IBM DB2 10.1
for Linux, UNIX, and Windows

Preparation Guide for DB2 10.1 DBA
for Linux, UNIX, and Windows Exam
611

Updated February, 2014

..lli

IBM DB2 10.1
for Linux, UNIX, and Windows

Preparation Guide for DB2 10.1 DBA
for Linux, UNIX, and Windows Exam
611

Updated February, 2014

..lli

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 1051.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
¢ To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/
order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book Ce e . Xiii
Who should use this book xii
Part 1. DB2 Server management. . . 1
Chapter 1. Instances . 3
Designing instances . .4
Default instance .5
Instance directory. . 6
Multiple instances (Linux, UNIX) .6
Multiple instances (Windows) .7
Creating instances . 8
Modifying instances . . .9
Updating the instance conﬁguratlon (Lmux
UNIX)9
Updating the mstance conflguratlon (Wmdows) 10
Auto-starting instances . . B |
Starting instances (Linux, UNIX) B]
Starting instances (Windows)12
Attaching to and detaching from instances 13
Working with instances on the same or different
DB2 copies . . N €
Stopping instances (Lmux UNIX) R
Stopping instances (Windows)15
Upgrading instances . . . 16
Upgrading DB2 Version 9. 5 or DBZ Versmn 9 7
instances16
Upgrading DB2 Versmn 9. 8 mstances R £
Dropping instances.19

Chapter 2. Configuring intances. . . . 21

Configuration parameters. . . VA
Configuring instances with database manager
configuration parameters. 22
Environment variables and the proﬁle regrstrles . .25
Profile registry locations and authorization
requirements26
Setting registry and enVlronment Varlables .. 027

Setting environment variables outside the profile
registries on Linux and UNIX operating systems . 29
Setting environment variables outside the profile

registries on Windows.29
Identifying the current instance.30
Setting variables at the instance level in a

partitioned database environment31

Chapter 3. Autonomic computing . . . 33

Automatic features33
Automatic maintenance34
Maintenance windows.35
Self-tuning memory36
Memory allocation . . . T 4
Self-tuning memory conf1gurat1on ... 40
Enabling self-tuning memory40

© Copyright IBM Corp. 2014

Disabling self-tuning memory . .41
Determining which memory consumers are
enabled for self tuning. . .42
Self-tuning memory in partltloned database
environments. .43
Using self-tuning memory in partltloned
database environments . . 45
Configuring memory and memory heaps . 46
Agent and process model configuration . . 48
Automatic storage . . 49
Databases use automatic storage by default . 49
Data compression .o . 49
Automatic database backup . . . 50
Automatic table and index maintenance . . 51
Automatic statistics collection . 52
Configuration Advisor. . . 57
Tuning configuration parameters usmg the
Configuration Advisor. . 57
Example: Requesting conﬁguratlon
recommendations using the Configuration
Adpvisor . 57
Utility throttling . . 59
Asynchronous index cleanup . .60
Asynchronous index cleanup for MDC tables . .6l
Chapter 4. IBM Data Studio . . 65
Managing jobs in IBM Data Studio . 65
Creating and managing jobs . . . 66
Scenario: Creating and scheduling a]ob . 67
Importing tasks from DB2 Task Center . 69
Diagramming access plans with Visual Explain 70
Diagrams of access plans . .72
Query blocks . . .73
Setting preferences for Vlsual Explam .73
Part 2. Client-to-server
communications.75
Chapter 5. Supported combinations of
clients, drivers and server levels . 79
Chapter 6. Communication protocols
supported . 81
Chapter 7. Supported LDAP client and
server configurations . 83
Chapter 8. Discovery of administration
servers, instances, and databases. . . 85
Discovering and hiding server instances and
databases . . 86
iii

Chapter 9. Configuring DB2 server

communications (TCP/IP). .. . 87
Updating the services file on the server for TCP / IP
communications 88
Updating the database manager conﬁguratlon f11e

on the server for TCP/IP communications 88

Setting communication protocols for a DB2 instance 89

Chapter 10. Configuring client-to-server

connections 91
Cataloging a Named Plpes node from a chent using

the CLP9
Updating hosts and services f11es for TCP / IP
connections . . .92
Cataloging a TCP/ IP node from a chent usmg the
CLP. . . . I ©
Cataloging a database Lo .94
Testing the client-to-server connectlon usmg the CLP 96
Exporting and importing a profile.97

Chapter 11. Conflgurlng LDAP
connections e e e e . 299

Cataloging an LDAPnode99
Registering DB2 servers99
Registering databases.101
Creating LDAP users. 101
Configuring LDAP users for DB2 apphcatlons .. 102
Setting DB2 registry variables at the user level in

the LDAP environment102
Deregistering DB2 servers 103
Deregistering the database from the LDAP

directory103

Chapter 12. Configuring IBM Data
Server Drivers 105

Copying existing database dlrectory information
into the db2dsdriver configuration file 105

Part 3. Physical design and
business rules implementation . . 107

Chapter 13. Databases 109

Designing databases109
Creating databases. 1o
Converting a nonautomatic storage database to use

automatic storage114

Chapter 14. Buffer pools. 117

Designing buffer pools 118
Buffer pool hit ratios 119
Buffer pool memory protectlon (AIX runnmg on

POWER6) . . . A B 1)
Creating buffer pools e . o . oo 120
Modifying buffer pools122
Dropping buffer pools123

Chapter 15. Table spaces 125

Table spaces for system, user and temporary data 127

Types of table spaces. 128
Automatic storage table spaces .o .o 129
How automatic storage table spaces manage
storage expansion 129
Container names in automatlc storage table
spaces.o 131
Converting table spaces to use automatlc
storage133
The table space hlgh Water mark oo 134
Reclaimable storage I [
File system caching conflguratlons oo 142
Extent sizes in table spaces. 144
Page, table and table space size 145
Disk I/0 efficiency and table space desrgn .. . 146
Table spaces in a partitioned database environment 148
Creating table spaces. . . B]
Creating temporary table spaces B 1574
Defining initial table spaces on database
creation 153
Altering automatic storage table spaces ... 154
Reclaiming unused storage in automatic storage
table spaces 155
Scenarios: Adding and removmg storage w1th
automatic storage table spaces. 157
Monitoring a table space rebalance operatron .. lo4
Table space states 164
Switching table spaces from ofﬂme to onhne . . 173
Dropping table spaces173

Chapter 16. Storage groups 175

Data management using multi-temperature storage 175

Default storage groups178
Creating storage groups.178
Altering storage groups179
Adding storage paths179
Dropping storage paths 180
Monitoring storage paths 181
Replacing the paths of a storage group ..o 181
Renaming storage groups N .72
Dropping storage groups 182
Storage group and table space medla attrlbutes . . 183
Associating a table space to a storage group . . 185
Scenario: Moving a table space to a new storage
group186

Chapter 17.Schemas 189

Designing schemas . . B 0]
Grouping objects by schema Lo ... 192
Schema name restrictions and recommendations 193

Creating schemas193

Dropping schemas.194

Chapter 18. Database objects 195

Soft invalidation of database objects. 195
Automatic revalidation of database objects . . . 196
Creating database object aliases 197
Creating and maintaining database objects . . . 198

Chapter19.Tables 201
Types of tables201

iv Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Designing tables . 203
Data types and table columns . 203
Generated columns . 205
Hidden columns . . 206
Auto numbering and 1dent1f1er columns . 207
Constraining column data with constraints,
defaults, and null settings . . . 208
Default column and data type def1n1t1ons . . 209
Ordering columns to minimize update logging 210
Space requirements for tables . .21
Table page sizes . . . 213
Space requirements for user table data . . 214
Storing LOBs inline in table rows. . 216
Table compression. . 218
Value compression . 219
Row compression . . 219
Classic row compression . 220
Adaptive compression . . 221
Estimating storage savings offered by adaptlve
or classic row compression . .o . 223
Creating a table that uses compression . . 224
Enabling compression in an existing table . . 226
Changing or disabling compression for a
compressed table . . 227
Compression dictionaries . . 228
Table-level compression d1ct1onary creatron . 229
Impact of classic table reorganization on
table-level compression dictionaries . . 231
Multiple compression dictionaries for rephcatlon
source tables .. 232
Table partitioning and data organ1zat10n schemes 232
Creating tables . . 233
Declaring temporary tables . 233
Creating and connecting to created temporary
tables . . 234
Distinctions between DBZ base tables and
temporary tables . 235
Altering tables . . 238
Adding and droppmg columns . 239
Modifying DEFAULT clause column def1n1t10ns 240
Modifying the generated or 1dent1ty property of
a column . . 240
Modifying column def1n1t1ons . . 241
Altering materialized query table propertles . . 242
Refreshing the data in a materialized query
table . . . 243
Renaming tables and columns . 243
Viewing table definitions . 244
Dropping tables . 244
Chapter 20. Time Travel Query using
temporal tables . 247
System-period temporal tables. . 248
History tables . 248
SYSTEM_TIME period .o . 249
Creating a system-period temporal table . 251
Inserting data into a system-period temporal
table . 253
Updating data in a system—penod temporal
table . . o . 254

Deleting data from a system-period temporal

table . 259
Querying system-perrod temporal data . 260
Setting the system time for a session . 263
Dropping a system-period temporal table . . 265
Utilities and tools . - . 266
Schema changes . . 269
Cursors and system-period temporal tables . 270
Table partitioning and system-period temporal
tables . . . 270
Data access control for system-perlod temporal
tables . . 271
Restrictions for system-perlod temporal tables 271
Application-period temporal tables . . 272
BUSINESS_TIME period. .. . 272
Creating an application-period temporal table 273
Inserting data into an application-period
temporal table . . 275
Updating data in an appl1cat10n—per10d
temporal table . . 276
Deleting data from an apphcatlon-penod
temporal table . . 280
Querying appl1cat10n—per1od temporal data . 281
Setting the application time for a session . . 283
Bitemporal tables . . 285
Creating a bitemporal table . 286
Inserting data into a bitemporal table . 288
Updating data in a bitemporal table . . 289
Deleting data from a bitemporal table . . 293
Querying bitemporal data . . 295
Chapter 21. Constraints . . 299
Types of constraints . . 299
NOT NULL constraints . . 300
Unique constraints . 300
Primary key constraints . . 301
(Table) Check constraints . 301
Designing check constraints . 301
Comparison of check constraints and BEFORE
triggers . . . 302
Foreign key (referent1al) constra1nts . . 303
Examples of interaction between triggers and
referential constraints. . 308
Informational constraints . . . 309
Designing informational constra1nts . 310
Creating and modifying constraints . . 312
Table constraint implications for utility operatlons 314
Statement dependencies when changing objects 315
Reuse of indexes with unique or primary key
constraints . . 316
Viewing constraint def1n1t10ns for a table . . 316
Dropping constraints . . 316
Chapter 22. Indexes . 319
Types of indexes . . 320
Indexes on partitioned tables . . . 322
Nonpartitioned indexes on partitioned tables 323
Partitioned indexes on partitioned tables . . 325
Designing indexes . . 329
Tools for designing 1ndexes . 332

Contents

A\

Space requirements for indexes 332

Index compression336
Creating indexes 338
Creating nonpartitioned 1ndexes on partltloned
tables G
Creating partltloned mdexes S ... 340
Modifying indexes342
Renaming indexes.342
Rebuilding indexes343
Dropping indexes2343

Chapter 23. Triggers 345

Types of triggers346
BEFORE triggers347
AFTER triggers.347
INSTEAD OF triggers348

Designing triggers. . . . 349
Specifying what makes a trlgger flre (trlggerlng
statement or event) . . . 351
Specifying when a trigger f1res (BEFORE
AFTER, and INSTEAD OF clauses) 352
Defining conditions for when trlgger action w111
fire (WHEN clause)355
Supported SQL PL statements in trlggers .. . 356
Accessing old and new column values in
triggers using transition variables 357
Referencing old and new table result sets usmg
transition tables 358

Creating triggers . . B o)

Modifying and dropplng trlggers Lo o236l

Examples of triggers and trigger use . . . 362
Examples of interaction between triggers and
referential constraints. 362
Examples of defining actions using trlggers .. 364
Example of defining business rules using
triggers 364
Example of preventlng operatlons on tables
using triggers365

Chapter 24. Sequences 367

Designing sequences . . . B (74
Managing sequence behav10r 368
Application performance and sequences . . . 369
Sequences compared to identity columns . . . 370

Creating sequences . . . BN V4 |
Generating sequential Values S .. 372
Determining when to use identity columns or
sequences . . e 32

Sequence Mod1f1cat10n G V£

Viewing sequence definitions 374

Dropping sequences37

Examples of how to code sequences 375

Sequence reference376

Chapter 25. Views 381

Designing views382
System catalog views.382
Views with the check option383
Deletable views385
Insertable views386

Updatable views . 386

Read-only views . 387
Creating views . . 387

Creating views that use user-deflned functlons

(UDFs) . . 388
Modifying typed views . . 389
Recovering inoperative views . . 389
Dropping views . 390
Chapter 26. Usage lists . . 391
Usage list memory considerations and Vahdatlon
dependencies . 392
Chapter 27. pureXML . . 395
Comparison of the XML model and the relatlonal
model . . . 397
XML data type . . 399
Creation of tables with XML Colurnns . . 399
Addition of XML columns to ex1st1ng tables . . 400
Inserting XML columns . . 401
Querying XML data . . 402

Comparison of methods for querylng XML data 402
Indexing XML data403
Updating XML data . . 405
XML data movement . . 406
pureXML tutorial . . 407
Part 4. Monitoring DB2 Activity 409
Chapter 28. Database monitoring . . 41
Monitoring DB2 Activity with table functions. . 411

Monitoring system information using table

functions . .41

Monitoring act1v1t1es us1ng table functlons . 412

Monitoring data objects using table functions 413

Monitoring locking using table functions . . 419

Monitoring system memory using table

functions . . 419

Other monitoring table functlons . 419

Interfaces that return monitor data in XML

documents . 420
Snapshot monitor . . 424

Access to system monltor data SYSMON

authority . . 425

Capturing database system snapshots by usmg

snapshot administrative views and table

functions . . 426

Capturing database system snapshot

information to a file using the

SNAP_WRITE_FILE stored procedure . . 428

Accessing database system snapshots using

snapshot table functions in SQL queries (with

file access) . 430

Snapshot monitor SQL Admlnlstratlve V1ews 431
Event monitors . . . 434

Types of events for Wthh event monltors

capture data. . . 435

Event monitors that wr1te to tables . . 440

Working with event monitors . . 440

Output options for event monitors . 441

vi Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Creating event monitors. 444
Creating event monitors that wr1te to tables .. 445
Logical data groups and event monitor output

tables 448
Enabling event monltor data Collect1on ... 448
Methods for accessing event monitor

information 450
Altering an event mon1tor o . 455

Reports generated using the MONREPORT module 456

Chapter 29. Monitoring DB2 workload
management environments 461

Real-time monitoring with table functions. . . . 461
Example: Using DB2 workload management
table functions 462
Example: Monitoring Current systern behav1or at
different levels 464
Historical monitoring with WLM event mon1tors 467
DB2 workload management monitoring data. . . 473
DB2 workload management stored procedures . . 475
Workload management table functions and
snapshot monitor integration 476
Monitoring metrics for DB2 workload management 477
Monitoring threshold violations 478
Collecting data for individual activities. 479

Chapter 30. Explain facility 483

Tuning SQL statements using the explain facility =~ 483
Explain tables and the organization of explain

information 485
Creating the explain tables S .. 487
Guidelines for capturing explain 1nf0rmat1on .. 488
Creating explain snapshots for dynamic SQL or
XQuery statements490
Creating explain snapshots for stat1c SQL or
XQuery statements 491
Guidelines for capturing section expla1n
information o049
Differences between sect1on expla1n and
EXPLAIN statement output . . . L. 492
Capturing and accessing section actuals .. 494
Analysis of section actuals information in
explain output N)
Guidelines for using explain 1nforrnat10n oL 499
Guidelines for analyzing explain information. . . 500
Tools for collecting and analyzing explain
information . . . R (0
SQL and XQuery explaln tool502
Description of db2expln output 503

Using access plans to self-diagnose performance
problems with REFRESH TABLE and SET
INTEGRITY statements503

Chapter 31. Problem-determination

tools - - . . .505
DB2 diagnostic (db2d1ag) log flles Lo . . 505
Interpretation of diagnostic log file entrles .. 506
Interpreting the informational record of the
db2diag log files509

Setting the error capture level of the diagnostic

log files510
First occurrence data capture 1nformat1on510
Collecting diagnosis information based on
common outage problems 511
First occurrence data capture conﬁguratlon . . 513
Data collected as part of FODC515
Automatic FODC data generation 521
Monitor and audit facilities using First
Occurrence Data Capture (FODC) 521
db2ls command . . . 522
Listing DB2 database products 1nstalled on your
system (Linux and UNIX)522
db2mtrk commandb524
Buffer pools memory allocat1onb24
Examplel54
Example254
db2pd command524
Troubleshooting scripts539
db2dart command.539
Comparison of INSPECT and db2dart539
db2val command . . YA
Validating your DB2 copy b42

Part 5. DB2 commands for
database administration 543

Chapter 32. Data movement options 545

Chapter 33. Load utility 549

Privileges and authorities required to use load . . 552
LOAD authorityb553
Loading datab53
Load sessions - CLP exarnples55
LBAC-protected data load considerations . . . 558
Identity column load considerations. 560
Generated column load considerations 562
Moving data using the CURSOR file type . . . 564
Refreshing dependent immediate materialized
query tables. boe7
MDC and ITC load c0n51derat10nsb568
Partitioned tables load considerations 569
Loading XML data52
Load in partitioned database env1r0nments . . .573
Loading data in a partitioned database
environment.57
Load sessions in a part1t10ned database
environment - CLP examples 580

Load features for maintaining referential 1ntegr1ty 583
Checking for integrity violations following a

load operation58
Table locking during load 0perat1ons586
Table space states during and after load
operations 587
Table states during and after load operat1ons 588
Load exception tables59%
Monitoring a load operation using the LIST
UTILITIES command 2L !

Contents Vil

Chapter 34. Ingest utility
Deciding where to run the ingest utility
Ingest-related tasks .
Creating the restart table
Ingesting data . .
Restarting a failed 1ngest operatlon .
Terminating a failed ingest operation
Ingest utility restrictions and limitations
Performance considerations for ingest operations
Code page considerations for the ingest utility
Ingest operations in a partitioned database
environment.
Sample ingest utility scrlpts .
Scenario: Processing a stream of flles w1th the
ingest utility. .o
Monitoring ingest operations .

Chapter 35. Import utility
Privileges and authorities required to use import
Importing data . .
Import sessions - CLP examples .
Typed table import considerations .o
LBAC-protected data import considerations .
Identity column import considerations .
Generated column import considerations .
LOB import considerations .
User-defined distinct types import
considerations . .
Client/server env1ronments and 1mport
Table locking modes supported by the 1mport
utility
Importing XML data .

Chapter 36. Export utility

Privileges and authorities required to use the

export utility

Exporting data . .
Export sessions - CLP examples .
LBAC-protected data export considerations
Table export considerations.
Typed table export considerations
Identity column export considerations .
LOB export considerations .

Exporting XML data .

Chapter 37. Comparison between the
ingest, import, and load utilities

Chapter 38. Additional DB2 resources

for data movement .

Copying schemas . .
Example of schema copy usmg the
ADMIN_COPY_SCHEMA procedure
Examples of schema copy by using the
db2move utility .o

Moving tables online by using the

ADMIN_MOVE_TABLE procedure .

Mimicking databases using db2look .

Converting non-Unicode databases to Unicode .

viii

. 593
. 594
. 595
. 596
. 597
. 604
. 606
. 606

608

. 609

. 611
. 612

. 612
. 613

. 615

617

. 618
. 620
. 622
. 625
. 626
. 628
. 629

. 630
. 630

. 631
. 632

. 633

. 634
. 634
. 635
. 636
. 636
. 637
. 640
. 640
. 641

. 645

. 647
. 647

. 649
. 649
. 650

. 654
. 657

Creating database duplicates . 658
Chapter 39. Data organization . 661
Table reorganization . . 661
Choosing a table reorgamzatlon method . 662
Classic (offline) table reorganization . . 665
Reorganizing tables offline . . . 666
Inplace (online) table reorganization. . 667
Reorganizing tables online . . 669
Monitoring a table reorganization . 670
Index reorganization . . 670
Locking and concurrency cons1derat10ns for
online index reorganization. .o . . 673
Monitoring an index reorganization operatlon 674
Determining when to reorganize tables and indexes 675
Costs of table and index reorganization. . 678
Reducing the need to reorganize tables and 1ndexes 680
Enabling automatic table and index reorganization 681
Enabling automatic index reorganization in volatile
tables . . 681
Chapter 40. Catalog statistics . 683
Catalog statistics tables . . 686
Catalog statistics views . . 686
Guidelines for collecting and updatmg statlstlcs 686
Detailed index statistics . . 688
Distribution statistics . . . 689
Optimizer use of dlstrlbutlon statlstlcs . . 691
Enabling automatic statistics collection . . 692
Collecting statistics using a statistics profile . 693
Storage used by automatic statistics collection
and profiling . 694
Automatic statistics collectlon act1v1ty loggmg 695
Improving query performance for large statistics
logs . . . 695
Collecting catalog statlstlcs . . 696
Collecting statistics on a sample of the data . . 697
Collecting index statistics . . 698
Collecting distribution statistics for spec1f1c
columns . . 698
Monitoring the progress of RUNSTATS operatlons 700
Minimizing RUNSTATS impact . . 701
Recompiling a query after configuration changes 701
Avoiding manual updates to the catalog statistics 702
Chapter 41. Binding embedded SQL
packages to a database . . 703
Effect of DYNAMICRULES bind option on
dynamic SQL o . 703
Bind considerations . . 705
Performance improvements when usmg REOPT
option of the BIND command . . . 706
Binding applications with the BIND command .. 707
Rebinding existing packages with the REBIND
command e . 707
Binding utilities to the database . . . 708
Binding applications and utilities (DB2 Connect
server). . . 709

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 42. Design Advisor 713

Defining a workload for the Design Advisor . . . 716
Design Advisor limitations and restrictions . . . 718

Part 6. High availability 721

Chapter 43. Data recovery 723

Crash recovery723
Recovering damaged table spaces72
Recovering from transaction failures in a
partitioned database environment 725

Disaster recovery729

Version recovery730

Rollforward recovery.730

Chapter 44. Developing a backup and
recovery strategy. 735

Deciding how often to back up737
Storage considerations for recovery 739
Backup compression740
Archived log file compression. . . . 740
Backup and restore operations between dlfferent
operating systems and hardware platforms . . . 741
Log stream merging and log file management in a
DB2 pureScale environment L7438
Log sequence numbers in DB2 pureScale
environments 747
Including log files with a backup 1mage .. T747
Incremental backup and recovery. 748
Restoring from incremental backup 1rnages . . 750
Limitations to automatic incremental restore . . 752

Chapter 45. BACKUP DATABASE
command.755
Privileges, authorities, and authorization required

touse backup757
Backing up data . . . N 674
Performing a snapshot backup ..U 759
Using a split mirror as a backup image. . . . 761
Using a split mirror as a backup image in a DB2
pureScale environment762
Backingup totape763
Backing up to named pipes.765
Backing up partitioned databases. . . . 766
Backup and restore operatlons in a DB2 pureScale
environment. . . . Lo Te7
Enabling automatic backup o . 772

Configuring an automated rnalntenance pohcy

using SYSPROC.AUTOMAINT_SET_POLICY or

SYSPROC.AUTOMAINT_SET_POLICYFILE . . 773
Monitoring backup operations. 774
Optimizing backup performance 774
Compatibility of online backup and other ut1ht1es 775

Chapter 46. RECOVER DATABASE
command N 4°)
Privileges, authorities, and authorlzatron required

to use recover77
Recovering data780

Optimizing recovery performance 780

Chapter 47. RESTORE DATABASE
command.78
Privileges, authorities, and authorization required

to use restore . . . 4
Implications for restorlng databases 784
Using restore 786
Restoring from a snapshot backup 1mage ... 789
Restoring to an existing database. 790
Restoring to a new database791
Using incremental restore in a test and
production environment.791
Performing a redirected restore operation 793

Redefine table space containers by restoring a
database using an automatically generated

script 0797
Performing a red1rected restore usmg an
automatically generated script. 799
Cloning a production database using drfferent
storage group paths800
Database rebuildo.o.o8n
Database rebuild and table space contalners .. 805

Database rebuild and temporary table spaces 806
Choosing a target image for database rebuild 806

Rebuilding selected table spaces 810
Rebuild and incremental backup images . . . 811
Rebuilding partitioned databases. 812
Restrictions for database rebuild 813
Rebuild sessions - CLP examples. 814
Database schema transporting. 822
Transportable objects.824
Transport examples 826
Troubleshooting: transporting schemas ... 828
Monitoring the progress of restore operations . . 829
Optimizing restore performance 829

Chapter 48. ROLLFORWARD
DATABASE command. 831

Authorization required for rollfforward 832

Using rollforward83
Rollforward sessions - CLP examples 834
Rolling forward changes in a table space . . . 838

Database rollforward operations in a DB2

pureScale environment842

Monitoring a rollforward operation 844

Chapter 49. High availability disaster

recovery (HADR) 847
High Availability D1saster Recovery (HADR)
synchronization mode . . B
HADR multiple standby databases S . . 853
Restrictions for multiple standby databases . . 854

Initializing HADR in multiple standby mode 854
Enabling multiple standby mode on a

preexisting HADR setup. . . . 856
Modifications to a multiple standby database

setup 858
Database conflguratlon for rnultlple HADR
standby databases.859

Contents 1X

Rolling upgrades in HADR multiple standby
mode . . .
High ava1lab1llty dlsaster recovery (HADR)
monitoring in multiple standby mode .
Takeover in HADR multiple standby mode
Scenario: Deploying an HADR multiple standby
database setup . .

Examples: Takeover in HADR mult1ple standby

mode . . .o .
HADR reads on standby feature .

Enabling reads on standby .

Data concurrency on the active standby

database .

HADR delayed replay
Recovering data by using HADR delayed replay

Performing rolling updates in a DB2 High

Availability Disaster Recovery (HADR)

environment.

High availability dlsaster recovery (HADR)

support
System requlrements for DB2 hrgh avarlab1lrty
disaster recovery (HADR) .

Installation and storage requirements for h1gh
availability disaster recovery (HADR) .

HADR and Network Address Translation (NAT)
support

Restrictions for H1gh Ava1lab1l1ty D1saster
Recovery (HADR) . .

DB2 High availability disaster recovery (HADR)

management .
DB2 High Ava1lab1l1ty D1saster Recovery
(HADR) commands

Initializing high availability drsaster recovery

(HADR) . .

Initializing a standby database .

Using a split mirror as a standby database
Using a split mirror as a standby database in a
DB2 pureScale environment . .

Database configuration for high avallablllty

disaster recovery (HADR) .

Setting the hadr_timeout and
hadr_peer_window database conﬁguration
parameters . .

Log archiving confrguratron for DBZ hrgh
availability disaster recovery (HADR) .
HADR log spooling .

Index logging and high avallablllty d1saster
recovery (HADR) .

High availability disaster recovery (HADR)
performance.

Cluster managers and hlgh ava1lab1llty dlsaster
recovery (HADR) . .

Performing an HADR failover operat1on

Switching database roles in high availability

disaster recovery (HADR) .

Reintegrating a database after a takeover operatron

Monitoring high availability disaster recovery

(HADR) environments .

Stopping DB2 High Avarlabrlrty Dlsaster Recovery

(HADR) .

. 861

. 862
. 865

. 866

. 871

. 876
. 876

. 877

. 881
882

. 884

. 887

. 887

. 889

. 890
. 891
. 892
. 892
. 894
. 897
. 897
. 900

. 903

. 911

. 912
. 914

. 914

. 915

. 918
. 919

. 921

922

. 923

. 925

Chapter 50. DB2 high availability
instance configuration utility

(db2haicu). e e .. . 927
Startup mode928
Maintenance mode929
Prerequisites. . . o0 0929
Configuring a clustered env1ronrnent ..o .. .930
Restrictions for db2haicu931
Running db2haicu interactively933
Running db2haicu with an XML input ﬁle ... 934
Input file XML schema (DBZClusterType) .. 934
Sample XML input files 937
Part 7. Security. . 943
Chapter 51. DB2 security model . 945
Chapter 52. Authentication methods
for your server. . 947
Chapter 53. Authorization, privileges,
and object ownership . . 953

Chapter 54. Default privileges granted

on creating a database . 959
Chapter 55. Granting privileges. . 961
Chapter 56. Revoking privileges . 963

Chapter 57. Controlling access to data

with views. . 965
Chapter 58. Roles . . 969
Roles compared to groups970
Chapter 59. Trusted contexts and
trusted connections 973
Using trusted contexts and trusted connections . . 975
Chapter 60. Row and column access
control (RCAC). . . . 979
Row and column access control (RCAQ) rules .. 980
Scenario: ExampleHMO using row and column
accesscontrol980
Security policies980
Database users and roles 981
Database tables.982
Security administration984
Row permissions98
Columnmasks.986
Inserting data987
Updating data987
Readingdata988
Creating views99
Secure functions91

X Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Secure triggers .
Revoking authority

Chapter 61. Label-based access
control (LBAC).

LBAC security pohc1es

LBAC security label components

LBAC security labels .

Format for security label values . .
How LBAC security labels are compared .
LBAC rule sets

LBAC rule set: DB2LBACRULES

LBAC rule exemptions .

Built-in functions for managing LBAC securlty

labels. . .

Protection of data usrng LBAC .

Reading LBAC protected data

Inserting LBAC protected data .

Updating LBAC protected data . .
Deleting or dropping LBAC protected data .
Removing LBAC protection from data.

Chapter 62. DB2 audit faclllty

Audit policies .
Storage and analysis of audlt logs .

. 992
. 993

. 995

. 997
. 998
. 999

. 1001
. 1001
. 1002
. 1003
. 1007

. 1008
. 1009
. 1010
. 1013
. 1015
. 1020
. 1023

. 1025
. 1027
. 1031

The EXECUTE category for audltlng SQL

statements . . 1034
Part 8. Appendixes . 1039
Appendix A. Overview of the DB2
technical information . 1041
DB2 technical library in hardcopy or PDF format 1041
Displaying SQL state help from the command line
processor . . 1044
Accessing different versions of the DB2
Information Center . . 1044
Updating the DB2 Informatlon Center 1nstalled on
your computer or intranet server . 1044
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 1046
DB2 tutorials . . . 1048
DB2 troubleshooting 1nformat10n . 1048
Terms and conditions . 1048
Appendix B. Notices . . 1051
Index . 1055
Contents X1

X11 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

About this book

This book provides information from the DB2® for Linux, UNIX, and Windows
documentation to cover all the objectives that are described in the DB2 10.1 DBA
for Linux, UNIX, and Windows Exam 611.

 Part1, “DB2 Server management,” on page 1 provides information about how to
configure and manage DB2 servers, instances, and databases, how to use
autonomic features, and how to schedule jobs and use visual explain with IBM®
Data Studio.

 Part 2, “Client-to-server communications,” on page 75 provides information
about clients, types of clients, how to configure communication protocols and
clients, how to establish database connections, and how to use LDAP for
authentication.

* DPart 3, “Physical design and business rules implementation,” on page 107
provides information about defining database objects such as tables and views,
and implementing business rules by using table constraints, views, and triggers.
Also, it provides information about new capabilities for tables such as temporal
tables and the multi-temperature storage.

* Part 4, “Monitoring DB2 Activity,” on page 409 provides information about tasks
that are associated with examining the operational status of your database,
interfaces for database and workload monitoring, and tools for obtaining
information about access plans and troubleshooting problems.

¢ Part5, “DB2 commands for database administration,” on page 543 provides
information about DB2 commands for performing administration tasks such as
moving data, organizing data, collecting catalog statistics, and binding
applications.

* Part 6, “High availability,” on page 721 provides information about data
integrity actions, how to back up databases and table spaces, how to use HADR
and its new capabilities, and high availability characteristics in DB2 pureScale®
environments.

* Part7, “Security,” on page 943 provides information about the DB2 security
model, authorization, authorities, privileges, roles, trusted contexts, label-based
access control (LBAC), row and column access control (RCAC), and the DB2
audit facility.

Passing the DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611 is one of the
requirements to obtain the IBM Certified Database Administrator - DB2 10.1 for Linux,
UNIX, and Windows certification. For complete details about this certification and
its requirements, visit http://www.ibm.com/certify/certs/08002107.shtml.

Who should use this book

This book is for database administrators and other DB2 database users with
intermediate to advanced administration skills who want to prepare for the
certification Exam 611. For complete details about the exam, visit

http:/ /www.ibm.com/ certify/tests/ovr611.shtml.

© Copyright IBM Corp. 2014 xiii

http://www.ibm.com/certify/certs/08002107.shtml
http://www.ibm.com/certify/tests/ovr611.shtml

xiv Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 1. DB2 Server management

DB2 Server management provides information about how to configure and manage
DB2 servers, instances, and databases, how to use autonomic features, and how to
schedule jobs and use visual explain with IBM Data Studio.

A data server refers to a computer where the DB2 database engine is installed. The
DB2 engine is a full-function, robust database management system that includes
optimized SQL support based on actual database usage and tools to help manage
the data.

IBM offers a number data server products, including data server clients that can
access all the various data servers. For a complete list of DB2 data server products,
features available, and detailed descriptions and specifications, visit the product
page at the following URL: http:/ /www.ibm.com/software/data/db2/linux-unix-
windows/.

© Copyright IBM Corp. 2014 1

http://www.ibm.com/software/data/db2/linux-unix-windows/
http://www.ibm.com/software/data/db2/linux-unix-windows/

2 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 1. Instances

An instance is a logical database manager environment where you catalog
databases and set configuration parameters. Depending on your needs, you can
create more than one instance on the same physical server providing a unique
database server environment for each instance.

Note: For non-root installations on Linux and UNIX operating systems, a single
instance is created during the installation of your DB2 product. Additional
instances cannot be created.

You can use multiple instances to do the following:

* Use one instance for a development environment and another instance for a
production environment.

¢ Tune an instance for a particular environment.
e Restrict access to sensitive information.

* Control the assignment of SYSADM, SYSCTRL, and SYSMAINT authority for
each instance.

¢ Optimize the database manager configuration for each instance.

* Limit the impact of an instance failure. In the event of an instance failure, only
one instance is affected. Other instances can continue to function normally.

Multiple instances will require:
* Additional system resources (virtual memory and disk space) for each instance.
* More administration because of the additional instances to manage.

The instance directory stores all information that pertains to a database instance.
You cannot change the location of the instance directory once it is created. The
directory contains:

* The database manager configuration file

* The system database directory

* The node directory

* The node configuration file (db2nodes.cfg)

¢ Any other files that contain debugging information, such as the exception or
register dump or the call stack for the DB2 database processes.

Terminology:

Bit-width
The number of bits used to address virtual memory: 32-bit and 64-bit are
the most common. This term might be used to refer to the bit-width of an
instance, application code, external routine code. 32-bit application means
the same things as 32-bit width application.

32-bit DB2 instance
A DB2 instance that contains all 32-bit binaries including 32-bit shared
libraries and executables.

64-bit DB2 instance
A DB2 instance that contains 64-bit shared libraries and executables, and

© Copyright IBM Corp. 2014

also all 32-bit client application libraries (included for both client and
server), and 32-bit external routine support (included only on a server
instance).

Designing instances

DB2 databases are created within DB2 instances on the database server. The
creation of multiple instances on the same physical server provides a unique
database server environment for each instance.

For example, you can maintain a test environment and a production environment
on the same computer, or you can create an instance for each application and then
fine-tune each instance specifically for the application it will service, or, to protect
sensitive data, you can have your payroll database stored in its own instance so
that owners of other instances (on the same server) cannot see payroll data.

The installation process creates a default DB2 instance, which is defined by the
DB2INSTANCE environment variable. This is the instance that is used for most
operations. However, instances can be created (or dropped) after installation.

When determining and designing the instances for your environment, note that
each instance controls access to one or more databases. Every database within an
instance is assigned a unique name, has its own set of system catalog tables (which
are used to keep track of objects that are created within the database), and has its
own configuration file. Each database also has its own set of grantable authorities
and privileges that govern how users interact with the data and database objects
stored in it. Figure 1 shows the hierarchical relationship among systems, instances,
and databases.

Data server (DB_SERVER)

Instance 1 (DB2_DEV) Instance 2 (DB2_PROD)
Database 1 Database 1
(PAYABLE) (PAYABLE)
Database 2 Database 2
(RECEIVABLE) (RECEIVABLE)

Database manager Database manager
Configuration file 1 Configuration file 2

. Database manager P
4 program files -

Figure 1. Hierarchical relationship among DB2 systems, instances, and databases

4 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You also must be aware of another particular type of instance called the DB2
administration server (DAS). The DAS is a special DB2 administration control point
used to assist with the administration tasks only on other DB2 servers. A DAS
must be running if you want to use the Client Configuration Assistant to discover
the remote databases or the graphical tools that come with the DB2 product, for
example, the IBM Data Studio. There is only one DAS in a DB2 database server,
even when there are multiple instances.

Important: The DB2 Administration Server (DAS) has been deprecated in Version
9.7 and might be removed in a future release. The DAS is not supported in DB2
pureScale environments. Use software programs that use the Secure Shell protocol
for remote administration. For more information, see “ DB2 administration server
(DAS) has been deprecated” at .

Once your instances are created, you can attach to any other instance available
(including instances on other systems). Once attached, you can perform
maintenance and utility tasks that can only be done at the instance level, for
example, create a database, force applications off a database, monitor database
activity, or change the contents of the database manager configuration file that is
associated with that particular instance.

Default instance

As part of your DB2 installation procedure, you can create an initial instance of the
database manager. The default name is DB2_01 in Version 9.5 or later releases.

On Linux and UNIX, the initial instance can be called anything you want within
the naming rules guidelines. The instance name is used to set up the directory
structure.

To support the immediate use of this instance, the following registry variables are
set during installation:

* The environment variable DB2INSTANCE is set to DB2_01.
* The registry variable DB2INSTDEF is set to DB2_01.

These settings establish “DB2” as the default instance. You can change the instance
that is used by default, but first you have to create an additional instance.

Before using the database manager, the database environment for each user must
be updated so that it can access an instance and run the DB2 database programs.
This applies to all users (including administrative users).

On Linux and UNIX operating systems, sample script files are provided to help
you set the database environment. The files are: db2profile for Bourne or Korn
shell, and db2cshrc for C shell. These scripts are located in the sq11ib subdirectory
under the home directory of the instance owner. The instance owner or any user
belonging to the instance's SYSADM group can customize the script for all users of
an instance. Use sqllib/userprofile and sqllib/usercshrc to customize a script
for each user.

The blank files sq11ib/userprofile and sqllib/usercshrc are created during
instance creation to allow you to add your own instance environment settings. The
db2profile and db2cshrc files are overwritten during an instance update in a DB2
fix pack installation. If you do not want the new environment settings in the
db2profile or db2cshrc scripts, you can override them using the corresponding
user script, which is called at the end of the db2profile or db2cshrc script. During

Chapter 1. Instances 5

an instance upgrade (using the db2iupgrade command), the user scripts are copied
over so that your environment modifications will still be in use.

The sample script contains statements to:

* Update a user's PATH by adding the following directories to the existing search
path: the bin, adm, and misc subdirectories under the sq11ib subdirectory of the
instance owner's home directory.

e Set the DB2INSTANCE environment variable to the instance name.

Instance directory

The instance directory stores all information that pertains to a database instance.
The location of the instance directory cannot be changed after it is created.

The instance directory contains:

e The database manager configuration file

* The system database directory

* The node directory

¢ The node configuration file (db2nodes.cfg)

¢ Other files that contain debugging information, such as the exception or register
dump or the call stack for the DB2 processes.

On Linux and UNIX operating systems, the instance directory is located in the
INSTHOME/sq11ib directory, where INSTHOME is the home directory of the instance
owner. The default instance can be called anything you want within the naming
rules guidelines.

On Windows operating systems, the instance directory is located under the
/sq11ib directory where the DB2 database product was installed. The instance
name is the same as the name of the service, so it should not conflict. No instance
name should be the same as another service name. You must have the correct
authorization to create a service.

In a partitioned database environment, the instance directory is shared between all
database partition servers belonging to the instance. Therefore, the instance
directory must be created on a network share drive that all computers in the
instance can access.

db2nodes.cfg

The db2nodes.cfg file is used to define the database partition servers that
participate in a DB2 instance. The db2nodes.cfg file is also used to specify the IP
address or host name of a high-speed interconnect, if you want to use a high-speed
interconnect for database partition server communication.

Multiple instances (Linux, UNIX)

It is possible to have more than one instance on a Linux or UNIX operating system
if the DB2 product was installed with root privileges. Although each instance runs
simultaneously, each is independent. Therefore, you can only work within one
instance of the database manager at a time.

6 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note: To prevent environmental conflicts between two or more instances, you
should ensure that each instance has its own home directory. Errors will be
returned when the home directory is shared. Each home directory can be in the
same or a different file system.

The instance owner and the group that is the System Administration (SYSADM)
group are associated with every instance. The instance owner and the SYSADM
group are assigned during the process of creating the instance. One user ID or
username can be used for only one instance, and that user ID or username is also
referred to as the instance owner.

Each instance owner must have a unique home directory. All of the configuration
files necessary to run the instance are created in the home directory of the instance
owner's user ID or username. If it becomes necessary to remove the instance
owner's user ID or username from the system, you could potentially lose files
associated with the instance and lose access to data stored in this instance. For this
reason, you should dedicate an instance owner user ID or username to be used
exclusively to run the database manager.

The primary group of the instance owner is also important. This primary group
automatically becomes the system administration group for the instance and gains
SYSADM authority over the instance. Other user IDs or usernames that are
members of the primary group of the instance owner also gain this level of
authority. For this reason, you might want to assign the instance owner's user ID
or username to a primary group that is reserved for the administration of
instances. (Also, ensure that you assign a primary group to the instance owner
user ID or username; otherwise, the system-default primary group is used.)

If you already have a group that you want to make the system administration
group for the instance, you can assign this group as the primary group when you
create the instance owner user ID or username. To give other users administration
authority on the instance, add them to the group that is assigned as the system
administration group.

To separate SYSADM authority between instances, ensure that each instance owner
user ID or username uses a different primary group. However, if you choose to
have a common SYSADM authority over multiple instances, you can use the same
primary group for multiple instances.

Multiple instances (Windows)

It is possible to run multiple instances of the DB2 database manager on the same
computer. Each instance of the database manager maintains its own databases and
has its own database manager configuration parameters.

Note: The instances can also belong to different DB2 copies on a computer that
can be at different levels of the database manager. If you are running a 64-bit
Windows system, you can install 32-bit DB2, or 64-bit DB2 but they cannot co-exist
on the same machine.

An instance of the database manager consists of the following:

* A Windows service that represents the instance. The name of the service is same
as the instance name. The display name of the service (from the Services panel)
is the instance name, prefixed with the “DB2 - ” string. For example, for an
instance named “DB2”, there exists a Windows service called “DB2” with a
display name of “DB2 - DB2 Copy Name - DB2".

Chapter 1. Instances 7

Note: A Windows service is not created for client instances.

* An instance directory. This directory contains the database manager
configuration files, the system database directory, the node directory, the
Database Connection Services (DCS) directory, all the diagnostic log and dump
files that are associated with the instance. The instance directory varies from
edition to edition of the Windows family of operating systems; to verify the
default directory on Windows, check the setting of the DB2INSTPROF environment
variable using the command db2set DB2INSTPROF. You can also change the
default instance directory by changing the DB2INSTPROF environment
variable. For example, to set it to c:\DB2PROFS:

— Set DB2INSTPROF to c:\DB2PROFS using the db2set.exe -g command
— Run DB2ICRT.exe command to create the instance.
* When you create an instance on Windows operating systems, the default

locations for user data files, such as instance directories and the db2c1i.ini file,

are the following directories:

— On the Windows XP and Windows 2003 operating systems: Documents and
Settings\A11 Users\Application Data\IBM\DB2\Copy Name

— On the Windows 2008 and Windows Vista (and later) operating system:
Program Data\IBM\DB2\Copy Name

where Copy Name represents the DB2 copy name.

Note: The location of the db2c1i.ini file might change based on whether the
Microsoft ODBC Driver Manager is used, the type of data source names (DSN)
used, the type of client or driver being installed, and whether the registry
variable DB2CLIINIPATH is set.

Creating instances

Although an instance is created as part of the installation of the database manager,
your business needs might require you to create additional instances.

Before you begin

If you belong to the Administrative group on Windows, or you have root user
authority on Linux or UNIX operating systems, you can add additional instances.
The computer where you add the instance becomes the instance-owning computer
(node zero). Ensure that you add instances on a computer where a DB2
administration server resides. Instance IDs should not be root or have password
expired.

Restrictions

* On Linux and UNIX operating systems, additional instances cannot be created
for non-root installations.

* If existing user IDs are used to create DB2 instances, make sure that the user
IDs:

— Are not locked
— Do not have expired passwords

Procedure

To add an instance using the command line:

8 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Enter the command: db2icrt instance name.
When creating instance on an AIX® server, you must provide the fenced user id,
for example:

DB2DIR/instance/db2icrt -u db2fencl db2instl

When using the db2icrt command to add another DB2 instance, you should
provide the login name of the instance owner and optionally specify the
authentication type of the instance. The authentication type applies to all databases
created under that instance. The authentication type is a statement of where the
authenticating of users will take place.

You can change the location of the instance directory from DB2PATH using the
DB2INSTPROF environment variable. You require write-access for the instance
directory. If you want the directories created in a path other than DB2PATH, you
have to set DB2INSTPROF before entering the db2icrt command.

For DB2 Enterprise Server Edition (ESE), you also must declare that you are
adding a new instance that is a partitioned database system. In addition, when
working with a ESE instance having more than one database partition, and
working with Fast Communication Manager (FCM), you can have multiple
connections between database partitions by defining more TCP/IP ports when
creating the instance.

For example, for Windows operating systems, use the db2icrt command with the
-r port_range parameter. The port range is shown as follows, where the base_port is
the first port that can be used by FCM, and the end_port is the last port in a range
of port numbers that can be used by FCM:

-r:base_port,end port

Modifying instances

Instances are designed to be as independent as possible from the effects of
subsequent installation and removal of products. On Linux and UNIX, you can
update instances after the installation or removal of executables or components. On
Windows, you run the db2iupdt command.

In most cases, existing instances automatically inherit or lose access to the function
of the product being installed or removed. However, if certain executables or
components are installed or removed, existing instances do not automatically
inherit the new system configuration parameters or gain access to all the additional
function. The instance must be updated.

If the database manager is updated by installing a Program Temporary Fix (PTF)
or a patch, all the existing database instances should be updated using the
db2iupdt command (root installations) or the db2nrupdt command (non-root
installations).

You should ensure you understand the instances and database partition servers
you have in an instance before attempting to change or delete an instance.

Updating the instance configuration (Linux, UNIX)

To update the configuration for root instances on Linux or UNIX operating
systems, use the db2iupdt command. To update non-root instances, run the
db2nrupdt command.

Chapter 1. Instances 9

About this task

Running the db2iupdt command updates the specified instance by performing the
following:

* Replaces the files in the sq11ib subdirectory under the home directory of the
instance owner.

* If the node type has changed, then a new database manager configuration file is
created. This is done by merging relevant values from the existing database
manager configuration file with the default database manager configuration file
for the new node type. If a new database manager configuration file is created,
the old file is backed up to the backup subdirectory of the sq11ib subdirectory
under the home directory of the instance owner.

The db2iupdt command is located in the DBZDIR/instance directory, where DB2DIR
is the location where the current version of the DB2 database product is installed.

Restrictions
This task applies to root instances only.
Procedure

To update an instance from the command line, enter:
db2iupdt InstName

The InstName is the login name of the instance owner.

Example

e If you installed DB2 Workgroup Server Edition or DB2 Enterprise Server
Edition after the instance was created, enter the following command to update
that instance:

db2iupdt -u db2fencl db2instl

« If you installed the DB2 Connect " Enterprise Edition after creating the instance,
you can use the instance name as the Fenced ID also:

db2iupdt -u db2instl db2instl
* To update client instances, invoke the following command:
db2iupdt db2instl

Updating the instance configuration (Windows)

To update the instance configuration on Windows, use the db2iupdt command.
About this task

Running the db2iupdt command updates the specified instance by performing the
following:

* Replaces the files in the sq11ib subdirectory under the home directory of the
instance owner.

* If the node type is changed, then a new database manager configuration file is
created. This is done by merging relevant values from the existing database
manager configuration file with the default database manager configuration file
for the new node type. If a new database manager configuration file is created,
the old file is backed up to the backup subdirectory of the sq11ib subdirectory
under the home directory of the instance owner.

10 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The db2iupdt command is found in \sq11ib\bin directory.
Procedure

To update the instance configuration, issue the db2iupdt command. For example:
db2iupdt InstName

The InstName is the login name of the instance owner.
There are other optional parameters associated with this command:

/h: hostname
Overrides the default TCP/IP host name if there are one or more TCP/IP host
names for the current computer.

/p: instance-profile-path
Specifies the new instance profile path for the updated instance.

/r: baseport,endport
Specifies the range of TCP/IP ports used by the partitioned database instance
when running with multiple database partitions.

/u: username,password
Specifies the account name and password for the DB2 service.

Auto-starting instances

You can enable instances to start automatically after each system restart. The steps
necessary to accomplish this task differ by operating system.

About this task

On Windows operating systems, the database instance that is created during
installation is set as auto-started by default.

On Linux, UNIX and Windows operating systems, an instance created by using
db2icrt is set as a manual start.

Procedure

To configure an instance to start automatically:

* On Windows operating systems, you must go to the Services panel and change
the property of the DB2 service there.

* On Linux and UNIX operating systems, perform the following steps:

1. Verify that the instance's startAtBoot global registry field value is set to 1 by
checking the output of the following command:

db2greg -getinstrec instancename='<instance name>'

If the startAtBoot global registry field value is not set to 1, set the value to 1
by running the following command:

db2greg -updinstrec instancename='<instance name>'!startatboot=1

2. Enable the instance to auto-start after each system restart, by running the
following command:

db2iauto -on <instance name>

where instance_name is the login name of the instance.

Chapter 1. Instances 11

Starting instances (Linux, UNIX)

You might need to start or stop a DB2 database during normal business operations.
For example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access host databases.

Before you begin

Before you start an instance on your Linux or UNIX operating system:

1. Log in with a user ID or name that has SYSADM, SYSCTRL, or SYSMAINT
authority on the instance; or log in as the instance owner.

2. Run the startup script as follows, where INSTHOME is the home directory of
the instance you want to use:

. INSTHOME/sq11ib/db2profile (for Bourne or Korn shell)
source INSTHOME/sql1lib/db2cshrc (for C shell)

Procedure

To start the instance:
e From the command line, enter the db2start command. The DB2 database
manager applies the command to the current instance.

* From IBM Data Studio, open the task assistant for starting the instance. For
more information, see IBM Data Studio: Administering databases with task
assistants.

Starting instances (Windows)

You might need to start or stop a DB2 instance during normal business operations.
For example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access a host database.

Before you begin

In order to successfully launch the DB2 database instance as a service, the user
account must have the correct privilege as defined by the Windows operating
system to start a Windows service. The user account can be a member of the
Administrators, Server Operators, or Power Users group. When extended security
is enabled, only members of the DB2ADMNS and Administrators groups can start
the database by default.

About this task

By default, the db2start command launches the DB2 database instance as a
Windows service. The DB2 database instance on Windows can still be run as a
process by specifying the /D parameter on the db2start command. The DB2
database instance can also be started as a service by using the Control Panel or the
NET START command.

When running in a partitioned database environment, each database partition

server is started as a Windows service. You cannot use the /D parameter to start a
DB2 instance as a process in a partitioned database environment.

12 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Procedure

To start the instance:

e From the command line, enter the db2start command. The DB2 database
manager applies the command to the current instance.

* From IBM Data Studio, open the task assistant for starting the instance.

Attaching to and detaching from instances

On all platforms, to attach to another instance of the database manager, which
might be remote, use the ATTACH command. To detach from an instance, use the
DETACH command.

Before you begin
More than one instance must exist.

Procedure
* To attach to an instance:
— Enter the ATTACH command from the command line.
— Call the sqleatin API from a client application.
* To detach from an instance:
— Enter the DETACH from the command line.
— Call the sqledtin API from a client application.

Example

For example, to attach to an instance called testdb2 that was previously cataloged
in the node directory:

db2 attach to testdb2

After performing maintenance activities for the testdb2 instance, detach from an
instance:

db2 detach

Working with instances on the same or different DB2 copies

You can run multiple instances concurrently, in the same DB2 copy or in different
DB2 copies.

About this task

To prevent one instance from accessing the database of another instance, the
database files for an instance are created under a directory that has the same name
as the instance name. For example, when creating a database on drive C: for
instance DB2, the database files are created inside a directory called C:\DB2.
Similarly, when creating a database on drive C: for instance TEST, the database files
are created inside a directory called C:\TEST. By default, its value is the drive letter
where DB2 product is installed. For more information, see the dftdbpath database
manager configuration parameter.

Chapter 1. Instances 13

Procedure
* To work with instances in the same DB2 copy, you must:
1. Create or upgrade all instances to the same DB2 copy.

2. Set the DB2INSTANCE environment variable to the name of the instance you are
working with. This action must occur before you issue commands against the
instance.

* To work with an instance in a system with multiple DB2 copies, use either of the
following methods:

— Use the Command window from the Start > Programs > IBM DB2 > DB2
Copy Name > Command Line Tools > Command Window. The Command
window is already set up with the correct environment variables for the
particular DB2 copy chosen.

— Use db2envar.bat from a Command window:

1. Open a Command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy
that you want the application to use:
DB2 Copy_install_dir\bin\db2envar.bat

Stopping instances (Linux, UNIX)

You might need to stop the current instance of the database manager.

Before you begin

1. Log in or attach to an instance with a user ID or name that has SYSADM,
SYSCTRL, or SYSMAINT authority on the instance; or, log in as the instance
owner.

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, use the LIST APPLICATIONS command.

3. Force all applications and users off the database by using the FORCE
APPLICATION command.

4. If command line processor sessions are attached to an instance, you must run
the TERMINATE command to end each session before running the db2stop
command.

About this task

When you run commands to start or stop an instance, the DB2 database manager
applies the command to the current instance. For more information, see
“Identifying the current instance” on page 30.

Restrictions

The db2stop command can be run only at the server.

No database connections are allowed when running this command; however, if
there are any instance attachments, they are forced off before the instance is
stopped.

Procedure

To stop an instance on a Linux or UNIX operating system:

14 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

* From the command line, enter the db2stop command. The DB2 database
manager applies the command to the current instance.

¢ From IBM Data Studio, open the task assistant for stopping the instance. For
more information, see IBM Data Studio: Administering databases with task
assistants.

Stopping instances (Windows)

You might need to stop the current instance of the database manager.

Before you begin

1. The user account stopping the DB2 database service must have the correct
privilege as defined by the Windows operating system. The user account can be
a member of the Administrators, Server Operators, or Power Users group.

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, use the LIST APPLICATIONS command.

3. Force all applications and users off the database by using the FORCE
APPLICATION command.

4. If command line processor sessions are attached to an instance, you must run
the TERMINATE command to end each session before running the db2stop
command.

About this task

Note: When you run commands to start or stop an instance, the database manager
applies the command to the current instance. For more information, see
“Identifying the current instance” on page 30.

Restrictions
The db2stop command can be run only at the server.

No database connections are allowed when running this command; however, if
there are any instance attachments, they are forced off before the DB2 database
service is stopped.

When you are using the database manager in a partitioned database environment,
each database partition server is started as a service. To stop an instance, all
services must be stopped.

Procedure

To stop the instance:

e From the command line, enter the db2stop command. The DB2 database
manager applies the command to the current instance.

e From the command line, enter the NET STOP command.

e From IBM Data Studio, open the task assistant for stopping the instance. For
more information, see IBM Data Studio: Administering databases with task
assistants.

Chapter 1. Instances 15

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Upgrading instances

The following upgrade instance tasks are one step in the task for upgrading DB2
servers. For more information, see “Upgrading DB2 servers” in the upgrade
documentation at http://pic.dhe.ibm.com/infocenter/db2luw /v10rl/topic/
com.ibm.db2.luw.qb.upgrade.doc/doc/c0011933.html.

Upgrading DB2 Version 9.5 or DB2 Version 9.7 instances

As part of the overall process of upgrading your DB2 database server to DB2
Version 10.1, you must upgrade your instances.

Before you begin

* You must have root user authority on Linux and UNIX operating systems or
Local Administrator authority on Windows.

* You must install any DB2 database add-on products that were installed in the
DB2 copy from which you are upgrading.
* Before running the db2iupgrade command, the following steps are
recommended:
— Verify that databases are ready for DB2 upgrade. This step is important in
partitioned database environments because the db2ckupgrade command might

return an error in one database partition and cause the instance upgrade to
fail.

— On Linux and UNIX operating systems, ensure that there is 5GB of free space
in the /tmp directory. The instance upgrade trace file is written to /tmp.

— Gather pre-upgrade diagnostic information to help diagnose any problem that
might occur after the upgrade.

About this task

On Linux and UNIX operating systems, you must manually upgrade your
instances. On Windows operating systems, you must manually upgrade them if
you did not choose to automatically upgrade your existing DB2 copy during the
DB2 Version 10.1 installation.

Restriction

* On Linux and UNIX operating systems, you must not set up the instance
environment for the root user. Running the db2iupgrade or the db2icrt
command when you set up the instance environment is not supported.

* For additional restrictions on instance upgrade, review “Upgrade restrictions for
DB2 servers” in Upgrading to DB2 Version 10.1.

* You must be upgrading from DB2 Version 9.5 or DB2 Version 9.7.
Procedure

To manually upgrade your existing instances to DB2 Version 10.1 using the
db2iupgrade command:

1. Determine if you can upgrade your existing instances to a DB2 Version 10.1
copy that you installed by performing the following actions:

¢ Determine the node type. The following examples show how to use the GET
DBM CFG command to find out the node type:

16 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Operating system Examples

Linux and UNIX db2 GET DBM CFG | grep 'Node type'
Node type = Partitioned database server with Tocal and remote
clients

Windows db2 GET DBM CFG | find "Node type"
Node type = Partitioned database server with Tocal and remote
clients

If you cannot upgrade your instance to any DB2 Version 10.1 copy that you
installed, you must install a copy of the DB2 Version 10.1 database product that
supports upgrade of your instance type before you can proceed with the next
step.

2. Disconnect all users, stop back end processes, and stop your existing instances
by running the following command:
db2stop force (Disconnects all users and stops the instance)
db2 terminate (Terminates back-end process)

3. Log on to the DB2 database server with root user authority on Linux and UNIX
operating systems or Local Administrator authority on Windows operating
systems.

4. Upgrade your existing instances by running the db2iupgrade command from
the target DB2 Version 10.1 copy location. The db2iupgrade command only
needs to be run on the instance owning node. The following table shows how
to run the db2iupgrade command to upgrade your instances:

Operating system Command syntax

Linux and UNIX $DB2DIR/instance/db2iupgrade [-u fencedID] InstName®

Windows "%DB2PATH%"\bin\db2iupgrade InstName /u:user,password"
Note:

a. Where DB2DIR is set to the location you specified during DB2 Version 10.1
installation, fencedID is the user name under which the fenced user-defined
functions (UDFs) and stored procedures will run, and InstName is the login
name of the instance owner. This example upgrades the instance to the
highest level for DB2 database product that you installed, use the -k option
if you want to keep the pre-upgrade instance type.

b. Where DB2PATH is set to the location you specified during DB2 Version 10.1
installation, user and password are the user name and password under which
the DB2 service will run, and InstName is the name of the instance.

If you did not install all DB2 database add-on products that were installed in
the DB2 copy from which you are upgrading, the instance upgrade fails and
returns a warning message. If you plan to install these products later on or you
no longer need the functionality provided by these products, use the -F
parameter to upgrade the instance.

The db2iupgrade command calls the db2ckupgrade command with the -notl
parameter to verify that the local databases are ready for grade. The update.log
is specified as the log file for db2ckupgrade, and the default log file created for
db2iupgrade is /tmp/db2ckupgrade.log.processID. On Linux and UNIX
operating systems, the log file is created in the instance home directory. On
Windows operating systems, the log file is created in the current directory
where you are running the db2iupgrade command. The -notl parameter
disables the check for type-1 indexes. Verify that you do not have type-1

Chapter 1. Instances 17

indexes in your databases before upgrading the instance. The db2iupgrade does
not run as long as the db2ckupgrade command reports errors. Check the log file
if you encounter any errors.

5. Log on to the DB2 database server as a user with sufficient authority to start
your instance.

6. Restart your instance by running the db2start command:
db2start

7. Verify that your instance is running on to DB2 Version 10.1 by running the
db21evel command:

db21evel

The Informational tokens should include a string like "DB2 Version 10.1.X.X"
where X is a digit number.

Upgrading DB2 Version 9.8 instances

As part of the overall process of upgrading your DB2 database server to DB2
Version 10.1, you must upgrade your Version 9.8 instances.

Before you begin
* Your DB2 Version 9.8 instance must be a DB2 pureScale instance.
* You must have root user authority on Linux and UNIX operating systems.

* You must install any DB2 database add-on products that were installed in the
DB2 copy from which you are upgrading.

* Before running the db2iupgrade command, the following steps are
recommended:

— Verify that databases are ready for DB2 upgrade. This step is important in
DB2 pureScale environments because the db2ckupgrade command might
return an error in one member and cause the instance upgrade to fail.

— On Linux and UNIX operating systems, ensure that there is 5GB of free space
in the /tmp directory. The instance upgrade trace file is written to /tmp.

— Gather pre-upgrade diagnostic information to help diagnose any problem that
might occur after the upgrade.

About this task

On Linux and UNIX operating systems, you must manually upgrade your DB2
pureScale instances from Version 9.8.

Restrictions

* On Linux and UNIX operating systems, you must not set up the instance
environment for the root user. Running the db2iupgrade or the db2icrt
command when you set up the instance environment is not supported.

* For additional restrictions on instance upgrade, review “Upgrade restrictions for
DB2 servers” in Upgrading to DB2 Version 10.1.

Procedure

To manually upgrade your existing Version 9.8 instances to DB2 Version 10.1 using
the db2iupgrade command:

1. Log on to the DB2 server with root user authority.
2. Upgrade your existing Version 9.8 instances by issuing the db2iupgrade
command from the target DB2 Version 10.1 copy location. You should issue the

18 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

db2iupgrade command from the Version 10.1 installation path from all the
members first and then from the CFs. The following example shows how to use
this command:

$DB2DIR/instance/db2iupgrade [-u fencedID] InstName

Where DB2DIR is set to the location that you specified during DB2 Version 10.1
installation, fencedID is the user name under which the fenced user-defined
functions (UDFs) and stored procedures will run, and InstName is the login
name of the instance owner.

If you did not install all DB2 database add-on products that were installed in
the DB2 copy from which you are upgrading, the instance upgrade fails and
returns a warning message. If you plan to install these products later on or you
no longer need the functionality provided by these products, use the -F
parameter to upgrade the instance.

Note: You must stop the Version 9.8 instance using the db2stop command
before issuing the db2iupgrade command. If you do not stop Version 9.8
instance before using the db2iupgrade command, your instance upgrade might
fail.

Log on to the DB2 database server as a user with sufficient authority to start
your instance.

Restart the DB2 instance on all members and CFs with updated resources for
the cluster management software and the cluster file system software by
issuing the db2start instance on <hostname> command, and then issue the
db2start command. If you find inconsistencies between the cluster manager
resource model and the db2nodes.cfg repair the cluster manager resources by
using the db2cluster -cm -repair -resources command.

Verify that your instances are running on to DB2 Version 10.1 by running the
db21evel command: The Informational tokens should include a string like "DB2
Version 10.1.X.X" where X is a digit number.

Rebuild the contents of the network resiliency condition and response resources
in the cluster by issuing the db2cluster -cfs -repair -network resiliency
-all command.

What to do next

After upgrading your Version 9.8 DB2 pureScale instance, you must upgrade your
database. For more details. see “Upgrading databases” in Upgrading to DB2 Version
10.1.

Dropping instances

To drop a root instance, issue the db2idrop command. To drop non-root instances,
you must uninstall your DB2 database product.

Procedure

To remove a root instance using the command line:

1.
2.

Stop all applications that are currently using the instance.

Stop the Command Line Processor by running terminate commands in each
Command window.

Stop the instance by running the db2stop command.
Back up the instance directory indicated by the DB2INSTPROF registry variable.

Chapter 1. Instances 19

20

On Linux and UNIX operating systems, consider backing up the files in the
INSTHOME/sq11ib directory (where INSTHOME is the home directory of the
instance owner). For example, you might want to save the database manager
configuration file, db2systm, the db2nodes.cfg file, user-defined functions
(UDFs), or fenced stored procedure applications.

For Linux and UNIX operating systems only, log off as the instance owner and
log in as a user with root user authority.

Issue the db2idrop command. For example:
db2idrop InstName

where InstName is the name of the instance being dropped.

The db2idrop command removes the instance entry from the list of instances
and removes the sql1ib subdirectory under the instance owner's home
directory.

Note: On Linux and UNIX operating systems, if you issue the db2idrop
command and receive a message stating that the INSTHOME/sq111ib subdirectory
cannot be removed, one reason could be that the INSTHOME/adm subdirectory
contains files with the .nfs extension. The adm subdirectory is an NFS-mounted
system and the files are controlled on the server. You must delete the *.nfs
files from the file server from where the directory is being mounted. Then you
can remove the INSTHOME/sq111b subdirectory.

For Windows operating systems, if the instance that you dropped was the
default instance, set a new default instance by issuing the db2set command:

db2set db2instdef=instance_name -g

where instance_name is the name of an existing instance.

For Linux and UNIX operating systems, remove the instance owner's user ID
and group (if used only for that instance). Do not remove these if you are
planning to re-create the instance.

This step is optional since the instance owner and the instance owner group
might be used for other purposes.

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 2. Configuring intances

To achieve maximum performance, use the database manager configuration
parameters to allocate enough disk space and memory for your instance. The
default values of the parameters might be sufficient to meet your needs but might
not exploit all the resources available in your environment.

Configuration parameters

When you create a DB2 database instance or a database, a configuration file is
created with default parameter values. You can modify these parameter values to
improve performance and other characteristics of the instance or database.

The disk space and memory allocated by the database manager on the basis of
default values of the parameters might be sufficient to meet your needs. In some
situations, however, you might not be able to achieve maximum performance using
these default values.

Configuration files contain parameters that define values such as the resources
allocated to the DB2 database products and to individual databases, and the
diagnostic level. There are two types of configuration files:

* The database manager configuration file for each DB2 instance
* The database configuration file for each individual database.

The database manager configuration file is created when a DB2 instance is created.
The parameters it contains affect system resources at the instance level,
independent of any one database that is part of that instance. Values for many of
these parameters can be changed from the system default values to improve
performance or increase capacity, depending on your system's configuration.

There is one database manager configuration file for each client installation as well.
This file contains information about the client enabler for a specific workstation. A
subset of the parameters available for a server are applicable to the client.

Database manager configuration parameters are stored in a file named db2systm.
This file is created when the instance of the database manager is created. In Linux
and UNIX environments, this file can be found in the sq11ib subdirectory for the
instance of the database manager. In Windows, the default location of this file
varies from edition to edition of the Windows family of operating systems. You can
verify the default directory on Windows, check the setting of the DB2INSTPROF
registry variable using the command db2set DB2INSTPROF. You can also change the
default instance directory by changing the DB2INSTPROF registry variable. If the
DB2INSTPROF variable is set, the file is in the instance subdirectory of the directory
specified by the DB2INSTPROF variable.

Other profile-registry variables that specify where run-time data files should go
should query the value of DB2INSTPROF. This includes the following variables:

* DB2CLIINIPATH
» diagpath
* spm_log_path

© Copyright IBM Corp. 2014 21

All database configuration parameters are stored in a file named SQLDBCONF. You
cannot directly edit these files. You can only change or view these files via a
supplied API or by a tool which calls that API.

In a partitioned database environment, this file resides on a shared file system so
that all database partition servers have access to the same file. The configuration of
the database manager is the same on all database partition servers.

Most of the parameters either affect the amount of system resources that are
allocated to a single instance of the database manager, or they configure the setup
of the database manager and the different communications subsystems based on
environmental considerations. In addition, there are other parameters that serve
informative purposes only and cannot be changed. All of these parameters have
global applicability independent of any single database stored under that instance
of the database manager.

A database configuration file is created when a database is created, and resides where
that database resides. There is one configuration file per database. Its parameters
specify, among other things, the amount of resource to be allocated to that
database. Values for many of the parameters can be changed to improve
performance or increase capacity. Different changes might be required, depending
on the type of activity in a specific database.

Database Equivalent
object or concept physical object
% System) B Ope.rating.syst.em
= configuration file
Instance —
%‘ Database manager

configuration parameters

[:I Database

> Data}base.
configuration parameters

Figure 2. Relationship between database objects and configuration files

Configuring instances with database manager configuration

parameters
The disk space and memory allocated by the database manager based on default
values of the parameters might be sufficient to meet your needs. In some

situations, however, you might not be able to achieve maximum performance by
using these default values.

About this task

Since the default values are oriented towards machines that have relatively small
memory resources and are dedicated as database servers, you might need to
modify these values if your environment has:

22 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

* Large databases
* Large numbers of connections
* High performance requirements for a specific application

* Unique query or transaction loads or types

Each transaction processing environment is unique in one or more aspects. These
differences can have a profound impact on the performance of the database
manager when using the default configuration. For this reason, you are strongly
advised to tune your configuration for your environment.

A good starting point for tuning your configuration is to use the Configuration
Adpvisor or the AUTOCONFIGURE command. These tools generate values for
parameters based on your responses to questions about workload characteristics.

Some configuration parameters can be set to AUTOMATIC, allowing the database
manager to automatically manage these parameters to reflect the current resource
requirements. To turn off the AUTOMATIC setting of a configuration parameter while
maintaining the current internal setting, use the MANUAL keyword with the UPDATE
DATABASE CONFIGURATION command. If the database manager updates the value of
these parameters, the GET DB CFG SHOW DETAIL and GET DBM CFG SHOW DETAIL
commands will show the new value.

Parameters for an individual database are stored in a configuration file named
SQLDBCONF. This file is stored along with other control files for the database in the
SQLnnnnn directory, where nnnnn is a number assigned when the database was
created. Each database has its own configuration file, and most of the parameters
in the file specify the amount of resources allocated to that database. The file also
contains descriptive information, as well as flags that indicate the status of the
database.

Attention: If you edit db2systm, SQLDBCON, or SQLDBCONF by using a method other
than those provided by the database manager, you might make the database
unusable. Do not change these files by using methods other than those
documented and supported by the database manager.

In a partitioned database environment, a separate SQLDBCONF file exists for each
database partition. The values in the SQLDBCONF file might be the same or different
at each database partition, but the recommendation is that in a homogeneous
environment, the configuration parameter values should be the same on all
database partitions. Typically, there could be a catalog node needing different
database configuration parameters setting, while the other data partitions have
different values again, depending on their machine types, and other information.

Procedure
1. Update configuration parameters.
* Using the command line processor:
Commands to change the settings can be entered as follows:
For database manager configuration parameters:
— GET DATABASE MANAGER CONFIGURATION (or GET DBM CFG)
— UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE DBM CFG)

— RESET DATABASE MANAGER CONFIGURATION (or RESET DBM CFG) to reset all
database manager parameters to their default values

— AUTOCONFIGURE

Chapter 2. Configuring intances 23

For database configuration parameters:
— GET DATABASE CONFIGURATION (or GET DB CFG)
— UPDATE DATABASE CONFIGURATION (or UPDATE DB CFG)

— RESET DATABASE CONFIGURATION (or RESET DB CFG) to reset all database
parameters to their default values

— AUTOCONFIGURE

* Using application programming interfaces (APIs):
The APIs can be called from an application or a host-language program. Call
the following DB2 APIs to view or update configuration parameters:

— db2AutoConfig - Access the Configuration Advisor

— db2CfgGet - Get the database manager or database configuration
parameters

— db2CfgSet - Set the database manager or database configuration
parameters

* Using common SQL application programming interface (API) procedures:

You can call the common SQL API procedures from an SQL-based
application, a DB2 command line, or a command script. Call the following
procedures to view or update configuration parameters:

— GET_CONEFIG - Get the database manager or database configuration
parameters

— SET_CONFIG - Set the database manager or database configuration
parameters

* Using IBM Data Studio, right-click the instance to open the task assistant to
update the database manager configuration parameters.

2. View updated configuration values.

For some database manager configuration parameters, the database manager
must be stopped (db2stop) and then restarted (db2start) for the new parameter
values to take effect.

For some database parameters, changes take effect only when the database is
reactivated, or switched from offline to online. In these cases, all applications
must first disconnect from the database. (If the database was activated, or
switched from offline to online, then it must be deactivated and reactivated.)
Then, at the first new connect to the database, the changes take effect.

If you change the setting of a configurable online database manager
configuration parameter while you are attached to an instance, the default
behavior of the UPDATE DBM CFG command is to apply the change immediately.
If you do not want the change applied immediately, use the DEFERRED option on
the UPDATE DBM CFG command.

To change a database manager configuration parameter online:

db2 attach to instance-name

db2 update dbm cfg using parameter-name value

db2 detach

For clients, changes to the database manager configuration parameters take
effect the next time the client connects to a server.

If you change a configurable online database configuration parameter while
connected, the default behavior is to apply the change online, wherever
possible. Note that some parameter changes might take a noticeable amount of
time to take effect due to the additional processing time associated with
allocating space. To change configuration parameters online from the command
line processor, a connection to the database is required. To change a database
configuration parameter online:

24 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

db2 connect to dbname

db2 update db cfg using parameter-name parameter-value

db2 connect reset

Each configurable online configuration parameter has a propagation class
associated with it. The propagation class indicates when you can expect a
change to the configuration parameter to take effect. There are four propagation
classes:

* Immediate: Parameters that change immediately upon command or API
invocation. For example, diaglevel has a propagation class of immediate.

 Statement boundary: Parameters that change on statement and
statement-like boundaries. For example, if you change the value of sortheap,
all new requests use the new value.

 Transaction boundary: Parameters that change on transaction boundaries.
For example, a new value for d1_expint is updated after a COMMIT
statement.

¢ Connection: Parameters that change on new connection to the database. For
example, a new value for dft_degree takes effect for new applications
connecting to the database.

While new parameter values might not be immediately effective, viewing the
parameter settings (by using the GET DATABASE MANAGER CONFIGURATION or GET
DATABASE CONFIGURATION command) always shows the latest updates. Viewing
the parameter settings by using the SHOW DETAIL clause on these commands
shows both the latest updates and the values in memory.

3. Rebind applications after updating database configuration parameters.

Changing some database configuration parameters can influence the access
plan chosen by the SQL and XQuery optimizer. After changing any of these
parameters, consider rebinding your applications to ensure that the best access
plan is being used for your SQL and XQuery statements. Any parameters that
were modified online (for example, by using the UPDATE DATABASE
CONFIGURATION IMMEDIATE command) cause the SQL and XQuery optimizer to
choose new access plans for new query statements. However, the query
statement cache is not purged of existing entries. To clear the contents of the
query cache, use the FLUSH PACKAGE CACHE statement.

Note: A number of configuration parameters (for example, health_mon) are
described as having acceptable values of either Yes or No, or On or 0ff in the
help and other DB2 documentation. To clarify, Yes should be considered
equivalent to On and No should be considered equivalent to Off.

Environment variables and the profile registries

Environment and registry variables control your DB2 database environment. Use
the DB2 profile registries to view and update information about variables and
instances.

Before the DB2 database profile registries were introduced, setting environment
variables required you to specify a value for an environment variable and restart
your computer. You can now use the DB2 profile registries to control most
variables that affect your DB2 database environment.

Use the profile registries to control the environment variables from one computer.
Different levels of support are provided through the different profiles. You can
administer the environment variables remotely by using the DB2 administration
server.

Chapter 2. Configuring intances 25

A DB2 database is affected by the following profile registries:

* The DB2 instance-level profile registry contains registry variables for an instance.
Values that are defined in this registry override their settings in the global

registry.

* The DB2 global-level profile registry contains settings that are used if a registry
variable is not set for an instance. All instances that pertain to a particular copy
of DB2 Enterprise Server Edition can access this registry.

* The DB2 instance node-level profile registry contains variable settings that are
specific to a database partition in a partitioned database environment. Values
that are defined in this registry override their settings at the instance and global

levels.

* The DB2 user-level profile registry contains settings that are specific to each user.
Values that are defined in this registry override their settings in the other

registries.

The DB2 database system configures the operating environment by checking for
registry values and environment variables and resolving them in the following

order:

1. Environment variables that are set outside the profile registries.

ok wDd

Registry variables that are set with the user-level profile.

Registry variables that are set with the global-level profile.

Registry variables that are set with the instance node-level profile.
Registry variables that are set with the instance-level profile.

The DB2 instance profile registry contains a list of all instances that are associated
with the current copy. A list exists for each DB2 copy. You can see the complete list
of all the instances that are available on the system by running the db2ilist
command. This profile registry does not contain variable settings.

Profile registry locations and authorization requirements

The DB2 profile registries have different locations and authorization requirements
on each operating system. Authorization is required to update the values of
variables in each profile registry.

Table 1. Profile registry locations and authorization requirements

Linux and UNIX

registry

\SOFTWARE\1BM\DB2
\PROFILES\
instance_name

profile.env

where instance_home is
the home path of the
instance owner.

instance_owner
instance_owner_group
profile.env

Location on Linux and | authorization Windows authorization
Profile registry Location on Windows UNIX requirements requirements
Instance-level profile \HKEY_LOCAL_computer instance_home/sq11ib/ | -rw-rw-r-- You must be a member

of the DB2
administrators group
(DB2ADMNYS).

Global-level profile
registry

\HKEY_LOCAL_computer
\SOFTWARE\IBM\DB2
\GLOBAL_PROFILE

For root
installations:/var/db2/
global.reg

For non-root
installations:
home_directory/sqllib
/global.reg

To modify a global
registry variable in root
installations, you must
be logged on with root
authority.

You must be a member
of the DB2
administrators group
(DB2ADMNYS).

26 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 1. Profile registry locations and authorization requirements (continued)

Profile registry

Location on Windows

Location on Linux and
UNIX

Linux and UNIX
authorization
requirements

Windows authorization
requirements

Instance node-level
profile registry

... \SOFTWARE\IBM\DB2\
PROFILES
\instance_name\NODES\
node_number

instance_home/sq11ib/
nodes
/node_number .env

where instance_home is
the home path of the
instance owner.

For the directory that
contains the file:

drwxrwsr-w
instance_owner
instance_owner_group
nodes

For the file:

-rW-rw-r--
instance_owner
instance_owner_group
node_number .env

You must be a member
of the DB2
administrators group
(DB2ADMNS).

User-level profile

The Lightweight

Does not apply.

Does not apply.

You must be a member

\instance_name

For non-root
installations:
home_directory/sqllib
/global.reg

registry Directory Access of the DB2
Protocol (LDAP) administrators group
directory. (DB2ADMNS).
Instance profile registry | \HKEY_LOCAL_computer For root None required. None required.
\SOFTWARE\IBM\DB2\ installations:/var/db2/
PROFILES global.reg

Setting registry and environment variables

Most environment variables are set in the DB2 database profile registries by using
the db2set command. The few variables that are set outside the profile registries
require different commands depending on your operating system.

Before you begin

Ensure that you have the privileges that are required to set registry variables.

On Linux and UNIX operating systems, you must have the following privileges:

* SYSADM authority to set variables in the instance-level registry

* root authority to set variables in the global-level registry

On Windows operating systems, you must have one of the following privileges:

* local Administrator authority
* SYSADM authority with the following conditions:
— If extended security is enabled, SYSADM users must belong to the

DB2ADMNS group.

— If extended security is not enabled, SYSADM users can make updates if the
appropriate permissions are granted to them in the Windows registry.

About this task
When you use the db2set command to set variables in the profile registries, you do

not need to restart your computer for variable values to take effect. However,
changes do not affect DB2 applications that are currently running or users that are

Chapter 2. Configuring intances 27

active. The DB2 registry applies the updated information to DB2 server instances
and DB2 applications that are started after the changes are made.

If DB2 variables are set outside the registry, you cannot administer those variables
remotely. Also, you must restart the computer for the variable values to take effect.

The DB2INSTANCE and DB2NODE DB2 environment variables are not stored in the DB2
profile registries. See the topics about setting environment variables outside the
profile registries for information about setting these variables.

On Linux and UNIX operating systems, the instance-level profile registry is stored
in the profile.env text file. If two or more users set a registry variable with the
db2set command at almost the same time, the size of this file is reduced to zero.
Also, the output from the db2set -all command displays inconsistent values.

Procedure
To set a registry variable:

Issue the db2set command with the relevant parameters.

The following table shows some of the ways that you can set registry variables
with the db2set command. See the db2set command reference topic for more
information about the parameters and usage of this command.

Table 2. Common commands for setting registry variables

Desired Action Command

Set a registry variable for the current or db2set registry_variable_name=new_value
default instance.

Set a registry variable for all databases in an |db2set registry_variable_name=new_value

instance. -1 instance_name
Set a registry variable for a particular db2set registry_variable_name=new_value
database partition in an instance. -i instance_name

database_partition_number

Set a registry variable for all instances that |db2set registry_variable_name=new_value
pertain to a DB2 Enterprise Server Edition | -g
installation.

Set a registry variable at the user level in a | db2set registry_variable_name=new_value
Lightweight Directory Access Protocol -ul
(LDAP) environment.

Set a registry variable at the global level in |db2set registry_variable_name=new_value
an LDAP environment. -g1

DB2LDAP_KEEP_CONNECTION and
DB2LDAP_SEARCH_SCOPE are the only two
registry variables that can be set at the
LDAP global level.

Tip: If a registry variable requires Boolean values as arguments, the values YES, 1,
TRUE, and ON are all equivalent and the values NO, 0, FALSE, and OFF are also
equivalent. For any variable, you can specify any of the appropriate equivalent
values.

28 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Setting environment variables outside the profile registries on
Linux and UNIX operating systems

On Linux and UNIX operating systems, you must set the DB2ZINSTANCE system
environment variable outside the profile registries. If you want to set any other
variables, those variables must be set in one or more of the profile registries.

About this task

You can use the scripts db2profile (for Bourne or Korn shell) and db2cshrc (for C
shell) to set the DB2INSTANCE variable to an instance name that you specify. The
scripts are in the instance_home/sq11ib directory, where instance_home is the home
directory of the instance owner.

Instance owners and users with SYSADM privileges can customize these scripts for
all users of an instance. Alternatively, users can copy and customize a script, then
invoke a script directly or add it to their .profile or .1ogin files.

To set variables that are not supported by the DB2 database manager, define them
in the userprofile and usercshrc script files. These files are also in the
instance_home/sq11ib directory.

Procedure

To set an environment variable outside the profile registries:

Set an environment variable by using one of the following methods:

Option Description

Set the environment variable at the Run the db2profile script.

instance level for a Bourne or Korn shell.

Set the environment variable at the Run the db2cshrc script.

instance level for a C shell.

Set the environment variable for the Issue the following command:
current session for a Bourne shell. export env_variable name=new_value
Set the environment variable for the Issue the following command:
current session for a C shell. setenv env_variable_name new value
Set the environment variable for the Issue the following command:

current session for a Korn shell. environment_variable_name=new_value

export environment_variable_name

Setting environment variables outside the profile registries on
Windows

On Windows operating systems, the DB2INSTANCE, DB2NODE, and DB2PATH
environment variables can be set only outside the profile registries. You are
required to set only the DB2PATH variable.

About this task

On Windows operating systems, the following environment variables are set
outside the profile registries:

Chapter 2. Configuring intances 29

* The DB2INSTANCE environment variable specifies the instance that is active by
default. If this variable is not set, the DB2 database manager uses the value of
the DB2INSTDEF variable as the current instance.

* The DB2NODE environment variable specifies the target logical node of a database
partition server to which requests are routed.

* The DB2PATH environment variable specifies the directory where the DB2
database product is installed on Windows 32-bit operating systems.

If you want to set any other variables, those variables must be set in one or more
of the profile registries.

You can determine the value of an environment variable by using the echo

command. For example, to check the value of the DB2NODE environment variable,
issue the following command:

echo %db2path%
Procedure
To set an environment variable outside the profile registries:

Set an environment variable by using one of the following options.

Option Description

Set the environment variable at the 1

. Follow the appropriate procedure for
instance level.

your Windows operating system.

2. Restart your computer.

Set the environment variable for the Issue the following command:

current session. set env_variable_name=new_value
db2start

Set the environment variable for the Issue the following command:

current session for a C shell. setenv env_variable name new_value

Identifying the current instance

Most commands that you issue or configuration changes that you make apply by
default to the current instance. You can identify the current instance by checking
the values of certain environment variables.

About this task

When you run commands to start or stop the database manager for an instance,
the database manager applies the command to the current instance. To determine
the current instance, the database manager checks the values of certain
environment variables in the following order:

1. The value of the DB2INSTANCE environment variable for the current session.
2. The value of the DB2INSTANCE system environment variable.
3. On Windows operating systems, the value of the DB2INSTDEF registry variable.

Procedure
To identify the current instance:

Check the value of the relevant environment variable.

30 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Option Description

View the value of the DB2INSTANCE Issue the following command:
environment variable for the current db2 get instance
session.

View the value of the DB2INSTANCE system |,

’ " On Windows operating systems, issue the
environment variable.

following command:
echo %DB2INSTANCE%

* On Linux and UNIX operating systems,
issue the following command:

echo $DB2INSTANCE

View the value of the DB2INSTDEF registry |Issue the following command:
variable. db2set DB2INSTDEF

Setting variables at the instance level in a partitioned
database environment

In a partitioned database environment, the way that you set registry variables in
the instance-level profile registry depends on your operating system.

About this task

On Linux and UNIX operating systems, the instance-level profile registry is stored
in a text file in the sq11ib directory. Because the sq11ib directory is on a file
system that is shared by all physical database partitions, you can set a registry
variable from any database partition.

On Windows operating systems, the DB2 database manager stores the
instance-level profile registry in the Windows registry. As a result, data is not
shared across physical database partitions. To set a variable for all database
partitions, you must use the rah command to ensure that the command that you
use to set the variable is run on all computers. If you set a registry variable from a
database partition and do not use the rah command, the variable is set only for
that database partition in the current instance.

You can also use the DB2REMOTEPREG registry variable to configure a computer that
is not the instance owner to use the values of registry variables on the
instance-owning computer.

Procedure
To set a registry variable for all database partitions of the current instance:

Issue the command for your operating system from any database partition.

¢ On Linux and UNIX operating systems, issue the following command:
db2set registry_variable_name=new_value

* On Windows operating systems, issue the following command:

rah db2set registry variable name=new_value

Chapter 2. Configuring intances 31

32 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 3. Autonomic computing

The DB2 autonomic computing environment is self-configuring, self-healing,
self-optimizing, and self-protecting. By sensing and responding to situations that
occur, autonomic computing shifts the burden of managing a computing
environment from database administrators to technology. These capabilities for
DB2 autonomic computing are provided by the automatic features that are
described in the following section.

Automatic features

Automatic features assist you in managing your database system. They allow your
system to perform self-diagnosis and to anticipate problems before they happen by
analyzing real-time data against historical problem data. You can configure some of
the automatic tools to make changes to your system without intervention to avoid
service disruptions.

When you create a database, some of the following automatic features are enabled
by default, but others you must enable manually:

Self-tuning memory (single-partition databases only)
The self-tuning memory feature simplifies the task of memory
configuration. This feature responds to significant changes in workload by
automatically and iteratively adjusting the values of several memory
configuration parameters and the sizes of the buffer pools, thus optimizing
performance. The memory tuner dynamically distributes available memory
resources among several memory consumers, including the sort function,
the package cache, the lock list, and buffer pools. You can disable
self-tuning memory after creating a database by setting the database
configuration parameter self_tuning_mem to OFF.

Automatic storage
The automatic storage feature simplifies storage management for table
spaces. When you create a database, you specify the storage paths for the
default storage group where the database manager places your table space
data. Then, the database manager manages the container and space
allocation for the table spaces as you create and populate them. You can
then also create new storage groups or alter existing ones.

Data compression
Both tables and indexes can be compressed to save storage. Compression is
fully automatic; once you specify that a table or index should be
compressed using the COMPRESS YES clause of the CREATE TABLE,
ALTER TABLE, CREATE INDEX or ALTER INDEX statements, there is
nothing more you must do to manage compression. (Converting an
existing uncompressed table or index to be compressed does require a
REORG to compress existing data). Temporary tables are compressed
automatically; indexes for compressed tables are also compressed
automatically, by default.

Automatic database backups
A database can become unusable due to a wide variety of hardware or
software failures. Ensuring that you have a recent, full backup of your
database is an integral part of planning and implementing a disaster
recovery strategy for your system. Use automatic database backups as part

© Copyright IBM Corp. 2014 33

of your disaster recovery strategy to enable the database manager to back
up your database both properly and regularly.

Automatic reorganization
After many changes to table data, the table and its indexes can become
fragmented. Logically sequential data might reside on nonsequential pages,
forcing the database manager to perform additional read operations to
access data. The automatic reorganization process periodically evaluates
tables and indexes that have had their statistics updated to see if
reorganization is required, and schedules such operations whenever they
are necessary.

Automatic statistics collection
Automatic statistics collection helps improve database performance by
ensuring that you have up-to-date table statistics. The database manager
determines which statistics are required by your workload and which
statistics must be updated. Statistics can be collected either asynchronously
(in the background) or synchronously, by gathering runtime statistics when
SQL statements are compiled. The DB2 optimizer can then choose an
access plan based on accurate statistics. You can disable automatic statistics
collection after creating a database by setting the database configuration
parameter auto_runstats to OFF. Real-time statistics gathering can be
enabled only when automatic statistics collection is enabled. Real-time
statistics gathering is controlled by the auto_stmt_stats configuration
parameter.

Configuration Advisor
When you create a database, this tool is automatically run to determine
and set the database configuration parameters and the size of the default
buffer pool (IBMDEFAULTBP). The values are selected based on system
resources and the intended use of the system. This initial automatic tuning
means that your database performs better than an equivalent database that
you could create with the default values. It also means that you will spend
less time tuning your system after creating the database. You can run the
Configuration Advisor at any time (even after your databases are
populated) to have the tool recommend and optionally apply a set of
configuration parameters to optimize performance based on the current
system characteristics.

Utility throttling
This feature regulates the performance impact of maintenance utilities so
that they can run concurrently during production periods. Although the
impact policy for throttled utilities is defined by default, you must set the
impact priority if you want to run a throttled utility. The throttling system
ensures that the throttled utilities run as frequently as possible without
violating the impact policy. Currently, you can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index
cleanup.

Automatic maintenance

The database manager provides automatic maintenance capabilities for performing
database backups, keeping statistics current, and reorganizing tables and indexes
as necessary. Performing maintenance activities on your databases is essential in
ensuring that they are optimized for performance and recoverability.

Maintenance of your database includes some or all of the following activities:

34 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

* Backups. When you back up a database, the database manager takes a copy of
the data in the database and stores it on a different medium in case of failure or
damage to the original. Automatic database backups help to ensure that your
database is backed up properly and regularly so that you don't have to worry
about when to back up or know the syntax of the BACKUP command.

¢ Data defragmentation (table or index reorganization). This maintenance activity
can increase the efficiency with which the database manager accesses your
tables. Automatic reorganization manages an offline table and index
reorganization so that you don't need to worry about when and how to
reorganize your data.

* Data access optimization (statistics collection). The database manager updates
the system catalog statistics on the data in a table, the data in indexes, or the
data in both a table and its indexes. The optimizer uses these statistics to
determine which path to use to access the data. Automatic statistics collection
attempts to improve the performance of the database by maintaining up-to-date
table statistics. The goal is to allow the optimizer to choose an access plan based
on accurate statistics.

* Statistics profiling. Automatic statistics profiling advises when and how to
collect table statistics by detecting outdated, missing, or incorrect statistics, and
by generating statistical profiles based on query feedback.

It can be time-consuming to determine whether and when to run maintenance
activities, but automatic maintenance removes the burden from you. You can
manage the enablement of the automatic maintenance features simply and flexibly
by using the automatic maintenance database configuration parameters. By setting
the automatic maintenance database configuration parameters, you can specify
your maintenance objectives The database manager uses these objectives to
determine whether the maintenance activities need to be done and runs only the
required ones during the next available maintenance window (a time period that
you define).

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
configuring automatic maintenance. Task assistants can guide you through the
process of setting options, reviewing the automatically generated commands to
perform the task, and running these commands. For more details, see
Administering databases with task assistants.

Maintenance windows

A maintenance window is a time period that you define for the running of
automatic maintenance activities, which are backups, statistics collection, statistics
profiling, and reorganizations. An offline window might be the time period when
access to a database is unavailable. An online window might be the time period
when users are permitted to connect to a database.

A maintenance window is different from a task schedule. During a maintenance
window, each automatic maintenance activity is not necessarily run. Instead, the
database manager evaluates the system to determine the need for each
maintenance activity to be run. If the maintenance requirements are not met, the
maintenance activity is run. If the database is already well maintained, the
maintenance activity is not run.

Think about when you want the automatic maintenance activities to be run.

Automatic maintenance activities consume resources on your system and might
affect the performance of your database when the activities are run. Some of these

Chapter 3. Autonomic computing 35

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

activities also restrict access to tables, indexes, and databases. Therefore, you must
provide appropriate windows when the database manager can run maintenance
activities.

Offline maintenance activities
Offline maintenance activities (offline database backups and table and
index reorganizations) are maintenance activities that can occur only in the
offline maintenance window. The extent to which user access is affected
depends on which maintenance activity is running:

* During an offline backup, no applications can connect to the database.
Any currently connected applications are forced off.

* During an offline table or index reorganization (data defragmentation),
applications can access but not update the data in tables.

Offline maintenance activities run to completion even if they go beyond
the window specified. Over time, the internal scheduling mechanism learns
how to best estimate job completion times. If the offline maintenance
window is too small for a particular database backup or reorganization
activity, the scheduler will not start the job the next time and relies on the
health monitor to provide notification of the need to increase the offline
maintenance window.

Online maintenance activities
Online maintenance activities (automatic statistics collection and profiling,
online index reorganizations, and online database backups) are
maintenance activities that can occur only in the online maintenance
window. When online maintenance activities run, any currently connected
applications are allowed to remain connected, and new connections can be
established. To minimize the impact on the system, online database
backups and automatic statistics collection and profiling are throttled by
the adaptive utility throttling mechanism.

Online maintenance activities run to completion even if they go beyond the
window specified.

Self-tuning memory

A memory-tuning feature simplifies the task of memory configuration by
automatically setting values for several memory configuration parameters. When
enabled, the memory tuner dynamically distributes available memory resources
among the following memory consumers: buffer pools, locking memory, package
cache, and sort memory.

The tuner works within the memory limits that are defined by the
database_memory configuration parameter. The value of this parameter can be
automatically tuned as well. When self-tuning is enabled (when the value of
database_memory has been set to AUTOMATIC), the tuner determines the overall
memory requirements for the database and increases or decreases the amount of
memory allocated for database shared memory, depending on current database
requirements. For example, if current database requirements are high and there is
sufficient free memory on the system, more memory is allocated for database
shared memory. If the database memory requirements decrease, or if the amount of
free memory on the system becomes too low, some database shared memory is
released.

If the database_memory configuration parameter is not set to AUTOMATIC, the
database uses the amount of memory that has been specified for this parameter,

36 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

distributing it across the memory consumers as required. You can specify the
amount of memory in one of two ways: by setting database_memory to some
numeric value or by setting it to COMPUTED. In the latter case, the total amount
of memory is based on the sum of the initial values of the database memory heaps
at database startup time.

You can also enable the memory consumers for self tuning as follows:

* For buffer pools, use the ALTER BUFFERPOOL or the CREATE BUFFERPOOL
statement (specifying the AUTOMATIC keyword)

 For locking memory, use the Tocklist or the maxlocks database configuration
parameter (specifying a value of AUTOMATIC)

* For the package cache, use the pckcachesz database configuration parameter
(specifying a value of AUTOMATIC)

* For sort memory, use the sheapthres_shr or the sortheap database configuration
parameter (specifying a value of AUTOMATIC)

Changes resulting from self-tuning operations are recorded in memory tuning log
files that are located in the stmmlog subdirectory. These log files contain summaries
of the resource demands from each memory consumer during specific tuning
intervals, which are determined by timestamps in the log entries.

If little memory is available, the performance benefits of self tuning will be limited.
Because tuning decisions are based on database workload, workloads with rapidly
changing memory requirements limit the effectiveness of the self-tuning memory
manager (STMM). If the memory characteristics of your workload are constantly
changing, the STMM will tune less frequently and under shifting target conditions.
In this scenario, the STMM will not achieve absolute convergence, but will try
instead to maintain a memory configuration that is tuned to the current workload.

Memory allocation

Memory allocation and deallocation occurs at various times. Memory might be
allocated to a particular memory area when a specific event occurs (for example,
when an application connects), or it might be reallocated in response to a
configuration change.

Figure 3 on page 38 shows the different memory areas that the database manager
allocates for various uses and the configuration parameters that enable you to
control the size of these memory areas. Note that in a partitioned database
environment, each database partition has its own database manager shared
memory set.

Chapter 3. Autonomic computing 37

Database Manager
Shared Memory

Application Global Memory Application

Global Memory

Application Application
Heap Heap

I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
: I (1) I (max_connections) :
| aes 1
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |
I |

Global Memory

Database Global Memory

I
I
I
I
I
I
I
I
I
I
I
I
I
: Database
I
I
I
I
I
I
I
I
I
I
I
I
I
I

T (1) T (numdb)

Figure 3. Types of memory allocated by the database manager

Memory is allocated by the database manager whenever one of the following
events occurs:

When the database manager starts (db2start)
Database manager shared memory (also known as instance shared memory)
remains allocated until the database manager stops (db2stop). This area
contains information that the database manager uses to manage activity
across all database connections. DB2 automatically controls the size of the
database manager shared memory.

When a database is activated or connected to for the first time
Database global memory is used across all applications that connect to the
database. The size of the database global memory is specified by the
database_memory database configuration parameter. By default, this
parameter is set to automatic, allowing DB2 to calculate the initial amount
of memory allocated for the database and to automatically configure the
database memory size during run time based on the needs of the database.

The following memory areas can be dynamically adjusted:

* Buffer pools (using the ALTER BUFFERPOOL statement)

* Database heap (including log buffers)

 Utility heap

* Package cache

 Catalog cache

* Lock list

The sortheap, sheapthres_shr, and sheapthres configuration parameters
are also dynamically updatable. The only restriction is that sheapthres

cannot be dynamically changed from 0 to a value that is greater than zero,
or vice versa.

38 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Shared sort operations are performed by default, and the amount of
database shared memory that can be used by sort memory consumers at
any one time is determined by the value of the sheapthres_shr database
configuration parameter. Private sort operations are performed only if
intra-partition parallelism, database partitioning, and the connection
concentrator are all disabled, and the sheapthres database manager
configuration parameter is set to a non-zero value.

When an application connects to a database
Each application has its own application heap, part of the application global
memory. You can limit the amount of memory that any one application can
allocate by using the applheapsz database configuration parameter, or limit
overall application memory consumption by using the app1_memory
database configuration parameter.

When an agent is created
Agent private memory is allocated for an agent when that agent is assigned
as the result of a connect request or a new SQL request in a partitioned
database environment. Agent private memory contains memory that is
used only by this specific agent. If private sort operations have been
enabled, the private sort heap is allocated from agent private memory.

The following configuration parameters limit the amount of memory that is
allocated for each type of memory area. Note that in a partitioned database
environment, this memory is allocated on each database partition.

numdb This database manager configuration parameter specifies the maximum
number of concurrent active databases that different applications can use.
Because each database has its own global memory area, the amount of
memory that can be allocated increases if you increase the value of this
parameter.

maxappls
This database configuration parameter specifies the maximum number of
applications that can simultaneously connect to a specific database. The
value of this parameter affects the amount of memory that can be allocated
for both agent private memory and application global memory for that
database.

max_connections
This database manager configuration parameter limits the number of
database connections or instance attachments that can access the data
server at any one time.

max_coordagents
This database manager configuration parameter limits the number of
database manager coordinating agents that can exist simultaneously across
all active databases in an instance (and per database partition in a
partitioned database environment). Together with maxapp1s and
max_connections, this parameter limits the amount of memory that is
allocated for agent private memory and application global memory.

You can use the memory tracker, invoked by the db2mtrk command, to view the
current allocation of memory within the instance. You can also use the
ADMIN_GET_MEM_USAGE table function to determine the total memory
consumption for the entire instance or for just a single database partition. Use the
MON_GET_MEMORY_SET and MON_GET _MEMORY_POOL table functions to
examine the current memory usage at the instance, database, or application level.

Chapter 3. Autonomic computing 39

On UNIX and Linux operating systems, although the ipcs command can be used
to list all the shared memory segments, it does not accurately reflect the amount of
resources consumed. You can use the db2mtrk command as an alternative to ipcs.

Self-tuning memory configuration

Enablement of self-tuning memory and memory consumers is controlled by
database configuration parameters.

Self-tuning memory is enabled through the self_tuning_mem database
configuration parameter.

The following memory-related database configuration parameters can be
automatically tuned:

» database_memory - Database shared memory size

* Tocklist - Maximum storage for lock list

 maxlocks - Maximum percent of lock list before escalation
* pckcachesz - Package cache size

* sheapthres_shr - Sort heap threshold for shared sorts

* sortheap - Sort heap size

Enabling self-tuning memory

Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools.

About this task

When enabled, the memory tuner dynamically distributes available memory
resources between several memory consumers, including buffer pools, locking
memory, package cache, and sort memory.

Procedure

1. Enable self-tuning memory for the database by setting the self_tuning_mem
database configuration parameter to ON using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet APL

2. To enable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
AUTOMATIC using the UPDATE DATABASE CONFIGURATION command or the
db2CfgSet APL

3. To enable the self tuning of a buffer pool, set the buffer pool size to AUTOMATIC
using the CREATE BUFFERPOOL statement or the ALTER BUFFERPOOL
statement. In a partitioned database environment, that buffer pool should not
have any entries in SYSCAT.BUFFERPOOLDBPARTITIONS.

Results

Note:

1. Because self-tuned memory is distributed between different memory
consumers, at least two memory areas must be concurrently enabled for self
tuning at any given time; for example, locking memory and database shared
memory. The memory tuner actively tunes memory on the system (the value of
the self_tuning_mem database configuration parameter is ON) when one of the
following conditions is true:

40 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

* One configuration parameter or buffer pool size is set to AUTOMATIC, and the
database_memory database configuration parameter is set to either a numeric
value or to AUTOMATIC

* Any two of Tocklist, sheapthres_shr, pckcachesz, or buffer pool size is set
to AUTOMATIC

* The sortheap database configuration parameter is set to AUTOMATIC

The value of the Tocklist database configuration parameter is tuned together
with the maxlocks database configuration parameter. Disabling self tuning of
the Tocklist parameter automatically disables self tuning of the maxlocks
parameter, and enabling self tuning of the Tocklist parameter automatically
enables self tuning of the maxlocks parameter.

Automatic tuning of sortheap or the sheapthres_shr database configuration
parameter is allowed only when the database manager configuration parameter
sheapthres is set to 0.

The value of sortheap is tuned together with sheapthres_shr. Disabling self
tuning of the sortheap parameter automatically disables self tuning of the
sheapthres_shr parameter, and enabling self tuning of the sheapthres_shr
parameter automatically enables self tuning of the sortheap parameter.

Self-tuning memory runs only on the high availability disaster recovery
(HADR) primary server. When self-tuning memory is activated on an HADR
system, it will never run on the secondary server, and it runs on the primary
server only if the configuration is set properly. If the HADR database roles are
switched, self-tuning memory operations will also switch so that they run on
the new primary server. After the primary database starts, or the standby
database converts to a primary database through takeover, the self-tuning
memory manager (STMM) engine dispatchable unit (EDU) might not start until
the first client connects.

Disabling self-tuning memory

Self-tuning memory can be disabled for the entire database or for one or more
configuration parameters or buffer pools.

About this task

If self-tuning memory is disabled for the entire database, the memory
configuration parameters and buffer pools that are set to AUTOMATIC remain
enabled for automatic tuning; however, the memory areas remain at their current
size.

Procedure

1.

Disable self-tuning memory for the database by setting the self_tuning_mem
database configuration parameter to OFF using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet APL

To disable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
MANUAL or specify numeric parameter values using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet APIL.

To disable the self tuning of a buffer pool, set the buffer pool size to a specific
value using the ALTER BUFFERPOOL statement.

Results

Note:

Chapter 3. Autonomic computing 41

* In some cases, a memory configuration parameter can be enabled for self tuning
only if another related memory configuration parameter is also enabled. This
means that, for example, disabling self-tuning memory for the Tocklist or the
sortheap database configuration parameter disables self-tuning memory for the
maxlocks or the sheapthres_shr database configuration parameter, respectively.

Determining which memory consumers are enabled for self
tuning

You can view the self-tuning memory settings that are controlled by configuration
parameters or that apply to buffer pools.

About this task

It is important to note that responsiveness of the memory tuner is limited by the
time required to resize a memory consumer. For example, reducing the size of a
buffer pool can be a lengthy process, and the performance benefits of trading
buffer pool memory for sort memory might not be immediately realized.

Procedure

* To view the settings for configuration parameters, use one of the following
methods:

— Use the GET DATABASE CONFIGURATION command, specifying the SHOW DETAIL
parameter.

The memory consumers that can be enabled for self tuning are grouped
together in the output as follows:

Description Parameter Current Value Delayed Value

Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON

Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200) AUTOMATIC(37200)
Max storage for lock 1ist (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)
Percent. of lock Tists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)
Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC (5600)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000) AUTOMATIC (5000)
Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC(256)

— Use the db2CfgGet API.
The following values are returned:

SQLF_OFF 0
SQLF_ON_ACTIVE 2
SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE indicates that self tuning is both enabled and active, whereas
SQLF_ON_INACTIVE indicates that self tuning is enabled but currently inactive.

* To view the self-tuning settings for buffer pools, use one of the following
methods:

— To retrieve a list of the buffer pools that are enabled for self tuning from the
command line, use the following query:
SELECT BPNAME, NPAGES FROM SYSCAT.BUFFERPOOLS

When self tuning is enabled for a buffer pool, the NPAGES field in the
SYSCAT.BUFFERPOOLS view for that particular buffer pool is set to -2. When
self tuning is disabled, the NPAGES field is set to the current size of the
buffer pool.

— To determine the current size of buffer pools that are enabled for self tuning,
use the GET SNAPSHOT command and examine the current size of the buffer
pools (the value of the bp_cur_buffsz monitor element):

GET SNAPSHOT FOR BUFFERPOOLS ON database-alias

42 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on
a particular database partition creates an exception entry (or updates an
existing entry) for that buffer pool in the
SYSCAT.BUFFERPOOLDBPARTITIONS catalog view. If an exception entry for
a buffer pool exists, that buffer pool does not participate in self-tuning
operations when the default buffer pool size is set to AUTOMATIC.

Self-tuning memory in partitioned database environments

When using the self-tuning memory feature in partitioned database environments,
there are a few factors that determine whether the feature will tune the system
appropriately.

When self-tuning memory is enabled for partitioned databases, a single database
partition is designated as the tuning partition, and all memory tuning decisions are
based on the memory and workload characteristics of that database partition. After
tuning decisions on that partition are made, the memory adjustments are
distributed to the other database partitions to ensure that all database partitions
maintain similar configurations.

The single tuning partition model assumes that the feature will be used only when
all of the database partitions have similar memory requirements. Use the following
guidelines when determining whether to enable self-tuning memory on your
partitioned database.

Cases where self-tuning memory for partitioned databases is
recommended

When all database partitions have similar memory requirements and are running
on similar hardware, self-tuning memory can be enabled without any
modifications. These types of environments share the following characteristics:

+ All database partitions are on identical hardware, and there is an even
distribution of multiple logical database partitions to multiple physical database
partitions

* There is a perfect or near-perfect distribution of data

* Workloads are distributed evenly across database partitions, meaning that no
database partition has higher memory requirements for one or more heaps than
any of the others

In such an environment, if all database partitions are configured equally,
self-tuning memory will properly configure the system.

Cases where self-tuning memory for partitioned databases is
recommended with qualification

In cases where most of the database partitions in an environment have similar
memory requirements and are running on similar hardware, it is possible to use
self-tuning memory as long as some care is taken with the initial configuration.
These systems might have one set of database partitions for data, and a much
smaller set of coordinator partitions and catalog partitions. In such environments,
it can be beneficial to configure the coordinator partitions and catalog partitions
differently than the database partitions that contain data.

Self-tuning memory should be enabled on all of the database partitions that

contain data, and one of these database partitions should be designated as the
tuning partition. And because the coordinator and catalog partitions might be

Chapter 3. Autonomic computing 43

configured differently, self-tuning memory should be disabled on those partitions.
To disable self-tuning memory on the coordinator and catalog partitions, set the
self_tuning_mem database configuration parameter on these partitions to OFF.

Cases where self-tuning memory for partitioned databases is not
recommended

If the memory requirements of each database partition are different, or if different
database partitions are running on significantly different hardware, it is good
practice to disable the self-tuning memory feature. You can disable the feature by
setting the self_tuning_mem database configuration parameter to OFF on all
partitions.

Comparing the memory requirements of different database
partitions

The best way to determine whether the memory requirements of different database
partitions are sufficiently similar is to consult the snapshot monitor. If the
following snapshot elements are similar on all database partitions (differing by no
more than 20%), the memory requirements of the database partitions can be
considered sufficiently similar.

Collect the following data by issuing the command: get snapshot for database on
<dbname>

Locks held currently

Lock waits

Time database waited on Tocks (ms)
Lock Tist memory in use (Bytes)
Lock escalations

Exclusive lock escalations

Total Shared Sort heap allocated
Shared Sort heap high water mark
Post threshold sorts (shared memory)
Sort overflows

Package cache Tookups

Package cache inserts

Package cache overflows

Package cache high water mark (Bytes)

nw - nn
(<]

Number of hash joins

Number of hash Toops

Number of hash join overflows

Number of small hash join overflows

Post threshold hash joins (shared memory)

Number of OLAP functions
Number of OLAP function overflows
Active OLAP functions

nw o nn
[oNoNo)

Collect the following data by issuing the command: get snapshot for bufferpools
on <dbname>

Buffer pool data logical reads

Buffer pool data physical reads

Buffer pool index Togical reads

Buffer pool index physical reads

Total buffer pool read time (milliseconds)
Total buffer pool write time (milliseconds)

[cNoNoNOoNoNo)

44 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Using self-tuning memory in partitioned database
environments

When self-tuning memory is enabled in partitioned database environments, there is
a single database partition (known as the tuning partition) that monitors the
memory configuration and propagates any configuration changes to all other
database partitions to maintain a consistent configuration across all the
participating database partitions.

The tuning partition is selected on the basis of several characteristics, such as the
number of database partitions in the partition group and the number of buffer
pools.

* To determine which database partition is currently specified as the tuning
partition, call the ADMIN_CMD procedure as follows:

CALL SYSPROC.ADMIN _CMD('get stmm tuning dbpartitionnum')
¢ To change the tuning partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD('update stmm tuning dbpartitionnum <partitionnum>')

The tuning partition is updated asynchronously or at the next database startup.
To have the memory tuner automatically select the tuning partition, enter -1 for
the partitionnum value.

Starting the memory tuner in partitioned database environments

In a partitioned database environment, the memory tuner will start only if the
database is activated by an explicit ACTIVATE DATABASE command, because
self-tuning memory requires that all partitions be active.

Disabling self-tuning memory for a specific database partition

* To disable self-tuning memory for a subset of database partitions, set the
self_tuning_mem database configuration parameter to OFF for those database
partitions.

* To disable self-tuning memory for a subset of the memory consumers that are
controlled by configuration parameters on a specific database partition, set the
value of the relevant configuration parameter or the buffer pool size to
MANUAL or to some specific value on that database partition. It is
recommended that self-tuning memory configuration parameter values be
consistent across all running partitions.

* To disable self-tuning memory for a particular buffer pool on a specific database
partition, issue the ALTER BUFFERPOOL statement, specifying a size value and
the partition on which self-tuning memory is to be disabled.

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a

particular database partition will create an exception entry (or update an existing

entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog

view. If an exception entry for a buffer pool exists, that buffer pool will not

participate in self-tuning operations when the default buffer pool size is set to

AUTOMATIC. To remove an exception entry so that a buffer pool can be

enabled for self tuning:

1. Disable self tuning for this buffer pool by issuing an ALTER BUFFERPOOL
statement, setting the buffer pool size to a specific value.

2. Issue another ALTER BUFFERPOOL statement to set the size of the buffer
pool on this database partition to the default.

3. Enable self tuning for this buffer pool by issuing another ALTER
BUFFERPOOL statement, setting the buffer pool size to AUTOMATIC.

Chapter 3. Autonomic computing 45

Enabling self-tuning memory in nhonuniform environments

Ideally, data should be distributed evenly across all database partitions, and the
workload that is run on each partition should have similar memory requirements.
If the data distribution is skewed, so that one or more of your database partitions
contain significantly more or less data than other database partitions, these
anomalous database partitions should not be enabled for self tuning. The same is
true if the memory requirements are skewed across the database partitions, which
can happen, for example, if resource-intensive sorts are only performed on one
partition, or if some database partitions are associated with different hardware and
more available memory than others. Self tuning memory can still be enabled on
some database partitions in this type of environment. To take advantage of
self-tuning memory in environments with skew, identify a set of database
partitions that have similar data and memory requirements and enable them for
self tuning. Memory in the remaining partitions should be configured manually.

Configuring memory and memory heaps

With the simplified memory configuration feature, you can configure memory and
memory heaps required by the DB2 data server by using the default AUTOMATIC
setting for most memory-related configuration parameters, thereby, requiring much
less tuning.

The simplified memory configuration feature provides the following benefits:

* You can use a single parameter, instance_memory, to specify all of the memory
that the database manager is allowed to allocate from its private and shared
memory heaps. Also, you can use the app1_memory configuration parameter to
control the maximum amount of application memory that is allocated by DB2
database agents to service application requests.

* You are not required to manually tune parameters used solely for functional
memory.

* You can use the db2mtrk command to monitor heap usage and the
ADMIN_GET_MEM_USAGE table function to query overall memory
consumption.

* The default DB2 configuration requires much less tuning, a benefit for new
instances that you create.

The following table lists the memory configuration parameters whose values
default to the AUTOMATIC setting. These parameters can also be configured
dynamically, if necessary. Note that the meaning of the AUTOMATIC setting differs
with each parameter, as described in the rightmost column.

Table 3. Memory configuration parameters whose values default to AUTOMATIC

Configuration Meaning of the AUTOMATIC

parameter name | Description setting

app1_memory Controls the maximum amount of |If an instance_memory limit is
application memory that is enforced, the AUTOMATIC setting
allocated by DB2 database agents | allows all application memory
to service application requests. requests as long as the total

amount of memory allocated by the
database partition is within the
instance_memory limit. Otherwise,
it allows request as long as there
are system resources available.

46 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 3. Memory configuration parameters whose values default to AUTOMATIC (continued)

Configuration
parameter name

Description

Meaning of the AUTOMATIC
setting

applheapsz

Starting with Version 9.5, this
parameter refers to the total
amount of application memory that
can be consumed by the entire
application. For partitioned
database environments,
Concentrator, or SMP
configurations, this means that you
might need to increase the
applheapsz value used in previous
releases unless you use the
AUTOMATIC setting.

The AUTOMATIC setting allows the
application heap size to increase. as
needed. A limit might be enforced
if there is an app1_memory limit or
an instance_memory limit.

database_memory

Specifies the amount of shared
memory that is reserved for the
database shared memory region.

When enabled, the memory tuner
determines the overall memory
requirements for the database and
increases or decreases the amount
of memory allocated for database
shared memory depending on the
current database requirements.
Starting with Version 9.5, AUTOMATIC
is the default setting for all DB2
server products.

dbheap

Determines the maximum memory
used by the database heap.

The AUTOMATIC setting allows the
database heap to increase as
needed. A limit might be enforced
if there is a database_memory limit
or an instance_memory limit.

instance_memory

If you are using a DB2 database
products with memory usage
restrictions or if you set this
parameter to a specific value, this
parameter specifies the maximum
amount of memory that can be
allocated for a database partition.

The AUTOMATIC setting allows the
overall memory consumed by the
entire database manager instance to
grow as needed, and STMM
ensures that sufficient system
memory is available to prevent
memory overcommitment. For DB2
database products with memory
usage restrictions, the AUTOMATIC
setting enforces a limit based on
the lower of a computed value
(75-95% of RAM) and the allowable
memory usage under the license.
See instance_memory for details on
when it is enforced as a limit.

mon_heap_sz

Determines the amount of the
memory, in pages, to allocate for
database system monitor data.

The AUTOMATIC setting allows the
monitor heap to increase as needed.
A limit might be enforced if there is
an instance_memory limit.

stat_heap_sz

Indicates the maximum size of the
heap used in collecting statistics
using the RUNSTATS command.

The AUTOMATIC setting allows the
statistics heap size to increase as
needed. A limit might be enforced
if there is an app1_memory limit or
an instance_memory limit.

Chapter 3. Autonomic computing 47

Table 3. Memory configuration parameters whose values default to AUTOMATIC (continued)

Configuration
parameter name

Description

Meaning of the AUTOMATIC
setting

stmtheap

Specifies the size of the statement
heap which is used as a work space
for the SQL or XQuery compiler to
compile an SQL or XQuery

The AUTOMATIC setting allows the
statement heap to increase as
needed. A limit might be enforced
if there is an app1_memory limit or

statement. an instance_memory limit.

Note: The DBMCFG and DBCFG administrative views retrieve database manager
configuration parameter information for the currently connected database for all
database partitions. For the mon_heap_sz, stmtheap, and stat_heap_sz configuration
parameters, the DEFERRED_VALUE column on this view does not persist across
database activations. That is, when you issue the get dbm cfg show detail or get
db cfg show detail command, the output from the query shows updated (in
memory) values.

The following table shows whether configuration parameters are set to the default
AUTOMATIC value during instance upgrade or creation and during database upgrade
or creation.

Table 4. Configuration parameters set to AUTOMATIC during instance and database upgrade
and creation

Set to AUTOMATIC Set to AUTOMATIC Set to AUTOMATIC
Configuration upon instance upon database upon database
parameters upgrade or creation |upgrade creation
applheapsz! X X
dbheap X X
instance_memory X
mon_heap_sz' X
stat_heap_sz' X X
stmtheap' X

As part of the move to simplified memory configuration, the following elements
have been deprecated:

* Configuration parameters appgroup_mem_sz, groupheap_ratio, and
app_ct1_heap_sz. These configuration parameters are replaced with the new
app1_memory configuration parameter.

e The -p parameter of the db2mtrk memory tracker command. This option, which
lists private agent memory heaps, is replaced with the -a parameter, which lists
all application memory consumption.

Agent and process model configuration

Starting with Version 9.5, DB2 databases feature a less complex and more flexible
mechanism for configuring process model-related parameters. This simplified
configuration eliminates the need for regular adjustments to these parameters and
reduces the time and effort required to configure them. It also eliminates the need
to shut down and restart DB2 instances to have the new values take effect.

To allow for dynamic and automatic agent and memory configuration, slightly
more memory resources are required when an instance is activated.

48 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Automatic storage

Automatic storage simplifies storage management for table spaces. You can create
storage groups consisting of paths on which the database manager places your
data. Then, the database manager manages the container and space allocation for
the table spaces as you create and populate them. You can specify the paths of the
default storage group when creating the database.

Databases use automatic storage by default

Automatic storage can make storage management easier. Rather than managing
storage at the table space level using explicit container definitions, storage is
managed at the storage group level and the responsibility of creating, extending
and adding containers is taken over by the database manager.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

By default, all databases are created with automatic storage. However, if the
database is created specifying the AUTOMATIC STORAGE NO clause it cannot
use automatic storage managed table spaces.

When you create a database, by default, a default storage group is automatically
created. You can establish one or more initial storage paths for it. As a database
grows, the database manager creates containers across those storage paths, and
extends them or automatically creates new ones as needed. The list of storage
paths can be displayed using the ADMIN_GET_STORAGE_PATHS administrative
view.

If a database has no storage groups, you can create a storage group using the
CREATE STOGROUP statement. The newly created storage group is the default
storage group and all new automatic storage managed table spaces are added to
the database using this storage group. You can change the default storage group
using the SET AS DEFAULT clause of the CREATE STOGROUP statement or the
ALTER STOGROUP statement.

Important:

* Adding storage paths does not convert existing non-automatic storage table
spaces to use automatic storage. You can convert database managed (DMS) table
spaces to use automatic storage. System managed (SMS) table spaces cannot be
converted to automatic storage. See “Converting table spaces to use automatic
storage” on page 133 for more information.

* Once a database has storage groups created, it always has at least one storage
group. You cannot remove the last storage group from the database manger.

* To help ensure predictable performance, the storage paths added to a storage
group should have similar media characteristics.

Data compression

You can reduce storage needed for your data by using the compression capabilities
built into DB2 for Linux, UNIX, and Windows to reduce the size of tables, indexes
and even your backup images.

Tables and indexes often contain repeated information. This repetition can range
from individual or combined column values, to common prefixes for column
values, or to repeating patterns in XML data. There are a number of compression

Chapter 3. Autonomic computing 49

capabilities that you can use to reduce the amount of space required to store your
tables and indexes, along with features you can employ to determine the savings
compression can offer.

You can also use backup compression to reduce the size of your backups. '

Compression capabilities included with most editions of DB2 V9.7 include:
* Value compression

* Backup compression.

The following additional compression capabilities are available with the a license
for the DB2 Storage Optimization Feature:

* Row compression, including compression for XML storage objects.
* Temporary table compression

* Index compression.
For more details about index compression, see “Index compression” on page 336.

For more details about backup compression, see “Backup compression” on page
740.

Automatic database backup

A database might become unusable due to a variety of hardware or software
failures. Automatic database backup simplifies database backup management tasks
for the DBA by always ensuring that a recent full backup of the database is
performed as needed.

It determines the need to perform a backup operation based on one or more of the
following measures:

* You have never completed a full database backup

* The time elapsed since the last full backup is more than a specified number of
hours

* The transaction log space consumed since the last backup is more than a
specified number of 4 KB pages (in archive logging mode only).

Protect your data by planning and implementing a disaster recovery strategy for
your system. If suitable to your needs, you may incorporate the automatic
database backup feature as part of your backup and recovery strategy.

If the database is enabled for roll-forward recovery (archive logging), then
automatic database backup can be enabled for either online or offline backup.
Otherwise, only offline backup is available. Automatic database backup supports
disk, tape, Tivoli® Storage Manager (TSM), and vendor DLL media types.

If backup to disk is selected, the automatic backup feature will regularly delete
backup images from the directory specified in the automatic database backup
configuration. Only the most recent backup image will be available at any given
time, regardless of the number of full backups that are specified in the automatic
backup policy file. It is recommended that this directory be kept exclusively for the
automatic backup feature and not be used to store other backup images.

1. See “Backup compression” in Data Recovery and High Availability Guide and Reference for more information.

50 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The automatic database backup feature can be enabled or disabled by using the
auto_db_backup and auto_maint database configuration parameters. In a
partitioned database environment, the automatic database backup runs on each
database partition if the database configuration parameters are enabled on that
database partition.

You can also configure automatic backup using one of the system stored
procedures called AUTOMAINT_SET_POLICY and
AUTOMAINT_SET_POLICYFILE.

Automatic table and index maintenance

After many changes to table data, a table and its indexes can become fragmented.
Logically sequential data might be found on nonsequential pages, forcing
additional read operations by the database manager to access data.

The statistical information that is collected by the RUNSTATS utility shows the
distribution of data within a table. Analysis of these statistics can indicate when
and what type of reorganization is necessary.

The automatic reorganization process determines the need for table or index
reorganization by using formulas that are part of the REORGCHK utility. It
periodically evaluates tables and indexes that had their statistics updated to see
whether reorganization is required, and schedules such operations whenever they
are necessary.

The automatic reorganization feature can be enabled or disabled through the
auto_reorg, auto_tb1_maint, and auto_maint database configuration parameters.

In a partitioned database environment, the initiation of automatic reorganization is
done on the catalog database partition. These configuration parameters are enabled
only on the catalog database partition. The REORG operation, however, runs on all
of the database partitions on which the target tables are found.

If you are unsure about when and how to reorganize your tables and indexes, you
can incorporate automatic reorganization as part of your overall database
maintenance plan.

You can also reorganize multidimensional clustering (MDC) and insert time
clustering (ITC) tables to reclaim space. The freeing of extents from MDC and ITC
tables is only supported for tables in DMS table spaces and automatic storage.
Freeing extents from your MDC and ITC tables can be done in an online fashion
with the RECLAIM EXTENTS option of the REORG TABLE command.

You can also schedule an alternate means to reclaim space from your indexes. The
REORG INDEX command has an index clause in which you can specify
space-reclaim-options. When you specify RECLAIM EXTENTS in
space-reclaim-options, space is released back to the table space in an online
fashion. This operation provides space reclamation without the need for a full
rebuild of the indexes. The REBUILD option of the REORG INDEX command also
reclaims space, but not necessarily in an online fashion.

Automatic reorganization on data partitioned tables

For DB2 Version 9.7 Fix Pack 1 and earlier releases, automatic reorganization
supports reorganization of a data partitioned table for the entire table. For DB2

Chapter 3. Autonomic computing 51

V9.7 Fix Pack 1 and later releases, automatic reorganization supports reorganizing
data partitions of a partitioned table and reorganizing the partitioned indexes on a
data partition of a partitioned table.

To avoid placing an entire data partitioned table into ALLOW NO ACCESS mode,
automatic reorganization performs REORG INDEXES ALL operations at the data
partition level on partitioned indexes that need to be reorganized. Automatic
reorganization performs REORG INDEX operations on any nonpartitioned index that
needs to be reorganized.

Automatic reorganization performs the following REORG TABLE operations on data
partitioned tables:

* If any nonpartitioned indexes (except system-generated XML path indexes) are
defined on the table and there is only one partition that needs to be reorganized,
automatic reorganization performs a REORG TABLE operation with the ON DATA
PARTITION clause to specify the partition that needs to be reorganized.
Otherwise, automatic reorganization performs a REORG TABLE on the entire table
without the ON DATA PARTITION clause.

¢ If no nonpartitioned indexes (except system-generated XML path indexes) are
defined on the table, automatic reorganization performs a REORG TABLE operation
with the ON DATA PARTITION clause on each partition that needs to be
reorganized.

Automatic reorganization on volatile tables

You can enable automatic index reorganization for volatile tables. The automatic
reorganization process determines whether index reorganization is required for
volatile tables and schedules a REORG INDEX CLEANUP. Index reorganization is
performed periodically on volatile tables and releases space that can be reused by
the indexes defined on these tables.

Statistics cannot be collected in volatile tables because they are updated frequently.
To determine what indexes need to be reorganized, automatic reorganization uses
the numInxPseudoEmptyPagesForVolatile attribute instead of REORGCHK. The
number of pseudo empty pages is maintained internally, visible through
mon_get_index, and does not require a RUNSTATS operation like REORGCHK.
This attribute in the AUTO_REORG policy indicates how many empty index pages
with pseudo deleted keys an index must have so index reorganization is triggered.

To enable automatic index reorganization in volatile tables:
* The DB2_WORKLOAD registry variable must be set to SAP.
* Automatic reorganization must be enabled.

* The numInxPseudoEmptyPagesForVolatile attribute must be set.

Automatic statistics collection

The DB2 optimizer uses catalog statistics to determine the most efficient access
plan for a query. Out-of-date or incomplete table or index statistics might lead the
optimizer to select a suboptimal plan, which slows down query execution.
However, deciding which statistics to collect for a given workload is complex, and
keeping these statistics up-to-date is time-consuming.

With automatic statistics collection, part of the DB2 automated table maintenance
feature, you can let the database manager determine whether statistics need to be
updated. Automatic statistics collection can occur synchronously at statement

52 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

compilation time by using the real-time statistics (RTS) feature, or the RUNSTATS
command can be enabled to simply run in the background for asynchronous
collection. Although background statistics collection can be enabled while real-time
statistics collection is disabled, background statistics collection must be enabled for
real-time statistics collection to occur. Automatic background statistics collection
auto_runstats and automatic real-time statistics collection auto_stmt_stats are
enabled by default when you create a database.

Starting with DB2 Version 9, you can use the Configuration Advisor to determine
the initial configuration for new databases including the appropriate setting for the
auto_stmt_stats database configuration parameter.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
configuring automatic statistics collection. Task assistants can guide you through
the process of setting options, reviewing the automatically generated commands to
perform the task, and running these commands. For more details, see
Administering databases with task assistants.

Understanding asynchronous and real-time statistics collection

When real-time statistics collection is enabled, statistics can be fabricated by using
certain metadata. Fabrication means deriving or creating statistics, rather than
collecting them as part of normal RUNSTATS command activity. For example, the
number of rows in a table can be derived from knowing the number of pages in
the table, the page size, and the average row width. In some cases, statistics are
not derived, but are maintained by the index and data manager and can be stored
directly in the catalog. For example, the index manager maintains a count of the
number of leaf pages and levels in each index.

The query optimizer determines how statistics are collected, based on the needs of
the query and the amount of table update activity (the number of update, insert, or
delete operations).

Real-time statistics collection provides more timely and more accurate statistics.
Accurate statistics can result in better query execution plans and improved
performance. Regardless of whether real-time statistics is enabled, asynchronous
statistics collection occurs at two-hour intervals. This interval might not be
frequent enough to provide accurate statistics for some applications.

Real-time statistics collection also initiates asynchronous collection requests when:

* Table activity is not high enough to require synchronous collection, but is high
enough to require asynchronous collection

* Synchronous statistics collection used sampling because the table was large
* Synchronous statistics were fabricated
¢ Synchronous statistics collection failed because the collection time was exceeded

At most, two asynchronous requests can be processed at the same time, but only
for different tables. One request must have been initiated by real-time statistics
collection, and the other must have been initiated by asynchronous statistics
collection checking.

The performance impact of automatic statistics collection is minimized in several
ways:

* Asynchronous statistics collection is performed by using a throttled RUNSTATS
utility. Throttling controls the amount of resource that is consumed by the

Chapter 3. Autonomic computing 53

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

RUNSTATS utility, based on current database activity: as database activity
increases, the utility runs more slowly, reducing its resource demands.

* Synchronous statistics collection is limited to 5 seconds per query. This value can
be controlled by the RTS optimization guideline. If synchronous collection
exceeds the time limit, an asynchronous collection request is submitted.

* Synchronous statistics collection does not store the statistics in the system
catalog. Instead, the statistics are stored in a statistics cache and are later stored
in the system catalog by an asynchronous operation. This storage sequence
avoids the overhead and possible lock contention involved when updating the
system catalog. Statistics in the statistics cache are available for subsequent SQL
compilation requests.

¢ Only one synchronous statistics collection operation occurs per table. Other
agents requiring synchronous statistics collection fabricate statistics, if possible,
and continue with statement compilation. This behavior is also enforced in a
partitioned database environment, where agents on different database partitions
might require synchronous statistics.

* You can customize the type of statistics that are collected by enabling statistics
profiling, which uses information about previous database activity to determine
which statistics are required by the database workload, or by creating your own
statistics profile for a particular table.

* Only tables with missing statistics or high levels of activity (as measured by the
number of update, insert, or delete operations) are considered for statistics
collection. Even if a table meets the statistics collection criteria, synchronous
statistics are not collected unless query optimization requires them. In some
cases, the query optimizer can choose an access plan without statistics.

* For asynchronous statistics collection checking, large tables (tables with more
than 4000 pages) are sampled to determine whether high table activity changed
the statistics. Statistics for such large tables are collected only if warranted.

* For asynchronous statistics collection, the RUNSTATS utility is automatically
scheduled to run during the online maintenance window that is specified in
your maintenance policy. This policy also specifies the set of tables that are
within the scope of automatic statistics collection, further minimizing
unnecessary resource consumption.

* Synchronous statistics collection and fabrication do not follow the online
maintenance window that is specified in your maintenance policy, because
synchronous requests must occur immediately and have limited collection time.
Synchronous statistics collection and fabrication follow the policy that specifies
the set of tables that are within the scope of automatic statistics collection.

* While automatic statistics collection is being performed, the affected tables are
still available for regular database activity (update, insert, or delete operations).

* Real-time statistics (synchronous or fabricated) are not collected for nicknames.
To refresh nickname statistics in the system catalog for synchronous statistics
collection, call the SYSPROC.NNSTAT procedure. For asynchronous statistics
collection, DB2 for Linux, UNIX, and Windows automatically calls the
SYSPROC.NNSAT procedure to refresh the nickname statistics in the system
catalog.

* Real-time statistics (synchronous or fabricated) are not collected for statistical
views.

* Declared temporary tables (DGTTs) can have only Real-time statistics collected.

Although real-time statistics collection is designed to minimize statistics collection
overhead, try it in a test environment first to ensure that there is no negative

54 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

performance impact. There might be a negative performance impact in some online
transaction processing (OLTP) scenarios, especially if there is an upper boundary
for how long a query can run.

Real-time synchronous statistics collection is performed for regular tables,
materialized query tables (MQTs), and global temporary tables. Asynchronous
statistics are not collected for global temporary tables. Global temporary tables
cannot be excluded from real-time statistics via the automatic maintenance policy
facility.

Automatic statistics collection (synchronous or asynchronous) does not occur for:

* Tables that are marked VOLATILE (tables that have the VOLATILE field set in
the SYSCAT.TABLES catalog view)

* Created temporary tables (CGTTs)

* Tables that had their statistics manually updated, by issuing UPDATE statements
directly against SYSSTAT catalog views

When you modify table statistics manually, the database manager assumes that
you are now responsible for maintaining their statistics. To induce the database
manager to maintain statistics for a table that had its statistics manually
updated, collect statistics by using the RUNSTATS command or specify statistics
collection when using the LOAD command. Tables created before Version 9.5 that
had their statistics updated manually before upgrading are not affected, and
their statistics are automatically maintained by the database manager until they
are manually updated.

Statistics fabrication does not occur for:
e Statistical views

* Tables that had their statistics manually updated, by issuing UPDATE statements
directly against SYSSTAT catalog views. If real-time statistics collection is not
enabled, some statistics fabrication still occurs for tables that had their statistics
manually updated.

In a partitioned database environment, statistics are collected on a single database
partition and then extrapolated. The database manager always collects statistics
(both synchronous and asynchronous) on the first database partition of the
database partition group.

No real-time statistics collection activity will occur until at least five minutes after
database activation.

Real-time statistics processing occurs for both static and dynamic SQL.

A table that was truncated, either by using the TRUNCATE statement or by using
the IMPORT command, is automatically recognized as having out of date statistics.

Automatic statistics collection, both synchronous and asynchronous, invalidates
cached dynamic statements that reference tables for which statistics were collected.
This is done so that cached dynamic statements can be re-optimized with the latest
statistics.

Asynchronous automatic statistics collection operations might be interrupted when
the database is deactivated. If the database was not explicitly activated using the
ACTIVATE DATABASE command or API, then the database is deactivated when the
last user disconnects from the database. If operations are interrupted, then error

Chapter 3. Autonomic computing 55

messages might be recorded in the DB2 diagnostic log file. To avoid interrupting
asynchronous automatic statistics collection operations, explicitly activate the
database.

Real-time statistics and explain processing

There is no real-time processing for a query that is only explained (not executed)
by using the EXPLAIN facility. The following table summarizes the behavior under
different values of the CURRENT EXPLAIN MODE special register.

Table 5. Real-time statistics collection as a function of the value of the CURRENT EXPLAIN

MODE special register

CURRENT EXPLAIN MODE value Real-time statistics collection considered

YES Yes

EXPLAIN No

NO Yes

REOPT Yes

RECOMMEND INDEXES No

EVALUATE INDEXES No

Automatic statistics collection and the statistics cache

A statistics cache was introduced in DB2 Version 9.5 to make synchronously
collected statistics available to all queries. This cache is part of the catalog cache. In
a partitioned database environment, the statistics cache resides only on the catalog
database partition even though each database partition has a catalog cache. When
real-time statistics collection is enabled, catalog cache requirements are higher.
Consider tuning the value of the catalogcache_sz database configuration
parameter when real-time statistics collection is enabled.

Automatic statistics collection and statistical profiles

Synchronous and asynchronous statistics are collected according to a statistical
profile that is in effect for a table, with the following exceptions:

* To minimize the overhead of synchronous statistics collection, the database
manager might collect statistics by using sampling. In this case, the sampling
rate and method might be different from those rates and methods that are
specified in the statistical profile.

* Synchronous statistics collection might choose to fabricate statistics, but it might
not be possible to fabricate all statistics that are specified in the statistical profile.
For example, column statistics such as COLCARD, HIGH2KEY, and LOW2KEY
cannot be fabricated unless the column is leading in some index.

If synchronous statistics collection cannot collect all statistics that are specified in
the statistical profile, an asynchronous collection request is submitted.

The following sections explain different operating characteristics of automatic
statistics collection.

56 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Configuration Advisor

You can use the Configuration Advisor to obtain recommendations for the initial
values of the buffer pool size, database configuration parameters, and database
manager configuration parameters.

To use the Configuration Advisor, specify the AUTOCONFIGURE command for an
existing database, or specify AUTOCONFIGURE as an option of the CREATE DATABASE
command. To configure your database, you must have SYSADM, SYSCTRL, or
SYSMAINT authority.

You can display the recommended values or apply them by specifying the APPLY
parameter in the CREATE DATABASE and AUTOCONFIGURE commands. The
recommendations are based on input that you provide and system information that
the advisor gathers.

The values suggested by the Configuration Advisor are relevant for only one
database per instance. If you want to use this advisor on more than one database,
each database must belong to a separate instance.

Tuning configuration parameters using the Configuration
Advisor

The Configuration Advisor helps you to tune performance and to balance memory
requirements for a single database per instance by suggesting which configuration
parameters to modify and suggesting values for them. The Configuration Advisor
is automatically run when you create a database.

About this task

To disable this feature or to explicitly enable it, use the db2set command before
creating a database, as follows:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

To define values for several of the configuration parameters and to determine the
scope of the application of those parameters, use the AUTOCONFIGURE command,
specifying one of the following options:

* NONE, meaning that none of the values are applied

* DB ONLY, meaning that only database configuration and buffer pool values are
applied

* DB AND DBM, meaning that all parameters and their values are applied

Note: Even if you automatically enabled the Configuration Advisor when you ran
the CREATE DATABASE command, you can still specify AUTOCONFIGURE command
options. If you did not enable the Configuration Advisor when you ran the CREATE
DATABASE command, you can run the Configuration Advisor manually afterwards.

Example: Requesting configuration recommendations using
the Configuration Advisor

This scenario demonstrates to run the Configuration Advisor from the command
line to generate recommendations and shows the output that the Configuration
Advisor produces.

Chapter 3. Autonomic computing 57

To run the Configuration Advisor:

1. Connect to the PERSONL database by specifying the following command from
the command line:

DB2 CONNECT TO PERSONL

2. Issue the AUTOCONFIGURE command from the CLP, specifying how the database
is used. As shown in the following example, set a value of NONE for the APPLY
option to indicate that you want to view the configuration recommendations
but not apply them:

DB2 AUTOCONFIGURE USING
MEM_PERCENT 60
WORKLOAD_TYPE MIXED
NUM_STMTS 500
ADMIN_PRIORITY BOTH
IS_POPULATED YES
NUM_LOCAL_APPS ©
NUM_REMOTE_APPS 20
ISOLATION RR
BP_RESIZEABLE YES

APPLY NONE

If you are unsure about the value of a parameter for the command, you can
omit it, and the default will be used. You can pass up to 10 parameters without
values: MEM_PERCENT, WORKLOAD_TYPE, and so on, as shown in the previous
example.

The recommendations generated by the AUTOCONFIGURE command are displayed on
the screen in table format, as shown in Figure 4 on page 59

58 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Former and Applied Values for Database Manager Configuration

Description Parameter Current Value Recommended Value
Application support layer heap size (4KB) (ASLHEAPSZ) = 15 15
No. of int. communication buffers(4KB) (FCM_NUM_BUFFERS) = AUTOMATIC AUTOMATIC
Enable intra-partition parallelism (INTRA_PARALLEL) = NO NO
Maximum query degree of parallelism (MAX_QUERYDEGREE) = ANY 1
Agent pool size (NUM_POOLAGENTS) = 100(calculated) 200
Initial number of agents in pool (NUM_INITAGENTS) = 0 0
Max requester I/0 block size (bytes) (RQRIOBLK) = 32767 32767
Sort heap threshold (4KB) (SHEAPTHRES) = 0 0
Former and Applied Values for Database Configuration

Description Parameter Current Value Recommended Value
Default application heap (4KB) (APPLHEAPSZ) = 256 256
Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4) 260
Changed pages threshold (CHNGPGS_THRESH) = 60 80
Database heap (4KB) (DBHEAP) = 1200 2791
Degree of parallelism (DFT_DEGREE) =1 1
Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32
Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC AUTOMATIC
Default query optimization class (DFT_QUERYOPT) =5 5
Max storage for Tock Tist (4KB) (LOCKLIST) = 100 AUTOMATIC
Log buffer size (4KB) (LOGBUFSZ) = 8 99
Log file size (4KB) (LOGFILSIZ) = 1000 1024
Number of primary Tog files (LOGPRIMARY) = 3 8
Number of secondary log files (LOGSECOND) = 2 3
Max number of active applications (MAXAPPLS) = AUTOMATIC AUTOMATIC
Percent. of Tock Tists per application (MAXLOCKS) = 10 AUTOMATIC
Group commit count (MINCOMMIT) = 1 1
Number of asynchronous page cleaners (NUM_IOCLEANERS) = 1 1
Number of I/0 servers (NUM_IOSERVERS) = 3 4
Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS+*8) 1533
Percent Tog file reclaimed before soft chckpt (SOFTMAX) = 100 320
Sort list heap (4KB) (SORTHEAP) = 256 AUTOMATIC
statement heap (4KB) (STMTHEAP) = 4096 4096
Statistics heap size (4KB) (STAT_HEAP_SZ) = 4384 4384
Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000 113661
Self tuning memory (SELF_TUNING_MEM) = ON ON

Automatic runstats (AUTO_RUNSTATS) = ON ON
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = 5000 AUTOMATIC

Former and Applied Values for Bufferpool(s)

Description Parameter Current Value Recommended Value
IBMDEFAULTBP Bufferpool size = -2 340985

DB210203I AUTOCONFIGURE completed successfully. Database manager or database
configuration values may have been changed. The instance must be restarted before
any changes come into effect. You may also want to rebind your packages after the
new configuration parameters take effect so that the new values will be used.

Figure 4. Configuration Advisor sample output

If you agree with all of the recommendations, either reissue the AUTOCONFIGURE
command but specify that you want the recommended values to be applied by
using the APPLY option, or update individual configuration parameters using the
UPDATE DATABASE MANAGER CONFIGURATION command and the UPDATE DATABASE
CONFIGURATION command.

Utility throttling

Utility throttling regulates the performance impact of maintenance utilities so that
they can run concurrently during production periods. Although the impact policy,
a setting that allows utilities to run in throttled mode, is defined by default, you
must set the impact priority, a setting that each cleaner has indicating its throttling
priority, when you run a utility if you want to throttle it.

Chapter 3. Autonomic computing 59

The throttling system ensures that the throttled utilities are run as frequently as
possible without violating the impact policy. You can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index cleanups.

You define the impact policy by setting the util_impact_1im configuration
parameter.

Cleaners are integrated with the utility throttling facility. By default, each (index)
cleaner has a utility impact priority of 50 (acceptable values are between 1 and 100,
with 0 indicating no throttling). You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl APL

Asynchronous index cleanup

Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following
operations that invalidate index entries. Depending on the type of index, the
entries can be record identifiers (RIDs) or block identifiers (BIDs). Invalid index
entries are removed by index cleaners, which operate asynchronously in the
background.

AIC accelerates the process of detaching a data partition from a partitioned table,
and is initiated if the partitioned table contains one or more nonpartitioned
indexes. In this case, AIC removes all nonpartitioned index entries that refer to the
detached data partition, and any pseudo-deleted entries. After all of the indexes
have been cleaned, the identifier that is associated with the detached data partition
is removed from the system catalog. In DB2 Version 9.7 Fix Pack 1 and later
releases, AIC is initiated by an asynchronous partition detach task.

Prior to DB2 Version 9.7 Fix Pack 1, if the partitioned table has dependent
materialized query tables (MQTs), AIC is not initiated until after a SET INTEGRITY
statement is executed.

Normal table access is maintained while AIC is in progress. Queries accessing the
indexes ignore any invalid entries that have not yet been cleaned.

In most cases, one cleaner is started for each nonpartitioned index that is
associated with the partitioned table. An internal task distribution daemon is
responsible for distributing the AIC tasks to the appropriate table partitions and
assigning database agents. The distribution daemon and cleaner agents are internal
system applications that appear in LIST APPLICATIONS command output with the
application names db2taskd and db2aic, respectively. To prevent accidental
disruption, system applications cannot be forced. The distribution daemon remains
online as long as the database is active. The cleaners remain active until cleaning
has been completed. If the database is deactivated while cleaning is in progress,
AIC resumes when you reactivate the database.

AIC impact on performance
AIC incurs minimal performance impact.
An instantaneous row lock test is required to determine whether a pseudo-deleted

entry has been committed. However, because the lock is never acquired,
concurrency is unaffected.

60 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Each cleaner acquires a minimal table space lock (IX) and a table lock (IS). These
locks are released if a cleaner determines that other applications are waiting for
locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner
has a utility impact priority of 50. You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl APL

Monitoring AIC

You can monitor AIC with the LIST UTILITIES command. Each index cleaner
appears as a separate utility in the output. The following is an example of output
from the LIST UTILITIES SHOW DETAIL command:

ID 2

Type ASYNCHRONOUS INDEX CLEANUP
Database Name WSDB

Partition Number 0

Description

Table: USER1.SALES, Index: USER1.I2

Start Time 12/15/2005 11:15:01.967939
State Executing
Invocation Type Automatic
Throttling:
Priority = 50

Progress Monitoring:

Total Work = 5 pages

Completed Work = 0 pages

Start Time = 12/15/2005 11:15:01.979033
1D =1
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number =0
Description = Table: USER1.SALES, Index: USER1.I1
Start Time = 12/15/2005 11:15:01.978554
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50

Progress Monitoring:

Total Work = 5 pages

Completed Work = 0 pages

Start Time = 12/15/2005 11:15:01.980524

In this case, there are two cleaners operating on the USERS1.SALES table. One

cleaner is processing index I1, and the other is processing index 12. The progress
monitoring section shows the estimated total number of index pages that need
cleaning and the current number of clean index pages.

The State field indicates the current state of a cleaner. The normal state is
Executing, but the cleaner might be in Waiting state if it is waiting to be assigned
to an available database agent or if the cleaner is temporarily suspended because
of lock contention.

Note that different tasks on different database partitions can have the same utility
ID, because each database partition assigns IDs to tasks that are running on that
database partition only.

Asynchronous index cleanup for MDC tables

You can enhance the performance of a rollout deletion-an efficient method for
deleting qualifying blocks of data from multidimensional clustering (MDC)

Chapter 3. Autonomic computing 61

tables-by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of
indexes following operations that invalidate index entries.

Indexes are cleaned up synchronously during a standard rollout deletion. When a
table contains many record ID (RID) indexes, a significant amount of time is spent
removing the index keys that reference the table rows that are being deleted. You
can speed up the rollout by specifying that these indexes are to be cleaned up after
the deletion operation commits.

To take advantage of AIC for MDC tables, you must explicitly enable the deferred
index cleanup rollout mechanism. There are two methods of specifying a deferred
rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER or issuing the SET
CURRENT MDC ROLLOUT MODE statement. During a deferred index cleanup
rollout operation, blocks are marked as rolled out without an update to the RID
indexes until after the transaction commits. Block identifier (BID) indexes are
cleaned up during the delete operation because they do not require row-level
processing.

AIC rollout is invoked when a rollout deletion commits or, if the database was
shut down, when the table is first accessed following database restart. While AIC is
in progress, queries against the indexes are successful, including those that access
the index that is being cleaned up.

There is one coordinating cleaner per MDC table. Index cleanup for multiple
rollouts is consolidated within the cleaner, which spawns a cleanup agent for each
RID index. Cleanup agents update the RID indexes in parallel. Cleaners are also
integrated with the utility throttling facility. By default, each cleaner has a utility
impact priority of 50 (acceptable values are between 1 and 100, with 0 indicating
no throttling). You can change this priority by using the SET UTIL_IMPACT_PRIORITY
command or the db2UtilityControl API.

Note: In DB2 Version 9.7 and later releases, deferred cleanup rollout is not
supported on a data partitioned MDC table with partitioned RID indexes. Only the
NONE and IMMEDIATE modes are supported. The cleanup rollout type will be
IMMEDIATE if the DB2_MDC_ROLLOUT registry variable is set to DEFER, or if the
CURRENT MDC ROLLOUT MODE special register is set to DEFERRED to
override the DB2_MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the MDC table, deferred index cleanup
rollout is supported. The MDC block indexes can be partitioned or nonpartitioned.

Monitoring the progress of deferred index cleanup rollout
operation

Because the rolled-out blocks on an MDC table are not reusable until after the
cleanup is complete, it is useful to monitor the progress of a deferred index
cleanup rollout operation. Use the LIST UTILITIES command to display a utility
monitor entry for each index being cleaned up. You can also retrieve the total
number of MDC table blocks in the database that are pending asynchronous
cleanup following a rollout deletion (BLOCKS_PENDING_CLEANUP) by using the
ADMIN_GET_TAB_INFO table function or the GET SNAPSHOT command.

In the following sample output for the LIST UTILITIES SHOW DETAIL command,

progress is indicated by the number of pages in each index that have been cleaned
up. Each phase represents one RID index.

62 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

1D

Type

Database Name

Partition Number

Description

Start Time

State

Invocation Type

Throttling:
Priority

Progress Monitoring:
Estimated Percentage Complete

Phase Number
Description
Total Work

Completed Work

Start Time
Phase Number

Description

Total Work

Completed Work

Start Time
Phase Number

Description

Total Work

Completed Work

Start Time

2

MDC ROLLOUT INDEX CLEANUP

WSDB
0

TABLE.<schema_name>.<table_name>
06/12/2006 08:

Executing
Automatic

50

83
1

<schema_name>.

13 pages
13 pages

06/12/2006 08:

2

<schema_name>.

13 pages
13 pages

06/12/2006 08:

3

<schema_name>.

9 pages
3 pages

06/12/2006 08:

56:33.390158

<index_name>

56:33.391566

<index_name>

56:33.391577

<index_name>

56:33.391587

Chapter 3. Autonomic computing

63

64 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 4. IBM Data Studio

IBM Data Studio provides application developers with a single integrated
development environment that can be used to create, deploy, and debug
data-centric applications. Built to extend the Eclipse framework and SQL model
components, it combines Eclipse technology and shared repository extensions for
database development.

IBM Data Studio consist of the following components:

¢ The IBM Data Studio client, which is an Eclipse-based tool that provides an
integrated development environment for database and instance administration,
routine and Java application development, and query tuning tasks. It can be
installed with other IBM software products to share a common environment.

e The IBM Data Studio web console, which is a web-based tool with health and
availability monitoring, job creation, and database administration tasks.

If you previously used the Control Center tools, review the mapping between the
recommended Optim " tools and Control Center tools that is available at “Table of
recommended tools versus Control Center tools” in What’s New for DB2 Version
10.1 Version 9.7.

Related information:

(% IBM Data Studio documentation
[Features in IBM Data Studio

(% IBM Data Studio product Web page
[Download IBM Data Studio

Managing jobs in IBM Data Studio

IBM Data Studio web console provides job creation, job scheduling, and job
management for your DB2 for Linux, UNIX, and Windows and DB2 for z/OS®
databases.

With the Data Studio web console job manager you can:
* Create and schedule jobs directly from the IBM Data Studio client workbench.

— Use the workbench script editor to create your script and then schedule the
script to run as a job in the job manager.

— Access the Data Studio web console either embedded in the workbench or in
a stand-alone web browser window.

— Access the job history for a database directly from the Administration
Explorer in the workbench.

* Create and manage jobs by using the web console graphical user interface.

— View jobs, schedules, and notifications filtered by criteria such as database,
job ID, or job type.

* Create jobs based on database scripts:
SQL-only scripts
The SQL-only scripts are run by the job manager by running the SQL

commands that are outlined in the script part of the job directly against
the database.

© Copyright IBM Corp. 2014 65

http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.ds.nav.doc/topics/helpindex_ds.html
http://www.ibm.com/support/docview.wss?uid=swg27020627
http://www.ibm.com/software/data/optim/data-studio/
http://www.ibm.com/developerworks/downloads/im/data/index.html

DB2 CLP scripts
The DB2 CLP script jobs are run on the database server by the job
manager, which logs in to the database server by using SSH. For
multiple databases, the job manager logs in as the user ID that is defined
in the database connection. For a single database, based on the user's
selection, the job manager logs in by using SSH credentials that the user
supplies or the user ID that is defined in the database connection. When
logged in, the job manager runs command line processor commands
directly on the DB2 console of the server.

Important: To be able to run DB2 CLP script jobs on a database, the
user ID that is used to run the job must have permission to log in to the
database server by using SSH.

Executable/shell Scripts
The Executable/Shell script jobs are run on the database server by the
job manager, which logs in to the database server by using SSH. For
multiple databases, the job manager logs in as the user ID that is defined
in the database connection. For a single database, based on the user's
selection, the job manager logs in by using SSH credentials that the user
supplies or the user ID that is defined in the database connection. When
logged in, the job manager runs shell commands directly on the server.

Important: To be able to run Executable/Shell script jobs on a database,
the user ID that is used to run the job must have permission to log in to
the database server by using SSH.

* Schedule jobs to run at a specific time, or to repeat at certain intervals for one or
more databases.

* Run jobs for multiple databases as the default user stored in the database
connection, or specify a user ID to run the job as when running a job on one
database.

* Add jobs together in chains, where the main job is followed by a secondary job
dependent on the outcome of the main job, and where a finishing job, such as
RUNSTATS and BACKUP, is run last.

* Configure email notifications to be sent to one or more users depending on the
success or failure of the job.

* View the history of all jobs that run on your databases.

— The job history view gives you a high-level overview of the job results and
the option to drill down into each job.

— You can configure the job manager to retain job history for all jobs that were
run, or for a subset depending on the success or failure of the job.

* Manage user access to job manager tasks across your databases.

— Enable or disable job management privileges requirements for the users of the
web console.

— For each database, grant or revoke job management privileges for each user
of the web console.

Creating and managing jobs

With Data Studio web console job manager, you can create and manage your
database jobs from the web console.

You create and manage your jobs by using the following tabs of the Job Manager
page:

66 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Job List
From this tab, you can create jobs for your databases or run existing jobs
directly against a database without scheduling.

When you create a job or open an existing job, the job details open in the
job editor. Use the tabs in the job editor to move between jobs, or use the
job section view selector to drill down into the script, schedule,
notification, and chain component of each job.

Tip: If you have configured your IBM Data Studio client to connect to IBM
Data Studio web console you can create jobs directly from the SQL script
editor.

Schedules
From this tab, you can create and manage schedules for the jobs that you
created for your databases.

A schedule defines when a job will be run, whether the job is repeating,
and whether the schedule is limited in number of runs or in time. The
schedule also defines one or more databases on which to run the job.

Notifications
Use this tab to manage email notifications for the execution of the jobs that
you created for your databases.

Job manager notifications help you monitor the execution results for your
jobs across multiple databases and schedules without requiring access to
the web console.

Each job can have any number of notifications configured, and each
notification can be set up with different conditions, a different set of users
to notify, and different collections of databases to monitor.

History
On this tab, you can view the status of jobs that ran on your databases.
The job history is displayed for jobs that ran according to a schedule in
addition to jobs that you ran manually over the last few days.

Tip: If you have configured your IBM Data Studio client to connect to IBM
Data Studio web console you can view job history for a database directly
from the Administration Explorer.

Scenario: Creating and scheduling a job

In this scenario, Alan, a database administrator with the Sample Company, uses
the job manager to create and schedule a job based on a script provided by Doug,
a developer, on the Sales database owned by Becky, a database administrator.

To complete the parts of the scenario, Alan uses the following web console pages
of Data Studio web console:

* Databases
* Job Manager
— Job List tab
— Schedules tab
— Notifications tab
- History tab
* Console Security

Chapter 4. IBM Data Studio 67

68

Alan is a database manager for Sample Company, and is responsible for
scheduling database jobs. Alan works with the database script developers for the
script content of the jobs and with the database owners to get the required
credentials to access the databases. Alan owns the repository database that is used
by Data Studio web console to manage user access to the web console.

Alan is approached by Doug, a script developer who asks Alan to schedule a script
to be run on the Sales database monthly, and to notify Doug and Doug's manager
if the job fails. In addition, each time the script runs, an existing Cleanup job must
be run directly afterward.

First Alan verifies with Doug that the script has been tested and verified by
development, and that it runs without problems on their test databases. Doug uses
other IBM Data Studio tools to verify the scripts.

Next, Alan opens the Databases page in the web console to verify that the Sales
database exists as a database connection. If needed, he adds a database connection
to the Sales database with information from Becky, the owner of the Sales database.
Becky wants to restrict the running of jobs on the Sales database to a specific
subset of users, so Alan configures the database connection to connect with a user
ID that has the minimum required authority of CONNECT. To schedule the job on the
Sales database Alan also needs the user credentials of a user ID that has the
authorizations on the database required by the actions that the script runs. That
user ID also needs the required authority to run the cleanup job afterward.

Alan then opens the Job Manager page in the web console, and clicks Add Job in
the Job List tab to create the job. After filling out the basic information, such as a
job name and a description of the job, Alan selects the correct type of job to match
the script and verifies that the job is enabled for scheduling.

Working through the new job wizard, Alan pastes in the script that Doug provided
into the Script component of the job, making sure that the closing character
defined for the job matches what is in the script.

Alan then creates a schedule from the Schedules component of the job, setting a
date and time for the first job run, and configuring it to run monthly on the Sales
database. As the user ID used in the database connection does not have the correct
authority to run some of the commands in the script, Alan selects to run the job as
the specific user ID with the correct authority that was provided by the database
owner.

Alan also adds the requested cleanup job to the job in the Chain component. As
the only required chained job is the cleanup, Alan adds it to run at the end of the
chain.

Finally, Alan adds the email addresses of Doug and Doug's manager to the
Notifications component of the job, and configures notifications to be sent if the job
fails.

The job is now scheduled, and Alan can view the job, schedule, and notification
information for the job in the corresponding job manager tabs. Once the job has
been run, any user with access to the web console can use the History page to
view the job history for the job, and get a detailed view by looking at the log entry
for the job. If Doug does not have access to the web console, Alan adds Doug as a
repository database user and uses the Console Security page to grant Doug access
the web console.

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Importing tasks from DB2 Task Center

Use the Data Studio web console to import existing tasks from the Task Center in
the DB2 Control Center. Imported tasks are saved as jobs in the job manager.

About this task

The imported tasks are mapped to the appropriate job manager type as shown in
the following table:

Table 6. Mapping of Task Center script type to Job Manager job type

Task Center script type Job Manager job type
DB2 command script DB2 CLP script
OS command script Shell/Executable script

Restrictions: The following restrictions apply to importing tasks from the DB2
Task Center:

* Task types from DB2 Task Center:

Table 7. Restrictions for task types from DB2 Task Center

Task type Restrictions

MVS shell script Not supported.

Grouping Not supported.

OS command script The script interpreters and command

execution parameters are not supported. The
default script interpreter is used instead.

DB2 command script Supported.

¢ Schedules that are associated with tasks from DB2 Task Center:

Table 8. Restrictions for schedules from DB2 Task Center

Schedule type Restrictions

Weekly Only schedules set for 1 to 4 weeks are
supported.

Monthly Only schedules set for 1 month and

schedules set to a specific date or last date
are supported.

Yearly Only schedules set for 1 year are supported.

Expired (that is, schedules with a starting or | Expired schedules will be imported but
ending time that is earlier than the current |marked as inactive.
time)

e Task actions that are associated with tasks from DB2 Task Center:

Table 9. Restrictions for task actions from DB2 Task Center

Task action Restrictions

Run task Only the first Run task task action
associated with the task will be imported.

Enable schedule of Not supported.

Disable schedule of Not supported.

Delete this task Not supported.

Chapter 4. IBM Data Studio 69

* The success code sets that are used by the DB2 Task Center when running tasks
are ignored by the job manager.

¢ If the tools catalog database contains a task that was previously imported to the
Data Studio web console and you choose to import the task again, the task is
saved as a new job with a new job ID.

* Contact lists are not imported from the DB2 Task Center.
Procedure

To import tasks from the DB2 Task Center:
1. Open the Data Studio web console in a web browser.

2. To open the Import Tasks page, from the Open menu, click Product Setup >
Import Tasks.

3. Follow the instructions on the Import Tasks page to start importing tasks. You
must specify a valid tools catalog database that contains the DB2 Task Center
metadata, and then select the tasks to import. Only supported tasks from the
tools catalog database are enabled in the Import Tasks page.

Results

If the task is imported successfully, a new job is created for the imported task in
the job manager with a job name that is identical to the task name of the imported
task. The job name is prefixed by “TC_toolsdb_" where toolsdb is the name of the
DB2 tools database. The script of the imported task is not modified.

If the imported task is associated with a schedule in the Task Center, a new

schedule is created for the corresponding job by the job manager and the tools
catalog database is associated with the schedule by default. The schedule date
format for the imported task is converted to the job manager schedule format.

What to do next

If the job that was generated from the imported task is not associated with a
schedule, create a schedule and add the job to the schedule.

Diagramming access plans with Visual Explain

You can generate a diagram of the current access plan for an SQL or XPATH
statement to find out how your data server processes the statement. You can use
the information available from the graph to tune your SQL statements for better
performance.

Before you begin

If you want to create access plan diagrams for DB2 for z/OS, you must configure
the DB2 subsystem that you are using. The steps are identical to the steps for
configuring a subsystem for use with the no-charge tuning features that are in IBM
Data Studio.

Restriction: For IBM Informix® Dynamic Server, Visual Explain cannot explain
SELECT statements that contain parameter markers or host variables.

About this task

You can use Visual Explain to:

70 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

View the statistics that were used at the time of optimization. You can then
compare these statistics to the current catalog statistics to help you determine
whether rebinding the package might improve performance.

Determine whether or not an index was used to access a table. If an index was
not used, Visual Explain can help you determine which columns might benefit
from being indexed.

Obtain information about each operation in the access plan, including the total
estimated cost and number of rows retrieved (cardinality).

Procedure

To generate the diagram of the current access plan for a query:

1.

Optional: Set preferences for how Visual Explain operates and for how it
displays diagrams.
Follow one of these steps:

¢ In the Data Project Explorer, right-click an SQL statement, SQL stored
procedure, or SQL user-defined function, and select Open Visual Explain.

* In the Data Source Explorer, right-click a view or right-click an SQL stored
procedure or SQL user-defined function that contains an INSERT, UPDATE,
DELETE, or SELECT statement. Select Open Visual Explain. If the
workbench finds more than one SQL statement or XQUERY statement, the
workbench uses the first statement.

+ In an SQL, Routine, or Java™ editor, highlight and right-click the INSERT,
UPDATE, DELETE, or SELECT statement, XPATH, or XQUERY statement
and select Open Visual Explain.

Attempts to open Visual Explain from an SQL statement in a Java editor fail
if the SQL statement contains variables that are declared in your application.
For example, this SQL statement cannot be analyzed by Visual Explain
because of the two variables in the predicate:

select count(*), sum(order.price)

from order

where order.date > var_date_1
and order.date < var_date_2

However, after you bind or deploy the application, you can use InfoSphere®
Optim Query Tuner or the single-query tuning features in Data Studio to
capture the SQL statement from a DB2 package or from the dynamic
statement cache and then tune it.

Note: Visual Explain is disabled or throws an exception if the selected SQL
statement or object is not explainable. Only the SQL statements in the following
list can be explained by Visual Explain:

¢ For DB2 for Linux, UNIX, and Windows: CALL, Compound SQL (Dynamic),
DELETE, INSERT, MERGE, REFRESH, SELECT, SELECT INTO, SET
INTEGRITY, UPDATE, VALUES, or VALUES INTO.

e For DB2 for z/0OS: SELECT, INSERT, or the searched form of an UPDATE or
DELETE statement.

On the first page of the wizard, specify the terminator of the SQL, XPATH, or
XQUERY statement that you want to diagram the access plan for.

Optional: On the first page of the wizard, you can also specify settings for
various options.

Chapter 4. IBM Data Studio 71

a. Specify whether you want to store the collected explain data in explain
tables. If you choose this option, Visual Explain does not have to collect
explain data the next time that you want to diagram the access plan for the
same statement.

b. Specify the directory that you want Visual Explain to use as a working
directory.

c. If IBM Support needs a trace, specify whether to trace the creation of the
diagram of the access plan and whether to trace the collection of the explain
data.

d. Specify whether to save your settings as the defaults for all diagrams that
you create with Visual Explain. You can change these defaults with the
Preferences window.

5. On the second page of the wizard, set values for the special registers to
customize the runtime environment to influence the collection of explain data.

When Visual Explain runs the statement to gather explain data, it uses the
values that you specify.

Attention: Please be aware of the following information regarding DB2 data
servers.

* For DB2 for z/OS: If you specify different values for CURRENT SCHEMA
and CURRENT SQLID, Visual Explain searches for explain tables that are
qualified by the value of CURRENT SQLID. If Visual Explain does not find
explain tables that are qualified by the value of CURRENT SQLID, Visual
Explain attempts to create the explain tables under that value.

 For DB2 for Linux, UNIX, and Windows: If you change the value of
CURRENT SCHEMA to a value that contains special characters, you must
delimit the value with single quotation marks.

* For DB2 for Linux, UNIX, and Windows: Select the Collect column and
column group statistics check box if you want Visual Explain to collect
detailed statistics about clustered columns and columns that participate in a
GROUP BY clause.

6. Optional: On the second page of the wizard, specify whether to save your
settings as the defaults for all diagrams that you create with Visual Explain.
You can change these defaults with the Preferences window.

7. Click Finish to close the wizard and to generate the diagram.
Results

The workbench displays the diagram in the Access Plan Diagram view. In this
view, you can navigate through the diagram, view descriptions of the nodes in the
diagram, and search for nodes.

Diagrams of access plans

When DB2 processes a query, the DB2 optimizer generates several alternative plans
for accessing the requested data. The optimizer estimates the execution cost of each
plan and chooses the lowest-cost plan to execute. This plan is called the access
plan.

Visual Explain graphically displays the access plan for any explainable statement.
This display is called an access plan diagram, and it illustrates how DB2 accesses
the data for a specified SQL statement.

The access plan diagram consists of nodes and lines that connect those nodes. The
nodes represent data sources, operators, SQL statements, and query blocks. Nodes

72 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

can have only one parent node, but they can have unlimited child nodes. The
arrows on the edges indicate the direction of the flow. Usually, a table node is at
the bottom of the graph, and the access plan proceeds upward from there.

Some operations in the access plan, such as nested loop joins or index scans, are
represented in the graph by groups of nodes, which are called constructs. Many of
these constructs have a defining node that indicates the operation. For example,
the HBJOIN node indicates that a hybrid join operation is taking place, but the
entire hybrid join is represented in the graph by a group of nodes. This group of
nodes represents all of the other data sources and operations that are involved in
the hybrid join.

Query blocks

An SQL statement can consist of several subqueries, which are represented in the
access plan diagram by query blocks.

The subquery can be a SELECT, INSERT, UPDATE, or DELETE. A subquery can
contain other subqueries in the FROM clause, the WHERE clause, or a subselect of
a UNION or UNION ALL. A subquery within another subquery is called a child
subquery. A subquery that contains another subquery is called a parent subquery.
This parent-child relationship can be represented by a tree hierarchy.

If a subquery references at least one column of its parent subquery or of any
parent subqueries that are higher up in the tree hierarchy, the subquery is a
correlated subquery; otherwise it is a non-correlated subquery. A non-correlated
subquery can run at the same time as the highest parent subquery that is also
non-correlated. This highest parent subquery is called the "do-at-open parent
subquery" in terms of its relationship to the non-correlated subquery. The execution
of a correlated subquery is bound to the execution of its parent subquery. Such
relationships between the relative executions of parents and children can be
represented by separate trees hierarchies in the access plan graph.

Non-correlated subquery
For a non-correlated subquery, the query block node is connected to the
right of the query block node for the highest parent subquery that is also
non-correlated.

Correlated subquery
For a correlated subquery, the query block node is connected to the part
within its parent subquery where the correlated subquery is executed.

Setting preferences for Visual Explain

Use the Preferences window to set default values for settings that determine how
Visual Explain operates and how it displays diagrams.

Procedure

To set preferences for Visual Explain:

1. Select Window > Preferences.

2. In the tree view of the Preferences window, select Data > Visual Explain.
3. On the Visual Explain page, set the following options:

a. Specify whether to launch the Visual Explain wizard when you right-click
an SQL statement, view, stored procedure, or user-defined function and
select Visual Explain. The wizard allows you to override preferences. If you
clear this option, Visual Explain uses the preferences.

Chapter 4. IBM Data Studio 73

74

b. If your project is associated with a DB2 data server, specify whether Visual
Explain saves in the explain tables the explain data that it collects for the
statement.

4. On the Query Explain Settings page, specify default values for special
registers. Changing these values modifies how Visual Explain gathers explain
data to use when generating the access plan diagram.

Attention: Please be aware of the following information regarding DB2 data
servers.

* For DB2 for z/OS: If you specify different values for CURRENT SCHEMA
and CURRENT SQLID, Visual Explain searches for explain tables that are
qualified by the value of CURRENT SQLID. If Visual Explain does not find
explain tables that are qualified by the value of CURRENT SQLID, Visual
Explain attempts to create the explain tables under that value.

* For DB2 for Linux, UNIX, and Windows: If you change the value of
CURRENT SCHEMA to a value that contains special characters, you must
delimit the value with single quotation marks.

* For DB2 for Linux, UNIX, and Windows: Select the Collect column and
column group statistics check box if you want Visual Explain to collect

detailed statistics about clustered columns and columns that participate in a
GROUP BY clause.

5. On the Viewer page, change various behaviors and colors of diagrams.

6. On the Nodes page, change the default appearance of nodes. You can change
the text, color, and shape of the different types of nodes. You can also choose
whether to highlight selected nodes, shadow nodes, or show information about
nodes when you move your mouse cursor over them.

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 2. Client-to-server communications

Configuring client-to-server communications for the IBM data server client and
DB2 database server products requires and understanding of the components and
type of connections.

Components and scenarios

The basic components involved in client-to-server communications are described in
the following section:

Client. This refers to the initiator of the communications. This role can be filled

by any of the following DB2 products or components:

— IBM Data Server Driver Package

— IBM Data Server Client or IBM Data Server Runtime Client.

— DB2 Connect Personal Edition: This product is a superset of the IBM Data
Server Client.

— a DB2 server product: A DB2 server is a superset of the Data Server Client.

Server. This refers to the receiver of the communications request from the client.
This role is normally filled by a DB2 for Linux, UNIX, and Windows server
product. When DB2 Connect products are present, the term server can also mean
a DB2 server on a midrange or mainframe platform.

Communications protocol. This refers to the protocol used to send data between
the client and server. The DB2 product supports several protocols:

— TCP/IP. A further distinction can be made between the version: TCP/IPv4 or
TCP/IPveé.

— Named Pipes. This option is available on Windows only.

— IPC (interprocess communications). This protocol is used for local
connections.

There are also some additional components encountered in some environments:

DB2 Connect gateway. This refers to a DB2 Connect server product that
provides a gateway by which IBM data server client can connect to DB2 servers
on midrange and mainframe products.

LDAP (Lightweight Directory Access Protocol). In an LDAP-enabled
environment, it is not necessary to configure client-to-server communications.
When a client attempts to connect to a database, if the database does not exist in
the database directory on the local machine then the LDAP directory is searched
for information required to connect to the database.

The following scenarios illustrate examples of situations covered by client-to-server
communications:

© Copyright IBM Corp. 2014

Data Server Client establishes communications with a DB2 server using TCP/IP.

Data Server Runtime Client establishes communications with a DB2 server using
Named Pipes on a Windows network.

DB2 server establishes communications with another DB2 server via some
communications protocol.

Data Server Client establishes communications with a mainframe DB2 server via
a DB2 Connect server using TCP/IP.

75

When setting up a server to work with development environments (such as IBM
Data Studio), you might encounter error message SQL30081N at the initial DB2
connection. A possible root cause is that the firewall at the remote database server
has prevented the connection from being established. In this case, verify the
firewall is properly configured to accept connection requests from the client.

Types of connections

Generally speaking, references to setting up client-to-server communications refer
to remote connections, rather than local connections.

A local connection is a connection between a database manager instance and a
database managed by that instance. In other words, the CONNECT statement is
issued from the database manager instance to itself. Local connections are
distinctive because no communications setup is required and IPC (interprocess
communications) is used.

A remote connection is one where the client issuing the CONNECT statement to a
database is in a different location from the database server. Commonly, the client
and server are on different machines. However, remote connections are possible

within the same machine if the client and server are in different instances.

Another less common type of connection is a loopback connection. This is a type of
remote connection where the connection is configured from a DB2 instance (the
client) to the same DB2 instance (the server).

Configuration of client-to-server communications

You can configure client-to-server communications by using the command line
tools which consist of the Command Line Processor (CLP), the db2cfexp
(configuration export) command, and the db2cfimp (configuration import)
command.

Use the following table to identify the appropriate configuration method.

Table 10. Tools and methods for configuring a client-to-server connection

Type of configuration task CLP

Configure a client by entering information | Configure client-to-server connections by

manually using the CATALOG TCPIP/TCPIP4/TCPIP6
NODE command and the CATALOG DATABASE
command.

Use the connection settings for one client as |1, Create a client profile by issuing the
the basis for configuring additional clients db2cfexp command.

2. Configure database connections using a
client profile by issuing the db2cfimp
command.

Note: Use Profiles to configure client-to-server communications. The types of
profiles are:

* A client profile is a file that contains settings for a client. Settings can include:
— Database connection information (including CLI or ODBC settings).

— Client settings (including database manager configuration parameters and
DB2 registry variables).

— CLI or ODBC common parameters.

76 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

A server profile is similar to a client profile but contains settings for a server.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
configuring automatic maintenance. Task assistants can guide you through the
process of setting options, reviewing the automatically generated commands to
perform the task, and running these commands. For more details, see
Administering databases with task assistants.

Part 2.Database connections for clients

77

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

78 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 5. Supported combinations of clients, drivers and
server levels

Various versions of a client or driver can connect to different versions of a server.
This includes support for earlier versions and support for accessing DB2 databases
on midrange and mainframe servers.

DB2 client levels required for IBM DB2 pureScale Feature

For your application to make full use of DB2 pureScale features, your DB2 client
must be at certain release levels:

Server version |Client version Features available

Version 9.8 or | Version 9.7, Fix Pack 1 or | Transaction-level and connection-level
later later workload balancing

Automatic client reroute based on workload

Client affinities

Version 9.8 or | Version 9.1, Connection-level workload balancing
later Version 9.5, or (transaction-level workload balancing is not
Version 9.7 available)

(before Fix Pack 1)
Automatic client reroute based on workload

Combinations of DB2 Version 9.1, DB2 Version 9.5, DB2 Version
9.7, and DB2 Version 10.1 clients and servers

Generally, DB2 Version 9.1, DB2 Version 9.5, and DB2 Version 9.7 clients can access
a remote DB2 Version 10.1 server. However, if different versions of a client and a
DB2 server are located on the same system, local client-to-server connections using
Interprocess Communication (IPC) are not supported. Instead, you can establish a
connection as a remote connection (called a loopback connection) by using TCP/IP.

The following clients and drivers can access a DB2 Version 9.7, DB2 Version 9.5 or
DB2 Version 9.1 server:

* IBM Data Server Client Version 10.1

* IBM Data Server Runtime Client Version 10.1

* IBM Data Server Driver Package Version 10.1

* IBM Data Server Driver for ODBC and CLI Version 10.1

However, when a later-level client accesses an earlier-level server, the functionality
of the later level of the client is not available to the server. For example, IBM Data
Server Driver Package Version 10.1 can access a DB2 Version 9.5 server; however,
DB2 Version 10.1 functionality is not available to the server.

Note: DB2 Version 9.1 reached end of support on April 30, 2012. For more support

lifecycle information, see http://www-01.ibm.com/software/data/support/
lifecycle/. For continued Version 9.1 support, a service extension is required.

© Copyright IBM Corp. 2014 79

http://www-01.ibm.com/software/data/support/lifecycle/
http://www-01.ibm.com/software/data/support/lifecycle/

80

Combinations of DB2 Version 10.1 and DB2 products on
midrange and mainframe platforms

DB2 Version 10.1 servers support access from the following clients on midrange
and mainframe platforms:

« DB2 for z/0OS and OS/390® Version 8 or later
« DB2 for i5/0S"™ Version 5 or later
¢ DB2 for VM and VSE Version 7

The following clients and drivers can access a DB2 Connect Version 9.7, Version 9.5
or Version 9.1 server:

* IBM Data Server Client Version 10.1

* IBM Data Server Runtime Client Version 10.1

* IBM Data Server Driver Package Version 10.1

* IBM Data Server Driver for ODBC and CLI Version 10.1

Note: DB2 Connect Version 9.1 reached end of support on April 30, 2012. For more
support lifecycle information, see http://www-01.ibm.com/software/data/
support/lifecycle/. For continued Version 9.1 support, a service extension is
required.

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://www-01.ibm.com/software/data/support/lifecycle/
http://www-01.ibm.com/software/data/support/lifecycle/

Chapter 6. Communication protocols supported

This topic identifies the supported protocols for connecting from an IBM data
server client to a DB2 server. This includes:

* connecting from IBM data server client to midrange or mainframe hosts using
DB2 Connect products.

* connecting from mid range or mainframe platforms to databases on DB2 for
Linux, UNIX, and Windows.

The TCP/IP protocol is supported on all platforms on which DB2 for Linux, UNIX,
and Windows is available. Both TCP/IPv4 and TCP/IPv6 are supported. IPv4
addresses have a four-part structure, for example, 9.11.22.314. IPv6 addresses
have an eight-part name, where each part consists of 4 hex digits delimited by a
colon. Two colons (::) represents one or more sets of zeros. For example,
2001:0db8:4545:2::09ff: fef7:62dc.

DB2 database products support the SSL protocol and accept SSL requests from
applications that use the IBM Data Server Driver for JDBC and SQLJ (type 4
connectivity), IBM Data Server Driver for ODBC and CLI and IBM Data Server
Driver Package. Refer to Configuring Secure Sockets Layer (SSL) support in a DB2
instance.

In addition, the Windows Named Pipes protocol is supported on Windows
networks. To administer a DB2 database remotely, you must connect using TCP/IP.

© Copyright IBM Corp. 2014 81

82 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 7. Supported LDAP client and server configurations

The following table summarizes the supported LDAP client and server
configurations.

IBM Tivoli Directory Server is an LDAP Version 6.2 server and is available for
Windows, AIX, Solaris, Linux, and HP-UX and is shipped as part of the base
operating system on AIX and System i®, and with OS/390 Security Server.

The DB2 database supports IBM LDAP client on AIX, Solaris, HP-UX 11.11,
Windows, and Linux.

Microsoft Active Directory server is an LDAP Version 3 server and is available as
part of the Windows 2000 Server and Windows Server 2003 family of operating

systems.

The Microsoft LDAP Client is included with the Windows operating system.

Table 11. Supported LDAP client and server configurations

Supported LDAP

Client and Server IBM Tivoli Directory | Microsoft Active Sun One LDAP
Configurations server Directory server server

IBM LDAP Client Supported Supported Supported
Microsoft Supported Supported Supported
LDAP/ADSI Client

Note: When running on Windows operating systems, the DB2 database manager
supports using either the IBM LDAP client or the Microsoft LDAP client. To
explicitly select the IBM LDAP client, use the db2set command to set the
DB2LDAP_CLIENT_PROVIDER registry variable to “IBM”. The Microsoft LDAP
Client is included with the Windows operating system.

© Copyright IBM Corp. 2014

84 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 8. Discovery of administration servers, instances, and
databases

To configure connections to a remote computer, you can use an existing directory
service such as Lightweight Directory Access Protocol (LDAP).

Known Discovery allows you to discover instances and databases on systems that
are known to your client, and add new systems so that their instances and
databases can be discovered. Search Discovery provides all of the facilities of
Known Discovery and adds the option to allow your local network to be searched
for other DB2 database servers.

To have a system support Known Discovery, set the discover parameter in the
DAS configuration file to KNOWN. To have the system support both Known and
Search Discovery, set the discover parameter in the DAS configuration file to
SEARCH (this is the default). To prevent discovery of a system, and all of its
instances and databases, set this parameter to DISABLE. Setting the discover
parameter to DISABLE in the DAS configuration file, prevents discovery of the
system.

Note: The TCP/IP host name returned to a client by Search Discovery is the same
host name that is returned by your DB2 server system when you enter the
hostname command. On the client, the IP address that this host name maps to is
determined by either the TCP/IP domain name server (DNS) configured on your
client computer or, if no DNS is configured, a mapping entry in the client's hosts
file. If you have multiple adapter cards configured on your DB2 server system, you
must ensure that TCP/IP is configured on the server to return the correct
hostname, and that the DNS or local client's hosts file, maps the hostname to the
IP address desired.

On the client, enabling Discovery is also done using the discover parameter;
however, in this case, the discover parameter is set in the client instance (or server
acting as a client) as follows:
* KNOWN
KNOWN discovery is used to retrieve instance and database information
associated with systems that are already known to your local system. New
systems can be added using the Add Systems functionality provided in the
tools. When the discover parameter is set to KNOWN, you will not be able to
search the network.

* SEARCH

Enables all of the facilities of Known Discovery, and enables local network
searching. This means that any searching is limited to the local network.
The Other Systems (Search the network) icon only appears if this choice is
made. This is the default setting.

e DISABLE

Disables Discovery. In this case, the Search the network option is not available
in the Add Database Wizard.

Note: The discover parameter defaults to SEARCH on all client and server instances.
The discover parameter defaults to SEARCH on all DB2 administration servers
(DAS).

© Copyright IBM Corp. 2014 85

Discovering and hiding server instances and databases

86

You might have multiple instances, and multiple databases within these instances,
on a server system. You might want to hide some of these from the Discovery
process.

Procedure

* To allow clients to discover server instances on a system, set the discover_inst
database manager configuration parameter in each server instance on the system
to ENABLE (this is the default value).

Set this parameter to DISABLE to hide this instance and its databases from
Discovery.

* To allow a database to be discovered from a client, set the discover_db database
configuration parameter to ENABLE (this is the default value).

Set this parameter to DISABLE to hide the database from Discovery.

Note: If you want an instance to be discovered, discover must also be set to
KNOWN or SEARCH in the DAS configuration file.

Note: If you want a database to be discovered, the discover_inst parameter
must also be enabled in the server instance.

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 9. Configuring DB2 server communications (TCP/IP)

This task describes how to configure TCP/IP communications on your DB2 server
using the DB2 Command Line Processor (CLP). Communication protocols on the
DB2 server must be configured in order for your DB2 server to accept inbound
requests from remote DB2 clients.

Before you begin

Before you configure TCP/IP communications for an instance on your DB2 server:

* Ensure that the TCP/IP protocol is functional on the DB2 server. TCP/IP must
also be functional on the DB2 client to establish a connection.

¢ Identify either a Connection Service name and Connection Port, or just a
Connection Port.

Connection Service Name and Connection Port
The service name is used to update the Service name (svcename)
parameter in the database manager configuration file at the server. When
a Connection Service name is specified, the services file must be updated
with the same Service name, a port number, and the protocol. The
Service name is arbitrary but must be unique within the services file. A
sample value for the service name could be serverl. If you are using
DB2 Enterprise Server Edition in a partitioned format, ensure that the
port number does not conflict with the port numbers used by the Fast
Communications Manager (FCM).

The Connection port must be unique within the services file. A sample
value for the port number and protocol could be 3700/tcp.

Connection Port
The Service name (svcename) parameter in the database manager
configuration file at the server can be updated with a port number. If
this is the case, it is not necessary to update the services file. If you are
using DB2 Enterprise Server Edition in a partitioned format, ensure that
the port number does not conflict with the port numbers used by the
Fast Communications Manager (FCM) or any other applications on the
system. A sample value for the port number could be 3700.

About this task

Most protocols are automatically detected and configured when you set up DB2
database systems using the DB2 Setup wizard. Perform the current task if:

* You deselected the TCP/IP communication protocol when you set up the DB2
database system using the DB2 Setup wizard.

* You added the TCP/IP communication protocol to your network after you set
up the DB2 database system using the DB2 Setup wizard.

e The TCP/IP communication protocol was not detected by the DB2 Setup wizard.

* You installed a DB2 database product using the db2_install command or the
payload file method.

Procedure

To configure TCP/IP communications for a DB2 instance:

© Copyright IBM Corp. 2014 87

1. Update the services file on the server. Refer to “Updating the services file on
the server for TCP/IP communications.”

2. Update the database manager configuration file on the server. Refer to
“Updating the database manager configuration file on the server for TCP/IP
communications.”

3. Set communication protocols for a DB2 instance. Refer to “Setting
communication protocols for a DB2 instance” on page 89.

Updating the services file on the server for TCP/IP communications

This task is part of the main task of Configuring TCP/IP communications for a DB2
instance.

About this task

The TCP/IP services file specifies the ports that server applications can listen on
for client requests. If you specified a service name in the svcename field of the
DBM configuration file, the services file must be updated with the service name to
port number/protocol mapping. If you specified a port number in the svcename
field of the DBM configuration file, the services file does not need to be updated.

Update the services file and specify the ports that you want the server to listen on
for incoming client requests. The default location of the services file depends on
the operating system:

Linux and UNIX operating systems
/etc/services

Windows operating systems
%SystemRoot%\system32\drivers\etc\services

Procedure

Using a text editor, add the Connection entry to the services file. For example:
db2c_db2instl 3700/tcp # DB2 connection service port

where:

db2c_db2instl
represents the connection service name

3700 represents the connection port number

tcp represents the communication protocol that you are using

Updating the database manager configuration file on the server for
TCP/IP communications

This task is part of the main task of configuring TCP/IP communications for a DB2
instance.

About this task

You must update the database manager configuration file with the service name
(svcename) parameter.

88 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Procedure

To update the database manager configuration file:

1. Log on to the system as a user with System Administrative (SYSADM)
authority.

2. If you are using a UNIX operating system, set up the instance environment:

. INSTHOME/sq11ib/db2profile (for Bash, Bourne or Korn shell)
source INSTHOME/sql1ib/db2cshrc (for C shell)

3. Start the DB2 command line processor (CLP).

4. Update the database manager configuration file with the Service name
(svcename) parameter by entering the following commands:

update database manager configuration using svcename
[service_name | port_number]

db2stop

db2start

where:
* service_name is the service name reserved in the services file

* port_number is the corresponding port number for the service_name, or a free
port number if the service_name is not reserved

If a service name is being specified, the svcename used must match the

Connection Service name specified in the services file.

After the database manager is stopped and started again, view the database

manager configuration file to ensure that these changes have taken effect. View

the database manager configuration file by entering the following command:

get database manager configuration

Setting communication protocols for a DB2 instance

Setting communication protocols for a DB2 instance is part of the main task of
configuring TCP/IP or SSL communications for a DB2 instance.

Before you begin

To perform this task you require SYSADM authority.

About this task

The DB2COMM registry variable allows you to set communication protocols for the
current DB2 instance. If the DB2COMM registry variable is undefined or set to null, no

protocol connection managers are started when the database manager is started.

The DB2COMM registry variable can be set with the following keywords:
tepip starts TCP/IP support
ssl starts SSL support

Procedure
To set the communication protocol for the instance:
Enter the db2set DB2COMM command from the DB2 command window:

db2set DB2COMM=tcpip

Chapter 9. Configuring DB2 server communications (TCP/IP) 89

Example

For example, to set the database manager to start connection managers for the
TCP/IP communication protocols, enter the following command:
db2set DB2COMM=tcpip

db2stop
db2start

90 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 10. Configuring client-to-server connections

This task describes how to configure a connection from an IBM data server client
to a remote database server using the command line processor (CLP).

Before you begin

Before you configure a client to server connection, ensure:

* Network communications is set up between the machine with the IBM data
server client and the machine with the DB2 server. One way to verify this for the
TCP/IP protocol is to use the ping command.

* The DB2 server is configured to work on the network. This is normally done as
part of installing and configuring the DB2 server product.

Procedure

Separate topics are provided to guide you through each of the following steps.
Some steps have a version for each supported protocol:

1. Identify the communication parameter values for the remote database server.

2. If you are using TCP/IP, you have the option to update the client's hosts file
and services file with communication parameter values for the remote database
server. For more details, see “Updating hosts and services files for TCP/IP
connections” on page 92. This step does not apply to Named Pipes.

3. Catalog the server node from the client. Instructions are provided for each
communications protocol:

“Cataloging a TCP/IP node from a client using the CLP” on page 93
“Cataloging a Named Pipes node from a client using the CLP”

4. Catalog the database that you want to connect to on the client. For more
details, see “Cataloging a database” on page 94.

5. Test the client-to-server connection. For more details, see “Testing the
client-to-server connection using the CLP” on page 96.

Cataloging a Named Pipes node from a client using the CLP

Cataloging a Named Pipes node adds an entry to the client's node directory to
describe the remote node. This entry specifies the chosen alias (node_name), the
remote server's workstation name (computer_name), and the instance (instance_name)
that the client will use to access the remote DB2 server.

Procedure

To catalog a Named Pipes node on an IBM data server client, type the following
command in the command line processor (CLP):

db2 => catalog npipe node node_name
db2 => remote computer_name instance instance_name

db2 => terminate

© Copyright IBM Corp. 2014 91

Example

To catalog a remote node called db2node that is located on a server called serverl
in the db2 instance, use:

db2 => db2 catalog npipe node db2node remote serverl instance db2

db2 => terminate

Updating hosts and services files for TCP/IP connections

This task explains when and how to update the hosts file and services file on the
client with communication parameter values for the remote database server. This
task is optional for connections using TCP/IP and does not apply to connections
using Named Pipes. This task is part of the larger task of configuring
client-to-server connection using the CLP.

About this task

You need to update the hosts file if you want to establish a connection to the
remote database server using its hostname and your network does not contain a
DNS (domain name server) that can be used to resolve that hostname to an IP
address. This step is not required if you want to refer to the remote database
server using its IP address.

You need to update the services file if you want to specify a connection service
name when establishing a connection to the remote database server. A connection
service is an arbitrary name that represents the connection port number. This step is
not required if you want to refer to the remote database server's port number.

Procedure

* To update the hosts file on the client to resolve the remote server's hostname to
its IP address:

1. Use a text editor to add an entry to the hosts file for the server's IP address.
For example:

9.26.13.107 myserver # IPv4 address for myserver
2002:91a:519:13:210:83ff:feff:ca7l myserver # IPv6 address for myserver

where:

9.26.13.107
represents the IPv4 ip_address

2002:91a:519:13:210:83ff: feff:ca7l
represents the [Pv6 ip_address

myserver
represents the hostname

represents a comment describing the entry
Note: Note that IPv6 entries are not needed if your host does not belong on

an IPv6 network. For hosts in mixed IPv4 and IPv6 networks, an alternate
method is to assign different host names for IPv4 and IPv6 addresses. For

example:
9.26.13.107 myserver # IPv4 address for myserver
9.26.13.107 myserveripv4 # IPv4 address for myserver

2002:91a:519:13:210:83ff:feff:ca7l myserveripv6 # IPv6 address for myserver

92 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If the server is not in the same domain as the IBM data server client, you
must provide a fully qualified domain name such as
myserver.spifnet.ibm.com, where spifnet.ibm.com represents the domain
name.

* To update the services file on the client to resolve a service name to the remote
server's port number:

1. Using a text editor, add the Connection Service name and port number to the
services file. For example:

serverl 50000/tcp # DB2 connection service port

where:

serverl
represents the Connection Service name

50000
represents the connection port number (50000 is the default)

tep
represents the communication protocol that you are using

represents the beginning of a comment that describes the entry
Example

The following table lists the location of the hosts file and services file referred to
in the preceding procedures.

Table 12. Location of the hosts file and services file

Operating System Directory
Windows 2000 XP/Windows | %SystemRoot%\system32\drivers\etc where %SystemRoot% is
Server 2003 an environment variable defined on the system.
Linux or UNIX /etc

Cataloging a TCP/IP node from a client using the CLP

Cataloging a TCP/IP node adds an entry to the Data Server Client node directory
that describes the remote node. This entry specifies the chosen alias (node_name),
the hostname (or ip_address), and the svcename (or port_number) that the client uses
to access the remote host.

Before you begin

You must have System Administrative (SYSADM) or System Controller (SYSCTRL)
authority, or have the catalog_noauth option set to ON. You cannot catalog a node
using root authority.

Procedure

To catalog a TCP/IP node:

1. Log on to the system as a user with System Administrative (SYSADM) or
System Controller (SYSCTRL) authority.

2. 1If you are using a Linux or UNIX client, set up the instance environment. Run
the startup script:

For bash, Bourne or Korn shell

Chapter 10. Adding database connections with the CLP 93

. INSTHOME/sq11ib/db2profile

For C shell
source INSTHOME/sq11ib/db2cshrc

where INSTHOME represents the home directory of the instance.

3. Start the DB2 command line processor. On Windows, issue the db2cmd
command from a command prompt. On Linux or UNIX, issue the db2
command from a command prompt.

4. Catalog the node by entering the following commands in the command line
processor:

db2 => catalog tcpip node node_name remote hostname|ip_address
server service_name|port_number [remote instance instance_name]
[system system_name] [ostype os_type]

db2 => terminate

where:

* node_name represents a local nickname you can set for the computer that has
the database you want to catalog.

* remote_instance represents the name of the server instance on which the
database resides.

* system_name represents the DB2 system name that is used to identify the
server.

* ostype_name represents the operating system type of the server.

Note:
a. The terminate command is needed to refresh the directory cache.

b. Although remote_instance, system, and ostype are optional, they are
required for users who want to use the DB2 tools.

C. The service_name used on the client does not have to be the same as the one
on the server. However, the port numbers that they map to must match

d. While not shown here, the catalog tcpip node command provides the
option to explicitly specify the version of IP, namely IPv4 or IPv6.

Example

To catalog a node that you want to call db2node on a remote server
myserver.ibm.com that is using port number 50000, you would enter the following
from a db2 prompt:

db2 => catalog tcpip node db2node remote myserver server 50000

DB20000I The CATALOG TCPIP NODE command completed successfully.

DB21056W Directory changes may not be effective until the directory cache is
refreshed.

db2 => terminate
DB20000I The TERMINATE command completed successfully.

Cataloging a database

This task describes how to catalog a database from a client by using the command
line processor (CLP).

94 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Before you begin

Before a client application can access a remote database, the database must be
cataloged on the client. When you create a database, the database is automatically
cataloged on the server with a database alias that is the same as the database
name, unless a different database alias was specified.

The information in the database directory, along with the information in the node
directory (unless you are cataloging a local database where a node is not needed),
is used on the IBM data server client to establish a connection to the remote
database.

You require a valid DB2 user ID. DB2 does not support using root authority to
catalog a database.

You must have System Administrative (SYSADM) or System Controller
(SYSCTRL) authority, or have the catalog_noauth option set to ON.

You need the following information when cataloging a remote database:

— Database name

— Database alias

— Node name

— Authentication type (optional)

— Comment (optional)

Refer to the parameter values worksheet for cataloging a database for more
information about these parameters and to record the values that you use.
The following parameter values are applicable when cataloging a local database:
— Database name

— Drive

— Database alias

— Authentication type (optional)

— Comment (optional)

Local databases can be uncataloged and recataloged at any time.

Procedure

To catalog a database on the client:

1.

Log on to the system with a valid DB2 user ID.

2. If you are using the DB2 database on a Linux or UNIX platform, set up the

instance environment. Run the startup script:

For bash, Bourne or Korn shell
. INSTHOME/sq11ib/db2profile

For C shell
source INSTHOME/sq11ib/db2cshrc

where: INSTHOME represents the home directory of the instance.

Start the DB2 command line processor. On Windows operating systems, issue
the db2emd command from a command prompt. On Linux or UNIX, issue the
db2 command from a command prompt.

Catalog the database by entering the following commands in the command line
processor:

Chapter 10. Adding database connections with the CLP 95

db2 => catalog database database name as database alias at
node node_name [authentication auth_value]

where:
* database_name represents the name of the database you want to catalog.

* database_alias represents a local nickname for the database you want to
catalog.

* node_name represents a nickname you can set for the computer that has the
database you want to catalog.

* auth_value specifies the type of authentication that takes place when
connecting to the database. This parameter defaults to the authentication
type specified on the server. Specifying an authentication type can result in a
performance benefit. Examples of valid values include: SERVER, CLIENT,
SERVER_ENCRYPT, KERBEROS, DATA_ENCRYPT, GSSPLUGIN and SERVER_ENCRYPT_AES.

Example

To catalog a remote database called SAMPLE so that it has the local database alias
MYSAMPLE, on the node DB2NODE using authentication SERVER, enter the
following commands:

db2 => catalog database sample as mysample at node db2node

authentication server
db2 => terminate

Testing the client-to-server connection using the CLP
Before you begin

After cataloging the node and the database, connect to the database to test the
connection. Before testing the connection:

* The database node and database must be cataloged.

* The values for userid and password must be valid for the system on which they
are authenticated. The authentication parameter on the client is be set to match
the value on the server or it can be left unspecified. If an authentication
parameter is not specified, the client will default to SERVER_ENCRYPT. If the
server does not accept SERVER_ENCRYPT, then the client retries using the value
returned from the server. If the client specifies an authentication parameter value
that doesn't match what is configured on the server, you will receive an error.

* The database manager must be started with the correct protocol defined in the
DB2COMM registry variable. If it is not started, then you can start the database
manager by entering the db2start command on the database server.

Procedure

To test the client to server connection:

1. If you are using a Linux or UNIX platform, set up the instance environment.
Run the startup script:

For bash, Bourne or Korn shell
. INSTHOME/sq11ib/db2profile

For C shell
source INSTHOME/sql11ib/db2cshrc

where: INSTHOME represents the home directory of the instance.

96 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

2. Start the DB2 command line processor. On Windows, issue the db2cmd
command from a command prompt. On Linux or UNIX, issue the db2
command from a command prompt.

3. Type the following command on the client to connect to the remote database:

db2 => connect to database_alias user userid

For example, enter the following command:
connect to mysample user jtris

You will be prompted to enter your password.
Example

If the connection is successful, you receive a message showing the name of the
database to which you have connected. A message similar to the following is
given:

Database Connection Information

Database server = DBZ 9.1.0

SQL authorization ID = JTRIS
Local database alias = mysample

You can now work with the database. For example, to retrieve a list of all the table
names listed in the system catalog table, enter the following SQL statement:

select tabname from syscat.tables
What to do next

When you are finished using the database connection, enter the connect reset
command to end the database connection.

Exporting and importing a profile

If you did not use a configuration profile when you installed your DB2 product
using the response file that was created by the response file generator, you can
create a configuration file and import it to another workstation.

Procedure

1. To create a configuration profile, enter the db2cfexp command specifying the
fully qualified name of the target export file. The resulting profile contains only
configuration information associated with the current DB2 database instance.

2. To import the configuration profile, you can:
* Use the db2cfimp command

¢ Use a response file by uncommenting the keyword
DB2.CLIENT_IMPORT_PROFILE and specify the filename as the export file

Chapter 10. Adding database connections with the CLP 97

98 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 11. Configuring LDAP connections

In an LDAP-enabled environment, the directory information about DB2 servers
and databases is stored in the LDAP directory. When a new database is created,
the database is automatically registered in the LDAP directory.

During a database connection, the client accesses the LDAP directory to retrieve
the required database and protocol information and uses this information to
connect to the database.

Use the DB2 CLP commands in the LDAP environment to:

* Manually catalog a database in the LDAP directory.

* Register a database cataloged in LDAP as an ODBC data source.
* Configure CLI/ODBC information about the LDAP server.

* Remove a database cataloged in the LDAP directory.

Cataloging an LDAP node

A node name for the DB2 server must be specified when registering the server in
LDAP. Applications use the node name to attach to the database server.

Procedure

* If you require a different node name, such as when the node name is hard-coded
in an application, use the CATALOG LDAP NODE command to make the change. For
example:

db2 catalog 1dap node ldap_node_name
as new_alias_name

* To uncatalog a LDAP node, use the UNCATALOG LDAP NODE command. For
example:

db2 uncatalog ldap node Idap node name

Registering DB2 servers

Each DB2 server instance must be registered in LDAP to publish the protocol
configuration information that is used by the client applications to connect to the
DB2 server instance.

About this task

When registering an instance of the database server, you must specify a node name.
The node name is used by client applications when they connect or attach to the
server. You can catalog another alias name for the LDAP node by using the
CATALOG LDAP NODE command.

Note: If you are working in a Windows domain environment, then during
installation the DB2 server instance is automatically registered in the Active
Directory with the following information:

nodename: TCP/IP hostname
protocol type: TCP/IP

© Copyright IBM Corp. 2014 99

If the TCP/IP hostname is longer than eight characters, it is truncated to eight
characters.

The REGISTER command appears as follows:

db2 register db2 server in Tdap
as ldap_node_name
protocol tcpip

The protocol clause specifies the communication protocol to use when connecting
to this database server.

When creating an instance for DB2 Enterprise Server Edition that includes multiple
physical machines, the REGISTER command must be invoked once for each
computer. Use the rah command to issue the REGISTER command on all computers.

Note: The same Idap_node_name cannot be used for each computer since the name
must be unique in LDAP. You will want to substitute the hostname of each
computer for the Idap_node_name in the REGISTER command. For example:

rah ">DB2 REGISTER DB2 SERVER IN LDAP AS <> PROTOCOL TCPIP"

The "<>" is substituted by the hostname on each computer where the rah
command is run. In the rare occurrence where there are multiple DB2 Enterprise
Server Edition instances, the combination of the instance and host index can be
used as the node name in the rah command.

The REGISTER command can be issued for a remote DB2 server. To do so, you must
specify the remote computer name, instance name, and the protocol configuration
parameters when registering a remote server. The command can be used as
follows:
db2 register db2 server in ldap

as ldap_node_name

protocol tcpip

hostname host_name

svcename tcpip_service_name

remote remote_computer_name

instance instance_name

The following convention is used for the computer name:

e If TCP/IP is configured, the computer name must be the same as the TCP/IP
hostname.

When running in a high availability or failover environment, and using TCP/IP as
the communication protocol, the cluster IP address must be used. Using the cluster
IP address allows the client to connect to the server on either computer without
having to catalog a separate TCP/IP node for each computer. The cluster IP
address is specified using the hostname clause, shown as follows:
db2 register db2 server in ldap
as ldap_node_name

protocol tcpip
hostname n.nn.nn.nn

where n.nn.nn.nn is the cluster IP address.

To register the DB2 server in LDAP from a client application, call the
db2LdapRegister APL

100 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Registering databases

During the creation of a database within an instance, the database is automatically
registered in LDAP. Registration allows remote client connection to the database
without having to catalog the database and node on the client computer.

When a client attempts to connect to a database, if the database does not exist in
the database directory on the local computer then the LDAP directory is searched.

About this task

If the name exists in the LDAP directory, the database is still created on the local
computer but a warning message is returned stating the naming conflict in the
LDAP directory. For this reason, you can manually catalog a database in the LDAP
directory. The user can register databases on a remote server in LDAP by using the
CATALOG LDAP DATABASE command. When registering a remote database, you
specify the name of the LDAP node that represents the remote database server. You
must register the remote database server in LDAP using the REGISTER DB2 SERVER
IN LDAP command before registering the database.

Procedure
* To register a database manually in LDAP, use the CATALOG LDAP DATABASE
command:

db2 catalog ldap database dbname
at node node_name
with "My LDAP database"

* To register a database in LDAP from a client application, call the
db2LdapCatalogDatabase API.

Creating LDAP users

When using the IBM Tivoli directory, you must define an LDAP user before you
can store user-level information in LDAP. You can create an LDAP user by creating
an LDIF file to contain all attributes for the user object, then run the LDIF import
utility to import the object into the LDAP directory.

About this task

The DB2 database system supports setting DB2 registry variables and CLI
configuration at the user level. (This is not available on the Linux and UNIX
platforms.) User level support provides user-specific settings in a multi-user
environment. An example is Windows Terminal Server where each logged on user
can customize his or her own environment without interfering with the system
environment or another user's environment.

The LDIF utility for the IBM Tivoli Directory Server is LDIF2DB.

LDIF file containing the attributes for a person object appears similar to the
following:

File name: newuser.ldif

dn: cn=Mary Burnnet, ou=DB2 Development, ou=Toronto, o=ibm, c=ca
objectclass: ePerson

cn: Mary Burnnet

sn: Burnnet

uid: mburnnet

Chapter 11. LDAP connections 101

userPassword: password

telephonenumber: 1-416-123-4567
facsimiletelephonenumber: 1-416-123-4568
title: Software Developer

Following is an example of the LDIF command to import an LDIF file using the
IBM LDIF import utility:

LDIF2DB -i newuser.ldif

Note:
1. You must run the LDIF2DB command from the LDAP server.

2. You must grant the required access (ACL) to the LDAP user object so that the
LDAP user can add, delete, read, and write to his own object. To grant ACL for
the user object, use the LDAP Directory Server Web Administration tool.

Configuring LDAP users for DB2 applications

When you use the Microsoft LDAP client, the LDAP user is the same as the
operating system user account. However, when you use the IBM LDAP client,
before you use the DB2 database manager, you must configure the LDAP user
distinguished name (DN) and password for the current logged on user.

Procedure

To configure the LDAP user distinguished name (DN) and password, use the
db21dcfg utility:

db21dcfg -u userDN -w password --> set the user's DN and password
-r --> clear the user's DN and password

For example:

db21dcfg -u "cn=Mary Burnnet,ou=DB2 Development,ou=Toronto,o=1ibm,c=ca"
-w password

Setting DB2 registry variables at the user level in the LDAP
environment

Under the LDAP environment, the DB2 profile registry variables can be set at the
user level which allows a user to customize their own DB2 environment.

About this task

DB2 for Linux, UNIX, and Windows has a caching mechanism. The DB2 profile
registry variables at the user level are cached on the local computer.

The cache is refreshed when:
* You update or reset a DB2 registry variable at the user level.

* You issue the command to refresh the LDAP profile variables at the user level:
db2set -ur

Procedure

To set the DB2 profile registry variables at the user level, use the -ul option:
db2set -ul variable=value

102 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note: This is not supported on AIX or Solaris operating systems.
If the -ul parameter is specified, DB2 for Linux, UNIX, and Windows always reads
from the cache for the DB2 registry variables.

Deregistering DB2 servers

Deregistration of an instance from LDAP also removes all the node, or alias,
objects, and the database objects referring to the instance.

About this task

Deregistration of the DB2 server on either a local or a remote computer requires
the LDAP node name be specified for the server.

Procedure

To deregister the DB2 server from LDAP:
* From the command line, use the DEREGISTER command:

db2 deregister db2 server in ldap
node node_name

e From a client application, call the db2LdapDeregister APL
Results

When the DB2 server is deregistered, any LDAP node entry and LDAP database
entries referring to the same instance of the DB2 server are also uncataloged.

Deregistering the database from the LDAP directory

The database is automatically deregistered from LDAP when the database is
dropped, or the owning instance is deregistered from LDAP.

Procedure

To deregister a database from the LDAP directory:

* From the command line, use the UNCATALOG LDAP DATABASE command:
db2 uncatalog ldap database dbname

* From a client application, call the db2LdapUncatalogDatabase API.

Chapter 11. LDAP connections 103

104 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 12. Configuring IBM Data Server Drivers

Use the db2dsdriver.cfg configuration file to configure the IBM Data Server Driver.
This configuration file contains database directory information and configuration
keywords to set up connections to supported databases through ODBC, CLI, .NET,
OLE DB, or open source (PHP or Ruby) applications. For a complete list of
configuration keywords, see “IBM Data Server Driver configuration keywords” at
the following URL: http://publib.boulder.ibm.com/infocenter/db2luw /v10r1/
topic/com.ibm.swg.im.dbclient.config.doc/doc/c0054698.html.

The IBM data server driver configuration file is an XML file that is based on the
db2dsdriver.xsd schema definition file. You can specify a customized path for the
IBM data server driver configuration file by using one of the following methods:

* Use the DB2DSDRIVER_CFG_SOURCE_PATH response file keyword to specify the path
during the IBM data server product installation.

* Set the DB2DSDRIVER_CFG_PATH registry variable to the file path.

You can associate the keywords globally, meaning with all database connections, or
you can associate the keywords with a specific database source name (DSN) or
database connection. You can also use the configuration file to enable a high
availability connection to supported databases.

You can use the IBM data server driver configuration file with embedded SQL
applications, ODBC, CLI, .NET, OLE DB, PHP, or Ruby drivers. However, the IBM
data server driver configuration file is not required to use embedded SQL
applications, ODBC, CLI, .NET, OLE DB, PHP, or Ruby drivers. The applications
can function without the IBM data server driver configuration file. However,
instead of specifying the database name, host, port, and configuration parameters
in your applications, you can use the configuration file with defined aliases.

The IBM data server driver configuration file supports a set of XML tags that are
in lowercase and do not include underscores (_). XML tag attributes, which are
where you specify IBM data server driver configuration keywords, can contain
uppercase, lowercase, and underscore (_) characters.

The sample IBM data server driver configuration file, named
db2dsdriver.cfg.sample, is included with IBM data server products.

Copying existing database directory information into the db2dsdriver
configuration file

You can populate the db2dsdriver.cfg configuration file with existing database
directory information.

Before you begin

You must have an existing Version 9.7 IBM Data Server Client or IBM Data Server
Runtime Client installed.

© Copyright IBM Corp. 2014 105

106

About this task

The db2dsdriver.cfg configuration file configures the behavior of DB2 CLI, ODBC,
open source, or .NET applications by using keywords. The keywords are associated
with the database alias name, and affect all the applications that access the
database.

If you have an IBM Data Server Client or IBM Data Server Runtime Client, you
can copy the existing database directory information into the db2dsdriver.cfg
configuration file by using the db2dsdcfgfill command. Using this command, the
configuration file is populated based on the contents of the local database
directory, node directory, and Database Connection Services (DCS) directory of a
specific database manager instance.

Restrictions
None.
Procedure

To copy existing database directory information from an IBM Data Server Client or
IBM Data Server Runtime Client into the db2dsdriver.cfg configuration file:

Enter the db2dsdcfgfill command. For example, db2dsdcfgfill -i instance_name
-0 output_path. The parameter -o output-path indicates the path where the
db2dsdriver.cfg configuration file is created. For information about the location of
the db2dsdriver.cfg file, see the topic about that file.

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 3. Physical design and business rules implementation

Physical database design consists of defining database objects and implementing
business rules.

You can create the following database objects in a DB2 database:
* Tables

* Constraints

¢ Indexes

 Triggers

* Sequences

* Views

* Usage lists

You ca use Data Definition Language (DDL) statements or tools such as IBM Data
Studio to create these database objects. The DDL statements are generally prefixed
by the keywords CREATE or ALTER.

Understanding the features and functionality that each of these database objects
provides is important to implement a good database design that meets your
current business's data storage needs while remaining flexible enough to
accommodate expansion and growth over time.

© Copyright IBM Corp. 2014 107

108 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 13. Databases

A DB2 database is a relational database. The database stores all data in tables that are
related to one another. Relationships are established between tables such that data
is shared and duplication is minimized.

A relational database is a database that is treated as a set of tables and manipulated
in accordance with the relational model of data. It contains a set of objects used to
store, manage, and access data. Examples of such objects are tables, views, indexes,
functions, triggers, and packages. Objects can be either defined by the system
(built-in objects) or defined by the user (user-defined objects).

A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer
system has a relational database manager to manage the tables in its environment.
The database managers communicate and cooperate with each other in a way that
allows a given database manager to execute SQL statements on another computer
system.

A partitioned relational database is a relational database whose data is managed
across multiple database partitions. This separation of data across database
partitions is transparent to most SQL statements. However, some data definition
language (DDL) statements take database partition information into consideration
(for example, CREATE DATABASE PARTITION GROUP). DDL is the subset of SQL
statements used to describe data relationships in a database.

A federated database is a relational database whose data is stored in multiple data
sources (such as separate relational databases). The data appears as if it were all in
a single large database and can be accessed through traditional SQL queries.
Changes to the data can be explicitly directed to the appropriate data source.

Designing databases

When designing a database, you are modeling a real business system that contains
a set of entities and their characteristics, or attributes, and the rules or relationships
between those entities.

The first step is to describe the system that you want to represent. For example, if
you were creating a database for publishing system, the system would contain
several types of entities, such as books, authors, editors, and publishers. For each
of these entities, there are certain pieces of information, or attributes, that you must
record:

* Books: titles, ISBN, date published, location, publisher,
e Authors: name, address, phone and fax numbers, email address,
* Editors: name, address, phone and fax numbers, email address,

* Publishers: name, address, phone and fax numbers, email address,

You will need the database to represent not only these types of entities and their
attributes, but you also need a way to relate these entities to each other. For
example, you need to represent the relationship between books and their authors,
the relationship between books/authors and editors, and the relationship between
books/authors and publishers.

© Copyright IBM Corp. 2014 109

There are three types of relationships between the entities in a database:

One-to-one relationships
In this type of relationship, each instance of an entity relates to only one
instance of another entity. Currently, no one-to-one relationships exist in
the scenario described previously.

One-to-many relationships
In this type of relationship, each instance of an entity relates to one or
more instances of another entity. For example, an author could have
written multiple books, but certain books have only one author. This is the
most common type of relationship modeled in relational databases.

Many-to-many relationships
In this type of relationship, many instances of a given entity relate to one
or more instances of another entity. For example, co-authors could write a
number of books.

Because databases consist of tables, you must construct a set of tables that will best
hold this data, with each cell in the table holding a single view. There are many
possible ways to perform this task. As the database designer, your job is to come
up with the best set of tables possible.

For example, you could create a single table, with many rows and columns, to
hold all of the information. However, using this method, some information would
be repeated. Secondly, data entry and data maintenance would be time-consuming
and error prone. In contrast to this single-table design, a relational database allows
you to have multiple simple tables, reducing redundancy and avoiding the
difficulties posed by a large and unmanageable table. In a relational database,
tables should contain information about a single type of entity.

Also, the integrity of the data in a relational database must be maintained as
multiple users access and change the data. Whenever data is shared, there is a
need to ensure the accuracy of the values within database tables.

You can:

e Use isolation levels to determines how data is locked or isolated from other
processes while the data is being accessed.

* Protect data and define relationships between data by defining constraints to
enforce business rules.

* Create triggers that can do complex, cross-table data validation.

* Implement a recovery strategy to protect data so that it can be restore to a
consistent state.

Database design is a much more complex task than is indicated here, and there are
many items that must be considered, such as space requirements, keys, indexes,
constraints, security and authorization, and so forth. You can find some of this
information in the DB2 Information Center, and in the many DB2 retail books that
are available on this subject.

Creating databases

You create a database using the CREATE DATABASE command. To create a database
from a client application, call the sqlecrea APIL. All databases are created with the
default storage group IBMSTOGROUP, unless you specify otherwise. Automatic
storage managed table spaces use storage groups for their storage definitions.

110 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Before you begin

The DB2 database manager must be running. Use the db2start command to start
the database manager.

It is important to plan your database, keeping in mind the contents, layout,
potential growth, and how it will be used before you create it. After it has been
created and populated with data, changes can be made.

The following database privileges are automatically granted to PUBLIC:
CREATETAB, BINDADD, CONNECT, IMPLICIT_SCHEMA, and SELECT on the
system catalog views. However, if the RESTRICTIVE option is present, no privileges
are automatically granted to PUBLIC. For more information about the RESTRICTIVE
option, see the CREATE DATABASE command.

Restrictions

* Storage paths cannot be specified using relative path names; you must use
absolute path names. The storage path can be up to 175 characters long.

* On Windows operating systems, the database path must be a drive letter only,
unless the DB2_CREATE_DB_ON_PATH registry variable is set to YES.

* If you do not specify a database path using the DBPATH ON clause of the CREATE
DATABASE command, the database manager uses the first storage path specified
for the ON clause for the database path. (On Windows operating systems, if this
clause is specified as a path, and if the DB2_CREATE_DB_ON_PATH registry variable
is not set to YES, you receive a SQL1052N error message.) If no ON clause is
specified, the database is created on the default database path that is specified in
the database manager configuration file (dftdbpath parameter). The path is also
used as the location for the single storage path associated with the database.

* For partitioned databases, you must use the same set of storage paths on each
database partition (unless you use database partition expressions).

* Database partition expressions are not valid in database paths, whether you
specify them explicitly by using the DBPATH ON clause of the CREATE DATABASE
command, or implicitly by using a database partition expression in the first
storage path.

* A storage group must have at least one storage path associated with it.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE NO
clause, the AUTOMATIC STORAGE clause is deprecated and might be removed from a
future release.

About this task

When you create a database, each of the following tasks are done for you:

* Setting up of all the system catalog tables that are needed by the database
* Allocation of the database recovery log

* Creation of the database configuration file and the default values are set

* Binding of the database utilities to the database

Procedure
* To create a database from a client application, call the sqlecrea API.

* To create a database using the command line processor, issue the CREATE
DATABASE command.

Chapter 13. Databases 111

For example, the following command creates a database called PERSONT1, in the
default location, with the associated comment "Personnel DB for BSchiefer Co".

CREATE DATABASE personl
WITH "Personnel DB for BSchiefer Co"

* To create a database using IBM Data Studio, right-click the instance on which
you want to create the database and select the task assistant to the create it. For
more information, see IBM Data Studio: Administering databases with task
assistants.

Example
Example 1: Creating a database on a UNIX or Linux operating system:

To create a database named TESTDB1 on path /DPATHI using /DATAL and /DATA2 as
the storage paths defined to the default storage group IBMSTOGROUP, use the
following command:

CREATE DATABASE TESTDB1 ON '/DATAL','/DATA2' DBPATH ON '/DPATH1'

Example 2: Creating a database on a Windows operating system, specifying both storage
and database paths:

To create a database named TESTDB2 on drive D:, with storage on E:\DATA, use the
following command:

CREATE DATABASE TESTDB2 ON 'E:\DATA' DBPATH ON 'D:'

In this example, E:\DATA is used as both the storage path defined to the default
storage group IBMSTOGROUP and the database path.

Example 3: Creating a database on a Windows operating system, specifying only a storage
path:

To create a database named TESTDB3 with storage on drive F:, use the following
command:

CREATE DATABASE TESTDB3 ON 'F:'

In this example, F: is used as both the storage path defined to the default storage
group IBMSTOGROUP and the database path.

If you specify a directory name such as F:\DATA for the storage path, the command
fails, because:

1. When DBPATH is not specified, the storage path -- in this case, F:\DATA -- is used
as the database path

2. On Windows, the database path can only be a drive letter (unless you change
the default for the DB2_CREATE_DB_ON_PATH registry variable from NO to YES).

If you want to specify a directory as the storage path on Windows operating
systems, you must also include the DBPATH ON drive clause, as shown in Example
2.

Example 4: Creating a database on a UNIX or Linux operating system without specifying
a database path:

To create a database named TESTDB4 with storage on /DATAL and /DATA2, use the
following command:

CREATE DATABASE TESTDB4 ON '/DATAL','/DATA2'

112 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

In this example, /DATAL and /DATA2 are used as the storage paths defined to the
default storage group IBMSTOGROUP and /DATAL is the database path.

What to do next

Configuration Advisor
The Configuration Advisor helps you to tune performance and to balance
memory requirements for a single database per instance by suggesting
which configuration parameters to modify and providing suggested values
for them. The Configuration Advisor is automatically invoked by default
when you create a database.

You can override this default so that the configuration advisor is not
automatically invoked by using one of the following methods:
* Issue the CREATE DATABASE command with the AUTOCONFIGURE APPLY NONE
parameter.
* Set the DB2_ENABLE_AUTOCONFIG_DEFAULT registry variable to NO:
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

However, if you specify the AUTOCONFIGURE parameter with the CREATE
DATABASE command, the setting of this registry variable is ignored.

Also, the following automatic features are enabled by default when you
create a database:

* Automatic storage
* Automatic background statistics collection
¢ Automatic real-time statistics collection

* Self-tuning memory (single-partition environments)

Event Monitor
At the same time a database is created, a detailed deadlocks event monitor
is also created. As with any monitor, there is extra processing time and
resources associated with this event monitor. If you do not want the
detailed deadlocks event monitor, then the event monitor can be dropped
by using the command:

DROP EVENT MONITOR db2detaildeadlock

To limit the amount of disk space that this event monitor consumes, the
event monitor deactivates, and a message is written to the administration
notification log, once it has reached its maximum number of output files.
Removing output files that are no longer needed allows the event monitor
to activate again on the next database activation.

Remote databases

You can create a database in a different, possibly remote, instance. To
create a database at another (remote) database partition server, you must
first attach to that server. A database connection is temporarily established
by the following command during processing:

CREATE DATABASE database_name AT DBPARTITIONNUM options

In this type of environment, you can perform instance-level administration
against an instance other than your default instance, including remote
instances. For instructions on how to do this, see the db2iupdt (update
instance) command.

Database code pages

Chapter 13. Databases 113

By default, databases are created in the UTF-8 (Unicode) code set.

To override the default code page for the database, it is necessary to
specify the required code set and territory when creating the database. See
the CREATE DATABASE command or the sqlecrea API for information about
setting the code set and territory.

Converting a nonautomatic storage database to use automatic storage

You can convert an existing nonautomatic storage database to use automatic
storage by using the CREATE STOGROUP statement to define the default storage
group within a database.

Before you begin

You must have a storage location that you can identify with a path (for Windows
operating systems, a path or a drive letter) available to use as a storage path for
your automatic storage table spaces.

Restrictions

* Once you have created a storage group, you cannot drop all storage groups for a
database.

* Only DMS table spaces can be converted to use automatic storage.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

About this task

Databases that are created specifying the AUTOMATIC STORAGE NO clause of
the CREATE DATABASE command do not have storage groups associated with them.
Instead, storage is associated with the table spaces for the database. When you
define a storage group for a database, existing table spaces are not automatically
converted to use automatic storage. By default, only future table spaces that you
create are automatic storage table spaces. You must use the ALTER TABLESPACE
statement to convert existing table spaces to use automatic storage.

Procedure

You can convert an existing database to an automatic storage database by using the
CREATE STOGROUP statement to create a storage group within it.

To create a storage group within a database, use the following statement:
CREATE STOGROUP sg ON storagePath

where sg is the storage group and storagePath is the path you want to use for
automatic storage table spaces.

Example
Example 1: Converting a database on UNIX or Linux operating systems

Assume that the database EMPLOYEE is a nonautomatic storage database, and
that /datal/as and /data2/as are the paths you want to use for automatic storage

114 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

table spaces. To convert EMPLOYEE to an automatic storage database, create a
storage group with /datal/as and /data2/as as paths:

CREATE STOGROUP sg ON '/datal/as', '/data2/as'
Example 2: Converting a database on Windows operating systems

Assume that the database SALES is a nonautomatic storage database, and that
F:\DB2DATA and G: are the paths you want to use for automatic storage table
spaces. To convert SALES to an automatic storage database, create a storage group
with F:\DB2DATA and G: as paths:

CREATE STOGROUP sg ON 'F:\DB2DATA', 'G:'

What to do next

If you have existing DMS table spaces that you want to convert to use automatic
storage, use the ALTER TABLESPACE statement with the MANAGED BY
AUTOMATIC STORAGE clause to change them. If you do not specify the USING
STOGROUP clause, then the table space uses the storage paths in the designated
default storage group.

Once you have created a storage group you can create automatic storage table

spaces in which to store tables, indexes and other database objects by using the
CREATE TABLESPACE statement.

Chapter 13. Databases 115

116 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 14. Buffer pools

A buffer pool is an area of main memory that has been allocated by the database
manager for the purpose of caching table and index data as it is read from disk.
Every DB2 database must have a buffer pool.

Each new database has a default buffer pool defined, called IBMDEFAULTBP.
Additional buffer pools can be created, dropped, and modified, using the CREATE
BUFFERPOOL, DROP BUFFERPOOL, and ALTER BUFFERPOOL statements. The
SYSCAT.BUFFERPOOLS catalog view accesses the information for the buffer pools
defined in the database.

In a DB2 pureScale environment, each member has its own local buffer pool (LBP).
However there is an additional group buffer pool (GBP) that is maintained by the
cluster caching facility. The GBP is shared by all members. It is used as a cache for
pages used be individual members across a DB2 pureScale instance to improve
performance and ensure consistency.

How buffer pools are used

Note: The information that follows discusses buffer pools in environments other
than DB2 pureScale environments. Buffer pools work differently in DB2 pureScale
environments. For more information, see “Buffer pool monitoring in a DB2
pureScale environment”, in the Database Monitoring Guide and Reference.

When a row of data in a table is first accessed, the database manager places the
page that contains that data into a buffer pool. Pages stay in the buffer pool until
the database is shut down or until the space occupied by the page is required by
another page.

Pages in the buffer pool can be either in-use or not, and they can be dirty or clean:

* In-use pages are currently being read or updated. To maintain data consistency,
the database manager only allows one agent to be updating a given page in a
buffer pool at one time. If a page is being updated, it is being accessed
exclusively by one agent. If it is being read, it might be read by multiple agents
simultaneously.

* "Dirty" pages contain data that has been changed but has not yet been written to
disk.

* After a changed page is written to disk, it is clean and might remain in the
buffer pool.

A large part of tuning a database involves setting the configuration parameters that
control the movement of data into the buffer pool and the writing of data from the
buffer out to disk. If not needed by a recent agent, the page space can be used for
new page requests from new applications. Database manager performance is
degraded by extra disk 1/O.

© Copyright IBM Corp. 2014 117

Designing buffer pools

The sizes of all buffer pools can have a major impact on the performance of your
database.

Before you create a new buffer pool, resolve the following items:
* What buffer pool name do you want to use?

* Whether the buffer pool is to be created immediately or following the next time
that the database is deactivated and reactivated?

* Whether the buffer pool should exist for all database partitions, or for a subset
of the database partitions?

* What page size you want for the buffer pool? See “Buffer pool page sizes”.

¢ Whether the buffer pool will be a fixed size, or whether the database manager
will automatically adjust the size of the buffer pool in response to your
workload? It is suggested that you allow the database manager to tune your
buffer pool automatically by leaving the SIZE parameter unspecified during
buffer pool creation. For details, see the SIZE parameter of the “CREATE
BUFFERPOOL statement” and “Buffer pool memory considerations” on page
119.

* Whether you want to reserve a portion of the buffer pool for block based 1/0?
For details, see: “Block-based buffer pools for improved sequential prefetching”.

Relationship between table spaces and buffer pools

When designing buffer pools, you must understand the relationship between table
spaces and buffer pools. Each table space is associated with a specific buffer pool.
IBMDEFAULTBP is the default buffer pool. The database manager also allocates
these system buffer pools: IBMSYSTEMBP4K, IBMSYSTEMBPSK,
IBMSYSTEMBP16K, and IBMSYSTEMBP32K (formerly known as the “hidden
buffer pools”). To associate another buffer pool with a table space, the buffer pool
must exist and the two must have the same page size. The association is defined
when the table space is created (using the CREATE TABLESPACE statement), but it
can be changed at a later time (using the ALTER TABLESPACE statement).

Having more than one buffer pool allows you to configure the memory used by
the database to improve overall performance. For example, if you have a table
space with one or more large (larger than available memory) tables that are
accessed randomly by users, the size of the buffer pool can be limited, because
caching the data pages might not be beneficial. The table space for an online
transaction application might be associated with a larger buffer pool, so that the
data pages used by the application can be cached longer, resulting in faster
response times. Care must be taken in configuring new buffer pools.

Buffer pool page sizes

The page size for the default buffer pool is set when you use the CREATE DATABASE
command. This default represents the default page size for all future CREATE
BUFFERPOOL and CREATE TABLESPACE statements. If you do not specify the
page size when creating the database, the default page size is 4 KB.

Note: If you have determined that a page size of 8 KB, 16 KB, or 32 KB is required

by your database, you must have at least one buffer pool of the matching page size
defined and associated with table space in your database.

118 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

However, you might need a buffer pool that has different characteristics than the
system buffer pool. You can create new buffer pools for the database manager to
use. You might have to restart the database for table space and buffer pool changes
to take effect. The page sizes that you specify for your table spaces should
determine the page sizes that you choose for your buffer pools. The choice of page
size used for a buffer pool is important because you cannot alter the page size
after you create a buffer pool.

Buffer pool memory considerations

Memory requirements
When designing buffer pools, you should also consider the memory
requirements based on the amount of installed memory on your computer
and the memory required by other applications running concurrently with
the database manager on the same computer. Operating system data
swapping occurs when there is insufficient memory to hold all the data
being accessed. This occurs when some data is written or swapped to
temporary disk storage to make room for other data. When the data on
temporary disk storage is needed, it is swapped back into main memory.

Buffer pool memory protection

With Version 9.5, data pages in buffer pool memory are protected using
storage keys, which are available only if explicitly enabled by the
DB2_MEMORY_PROTECT registry variable, and only on AIX (5.3 TL06
5.4), running on POWER6®.

Buffer pool memory protection works on a per-agent level; any particular
agent will only have access to buffer pool pages when that agent needs
access. Memory protection works by identifying at which times the DB2
engine threads should have access to the buffer pool memory and at which
times they should not have access. For details, see: “Buffer pool memory
protection (AIX running on POWER6).”

Address Windowing Extensions (AWE) and Extended Storage (ESTORE)

Note: AWE and ESTORE features have been discontinued, including the
ESTORE-related keywords, monitor elements, and data structures. To
allocate more memory, you must upgrade to a 64-bit hardware operating
system, and associated DB2 products. You should also modify applications
and scripts to remove references to this discontinued functionality.

Buffer pool hit

ratios

Buffer pool hit ratios reflect the extent to which data needed for queries is found in
memory, as opposed to having to be read in from external storage. You can
calculate hit rates and ratios with formulas that are based on buffer pool monitor
elements. For more information, see “Formulas for calculating buffer pool hit
ratios” at the following URL: http://publib.boulder.ibm.com/infocenter/db2luw /
v10rl/topic/com.ibm.db2.luw.admin.mon.doc/doc/r0056871.html

Buffer pool memory protection (AIX running on POWERG6)

The database manager uses the buffer pool to apply additions, modifications, and
deletions to much of the database data.

Storage keys is a new feature in IBM Power6 processors and the AIX operating
system that allows the protection of ranges of memory using hardware keys at a

Chapter 14. Buffer pools 119

kernel thread level. Storage key protection reduces buffer pool memory corruption
problems and limits errors that might halt the database. Attempts to illegally access
the buffer pool by programming means cause an error condition that the database
manager can detect and deal with.

Note: Buffer pool memory protection works on a per-agent level; any particular
agent has access to buffer pool pages only when that agent needs access.

The database manager protects buffer pools by restricting access to buffer pool
memory. When an agent requires access to the buffer pools to perform its work, it
is temporarily granted access to the buffer pool memory. When the agent no longer
requires access to the buffer pools, access is revoked. This behavior ensures that
agents are only allowed to modify buffer pool contents when needed, reducing the
likelihood of buffer pool corruptions. Any illegal access to buffer pool memory
results in a segmentation error. Tools to diagnose these errors are provided, such as
the db2diag, db2fodc, db2pdcfg, and db2support commands.

To enable the buffer pool memory protection feature, in order to increase the
resilience of the database engine, enable the DB2_MEMORY_PROTECT registry variable:

DB2_MEMORY_PROTECT registry variable
This registry variable enables and disables the buffer pool memory
protection feature. When DB2_MEMORY_PROTECT is enabled (set to YES), and a
DB2 engine thread tries to illegally access buffer pool memory, that engine
thread traps. The default is NO.

Note: The buffer pool memory protection feature depends on the implementation
of AIX Storage Protect Keys and it might not work with the pinned shared
memory. If DB2_MEMORY_PROTECT is specified with DB2_PINNED_BP or
DB2_LARGE_PAGE_MEM setting, AIX Storage Protect Keys may not be enabled.
For more information about AIX Storage Protect Keys, see
http:/ /publib.boulder.ibm.com/infocenter/systems/scope/aix/
index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/
storage_protect_keys.htm.

You cannot use the memory protection if DB2_LGPAGE_BP is set to YES. Even
if DB2_MEMORY_PROTECT is set to YES, DB2 database manager will fail to
protect the buffer pool memory and disable the feature.

Creating buffer pools

Use the CREATE BUFFERPOOL statement to define a new buffer pool to be used
by the database manager.

Before you begin

There needs to be enough real memory on the computer for the total of all the
buffer pools that you created. The operating system also needs some memory to
operate.

About this task

On partitioned databases, you can also define the buffer pool to be created
differently, including different sizes, on each database partition. The default ALL
DBPARTITIONNUMS clause creates the buffer pool on all database partitions in
the database.

120 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm

Procedure

To create a buffer pool using the command line:

1. Get the list of buffer pool names that exist in the database. Issue the following
SQL statement:

SELECT BPNAME FROM SYSCAT.BUFFERPOOLS
2. Choose a buffer pool name that is not currently found in the result list.

w

Determine the characteristics of the buffer pool you are going to create.

4. Ensure that you have the correct authorization ID to run the CREATE
BUFFERPOOL statement.

5. Issue the CREATE BUFFERPOOL statement. A basic CREATE BUFFERPOOL
statement is:

CREATE BUFFERPOOL buffer-pool-name
PAGESIZE 4096

Results

If there is sufficient memory available, the buffer pool can become active
immediately. By default new buffer pools are created using the IMMEDIATE
keyword, and on most platforms, the database manager is able to acquire more
memory. The expected return is successful memory allocation. In cases where the
database manager is unable to allocate the extra memory, the database manager
returns a warning condition stating that the buffer pool could not be started. This
warning is provided on the subsequent database startup. For immediate requests,
you do not need to restart the database. When this statement is committed, the
buffer pool is reflected in the system catalog tables, but the buffer pool does not
become active until the next time the database is started. For more information
about this statement, including other options, see the “CREATE BUFFERPOOL
statement”.

If you issue a CREATE BUFFERPOOL DEFERRED, the buffer pool is not
immediately activated; instead, it is created at the next database startup. Until the
database is restarted, any new table spaces use an existing buffer pool, even if that
table space is created to explicitly use the deferred buffer pool.

Example

In the following example, the optional DATABASE PARTITION GROUP clause
identifies the database partition group or groups to which the buffer pool
definition applies:

CREATE BUFFERPQOOL buffer-pool-name

PAGESIZE 4096
DATABASE PARTITION GROUP db-partition-group-name

If this parameter is specified, the buffer pool is created only on database partitions
in these database partition groups. Each database partition group must currently
exist in the database. If the DATABASE PARTITION GROUP clause is not
specified, this buffer pool is created on all database partitions (and on any
database partitions that are later added to the database).

For more information, see the “CREATE BUFFERPOOL statement”.

Chapter 14. Buffer pools 121

Modifying buffer pools

There are a number of reasons why you might want to modify a buffer pool, for
example, to enable self-tuning memory. To do this, you use the ALTER
BUFFERPOOL statement.

Before you begin
The authorization ID of the statement must have SYSCTRL or SYSADM authority.

About this task

When working with buffer pools, you might need to do one of the following tasks:

* Enable self tuning for a buffer pool, allowing the database manager to adjust the
size of the buffer pool in response to your workload.

* Modify the block area of the buffer pool for block-based 1/0O.

* Add this buffer pool definition to a new database partition group.

* Modify the size of the buffer pool on some or all database partitions.

To alter a buffer pool using the command line, do the following:
1. To get the list of the buffer pool names that already exist in the database, issue
the following statement:
SELECT BPNAME FROM SYSCAT.BUFFERPOOLS
2. Choose the buffer pool name from the result list.
3. Determine what changes must be made.

4. Ensure that you have the correct authorization ID to run the ALTER
BUFFERPOOL statement.

Note: Two key parameters are IMMEDIATE and DEFERRED. With IMMEDIATE, the
buffer pool size is changed without having to wait until the next database
activation for it to take effect. If there is insufficient database shared memory to
allocate new space, the statement is run as DEFERRED.

With DEFERRED, the changes to the buffer pool will not be applied until the
database is reactivated. Reserved memory space is not needed; the database
manager allocates the required memory from the system at activation time.

5. Use the ALTER BUFFERPOOL statement to alter a single attribute of the buffer
pool object. For example:

ALTER BUFFERPOOL buffer pool name SIZE number of pages

* The buffer pool name is a one-part name that identifies a buffer pool described in
the system catalogs.

* The number of pages is the new number of pages to be allocated to this specific
buffer pool. You can also use a value of -1, which indicates that the size of the
buffer pool should be the value found in the buffpage database configuration
parameter.

The statement can also have the DBPARTITIONNUM <db partition number>
clause that specifies the database partition on which the size of the buffer pool is
modified. If this clause is not specified, the size of the buffer pool is modified on
all database partitions except those that have an exception entry in
SYSCAT.BUFFERPOOLDBPARTITIONS. For details on using this clause for
database partitions, see the ALTER BUFFERPOOL statement.

122 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Changes to the buffer pool as a result of this statement are reflected in the system
catalog tables when the statement is committed. However, no changes to the actual
buffer pool take effect until the next time the database is started, except for
successful ALTER BUFFERPOOL requests specified with the default IMMEDIATE
keyword.

There must be enough real memory on the computer for the total of all the buffer
pools that you have created. There also needs to be sufficient real memory for the
rest of the database manager and for your applications.

Dropping buffer pools

When dropping buffer pools, ensure that no table spaces are assigned to those
buffer pools.

You cannot drop the IBMDEFAULTBP buffer pool.

About this task

Disk storage might not be released until the next connection to the database.
Storage memory is not released from a dropped buffer pool until the database is
stopped. Buffer pool memory is released immediately, to be used by the database
manager.

Procedure

To drop buffer pools, use the DROP BUFFERPOOL statement.
DROP BUFFERPOOL buffer-pool-name

Chapter 14. Buffer pools 123

124 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 15. Table spaces

A table space is a storage structure containing tables, indexes, large objects, and long
data. They are used to organize data in a database into logical storage groupings
that relate to where data is stored on a system. Table spaces are stored in database
partition groups.

Using table spaces to organize storage offers a number of benefits:

Recoverability
Putting objects that must be backed up or restored together into the same
table space makes backup and restore operations more convenient, since
you can backup or restore all the objects in table spaces with a single
command. If you have partitioned tables and indexes that are distributed
across table spaces, you can backup or restore only the data and index
partitions that reside in a given table space.

More tables
There are limits to the number of tables that can be stored in any one table
space; if you have a need for more tables than can be contained in a table
space, you need only to create additional table spaces for them.

Automatic storage management
With automatic storage table spaces, storage is managed automatically. The
database manager creates and extends containers as needed.

Ability to isolate data in buffer pools for improved performance or memory

utilization
If you have a set of objects (for example, tables, indexes) that are queried
frequently, you can assign the table space in which they reside a buffer
pool with a single CREATE or ALTER TABLESPACE statement. You can
assign temporary table spaces to their own buffer pool to increase the
performance of activities such as sorts or joins. In some cases, it might
make sense to define smaller buffer pools for seldom-accessed data, or for
applications that require very random access into a very large table; in
such cases, data need not be kept in the buffer pool for longer than a
single query

Table spaces consist of one or more containers. A container can be a directory name,
a device name, or a file name. A single table space can have several containers. It
is possible for multiple containers (from one or more table spaces) to be created on
the same physical storage device (although you will get the best performance if
each container you create uses a different storage device). If you are using
automatic storage table spaces, the creation and management of containers is
handled automatically by the database manager. If you are not using automatic
storage table spaces, you must define and manage containers yourself.

Figure 5 on page 126 illustrates the relationship between tables and table spaces
within a database, and the containers associated with that database.

© Copyright IBM Corp. 2014 125

126

Database

Database partition group

HUMANRES SCHED
table space table space
EMPLOYEE DEPARTMENT PROJECT
table table table

00000

Contalner Contalner Contalner Contamer Contalner

Figure 5. Table spaces and tables in a database

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,
which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table

space in container 4. This example shows each container existing on a separate
disk.

The database manager attempts to balance the data load across containers. As a
result, all containers are used to store data. The number of pages that the database
manager writes to a container before using a different container is called the extent
size. The database manager does not always start storing table data in the first
container.

Figure 6 on page 127 shows the HUMANRES table space with an extent size of
two 4 KB pages, and four containers, each with a small number of allocated
extents. The DEPARTMENT and EMPLOYEE tables both have seven pages, and
span all four containers.

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

HUMANRES table space

Container 0 Container 1 Container 2 Container 3
DEPARTMENT EMPLOYEE EMPLOYEE EMPLOYEE
F EMPLOYEE DEPARTMENT DEPARTMENT DEPARTMENT
4 KB page Extent size

Figure 6. Containers and extents in a table space

Table spaces for system, user and temporary data

Each database must have a minimal set of table spaces that are used for storing
system, user and temporary data.

A database must contain at least three table spaces:
* A catalog table space
* One or more user table spaces

¢ One or more temporary table spaces.
Catalog table spaces

A catalog table space contains all of the system catalog tables for the database. This
table space is called SYSCATSPACE, and it cannot be dropped.

User table spaces

A user table space contains user-defined tables. By default, one user table space,
USERSPACE], is created.

If you do not specify a table space for a table at the time you create it, the database
manager will choose one for you. Refer to the documentation for the IN
tablespace-name clause of the CREATE TABLE statement for more information.

The page size of a table space determines the maximum row length or number of
columns that you can have in a table. The documentation for the CREATE TABLE
statement shows the relationship between page size, and the maximum row size
and column count. Before Version 9.1, the default page size was 4 KB. In Version
9.1 and following, the default page size can be one of the other supported values.
The default page size is declared when creating a new database. Once the default
page size has been declared, you are still free to create a table space with one page
size for the table, and a different table space with a different page size for long or
LOB data. If the number of columns or the row size exceeds the limits for a table

Chapter 15. Table spaces 127

space's page size, an error is returned (SQLSTATE 42997).
Temporary table spaces

A temporary table space contains temporary tables. Temporary table spaces can be
system temporary table spaces or user temporary table spaces.

System temporary table spaces hold temporary data required by the database
manager while performing operations such as sorts or joins. These types of
operations require extra space to process the results set. A database must have at
least one system temporary table space; by default, one system temporary table
space called TEMPSPACETL is created at database creation.

When processing queries, the database manager might need access to a system
temporary table space with a page size large enough to manipulate data related to
your query. For example, if your query returns data with rows that are 8KB long,
and there are no system temporary table spaces with page sizes of at least 8KB, the
query might fail. You might need to create a system temporary table space with a
larger page size. Defining a temporary table space with a page size equal to that of
the largest page size of your user table spaces will help you avoid these kinds of
problems.

User temporary table spaces hold temporary data from tables created with a
DECLARE GLOBAL TEMPORARY TABLE or CREATE GLOBAL TEMPORARY
TABLE statement. They are not created by default at the time of database creation.
They also hold instantiated versions of created temporary tables. To allow the
definition of declared or created temporary tables, at least one user temporary
table space should be created with the appropriate USE privileges. USE privileges
are granted using the GRANT statement.

If a database uses more than one temporary table space and a new temporary
object is needed, the optimizer will choose an appropriate page size for this object.
That object will then be allocated to the temporary table space with the
corresponding page size. If there is more than one temporary table space with that
page size, then the table space will be chosen in a round-robin fashion, starting
with one table space with that page size, and then proceeding to the next for the
next object to be allocated, and so, returning to the first table space after all
suitable table spaces have been used. In most circumstances, though, it is not
recommended to have more than one temporary table space with the same page
size.

Types of table spaces

You can set up table spaces in different ways depending on how you choose to
manage their storage.

The three types of table spaces are known as:

* System managed space (SMS), in which the operating system's file manager
controls the storage space once you have defined the location for storing
database files

* Database managed space (DMS), in which the database manager controls the
usage of storage space one you have allocated storage containers.

* Automatic storage table spaces, in which the database manager controls the
creation of containers as needed.

Each can be used together in any combination within a database

128 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Automatic storage table spaces

With automatic storage table spaces, storage is managed automatically. The
database manager creates and extends containers as needed.

Note: Although you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

Any table spaces that you create are managed as automatic storage table spaces
unless you specify otherwise or the database was created using the AUTOMATIC
STORAGE NO clause. With automatic storage table spaces, you are not required to
provide container definitions; the database manager looks after creating and
extending containers to make use of the storage allocated to the database. If you
add storage to a storage group, new containers are automatically created when the
existing containers reach their maximum capacity. If you want to make use of the
newly-added storage immediately, you can rebalance the table space, reallocating
the data across the new, expanded set of containers and stripe sets. Or, if you are
less concerned about I/O parallelism, and just want to add capacity to your table
space, you can forego rebalancing; in this case, as new storage is required, new
stripe sets will be created.

Automatic storage table spaces can be created in a database using the CREATE
TABLESPACE statement. By default, new tables spaces in a database are automatic
storage table spaces, so the MANAGED BY AUTOMATIC STORAGE clause is
optional. You can also specify options when creating the automatic storage table
space, such as its initial size, the amount that the table space size will be increased
when the table space is full, the maximum size that the table space can grow to,
and the storage group it uses. Following are some examples of statements that
create automatic storage table spaces:

CREATE TABLESPACE TS1

CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE

CREATE TEMPORARY TABLESPACE TEMPTS

CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE

CREATE LARGE TABLESPACE LONGTS

CREATE TABLESPACE TS3 INITIALSIZE 8K INCREASESIZE 20 PERCENT MANAGED BY AUTOMATIC STORAGE

CREATE TABLESPACE TS4 MAXSIZE 2G
CREATE TABLESPACE TS5 USING STOGROUP SG_HOT

Each of these examples assumes that the database for which these table spaces are
being created has one or more defined storage groups. When you create a table
space in a database that has no storage groups defined, you cannot use the
MANAGED BY AUTOMATIC STORAGE clause; you must create a storage group,
then try again to create your automatic storage table space.

How automatic storage table spaces manage storage
expansion

If you are using automatic storage table spaces, the database manager creates and
extends containers as needed. If you add storage to the storage group that the
table space uses, new containers are created automatically. How the new storage
space gets used, however, depends on whether you REBALANCE the table space
or not.

When an automatic storage table space is created, the database manager creates a

container on each of the storage paths of the storage group it is defined to use
(where space permits). Once all of the space in a table space is consumed, the

Chapter 15. Table spaces 129

130

database manager automatically grows the size of the table space by extending
existing containers or by adding a new stripe set of containers.

Storage for automatic table spaces is managed at the storage group level; that is,
you add storage to the database's storage groups, rather than to table spaces as you
do with DMS table spaces. When you add storage to a storage group used by the
table space, the automatic storage feature will create new containers as needed to
accommodate data. However, table spaces that already exist will not start
consuming storage on the new paths immediately. When a table space needs to
grow, the database manager will first attempt to extend those containers in the last
range of the table space. A range is all the containers across a given stripe set. If
this is successful, applications will start using that new space. However, if the
attempt to extend the containers fails, as might happen when one or more of the
file systems are full, for example, the database manager will attempt to create a
new stripe set of containers. Only at this point does the database manager consider
using the newly added storage paths for the table space. Figure 7 illustrates this
process.

/path1 /path2 /path1 /path2 /path3 /path1 /path2 /path3
v
/path1 /path2 /path3 /path1 /path2 /path3 /path1 /path2 /path3

Figure 7. How automatic storage adds containers as needed

In the preceding diagram:

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

1. The table space starts out with two containers that have not yet reached their
maximum capacity. A new storage path is added to the storage group using the
ALTER STOGROUP statement with the ADD clause. However, the new storage
path is not yet being used.

The two original containers reach their maximum capacity.
A new stripe set of containers is added, and they start to fill up with data.
The containers in the new stripe set reaching their maximum capacity.

o M~ N

A new stripe set is added because there is no room for the containers to grow.

If you want to have the automatic storage table space start using the newly added
storage path immediately, you can perform a rebalance, using the REBALANCE
clause of the ALTER TABLESPACE command. If you rebalance your table space,
the data will be reallocated across the containers and stripe sets in the
newly-added storage. This is illustrated in Figure 8.

Path being

Existing added
| paths ” |

-

First
stripe set

.

=

Second
stripe set

L

/path1 /path2 /path3 /path1 /path2 /path3

Figure 8. Results of adding new storage and rebalancing the table space

In this example, rather than a new stripe set being created, the rebalance expands
the existing stripe sets into the new storage path, creating containers as needed,
and then reallocates the data across all of the containers.

Container names in automatic storage table spaces

Although container names for automatic storage table spaces are assigned by the

database manager, they are visible if you run commands such as LIST TABLESPACE
CONTAINERS, or GET SNAPSHOT FOR TABLESPACES commands. This topic describes the

conventions used for container names so that you can recognize them when they

appear.

The names assigned to containers in automatic storage table spaces are structured
as follows:

storage path/instance name/NODE####/database name/T#######/CH###### . EXT

where:

Chapter 15. Table spaces 131

storage path
Is a storage path associated with a storage group

instance name
Is the instance under which the database was created

database name
Is the name of the database

NODE#i##H#
Is the database partition number (for example, NODEO00O)

TH#HHHHH#HH
Is the table space ID (for example, TO000003)

CHHHHHH
Is the container ID (for example, C0000012)

EXT Is an extension based on the type of data being stored:
CAT System catalog table space
TMP System temporary table space
UTM User temporary table space
USR User or regular table space
LRG Large table space

Example
For example, assume an automatic storage table space TBSAUTO has been created

in the database SAMPLE. When the LIST TABLESPACES command is run, it is
shown as having a table space ID of 10:

Tablespace ID =10
Name = TBSAUTO
Type = Database managed space
Contents = A1l permanent data. Large table space.
State = 0x0000
Detailed explanation:
Normal

If you now run the LIST TABLESPACE CONTAINERS command for the table space with
the ID of 10, you can see the names assigned to the containers for this table space:

LIST TABLESPACE CONTAINERS FOR 10 SHOW DETAIL

Tablespace Containers for Tablespace 10

Container ID =0

Name = D:\DB2\NODEOOOO\SAMPLE\T0000010\C0000000. LRG
Type = File

Total pages = 4096

Useable pages = 4064

Accessible = Yes

In this example, you can see the name of the container, with container ID 0, for
this table space is

D:\DB2\NODEOOOO\SAMPLE\T0000010\CO000000. LRG

132 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Converting table spaces to use automatic storage

You can convert some or all of your database-managed space (DMS) table spaces
in a database to use automatic storage. Using automatic storage simplifies your
storage management tasks.

Before you begin

Ensure that the database has at least one storage group. To do so, query
SYSCAT.STOGROUPS, and issue the CREATE STOGROUP statement if the result
set is empty.

Note: If you are not using the automatic storage feature, you must not use the
storage paths and naming conventions that are used by automatic storage. If you
use the same storage paths and naming conventions as automatic storage and you
alter a database object to use automatic storage, the container data for that object
might be corrupted.

Procedure

To convert a DMS table space to use automatic storage, use one of the following
methods:

 Alter a single table space. This method keeps the table space online but
involves a rebalance operation that takes time to move data from the
non-automatic storage containers to the new automatic storage containers.

1. Specify the table space that you want to convert to automatic storage.
Indicate which storage group you want the table space to use. Issue the
following statement:

ALTER TABLESPACE tbspcl MANAGED BY AUTOMATIC STORAGE USING STOGROUP sg_medium
where tbspcl is the table space and sg_medium is the storage group it is
defined in.

2. Move the user-defined data from the old containers to the storage paths in
the storage group sg_medium by issuing the following statement:

ALTER TABLESPACE tbspcl REBALANCE

Note: If you do not specify the REBALANCE option now and issue the
ALTER TABLESPACE statement later with the REDUCE option, your
automatic storage containers will be removed. To recover from this problem,
issue the ALTER TABLESPACE statement, specifying the REBALANCE
option.

3. To monitor the progress of the rebalance operation, use the following
statement:
SELECT = from table (MON_GET_REBALANCE_STATUS('tbspcl', -2))

* Use a redirected restore operation. When the redirected restore operation is in
progress, you cannot access the table spaces being converted. For a full database
redirected restore, all table spaces are inaccessible until the recovery is
completed.

1. Run the RESTORE DATABASE command, specifying the REDIRECT parameter. If
you want to convert a single table space, also specify the TABLESPACE
parameter:

RESTORE DATABASE database name TABLESPACE (table space name) REDIRECT

2. Run the SET TABLESPACE CONTAINERS command, specifying the USING
AUTOMATIC STORAGE parameter, for each table space that you want to convert:

SET TABLESPACE CONTAINERS FOR tablespace_id USING AUTOMATIC STORAGE

Chapter 15. Table spaces 133

3. Run the RESTORE DATABASE command again, this time specifying the CONTINUE
parameter:
RESTORE DATABASE database_name CONTINUE
4. Run the ROLLFORWARD DATABASE command, specifying the T0 END OF LOGS and
AND STOP parameters:
ROLLFORWARD DATABASE database_name TO END OF LOGS AND STOP
If using a redirected restore operation, an additional ALTER TABLESPACE
statement must be issued to update the database catalogs with the correct
storage group association for the table space. The association between table
spaces and storage groups is recorded in the system catalog tables and is not
updated during the redirected restore. Issuing the ALTER TABLESPACE
statement updates only the catalog tables and does not require the extra
processing of a rebalance operation. If the ALTER TABLESPACE statement is not
issued then query performance can be affected. If you modified the default
storage group for the table space during the redirected restore operation, to keep

all database partitions and system catalogs consistent, issue the RESTORE
DATABASE command with the USING STOGROUP parameter.

Example

To convert a database managed table space SALES to automatic storage during a

redirected restore, do the following;:

1. To set up a redirected restore to testdb, issue the following command:
RESTORE DATABASE testdb REDIRECT

2. Modify the table space SALES to be managed by automatic storage. The SALES
table space has an ID value of 5.

SET TABLESPACE CONTAINERS FOR 5 USING AUTOMATIC STORAGE

Note: To determine the ID value of a table space during a redirect restore use
the GENERATE SCRIPT option of the RESTORE DATABASE command.

3. To proceed with the restore, issue the following:
RESTORE DATABASE testdb CONTINUE
4. Update the storage group information in the catalog tables.

CONNECT TO testdb
ALTER TABLESPACE SALES MANAGED BY AUTOMATIC STORAGE

5. If you modified the storage group for the table space during the redirected
restore operation, issue the following command:

RESTORE DATABASE testdb USING STOGROUP sg_default

The table space high water mark

The high water mark refers to the page number of the first page in the extent
following the last allocated extent.

For example, if a table space has 1000 pages and an extent size of 10, there are 100
extents. If the 42nd extent is the highest allocated extent in the table space that
means that the high-water mark is 420.

Tip: Extents are indexed from 0. So the high water mark is the last page of the
highest allocated extent + 1.

Practically speaking, it's virtually impossible to determine the high water mark
yourself; there are administrative views and table functions that you can use to

134 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

determine where the current high water mark is, though it can change from
moment to moment as row operations occur.

Note that the high water mark is not an indicator of the number of used pages
because some of the extents below the high-water mark might have been freed as a
result of deleting data. In this case, even through there might be free pages below
it, the high water mark remains as highest allocated page in the table space.

You can lower the high water mark of a table space by consolidating extents
through a table space size reduction operation.

Example

Figure 9 shows a series of allocated extents in a table space.

=
Extent O
_
1
Extent 1
_
1
Extent 2
_ _ _
Object 1 Free
space |
Object 2 Object 2
1
Extent n
L 1 L
High —=* 1 High—=*
water Extent n+1 water
mark 1 mark
Pages
within extent

Drop Object 1

Figure 9. High water mark

Chapter 15. Table spaces 135

When an object is dropped, space is freed in the table space. However, until any
kind of storage consolidation operation is performed, the high water mark remains
at the previous level. It might even move higher, depending how new extents to
the container are added.

Reclaimable storage

136

Reclaimable storage is a feature of nontemporary automatic storage and DMS table
spaces in DB2 V9.7 and later. You can use it to consolidate in-use extents below the
high water mark and return unused extents in your table space to the system for
reuse.

With table spaces created before DB2 V9.7, the only way to release storage to the
system was to drop containers, or reduce the size of containers by eliminating
unused extents above the high water mark. There was no direct mechanism for
lowering the high water mark. It could be lowered by unloading and reloading
data into an empty table space, or through indirect operations, like performing
table and index reorganizations. With this last approach, it might have been that
the high water mark could still not be lowered, even though there were free
extents below it.

During the extent consolidation process, extents that contain data are moved to
unused extents below the high water mark. After extents are moved, if free extents
still exist below the high water mark, they are released as free storage. Next, the
high water mark is moved to the page in the table space just after the last in-use
extent. In table spaces where reclaimable storage is available, you use the ALTER
TABLESPACE statement to reclaim unused extents. Figure 10 on page 137 shows a
high-level view of how reclaimable storage works.

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

I
Extent 0
1
1
Extent 1
|
1
Extent 2
_ _ _ _ —
Object 1 Free Object 2 Object 2
space |
— High— o
water
mark
. . Free
Object 2 Object 2 space
1
Extent n
L 1 L L
High—* 1 High —* High—*
water Extent n+1 water water
mark | mark mark
Pages
within extent
Drop Object 1 Extents moved Free space

| | is reclaimed

Figure 10. How reclaimable storage works. When reclaimable storage is enabled for a table
space, the in-use extents can be moved to occupy unused extents lower in the table space.

All nontemporary automatic storage and DMS table spaces created in DB2 Version
9.7 and later provide the capability for consolidating extents below the high water
mark. For table spaces created in an earlier version, you must first replace the table
space with a new one created using DB2 V9.7. You can either unload and reload
the data or move the data with an online table move operation using the
SYSPROC.ADMIN_MOVE_TABLE procedure. Such a migration is not required,
however. Table spaces for which reclaimable storage is enabled can coexist in the
same database as table spaces without reclaimable storage.

Reducing the size of table spaces through extent movement is an online operation.
In other words, data manipulation language (DML) and data definition language
(DDL) can continue to be run while the reduce operation is taking place. Some
operations, such as a backup or restore cannot run concurrently with extent
movement operations. In these cases, the process requiring access to the extents
being moved (for example, backup) waits until a number of extents have been
moved (this number is non-user-configurable), at which point the backup process
obtains a lock on the extents in question, and continues from there.

You can monitor the progress of extent movement using the
MON_GET_EXTENT_MOVEMENT_STATUS table function.

Chapter 15. Table spaces 137

Tip: To maximize the amount of space that the ALTER TABLESPACE statement
reclaims, first perform a REORG operation on the tables and indexes in the table
space.

Automatic storage table spaces

You can reduce automatic storage table spaces in a number of ways:

Container reduction only
With this option, no extents are moved. The database manager attempts to
reduce the size of the containers by first freeing extents for which deletes
are pending. (It is possible that some “pending delete” extents cannot be
freed for recoverability reasons, so some of these extents may remain.) If
the high water mark was among those extents freed, then the high water
mark is lowered, otherwise no change to the high water mark takes place.
Next, the containers are re-sized such that total amount of space in the
table space is equal to or slightly greater than the high water mark. This
operation is performed using the ALTER TABLESPACE with the REDUCE
clause by itself.

Lower high water mark only
With this option, the maximum number of extents are moved to lower the
high water mark, however, no container resizing operations are performed.
This operation is performed using the ALTER TABLESPACE with the
LOWER HIGH WATER MARK clause by itself.

Lower high water mark and reduce containers by a specific amount
With this option, you can specify an absolute amount in kilo-, mega-, or
gigabytes by which to reduce the table space. Or you can specify a relative
amount to reduce by entering a percentage. Either way, the database
manager first attempts to reduce space by the requested amount without
moving extents. That is, it attempts to reduce the table space by reducing
the container size only, as described in Container reduction only, by freeing
delete pending extents, and attempting to lower the high water mark. If
this approach does not yield a sufficient reduction, the database manager
then begins moving used extents lower in the table space to lower the high
water mark. After extent movement has completed, the containers are
resized such that total amount of space in the table space is equal to or
slightly greater than the high water mark. If the table space cannot be
reduced by the requested amount because there are not enough extents
that can be moved, the high water mark is lowered as much as possible.
This operation is performed using the ALTER TABLESPACE with a
REDUCE clause that includes a specified amount by which to reduce the
size the table space.

Lower high water mark and reduce containers the maximum amount possible
In this case, the database manager moves as many extents as possible to
reduce the size of the table space and its containers. This operation is
performed using the ALTER TABLESPACE with the REDUCE MAX clause.

Once the extent movement process has started, you can stop it using the ALTER
TABLESPACE statement with the REDUCE STOP clause. Any extents that have
been moved are committed, the high water mark lowered as much as possible, and
containers are re-sized to the new, lowered high water mark.

DMS table spaces

DMS table spaces can be reduced in two ways:

138 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Container reduction only
With this option, no extents are moved. The database manager attempts to
reduce the size of the containers by first freeing extents for which deletes
are pending. (It is possible that some “"pending delete"” extents cannot be
deleted for recoverability reasons, so some of these extents might remain.)
If the high water mark was among those extents freed, then the high water
mark is lowered. Otherwise no change to the high water mark takes place.
Next, the containers are resized such that total amount of space in the table
space is equal to or slightly greater than the high water mark. This
operation is performed using the ALTER TABLESPACE with the REDUCE
database-container clause by itself.

(7

Lower high water mark only
With this option, the maximum number of extents are moved to lower the
high water mark, however, no container resizing operations are performed.
This operation is performed using the ALTER TABLESPACE with the
LOWER HIGH WATER MARK clause by itself.

Lowering the high water mark and reducing container size is a combined,
automatic operation with automatic storage table spaces. By contrast, with DMS
table spaces, to achieve both a lowered high water mark and smaller container
sizes, you must perform two operations:

1. First, you must lower the high water mark for the table space using the ALTER
TABLESPACE statement with the LOWER HIGH WATER MARK clause.

2. Next you must use the ALTER TABLESPACE statement with the REDUCE
database-container clause by itself to perform the container resizing operations.

Once the extent movement process has started, you can stop it using the ALTER
TABLESPACE statement with the LOWER HIGH WATER MARK STOP clause. Any
extents that have been moved are committed, the high water mark are reduced to
its new value.

Examples
Example 1: Reducing the size of an automatic storage table space by the maximum amount.

Assuming a database with one automatic storage table space TS and three tables
T1, T2, and T3 exists, we drop tables T1 and T3:

DROP TABLE T1
DROP TABLE T3

Now, assuming that the extents are now free, the following statement causes the
extents formerly occupied by T1 and T3 to be reclaimed, and the high water mark
of the table space reduced:

ALTER TABLESPACE TS REDUCE MAX
Example 2: Reducing the size of an automatic storage table space by a specific amount.

Assume that we have a database with one automatic storage table space TS and
two tables T1, and T2. Next, we drop table T1:

DROP TABLE T1

Now, to reduce the size of the table space by 1 MB, use the following statement:
ALTER TABLESPACE TS REDUCE SIZE 1M

Chapter 15. Table spaces 139

140

Alternatively, you could reduce the table space by a percentage of its existing size
with a statement such as this:

ALTER TABLESPACE TS REDUCE SIZE 5 PERCENT

Example 3: Reducing the size of an automatic storage table space when there is free space
below the high water mark.

Like Example 1, assume that we have a database with one automatic storage table
space TS and three tables T1, T2, and T3. This time, when we drop T2 and T3,
there is a set of five free extents just below the high water mark. Now, assuming
that each extent in this case was made up of two 4K pages, there is actually 40 KB
of free space just below the high water mark. If you issue a statement such as this
one:

ALTER TABLESPACE TS REDUCE SIZE 32K

the database manager can lower the high water mark and reduce the container size
without the need to perform any extent movement. This scenario is illustrated in
Figure 11 on page 141

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

xtent O

xtent 1

xtent 2

Loyl gl pd

— . — High -
water
mark
t2
Free
— Space
t3
—
Extent n
L — -
High] High
water Extent n+1 water
mark 1 mark
Pages

within extent

Delete t2, 13 Reduce table space
operation

|
Figure 11. Lowering the high water mark without needing to move extents.

Example 4: Reducing the size of a DMS table space.

Assume that we have a database with one DMS table space TS and three tables T1,
T2, and T3. Next, we drop tables T1 and T3:

DROP TABLE T1
DROP TABLE T3

To lower the high water mark and reduce the container size with DMS table space
is a two-step operation. First, lower the high water mark through extent movement
with the following statement:

ALTER TABLESPACE TS LOWER HIGH WATER MARK

Next, you would reduce the size of the containers with a statement such as this
one:

ALTER TABLESPACE TS REDUCE (ALL CONTAINERS 5 M)

Chapter 15. Table spaces 141

File system caching configurations

The operating system, by default, caches file data that is read from and written to
disk.

A typical read operation involves physical disk access to read the data from disk
into the file system cache, and then to copy the data from the cache to the
application buffer. Similarly, a write operation involves physical disk access to copy
the data from the application buffer into the file system cache, and then to copy it
from the cache to the physical disk. This behavior of caching data at the file system
level is reflected in the FILE SYSTEM CACHING clause of the CREATE
TABLESPACE statement. Since the database manager manages its own data
caching using buffer pools, the caching at the file system level is not needed if the
size of the buffer pool is tuned appropriately.

Note: The database manager already prevents caching of most DB2 data, except
temporary data and LOBs on AIX, by invalidating the pages from the cache.

In some cases, caching at the file system level and in the buffer pools causes
performance degradation because of the extra CPU cycles required for the double
caching. To avoid this double caching, most file systems have a feature that
disables caching at the file system level. This is generically referred to as
non-buffered 1/0. On UNIX, this feature is commonly known as Direct 1/O (or DIO).
On Windows, this is equivalent to opening the file with the
FILE_FLAG_NO_BUFFERING flag. In addition, some file systems such as IBM
JES2 or Symantec VERITAS VxFS also support enhanced Direct 1/0, that is, the
higher-performing Concurrent 1/O (CIO) feature. The database manager supports
this feature with the NO FILE SYSTEM CACHING table space clause. When this is
set, the database manager automatically takes advantage of CIO on file systems
where this feature exists. This feature might help to reduce the memory
requirements of the file system cache, thus making more memory available for
other uses.

Before Version 9.5, the keyword FILE SYSTEM CACHING was implied if neither
NO FILE SYSTEM CACHING nor FILE SYSTEM CACHING was specified. With
Version 9.5, if neither keyword is specified, the default, NO FILE SYSTEM
CACHING, is used. This change affects only newly created table spaces. Existing
table spaces created prior to Version 9.5 are not affected. This change applies to

AIX, Linux, Solaris, and Windows with the following exceptions, where the default
behavior remains to be FILE SYSTEM CACHING:

* AIX]JFS

* Solaris non-VxFS

* Linux for System z®

* All SMS temporary table space files

* Long Field (LF) and Large object (LOB) data files in SMS permanent table space
files.

To override the default setting, specify FILE SYSTEM CACHING or NO FILE
SYSTEM CACHING.

Important: The SMS table space type has been deprecated in Version 10.1 for
user-defined permanent table spaces and might be removed in a future release. The
SMS table space type is not deprecated for catalog and temporary table spaces. For
more information, see “SMS permanent table spaces have been deprecated” in
What’s New for DB2 Version 10.1

142 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Supported configurations

Table 13 shows the supported configuration for using table spaces without file
system caching. It also indicates: (a) whether DIO or enhanced DIO will be used in
each case, and (b) the default behavior when neither NO FILE SYSTEM CACHING
nor FILE SYSTEM CACHING is specified for a table space based on the platform
and file system type.

Table 13. Supported configurations for table spaces without file system caching

Platforms

File system type and
minimum level required

DIO or CIO requests
submitted by the database
manager when NO FILE
SYSTEM CACHING is
specified

Default behavior when
neither NO FILE SYSTEM
CACHING nor FILE
SYSTEM CACHING is
specified

AIX 6.1 and higher Journal File System (JFS) DIO FILE SYSTEM CACHING
(See Note 1.)

AIX 6.1 and higher General Parallel File System | DIO NO FILE SYSTEM
(GPFS™) CACHING

AIX 6.1 and higher Concurrent Journal File CIO NO FILE SYSTEM
System (JFS2) CACHING

AIX 6.1 and higher VERITAS Storage CIO NO FILE SYSTEM
Foundation for DB2 4.1 CACHING
(VXES)

HP-UX Version 11i v3 VERITAS Storage CIO FILE SYSTEM CACHING

(Ttanium) Foundation 4.1 (VxFS)

Solaris 10, 11 UNIX File System (UFS) CIO FILE SYSTEM CACHING

(See Note 2.)

Solaris 10, 11 VERITAS Storage CIO NO FILE SYSTEM
Foundation for DB2 4.1 CACHING
(VXES)

Linux distributions SLES 10 | ext2, ext3, reiserfs DIO NO FILE SYSTEM

SP3 or higher, and RHEL CACHING

5.2 or higher

(on these architectures: x86,

x64, POWER®)

Linux distributions SLES 10 | VERITAS Storage CIO NO FILE SYSTEM

SP3 or higher, and RHEL Foundation 4.1 (VXFS) CACHING

5.2 or higher

(on these architectures: x86,

x64, POWER)

Linux distributions SLES 10 | ext2, ext3 or reiserfs on a DIO FILE SYSTEM CACHING

SP3 or higher, and RHEL Small Computer System

5.2 or higher Interface (SCSI) disks using
Fibre Channel Protocol

(on this architecture: (ECP)

zSeries)

Windows No specific requirement, DIO NO FILE SYSTEM

works on all DB2
supported file systems

CACHING

Note:

1.

On AIX JFS, FILE SYSTEM CACHING is the default.

Chapter 15. Table spaces 143

2. On Solaris UFS, NO FILE SYSTEM CACHING is the default.

3. The VERITAS Storage Foundation for the database manager might have
different operating system prerequisites. The platforms listed previously are the
supported platforms for the current release. Consult the VERITAS Storage
Foundation for DB2 support for prerequisite information.

4. If SFDB2 5.0 is used instead of the previously specified minimum levels, the
SFDB2 5.0 MP1 RP1 release must be used. This release includes fixes that are
specific to the 5.0 version.

5. If you do not want the database manager to choose NO FILE SYSTEM
CACHING for the default setting, specify FILE SYSTEM CACHING in the
relevant SQL, commands, or APIs.

Examples

Example 1: By default, this new table space will be created using non-buffered
I/0; the NO FILE SYSTEM CACHING clause is implied:

CREATE TABLESPACE table space name ...

Example 2: On the following statement, the NO FILE SYSTEM CACHING clause
indicates that file system level caching will be OFF for this particular table space:

CREATE TABLESPACE table space name ... NO FILE SYSTEM CACHING

Example 3: The following statement disables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... NO FILE SYSTEM CACHING

Example 4: The following statement enables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... FILE SYSTEM CACHING

Extent sizes in table spaces

An extent is a block of storage within a table space container. It represents the
number of pages of data that will be written to a container before writing to the
next container. When you create a table space, you can choose the extent size based
on your requirements for performance and storage management.

When selecting an extent size, consider:
* The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table one extent at a time. As the
table is populated and an extent becomes full, a new extent is allocated. DMS
table space container storage is pre-reserved which means that new extents are
allocated until the container is completely used.

Space in SMS table spaces is allocated to a table either one extent at a time or
one page at a time. As the table is populated and an extent or page becomes
full, a new extent or page is allocated until all of the extents or pages in the file
system are used. When using SMS table spaces, multipage file allocation is
allowed. Multipage file allocation allows extents to be allocated instead of a
page at a time.

Multipage file allocation is enabled by default. The value of the multipage_alloc
database configuration parameter indicate whether multipage file allocation is
enabled.

144 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note: Multipage file allocation is not applicable to temporary table spaces.
A table is made up of the following separate table objects:

— A data object. This is where the regular column data is stored.

— An index object. This is where all indexes defined on the table are stored.

— Along field (LF) data object. This is where long field data, if your table has
one or more LONG columns, is stored.

— Two large object (LOB) data objects. If your table has one or more LOB
columns, they are stored in these two table objects:

- One table object for the LOB data

- A second table object for metadata describing the LOB data.
— A block map object for multidimensional clustering (MDC) tables.
— An extra XDA object, which stores XML documents.

Each table object is stored separately, and each object allocates new extents as
needed. Each DMS table object is also paired with a metadata object called an
extent map, which describes all of the extents in the table space that belong to
the table object. Space for extent maps is also allocated one extent at a time.
Therefore, the initial allocation of space for an object in a DMS table space is two
extents. (The initial allocation of space for an object in an SMS table space is one
page.)

If you have many small tables in a DMS table space, you might have a relatively
large amount of space allocated to store a relatively small amount of data. In
such a case, specify a small extent size. However, if you have a very large table
that has a high growth rate, and you are using a DMS table space with a small
extent size, you might needlessly allocate additional extents more frequently.

¢ The type of access to the tables.

If access to the tables includes many queries or transactions that process large
quantities of data, prefetching data from the tables might provide significant
performance benefits.

* The minimum number of extents required.

If there is not enough space in the containers for five extents of the table space,
the table space is not created.

Page, table and table space size

For DMS, temporary DMS and nontemporary automatic storage table spaces, the
page size you choose for your database determines the upper limit for the table
space size. For tables in SMS and temporary automatic storage table spaces, page
size constrains the size of the tables themselves.

You can use a 4K, 8K, 16K or 32K page size limit. Each of these page sizes also has
maximums for each of the table space types that you must adhere to.

Table 14 shows the table space size limits for DMS and nontemporary automatic
storage table spaces, by page size:

Table 14. Size limits for DMS and nontemporary automatic storage table spaces. DMS and
nontemporary automatic storage table spaces are constrained by page size.

4K page |8K page |16K page |32K page
Table space type size limit |size limit |size limit |size limit

DMS and nontemporary automatic storage |64G 128G 256G 512G
table spaces (regular)

Chapter 15. Table spaces 145

Table 14. Size limits for DMS and nontemporary automatic storage table
spaces (continued). DMS and nontemporary automatic storage table spaces are constrained

by page size.

4K page |8K page |16K page |32K page
Table space type size limit |size limit |size limit |size limit
DMS, temporary DMS and nontemporary |8192G 16 384G |32 768G |65 536G
automatic storage table spaces (large)

Table 15 shows the table size limits tables in SMS and temporary automatic storage

table spaces, by page size:

Table 15. Size limits for tables in SMS and temporary automatic storage table spaces. With
tables in SMS and temporary automatic storage table spaces, it is the table objects

themselves, not the table spaces that are constrained by page size.

4K page |8K page |16K page |[32K page
Table space type size limit |size limit |size limit |size limit
SMS 64G 128G 256G 512G
Temporary SMS, temporary automatic 8192G 16 384G 32 768G 65 536G
storage

For database and index page size limits for the different types of table spaces, see
the database manager page size-specific limits in “SQL and XML limits” in the SQL
Reference.

Disk I/0O efficiency and table space design

The type and design of your table space determines the efficiency of the I/O
performed against that table space.

You should understand the following concepts before considering other issues
concerning table space design and use:

Big-block reads
A read where several pages (usually an extent) are retrieved in a single
request. Reading several pages at once is more efficient than reading each
page separately.

Prefetching
The reading of pages in advance of those pages being referenced by a
query. The overall objective is to reduce response time. This can be
achieved if the prefetching of pages can occur asynchronously to the
execution of the query. The best response time is achieved when either the
CPU or the I/O subsystem is operating at maximum capacity.

Page cleaning
As pages are read and modified, they accumulate in the database buffer
pool. When a page is read in, it is read into a buffer pool page. If the
buffer pool is full of modified pages, one of these modified pages must be
written out to the disk before the new page can be read in. To prevent the
buffer pool from becoming full, page cleaner agents write out modified
pages to guarantee the availability of buffer pool pages for future read
requests.

Whenever it is advantageous to do so, the database manager performs big-block
reads. This typically occurs when retrieving data that is sequential or partially

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

sequential in nature. The amount of data read in one read operation depends on
the extent size - the bigger the extent size, the more pages can be read at one time.

Sequential prefetching performance can be further enhanced if pages can be read
from disk into contiguous pages within a buffer pool. Since buffer pools are
page-based by default, there is no guarantee of finding a set of contiguous pages
when reading in contiguous pages from disk. Block-based buffer pools can be used
for this purpose because they not only contain a page area, they also contain a
block area for sets of contiguous pages. Each set of contiguous pages is named a
block and each block contains a number of pages referred to as blocksize. The size
of the page and block area, as well as the number of pages in each block is
configurable.

How the extent is stored on disk affects I/O efficiency. In a DMS table space using
device containers, the data tends to be contiguous on disk, and can be read with a
minimum of seek time and disk latency. If files are being used, a large file that has
been pre-allocated for use by a DMS table space also tends to be contiguous on
disk, especially if the file was allocated in a clean file space. However, the data
might have been broken up by the file system and stored in more than one
location on disk. This occurs most often when using SMS table spaces, where files
are extended one page at a time, making fragmentation more likely.

You can control the degree of prefetching by changing the PREFETCHSIZE option
on the CREATE TABLESPACE or ALTER TABLESPACE statements, or you can set
the prefetch size to AUTOMATIC to have the database manager automatically
choose the best size to use. (The default value for all table spaces in the database is
set by the dft_prefetch_sz database configuration parameter.) The
PREFETCHSIZE parameter tells the database manager how many pages to read
whenever a prefetch is triggered. By setting PREFETCHSIZE to be a multiple of
the EXTENTSIZE parameter on the CREATE TABLESPACE statement, you can
cause multiple extents to be read in parallel. (The default value for all table spaces
in the database is set by the dft_extent_sz database configuration parameter.) The
EXTENTSIZE parameter specifies the number of 4 KB pages that will be written to
a container before skipping to the next container.

For example, suppose you had a table space that used three devices. If you set the
PREFETCHSIZE to be three times the EXTENTSIZE, the database manager can do
a big-block read from each device in parallel, thereby significantly increasing 1/0O
throughput. This assumes that each device is a separate physical device, and that
the controller has sufficient bandwidth to handle the data stream from each device.
Note that the database manager might have to dynamically adjust the prefetch
parameters at run time based on query speed, buffer pool utilization, and other
factors.

Some file systems use their own prefetching method (such as the Journaled File
System on AIX). In some cases, file system prefetching is set to be more aggressive
than the database manager prefetching. This might cause prefetching for SMS and
DMS table spaces with file containers to seem to outperform prefetching for DMS
table spaces with devices. This is misleading, because it is likely the result of the
additional level of prefetching that is occurring in the file system. DMS table
spaces should be able to outperform any equivalent configuration.

For prefetching (or even reading) to be efficient, a sufficient number of clean buffer
pool pages must exist. For example, there could be a parallel prefetch request that

reads three extents from a table space, and for each page being read, one modified
page is written out from the buffer pool. The prefetch request might be slowed

Chapter 15. Table spaces 147

down to the point where it cannot keep up with the query. Page cleaners should
be configured in sufficient numbers to satisfy the prefetch request.

Table spaces in a partitioned database environment

In a partitioned database environment, each table space is associated with a
specific database partition group. This allows the characteristics of the table space
to be applied to each database partition in the database partition group.

When allocating a table space to a database partition group, the database partition
group must already exist. The association between the table space and the database
partition group is defined when you create the table space using the CREATE
TABLESPACE statement.

You cannot change the association between a table space and a database partition
group. You can only change the table space specification for individual database
partitions within the database partition group using the ALTER TABLESPACE
statement.

In a single-partition environment, each table space is associated with a default
database partition group as follows:

* The catalog table spaces SYSCATSPACE is associated with IBMCATGROUP
* User table spaces are associated with IBMDEFAULTGROUP
* Temporary table spaces are associated with IBMTEMPGROUP.

In a partitioned database environment, the IBMCATGROUP partition will contain
all three default table spaces, and the other database partitions will each contain
only TEMPSPACE1 and USERSPACEL.

Creating table spaces

Creating a table space within a database assigns containers to the table space and
records its definitions and attributes in the database system catalog.

About this task

For automatic storage table spaces, the database manager assigns containers to the
table space based on the storage paths associated with the database.

For non-automatic storage table spaces, you must know the path, device or file
names for the containers that you will use when creating your table spaces. In
addition, for each device or file container you create for DMS table spaces, you
must know the how much storage space you can allocate to each container.

If you are specifying the PREFETCHSIZE, use a value that is a multiple of the
EXTENTSIZE value. For example if the EXTENTSIZE is 10, the PREFETCHSIZE
should be 20 or 30. You should let the database manager automatically determine
the prefetch size by specifying AUTOMATIC as a value.

Use the keywords NO FILE SYSTEM CACHING and FILE SYSTEM CACHING as
part of the CREATE TABLESPACE statement to specify whether the database
manager uses Direct I/O (DIO) or Concurrent I/O (CIO) to access the table space.
If you specify NO FILE SYSTEM CACHING, the database manager attempts to use
CIO wherever possible. In cases where CIO is not supported (for example, if JFS is
used), the database manager uses DIO instead.

148 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

When you issue the CREATE TABLESPACE statement, the dropped table recovery
feature is turned on by default. This feature lets you recover dropped table data
using table space-level restore and rollforward operations. This is useful because it
is faster than database-level recovery, and your database can remain available to
users. However, the dropped table recovery feature can have some performance
impact on forward recovery when there are many drop table operations to recover
or when the history file is very large.

If you plan to drop numerous tables and you use circular logging or you do not
want to recover any of the dropped tables, disable the dropped table recovery
feature by explicitly setting the DROPPED TABLE RECOVERY option to OFF
when you issue the CREATE TABLESPACE statement. Alternatively, you can turn
off the dropped table recovery feature after creating the table space by using the
ALTER TABLESPACE statement.

Procedure

* To create an automatic storage table space using the command line, enter either
of the following statements:

CREATE TABLESPACE name

or

CREATE TABLESPACE name

MANAGED BY AUTOMATIC STORAGE
Assuming the table space is created in an automatic storage database, each of
the two previously shown statements is equivalent; table spaces created in such
a database will, by default, be automatic storage table spaces unless you specify
otherwise.

* To create an SMS table space using the command line, enter:

CREATE TABLESPACE name
MANAGED BY SYSTEM
USING ('path')

Important: The SMS table space type has been deprecated in Version 10.1 for
user-defined permanent table spaces and might be removed in a future release.
The SMS table space type is not deprecated for catalog and temporary table
spaces. For more information, see “SMS permanent table spaces have been
deprecated” in What's New for DB2 Version 10.1

¢ To create a DMS table space using the command line, enter:

CREATE TABLESPACE name
MANAGED BY DATABASE
USING (FILE 'path' size)

Note that by default, DMS table spaces are created as large table spaces.

After the DMS table space is created, you can use the ALTER TABLESPACE
statement to add, drop, or resize containers to a DMS table space and modify
the PREFETCHSIZE, OVERHEAD, and TRANSFERRATE settings for a table
space. You should commit the transaction issuing the table space statement as
soon as possible following the ALTER TABLESPACE SQL statement to prevent
system catalog contention.

Important: Starting with Version 10.1 Fix Pack 1, the DMS table space type is
deprecated for user-defined permanent table spaces and might be removed in a
future release. The DMS table space type is not deprecated for catalog and
temporary table spaces. For more information, see “DMS permanent table spaces
have been deprecated” in What’s New for DB2 Version 10.1.

Chapter 15. Table spaces 149

Example

Example 1: Creating an automatic storage table space on Windows.
The following SQL statement creates an automatic storage table space
called RESOURCE in the storage group called STOGROUP1:

CREATE TABLESPACE RESOURCE
MANAGED BY AUTOMATIC STORAGE
USING STOGROUP STOGROUP1

Example 2: Creating an SMS table space on Windows.
The following SQL statement creates an SMS table space called RESOURCE
with containers in three directories on three separate drives:
CREATE TABLESPACE RESOURCE

MANAGED BY SYSTEM
USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp"')

Example 3: Creating a DMS table space on Windows.
The following SQL statement creates a DMS table space with two file
containers, each with 5 000 pages:
CREATE TABLESPACE RESOURCE
MANAGED BY DATABASE

USING (FILE'd:\db2datalacc_tbsp' 5000,
FILE'e:\db2data\acc_tbhsp' 5000)

In the previous two examples, explicit names are provided for the
containers. However, if you specify relative container names, the container
is created in the subdirectory created for the database.

When creating table space containers, the database manager creates any
directory levels that do not exist. For example, if a container is specified as
/project/user_data/containerl, and the directory /project does not exist,
then the database manager creates the directories /project and
/project/user_data.

Any directories created by the database manager are created with

PERMISSION 711. Permission 711 is required for fenced process access.

This means that the instance owner has read, write, and execute access,

and others have execute access. Any user with execute access also has the

authority to traverse through table space container directories. Because
only the instance owner has read and write access, the following scenario
might occur when multiple instances are being created:

* Using the same directory structure as described previously, suppose that
directory levels /project/user_data do not exist.

* userl creates an instance, named userl by default, then creates a
database, and then creates a table space with /project/user_data/
containerl as one of its containers.

* user? creates an instance, named user2 by default, then creates a

database, and then attempts to create a table space with
/project/user_data/container2 as one of its containers.

Because the database manager created directory levels /project/user_data
with PERMISSION 700 from the first request, user2 does not have access to
these directory levels and cannot create container2 in those directories. In
this case, the CREATE TABLESPACE operation fails.

There are two methods to resolve this conflict:

1. Create the directory /project/user_data before creating the table
spaces and set the permission to whatever access is needed for both

150 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

userl and user2 to create the table spaces. If all levels of table space
directory exist, the database manager does not modify the access.

2. After userl creates /project/user_data/containerl, set the permission
of /project/user_data to whatever access is needed for user2 to create
the table space.

If a subdirectory is created by the database manager, it might also be
deleted by the database manager when the table space is dropped.

The assumption in this scenario is that the table spaces are not associated
with a specific database partition group. The default database partition
group IBMDEFAULTGROUP is used when the following parameter is not
specified in the statement:

IN database_partition_group_name

Example 4: Creating DMS table spaces on AIX.
The following SQL statement creates a DMS table space on an AIX system
using three logical volumes of 10 000 pages each, and specifies their I/O
characteristics:
CREATE TABLESPACE RESOURCE
MANAGED BY DATABASE
USING (DEVICE '/dev/rdblvé' 10000,
DEVICE '/dev/rdblv7' 10000,
DEVICE '/dev/rdblv8' 10000)
OVERHEAD 7.5
TRANSFERRATE 0.06

The UNIX devices mentioned in this SQL statement must already exist,
and the instance owner and the SYSADM group must be able to write to
them.

Example 5: Creating a DMS table space on a UNIX system.
The following example creates a DMS table space on a database partition
group called ODDGROUP in a UNIX multi-partition database.
ODDGROUP must be previously created with a CREATE DATABASE
PARTITION GROUP statement. In this case, the ODDGROUP database
partition group is assumed to be made up of database partitions numbered
1, 3, and 5. On all database partitions, use the device /dev/hdisk0 for
10 000 4 KB pages. In addition, declare a device for each database partition
of 40 000 4 KB pages.
CREATE TABLESPACE PLANS IN ODDGROUP
MANAGED BY DATABASE
USING (DEVICE '/dev/HDISKO' 10000, DEVICE '/dev/nlhd0l' 46000)
ON DBPARTITIONNUM 1
(DEVICE '/dev/HDISKO' 10000, DEVICE '/dev/n3hd03' 40000)
ON DBPARTITIONNUM 3
(DEVICE '/dev/HDISKO' 10000, DEVICE '/dev/n5hd05' 40000)
ON DBPARTITIONNUM 5

The database manager can greatly improve the performance of sequential
I/0 using the sequential prefetch facility, which uses parallel I/0O.

Example 6: Creating an SMS table space with a page size larger than the
default.
You can also create a table space that uses a page size larger than the
default 4 KB size. The following SQL statement creates an SMS table space
on a Linux and UNIX system with an 8 KB page size.

Chapter 15. Table spaces 151

CREATE TABLESPACE SMS8K
PAGESIZE 8192
MANAGED BY SYSTEM
USING ('FSMS_8K 1')
BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page
size.

The created table space cannot be used until the buffer pool it references is
activated.

Creating temporary table spaces

Temporary table spaces hold temporary data required by the database manager
when performing operations such as sorts or joins, since these activities require

extra space to process the results set. You create temporary table spaces using a
variation of the CREATE TABLESPACE statement.

About this task

A system temporary table space is used to store system temporary tables. A database
must always have at least one system temporary table space since system
temporary tables can only be stored in such a table space. When a database is
created, one of the three default table spaces defined is a system temporary table
space called "TEMPSPACE1". You should have at least one system temporary table
space of each page size for the user table spaces that exist in your database,
otherwise some queries might fail. See “Table spaces for system, user and
temporary data” on page 127 for more information.

User temporary table spaces are not created by default when a database is created. If
your application programs need to use temporary tables, you must create a user
temporary table space where the temporary tables will reside. Like regular table
spaces, user temporary table spaces can be created in any database partition group
other than IBMTEMPGROUP. IBMDEFAULTGROUP is the default database
partition group that is used when creating a user temporary table.

Restrictions

For system temporary table spaces in a partitioned environment, the only database
partition group that can be specified when creating a system temporary table space
is IBMTEMPGROUP.

Procedure
¢ To create a system temporary table space in addition to the default

TEMPSPACE]1, use a CREATE TABLESPACE statement that includes the
keywords SYSTEM TEMPORARY. For example:

CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp
MANAGED BY SYSTEM
USING ('d:\tmp_tbsp','e:\tmp_tbsp")
* To create a user temporary table space, use the CREATE TABLESPACE statement
with the keywords USER TEMPORARY. For example:

CREATE USER TEMPORARY TABLESPACE usr_tbsp
MANAGED BY AUTOMATIC STORAGE

152 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Defining initial table spaces on database creation

When a database is created, three table spaces are defined by default. The
SYSCATSPACE for the system catalog tables. The TEMPSPACEL for system
temporary tables that are created during database processing. The USERSPACEL1
for user-defined tables and indexes. You can also specify additional user table
spaces or characteristics for the default table spaces to be created at the database
creation.

About this task

Note: When you first create a database no user temporary table space is created.

Unless otherwise specified, the three default table spaces are managed by
automatic storage.

Using the CREATE DATABASE command, you can specify the page size for the default
buffer pool and the initial table spaces. This default also represents the default
page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE
statements. If you do not specify the page size when creating the database, the
default page size is 4 KB.

To define initial table spaces using the command line, enter:

CREATE DATABASE name
PAGESIZE page size
CATALOG TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE value PREFETCHSIZE value
USER TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE value PREFETCHSIZE value
TEMPORARY TABLESPACE
MANAGED BY AUTOMATIC STORAGE
WITH "comment"

If you do not want to use the default definition for these table spaces, you might
specify their characteristics on the CREATE DATABASE command. For example, the
following command could be used to create your database on Windows:
CREATE DATABASE PERSONL
PAGESIZE 16384
CATALOG TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE 16 PREFETCHSIZE 32
USER TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE 32 PREFETCHSIZE 64
TEMPORARY TABLESPACE
MANAGED BY AUTOMATIC STORAGE
WITH "Personnel DB for BSchiefer Co"

In this example, the default page size is set to 16 384 bytes, and the definition for

each of the initial table spaces is explicitly provided. You only need to specify the

table space definitions for those table spaces for which you do not want to use the
default definition.

Note: When working in a partitioned database environment, you cannot create or
assign containers to specific database partitions. First, you must create the database

Chapter 15. Table spaces 153

with default user and temporary table spaces. Then you should use the CREATE
TABLESPACE statement to create the required table spaces. Finally, you can drop
the default table spaces.

The coding of the MANAGED BY phrase on the CREATE DATABASE command
follows the same format as the MANAGED BY phrase on the CREATE
TABLESPACE statement.

You can add additional user and temporary table spaces if you want. You cannot
drop the catalog table space SYSCATSPACE, or create another one; and there must
always be at least one system temporary table space with a page size of 4 KB. You
can create other system temporary table spaces. You also cannot change the page
size or the extent size of a table space after it has been created.

Altering automatic storage table spaces

Much of the maintenance of automatic storage table spaces is handled
automatically. The changes that you can make to automatic storage table spaces are
limited to rebalancing, and reducing the size of the overall table space.

Automatic storage table spaces manage the allocation of storage for you, creating
and extending containers as needed up to the limits imposed by storage paths. The
only maintenance operations that you can perform on automatic storage spaces
are:

* Rebalancing
* Reclaiming unused storage by lowering the high water mark
* Reducing the size of the overall table space.

* Changing an automatic storage table space's storage group

You can rebalance an automatic storage table space when you add a storage path
to a storage group. This causes the table space to start using the new storage path
immediately. Similarly, when you drop a storage path from a storage group,
rebalancing moves data out of the containers on the storage paths you are
dropping and allocates it across the remaining containers.

Adding new storage paths, or dropping paths is handled at the storage group
level. To add storage paths to a database, you use the ADD clause of the ALTER
STOGROUP statement. You can rebalance or not, as you prefer, though if you do
not rebalance, the new storage paths are not used until the containers that existed
previously are filled to capacity. If you rebalance, any newly added storage paths
become available for immediate use.

To drop storage paths, use the DROP clause of the ALTER STORGOUP statement.
This action puts the storage paths into a “drop pending” state. Growth of
containers on the storage path you specify cease. However, before the path can be
fully removed from the database, you must rebalance all of the table spaces using
the storage path using the REBALANCE clause on the ALTER TABLESPACE
command. If a temporary table space has containers on a storage path in a drop
pending state, you can either drop and re-create the table space, or restart the
database to remove it from the storage path.

Restriction: You cannot rebalance temporary automatic storage table spaces;
rebalancing is supported only for regular and large automatic storage table spaces.

154 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You can reclaim the storage below the high water mark of a table space using the
LOWER HIGH WATER MARK clause of the ALTER TABLESPACE statement. This
has the effect of moving as many extents as possible to unused extents lower in the
table space. The high water mark for the table space is lowered in the process,
however containers remain the size they were before the operation was performed.

Automatic storage table spaces can be reduced in size using the REDUCE option of
the ALTER TABLESPACE statement. When you reduce the size of an automatic
storage table space, the database manager attempts to lower the high water mark
for the table space and reduce the size of the table space containers. In attempting
to lower the high water mark, the database manager might drop empty containers
and might move used extents to free space nearer the beginning of the table space.
Next, containers are resized such that total amount of space in the table space is
equal to or slightly greater than the high water mark.

Reclaiming unused storage in automatic storage table spaces

When you reduce the size of an automatic storage table space, the database
manager attempts to lower the high water mark for the table space and reduce the
size of the table space containers. In attempting to lower the high water mark, the
database manager might drop empty containers and might move used extents to
free space nearer the beginning of the table space. Next, containers are re-sized
such that total amount of space in the table space is equal to or slightly greater
than the high water mark.

Before you begin

You must have an automatic storage table space that was created with DB2 Version
9.7 or later. Reclaimable storage is not available in table spaces created with earlier
versions of the DB2 product. You can see which table spaces in a database support
reclaimable storage using the MON_GET_TABLESPACE table function.

About this task

You can reduce the size of an automatic storage space for which reclaimable
storage is enabled in a number of ways. You can specify that the database manager
reduce the table space by:

* The maximum amount possible

* An amount that you specify in kilobytes, megabytes or gigabytes, or pages

¢ A percentage of the current size of the table space.

In each case, the database manager attempts to reduce the size by moving extents
to the beginning of the table space, which, if sufficient free space is available, will
reduce the high water mark of the table space. Once the movement of extents has
completed, the table space size is reduced to the new high water mark.

You use the REDUCE clause of the ALTER TABLESPACE statement to reduce the
table space size for an automatic storage table space. You can specify an amount to
reduce the table space by, as noted previously.

Note:

 If you do not specify an amount by which to reduce the table space, the table
space size is reduced as much as possible without moving extents. The database
manager attempts to reduce the size of the containers by first freeing extents for
which deletes are pending. (It is possible that some “pending delete” extents

Chapter 15. Table spaces 155

cannot be freed for recoverability reasons, so some of these extents may remain.)
If the high water mark was among those extents freed, then the high water mark
is lowered, otherwise no change to the high water mark takes place. Next, the
containers are re-sized such that total amount of space in the table space is equal
to or slightly greater than the high water mark. This operation is performed
using the ALTER TABLESPACE with the REDUCE clause by itself.

* If you only want to lower the high water mark, consolidating in-use extents
lower in the table space without performing any container operations, you can
use the ALTER TABLESPACE statement with the LOWER HIGH WATER MARK
clause.

* Once a REDUCE or LOWER HIGH WATER MARK operation is under way, you
can stop it by using the REDUCE STOP or LOWER HIGH WATER MARK STOP
clause of the ALTER TABLESPACE statement. Any extents that have been
moved will be committed, the high water mark will be reduced to it's new value
and containers will be re-sized to the new high water mark.

Restrictions

* You can reclaim storage only in table spaces created with DB2 Version 9.7 and
later.

* When you specify either the REDUCE or the LOWER HIGH WATER MARK
clause on the ALTER TABLESPACE statement, you cannot specify other
parameters.

e If the extent holding the page currently designated as the high water mark is in
“pending delete” state, the attempt to lower the high water mark through extent
movement might fail, and message ADM6008I will be logged. Extents in
“pending delete” state cannot always be moved, for recoverability reasons.
These extents are eventually freed through normal database maintenance
processes, at which point they can be moved.

* The following clauses are not supported with the ALTER TABLESPACE
statement when executed in DB2 data sharing environments:

— ADD database-container-clause

— BEGIN NEW STRIPE SET database-container-clause
— DROP database-container-clause

- LOWER HIGH WATER MARK

- LOWER HIGH WATER MARK STOP

— REBALANCE

— REDUCE database-container-clause

— REDUCE + LOWER HIGH WATER MARK action
— RESIZE database-container-clause

— USING STOGROUP

Procedure

To reduce the size of an automatic storage table space:

1. Formulate an ALTER TABLESPACE statement that includes a REDUCE clause.
ALTER TABLESPACE table-space-name REDUCE reduction-clause

2. Run the ALTER TABLESPACE statement.

156 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example

Example 1: Reducing an automatic storage table space by the maximum amount possible.
ALTER TABLESPACE TS1 REDUCE MAX

In this case, the keyword MAX is specified as part of the REDUCE clause,
indicating that the database manager should attempt to move the maximum
number of extents to the beginning of the table space.

Example 2: Reducing an automatic storage table space by a percentage of the current table
space size.

ALTER TABLESPACE TS1 REDUCE 25 PERCENT

This attempts to reduce the size of the table space TS1 to 75% of it's original size, if
possible.

Scenarios: Adding and removing storage with automatic
storage table spaces

The three scenarios in this section illustrate the impact of adding and removing
storage paths on automatic storage table spaces.

Once storage paths have been added to or removed from storage groups, you can
use a rebalance operation to create one or more containers on the new storage
paths or remove containers from the dropped paths. The following should be
considered when rebalancing table spaces:

* If for whatever reason the database manager decides that no containers need to
be added or dropped, or if containers could not be added due to “out of space”
conditions, then you will receive a warning.

* The REBALANCE clause must be specified on its own.

* You cannot rebalance temporary automatic storage table spaces; only regular and
large automatic storage table spaces can be rebalanced.

¢ The invocation of a rebalance is a logged operation that is replayed during a
rollforward (although the storage layout might be different)

* In partitioned database environments, a rebalance is initiated on every database
partition in which the table space resides.

¢ When storage paths are added or dropped, you are not forced to rebalance. In
fact, subsequent storage path operations can be performed over time before ever
doing a rebalance operation. If a storage path is dropped and is in the “Not In
Use” state, then it is dropped immediately as part of the ALTER STOGROUP
operation. If the storage path is in the “In Use” state and dropped but table
spaces not rebalanced, the storage path (now in the “Drop Pending” state), is not
used to store additional containers or data.

Scenario: Adding a storage path and rebalancing automatic
storage table spaces

This scenario shows how storage paths are added to a storage group and how a
REBALANCE operation creates one or more containers on the new storage paths.

The assumption in this scenario is to add a new storage path to a storage group

and have an existing table space be striped across that new path. I/O parallelism is
improved by adding a new container into each of the table space's stripe sets.

Chapter 15. Table spaces 157

Use the ALTER STOGROUP statement to add a new storage path to a storage
group. Then, use the REBALANCE clause on the ALTER TABLESPACE statement
to allocate containers on the new storage path and to rebalance the data from the
existing containers into the new containers. The number and size of the containers
to be created depend on both the definition of the current stripe sets for the table
space and on the amount of free space on the new storage paths.

Figure 12 illustrates a storage path being added, with the "before" and "after"
layout of a rebalanced table space:

Path being

Existing added
| paths ” |

-

First
stripe set

.

=

Second
stripe set

L

/path1 /path2 /path3 /path1 /path2 /path3

Figure 12. Adding a storage path and rebalancing an automatic storage table space

Note: The diagrams that are displayed in this topic are for illustrative purposes
only. They are not intended to suggest a specific approach or best practice for
storage layout. Also, the diagrams illustrate a single table space only; in actual
practice you would likely have several automatic storage table spaces that share
the same storage path.

A similar situation could occur when an existing table space has multiple stripe
sets with differing numbers of containers in them, which could have happened due
to disk full conditions on one or more of the storage paths during the life of the
table space. In this case, it would be advantageous for the database manager to
add containers to those existing storage paths to fill in the “holes” in the stripe sets
(assuming of course that there is now free space to do so). The REBALANCE
operation can be used to do this as well.

Figure 13 on page 159 is an example where a “hole” exists in the stripe sets of a

table space (possibly caused by deleting table rows, for example) being rebalanced,
with the “before” and “after” layout of the storage paths.

158 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

-

First
stripe set

L

=

Second —_—
stripe set

L
A "hole"
exists in this

stripe set |

/path1 /path2 /path1 /path2

Figure 13. Rebalancing an automatic storage table space to fill gaps

Example

You created a storage group with two storage paths:
CREATE STOGROUP sg ON '/pathl', '/path2'

After creating the database, automatic storage table spaces were subsequently
created in this storage group.

You decide to add another storage path to the storage group (/path3) and you
want all of the automatic storage table spaces to use the new storage path.

1. The first step is to add the storage path to the storage group:
ALTER STOGROUP sg ADD '/path3'

2. The next step is to determine all of the affected permanent table spaces. This
can be done by manually scanning table space snapshot output or via SQL. The
following SQL statement will generate a list of all the regular and large
automatic storage table spaces in the storage group:

SELECT TBSP_NAME
FROM table (MON_GET_TABLESPACE(' ', -2))
WHERE TBSP_USING_AUTO_STORAGE = 1
AND TBSP_CONTENT_TYPE IN ('ANY','LARGE')
AND STORAGE_GROUP_NAME = 'sg'
ORDER BY TBSP_ID

3. Once the table spaces have been identified, the next step is to perform the
following statement for each of the table spaces listed. Provided that there is
sufficient space on the remaining storage paths, it generally shouldn't matter
what order the rebalances are performed in (and they can be run in parallel).

ALTER TABLESPACE tablespace_name REBALANCE

After this, you must determine how you want to handle temporary table spaces.
One option is to stop (deactivate) and start (activate) the database. This results in
the containers being redefined. Alternatively, you can drop and re-create the
temporary table spaces, or create a new temporary table space first, then drop the
old one-this way you do not attempt to drop the last temporary table space in the
database, which is not allowed. To determine the list of affected table spaces, you
can manually scan table space snapshot output or you can execute an SQL

Chapter 15. Table spaces 159

160

statement. The following SQL statement generates a list of all the system
temporary and user temporary automatic storage table spaces in the database:
SELECT TBSP_NAME
FROM table (MON_GET TABLESPACE(' ', -2))
WHERE TBSP_USING_AUTO_ STORAGE = 1
AND TBSP_CONTENT_TYPE IN ('USRTEMP','SYSTEMP')
AND STORAGE_GROUP_NAME = 'sg'
ORDER BY TBSP_ID

Scenario: Dropping a storage path and rebalancing automatic
storage table spaces

This scenario shows how storage paths are dropped and how the REBALANCE
operation drops containers from table spaces that are using the paths.

Before the operation of dropping a storage path can be completed, any table space
containers on that path must be removed. If an entire table space is no longer
needed, you can drop it before dropping the storage path from the storage group.
In this situation, no rebalance is required. If, however, you want to keep the table
space, a REBALANCE operation is required. In this case, when there are storage
paths in the “drop pending” state, the database manager performs a reverse
rebalance, where movement of extents starts from the high water mark extent (the
last possible extent containing data in the table space), and ends with extent 0.

When the REBALANCE operation is run:

* A reverse rebalance is performed. Data in any containers in the “drop pending”
state is moved into the remaining containers.

* The containers in the “drop pending” state are dropped.

e If the current table space is the last table space using the storage path, then the
storage path is dropped as well.

If the containers on the remaining storage paths are not large enough to hold all
the data being moved, the database manager might have to first create or extend
containers on the remaining storage paths before performing the rebalance.

Figure 14 on page 161 is an example of a storage path being dropped, with the
“before” and “after” layout of the storage paths after the table space is rebalanced:

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Path being
dropped

-

Database manager
may need to extend
existing containers or
add new stripe set.

- i

/path1 /path2 /path3 /path1 /path2

Figure 14. Dropping a storage path and rebalancing an automatic storage table space

Example

Create a storage group with three storage paths:
CREATE STOGROUP sg ON '/pathl', '/path2', '/path3'

After creating the storage group, automatic storage table spaces were subsequently

created using it.

You want to put the /path3 storage path into the "Drop Pending" state by

dropping it from the storage group, then rebalance all table spaces that use this

storage path so that it is dropped.
1. The first step is to drop the storage path from the storage group:
ALTER STOGROUP sg DROP '/path3'

2. The next step is to determine all the affected non-temporary table spaces. The
following SQL statement generates a list of all the regular and large automatic
storage table spaces in the database that have containers residing on a “Drop

Pending” path:

SELECT TBSP_NAME
FROM tabTe (MON_GET TABLESPACE(' ', -2))
WHERE TBSP_USING_AUTO_STORAGE = 1
AND TBSP_CONTENT_TYPE IN ('ANY','LARGE'")
AND STORAGE_GROUP_NAME = 'sg'
ORDER BY TBSP_ID
3. Once the table spaces have been identified, the next step is to perform the
following statement for each of the table spaces listed:

ALTER TABLESPACE <tablespace_name> REBALANCE

a. If you have dropped multiple storage paths from the storage group and
want to free up storage on a specific path, you can query the list of

containers in the storage group to find the ones that exist on the storage

path. For example, consider a path called /path3. The following query
provides a list of table spaces that have containers that reside on path
/path3:

Chapter 15. Table spaces

161

SELECT TBSP_NAME FROM SYSIBMADM.SNAPCONTAINER
WHERE CONTAINER_NAME LIKE '/path3'
GROUP BY TBSP_NAME;
b. You can then issue a REBALANCE statement for each table space in the
result set.

4. To determine the list of affected table spaces, generate a list of all the system
temporary and user temporary automatic storage table spaces that are defined
on the dropped storage paths:

SELECT TBSP_NAME
FROM table (MON_GET_TABLESPACE(' ', -2))
WHERE TBSP_USING_AUTO_STORAGE = 1
AND TBSP_CONTENT_TYPE IN ('USRTEMP','SYSTEMP')
AND STORAGE_GROUP_NAME = 'sg'
ORDER BY TBSP_ID

Scenario: Adding and removing storage paths and rebalancing
automatic storage table spaces

This scenario shows how storage paths can be both added and removed, and how
the REBALANCE operation rebalances all of the automatic storage table spaces.

It is possible for storage to be added and dropped from a storage group at the
same time. This operation can be done by using a single ALTER STOGROUP
statement or through multiple ALTER STOGROUP statements separated by some
period (during which the table spaces are not rebalanced).

As described in “Scenario: Adding a storage path and rebalancing automatic
storage table spaces” on page 157, a situation can occur in which the database
manager fills in “holes” in stripe sets when dropping storage paths. In this case the
database manager will create containers and drop containers as part of the process.
In all of these scenarios, the database manager recognizes that some containers
need to be added (where free space allows) and that some need to be removed. In
these scenarios, the database manager might need to perform a two-pass rebalance
operation (the phase and status of which is described in the snapshot monitor
output):
1. First, new containers are allocated on the new paths (or on existing paths if
filling in “holes”).
2. A forward rebalance is performed.

3. A reverse rebalance is performed, moving data off the containers on the paths
being dropped.

4. The containers are physically dropped.

Figure 15 on page 163 is an example of storage paths being added and dropped,
with the "before" and "after” layout of a rebalanced table space:

162 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Existing Paths being

|— paths —”— added —|
First
stripe set
—
/path1 /path2 /path3 /path4 /path1 /path3 /path4
|: Path being
dropped

Figure 15. Adding and dropping storage paths, and then rebalancing an automatic storage
table space

Example

A storage group is created with two storage paths:
CREATE STOGROUP sg ON '/pathl', '/path2', '/path4’

Assume that you want to add another storage path to the storage group (/path3)
and remove one of the existing paths (/path2), and you also want all of your
automatic storage table spaces to be rebalanced. The first step is to add the new
storage path /path3 to the storage group and to initiate the removal of /path2:

ALTER STOGROUP sg ADD '/path3'
ALTER STOGROUP sg DROP '/path2'

The next step is to determine all of the affected table spaces. This analysis can be
done by manually scanning table space snapshot output or using SQL statements.
The following SQL statement generates a list of all the regular and large automatic
storage table spaces in the database:
SELECT TBSP_NAME
FROM table (MON_GET_TABLESPACE(' ', -2))
WHERE TBSP_USING_AUTO_STORAGE = 1
AND TBSP_CONTENT_TYPE IN ('ANY','LARGE')
AND STORAGE_GROUP_NAME = 'sg'
ORDER BY TBSP_ID

Once the table spaces are identified, the next step is to perform the following
statement for each of the table spaces listed:

ALTER TABLESPACE tablespace_name REBALANCE

where tablespace_name is the name of the table spaces identified in the previous
step.

Chapter 15. Table spaces 163

Note: You cannot rebalance temporary table spaces managed by automatic storage.
If you want to stop using the storage that was allocated to temporary table spaces,
one option is to drop the temporary table spaces and then recreate them.

Monitoring a table space rebalance operation

You can use the MON_GET_REBALANCE_STATUS table function to monitor the progress
of rebalance operations on a database.

About this task

This procedure returns data for a table space only if a rebalance operation is in
progress. Otherwise, no data is returned.

Procedure
To monitor a table space rebalance operation:

Issue the MON_GET_REBALANCE_STATUS table function with the tbsp_name and
dbpartitionnum parameters:

select
varchar(tbsp_name, 30) as tbsp_name,
dbpartitionnum,
member,
rebalancer_mode,
rebalancer_status,
rebalancer_extents_remaining,
rebalancer_extents_processed,
rebalancer_start_time

from table(mon_get rebalance status(NULL,-2)) as t

Results

This output is typical of the output for monitoring the progress of a table space
rebalance operation:

TBSP_NAME DBPARTITIONNUM MEMBER REBALANCER_MODE

SYSCATSPACE 0 0 REV_REBAL

REBALANCER_STATUS REBALANCER_EXTENTS_REMAINING REBALANCER_EXTENTS_PROCESSED REBALANCER_START_TIME

ACTIVE 6517 4 2011-12-01-12.08.16.000000

1 record(s) selected.

Table space states

This topic provides information about the supported table space states.

There are currently at least 25 table or table space states supported by the IBM DB2
database product. These states are used to control access to data under certain
circumstances, or to elicit specific user actions, when required, to protect the
integrity of the database. Most of them result from events related to the operation
of one of the DB2 database utilities, such as the load utility, or the backup and
restore utilities. The following table describes each of the supported table space
states. The table also provides you with working examples that show you exactly
how to interpret and respond to states that you might encounter while
administering your database. The examples are taken from command scripts that
were run on AIX; you can copy, paste and run them yourself. If you are running
the DB2 database product on a system that is not UNIX, ensure that any path
names are in the correct format for your system. Most of the examples are based

164 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

on tables in the SAMPLE database that comes with the DB2 database product. A
few examples require scenarios that are not part of the SAMPLE database, but you
can use a connection to the SAMPLE database as a starting point.

Table 16. Supported table space states

Hexadecimal

State state value |Description

Backup 0x20 A table space is in this state after a point-in-time table space rollforward operation, or

Pending after a load operation (against a recoverable database) that specifies the COPY NO option.
The table space (or, alternatively, the entire database) must be backed up before the
table space can be used. If the table space is not backed up, tables within that table
space can be queried, but not updated.
Note: A database must also be backed up immediately after it is enabled for
rollforward recovery. A database is recoverable if the Togarchmethl database
configuration parameter is set to any value other than OFF. You cannot activate or
connect to such a database until it has been backed up, at which time the value of the
backup_pending informational database configuration parameter is set to NO.Example
Given the staff_data.del input file with the following content:
11,"MeTnyk",20,"Sales",10,70000,15000:
Load this data into the staff table specifying the copy no as follows:
update db cfg for sample using logarchmethl Togretain;
backup db sample;
connect to sample;
load from staff_data.del of del messages load.msg insert into staff copy no;
update staff set salary = 69000 where id = 11;
list tablespaces;
connect reset;
Information returned for USERSPACE1 shows that this table space is in Backup
Pending state.

Backup in 0x800 This is a transient state that is only in effect during a backup operation.

Progress

Example

Perform an online backup as follows:

backup db sample online;

From another session, execute one of the following scripts while the backup operation
is running:
* connect to sample;
1ist tablespaces show detail;
connect reset;
e connect to sample;
get snapshot for tablespaces on sample;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Backup in
Progress state.

Chapter 15. Table spaces 165

Table 16. Supported table space states (continued)

State

Hexadecimal
state value

Description

DMS
Rebalance
in Progress

0x10000000

This is a transient state that is only in effect during a data rebalancing operation. When
new containers are added to a table space that is defined as database managed space
(DMS), or existing containers are extended, a rebalancing of the table space data might
occur. Rebalancing is the process of moving table space extents from one location to
another in an attempt to keep the data striped. An extent is a unit of container space
(measured in pages), and a stripe is a layer of extents across the set of containers for a
table space.

Example

Given the staffdata.del input file with 20000 or more records, create the table
newstaff, load it using this input file, and then add a new container to table space tsl:

connect to sample;
create tablespace tsl managed by database using
(file '/home/melnyk/melnyk/NODEOOOO/SQLOOOOL/tslcl' 1024);
create table newstaff like staff in tsl;
load from staffdata.del of del insert into newstaff nonrecoverable;
alter tablespace tsl add
(file '/home/melnyk/melnyk/NODEOOOO/SQLOOOO1/ts1c2' 1024);
list tablespaces;
connect reset;

Information returned for TS1 shows that this table space is in DMS Rebalance in
Progress state.

Disable
Pending

0x200

A table space may be in this state during a database rollforward operation and should
no longer be in this state by the end of the rollforward operation. The state is triggered
by conditions that result from a table space going offline and compensation log records
for a transaction not being written. The appearance and subsequent disappearance of
this table space state is transparent to users.

An example illustrating this table space state is beyond the scope of this document.

Drop
Pending

0x8000

A table space is in this state if one or more of its containers is found to have a problem
during a database restart operation. (A database must be restarted if the previous
session with this database terminated abnormally, such as during a power failure, for
example.) If a table space is in Drop Pending state, it will not be available, and can only
be dropped.

An example illustrating this table space state is beyond the scope of this document.

166 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 16. Supported table space states (continued)

Hexadecimal
State state value |Description

Load in 0x20000 This is a transient state that is only in effect during a load operation (against a
Progress recoverable database) that specifies the COPY NO option. See also Load in Progress table
state.

Example

Given the staffdata.del input file with 20000 or more records, create the table
newstaff and load it specifying COPY NO and this input file:

update db cfg for sample using logarchmethl Togretain;
backup db sample;

connect to sample;

create table newstaff like staff;

load from staffdata.del of del insert into newstaff copy no;
connect reset;

From another session, get information about table spaces while the load operation is
running by executing one of the sample scripts shown in the Backup in Progress
example.

Information returned for USERSPACE1 shows that this table space is in Load in
Progress (and Backup Pending) state.

Normal 0x0 A table space is in Normal state if it is not in any of the other (abnormal) table space
states. Normal state is the initial state of a table space after it is created.

Example

Create a table space and then get information about that table space as follows:

connect to sample;
create tablespace tsl managed by automatic storage;
list tablespaces show detail;

Information returned for USERSPACE1 shows that this table space is in Normal state.

Chapter 15. Table spaces 167

Table 16. Supported table space states (continued)

Hexadecimal
State state value |Description
Offline and 0x4000 A table space is in this state if there is a problem with one or more of its containers. A
Not container might be inadvertently renamed, moved, or damaged. After the problem has
Accessible been rectified, and the containers that are associated with the table space are accessible
again, this abnormal state can be removed by disconnecting all applications from the
database and then reconnecting to the database. Alternatively, you can issue an ALTER
TABLESPACE statement, specifying the SWITCH ONLINE clause, to remove the Offline
and Not Accessible state from the table space without disconnecting other applications
from the database.
Example
Create table space ts1 with containers tscl and tsc2, create table staffemp, and import
data from the st_data.del file as follows:
connect to sample;
create tablespace tsl managed by database using
(file '/home/melnyk/melnyk/NODEOOOO/SQLOOOOL/tscl' 1024);
alter tablespace tsl add
(file '/home/melnyk/melnyk/NODEOOOO/SQLOOOOL/tsc2' 1024);
export to st_data.del of del select * from staff;
create table stafftemp like staff in tsl;
import from st _data.del of del insert into stafftemp;
connect reset;
Rename table space container tscl to tsc3 and then try to query the STAFFTEMP table:
connect to sample;
select * from stafftemp;
The query returns SQL0290N (table space access is not allowed), and the LIST
TABLESPACES command returns a state value of 0x4000 (Offline and Not Accessible) for
TS1. Rename table space container tsc3 back to tscl. This time the query runs
successfully.
Quiesced 0x4 A table space is in this state when the application that invokes the table space quiesce
Exclusive function has exclusive (read or write) access to the table space. Use the QUIESCE

TABLESPACES FOR TABLE command to explicitly set a table space to Quiesced Exclusive.
Example

Set table spaces to Normal before setting them to Quiesced Exclusive as follows:

connect to sample;

quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff exclusive;
connect reset;

From another session, execute the following script:

connect to sample;

select * from staff where id=60;

update staff set salary=50000 where 1d=60;
list tablespaces;

connect reset;

Information returned for USERSPACE1 shows that this table space is in Quiesced
Exclusive state.

168 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 16. Supported table space states (continued)

State

Hexadecimal
state value

Description

Quiesced
Share

0x1

A table space is in this state when both the application that invokes the table space
quiesce function and concurrent applications have read (but not write) access to the
table space. Use the QUIESCE TABLESPACES FOR TABLE command to explicitly set a table
space to Quiesced Share.

Example

Set table spaces to Normal before setting them to Quiesced Share as follows:

connect to sample;

quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff share;
connect reset;

From another session, execute the following script:

connect to sample;

select * from staff where id=40;

update staff set salary=50000 where id=40;
list tablespaces;

connect reset;

Information returned for USERSPACE1 shows that this table space is in Quiesced Share
state.

Quiesced
Update

0x2

A table space is in this state when the application that invokes the table space quiesce
function has exclusive write access to the table space. Use the QUIESCE TABLESPACES FOR
TABLE command to explicitly set a table space to Quiesced Update state.

Example

Set table spaces to Normal before setting them to Quiesced Update as follows:

connect to sample;

quiesce tablespaces for table staff reset;

quiesce tablespaces for table staff intent to update;
connect reset;

From another session, execute the following script:

connect to sample;

select * from staff where id=50;

update staff set salary=50000 where id=50;
list tablespaces;

connect reset;

Information returned for USERSPACE1 shows that this table space is in Quiesced
Update state.

Chapter 15. Table spaces 169

Table 16. Supported table space states (continued)

State

Hexadecimal
state value

Description

Reorg in
Progress

0x400

This is a transient state that is only in effect during a reorg operation.
Example

Reorganize the staff table as follows:
connect to sample;

reorg table staff;
connect reset;

From another session, get information about table spaces while the reorg operation is
running by executing one of the sample scripts shown in the Backup in Progress
example.

Information returned for USERSPACE1 shows that this table space is in Reorg in
Progress state.

Note: Table reorganization operations involving the SAMPLE database are likely to
complete in a short period of time and, as a result, it may be difficult to observe the
Reorg in Progress state using this approach.

Restore
Pending

0x100

Table spaces for a database are in this state after the first part of a redirected restore
operation (that is, before the SET TABLESPACE CONTAINERS command is issued). The table
space (or the entire database) must be restored before the table space can be used. You
cannot connect to the database until the restore operation has been successfully
completed, at which time the value of the restore_pending informational database
configuration parameter is set to NO.

Example

When the first part of the redirected restore operation in Storage May be Defined
completes, all of the table spaces are in Restore Pending state.

Restore in
Progress

0x2000

This is a transient state that is only in effect during a restore operation.
Example

Enable the sample database for rollforward recovery then back up the sample database
and the USERSPACEI table space as follows:
update db cfg for sample using logarchmethl Togretain;

backup db sample;
backup db sample tablespace (userspacel);

Restore the USERSPACETI table space backup assuming the timestamp for this backup
image is 20040611174124:

restore db sample tablespace (userspacel) online taken at 20040611174124;

From another session, get information about table spaces while the restore operation is
running by executing one of the sample scripts shown in the Backup in Progress
example.

Information returned for USERSPACE1 shows that this table space is in Restore in
Progress state.

170 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 16. Supported table space states (continued)

Hexadecimal
State state value |Description
Roll 0x80 A table space is in this state after a restore operation against a recoverable database.
Forward The table space (or the entire database) must be rolled forward before the table space
Pending can be used. A database is recoverable if the Togarchmethl database configuration
parameter is set to any value other than OFF. You cannot activate or connect to the
database until a rollforward operation has been successfully completed, at which time
the value of the rol1fwd_pending informational database configuration parameter is set
to NO.
Example
When the online table space restore operation in Restore in Progress completes, the
table space USERSPACEI is in Roll Forward Pending state.
Roll 0x40 This is a transient state that is only in effect during a rollforward operation.
Forward in
Progress Example
Given the staffdata.del input file with 20000 or more record, create a table and
tablespace followed by a database backup:
update db cfg for sample using logarchmethl Togretain;
backup db sample;
connect to sample;
create tablespace tsl managed by automatic storage;
create table newstaff like staff in tsl;
connect reset;
backup db sample tablespace (tsl) online;
Assuming that the timestamp for the backup image is 20040630000715, restore the
database backup and rollforward to the end of logs as follows:
connect to sample;
load from staffdata.del of del insert into newstaff copy yes
to /home/melnyk/backups;
connect reset;
restore db sample tablespace (tsl) online taken at 20040630000715;
rollforward db sample to end of logs and stop tablespace (tsl) online;
From another session, get information about table spaces while the rollforward
operation is running by executing one of the sample scripts shown in the Backup in
Progress example.
Information returned for TS1 shows that this table space is in Roll Forward in Progress
state.
Storage 0x2000000 | Table spaces for a database are in this state after the first part of a redirected restore
May be operation (that is, before the SET TABLESPACE CONTAINERS command is issued). This
Defined allows you to redefine the containers.

Example

Assuming that the timestamp for the backup image is 20040613204955, restore a
database backup as follows:

restore db sample taken at 20040613204955 redirect;
list tablespaces;

Information returned by the LIST TABLESPACES command shows that all of the table
spaces are in Storage May be Defined and Restore Pending state.

Chapter 15. Table spaces 171

Table 16. Supported table space states (continued)

Deletion in
Progress

Hexadecimal
State state value |Description
Storage 0x1000 Table spaces for a database are in this state during a redirected restore operation to a
Must be new database if the set table space containers phase is omitted or if, during the set
Defined table space containers phase, the specified containers cannot be acquired. The latter can
occur if, for example, an invalid path name has been specified, or there is insufficient
disk space.
Example
Assuming that the timestamp for the backup image is 20040613204955, restore a
database backup as follows:
restore db sample taken at 20040613204955 into mydb redirect;
set tablespace containers for 2 using (path 'ts2cl');
list tablespaces;
Information returned by the LIST TABLESPACES command shows that table space
SYSCATSPACE and table space TEMPSPACEI are in Storage Must be Defined, Storage
May be Defined, and Restore Pending state. Storage Must be Defined state takes
precedence over Storage May be Defined state.
Suspend 0x10000 A table space is in this state after a write operation has been suspended.
Write
An example illustrating this table space state is beyond the scope of this document.
Table Space | 0x40000000 |This is a transient state that is only in effect during a create table space operation.
Creation in
Progress Example
Create table spaces ts1, ts2, and ts3 as follows:
connect to sample;
create tablespace tsl managed by automatic storage;
create tablespace ts2 managed by automatic storage;
create tablespace ts3 managed by automatic storage;
From another session, get information about table spaces while the create table space
operations are running by executing one of the sample scripts shown in the Backup in
Progress example.
Information returned for TS1, TS2, and TS3 shows that these table spaces are in Table
Space Creation in Progress state.
Table Space | 0x20000000 |This is a transient state that is only in effect during a delete table space operation.

Example

Create table spaces ts1, ts2, and ts3 then drop them as follows:
connect to sample;

create tablespace tsl managed by automatic storage;
create tablespace ts2 managed by automatic storage;
create tablespace ts3 managed by automatic storage;

drop tablespaces tsl, ts2, ts3;

From another session, get information about table spaces while the drop table space
operations are running by executing one of the sample scripts shown in the Backup in
Progress example.

Information returned for TS1, TS2, and TS3 shows that these table spaces are in Table
Space Deletion in Progress state.

172

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Switching table spaces from offline to online

The SWITCH ONLINE clause of the ALTER TABLESPACE statement can be used
to remove the OFFLINE state from a table space if the containers associated with
that table space are accessible.

Procedure

To remove the OFFLINE state from a table space using the command line, enter:

db2 ALTER TABLESPACE name
SWITCH ONLINE

Alternatively, disconnect all applications from the database and then to have the
applications connect to the database again. This removes the OFFLINE state from
the table space.

Results

The table space has the OFFLINE state removed while the rest of the database is
still up and being used.

Dropping table spaces

When you drop a table space, you delete all the data in that table space, free the
containers, remove the catalog entries, and cause all objects defined in the table
space to be either dropped or marked as invalid.

About this task

You can reuse the containers in an empty table space by dropping the table space,
but you must commit the DROP TABLESPACE statement before attempting to
reuse the containers.

Note: You cannot drop a table space without dropping all table spaces that are
associated with it. For example, if you have a table in one table space and its index
created in another table space, you must drop both index and data table spaces in
one DROP TABLESPACE statement.

Procedure
* Dropping user table spaces:

You can drop a user table space that contains all of the table data including
index and LOB data within that single user table space. You can also drop a user
table space that might have tables spanned across several table spaces. That is,
you might have table data in one table space, indexes in another, and any LOBs
in a third table space. You must drop all three table spaces at the same time in a
single statement. All of the table spaces that contain tables that are spanned
must be part of this single statement or the drop request fails.

The following SQL statement drops the table space ACCOUNTING:
DROP TABLESPACE ACCOUNTING
* Dropping user temporary table spaces:

You can drop a user temporary table space only if there are no declared or
created temporary tables currently defined in that table space. When you drop
the table space, no attempt is made to drop all of the declared or created
temporary tables in the table space.

Chapter 15. Table spaces 173

174

Note: A declared or created temporary table is implicitly dropped when the
application that declared it disconnects from the database.

Dropping system temporary table spaces:

You cannot drop a system temporary table space that has a page size of 4 KB
without first creating another system temporary table space. The new system
temporary table space must have a page size of 4 KB because the database must
always have at least one system temporary table space that has a page size of 4
KB. For example, if you have a single system temporary table space with a page
size of 4 KB, and you want to add a container to it, and it is an SMS table space,
you must first add a new 4 KB page size system temporary table space with the
proper number of containers, and then drop the old system temporary table
space. (If you are using DMS, you can add a container without needing to drop
and re-create the table space.)

The default table space page size is the page size that the database was created
with (which is 4 KB by default, but can also be 8 KB, 16 KB, or 32 KB).

1. To create a system temporary table space, issue the statement:

CREATE SYSTEM TEMPORARY TABLESPACE name
MANAGED BY SYSTEM USING ('directories')

2. Then, to drop a system table space using the command line, enter:
DROP TABLESPACE name

3. The following SQL statement creates a system temporary table space called
TEMPSPACE2:

CREATE SYSTEM TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY SYSTEM USING ('d:\systemp2')

4. After TEMPSPACE?2 is created, you can drop the original system temporary
table space TEMPSPACE1 with the statement:

DROP TABLESPACE TEMPSPACE1

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 16. Storage groups

A storage group is a named set of storage paths where data can be stored. Storage
groups are configured to represent different classes of storage available to your
database system. You can assign table spaces to the storage group that best suits
the data. Only automatic storage table spaces use storage groups.

A table space can be associated with only one storage group, but a storage group
can have multiple table space associations. To manage storage group objects you
can use the CREATE STOGROUP, ALTER STOGROUP, RENAME STOGROUP,
DROP and COMMENT statements.

With the table partitioning feature, you can place table data in multiple table
spaces. Using this feature, storage groups can store a subset of table data on fast
storage while the remainder of the data is on one or more layers of slower storage.
Use storage groups to support multi-temperature storage which prioritizes data
based on classes of storage. For example, you can create storage groups that map
to the different tiers of storage in your database system. Then the defined table
spaces are associated with these storage groups.

When defining storage groups, ensure that you group the storage paths according
to their quality of service characteristics. The common quality of service
characteristics for data follow an aging pattern where the most recent data is
frequently accessed and requires the fastest access time (hot data) while older data
is less frequently accessed and can tolerate higher access time (warm data or cold
data). The priority of the data is based on:

* Frequency of access

* Acceptable access time

* Volatility of the data

* Application requirements

Typically, the priority of data is inversely proportional to the volume, where there
is significantly more cold and warm data and only a small portion of data is hot.
You can use the DB2 Work Load Manager (WLM) to define rules about how

activities are treated based on a tag that can be assigned to accessed data through
the definition of a table space or a storage group.

Data management using multi-temperature storage

You can configure your databases so that frequently accessed data (hot data) is
stored on fast storage, infrequently accessed data (warm data) is stored on slightly
slower storage, and rarely accessed data (cold data) is stored on slow, less-expensive
storage. As hot data cools down and is accessed less frequently, you can
dynamically move it to the slower storage.

In database systems, there is a strong tendency for a relatively small proportion of
data to be hot data and the majority of the data to be warm or cold data. These
sets of multi-temperature data pose considerable challenges if you want to optimize
the use of fast storage by trying not to store cold data there. As a data warehouse
consumes increasing amounts of storage, optimizing the use of fast storage
becomes increasingly important in managing storage costs.

© Copyright IBM Corp. 2014 175

Storage groups are groups of storage paths with similar qualities. Some critical
attributes of the underlying storage to consider when creating or altering a storage
group are available storage capacity, latency, data transfer rates, and the degree of
RAID protection. You can create storage groups that map to different classes of
storage in your database management system. You can assign automatic storage
table spaces to these storage groups, based on which table spaces have hot, warm,
or cold data. To convert database-managed table spaces to use automatic storage,
you must issue an ALTER TABLESPACE statement specifying the MANAGED BY
AUTOMATIC STORAGE option and then perform a rebalance operation.

Because current data is often considered to be hot data, it typically becomes warm
and then cold as it ages. You can dynamically reassign a table space to a different
storage group by using the ALTER TABLESPACE statement, with the USING
STOGROUP option.

The following example illustrates the use of storage groups with multi-temperature
data. Assume that you are the DBA for a business that does most of its processing
on current-fiscal-quarter data. As shown in Figure 16 on page 177, this business has
enough solid-state drive (SSD) capacity to hold data for an entire quarter and
enough Fibre Channel-based (FC) and Serial Attached SCSI (SAS) drive capacity to
hold data for the remainder of the year. The data that is older then one year is
stored on a large Serial ATA (SATA) RAID array that, while stable, does not
perform quickly enough to withstand a heavy query workload. You can define
three storage groups: one for the SSD storage (sg_hot), one for the FC and SAS
storage (sg_warm), and the other for the SATA storage (sg_cold). You then take the
following actions:

* Assign the table space containing the data for the current quarter to the sg_hot
storage group

* Assign the table space containing the data for the previous three quarters to the
sg_warm storage group

» Assign the table space containing all older data to the sg_cold storage group

After the current quarter passes, you take the following actions:
* Assign a table space for the new quarter to the sg_hot storage group

* Move the table space for the quarter that just passed to the sg_warm storage
group

* Move the data for the oldest quarter in the sg_warm storage group to the
sg_cold storage group

You can do all this work while the database is online.

176 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table: Sales

Range | &9 & & & - & - &
partitions 2011Q1 2010Q4 2010Q3 2010Q2 2010Q1 2009Q4 2007Q3
Table
TbSpc14 TbSpc13 TbSpci2 TbSpcit TbSpc10 TbSpc9 === TbSpci
Spaces
Storage
sg_warm
Groups sg_hot g_ sg_cold

SSD RAID Array FC/SAS RAID Array SATA RAID Array

Legend

Data partition

Figure 16. Managing Sales data using multi-temperature data storage

The following steps provide more details on how to set up multi-temperature data

storage for the sales data in the current fiscal year:

1. Create two storage groups to reflect the two classes of storage, a storage group

to store hot data and a storage group to store warm data.

CREATE STOGROUP sg_hot ON '/ssd/pathl', '/ssd/path2' DEVICE READ RATE 100
OVERHEAD 6.725;
CREATE STOGROUP sg_warm ON '/hdd/pathl', '/hdd/path2';

These statements define an SSD storage group (sg_hot) to store hot data and an

FC and SAS storage group (sg_warm) to store warm data.

2. Create four table spaces, one per quarter of data in a fiscal year, and assign the

table spaces to the storage groups.

CREATE TABLESPACE tbsp_2010g2 USING STOGROUP sg_warm;
CREATE TABLESPACE tbsp 2010g3 USING STOGROUP sg warm;
CREATE TABLESPACE tbsp_2010g4 USING STOGROUP sg_warm;
CREATE TABLESPACE tbsp_2011ql USING STOGROUP sg_hot;

This association results in table spaces inheriting the storage group properties.

3. Set up your range partitions in your sales table.

CREATE TABLE sales (order_date DATE, order_id INT, cust_id BIGINT)
PARTITION BY RANGE (order date)

(PART "2010Q2" STARTING ('2010-04-01') ENDING ('2010-06-30') in "tbsp_2010q2",
PART "2010Q3" STARTING ('2010-07-01') ENDING ('2010-09-30') in "tbsp_2010q3",
PART "2010Q4" STARTING ('2010-10-01') ENDING ('2010-12-31') in "tbsp_2010q4",
PART "2011Q1" STARTING ('2011-01-01') ENDING ('2011-03-31') in "tbsp_2011ql");

The 2011Q1 data represents the current fiscal quarter and is using the sg_hot

storage group.

4. After the current quarter passes, create a table space for a new quarter, and

assign the table space to the sg_hot storage group.
CREATE TABLESPACE tbsp_2011q2 USING STOGROUP sg_hot;

Chapter 16. Storage groups

177

5. Move the table space for the quarter that just passed to the sg_warm storage
group. To change the storage group association for the tbsp_2011ql table space,
issue the ALTER TABLESPACE statement with the USING STOGROUP option.

ALTER TABLESPACE tbsp_2011ql USING STOGROUP sg_warm;

Default storage groups

If a database has storage groups, the default storage group is used when an
automatic storage managed table space is created without explicitly specifying the
storage group.

When you create a database, a default storage group named IBMSTOGROUP is
automatically created. However, a database created with the AUTOMATIC
STORAGE NO clause, does not have a default storage group. The first storage
group created with the CREATE STOGROUP statement becomes the designated
default storage group. There can only be one storage group designated as the
default storage group.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

You can designate a default storage group by using either the CREATE
STOGROUP or ALTER STOGROUP statements. When you designate a different
storage group as the default storage group, there is no impact to the existing table
spaces using the old default storage group. To alter the storage group associated
with a table space, use the ALTER TABLESPACE statement.

You can determine which storage group is the default storage group by using the
SYSCAT.STOGROUPS catalog view.

You cannot drop the current default storage group. You can drop the
IBMSTOGROUP storage group if it is not designated as the default storage group
at that time. If you drop the IBMSTOGROUP storage group, you can create another
storage group with that name.

Creating storage groups

Use the CREATE STOGROUP statement to create storage groups. Creating a
storage group within a database assigns storage paths to the storage group.

Before you begin

If you create a database with the AUTOMATIC STORAGE NO clause it does not have a
default storage group. You can use the CREATE STOGROUP statement to create a
default storage group.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

Procedure

To create a storage group by using the command line, enter the following
statement:

178 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

CREATE STOGROUP operational_sg ON '/filesysteml', '/filesystem2', '/filesystem3'...

where operational_sg is the name of the storage group and /filesystem1, /filesystem?2,
/filesystem3 , ... are the storage paths to be added.

Important: To help ensure predictable performance, all the paths that you assign
to a storage group should have the same media characteristics: latency, device read
rate, and size.

Altering storage groups

You can use the ALTER STOGROUP statement to alter the definition of a storage
group, including setting media attributes, setting a data tag, or setting a default
storage group. You can also add and remove storage paths from a storage group.

If you add storage paths to a storage group and you want to stripe the extents of
their table spaces over all storage paths, you must use the ALTER TABLESPACE
statement with the REBALANCE option for each table space that is associated with
that storage group.

If you drop storage paths from a storage group, you must use the ALTER
TABLESPACE statement with the REBALANCE option to move allocated extents
off the dropped paths.

You can use the DB2 Work Load Manager (WLM) to define rules about how
activities are treated based on a tag that is associated with accessed data. You
associate the tag with data when defining a table space or a storage group.

Adding storage paths

You can add a storage path to a storage group by using the ALTER STOGROUP
statement.

About this task

When you add a storage path for a multipartition database environment, the
storage path must exist on each database partition. If the specified path does not
exist on every database partition, the statement is rolled back.

Procedure

* To add storage paths to a storage group, issue the following ALTER STOGROUP
statement:

ALTER STOGROUP sg ADD '/hdd/pathl', '/hdd/path2', ...

where sg is the storage group and /hdd/pathl, /hdd/path2, ... are the storage paths
being added.

Important: All the paths that you assign to a storage group should have similar
media characteristics: underlying disks, latency, device read rate, and size. If
paths have non-uniform media characteristics, performance might be
inconsistent.

* After adding one or more storage paths to the storage group, you can optionally
use the ALTER TABLESPACE statement to rebalance table spaces to immediately
start using the new storage paths. Otherwise, the new storage paths are used
only when there is no space in the containers on the existing storage paths. To
determine all of the affected permanent table spaces in the storage group, run
the following statement:

Chapter 16. Storage groups 179

SELECT TBSP_NAME
FROM table (MON_GET TABLESPACE(' ', -2))
WHERE TBSP_USING_AUTO_STORAGE = 1
AND TBSP_CONTENT_TYPE IN ('ANY','LARGE')
AND STORAGE_GROUP_NAME = 'sg'
ORDER BY TBSP_ID
Once the table spaces have been identified, you can perform the following
statement for each of the table spaces listed:

ALTER TABLESPACE tablespace name REBALANCE

where tablespace_name is the table space.

Dropping storage paths

You can drop one or more storage paths from a storage group or you can move
data off the storage paths and rebalance them.

Before you begin

To determine whether permanent table spaces are using the storage path, use the
ADMIN_GET_STORAGE_PATHS administrative view. This view displays current
information about the storage paths for each storage group. A storage path can be
in one of three states:

NOT_IN_USE
The storage path has been added to the database but is not in use by any
table space.

IN_USE
One or more table spaces have containers on the storage path.

DROP_PENDING
An ALTER STOGROUP stogroup_name DROP statement has been issued to
drop the path, but table spaces are still using the storage path. The path is
removed from the database when it is no longer being used by a table
space.

If the storage path you dropped has data stored on it and is in the
DROP_PENDING state, you must rebalance all permanent table spaces using the
storage path before the database manager can complete the drop of the path.

To obtain information about table spaces on specific database partitions use the
MON_GET_TABLESPACE administrative view.

Restrictions

A storage group must have at least one path. You cannot drop all paths in a
storage group.

About this task

If you intend to drop a storage path, you must rebalance all permanent table
spaces that use the storage path by using ALTER TABLESPACE tablespace-name
REBALANCE, which moves data off the path to be dropped. In this situation, the
rebalance operation moves data from the storage path that you intend to drop to
the remaining storage paths and keeps the data striped consistently across those
storage paths, maximizing I/O parallelism.

180 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Procedure

1. To drop storage paths from a storage group, issue the following ALTER
STOGROUP statement:
ALTER STOGROUP sg DROP '/db2/filesysteml', '/db2/filesystem2’

where sg is the storage group and /db2/filesystem1 and /db2/filesystem?2 are the
storage paths being dropped.

2. Rebalance the containers of the storage paths being dropped. To determine all
the affected permanent table spaces in the database that have containers
residing on a "Drop Pending" path, issue the following statement:

SELECT TBSP_NAME
FROM table (MON_GET_TABLESPACE(' ', -2))
WHERE TBSP_USING_AUTO_STORAGE = 1
AND TBSP_CONTENT _TYPE IN ('ANY','LARGE')
AND STORAGE_GROUP_NAME = 'sg'
ORDER BY TBSP_ID

Once the table spaces have been identified, you can perform the following
statement for each of the table spaces listed:

ALTER TABLESPACE tablespace_name REBALANCE

where tablespace_name is a table space.

After the last rebalance operation is complete, /db2/filesysteml and
/db2/filesystem2 are removed from the storage group.

3. Drop the temporary table spaces using the storage group. A table space in
DROP_PENDING state is not dropped if there is a temporary table space on it.

4. Re-create the temporary table spaces that were using the storage group.

What to do next

Query the ADMIN_GET_STORAGE_PATHS administrative view to verify that the
storage path that was dropped is no longer listed. If it is, then one or more table
spaces are still using it.

Monitoring storage paths

You can use administrative views and table functions to get information about the
storage paths used.

The following administrative views and table functions can be used:

e Use the ADMIN_GET_STORAGE_PATHS administrative view to get a list of
storage paths for each storage group and the file system information for each
storage path.

* Use the TBSP_USING_AUTOMATIC_STORAGE and STORAGE_GROUP_NAME
monitor elements in the MON_GET_TABLESPACE table function to understand
if a table space is using automatic storage and to identify which storage group
the table space is using.

¢ Use the DB_STORAGE_PATH_ID monitor element in the
MON_GET_CONTAINER table function to understand which storage path in a
storage group a container is defined on.

Replacing the paths of a storage group
Replace the storage paths in a storage group with new storage paths.

Chapter 16. Storage groups 181

Procedure

To replace the existing storage paths in a storage group:
1. Add the new storage paths to an existing storage group.
ALTER STOGROUP sg_default ADD '/hdd/path3', '/hdd/path4’
2. Drop the old storage paths.
ALTER STOGROUP sg_default DROP '/hdd/pathl', '/hdd/path2’

Note: All storage groups must have at least one path and that last path cannot
be dropped.
This marks the dropped storage paths as DROP PENDING.

3. Determine the affected non-temporary table spaces.

SELECT TBSP_NAME
FROM table (MON_GET_TABLESPACE(' ', -2))
WHERE TBSP_USING_AUTO STORAGE = 1
AND TBSP_CONTENT_TYPE IN ('ANY','LARGE')
AND STORAGE_GROUP_NAME = 'sg_default'
ORDER BY TBSP_ID

4. Perform the following statement for each of the affected non-temporary table
spaces returned.

ALTER TABLESPACE tablespace-name REBALANCE

5. If there are any temporary table spaces defined on the dropped storage paths,
you must create the new temporary table spaces first before dropping the old
ones.

SELECT TBSP_NAME
FROM table (MON_GET TABLESPACE(' ', -2))
WHERE TBSP_USING AUTO STORAGE = 1
AND TBSP_CONTENT_TYPE IN ('USRTEMP','SYSTEMP')
AND STORAGE_GROUP_NAME = 'sg default'
ORDER BY TBSP_ID

Renaming storage groups
Use the RENAME STOGROUP statement to rename a storage group.

Procedure

Use the following statement to rename a storage group:
RENAME STOGROUP sg_hot TO sg _warm

where sg_warm is the new name of the storage group.
Example
When the first storage group is created at database creation time, the default

storage group name is IBMSTOGROUP. You can use the following statement to
change the designated default name:

RENAME STOGROUP IBMSTOGROUP TO DEFAULT_SG

where DEFAULT_SG is the new default name of the storage group.

Dropping storage groups

You can remove a storage group by using the DROP statement.

182 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

About this task

You must determine whether there are any table spaces that use the storage group
before dropping it. If there are, you must change the storage group that the table
spaces use and complete the rebalance operation before dropping the original
storage group.

Restrictions
You cannot drop the current default storage group.
Procedure

To drop a storage group:
1. Find the table spaces that are using the storage group.

SELECT TBSP_NAME, TBSP_CONTENT TYPE
FROM table (MON_GET TABLESPACE(' ', -2))
WHERE TBSP_USING AUTO_STORAGE = 1
AND STORAGE_GROUP_NAME = STO_GROUP
ORDER BY TBSP_ID

where STO_GROUP is the storage group that you want to drop.

2. If there are regular or large table spaces that use the storage group, assign them
to a different storage group:
ALTER TABLESPACE tablespace_name USING STOGROUP sto_group_new
where sto_group_new is a different storage group.

3. If there are temporary table spaces that use the storage group that you want to
drop, perform these steps:
a. Determine what temporary table spaces use the storage group that you

want to drop:

SELECT TBSP_NAME
FROM table (MON_GET_TABLESPACE(' ', -2))
WHERE TBSP_USING_AUTO_STORAGE = 1
AND TBSP_CONTENT_TYPE IN ('USRTEMP','SYSTEMP')
AND STORAGE_GROUP_NAME = 'STO_GROUP'
ORDER BY TBSP_ID
b. Drop the temporary table spaces using the storage group:
DROP TABLESPACE table_space
C. Re-create the temporary table spaces that were using the storage group.
4. Monitor the rebalance activity for the storage group to be dropped.

SELECT * from table (MON_GET REBALANCE_STATUS(' ', -2))
WHERE REBALANCER SOURCE_STORAGE_GROUP_NAME = sto_group_old

An empty result state indicates that all table spaces have finished moving to
the new storage group.

5. Drop the storage group when all table space extents have been successfully
moved to the target storage group.

DROP STOGROUP STO_GROUP
where STO_GROUP is the name of the storage group to be dropped.

Storage group and table space media attributes

Automatic storage table spaces inherit media attribute values, device read rate and
data tag attributes, from the storage group that the table spaces are using by
default.

Chapter 16. Storage groups 183

184

When you create a storage group by using the CREATE STOGROUP statement,
you can specify the following storage group attributes:

OVERHEAD
This attribute specifies the I/O controller time and the disk seek and
latency time in milliseconds.

DEVICE READ RATE
This attribute specifies the device specification for the read transfer rate in
megabytes per second. This value is used to determine the cost of I/O
during query optimization. If this value is not the same for all storage
paths, the number should be the average for all storage paths that belong
to the storage group.

DATA TAG
This attribute specifies a tag on the data in a particular storage group,
which WLM can use to determine the processing priority of database
activities.

The default values for the storage group attributes are as follows:

Table 17. The default settings for storage group attributes

Attribute Default setting
DATA TAG NONE
DEVICE READ RATE 100 MB/sec
OVERHEAD 6.725 ms

When creating an automatic storage table space, you can specify a tag that
identifies data contained in that table space. If that table space is associated with a
storage group, then the data tag attribute on the table space overrides any data tag
attribute that may be set on the storage group. If the user does not specify a data
tag attribute on the table space and the table space is contained in a storage group,
the table space inherits the data tag value from the storage group. The data tag
attribute can be set for any regular or large table space except the catalog table
space (SQLO109N). The data tag attribute cannot be set for temporary table spaces
and returns the SQLO109N message error.

An automatic storage table space inherits the overhead and transferrate attributes
from the storage group it uses. When a table space inherits the transferrate
attribute from the storage group it uses, the storage group's device read rate is
converted from milliseconds per page read, taking into account the pagesize
setting of the table space, as follows:

TRANSFERRATE = (1 / DEVICE READ RATE) * 1000 / 1024000 * PAGESIZE

The pagesize setting for both an automatic storage table space and a nonautomatic
table space has the corresponding default TRANSFERRATE values:

Table 18. Default TRANSFERRATE values

PAGESIZE TRANSFERRATE

4 KB 0.04 milliseconds per page read
8 KB 0.08 milliseconds per page read
16 KB 0.16 milliseconds per page read
32 KB 0.32 milliseconds per page read

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The data tag, device read rate, and overhead media attributes for automatic storage
table spaces can be changed to dynamically inherit the values from its associated
storage group. To have the media attributes dynamically updated, specify the
INHERIT option for the CREATE TABLESPACE or ALTER TABLESPACE
statement.

When a table space inherits the value of an attribute from a storage group, the
SYSCAT.TABLESPACES catalog table view reports a value of -1 for that attribute.
To view the actual values at run time for the overhead, transferrate and data tag
attributes, you can use the following query:

select tbspace,

cast(case when a.datatag = -1 then b.datatag else a.datatag end as smallint)
eff_datatag,

cast(case when a.overhead = -1 then b.overhead else a.overhead end as double)
eff_overhead,
cast(case when a.transferrate = -1 then

(1 / b.devicereadrate) / 1024 * a.pagesize else a.transferrate end as double)
eff_transferrate
from syscat.tablespaces a left outer join syscat.stogroups b on a.sgid = b.sgid

If you upgrade to V10.1, the existing table spaces retain their overhead and
transferrate settings, and the overhead and device read rate attributes for the
storage group are set to undefined. The newly created table spaces in a storage
group with device read rate set to undefined use the DB2 database defaults that
were defined when the database was originally created. If the storage group's
media settings have a valid value, then the newly created table space will inherit
those values. You can set media attributes for the storage group by using the
ALTER STOGROUP statement. For nonautomatic table spaces, the media attributes
are retained.

Associating a table space to a storage group

Using the CREATE TABLESPACE statement or ALTER TABLESPACE statement,
you can specify or change the storage group a table space uses. If a storage group
is not specified when creating a table space, then the default storage group is used.

About this task

When you change the storage group a table space uses, an implicit REBALANCE
operation is issued when the ALTER TABLESPACE statement is committed. It
moves the data from the source storage group to the target storage group.

When using the IBM DB2 pureScale Feature, REBALANCE is not supported and
you cannot change the assigned storage group. The REBALANCE operation is
asynchronous and does not affect the availability of data. You can use the
monitoring table function MON_GET_REBALANCE_STATUS to monitor the
progress of the REBALANCE operation.

During the ALTER TABLESPACE operation, compiled objects that are based on old
table space attributes are soft invalidated. Any new compilations after the ALTER
TABLESPACE commits use the new table space attributes specified in the ALTER
TABLESPACE statement. Soft invalidation support is limited to dynamic SQL only,
you must manually detect and recompile any static SQL dependencies for the new
values to be used.

Any table spaces that use the same storage group can have different PAGESIZE
and EXTENTSIZE values. These attributes are related to the table space definition
and not to the storage group.

Chapter 16. Storage groups 185

186

Procedure

To associate a table space with a storage group, issue the following statement:
CREATE TABLESPACE tbspc USING STOGROUP storage _group

where tbspc is the new table space, and storage_group is the associated storage
group.

Scenario: Moving a table space to a new storage group

This scenarios shows how a table space can be moved from one storage group to a
different storage group.

The assumption in this scenario is that the table space data is in containers on
storage paths in a storage group. An ALTER TABLESPACE statement is used to
move the table space data to the new storage group.

When the table space is moved to the new storage group, the containers in the old
storage group are marked as drop pending. After the ALTER TABLESPACE
statement is committed, containers are allocated on the new storage group's
storage paths, the existing containers residing in the old storage groups are marked
as drop pending, and an implicit REBALANCE operation is initiated. This
operation allocates containers on the new storage path and rebalances the data
from the existing containers into the new containers. The number and size of the
containers to create depend on both the number of storage paths in the target
storage group and on the amount of free space on the new storage paths. The old
containers are dropped, after all the data is moved.

The following diagram is an example of moving the table space from a storage
group to a different storage group, where:

1. New containers are allocated on the target storage group's storage paths.

2. All original containers are marked drop pending and new allocation request are
satisfied from the new containers.

3. A reverse rebalance is preformed, moving data off of the containers on the
paths being dropped.

4. The containers are physically dropped.

Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

sg_source

sg_source sg_target

sg_target

TbSpc

TbSpc

TbhSpc

TbSpc

]

]

/path1 /path2 /path3

/path1 /path2 /path3

/path4 /path5 /path6

/path4 /path5 /path6

Table space containers
marked as drop pending

Figure 17. Moving a table space to a new storage group

To move a table space to a different storage group, do the following:

1.

Create two storage groups, sg_source and sg_target:

CREATE STOGROUP sg_source ON '/pathl', '/path2', '/path3'
CREATE STOGROUP sg_target ON '/path4', '/path5', '/path6'

After creating the database, create an automatic storage table space that initially
uses the sg_source storage group:
CREATE TABLESPACE ThSpc USING STOGROUP sg_source
Move the automatic storage table space to the sg_target storage group:
ALTER TABLESPACE TbSpc USING sg_target

Chapter 16. Storage groups

187

188 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 17. Schemas

A schema is a collection of named objects; it provides a way to group those objects
logically. A schema is also a name qualifier; it provides a way to use the same
natural name for several objects, and to prevent ambiguous references to those
objects.

For example, the schema names INTERNAL' and 'EXTERNAL' make it easy to
distinguish two different SALES tables INTERNAL.SALES, EXTERNAL.SALES).

Schemas also enable multiple applications to store data in a single database
without encountering namespace collisions.

A schema is distinct from, and should not be confused with, an XML schema,
which is a standard that describes the structure and validates the content of XML
documents.

A schema can contain tables, views, nicknames, triggers, functions, packages, and
other objects. A schema is itself a database object. It is explicitly created using the
CREATE SCHEMA statement, with the current user or a specified authorization ID
recorded as the schema owner. It can also be implicitly created when another
object is created, if the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the
object is specifically qualified with a schema name when created, the object is
assigned to that schema. If no schema name is specified when the object is created,
the default schema name is used (specified in the CURRENT SCHEMA special
register).

For example, a user with DBADM authority creates a schema called C for user A:
CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in schema
C (provided that user A has the CREATETAB database authority):

CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to the
SYSIBM schema, and the pre-installed user-defined functions belong to the
SYSFUN schema.

When a database is created, if it is not created with the RESTRICTIVE option, all
users have IMPLICIT_SCHEMA authority. With this authority, users implicitly
create a schema whenever they create an object with a schema name that does not
already exist. When schemas are implicitly created, CREATEIN privileges are
granted which allows any user to create other objects in this schema. The ability to
create objects such as aliases, distinct types, functions, and triggers is extended to
implicitly created schemas. The default privileges on an implicitly created schema
provide backward compatibility with previous versions.

The owner of an implicitly created schema is SYSIBM. When the database is
restrictive, PUBLIC does not have the CREATEIN privilege on the schema. The

© Copyright IBM Corp. 2014 189

user who implicitly creates the schema has CREATEIN privilege on the schema.
When the database is not restrictive, PUBLIC has the CREATEIN privilege on the
schema.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be
explicitly created using the CREATE SCHEMA statement, or implicitly created by
users (such as those with DBADM authority) who have been granted
IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA authority
from PUBLIC increases control over the use of schema names, it can result in
authorization errors when existing applications attempt to create objects.

Schemas also have privileges, allowing the schema owner to control which users
have the privilege to create, alter, and drop objects in the schema. This ability
provides a way to control the manipulation of a subset of objects in the database.
A schema owner is initially given all of these privileges on the schema, with the
ability to grant the privileges to others. An implicitly created schema is owned by
the system, and all users are initially given the privilege to create objects in such a
schema, except in a restrictive database environment. A user with ACCESSCTRL or
SECADM authority can change the privileges that are held by users on any
schema. Therefore, access to create, alter, and drop objects in any schema (even one
that was implicitly created) can be controlled.

Designing schemas

when organizing your data into tables, it might be beneficial to group the tables
and other related objects together. This is done by defining a schema through the
use of the CREATE SCHEMA statement.

Information about the schema is kept in the system catalog tables of the database
to which you are connected. As other objects are created, they can be placed within
the schemas you create, however, note that an object can exist in only one schema.

Schemas can be compared to directories, with the current schema being the current
directory. Using this analogy, SET SCHEMA is equivalent to the change directory
command.

Important: It is important to understand that there is no relation between
authorization IDs and schemas except for the default CURRENT SCHEMA setting
(described in the following section).

when designing your databases and tables, you should also consider the schemas
in your system, including their names and the objects that will be associated with
each of them.

Most objects in a database are assigned a unique name that consists of two parts.
The first (leftmost) part is called the qualifier or schema, and the second
(rightmost) part is called the simple (or unqualified) name. Syntactically, these two
parts are concatenated as a single string of characters separated by a period. When
any object that can be qualified by a schema name (such as a table, index, view,
user-defined data type, user-defined function, nickname, package, or trigger) is
first created, it is assigned to a particular schema based on the qualifier in its
name.

For example, the following diagram illustrates how a table is assigned to a
particular schema during the table creation process:

190 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Payroll (Schema) Sales (Schema)

4----

Table Table

%_4] Index

%_4] Index

'CREATE TABLE PAYROLL.STAFF'
Staff =~ —------ ! Table Name
Schema Name

You should also be familiar with how schema access is granted, in order to give
your users the correct authority and instructions:

Schema names
When creating a new schema, the name must not identify a schema name
already described in the catalog and the name cannot begin with "SYS".
For other restrictions and recommendations, see “Schema name restrictions
and recommendations” on page 193.

Access to schemas

Unqualified access to objects within a schema is not allowed since the
schema is used to enforce uniqueness in the database. This becomes clear
when considering the possibility that two users could create two tables (or
other objects) with the same name. Without a schema to enforce
uniqueness, ambiguity would exist if a third user attempted to query the
table. It is not possible to determine which table to use without some
further qualification.

The definer of any objects created as part of the CREATE SCHEMA
statement is the schema owner. This owner can GRANT and REVOKE
schema privileges to other users.

If a user has DBADM authority, then that user can create a schema with
any valid name. When a database is created, IMPLICIT_SCHEMA
authority is granted to PUBLIC (that is, to all users).

If users do not have IMPLICIT_SCHEMA or DBADM authority, the only
schema they can create is one that has the same name as their own
authorization ID.

Default schema

If a schema or qualifier is not specified as part of the name of the object to
be created, that object is assigned to the default schema as indicated in the
CURRENT SCHEMA special register. The default value of this special
register is the value of the session authorization ID.

Chapter 17. Schemas 191

A default schema is needed by unqualified object references in dynamic
statements. You can set a default schema for a specific DB2 connection by
setting the CURRENT SCHEMA special register to the schema that you
want as the default. No designated authorization is required to set this
special register, so any user can set the CURRENT SCHEMA.

The syntax of the SET SCHEMA statement is:
SET SCHEMA = <schema-name>

You can issue this statement interactively or from within an application.
The initial value of the CURRENT SCHEMA special register is equal to the
authorization ID of the current session user. For more information, see the
SET SCHEMA statement.

Note:

* There are other ways to set the default schema upon connection. For
example, by using the c1i.ini file for CLI/ODBC applications, or by
using the connection properties for the JDBC application programming
interface.

* The default schema record is not created in the system catalogs, but it
exists only as a value that the database manager can obtain (from the
CURRENT SCHEMA special register) whenever a schema or qualifier is
not specified as part of the name of the object to be created.

Implicit creation

You can implicitly create schemas if you have IMPLICIT_SCHEMA
authority. With this authority, you can implicitly create a schema whenever
you create an object with a schema name that does not already exist. Often
schemas are implicitly created the first time a data object in the schema is
created, provided the user creating the object holds the
IMPLICIT_SCHEMA authority.

Explicit creation

Schemas can also be explicitly created and dropped by executing the
CREATE SCHEMA and DROP SCHEMA statements from the command
line or from an application program. For more information, see the
CREATE SCHEMA and DROP SCHEMA statements.

Table and view aliases by schema

To allow another user to access a table or view without entering the
schema name as part of the qualification on the table or view name
requires that a an alias be established for that user. The definition of the
alias would define the fully-qualified table or view name including the
user's schema; then the user queries using the alias name. The alias would
be fully-qualified by the user's schema as part of the alias definition.

Grouping objects by schema

Database object names might be made up of a single identifier or they might be
schema-qualified objects made up of two identifiers. The schema, or high-order part,
of a schema-qualified object provides a means to classify or group objects in the
database. When an object such as a table, view, alias, distinct type, function, index,
package or trigger is created, it is assigned to a schema. This assignment is done
either explicitly or implicitly.

192 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Explicit use of the schema occurs when you use the high-order part of a two-part
object name when referring to that object in a statement. For example, USER A
issues a CREATE TABLE statement in schema C as follows:

CREATE TABLE C.X (COL1 INT)

Implicit use of the schema occurs when you do not use the high-order part of a
two-part object name. When this happens, the CURRENT SCHEMA special register
is used to identify the schema name used to complete the high-order part of the
object name. The initial value of CURRENT SCHEMA is the authorization ID of
the current session user. If you want to change this during the current session, you
can use the SET SCHEMA statement to set the special register to another schema
name.

Some objects are created within certain schemas and stored in the system catalog
tables when the database is created.

You do not have to explicitly specify in which schema an object is to be created; if
not specified, the authorization ID of the statement is used. For example, for the
following CREATE TABLE statement, the schema name defaults to the
authorization ID that is currently logged on (that is, the CURRENT SCHEMA
special register value):

CREATE TABLE X (COL1 INT)

Dynamic SQL and XQuery statements typically use the CURRENT SCHEMA
special register value to implicitly qualify any unqualified object name references.

Before creating your own objects, you must consider whether you want to create
them in your own schema or by using a different schema that logically groups the
objects. If you are creating objects that will be shared, using a different schema
name can be very beneficial.

Schema name restrictions and recommendations

There are some restrictions and recommendations that you must be aware of when
naming schemas.

* User-defined types (UDTs) cannot have schema names longer than the schema
length listed in “SQL and XML limits” in the SQL Reference.

* The following schema names are reserved words and must not be used:
SYSCAT, SYSFUN, SYSIBM, SYSSTAT, SYSPROC.

* To avoid potential problems upgrading databases in the future, do not use
schema names that begin with SYS. The database manager will not allow you to
create modules, procedures, triggers, user-defined types or user-defined
functions using a schema name beginning with SYS.

* It is recommended that you not use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION. It is therefore possible to have
an application declare a temporary table with a name identical to that of a
persistent table, in which case the application logic can become overly
complicated. Avoid the use of the schema SESSION, except when dealing with
declared temporary tables.

Creating schemas

You can use schemas to group objects as you create those objects. An object can
belong to only one schema. Use the CREATE SCHEMA statement to create
schemas.

Chapter 17. Schemas 193

Information about the schemas is kept in the system catalog tables of the database
to which you are connected.

Before you begin

To create a schema and optionally make another user the owner of the schema,
you need DBADM authority. If you do not hold DBADM authority, you can still
create a schema using your own authorization ID. The definer of any objects
created as part of the CREATE SCHEMA statement is the schema owner. This
owner can GRANT and REVOKE schema privileges to other users.

Procedure

To create a schema from the command line, enter the following statement:
CREATE SCHEMA schema-name [AUTHORIZATION schema-owner-name]

Where schema-name is the name of the schema. This name must be unique within
the schemas already recorded in the catalog, and the name cannot begin with SYS.
If the optional AUTHORIZATION clause is specified, the schema-owner-name
becomes the owner of the schema. If this clause is not specified, the authorization
ID that issued this statement becomes the owner of the schema.

For more information, see the CREATE SCHEMA statement. See also “Schema
name restrictions and recommendations” on page 193.

Dropping schemas

To delete a schema, use the DROP statement.
Before you begin

Before dropping a schema, all objects that were in that schema must be dropped or
moved to another schema.

The schema name must be in the catalog when attempting the DROP statement;
otherwise an error is returned.

Procedure

To drop a schema by using the command line, enter:
DROP SCHEMA name RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the
specified schema for the schema to be deleted from the database. The RESTRICT
keyword is not optional.

Example

In the following example, the schema "joeschma" is dropped:
DROP SCHEMA joeschma RESTRICT

194 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 18. Database objects

Soft invalidation of database objects

When soft invalidation is active, an object can be dropped even if other running
transactions are using it. Transactions that were using the dropped object are
permitted to continue, but any new transaction will be denied access to the
dropped object.

All cached statements and packages that directly or indirectly refer to the object
being dropped or altered are marked as not valid (and are said to be invalidated).
Soft invalidation allows DDL affecting the referenced objects to avoid waits that
otherwise would result from statements being run holding locks on objects to
which they refer, and allows any active access to continue using a cached version
of the object, eliminating the possibility of lock timeouts.

By contrast, when hard invalidation is used, exclusive locking is used when
referencing an object. This guarantees that all processes are using the same
versions of objects and that there are no accesses to an object once it has been
dropped.

Soft invalidation is enabled through the DB2_DDL_SOFT_INVAL registry variable; by
default, this registry variable is set to ON.

The following list shows the data definition language (DDL) statements for which
soft invalidation is supported:

e ALTER TABLE..DETACH PARTITION
* CREATE OR REPLACE ALIAS

* CREATE OR REPLACE FUNCTION

e CREATE OR REPLACE TRIGGER

* CREATE OR REPLACE VIEW

* DROP ALIAS

* DROP FUNCTION

* DROP TRIGGER

* DROP VIEW

Note: In DB2 Version 9.7 Fix Pack 1 and later releases, ALTER TABLE..DETACH
PARTITION performs soft invalidation at all isolation levels on cached statements
that directly or indirectly refer to the partitioned table. A subsequent asynchronous
partition detach task performs hard invalidation on previously soft invalidated
cached statements before converting the detached partition into a stand-alone table.

The DB2_DDL_SOFT_INVAL registry variable does not affect the invalidation done by
ALTER TABLE...DETACH PARTITION.

Soft invalidation support applies only to dynamic SQL and to scans done under
the cursor stability (CS) and uncommitted read (UR) isolation levels. For the
ALTER TABLE..DETACH PARTITION statement, the soft invalidation applies to
scans under all isolation levels.

© Copyright IBM Corp. 2014 195

Example

Assume a view called VIEW1 exists. You open a cursor, and run the statement
SELECT * from VIEW1. Shortly afterward, the database administrator issues the
command DROP VIEW VIEW1 to drop VIEW1 from the database. With hard
invalidation, the DROP VIEW statement will be forced to wait for an exclusive lock
on VIEW1 until the SELECT transaction has finished. With soft invalidation, the
DROP VIEW statement is not given an exclusive lock on the view. The view is
dropped, however, the SELECT statement will continue to run using the most
recent definition of the view. Once the SELECT statement has completed, any
subsequent attempts to use to VIEW1 (even by the same user or process that just
used it) will result in an error (SQL0204N).

Automatic revalidation of database objects

Automatic revalidation is a mechanism whereby invalid database objects are
automatically revalidated when accessed at run time.

A database object usually depends upon one or more different base objects. If the
status of base objects on which the database object depends upon change in any
important way, such as the base object being altered or dropped, the dependent
database object becomes invalid. Invalid database objects must be revalidated
before they can be used again. Revalidation is the process by which the DB2
software reprocesses the definition of an invalid dependent object so that the object
is updated with the current state of its base objects, thereby turning the invalid
dependent object back into a usable, valid object. Automatic revalidation is a
mechanism whereby invalid database objects are automatically revalidated when
accessed at run time.

In general, the database manager attempts to revalidate invalid objects the next
time that those objects are used. Automatic revalidation is enabled through the
auto_reval configuration parameter. By default, this registry variable is set to
DEFERRED, except for databases upgraded from Version 9.5 or earlier, in which
case auto_reval is set to DISABLED.

For information about the dependent objects that are impacted when an object is
dropped, and when those dependent objects are revalidated, see “DROP
statement” in the SQL Reference Volume 1.

The following list shows the data definition language (DDL) statements for which
automatic revalidation is currently supported:

* ALTER MODULE DROP FUNCTION

* ALTER MODULE DROP PROCEDURE
* ALTER MODULE DROP TYPE

¢ ALTER MODULE DROP VARIABLE

* ALTER NICKNAME (altering the local name or the local type)
* ALTER TABLE ALTER COLUMN

¢ ALTER TABLE DROP COLUMN

» ALTER TABLE RENAME COLUMN

* CREATE OR REPLACE ALIAS

* CREATE OR REPLACE FUNCTION

* CREATE OR REPLACE NICKNAME

* CREATE OR REPLACE PROCEDURE

196 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

e CREATE OR REPLACE SEQUENCE
* CREATE OR REPLACE TRIGGER
* CREATE OR REPLACE VARIABLE
e CREATE OR REPLACE VIEW

* DROP FUNCTION

* DROP NICKNAME

* DROP PROCEDURE

* DROP SEQUENCE

* DROP TABLE

¢ DROP TRIGGER

* DROP TYPE

* DROP VARIABLE

* DROP VIEW

* RENAME TABLE

You can use the ADMIN_REVALIDATE_DB_OBJECTS procedure to revalidate
existing objects that have been marked invalid.

Creating database object aliases

An alias is an indirect method of referencing a table, nickname, or view, so that an
SQL or XQuery statement can be independent of the qualified name of that table
or view.

About this task

Only the alias definition must be changed if the table or view name changes. An
alias can be created on another alias. An alias can be used in a view or trigger
definition and in any SQL or XQuery statement, except for table check-constraint
definitions, in which an existing table or view name can be referenced.

An alias can be defined for a table, view, or alias that does not exist at the time of
definition. However, it must exist when the SQL or XQuery statement containing
the alias is compiled.

An alias name can be used wherever an existing table name can be used, and can
refer to another alias if no circular or repetitive references are made along the
chain of aliases.

The alias name cannot be the same as an existing table, view, or alias, and can only
refer to a table within the same database. The name of a table or view used in a
CREATE TABLE or CREATE VIEW statement cannot be the same as an alias name
in the same schema.

You do not require special authority to create an alias, unless the alias is in a
schema other than the one owned by your current authorization ID, in which case
DBADM authority is required.

When an alias, or the object to which an alias refers, is dropped, all packages

dependent on the alias are marked as being not valid and all views and triggers
dependent on the alias are marked inoperative.

Chapter 18. Database objects 197

Note: DB2 for z/OS employs two distinct concepts of aliases: ALIAS and
SYNONYM. These two concepts differ from DB2 for Linux, UNIX, and Windows
as follows:

¢ ALIASes in DB2 for z/OS:
— Require their creator to have special authority or privilege
— Cannot reference other aliases

¢ SYNONYMs in DB2 for z/OS:

Can only be used by their creator

— Are always unqualified

Are dropped when a referenced table is dropped

Do not share namespace with tables or views
Procedure

To create an alias using the command line, enter:
CREATE ALIAS alias_name FOR table_name

The following SQL statement creates an alias WORKERS for the EMPLOYEE table:
CREATE ALIAS WORKERS FOR EMPLOYEE

The alias is replaced at statement compilation time by the table or view name. If
the alias or alias chain cannot be resolved to a table or view name, an error results.
For example, if WORKERS is an alias for EMPLOYEE, then at compilation time:

SELECT * FROM WORKERS

becomes in effect
SELECT * FROM EMPLOYEE

Creating and maintaining database objects

When creating some types of database objects, you should be aware of the
CREATE with errors support, as well as the REPLACE option.

CREATE with errors support for certain database objects

Some types of objects can be created even if errors occur during their compilation;
for example, creating a view when the table to which it refers does not exist.

Such objects remain invalid until they are accessed. CREATE with errors support
currently extends to views and inline SQL functions (not compiled functions). This

feature is enabled if the auto_reval database configuration parameter is set to
IMMEDIATE or DEFERRED.

The errors that are tolerated during object creation are limited to the following

types:

* Any name resolution error, such as: a referenced table does not exist (SQLSTATE
42704, SQL0204N), a referenced column does not exist (SQLSTATE 42703,
SQL0206N), or a referenced function cannot be found (SQLSTATE 42884,
SQL0440N)

* Any nested revalidation failure. An object being created can reference objects
that are not valid , and revalidation will be invoked for those invalid objects. If
revalidation of any referenced invalid object fails, the CREATE statement
succeeds, and the created object will remain invalid until it is next accessed.

198 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

* Any authorization error (SQLSTATE 42501, SQLO551N)

An object can be created successfully even if there are multiple errors in its body.
The warning message that is returned contains the name of the first undefined,
invalid, or unauthorized object that was encountered during compilation. The
SYSCAT.INVALIDOBJECTS catalog view contains information about invalid
objects.

You can use the ADMIN_REVALIDATE_DB_OBJECTS procedure to revalidate
existing objects that have been marked invalid.

Example
create view v2 as select * from vl

If v1 does not exist, the CREATE VIEW statement completes successfully, but v2
remains invalid.

REPLACE option on several CREATE statements

The OR REPLACE clause on the CREATE statement for several objects, including
aliases, functions, modules, nicknames, procedures (including federated
procedures), sequences, triggers, variables, and views allows the object to be
replaced if it already exists; otherwise, it is created. This significantly reduces the
effort required to change a database schema.

Privileges that were previously granted on an object are preserved when that object
is replaced. In other respects, CREATE OR REPLACE is semantically similar to
DROP followed by CREATE. In the case of functions, procedures, and triggers,
support applies to both inline objects and compiled objects.

In the case of functions and procedures, support applies to both SQL and external
functions and procedures. If a module is replaced, all the objects within the
module are dropped; the new version of the module contains no objects.

Objects that depend (either directly or indirectly) on an object that is being
replaced are invalidated. Revalidation of all dependent objects following a replace
operation is always done immediately after the invalidation, even if the auto_reval
database configuration parameter is set to DISABLED.

Example

Replace v1, a view that has dependent objects.

create table t1 (cl int, c2 int);
create table t2 (cl int, c2 int);

create view vl as select * from tl;
create view v2 as select * from vl;

create function fool()

language sql

returns int

return select cl from v2;

create or replace vl as select * from t2;

select * from v2;

values fool();

Chapter 18. Database objects 199

The replaced version of v1 references t2 instead of t1. Both v2 and fool are
invalidated by the CREATE OR REPLACE statement. Under revalidation deferred
semantics, select *= from v2 successfully revalidates v2, but not fool, which is
revalidated by values fool(). Under revalidation immediate semantics, both v2 and
fool are successfully revalidated by the CREATE OR REPLACE statement.

200 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 19. Tables

Tables are logical structures maintained by the database manager. Tables are made
up of columns and rows.

At the intersection of every column and row is a specific data item called a value.
A column is a set of values of the same type or one of its subtypes. A row is a
sequence of values arranged so that the nth value is a value of the nth column of
the table.

An application program can determine the order in which the rows are populated
into the table, but the actual order of rows is determined by the database manager,
and typically cannot be controlled. Multidimensional clustering (MDC) provides
some sense of clustering, but not actual ordering between the rows.

Types of tables

DB2 databases store data in tables. In addition to tables used to store persistent
data, there are also tables that are used for presenting results, summary tables and
temporary tables; multidimensional clustering tables offer specific advantages in a
warehouse environment.

Base tables
These types of tables hold persistent data. There are different kinds of base
tables, including

Regular tables
Regular tables with indexes are the "general purpose" table choice.

Multidimensional clustering (MDC) tables
These types of tables are implemented as tables that are physically
clustered on more than one key, or dimension, at the same time.
MDC tables are used in data warehousing and large database
environments. Clustering indexes on regular tables support
single-dimensional clustering of data. MDC tables provide the
benefits of data clustering across more than one dimension. MDC
tables provide guaranteed clustering within the composite
dimensions. By contrast, although you can have a clustered index
with regular tables, clustering in this case is attempted by the
database manager, but not guaranteed and it typically degrades
over time. MDC tables can coexist with partitioned tables and can
themselves be partitioned tables.

Multidimensional clustering tables are not supported in a DB2
pureScale environment.

Insert time clustering (ITC) tables
These types of tables are conceptually, and physically similar to
MDC tables, but rather than being clustered by one or more user
specified dimensions, rows are clustered by the time they are
inserted into the table. ITC tables can be partitioned tables.

ITC tables are not supported in a DB2 pureScale environment.

Range-clustered tables (RCT)
These types of tables are implemented as sequential clusters of
data that provide fast, direct access. Each record in the table has a

© Copyright IBM Corp. 2014 201

predetermined record ID (RID) which is an internal identifier used
to locate a record in a table. RCT tables are used where the data is
tightly clustered across one or more columns in the table. The
largest and smallest values in the columns define the range of
possible values. You use these columns to access records in the
table; this is the most optimal method of using the predetermined
record identifier (RID) aspect of RCT tables.

Range-clustered tables are not supported in a DB2 pureScale
environment.

Partitioned tables
These types of tables use a data organization scheme in which
table data is divided across multiple storage objects, called data
partitions or ranges, according to values in one or more table
partitioning key columns of the table. Data partitions can be added
to, attached to, and detached from a partitioned table, and you can
store multiple data partition ranges from a table in one table space.
Partitioned tables can contain large amounts of data and simplify
the rolling in and rolling out of table data.

Temporal tables
These types of tables are used to associate time-based state
information to your data. Data in tables that do not use temporal
support represents the present, while data in temporal tables is
valid for a period defined by the database system, customer
applications, or both. For example, a database can store the history
of a table (deleted rows or the original values of rows that have
been updated) so you can query the past state of your data. You
can also assign a date range to a row of data to indicate when it is
deemed to be valid by your application or business rules.

Temporary tables
These types of tables are used as temporary work tables for various
database operations. Declared temporary tables (DGTTs) do not appear in the
system catalog, which makes them not persistent for use by, and not able
to be shared with other applications. When the application using this table
terminates or disconnects from the database, any data in the table is
deleted and the table is dropped. By contrast, created temporary tables
(CGTTs) do appear in the system catalog and are not required to be
defined in every session where they are used. As a result, they are
persistent and able to be shared with other applications across different
connections.

Neither type of temporary table supports
* User-defined reference or user-defined structured type columns
¢ LONG VARCHAR columns

In addition XML columns cannot be used in created temporary tables.

Materialized query tables
These types of tables are defined by a query that is also used to determine
the data in the table. Materialized query tables can be used to improve the
performance of queries. If the database manager determines that a portion
of a query can be resolved using a summary table, the database manager
can rewrite the query to use the summary table. This decision is based on
database configuration settings, such as the CURRENT REFRESH AGE and
the CURRENT QUERY OPTIMIZATION special registers. A summary table
is a specialized type of materialized query table.

202 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You can create all of the preceding types of tables using the CREATE TABLE
statement.

Depending on what your data is going to look like, you might find one table type
offers specific capabilities that can optimize storage and query performance. For
example, if you have data records that are loosely clustered (not monotonically
increasing), consider using a regular table and indexes. If you have data records
that have duplicate (but not unique) values in the key, do not use a range-clustered
table. Also, if you cannot afford to preallocate a fixed amount of storage on disk
for the range-clustered tables you might want, do not use this type of table. If you
have data that has the potential for being clustered along multiple dimensions,
such as a table tracking retail sales by geographic region, division and supplier, a
multidimensional clustering table might suit your purposes.

In addition to the various table types described previously, you also have options
for such characteristics as partitioning, which can improve performance for tasks
such as rolling in table data. Partitioned tables can also hold much more
information than a regular, nonpartitioned table. You can also use capabilities such
as compression, which can help you significantly reduce your data storage costs.

Designing tables

When designing tables, you must be familiar with certain concepts, determine the
space requirements for tables and user data, and determine whether you will take
advantage of certain features, such as compression and optimistic locking.

When designing partitioned tables, you must be familiar with the partitioning
concepts, such as:

* Data organization schemes

* table-partitioning keys

* Keys used for distributing data across data partitions
* Keys used for MDC dimensions

For these and other partitioning concepts, see “Table partitioning and data
organization schemes” on page 232.

Data types and table columns

When you create your table, you must indicate what type of data each column will
store. By thinking carefully about the nature of the data you are going to be
managing, you can set your tables up in a way that will give you optimal query
performance, minimize physical storage requirements, and provide you with
specialized capabilities for manipulating different kinds of data, such as arithmetic
operations for numeric data, or comparing date or time values to one another.

Figure 18 on page 204 shows the data types that are supported by DB2 databases.

Chapter 19. Tables 203

built-in data types

dateti tri bool signed extensible
atetime string oolean numeric markup language
BOOLEAN XML
time timestamp date exact decimal approximate

floating point

TIME TIMESTAMP DATE DECFLOAT

character graphic binary floating point

varying length

BLOB
fixed varying fixed varying single double
length length length length precision precision
CHAR GRAPHIC REAL DOUBLE
VARCHAR CLOB VARGRAPHIC DBCLOB |
binary integer decimal
| |
16 bit 32 bit 64 bit packed
SMALLINT INTEGER BIGINT DECIMAL

Figure 18. Built-in data types

When you declare your database columns all of these data tyoes are available for
you to choose from. In addition to the built-in types, you can also create your own
user-defined data types that are based on the built-in types. For example, if you
might choose to represent an employee with name, job title, job level, hire date and
salary attributes with a user-defined structured type that incorporates VARCHAR
(name, job title), SMALLINT (job level), DATE (hire date) and DECIMAL (salary)
data.

204 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Generated columns

A generated column is defined in a table where the stored value is computed using
an expression, rather than being specified through an insert or update operation.

When creating a table where it is known that certain expressions or predicates will
be used all the time, you can add one or more generated columns to that table. By
using a generated column there is opportunity for performance improvements
when querying the table data.

For example, there are two ways in which the evaluation of expressions can be
costly when performance is important:

1. The evaluation of the expression must be done many times during a query.
2. The computation is complex.

To improve the performance of the query, you can define an additional column
that would contain the results of the expression. Then, when issuing a query that
includes the same expression, the generated column can be used directly; or, the
query rewrite component of the optimizer can replace the expression with the
generated column.

Where queries involve the joining of data from two or more tables, the addition of
a generated column can allow the optimizer a choice of possibly better join
strategies.

Generated columns will be used to improve performance of queries. As a result,
generated columns will likely be added after the table has been created and
populated.

Examples

The following is an example of defining a generated column on the CREATE
TABLE statement:

CREATE TABLE t1 (cl INT,
c2 DOUBLE,
c3 DOUBLE GENERATED ALWAYS AS (cl + c2)
c4 GENERATED ALWAYS AS
(CASE WHEN c1 > c2 THEN 1 ELSE NULL END))

After creating this table, indexes can be created using the generated columns. For
example,

CREATE INDEX il ON t1(c4)

Queries can take advantage of the generated columns. For example,
SELECT COUNT(*) FROM t1 WHERE cl > c2

can be written as:
SELECT COUNT(*) FROM t1 WHERE c4 IS NOT NULL

Another example:
SELECT cl1 + c2 FROM t1 WHERE (cl + c2) * cl > 100

can be written as:
SELECT c¢3 FROM t1 WHERE ¢3 * cl > 100

Chapter 19. Tables 205

Hidden columns

When a table column is defined with the implicitly hidden attribute, that column is
unavailable unless it is explicitly referenced. For example, if a SELECT * query is
run against a table, implicitly hidden columns are not returned in the result table.
An implicitly hidden column can always be referenced explicitly wherever a
column name can be specified.

In cases where columns and their entries are generated by the database manager,
defining such columns as IMPLICITLY HIDDEN can minimize any potential
negative impact on your applications. For example, a system-period temporal table
has three columns whose values are generated by the database manager. The
database manager uses these columns to preserve historical versions of each table
row. Most business applications would work with the historical data, but would
rarely work with these three generated columns. Hiding these columns from your
applications could reduce application processing time.

When inserting data into a table, an INSERT statement without a column list does
not expect values for any implicitly hidden columns. In such cases, if the input
includes a value for an implicitly hidden column, that value does not have a
corresponding target column and an error is returned (SQLSTATE 42802). Because
an INSERT statement without a column list does not include values for implicitly
hidden columns, any columns that are defined as implicitly hidden and NOT
NULL must have a defined default value

When populating a table with data from an input file, utilities like IMPORT,
INGEST, and LOAD require that you specify whether data for the hidden columns
is included in the operation. If a column list is not specified, data movement
utilities must use the implicitlyhiddeninclude or implicitlyhiddenmissing file type
modifiers when working with tables that contain implicitly hidden columns. You
can also use the DB2_DMU_DEFAULT registry variable to set the default behavior
when data movement utilities encounter tables with implicitly hidden columns.
Similarly, EXPORT requires that you specify whether data for the hidden columns
is included in the operation.

The implicitly hidden attribute can be defined on a table column using the
CREATE TABLE statement for new tables, or the ALTER TABLE statement for
existing tables. If a table is created using a CREATE TABLE statement with the
LIKE clause, any implicitly hidden columns in the source table are inherited by the
new table. The ALTER TABLE statement can be used to change hidden columns to
not hidden or to change not hidden columns to hidden. Altering a table to change
the hidden attribute of some columns can impact the behavior of data movement
utilities that are working with the table. For example, this might mean that a load
operation that ran successfully before the table was altered to define some hidden
columns, now returns an error (SQLCODE -2437).

The list of names identifying the columns of a result table from a SELECT query
run with the exposed-name.* option does not include any implicitly hidden columns.
A SELECT query run with the order-by-clause can include implicitly hidden
columns in the simple-column-name.

If an implicitly hidden column is explicitly referenced in a materialized query table
definition, that column will be a part of the materialized query table. However the
column in the materialized query table does not inherit the implicitly hidden
attribute. This same behaviour applies to views and tables created with the
as-result-table clause.

206 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

An implicitly hidden column can be explicitly referenced in a CREATE INDEX
statement, ALTER TABLE statement, or in a referential constraint.

A transition variable exists for any column defined as implicitly hidden. In the
body of a trigger, a transition variable that corresponds to an implicitly hidden
column can be referenced.

Implicitly hidden columns are not supported in created temporary tables and
declared temporary tables.

Hidden columns for a table can be displayed using the DESCRIBE command.
DESCRIBE TABLE tablename SHOW DETAIL

Example

e Example 1: In the following statement, a table is created with an implicitly
hidden column.

CREATE TABLE CUSTOMER

(
CUSTOMERNO INTEGER NOT NULL,
CUSTOMERNAME VARCHAR (80) ,

PHONENO CHAR(8) IMPLICITLY HIDDEN
)s

A SELECT * only returns the column entries for CUSTOMERNO and CUSTOMERNAME.
For example:
A123, ACME

B567, First Choice
C345, National Chain

Entries for the PHONENO column are hidden unless explicitly referenced.

SELECT CUSTOMERNO, CUSTOMERNAME, PHONENO
FROM CUSTOMER
* Example 2: If the database table contains implicitly hidden columns, you must
specify whether data for the hidden columns is included in data movement
operations. The following example uses LOAD to show the different methods to
indicate if data for hidden columns is included:

— Use insert-column to explicitly specify the columns into which data is to be
inserted.
db2 Toad from delfilel of del

insert into tablel (cl, c2, c3,...)

— Use one of the hidden column file type modifiers: specify
implicitlyhiddeninclude when the input file contains data for the hidden
columns, or implicitlyhiddenmissing when the input file does not.
db2 Toad from delfilel of del modified by implicitlyhiddeninclude

insert into tablel

— Use the DB2_DMU_DEFAULT registry variable on the server-side to set the
behavior when data movement utilities encounter tables with implicitly
hidden columns.

db2set DB2_DMU_DEFAULT=IMPLICITLYHIDDENINCLUDE
db2 load from delfilel of del insert into tablel

Auto numbering and identifier columns

An identity column provides a way for DB2 to automatically generate a unique
numeric value for each row that is added to the table.

Chapter 19. Tables 207

When creating a table in which you must uniquely identify each row that will be
added to the table, you can add an identity column to the table. To guarantee a
unique numeric value for each row that is added to a table, you should define a
unique index on the identity column or declare it a primary key.

Other uses of an identity column are an order number, an employee number, a
stock number, or an incident number. The values for an identity column can be
generated by the DB2 database manager: ALWAYS or BY DEFAULT.

An identity column defined as GENERATED ALWAYS is given values that are
always generated by the DB2 database manager. Applications are not allowed to
provide an explicit value. An identity column defined as GENERATED BY
DEFAULT gives applications a way to explicitly provide a value for the identity
column. If the application does not provide a value, then DB2 will generate one.
Since the application controls the value, DB2 cannot guarantee the uniqueness of
the value. The GENERATED BY DEFAULT clause is meant for use for data
propagation where the intent is to copy the contents of an existing table; or, for the
unload and reloading of a table.

Once created, you first have to add the column with the DEFAULT option to get
the existing default value. Then you can ALTER the default to become an identity
column.

If rows are inserted into a table with explicit identity column values specified, the
next internally generated value is not updated, and might conflict with existing
values in the table. Duplicate values will generate an error message if the
uniqueness of the values in the identity column is being enforced by a primary-key
or a unique index that has been defined on the identity column.

To define an identity column on a new table, use the AS IDENTITY clause on the
CREATE TABLE statement.

Example

The following is an example of defining an identity column on the CREATE
TABLE statement:
CREATE TABLE table (coll INT,
col2 DOUBLE,

col3 INT NOT NULL GENERATED ALWAYS AS IDENTITY
(START WITH 100, INCREMENT BY 5))

In this example the third column is the identity column. You can also specify the
value used in the column to uniquely identify each row when added. Here the first
row entered has the value of “100” placed in the column; every subsequent row
added to the table has the associated value increased by five.

Constraining column data with constraints, defaults, and null
settings

Data often must adhere to certain restrictions or rules. Such restrictions might
apply to single pieces of information, such as the format and sequence numbers, or
they might apply to several pieces of information.

About this task

Nullability of column data values
Null values represent unknown states. By default, all of the built-in data

208 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

types support the presence of null values. However, some business rules
might dictate that a value must always be provided for some columns, for
example, emergency information. For this condition, you can use the NOT
NULL constraint to ensure that a given column of a table is never assigned
the null value. Once a NOT NULL constraint has been defined for a
particular column, any insert or update operation that attempts to place a
null value in that column will fail.

Default column data values

Keys

Just as some business rules dictate that a value must always be provided,
other business rules can dictate what that value should be, for example, the
gender of an employee must be either M or F. The column default
constraint is used to ensure that a given column of a table is always
assigned a predefined value whenever a row that does not have a specific
value for that column is added to the table. The default value provided for
a column can be null, a constraint value that is compatible with the data
type of the column, or a value that is provided by the database manager.
For more information, see: “Default column and data type definitions.”

A key is a single column or a set of columns in a table or index that can be
used to identify or access a specific row of data. Any column can be part
of a key and the same column can be part of more than one key. A key
that consists of a single column is called an atomic key; a key that is
composed of more than one column is called a composite key. In addition
to having atomic or composite attributes, keys are classified according to
how they are used to implement constraints:

* A unique key is used to implement unique constraints.

¢ A primary key is used to implement entity integrity constraints. (A
primary key is a special type of unique key that does not support null
values.)

* A foreign key is used to implement referential integrity constraints.
(Foreign keys must reference primary keys or unique keys; foreign keys
do not have corresponding indexes.)

Keys are normally specified during the declaration of a table, an index, or
a referential constraint definition.

Constraints

Constraints are rules that limit the values that can be inserted, deleted, or
updated in a table. There are check constraints, primary key constraints,
referential constraints, unique constraints, unique key constraints, foreign
key constraints, and informational constraints. For details about each of
these types of constraints, see: Chapter 21, “Constraints,” on page 299 or
“Types of constraints” on page 299.

Default column and data type definitions
Certain columns and data types have predefined or assigned default values.

For example, default column values for the various data types are as follows:
* NULL

* 0 Used for small integer, integer, decimal, single-precision floating point,
double-precision floating point, and decimal floating point data type.

* Blank: Used for fixed-length and fixed-length double-byte character strings.

 Zero-length string: Used for varying-length character strings, binary large objects,
character large objects, and double-byte character large objects.

Chapter 19. Tables 209

* Date: This the system date at the time the row is inserted (obtained from the
CURRENT_DATE special register). When a date column is added to an existing
table, existing rows are assigned the date January, 01, 0001.

 Time or Timestamp: This is the system time or system date/time of the at the time
the statement is inserted (obtained from the CURRENT_TIME special register).
When a time column is added to an existing table, existing rows are assigned
the time 00:00:00 or a timestamp that contains the date January, 01, 0001 and the
time 00:00:00.

Note: All the rows get the same default time/timestamp value for a given
statement.

e Distinct user-defined data type: This is the built-in default value for the base data
type of the distinct user-defined data type (cast to the distinct user-defined data

type.

Ordering columns to minimize update logging

When you define columns using the CREATE TABLE statement, consider the order
of the columns, particularly for update-intensive workloads. Columns which are
updated frequently should be grouped together, and defined toward or at the end
of the table definition. This results in better performance, fewer bytes logged, and
fewer log pages written, as well as a smaller active log space requirement for
transactions performing a large number of updates.

The database manager does not automatically assume that columns specified in the
SET clause of an UPDATE statement are changing in value. In order to limit index
maintenance and the amount of the row which needs to be logged, the database
compares the new column value against the old column value to determine if the
column is changing. Only the columns that are changing in value are treated as
being updated. Exceptions to this UPDATE behavior occur for columns where the
data is stored outside of the data row (long, LOB, ADT, and XML column types),
or for fixed-length columns when the registry variable DB2ASSUMEUPDATE is
enabled. For these exceptions, the column value is assumed to be changing so no
comparison will be made between the new and old column value.

There are four different types of UPDATE log records.

* Full before and after row image logging. The entire before and after image of the
row is logged. This is the only type of logging performed on tables enabled with
DATA CAPTURE CHANGES, and results in the most number of bytes being
logged for an update to a row.

* Full before row image, changed bytes, and for size increasing updates the new
data appended to end of the row. This is logged for databases supporting
Currently Committed when DATA CAPTURE CHANGES is not in effect for the
table, when update is the first action against this row for a transaction. This logs
the before image required for Currently Committed and the minimum required
on top of that for redo/undo. Ordering frequently updated columns at the end
minimizes the logging for the changed portion of the row.

* Full XOR logging. The XOR differences between the before and after row
images, from the first byte that is changing until the end of the smaller row, then
any residual bytes in the longer row. This results in less logged bytes than the
full before and after image logging, with the number of bytes of data beyond the
log record header information being the size of the largest row image.

+ Partial XOR logging. The XOR differences between the before and after row
images, from the first byte that is changing until the last byte that is changing.

210 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Byte positions can be first or last bytes of a column. This results in the least
number of bytes being logged and the most efficient type of log record for an
update to a row.

For the first two types of UPDATE log records listed previously, when DATA
CAPTURE CHANGES is not enabled on the table, the amount of data that is
logged for an update depends on:

* The proximity of the updated columns (COLNO)
* Whether the updated columns are fixed in length or variable length
* Whether row compression (COMPRESS YES) is enabled

When the total length of the row is not changing, even when row compression is
enabled, the database manager computes and writes the optimal partial XOR log
record.

When the total length of the row is changing, which is common when
variable-length columns are updated and row compression is enabled, the database
manager determines which byte is first to be changed and write a full XOR log
record.

Space requirements for tables

When designing tables, you need to take into account the space requirements for
the data the tables will contain. In particular, you must pay attention to columns
with larger data types, such as LOB or XML.

Large object (LOB) data

Large object (LOB) data is stored in two separate table objects that are structured
differently than the storage space for other data types. To estimate the space
required by LOB data, you must consider the two table objects used to store data
defined with these data types:

* LOB Data Objects: Data is stored in 64 MB areas that are broken up into
segments whose sizes are "powers of two" times 1024 bytes. (Hence these
segments can be 1024 bytes, 2048 bytes, 4096 bytes, and so on, up to 64 MB.)

To reduce the amount of disk space used by LOB data, you can specify the
COMPACT option on the lob-options clause of the CREATE TABLE and the
ALTER TABLE statements. The COMPACT option minimizes the amount of disk
space required by allowing the LOB data to be split into smaller segments. This
process does not involve data compression, but simply uses the minimum
amount of space, to the nearest 1 KB boundary. Using the COMPACT option can
result in reduced performance when appending to LOB values.

The amount of free space contained in LOB data objects is influenced by the
amount of update and delete activity, as well as the size of the LOB values being
inserted.

* LOB Allocation Objects: Allocation and free space information is stored in
allocation pages that are separated from the actual data. The number of these
pages is dependent on the amount of data, including unused space, allocated for
the large object data. The extra space is calculated as follows:

Table 19. Allocation page extra space based on the page size

Page size Allocation pages

4 KB One page for every 4 MB, plus one page for every 1 GB

Chapter 19. Tables 211

Table 19. Allocation page extra space based on the page size (continued)

Page size Allocation pages

8 KB One page for every 8 MB, plus one page for every 2 GB
16 KB One page for every 16 MB, plus one page for every 4 GB
32 KB One page for every 32 MB, plus one page for every 8 GB

If character data is less than the page size, and it fits into the record along with
the rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data
types should be used instead of BLOB, CLOB, or DBCLOB.

Note: Some LOB data can be placed into the base table row through the use of the
INLINE LENGTH option of the CREATE and ALTER TABLE statements.

Long field (LF) data

Long field (LF) data is stored in a separate table object that is structured differently
than the storage space for other data types. Data is stored in 32-KB areas that are
broken up into segments whose sizes are "powers of two" times 512 bytes. (Hence
these segments can be 512 bytes, 1024 bytes, 2048 bytes, and so on, up to 32 768
bytes.)

Long field data types (LONG VARCHAR or LONG VARGRAPHIC) are stored in a
way that enables free space to be reclaimed easily. Allocation and free space
information is stored in 4 KB allocation pages, which appear infrequently
throughout the object.

The amount of unused space in the object depends on the size of the long field
data, and whether this size is relatively constant across all occurrences of the data.
For data entries larger than 255 bytes, this unused space can be up to 50 percent of
the size of the long field data.

If character data is less than the page size, and it fits into the record along with the
rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data types
should be used instead of LONG VARCHAR or LONG VARGRAPHIC.

System catalog tables

System catalog tables are created when a database is created. The system tables
grow as database objects and privileges are added to the database. Initially, they
use approximately 3.5 MB of disk space.

The amount of space allocated for the catalog tables depends on the type of table
space, and the extent size of the table space containing the catalog tables. For
example, if a DMS table space with an extent size of 32 is used, the catalog table
space is initially allocated 20 MB of space. Note: For databases with multiple
partitions, the catalog tables reside only on the database partition from which the
CREATE DATABASE command was issued. Disk space for the catalog tables is only
required for that database partition.

Temporary tables

Some statements require temporary tables for processing (such as a work file for
sorting operations that cannot be done in memory). These temporary tables require

212 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

disk space; the amount of space required is dependent upon the size, number, and
nature of the queries, and the size of returned tables.

Your work environment is unique which makes the determination of your space
requirements for temporary tables difficult to estimate. For example, more space
can appear to be allocated for system temporary table spaces than is actually in
use due to the longer life of various system temporary tables. This could occur
when DB2_SMS_TRUNC_TMPTABLE_THRESH registry variable is used.

You can use the database system monitor and the table space query APIs to track
the amount of work space being used during the normal course of operations.

You can use the DB2_0PT_MAX_TEMP_SIZE registry variable to limit the amount of
temporary table space used by queries.

XML data

XML documents you insert into columns of type XML can reside either in the
default storage object, or directly in the base table row. Base table row storage is
under your control and is available only for small documents; larger documents
are always stored in the default storage object.

Table page sizes

Rows of table data are organized into blocks that are called pages. Pages can be
four sizes: 4, 8, 16, and 32 KB. Table data pages do not contain the data for
columns that are defined with LONG VARCHAR, LONG VARGRAPHIC, BLOB,
CLOB, DCLOB, or XML data types. An exception is if the LOB or XML document
is inlined by using INLINE LENGTH option of the column. The rows in a table
data page do, however, contain a descriptor of these columns.

Note: Some LOB and XML data can be placed into the base table row by using the
INLINE LENGTH option of the CREATE and ALTER TABLE statements.

All tables that are created within a table space of a particular size have a matching
page size. A single table or index object can be as large as 64 TB, assuming a 32-KB
page size.

Larger page sizes can reduce the number of levels in the index. Larger pages
support rows of greater length. Using the default of 4-KB pages, tables are
restricted to 500 columns. Larger page sizes (8 KB, 16 KB, and 32 KB) support 1012
columns. The maximum size of the table space is proportional to the page size of
the table space.

Page size defines the size of pages that are used for the table space. The page size
limits the row length and column count of tables according to the figures shown in
Table 1.

Table 20. Implications of page size with regular table space

Column count
Page size Row count limit | Row size limit | limit
4 KB 255 4 005 bytes 500
8 KB 255 8 101 bytes 1012
16 KB 255 16 293 bytes 1012
32 KB 255 32 677 bytes 1012

Chapter 19. Tables 213

Note: A large table space can support more than 255 rows per data page. A table
that is created in a large table space can be larger than a table created in a regular
table space. A large table space stores all permanent data just as a regular table
space does. The result is a better use of space on data pages.

To determine the page size for a table space, consider the following points:

* For OLTP applications that run random row read and write operations, a smaller
page size is preferable. It takes less buffer pool space with unwanted rows.

* For DSS applications that access large numbers of consecutive rows at a time, a
larger page size is better. A larger page size reduces the number of I/O requests
that are required to read a specific number of rows. There is, however, an
exception to this rule. If your row size is smaller than pagesize / maximum rows,
there is used space on each page. In this situation, a smaller page size might be
more appropriate.

Space requirements for user table data

By default, table data is stored based on the table space page size in which the
table is in. Each page (regardless of page size) contains 68 bytes of overhead for
the database manager. A row will not span multiple pages. You can have a
maximum of 500 columns when using a 4-KB page size.

Table data pages do not contain the data for columns defined with LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, or XML data types.
The rows in a table data page do, however, contain a descriptor for these columns.

Note: Some LOB data can be placed into the base table row through the use of the
INLINE LENGTH option of the CREATE and ALTER TABLE statements.

Rows are usually inserted into a regular table in first-fit order. The file is searched
(using a free space map) for the first available space that is large enough to hold
the new row. When a row is updated, it is updated in place, unless there is
insufficient space left on the page to contain it. If this is the case, a record is
created in the original row location that points to the new location in the table file
of the updated row.

If the ALTER TABLE statement is issued with the APPEND ON option, data is always
appended, and information about any free space on the data pages is not kept.

If the table has a clustering index defined on it, the database manager will attempt
to physically cluster the data according to the key order of that clustering index.
When a row is inserted into the table, the database manager will first look up its
key value in the clustering index. If the key value is found, the database manager
attempts to insert the record on the data page pointed to by that key; if the key
value is not found, the next higher key value is used, so that the record is inserted
on the page containing records having the next higher key value. If there is
insufficient space on the target page in the table, the free space map is used to
search neighboring pages for space. Over time, as space on the data pages is
completely used up, records are placed further and further from the target page in
the table. The table data would then be considered unclustered, and a table
reorganization can be used to restore clustered order.

If the table is a multidimensional clustering (MDC) table, the database manager
will guarantee that records are always physically clustered along one or more

214 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

defined dimensions, or clustering indexes. When an MDC table is defined with
certain dimensions, a block index is created for each of the dimensions, and a
composite block index is created which maps cells (unique combinations of
dimension values) to blocks. This composite block index is used to determine to
which cell a particular record belongs, and exactly which blocks or extents in the
table contains records belonging to that cell. As a result, when inserting records,
the database manager searches the composite block index for the list of blocks
containing records having the same dimension values, and limits the search for
space to those blocks only. If the cell does not yet exist, or if there is insufficient
space in the cell's existing blocks, then another block is assigned to the cell and the
record is inserted into it. A free space map is still used within blocks to quickly
find available space in the blocks.

The number of 4-KB pages for each user table in the database can be estimated by
calculating:

ROUND DOWN(4028/(average row size + 10)) = records_per_page

and then inserting the result into:
(number_of_records/records_per_page) * 1.1 = number_of_pages

where the average row size is the sum of the average column sizes, and the factor
of "1.1" is for overhead.

Note: This formula provides only an estimate. The estimate's accuracy is reduced
if the record length varies because of fragmentation and overflow records.

You also have the option to create buffer pools or table spaces that have an 8 KB,
16 KB, or 32 KB page size. All tables created within a table space of a particular
size have a matching page size. A single table or index object can be as large as 64
TB, assuming a 32 KB page size. You can have a maximum of 1012 columns when
using an 8 KB, 16 KB, or 32 KB page size. The maximum number of columns is
500 for a 4-KB page size. Maximum row lengths also vary, depending on page size:

* When the page size is 4-KB, the row length can be up to 4005 bytes.
* When the page size is 8 KB, the row length can be up to 8101 bytes.
* When the page size is 16 KB, the row length can be up to 16 293 bytes.
* When the page size is 32 KB, the row length can be up to 32 677 bytes.

A larger page size facilitates a reduction in the number of levels in any index. If
you are working with OLTP (online transaction processing) applications, that
perform random row reads and writes, a smaller page size is better, because it
consumes less buffer space with undesired rows. If you are working with DSS
(decision support system) applications, which access large numbers of consecutive
rows at a time, a larger page size is better because it reduces the number of I/O
requests required to read a specific number of rows.

You cannot restore a backup image to a different page size.

You cannot import IXF data files that represent more than 755 columns.

Declared or created temporary tables can be declared or created only in their own
user temporary table space type. There is no default user temporary table space.
The temporary tables are dropped implicitly when an application disconnects from

the database, and estimates of the space requirements for these tables should take
this into account.

Chapter 19. Tables 215

Storing LOBs inline in table rows

Large objects (LOBs) are generally stored in a location separate from the table row
that references them. However, you can choose to include a LOB to 32 673 bytes
long inline in a base table row to simplify access to it.

It can be impractical (and depending on the data, impossible) to include large data
objects in base table rows. Figure 19 shows an example of an attempt to include
LOBs within a row, and why doing so can be a problem. In this example, the row
is defined as having two LOB columns, 500 and 145 kilobytes in length. However,
the maximum row size for a DB2 table is 32 kilobytes; so such a row definition
could never, in fact, be implemented.

E-mail

LOB
- Text file
145 KB

Name Address =~ Phone number LOB
- Graphic file
I
E 500 KB

Legend

LOB = Large Objects

Figure 19. The problem of including LOB data within base table rows

To reduce the difficulties associated with working with LOBs, they are treated
differently from other data types. Figure 20 on page 217, shows that only a LOB
descriptor is placed in the base table row, rather than the LOB itself. Each of the
LOBs themselves are stored in a separate LOBs location controlled by the database
manager. In this arrangement, the movement of rows between the buffer pool and
disk storage will take less time for rows with LOB descriptors than they would if
they included the complete LOBs.

However, manipulation of the LOB data then becomes more difficult because the
actual LOB is stored in a location separate from the base table rows.

216 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Name Address Phone number LOB descriptor E-mail

LOBs location

N
P Graphic file 500 KB

.

Legend

LOB = Large Objects

Figure 20. LOB descriptors within the base table row refer to the LOBs within the separate
LOBs location

To simplify the manipulation of smaller LOBs, you can choose to have LOB data
that falls below a size threshold that you specify included inline within the base
table rows. These LOB data types can then be manipulated as part of the base table
row, which makes operations such as movement to and from the buffer pool
simpler. In addition, the inline LOBs would qualify for row compression if row
compression was enabled.

The INLINE LENGTH option of the CREATE and ALTER TABLE statements
allows LOB data smaller than a length restriction that you specify to be included in
the base table row. By default, even if you don't specify an explicit value for
INLINE LENGTH, LOBs smaller than the maximum size LOB descriptor for the
column are always included in the base table row.

With inline LOBs then, you can have base table rows as shown in Figure 21 on
page 218.

Chapter 19. Tables 217

N
Name Address Phone number LOB

E-mail D LOB |

Legend

LOB = Large Object

= Graphic file less than the
"] INLINE LENGTH value

D = Text file less than the
INLINE LENGTH value

Figure 21. Small LOBs included within base table rows

When you are considering the threshold to choose for including LOBs inline, take
into account the current pagesize for your database, and whether inline LOBs will
cause the row size to exceed the current page size. The maximum size for a row in
a table is 32 677 bytes. However, each inline LOB has 4 bytes of extra storage
required. So each LOB you store inline reduces the available storage in the row by
4 bytes. Thus the maximum size for an inline LOB is 32 673 bytes.

Note: In the same way that LOBs can be stored inline, it's also possible to store
XML data inline as well.

Table compression

You can use less disk space for your tables by taking advantage of the DB2 table
compression capabilities. Compression saves disk storage space by using fewer
database pages to store data.

Also, because you can store more rows per page, fewer pages must be read to
access the same amount of data. Therefore, queries on a compressed table need
fewer I/O operations to access the same amount of data. Since there are more rows
of data on a buffer pool page, the likelihood that needed rows are in the buffer
pool increases. For this reason, compression can improve performance through
improved buffer pool hit ratios. In a similar way, compression can also speed up
backup and restore operations, as fewer pages of need to be transferred to the
backup or restore the same amount of data.

You can use compression with both new and existing tables. Temporary tables are
also compressed automatically, if the database manager deems it to be
advantageous to do so.

There are two main types of data compression availble for tables:

* Row compression (available with a license for the DB2 Storage Optimization
Feature).

* Value compression
For a particular table, you can use row compression and value compression

together or individually. However, you can use only one type of row compression
for a particular table.

218 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Value compression

Value compression optimizes space usage for the representation of data, and the
storage structures used internally by the database management system to store
data. Value compression involves removing duplicate entries for a value, and only
storing one copy. The stored copy keeps track of the location of any references to
the stored value.

When creating a table, you can use the optional VALUE COMPRESSION clause of
the CREATE TABLE statement to specify that the table is to use value compression.
You can enable value compression in an existing table with the ACTIVATE VALUE
COMPRESSION clause of the ALTER TABLE statement. To disable value
compression in a table, you use the DEACTIVATE VALUE COMPRESSION clause
of the ALTER TABLE statement.

When VALUE COMPRESSION is used, NULLs and zero-length data that has been
assigned to defined variable-length data types (VARCHAR, VARGRAPHICS,
LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, and DBCLOB) will not be
stored on disk.

If VALUE COMPRESSION is used then the optional COMPRESS SYSTEM
DEFAULT option can also be used to further reduce disk space usage. Minimal
disk space is used if the inserted or updated value is equal to the system default
value for the data type of the column, as the default value will not be stored on
disk. Data types that support COMPRESS SYSTEM DEFAULT include all numeric
type columns, fixed-length character, and fixed-length graphic string data types.
This means that zeros and blanks can be compressed.

When using value compression, the byte count of a compressed column in a row
might be larger than that of the uncompressed version of the same column. If your
row size approaches the maximum allowed for your page size, you must ensure
that sum of the byte counts for compressed and uncompressed columns does not
exceed allowable row length of the table in the table space. For example, in a table
space with 4 KB page size, the allowable row length is 4005 bytes. If the allowable
row length is exceeded, the error message SQL0670N is returned. The formula
used to determine the byte counts for compressed and uncompressed columns is
documented as part of the CREATE TABLE statement.

If you deactivate value compression:

¢ COMPRESS SYSTEM DEFAULTS will also be deactivated implicitly, if it had
previously been enabled

* The uncompressed columns might cause the row size to exceed the maximum
allowed by the current page size of the current table space. If this occurs, the
error messasge SQL0670N will be returned.

* Existing compressed data will remain compressed until the row is updated or
you perform a table reorganization with the REORG command.

Row compression

Row compression uses a dictionary-based compression algorithm to replace
recurring strings with shorter symbols within data rows.

There are two types of row compression that you can choose from:
* “Classic” row compression.
* Adaptive compression

Chapter 19. Tables 219

Row compression is available with a license for the DB2 Storage Optimization
Feature. Depending on the DB2 product edition that you have, this feature might
be included, or it might be an option that you order separately.

Classic row compression

Classic row compression, sometimes referred to as static compression , compresses
data rows by replacing patterns of values that repeat across rows with shorter
symbol strings.

The benefits of using classic row compression are similar to those of adaptive
compression, in that you can store data in less space, which can significantly save
storage costs. Unlike adaptive compression, however, classic row compression uses
only a table-level dictionary to store globally recurring patterns; it doesn't use the
page-level dictionaries that are used to compress data dynamically.

How classic row compression works

Classic row compression uses a table-level compression dictionary to compress
data by row. The dictionary is used to map repeated byte patterns from table rows
to much smaller symbols; these symbols then replace the longer byte patterns in
the table rows. The compression dictionary is stored with the table data rows in
the data object portions of the table.

What data gets compressed?

Data that is stored in base table rows and log records is eligible for classic row
compression. In addition, the data in XML storage objects is eligible for
compression. You can compress LOB data that you place inline in a table row;
however, storage objects for long data objects are not compressed.

Restriction: You cannot compress data in XML columns that you created with DB2
Version 9.5 or DB2 Version 9.1. However, you can compress inline XML columns
that you add to a table using DB2 Version 9.7 or later, provided the table was
created without XML columns in an earlier release of the product. If a table that
you created in an earlier release already has one or more XML columns and you
want to add a compressed XML column by using DB2 Version 9.7 or later, you
must use the ADMIN_MOVE_TABLE stored procedure to migrate the table before
you can use compression.

Turning classic row compression on or off

To use classic row compression, you must have a license for the DB2 Storage
Optimization Feature. You compress table data by setting the COMPRESS attribute
of the table to YES STATIC. You can set this attribute when you create the table by
specifying the COMPRESS YES STATIC option for the CREATE TABLE statement.
You can also alter an existing table to use compression by using the same option
for the ALTER TABLE statement. After you enable compression, operations that
add data to the table, such as an INSERT, LOAD INSERT, or IMPORT INSERT command
operation, can use classic row compression. In addition, index compression is
enabled for the table. Indexes are created as compressed indexes unless you specify
otherwise and if they are the types of indexes that can be compressed.

Important: When you enable classic row compression for a table, you enable it for
the entire table, even if a table comprises more than one table partition.

220 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To disable compression for a table, use the ALTER TABLE statement with the
COMPRESS NO option; rows that you subsequently add are not compressed. To
extract the entire table, you must perform a table reorganization with the REORG
TABLE command.

If you have a license for theDB2 Storage Optimization Feature, compression for
temporary tables is enabled automatically. You cannot enable or disable
compression for temporary tables.

Effects of update activity on logs and compressed tables

Depending upon update activity and which columns are updated within a data
row, log usage might increase. For information about how to minimize the effects
of update activity on logs, see ““Ordering columns to minimize update logging”
on page 210”.

If a row increases in size, the new version of the row might not fit on the current
data page. Rather, the new image of the row is stored on an overflow page. To
minimize the creation of pointer-overflow records, increase the percentage of each
page that is to be left as free space after a reorganization by using the ALTER
TABLE statement with the PCTFREE option. For example, if you set the PCTFREE
option to 5% before you enabled compression, you might change it to 10% when
you enable compression. Increasing the percentage of each page to be left as free
space is especially important for data that is heavily updated.

Classic row compression for temporary tables

Compression for temporary tables is enabled automatically with the DB2 Storage
Optimization Feature. When executing queries, the DB2 optimizer considers the
storage savings and the impact on query performance that compression of
temporary tables offers to determine whether it is worthwhile to use compression.
If it is worthwhile, compression is used automatically. The minimum size that a
table must be before compression is used is larger for temporary tables than for
regular tables.

You can use the explain facility or the db2pd tool to see whether the optimizer used
compression for temporary tables.

Reclaiming space that was freed by compression

You can reclaim space that was freed by compressing data. For more information,
see “Reclaimable storage” on page 136.

Adaptive compression

Adaptive compression improves upon the compression rates that can be achieved
using classic row compression by itself. Adaptive compression incorporates classic
row compression; however, it also works on a page-by-page basis to further
compress data. Of the various data compression techniques in the DB2 product,
adaptive compression offers the most dramatic possibilities for storage savings.

How adaptive compression works
Adaptive compression actually uses two compression approaches. The first

employs the same table-level compression dictionary used in classic row
compression to compress data based on repetition within a sampling of data from

Chapter 19. Tables 221

the table as a whole. The second approach uses a page-level dictionary-based
compression algorithm to compress data based on data repetition within each page
of data. The dictionaries map repeated byte patterns to much smaller symbols;
these symbols then replace the longer byte patterns in the table. The table-level
compression dictionary is stored within the table object for which it is created, and
is used to compress data throughout the table. The page-level compression
dictionary is stored with the data in the data page, and is used to compression
only the data within that page. For more information about the role each of these
dictionaries in compressing data, see “Compression dictionaries” on page 228.

Note: You can specify that a table be compressed with classic row compression
only by using a table-level compression dictionary. However, you cannot specify
that tables be compressed by using only page-level compression dictionaries.
Adaptive compression uses both table-level and page-level compression
dictionaries.

Data that is eligible for compression

Data that is stored within data rows, including inlined LOB or XML values, can be
compressed with both adaptive and classic row compression. XML storage objects
can be compressed using static compression. However storage objects for long data
objects that are stored outside table rows is not compressed. In addition, though
log records themselves are not compressed, the amount of log data written as a
result of insert, update or delete operations is reduced by virtue of the rows being
compressed.

Restriction: You cannot compress data in XML columns that you created with DB2
Version 9.5 or DB2 Version 9.1. However, you can compress inline XML columns
that you add to a table using DB2 Version 9.7 or later, provided the table was
created without XML columns in an earlier release of the product. If a table that
you created in an earlier release already has one or more XML columns and you
want to add a compressed XML column by using DB2 Version 9.7 or later, you
must use the ADMIN_MOVE_TABLE stored procedure to migrate the table before
you can use compression.

Turning adaptive compression on or off

To use adaptive compression, you must have a license for the DB2 Storage
Optimization Feature. You compress table data by setting the COMPRESS attribute
of the table to YES. You can set this attribute when you create the table by
specifying the COMPRESS YES option for the CREATE TABLE statement. You can
also alter an existing table to use compression by using the same option for the
ALTER TABLE statement. After you enable compression, operations that add data
to the table, such as an INSERT, LOAD INSERT, or IMPORT INSERT command operation,
can use adaptive compression. In addition, index compression is enabled for the
table. Indexes are created as compressed indexes unless you specify otherwise and
if they are the types of indexes that can be compressed.

Important: When you enable adaptive compression for a table, you enable it for
the entire table, even if the table comprises more than one table partition.

To disable compression for a table, use the ALTER TABLE statement with the
COMPRESS NO option; rows that you later add are not compressed. Existing rows
remain compressed. To extract the entire table after you turn off compression, you
must perform a table reorganization with the REORG TABLE command.

222 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If you apply the licence for the DB2 Storage Optimization Feature, compression for
temporary tables is enabled automatically if the database manager deems it
valuable. You cannot enable or disable compression for temporary tables.

Effects of update activity on logs and compressed tables

Depending upon update activity and the position of updates in a data row, log
usage might increase. For information about the impact that the order of columns
in a table has on update logging, see ““Ordering columns to minimize update
logging” on page 210”.

If a row increases in size after adding new data to it, the new version of the row
might not fit on the current data page. Rather, the new image of the row is stored
on an overflow page. To minimize the creation of pointer-overflow records,
increase the percentage of each page that is to be left as free space after a
reorganization by using the ALTER TABLE statement with the PCTFREE option.
For example, if you set the PCTFREE option to 5% before you enabled
compression, you might change it to 10% when you enable compression.
Increasing the percentage of each page to be left as free space is especially
important for data that is heavily updated.

Compression for temporary tables

Compression for temporary tables is enabled automatically with the DB2 Storage
Optimization Feature. Only classic row compression is used for temporary tables.

System temporary tables
When executing queries, the DB2 optimizer considers the storage savings
and the impact on query performance that compression of system-created
temporary tables offers to determine whether it is worthwhile to use
compression. If it is worthwhile, classic row compression is used
automatically. The minimum size that a table must be before compression
is used is larger for temporary tables than for regular tables.

User-created temporary tables
Created global temporary tables (CGTTs) and declared global temporary
tables (DGTTs) are always compressed using classic row compression.

You can use the explain facility or the db2pd tool to see whether the optimizer used
compression for system temporary tables.

Reclaiming space that was freed by compression

You can reclaim space that has been freed by compressing data. For more
information, see “Reclaimable storage” on page 136.

Estimating storage savings offered by adaptive or classic row
compression
You can view an estimate of the storage savings adaptive or classic row
compression can provide for a table by using the
ADMIN_GET_TAB_COMPRESS_INFO table function.
Before you begin

The estimated savings that adaptive or classic row compression offers depend on
the statistics generated by running the RUNSTATS command. To get the most

Chapter 19. Tables 223

accurate estimate of the savings that can be achieved, run the RUNSTATS command
before you perform the following steps.

Procedure

To estimate the storage savings adaptive or classic row compression can offer using
the ADMIN_GET_TAB_COMPRESS_INFO table function:

1. Formulate a SELECT statement that uses the
ADMIN_GET_TAB_COMPRESS_INFO table function. For example, for a table
named SAMPLE1.T1, enter:

SELECT + FROM TABLE(SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO('SAMPLE1', 'T1'))

2. Execute the SELECT statement. Executing the statement shown in Step 1 might

yield a report like the following:

TABSCHEMA TABNAME DBPARTITIONNUM DATAPARTITIONID OBJECT_TYPE ROWCOMPMODE ...

SAMPLE1 T1 0 0 DATA A

1 record(s) selected.
PCTPAGESSAVED_CURRENT AVGROWSIZE_CURRENT PCTPAGESSAVED_STATIC ...

Creating a table that uses compression

When you create a new table by issuing the CREATE TABLE statement, you have
the option to compress the data contained in table rows.

Before you begin

You must decide which type of compression you want to use: adaptive
compression, classic row compression, value compression, or a combination of
value compression with either of the two types of row compression. Adaptive
compression and classic row compression almost always save storage because they
attempt to replace data patterns that span multiple columns with shorter symbol
strings. Value compression can offer savings if you have many rows with columns
that contain the same value, such as a city or country name, or if you have
columns that contain the default value for the data type of the column.

Procedure

To create a table that uses compression, issue a CREATE TABLE statement.

* If you want to use adaptive compression, include the COMPRESS YES
ADAPTIVE clause.

* If you want to use classic row compression, include the COMPRESS YES STATIC
clause.

* If you want to use value compression, include the VALUE COMPRESSION
clause. If you want to compress data that represents system default column
values, also include the COMPRESS SYSTEM DEFAULT clause.

Results

After you create the table, all data that you add to the table from that point in time
on is compressed. Any indexes that are associated with the table are also

224 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

compressed, unless you specify otherwise by using the COMPRESS NO clause of

the CREATE INDEX or ALTER INDEX statements.

Examples

Example 1: The following statement creates a table for customer information with
adaptive compression enabled. In this example, the table is compressed by using

both table-level and page-level compression dictionaries.
CREATE TABLE CUSTOMER

(CUSTOMERNUM INTEGER,

CUSTOMERNAME VARCHAR(80) ,
ADDRESS VARCHAR (200) ,
CITY VARCHAR(50) ,
COUNTRY VARCHAR(50) ,
CODE VARCHAR(15),

CUSTOMERNUMDIM INTEGER)
COMPRESS YES ADAPTIVE;

Example 2: The following statement creates a table for customer information with
classic row compression enabled. In this example, the table is compressed by using

only a table-level compression dictionary.
CREATE TABLE CUSTOMER

(CUSTOMERNUM INTEGER,

CUSTOMERNAME VARCHAR(80) ,
ADDRESS VARCHAR(200) ,
CITY VARCHAR (50) ,
COUNTRY VARCHAR (50) ,
CODE VARCHAR(15),

CUSTOMERNUMDIM INTEGER)
COMPRESS YES STATIC;

Example 3: The following statement creates a table for employee salaries. The
SALARY column has a default value of 0, and row compression and system
default compression are specified for the column.

CREATE TABLE EMPLOYEE_SALARY

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
EMPNO CHAR(6) NOT NULL,

SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT COMPRESS SYSTEM DEFAULT)
COMPRESS YES ADAPTIVE;

Note that the VALUE COMPRESSION clause was omitted from this statement.

This statement creates a table that is called EMPLOYEE_SALARY; however, a
warning message is returned:

SQL20140W COMPRESS column attrib