages are modified based on the compression algorithms chosen by the database
manager so as to minimize storage space. The degree of compression achieved will
vary based on the type of index you are creating, as well as the data the index
contains. For example, the database manager can compress an index with a large
number of duplicate keys by storing an abbreviated format of the record identifier
(RID) for the duplicate keys. In an index where there is a high degree of
commonality in the prefixes of the index keys, the database manager can apply
compression based on the similarities in prefixes of index keys.

There can be limitations and trade-offs associated with compression. If the indexes
do not share common index column values or partial common prefixes, the
benefits of index compression in terms of reduced storage might be negligible. And
although a unique index on a timestamp column might have very high
compression capabilities due to common values for year, month, day, hour, minute,
or even seconds on the same leaf page, examining if common prefixes exist could
cause performance to degrade.

If you believe that compression is not offering a benefit in your particular
situation, you can either re-create the indexes without compression or alter the
indexes and then perform an index reorganization to disable index compression.

There are a few things you should keep in mind when you are considering using
index compression:
v If you enable row compression using the COMPRESS YES option on the CREATE

TABLE or ALTER TABLE command, then by default, compression is enabled for
all indexes for which compression is supported that are created after that point
for that table, unless explicitly disabled by the CREATE INDEX or ALTER
INDEX commands. Similarly, if you disable row compression with the CREATE
TABLE or ALTER TABLE command, index compression is disabled for all
indexes created after that point for that table unless explicitly enabled by the
CREATE INDEX or ALTER INDEX commands.

v If you enable index compression using the ALTER INDEX command,
compression will not take place until an index reorganization is performed.
Similarly, if you disable compression, the index will remain compressed until
you perform an index reorganization.

v During database migration, compression is not enabled for any indexes that
might have been migrated. If you want compression to be used, you must use
the ALTER INDEX command and then perform an index reorganization.

628 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v CPU usage might increase slightly as a result of the processing required for
index compression or decompression. If this is not acceptable, you can disable
index compression for new or existing indexes.

Examples

Example 1: Checking whether an index is compressed.

The two statements that follow create a new table T1 that is enabled for row
compression, and create an index I1 on T1.

CREATE TABLE T1 (C1 INT, C2 INT, C3 INT) COMPRESS YES
CREATE INDEX I1 ON T1(C1)

By default, indexes for T1 are compressed. The compression attribute for index T1,
which shows whether compression is enabled, can be checked by using the catalog
table or the admin table function:
SELECT COMPRESSION FROM SYSCAT.INDEXES WHERE TABNAME=’T1’

COMPRESSION

Y

1 record(s) selected.

Example 2: Determining whether compressed indexes require reorganization.

To see if compressed indexes require reorganization, use the REORGCHK command.
Figure 75 on page 630 shows the command being run on a table called T1:

Chapter 28. Data compression 629

The output of the REORGCHK command has been formatted to fit the page.

Example 3: Determining the potential space savings of index compression.

For an example of how you can calculate potential index compression savings,
refer to the documentation for the ADMIN_GET_INDEX_COMPRESS_INFO table
function.

Backup compression
In addition to the storage savings you can achieve through row compression in
your active database, you can also use backup compression to reduce the size of
your database backups.

Whereas row compression works on a table-by-table basis, when you use
compression for your backups, all of the data in the backup image is compressed,
including catalog tables, index objects, LOB objects, auxiliary database files and
database meta-data.

You can use backup compression with tables that use row compression. Keep in
mind, however, that backup compression requires additional CPU resources and
extra time. It may be sufficient to use table compression alone to achieve a

REORGCHK ON TABLE SCHEMA1.T1

Doing RUNSTATS

Table statistics:

F1: 100 * OVERFLOW / CARD < 5
F2: 100 * (Effective Space Utilization of Data Pages) > 70
F3: 100 * (Required Pages / Total Pages) > 80

SCHEMA.NAME CARD OV NP FP ACTBLK TSIZE F1 F2 F3 REORG

Table: SCHEMA1.T1

879 0 14 14 - 51861 0 100 100 ---

Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80
F5: 100 * (Space used on leaf pages / Space available on non-empty leaf pages) >

MIN(50, (100 - PCTFREE))
F6: (100 - PCTFREE) * (Amount of space available in an index with one less level /

Amount of space required for all keys) < 100
F7: 100 * (Number of pseudo-deleted RIDs / Total number of RIDs) < 20
F8: 100 * (Number of pseudo-empty leaf pages / Total number of leaf pages) < 20

SCHEMA.NAME INDCARD LEAF ELEAF LVLS NDEL KEYS LEAF_RECSIZE NLEAF_RECSIZE...
--...
Table: SCHEMA1.T1
Index: SCHEMA1.I1

879 15 0 2 0 682 20 20...
--...

...LEAF_PAGE_OVERHEAD NLEAF_PAGE_OVERHEAD PCT_PAGES_SAVED F4 F5 F6 F7 F8 REORG

...--

... 596 596 28 56 31 - 0 0 -----

...--

Figure 75. Output of REORGCHK command

630 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

reduction in your backup storage requirements. If you are using row compression,
consider using backup compression only if storage optimization is of higher
priority than the extra time it takes to perform the backup.

Tip: Consider using backup compression only on table spaces that do not contain
compressed data if the following conditions apply:
v Data and index objects are separate from LOB and long field data, and
v You use row and index compression on the majority of your data tables and

indexes, respectively

To use compression for your backups, use the COMPRESS option on the BACKUP
DATABASE command.

Chapter 28. Data compression 631

632 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 29. Relational indexes

Indexes can be used to improve performance when accessing table data. Relational
indexes are used when accessing relational data, and indexes over XML data are
used when accessing XML data.

Although the query optimizer decides whether to use a relational index to access
relational table data, it is up to you to decide which indexes might improve
performance and to create those indexes. The only exceptions to this are the
dimension block indexes and the composite block index that are created
automatically for each dimension when you create a multidimensional clustering
(MDC) table.

Execute the runstats utility to collect new index statistics after you create a
relational index or after you change the prefetch size. You should execute the
runstats utility at regular intervals to keep the statistics current; without up-to-date
statistics about indexes, the optimizer cannot determine the best data-access plan
for queries.

To determine whether a relational index is used in a specific package, use the
explain facility. To get advice about relational indexes that could be exploited by
one or more SQL statements, use the db2advis command to launch the Design
Advisor.

IBM InfoSphere Optim Query Workload Tuner provides tools for improving the
performance of single SQL statements and the performance of groups of SQL
statements, which are called query workloads. For more information about this
product, see the product overview page at http://www.ibm.com/software/data/
optim/query-workload-tuner-db2-luw/index.html. In Version 3.1.1 or later, you can
also use the Workload Design Advisor to perform many operations that were
available in the DB2 Design Advisor wizard. For more information see the
documentation for the Workload Design Advisor at http://
publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/
com.ibm.datatools.qrytune.workloadtunedb2luw.doc/topics/genrecsdsgn.html.

Advantages of a relational index over no index

If no index on a table exists, a table scan must be performed for each table that is
referenced in an SQL query. The larger the table, the longer such a scan will take,
because a table scan requires that each row be accessed sequentially. Although a
table scan might be more efficient for a complex query that requires most of the
rows in a table, an index scan can access table rows more efficiently for a query
that returns only some table rows.

The optimizer chooses an index scan if the relational index columns are referenced
in the SELECT statement and if the optimizer estimates that an index scan will be
faster than a table scan. Index files are generally smaller and require less time to
read than an entire table, especially when the table is large. Moreover, it might not
be necessary to scan an entire index. Any predicates that are applied to the index
will reduce the number of rows that must be read from data pages.

If an ordering requirement on the output can be matched with an index column,
scanning the index in column order will enable the rows to be retrieved in the

© Copyright IBM Corp. 2014 633

http://www.ibm.com/software/data/optim/query-workload-tuner-db2-luw/index.html
http://www.ibm.com/software/data/optim/query-workload-tuner-db2-luw/index.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.qrytune.workloadtunedb2luw.doc/topics/genrecsdsgn.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.qrytune.workloadtunedb2luw.doc/topics/genrecsdsgn.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.qrytune.workloadtunedb2luw.doc/topics/genrecsdsgn.html

correct order without the need for a sort operation. Note that the existence of a
relational index on the table being queried does not guarantee an ordered result
set. Only an ORDER BY clause ensures the order of a result set.

A relational index can also contain include columns, which are non-indexed
columns in an indexed row. Such columns can make it possible for the optimizer
to retrieve required information from the index alone, without having to access the
table itself.

Disadvantages of a relational index over no index

Although indexes can reduce access time significantly, they can also have adverse
effects on performance. Before you create indexes, consider the effects of multiple
indexes on disk space and processing time. Choose indexes carefully to address the
needs of your application programs.
v Each index requires storage space. The exact amount depends on the size of the

table and the size and number of columns in the relational index.
v Each insert or delete operation against a table requires additional updating of

each index on that table. This is also true for each update operation that changes
the value of an index key.

v Each relational index represents another potential access plan for the optimizer
to consider, which increases query compilation time.

Indexes on partitioned tables
Indexes on partitioned tables operate similarly to indexes on nonpartitioned tables.
However, indexes on partitioned tables are stored using a different storage model,
depending on whether the indexes are partitioned or nonpartitioned.

Although the indexes for a regular nonpartitioned table all reside in a shared index
object, a nonpartitioned index on a partitioned table is created in its own index
object in a single table space, even if the data partitions span multiple table spaces.
Both database managed space (DMS) and system managed space (SMS) table
spaces support the use of indexes in a different location than the table data. Each
nonpartitioned index can be placed in its own table space, including large table
spaces. Each index table space must use the same storage mechanism as the data
partitions, either DMS or SMS. Indexes in large table spaces can contain up to 229

pages. All of the table spaces must be in the same database partition group.

A partitioned index uses an index organization scheme in which index data is
divided across multiple index partitions, according to the partitioning scheme of the
table. Each index partition refers only to table rows in the corresponding data
partition. All index partitions for a specific data partition reside in the same index
object.

Starting in DB2 Version 9.7 Fix Pack 1, user-created indexes over XML data on
XML columns in partitioned tables can be either partitioned or nonpartitioned. The
default is partitioned. System-generated XML region indexes are always
partitioned, and system-generated column path indexes are always nonpartitioned.
In DB2 V9.7, indexes over XML data are nonpartitioned.

Benefits of a nonpartitioned index include:
v The fact that indexes can be reorganized independently of one another
v Improved performance of drop index operations

634 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v The fact that when individual indexes are dropped, space becomes immediately
available to the system without the need for index reorganization

Benefits of a partitioned index include:
v Improved data roll-in and roll-out performance
v Less contention on index pages, because the index is partitioned
v An index B-tree structure for each index partition, which can result in the

following benefits:
– Improved insert, update, delete, and scan performance because the B-tree for

an index partition normally contains fewer levels than an index that
references all data in the table

– Improved scan performance and concurrency when partition elimination is in
effect. Although partition elimination can be used for both partitioned and
nonpartitioned index scans, it is more effective for partitioned index scans
because each index partition contains keys for only the corresponding data
partition. This configuration can result in having to scan fewer keys and
fewer index pages than a similar query over a nonpartitioned index.

Although a nonpartitioned index always preserves order on the index columns, a
partitioned index might lose some order across partitions in certain scenarios; for
example, if the partitioning columns do not match the index columns, and more
than one partition is to be accessed.

During online index creation, concurrent read and write access to the table is
permitted. After an online index is built, changes that were made to the table
during index creation are applied to the new index. Write access to the table is
blocked until index creation completes and the transaction commits. For
partitioned indexes, each data partition is quiesced to read-only access only while
changes that were made to that data partition (during the creation of the index
partition) are applied.

Partitioned index support becomes particularly beneficial when you are rolling
data in using the ALTER TABLE...ATTACH PARTITION statement. If
nonpartitioned indexes exist (not including the XML columns path index, if the
table has XML data), issue a SET INTEGRITY statement after partition attachment.
This statement is necessary for nonpartitioned index maintenance, range validation,
constraints checking, and materialized query table (MQT) maintenance.
Nonpartitioned index maintenance can be time-consuming and require large
amounts of log space. Use partitioned indexes to avoid this maintenance cost.

If there are nonpartitioned indexes (except XML columns path indexes) on the
table to maintain after an attach operation, the SET INTEGRITY...ALL IMMEDIATE
UNCHECKED statement behaves as though it were a SET
INTEGRITY...IMMEDIATE CHECKED statement. All integrity processing,
nonpartitioned index maintenance, and table state transitions are performed as
though a SET INTEGRITY...IMMEDIATE CHECKED statement was issued.

The Figure 76 on page 636 diagram shows two nonpartitioned indexes on a
partitioned table, with each index in a separate table space.

Chapter 29. Using relational indexes to improve performance 635

The Figure 77 on page 637 diagram shows a partitioned index on a partitioned
table that spans two database partitions and resides in a single table space.

Figure 76. Nonpartitioned indexes on a partitioned table

636 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The Figure 78 on page 638 diagram shows a mix of partitioned and nonpartitioned
indexes on a partitioned table.

Figure 77. Nonpartitioned index on a table that is both distributed and partitioned

Chapter 29. Using relational indexes to improve performance 637

The nonpartitioned index X1 refers to rows in all of the data partitions. By
contrast, the partitioned indexes X2 and X3 refer only to rows in the data partition
with which they are associated. Table space TS3 also shows the index partitions
sharing the table space of the data partitions with which they are associated. This
configuration is the default for partitioned indexes.

You can override the default location for nonpartitioned and partitioned indexes,
although the way that you do this is different for each. With nonpartitioned
indexes, you can specify a table space when you create the index; for partitioned
indexes, you need to determine the table spaces in which the index partitions are
stored when you create the table.

Nonpartitioned indexes

To override the index location for nonpartitioned indexes, use the IN
clause on the CREATE INDEX statement to specify an alternative table
space location for the index. You can place different indexes in different

Part0

Table space (ts3)

Table space (ts4)

Table space (ts5)

Part1 Index (x3)

Index (x2)

Part2 Index (x3)

Index (x2)

Part3 Index (x3)

Index (x2)

Part4 Index (x3)

Index (x2)

Table space (ts2)

Index (x1)

Index (x3)

Index (x2)

t1

Table space (ts1)

Figure 78. Partitioned and nonpartitioned indexes on a partitioned table

638 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

table spaces, as required. If you create a partitioned table without
specifying where to place its nonpartitioned indexes, and you then create
an index by using a CREATE INDEX statement that does not specify a
table space, the index is created in the table space of the first attached or
visible data partition. Each of the following three possible cases is
evaluated in order, starting with case 1, to determine where the index is to
be created. This evaluation to determine table space placement for the
index stops when a matching case is found.

Case 1:
When an index table space is specified in the CREATE INDEX...IN
tbspace statement, use the specified table space for this index.

Case 2:
When an index table space is specified in the CREATE TABLE...
INDEX IN tbspace statement, use the specified
table space for this index.

Case 3:
When no table space is specified, choose the table space that is used
by the first attached or visible data partition.

Partitioned indexes
By default, index partitions are placed in the same table space as the data
partitions that they reference. To override this default behavior, you must
use the INDEX IN clause for each data partition that you define by using
the CREATE TABLE statement. In other words, if you plan to use
partitioned indexes for a partitioned table, you must anticipate where you
want the index partitions to be stored when you create the table. If you try
to use the INDEX IN clause when creating a partitioned index, you receive
an error message.

Example 1: Given partitioned table SALES (a int, b int, c int), create a unique index
A_IDX.

create unique index a_idx on sales (a)

Because the table SALES is partitioned, index a_idx is also created as a partitioned
index.

Example 2: Create index B_IDX.
create index b_idx on sales (b)

Example 3: To override the default location for the index partitions in a partitioned
index, use the INDEX IN clause for each partition that you define when creating
the partitioned table. In the example that follows, indexes for the table Z are
created in table space TS3.
create table z (a int, b int)

partition by range (a) (starting from (1)
ending at (100) index in ts3)

create index c_idx on z (a) partitioned

Relational index planning tips
A well-designed index can make it easier for queries to access relational data.

Chapter 29. Using relational indexes to improve performance 639

Use the Design Advisor (db2advis command) to find the best indexes for a specific
query or for the set of queries that defines a workload. This tool can make
performance-enhancing recommendations, such as include columns or indexes that
are enabled for reverse scans.

The following guidelines can also help you to create useful relational indexes.
v Retrieving data efficiently

– To improve data retrieval, add include columns to unique indexes. Good
candidates are columns that:
- Are accessed frequently and would benefit from index-only access
- Are not required to limit the range of index scans
- Do not affect the ordering or uniqueness of the index key

For example:
create unique index idx on employee (workdept) include (lastname)

Specifying LASTNAME as an include column rather than part of the index
key means that LASTNAME is stored only on the leaf pages of the index.

– Create relational indexes on columns that are used in the WHERE clauses of
frequently run queries.
In the following example, the WHERE clause will likely benefit from an index
on WORKDEPT, unless the WORKDEPT column contains many duplicate
values.

where workdept=’A01’ or workdept=’E21’

– Create relational indexes with a compound key that names each column
referenced in a query. When an index is specified in this way, relational data
can be retrieved from the index only, which is more efficient than accessing
the table.
For example, consider the following query:

select lastname
from employee
where workdept in (’A00’,’D11’,’D21’)

If a relational index is defined on the WORKDEPT and LASTNAME columns
of the EMPLOYEE table, the query might be processed more efficiently by
scanning the index rather than the entire table. Because the predicate
references WORKDEPT, this column should be the first key column of the
relational index.

v Searching tables efficiently
Decide between ascending and descending key order, depending on the order
that will be used most often. Although values can be searched in reverse
direction if you specify the ALLOW REVERSE SCANS option on the CREATE
INDEX statement, scans in the specified index order perform slightly better than
reverse scans.

v Accessing larger tables efficiently
Use relational indexes to optimize frequent queries against tables with more
than a few data pages, as recorded in the NPAGES column of the
SYSCAT.TABLES catalog view. You should:
– Create an index on any column that you will use to join tables.
– Create an index on any column that you will be searching for specific values

on a regular basis.
v Improving the performance of update or delete operations

640 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

– To improve the performance of such operations against a parent table, create
relational indexes on foreign keys.

– To improve the performance of such operations against REFRESH
IMMEDIATE and INCREMENTAL materialized query tables (MQTs), create
unique relational indexes on the implied unique key of the MQT, which is
composed of the columns in the GROUP BY clause of the MQT definition.

v Improving join performance
If you have more than one choice for the first key column in a multiple-column
relational index, use the column that is most often specified with an equijoin
predicate (expression1 = expression2) or the column with the greatest number
of distinct values as the first key column.

v Sorting
– For fast sort operations, create relational indexes on columns that are

frequently used to sort the relational data.
– To avoid some sorts, use the CREATE INDEX statement to define primary

keys and unique keys whenever possible.
– Create a relational index to order the rows in whatever sequence is required

by a frequently run query. Ordering is required by the DISTINCT, GROUP BY,
and ORDER BY clauses.
The following example uses the DISTINCT clause:

select distinct workdept
from employee

The database manager can use an index that is defined on the WORKDEPT
column to eliminate duplicate values. The same index could also be used to
group values, as in the following example that uses a GROUP BY clause:

select workdept, average(salary)
from employee
group by workdept

v Keeping newly inserted rows clustered and avoiding page splits
Define a clustering index, which should significantly reduce the need to
reorganize the table. Use the PCTFREE option on the CREATE TABLE statement
to specify how much free space should be left on each page so that rows can be
inserted appropriately. You can also specify the pagefreespace file type modifier
on the LOAD command.

v Saving index maintenance costs and storage space
– Avoid creating indexes that are partial keys of other existing indexes. For

example, if there is an index on columns A, B, and C, another index on
columns A and B is generally not useful.

– Do not create arbitrary indexes on many columns. Unnecessary indexes not
only waste space, but also cause lengthy prepare times.
- For online transaction processing (OLTP) environments, create one or two

indexes per table.
- For read-only query environments, you might create more than five indexes

per table.

Note: For workloads involving many ad-hoc queries with many different
predicates where index gap cardinality is small and the selectivity of non
index gaps after the index gap is small, it is likely more appropriate to
create a few large composite indexes for a table, as opposed to many
smaller indexes.

Chapter 29. Using relational indexes to improve performance 641

- For mixed query and OLTP environments, between two and five indexes
per table is likely appropriate.

v Enabling online index defragmentation
Use the MINPCTUSED option when you create relational indexes.
MINPCTUSED enables online index defragmentation; it specifies the minimum
amount of space that must be in use on an index leaf page.

Relational index performance tips
There are a number of actions that you can take to ensure that your relational
indexes perform well.
v Specify a large utility heap

If you expect a lot of update activity against the table on which a relational
index is being created or reorganized, consider configuring a large utility heap
(util_heap_sz database configuration parameter), which will help to speed up
these operations.

v To avoid sort overflows in a symmetric multiprocessor (SMP) environment,
increase the value of the sheapthres database manager configuration parameter

v Create separate table spaces for relational indexes
You can create index table spaces on faster physical devices, or assign index
table spaces to a different buffer pool, which might keep the index pages in the
buffer longer because they do not compete with data pages.
If you use a different table space for indexes, you can optimize the configuration
of that table space for indexes. Because indexes are usually smaller than tables
and are spread over fewer containers, indexes often have smaller extent sizes.
The query optimizer considers the speed of the device that contains a table
space when it chooses an access plan.

v Ensure a high degree of clustering
If your SQL statement requires ordering of the result (for example, if it contains
an ORDER BY, GROUP BY, or DISTINCT clause), the optimizer might not
choose an available index if:
– Index clustering is poor. For information about the degree of clustering in a

specific index, query the CLUSTERRATIO and CLUSTERFACTOR columns of
the SYSCAT.INDEXES catalog view.

– The table is so small that it is cheaper to scan the table and to sort the result
set in memory.

– There are competing indexes for accessing the table.
A clustering index attempts to maintain a particular order of the data, improving
the CLUSTERRATIO or CLUSTERFACTOR statistics that are collected by the
runstats utility. After you create a clustering index, perform an offline table reorg
operation. In general, a table can only be clustered on one index. Build
additional indexes after you build the clustering index.
A table's PCTFREE value determines the amount of space on a page that is to
remain empty for future data insertions, so that this inserted data can be
clustered appropriately. If you do not specify a PCTFREE value for a table,
reorganization eliminates all extra space.
Except in the case of range-clustered tables, data clustering is not maintained
during update operations. That is, if you update a record so that its key value in
the clustering index changes, the record is not necessarily moved to a new page
to maintain the clustering order. To maintain clustering, delete the record and
then insert an updated version of the record, instead of using an update
operation.

642 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Keep table and index statistics up-to-date
After you create a new relational index, execute the runstats utility to collect
index statistics. These statistics help the optimizer to determine whether using
the index can improve data-access performance.

v Enable online index defragmentation
Online index defragmentation is enabled if MINPCTUSED for the relational
index is set to a value that is greater than zero. Online index defragmentation
enables indexes to be compacted through the merging of index leaf pages when
the amount of free space on a page falls below the specified MINPCTUSED
value.

v Reorganize relational indexes as necessary
To get the best performance from your indexes, consider reorganizing them
periodically, because updates to tables can cause index page prefetching to
become less effective.
To reorganize an index, either drop it and recreate it, or use the reorg utility.
To reduce the need for frequent reorganization, specify an appropriate PCTFREE
value on the CREATE INDEX statement to leave sufficient free space on each
index leaf page as it is being created. During future activity, records can be
inserted into the index with less likelihood of index page splitting, which
decreases page contiguity and, therefore, the efficiency of index page
prefetching. The PCTFREE value that is specified when you create a relational
index is preserved when the index is reorganized.

v Analyze explain information about relational index use
Periodically issue EXPLAIN statements against your most frequently used
queries and verify that each of your relational indexes is being used at least
once. If an index is not being used by any query, consider dropping that index.
Explain information also lets you determine whether a large table being scanned
is processed as the inner table of a nested-loop join. If it is, an index on the
join-predicate column is either missing or considered to be ineffective for
applying the join predicate.

v Declare tables that vary widely in size as “volatile”
A volatile table is a table whose cardinality at run time can vary greatly. For this
kind of table, the optimizer might generate an access plan that favors a table
scan instead of an index scan.
Use the ALTER TABLE statement with the VOLATILE clause to declare such a
table as volatile. The optimizer will use an index scan instead of a table scan
against such tables, regardless of statistics, if:
– All referenced columns are part of the index
– The index can apply a predicate during the index scan
In the case of typed tables, the ALTER TABLE...VOLATILE statement is
supported only for the root table of a typed table hierarchy.

Online index defragmentation
Online index defragmentation is enabled by the user-definable threshold,
MINPCTUSED, for the minimum amount of used space on an index leaf page.

When an index key is deleted from a leaf page and this threshold is exceeded, the
neighboring index leaf pages are checked to determine whether two leaf pages can
be merged. If there is sufficient space on a page, and the merging of two
neighboring pages is possible, the merge occurs immediately. The resulting empty
index leaf page is then deleted.

Chapter 29. Using relational indexes to improve performance 643

The MINPCTUSED clause cannot be altered by the ALTER INDEX statement. If
existing indexes require the ability to be merged via online index defragmentation,
they must be dropped and then recreated with the CREATE INDEX statement
specifying the MINPCTUSED clause. When enabling online index defragmentation,
to increase the likelihood that pages can be merged when neighboring pages are
checked, MINPCTUSED should be set to a value less than 50. A value of zero,
which is the default, disables online defragmentation. Whether MINPCTFREE is
set or not, the ability to perform a REORG CLEANUP on that index is not affected.
Setting MINPCTFREE to a low value, 1-50, might reduce the work left for REORG
CLEANUP to do as more page merging is performed automatically at run time.

Index nonleaf pages are not merged during online index defragmentation.
However, empty nonleaf pages are deleted and made available for reuse by other
indexes on the same table. To free deleted pages for other objects in a database
managed space (DMS) storage model there are two reorganization options,
REBUILD or RECLAIM EXTENTS. For system managed space (SMS) storage
model only REORG REBUILD is allowed. RECLAIM EXTENTS moves pages to
create full extents of deleted pages and then frees them. REBUILD rebuilds the
index from scratch making the index as small as possible respecting PCTFREE.

Only REBUILD addresses the number of levels in an index. If reducing the number
of levels in an index is a concern perform a reorganization with the REBUILD
option.

When there is an X lock on a table, keys are physically removed from a page
during key deletion. In this case, online index defragmentation is effective.
However, if there is no X lock on the table during key deletion, keys are marked
deleted but are not physically removed from the index page, and index
defragmentation is not attempted.

To defragment indexes regardless of the value of MINPCTUSED, invoke the
REORG INDEXES command with the CLEANUP ALL option. The whole index is
checked, and whenever possible two neighboring leaf pages are merged. This
merge is possible if at least PCTFREE free space is left on the merged page.
PCTFREE can be specified at index creation time; the default value is 10 (percent).

644 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 30. Parallel processing for applications

The DB2 product supports parallel environments, specifically on symmetric
multiprocessor (SMP) machines.

In SMP machines, more than one processor can access the database, allowing the
execution of complex SQL requests to be divided among the processors. This
intra-partition parallelism is the subdivision of a single database operation (for
example, index creation) into multiple parts, which are then executed in parallel
within a single database partition.

To specify the degree of parallelism when you compile an application, use the
CURRENT DEGREE special register, or the DEGREE bind option. Degree refers to
the number of query parts that can execute concurrently. There is no strict
relationship between the number of processors and the value that you select for
the degree of parallelism. You can specify a value that is more or less than the
number of processors on the machine. Even for uniprocessor machines, you can set
the degree to be higher than one to improve performance. Note, however, that
each degree of parallelism adds to the system memory and processor overhead.

You can also specify the degree of parallelism for workloads using the MAXIMUM
DEGREE workload attribute. In the affected workload, values set using
MAXIMUM DEGREE will override values assigned by the CURRENT DEGREE
special register, or the DEGREE bind option.

Some configuration parameters must be modified to optimize performance when
you use parallel execution of queries. In an environment with a high degree of
parallelism, you should review and modify configuration parameters that control
the amount of shared memory and prefetching.

The following configuration parameters control and manage parallel processing.
v The intra_parallel database manager configuration parameter enables or

disables parallelism.
v The max_querydegree database manager configuration parameter sets an upper

limit on the degree of parallelism for any query in the database. This value
overrides the CURRENT DEGREE special register and the DEGREE bind option.

v The dft_degree database configuration parameter sets the default value for the
CURRENT DEGREE special register and the DEGREE bind option.

To enable or disable intra-partition parallelism from within a database application,
you can call the ADMIN_SET_INTRA_PARALLEL procedure. Setting
ADMIN_SET_INTRA_PARALLEL will apply intra-partition parallelism only to
your application. For your application, this value will override the intra_parallel
database manager configuration parameter.

To enable or disable intra-partition parallelism from within a workload, you can set
the MAXIMUM DEGREE workload attribute. This will apply intra-partition
parallelism only to your workload. This value will override both the the
intra_parallel database manager configuration parameter and any values
assigned by the ADMIN_SET_INTRA_PARALLEL procedure.

© Copyright IBM Corp. 2014 645

If a query is compiled with DEGREE = ANY, the database manager chooses the
degree of intra-partition parallelism on the basis of a number of factors, including
the number of processors and the characteristics of the query. The actual degree
used at run time might be lower than the number of processors, depending on
these factors and the amount of activity on the system. The degree of parallelism
might be reduced before query execution if the system is busy.

Use the DB2 explain facility to display information about the degree of parallelism
chosen by the optimizer. Use the database system monitor to display information
about the degree of parallelism actually being used at run time.

Parallelism in non-SMP environments

You can specify a degree of parallelism without having an SMP machine. For
example, I/O-bound queries on a uniprocessor machine might benefit from
declaring a degree of 2 or more. In this case, the processor might not have to wait
for I/O tasks to complete before starting to process a new query. Utilities such as
load can control I/O parallelism independently.

Intrapartition parallelism improvements
One goal of the DB2 query optimizer is to choose parallel execution strategies that
maintain data balance among subagents and keep them equally busy. In this
release, the parallelization capabilities of the optimizer have been further enhanced
to enable more workloads to better use multi-core processors.

Rebalancing imbalanced subagent workloads

Data filtering and data skew can cause workloads between subagents to become
imbalanced while a query executes. The inefficiency of imbalanced workloads is
magnified by joins and other computationally expensive operations. The optimizer
looks for sources of imbalance in the query's access plan and applies a balancing
strategy, ensuring that work is evenly divided between the subagents. For an
unordered outer data stream, the optimizer balances the join using the REBAL
operator on the outer. For an ordered data stream (where ordered data is produced
by an index access or a sort), the optimizer balances the data using a shared sort.
A shared sort will not be used if the sort overflows into the temporary tables, due
to the high cost of a sort overflow.

Parallel scans on range partitioned tables and indexes

Parallel table scans can be run against range partitioned tables, and similarly,
parallel index scans can be run against partitioned indexes. For a parallel scan,
partitioned indexes are divided into ranges of records, based on index key values
and the number of key entries for a key value. When a parallel scan begins,
subagents are assigned a range of records, and once the subagent completes a
range, it is assigned a new range. The index partitions are scanned sequentially
with subagents potentially scanning unreserved index partitions at any point in
time without waiting for each other. Only the subset of index partitions that is
relevant to the query based on data partition elimination analysis is scanned.

Ability to throttle the degree of parallelism to optimize for
transactional workloads

Individual applications or workloads can now dynamically throttle the degree of
Intrapartition parallelism to optimize performance for the types of queries being

646 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

executed. In previous versions of DB2, it was only possible control the degree of
parallelism (and whether it was turned on or off) for the whole instance. Turning
parallelism on or off also required the instance to be restarted. On database servers
with mixed workloads, a more flexible approach to controlling Intrapartition
parallelism is needed. Transactional workloads, which typically include short
insert, update, and delete transactions, do not benefit from parallelization. There is
some processing overhead when Intrapartition parallelism is enabled, which
introduces a negative impact to transactional workloads. However; data warehouse
workloads benefit greatly from parallelization as they typically include
processor-intensive long-running queries.

For mixed workloads, with transactional and data warehousing components, you
can now configure the database system to provide parallelism settings that are
optimal for the kind of workload deployed by each application. You can either
control the parallelism settings through application logic, or through the DB2
workload manager (which does not require application changes).

Controlling Intrapartition parallelism from database applications: To enable or
disable Intrapartition parallelism from within a database application, you can call
the new ADMIN_SET_INTRA_PARALLEL procedure. For example, the following
statement enables Intrapartition parallelism:
CALL ADMIN_SET_INTRA_PARALLEL(’YES’)

Although the procedure is called in the current transaction, it takes effect starting
with the following transaction, and is only applicable to the calling application.
The setting for Intrapartition parallelism set by ADMIN_SET_INTRA_PARALLEL
will override whatever value is in the intra_parallel configuration parameter.

Controlling Intrapartition parallelism from the DB2 workload manager: To
enable or disable Intrapartition parallelism for a specified workload, you can set
the MAXIMUM DEGREE workload attribute. For example, the following statement
disables Intrapartition parallelism for a workload called trans:
ALTER WORKLOAD trans MAXIMUM DEGREE 1

All statements in the workload executed after the ALTER WORKLOAD statement
will be run with Intrapartition parallelism turned off. The setting for Intrapartition
parallelism set with the MAXIMUM DEGREE workload attribute overrides calls to
ADMIN_SET_INTRA_PARALLEL, and will override whatever value is in the
intra_parallel configuration parameter.

Optimization strategies for intra-partition parallelism
The optimizer can choose an access plan to execute a query in parallel within a
single database partition if a degree of parallelism is specified when the SQL
statement is compiled.

At run time, multiple database agents called subagents are created to execute the
query. The number of subagents is less than or equal to the degree of parallelism
that was specified when the SQL statement was compiled.

To parallelize an access plan, the optimizer divides it into a portion that is run by
each subagent and a portion that is run by the coordinating agent. The subagents
pass data through table queues to the coordinating agent or to other subagents. In
a partitioned database environment, subagents can send or receive data through
table queues from subagents in other database partitions.

Chapter 30. Parallel processing for applications 647

Intra-partition parallel scan strategies

Relational scans and index scans can be performed in parallel on the same table or
index. For parallel relational scans, the table is divided into ranges of pages or
rows, which are assigned to subagents. A subagent scans its assigned range and is
assigned another range when it has completed work on the current range.

For parallel index scans, the index is divided into ranges of records based on index
key values and the number of index entries for a key value. The parallel index
scan proceeds like a parallel table scan, with subagents being assigned a range of
records. A subagent is assigned a new range when it has completed work on the
current range.

Parallel table scans can be run against range partitioned tables, and similarly,
parallel index scans can be run against partitioned indexes. For a parallel scan,
partitioned indexes are divided into ranges of records, based on index key values
and the number of key entries for a key value. When a parallel scan begins,
subagents are assigned a range of records, and once the subagent completes a
range, it is assigned a new range. The index partitions are scanned sequentially
with subagents potentially scanning unreserved index partitions at any point in
time without waiting for each other. Only the subset of index partitions that is
relevant to the query based on data partition elimination analysis is scanned.

The optimizer determines the scan unit (either a page or a row) and the scan
granularity.

Parallel scans provide an even distribution of work among the subagents. The goal
of a parallel scan is to balance the load among the subagents and to keep them
equally busy. If the number of busy subagents equals the number of available
processors, and the disks are not overworked with I/O requests, the machine
resources are being used effectively.

Other access plan strategies might cause data imbalance as the query executes. The
optimizer chooses parallel strategies that maintain data balance among subagents.

Intra-partition parallel sort strategies

The optimizer can choose one of the following parallel sort strategies:
v Round-robin sort

This is also known as a redistribution sort. This method uses shared memory to
efficiently redistribute the data as evenly as possible to all subagents. It uses a
round-robin algorithm to provide the even distribution. It first creates an
individual sort for each subagent. During the insert phase, subagents insert into
each of the individual sorts in a round-robin fashion to achieve a more even
distribution of data.

v Partitioned sort
This is similar to the round-robin sort in that a sort is created for each subagent.
The subagents apply a hash function to the sort columns to determine into
which sort a row should be inserted. For example, if the inner and outer tables
of a merge join are a partitioned sort, a subagent can use merge join to join the
corresponding table portions and execute in parallel.

v Replicated sort
This sort is used if each subagent requires all of the sort output. One sort is
created and subagents are synchronized as rows are inserted into the sort. When

648 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

the sort is complete, each subagent reads the entire sort. If the number of rows is
small, this sort can be used to rebalance the data stream.

v Shared sort
This sort is the same as a replicated sort, except that subagents open a parallel
scan on the sorted result to distribute the data among the subagents in a way
that is similar to a round-robin sort.

Intra-partition parallel temporary tables

Subagents can cooperate to produce a temporary table by inserting rows into the
same table. This is called a shared temporary table. The subagents can open private
scans or parallel scans on the shared temporary table, depending on whether the
data stream is to be replicated or split.

Intra-partition parallel aggregation strategies

Aggregation operations can be performed by subagents in parallel. An aggregation
operation requires the data to be ordered on the grouping columns. If a subagent
can be guaranteed to receive all the rows for a set of grouping column values, it
can perform a complete aggregation. This can happen if the stream is already split
on the grouping columns because of a previous partitioned sort.

Otherwise, the subagent can perform a partial aggregation and use another
strategy to complete the aggregation. Some of these strategies are:
v Send the partially aggregated data to the coordinator agent through a merging

table queue. The coordinator agent completes the aggregation.
v Insert the partially aggregated data into a partitioned sort. The sort is split on

the grouping columns and guarantees that all rows for a set of grouping
columns are contained in one sort partition.

v If the stream needs to be replicated to balance processing, the partially
aggregated data can be inserted into a replicated sort. Each subagent completes
the aggregation using the replicated sort, and receives an identical copy of the
aggregation result.

Intra-partition parallel join strategies

Join operations can be performed by subagents in parallel. Parallel join strategies
are determined by the characteristics of the data stream.

A join can be parallelized by partitioning or by replicating the data stream on the
inner and outer tables of the join, or both. For example, a nested-loop join can be
parallelized if its outer stream is partitioned for a parallel scan and the inner
stream is again evaluated independently by each subagent. A merged join can be
parallelized if its inner and outer streams are value-partitioned for partitioned
sorts.

Data filtering and data skew can cause workloads between subagents to become
imbalanced while a query executes. The inefficiency of imbalanced workloads is
magnified by joins and other computationally expensive operations. The optimizer
looks for sources of imbalance in the query's access plan and applies a balancing
strategy, ensuring that work is evenly divided between the subagents. For an
unordered outer data stream, the optimizer balances the join using the REBAL
operator on the outer data stream. For an ordered data stream (where ordered data
is produced by an index access or a sort), the optimizer balances the data using a
shared sort. A shared sort will be not be used if the sort overflows into the

Chapter 30. Parallel processing for applications 649

temporary tables, due to the high cost of a sort overflow.

650 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Part 5. Advanced concepts

DB2 capabilities such as federated database environments, replication, DB2
pureScale environments, and the DB2 audit facility help to deliver scalability and
high availability in DB2 environments.

© Copyright IBM Corp. 2014 651

652 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 31. Federated systems

A federated system is a special type of distributed database management system
(DBMS). A federated system consists of a DB2 instance that operates as a federated
server, a database that acts as the federated database, one or more data sources,
and clients (users and applications) that access the database and data sources.

With a federated system, you can send distributed requests to multiple data
sources within a single SQL statement. For example, you can join data that is
located in a DB2 table, an Oracle table, and an XML tagged file in a single SQL
statement. The following figure shows the components of a federated system and a
sample of the data sources you can access.

The power of a federated system is in its ability to:
v Correlate data from local tables and remote data sources, as if all the data is

stored locally in the federated database
v Update data in relational data sources, as if the data is stored in the federated

database
v Move data to and from relational data sources

XML

VSAM

IMS

Software AG
Adabas

CA-IDMS

CA-Datacom

SQL view

InfoSphere
Classic

Federation Server
for z/OS

InfoSphere Federation Server

SQL, SQL/XML, XQuery

Federation engine

Wrappers and functions

O
D
B
C

Biological
data and

algorithms

Text XML Excel WebSphere
MQ

Script

Sybase

DB2 family

Informix

Microsoft
SQL Server

Teradata

Oracle

ODBC

DB2 UDB
for z/OS

Global catalog

J
D
B
C

Web Services

JDBC

Figure 79. The components of a federated system

© Copyright IBM Corp. 2014 653

v Take advantage of the data source processing strengths, by sending requests to
the data sources for processing

v Compensate for SQL limitations at the data source by processing parts of a
distributed request at the federated server

What is a data source?
In a federated system, a data source can be a relational database (such as Oracle or
Sybase) or a nonrelational data source (such as an XML tagged file).

Through some data sources you can access other data sources. For example, with
the ODBC wrapper you can access IBM(r) InfoSphere(tm) Classic Federation Server
for z/OS(r) data sources such as DB2 for z/OS, IMS™, CA-IDMS, CA-Datacom,
Software AG Adabas, and VSAM.

The method, or protocol, used to access a data source depends on the type of data
source. For example, DRDA® is used to access DB2 for z/OS data sources.

Data sources are autonomous. For example, the federated server can send queries
to Oracle data sources at the same time that Oracle applications can access these
data sources. A federated system does not monopolize or restrict access to the
other data sources, beyond integrity and locking constraints.

The federated database
To end users and client applications, data sources appear as a single collective
database in the DB2 database system. Users and applications interface with the
federated database that is managed by the federated server.

The federated database contains a system catalog that stores information about
data. The federated database system catalog contains entries that identify data
sources and their characteristics. The federated server consults the information
stored in the federated database system catalog and the data source wrapper to
determine the best plan for processing SQL statements.

The federated system processes SQL statements as if the data from the data sources
were ordinary relational tables or views within the federated database. As a result:
v The federated system can correlate relational data with data in nonrelational

formats. This is true even when the data sources use different SQL dialects, or
do not support SQL at all.

v The characteristics of the federated database take precedence when there are
differences between the characteristics of the federated database and the
characteristics of the data sources. Query results conform to DB2 semantics, even
if data from other non-DB2 data sources is used to compute the query result.
Examples:
– The code page that the federated server uses is different than the code page

used that the data source uses. In this case, character data from the data
source is converted based on the code page used by the federated database,
when that data is returned to a federated user.

– The collating sequence that the federated server uses is different than the
collating sequence that the data source uses. In this case, any sort operations
on character data are performed at the federated server instead of at the data
source.

654 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Wrappers and wrapper modules
Wrappers are mechanisms by which the federated database interacts with data
sources. The federated database uses routines stored in a library called a wrapper
module to implement a wrapper.

These routines allow the federated database to perform operations such as
connecting to a data source and retrieving data from it iteratively. Typically, the
federated instance owner uses the CREATE WRAPPER statement to register a
wrapper in the federated database. You can register a wrapper as fenced or trusted
using the DB2_FENCED wrapper option.

You create one wrapper for each type of data source that you want to access. For
example, you want to access three DB2 for z/OS database tables, one DB2 for
System i® table, two Informix tables, and one Informix view. In this case, you need
to create one wrapper for the DB2 data source objects and one wrapper for the
Informix data source objects. After these wrappers are registered in the federated
database, you can use these wrappers to access other objects from those data
sources. For example, you can use the DRDA wrapper with all DB2 family data
source objects—DB2 Database for Linux, UNIX, and Windows, DB2 for z/OS, DB2
for System i, and DB2 Server for VM and VSE.

You use the server definitions and nicknames to identify the specifics (name,
location, and so forth) of each data source object.

A wrapper performs many tasks. Some of these tasks are:
v It connects to the data source. The wrapper uses the standard connection API of

the data source.
v It submits queries to the data source.

– For data sources that support SQL, the query is submitted in SQL.
– For data sources that do not support SQL, the query is translated into the

native query language of the source or into a series of source API calls.
v It receives results sets from the data source. The wrapper uses the data source

standard APIs for receiving results set.
v It responds to federated database queries about the default data type mappings

for a data source. The wrapper contains the default type mappings that are used
when nicknames are created for a data source object. For relational wrappers,
data type mappings that you create override the default data type mappings.
User-defined data type mappings are stored in the global catalog.

v It responds to federated database queries about the default function mappings
for a data source. The federated database needs data type mapping information
for query planning purposes. The wrapper contains information that the
federated database needs to determine if DB2 functions are mapped to functions
of the data source, and how the functions are mapped. This information is used
by the SQL Compiler to determine if the data source is able to perform the
query operations. For relational wrappers, function mappings that you create
override the default function type mappings. User-defined function mappings
are stored in the global catalog.

Wrapper options are used to configure the wrapper or to define how IBM(r)
InfoSphere(tm) Federation Server uses the wrapper.

Chapter 31. Federated systems 655

How you interact with a federated system
Because the federated database is a DB2 family database, you can interact with it
in a variety of ways.

You can interact with a federated system using by any one of these methods:
v The DB2 command line processor (CLP)
v Application programs
v DB2 family tools
v Web services providers

The steps in the federated documentation provide the commands and SQL
statements that can be entered in the DB2 command line processor. The
documentation indicates when tasks can be performed through the IBM Data
Studio GUI.

The federated server
The DB2 server in a federated system is referred to as the federated server. Any
number of DB2 instances can be configured to function as federated servers. You
can use existing DB2 instances as your federated servers, or you can create new
ones specifically for the federated system.

The DB2 instance that manages the federated system is called a server because it
responds to requests from end users and client applications. The federated server
often sends parts of the requests it receives to the data sources for processing. A
pushdown operation is an operation that is processed remotely. The DB2 instance
that manages the federated system is referred to as the federated server, even
though it acts as a client when it pushes down requests to the data sources.

Like any other application server, the federated server is a database manager
instance. Application processes connect and submit requests to the database within
the federated server. However, two main features distinguish it from other
application servers:
v A federated server is configured to receive requests that might be partially or

entirely intended for data sources. The federated server distributes these
requests to the data sources.

v Like other application servers, a federated server uses DRDA communication
protocols (over TCP/IP) to communicate with DB2 family instances. However,
unlike other application servers, a federated server uses the native client of the
data source to access the data source. For example, a federated server uses the
Sybase Open Client to access Sybase data sources and an Microsoft SQL Server
ODBC Driver to access Microsoft SQL Server data sources.

Federated systems and DB2 pureScale
DB2 for Linux, UNIX, and Windows introduced the DB2 pureScale Feature in
Version 9.8. In Version 10, Federation Server functions are integrated with the DB2
pureScale environment.

You can use federation with DB2 pureScale to take advantage of the availability
and scalability that the DB2 pureScale feature offers. For detailed information
about the pureScale Feature, see Introduction to the IBM DB2 pureScale Feature.

656 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

https://db2id.torolab.ibm.com/db2doc_v10/index.jsp?topic=/com.ibm.db2.luw.licensing.doc/doc/c0057442.html

Federation functions can operate on any member of a DB2 pureScale instance.
Those functions include the majority of functions that federation supports such as
insert, update, and delete operations, and stored procedures.

With automatic client reroute and workload balancing, every member of a DB2
pureScale instance can run federated statements. It is important to install client
libraries on all DB2 pureScale members.

Server options that affect federated databases
A federated database system is composed of a DB2 data server (the federated
database) and one or more data sources. You identify the data sources to the
federated database when you issue CREATE SERVER statements. You can also
specify server options that refine and control various aspects of federated system
operation.

You must install the distributed join installation option and set the federated
database manager configuration parameter to YES before you can create servers
and specify server options. To change server options later, use the ALTER SERVER
statement.

The server option values that you specify on the CREATE SERVER statement affect
query pushdown analysis, global optimization, and other aspects of federated
database operations. For example, you can specify performance statistics as server
option values. The cpu_ratio option specifies the relative speeds of the processors at
the data source and the federated server, and the io_ratio option specifies the
relative rates of the data I/O divides at the data source and the federated server.

Server option values are written to the system catalog (SYSCAT.SERVEROPTIONS),
and the optimizer uses this information when it develops access plans for the data
source. If a statistic changes (for example, when a data source processor is
upgraded), use the ALTER SERVER statement to update the catalog with the new
value.

Federated database query-compiler phases
In a federated database, there are additional steps that are taken by the query
compiler. These additional steps are needed to determine which remote data
sources to use to improve query performance.

Global analysis on the federated database might result in information that can be
used to optimize the federated environment overall.

Federated database pushdown analysis
For queries that are to run against federated databases, the optimizer performs
pushdown analysis to determine whether a particular operation can be performed
at a remote data source.

An operation might be a function, such as a relational operator, or a system or user
function; or it might be an SQL operator, such as, for example, ORDER BY or
GROUP BY.

Be sure to update local catalog information regularly, so that the DB2 query
compiler has access to accurate information about SQL support at remote data

Chapter 31. Federated systems 657

sources. Use DB2 data definition language (DDL) statements (such as CREATE
FUNCTION MAPPING or ALTER SERVER, for example) to update the catalog.

If functions cannot be pushed down to the remote data source, they can
significantly impact query performance. Consider the effect of forcing a selective
predicate to be evaluated locally instead of at the data source. Such evaluation
could require the DB2 server to retrieve the entire table from the remote data
source and then filter it locally against the predicate. Network constraints and a
large table could cause performance to suffer.

Operators that are not pushed down can also significantly affect query
performance. For example, having a GROUP BY operator aggregate remote data
locally could also require the DB2 server to retrieve an entire table from the remote
data source.

For example, consider nickname N1, which references the data source table
EMPLOYEE in a DB2 for z/OS data source. The table has 10 000 rows, one of the
columns contains the last names of employees, and one of the columns contains
salaries. The optimizer has several options when processing the following
statement, depending on whether the local and remote collating sequences are the
same:

select lastname, count(*) from n1
where

lastname > ’B’ and
salary > 50000

group by lastname

v If the collating sequences are the same, the query predicates can probably be
pushed down to DB2 for z/OS. Filtering and grouping results at the data source
is usually more efficient than copying the entire table and performing the
operations locally. For this query, the predicates and the GROUP BY operation
can take place at the data source.

v If the collating sequences are not the same, both predicates cannot be evaluated
at the data source. However, the optimizer might decide to push down the
salary > 50000 predicate. The range comparison must still be done locally.

v If the collating sequences are the same, and the optimizer knows that the local
DB2 server is very fast, the optimizer might decide that performing the GROUP
BY operation locally is the least expensive approach. The predicate is evaluated
at the data source. This is an example of pushdown analysis combined with
global optimization.

In general, the goal is to ensure that the optimizer evaluates functions and
operators at remote data sources. Many factors affect whether a function or an SQL
operator can be evaluated at a remote data source, including the following:
v Server characteristics
v Nickname characteristics
v Query characteristics

Server characteristics that affect pushdown opportunities

Certain data source-specific factors can affect pushdown opportunities. In general,
these factors exist because of the rich SQL dialect that is supported by the DB2
product. The DB2 data server can compensate for the lack of function that is
available at another data server, but doing so might require that the operation take
place at the DB2 server.
v SQL capabilities

658 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Each data source supports a variation of the SQL dialect and different levels of
functionality. For example, most data sources support the GROUP BY operator,
but some limit the number of items on the GROUP BY list, or have restrictions
on whether an expression is allowed on the GROUP BY list. If there is a
restriction at the remote data source, the DB2 server might have to perform a
GROUP BY operation locally.

v SQL restrictions
Each data source might have different SQL restrictions. For example, some data
sources require parameter markers to bind values to remote SQL statements.
Therefore, parameter marker restrictions must be checked to ensure that each
data source can support such a bind mechanism. If the DB2 server cannot
determine a good method to bind a value for a function, this function must be
evaluated locally.

v SQL limits
Although the DB2 server might allow the use of larger integers than those that
are permitted on remote data sources, values that exceed remote limits cannot be
embedded in statements that are sent to data sources, and any impacted
functions or operators must be evaluated locally.

v Server specifics
Several factors fall into this category. For example, if null values at a data source
are sorted differently from how the DB2 server would sort them, ORDER BY
operations on a nullable expression cannot be remotely evaluated.

v Collating sequence
Retrieving data for local sorts and comparisons usually decreases performance.
If you configure a federated database to use the same collating sequence that a
data source uses and then set the COLLATING_SEQUENCE server option to Y,
the optimizer can consider pushing down many query operations. The following
operations might be pushed down if collating sequences are the same:
– Comparisons of character or numeric data
– Character range comparison predicates
– Sorts
You might get unusual results, however, if the weighting of null characters is
different between the federated database and the data source. Comparisons
might return unexpected results if you submit statements to a case-insensitive
data source. The weights that are assigned to the characters “I” and “i” in a
case-insensitive data source are the same. The DB2 server, by default, is case
sensitive and assigns different weights to these characters.
To improve performance, the federated server allows sorts and comparisons to
take place at data sources. For example, in DB2 for z/OS, sorts that are defined
by ORDER BY clauses are implemented by a collating sequence that is based on
an EBCDIC code page. To use the federated server to retrieve DB2 for z/OS data
that is sorted in accordance with ORDER BY clauses, configure the federated
database so that it uses a predefined collating sequence based on the EBCDIC
code page.
If the collating sequences of the federated database and the data source differ,
the DB2 server retrieves the data to the federated database. Because users expect
to see query results ordered by the collating sequence that is defined for the
federated server, ordering the data locally ensures that this expectation is
fulfilled. Submit your query in passthrough mode, or define the query in a data
source view if you need to see the data ordered in the collating sequence of the
data source.

v Server options

Chapter 31. Federated systems 659

Several server options can affect pushdown opportunities, including
COLLATING_SEQUENCE, VARCHAR_NO_TRAILING_BLANKS, and
PUSHDOWN.

v DB2 type mapping and function mapping factors
The default local data type mappings on the DB2 server are designed to provide
sufficient buffer space for each data source data type, which avoids loss of data.
You can customize the type mapping for a specific data source to suit specific
applications. For example, if you are accessing an Oracle data source column
with a DATE data type, which by default is mapped to the DB2 TIMESTAMP
data type, you might change the local data type to the DB2 DATE data type.

In the following three cases, the DB2 server can compensate for functions that a
data source does not support:
v The function does not exist at the remote data source.
v The function exists, but the characteristics of the operand violate function

restrictions. The IS NULL relational operator is an example of this situation.
Most data sources support it, but some might have restrictions, such as allowing
a column name to appear only on the left hand side of the IS NULL operator.

v The function might return a different result if it is evaluated remotely. An
example of this situation is the greater than ('>') operator. For data sources with
different collating sequences, the greater than operator might return different
results if it is evaluated locally by the DB2 server.

Nickname characteristics that affect pushdown opportunities

The following nickname-specific factors can affect pushdown opportunities.
v Local data type of a nickname column

Ensure that the local data type of a column does not prevent a predicate from
being evaluated at the data source. Use the default data type mappings to avoid
possible overflow. However, a joining predicate between two columns of
different lengths might not be considered at a data source whose joining column
is shorter, depending on how DB2 binds the longer column. This situation can
affect the number of possibilities that the DB2 optimizer can evaluate in a
joining sequence. For example, Oracle data source columns that were created
using the INTEGER or INT data type are given the type NUMBER(38). A
nickname column for this Oracle data type is given the local data type FLOAT,
because the range of a DB2 integer is from 2**31 to (-2**31)-1, which is roughly
equivalent to NUMBER(9). In this case, joins between a DB2 integer column and
an Oracle integer column cannot take place at the DB2 data source (because of
the shorter joining column); however, if the domain of this Oracle integer
column can be accommodated by the DB2 INTEGER data type, change its local
data type with the ALTER NICKNAME statement so that the join can take place
at the DB2 data source.

v Column options
Use the ALTER NICKNAME statement to add or change column options for
nicknames.
Use the VARCHAR_NO_TRAILING_BLANKS option to identify a column that
contains no trailing blanks. The compiler pushdown analysis step will then take
this information into account when checking all operations that are performed
on such columns. The DB2 server might generate a different but equivalent form
of a predicate to be used in the SQL statement that is sent to a data source. You
might see a different predicate being evaluated against the data source, but the
net result should be equivalent.

660 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Use the NUMERIC_STRING option to indicate whether the values in that
column are always numbers without trailing blanks.
Table 43 describes these options.

Table 43. Column Options and Their Settings

Option Valid Settings Default
Setting

NUMERIC_STRING
Y: Specifies that this column contains only strings of
numeric data. It does not contain blank characters that
could interfere with sorting of the column data. This
option is useful when the collating sequence of a data
source is different from that of the DB2 server. Columns
that are marked with this option are not excluded from
local (data source) evaluation because of a different
collating sequence. If the column contains only numeric
strings that are followed by trailing blank characters, do
not specify Y.

N: Specifies that this column is not limited to strings of
numeric data.

N

VARCHAR_NO_
TRAILING_BLANKS Y: Specifies that this data source uses non-blank-padded

VARCHAR comparison semantics, similar to the DB2
data server. For variable-length character strings that
contain no trailing blank characters, non-blank-padded
comparison semantics of some data servers return the
same results as DB2 comparison semantics. Specify this
value if you are certain that all VARCHAR table or
view columns at a data source contain no trailing blank
characters

N: Specifies that this data source does not use
non-blank-padded VARCHAR comparison semantics,
similar to the DB2 data server.

N

Query characteristics that affect pushdown opportunities

A query can reference an SQL operator that might involve nicknames from
multiple data sources. The operation must take place on the DB2 server to combine
the results from two referenced data sources that use one operator, such as a set
operator (for example, UNION). The operator cannot be evaluated at a remote data
source directly.

Guidelines for determining where a federated query is
evaluated

The DB2 explain utility, which you can start by invoking the db2expln command,
shows where queries are evaluated. The execution location for each operator is
included in the command output.
v If a query is pushed down, you should see a RETURN operator, which is a

standard DB2 operator. If a SELECT statement retrieves data from a nickname,
you also see a SHIP operator, which is unique to federated database operations:
it changes the server property of the data flow and separates local operators
from remote operators. The SELECT statement is generated using the SQL
dialect that is supported by the data source.

Chapter 31. Federated systems 661

v If an INSERT, UPDATE, or DELETE statement can be entirely pushed down to
the remote data source, you might not see a SHIP operator in the access plan.
All remotely executed INSERT, UPDATE, or DELETE statements are shown for
the RETURN operator. However, if a query cannot be pushed down in its
entirety, the SHIP operator shows which operations were performed remotely.

Understanding why a query is evaluated at a data source instead
of by the DB2 server

Consider the following key questions when you investigate ways to increase
pushdown opportunities:
v Why isn't this predicate being evaluated remotely?

This question arises when a very selective predicate could be used to filter rows
and reduce network traffic. Remote predicate evaluation also affects whether a
join between two tables of the same data source can be evaluated remotely.
Areas to examine include:
– Subquery predicates. Does this predicate contain a subquery that pertains to

another data source? Does this predicate contain a subquery that involves an
SQL operator that is not supported by this data source? Not all data sources
support set operators in a subquery predicate.

– Predicate functions. Does this predicate contain a function that cannot be
evaluated by this remote data source? Relational operators are classified as
functions.

– Predicate bind requirements. If it is remotely evaluated, does this predicate
require bind-in of some value? Would that violate SQL restrictions at this data
source?

– Global optimization. The optimizer might have decided that local processing
is more cost effective.

v Why isn't the GROUP BY operator evaluated remotely?
Areas to examine include:
– Is the input to the GROUP BY operator evaluated remotely? If the answer is

no, examine the input.
– Does the data source have any restrictions on this operator? Examples

include:
- A limited number of GROUP BY items
- Limited byte counts for combined GROUP BY items
- Column specifications only on the GROUP BY list

– Does the data source support this SQL operator?
– Global optimization. The optimizer might have decided that local processing

is more cost effective.
– Does the GROUP BY clause contain a character expression? If it does, verify

that the remote data source and the DB2 server have the same case sensitivity.
v Why isn't the set operator evaluated remotely?

Areas to examine include:
– Are both of its operands evaluated in their entirety at the same remote data

source? If the answer is no, and it should be yes, examine each operand.
– Does the data source have any restrictions on this set operator? For example,

are large objects (LOBs) or LONG field data valid input for this specific set
operator?

v Why isn't the ORDER BY operation evaluated remotely?

662 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Areas to examine include:
– Is the input to the ORDER BY operation evaluated remotely? If the answer is

no, examine the input.
– Does the ORDER BY clause contain a character expression? If yes, do the

remote data source and the DB2 server have different collating sequences or
case sensitivities?

– Does the remote data source have any restrictions on this operator? For
example, is there a limit to the number of ORDER BY items? Does the remote
data source restrict column specification to the ORDER BY list?

Remote SQL generation and global optimization in federated
databases

For a federated database query that uses relational nicknames, the access strategy
might involve breaking down the original query into a set of remote query units
and then combining the results. Such remote SQL generation helps to produce a
globally optimized access strategy for a query.

The optimizer uses the output of pushdown analysis to decide whether each
operation is to be evaluated locally at the DB2 server or remotely at a data source.
It bases its decision on the output of its cost model, which includes not only the
cost of evaluating the operation, but also the cost of shipping the data and
messages between the DB2 server and the remote data source.

Although the goal is to produce an optimized query, the following factors
significantly affect global optimization, and thereby query performance.
v Server characteristics
v Nickname characteristics

Server options that affect global optimization

The following data source server options can affect global optimization:
v Relative ratio of processing speed

Use the CPU_RATIO server option to specify how fast or slow the processing
speed at the data source should be relative to the processing speed at the DB2
server. A low ratio indicates that the processing speed at the data source is faster
than the processing speed at the DB2 server; in this case, the DB2 optimizer is
more likely to consider pushing processor-intensive operations down to the data
source.

v Relative ratio of I/O speed
Use the IO_RATIO server option to specify how fast or slow the system I/O
speed at the data source should be relative to the system I/O speed at the DB2
server. A low ratio indicates that the I/O speed at the data source is faster than
the I/O speed at the DB2 server; in this case, the DB2 optimizer is more likely to
consider pushing I/O-intensive operations down to the data source.

v Communication rate between the DB2 server and the data source
Use the COMM_RATE server option to specify network capacity. Low rates,
which indicate slow network communication between the DB2 server and a data
source, encourage the DB2 optimizer to reduce the number of messages that are
sent to or from this data source. If the rate is set to 0, the optimizer creates an
access plan that requires minimal network traffic.

v Data source collating sequence

Chapter 31. Federated systems 663

Use the COLLATING_SEQUENCE server option to specify whether a data
source collating sequence matches the local DB2 database collating sequence. If
this option is not set to Y, the DB2 optimizer considers any data that is retrieved
from this data source as being unordered.

v Remote plan hints
Use the PLAN_HINTS server option to specify that plan hints should be
generated or used at a data source. By default, the DB2 server does not send any
plan hints to the data source.
Plan hints are statement fragments that provide extra information to the
optimizer at a data source. For some queries, this information can improve
performance. The plan hints can help the optimizer at a data source to decide
whether to use an index, which index to use, or which table join sequence to
use.
If plan hints are enabled, the query that is sent to the data source contains
additional information. For example, a statement with plan hints that is sent to
an Oracle optimizer might look like this:

select /*+ INDEX (table1, t1index)*/
col1

from table1

The plan hint is the string: /*+ INDEX (table1, t1index)*/

v Information in the DB2 optimizer knowledge base
The DB2 server has an optimizer knowledge base that contains data about native
data sources. The DB2 optimizer does not generate remote access plans that
cannot be generated by specific database management systems (DBMSs). In
other words, the DB2 server avoids generating plans that optimizers at remote
data sources cannot understand or accept.

Nickname characteristics that affect global optimization

The following nickname-specific factors can affect global optimization.
v Index considerations

To optimize queries, the DB2 server can use information about indexes at data
sources. For this reason, it is important that the available index information be
current. Index information for a nickname is initially acquired when the
nickname is created. Index information is not collected for view nicknames.

v Creating index specifications on nicknames
You can create an index specification for a nickname. Index specifications build
an index definition (not an actual index) in the catalog for the DB2 optimizer to
use. Use the CREATE INDEX SPECIFICATION ONLY statement to create index
specifications. The syntax for creating an index specification on a nickname is
similar to the syntax for creating an index on a local table. Consider creating
index specifications in the following circumstances:
– When the DB2 server cannot retrieve any index information from a data

source during nickname creation
– When you want an index for a view nickname
– When you want to encourage the DB2 optimizer to use a specific nickname as

the inner table of a nested-loop join. You can create an index on the joining
column, if none exists.

Before you issue CREATE INDEX statements against a nickname for a view,
consider whether you need one. If the view is a simple SELECT on a table with
an index, creating local indexes on the nickname to match the indexes on the
table at the data source can significantly improve query performance. However,

664 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

if indexes are created locally over a view that is not a simple SELECT statement,
such as a view that is created by joining two tables, query performance might
suffer. For example, if you create an index over a view that is a join between
two tables, the optimizer might choose that view as the inner element in a
nested-loop join. The query will perform poorly, because the join is evaluated
several times. An alternate approach is to create nicknames for each of the tables
that are referenced in the data source view, and then to create a local view at the
DB2 server that references both nicknames.

v Catalog statistics considerations
System catalog statistics describe the overall size of nicknames and the range of
values in associated columns. The optimizer uses these statistics when it
calculates the least-cost path for processing queries that contain nicknames.
Nickname statistics are stored in the same catalog views as table statistics.
Although the DB2 server can retrieve the statistical data that is stored at a data
source, it cannot automatically detect updates to that data. Furthermore, the DB2
server cannot automatically detect changes to the definition of objects at a data
source. If the statistical data for-or the definition of-an object has changed, you
can:
– Run the equivalent of a RUNSTATS command at the data source, drop the

current nickname, and then recreate it. Use this approach if an object's
definition has changed.

– Manually update the statistics in the SYSSTAT.TABLES catalog view. This
approach requires fewer steps, but it does not work if an object's definition
has changed.

Global analysis of federated database queries
The DB2 explain utility, which you can start by invoking the db2expln command,
shows the access plan that is generated by the remote optimizer for those data
sources that are supported by the remote explain function. The execution location
for each operator is included in the command output.

You can also find the remote SQL statement that was generated for each data
source in the SHIP or RETURN operator, depending on the type of query. By
examining the details for each operator, you can see the number of rows that were
estimated by the DB2 optimizer as input to and output from each operator.

Understanding DB2 optimization decisions

Consider the following key questions when you investigate ways to increase
performance:
v Why isn't a join between two nicknames of the same data source being

evaluated remotely?
Areas to examine include:
– Join operations. Can the remote data source support them?
– Join predicates. Can the join predicate be evaluated at the remote data source?

If the answer is no, examine the join predicate.
v Why isn't the GROUP BY operator being evaluated remotely?

Examine the operator syntax, and verify that the operator can be evaluated at
the remote data source.

v Why is the statement not being completely evaluated by the remote data source?
The DB2 optimizer performs cost-based optimization. Even if pushdown analysis
indicates that every operator can be evaluated at the remote data source, the

Chapter 31. Federated systems 665

optimizer relies on its cost estimate to generate a global optimization plan. There
are a great many factors that can contribute to that plan. For example, even
though the remote data source can process every operation in the original query,
its processing speed might be much slower than the processing speed of the DB2
server, and it might turn out to be more beneficial to perform the operations at
the DB2 server instead. If results are not satisfactory, verify your server statistics
in the SYSCAT.SERVEROPTIONS catalog view.

v Why does a plan that is generated by the optimizer, and that is completely
evaluated at a remote data source, perform much more poorly than the original
query executed directly at the remote data source?
Areas to examine include:
– The remote SQL statement that is generated by the DB2 optimizer. Ensure

that this statement is identical to the original query. Check for changes in
predicate order. A good query optimizer should not be sensitive to the order
of predicates in a query. The optimizer at the remote data source might
generate a different plan, based on the order of input predicates. Consider
either modifying the order of predicates in the input to the DB2 server, or
contacting the service organization of the remote data source for assistance.
You can also check for predicate replacements. A good query optimizer
should not be sensitive to equivalent predicate replacements. The optimizer at
the remote data source might generate a different plan, based on the input
predicates. For example, some optimizers cannot generate transitive closure
statements for predicates.

– Additional functions. Does the remote SQL statement contain functions that
are not present in the original query? Some of these functions might be used
to convert data types; be sure to verify that they are necessary.

666 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 32. IBM Replication solutions

IBM offers two primary replication solutions: Q replication and SQL replication.

The primary components of Q replication are the Q Capture program and the Q
Apply program. The primary components of SQL replication are the Capture
program and Apply program. Both types of replication share the Replication Alert
Monitor tool. You can set up and administer these replication components using
the Replication Center and the ASNCLP command-line program.

The following list briefly summarizes these replication components:

Q Capture program

Reads the DB2 recovery log looking for changes to DB2 source tables and
translates committed source data into WebSphere MQ messages that can be
published in XML format to a subscribing application, or replicated in a compact
format to the Q Apply program.

Q Apply program

Takes WebSphere MQ messages from a queue, transforms the messages into SQL
statements, and updates a target table or stored procedure. Supported targets
include DB2 databases or subsystems and Oracle, Sybase, Informix and Microsoft
SQL Server databases that are accessed through federated server nicknames.

Capture program

Reads the DB2 recovery log for changes made to registered source tables or views
and then stages committed transactional data in relational tables called change-data
(CD) tables, where they are stored until the target system is ready to copy them.
SQL replication also provides Capture triggers that populate a staging table called
a consistent-change-data (CCD) table with records of changes to non-DB2 source
tables.

Apply program

Reads data from staging tables and makes the appropriate changes to targets. For
non-DB2 data sources, the Apply program reads the CCD table through that table's
nickname on the federated database and makes the appropriate changes to the
target table.

Replication Alert Monitor

A utility that checks the health of the Q Capture, Q Apply, Capture, and Apply
programs. It checks for situations in which a program terminates, issues a warning
or error message, reaches a threshold for a specified value, or performs a certain
action, and then issues notifications to an email server, pager, or the z/OS console.

Use the Replication Center to:
v Define registrations, subscriptions, publications, queue maps, alert conditions,

and other objects.

© Copyright IBM Corp. 2014 667

v Start, stop, suspend, resume, and reinitialize the replication programs.
v Specify the timing of automated copying.
v Specify SQL enhancements to the data.
v Define relationships between the source and the target tables.

Replication tools
The replication tools consist of the ASNCLP command-line program, the
Replication Center, and the Replication Alert Monitor tool.

ASNCLP command-line program

You can use the ASNCLP program to administer SQL replication, Q replication,
Classic replication, relational event publishing, and the Replication Alert Monitor .

You can use the ASNCLP commands to create, modify, and remove information in
control tables of the replication programs. You can also use the ASNCLP
commands to generate SQL scripts to create, modify, and remove information
about replication sources, targets, queues, and other options in control tables.

Replication Center

You can use the Replication Center to set up and administerg the replication
components for Q replication and SQL replication. The Replication Center is only
supported in Linux and Windows operating systems.

Use the Replication Center to perform the following tasks:
v Define registrations, subscriptions, publications, queue maps, alert conditions,

and other objects
v Start, stop, suspend, resume, and reinitialize the replication programs
v Specify the timing of automated copying
v Specify SQL enhancements to the data
v Define relationships between the source and the target tables

The following wizards and launchpads are available from the Replication Center:
v Replication Center launchpad
v Add Capture Control Server wizard
v Add Apply Control Server wizard
v Add Monitor Control Server wizard
v Add Q Capture Server wizard
v Add Q Apply Server wizard
v Add Server Information wizard
v Create Monitor wizard
v Create Q Capture Control Tables wizard
v Create Q Apply Control Tables wizard
v Create Q Subscriptions wizard
v Create Publications wizard

The Replication Center is installed by default as part of the replication tools
component in typical or custom installations. The compact installation no longer
installs the replication tools component, which includes the Replication Center.

668 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Replication Alert Monitor

The Replication Alert Monitor is a utility that checks the health of the Q Capture,
Q Apply, Capture, and Apply programs. It checks for situations in which a
program terminates, issues a warning or error message, reaches a threshold for a
specified value, or performs a certain action, and then issues notifications to an
email server, pager, or the z/OS console.

Changes to the Replication Center in DB2 10.1
The Replication Center is now a stand-alone tool. Installation default options and
command to start the Replication Center have changed.

Differences with earlier releases

In Version 10.1, the Replication Center is available as a stand-alone tool on Linux
and Windows operating systems. In earlier releases, it was grouped with other
Administration tools such as the Control Center. The Administration tools have
been discontinued.

In Version 10.1, the Replication Center is installed as part of the replication tools
component by default in typical or custom installations. However, the compact
installation no longer installs the replication tools component, which includes the
Replication Center. In earlier releases, the replication tools were a required
component for compact installations for certain products. For information about
the DB2 database product editions that include Replication tools, see Functionality
in DB2 features and DB2 product editions.

In Version 10.1, the db2rc command is available to start the Replication Center. The
db2cc -rc command that was available in previous releases is discontinued.

On Windows operating systems, you can also click Start > Programs > IBM DB2 >
DB2 copy name > Replication Center, where DB2 copy name indicates the name of
the DB2 copy that you specified during installation.

All the Replication Center functionality of previous releases is still available and
supported.

New ways to access the replication tools

To install the Replication Center, make sure that you select a typical or custom
installation for any of the DB2 database products.

To start the Replication Center, issue the db2rc command. On Windows operating
systems, you can also use the Start menu.

Chapter 32. IBM Replication tools by component 669

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0058720.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0058720.html

670 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 33. DB2 pureScale feature

In a competitive, ever-changing global business environment, you cannot afford to
let your IT infrastructure slow you down. This reality demands IT systems that
provide capacity as needed, exceptional levels of availability, and transparency
toward your existing applications.

When workloads grow, does your distributed database system require you to
change your applications or change how data is distributed? If so, your system
does not scale transparently. Even simple application changes incur time and cost
penalties and can pose risks to system availability. The stakes are always high:
Every second lost in system availability can have a direct bearing on customer
retention, compliance with service level agreements, and your bottom line.

The IBM DB2 pureScale Feature might help reduce the risk and cost associated
with growing your distributed database solution by providing extreme capacity
and application transparency. Designed for continuous availability-high availability
capable of exceeding even the strictest industry standard-this feature tolerates both
planned maintenance and component failure with ease.

With the DB2 pureScale Feature, scaling your database solution is simple. Multiple
database servers, known as members, process incoming database requests; these
members operate in a clustered system and share data. You can transparently add
more members to scale out to meet even the most demanding business needs.
There are no application changes to make, data to redistribute, or performance
tuning to do.

To deliver on a design capable of exceptional levels of database availability, the
DB2 pureScale Feature builds on familiar and proven design features from DB2 for
z/OS database software. By also integrating several advanced hardware and
software technologies, the DB2 pureScale Feature supports the strictest
requirements for high fault tolerance and can sustain processing of database
requests even under extreme circumstances.

In the sections that follow, you can learn more about these design features and
benefits of the DB2 pureScale Feature:

Extreme capacity
The IBM DB2 pureScale Feature can scale with near-linear efficiency and high
predictability. Adding capacity is as simple as adding new members to the
instance.

High scalability

During testing with typical web commerce and OLTP workloads, the DB2
pureScale Feature demonstrated that it can scale to different levels with exceptional
efficiency; the maximum supported configuration provides extreme capacity. To
scale out, your existing applications do not have to be aware of the topology of

© Copyright IBM Corp. 2014 671

your DB2 pureScale environment.3

When two more members join the instance, they immediately begin processing

incoming database requests. Overall throughput almost doubles as the number of
members doubles. For more information about scalability, see the DB2 pureScale
Feature road map.

Scalability by design

Why does the DB2 pureScale Feature scale so well? The answer lies in the highly
efficient design, which tightly integrates several advanced hardware and software
technologies.

For example, the cluster caching facility (CF) handles instance-wide lock
management and global caching with great efficiency. Without the equivalent of
such a dedicated component to handle locking and caching, the database servers in
a cluster must communicate with each other to maintain vital locking and data
consistency information. Each time that a database server is added, the amount of
communication "chatter" increases, reducing scale-out efficiency.

Even in the maximum supported configuration, your DB2 pureScale environment
communicates efficiently. Data pages in the group buffer pool (global cache) are
shared between members and the cluster caching facility through Remote Direct

3. During testing, database requests were workload balanced across members by the DB2 pureScale Feature, not routed. Update and
select operations were randomized to ensure that the location of data on the shared disk storage had no effect on scalability.

Application

DB2 client

Client workstations

Application

DB2 client

Shared disk

Members

Primary CF Secondary CF

DB2 data server

High Speed
Interconnect

Legend

Corporate
Network

Client application throughput

Elapsed time

A
ve

ra
g

e
tr

an
sa

ct
io

n
s

Figure 80. Scalability of a DB2 pureScale environment. Additional members begin processing
incoming database requests as soon as they join the instance. Overall throughput almost
doubles as the number of members doubles.

672 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Memory Access (RDMA), without requiring any processor time or I/O cycles on
members. All operations are performed over the InfiniBand high-speed
interconnect and do not require context switching or routing through a slower IP
network stack. Round-trip communication times between cluster components are
typically measured in the low tens of microseconds. The end result is an instance
that is always aware of what data is in flight and where, but without the
performance penalty.

Continuous availability
Whether it is planned system maintenance or an extreme circumstance, such as
when multiple components fail simultaneously, the IBM DB2 pureScale Feature is
designed to continue processing incoming database requests without interruption.
Automatic load balancing across all active members means optimal resource
utilization at all times, which helps to keep application response times low.

Unplanned events

A sudden software or hardware failure can be highly disruptive, even in a system
that employs redundant components. The DB2 pureScale Feature incorporates
several design features to deliver fault tolerance that not only can keep your
instance available but also minimizes the effect of component failures on the rest of
the database system.

Robust heartbeat detection ensures that failed components are identified and
isolated rapidly. Recovery from component failures is fully automatic and requires
no intervention.

If a member fails while processing database requests, it is immediately fenced off
from the rest of the system. During the failure, most of your data on the shared
disk storage remains available to active members processing database requests.
Only the data that was inflight on the failed member is temporarily held by a
retained lock until the DB2 pureScale Feature completes the automated member
crash recovery.

Application

DB2 client

Client workstations

Application

DB2 client

Shared disk

Members

DB2 data server

High Speed
Interconnect

Legend

Corporate
Network

Primary CF Secondary CF
Primary CF

Figure 81. Component failures in a DB2 pureScale environment; database requests continue
to be processed.

Chapter 33. DB2 pureScale Feature 673

After a software failure, the member is restarted on its home host, and recovery is
performed. The member resumes transaction processing as soon as recovery is
complete. After a hardware failure, the member restarts on another host (a process
known as restart light) so that the data can be recovered. As soon as its home host
is available again, the member fails back to that host, restarts, and resumes
processing.

After a software or hardware failure on the primary cluster caching facility, a
secondary, duplexed cluster caching facility automatically takes over the primary
role. This takeover is transparent to applications and causes only minimal delay
because of the continuous duplexing of locking and caching information between
cluster caching facilities. The instance remains available.

Planned events

System maintenance in a DB2 pureScale environment is designed to cause as little
disruption as possible. You can roll out system upgrades without stopping the DB2
pureScale instance or affecting database availability.

To perform system maintenance on a member, you quiesce it. After existing
transactions on the member are completed (drained), you take the member offline
and perform the system maintenance. During the maintenance period, new
transaction requests are automatically directed to other, active members, a process
that is transparent to applications.

After the maintenance is complete and you restart the member, it begins processing
database transactions again as soon as it rejoins the instance.

Application transparency
Getting started with the IBM DB2 pureScale Feature is quick and simple:
Applications do not have to be aware of the topology of your database
environment when you deploy the feature. This means that applications work just
as they did before, yet they can benefit

from the extreme capacity and continuous availability from the moment that you
start your DB2 pureScale instance for the first time.

Increasing capacity

Capacity planning with the DB2 pureScale Feature is simple. You can start small
and add members to your database environment as your needs grow, scaling out
from the most basic highly available configuration all the way to the maximum
supported configuration, which provides extreme processing capacity. Scaling is
near linear in efficiency and highly predictable.

When you scale out, no application changes or repartitioning of your data is
required. No performance tuning is required to scale efficiently. If you need more
capacity, you simply add more members.

Maintaining availability

Maintaining database availability means both compliance with service level
agreements (SLAs) and high tolerance to component failures. To maximize
hardware utilization rates and help keep response times consistent for your
applications, incoming database requests are automatically load balanced across all

674 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

active members in your DB2 pureScale instance. To minimize the impact of
component failures, the automated restart and recovery process of the DB2
pureScale Feature runs quickly and without affecting most database requests. Only
those database requests that were being processed by a failed member must be
resubmitted by the originating application; the resubmitted requests are then
processed by the next available member.

In the example in the following diagram, several events take place in short
succession. Multiple component failures require automated, internal recovery, and
a scale-out operation increases the capacity of the DB2 pureScale instance. None of
these events requires any application awareness. The box containing the
components of the DB2 pureScale Feature is shaded to indicate application
transparency.

Planning made simple

The ability to easily add and remove resources helps you to manage challenges
such as the following ones:
v Cyclical workloads. If some of your workloads are cyclical (for example,

seasonal), you can add resources before they are required, and then move the
extra capacity somewhere else later on.

v Sudden increases in workloads. An SLA might dictate minimum response times
for completing database requests. If you discover sudden workload surges from
some applications that are threatening response times, you can help meet your
SLA by quickly moving additional members to the database that is experiencing
the peak demand.

v Maintenance-related slowdowns. To help negate the effect of system
maintenance on the overall throughput of your DB2 pureScale environment, you

Application perspective

DB2
data server

Client workstations

Shared disk

Members

Database administrator perspective

High Speed
Interconnect

Legend

Corporate
Network

Primary CF Secondary CF
Primary CF

Application

DB2 client

Figure 82. A DB2 pureScale environment encountering multiple component failures and being
scaled out. Applications connecting to the database need not be aware of these events.

Chapter 33. DB2 pureScale Feature 675

can add amember to your environment before commencing maintenance on an
existing member. After you complete the system maintenance and the original
member rejoins the instance, you can remove the additional resource or perform
maintenance on other members.

Getting started with the DB2 pureScale Feature
The IBM DB2 pureScale Feature greatly simplifies the deployment of an inherently
complex distributed database environment. All software components are installed
and configured for you from a single host.

A single invocation of the wizard from the installation-initiating host installs all of
the components of the DB2 pureScale Feature across all hosts that you specify as
part of the DB2 pureScale environment. All software components, including the
following ones, are integrated tightly into the DB2 pureScale Feature:
v DB2 members
v The cluster caching facilities
v DB2 cluster services instance management software, which is based on IBM

Tivoli System Automation for Multiplatforms
v The cluster file system, which is based on GPFS

The DB2 Information Center provides more information about the underlying DB2
pureScale components, but you do not need to be closely familiar with them to
deploy the feature. What is important is that you meet the installation prerequisites
before running the DB2 Setup wizard.

The installation process automatically creates the DB2 instance and configures all
of the software components according to tested best practices; no additional user
scripting or configuration is required. The first time that you start the instance, all
benefits of the DB2 pureScale Feature are available.

The fix pack installation process for the DB2 pureScale Feature follows the same
well-conceived paradigm of simplicity: Fix packs include all required updates for
all of the components that are integrated into the feature, so multiple software
installations and upgrades are not necessary. The upgrade process does not to
affect database availability.

4
3

2

5
6

1

DB2 data server

High Speed
Interconnect

Legend

Corporate
Network

Installing DB2
pureScale Feature

Installation-initiation
host

Host

Host Host

Host Host

Figure 83. Installation of the DB2 pureScale Feature from the installation-initiating host (1)
across all hosts (1 to 6) that will be part of the DB2 pureScale environment.

676 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Management of the DB2 pureScale Feature
The IBM DB2 pureScale Feature integrates full instance management and
monitoring functionality for all components directly into the familiar DB2 database
environment, protecting investment in skills and personnel.

As a database administrator, you do not have to be familiar with any of the
underlying components or interact with them directly. You manage all components
by using only DB2 commands, administrative views, and table functions. With a
single-system view of your entire DB2 pureScale environment, you can efficiently
perform the following administrative tasks from any member, with instance-wide
effect:
v Backup, restore, and roll forward operations
v Instance monitoring
v Database alert management
v Database storage management
v Access management

To demonstrate how well integrated the DB2 pureScale Feature is, consider that
you can also perform the following system administration tasks using simple DB2
commands:
v Remote installation and configuration of the DB2 pureScale Feature
v Creation and deletion of computing resources
v Addition and removal of hosts from the cluster manager and shared file system
v Host system maintenance

As part of the integrated cluster management provided by the DB2 cluster services,
the status of all major DB2 pureScale Feature components is monitored and reacted
to automatically. These components include the cluster caching facilities, the DB2
members, and the DB2 cluster file system. The ongoing, automatic management
almost eliminates the need for manual intervention during component failures and
reduces the amount of monitoring specific to DB2 pureScale Feature that you must
perform on a regular basis. The feature includes new monitoring functionality that
you can use to obtain the status of DB2 pureScale Feature components, and DB2
pureScale monitoring support is also integrated into the separately available Optim
tools.

Chapter 33. DB2 pureScale Feature 677

678 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Chapter 34. DB2 audit facility

To manage access to your sensitive data, you can use a variety of authentication
and access control mechanisms to establish rules and controls for acceptable data
access. But to protect against and discover unknown or unacceptable behaviors
you can monitor data access by using the DB2 audit facility.

Successful monitoring of unwanted data access and subsequent analysis can lead
to improvements in the control of data access and the ultimate prevention of
malicious or careless unauthorized access to data. The monitoring of application
and individual user access, including system administration actions, can provide a
historical record of activity on your database systems.

The DB2 audit facility generates, and allows you to maintain, an audit trail for a
series of predefined database events. The records generated from this facility are
kept in an audit log file. The analysis of these records can reveal usage patterns
that would identify system misuse. Once identified, actions can be taken to reduce
or eliminate such system misuse.

The audit facility provides the ability to audit at both the instance and the
individual database level, independently recording all instance and database level
activities with separate logs for each. The system administrator (who holds
SYSADM authority) can use the db2audit tool to configure audit at the instance
level as well as to control when such audit information is collected. The system
administrator can use the db2audit tool to archive both instance and database
audit logs as well as to extract audit data from archived logs of either type.

The security administrator (who holds SECADM authority within a database) can
use audit policies in conjunction with the SQL statement, AUDIT, to configure and
control the audit requirements for an individual database. The security
administrator can use the following audit routines to perform the specified tasks:
v The SYSPROC.AUDIT_ARCHIVE stored procedure archives audit logs.
v The SYSPROC.AUDIT_LIST_LOGS table function allows you to locate logs of

interest.
v The SYSPROC.AUDIT_DELIM_EXTRACT stored procedure extracts data into

delimited files for analysis.

The security administrator can grant EXECUTE privilege on these routines to
another user, therefore enabling the security administrator to delegate these tasks,
if required.

When working in a partitioned database environment, many of the auditable
events occur at the database partition at which the user is connected (the
coordinator partition) or at the catalog partition (if they are not the same database
partition). The implication of this is that audit records can be generated by more
than one database partition. Part of each audit record contains information
identifying the coordinator partition and originating partition (the partition where
audit record originated).

At the instance level, the audit facility must be stopped and started explicitly by
use of the db2audit start and db2audit stop commands. When you start
instance-level auditing, the audit facility uses existing audit configuration
information. Since the audit facility is independent of the DB2 database server, it

© Copyright IBM Corp. 2014 679

will remain active even if the instance is stopped. In fact, when the instance is
stopped, an audit record may be generated in the audit log. To start auditing at the
database level, first you need to create an audit policy, then you associate this
audit policy with the objects you want to monitor, such as, authorization IDs,
database authorities, trusted contexts or particular tables.

Categories of audit records

There are different categories of audit records that may be generated. In the
following description of the categories of events available for auditing, you should
notice that following the name of each category is a one-word keyword used to
identify the category type. The categories of events available for auditing are:
v Audit (AUDIT). Generates records when audit settings are changed or when the

audit log is accessed.
v Authorization Checking (CHECKING). Generates records during authorization

checking of attempts to access or manipulate DB2 database objects or functions.
v Object Maintenance (OBJMAINT). Generates records when creating or dropping

data objects, and when altering certain objects.
v Security Maintenance (SECMAINT). Generates records when:

– Granting or revoking object privileges or database authorities
– Granting or revoking security labels or exemptions
– Altering the group authorization, role authorization, or override or restrict

attributes of an LBAC security policy
– Granting or revoking the SETSESSIONUSER privilege
– Modifying any of the SYSADM_GROUP, SYSCTRL_GROUP,

SYSMAINT_GROUP, or SYSMON_GROUP configuration parameters.
v System Administration (SYSADMIN). Generates records when operations

requiring SYSADM, SYSMAINT, or SYSCTRL authority are performed.
v User Validation (VALIDATE). Generates records when authenticating users or

retrieving system security information.
v Operation Context (CONTEXT). Generates records to show the operation context

when a database operation is performed. This category allows for better
interpretation of the audit log file. When used with the log's event correlator
field, a group of events can be associated back to a single database operation.
For example, a query statement for dynamic queries, a package identifier for
static queries, or an indicator of the type of operation being performed, such as
CONNECT, can provide needed context when analyzing audit results.

Note: The SQL or XQuery statement providing the operation context might be
very long and is completely shown within the CONTEXT record. This can make
the CONTEXT record very large.

v Execute (EXECUTE). Generates records during the execution of SQL statements.

For any of the categories listed previously, you can audit failures, successes, or
both.

Any operations on the database server may generate several records. The actual
number of records generated in the audit log depends on the number of categories
of events to be recorded as specified by the audit facility configuration. It also
depends on whether successes, failures, or both, are audited. For this reason, it is
important to be selective of the events to audit.

680 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Audit policies
The security administrator can use audit policies to configure the audit facility to
gather information only about the data and objects that are needed.

The security administrator can create audit policies to control what is audited
within an individual database. The following objects can have an audit policy
associated with them:
v The whole database

All auditable events that occur within the database are audited according to the
audit policy.

v Tables
All data manipulation language (DML) and XQUERY access to the table
(untyped), MQT (materialized query table), or nickname is audited. Only
EXECUTE category audit events with or without data are generated when the
table is accessed even if the policy indicates that other categories should be
audited.

v Trusted contexts
All auditable events that happen within a trusted connection defined by the
particular trusted context are audited according to the audit policy.

v Authorization IDs representing users, groups, or roles
All auditable events that are initiated by the specified user are audited according
to the audit policy.
All auditable events that are initiated by users that are a member of the group
or role are audited according to the audit policy. Indirect role membership, such
as through other roles or groups, is also included.
You can capture similar data by using the Work Load Management event
monitors by defining a work load for a group and capturing the activity details.
You should be aware that the mapping to workloads can involve attributes in
addition to just the authorization ID, which can cause you to not achieve the
wanted granularity in auditing, or if those other attributes are modified,
connections may map to different (possibly unmonitored) workloads. The
auditing solution provides a guarantee that a user, group or role will be audited.

v Authorities (SYSADM, SECADM, DBADM, SQLADM, WLMADM,
ACCESSCTRL, DATAACCESS, SYSCTRL, SYSMAINT, SYSMON)
All auditable events that are initiated by a user that holds the specified
authority, even if that authority is unnecessary for the event, are audited
according to the audit policy.

The security administrator can create multiple audit policies. For example, your
company might want a policy for auditing sensitive data and a policy for auditing
the activity of users holding DBADM authority. If multiple audit policies are in
effect for a statement, all events required to be audited by each of the audit
policies are audited (but audited only once). For example, if the database's audit
policy requires auditing successful EXECUTE events for a particular table and the
user's audit policy requires auditing failures of EXECUTE events for that same
table, both successful and failed attempts at accessing that table are audited.

For a specific object, there can only be one audit policy in effect. For example, you
cannot have multiple audit policies associated with the same table at the same
time.

Chapter 34. Introduction to the DB2 audit facility 681

An audit policy cannot be associated with a view or a typed table. Views that
access a table that has an associated audit policy are audited according to the
underlying table's policy.

The audit policy that applies to a table does not automatically apply to a MQT
based on that table. If you associate an audit policy with a table, associate the
same policy with any MQT based on that table.

Auditing performed during a transaction is done based on the audit policies and
their associations at the start of the transaction. For example, if the security
administrator associates an audit policy with a user and that user is in a
transaction at the time, the audit policy does not affect any remaining statements
performed within that transaction. Also, changes to an audit policy do not take
effect until they are committed. If the security administrator issues an ALTER
AUDIT POLICY statement, it does not take effect until the statement is committed.

The security administrator uses the CREATE AUDIT POLICY statement to create
an audit policy, and the ALTER AUDIT POLICY statement to modify an audit
policy. These statements can specify:
v The status values for events to be audited: None, Success, Failure, or Both.

Only auditable events that match the specified status value are audited.
v The server behavior when errors occur during auditing.

The security administrator uses the AUDIT statement to associate an audit policy
with the current database or with a database object, at the current server. Any time
the object is in use, it is audited according to this audit policy.

To delete an audit policy, the security administrator uses the DROP statement. You
cannot drop an audit policy if it is associated with any object. Use the AUDIT
REMOVE statement to remove any remaining association with an object. To add
metadata to an audit policy, the security administrator uses the COMMENT
statement.

Events generated before a full connection has been established

For some events generated during connect and a switch user operation, the only
audit policy information available is the policy that is associated with the database.
These events are shown in the following table:

Table 44. Connection events

Event
Audit
category Comment

CONNECT CONTEXT

CONNECT_RESET CONTEXT

AUTHENTICATION VALIDATE This includes authentication during both
connect and switch user within a trusted
connection.

CHECKING_FUNC CHECKING The access attempted is SWITCH_USER.

These events are audited based only on the audit policy associated with the
database and not with audit policies associated with any other object such as a
user, their groups, or authorities. For the CONNECT and AUTHENTICATION
events that occur during connect, the instance-level audit settings are used until

682 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

the database is activated. The database is activated either during the first
connection or when the ACTIVATE DATABASE command is issued.

Effect of switching user

If a user is switched within a trusted connection, no remnants of the original user
are left behind. In this case, the audit policies associated with the original user are
no longer considered, and the applicable audit policies are re-evaluated according
to the new user. Any audit policy associated with the trusted connection is still in
effect.

If a SET SESSION USER statement is used, only the session authorization ID is
switched. The audit policy of the authorization ID of the original user (the system
authorization ID) remains in effect and the audit policy of the new user is used as
well. If multiple SET SESSION USER statements are issued within a session, only
the audit policies associated with the original user (the system authorization ID)
and the current user (the session authorization ID) are considered.

Data definition language restrictions

The following data definition language (DDL) statements are called AUDIT
exclusive SQL statements:
v AUDIT
v CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY
v DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context

being dropped is associated with an audit policy

AUDIT exclusive SQL statements have some restrictions in their use:
v Each statement must be followed by a COMMIT or ROLLBACK.
v These statements cannot be issued within a global transaction, for example an

XA transaction.

Only one uncommitted AUDIT exclusive DDL statement is allowed at a time
across all partitions. If an uncommitted AUDIT exclusive DDL statement is
executing, subsequent AUDIT exclusive DDL statements wait until the current
AUDIT exclusive DDL statement commits or rolls back.

Note: Changes are written to the catalog, but do not take effect until COMMIT,
even for the connection that issues the statement.

Example of auditing any access to a specific table

Consider a company where the EMPLOYEE table contains extremely sensitive
information and the company wants to audit any and all SQL access to the data in
that table. The EXECUTE category can be used to track all access to a table; it
audits the SQL statement, and optionally the input data value provided at
execution time for that statement.

There are two steps to track activity on the table. First, the security administrator
creates an audit policy that specifies the EXECUTE category, and then the security
administrator associates that policy with the table:

Chapter 34. Introduction to the DB2 audit facility 683

CREATE AUDIT POLICY SENSITIVEDATAPOLICY
CATEGORIES EXECUTE STATUS BOTH ERROR TYPE AUDIT

COMMIT

AUDIT TABLE EMPLOYEE USING POLICY SENSITIVEDATAPOLICY
COMMIT

Example of auditing any actions by SYSADM or DBADM

In order to complete their security compliance certification, a company must show
that any and all activities within the database by those people holding system
administration (SYSADM) or database administrative (DBADM) authority can be
monitored.

To capture all actions within the database, both the EXECUTE and SYSADMIN
categories should be audited. The security administrator creates an audit policy
that audits these two categories. The security administrator can use the AUDIT
statement to associate this audit policy with the SYSADM and DBADM authorities.
Any user that holds either SYSADM or DBADM authority will then have any
auditable events logged. The following example shows how to create such an audit
policy and associate it with the SYSADM and DBADM authorities:
CREATE AUDIT POLICY ADMINSPOLICY CATEGORIES EXECUTE STATUS BOTH,

SYSADMIN STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT SYSADM, DBADM USING POLICY ADMINSPOLICY
COMMIT

Example of auditing any access by a specific role

A company has allowed its web applications access to their corporate database.
The exact individuals using the web applications are unknown. Only the role that
is used is known and that role is used to manage the database authorizations. The
company wants to monitor the actions of anyone who is a member of that role in
order to examine the requests they are submitting to the database and to ensure
that they only access the database through the web applications.

The EXECUTE category contains the necessary level of auditing to track the
activity of the users for this situation. The first step is to create the appropriate
audit policy and associate it with the roles that are used by the web applications
(in this example, the roles are TELLER and CLERK):
CREATE AUDIT POLICY WEBAPPPOLICY CATEGORIES EXECUTE WITH DATA

STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT ROLE TELLER, ROLE CLERK USING POLICY WEBAPPPOLICY
COMMIT

Example of enabling auditing for a database

A company wants to determine who is making DDL changes (example: ALTER
TABLE) on the database named SAMPLE.
CONNECT TO SAMPLE

CREATE AUDIT POLICY ALTPOLICY CATEGORIES AUDIT STATUS BOTH,
OBJMAINT STATUS BOTH, CHECKING STATUS BOTH,
EXECUTE STATUS BOTH, ERROR TYPE NORMAL

AUDIT DATABASE USING POLICY ALTPOLICY

684 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Storage and analysis of audit logs
Archiving the audit log moves the active audit log to an archive directory while
the server begins writing to a new, active audit log. Later, you can extract data
from the archived log into delimited files and then load data from these files into
DB2 database tables for analysis.

Configuring the location of the audit logs allows you to place the audit logs on a
large, high-speed disk, with the option of having separate disks for each member
in a multiple member environment, such as a DB2 pureScale environment or a
partitioned database environment. In a multiple member environment, the path for
the active audit log can be a directory that is unique to each member. Having a
unique directory for each member helps to avoid file contention, because each
member is writing to a different disk.

The default path for the audit logs on Windows operating systems is
instance\security\auditdata and on Linux and UNIX operating systems is
instance/security/auditdata. If you do not want to use the default location, you
can choose different directories (you can create new directories on your system to
use as alternative locations, if they do not already exist). To set the path for the
active audit log location and the archived audit log location, use the db2audit
configure command with the datapath and archivepath parameters, as shown in
this example:
db2audit configure datapath /auditlog archivepath /auditarchive

The audit log storage locations you set using db2audit apply to all databases in the
instance.

Note: If there are multiple instances on the server, then each instance should each
have separate data and archive paths.

The path for active audit logs (datapath) in a multiple member
environment

In a multiple member environment, the same active audit log location (set by the
datapath parameter) must be used on each member. There are two ways to
accomplish this:
1. Use database member expressions when you specify the datapath parameter.

Using database member expressions allows the member number to be included
in the path of the audit log files and results in a different path on each database
member.

2. Use a shared drive that is the same on all members.

You can use database member expressions anywhere within the value you specify
for the datapath parameter. For example, on a three member system, where the
database member number is 10, the following command:
db2audit configure datapath ’/pathForNode $N’

uses the following paths:
v /pathForMember10

v /pathForMember20

v /pathForMember30

Chapter 34. Introduction to the DB2 audit facility 685

Note: You cannot use database member expressions to specify the archive log file
path (archivepath parameter).

Archiving active audit logs

The system administrator can use the db2audit tool to archive both instance and
database audit logs as well as to extract audit data from archived logs of either
type.

The security administrator, or a user to whom the security administrator has
granted EXECUTE privilege on the audit routines, can archive the active audit log
by running the SYSPROC.AUDIT_ARCHIVE stored procedure. To extract data
from the log and load it into delimited files, they can use the
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure.

These are the steps to archive and extract the audit logs using the audit routines:
1. Schedule an application to perform regular archives of the active audit log

using the stored procedure SYSPROC.AUDIT_ARCHIVE.
2. Determine which archived log files are of interest. Use the

SYSPROC.AUDIT_LIST_LOGS table function to list all of the archived audit
logs.

3. Pass the file name as a parameter to the SYSPROC.AUDIT_DELIM_EXTRACT
stored procedure to extract data from the log and load it into delimited files.

4. Load the audit data into DB2 database tables for analysis.

The archived log files do not need to be immediately loaded into tables for
analysis; they can be saved for future analysis. For example, they may only need to
be looked at when a corporate audit is taking place.

If a problem occurs during archive, such as running out of disk space in the
archive path, or the archive path does not exist, the archive process fails and an
interim log file with the file extension .bk is generated in the audit log data path,
for example, db2audit.instance.log.0.20070508172043640941.bk. After the
problem is resolved (by allocating sufficient disk space in the archive path, or by
creating the archive path) you must move this interim log to the archive path.
Then, you can treat it in the same way as a successfully archived log.

Archiving active audit logs in a multiple member environment

In a multiple member environment, if the archive command is issued while the
instance is running, the archive process automatically runs on every member. The
same timestamp is used in the archived log file name on all members. For
example, on a three member system, where the database member number is 10, the
following command:
db2audit archive to /auditarchive

creates the following files:
v /auditarchive/db2audit.log.10.timestamp

v /auditarchive/db2audit.log.20.timestamp

v /auditarchive/db2audit.log.30.timestamp

If the archive command is issued while the instance is not running, you can control
on which member the archive is run by one of the following methods:

686 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

v Use the node option with the db2audit command to perform the archive for the
current member only.

v Use the db2_all command to run the archive on all members.
For example:
db2_all db2audit archive node to /auditarchive

This sets the DB2NODE environment variable to indicate on which members the
command is invoked.

Alternatively, you can issue an individual archive command on each member
separately. For example:
v On member 10:

db2audit archive node 10 to /auditarchive

v On member 20:
db2audit archive node 20 to /auditarchive

v On member 30:
db2audit archive node 30 to /auditarchive

Note: When the instance is not running, the timestamps in the archived audit log
file names are not the same on each member.

Note: It is recommended that the archive path is shared across all members, but it
is not required.

Note: The AUDIT_DELIM_EXTRACT stored procedure and AUDIT_LIST_LOGS
table function can only access the archived log files that are visible from the
current (coordinator) member.

Example of archiving a log and extracting data to a table

To ensure their audit data is captured and stored for future use, a company needs
to create a new audit log every six hours and archive the current audit log to a
WORM drive. The company schedules the following call to the
SYSPROC.AUDIT_ARCHIVE stored procedure to be issued every six hours by the
security administrator, or by a user to whom the security administrator has
granted EXECUTE privilege on the AUDIT_ARCHIVE stored procedure. The path
to the archived log is the default archive path, /auditarchive, and the archive runs
on all members:
CALL SYSPROC.AUDIT_ARCHIVE(’/auditarchive’, -2)

As part of their security procedures, the company has identified and defined a
number of suspicious behaviors or disallowed activities that it needs to watch for
in the audit data. They want to extract all the data from the one or more audit
logs, place it in a relational table, and then use SQL queries to look for these
activities. The company has decided on appropriate categories to audit and has
associated the necessary audit policies with the database or other database objects.

For example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure to extract the archived audit logs for all categories from all members
that were created with a timestamp in April 2006, using the default delimiter:
CALL SYSPROC.AUDIT_DELIM_EXTRACT(

’’, ’’, ’/auditarchive’, ’db2audit.%.200604%’, ’’)

Chapter 34. Introduction to the DB2 audit facility 687

In another example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure to extract the archived audit records with success events from the
EXECUTE category and failure events from the CHECKING category, from a file
with the timestamp they are interested in:
CALL SYSPROC.AUDIT_DELIM_EXTRACT(’’, ’’, ’/auditarchive’,

’db2audit.%.20060419034937’, ’category
execute status success, checking status failure);

The EXECUTE category for auditing SQL statements
Use the EXECUTE category to accurately track the SQL statements that are issued
by a user. In Version 9.5 and earlier releases, you had to use the CONTEXT
category to find this information.

As part of a comprehensive security policy, a company can require the ability to
retroactively go back a set number of years and analyze the effects of any
particular request against certain tables in their database. To do this, a company
must institute a policy of archiving their weekly backups and associated log files
such that they can reconstitute the database for any chosen moment in time. Also
required, is sufficient database audit information captured about every request
made against the database to allow, at any future time, the replay and analysis of
any request against the relevant, restored database. This requirement can cover
both static and dynamic SQL statements.

This EXECUTE category captures the SQL statement text as well as the compilation
environment and other values that are needed to replay the statement at a later
date. For example, replaying the statement can show you exactly which rows a
SELECT statement returned. In order to re-run a statement, the database tables
must first be restored to their state when the statement was issued.

When you audit using the EXECUTE category, the statement text for both static
and dynamic SQL is recorded, as are input parameter markers and host variables.
You can configure the EXECUTE category to be audited with or without input
values.

Note: Global variables are not audited.

The auditing of EXECUTE events takes place at the completion of the event (for
SELECT statements this is on cursor close). The status that the event completed
with is also stored. Because EXECUTE events are audited at completion,
long-running queries do not immediately appear in the audit log.

Note: The preparation of a statement is not considered part of the execution. Most
authorization checks are performed at prepare time (for example, SELECT
privilege). This means that statements that fail during prepare due to authorization
errors do not generate EXECUTE events.

Statement Value Index, Statement Value Type and Statement Value Data fields may
be repeated for a given execute record. For the report format generated by the
extraction, each record lists multiple values. For the delimited file format, multiple
rows are used. The first row has an event type of STATEMENT and no values.
Following rows have an event type of DATA, with one row for each data value
associated with the SQL statement. You can use the event correlator and
application ID fields to link STATEMENT and DATA rows together. The columns
Statement Text, Statement Isolation Level, and Compilation Environment
Description are not present in the DATA events.

688 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The statement text and input data values that are audited are converted into the
database code page when they are stored on disk (all audited fields are stored in
the database code page). No error is returned if the code page of the input data is
not compatible with the database code page; the unconverted data will be logged
instead. Because each database has it's own audit log, databases having different
code pages does not cause a problem.

ROLLBACK and COMMIT are audited when executed by the application, and also
when issued implicitly as part of another command, such as BIND.

After an EXECUTE event has been audited due to access to an audited table, all
statements that affect which other statements are executed within a unit of work,
are audited. These statements are COMMIT, ROLLBACK, ROLLBACK TO
SAVEPOINT and SAVEPOINT.

Savepoint ID field

You can use the Savepoint ID field to track which statements were affected by a
ROLLBACK TO SAVEPOINT statement. An ordinary DML statement (such as
SELECT, INSERT, and so on) has the current savepoint ID audited. However, for
the ROLLBACK TO SAVEPOINT statement, the savepoint ID that is rolled back to
will be audited instead. Therefore, every statement with a savepoint ID greater
than or equal to that ID will be rolled back, as demonstrated by the following
example. The table shows the sequence of statements run; all events with a
Savepoint ID greater than or equal to 2 will be rolled back. Only the value of 3
(from the first INSERT statement) is inserted into the table T1.

Table 45. Sequence of statements to demonstrate effect of ROLLBACK TO SAVEPOINT
statement

Statement Savepoint ID

INSERT INTO T1 VALUES (3) 1

SAVEPOINT A 2

INSERT INTO T1 VALUES (5) 2

SAVEPOINT B 3

INSERT INTO T1 VALUES (6) 3

ROLLBACK TO SAVEPOINT A 2

COMMIT

WITH DATA option

Not all input values are audited when you specify the WITH DATA option. LOB,
LONG, XML and structured type parameters appear as NULL.

Date, time, and timestamp fields are recorded in ISO format.

If WITH DATA is specified in one policy, but WITHOUT DATA is specified in
another policy associated with objects involved in the execution of the SQL
statement, then WITH DATA takes precedence and data is audited for that
particular statement. For example, if the audit policy associated with a user
specifies WITHOUT DATA, but the policy associated with a table specifies WITH
DATA, when that user accesses that table, the input data used for the statement is
audited.

Chapter 34. Introduction to the DB2 audit facility 689

You are not able to determine which rows were modified on a positioned-update
or positioned-delete statement. Only the execution of the underlying SELECT
statement is logged, not the individual FETCH. It is not possible from the
EXECUTE record to determine which row the cursor is on when the statement is
issued. When replaying the statement at a later time, it is only possible to issue the
SELECT statement to see what range of rows may have been affected.

Example of replaying past activities

Consider in this example that as part of their comprehensive security policy, a
company requires that they retain the ability to retroactively go back up to seven
years to analyze the effects of any particular request against certain tables in their
database. To do this, they institute a policy of archiving their weekly backups and
associated log files such that they can reconstitute the database for any chosen
moment in time. They require that the database audit capture sufficient
information about every request made against the database to allow the replay and
analysis of any request against the relevant, restored database. This requirement
covers both static and dynamic SQL statements.

This example shows the audit policy that must be in place at the time the SQL
statement is issued, and the steps to archive the audit logs and later to extract and
analyze them.
1. Create an audit policy that audits the EXECUTE category and apply this policy

to the database:
CREATE AUDIT POLICY STATEMENTS CATEGORIES EXECUTE WITH DATA

STATUS BOTH ERROR TYPE AUDIT
COMMIT

AUDIT DATABASE USING POLICY STATEMENTS
COMMIT

2. Regularly archive the audit log to create an archive copy.
The following statement should be run by the security administrator, or a user
to whom they grant EXECUTE privilege for the SYSPROC.AUDIT_ARCHIVE
stored procedure, on a regular basis, for example, once a week or once a day,
depending on the amount of data logged. These archived files can be kept for
whatever period is required. The AUDIT_ARCHIVE procedure is called with
two input parameters: the path to the archive directory and -2, to indicate that
the archive should be run on all members:
CALL SYSPROC.AUDIT_ARCHIVE(’/auditarchive’, -2)

3. The security administrator, or a user to whom they grant EXECUTE privilege
for the SYSPROC.AUDIT_LIST_LOGS table function, uses AUDIT_LIST_LOGS
to examine all of the available audit logs from April 2006, to determine which
logs may contain the necessary data:
SELECT FILE FROM TABLE(SYSPROC.AUDIT_LIST_LOGS(’/auditarchive’))

AS T WHERE FILE LIKE ’db2audit.dbname.log.0.200604%’
FILE

...
db2audit.dbname.log.0.20060418235612
db2audit.dbname.log.0.20060419234937
db2audit.dbname.log.0.20060420235128

4. From this output, the security administrator observes that the necessary logs
should be in one file: db2audit.dbname.log.20060419234937. The timestamp
shows this file was archived at the end of the day for the day the auditors
want to see.

690 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

The security administrator, or a user to whom they grant EXECUTE privilege
for the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, uses this
filename as input to AUDIT_DELIM_EXTRACT to extract the audit data into
delimited files. The audit data in these files can be loaded into DB2 database
tables, where it can be analyzed to find the particular statement the auditors
are interested in. Even though the auditors are only interested in a single SQL
statement, multiple statements from the unit of work may need to be examined
in case they have any impact on the statement of interest.

5. In order to replay the statement, the security administrator must take the
following actions:
v Determine the exact statement to be issued from the audit record.
v Determine the user who issued the statement from the audit record.
v Re-create the exact permissions of the user at the time they issued the

statement, including any LBAC protection.
v Reproduce the compilation environment, by using the compilation

environment column in the audit record in combination with the SET
COMPILATION ENVIRONMENT statement.

v Restore the database to its exact state at the time the statement was issued.

To avoid disturbing the production system, any restore of the database and
replay of the statement should be done on a second database system. The
security administrator, running as the user who issued the statement, can
reissue the statement as found in the statement text with any input variables
that are provided in the statement value data elements.

Chapter 34. Introduction to the DB2 audit facility 691

692 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Part 6. Appendixes

© Copyright IBM Corp. 2014 693

694 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Appendix A. DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v Online DB2 documentation in IBM Knowledge Center:

– Topics (task, concept, and reference topics)
– Sample programs
– Tutorials

v Locally installed DB2 Information Center:
– Topics (task, concept, and reference topics)
– Sample programs
– Tutorials

v DB2 books:
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– Printed books

v Command-line help:
– Command help
– Message help

Important: The documentation in IBM Knowledge Center and the DB2
Information Center is updated more frequently than either the PDF or the
hardcopy books. To get the most current information, install the documentation
updates as they become available, or refer to the DB2 documentation in IBM
Knowledge Center.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

The DB2 Information Development team values your feedback on the DB2
documentation. If you have suggestions for how to improve the DB2
documentation, send an email to db2docs@ca.ibm.com. The DB2 Information
Development team reads all of your feedback but cannot respond to you directly.
Provide specific examples wherever possible to better understand your concerns. If
you are providing feedback on a specific topic or help file, include the topic title
and URL.

Do not use the db2docs@ca.ibm.com email address to contact DB2 Customer
Support. If you have a DB2 technical issue that you cannot resolve by using the
documentation, contact your local IBM service center for assistance.

© Copyright IBM Corp. 2014 695

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

DB2 technical library in hardcopy or PDF format
You can download the DB2 technical library in PDF format or you can order in
hardcopy from the IBM Publications Center.

English and translated DB2 Version 10.1 manuals in PDF format can be
downloaded from DB2 database product documentation at www.ibm.com/
support/docview.wss?rs=71&uid=swg27009474.

The following tables describe the DB2 library available from the IBM Publications
Center at http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
Although the tables identify books that are available in print, the books might not
be available in your country or region.

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

The DB2 documentation online in IBM Knowledge Center is updated more
frequently than either the PDF or the hardcopy books.

Table 46. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-3864-00 Yes April, 2012

Administrative Routines
and Views

SC27-3865-01 No January, 2013

Call Level Interface
Guide and Reference
Volume 1

SC27-3866-01 Yes January, 2013

Call Level Interface
Guide and Reference
Volume 2

SC27-3867-01 Yes January, 2013

Command Reference SC27-3868-01 Yes January, 2013

Database Administration
Concepts and
Configuration Reference

SC27-3871-01 Yes January, 2013

Data Movement Utilities
Guide and Reference

SC27-3869-01 Yes January, 2013

Database Monitoring
Guide and Reference

SC27-3887-01 Yes January, 2013

Data Recovery and High
Availability Guide and
Reference

SC27-3870-01 Yes January, 2013

Database Security Guide SC27-3872-01 Yes January, 2013

DB2 Workload
Management Guide and
Reference

SC27-3891-01 Yes January, 2013

Developing ADO.NET
and OLE DB
Applications

SC27-3873-01 Yes January, 2013

Developing Embedded
SQL Applications

SC27-3874-01 Yes January, 2013

696 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474#manuals
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474#manuals
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

Table 46. DB2 technical information (continued)

Name Form Number Available in print Last updated

Developing Java
Applications

SC27-3875-01 Yes January, 2013

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-3876-00 No April, 2012

Developing RDF
Applications for IBM
Data Servers

SC27-4462-00 Yes January, 2013

Developing User-defined
Routines (SQL and
External)

SC27-3877-01 Yes January, 2013

Getting Started with
Database Application
Development

GI13-2046-01 Yes January, 2013

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2047-00 Yes April, 2012

Globalization Guide SC27-3878-00 Yes April, 2012

Installing DB2 Servers GC27-3884-01 Yes January, 2013

Installing IBM Data
Server Clients

GC27-3883-00 No April, 2012

Message Reference
Volume 1

SC27-3879-01 No January, 2013

Message Reference
Volume 2

SC27-3880-01 No January, 2013

Net Search Extender
Administration and
User's Guide

SC27-3895-01 No January, 2013

Partitioning and
Clustering Guide

SC27-3882-01 Yes January, 2013

Preparation Guide for
DB2 10.1 Fundamentals
Exam 610

SC27-4540-01 No January, 2013

Preparation Guide for
DB2 10.1 DBA for
Linux, UNIX, and
Windows Exam 611

SC27-4541-01 No January, 2013

pureXML Guide SC27-3892-01 Yes January, 2013

Spatial Extender User's
Guide and Reference

SC27-3894-00 No April, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-3896-01 Yes January, 2013

SQL Reference Volume 1 SC27-3885-01 Yes January, 2013

SQL Reference Volume 2 SC27-3886-01 Yes January, 2013

Text Search Guide SC27-3888-01 Yes January, 2013

Appendix A. DB2 technical information 697

Table 46. DB2 technical information (continued)

Name Form Number Available in print Last updated

Troubleshooting and
Tuning Database
Performance

SC27-3889-01 Yes January, 2013

Upgrading to DB2
Version 10.1

SC27-3881-01 Yes January, 2013

What's New for DB2
Version 10.1

SC27-3890-01 Yes January, 2013

XQuery Reference SC27-3893-01 No January, 2013

Table 47. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Personal Edition

SC27-3861-00 Yes April, 2012

Installing and
Configuring DB2
Connect Servers

SC27-3862-01 Yes January, 2013

DB2 Connect User's
Guide

SC27-3863-01 Yes January, 2013

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
Documentation for other versions of DB2 products is found in separate information
centers on ibm.com®.

About this task

For DB2 Version 10.1 topics, the DB2 Information Center URL is
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1.

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

698 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 10.1 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates update existing Information Center features and languages.

One benefit of automatic updates is that the Information Center is unavailable
for a shorter time compared to during a manual update. In addition, automatic
updates can be set to run as part of other batch jobs that run periodically.

v Manual updates can be used to update existing Information Center features and
languages. Automatic updates reduce the downtime during the update process,
however you must use the manual process when you want to add features or
languages. For example, a local Information Center was originally installed with
both English and French languages, and now you want to also install the
German language; a manual update will install German, as well as, update the
existing Information Center features and languages. However, a manual update
requires you to manually stop, update, and restart the Information Center. The
Information Center is unavailable during the entire update process. In the
automatic update process the Information Center incurs an outage to restart the
Information Center after the update only.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

Appendix A. DB2 technical information 699

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V10.1
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 10.1 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system by using a machine that is connected to the internet
and has the DB2 Information Center installed. If many users on your network
will be installing the documentation updates, you can reduce the time required
for individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

700 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv10 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 10.1 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
/opt/ibm/db2ic/V10.1 directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check that the selections you want to install,
then click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the doc\bin directory within the installation
directory, and run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the doc/bin directory within the installation directory,
and run the help_end script:
help_end

Appendix A. DB2 technical information 701

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv10 start

Results

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 database products.
Lessons provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
In the Troubleshooting and Tuning Database Performance or the Database
fundamentals section of the online DB2 documentation, you can find the
following troubleshooting information:
v Information about how to isolate and identify problems by using DB2

diagnostic tools and utilities
v Solutions to some of the most common problems
v Advice to help solve other problems that you might encounter with your

DB2 database products

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

702 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

http://publib.boulder.ibm.com/infocenter/db2luw/10r1/

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Appendix A. DB2 technical information 703

http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/legal/copytrade.shtml

704 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2014 705

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

706 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 707

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

708 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Index

A
access plan diagrams

description 108
example 108
setting preferences 109

access plans
diagramming 106

activities
canceling

scenarios 422, 424
long-running

scenario 422
adaptive compression

details 617
dictionaries 623

ADC (automatic dictionary creation)
details 624

administration notification log
first occurrence data capture (FODC) 514

administrative tools
Replication Center 668

agents
configuration 585

AIX
backups 288
restores 288

AIX Workload Manager
integrating DB2 workload management 409

ALTER DATABASE statement
compatibility with online backups 318

ALTER STOGROUP statement
compatibility with online backups 318

ALTER TABLE statement
enabling compression 621

archive logging
overview 285

archivepath parameter 685
archiving

audit log files 685
log files

compression 287
ASYNC synchronization mode 431
asynchronous index cleanup 609
asynchronous processing 253
audit facility

actions 679
authorities 679
events 679
EXECUTE events 688
overview 679
policies 681
privileges 679
troubleshooting 525

audit logs
archiving 685
location 685

authorities
audit policy 681

AUTOCONFIGURE command
sample output 606

automatic backups
enabling 315

automatic client reroute
high availability disaster recovery (HADR) 475

automatic dictionary creation (ADC)
details 624

automatic incremental restore
limitations 298

automatic maintenance
AUTOMAINT_SET_POLICY procedure 316
AUTOMAINT_SET_POLICYFILE procedure 316
backups 281, 315
configuring 316
overview 595
windows 596

automatic memory tuning 590
automatic reorganization

details 597
automatic storage

overview 3
automatic storage databases

use by default 4
automatic storage table spaces

adding storage 34
altering 34
container names 11
converting 13
details 9
dropping 34
dropping storage paths 73
reducing size 35

autorestart database configuration parameter
high availability disaster recovery (HADR) 485

B
BACKUP DATABASE command

backing up data 301
DB2 pureScale environments 310

backup images 294
backup utility

monitoring progress 317
performance 317
restrictions 301

backups
automatic 281
compression 630
databases

automatic 281, 315
incremental 295
named pipes 308
operating system restrictions 288
partitioned databases 309
storage considerations 286
tape 306
user exit program 286

best practices
data redistribution 170

block indexes
insert time clustering (ITC) tables 205
multidimensional clustering (MDC) tables 205

© Copyright IBM Corp. 2014 709

block-structured devices 28
buffer pool hit ratios 61
buffer pools

creating 65
DB2 pureScale environments

calculating hit ratios 62
hit ratio overview 59
monitoring overview 58
temporary buffer pools 62

designing 56
dropping 68
hit ratios 61, 62
memory

protection 57
modifying 66
overview 55
query optimization 572
temporary in DB2 pureScale instances 62

C
catalog database partitions 125
catalog tables

stored on catalog database partition 125
chains

job manager 102
changed functionality

Replication Center 669
character serial devices 28
circular logging 284
classic row compression

details 615
dictionaries 623

clone databases
creating

using different storage group paths 351
CLP (command line processor)

federated functions 656
clustering

data
insert time clustering tables 185
multidimensional clustering tables 185

tables
insert time clustering tables 185
multidimensional clustering tables 185

clusters
managing

high availability disaster recovery (HADR) 501
collocation

table 118, 124
column expressions 199
comm_bandwidth database manager configuration parameter

query optimization 572
command line processor (CLP)

examples
database rebuild sessions 365
redirected restore sessions 344
rollforward sessions 384

federated functions 656
command management

Administration Explorer 89, 96
Object List 89, 96

commands
db2adutl

cross-node recovery examples 323
db2cklog 526

commands (continued)
db2dart

INSPECT command comparison 547
overview 546

db2ls
listing DB2 products and features 529

db2pd
examples 531

db2pdcfg
overview 515

INSPECT
db2dart command comparison 547

invoking 91
running 91
running in parallel 151
support in an Object List 89, 96
support in the Administration Explorer 89, 96
types of database administration 89, 96

compatibility
partition 125

compiler rewrites
adding implied predicates 563
correlated subqueries 559
merge view 557

compression
adaptive 617
backup 630
classic row 615
default system values 614
estimating storage savings 619
index

details 628
NULL values 614
overview 613
row

adaptive 617
classic 615
overview 615

table
column values 614
overview 613

tables
changing 622
creating 619
disabling 622
enabling 621

temporary tables 615, 617
value 614

compression dictionaries
adaptive compression 617
automated creation 624
classic row compression 615
forcing creation 626
KEEPDICTIONARY parameter 626
multiple 627
overview 623
rebuilding 626
RESETDICTIONARY parameter 626
size reporting 627

configuration
agent and process model 585
databases

HADR 493
file system caching 22
high availability 485
memory 583

710 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

Configuration Advisor
defining the scope of configuration parameters 605
details 605
sample output 606

configuration parameters
Configuration Advisor for defining scope 605
hadr_peer_window

setting 493
hadr_timeout

setting 493
logarchopt1

cross-node recovery examples 323
partitioned database 125
query optimization 572
vendoropt

cross-node recovery examples 323
connections

failures
parameter setting 493

constructs
multiple query blocks 108

containers
SMS table spaces

adding 144
converting tables 96
coordinator partitions

details 117
cpuspeed configuration parameter

query optimization effect 572
CREATE SERVER statement 656
CREATE STOGROUP statement

compatibility with online backups 318
cross-node database recovery examples 323

D
data

accessing
optimization 595

compressing 627
distribution

organization schemes 111
partitioned database environments 117

organization
overview 111

redistribution
best practices 170
database partition groups 148
database partitions 162
determining need 165
error recovery 177
event logging 176
log file entries 177
log space requirements 167
mechanism 171
methods 162
overview 162, 172
recovery 176

data defragmentation
overview 595

data management tools
Data Studio 83

data movement
multidimensional tables 199

data partition elimination 224

data partitions
adding

procedure 234
altering 262
attaching

overview 236, 261
scenario 267

attributes 249
creating 257
detach phases 251
detaching

overview 246, 261
scenario 267

dropping 255
overview 111, 217, 233
range definition 257
rolling in data

overview 236, 261
scenario 267

rolling out data
overview 246, 261
scenario 267

rotating
scenario 265

data recovery
log replay delay 463

data sources 654
description 654
performance 663

data storage
multi-temperature 69
storage groups 69

Data Studio
interface for federated systems 656
key tasks 83

Data Studio web console
overview 89

database administration
commands 89, 96
invoking commands 91
running commands 91
support in an Object List 89, 96
support in the Administration Explorer 89, 96

database administration commands
cluster caching facilities 90
Database Partitioning Facility (DPF) 90
DB2 pureScale Feature 90
DB2 pureScale members 90
partitioned databases 90

database analysis and reporting tool command
overview 546

database configuration file
changing 144

database engine processes 546
database manager

shared memory 577
database objects

recovery history file 281
recovery log file 281
table space change history file 281

database partition expressions
details 144

database partition groups
data location determination 122
IBMDEFAULTGROUP 160
overview 119
tables 160

Index 711

database partition servers
dropping 160
issuing commands 148
multiple logical partitions 128
specifying 143

database partitions
adding

overview 134
restrictions 136
running system 135
stopped system (UNIX) 136
stopped system (Windows) 138

catalog 125
changing (Windows) 146
database configuration updates 144
managing 142
overview 117
redistributing data 162
spreading data across multiple partitions 118

database_memory database configuration parameter
self-tuning 587

database-managed space (DMS)
page sizes 25
table sizes 25
table spaces

automatic storage 13
creating 28
sizes 25

databases
automatic storage

overview 4
backing up 89, 96
backups

automated 315, 595
strategy 281

configuring 89, 96
high availability disaster recovery (HADR) 493

connections
high availability disaster recovery (HADR) 493

creating 89, 96
partitioned database environments 125

data partitioning enabling 125
designing

overview 1
dropping 89, 96
forcing applications off 89, 96
High Availability Disaster Recovery (HADR) 89, 96
logging

circular 284
overview 284

nonrecoverable 281
quiescing 89, 96
rebuilding

examples 365
incremental backup images 362
overview 352
partitioned databases 363
restrictions 364
table space containers 356
target image selection 357

recovering 89, 96
strategy 281

redistributing data 162
restarting 89, 96
restoring 89, 96
rolling forward log files 89, 96
starting 89, 96

databases (continued)
stopping 89, 96
temporary table spaces 357
transporting schemas

examples 377
overview 373
transportable objects 376
troubleshooting 379

unquiescing 89, 96
datapath parameter 685
DB2 documentation

available formats 695
DB2 Governor

troubleshooting 525
DB2 Information Center

updating 699, 700
versions 698

DB2 products
listing 529

DB2 pureScale 656
DB2 pureScale environments

backups 310
buffer pools

calculating hit ratios 62
hit rates 59
hit ratios 59
monitoring 58

database rollforward 392
log file management 289
log record identifiers (LRIs) 293
log sequence numbers (LSNs) 293
log stream merges 289
log streams 289
monitoring

buffer pool hit rates 59
buffer pool hit ratios 59
buffer pools 58

restoring 310
DB2 pureScale Feature

application transparency 674
capacity 671
continuous availability 673
database administration commands 90
deploying 676
getting started 676
overview 671
scaling 671

DB2 pureScale instances
managing 677
monitoring

status 677
DB2 pureScale members

cluster caching facilities
database administration commands 90

database administration commands 90
DB2 workload management

activities
identifying long-running activities (example) 422

AIX Workload Manager integration 409
cancelling

activities 424
DB2 Governor

relationship 399
domains 397
frequently asked questions 399
Linux workload management integration 414
overview 397

712 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

DB2 workload management (continued)
Query Patroller 399
sample application 420
workloads

analyzing system slowdown (example) 421
db2_all command

overview 149
partitioned database environments 148
specifying 150

db2_call_stack command 149
db2_kill command 149
DB2_PEER_WAIT_LIMIT registry variable

high availability disaster recovery (HADR) 485
db2adutl command

cross-node recovery examples 323
db2audit.log file 679
db2Backup API

backing up data 301
db2cklog command

troubleshooting 526
db2dart command

INSPECT command comparison 547
troubleshooting overview 546

db2diag logs
details 509
first occurrence data capture (FODC) information 514
interpreting

informational record 513
overview 510

db2fodc command
collecting diagnostic information 515

db2inidb command
creating split mirror 304, 305

db2ls command
listing installed products and features 529

db2nchg command
changing database partition server configurations 146

db2ncrt command
adding database partition servers 127

db2ndrop command
dropping database partition servers 160

db2nlist command 142
db2pd command

troubleshooting examples 531
db2pdcfg command

collecting diagnostic information 515
db2Recover API

recovering data 321
db2Restore API

recovering data 339
db2Rollforward API

applying transactions to restored backup image 383
db2val command

validating DB2 copy 546
declustering

partial 117, 118
deep compression

See adaptive compression 617
See classic row compression 615

default storage groups
overview 69

deferred index cleanup
monitoring 611

defragmentation
index 643

detached data partitions
attributes 249

detached data partitions (continued)
detach phases 251
details 246

detached table partitions
asynchronous partition detach 253

dft_degree configuration parameter
effect on query optimization 572

diaglevel configuration parameter
updating 514

diagnostic information
first occurrence data capture (FODC)

configuring 517
details 515
files 514

dictionaries
compression 623

dimensions of MDC tables 206
disaster recovery

high availability disaster recovery (HADR)
overview 429
requirements 471

distributed database management system 653
distribution keys

details 123
partitioned database environments 160

distribution maps
details 122

documentation
PDF files 696
printed 696
terms and conditions of use 703

DPF
database administration commands 90

DROP STOGROUP statement
compatibility with online backups 318

dynamic queries
setting the optimization class 568

E
environment variables

$RAHBUFDIR 151
$RAHBUFNAME 151
$RAHENV 155
rah command 155
RAHDOTFILES 156

error messages
partitioned databases 139

event log file 177
event monitors

troubleshooting 525
ExampleBANK reclaiming space scenario

converting to insert time clustering tables 216
insert time clustering table 216

EXECUTE category
overview 688

explain facility
federated database queries 661, 665

export utility
online backup compatibility 318

extents
insert time clustering (ITC) tables 198
multidimensional clustering tables 198
sizes in table spaces 24

Index 713

F
failback operations 504
failover

performing 501
FCM

memory requirements 580
service entry syntax 140

federated databases
description 654
determining where queries are evaluated 661
global analysis of queries 665
global optimization 663
pushdown analysis 657
server options 657
wrapper modules 655
wrappers 655

federated servers 654
description 656

federated systems
overview 653

file systems
caching for table spaces 22

first occurrence data capture
see FODC 514

FODC
data generation 525
details 514
subdirectories 520

formulas
buffer pool hit ratios 61

fragment elimination
see data partition elimination 224

G
GBPs

relationship to local buffer pools 59

H
HADR 89, 96

active standby database
isolation level 459
replay-only window 460

cluster managers 501
commands 475
configuring 485
converting to multiple standby mode 438
data concurrency 459
databases

initializing 477
failback 504
failover

multiple standbys 447
performing 501

initializing
multiple standbys 436
single standby 477

load operations 485
log archiving 494
log flushes 459
managing 474
monitoring

methods 505
multiple standby mode 444

HADR (continued)
multiple standby mode

enabling 438
multiple standbys 435
overview 429
performance 498
primary reintegration 504
reads on standby

replay-only window 460
requirements 469, 471
restrictions 473
rolling updates 443, 466
rolling upgrades

multiple standby mode 443
setting up

multiple standbys 436
single standby 477

standby databases
initializing 480

stopping 508
switching database roles 504
synchronization modes

ASYNC 431
effective 431, 441
NEARSYNC 431
operational 431, 441
SUPERASYNC 431
SYNC 431

takeover
multiple standbys 447

HADR multiple standbys
adding auxiliary standbys 440
changing the principal standby 440
configuring 448
enabling 436
example 448
modifying your setup 440
monitoring 444
NAT support 472
overview 435
restrictions 436
setting up 448
takeover

examples 453
HADR reads on standby

enabling 458
overview 458

HADR standby
log spooling 496

hadr_peer_window database configuration parameter
automatic reconfiguration 441
high availability disaster recovery (HADR) 485
setting parameter 493

hadr_remote_host configuration parameter
automatic reconfiguration 441

hadr_remote_inst configuration parameter
automatic reconfiguration 441

hadr_remote_svc configuration parameter
automatic reconfiguration 441

hadr_replay_delay database configuration parameter
HADR delayed replay 463

hadr_spool_limit database configuration parameter 496
hadr_syncmode configuration parameter

automatic reconfiguration 441
hadr_syncmode database configuration parameter

high availability disaster recovery (HADR) 485

714 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

hadr_timeout configuration parameter
setting parameter 493

hadr_timeout database configuration parameter
high availability disaster recovery (HADR) 485

hash partitioning 118
heaps

configuring 583
help

SQL statements 698
high availability

configuring
NAT 472

designing 279
outages

overview 279
high availability disaster recovery

see HADR 429
High Availability Disaster Recovery

see HADR 429
High Availability Disaster Recovery (HADR) 89, 96
high water marks

lowering
automatic storage table spaces 16, 35
DMS table spaces 16

overview 14
historical compression dictionary

overview 627
history

job manager 102
HP-UX

backups 288
restores 288

I
I/O

table space design 26
IBM Data Studio

key tasks 83
overview 83

IBM Relational Data Replication Tools 667
incremental backups

details 295
images for rebuilding databases 362

incremental recovery
overview 295

incremental restores
overview 342
restoring from incremental backup images 297

index compression
details 628
restrictions 628

indexes
advantages 633
asynchronous cleanup 609, 611
block

insert time clustering (ITC) tables 205
multidimensional clustering (MDC) tables 205

clustering
block-based comparison 185

deferred cleanup 611
logging for high availability disaster recovery

(HADR) 496
matching source table index with target table partitioned

index 244
migrating 272
online defragmentation 643

indexes (continued)
partitioned tables

details 634
performance tips 642
planning 640
reorganizing 89, 96
XML

partition changes 264
insert time clustering (ITC) tables

block indexes 205
block maps 195
creating 199
deleting from 197
logging 205
moving data to 199
overview 185
updating 197

INSPECT command
db2dart comparison 547

installation
listing DB2 database products 529

instances
adding partition servers 127
configuring 89, 96
listing database partition servers 142
partition servers

changing 146
dropping 160

quiescing 89, 96
starting 89, 96
stopping 89, 96
unquiescing 89, 96

inter-partition query parallelism 129
intrapartition parallelism

details 645
enabling 131
enhancements 646
optimization strategies 647

invalid pages
DB2 pureScale environments 59

J
job manager

chains 102
create jobs 102, 103
history 102
manage jobs 102
notifications 102
schedules 102

job type
DB2 CLP scripts 100

SSH 100
Executable/shell scripts 100

ssh 100
SQL-only scripts 100

jobs
job manager 102
job type 100

joins
shared aggregation 557
subquery transformation by optimizer 557

Index 715

K
keys

distribution 123
table partitioning 217

L
large objects (LOBs)

partitioned tables 233
LBPs

relationship to group buffer pools 59
licenses

partitioned database environments 117
Linux

backup and restore operations between different operating
systems and hardware platforms 288

listing DB2 database products 529
workload management integration with DB2 workload

management 414
locklist configuration parameter

query optimization 572
log files

checking validity 526
log record identifiers (LRIs)

DB2 pureScale environments 293
log sequence numbers (LSNs)

DB2 pureScale environments 293
log spooling

HADR configuration 496
log stream merges

overview 289
log streams

overview 289
logarchmeth1 configuration parameter

high availability disaster recovery (HADR) 494
logarchmeth2 configuration parameter

high availability disaster recovery (HADR) 494
logarchopt1 configuration parameter

cross-node recovery examples 323
logfilsiz database configuration parameter

high availability disaster recovery (HADR) 485
logical database partitions

database partition servers 128, 143
logical partitions

multiple 128
logs

active 284
archive logging 285
archived

compression 287
audit 679
circular logging 284
control files 286
databases

overview 284
DB2 pureScale environments 289
including in backup image 294
indexes 496
log archiving 494
log control files 286
offline archived 285
online archived 285
redistribute events 177
space requirements

data redistribution 167
recovery 286

logs (continued)
user exit programs 286

LRIs (log record identifiers)
DB2 pureScale environments 293

LSNs (log sequence numbers)
DB2 pureScale environments 293

M
maintenance

automatic 595
windows 596

maxappls configuration parameter
effect on memory use 575

maxcoordagents configuration parameter 575
maximum query degree of parallelism configuration parameter

effect on query optimization 572
MDC tables

block indexes 187, 189
block maps 195
column expressions as dimensions 199
creating 199
deferred index cleanup 611
deleting from 197
density of values 206
details 185
dimensions 206
DMS table spaces 199
loading 204
logging 205
maintaining clustering automatically 193
moving data to 199
partitioned tables 220
scenarios 213
updating 197

media failures
logs 286

memory
allocating

overview 575
parameters 580

configuring
details 583

database manager 577
FCM buffer pool 580
partitioned database environments 593
self-tuning 587, 588

migration
indexes 272

MON_GET_REBALANCE_STATUS table function
monitoring progress 44

monitoring
backups 317
buffer pools

DB2 pureScale environments (hit rates) 59
DB2 pureScale environments (hit ratios) 59
DB2 pureScale environments (overview) 58

data redistribution 175
DB2 pureScale environments

buffer pool hit rates 59
buffer pool hit ratios 59

high availability disaster recovery (HADR)
multiple standby mode 444
overview 505

rah processes 152
rebalance operations 44
restores 380, 394

716 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

monotonicity 199
MQTs

behavior 229
partitioned tables 229

multi-temperature storage
overview 69, 79
scenario 427

multidimensional clustering (MDC) tables
block indexes 205

multidimensional clustering tables
See MDC tables 185

multiple logical partitions
configuring 129

multiple query blocks 108
multiple-partition databases

database partition groups 119

N
named pipes

backing up 308
NEARSYNC synchronization mode 431
Nodes

setting preferences 109
nonrecoverable databases

backup and recovery strategy 281
notices 705
notifications

job manager 102
numdb database manager configuration parameter

effect on memory use 575

O
offline archived logs 285
offline backups

compatibility with online backups 318
offline loads

compatibility with online backups 318
offline maintenance 596
online archived logs 285
online backups

compatibility with other utilities 318
online index creation

compatibility with online backups 318
online index reorganization

compatibility with online backups 318
online inspect

compatibility with online backups 318
online loads

compatibility with online backups 318
online maintenance 596
online table reorganization

compatibility with online backups 318
operations

merged by optimizer 556
moved by optimizer 556

operators
REBAL 646

optimization
backup performance 317
classes

choosing 567
details 564
setting 568

intra-partition parallelism 647

optimization (continued)
partitioned tables 224
query rewriting methods 556
restore performance 381

optimization classes
overview 564

optimization guidelines
overview 569

optimization profiles
overview 569

optimizer
tuning 569

overview
Data Studio web console 89

P
page validity

DB2 pureScale environments 59
pages

sizes
table spaces 25
tables 25

parallelism
intra-partition

optimization strategies 647
overview 645

intrapartition
enabling 131

non-SMP environments 645
partitioned database environments 117
recovery 321

parameters
memory allocation 580

partial declustering
overview 117

partitioned databases
backing up 309
creating 125
data redistribution 180
database administration commands 90
database partition groups 119
decorrelation of queries 559
dropping partitions 159
duplicate machine entries 143
errors when adding database partitions 139
machine list

duplicate entry elimination 143
specifying 143

overview 117, 118
partition compatibility 125
rebuilding databases 363
redistributing data 172, 176
self-tuning memory 591, 593
setting up 125
table spaces 28

partitioned tables
adding data partitions

procedure 234, 261
altering 261, 262
attaching partitions 236, 261
converting 241
creating 256, 257
data ranges 257
detached data partitions 249
detaching data partitions 246, 251, 255, 261
indexes 634

Index 717

partitioned tables (continued)
large objects (LOBs) 233
loading 270
materialized query tables (MQTs) 229
migrating

pre-Version 9.1 241
tables 270
views 270

mismatches 241
multidimensional clustering (MDC) tables 220
optimization strategies 224
overview 217
restrictions 217, 262
rolling in data partitions 236, 261
rolling out data partitions 261
scenarios

attaching and detaching data partitions 267
rolling in and rolling out data partitions 267
rotating data 265

see partitioned tables 217
partitioning keys

overview 217
paths

adding 72
performance

catalog information 125
enhancements

relational indexes 642
summary 553

high availability disaster recovery (HADR) 498
recovery 321

port number ranges
defining

Windows 127
predicate pushdown query optimization

combined SQL/XQuery statements 561
predicates

implied
example 563

translation by optimizer 556
prefix sequences 153
primary database connections

disconnect 493
primary database reintegration after takeover 504
problem determination

information available 702
tutorials 702

procedures
STEPWISE_REDISTRIBUTE_DBPG 173

process model
configuration simplification 585

proxy nodes
Tivoli Storage Manager (TSM)

example 323
pureScale feature 656
pushdown analysis

federated database queries 657

Q
queries

multidimensional clustering 206
query optimization

catalog statistics 571
classes 564, 567
configuration parameters 572

query rewrite
examples 559

R
rah command

controlling 155
determining problems 157
environment variables 155
monitoring processes 152
overview 148, 149
prefix sequences 153
RAHCHECKBUF environment variable 151
RAHDOTFILES environment variable 156
RAHOSTFILE environment variable 143
RAHOSTLIST environment variable 143
RAHWAITTIME environment variable 152
recursively invoked 152
running commands in parallel 151
setting default environment profile 157
specifying

database partition server list 143
parameter or response to prompt 150

RAHCHECKBUF environment variable 151
RAHDOTFILES environment variable 156
RAHOSTFILE environment variable 143
RAHOSTLIST environment variable 143
RAHTREETHRESH environment variable 152
RAHWAITTIME environment variable 152
range partitioning

see data partitions 233
range-clustered tables

advantages 275
guidelines 276
restrictions 277
scenarios 276

ranges
defining for data partitions 257
restrictions 257

raw devices
creating table spaces 28

REBAL operator 646
rebalancing

compatibility with online backups 318
rebalance utility

monitoring progress 44
rebuilding compression dictionaries 626
reclaimable storage

automatic storage table spaces 35
compressed tables 615, 617
details 16

records
audit 679

RECOVER DATABASE command
recovering data 321

recoverable databases
details 281

recovery
cross-node examples 323
data redistribution errors 177
databases

rebuilding 352
dropped tables 336
incremental 295
operating system restrictions 288
parallel 321
performance 321

718 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

recovery (continued)
storage considerations 286
strategy overview 281
Tivoli Storage Manager (TSM) proxy nodes example 323

redefining table space containers
redirected restore operations

using script 348
redirected restores

overview 344
using generated script 350
using script 348

redistribution of data
across database partitions 162
database partition groups 148, 173
event log file 176
methods 162
necessity 165
prerequisites 166
procedures 173
restrictions 168

redistribution utility
monitoring progress 175

registry variables
DB2_HADR_PEER_WAIT_LIMIT 498
DB2_HADR_SORCVBUF 498
DB2_HADR_SOSNDBUF 498
DB2_NO_MPFA_FOR _NEW_DB 199

relational indexes
advantages 633

RENAME STOGROUP statement
compatibility with online backups 318
renaming storage groups 75

REORG TABLE command
compression dictionary maintenance options 626

reorganization
automatic

details 597
tables

compatibility with online backups 318
replay delay

HADR configuration 463
HADR standby 463, 464

replication
compression dictionaries for source tables 627
tools 667

Replication Center
administrative tools 668
changes 669

RESTORE DATABASE command
DB2 pureScale environments 310
restoring data 339

restore utility
compatibility with online backups 318
examples 344
monitoring progress 380, 394
performance 381
redefining table space containers 344
redirected restores

overview 344
restrictions 339

restoring
automatic incremental

limitations 298
from snapshot backup 341
incremental 295, 297, 342
transporting database schemas

examples 377

restoring (continued)
transporting database schemas (continued)

overview 373
transportable objects 376
troubleshooting 379

ROLLFORWARD DATABASE command
applying transactions to restored backup image 383
DB2 pureScale environment 392

rollforward recovery
minimum recovery time 388
table spaces 388

rollforward utility
compatibility with online backups 318
examples 384
recovering dropped table 336
restrictions 383

rolling updates
performing

HADR environments 466
multiple standby mode 443

rolling upgrades
performing

multiple standby mode 443
rollout

deferred detaching 253
rollout deletion

deferred cleanup 611
routines

WLM_CANCEL_ACTIVITY example 422
row compression

estimating storage savings 619
overview 615
rebuilding compression dictionaries 626
See classic row compression 615

RUNSTATS command
automatic statistics collection 599

RUNSTATS utility
compatibility with online backups 318

S
Savepoint ID field 688
scenario

create jobs 103
scenarios

adding storage paths 37
cancelling

activities 424
moving a table space to a new storage group 77
multidimensional clustering (MDC) tables 213
rebalancing

after adding and dropping storage paths 42
after adding storage paths 37
after dropping storage paths 40
overview 37

removing storage paths 37
schedules

job manager 102
scripts

troubleshooting 546
security

enhancements summary 653
SELECT statement

eliminating DISTINCT clauses 559
self-tuning memory

details 587
disabling 589

Index 719

self-tuning memory (continued)
enabling 588
monitoring 590
overview 588
partitioned database environments 591, 593

self-tuning memory manager
see self-tuning memory 588

SET CURRENT QUERY OPTIMIZATION statement
setting query optimization class 568

SET WRITE command
compatibility with online backups 318

SIGTTIN message 150
site failures

high availability disaster recovery (HADR) 429
snapshot backups

performing 303
restoring from 341

Solaris operating systems
backups 288
restores 288

sortheap database configuration parameter
effect on query optimization 572

split mirrors
backup images

DB2 pureScale environment 305
procedure 304

standby databases 480
DB2 pureScale environment 482

SQL compiler
process details 553

SQL statements
diagramming access plans 106
help

displaying 698
invoking 91
optimization configuration parameters 572
rewriting 556
running 91
support in an Object List 89, 96
support in the Administration Explorer 89, 96

ssh
DB2 CLP scripts 100
Executable/shell scripts 100

START HADR command
starting HADR 475

Statement Value Data field 688
Statement Value Index field 688
Statement Value Type field 688
static queries

setting optimization class 568
statistics

collection
automatic 599

profiling
overview 595

query optimization 571
stdin 150
STEPWISE_REDISTRIBUTE_DBPG procedure

redistributing data 173
STMM

see self-tuning memory 588
stmtheap database configuration parameter

effect on query optimization 572
STOP HADR command

overview 475
stopping

high availability disaster recovery (HADR) 508

storage
automatic

adding 34
overview 4
table spaces 9, 13

compression
classic row 615
indexes 628
reclaiming storage freed 615, 617
row 617
table 613

estimating savings offered by compression 619
media failures 286
reclaimable

details 16
reclaiming storage in automatic storage table spaces 35

removing from automatic storage table spaces 73
requirements

backup and recovery 286
storage groups

altering 72
attributes 70
creating 72
default 69
dropping 76
overview 69, 79
paths

replacing 75
replacing paths 75
scenarios

associating a table space 77
moving a table space 77

storage paths 75
adding 72
monitoring 74
scenarios

adding 37
rebalancing table spaces after adding 37
rebalancing table spaces after adding and dropping 42
rebalancing table spaces after dropping 40
removing 37

subqueries
correlated 559

SUPERASYNC synchronization mode 431
switching

database roles 504
SYNC synchronization mode 431
synchronization

modes 431
SYSCATSPACE table spaces 33
SYSPROC.AUDIT_ARCHIVE stored procedure 685
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure 685
system requirements

high availability disaster recovery (HADR) 469
system-managed space (SMS)

page size 25
table spaces

adding containers 144
creating 28
size 25

T
table compression

compression dictionaries 627
creating tables 619
enabling 621

720 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

table compression (continued)
overview 613
removing 622

table partitions
detaching 253
placement 260

table space containers
redefining in redirected restore operation 344

table space states 44
table spaces

altering
automatic storage 34

associating with storage groups 77
attributes 70
automatic storage

converting to use 13
overview 9
reducing size 35

backing up 89, 96
containers

file example 28
rebuilding databases 356

creating
procedure 28

designing 7
details 5
device container example 28
disk I/O considerations 26
dropping

procedure 53
dropping storage paths 73
extent sizes 24
initial 33
page sizes 25
partitioned database environments 28
rebalancing 73
rebuilding 352, 361
reducing size of automatic storage 35
restoring 89, 96
rollforward recovery 388
rolling forward log files 89, 96
scenarios

moving to a new storage group 77
rebalancing (after adding and dropping storage

paths) 42
rebalancing (after adding storage paths) 37
rebalancing (after dropping storage paths) 40
rebalancing (overview) 37

states 44
storage expansion 9
storage management 8
switching states 53
temporary

creating 32
types

overview 8
without file system caching 22

tables
adaptive compression 617
altering

partitioned tables 234, 255
audit policy 681
classic row compression 615
clustering

insert time 185
collocation 118, 124

tables (continued)
compression

column value 614
NULLS 614

converting 270
creating

partitioned databases 160
decompressing 622
exporting data 89, 96
importing data 89, 96
loading data 89, 96
materialized query 229
migrating to partitioned tables 270
multidimensional clustering (MDC) 185, 220
page sizes 25
partitioned

materialized query tables (MQTs) 229
multidimensional clustering (MDC) tables 220
overview 217

range-clustered 275
guidelines 276
restrictions 277
scenarios 276

recovering dropped tables 336
regular

multidimensional clustering (MDC) comparison 185
setting integrity 89, 96
unloading data 89, 96

TAKEOVER HADR command
overview 475
performing failover operations 501
switching database roles 504

tape backups
procedure 306

target images
database rebuilds 357

temporary table spaces
creating 32
database rebuilds 357

temporary tables
adaptive compression 617
classic row compression 615

TEMPSPACE1 table space 33
terms and conditions

publications 703
threads

troubleshooting scripts 546
Tivoli Storage Manager

recovery example 323
transports

database schemas
examples 377
overview 373
transportable objects 376
troubleshooting 379

troubleshooting
db2diag log file entry interpretation 510
diagnostic data

automatic collection 515
configuring collection 517
manual collection 515

diagnostic logs 509
gathering information 531
log files 526
resources 702
tutorials 702

Index 721

TRUNCATE
compatibility with online backups 318

trusted contexts
audit policies 681

tuning partition
determining 593

tutorials
list 702
problem determination 702
pureXML 702
troubleshooting 702

U
UNION ALL views

converting 270
UNIX

listing DB2 database products 529
updates

DB2 Information Center 699, 700
user exit programs

backups 286
logs 286

USERSPACE1 table space 33
utilities

invoking 91
running 91
support in an Object List 89, 96
support in the Administration Explorer 89, 96

utility management
Administration Explorer 89, 96
Object List 89, 96

utility throttling
details 609

V
validation

DB2 copies 546
value compression 614
vendoropt configuration parameter

cross-node recovery examples 323
views

merging by optimizer 557
predicate pushdown by optimizer 559

Visual Explain
appearance 109
constructs 106
diagramming access plans 106
explain data 109
nodes

appearance 109
purpose 106
running traces 106
setting preferences 109
special registers 106, 109
terminator 106
working directory 106

W
Windows

database partition additions 138
WITH DATA option

details 688

WLM_GET_SERVICE_SUBCLASS_STATS table function
examples

analyzing system slowdown 421
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table

function
examples

identifying long-running activities 422
workloads

examples
analyzing system slowdown 421

wrappers
description 655

X
XML column path indexes

altering tables 264
XML data

partitioned indexes 634
XML indexes

altering table 264
XML region indexes

altering table 264
XPATH statements

diagramming access plans 106
XQuery compiler

process details 553
XQuery statements

optimization configuration parameters 572
rewriting 556

722 Preparation Guide for DB2 10.1 Advanced DBA for Linux, UNIX, and Windows Exam 614

����

Printed in USA

SC27-5574-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.1

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Pr
ep

ar
at

io
n

Gu
id

e
fo

rD
B2

10
.1

Ad
va

nc
ed

DB
A

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ex
am

61
4

�
�

�

	Contents
	About this book
	Part 1. Database design
	Chapter 1. Automatic storage
	Databases use automatic storage by default

	Chapter 2. Table spaces
	Table spaces for system, user and temporary data
	Types of table spaces
	Automatic storage table spaces
	How automatic storage table spaces manage storage expansion
	Container names in automatic storage table spaces
	Converting table spaces to use automatic storage

	The table space high water mark
	Reclaimable storage
	File system caching configurations
	Extent sizes in table spaces
	Page, table and table space size
	Disk I/O efficiency and table space design
	Table spaces in a partitioned database environment
	Creating table spaces
	Creating temporary table spaces
	Defining initial table spaces on database creation

	Altering automatic storage table spaces
	Reclaiming unused storage in automatic storage table spaces
	Scenarios: Adding and removing storage with automatic storage table spaces
	Scenario: Adding a storage path and rebalancing automatic storage table spaces
	Scenario: Dropping a storage path and rebalancing automatic storage table spaces
	Scenario: Adding and removing storage paths and rebalancing automatic storage table spaces

	Monitoring a table space rebalance operation
	Table space states
	Switching table spaces from offline to online
	Dropping table spaces

	Chapter 3. Buffer pools
	Designing buffer pools
	Buffer pool hit ratios
	Buffer pool memory protection (AIX running on POWER6)
	Buffer pool monitoring in a DB2 pureScale environment
	Buffer pool hit rates and hit ratios in a DB2 pureScale environment
	Formulas for calculating buffer pool hit ratios
	Calculating buffer pool hit ratios in a DB2 pureScale environment

	Creating buffer pools
	Modifying buffer pools
	Dropping buffer pools

	Chapter 4. Storage groups
	Default storage groups
	Storage group and table space media attributes
	Creating storage groups
	Altering storage groups
	Adding storage paths
	Dropping storage paths
	Monitoring storage paths
	Replacing the paths of a storage group

	Renaming storage groups
	Dropping storage groups
	Associating a table space to a storage group
	Scenario: Moving a table space to a new storage group

	Chapter 5. Multi-temperature storage
	Chapter 6. IBM Data Studio
	Using IBM Data Studio for key tasks
	IBM Data Studio client
	IBM Data Studio web console

	Database administration with IBM Data Studio
	Administering databases with task assistants
	Database administration commands that you can run from task assistants

	Managing jobs in IBM Data Studio
	Creating and managing jobs
	Scenario: Creating and scheduling a job
	Importing tasks from DB2 Task Center

	Diagramming access plans with Visual Explain
	Diagrams of access plans
	Query blocks
	Setting preferences for Visual Explain

	Part 2. Data partitioning and clustering
	Chapter 7. Partitioned database environments
	Database partitioning across multiple database partitions
	Database partition groups
	Distribution maps
	Distribution keys
	Table collocation
	Partition compatibility

	Setting up partitioned database environments
	Adding database partition servers to an instance (Windows)
	Setting up multiple logical partitions
	Configuring multiple logical partitions
	Enabling inter-partition query parallelism
	Enabling intrapartition parallelism for queries

	Adding database partitions in partitioned database environments
	Adding an online database partition
	Restrictions when working online to add a database partition
	Adding a database partition offline (Linux and UNIX)
	Adding a database partition offline (Windows)
	Error recovery when adding database partitions

	Enabling communication between database partitions using FCM communications
	Managing database partitions
	Listing database partition servers in an instance (Windows)
	Eliminating duplicate entries from a list of machines in a partitioned database environment
	Specifying the list of machines in a partitioned database environment
	Changing the database configuration across multiple database partitions
	Adding containers to SMS table spaces on database partitions
	Using database partition expressions
	Changing database partitions (Windows)
	Redistributing data in a database partition group
	Issuing commands in partitioned database environments
	rah and db2_all commands overview
	rah and db2_all commands
	Specifying the rah and db2_all commands
	Running commands in parallel (Linux, UNIX)
	Monitoring rah processes (Linux, UNIX)
	Extension of the rah command to use tree logic (AIX and Solaris)
	rah and db2_all command prefix sequences
	Controlling the rah command
	Specifying which . files run with rah (Linux and UNIX)
	Setting the default environment profile for rah on Windows
	Determining problems with rah (Linux, UNIX)

	Dropping database partitions
	Dropping a database partition from an instance (Windows)

	Tables in partitioned database environments

	Redistributing data across database partitions
	Data redistribution
	Comparison of logged, recoverable redistribution and minimally logged, not roll-forward recoverable redistribution

	Determining if data redistribution is needed
	Prerequisites for data redistribution
	Log space requirements for data redistribution

	Restrictions on data redistribution
	Best practices for data redistribution
	Data redistribution mechanism
	Redistributing data across database partitions by using the REDISTRIBUTE DATABASE PARTITION GROUP command
	Redistributing database partition groups using the STEPWISE_REDISTRIBUTE_DBPG procedure
	Monitoring a data redistribution operation
	Redistribution event log files
	Recovery from errors related to data redistribution
	Examples of redistribute event log file entries

	Scenario: Redistributing data in new database partitions

	Chapter 8. Multidimensional clustering tables
	New insert time clustering tables
	Comparison of regular and MDC tables
	Block indexes for MDC tables
	Block indexes and query performance for MDC tables
	Maintaining clustering automatically during INSERT operations

	Block maps for MDC and ITC tables
	Updates to MDC and ITC tables
	Deleting from MDC and ITC tables
	Multidimensional and insert time clustering extent management
	Creating MDC or ITC tables
	Load for MDC and ITC tables
	Logging considerations for MDC and ITC tables
	Block indexes for MDC and ITC tables
	Choosing MDC table dimensions

	Scenario: MDC tables
	Scenario: Creating an ITC table
	Scenario: Converting an existing table to an ITC table

	Chapter 9. Partitioned tables
	Table partitioning keys
	Table partitioning and multidimensional clustering tables
	Optimization strategies for partitioned tables
	Partitioned materialized query table (MQT) behavior
	Large object behavior in partitioned tables
	Data partitions and ranges
	Adding data partitions to partitioned tables
	Attaching data partitions
	Guidelines for attaching data partitions to partitioned tables
	Conditions for matching a source table index with a target table partitioned index during ATTACH PARTITION

	Detaching data partitions
	Attributes of detached data partitions
	Data partition detach phases
	Asynchronous partition detach for data partitioned tables

	Dropping data partitions

	Creating partitioned tables
	Defining ranges on partitioned tables
	Placement of the data, index and long data of a data partition

	Altering partitioned tables
	Guidelines and restrictions on altering partitioned tables
	Special considerations for XML indexes when altering a table to ADD, ATTACH, or DETACH a partition
	Scenario: Rotating data in a partitioned table
	Scenarios: Rolling in and rolling out partitioned table data

	Migrating existing tables and views to partitioned tables
	Converting existing indexes to partitioned indexes

	Chapter 10. Range-clustered tables
	Guidelines for using range-clustered tables
	Scenarios: Range-clustered tables
	Restrictions on range-clustered tables

	Part 3. High Availability and Diagnostics
	Chapter 11. Developing a backup and recovery strategy
	Database logging
	Circular logging
	Archive logging
	Log control files

	Storage considerations for recovery
	Archived log file compression
	Backup and restore operations between different operating systems and hardware platforms
	Log stream merging and log file management in a DB2 pureScale environment
	Log sequence numbers in DB2 pureScale environments
	Including log files with a backup image
	Incremental backup and recovery
	Restoring from incremental backup images
	Limitations to automatic incremental restore

	Chapter 12. Backing up databases
	Performing a snapshot backup
	Using a split mirror as a backup image
	Using a split mirror as a backup image in a DB2 pureScale environment
	Backing up to tape
	Backing up to named pipes
	Backing up partitioned databases
	Backup and restore operations in a DB2 pureScale environment
	Enabling automatic backup
	Configuring an automated maintenance policy using SYSPROC.AUTOMAINT_SET_POLICY or SYSPROC.AUTOMAINT_SET_POLICYFILE

	Monitoring backup operations
	Optimizing backup performance
	Compatibility of online backup and other utilities

	Chapter 13. Recovering databases
	Optimizing recovery performance
	Recovering data using db2adutl
	Recovering a dropped table

	Chapter 14. Restoring databases
	Restoring from a snapshot backup image
	Using incremental restore in a test and production environment
	Performing a redirected restore operation
	Redefine table space containers by restoring a database using an automatically generated script
	Performing a redirected restore using an automatically generated script
	Cloning a production database using different storage group paths

	Database rebuild
	Database rebuild and table space containers
	Database rebuild and temporary table spaces
	Choosing a target image for database rebuild
	Rebuilding selected table spaces
	Rebuild and incremental backup images
	Rebuilding partitioned databases
	Restrictions for database rebuild
	Rebuild sessions - CLP examples

	Transporting database schemas
	Transportable objects
	Transport examples
	Troubleshooting: transporting schemas

	Monitoring the progress of restore operations
	Optimizing restore performance

	Chapter 15. Rolling forward databases
	Rollforward sessions - CLP examples
	Rolling forward changes in a table space
	Database rollforward operations in a DB2 pureScale environment
	Monitoring a rollforward operation

	Chapter 16. DB2 Workload Manager (WLM)
	Workload management concepts
	Phases of workload management
	Frequently asked questions about DB2 workload management
	Integration of AIX Workload Manager with DB2 workload management
	Integration of Linux workload management with DB2 workload management
	Workload management sample application
	Workload management scenarios
	Scenario: Investigating a workload-related system slowdown
	Scenario: Identifying activities that are taking too long to complete
	Scenario: How to cancel activities queued for more than an hour
	Scenario: Moving table spaces to different storage devices
	Additional scenarios

	DB2 workload management tutorial

	Chapter 17. High availability disaster recovery (HADR)
	High Availability Disaster Recovery (HADR) synchronization mode
	HADR multiple standby databases
	Restrictions for multiple standby databases
	Initializing HADR in multiple standby mode
	Enabling multiple standby mode on a preexisting HADR setup
	Modifications to a multiple standby database setup
	Database configuration for multiple HADR standby databases
	Rolling upgrades in HADR multiple standby mode
	High availability disaster recovery (HADR) monitoring in multiple standby mode
	Takeover in HADR multiple standby mode
	Scenario: Deploying an HADR multiple standby database setup
	Examples: Takeover in HADR multiple standby mode

	HADR reads on standby feature
	Enabling reads on standby
	Data concurrency on the active standby database
	Isolation level on the active standby database
	Replay-only window on the active standby database

	HADR delayed replay
	Recovering data by using HADR delayed replay

	Performing rolling updates in a DB2 High Availability Disaster Recovery (HADR) environment
	High availability disaster recovery (HADR) support
	System requirements for DB2 high availability disaster recovery (HADR)
	Installation and storage requirements for high availability disaster recovery (HADR)
	HADR and Network Address Translation (NAT) support
	Restrictions for High Availability Disaster Recovery (HADR)

	DB2 High availability disaster recovery (HADR) management
	DB2 High Availability Disaster Recovery (HADR) commands

	Initializing high availability disaster recovery (HADR)
	Initializing a standby database
	Using a split mirror as a standby database
	Using a split mirror as a standby database in a DB2 pureScale environment

	Database configuration for high availability disaster recovery (HADR)
	Setting the hadr_timeout and hadr_peer_window database configuration parameters
	Log archiving configuration for DB2 high availability disaster recovery (HADR)
	HADR log spooling
	Index logging and high availability disaster recovery (HADR)
	High availability disaster recovery (HADR) performance
	Cluster managers and high availability disaster recovery (HADR)

	Performing an HADR failover operation
	Switching database roles in high availability disaster recovery (HADR)
	Reintegrating a database after a takeover operation
	Monitoring high availability disaster recovery (HADR) environments
	Stopping DB2 High Availability Disaster Recovery (HADR)

	Chapter 18. Problem-determination tools
	DB2 diagnostic (db2diag) log files
	Interpretation of diagnostic log file entries
	Interpreting the informational record of the db2diag log files
	Setting the error capture level of the diagnostic log files

	First occurrence data capture information
	Collecting diagnosis information based on common outage problems
	First occurrence data capture configuration
	Data collected as part of FODC
	Automatic FODC data generation
	Monitor and audit facilities using First Occurrence Data Capture (FODC)

	db2ckbkp command
	db2cklog command
	Checking archive log files with the db2cklog tool

	db2ls command
	Listing DB2 database products installed on your system (Linux and UNIX)

	db2mtrk command
	Buffer pools memory allocation
	Example 1
	Example 2

	db2pd command
	Troubleshooting scripts

	db2val command
	Validating your DB2 copy

	db2dart command
	Comparison of INSPECT and db2dart

	Part 4. Performance and scalability
	Chapter 19. SQL and XQuery compiler
	Query rewriting methods and examples
	Compiler rewrite example: Operation merging
	Compiler rewrite example: Operation movement
	Compiler rewrite example: Operation movement - Predicate pushdown for combined SQL/XQuery statements
	Compiler rewrite example: Predicate translation
	Access plan optimization
	Optimization classes
	Choosing an optimization class
	Setting the optimization class

	Optimization profiles and guidelines
	Collecting accurate catalog statistics, including advanced statistics features
	Configuration parameters that affect query optimization

	Chapter 20. Memory allocation
	Database manager shared memory
	The FCM buffer pool and memory requirements
	Guidelines for tuning parameters that affect memory usage

	Chapter 21. Configuring memory and memory heaps
	Agent and process model configuration

	Chapter 22. Self-tuning memory
	Self-tuning memory configuration
	Enabling self-tuning memory
	Disabling self-tuning memory
	Determining which memory consumers are enabled for self tuning
	Self-tuning memory in partitioned database environments
	Using self-tuning memory in partitioned database environments

	Chapter 23. Automatic maintenance
	Maintenance windows

	Chapter 24. Automatic table and index maintenance
	Chapter 25. Automatic statistics collection
	Chapter 26. Configuration Advisor
	Tuning configuration parameters using the Configuration Advisor
	Example: Requesting configuration recommendations using the Configuration Advisor

	Chapter 27. Utility throttling
	Asynchronous index cleanup
	Asynchronous index cleanup for MDC tables

	Chapter 28. Data compression
	Table compression
	Value compression
	Row compression
	Classic row compression
	Adaptive compression
	Estimating storage savings offered by adaptive or classic row compression
	Creating a table that uses compression
	Enabling compression in an existing table
	Changing or disabling compression for a compressed table

	Compression dictionaries
	Table-level compression dictionary creation
	Impact of classic table reorganization on table-level compression dictionaries
	Multiple compression dictionaries for replication source tables

	Index compression
	Backup compression

	Chapter 29. Relational indexes
	Indexes on partitioned tables
	Relational index planning tips
	Relational index performance tips
	Online index defragmentation

	Chapter 30. Parallel processing for applications
	Intrapartition parallelism improvements
	Optimization strategies for intra-partition parallelism

	Part 5. Advanced concepts
	Chapter 31. Federated systems
	What is a data source?
	The federated database
	Wrappers and wrapper modules
	How you interact with a federated system
	The federated server
	Federated systems and DB2 pureScale
	Server options that affect federated databases
	Federated database query-compiler phases
	Federated database pushdown analysis
	Guidelines for determining where a federated query is evaluated
	Remote SQL generation and global optimization in federated databases
	Global analysis of federated database queries

	Chapter 32. IBM Replication solutions
	Replication tools
	Changes to the Replication Center in DB2 10.1

	Chapter 33. DB2 pureScale feature
	Extreme capacity
	Continuous availability
	Application transparency
	Getting started with the DB2 pureScale Feature
	Management of the DB2 pureScale Feature

	Chapter 34. DB2 audit facility
	Audit policies
	Storage and analysis of audit logs
	The EXECUTE category for auditing SQL statements

	Part 6. Appendixes
	Appendix A. DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

