
IBM DB2 10.1
for Linux, UNIX, and Windows

Preparation Guide for DB2 10.1 DBA
for Linux, UNIX, and Windows Exam
611
Updated February, 2014

SC27-4541-01

���

IBM DB2 10.1
for Linux, UNIX, and Windows

Preparation Guide for DB2 10.1 DBA
for Linux, UNIX, and Windows Exam
611
Updated February, 2014

SC27-4541-01

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 1051.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book xiii
Who should use this book xiii

Part 1. DB2 Server management . . . 1

Chapter 1. Instances 3
Designing instances 4

Default instance 5
Instance directory. 6
Multiple instances (Linux, UNIX) 6
Multiple instances (Windows) 7

Creating instances 8
Modifying instances 9

Updating the instance configuration (Linux,
UNIX) 9
Updating the instance configuration (Windows) 10

Auto-starting instances 11
Starting instances (Linux, UNIX) 12
Starting instances (Windows) 12
Attaching to and detaching from instances 13
Working with instances on the same or different
DB2 copies 13
Stopping instances (Linux, UNIX) 14
Stopping instances (Windows) 15
Upgrading instances 16

Upgrading DB2 Version 9.5 or DB2 Version 9.7
instances 16
Upgrading DB2 Version 9.8 instances 18

Dropping instances 19

Chapter 2. Configuring intances 21
Configuration parameters. 21
Configuring instances with database manager
configuration parameters 22
Environment variables and the profile registries . . 25

Profile registry locations and authorization
requirements 26

Setting registry and environment variables 27
Setting environment variables outside the profile
registries on Linux and UNIX operating systems . 29
Setting environment variables outside the profile
registries on Windows 29
Identifying the current instance. 30
Setting variables at the instance level in a
partitioned database environment 31

Chapter 3. Autonomic computing . . . 33
Automatic features 33
Automatic maintenance 34

Maintenance windows. 35
Self-tuning memory 36

Memory allocation 37
Self-tuning memory configuration 40
Enabling self-tuning memory 40

Disabling self-tuning memory 41
Determining which memory consumers are
enabled for self tuning. 42
Self-tuning memory in partitioned database
environments 43
Using self-tuning memory in partitioned
database environments 45

Configuring memory and memory heaps 46
Agent and process model configuration 48

Automatic storage 49
Databases use automatic storage by default. . . 49

Data compression 49
Automatic database backup 50
Automatic table and index maintenance 51
Automatic statistics collection 52
Configuration Advisor. 57

Tuning configuration parameters using the
Configuration Advisor. 57
Example: Requesting configuration
recommendations using the Configuration
Advisor 57

Utility throttling 59
Asynchronous index cleanup 60
Asynchronous index cleanup for MDC tables . . 61

Chapter 4. IBM Data Studio 65
Managing jobs in IBM Data Studio 65

Creating and managing jobs 66
Scenario: Creating and scheduling a job 67
Importing tasks from DB2 Task Center 69

Diagramming access plans with Visual Explain . . 70
Diagrams of access plans 72
Query blocks 73
Setting preferences for Visual Explain. 73

Part 2. Client-to-server
communications. 75

Chapter 5. Supported combinations of
clients, drivers and server levels . . . 79

Chapter 6. Communication protocols
supported 81

Chapter 7. Supported LDAP client and
server configurations 83

Chapter 8. Discovery of administration
servers, instances, and databases . . . 85
Discovering and hiding server instances and
databases 86

© Copyright IBM Corp. 2014 iii

Chapter 9. Configuring DB2 server
communications (TCP/IP). 87
Updating the services file on the server for TCP/IP
communications 88
Updating the database manager configuration file
on the server for TCP/IP communications 88
Setting communication protocols for a DB2 instance 89

Chapter 10. Configuring client-to-server
connections 91
Cataloging a Named Pipes node from a client using
the CLP 91
Updating hosts and services files for TCP/IP
connections 92
Cataloging a TCP/IP node from a client using the
CLP 93
Cataloging a database 94
Testing the client-to-server connection using the CLP 96
Exporting and importing a profile 97

Chapter 11. Configuring LDAP
connections 99
Cataloging an LDAP node 99
Registering DB2 servers 99
Registering databases. 101
Creating LDAP users 101
Configuring LDAP users for DB2 applications . . 102
Setting DB2 registry variables at the user level in
the LDAP environment 102
Deregistering DB2 servers 103
Deregistering the database from the LDAP
directory 103

Chapter 12. Configuring IBM Data
Server Drivers 105
Copying existing database directory information
into the db2dsdriver configuration file 105

Part 3. Physical design and
business rules implementation . . 107

Chapter 13. Databases 109
Designing databases 109
Creating databases. 110
Converting a nonautomatic storage database to use
automatic storage 114

Chapter 14. Buffer pools. 117
Designing buffer pools 118
Buffer pool hit ratios 119
Buffer pool memory protection (AIX running on
POWER6) 119
Creating buffer pools 120
Modifying buffer pools 122
Dropping buffer pools 123

Chapter 15. Table spaces 125
Table spaces for system, user and temporary data 127

Types of table spaces 128
Automatic storage table spaces 129

How automatic storage table spaces manage
storage expansion 129
Container names in automatic storage table
spaces 131
Converting table spaces to use automatic
storage 133

The table space high water mark 134
Reclaimable storage 136
File system caching configurations 142
Extent sizes in table spaces 144
Page, table and table space size 145
Disk I/O efficiency and table space design . . . 146
Table spaces in a partitioned database environment 148
Creating table spaces 148

Creating temporary table spaces 152
Defining initial table spaces on database
creation 153

Altering automatic storage table spaces. 154
Reclaiming unused storage in automatic storage
table spaces 155
Scenarios: Adding and removing storage with
automatic storage table spaces. 157

Monitoring a table space rebalance operation . . . 164
Table space states 164
Switching table spaces from offline to online . . . 173
Dropping table spaces 173

Chapter 16. Storage groups 175
Data management using multi-temperature storage 175
Default storage groups 178
Creating storage groups 178
Altering storage groups 179

Adding storage paths 179
Dropping storage paths 180
Monitoring storage paths 181
Replacing the paths of a storage group 181

Renaming storage groups 182
Dropping storage groups 182
Storage group and table space media attributes . . 183

Associating a table space to a storage group . . 185
Scenario: Moving a table space to a new storage
group 186

Chapter 17. Schemas 189
Designing schemas 190

Grouping objects by schema 192
Schema name restrictions and recommendations 193

Creating schemas 193
Dropping schemas. 194

Chapter 18. Database objects 195
Soft invalidation of database objects 195
Automatic revalidation of database objects . . . 196
Creating database object aliases 197
Creating and maintaining database objects . . . 198

Chapter 19. Tables 201
Types of tables 201

iv Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Designing tables 203
Data types and table columns 203

Generated columns 205
Hidden columns 206
Auto numbering and identifier columns . . . 207
Constraining column data with constraints,
defaults, and null settings 208
Default column and data type definitions . . . 209
Ordering columns to minimize update logging 210

Space requirements for tables 211
Table page sizes 213
Space requirements for user table data 214
Storing LOBs inline in table rows. 216

Table compression 218
Value compression 219
Row compression 219
Classic row compression 220
Adaptive compression 221
Estimating storage savings offered by adaptive
or classic row compression 223
Creating a table that uses compression 224
Enabling compression in an existing table . . . 226
Changing or disabling compression for a
compressed table 227

Compression dictionaries 228
Table-level compression dictionary creation . . 229
Impact of classic table reorganization on
table-level compression dictionaries 231
Multiple compression dictionaries for replication
source tables 232

Table partitioning and data organization schemes 232
Creating tables 233

Declaring temporary tables 233
Creating and connecting to created temporary
tables 234
Distinctions between DB2 base tables and
temporary tables 235

Altering tables 238
Adding and dropping columns 239
Modifying DEFAULT clause column definitions 240
Modifying the generated or identity property of
a column 240
Modifying column definitions 241

Altering materialized query table properties . . . 242
Refreshing the data in a materialized query
table 243

Renaming tables and columns 243
Viewing table definitions 244
Dropping tables 244

Chapter 20. Time Travel Query using
temporal tables 247
System-period temporal tables. 248

History tables 248
SYSTEM_TIME period 249
Creating a system-period temporal table . . . 251
Inserting data into a system-period temporal
table 253
Updating data in a system-period temporal
table 254

Deleting data from a system-period temporal
table 259
Querying system-period temporal data 260
Setting the system time for a session 263
Dropping a system-period temporal table . . . 265
Utilities and tools 266
Schema changes 269
Cursors and system-period temporal tables . . 270
Table partitioning and system-period temporal
tables 270
Data access control for system-period temporal
tables 271
Restrictions for system-period temporal tables 271

Application-period temporal tables 272
BUSINESS_TIME period. 272
Creating an application-period temporal table 273
Inserting data into an application-period
temporal table 275
Updating data in an application-period
temporal table 276
Deleting data from an application-period
temporal table 280
Querying application-period temporal data . . 281
Setting the application time for a session . . . 283

Bitemporal tables 285
Creating a bitemporal table. 286
Inserting data into a bitemporal table 288
Updating data in a bitemporal table 289
Deleting data from a bitemporal table 293
Querying bitemporal data 295

Chapter 21. Constraints 299
Types of constraints 299
NOT NULL constraints 300
Unique constraints 300
Primary key constraints 301
(Table) Check constraints 301

Designing check constraints 301
Comparison of check constraints and BEFORE
triggers 302

Foreign key (referential) constraints 303
Examples of interaction between triggers and
referential constraints. 308

Informational constraints 309
Designing informational constraints 310

Creating and modifying constraints 312
Table constraint implications for utility operations 314
Statement dependencies when changing objects 315
Reuse of indexes with unique or primary key
constraints 316
Viewing constraint definitions for a table 316
Dropping constraints 316

Chapter 22. Indexes 319
Types of indexes 320
Indexes on partitioned tables 322

Nonpartitioned indexes on partitioned tables 323
Partitioned indexes on partitioned tables . . . 325

Designing indexes 329
Tools for designing indexes. 332

Contents v

Space requirements for indexes 332
Index compression 336

Creating indexes 338
Creating nonpartitioned indexes on partitioned
tables 339
Creating partitioned indexes 340

Modifying indexes 342
Renaming indexes 342
Rebuilding indexes 343

Dropping indexes 343

Chapter 23. Triggers 345
Types of triggers 346

BEFORE triggers 347
AFTER triggers 347
INSTEAD OF triggers 348

Designing triggers 349
Specifying what makes a trigger fire (triggering
statement or event) 351
Specifying when a trigger fires (BEFORE,
AFTER, and INSTEAD OF clauses) 352
Defining conditions for when trigger-action will
fire (WHEN clause) 355
Supported SQL PL statements in triggers . . . 356
Accessing old and new column values in
triggers using transition variables 357
Referencing old and new table result sets using
transition tables 358

Creating triggers 359
Modifying and dropping triggers. 361
Examples of triggers and trigger use 362

Examples of interaction between triggers and
referential constraints. 362
Examples of defining actions using triggers . . 364
Example of defining business rules using
triggers 364
Example of preventing operations on tables
using triggers 365

Chapter 24. Sequences 367
Designing sequences 367

Managing sequence behavior 368
Application performance and sequences . . . 369
Sequences compared to identity columns . . . 370

Creating sequences 371
Generating sequential values 372
Determining when to use identity columns or
sequences 372

Sequence Modification 373
Viewing sequence definitions 374
Dropping sequences 375
Examples of how to code sequences 375
Sequence reference 376

Chapter 25. Views 381
Designing views 382

System catalog views 382
Views with the check option 383
Deletable views 385
Insertable views 386

Updatable views 386
Read-only views 387

Creating views 387
Creating views that use user-defined functions
(UDFs) 388

Modifying typed views 389
Recovering inoperative views 389
Dropping views 390

Chapter 26. Usage lists 391
Usage list memory considerations and validation
dependencies 392

Chapter 27. pureXML 395
Comparison of the XML model and the relational
model 397
XML data type 399
Creation of tables with XML columns 399
Addition of XML columns to existing tables . . . 400
Inserting XML columns 401
Querying XML data 402

Comparison of methods for querying XML data 402
Indexing XML data 403
Updating XML data 405
XML data movement 406
pureXML tutorial 407

Part 4. Monitoring DB2 Activity 409

Chapter 28. Database monitoring . . . 411
Monitoring DB2 Activity with table functions. . . 411

Monitoring system information using table
functions 411
Monitoring activities using table functions. . . 412
Monitoring data objects using table functions 413
Monitoring locking using table functions . . . 419
Monitoring system memory using table
functions 419
Other monitoring table functions 419
Interfaces that return monitor data in XML
documents 420

Snapshot monitor 424
Access to system monitor data: SYSMON
authority 425
Capturing database system snapshots by using
snapshot administrative views and table
functions 426
Capturing database system snapshot
information to a file using the
SNAP_WRITE_FILE stored procedure 428
Accessing database system snapshots using
snapshot table functions in SQL queries (with
file access) 430
Snapshot monitor SQL Administrative Views 431

Event monitors 434
Types of events for which event monitors
capture data 435
Event monitors that write to tables 440
Working with event monitors 440
Output options for event monitors 441

vi Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Creating event monitors 444
Creating event monitors that write to tables . . 445
Logical data groups and event monitor output
tables 448
Enabling event monitor data collection 448
Methods for accessing event monitor
information 450
Altering an event monitor 455

Reports generated using the MONREPORT module 456

Chapter 29. Monitoring DB2 workload
management environments 461
Real-time monitoring with table functions 461

Example: Using DB2 workload management
table functions 462
Example: Monitoring current system behavior at
different levels 464

Historical monitoring with WLM event monitors 467
DB2 workload management monitoring data . . . 473
DB2 workload management stored procedures . . 475
Workload management table functions and
snapshot monitor integration 476
Monitoring metrics for DB2 workload management 477
Monitoring threshold violations 478
Collecting data for individual activities 479

Chapter 30. Explain facility 483
Tuning SQL statements using the explain facility 483
Explain tables and the organization of explain
information 485
Creating the explain tables 487
Guidelines for capturing explain information . . . 488

Creating explain snapshots for dynamic SQL or
XQuery statements 490
Creating explain snapshots for static SQL or
XQuery statements 491

Guidelines for capturing section explain
information 491

Differences between section explain and
EXPLAIN statement output 492
Capturing and accessing section actuals . . . 494
Analysis of section actuals information in
explain output 496

Guidelines for using explain information 499
Guidelines for analyzing explain information. . . 500
Tools for collecting and analyzing explain
information 501

SQL and XQuery explain tool 502
Description of db2expln output 503

Using access plans to self-diagnose performance
problems with REFRESH TABLE and SET
INTEGRITY statements 503

Chapter 31. Problem-determination
tools 505
DB2 diagnostic (db2diag) log files 505

Interpretation of diagnostic log file entries. . . 506
Interpreting the informational record of the
db2diag log files 509

Setting the error capture level of the diagnostic
log files 510

First occurrence data capture information 510
Collecting diagnosis information based on
common outage problems 511
First occurrence data capture configuration . . 513
Data collected as part of FODC 515
Automatic FODC data generation 521
Monitor and audit facilities using First
Occurrence Data Capture (FODC) 521

db2ls command 522
Listing DB2 database products installed on your
system (Linux and UNIX) 522

db2mtrk command 524
Buffer pools memory allocation 524
Example 1 524
Example 2 524

db2pd command 524
Troubleshooting scripts 539

db2dart command 539
Comparison of INSPECT and db2dart 539

db2val command 542
Validating your DB2 copy 542

Part 5. DB2 commands for
database administration 543

Chapter 32. Data movement options 545

Chapter 33. Load utility 549
Privileges and authorities required to use load . . 552

LOAD authority 553
Loading data 553

Load sessions - CLP examples 555
LBAC-protected data load considerations . . . 558
Identity column load considerations 560
Generated column load considerations 562
Moving data using the CURSOR file type . . . 564
Refreshing dependent immediate materialized
query tables 567
MDC and ITC load considerations 568
Partitioned tables load considerations 569

Loading XML data 572
Load in partitioned database environments . . . 573

Loading data in a partitioned database
environment. 575
Load sessions in a partitioned database
environment - CLP examples 580

Load features for maintaining referential integrity 583
Checking for integrity violations following a
load operation 583
Table locking during load operations 586
Table space states during and after load
operations 587
Table states during and after load operations 588
Load exception tables 590

Monitoring a load operation using the LIST
UTILITIES command 591

Contents vii

Chapter 34. Ingest utility 593
Deciding where to run the ingest utility 594
Ingest-related tasks 595

Creating the restart table 596
Ingesting data 597
Restarting a failed ingest operation 604
Terminating a failed ingest operation 606

Ingest utility restrictions and limitations 606
Performance considerations for ingest operations 608
Code page considerations for the ingest utility . . 609
Ingest operations in a partitioned database
environment 611
Sample ingest utility scripts 612

Scenario: Processing a stream of files with the
ingest utility. 612

Monitoring ingest operations 613

Chapter 35. Import utility 615
Privileges and authorities required to use import 617
Importing data 618

Import sessions - CLP examples 620
Typed table import considerations 622
LBAC-protected data import considerations . . 625
Identity column import considerations 626
Generated column import considerations . . . 628
LOB import considerations 629
User-defined distinct types import
considerations 630
Client/server environments and import . . . 630
Table locking modes supported by the import
utility 631

Importing XML data 632

Chapter 36. Export utility 633
Privileges and authorities required to use the
export utility 634
Exporting data 634

Export sessions - CLP examples 635
LBAC-protected data export considerations . . 636
Table export considerations. 636
Typed table export considerations 637
Identity column export considerations 640
LOB export considerations 640

Exporting XML data 641

Chapter 37. Comparison between the
ingest, import, and load utilities . . . 645

Chapter 38. Additional DB2 resources
for data movement 647
Copying schemas 647

Example of schema copy using the
ADMIN_COPY_SCHEMA procedure 649
Examples of schema copy by using the
db2move utility 649

Moving tables online by using the
ADMIN_MOVE_TABLE procedure 650
Mimicking databases using db2look 654
Converting non-Unicode databases to Unicode . . 657

Creating database duplicates 658

Chapter 39. Data organization 661
Table reorganization 661

Choosing a table reorganization method . . . 662
Classic (offline) table reorganization 665
Reorganizing tables offline 666
Inplace (online) table reorganization 667
Reorganizing tables online 669
Monitoring a table reorganization 670

Index reorganization 670
Locking and concurrency considerations for
online index reorganization. 673
Monitoring an index reorganization operation 674

Determining when to reorganize tables and indexes 675
Costs of table and index reorganization. 678
Reducing the need to reorganize tables and indexes 680
Enabling automatic table and index reorganization 681
Enabling automatic index reorganization in volatile
tables 681

Chapter 40. Catalog statistics 683
Catalog statistics tables 686
Catalog statistics views 686
Guidelines for collecting and updating statistics 686
Detailed index statistics 688
Distribution statistics 689

Optimizer use of distribution statistics 691
Enabling automatic statistics collection 692

Collecting statistics using a statistics profile . . 693
Storage used by automatic statistics collection
and profiling 694
Automatic statistics collection activity logging 695
Improving query performance for large statistics
logs 695

Collecting catalog statistics 696
Collecting statistics on a sample of the data . . . 697
Collecting index statistics 698
Collecting distribution statistics for specific
columns 698
Monitoring the progress of RUNSTATS operations 700
Minimizing RUNSTATS impact 701
Recompiling a query after configuration changes 701
Avoiding manual updates to the catalog statistics 702

Chapter 41. Binding embedded SQL
packages to a database 703
Effect of DYNAMICRULES bind option on
dynamic SQL 703
Bind considerations 705
Performance improvements when using REOPT
option of the BIND command 706
Binding applications with the BIND command . . 707
Rebinding existing packages with the REBIND
command 707
Binding utilities to the database 708
Binding applications and utilities (DB2 Connect
server). 709

viii Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 42. Design Advisor 713
Defining a workload for the Design Advisor . . . 716
Design Advisor limitations and restrictions . . . 718

Part 6. High availability 721

Chapter 43. Data recovery 723
Crash recovery 723

Recovering damaged table spaces 725
Recovering from transaction failures in a
partitioned database environment 725

Disaster recovery 729
Version recovery 730
Rollforward recovery 730

Chapter 44. Developing a backup and
recovery strategy. 735
Deciding how often to back up 737
Storage considerations for recovery 739
Backup compression 740
Archived log file compression 740
Backup and restore operations between different
operating systems and hardware platforms . . . 741
Log stream merging and log file management in a
DB2 pureScale environment 743
Log sequence numbers in DB2 pureScale
environments 747
Including log files with a backup image 747
Incremental backup and recovery. 748

Restoring from incremental backup images . . 750
Limitations to automatic incremental restore . . 752

Chapter 45. BACKUP DATABASE
command 755
Privileges, authorities, and authorization required
to use backup 757
Backing up data 757

Performing a snapshot backup 759
Using a split mirror as a backup image. . . . 761
Using a split mirror as a backup image in a DB2
pureScale environment 762
Backing up to tape 763
Backing up to named pipes. 765

Backing up partitioned databases. 766
Backup and restore operations in a DB2 pureScale
environment. 767
Enabling automatic backup. 772

Configuring an automated maintenance policy
using SYSPROC.AUTOMAINT_SET_POLICY or
SYSPROC.AUTOMAINT_SET_POLICYFILE . . 773

Monitoring backup operations. 774
Optimizing backup performance 774
Compatibility of online backup and other utilities 775

Chapter 46. RECOVER DATABASE
command 779
Privileges, authorities, and authorization required
to use recover 779
Recovering data 780

Optimizing recovery performance 780

Chapter 47. RESTORE DATABASE
command 783
Privileges, authorities, and authorization required
to use restore 784
Implications for restoring databases 784
Using restore 786

Restoring from a snapshot backup image . . . 789
Restoring to an existing database 790
Restoring to a new database 791
Using incremental restore in a test and
production environment 791

Performing a redirected restore operation 793
Redefine table space containers by restoring a
database using an automatically generated
script 797
Performing a redirected restore using an
automatically generated script 799
Cloning a production database using different
storage group paths 800

Database rebuild 801
Database rebuild and table space containers . . 805
Database rebuild and temporary table spaces 806
Choosing a target image for database rebuild 806
Rebuilding selected table spaces 810
Rebuild and incremental backup images . . . 811
Rebuilding partitioned databases 812
Restrictions for database rebuild 813
Rebuild sessions - CLP examples 814

Database schema transporting 822
Transportable objects 824
Transport examples 826
Troubleshooting: transporting schemas 828

Monitoring the progress of restore operations . . 829
Optimizing restore performance 829

Chapter 48. ROLLFORWARD
DATABASE command. 831
Authorization required for rollforward 832
Using rollforward 833

Rollforward sessions - CLP examples 834
Rolling forward changes in a table space . . . 838

Database rollforward operations in a DB2
pureScale environment 842
Monitoring a rollforward operation 844

Chapter 49. High availability disaster
recovery (HADR) 847
High Availability Disaster Recovery (HADR)
synchronization mode 849
HADR multiple standby databases 853

Restrictions for multiple standby databases . . 854
Initializing HADR in multiple standby mode 854
Enabling multiple standby mode on a
preexisting HADR setup. 856
Modifications to a multiple standby database
setup 858
Database configuration for multiple HADR
standby databases 859

Contents ix

Rolling upgrades in HADR multiple standby
mode 861
High availability disaster recovery (HADR)
monitoring in multiple standby mode 862
Takeover in HADR multiple standby mode . . 865
Scenario: Deploying an HADR multiple standby
database setup 866
Examples: Takeover in HADR multiple standby
mode 871

HADR reads on standby feature 876
Enabling reads on standby 876
Data concurrency on the active standby
database 877

HADR delayed replay 881
Recovering data by using HADR delayed replay 882

Performing rolling updates in a DB2 High
Availability Disaster Recovery (HADR)
environment. 884
High availability disaster recovery (HADR)
support 887

System requirements for DB2 high availability
disaster recovery (HADR) 887
Installation and storage requirements for high
availability disaster recovery (HADR) 889
HADR and Network Address Translation (NAT)
support 890
Restrictions for High Availability Disaster
Recovery (HADR) 891

DB2 High availability disaster recovery (HADR)
management 892

DB2 High Availability Disaster Recovery
(HADR) commands 892

Initializing high availability disaster recovery
(HADR) 894
Initializing a standby database 897

Using a split mirror as a standby database . . 897
Using a split mirror as a standby database in a
DB2 pureScale environment 900

Database configuration for high availability
disaster recovery (HADR) 903

Setting the hadr_timeout and
hadr_peer_window database configuration
parameters 911
Log archiving configuration for DB2 high
availability disaster recovery (HADR) 912
HADR log spooling 914
Index logging and high availability disaster
recovery (HADR) 914
High availability disaster recovery (HADR)
performance 915
Cluster managers and high availability disaster
recovery (HADR) 918

Performing an HADR failover operation 919
Switching database roles in high availability
disaster recovery (HADR) 921
Reintegrating a database after a takeover operation 922
Monitoring high availability disaster recovery
(HADR) environments 923
Stopping DB2 High Availability Disaster Recovery
(HADR) 925

Chapter 50. DB2 high availability
instance configuration utility
(db2haicu). 927
Startup mode 928
Maintenance mode 929
Prerequisites. 929
Configuring a clustered environment 930
Restrictions for db2haicu 931
Running db2haicu interactively 933
Running db2haicu with an XML input file. . . . 934

Input file XML schema (DB2ClusterType) . . . 934
Sample XML input files 937

Part 7. Security 943

Chapter 51. DB2 security model . . . 945

Chapter 52. Authentication methods
for your server 947

Chapter 53. Authorization, privileges,
and object ownership 953

Chapter 54. Default privileges granted
on creating a database 959

Chapter 55. Granting privileges. . . . 961

Chapter 56. Revoking privileges . . . 963

Chapter 57. Controlling access to data
with views. 965

Chapter 58. Roles 969
Roles compared to groups 970

Chapter 59. Trusted contexts and
trusted connections 973
Using trusted contexts and trusted connections . . 975

Chapter 60. Row and column access
control (RCAC). 979
Row and column access control (RCAC) rules . . 980
Scenario: ExampleHMO using row and column
access control 980

Security policies 980
Database users and roles 981
Database tables 982
Security administration 984
Row permissions 985
Column masks 986
Inserting data 987
Updating data 987
Reading data 988
Creating views 990
Secure functions 991

x Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Secure triggers 992
Revoking authority 993

Chapter 61. Label-based access
control (LBAC) 995
LBAC security policies 997
LBAC security label components 998
LBAC security labels 999
Format for security label values 1001
How LBAC security labels are compared 1001
LBAC rule sets 1002
LBAC rule set: DB2LBACRULES 1003
LBAC rule exemptions 1007
Built-in functions for managing LBAC security
labels. 1008
Protection of data using LBAC 1009
Reading LBAC protected data 1010
Inserting LBAC protected data 1013
Updating LBAC protected data 1015
Deleting or dropping LBAC protected data . . . 1020
Removing LBAC protection from data. 1023

Chapter 62. DB2 audit facility 1025
Audit policies 1027
Storage and analysis of audit logs 1031

The EXECUTE category for auditing SQL
statements 1034

Part 8. Appendixes 1039

Appendix A. Overview of the DB2
technical information 1041
DB2 technical library in hardcopy or PDF format 1041
Displaying SQL state help from the command line
processor 1044
Accessing different versions of the DB2
Information Center 1044
Updating the DB2 Information Center installed on
your computer or intranet server 1044
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 1046
DB2 tutorials 1048
DB2 troubleshooting information 1048
Terms and conditions 1048

Appendix B. Notices 1051

Index 1055

Contents xi

xii Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

About this book

This book provides information from the DB2® for Linux, UNIX, and Windows
documentation to cover all the objectives that are described in the DB2 10.1 DBA
for Linux, UNIX, and Windows Exam 611.
v Part 1, “DB2 Server management,” on page 1 provides information about how to

configure and manage DB2 servers, instances, and databases, how to use
autonomic features, and how to schedule jobs and use visual explain with IBM®

Data Studio.
v Part 2, “Client-to-server communications,” on page 75 provides information

about clients, types of clients, how to configure communication protocols and
clients, how to establish database connections, and how to use LDAP for
authentication.

v Part 3, “Physical design and business rules implementation,” on page 107
provides information about defining database objects such as tables and views,
and implementing business rules by using table constraints, views, and triggers.
Also, it provides information about new capabilities for tables such as temporal
tables and the multi-temperature storage.

v Part 4, “Monitoring DB2 Activity,” on page 409 provides information about tasks
that are associated with examining the operational status of your database,
interfaces for database and workload monitoring, and tools for obtaining
information about access plans and troubleshooting problems.

v Part 5, “DB2 commands for database administration,” on page 543 provides
information about DB2 commands for performing administration tasks such as
moving data, organizing data, collecting catalog statistics, and binding
applications.

v Part 6, “High availability,” on page 721 provides information about data
integrity actions, how to back up databases and table spaces, how to use HADR
and its new capabilities, and high availability characteristics in DB2 pureScale®

environments.
v Part 7, “Security,” on page 943 provides information about the DB2 security

model, authorization, authorities, privileges, roles, trusted contexts, label-based
access control (LBAC), row and column access control (RCAC), and the DB2
audit facility.

Passing the DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611 is one of the
requirements to obtain the IBM Certified Database Administrator - DB2 10.1 for Linux,
UNIX, and Windows certification. For complete details about this certification and
its requirements, visit http://www.ibm.com/certify/certs/08002107.shtml.

Who should use this book
This book is for database administrators and other DB2 database users with
intermediate to advanced administration skills who want to prepare for the
certification Exam 611. For complete details about the exam, visit
http://www.ibm.com/certify/tests/ovr611.shtml.

© Copyright IBM Corp. 2014 xiii

http://www.ibm.com/certify/certs/08002107.shtml
http://www.ibm.com/certify/tests/ovr611.shtml

xiv Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 1. DB2 Server management

DB2 Server management provides information about how to configure and manage
DB2 servers, instances, and databases, how to use autonomic features, and how to
schedule jobs and use visual explain with IBM Data Studio.

A data server refers to a computer where the DB2 database engine is installed. The
DB2 engine is a full-function, robust database management system that includes
optimized SQL support based on actual database usage and tools to help manage
the data.

IBM offers a number data server products, including data server clients that can
access all the various data servers. For a complete list of DB2 data server products,
features available, and detailed descriptions and specifications, visit the product
page at the following URL: http://www.ibm.com/software/data/db2/linux-unix-
windows/.

© Copyright IBM Corp. 2014 1

http://www.ibm.com/software/data/db2/linux-unix-windows/
http://www.ibm.com/software/data/db2/linux-unix-windows/

2 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 1. Instances

An instance is a logical database manager environment where you catalog
databases and set configuration parameters. Depending on your needs, you can
create more than one instance on the same physical server providing a unique
database server environment for each instance.

Note: For non-root installations on Linux and UNIX operating systems, a single
instance is created during the installation of your DB2 product. Additional
instances cannot be created.

You can use multiple instances to do the following:
v Use one instance for a development environment and another instance for a

production environment.
v Tune an instance for a particular environment.
v Restrict access to sensitive information.
v Control the assignment of SYSADM, SYSCTRL, and SYSMAINT authority for

each instance.
v Optimize the database manager configuration for each instance.
v Limit the impact of an instance failure. In the event of an instance failure, only

one instance is affected. Other instances can continue to function normally.

Multiple instances will require:
v Additional system resources (virtual memory and disk space) for each instance.
v More administration because of the additional instances to manage.

The instance directory stores all information that pertains to a database instance.
You cannot change the location of the instance directory once it is created. The
directory contains:
v The database manager configuration file
v The system database directory
v The node directory
v The node configuration file (db2nodes.cfg)
v Any other files that contain debugging information, such as the exception or

register dump or the call stack for the DB2 database processes.

Terminology:

Bit-width
The number of bits used to address virtual memory: 32-bit and 64-bit are
the most common. This term might be used to refer to the bit-width of an
instance, application code, external routine code. 32-bit application means
the same things as 32-bit width application.

32-bit DB2 instance
A DB2 instance that contains all 32-bit binaries including 32-bit shared
libraries and executables.

64-bit DB2 instance
A DB2 instance that contains 64-bit shared libraries and executables, and

© Copyright IBM Corp. 2014 3

also all 32-bit client application libraries (included for both client and
server), and 32-bit external routine support (included only on a server
instance).

Designing instances
DB2 databases are created within DB2 instances on the database server. The
creation of multiple instances on the same physical server provides a unique
database server environment for each instance.

For example, you can maintain a test environment and a production environment
on the same computer, or you can create an instance for each application and then
fine-tune each instance specifically for the application it will service, or, to protect
sensitive data, you can have your payroll database stored in its own instance so
that owners of other instances (on the same server) cannot see payroll data.

The installation process creates a default DB2 instance, which is defined by the
DB2INSTANCE environment variable. This is the instance that is used for most
operations. However, instances can be created (or dropped) after installation.

When determining and designing the instances for your environment, note that
each instance controls access to one or more databases. Every database within an
instance is assigned a unique name, has its own set of system catalog tables (which
are used to keep track of objects that are created within the database), and has its
own configuration file. Each database also has its own set of grantable authorities
and privileges that govern how users interact with the data and database objects
stored in it. Figure 1 shows the hierarchical relationship among systems, instances,
and databases.

Data server (DB_SERVER)

Database 2
(RECEIVABLE)

Instance 1 (DB2_DEV)

Database manager
Configuration file 1

Database 1
(PAYABLE)

Database 2
(RECEIVABLE)

Instance 2 (DB2_PROD)

Database manager
Configuration file 2

Database 1
(PAYABLE)

Database manager
program files

Figure 1. Hierarchical relationship among DB2 systems, instances, and databases

4 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You also must be aware of another particular type of instance called the DB2
administration server (DAS). The DAS is a special DB2 administration control point
used to assist with the administration tasks only on other DB2 servers. A DAS
must be running if you want to use the Client Configuration Assistant to discover
the remote databases or the graphical tools that come with the DB2 product, for
example, the IBM Data Studio. There is only one DAS in a DB2 database server,
even when there are multiple instances.

Important: The DB2 Administration Server (DAS) has been deprecated in Version
9.7 and might be removed in a future release. The DAS is not supported in DB2
pureScale environments. Use software programs that use the Secure Shell protocol
for remote administration. For more information, see “ DB2 administration server
(DAS) has been deprecated” at .

Once your instances are created, you can attach to any other instance available
(including instances on other systems). Once attached, you can perform
maintenance and utility tasks that can only be done at the instance level, for
example, create a database, force applications off a database, monitor database
activity, or change the contents of the database manager configuration file that is
associated with that particular instance.

Default instance
As part of your DB2 installation procedure, you can create an initial instance of the
database manager. The default name is DB2_01 in Version 9.5 or later releases.

On Linux and UNIX, the initial instance can be called anything you want within
the naming rules guidelines. The instance name is used to set up the directory
structure.

To support the immediate use of this instance, the following registry variables are
set during installation:
v The environment variable DB2INSTANCE is set to DB2_01.
v The registry variable DB2INSTDEF is set to DB2_01.

These settings establish “DB2” as the default instance. You can change the instance
that is used by default, but first you have to create an additional instance.

Before using the database manager, the database environment for each user must
be updated so that it can access an instance and run the DB2 database programs.
This applies to all users (including administrative users).

On Linux and UNIX operating systems, sample script files are provided to help
you set the database environment. The files are: db2profile for Bourne or Korn
shell, and db2cshrc for C shell. These scripts are located in the sqllib subdirectory
under the home directory of the instance owner. The instance owner or any user
belonging to the instance's SYSADM group can customize the script for all users of
an instance. Use sqllib/userprofile and sqllib/usercshrc to customize a script
for each user.

The blank files sqllib/userprofile and sqllib/usercshrc are created during
instance creation to allow you to add your own instance environment settings. The
db2profile and db2cshrc files are overwritten during an instance update in a DB2
fix pack installation. If you do not want the new environment settings in the
db2profile or db2cshrc scripts, you can override them using the corresponding
user script, which is called at the end of the db2profile or db2cshrc script. During

Chapter 1. Instances 5

an instance upgrade (using the db2iupgrade command), the user scripts are copied
over so that your environment modifications will still be in use.

The sample script contains statements to:
v Update a user's PATH by adding the following directories to the existing search

path: the bin, adm, and misc subdirectories under the sqllib subdirectory of the
instance owner's home directory.

v Set the DB2INSTANCE environment variable to the instance name.

Instance directory
The instance directory stores all information that pertains to a database instance.
The location of the instance directory cannot be changed after it is created.

The instance directory contains:
v The database manager configuration file
v The system database directory
v The node directory
v The node configuration file (db2nodes.cfg)
v Other files that contain debugging information, such as the exception or register

dump or the call stack for the DB2 processes.

On Linux and UNIX operating systems, the instance directory is located in the
INSTHOME/sqllib directory, where INSTHOME is the home directory of the instance
owner. The default instance can be called anything you want within the naming
rules guidelines.

On Windows operating systems, the instance directory is located under the
/sqllib directory where the DB2 database product was installed. The instance
name is the same as the name of the service, so it should not conflict. No instance
name should be the same as another service name. You must have the correct
authorization to create a service.

In a partitioned database environment, the instance directory is shared between all
database partition servers belonging to the instance. Therefore, the instance
directory must be created on a network share drive that all computers in the
instance can access.

db2nodes.cfg

The db2nodes.cfg file is used to define the database partition servers that
participate in a DB2 instance. The db2nodes.cfg file is also used to specify the IP
address or host name of a high-speed interconnect, if you want to use a high-speed
interconnect for database partition server communication.

Multiple instances (Linux, UNIX)
It is possible to have more than one instance on a Linux or UNIX operating system
if the DB2 product was installed with root privileges. Although each instance runs
simultaneously, each is independent. Therefore, you can only work within one
instance of the database manager at a time.

6 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note: To prevent environmental conflicts between two or more instances, you
should ensure that each instance has its own home directory. Errors will be
returned when the home directory is shared. Each home directory can be in the
same or a different file system.

The instance owner and the group that is the System Administration (SYSADM)
group are associated with every instance. The instance owner and the SYSADM
group are assigned during the process of creating the instance. One user ID or
username can be used for only one instance, and that user ID or username is also
referred to as the instance owner.

Each instance owner must have a unique home directory. All of the configuration
files necessary to run the instance are created in the home directory of the instance
owner's user ID or username. If it becomes necessary to remove the instance
owner's user ID or username from the system, you could potentially lose files
associated with the instance and lose access to data stored in this instance. For this
reason, you should dedicate an instance owner user ID or username to be used
exclusively to run the database manager.

The primary group of the instance owner is also important. This primary group
automatically becomes the system administration group for the instance and gains
SYSADM authority over the instance. Other user IDs or usernames that are
members of the primary group of the instance owner also gain this level of
authority. For this reason, you might want to assign the instance owner's user ID
or username to a primary group that is reserved for the administration of
instances. (Also, ensure that you assign a primary group to the instance owner
user ID or username; otherwise, the system-default primary group is used.)

If you already have a group that you want to make the system administration
group for the instance, you can assign this group as the primary group when you
create the instance owner user ID or username. To give other users administration
authority on the instance, add them to the group that is assigned as the system
administration group.

To separate SYSADM authority between instances, ensure that each instance owner
user ID or username uses a different primary group. However, if you choose to
have a common SYSADM authority over multiple instances, you can use the same
primary group for multiple instances.

Multiple instances (Windows)
It is possible to run multiple instances of the DB2 database manager on the same
computer. Each instance of the database manager maintains its own databases and
has its own database manager configuration parameters.

Note: The instances can also belong to different DB2 copies on a computer that
can be at different levels of the database manager. If you are running a 64-bit
Windows system, you can install 32-bit DB2, or 64-bit DB2 but they cannot co-exist
on the same machine.

An instance of the database manager consists of the following:
v A Windows service that represents the instance. The name of the service is same

as the instance name. The display name of the service (from the Services panel)
is the instance name, prefixed with the “DB2 - ” string. For example, for an
instance named “DB2”, there exists a Windows service called “DB2” with a
display name of “DB2 - DB2 Copy Name - DB2”.

Chapter 1. Instances 7

Note: A Windows service is not created for client instances.
v An instance directory. This directory contains the database manager

configuration files, the system database directory, the node directory, the
Database Connection Services (DCS) directory, all the diagnostic log and dump
files that are associated with the instance. The instance directory varies from
edition to edition of the Windows family of operating systems; to verify the
default directory on Windows, check the setting of the DB2INSTPROF environment
variable using the command db2set DB2INSTPROF. You can also change the
default instance directory by changing the DB2INSTPROF environment
variable. For example, to set it to c:\DB2PROFS:
– Set DB2INSTPROF to c:\DB2PROFS using the db2set.exe -g command
– Run DB2ICRT.exe command to create the instance.

v When you create an instance on Windows operating systems, the default
locations for user data files, such as instance directories and the db2cli.ini file,
are the following directories:
– On the Windows XP and Windows 2003 operating systems: Documents and

Settings\All Users\Application Data\IBM\DB2\Copy Name

– On the Windows 2008 and Windows Vista (and later) operating system:
Program Data\IBM\DB2\Copy Name

where Copy Name represents the DB2 copy name.

Note: The location of the db2cli.ini file might change based on whether the
Microsoft ODBC Driver Manager is used, the type of data source names (DSN)
used, the type of client or driver being installed, and whether the registry
variable DB2CLIINIPATH is set.

Creating instances
Although an instance is created as part of the installation of the database manager,
your business needs might require you to create additional instances.

Before you begin

If you belong to the Administrative group on Windows, or you have root user
authority on Linux or UNIX operating systems, you can add additional instances.
The computer where you add the instance becomes the instance-owning computer
(node zero). Ensure that you add instances on a computer where a DB2
administration server resides. Instance IDs should not be root or have password
expired.

Restrictions
v On Linux and UNIX operating systems, additional instances cannot be created

for non-root installations.
v If existing user IDs are used to create DB2 instances, make sure that the user

IDs:
– Are not locked
– Do not have expired passwords

Procedure

To add an instance using the command line:

8 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Enter the command: db2icrt instance_name.
When creating instance on an AIX® server, you must provide the fenced user id,
for example:

DB2DIR/instance/db2icrt -u db2fenc1 db2inst1

When using the db2icrt command to add another DB2 instance, you should
provide the login name of the instance owner and optionally specify the
authentication type of the instance. The authentication type applies to all databases
created under that instance. The authentication type is a statement of where the
authenticating of users will take place.
You can change the location of the instance directory from DB2PATH using the
DB2INSTPROF environment variable. You require write-access for the instance
directory. If you want the directories created in a path other than DB2PATH, you
have to set DB2INSTPROF before entering the db2icrt command.
For DB2 Enterprise Server Edition (ESE), you also must declare that you are
adding a new instance that is a partitioned database system. In addition, when
working with a ESE instance having more than one database partition, and
working with Fast Communication Manager (FCM), you can have multiple
connections between database partitions by defining more TCP/IP ports when
creating the instance.
For example, for Windows operating systems, use the db2icrt command with the
-r port_range parameter. The port range is shown as follows, where the base_port is
the first port that can be used by FCM, and the end_port is the last port in a range
of port numbers that can be used by FCM:
-r:base_port,end_port

Modifying instances
Instances are designed to be as independent as possible from the effects of
subsequent installation and removal of products. On Linux and UNIX, you can
update instances after the installation or removal of executables or components. On
Windows, you run the db2iupdt command.

In most cases, existing instances automatically inherit or lose access to the function
of the product being installed or removed. However, if certain executables or
components are installed or removed, existing instances do not automatically
inherit the new system configuration parameters or gain access to all the additional
function. The instance must be updated.

If the database manager is updated by installing a Program Temporary Fix (PTF)
or a patch, all the existing database instances should be updated using the
db2iupdt command (root installations) or the db2nrupdt command (non-root
installations).

You should ensure you understand the instances and database partition servers
you have in an instance before attempting to change or delete an instance.

Updating the instance configuration (Linux, UNIX)
To update the configuration for root instances on Linux or UNIX operating
systems, use the db2iupdt command. To update non-root instances, run the
db2nrupdt command.

Chapter 1. Instances 9

About this task

Running the db2iupdt command updates the specified instance by performing the
following:
v Replaces the files in the sqllib subdirectory under the home directory of the

instance owner.
v If the node type has changed, then a new database manager configuration file is

created. This is done by merging relevant values from the existing database
manager configuration file with the default database manager configuration file
for the new node type. If a new database manager configuration file is created,
the old file is backed up to the backup subdirectory of the sqllib subdirectory
under the home directory of the instance owner.

The db2iupdt command is located in the DB2DIR/instance directory, where DB2DIR
is the location where the current version of the DB2 database product is installed.

Restrictions

This task applies to root instances only.

Procedure

To update an instance from the command line, enter:
db2iupdt InstName

The InstName is the login name of the instance owner.

Example
v If you installed DB2 Workgroup Server Edition or DB2 Enterprise Server

Edition after the instance was created, enter the following command to update
that instance:

db2iupdt -u db2fenc1 db2inst1

v If you installed the DB2 Connect™ Enterprise Edition after creating the instance,
you can use the instance name as the Fenced ID also:

db2iupdt -u db2inst1 db2inst1

v To update client instances, invoke the following command:
db2iupdt db2inst1

Updating the instance configuration (Windows)
To update the instance configuration on Windows, use the db2iupdt command.

About this task

Running the db2iupdt command updates the specified instance by performing the
following:
v Replaces the files in the sqllib subdirectory under the home directory of the

instance owner.
v If the node type is changed, then a new database manager configuration file is

created. This is done by merging relevant values from the existing database
manager configuration file with the default database manager configuration file
for the new node type. If a new database manager configuration file is created,
the old file is backed up to the backup subdirectory of the sqllib subdirectory
under the home directory of the instance owner.

10 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The db2iupdt command is found in \sqllib\bin directory.

Procedure

To update the instance configuration, issue the db2iupdt command. For example:
db2iupdt InstName

The InstName is the login name of the instance owner.
There are other optional parameters associated with this command:

/h: hostname
Overrides the default TCP/IP host name if there are one or more TCP/IP host
names for the current computer.

/p: instance-profile-path
Specifies the new instance profile path for the updated instance.

/r: baseport,endport
Specifies the range of TCP/IP ports used by the partitioned database instance
when running with multiple database partitions.

/u: username,password
Specifies the account name and password for the DB2 service.

Auto-starting instances
You can enable instances to start automatically after each system restart. The steps
necessary to accomplish this task differ by operating system.

About this task

On Windows operating systems, the database instance that is created during
installation is set as auto-started by default.

On Linux, UNIX and Windows operating systems, an instance created by using
db2icrt is set as a manual start.

Procedure

To configure an instance to start automatically:
v On Windows operating systems, you must go to the Services panel and change

the property of the DB2 service there.
v On Linux and UNIX operating systems, perform the following steps:

1. Verify that the instance's startAtBoot global registry field value is set to 1 by
checking the output of the following command:
db2greg -getinstrec instancename=’<instance name>’

If the startAtBoot global registry field value is not set to 1, set the value to 1
by running the following command:
db2greg -updinstrec instancename=’<instance name>’!startatboot=1

2. Enable the instance to auto-start after each system restart, by running the
following command:
db2iauto -on <instance name>

where instance_name is the login name of the instance.

Chapter 1. Instances 11

Starting instances (Linux, UNIX)
You might need to start or stop a DB2 database during normal business operations.
For example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access host databases.

Before you begin

Before you start an instance on your Linux or UNIX operating system:
1. Log in with a user ID or name that has SYSADM, SYSCTRL, or SYSMAINT

authority on the instance; or log in as the instance owner.
2. Run the startup script as follows, where INSTHOME is the home directory of

the instance you want to use:
. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

Procedure

To start the instance:
v From the command line, enter the db2start command. The DB2 database

manager applies the command to the current instance.
v From IBM Data Studio, open the task assistant for starting the instance. For

more information, see IBM Data Studio: Administering databases with task
assistants.

Starting instances (Windows)
You might need to start or stop a DB2 instance during normal business operations.
For example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access a host database.

Before you begin

In order to successfully launch the DB2 database instance as a service, the user
account must have the correct privilege as defined by the Windows operating
system to start a Windows service. The user account can be a member of the
Administrators, Server Operators, or Power Users group. When extended security
is enabled, only members of the DB2ADMNS and Administrators groups can start
the database by default.

About this task

By default, the db2start command launches the DB2 database instance as a
Windows service. The DB2 database instance on Windows can still be run as a
process by specifying the /D parameter on the db2start command. The DB2
database instance can also be started as a service by using the Control Panel or the
NET START command.

When running in a partitioned database environment, each database partition
server is started as a Windows service. You cannot use the /D parameter to start a
DB2 instance as a process in a partitioned database environment.

12 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Procedure

To start the instance:
v From the command line, enter the db2start command. The DB2 database

manager applies the command to the current instance.
v From IBM Data Studio, open the task assistant for starting the instance.

Attaching to and detaching from instances
On all platforms, to attach to another instance of the database manager, which
might be remote, use the ATTACH command. To detach from an instance, use the
DETACH command.

Before you begin

More than one instance must exist.

Procedure
v To attach to an instance:

– Enter the ATTACH command from the command line.
– Call the sqleatin API from a client application.

v To detach from an instance:
– Enter the DETACH from the command line.
– Call the sqledtin API from a client application.

Example

For example, to attach to an instance called testdb2 that was previously cataloged
in the node directory:

db2 attach to testdb2

After performing maintenance activities for the testdb2 instance, detach from an
instance:

db2 detach

Working with instances on the same or different DB2 copies
You can run multiple instances concurrently, in the same DB2 copy or in different
DB2 copies.

About this task

To prevent one instance from accessing the database of another instance, the
database files for an instance are created under a directory that has the same name
as the instance name. For example, when creating a database on drive C: for
instance DB2, the database files are created inside a directory called C:\DB2.
Similarly, when creating a database on drive C: for instance TEST, the database files
are created inside a directory called C:\TEST. By default, its value is the drive letter
where DB2 product is installed. For more information, see the dftdbpath database
manager configuration parameter.

Chapter 1. Instances 13

Procedure
v To work with instances in the same DB2 copy, you must:

1. Create or upgrade all instances to the same DB2 copy.
2. Set the DB2INSTANCE environment variable to the name of the instance you are

working with. This action must occur before you issue commands against the
instance.

v To work with an instance in a system with multiple DB2 copies, use either of the
following methods:
– Use the Command window from the Start > Programs > IBM DB2 > DB2

Copy Name > Command Line Tools > Command Window. The Command
window is already set up with the correct environment variables for the
particular DB2 copy chosen.

– Use db2envar.bat from a Command window:
1. Open a Command window.
2. Run the db2envar.bat file using the fully qualified path for the DB2 copy

that you want the application to use:
DB2_Copy_install_dir\bin\db2envar.bat

Stopping instances (Linux, UNIX)
You might need to stop the current instance of the database manager.

Before you begin
1. Log in or attach to an instance with a user ID or name that has SYSADM,

SYSCTRL, or SYSMAINT authority on the instance; or, log in as the instance
owner.

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, use the LIST APPLICATIONS command.

3. Force all applications and users off the database by using the FORCE
APPLICATION command.

4. If command line processor sessions are attached to an instance, you must run
the TERMINATE command to end each session before running the db2stop
command.

About this task

When you run commands to start or stop an instance, the DB2 database manager
applies the command to the current instance. For more information, see
“Identifying the current instance” on page 30.

Restrictions

The db2stop command can be run only at the server.

No database connections are allowed when running this command; however, if
there are any instance attachments, they are forced off before the instance is
stopped.

Procedure

To stop an instance on a Linux or UNIX operating system:

14 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v From the command line, enter the db2stop command. The DB2 database
manager applies the command to the current instance.

v From IBM Data Studio, open the task assistant for stopping the instance. For
more information, see IBM Data Studio: Administering databases with task
assistants.

Stopping instances (Windows)
You might need to stop the current instance of the database manager.

Before you begin
1. The user account stopping the DB2 database service must have the correct

privilege as defined by the Windows operating system. The user account can be
a member of the Administrators, Server Operators, or Power Users group.

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, use the LIST APPLICATIONS command.

3. Force all applications and users off the database by using the FORCE
APPLICATION command.

4. If command line processor sessions are attached to an instance, you must run
the TERMINATE command to end each session before running the db2stop
command.

About this task

Note: When you run commands to start or stop an instance, the database manager
applies the command to the current instance. For more information, see
“Identifying the current instance” on page 30.

Restrictions

The db2stop command can be run only at the server.

No database connections are allowed when running this command; however, if
there are any instance attachments, they are forced off before the DB2 database
service is stopped.

When you are using the database manager in a partitioned database environment,
each database partition server is started as a service. To stop an instance, all
services must be stopped.

Procedure

To stop the instance:
v From the command line, enter the db2stop command. The DB2 database

manager applies the command to the current instance.
v From the command line, enter the NET STOP command.
v From IBM Data Studio, open the task assistant for stopping the instance. For

more information, see IBM Data Studio: Administering databases with task
assistants.

Chapter 1. Instances 15

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Upgrading instances
The following upgrade instance tasks are one step in the task for upgrading DB2
servers. For more information, see “Upgrading DB2 servers” in the upgrade
documentation at http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/
com.ibm.db2.luw.qb.upgrade.doc/doc/c0011933.html.

Upgrading DB2 Version 9.5 or DB2 Version 9.7 instances
As part of the overall process of upgrading your DB2 database server to DB2
Version 10.1, you must upgrade your instances.

Before you begin
v You must have root user authority on Linux and UNIX operating systems or

Local Administrator authority on Windows.
v You must install any DB2 database add-on products that were installed in the

DB2 copy from which you are upgrading.
v Before running the db2iupgrade command, the following steps are

recommended:
– Verify that databases are ready for DB2 upgrade. This step is important in

partitioned database environments because the db2ckupgrade command might
return an error in one database partition and cause the instance upgrade to
fail.

– On Linux and UNIX operating systems, ensure that there is 5GB of free space
in the /tmp directory. The instance upgrade trace file is written to /tmp.

– Gather pre-upgrade diagnostic information to help diagnose any problem that
might occur after the upgrade.

About this task

On Linux and UNIX operating systems, you must manually upgrade your
instances. On Windows operating systems, you must manually upgrade them if
you did not choose to automatically upgrade your existing DB2 copy during the
DB2 Version 10.1 installation.

Restriction
v On Linux and UNIX operating systems, you must not set up the instance

environment for the root user. Running the db2iupgrade or the db2icrt
command when you set up the instance environment is not supported.

v For additional restrictions on instance upgrade, review “Upgrade restrictions for
DB2 servers” in Upgrading to DB2 Version 10.1.

v You must be upgrading from DB2 Version 9.5 or DB2 Version 9.7.

Procedure

To manually upgrade your existing instances to DB2 Version 10.1 using the
db2iupgrade command:
1. Determine if you can upgrade your existing instances to a DB2 Version 10.1

copy that you installed by performing the following actions:
v Determine the node type. The following examples show how to use the GET

DBM CFG command to find out the node type:

16 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Operating system Examples

Linux and UNIX db2 GET DBM CFG | grep ’Node type’
Node type = Partitioned database server with local and remote
clients

Windows db2 GET DBM CFG | find “Node type”
Node type = Partitioned database server with local and remote
clients

If you cannot upgrade your instance to any DB2 Version 10.1 copy that you
installed, you must install a copy of the DB2 Version 10.1 database product that
supports upgrade of your instance type before you can proceed with the next
step.

2. Disconnect all users, stop back end processes, and stop your existing instances
by running the following command:
db2stop force (Disconnects all users and stops the instance)
db2 terminate (Terminates back-end process)

3. Log on to the DB2 database server with root user authority on Linux and UNIX
operating systems or Local Administrator authority on Windows operating
systems.

4. Upgrade your existing instances by running the db2iupgrade command from
the target DB2 Version 10.1 copy location. The db2iupgrade command only
needs to be run on the instance owning node. The following table shows how
to run the db2iupgrade command to upgrade your instances:

Operating system Command syntax

Linux and UNIX $DB2DIR/instance/db2iupgrade [-u fencedID] InstNamea

Windows “%DB2PATH%”\bin\db2iupgrade InstName /u:user,passwordb

Note:

a. Where DB2DIR is set to the location you specified during DB2 Version 10.1
installation, fencedID is the user name under which the fenced user-defined
functions (UDFs) and stored procedures will run, and InstName is the login
name of the instance owner. This example upgrades the instance to the
highest level for DB2 database product that you installed, use the -k option
if you want to keep the pre-upgrade instance type.

b. Where DB2PATH is set to the location you specified during DB2 Version 10.1
installation, user and password are the user name and password under which
the DB2 service will run, and InstName is the name of the instance.

If you did not install all DB2 database add-on products that were installed in
the DB2 copy from which you are upgrading, the instance upgrade fails and
returns a warning message. If you plan to install these products later on or you
no longer need the functionality provided by these products, use the -F
parameter to upgrade the instance.
The db2iupgrade command calls the db2ckupgrade command with the -not1
parameter to verify that the local databases are ready for grade. The update.log
is specified as the log file for db2ckupgrade, and the default log file created for
db2iupgrade is /tmp/db2ckupgrade.log.processID. On Linux and UNIX
operating systems, the log file is created in the instance home directory. On
Windows operating systems, the log file is created in the current directory
where you are running the db2iupgrade command. The -not1 parameter
disables the check for type-1 indexes. Verify that you do not have type-1

Chapter 1. Instances 17

indexes in your databases before upgrading the instance. The db2iupgrade does
not run as long as the db2ckupgrade command reports errors. Check the log file
if you encounter any errors.

5. Log on to the DB2 database server as a user with sufficient authority to start
your instance.

6. Restart your instance by running the db2start command:
db2start

7. Verify that your instance is running on to DB2 Version 10.1 by running the
db2level command:
db2level

The Informational tokens should include a string like "DB2 Version 10.1.X.X"
where X is a digit number.

Upgrading DB2 Version 9.8 instances
As part of the overall process of upgrading your DB2 database server to DB2
Version 10.1, you must upgrade your Version 9.8 instances.

Before you begin
v Your DB2 Version 9.8 instance must be a DB2 pureScale instance.
v You must have root user authority on Linux and UNIX operating systems.
v You must install any DB2 database add-on products that were installed in the

DB2 copy from which you are upgrading.
v Before running the db2iupgrade command, the following steps are

recommended:
– Verify that databases are ready for DB2 upgrade. This step is important in

DB2 pureScale environments because the db2ckupgrade command might
return an error in one member and cause the instance upgrade to fail.

– On Linux and UNIX operating systems, ensure that there is 5GB of free space
in the /tmp directory. The instance upgrade trace file is written to /tmp.

– Gather pre-upgrade diagnostic information to help diagnose any problem that
might occur after the upgrade.

About this task

On Linux and UNIX operating systems, you must manually upgrade your DB2
pureScale instances from Version 9.8.

Restrictions
v On Linux and UNIX operating systems, you must not set up the instance

environment for the root user. Running the db2iupgrade or the db2icrt
command when you set up the instance environment is not supported.

v For additional restrictions on instance upgrade, review “Upgrade restrictions for
DB2 servers” in Upgrading to DB2 Version 10.1.

Procedure

To manually upgrade your existing Version 9.8 instances to DB2 Version 10.1 using
the db2iupgrade command:
1. Log on to the DB2 server with root user authority.
2. Upgrade your existing Version 9.8 instances by issuing the db2iupgrade

command from the target DB2 Version 10.1 copy location. You should issue the

18 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

db2iupgrade command from the Version 10.1 installation path from all the
members first and then from the CFs. The following example shows how to use
this command:

$DB2DIR/instance/db2iupgrade [-u fencedID] InstName

Where DB2DIR is set to the location that you specified during DB2 Version 10.1
installation, fencedID is the user name under which the fenced user-defined
functions (UDFs) and stored procedures will run, and InstName is the login
name of the instance owner.
If you did not install all DB2 database add-on products that were installed in
the DB2 copy from which you are upgrading, the instance upgrade fails and
returns a warning message. If you plan to install these products later on or you
no longer need the functionality provided by these products, use the -F
parameter to upgrade the instance.

Note: You must stop the Version 9.8 instance using the db2stop command
before issuing the db2iupgrade command. If you do not stop Version 9.8
instance before using the db2iupgrade command, your instance upgrade might
fail.

3. Log on to the DB2 database server as a user with sufficient authority to start
your instance.

4. Restart the DB2 instance on all members and CFs with updated resources for
the cluster management software and the cluster file system software by
issuing the db2start instance on <hostname> command, and then issue the
db2start command. If you find inconsistencies between the cluster manager
resource model and the db2nodes.cfg repair the cluster manager resources by
using the db2cluster -cm -repair -resources command.

5. Verify that your instances are running on to DB2 Version 10.1 by running the
db2level command: The Informational tokens should include a string like "DB2
Version 10.1.X.X" where X is a digit number.

6. Rebuild the contents of the network resiliency condition and response resources
in the cluster by issuing the db2cluster -cfs -repair -network_resiliency
-all command.

What to do next

After upgrading your Version 9.8 DB2 pureScale instance, you must upgrade your
database. For more details. see “Upgrading databases” in Upgrading to DB2 Version
10.1.

Dropping instances
To drop a root instance, issue the db2idrop command. To drop non-root instances,
you must uninstall your DB2 database product.

Procedure

To remove a root instance using the command line:
1. Stop all applications that are currently using the instance.
2. Stop the Command Line Processor by running terminate commands in each

Command window.
3. Stop the instance by running the db2stop command.
4. Back up the instance directory indicated by the DB2INSTPROF registry variable.

Chapter 1. Instances 19

On Linux and UNIX operating systems, consider backing up the files in the
INSTHOME/sqllib directory (where INSTHOME is the home directory of the
instance owner). For example, you might want to save the database manager
configuration file, db2systm, the db2nodes.cfg file, user-defined functions
(UDFs), or fenced stored procedure applications.

5. For Linux and UNIX operating systems only, log off as the instance owner and
log in as a user with root user authority.

6. Issue the db2idrop command. For example:
db2idrop InstName

where InstName is the name of the instance being dropped.
The db2idrop command removes the instance entry from the list of instances
and removes the sqllib subdirectory under the instance owner's home
directory.

Note: On Linux and UNIX operating systems, if you issue the db2idrop
command and receive a message stating that the INSTHOME/sqllib subdirectory
cannot be removed, one reason could be that the INSTHOME/adm subdirectory
contains files with the .nfs extension. The adm subdirectory is an NFS-mounted
system and the files are controlled on the server. You must delete the *.nfs
files from the file server from where the directory is being mounted. Then you
can remove the INSTHOME/sqllib subdirectory.

7. For Windows operating systems, if the instance that you dropped was the
default instance, set a new default instance by issuing the db2set command:
db2set db2instdef=instance_name -g

where instance_name is the name of an existing instance.
8. For Linux and UNIX operating systems, remove the instance owner's user ID

and group (if used only for that instance). Do not remove these if you are
planning to re-create the instance.
This step is optional since the instance owner and the instance owner group
might be used for other purposes.

20 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 2. Configuring intances

To achieve maximum performance, use the database manager configuration
parameters to allocate enough disk space and memory for your instance. The
default values of the parameters might be sufficient to meet your needs but might
not exploit all the resources available in your environment.

Configuration parameters
When you create a DB2 database instance or a database, a configuration file is
created with default parameter values. You can modify these parameter values to
improve performance and other characteristics of the instance or database.

The disk space and memory allocated by the database manager on the basis of
default values of the parameters might be sufficient to meet your needs. In some
situations, however, you might not be able to achieve maximum performance using
these default values.

Configuration files contain parameters that define values such as the resources
allocated to the DB2 database products and to individual databases, and the
diagnostic level. There are two types of configuration files:
v The database manager configuration file for each DB2 instance
v The database configuration file for each individual database.

The database manager configuration file is created when a DB2 instance is created.
The parameters it contains affect system resources at the instance level,
independent of any one database that is part of that instance. Values for many of
these parameters can be changed from the system default values to improve
performance or increase capacity, depending on your system's configuration.

There is one database manager configuration file for each client installation as well.
This file contains information about the client enabler for a specific workstation. A
subset of the parameters available for a server are applicable to the client.

Database manager configuration parameters are stored in a file named db2systm.
This file is created when the instance of the database manager is created. In Linux
and UNIX environments, this file can be found in the sqllib subdirectory for the
instance of the database manager. In Windows, the default location of this file
varies from edition to edition of the Windows family of operating systems. You can
verify the default directory on Windows, check the setting of the DB2INSTPROF
registry variable using the command db2set DB2INSTPROF. You can also change the
default instance directory by changing the DB2INSTPROF registry variable. If the
DB2INSTPROF variable is set, the file is in the instance subdirectory of the directory
specified by the DB2INSTPROF variable.

Other profile-registry variables that specify where run-time data files should go
should query the value of DB2INSTPROF. This includes the following variables:
v DB2CLIINIPATH

v diagpath

v spm_log_path

© Copyright IBM Corp. 2014 21

All database configuration parameters are stored in a file named SQLDBCONF. You
cannot directly edit these files. You can only change or view these files via a
supplied API or by a tool which calls that API.

In a partitioned database environment, this file resides on a shared file system so
that all database partition servers have access to the same file. The configuration of
the database manager is the same on all database partition servers.

Most of the parameters either affect the amount of system resources that are
allocated to a single instance of the database manager, or they configure the setup
of the database manager and the different communications subsystems based on
environmental considerations. In addition, there are other parameters that serve
informative purposes only and cannot be changed. All of these parameters have
global applicability independent of any single database stored under that instance
of the database manager.

A database configuration file is created when a database is created, and resides where
that database resides. There is one configuration file per database. Its parameters
specify, among other things, the amount of resource to be allocated to that
database. Values for many of the parameters can be changed to improve
performance or increase capacity. Different changes might be required, depending
on the type of activity in a specific database.

Configuring instances with database manager configuration
parameters

The disk space and memory allocated by the database manager based on default
values of the parameters might be sufficient to meet your needs. In some
situations, however, you might not be able to achieve maximum performance by
using these default values.

About this task

Since the default values are oriented towards machines that have relatively small
memory resources and are dedicated as database servers, you might need to
modify these values if your environment has:

Equivalent
physical object

Database

Database
configuration parameters

Database manager
configuration parameters

Operating system
configuration file

System

Instance

Database
object or concept

Figure 2. Relationship between database objects and configuration files

22 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Large databases
v Large numbers of connections
v High performance requirements for a specific application
v Unique query or transaction loads or types

Each transaction processing environment is unique in one or more aspects. These
differences can have a profound impact on the performance of the database
manager when using the default configuration. For this reason, you are strongly
advised to tune your configuration for your environment.

A good starting point for tuning your configuration is to use the Configuration
Advisor or the AUTOCONFIGURE command. These tools generate values for
parameters based on your responses to questions about workload characteristics.

Some configuration parameters can be set to AUTOMATIC, allowing the database
manager to automatically manage these parameters to reflect the current resource
requirements. To turn off the AUTOMATIC setting of a configuration parameter while
maintaining the current internal setting, use the MANUAL keyword with the UPDATE
DATABASE CONFIGURATION command. If the database manager updates the value of
these parameters, the GET DB CFG SHOW DETAIL and GET DBM CFG SHOW DETAIL
commands will show the new value.

Parameters for an individual database are stored in a configuration file named
SQLDBCONF. This file is stored along with other control files for the database in the
SQLnnnnn directory, where nnnnn is a number assigned when the database was
created. Each database has its own configuration file, and most of the parameters
in the file specify the amount of resources allocated to that database. The file also
contains descriptive information, as well as flags that indicate the status of the
database.

Attention: If you edit db2systm, SQLDBCON, or SQLDBCONF by using a method other
than those provided by the database manager, you might make the database
unusable. Do not change these files by using methods other than those
documented and supported by the database manager.

In a partitioned database environment, a separate SQLDBCONF file exists for each
database partition. The values in the SQLDBCONF file might be the same or different
at each database partition, but the recommendation is that in a homogeneous
environment, the configuration parameter values should be the same on all
database partitions. Typically, there could be a catalog node needing different
database configuration parameters setting, while the other data partitions have
different values again, depending on their machine types, and other information.

Procedure
1. Update configuration parameters.

v Using the command line processor:
Commands to change the settings can be entered as follows:
For database manager configuration parameters:
– GET DATABASE MANAGER CONFIGURATION (or GET DBM CFG)
– UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE DBM CFG)
– RESET DATABASE MANAGER CONFIGURATION (or RESET DBM CFG) to reset all

database manager parameters to their default values
– AUTOCONFIGURE

Chapter 2. Configuring intances 23

For database configuration parameters:
– GET DATABASE CONFIGURATION (or GET DB CFG)
– UPDATE DATABASE CONFIGURATION (or UPDATE DB CFG)
– RESET DATABASE CONFIGURATION (or RESET DB CFG) to reset all database

parameters to their default values
– AUTOCONFIGURE

v Using application programming interfaces (APIs):
The APIs can be called from an application or a host-language program. Call
the following DB2 APIs to view or update configuration parameters:
– db2AutoConfig - Access the Configuration Advisor
– db2CfgGet - Get the database manager or database configuration

parameters
– db2CfgSet - Set the database manager or database configuration

parameters
v Using common SQL application programming interface (API) procedures:

You can call the common SQL API procedures from an SQL-based
application, a DB2 command line, or a command script. Call the following
procedures to view or update configuration parameters:
– GET_CONFIG - Get the database manager or database configuration

parameters
– SET_CONFIG - Set the database manager or database configuration

parameters
v Using IBM Data Studio, right-click the instance to open the task assistant to

update the database manager configuration parameters.
2. View updated configuration values.

For some database manager configuration parameters, the database manager
must be stopped (db2stop) and then restarted (db2start) for the new parameter
values to take effect.
For some database parameters, changes take effect only when the database is
reactivated, or switched from offline to online. In these cases, all applications
must first disconnect from the database. (If the database was activated, or
switched from offline to online, then it must be deactivated and reactivated.)
Then, at the first new connect to the database, the changes take effect.
If you change the setting of a configurable online database manager
configuration parameter while you are attached to an instance, the default
behavior of the UPDATE DBM CFG command is to apply the change immediately.
If you do not want the change applied immediately, use the DEFERRED option on
the UPDATE DBM CFG command.
To change a database manager configuration parameter online:
db2 attach to instance-name
db2 update dbm cfg using parameter-name value
db2 detach

For clients, changes to the database manager configuration parameters take
effect the next time the client connects to a server.
If you change a configurable online database configuration parameter while
connected, the default behavior is to apply the change online, wherever
possible. Note that some parameter changes might take a noticeable amount of
time to take effect due to the additional processing time associated with
allocating space. To change configuration parameters online from the command
line processor, a connection to the database is required. To change a database
configuration parameter online:

24 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

db2 connect to dbname
db2 update db cfg using parameter-name parameter-value
db2 connect reset

Each configurable online configuration parameter has a propagation class
associated with it. The propagation class indicates when you can expect a
change to the configuration parameter to take effect. There are four propagation
classes:
v Immediate: Parameters that change immediately upon command or API

invocation. For example, diaglevel has a propagation class of immediate.
v Statement boundary: Parameters that change on statement and

statement-like boundaries. For example, if you change the value of sortheap,
all new requests use the new value.

v Transaction boundary: Parameters that change on transaction boundaries.
For example, a new value for dl_expint is updated after a COMMIT
statement.

v Connection: Parameters that change on new connection to the database. For
example, a new value for dft_degree takes effect for new applications
connecting to the database.

While new parameter values might not be immediately effective, viewing the
parameter settings (by using the GET DATABASE MANAGER CONFIGURATION or GET
DATABASE CONFIGURATION command) always shows the latest updates. Viewing
the parameter settings by using the SHOW DETAIL clause on these commands
shows both the latest updates and the values in memory.

3. Rebind applications after updating database configuration parameters.
Changing some database configuration parameters can influence the access
plan chosen by the SQL and XQuery optimizer. After changing any of these
parameters, consider rebinding your applications to ensure that the best access
plan is being used for your SQL and XQuery statements. Any parameters that
were modified online (for example, by using the UPDATE DATABASE
CONFIGURATION IMMEDIATE command) cause the SQL and XQuery optimizer to
choose new access plans for new query statements. However, the query
statement cache is not purged of existing entries. To clear the contents of the
query cache, use the FLUSH PACKAGE CACHE statement.

Note: A number of configuration parameters (for example, health_mon) are
described as having acceptable values of either Yes or No, or On or Off in the
help and other DB2 documentation. To clarify, Yes should be considered
equivalent to On and No should be considered equivalent to Off.

Environment variables and the profile registries
Environment and registry variables control your DB2 database environment. Use
the DB2 profile registries to view and update information about variables and
instances.

Before the DB2 database profile registries were introduced, setting environment
variables required you to specify a value for an environment variable and restart
your computer. You can now use the DB2 profile registries to control most
variables that affect your DB2 database environment.

Use the profile registries to control the environment variables from one computer.
Different levels of support are provided through the different profiles. You can
administer the environment variables remotely by using the DB2 administration
server.

Chapter 2. Configuring intances 25

A DB2 database is affected by the following profile registries:
v The DB2 instance-level profile registry contains registry variables for an instance.

Values that are defined in this registry override their settings in the global
registry.

v The DB2 global-level profile registry contains settings that are used if a registry
variable is not set for an instance. All instances that pertain to a particular copy
of DB2 Enterprise Server Edition can access this registry.

v The DB2 instance node-level profile registry contains variable settings that are
specific to a database partition in a partitioned database environment. Values
that are defined in this registry override their settings at the instance and global
levels.

v The DB2 user-level profile registry contains settings that are specific to each user.
Values that are defined in this registry override their settings in the other
registries.

The DB2 database system configures the operating environment by checking for
registry values and environment variables and resolving them in the following
order:
1. Environment variables that are set outside the profile registries.
2. Registry variables that are set with the user-level profile.
3. Registry variables that are set with the instance node-level profile.
4. Registry variables that are set with the instance-level profile.
5. Registry variables that are set with the global-level profile.

The DB2 instance profile registry contains a list of all instances that are associated
with the current copy. A list exists for each DB2 copy. You can see the complete list
of all the instances that are available on the system by running the db2ilist
command. This profile registry does not contain variable settings.

Profile registry locations and authorization requirements
The DB2 profile registries have different locations and authorization requirements
on each operating system. Authorization is required to update the values of
variables in each profile registry.

Table 1. Profile registry locations and authorization requirements

Profile registry Location on Windows
Location on Linux and
UNIX

Linux and UNIX
authorization
requirements

Windows authorization
requirements

Instance-level profile
registry

\HKEY_LOCAL_computer
\SOFTWARE\IBM\DB2
\PROFILES\
instance_name

instance_home/sqllib/
profile.env

where instance_home is
the home path of the
instance owner.

-rw-rw-r--
instance_owner

instance_owner_group
profile.env

You must be a member
of the DB2
administrators group
(DB2ADMNS).

Global-level profile
registry

\HKEY_LOCAL_computer
\SOFTWARE\IBM\DB2
\GLOBAL_PROFILE

For root
installations:/var/db2/
global.reg

For non-root
installations:
home_directory/sqllib
/global.reg

To modify a global
registry variable in root
installations, you must
be logged on with root
authority.

You must be a member
of the DB2
administrators group
(DB2ADMNS).

26 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 1. Profile registry locations and authorization requirements (continued)

Profile registry Location on Windows
Location on Linux and
UNIX

Linux and UNIX
authorization
requirements

Windows authorization
requirements

Instance node-level
profile registry

...\SOFTWARE\IBM\DB2\
PROFILES
\instance_name\NODES\
node_number

instance_home/sqllib/
nodes
/node_number.env

where instance_home is
the home path of the
instance owner.

For the directory that
contains the file:

drwxrwsr-w
instance_owner
instance_owner_group
nodes

For the file:

-rw-rw-r--
instance_owner
instance_owner_group
node_number.env

You must be a member
of the DB2
administrators group
(DB2ADMNS).

User-level profile
registry

The Lightweight
Directory Access
Protocol (LDAP)
directory.

Does not apply. Does not apply. You must be a member
of the DB2
administrators group
(DB2ADMNS).

Instance profile registry \HKEY_LOCAL_computer
\SOFTWARE\IBM\DB2\
PROFILES
\instance_name

For root
installations:/var/db2/
global.reg

For non-root
installations:
home_directory/sqllib
/global.reg

None required. None required.

Setting registry and environment variables
Most environment variables are set in the DB2 database profile registries by using
the db2set command. The few variables that are set outside the profile registries
require different commands depending on your operating system.

Before you begin

Ensure that you have the privileges that are required to set registry variables.

On Linux and UNIX operating systems, you must have the following privileges:
v SYSADM authority to set variables in the instance-level registry
v root authority to set variables in the global-level registry

On Windows operating systems, you must have one of the following privileges:
v local Administrator authority
v SYSADM authority with the following conditions:

– If extended security is enabled, SYSADM users must belong to the
DB2ADMNS group.

– If extended security is not enabled, SYSADM users can make updates if the
appropriate permissions are granted to them in the Windows registry.

About this task

When you use the db2set command to set variables in the profile registries, you do
not need to restart your computer for variable values to take effect. However,
changes do not affect DB2 applications that are currently running or users that are

Chapter 2. Configuring intances 27

active. The DB2 registry applies the updated information to DB2 server instances
and DB2 applications that are started after the changes are made.

If DB2 variables are set outside the registry, you cannot administer those variables
remotely. Also, you must restart the computer for the variable values to take effect.

The DB2INSTANCE and DB2NODE DB2 environment variables are not stored in the DB2
profile registries. See the topics about setting environment variables outside the
profile registries for information about setting these variables.

On Linux and UNIX operating systems, the instance-level profile registry is stored
in the profile.env text file. If two or more users set a registry variable with the
db2set command at almost the same time, the size of this file is reduced to zero.
Also, the output from the db2set -all command displays inconsistent values.

Procedure

To set a registry variable:

Issue the db2set command with the relevant parameters.
The following table shows some of the ways that you can set registry variables
with the db2set command. See the db2set command reference topic for more
information about the parameters and usage of this command.

Table 2. Common commands for setting registry variables

Desired Action Command

Set a registry variable for the current or
default instance.

db2set registry_variable_name=new_value

Set a registry variable for all databases in an
instance.

db2set registry_variable_name=new_value
-i instance_name

Set a registry variable for a particular
database partition in an instance.

db2set registry_variable_name=new_value
-i instance_name
database_partition_number

Set a registry variable for all instances that
pertain to a DB2 Enterprise Server Edition
installation.

db2set registry_variable_name=new_value
-g

Set a registry variable at the user level in a
Lightweight Directory Access Protocol
(LDAP) environment.

db2set registry_variable_name=new_value
-ul

Set a registry variable at the global level in
an LDAP environment.
DB2LDAP_KEEP_CONNECTION and
DB2LDAP_SEARCH_SCOPE are the only two
registry variables that can be set at the
LDAP global level.

db2set registry_variable_name=new_value
-gl

Tip: If a registry variable requires Boolean values as arguments, the values YES, 1,
TRUE, and ON are all equivalent and the values NO, 0, FALSE, and OFF are also
equivalent. For any variable, you can specify any of the appropriate equivalent
values.

28 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Setting environment variables outside the profile registries on
Linux and UNIX operating systems

On Linux and UNIX operating systems, you must set the DB2INSTANCE system
environment variable outside the profile registries. If you want to set any other
variables, those variables must be set in one or more of the profile registries.

About this task

You can use the scripts db2profile (for Bourne or Korn shell) and db2cshrc (for C
shell) to set the DB2INSTANCE variable to an instance name that you specify. The
scripts are in the instance_home/sqllib directory, where instance_home is the home
directory of the instance owner.

Instance owners and users with SYSADM privileges can customize these scripts for
all users of an instance. Alternatively, users can copy and customize a script, then
invoke a script directly or add it to their .profile or .login files.

To set variables that are not supported by the DB2 database manager, define them
in the userprofile and usercshrc script files. These files are also in the
instance_home/sqllib directory.

Procedure

To set an environment variable outside the profile registries:

Set an environment variable by using one of the following methods:

Option Description

Set the environment variable at the
instance level for a Bourne or Korn shell.

Run the db2profile script.

Set the environment variable at the
instance level for a C shell.

Run the db2cshrc script.

Set the environment variable for the
current session for a Bourne shell.

Issue the following command:

export env_variable_name=new_value

Set the environment variable for the
current session for a C shell.

Issue the following command:

setenv env_variable_name new_value

Set the environment variable for the
current session for a Korn shell.

Issue the following command:

environment_variable_name=new_value
export environment_variable_name

Setting environment variables outside the profile registries on
Windows

On Windows operating systems, the DB2INSTANCE, DB2NODE, and DB2PATH
environment variables can be set only outside the profile registries. You are
required to set only the DB2PATH variable.

About this task

On Windows operating systems, the following environment variables are set
outside the profile registries:

Chapter 2. Configuring intances 29

v The DB2INSTANCE environment variable specifies the instance that is active by
default. If this variable is not set, the DB2 database manager uses the value of
the DB2INSTDEF variable as the current instance.

v The DB2NODE environment variable specifies the target logical node of a database
partition server to which requests are routed.

v The DB2PATH environment variable specifies the directory where the DB2
database product is installed on Windows 32-bit operating systems.

If you want to set any other variables, those variables must be set in one or more
of the profile registries.

You can determine the value of an environment variable by using the echo
command. For example, to check the value of the DB2NODE environment variable,
issue the following command:
echo %db2path%

Procedure

To set an environment variable outside the profile registries:

Set an environment variable by using one of the following options.

Option Description

Set the environment variable at the
instance level.

1. Follow the appropriate procedure for
your Windows operating system.

2. Restart your computer.

Set the environment variable for the
current session.

Issue the following command:

set env_variable_name=new_value
db2start

Set the environment variable for the
current session for a C shell.

Issue the following command:

setenv env_variable_name new_value

Identifying the current instance
Most commands that you issue or configuration changes that you make apply by
default to the current instance. You can identify the current instance by checking
the values of certain environment variables.

About this task

When you run commands to start or stop the database manager for an instance,
the database manager applies the command to the current instance. To determine
the current instance, the database manager checks the values of certain
environment variables in the following order:
1. The value of the DB2INSTANCE environment variable for the current session.
2. The value of the DB2INSTANCE system environment variable.
3. On Windows operating systems, the value of the DB2INSTDEF registry variable.

Procedure

To identify the current instance:

Check the value of the relevant environment variable.

30 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Option Description

View the value of the DB2INSTANCE
environment variable for the current
session.

Issue the following command:

db2 get instance

View the value of the DB2INSTANCE system
environment variable.

v On Windows operating systems, issue the
following command:

echo %DB2INSTANCE%

v On Linux and UNIX operating systems,
issue the following command:

echo $DB2INSTANCE

View the value of the DB2INSTDEF registry
variable.

Issue the following command:

db2set DB2INSTDEF

Setting variables at the instance level in a partitioned
database environment

In a partitioned database environment, the way that you set registry variables in
the instance-level profile registry depends on your operating system.

About this task

On Linux and UNIX operating systems, the instance-level profile registry is stored
in a text file in the sqllib directory. Because the sqllib directory is on a file
system that is shared by all physical database partitions, you can set a registry
variable from any database partition.

On Windows operating systems, the DB2 database manager stores the
instance-level profile registry in the Windows registry. As a result, data is not
shared across physical database partitions. To set a variable for all database
partitions, you must use the rah command to ensure that the command that you
use to set the variable is run on all computers. If you set a registry variable from a
database partition and do not use the rah command, the variable is set only for
that database partition in the current instance.

You can also use the DB2REMOTEPREG registry variable to configure a computer that
is not the instance owner to use the values of registry variables on the
instance-owning computer.

Procedure

To set a registry variable for all database partitions of the current instance:

Issue the command for your operating system from any database partition.
v On Linux and UNIX operating systems, issue the following command:

db2set registry_variable_name=new_value

v On Windows operating systems, issue the following command:
rah db2set registry_variable_name=new_value

Chapter 2. Configuring intances 31

32 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 3. Autonomic computing

The DB2 autonomic computing environment is self-configuring, self-healing,
self-optimizing, and self-protecting. By sensing and responding to situations that
occur, autonomic computing shifts the burden of managing a computing
environment from database administrators to technology. These capabilities for
DB2 autonomic computing are provided by the automatic features that are
described in the following section.

Automatic features
Automatic features assist you in managing your database system. They allow your
system to perform self-diagnosis and to anticipate problems before they happen by
analyzing real-time data against historical problem data. You can configure some of
the automatic tools to make changes to your system without intervention to avoid
service disruptions.

When you create a database, some of the following automatic features are enabled
by default, but others you must enable manually:

Self-tuning memory (single-partition databases only)
The self-tuning memory feature simplifies the task of memory
configuration. This feature responds to significant changes in workload by
automatically and iteratively adjusting the values of several memory
configuration parameters and the sizes of the buffer pools, thus optimizing
performance. The memory tuner dynamically distributes available memory
resources among several memory consumers, including the sort function,
the package cache, the lock list, and buffer pools. You can disable
self-tuning memory after creating a database by setting the database
configuration parameter self_tuning_mem to OFF.

Automatic storage
The automatic storage feature simplifies storage management for table
spaces. When you create a database, you specify the storage paths for the
default storage group where the database manager places your table space
data. Then, the database manager manages the container and space
allocation for the table spaces as you create and populate them. You can
then also create new storage groups or alter existing ones.

Data compression
Both tables and indexes can be compressed to save storage. Compression is
fully automatic; once you specify that a table or index should be
compressed using the COMPRESS YES clause of the CREATE TABLE,
ALTER TABLE, CREATE INDEX or ALTER INDEX statements, there is
nothing more you must do to manage compression. (Converting an
existing uncompressed table or index to be compressed does require a
REORG to compress existing data). Temporary tables are compressed
automatically; indexes for compressed tables are also compressed
automatically, by default.

Automatic database backups
A database can become unusable due to a wide variety of hardware or
software failures. Ensuring that you have a recent, full backup of your
database is an integral part of planning and implementing a disaster
recovery strategy for your system. Use automatic database backups as part

© Copyright IBM Corp. 2014 33

of your disaster recovery strategy to enable the database manager to back
up your database both properly and regularly.

Automatic reorganization
After many changes to table data, the table and its indexes can become
fragmented. Logically sequential data might reside on nonsequential pages,
forcing the database manager to perform additional read operations to
access data. The automatic reorganization process periodically evaluates
tables and indexes that have had their statistics updated to see if
reorganization is required, and schedules such operations whenever they
are necessary.

Automatic statistics collection
Automatic statistics collection helps improve database performance by
ensuring that you have up-to-date table statistics. The database manager
determines which statistics are required by your workload and which
statistics must be updated. Statistics can be collected either asynchronously
(in the background) or synchronously, by gathering runtime statistics when
SQL statements are compiled. The DB2 optimizer can then choose an
access plan based on accurate statistics. You can disable automatic statistics
collection after creating a database by setting the database configuration
parameter auto_runstats to OFF. Real-time statistics gathering can be
enabled only when automatic statistics collection is enabled. Real-time
statistics gathering is controlled by the auto_stmt_stats configuration
parameter.

Configuration Advisor
When you create a database, this tool is automatically run to determine
and set the database configuration parameters and the size of the default
buffer pool (IBMDEFAULTBP). The values are selected based on system
resources and the intended use of the system. This initial automatic tuning
means that your database performs better than an equivalent database that
you could create with the default values. It also means that you will spend
less time tuning your system after creating the database. You can run the
Configuration Advisor at any time (even after your databases are
populated) to have the tool recommend and optionally apply a set of
configuration parameters to optimize performance based on the current
system characteristics.

Utility throttling
This feature regulates the performance impact of maintenance utilities so
that they can run concurrently during production periods. Although the
impact policy for throttled utilities is defined by default, you must set the
impact priority if you want to run a throttled utility. The throttling system
ensures that the throttled utilities run as frequently as possible without
violating the impact policy. Currently, you can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index
cleanup.

Automatic maintenance
The database manager provides automatic maintenance capabilities for performing
database backups, keeping statistics current, and reorganizing tables and indexes
as necessary. Performing maintenance activities on your databases is essential in
ensuring that they are optimized for performance and recoverability.

Maintenance of your database includes some or all of the following activities:

34 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Backups. When you back up a database, the database manager takes a copy of
the data in the database and stores it on a different medium in case of failure or
damage to the original. Automatic database backups help to ensure that your
database is backed up properly and regularly so that you don't have to worry
about when to back up or know the syntax of the BACKUP command.

v Data defragmentation (table or index reorganization). This maintenance activity
can increase the efficiency with which the database manager accesses your
tables. Automatic reorganization manages an offline table and index
reorganization so that you don't need to worry about when and how to
reorganize your data.

v Data access optimization (statistics collection). The database manager updates
the system catalog statistics on the data in a table, the data in indexes, or the
data in both a table and its indexes. The optimizer uses these statistics to
determine which path to use to access the data. Automatic statistics collection
attempts to improve the performance of the database by maintaining up-to-date
table statistics. The goal is to allow the optimizer to choose an access plan based
on accurate statistics.

v Statistics profiling. Automatic statistics profiling advises when and how to
collect table statistics by detecting outdated, missing, or incorrect statistics, and
by generating statistical profiles based on query feedback.

It can be time-consuming to determine whether and when to run maintenance
activities, but automatic maintenance removes the burden from you. You can
manage the enablement of the automatic maintenance features simply and flexibly
by using the automatic maintenance database configuration parameters. By setting
the automatic maintenance database configuration parameters, you can specify
your maintenance objectives The database manager uses these objectives to
determine whether the maintenance activities need to be done and runs only the
required ones during the next available maintenance window (a time period that
you define).

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
configuring automatic maintenance. Task assistants can guide you through the
process of setting options, reviewing the automatically generated commands to
perform the task, and running these commands. For more details, see
Administering databases with task assistants.

Maintenance windows
A maintenance window is a time period that you define for the running of
automatic maintenance activities, which are backups, statistics collection, statistics
profiling, and reorganizations. An offline window might be the time period when
access to a database is unavailable. An online window might be the time period
when users are permitted to connect to a database.

A maintenance window is different from a task schedule. During a maintenance
window, each automatic maintenance activity is not necessarily run. Instead, the
database manager evaluates the system to determine the need for each
maintenance activity to be run. If the maintenance requirements are not met, the
maintenance activity is run. If the database is already well maintained, the
maintenance activity is not run.

Think about when you want the automatic maintenance activities to be run.
Automatic maintenance activities consume resources on your system and might
affect the performance of your database when the activities are run. Some of these

Chapter 3. Autonomic computing 35

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

activities also restrict access to tables, indexes, and databases. Therefore, you must
provide appropriate windows when the database manager can run maintenance
activities.

Offline maintenance activities
Offline maintenance activities (offline database backups and table and
index reorganizations) are maintenance activities that can occur only in the
offline maintenance window. The extent to which user access is affected
depends on which maintenance activity is running:
v During an offline backup, no applications can connect to the database.

Any currently connected applications are forced off.
v During an offline table or index reorganization (data defragmentation),

applications can access but not update the data in tables.

Offline maintenance activities run to completion even if they go beyond
the window specified. Over time, the internal scheduling mechanism learns
how to best estimate job completion times. If the offline maintenance
window is too small for a particular database backup or reorganization
activity, the scheduler will not start the job the next time and relies on the
health monitor to provide notification of the need to increase the offline
maintenance window.

Online maintenance activities
Online maintenance activities (automatic statistics collection and profiling,
online index reorganizations, and online database backups) are
maintenance activities that can occur only in the online maintenance
window. When online maintenance activities run, any currently connected
applications are allowed to remain connected, and new connections can be
established. To minimize the impact on the system, online database
backups and automatic statistics collection and profiling are throttled by
the adaptive utility throttling mechanism.

Online maintenance activities run to completion even if they go beyond the
window specified.

Self-tuning memory
A memory-tuning feature simplifies the task of memory configuration by
automatically setting values for several memory configuration parameters. When
enabled, the memory tuner dynamically distributes available memory resources
among the following memory consumers: buffer pools, locking memory, package
cache, and sort memory.

The tuner works within the memory limits that are defined by the
database_memory configuration parameter. The value of this parameter can be
automatically tuned as well. When self-tuning is enabled (when the value of
database_memory has been set to AUTOMATIC), the tuner determines the overall
memory requirements for the database and increases or decreases the amount of
memory allocated for database shared memory, depending on current database
requirements. For example, if current database requirements are high and there is
sufficient free memory on the system, more memory is allocated for database
shared memory. If the database memory requirements decrease, or if the amount of
free memory on the system becomes too low, some database shared memory is
released.

If the database_memory configuration parameter is not set to AUTOMATIC, the
database uses the amount of memory that has been specified for this parameter,

36 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

distributing it across the memory consumers as required. You can specify the
amount of memory in one of two ways: by setting database_memory to some
numeric value or by setting it to COMPUTED. In the latter case, the total amount
of memory is based on the sum of the initial values of the database memory heaps
at database startup time.

You can also enable the memory consumers for self tuning as follows:
v For buffer pools, use the ALTER BUFFERPOOL or the CREATE BUFFERPOOL

statement (specifying the AUTOMATIC keyword)
v For locking memory, use the locklist or the maxlocks database configuration

parameter (specifying a value of AUTOMATIC)
v For the package cache, use the pckcachesz database configuration parameter

(specifying a value of AUTOMATIC)
v For sort memory, use the sheapthres_shr or the sortheap database configuration

parameter (specifying a value of AUTOMATIC)

Changes resulting from self-tuning operations are recorded in memory tuning log
files that are located in the stmmlog subdirectory. These log files contain summaries
of the resource demands from each memory consumer during specific tuning
intervals, which are determined by timestamps in the log entries.

If little memory is available, the performance benefits of self tuning will be limited.
Because tuning decisions are based on database workload, workloads with rapidly
changing memory requirements limit the effectiveness of the self-tuning memory
manager (STMM). If the memory characteristics of your workload are constantly
changing, the STMM will tune less frequently and under shifting target conditions.
In this scenario, the STMM will not achieve absolute convergence, but will try
instead to maintain a memory configuration that is tuned to the current workload.

Memory allocation
Memory allocation and deallocation occurs at various times. Memory might be
allocated to a particular memory area when a specific event occurs (for example,
when an application connects), or it might be reallocated in response to a
configuration change.

Figure 3 on page 38 shows the different memory areas that the database manager
allocates for various uses and the configuration parameters that enable you to
control the size of these memory areas. Note that in a partitioned database
environment, each database partition has its own database manager shared
memory set.

Chapter 3. Autonomic computing 37

Memory is allocated by the database manager whenever one of the following
events occurs:

When the database manager starts (db2start)
Database manager shared memory (also known as instance shared memory)
remains allocated until the database manager stops (db2stop). This area
contains information that the database manager uses to manage activity
across all database connections. DB2 automatically controls the size of the
database manager shared memory.

When a database is activated or connected to for the first time
Database global memory is used across all applications that connect to the
database. The size of the database global memory is specified by the
database_memory database configuration parameter. By default, this
parameter is set to automatic, allowing DB2 to calculate the initial amount
of memory allocated for the database and to automatically configure the
database memory size during run time based on the needs of the database.

The following memory areas can be dynamically adjusted:
v Buffer pools (using the ALTER BUFFERPOOL statement)
v Database heap (including log buffers)
v Utility heap
v Package cache
v Catalog cache
v Lock list

The sortheap, sheapthres_shr, and sheapthres configuration parameters
are also dynamically updatable. The only restriction is that sheapthres
cannot be dynamically changed from 0 to a value that is greater than zero,
or vice versa.

Database Manager
Shared Memory

(1)

Application Global Memory

Application
Heap

Application
Heap

(1) (numdb)

(max_connections)

Database Global Memory

Application
Global Memory

Database
Global Memory

Figure 3. Types of memory allocated by the database manager

38 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Shared sort operations are performed by default, and the amount of
database shared memory that can be used by sort memory consumers at
any one time is determined by the value of the sheapthres_shr database
configuration parameter. Private sort operations are performed only if
intra-partition parallelism, database partitioning, and the connection
concentrator are all disabled, and the sheapthres database manager
configuration parameter is set to a non-zero value.

When an application connects to a database
Each application has its own application heap, part of the application global
memory. You can limit the amount of memory that any one application can
allocate by using the applheapsz database configuration parameter, or limit
overall application memory consumption by using the appl_memory
database configuration parameter.

When an agent is created
Agent private memory is allocated for an agent when that agent is assigned
as the result of a connect request or a new SQL request in a partitioned
database environment. Agent private memory contains memory that is
used only by this specific agent. If private sort operations have been
enabled, the private sort heap is allocated from agent private memory.

The following configuration parameters limit the amount of memory that is
allocated for each type of memory area. Note that in a partitioned database
environment, this memory is allocated on each database partition.

numdb This database manager configuration parameter specifies the maximum
number of concurrent active databases that different applications can use.
Because each database has its own global memory area, the amount of
memory that can be allocated increases if you increase the value of this
parameter.

maxappls
This database configuration parameter specifies the maximum number of
applications that can simultaneously connect to a specific database. The
value of this parameter affects the amount of memory that can be allocated
for both agent private memory and application global memory for that
database.

max_connections
This database manager configuration parameter limits the number of
database connections or instance attachments that can access the data
server at any one time.

max_coordagents
This database manager configuration parameter limits the number of
database manager coordinating agents that can exist simultaneously across
all active databases in an instance (and per database partition in a
partitioned database environment). Together with maxappls and
max_connections, this parameter limits the amount of memory that is
allocated for agent private memory and application global memory.

You can use the memory tracker, invoked by the db2mtrk command, to view the
current allocation of memory within the instance. You can also use the
ADMIN_GET_MEM_USAGE table function to determine the total memory
consumption for the entire instance or for just a single database partition. Use the
MON_GET_MEMORY_SET and MON_GET_MEMORY_POOL table functions to
examine the current memory usage at the instance, database, or application level.

Chapter 3. Autonomic computing 39

On UNIX and Linux operating systems, although the ipcs command can be used
to list all the shared memory segments, it does not accurately reflect the amount of
resources consumed. You can use the db2mtrk command as an alternative to ipcs.

Self-tuning memory configuration
Enablement of self-tuning memory and memory consumers is controlled by
database configuration parameters.

Self-tuning memory is enabled through the self_tuning_mem database
configuration parameter.

The following memory-related database configuration parameters can be
automatically tuned:
v database_memory - Database shared memory size
v locklist - Maximum storage for lock list
v maxlocks - Maximum percent of lock list before escalation
v pckcachesz - Package cache size
v sheapthres_shr - Sort heap threshold for shared sorts
v sortheap - Sort heap size

Enabling self-tuning memory
Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools.

About this task

When enabled, the memory tuner dynamically distributes available memory
resources between several memory consumers, including buffer pools, locking
memory, package cache, and sort memory.

Procedure
1. Enable self-tuning memory for the database by setting the self_tuning_mem

database configuration parameter to ON using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

2. To enable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
AUTOMATIC using the UPDATE DATABASE CONFIGURATION command or the
db2CfgSet API.

3. To enable the self tuning of a buffer pool, set the buffer pool size to AUTOMATIC
using the CREATE BUFFERPOOL statement or the ALTER BUFFERPOOL
statement. In a partitioned database environment, that buffer pool should not
have any entries in SYSCAT.BUFFERPOOLDBPARTITIONS.

Results

Note:

1. Because self-tuned memory is distributed between different memory
consumers, at least two memory areas must be concurrently enabled for self
tuning at any given time; for example, locking memory and database shared
memory. The memory tuner actively tunes memory on the system (the value of
the self_tuning_mem database configuration parameter is ON) when one of the
following conditions is true:

40 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v One configuration parameter or buffer pool size is set to AUTOMATIC, and the
database_memory database configuration parameter is set to either a numeric
value or to AUTOMATIC

v Any two of locklist, sheapthres_shr, pckcachesz, or buffer pool size is set
to AUTOMATIC

v The sortheap database configuration parameter is set to AUTOMATIC

2. The value of the locklist database configuration parameter is tuned together
with the maxlocks database configuration parameter. Disabling self tuning of
the locklist parameter automatically disables self tuning of the maxlocks
parameter, and enabling self tuning of the locklist parameter automatically
enables self tuning of the maxlocks parameter.

3. Automatic tuning of sortheap or the sheapthres_shr database configuration
parameter is allowed only when the database manager configuration parameter
sheapthres is set to 0.

4. The value of sortheap is tuned together with sheapthres_shr. Disabling self
tuning of the sortheap parameter automatically disables self tuning of the
sheapthres_shr parameter, and enabling self tuning of the sheapthres_shr
parameter automatically enables self tuning of the sortheap parameter.

5. Self-tuning memory runs only on the high availability disaster recovery
(HADR) primary server. When self-tuning memory is activated on an HADR
system, it will never run on the secondary server, and it runs on the primary
server only if the configuration is set properly. If the HADR database roles are
switched, self-tuning memory operations will also switch so that they run on
the new primary server. After the primary database starts, or the standby
database converts to a primary database through takeover, the self-tuning
memory manager (STMM) engine dispatchable unit (EDU) might not start until
the first client connects.

Disabling self-tuning memory
Self-tuning memory can be disabled for the entire database or for one or more
configuration parameters or buffer pools.

About this task

If self-tuning memory is disabled for the entire database, the memory
configuration parameters and buffer pools that are set to AUTOMATIC remain
enabled for automatic tuning; however, the memory areas remain at their current
size.

Procedure
1. Disable self-tuning memory for the database by setting the self_tuning_mem

database configuration parameter to OFF using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

2. To disable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
MANUAL or specify numeric parameter values using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

3. To disable the self tuning of a buffer pool, set the buffer pool size to a specific
value using the ALTER BUFFERPOOL statement.

Results

Note:

Chapter 3. Autonomic computing 41

v In some cases, a memory configuration parameter can be enabled for self tuning
only if another related memory configuration parameter is also enabled. This
means that, for example, disabling self-tuning memory for the locklist or the
sortheap database configuration parameter disables self-tuning memory for the
maxlocks or the sheapthres_shr database configuration parameter, respectively.

Determining which memory consumers are enabled for self
tuning

You can view the self-tuning memory settings that are controlled by configuration
parameters or that apply to buffer pools.

About this task

It is important to note that responsiveness of the memory tuner is limited by the
time required to resize a memory consumer. For example, reducing the size of a
buffer pool can be a lengthy process, and the performance benefits of trading
buffer pool memory for sort memory might not be immediately realized.

Procedure
v To view the settings for configuration parameters, use one of the following

methods:
– Use the GET DATABASE CONFIGURATION command, specifying the SHOW DETAIL

parameter.
The memory consumers that can be enabled for self tuning are grouped
together in the output as follows:
Description Parameter Current Value Delayed Value
--
Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON
Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200) AUTOMATIC(37200)
Max storage for lock list (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)
Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)
Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC(5600)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000) AUTOMATIC(5000)
Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC(256)

– Use the db2CfgGet API.
The following values are returned:
SQLF_OFF 0
SQLF_ON_ACTIVE 2
SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE indicates that self tuning is both enabled and active, whereas
SQLF_ON_INACTIVE indicates that self tuning is enabled but currently inactive.

v To view the self-tuning settings for buffer pools, use one of the following
methods:
– To retrieve a list of the buffer pools that are enabled for self tuning from the

command line, use the following query:
SELECT BPNAME, NPAGES FROM SYSCAT.BUFFERPOOLS

When self tuning is enabled for a buffer pool, the NPAGES field in the
SYSCAT.BUFFERPOOLS view for that particular buffer pool is set to -2. When
self tuning is disabled, the NPAGES field is set to the current size of the
buffer pool.

– To determine the current size of buffer pools that are enabled for self tuning,
use the GET SNAPSHOT command and examine the current size of the buffer
pools (the value of the bp_cur_buffsz monitor element):
GET SNAPSHOT FOR BUFFERPOOLS ON database-alias

42 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on
a particular database partition creates an exception entry (or updates an
existing entry) for that buffer pool in the
SYSCAT.BUFFERPOOLDBPARTITIONS catalog view. If an exception entry for
a buffer pool exists, that buffer pool does not participate in self-tuning
operations when the default buffer pool size is set to AUTOMATIC.

Self-tuning memory in partitioned database environments
When using the self-tuning memory feature in partitioned database environments,
there are a few factors that determine whether the feature will tune the system
appropriately.

When self-tuning memory is enabled for partitioned databases, a single database
partition is designated as the tuning partition, and all memory tuning decisions are
based on the memory and workload characteristics of that database partition. After
tuning decisions on that partition are made, the memory adjustments are
distributed to the other database partitions to ensure that all database partitions
maintain similar configurations.

The single tuning partition model assumes that the feature will be used only when
all of the database partitions have similar memory requirements. Use the following
guidelines when determining whether to enable self-tuning memory on your
partitioned database.

Cases where self-tuning memory for partitioned databases is
recommended

When all database partitions have similar memory requirements and are running
on similar hardware, self-tuning memory can be enabled without any
modifications. These types of environments share the following characteristics:
v All database partitions are on identical hardware, and there is an even

distribution of multiple logical database partitions to multiple physical database
partitions

v There is a perfect or near-perfect distribution of data
v Workloads are distributed evenly across database partitions, meaning that no

database partition has higher memory requirements for one or more heaps than
any of the others

In such an environment, if all database partitions are configured equally,
self-tuning memory will properly configure the system.

Cases where self-tuning memory for partitioned databases is
recommended with qualification

In cases where most of the database partitions in an environment have similar
memory requirements and are running on similar hardware, it is possible to use
self-tuning memory as long as some care is taken with the initial configuration.
These systems might have one set of database partitions for data, and a much
smaller set of coordinator partitions and catalog partitions. In such environments,
it can be beneficial to configure the coordinator partitions and catalog partitions
differently than the database partitions that contain data.

Self-tuning memory should be enabled on all of the database partitions that
contain data, and one of these database partitions should be designated as the
tuning partition. And because the coordinator and catalog partitions might be

Chapter 3. Autonomic computing 43

configured differently, self-tuning memory should be disabled on those partitions.
To disable self-tuning memory on the coordinator and catalog partitions, set the
self_tuning_mem database configuration parameter on these partitions to OFF.

Cases where self-tuning memory for partitioned databases is not
recommended

If the memory requirements of each database partition are different, or if different
database partitions are running on significantly different hardware, it is good
practice to disable the self-tuning memory feature. You can disable the feature by
setting the self_tuning_mem database configuration parameter to OFF on all
partitions.

Comparing the memory requirements of different database
partitions

The best way to determine whether the memory requirements of different database
partitions are sufficiently similar is to consult the snapshot monitor. If the
following snapshot elements are similar on all database partitions (differing by no
more than 20%), the memory requirements of the database partitions can be
considered sufficiently similar.

Collect the following data by issuing the command: get snapshot for database on
<dbname>

Locks held currently = 0
Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 4968
Lock escalations = 0
Exclusive lock escalations = 0

Total Shared Sort heap allocated = 0
Shared Sort heap high water mark = 0
Post threshold sorts (shared memory) = 0
Sort overflows = 0

Package cache lookups = 13
Package cache inserts = 1
Package cache overflows = 0
Package cache high water mark (Bytes) = 655360

Number of hash joins = 0
Number of hash loops = 0
Number of hash join overflows = 0
Number of small hash join overflows = 0
Post threshold hash joins (shared memory) = 0

Number of OLAP functions = 0
Number of OLAP function overflows = 0
Active OLAP functions = 0

Collect the following data by issuing the command: get snapshot for bufferpools
on <dbname>

Buffer pool data logical reads = 0
Buffer pool data physical reads = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Total buffer pool read time (milliseconds) = 0
Total buffer pool write time (milliseconds)= 0

44 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Using self-tuning memory in partitioned database
environments

When self-tuning memory is enabled in partitioned database environments, there is
a single database partition (known as the tuning partition) that monitors the
memory configuration and propagates any configuration changes to all other
database partitions to maintain a consistent configuration across all the
participating database partitions.

The tuning partition is selected on the basis of several characteristics, such as the
number of database partitions in the partition group and the number of buffer
pools.
v To determine which database partition is currently specified as the tuning

partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD(’get stmm tuning dbpartitionnum’)

v To change the tuning partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD(’update stmm tuning dbpartitionnum <partitionnum>’)

The tuning partition is updated asynchronously or at the next database startup.
To have the memory tuner automatically select the tuning partition, enter -1 for
the partitionnum value.

Starting the memory tuner in partitioned database environments

In a partitioned database environment, the memory tuner will start only if the
database is activated by an explicit ACTIVATE DATABASE command, because
self-tuning memory requires that all partitions be active.

Disabling self-tuning memory for a specific database partition
v To disable self-tuning memory for a subset of database partitions, set the

self_tuning_mem database configuration parameter to OFF for those database
partitions.

v To disable self-tuning memory for a subset of the memory consumers that are
controlled by configuration parameters on a specific database partition, set the
value of the relevant configuration parameter or the buffer pool size to
MANUAL or to some specific value on that database partition. It is
recommended that self-tuning memory configuration parameter values be
consistent across all running partitions.

v To disable self-tuning memory for a particular buffer pool on a specific database
partition, issue the ALTER BUFFERPOOL statement, specifying a size value and
the partition on which self-tuning memory is to be disabled.
An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a
particular database partition will create an exception entry (or update an existing
entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog
view. If an exception entry for a buffer pool exists, that buffer pool will not
participate in self-tuning operations when the default buffer pool size is set to
AUTOMATIC. To remove an exception entry so that a buffer pool can be
enabled for self tuning:
1. Disable self tuning for this buffer pool by issuing an ALTER BUFFERPOOL

statement, setting the buffer pool size to a specific value.
2. Issue another ALTER BUFFERPOOL statement to set the size of the buffer

pool on this database partition to the default.
3. Enable self tuning for this buffer pool by issuing another ALTER

BUFFERPOOL statement, setting the buffer pool size to AUTOMATIC.

Chapter 3. Autonomic computing 45

Enabling self-tuning memory in nonuniform environments

Ideally, data should be distributed evenly across all database partitions, and the
workload that is run on each partition should have similar memory requirements.
If the data distribution is skewed, so that one or more of your database partitions
contain significantly more or less data than other database partitions, these
anomalous database partitions should not be enabled for self tuning. The same is
true if the memory requirements are skewed across the database partitions, which
can happen, for example, if resource-intensive sorts are only performed on one
partition, or if some database partitions are associated with different hardware and
more available memory than others. Self tuning memory can still be enabled on
some database partitions in this type of environment. To take advantage of
self-tuning memory in environments with skew, identify a set of database
partitions that have similar data and memory requirements and enable them for
self tuning. Memory in the remaining partitions should be configured manually.

Configuring memory and memory heaps
With the simplified memory configuration feature, you can configure memory and
memory heaps required by the DB2 data server by using the default AUTOMATIC
setting for most memory-related configuration parameters, thereby, requiring much
less tuning.

The simplified memory configuration feature provides the following benefits:
v You can use a single parameter, instance_memory, to specify all of the memory

that the database manager is allowed to allocate from its private and shared
memory heaps. Also, you can use the appl_memory configuration parameter to
control the maximum amount of application memory that is allocated by DB2
database agents to service application requests.

v You are not required to manually tune parameters used solely for functional
memory.

v You can use the db2mtrk command to monitor heap usage and the
ADMIN_GET_MEM_USAGE table function to query overall memory
consumption.

v The default DB2 configuration requires much less tuning, a benefit for new
instances that you create.

The following table lists the memory configuration parameters whose values
default to the AUTOMATIC setting. These parameters can also be configured
dynamically, if necessary. Note that the meaning of the AUTOMATIC setting differs
with each parameter, as described in the rightmost column.

Table 3. Memory configuration parameters whose values default to AUTOMATIC

Configuration
parameter name Description

Meaning of the AUTOMATIC
setting

appl_memory Controls the maximum amount of
application memory that is
allocated by DB2 database agents
to service application requests.

If an instance_memory limit is
enforced, the AUTOMATIC setting
allows all application memory
requests as long as the total
amount of memory allocated by the
database partition is within the
instance_memory limit. Otherwise,
it allows request as long as there
are system resources available.

46 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 3. Memory configuration parameters whose values default to AUTOMATIC (continued)

Configuration
parameter name Description

Meaning of the AUTOMATIC
setting

applheapsz Starting with Version 9.5, this
parameter refers to the total
amount of application memory that
can be consumed by the entire
application. For partitioned
database environments,
Concentrator, or SMP
configurations, this means that you
might need to increase the
applheapsz value used in previous
releases unless you use the
AUTOMATIC setting.

The AUTOMATIC setting allows the
application heap size to increase. as
needed. A limit might be enforced
if there is an appl_memory limit or
an instance_memory limit.

database_memory Specifies the amount of shared
memory that is reserved for the
database shared memory region.

When enabled, the memory tuner
determines the overall memory
requirements for the database and
increases or decreases the amount
of memory allocated for database
shared memory depending on the
current database requirements.
Starting with Version 9.5, AUTOMATIC
is the default setting for all DB2
server products.

dbheap Determines the maximum memory
used by the database heap.

The AUTOMATIC setting allows the
database heap to increase as
needed. A limit might be enforced
if there is a database_memory limit
or an instance_memory limit.

instance_memory If you are using a DB2 database
products with memory usage
restrictions or if you set this
parameter to a specific value, this
parameter specifies the maximum
amount of memory that can be
allocated for a database partition.

The AUTOMATIC setting allows the
overall memory consumed by the
entire database manager instance to
grow as needed, and STMM
ensures that sufficient system
memory is available to prevent
memory overcommitment. For DB2
database products with memory
usage restrictions, the AUTOMATIC
setting enforces a limit based on
the lower of a computed value
(75-95% of RAM) and the allowable
memory usage under the license.
See instance_memory for details on
when it is enforced as a limit.

mon_heap_sz Determines the amount of the
memory, in pages, to allocate for
database system monitor data.

The AUTOMATIC setting allows the
monitor heap to increase as needed.
A limit might be enforced if there is
an instance_memory limit.

stat_heap_sz Indicates the maximum size of the
heap used in collecting statistics
using the RUNSTATS command.

The AUTOMATIC setting allows the
statistics heap size to increase as
needed. A limit might be enforced
if there is an appl_memory limit or
an instance_memory limit.

Chapter 3. Autonomic computing 47

Table 3. Memory configuration parameters whose values default to AUTOMATIC (continued)

Configuration
parameter name Description

Meaning of the AUTOMATIC
setting

stmtheap Specifies the size of the statement
heap which is used as a work space
for the SQL or XQuery compiler to
compile an SQL or XQuery
statement.

The AUTOMATIC setting allows the
statement heap to increase as
needed. A limit might be enforced
if there is an appl_memory limit or
an instance_memory limit.

Note: The DBMCFG and DBCFG administrative views retrieve database manager
configuration parameter information for the currently connected database for all
database partitions. For the mon_heap_sz, stmtheap, and stat_heap_sz configuration
parameters, the DEFERRED_VALUE column on this view does not persist across
database activations. That is, when you issue the get dbm cfg show detail or get
db cfg show detail command, the output from the query shows updated (in
memory) values.

The following table shows whether configuration parameters are set to the default
AUTOMATIC value during instance upgrade or creation and during database upgrade
or creation.

Table 4. Configuration parameters set to AUTOMATIC during instance and database upgrade
and creation

Configuration
parameters

Set to AUTOMATIC
upon instance
upgrade or creation

Set to AUTOMATIC
upon database
upgrade

Set to AUTOMATIC
upon database
creation

applheapsz1 X X

dbheap X X

instance_memory X

mon_heap_sz1 X

stat_heap_sz1 X X

stmtheap1 X

As part of the move to simplified memory configuration, the following elements
have been deprecated:
v Configuration parameters appgroup_mem_sz, groupheap_ratio, and

app_ctl_heap_sz. These configuration parameters are replaced with the new
appl_memory configuration parameter.

v The -p parameter of the db2mtrk memory tracker command. This option, which
lists private agent memory heaps, is replaced with the -a parameter, which lists
all application memory consumption.

Agent and process model configuration
Starting with Version 9.5, DB2 databases feature a less complex and more flexible
mechanism for configuring process model-related parameters. This simplified
configuration eliminates the need for regular adjustments to these parameters and
reduces the time and effort required to configure them. It also eliminates the need
to shut down and restart DB2 instances to have the new values take effect.

To allow for dynamic and automatic agent and memory configuration, slightly
more memory resources are required when an instance is activated.

48 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Automatic storage
Automatic storage simplifies storage management for table spaces. You can create
storage groups consisting of paths on which the database manager places your
data. Then, the database manager manages the container and space allocation for
the table spaces as you create and populate them. You can specify the paths of the
default storage group when creating the database.

Databases use automatic storage by default
Automatic storage can make storage management easier. Rather than managing
storage at the table space level using explicit container definitions, storage is
managed at the storage group level and the responsibility of creating, extending
and adding containers is taken over by the database manager.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.
By default, all databases are created with automatic storage. However, if the
database is created specifying the AUTOMATIC STORAGE NO clause it cannot
use automatic storage managed table spaces.

When you create a database, by default, a default storage group is automatically
created. You can establish one or more initial storage paths for it. As a database
grows, the database manager creates containers across those storage paths, and
extends them or automatically creates new ones as needed. The list of storage
paths can be displayed using the ADMIN_GET_STORAGE_PATHS administrative
view.

If a database has no storage groups, you can create a storage group using the
CREATE STOGROUP statement. The newly created storage group is the default
storage group and all new automatic storage managed table spaces are added to
the database using this storage group. You can change the default storage group
using the SET AS DEFAULT clause of the CREATE STOGROUP statement or the
ALTER STOGROUP statement.

Important:

v Adding storage paths does not convert existing non-automatic storage table
spaces to use automatic storage. You can convert database managed (DMS) table
spaces to use automatic storage. System managed (SMS) table spaces cannot be
converted to automatic storage. See “Converting table spaces to use automatic
storage” on page 133 for more information.

v Once a database has storage groups created, it always has at least one storage
group. You cannot remove the last storage group from the database manger.

v To help ensure predictable performance, the storage paths added to a storage
group should have similar media characteristics.

Data compression
You can reduce storage needed for your data by using the compression capabilities
built into DB2 for Linux, UNIX, and Windows to reduce the size of tables, indexes
and even your backup images.

Tables and indexes often contain repeated information. This repetition can range
from individual or combined column values, to common prefixes for column
values, or to repeating patterns in XML data. There are a number of compression

Chapter 3. Autonomic computing 49

capabilities that you can use to reduce the amount of space required to store your
tables and indexes, along with features you can employ to determine the savings
compression can offer.

You can also use backup compression to reduce the size of your backups. 1

Compression capabilities included with most editions of DB2 V9.7 include:
v Value compression
v Backup compression.

The following additional compression capabilities are available with the a license
for the DB2 Storage Optimization Feature:
v Row compression, including compression for XML storage objects.
v Temporary table compression
v Index compression.

For more details about index compression, see “Index compression” on page 336.

For more details about backup compression, see “Backup compression” on page
740.

Automatic database backup
A database might become unusable due to a variety of hardware or software
failures. Automatic database backup simplifies database backup management tasks
for the DBA by always ensuring that a recent full backup of the database is
performed as needed.

It determines the need to perform a backup operation based on one or more of the
following measures:
v You have never completed a full database backup
v The time elapsed since the last full backup is more than a specified number of

hours
v The transaction log space consumed since the last backup is more than a

specified number of 4 KB pages (in archive logging mode only).

Protect your data by planning and implementing a disaster recovery strategy for
your system. If suitable to your needs, you may incorporate the automatic
database backup feature as part of your backup and recovery strategy.

If the database is enabled for roll-forward recovery (archive logging), then
automatic database backup can be enabled for either online or offline backup.
Otherwise, only offline backup is available. Automatic database backup supports
disk, tape, Tivoli® Storage Manager (TSM), and vendor DLL media types.

If backup to disk is selected, the automatic backup feature will regularly delete
backup images from the directory specified in the automatic database backup
configuration. Only the most recent backup image will be available at any given
time, regardless of the number of full backups that are specified in the automatic
backup policy file. It is recommended that this directory be kept exclusively for the
automatic backup feature and not be used to store other backup images.

1. See “Backup compression” in Data Recovery and High Availability Guide and Reference for more information.

50 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The automatic database backup feature can be enabled or disabled by using the
auto_db_backup and auto_maint database configuration parameters. In a
partitioned database environment, the automatic database backup runs on each
database partition if the database configuration parameters are enabled on that
database partition.

You can also configure automatic backup using one of the system stored
procedures called AUTOMAINT_SET_POLICY and
AUTOMAINT_SET_POLICYFILE.

Automatic table and index maintenance
After many changes to table data, a table and its indexes can become fragmented.
Logically sequential data might be found on nonsequential pages, forcing
additional read operations by the database manager to access data.

The statistical information that is collected by the RUNSTATS utility shows the
distribution of data within a table. Analysis of these statistics can indicate when
and what type of reorganization is necessary.

The automatic reorganization process determines the need for table or index
reorganization by using formulas that are part of the REORGCHK utility. It
periodically evaluates tables and indexes that had their statistics updated to see
whether reorganization is required, and schedules such operations whenever they
are necessary.

The automatic reorganization feature can be enabled or disabled through the
auto_reorg, auto_tbl_maint, and auto_maint database configuration parameters.

In a partitioned database environment, the initiation of automatic reorganization is
done on the catalog database partition. These configuration parameters are enabled
only on the catalog database partition. The REORG operation, however, runs on all
of the database partitions on which the target tables are found.

If you are unsure about when and how to reorganize your tables and indexes, you
can incorporate automatic reorganization as part of your overall database
maintenance plan.

You can also reorganize multidimensional clustering (MDC) and insert time
clustering (ITC) tables to reclaim space. The freeing of extents from MDC and ITC
tables is only supported for tables in DMS table spaces and automatic storage.
Freeing extents from your MDC and ITC tables can be done in an online fashion
with the RECLAIM EXTENTS option of the REORG TABLE command.

You can also schedule an alternate means to reclaim space from your indexes. The
REORG INDEX command has an index clause in which you can specify
space-reclaim-options. When you specify RECLAIM EXTENTS in
space-reclaim-options, space is released back to the table space in an online
fashion. This operation provides space reclamation without the need for a full
rebuild of the indexes. The REBUILD option of the REORG INDEX command also
reclaims space, but not necessarily in an online fashion.

Automatic reorganization on data partitioned tables

For DB2 Version 9.7 Fix Pack 1 and earlier releases, automatic reorganization
supports reorganization of a data partitioned table for the entire table. For DB2

Chapter 3. Autonomic computing 51

V9.7 Fix Pack 1 and later releases, automatic reorganization supports reorganizing
data partitions of a partitioned table and reorganizing the partitioned indexes on a
data partition of a partitioned table.

To avoid placing an entire data partitioned table into ALLOW NO ACCESS mode,
automatic reorganization performs REORG INDEXES ALL operations at the data
partition level on partitioned indexes that need to be reorganized. Automatic
reorganization performs REORG INDEX operations on any nonpartitioned index that
needs to be reorganized.

Automatic reorganization performs the following REORG TABLE operations on data
partitioned tables:
v If any nonpartitioned indexes (except system-generated XML path indexes) are

defined on the table and there is only one partition that needs to be reorganized,
automatic reorganization performs a REORG TABLE operation with the ON DATA
PARTITION clause to specify the partition that needs to be reorganized.
Otherwise, automatic reorganization performs a REORG TABLE on the entire table
without the ON DATA PARTITION clause.

v If no nonpartitioned indexes (except system-generated XML path indexes) are
defined on the table, automatic reorganization performs a REORG TABLE operation
with the ON DATA PARTITION clause on each partition that needs to be
reorganized.

Automatic reorganization on volatile tables

You can enable automatic index reorganization for volatile tables. The automatic
reorganization process determines whether index reorganization is required for
volatile tables and schedules a REORG INDEX CLEANUP. Index reorganization is
performed periodically on volatile tables and releases space that can be reused by
the indexes defined on these tables.

Statistics cannot be collected in volatile tables because they are updated frequently.
To determine what indexes need to be reorganized, automatic reorganization uses
the numInxPseudoEmptyPagesForVolatile attribute instead of REORGCHK. The
number of pseudo empty pages is maintained internally, visible through
mon_get_index, and does not require a RUNSTATS operation like REORGCHK.
This attribute in the AUTO_REORG policy indicates how many empty index pages
with pseudo deleted keys an index must have so index reorganization is triggered.

To enable automatic index reorganization in volatile tables:
v The DB2_WORKLOAD registry variable must be set to SAP.
v Automatic reorganization must be enabled.
v The numInxPseudoEmptyPagesForVolatile attribute must be set.

Automatic statistics collection
The DB2 optimizer uses catalog statistics to determine the most efficient access
plan for a query. Out-of-date or incomplete table or index statistics might lead the
optimizer to select a suboptimal plan, which slows down query execution.
However, deciding which statistics to collect for a given workload is complex, and
keeping these statistics up-to-date is time-consuming.

With automatic statistics collection, part of the DB2 automated table maintenance
feature, you can let the database manager determine whether statistics need to be
updated. Automatic statistics collection can occur synchronously at statement

52 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

compilation time by using the real-time statistics (RTS) feature, or the RUNSTATS
command can be enabled to simply run in the background for asynchronous
collection. Although background statistics collection can be enabled while real-time
statistics collection is disabled, background statistics collection must be enabled for
real-time statistics collection to occur. Automatic background statistics collection
auto_runstats and automatic real-time statistics collection auto_stmt_stats are
enabled by default when you create a database.

Starting with DB2 Version 9, you can use the Configuration Advisor to determine
the initial configuration for new databases including the appropriate setting for the
auto_stmt_stats database configuration parameter.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
configuring automatic statistics collection. Task assistants can guide you through
the process of setting options, reviewing the automatically generated commands to
perform the task, and running these commands. For more details, see
Administering databases with task assistants.

Understanding asynchronous and real-time statistics collection

When real-time statistics collection is enabled, statistics can be fabricated by using
certain metadata. Fabrication means deriving or creating statistics, rather than
collecting them as part of normal RUNSTATS command activity. For example, the
number of rows in a table can be derived from knowing the number of pages in
the table, the page size, and the average row width. In some cases, statistics are
not derived, but are maintained by the index and data manager and can be stored
directly in the catalog. For example, the index manager maintains a count of the
number of leaf pages and levels in each index.

The query optimizer determines how statistics are collected, based on the needs of
the query and the amount of table update activity (the number of update, insert, or
delete operations).

Real-time statistics collection provides more timely and more accurate statistics.
Accurate statistics can result in better query execution plans and improved
performance. Regardless of whether real-time statistics is enabled, asynchronous
statistics collection occurs at two-hour intervals. This interval might not be
frequent enough to provide accurate statistics for some applications.

Real-time statistics collection also initiates asynchronous collection requests when:
v Table activity is not high enough to require synchronous collection, but is high

enough to require asynchronous collection
v Synchronous statistics collection used sampling because the table was large
v Synchronous statistics were fabricated
v Synchronous statistics collection failed because the collection time was exceeded

At most, two asynchronous requests can be processed at the same time, but only
for different tables. One request must have been initiated by real-time statistics
collection, and the other must have been initiated by asynchronous statistics
collection checking.

The performance impact of automatic statistics collection is minimized in several
ways:
v Asynchronous statistics collection is performed by using a throttled RUNSTATS

utility. Throttling controls the amount of resource that is consumed by the

Chapter 3. Autonomic computing 53

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

RUNSTATS utility, based on current database activity: as database activity
increases, the utility runs more slowly, reducing its resource demands.

v Synchronous statistics collection is limited to 5 seconds per query. This value can
be controlled by the RTS optimization guideline. If synchronous collection
exceeds the time limit, an asynchronous collection request is submitted.

v Synchronous statistics collection does not store the statistics in the system
catalog. Instead, the statistics are stored in a statistics cache and are later stored
in the system catalog by an asynchronous operation. This storage sequence
avoids the overhead and possible lock contention involved when updating the
system catalog. Statistics in the statistics cache are available for subsequent SQL
compilation requests.

v Only one synchronous statistics collection operation occurs per table. Other
agents requiring synchronous statistics collection fabricate statistics, if possible,
and continue with statement compilation. This behavior is also enforced in a
partitioned database environment, where agents on different database partitions
might require synchronous statistics.

v You can customize the type of statistics that are collected by enabling statistics
profiling, which uses information about previous database activity to determine
which statistics are required by the database workload, or by creating your own
statistics profile for a particular table.

v Only tables with missing statistics or high levels of activity (as measured by the
number of update, insert, or delete operations) are considered for statistics
collection. Even if a table meets the statistics collection criteria, synchronous
statistics are not collected unless query optimization requires them. In some
cases, the query optimizer can choose an access plan without statistics.

v For asynchronous statistics collection checking, large tables (tables with more
than 4000 pages) are sampled to determine whether high table activity changed
the statistics. Statistics for such large tables are collected only if warranted.

v For asynchronous statistics collection, the RUNSTATS utility is automatically
scheduled to run during the online maintenance window that is specified in
your maintenance policy. This policy also specifies the set of tables that are
within the scope of automatic statistics collection, further minimizing
unnecessary resource consumption.

v Synchronous statistics collection and fabrication do not follow the online
maintenance window that is specified in your maintenance policy, because
synchronous requests must occur immediately and have limited collection time.
Synchronous statistics collection and fabrication follow the policy that specifies
the set of tables that are within the scope of automatic statistics collection.

v While automatic statistics collection is being performed, the affected tables are
still available for regular database activity (update, insert, or delete operations).

v Real-time statistics (synchronous or fabricated) are not collected for nicknames.
To refresh nickname statistics in the system catalog for synchronous statistics
collection, call the SYSPROC.NNSTAT procedure. For asynchronous statistics
collection, DB2 for Linux, UNIX, and Windows automatically calls the
SYSPROC.NNSAT procedure to refresh the nickname statistics in the system
catalog.

v Real-time statistics (synchronous or fabricated) are not collected for statistical
views.

v Declared temporary tables (DGTTs) can have only Real-time statistics collected.

Although real-time statistics collection is designed to minimize statistics collection
overhead, try it in a test environment first to ensure that there is no negative

54 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

performance impact. There might be a negative performance impact in some online
transaction processing (OLTP) scenarios, especially if there is an upper boundary
for how long a query can run.

Real-time synchronous statistics collection is performed for regular tables,
materialized query tables (MQTs), and global temporary tables. Asynchronous
statistics are not collected for global temporary tables. Global temporary tables
cannot be excluded from real-time statistics via the automatic maintenance policy
facility.

Automatic statistics collection (synchronous or asynchronous) does not occur for:
v Tables that are marked VOLATILE (tables that have the VOLATILE field set in

the SYSCAT.TABLES catalog view)
v Created temporary tables (CGTTs)
v Tables that had their statistics manually updated, by issuing UPDATE statements

directly against SYSSTAT catalog views
When you modify table statistics manually, the database manager assumes that
you are now responsible for maintaining their statistics. To induce the database
manager to maintain statistics for a table that had its statistics manually
updated, collect statistics by using the RUNSTATS command or specify statistics
collection when using the LOAD command. Tables created before Version 9.5 that
had their statistics updated manually before upgrading are not affected, and
their statistics are automatically maintained by the database manager until they
are manually updated.

Statistics fabrication does not occur for:
v Statistical views
v Tables that had their statistics manually updated, by issuing UPDATE statements

directly against SYSSTAT catalog views. If real-time statistics collection is not
enabled, some statistics fabrication still occurs for tables that had their statistics
manually updated.

In a partitioned database environment, statistics are collected on a single database
partition and then extrapolated. The database manager always collects statistics
(both synchronous and asynchronous) on the first database partition of the
database partition group.

No real-time statistics collection activity will occur until at least five minutes after
database activation.

Real-time statistics processing occurs for both static and dynamic SQL.

A table that was truncated, either by using the TRUNCATE statement or by using
the IMPORT command, is automatically recognized as having out of date statistics.

Automatic statistics collection, both synchronous and asynchronous, invalidates
cached dynamic statements that reference tables for which statistics were collected.
This is done so that cached dynamic statements can be re-optimized with the latest
statistics.

Asynchronous automatic statistics collection operations might be interrupted when
the database is deactivated. If the database was not explicitly activated using the
ACTIVATE DATABASE command or API, then the database is deactivated when the
last user disconnects from the database. If operations are interrupted, then error

Chapter 3. Autonomic computing 55

messages might be recorded in the DB2 diagnostic log file. To avoid interrupting
asynchronous automatic statistics collection operations, explicitly activate the
database.

Real-time statistics and explain processing

There is no real-time processing for a query that is only explained (not executed)
by using the EXPLAIN facility. The following table summarizes the behavior under
different values of the CURRENT EXPLAIN MODE special register.

Table 5. Real-time statistics collection as a function of the value of the CURRENT EXPLAIN
MODE special register

CURRENT EXPLAIN MODE value Real-time statistics collection considered

YES Yes

EXPLAIN No

NO Yes

REOPT Yes

RECOMMEND INDEXES No

EVALUATE INDEXES No

Automatic statistics collection and the statistics cache

A statistics cache was introduced in DB2 Version 9.5 to make synchronously
collected statistics available to all queries. This cache is part of the catalog cache. In
a partitioned database environment, the statistics cache resides only on the catalog
database partition even though each database partition has a catalog cache. When
real-time statistics collection is enabled, catalog cache requirements are higher.
Consider tuning the value of the catalogcache_sz database configuration
parameter when real-time statistics collection is enabled.

Automatic statistics collection and statistical profiles

Synchronous and asynchronous statistics are collected according to a statistical
profile that is in effect for a table, with the following exceptions:
v To minimize the overhead of synchronous statistics collection, the database

manager might collect statistics by using sampling. In this case, the sampling
rate and method might be different from those rates and methods that are
specified in the statistical profile.

v Synchronous statistics collection might choose to fabricate statistics, but it might
not be possible to fabricate all statistics that are specified in the statistical profile.
For example, column statistics such as COLCARD, HIGH2KEY, and LOW2KEY
cannot be fabricated unless the column is leading in some index.

If synchronous statistics collection cannot collect all statistics that are specified in
the statistical profile, an asynchronous collection request is submitted.

The following sections explain different operating characteristics of automatic
statistics collection.

56 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Configuration Advisor
You can use the Configuration Advisor to obtain recommendations for the initial
values of the buffer pool size, database configuration parameters, and database
manager configuration parameters.

To use the Configuration Advisor, specify the AUTOCONFIGURE command for an
existing database, or specify AUTOCONFIGURE as an option of the CREATE DATABASE
command. To configure your database, you must have SYSADM, SYSCTRL, or
SYSMAINT authority.

You can display the recommended values or apply them by specifying the APPLY
parameter in the CREATE DATABASE and AUTOCONFIGURE commands. The
recommendations are based on input that you provide and system information that
the advisor gathers.

The values suggested by the Configuration Advisor are relevant for only one
database per instance. If you want to use this advisor on more than one database,
each database must belong to a separate instance.

Tuning configuration parameters using the Configuration
Advisor

The Configuration Advisor helps you to tune performance and to balance memory
requirements for a single database per instance by suggesting which configuration
parameters to modify and suggesting values for them. The Configuration Advisor
is automatically run when you create a database.

About this task

To disable this feature or to explicitly enable it, use the db2set command before
creating a database, as follows:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

To define values for several of the configuration parameters and to determine the
scope of the application of those parameters, use the AUTOCONFIGURE command,
specifying one of the following options:
v NONE, meaning that none of the values are applied
v DB ONLY, meaning that only database configuration and buffer pool values are

applied
v DB AND DBM, meaning that all parameters and their values are applied

Note: Even if you automatically enabled the Configuration Advisor when you ran
the CREATE DATABASE command, you can still specify AUTOCONFIGURE command
options. If you did not enable the Configuration Advisor when you ran the CREATE
DATABASE command, you can run the Configuration Advisor manually afterwards.

Example: Requesting configuration recommendations using
the Configuration Advisor

This scenario demonstrates to run the Configuration Advisor from the command
line to generate recommendations and shows the output that the Configuration
Advisor produces.

Chapter 3. Autonomic computing 57

To run the Configuration Advisor:
1. Connect to the PERSONL database by specifying the following command from

the command line:
DB2 CONNECT TO PERSONL

2. Issue the AUTOCONFIGURE command from the CLP, specifying how the database
is used. As shown in the following example, set a value of NONE for the APPLY
option to indicate that you want to view the configuration recommendations
but not apply them:

DB2 AUTOCONFIGURE USING
MEM_PERCENT 60
WORKLOAD_TYPE MIXED
NUM_STMTS 500
ADMIN_PRIORITY BOTH
IS_POPULATED YES
NUM_LOCAL_APPS 0
NUM_REMOTE_APPS 20
ISOLATION RR
BP_RESIZEABLE YES

APPLY NONE

If you are unsure about the value of a parameter for the command, you can
omit it, and the default will be used. You can pass up to 10 parameters without
values: MEM_PERCENT, WORKLOAD_TYPE, and so on, as shown in the previous
example.

The recommendations generated by the AUTOCONFIGURE command are displayed on
the screen in table format, as shown in Figure 4 on page 59

58 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If you agree with all of the recommendations, either reissue the AUTOCONFIGURE
command but specify that you want the recommended values to be applied by
using the APPLY option, or update individual configuration parameters using the
UPDATE DATABASE MANAGER CONFIGURATION command and the UPDATE DATABASE
CONFIGURATION command.

Utility throttling
Utility throttling regulates the performance impact of maintenance utilities so that
they can run concurrently during production periods. Although the impact policy,
a setting that allows utilities to run in throttled mode, is defined by default, you
must set the impact priority, a setting that each cleaner has indicating its throttling
priority, when you run a utility if you want to throttle it.

Former and Applied Values for Database Manager Configuration
Description Parameter Current Value Recommended Value

Application support layer heap size (4KB) (ASLHEAPSZ) = 15 15
No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) = AUTOMATIC AUTOMATIC
Enable intra-partition parallelism (INTRA_PARALLEL) = NO NO
Maximum query degree of parallelism (MAX_QUERYDEGREE) = ANY 1
Agent pool size (NUM_POOLAGENTS) = 100(calculated) 200
Initial number of agents in pool (NUM_INITAGENTS) = 0 0
Max requester I/O block size (bytes) (RQRIOBLK) = 32767 32767
Sort heap threshold (4KB) (SHEAPTHRES) = 0 0

Former and Applied Values for Database Configuration
Description Parameter Current Value Recommended Value

Default application heap (4KB) (APPLHEAPSZ) = 256 256
Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4) 260
Changed pages threshold (CHNGPGS_THRESH) = 60 80
Database heap (4KB) (DBHEAP) = 1200 2791
Degree of parallelism (DFT_DEGREE) = 1 1
Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32
Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC AUTOMATIC
Default query optimization class (DFT_QUERYOPT) = 5 5
Max storage for lock list (4KB) (LOCKLIST) = 100 AUTOMATIC
Log buffer size (4KB) (LOGBUFSZ) = 8 99
Log file size (4KB) (LOGFILSIZ) = 1000 1024
Number of primary log files (LOGPRIMARY) = 3 8
Number of secondary log files (LOGSECOND) = 2 3
Max number of active applications (MAXAPPLS) = AUTOMATIC AUTOMATIC
Percent. of lock lists per application (MAXLOCKS) = 10 AUTOMATIC
Group commit count (MINCOMMIT) = 1 1
Number of asynchronous page cleaners (NUM_IOCLEANERS) = 1 1
Number of I/O servers (NUM_IOSERVERS) = 3 4
Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8) 1533
Percent log file reclaimed before soft chckpt (SOFTMAX) = 100 320
Sort list heap (4KB) (SORTHEAP) = 256 AUTOMATIC
statement heap (4KB) (STMTHEAP) = 4096 4096
Statistics heap size (4KB) (STAT_HEAP_SZ) = 4384 4384
Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000 113661
Self tuning memory (SELF_TUNING_MEM) = ON ON

Automatic runstats (AUTO_RUNSTATS) = ON ON
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = 5000 AUTOMATIC

Former and Applied Values for Bufferpool(s)
Description Parameter Current Value Recommended Value

IBMDEFAULTBP Bufferpool size = -2 340985

DB210203I AUTOCONFIGURE completed successfully. Database manager or database
configuration values may have been changed. The instance must be restarted before
any changes come into effect. You may also want to rebind your packages after the
new configuration parameters take effect so that the new values will be used.

Figure 4. Configuration Advisor sample output

Chapter 3. Autonomic computing 59

The throttling system ensures that the throttled utilities are run as frequently as
possible without violating the impact policy. You can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index cleanups.

You define the impact policy by setting the util_impact_lim configuration
parameter.

Cleaners are integrated with the utility throttling facility. By default, each (index)
cleaner has a utility impact priority of 50 (acceptable values are between 1 and 100,
with 0 indicating no throttling). You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Asynchronous index cleanup
Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following
operations that invalidate index entries. Depending on the type of index, the
entries can be record identifiers (RIDs) or block identifiers (BIDs). Invalid index
entries are removed by index cleaners, which operate asynchronously in the
background.

AIC accelerates the process of detaching a data partition from a partitioned table,
and is initiated if the partitioned table contains one or more nonpartitioned
indexes. In this case, AIC removes all nonpartitioned index entries that refer to the
detached data partition, and any pseudo-deleted entries. After all of the indexes
have been cleaned, the identifier that is associated with the detached data partition
is removed from the system catalog. In DB2 Version 9.7 Fix Pack 1 and later
releases, AIC is initiated by an asynchronous partition detach task.

Prior to DB2 Version 9.7 Fix Pack 1, if the partitioned table has dependent
materialized query tables (MQTs), AIC is not initiated until after a SET INTEGRITY
statement is executed.

Normal table access is maintained while AIC is in progress. Queries accessing the
indexes ignore any invalid entries that have not yet been cleaned.

In most cases, one cleaner is started for each nonpartitioned index that is
associated with the partitioned table. An internal task distribution daemon is
responsible for distributing the AIC tasks to the appropriate table partitions and
assigning database agents. The distribution daemon and cleaner agents are internal
system applications that appear in LIST APPLICATIONS command output with the
application names db2taskd and db2aic, respectively. To prevent accidental
disruption, system applications cannot be forced. The distribution daemon remains
online as long as the database is active. The cleaners remain active until cleaning
has been completed. If the database is deactivated while cleaning is in progress,
AIC resumes when you reactivate the database.

AIC impact on performance

AIC incurs minimal performance impact.

An instantaneous row lock test is required to determine whether a pseudo-deleted
entry has been committed. However, because the lock is never acquired,
concurrency is unaffected.

60 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Each cleaner acquires a minimal table space lock (IX) and a table lock (IS). These
locks are released if a cleaner determines that other applications are waiting for
locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner
has a utility impact priority of 50. You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring AIC

You can monitor AIC with the LIST UTILITIES command. Each index cleaner
appears as a separate utility in the output. The following is an example of output
from the LIST UTILITIES SHOW DETAIL command:
ID = 2
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = Table: USER1.SALES, Index: USER1.I2
Start Time = 12/15/2005 11:15:01.967939
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Total Work = 5 pages
Completed Work = 0 pages
Start Time = 12/15/2005 11:15:01.979033

ID = 1
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = Table: USER1.SALES, Index: USER1.I1
Start Time = 12/15/2005 11:15:01.978554
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Total Work = 5 pages
Completed Work = 0 pages
Start Time = 12/15/2005 11:15:01.980524

In this case, there are two cleaners operating on the USERS1.SALES table. One
cleaner is processing index I1, and the other is processing index I2. The progress
monitoring section shows the estimated total number of index pages that need
cleaning and the current number of clean index pages.

The State field indicates the current state of a cleaner. The normal state is
Executing, but the cleaner might be in Waiting state if it is waiting to be assigned
to an available database agent or if the cleaner is temporarily suspended because
of lock contention.

Note that different tasks on different database partitions can have the same utility
ID, because each database partition assigns IDs to tasks that are running on that
database partition only.

Asynchronous index cleanup for MDC tables
You can enhance the performance of a rollout deletion-an efficient method for
deleting qualifying blocks of data from multidimensional clustering (MDC)

Chapter 3. Autonomic computing 61

tables-by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of
indexes following operations that invalidate index entries.

Indexes are cleaned up synchronously during a standard rollout deletion. When a
table contains many record ID (RID) indexes, a significant amount of time is spent
removing the index keys that reference the table rows that are being deleted. You
can speed up the rollout by specifying that these indexes are to be cleaned up after
the deletion operation commits.

To take advantage of AIC for MDC tables, you must explicitly enable the deferred
index cleanup rollout mechanism. There are two methods of specifying a deferred
rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER or issuing the SET
CURRENT MDC ROLLOUT MODE statement. During a deferred index cleanup
rollout operation, blocks are marked as rolled out without an update to the RID
indexes until after the transaction commits. Block identifier (BID) indexes are
cleaned up during the delete operation because they do not require row-level
processing.

AIC rollout is invoked when a rollout deletion commits or, if the database was
shut down, when the table is first accessed following database restart. While AIC is
in progress, queries against the indexes are successful, including those that access
the index that is being cleaned up.

There is one coordinating cleaner per MDC table. Index cleanup for multiple
rollouts is consolidated within the cleaner, which spawns a cleanup agent for each
RID index. Cleanup agents update the RID indexes in parallel. Cleaners are also
integrated with the utility throttling facility. By default, each cleaner has a utility
impact priority of 50 (acceptable values are between 1 and 100, with 0 indicating
no throttling). You can change this priority by using the SET UTIL_IMPACT_PRIORITY
command or the db2UtilityControl API.

Note: In DB2 Version 9.7 and later releases, deferred cleanup rollout is not
supported on a data partitioned MDC table with partitioned RID indexes. Only the
NONE and IMMEDIATE modes are supported. The cleanup rollout type will be
IMMEDIATE if the DB2_MDC_ROLLOUT registry variable is set to DEFER, or if the
CURRENT MDC ROLLOUT MODE special register is set to DEFERRED to
override the DB2_MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the MDC table, deferred index cleanup
rollout is supported. The MDC block indexes can be partitioned or nonpartitioned.

Monitoring the progress of deferred index cleanup rollout
operation

Because the rolled-out blocks on an MDC table are not reusable until after the
cleanup is complete, it is useful to monitor the progress of a deferred index
cleanup rollout operation. Use the LIST UTILITIES command to display a utility
monitor entry for each index being cleaned up. You can also retrieve the total
number of MDC table blocks in the database that are pending asynchronous
cleanup following a rollout deletion (BLOCKS_PENDING_CLEANUP) by using the
ADMIN_GET_TAB_INFO table function or the GET SNAPSHOT command.

In the following sample output for the LIST UTILITIES SHOW DETAIL command,
progress is indicated by the number of pages in each index that have been cleaned
up. Each phase represents one RID index.

62 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

ID = 2
Type = MDC ROLLOUT INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = TABLE.<schema_name>.<table_name>
Start Time = 06/12/2006 08:56:33.390158
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Estimated Percentage Complete = 83
Phase Number = 1

Description = <schema_name>.<index_name>
Total Work = 13 pages
Completed Work = 13 pages
Start Time = 06/12/2006 08:56:33.391566

Phase Number = 2
Description = <schema_name>.<index_name>
Total Work = 13 pages
Completed Work = 13 pages
Start Time = 06/12/2006 08:56:33.391577

Phase Number = 3
Description = <schema_name>.<index_name>
Total Work = 9 pages
Completed Work = 3 pages
Start Time = 06/12/2006 08:56:33.391587

Chapter 3. Autonomic computing 63

64 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 4. IBM Data Studio

IBM Data Studio provides application developers with a single integrated
development environment that can be used to create, deploy, and debug
data-centric applications. Built to extend the Eclipse framework and SQL model
components, it combines Eclipse technology and shared repository extensions for
database development.

IBM Data Studio consist of the following components:
v The IBM Data Studio client, which is an Eclipse-based tool that provides an

integrated development environment for database and instance administration,
routine and Java application development, and query tuning tasks. It can be
installed with other IBM software products to share a common environment.

v The IBM Data Studio web console, which is a web-based tool with health and
availability monitoring, job creation, and database administration tasks.

If you previously used the Control Center tools, review the mapping between the
recommended Optim™ tools and Control Center tools that is available at “Table of
recommended tools versus Control Center tools” in What's New for DB2 Version
10.1 Version 9.7.
Related information:

IBM Data Studio documentation

Features in IBM Data Studio

IBM Data Studio product Web page

Download IBM Data Studio

Managing jobs in IBM Data Studio
IBM Data Studio web console provides job creation, job scheduling, and job
management for your DB2 for Linux, UNIX, and Windows and DB2 for z/OS®

databases.

With the Data Studio web console job manager you can:
v Create and schedule jobs directly from the IBM Data Studio client workbench.

– Use the workbench script editor to create your script and then schedule the
script to run as a job in the job manager.

– Access the Data Studio web console either embedded in the workbench or in
a stand-alone web browser window.

– Access the job history for a database directly from the Administration
Explorer in the workbench.

v Create and manage jobs by using the web console graphical user interface.
– View jobs, schedules, and notifications filtered by criteria such as database,

job ID, or job type.
v Create jobs based on database scripts:

SQL-only scripts
The SQL-only scripts are run by the job manager by running the SQL
commands that are outlined in the script part of the job directly against
the database.

© Copyright IBM Corp. 2014 65

http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.ds.nav.doc/topics/helpindex_ds.html
http://www.ibm.com/support/docview.wss?uid=swg27020627
http://www.ibm.com/software/data/optim/data-studio/
http://www.ibm.com/developerworks/downloads/im/data/index.html

DB2 CLP scripts
The DB2 CLP script jobs are run on the database server by the job
manager, which logs in to the database server by using SSH. For
multiple databases, the job manager logs in as the user ID that is defined
in the database connection. For a single database, based on the user's
selection, the job manager logs in by using SSH credentials that the user
supplies or the user ID that is defined in the database connection. When
logged in, the job manager runs command line processor commands
directly on the DB2 console of the server.

Important: To be able to run DB2 CLP script jobs on a database, the
user ID that is used to run the job must have permission to log in to the
database server by using SSH.

Executable/shell Scripts
The Executable/Shell script jobs are run on the database server by the
job manager, which logs in to the database server by using SSH. For
multiple databases, the job manager logs in as the user ID that is defined
in the database connection. For a single database, based on the user's
selection, the job manager logs in by using SSH credentials that the user
supplies or the user ID that is defined in the database connection. When
logged in, the job manager runs shell commands directly on the server.

Important: To be able to run Executable/Shell script jobs on a database,
the user ID that is used to run the job must have permission to log in to
the database server by using SSH.

v Schedule jobs to run at a specific time, or to repeat at certain intervals for one or
more databases.

v Run jobs for multiple databases as the default user stored in the database
connection, or specify a user ID to run the job as when running a job on one
database.

v Add jobs together in chains, where the main job is followed by a secondary job
dependent on the outcome of the main job, and where a finishing job, such as
RUNSTATS and BACKUP, is run last.

v Configure email notifications to be sent to one or more users depending on the
success or failure of the job.

v View the history of all jobs that run on your databases.
– The job history view gives you a high-level overview of the job results and

the option to drill down into each job.
– You can configure the job manager to retain job history for all jobs that were

run, or for a subset depending on the success or failure of the job.
v Manage user access to job manager tasks across your databases.

– Enable or disable job management privileges requirements for the users of the
web console.

– For each database, grant or revoke job management privileges for each user
of the web console.

Creating and managing jobs
With Data Studio web console job manager, you can create and manage your
database jobs from the web console.

You create and manage your jobs by using the following tabs of the Job Manager
page:

66 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Job List
From this tab, you can create jobs for your databases or run existing jobs
directly against a database without scheduling.

When you create a job or open an existing job, the job details open in the
job editor. Use the tabs in the job editor to move between jobs, or use the
job section view selector to drill down into the script, schedule,
notification, and chain component of each job.

Tip: If you have configured your IBM Data Studio client to connect to IBM
Data Studio web console you can create jobs directly from the SQL script
editor.

Schedules
From this tab, you can create and manage schedules for the jobs that you
created for your databases.

A schedule defines when a job will be run, whether the job is repeating,
and whether the schedule is limited in number of runs or in time. The
schedule also defines one or more databases on which to run the job.

Notifications
Use this tab to manage email notifications for the execution of the jobs that
you created for your databases.

Job manager notifications help you monitor the execution results for your
jobs across multiple databases and schedules without requiring access to
the web console.

Each job can have any number of notifications configured, and each
notification can be set up with different conditions, a different set of users
to notify, and different collections of databases to monitor.

History
On this tab, you can view the status of jobs that ran on your databases.
The job history is displayed for jobs that ran according to a schedule in
addition to jobs that you ran manually over the last few days.

Tip: If you have configured your IBM Data Studio client to connect to IBM
Data Studio web console you can view job history for a database directly
from the Administration Explorer.

Scenario: Creating and scheduling a job
In this scenario, Alan, a database administrator with the Sample Company, uses
the job manager to create and schedule a job based on a script provided by Doug,
a developer, on the Sales database owned by Becky, a database administrator.

To complete the parts of the scenario, Alan uses the following web console pages
of Data Studio web console:
v Databases
v Job Manager

– Job List tab
– Schedules tab
– Notifications tab
– History tab

v Console Security

Chapter 4. IBM Data Studio 67

Alan is a database manager for Sample Company, and is responsible for
scheduling database jobs. Alan works with the database script developers for the
script content of the jobs and with the database owners to get the required
credentials to access the databases. Alan owns the repository database that is used
by Data Studio web console to manage user access to the web console.

Alan is approached by Doug, a script developer who asks Alan to schedule a script
to be run on the Sales database monthly, and to notify Doug and Doug's manager
if the job fails. In addition, each time the script runs, an existing Cleanup job must
be run directly afterward.

First Alan verifies with Doug that the script has been tested and verified by
development, and that it runs without problems on their test databases. Doug uses
other IBM Data Studio tools to verify the scripts.

Next, Alan opens the Databases page in the web console to verify that the Sales
database exists as a database connection. If needed, he adds a database connection
to the Sales database with information from Becky, the owner of the Sales database.
Becky wants to restrict the running of jobs on the Sales database to a specific
subset of users, so Alan configures the database connection to connect with a user
ID that has the minimum required authority of CONNECT. To schedule the job on the
Sales database Alan also needs the user credentials of a user ID that has the
authorizations on the database required by the actions that the script runs. That
user ID also needs the required authority to run the cleanup job afterward.

Alan then opens the Job Manager page in the web console, and clicks Add Job in
the Job List tab to create the job. After filling out the basic information, such as a
job name and a description of the job, Alan selects the correct type of job to match
the script and verifies that the job is enabled for scheduling.

Working through the new job wizard, Alan pastes in the script that Doug provided
into the Script component of the job, making sure that the closing character
defined for the job matches what is in the script.

Alan then creates a schedule from the Schedules component of the job, setting a
date and time for the first job run, and configuring it to run monthly on the Sales
database. As the user ID used in the database connection does not have the correct
authority to run some of the commands in the script, Alan selects to run the job as
the specific user ID with the correct authority that was provided by the database
owner.

Alan also adds the requested cleanup job to the job in the Chain component. As
the only required chained job is the cleanup, Alan adds it to run at the end of the
chain.

Finally, Alan adds the email addresses of Doug and Doug's manager to the
Notifications component of the job, and configures notifications to be sent if the job
fails.

The job is now scheduled, and Alan can view the job, schedule, and notification
information for the job in the corresponding job manager tabs. Once the job has
been run, any user with access to the web console can use the History page to
view the job history for the job, and get a detailed view by looking at the log entry
for the job. If Doug does not have access to the web console, Alan adds Doug as a
repository database user and uses the Console Security page to grant Doug access
the web console.

68 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Importing tasks from DB2 Task Center
Use the Data Studio web console to import existing tasks from the Task Center in
the DB2 Control Center. Imported tasks are saved as jobs in the job manager.

About this task

The imported tasks are mapped to the appropriate job manager type as shown in
the following table:

Table 6. Mapping of Task Center script type to Job Manager job type

Task Center script type Job Manager job type

DB2 command script DB2 CLP script

OS command script Shell/Executable script

Restrictions: The following restrictions apply to importing tasks from the DB2
Task Center:
v Task types from DB2 Task Center:

Table 7. Restrictions for task types from DB2 Task Center

Task type Restrictions

MVS shell script Not supported.

Grouping Not supported.

OS command script The script interpreters and command
execution parameters are not supported. The
default script interpreter is used instead.

DB2 command script Supported.

v Schedules that are associated with tasks from DB2 Task Center:

Table 8. Restrictions for schedules from DB2 Task Center

Schedule type Restrictions

Weekly Only schedules set for 1 to 4 weeks are
supported.

Monthly Only schedules set for 1 month and
schedules set to a specific date or last date
are supported.

Yearly Only schedules set for 1 year are supported.

Expired (that is, schedules with a starting or
ending time that is earlier than the current
time)

Expired schedules will be imported but
marked as inactive.

v Task actions that are associated with tasks from DB2 Task Center:

Table 9. Restrictions for task actions from DB2 Task Center

Task action Restrictions

Run task Only the first Run task task action
associated with the task will be imported.

Enable schedule of Not supported.

Disable schedule of Not supported.

Delete this task Not supported.

Chapter 4. IBM Data Studio 69

v The success code sets that are used by the DB2 Task Center when running tasks
are ignored by the job manager.

v If the tools catalog database contains a task that was previously imported to the
Data Studio web console and you choose to import the task again, the task is
saved as a new job with a new job ID.

v Contact lists are not imported from the DB2 Task Center.

Procedure

To import tasks from the DB2 Task Center:
1. Open the Data Studio web console in a web browser.
2. To open the Import Tasks page, from the Open menu, click Product Setup >

Import Tasks.
3. Follow the instructions on the Import Tasks page to start importing tasks. You

must specify a valid tools catalog database that contains the DB2 Task Center
metadata, and then select the tasks to import. Only supported tasks from the
tools catalog database are enabled in the Import Tasks page.

Results

If the task is imported successfully, a new job is created for the imported task in
the job manager with a job name that is identical to the task name of the imported
task. The job name is prefixed by “TC_toolsdb_” where toolsdb is the name of the
DB2 tools database. The script of the imported task is not modified.

If the imported task is associated with a schedule in the Task Center, a new
schedule is created for the corresponding job by the job manager and the tools
catalog database is associated with the schedule by default. The schedule date
format for the imported task is converted to the job manager schedule format.

What to do next

If the job that was generated from the imported task is not associated with a
schedule, create a schedule and add the job to the schedule.

Diagramming access plans with Visual Explain
You can generate a diagram of the current access plan for an SQL or XPATH
statement to find out how your data server processes the statement. You can use
the information available from the graph to tune your SQL statements for better
performance.

Before you begin

If you want to create access plan diagrams for DB2 for z/OS, you must configure
the DB2 subsystem that you are using. The steps are identical to the steps for
configuring a subsystem for use with the no-charge tuning features that are in IBM
Data Studio.

Restriction: For IBM Informix® Dynamic Server, Visual Explain cannot explain
SELECT statements that contain parameter markers or host variables.

About this task

You can use Visual Explain to:

70 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v View the statistics that were used at the time of optimization. You can then
compare these statistics to the current catalog statistics to help you determine
whether rebinding the package might improve performance.

v Determine whether or not an index was used to access a table. If an index was
not used, Visual Explain can help you determine which columns might benefit
from being indexed.

v Obtain information about each operation in the access plan, including the total
estimated cost and number of rows retrieved (cardinality).

Procedure

To generate the diagram of the current access plan for a query:
1. Optional: Set preferences for how Visual Explain operates and for how it

displays diagrams.
2. Follow one of these steps:

v In the Data Project Explorer, right-click an SQL statement, SQL stored
procedure, or SQL user-defined function, and select Open Visual Explain.

v In the Data Source Explorer, right-click a view or right-click an SQL stored
procedure or SQL user-defined function that contains an INSERT, UPDATE,
DELETE, or SELECT statement. Select Open Visual Explain. If the
workbench finds more than one SQL statement or XQUERY statement, the
workbench uses the first statement.

v In an SQL, Routine, or Java™ editor, highlight and right-click the INSERT,
UPDATE, DELETE, or SELECT statement, XPATH, or XQUERY statement
and select Open Visual Explain.
Attempts to open Visual Explain from an SQL statement in a Java editor fail
if the SQL statement contains variables that are declared in your application.
For example, this SQL statement cannot be analyzed by Visual Explain
because of the two variables in the predicate:
select count(*), sum(order.price)
from order
where order.date > var_date_1
and order.date < var_date_2

However, after you bind or deploy the application, you can use InfoSphere®

Optim Query Tuner or the single-query tuning features in Data Studio to
capture the SQL statement from a DB2 package or from the dynamic
statement cache and then tune it.

Note: Visual Explain is disabled or throws an exception if the selected SQL
statement or object is not explainable. Only the SQL statements in the following
list can be explained by Visual Explain:
v For DB2 for Linux, UNIX, and Windows: CALL, Compound SQL (Dynamic),

DELETE, INSERT, MERGE, REFRESH, SELECT, SELECT INTO, SET
INTEGRITY, UPDATE, VALUES, or VALUES INTO.

v For DB2 for z/OS: SELECT, INSERT, or the searched form of an UPDATE or
DELETE statement.

3. On the first page of the wizard, specify the terminator of the SQL, XPATH, or
XQUERY statement that you want to diagram the access plan for.

4. Optional: On the first page of the wizard, you can also specify settings for
various options.

Chapter 4. IBM Data Studio 71

a. Specify whether you want to store the collected explain data in explain
tables. If you choose this option, Visual Explain does not have to collect
explain data the next time that you want to diagram the access plan for the
same statement.

b. Specify the directory that you want Visual Explain to use as a working
directory.

c. If IBM Support needs a trace, specify whether to trace the creation of the
diagram of the access plan and whether to trace the collection of the explain
data.

d. Specify whether to save your settings as the defaults for all diagrams that
you create with Visual Explain. You can change these defaults with the
Preferences window.

5. On the second page of the wizard, set values for the special registers to
customize the runtime environment to influence the collection of explain data.
When Visual Explain runs the statement to gather explain data, it uses the
values that you specify.
Attention: Please be aware of the following information regarding DB2 data
servers.
v For DB2 for z/OS: If you specify different values for CURRENT SCHEMA

and CURRENT SQLID, Visual Explain searches for explain tables that are
qualified by the value of CURRENT SQLID. If Visual Explain does not find
explain tables that are qualified by the value of CURRENT SQLID, Visual
Explain attempts to create the explain tables under that value.

v For DB2 for Linux, UNIX, and Windows: If you change the value of
CURRENT SCHEMA to a value that contains special characters, you must
delimit the value with single quotation marks.

v For DB2 for Linux, UNIX, and Windows: Select the Collect column and
column group statistics check box if you want Visual Explain to collect
detailed statistics about clustered columns and columns that participate in a
GROUP BY clause.

6. Optional: On the second page of the wizard, specify whether to save your
settings as the defaults for all diagrams that you create with Visual Explain.
You can change these defaults with the Preferences window.

7. Click Finish to close the wizard and to generate the diagram.

Results

The workbench displays the diagram in the Access Plan Diagram view. In this
view, you can navigate through the diagram, view descriptions of the nodes in the
diagram, and search for nodes.

Diagrams of access plans
When DB2 processes a query, the DB2 optimizer generates several alternative plans
for accessing the requested data. The optimizer estimates the execution cost of each
plan and chooses the lowest-cost plan to execute. This plan is called the access
plan.

Visual Explain graphically displays the access plan for any explainable statement.
This display is called an access plan diagram, and it illustrates how DB2 accesses
the data for a specified SQL statement.

The access plan diagram consists of nodes and lines that connect those nodes. The
nodes represent data sources, operators, SQL statements, and query blocks. Nodes

72 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

can have only one parent node, but they can have unlimited child nodes. The
arrows on the edges indicate the direction of the flow. Usually, a table node is at
the bottom of the graph, and the access plan proceeds upward from there.

Some operations in the access plan, such as nested loop joins or index scans, are
represented in the graph by groups of nodes, which are called constructs. Many of
these constructs have a defining node that indicates the operation. For example,
the HBJOIN node indicates that a hybrid join operation is taking place, but the
entire hybrid join is represented in the graph by a group of nodes. This group of
nodes represents all of the other data sources and operations that are involved in
the hybrid join.

Query blocks
An SQL statement can consist of several subqueries, which are represented in the
access plan diagram by query blocks.

The subquery can be a SELECT, INSERT, UPDATE, or DELETE. A subquery can
contain other subqueries in the FROM clause, the WHERE clause, or a subselect of
a UNION or UNION ALL. A subquery within another subquery is called a child
subquery. A subquery that contains another subquery is called a parent subquery.
This parent-child relationship can be represented by a tree hierarchy.

If a subquery references at least one column of its parent subquery or of any
parent subqueries that are higher up in the tree hierarchy, the subquery is a
correlated subquery; otherwise it is a non-correlated subquery. A non-correlated
subquery can run at the same time as the highest parent subquery that is also
non-correlated. This highest parent subquery is called the "do-at-open parent
subquery" in terms of its relationship to the non-correlated subquery. The execution
of a correlated subquery is bound to the execution of its parent subquery. Such
relationships between the relative executions of parents and children can be
represented by separate trees hierarchies in the access plan graph.

Non-correlated subquery
For a non-correlated subquery, the query block node is connected to the
right of the query block node for the highest parent subquery that is also
non-correlated.

Correlated subquery
For a correlated subquery, the query block node is connected to the part
within its parent subquery where the correlated subquery is executed.

Setting preferences for Visual Explain
Use the Preferences window to set default values for settings that determine how
Visual Explain operates and how it displays diagrams.

Procedure

To set preferences for Visual Explain:
1. Select Window > Preferences.
2. In the tree view of the Preferences window, select Data > Visual Explain.
3. On the Visual Explain page, set the following options:

a. Specify whether to launch the Visual Explain wizard when you right-click
an SQL statement, view, stored procedure, or user-defined function and
select Visual Explain. The wizard allows you to override preferences. If you
clear this option, Visual Explain uses the preferences.

Chapter 4. IBM Data Studio 73

b. If your project is associated with a DB2 data server, specify whether Visual
Explain saves in the explain tables the explain data that it collects for the
statement.

4. On the Query Explain Settings page, specify default values for special
registers. Changing these values modifies how Visual Explain gathers explain
data to use when generating the access plan diagram.
Attention: Please be aware of the following information regarding DB2 data
servers.
v For DB2 for z/OS: If you specify different values for CURRENT SCHEMA

and CURRENT SQLID, Visual Explain searches for explain tables that are
qualified by the value of CURRENT SQLID. If Visual Explain does not find
explain tables that are qualified by the value of CURRENT SQLID, Visual
Explain attempts to create the explain tables under that value.

v For DB2 for Linux, UNIX, and Windows: If you change the value of
CURRENT SCHEMA to a value that contains special characters, you must
delimit the value with single quotation marks.

v For DB2 for Linux, UNIX, and Windows: Select the Collect column and
column group statistics check box if you want Visual Explain to collect
detailed statistics about clustered columns and columns that participate in a
GROUP BY clause.

5. On the Viewer page, change various behaviors and colors of diagrams.
6. On the Nodes page, change the default appearance of nodes. You can change

the text, color, and shape of the different types of nodes. You can also choose
whether to highlight selected nodes, shadow nodes, or show information about
nodes when you move your mouse cursor over them.

74 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 2. Client-to-server communications

Configuring client-to-server communications for the IBM data server client and
DB2 database server products requires and understanding of the components and
type of connections.

Components and scenarios

The basic components involved in client-to-server communications are described in
the following section:
v Client. This refers to the initiator of the communications. This role can be filled

by any of the following DB2 products or components:
– IBM Data Server Driver Package
– IBM Data Server Client or IBM Data Server Runtime Client.
– DB2 Connect Personal Edition: This product is a superset of the IBM Data

Server Client.
– a DB2 server product: A DB2 server is a superset of the Data Server Client.

v Server. This refers to the receiver of the communications request from the client.
This role is normally filled by a DB2 for Linux, UNIX, and Windows server
product. When DB2 Connect products are present, the term server can also mean
a DB2 server on a midrange or mainframe platform.

v Communications protocol. This refers to the protocol used to send data between
the client and server. The DB2 product supports several protocols:
– TCP/IP. A further distinction can be made between the version: TCP/IPv4 or

TCP/IPv6.
– Named Pipes. This option is available on Windows only.
– IPC (interprocess communications). This protocol is used for local

connections.

There are also some additional components encountered in some environments:
v DB2 Connect gateway. This refers to a DB2 Connect server product that

provides a gateway by which IBM data server client can connect to DB2 servers
on midrange and mainframe products.

v LDAP (Lightweight Directory Access Protocol). In an LDAP-enabled
environment, it is not necessary to configure client-to-server communications.
When a client attempts to connect to a database, if the database does not exist in
the database directory on the local machine then the LDAP directory is searched
for information required to connect to the database.

The following scenarios illustrate examples of situations covered by client-to-server
communications:
v Data Server Client establishes communications with a DB2 server using TCP/IP.
v Data Server Runtime Client establishes communications with a DB2 server using

Named Pipes on a Windows network.
v DB2 server establishes communications with another DB2 server via some

communications protocol.
v Data Server Client establishes communications with a mainframe DB2 server via

a DB2 Connect server using TCP/IP.

© Copyright IBM Corp. 2014 75

When setting up a server to work with development environments (such as IBM
Data Studio), you might encounter error message SQL30081N at the initial DB2
connection. A possible root cause is that the firewall at the remote database server
has prevented the connection from being established. In this case, verify the
firewall is properly configured to accept connection requests from the client.

Types of connections

Generally speaking, references to setting up client-to-server communications refer
to remote connections, rather than local connections.

A local connection is a connection between a database manager instance and a
database managed by that instance. In other words, the CONNECT statement is
issued from the database manager instance to itself. Local connections are
distinctive because no communications setup is required and IPC (interprocess
communications) is used.

A remote connection is one where the client issuing the CONNECT statement to a
database is in a different location from the database server. Commonly, the client
and server are on different machines. However, remote connections are possible
within the same machine if the client and server are in different instances.

Another less common type of connection is a loopback connection. This is a type of
remote connection where the connection is configured from a DB2 instance (the
client) to the same DB2 instance (the server).

Configuration of client-to-server communications

You can configure client-to-server communications by using the command line
tools which consist of the Command Line Processor (CLP), the db2cfexp
(configuration export) command, and the db2cfimp (configuration import)
command.

Use the following table to identify the appropriate configuration method.

Table 10. Tools and methods for configuring a client-to-server connection

Type of configuration task CLP

Configure a client by entering information
manually

Configure client-to-server connections by
using the CATALOG TCPIP/TCPIP4/TCPIP6
NODE command and the CATALOG DATABASE
command.

Use the connection settings for one client as
the basis for configuring additional clients

1. Create a client profile by issuing the
db2cfexp command.

2. Configure database connections using a
client profile by issuing the db2cfimp
command.

Note: Use Profiles to configure client-to-server communications. The types of
profiles are:
v A client profile is a file that contains settings for a client. Settings can include:

– Database connection information (including CLI or ODBC settings).
– Client settings (including database manager configuration parameters and

DB2 registry variables).
– CLI or ODBC common parameters.

76 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v A server profile is similar to a client profile but contains settings for a server.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
configuring automatic maintenance. Task assistants can guide you through the
process of setting options, reviewing the automatically generated commands to
perform the task, and running these commands. For more details, see
Administering databases with task assistants.

Part 2.Database connections for clients 77

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

78 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 5. Supported combinations of clients, drivers and
server levels

Various versions of a client or driver can connect to different versions of a server.
This includes support for earlier versions and support for accessing DB2 databases
on midrange and mainframe servers.

DB2 client levels required for IBM DB2 pureScale Feature

For your application to make full use of DB2 pureScale features, your DB2 client
must be at certain release levels:

Server version Client version Features available

Version 9.8 or
later

Version 9.7, Fix Pack 1 or
later

Transaction-level and connection-level
workload balancing

Automatic client reroute based on workload

Client affinities

Version 9.8 or
later

Version 9.1,
Version 9.5, or
Version 9.7

(before Fix Pack 1)

Connection-level workload balancing
(transaction-level workload balancing is not
available)

Automatic client reroute based on workload

Combinations of DB2 Version 9.1, DB2 Version 9.5, DB2 Version
9.7, and DB2 Version 10.1 clients and servers

Generally, DB2 Version 9.1, DB2 Version 9.5, and DB2 Version 9.7 clients can access
a remote DB2 Version 10.1 server. However, if different versions of a client and a
DB2 server are located on the same system, local client-to-server connections using
Interprocess Communication (IPC) are not supported. Instead, you can establish a
connection as a remote connection (called a loopback connection) by using TCP/IP.

The following clients and drivers can access a DB2 Version 9.7, DB2 Version 9.5 or
DB2 Version 9.1 server:
v IBM Data Server Client Version 10.1
v IBM Data Server Runtime Client Version 10.1
v IBM Data Server Driver Package Version 10.1
v IBM Data Server Driver for ODBC and CLI Version 10.1

However, when a later-level client accesses an earlier-level server, the functionality
of the later level of the client is not available to the server. For example, IBM Data
Server Driver Package Version 10.1 can access a DB2 Version 9.5 server; however,
DB2 Version 10.1 functionality is not available to the server.

Note: DB2 Version 9.1 reached end of support on April 30, 2012. For more support
lifecycle information, see http://www-01.ibm.com/software/data/support/
lifecycle/. For continued Version 9.1 support, a service extension is required.

© Copyright IBM Corp. 2014 79

http://www-01.ibm.com/software/data/support/lifecycle/
http://www-01.ibm.com/software/data/support/lifecycle/

Combinations of DB2 Version 10.1 and DB2 products on
midrange and mainframe platforms

DB2 Version 10.1 servers support access from the following clients on midrange
and mainframe platforms:
v DB2 for z/OS and OS/390® Version 8 or later
v DB2 for i5/OS™ Version 5 or later
v DB2 for VM and VSE Version 7

The following clients and drivers can access a DB2 Connect Version 9.7, Version 9.5
or Version 9.1 server:
v IBM Data Server Client Version 10.1
v IBM Data Server Runtime Client Version 10.1
v IBM Data Server Driver Package Version 10.1
v IBM Data Server Driver for ODBC and CLI Version 10.1

Note: DB2 Connect Version 9.1 reached end of support on April 30, 2012. For more
support lifecycle information, see http://www-01.ibm.com/software/data/
support/lifecycle/. For continued Version 9.1 support, a service extension is
required.

80 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://www-01.ibm.com/software/data/support/lifecycle/
http://www-01.ibm.com/software/data/support/lifecycle/

Chapter 6. Communication protocols supported

This topic identifies the supported protocols for connecting from an IBM data
server client to a DB2 server. This includes:
v connecting from IBM data server client to midrange or mainframe hosts using

DB2 Connect products.
v connecting from mid range or mainframe platforms to databases on DB2 for

Linux, UNIX, and Windows.

The TCP/IP protocol is supported on all platforms on which DB2 for Linux, UNIX,
and Windows is available. Both TCP/IPv4 and TCP/IPv6 are supported. IPv4
addresses have a four-part structure, for example, 9.11.22.314. IPv6 addresses
have an eight-part name, where each part consists of 4 hex digits delimited by a
colon. Two colons (::) represents one or more sets of zeros. For example,
2001:0db8:4545:2::09ff:fef7:62dc.

DB2 database products support the SSL protocol and accept SSL requests from
applications that use the IBM Data Server Driver for JDBC and SQLJ (type 4
connectivity), IBM Data Server Driver for ODBC and CLI and IBM Data Server
Driver Package. Refer to Configuring Secure Sockets Layer (SSL) support in a DB2
instance.

In addition, the Windows Named Pipes protocol is supported on Windows
networks. To administer a DB2 database remotely, you must connect using TCP/IP.

© Copyright IBM Corp. 2014 81

82 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 7. Supported LDAP client and server configurations

The following table summarizes the supported LDAP client and server
configurations.

IBM Tivoli Directory Server is an LDAP Version 6.2 server and is available for
Windows, AIX, Solaris, Linux, and HP-UX and is shipped as part of the base
operating system on AIX and System i®, and with OS/390 Security Server.

The DB2 database supports IBM LDAP client on AIX, Solaris, HP-UX 11.11,
Windows, and Linux.

Microsoft Active Directory server is an LDAP Version 3 server and is available as
part of the Windows 2000 Server and Windows Server 2003 family of operating
systems.

The Microsoft LDAP Client is included with the Windows operating system.

Table 11. Supported LDAP client and server configurations

Supported LDAP
Client and Server
Configurations

IBM Tivoli Directory
server

Microsoft Active
Directory server

Sun One LDAP
server

IBM LDAP Client Supported Supported Supported

Microsoft
LDAP/ADSI Client

Supported Supported Supported

Note: When running on Windows operating systems, the DB2 database manager
supports using either the IBM LDAP client or the Microsoft LDAP client. To
explicitly select the IBM LDAP client, use the db2set command to set the
DB2LDAP_CLIENT_PROVIDER registry variable to “IBM”. The Microsoft LDAP
Client is included with the Windows operating system.

© Copyright IBM Corp. 2014 83

84 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 8. Discovery of administration servers, instances, and
databases

To configure connections to a remote computer, you can use an existing directory
service such as Lightweight Directory Access Protocol (LDAP).

Known Discovery allows you to discover instances and databases on systems that
are known to your client, and add new systems so that their instances and
databases can be discovered. Search Discovery provides all of the facilities of
Known Discovery and adds the option to allow your local network to be searched
for other DB2 database servers.

To have a system support Known Discovery, set the discover parameter in the
DAS configuration file to KNOWN. To have the system support both Known and
Search Discovery, set the discover parameter in the DAS configuration file to
SEARCH (this is the default). To prevent discovery of a system, and all of its
instances and databases, set this parameter to DISABLE. Setting the discover
parameter to DISABLE in the DAS configuration file, prevents discovery of the
system.

Note: The TCP/IP host name returned to a client by Search Discovery is the same
host name that is returned by your DB2 server system when you enter the
hostname command. On the client, the IP address that this host name maps to is
determined by either the TCP/IP domain name server (DNS) configured on your
client computer or, if no DNS is configured, a mapping entry in the client's hosts
file. If you have multiple adapter cards configured on your DB2 server system, you
must ensure that TCP/IP is configured on the server to return the correct
hostname, and that the DNS or local client's hosts file, maps the hostname to the
IP address desired.

On the client, enabling Discovery is also done using the discover parameter;
however, in this case, the discover parameter is set in the client instance (or server
acting as a client) as follows:
v KNOWN

KNOWN discovery is used to retrieve instance and database information
associated with systems that are already known to your local system. New
systems can be added using the Add Systems functionality provided in the
tools. When the discover parameter is set to KNOWN, you will not be able to
search the network.

v SEARCH

Enables all of the facilities of Known Discovery, and enables local network
searching. This means that any searching is limited to the local network.
The Other Systems (Search the network) icon only appears if this choice is
made. This is the default setting.

v DISABLE

Disables Discovery. In this case, the Search the network option is not available
in the Add Database Wizard.

Note: The discover parameter defaults to SEARCH on all client and server instances.
The discover parameter defaults to SEARCH on all DB2 administration servers
(DAS).

© Copyright IBM Corp. 2014 85

Discovering and hiding server instances and databases
You might have multiple instances, and multiple databases within these instances,
on a server system. You might want to hide some of these from the Discovery
process.

Procedure
v To allow clients to discover server instances on a system, set the discover_inst

database manager configuration parameter in each server instance on the system
to ENABLE (this is the default value).
Set this parameter to DISABLE to hide this instance and its databases from
Discovery.

v To allow a database to be discovered from a client, set the discover_db database
configuration parameter to ENABLE (this is the default value).
Set this parameter to DISABLE to hide the database from Discovery.

Note: If you want an instance to be discovered, discover must also be set to
KNOWN or SEARCH in the DAS configuration file.

Note: If you want a database to be discovered, the discover_inst parameter
must also be enabled in the server instance.

86 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 9. Configuring DB2 server communications (TCP/IP)

This task describes how to configure TCP/IP communications on your DB2 server
using the DB2 Command Line Processor (CLP). Communication protocols on the
DB2 server must be configured in order for your DB2 server to accept inbound
requests from remote DB2 clients.

Before you begin

Before you configure TCP/IP communications for an instance on your DB2 server:
v Ensure that the TCP/IP protocol is functional on the DB2 server. TCP/IP must

also be functional on the DB2 client to establish a connection.
v Identify either a Connection Service name and Connection Port, or just a

Connection Port.

Connection Service Name and Connection Port
The service name is used to update the Service name (svcename)
parameter in the database manager configuration file at the server. When
a Connection Service name is specified, the services file must be updated
with the same Service name, a port number, and the protocol. The
Service name is arbitrary but must be unique within the services file. A
sample value for the service name could be server1. If you are using
DB2 Enterprise Server Edition in a partitioned format, ensure that the
port number does not conflict with the port numbers used by the Fast
Communications Manager (FCM).

The Connection port must be unique within the services file. A sample
value for the port number and protocol could be 3700/tcp.

Connection Port
The Service name (svcename) parameter in the database manager
configuration file at the server can be updated with a port number. If
this is the case, it is not necessary to update the services file. If you are
using DB2 Enterprise Server Edition in a partitioned format, ensure that
the port number does not conflict with the port numbers used by the
Fast Communications Manager (FCM) or any other applications on the
system. A sample value for the port number could be 3700.

About this task

Most protocols are automatically detected and configured when you set up DB2
database systems using the DB2 Setup wizard. Perform the current task if:
v You deselected the TCP/IP communication protocol when you set up the DB2

database system using the DB2 Setup wizard.
v You added the TCP/IP communication protocol to your network after you set

up the DB2 database system using the DB2 Setup wizard.
v The TCP/IP communication protocol was not detected by the DB2 Setup wizard.
v You installed a DB2 database product using the db2_install command or the

payload file method.

Procedure

To configure TCP/IP communications for a DB2 instance:

© Copyright IBM Corp. 2014 87

1. Update the services file on the server. Refer to “Updating the services file on
the server for TCP/IP communications.”

2. Update the database manager configuration file on the server. Refer to
“Updating the database manager configuration file on the server for TCP/IP
communications.”

3. Set communication protocols for a DB2 instance. Refer to “Setting
communication protocols for a DB2 instance” on page 89.

Updating the services file on the server for TCP/IP communications
This task is part of the main task of Configuring TCP/IP communications for a DB2
instance.

About this task

The TCP/IP services file specifies the ports that server applications can listen on
for client requests. If you specified a service name in the svcename field of the
DBM configuration file, the services file must be updated with the service name to
port number/protocol mapping. If you specified a port number in the svcename
field of the DBM configuration file, the services file does not need to be updated.

Update the services file and specify the ports that you want the server to listen on
for incoming client requests. The default location of the services file depends on
the operating system:

Linux and UNIX operating systems
/etc/services

Windows operating systems
%SystemRoot%\system32\drivers\etc\services

Procedure

Using a text editor, add the Connection entry to the services file. For example:
db2c_db2inst1 3700/tcp # DB2 connection service port

where:

db2c_db2inst1
represents the connection service name

3700 represents the connection port number

tcp represents the communication protocol that you are using

Updating the database manager configuration file on the server for
TCP/IP communications

This task is part of the main task of configuring TCP/IP communications for a DB2
instance.

About this task

You must update the database manager configuration file with the service name
(svcename) parameter.

88 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Procedure

To update the database manager configuration file:
1. Log on to the system as a user with System Administrative (SYSADM)

authority.
2. If you are using a UNIX operating system, set up the instance environment:

. INSTHOME/sqllib/db2profile (for Bash, Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

3. Start the DB2 command line processor (CLP).
4. Update the database manager configuration file with the Service name

(svcename) parameter by entering the following commands:
update database manager configuration using svcename

[service_name | port_number]
db2stop
db2start

where:
v service_name is the service name reserved in the services file
v port_number is the corresponding port number for the service_name, or a free

port number if the service_name is not reserved
If a service name is being specified, the svcename used must match the
Connection Service name specified in the services file.
After the database manager is stopped and started again, view the database
manager configuration file to ensure that these changes have taken effect. View
the database manager configuration file by entering the following command:

get database manager configuration

Setting communication protocols for a DB2 instance
Setting communication protocols for a DB2 instance is part of the main task of
configuring TCP/IP or SSL communications for a DB2 instance.

Before you begin

To perform this task you require SYSADM authority.

About this task

The DB2COMM registry variable allows you to set communication protocols for the
current DB2 instance. If the DB2COMM registry variable is undefined or set to null, no
protocol connection managers are started when the database manager is started.

The DB2COMM registry variable can be set with the following keywords:

tcpip starts TCP/IP support

ssl starts SSL support

Procedure

To set the communication protocol for the instance:

Enter the db2set DB2COMM command from the DB2 command window:
db2set DB2COMM=tcpip

Chapter 9. Configuring DB2 server communications (TCP/IP) 89

Example

For example, to set the database manager to start connection managers for the
TCP/IP communication protocols, enter the following command:

db2set DB2COMM=tcpip
db2stop
db2start

90 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 10. Configuring client-to-server connections

This task describes how to configure a connection from an IBM data server client
to a remote database server using the command line processor (CLP).

Before you begin

Before you configure a client to server connection, ensure:
v Network communications is set up between the machine with the IBM data

server client and the machine with the DB2 server. One way to verify this for the
TCP/IP protocol is to use the ping command.

v The DB2 server is configured to work on the network. This is normally done as
part of installing and configuring the DB2 server product.

Procedure

Separate topics are provided to guide you through each of the following steps.
Some steps have a version for each supported protocol:
1. Identify the communication parameter values for the remote database server.
2. If you are using TCP/IP, you have the option to update the client's hosts file

and services file with communication parameter values for the remote database
server. For more details, see “Updating hosts and services files for TCP/IP
connections” on page 92. This step does not apply to Named Pipes.

3. Catalog the server node from the client. Instructions are provided for each
communications protocol:

“Cataloging a TCP/IP node from a client using the CLP” on page 93
“Cataloging a Named Pipes node from a client using the CLP”

4. Catalog the database that you want to connect to on the client. For more
details, see “Cataloging a database” on page 94.

5. Test the client-to-server connection. For more details, see “Testing the
client-to-server connection using the CLP” on page 96.

Cataloging a Named Pipes node from a client using the CLP
Cataloging a Named Pipes node adds an entry to the client's node directory to
describe the remote node. This entry specifies the chosen alias (node_name), the
remote server's workstation name (computer_name), and the instance (instance_name)
that the client will use to access the remote DB2 server.

Procedure

To catalog a Named Pipes node on an IBM data server client, type the following
command in the command line processor (CLP):

db2 => catalog npipe node node_name
db2 => remote computer_name instance instance_name

db2 => terminate

© Copyright IBM Corp. 2014 91

Example

To catalog a remote node called db2node that is located on a server called server1
in the db2 instance, use:

db2 => db2 catalog npipe node db2node remote server1 instance db2

db2 => terminate

Updating hosts and services files for TCP/IP connections
This task explains when and how to update the hosts file and services file on the
client with communication parameter values for the remote database server. This
task is optional for connections using TCP/IP and does not apply to connections
using Named Pipes. This task is part of the larger task of configuring
client-to-server connection using the CLP.

About this task

You need to update the hosts file if you want to establish a connection to the
remote database server using its hostname and your network does not contain a
DNS (domain name server) that can be used to resolve that hostname to an IP
address. This step is not required if you want to refer to the remote database
server using its IP address.

You need to update the services file if you want to specify a connection service
name when establishing a connection to the remote database server. A connection
service is an arbitrary name that represents the connection port number. This step is
not required if you want to refer to the remote database server's port number.

Procedure
v To update the hosts file on the client to resolve the remote server's hostname to

its IP address:
1. Use a text editor to add an entry to the hosts file for the server's IP address.

For example:
9.26.13.107 myserver # IPv4 address for myserver
2002:91a:519:13:210:83ff:feff:ca71 myserver # IPv6 address for myserver

where:

9.26.13.107
represents the IPv4 ip_address

2002:91a:519:13:210:83ff:feff:ca71
represents the IPv6 ip_address

myserver
represents the hostname

represents a comment describing the entry

Note: Note that IPv6 entries are not needed if your host does not belong on
an IPv6 network. For hosts in mixed IPv4 and IPv6 networks, an alternate
method is to assign different host names for IPv4 and IPv6 addresses. For
example:
9.26.13.107 myserver # IPv4 address for myserver
9.26.13.107 myserveripv4 # IPv4 address for myserver
2002:91a:519:13:210:83ff:feff:ca71 myserveripv6 # IPv6 address for myserver

92 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If the server is not in the same domain as the IBM data server client, you
must provide a fully qualified domain name such as
myserver.spifnet.ibm.com, where spifnet.ibm.com represents the domain
name.

v To update the services file on the client to resolve a service name to the remote
server's port number:
1. Using a text editor, add the Connection Service name and port number to the

services file. For example:
server1 50000/tcp # DB2 connection service port

where:

server1
represents the Connection Service name

50000
represents the connection port number (50000 is the default)

tcp
represents the communication protocol that you are using

represents the beginning of a comment that describes the entry

Example

The following table lists the location of the hosts file and services file referred to
in the preceding procedures.

Table 12. Location of the hosts file and services file

Operating System Directory

Windows 2000 XP/Windows
Server 2003

%SystemRoot%\system32\drivers\etc where %SystemRoot% is
an environment variable defined on the system.

Linux or UNIX /etc

Cataloging a TCP/IP node from a client using the CLP
Cataloging a TCP/IP node adds an entry to the Data Server Client node directory
that describes the remote node. This entry specifies the chosen alias (node_name),
the hostname (or ip_address), and the svcename (or port_number) that the client uses
to access the remote host.

Before you begin

You must have System Administrative (SYSADM) or System Controller (SYSCTRL)
authority, or have the catalog_noauth option set to ON. You cannot catalog a node
using root authority.

Procedure

To catalog a TCP/IP node:
1. Log on to the system as a user with System Administrative (SYSADM) or

System Controller (SYSCTRL) authority.
2. If you are using a Linux or UNIX client, set up the instance environment. Run

the startup script:

For bash, Bourne or Korn shell

Chapter 10. Adding database connections with the CLP 93

. INSTHOME/sqllib/db2profile

For C shell
source INSTHOME/sqllib/db2cshrc

where INSTHOME represents the home directory of the instance.
3. Start the DB2 command line processor. On Windows, issue the db2cmd

command from a command prompt. On Linux or UNIX, issue the db2
command from a command prompt.

4. Catalog the node by entering the following commands in the command line
processor:
db2 => catalog tcpip node node_name remote hostname|ip_address

server service_name|port_number [remote_instance instance_name]
[system system_name] [ostype os_type]

db2 => terminate

where:
v node_name represents a local nickname you can set for the computer that has

the database you want to catalog.
v remote_instance represents the name of the server instance on which the

database resides.
v system_name represents the DB2 system name that is used to identify the

server.
v ostype_name represents the operating system type of the server.

Note:

a. The terminate command is needed to refresh the directory cache.
b. Although remote_instance, system, and ostype are optional, they are

required for users who want to use the DB2 tools.
c. The service_name used on the client does not have to be the same as the one

on the server. However, the port numbers that they map to must match
d. While not shown here, the catalog tcpip node command provides the

option to explicitly specify the version of IP, namely IPv4 or IPv6.

Example

To catalog a node that you want to call db2node on a remote server
myserver.ibm.com that is using port number 50000, you would enter the following
from a db2 prompt:
db2 => catalog tcpip node db2node remote myserver server 50000
DB20000I The CATALOG TCPIP NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is
refreshed.

db2 => terminate
DB20000I The TERMINATE command completed successfully.

Cataloging a database
This task describes how to catalog a database from a client by using the command
line processor (CLP).

94 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Before you begin

Before a client application can access a remote database, the database must be
cataloged on the client. When you create a database, the database is automatically
cataloged on the server with a database alias that is the same as the database
name, unless a different database alias was specified.

The information in the database directory, along with the information in the node
directory (unless you are cataloging a local database where a node is not needed),
is used on the IBM data server client to establish a connection to the remote
database.
v You require a valid DB2 user ID. DB2 does not support using root authority to

catalog a database.
v You must have System Administrative (SYSADM) or System Controller

(SYSCTRL) authority, or have the catalog_noauth option set to ON.
v You need the following information when cataloging a remote database:

– Database name
– Database alias
– Node name
– Authentication type (optional)
– Comment (optional)

Refer to the parameter values worksheet for cataloging a database for more
information about these parameters and to record the values that you use.

v The following parameter values are applicable when cataloging a local database:
– Database name
– Drive
– Database alias
– Authentication type (optional)
– Comment (optional)

Local databases can be uncataloged and recataloged at any time.

Procedure

To catalog a database on the client:
1. Log on to the system with a valid DB2 user ID.
2. If you are using the DB2 database on a Linux or UNIX platform, set up the

instance environment. Run the startup script:

For bash, Bourne or Korn shell
. INSTHOME/sqllib/db2profile

For C shell
source INSTHOME/sqllib/db2cshrc

where: INSTHOME represents the home directory of the instance.
3. Start the DB2 command line processor. On Windows operating systems, issue

the db2cmd command from a command prompt. On Linux or UNIX, issue the
db2 command from a command prompt.

4. Catalog the database by entering the following commands in the command line
processor:

Chapter 10. Adding database connections with the CLP 95

db2 => catalog database database_name as database_alias at
node node_name [authentication auth_value]

where:
v database_name represents the name of the database you want to catalog.
v database_alias represents a local nickname for the database you want to

catalog.
v node_name represents a nickname you can set for the computer that has the

database you want to catalog.
v auth_value specifies the type of authentication that takes place when

connecting to the database. This parameter defaults to the authentication
type specified on the server. Specifying an authentication type can result in a
performance benefit. Examples of valid values include: SERVER, CLIENT,
SERVER_ENCRYPT, KERBEROS, DATA_ENCRYPT, GSSPLUGIN and SERVER_ENCRYPT_AES.

Example

To catalog a remote database called SAMPLE so that it has the local database alias
MYSAMPLE, on the node DB2NODE using authentication SERVER, enter the
following commands:
db2 => catalog database sample as mysample at node db2node

authentication server
db2 => terminate

Testing the client-to-server connection using the CLP
Before you begin

After cataloging the node and the database, connect to the database to test the
connection. Before testing the connection:
v The database node and database must be cataloged.
v The values for userid and password must be valid for the system on which they

are authenticated. The authentication parameter on the client is be set to match
the value on the server or it can be left unspecified. If an authentication
parameter is not specified, the client will default to SERVER_ENCRYPT. If the
server does not accept SERVER_ENCRYPT, then the client retries using the value
returned from the server. If the client specifies an authentication parameter value
that doesn't match what is configured on the server, you will receive an error.

v The database manager must be started with the correct protocol defined in the
DB2COMM registry variable. If it is not started, then you can start the database
manager by entering the db2start command on the database server.

Procedure

To test the client to server connection:
1. If you are using a Linux or UNIX platform, set up the instance environment.

Run the startup script:

For bash, Bourne or Korn shell
. INSTHOME/sqllib/db2profile

For C shell
source INSTHOME/sqllib/db2cshrc

where: INSTHOME represents the home directory of the instance.

96 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

2. Start the DB2 command line processor. On Windows, issue the db2cmd
command from a command prompt. On Linux or UNIX, issue the db2
command from a command prompt.

3. Type the following command on the client to connect to the remote database:
db2 => connect to database_alias user userid

For example, enter the following command:
connect to mysample user jtris

You will be prompted to enter your password.

Example

If the connection is successful, you receive a message showing the name of the
database to which you have connected. A message similar to the following is
given:
Database Connection Information
Database server = DB2 9.1.0
SQL authorization ID = JTRIS
Local database alias = mysample

You can now work with the database. For example, to retrieve a list of all the table
names listed in the system catalog table, enter the following SQL statement:
select tabname from syscat.tables

What to do next

When you are finished using the database connection, enter the connect reset
command to end the database connection.

Exporting and importing a profile
If you did not use a configuration profile when you installed your DB2 product
using the response file that was created by the response file generator, you can
create a configuration file and import it to another workstation.

Procedure
1. To create a configuration profile, enter the db2cfexp command specifying the

fully qualified name of the target export file. The resulting profile contains only
configuration information associated with the current DB2 database instance.

2. To import the configuration profile, you can:
v Use the db2cfimp command
v Use a response file by uncommenting the keyword

DB2.CLIENT_IMPORT_PROFILE and specify the filename as the export file

Chapter 10. Adding database connections with the CLP 97

98 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 11. Configuring LDAP connections

In an LDAP-enabled environment, the directory information about DB2 servers
and databases is stored in the LDAP directory. When a new database is created,
the database is automatically registered in the LDAP directory.

During a database connection, the client accesses the LDAP directory to retrieve
the required database and protocol information and uses this information to
connect to the database.

Use the DB2 CLP commands in the LDAP environment to:
v Manually catalog a database in the LDAP directory.
v Register a database cataloged in LDAP as an ODBC data source.
v Configure CLI/ODBC information about the LDAP server.
v Remove a database cataloged in the LDAP directory.

Cataloging an LDAP node
A node name for the DB2 server must be specified when registering the server in
LDAP. Applications use the node name to attach to the database server.

Procedure
v If you require a different node name, such as when the node name is hard-coded

in an application, use the CATALOG LDAP NODE command to make the change. For
example:

db2 catalog ldap node ldap_node_name
as new_alias_name

v To uncatalog a LDAP node, use the UNCATALOG LDAP NODE command. For
example:

db2 uncatalog ldap node ldap_node_name

Registering DB2 servers
Each DB2 server instance must be registered in LDAP to publish the protocol
configuration information that is used by the client applications to connect to the
DB2 server instance.

About this task

When registering an instance of the database server, you must specify a node name.
The node name is used by client applications when they connect or attach to the
server. You can catalog another alias name for the LDAP node by using the
CATALOG LDAP NODE command.

Note: If you are working in a Windows domain environment, then during
installation the DB2 server instance is automatically registered in the Active
Directory with the following information:

nodename: TCP/IP hostname
protocol type: TCP/IP

© Copyright IBM Corp. 2014 99

If the TCP/IP hostname is longer than eight characters, it is truncated to eight
characters.

The REGISTER command appears as follows:
db2 register db2 server in ldap

as ldap_node_name
protocol tcpip

The protocol clause specifies the communication protocol to use when connecting
to this database server.

When creating an instance for DB2 Enterprise Server Edition that includes multiple
physical machines, the REGISTER command must be invoked once for each
computer. Use the rah command to issue the REGISTER command on all computers.

Note: The same ldap_node_name cannot be used for each computer since the name
must be unique in LDAP. You will want to substitute the hostname of each
computer for the ldap_node_name in the REGISTER command. For example:

rah ">DB2 REGISTER DB2 SERVER IN LDAP AS <> PROTOCOL TCPIP"

The "<>" is substituted by the hostname on each computer where the rah
command is run. In the rare occurrence where there are multiple DB2 Enterprise
Server Edition instances, the combination of the instance and host index can be
used as the node name in the rah command.

The REGISTER command can be issued for a remote DB2 server. To do so, you must
specify the remote computer name, instance name, and the protocol configuration
parameters when registering a remote server. The command can be used as
follows:

db2 register db2 server in ldap
as ldap_node_name
protocol tcpip
hostname host_name
svcename tcpip_service_name
remote remote_computer_name
instance instance_name

The following convention is used for the computer name:
v If TCP/IP is configured, the computer name must be the same as the TCP/IP

hostname.

When running in a high availability or failover environment, and using TCP/IP as
the communication protocol, the cluster IP address must be used. Using the cluster
IP address allows the client to connect to the server on either computer without
having to catalog a separate TCP/IP node for each computer. The cluster IP
address is specified using the hostname clause, shown as follows:

db2 register db2 server in ldap
as ldap_node_name
protocol tcpip
hostname n.nn.nn.nn

where n.nn.nn.nn is the cluster IP address.

To register the DB2 server in LDAP from a client application, call the
db2LdapRegister API.

100 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Registering databases
During the creation of a database within an instance, the database is automatically
registered in LDAP. Registration allows remote client connection to the database
without having to catalog the database and node on the client computer.

When a client attempts to connect to a database, if the database does not exist in
the database directory on the local computer then the LDAP directory is searched.

About this task

If the name exists in the LDAP directory, the database is still created on the local
computer but a warning message is returned stating the naming conflict in the
LDAP directory. For this reason, you can manually catalog a database in the LDAP
directory. The user can register databases on a remote server in LDAP by using the
CATALOG LDAP DATABASE command. When registering a remote database, you
specify the name of the LDAP node that represents the remote database server. You
must register the remote database server in LDAP using the REGISTER DB2 SERVER
IN LDAP command before registering the database.

Procedure
v To register a database manually in LDAP, use the CATALOG LDAP DATABASE

command:
db2 catalog ldap database dbname

at node node_name
with "My LDAP database"

v To register a database in LDAP from a client application, call the
db2LdapCatalogDatabase API.

Creating LDAP users
When using the IBM Tivoli directory, you must define an LDAP user before you
can store user-level information in LDAP. You can create an LDAP user by creating
an LDIF file to contain all attributes for the user object, then run the LDIF import
utility to import the object into the LDAP directory.

About this task

The DB2 database system supports setting DB2 registry variables and CLI
configuration at the user level. (This is not available on the Linux and UNIX
platforms.) User level support provides user-specific settings in a multi-user
environment. An example is Windows Terminal Server where each logged on user
can customize his or her own environment without interfering with the system
environment or another user's environment.

The LDIF utility for the IBM Tivoli Directory Server is LDIF2DB.

LDIF file containing the attributes for a person object appears similar to the
following:

File name: newuser.ldif

dn: cn=Mary Burnnet, ou=DB2 Development, ou=Toronto, o=ibm, c=ca
objectclass: ePerson
cn: Mary Burnnet
sn: Burnnet
uid: mburnnet

Chapter 11. LDAP connections 101

userPassword: password
telephonenumber: 1-416-123-4567
facsimiletelephonenumber: 1-416-123-4568
title: Software Developer

Following is an example of the LDIF command to import an LDIF file using the
IBM LDIF import utility:

LDIF2DB -i newuser.ldif

Note:

1. You must run the LDIF2DB command from the LDAP server.
2. You must grant the required access (ACL) to the LDAP user object so that the

LDAP user can add, delete, read, and write to his own object. To grant ACL for
the user object, use the LDAP Directory Server Web Administration tool.

Configuring LDAP users for DB2 applications
When you use the Microsoft LDAP client, the LDAP user is the same as the
operating system user account. However, when you use the IBM LDAP client,
before you use the DB2 database manager, you must configure the LDAP user
distinguished name (DN) and password for the current logged on user.

Procedure

To configure the LDAP user distinguished name (DN) and password, use the
db2ldcfg utility:

db2ldcfg -u userDN -w password --> set the user’s DN and password
-r --> clear the user’s DN and password

For example:
db2ldcfg -u "cn=Mary Burnnet,ou=DB2 Development,ou=Toronto,o=ibm,c=ca"

-w password

Setting DB2 registry variables at the user level in the LDAP
environment

Under the LDAP environment, the DB2 profile registry variables can be set at the
user level which allows a user to customize their own DB2 environment.

About this task

DB2 for Linux, UNIX, and Windows has a caching mechanism. The DB2 profile
registry variables at the user level are cached on the local computer.

The cache is refreshed when:
v You update or reset a DB2 registry variable at the user level.
v You issue the command to refresh the LDAP profile variables at the user level:

db2set -ur

Procedure

To set the DB2 profile registry variables at the user level, use the -ul option:
db2set -ul variable=value

102 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note: This is not supported on AIX or Solaris operating systems.
If the -ul parameter is specified, DB2 for Linux, UNIX, and Windows always reads
from the cache for the DB2 registry variables.

Deregistering DB2 servers
Deregistration of an instance from LDAP also removes all the node, or alias,
objects, and the database objects referring to the instance.

About this task

Deregistration of the DB2 server on either a local or a remote computer requires
the LDAP node name be specified for the server.

Procedure

To deregister the DB2 server from LDAP:
v From the command line, use the DEREGISTER command:

db2 deregister db2 server in ldap
node node_name

v From a client application, call the db2LdapDeregister API.

Results

When the DB2 server is deregistered, any LDAP node entry and LDAP database
entries referring to the same instance of the DB2 server are also uncataloged.

Deregistering the database from the LDAP directory
The database is automatically deregistered from LDAP when the database is
dropped, or the owning instance is deregistered from LDAP.

Procedure

To deregister a database from the LDAP directory:
v From the command line, use the UNCATALOG LDAP DATABASE command:

db2 uncatalog ldap database dbname

v From a client application, call the db2LdapUncatalogDatabase API.

Chapter 11. LDAP connections 103

104 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 12. Configuring IBM Data Server Drivers

Use the db2dsdriver.cfg configuration file to configure the IBM Data Server Driver.
This configuration file contains database directory information and configuration
keywords to set up connections to supported databases through ODBC, CLI, .NET,
OLE DB, or open source (PHP or Ruby) applications. For a complete list of
configuration keywords, see “IBM Data Server Driver configuration keywords” at
the following URL: http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/
topic/com.ibm.swg.im.dbclient.config.doc/doc/c0054698.html.

The IBM data server driver configuration file is an XML file that is based on the
db2dsdriver.xsd schema definition file. You can specify a customized path for the
IBM data server driver configuration file by using one of the following methods:
v Use the DB2DSDRIVER_CFG_SOURCE_PATH response file keyword to specify the path

during the IBM data server product installation.
v Set the DB2DSDRIVER_CFG_PATH registry variable to the file path.

You can associate the keywords globally, meaning with all database connections, or
you can associate the keywords with a specific database source name (DSN) or
database connection. You can also use the configuration file to enable a high
availability connection to supported databases.

You can use the IBM data server driver configuration file with embedded SQL
applications, ODBC, CLI, .NET, OLE DB, PHP, or Ruby drivers. However, the IBM
data server driver configuration file is not required to use embedded SQL
applications, ODBC, CLI, .NET, OLE DB, PHP, or Ruby drivers. The applications
can function without the IBM data server driver configuration file. However,
instead of specifying the database name, host, port, and configuration parameters
in your applications, you can use the configuration file with defined aliases.

The IBM data server driver configuration file supports a set of XML tags that are
in lowercase and do not include underscores (_). XML tag attributes, which are
where you specify IBM data server driver configuration keywords, can contain
uppercase, lowercase, and underscore (_) characters.

The sample IBM data server driver configuration file, named
db2dsdriver.cfg.sample, is included with IBM data server products.

Copying existing database directory information into the db2dsdriver
configuration file

You can populate the db2dsdriver.cfg configuration file with existing database
directory information.

Before you begin

You must have an existing Version 9.7 IBM Data Server Client or IBM Data Server
Runtime Client installed.

© Copyright IBM Corp. 2014 105

About this task

The db2dsdriver.cfg configuration file configures the behavior of DB2 CLI, ODBC,
open source, or .NET applications by using keywords. The keywords are associated
with the database alias name, and affect all the applications that access the
database.

If you have an IBM Data Server Client or IBM Data Server Runtime Client, you
can copy the existing database directory information into the db2dsdriver.cfg
configuration file by using the db2dsdcfgfill command. Using this command, the
configuration file is populated based on the contents of the local database
directory, node directory, and Database Connection Services (DCS) directory of a
specific database manager instance.

Restrictions

None.

Procedure

To copy existing database directory information from an IBM Data Server Client or
IBM Data Server Runtime Client into the db2dsdriver.cfg configuration file:

Enter the db2dsdcfgfill command. For example, db2dsdcfgfill -i instance_name
-o output_path. The parameter -o output-path indicates the path where the
db2dsdriver.cfg configuration file is created. For information about the location of
the db2dsdriver.cfg file, see the topic about that file.

106 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 3. Physical design and business rules implementation

Physical database design consists of defining database objects and implementing
business rules.

You can create the following database objects in a DB2 database:
v Tables
v Constraints
v Indexes
v Triggers
v Sequences
v Views
v Usage lists

You ca use Data Definition Language (DDL) statements or tools such as IBM Data
Studio to create these database objects. The DDL statements are generally prefixed
by the keywords CREATE or ALTER.

Understanding the features and functionality that each of these database objects
provides is important to implement a good database design that meets your
current business's data storage needs while remaining flexible enough to
accommodate expansion and growth over time.

© Copyright IBM Corp. 2014 107

108 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 13. Databases

A DB2 database is a relational database. The database stores all data in tables that are
related to one another. Relationships are established between tables such that data
is shared and duplication is minimized.

A relational database is a database that is treated as a set of tables and manipulated
in accordance with the relational model of data. It contains a set of objects used to
store, manage, and access data. Examples of such objects are tables, views, indexes,
functions, triggers, and packages. Objects can be either defined by the system
(built-in objects) or defined by the user (user-defined objects).

A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer
system has a relational database manager to manage the tables in its environment.
The database managers communicate and cooperate with each other in a way that
allows a given database manager to execute SQL statements on another computer
system.

A partitioned relational database is a relational database whose data is managed
across multiple database partitions. This separation of data across database
partitions is transparent to most SQL statements. However, some data definition
language (DDL) statements take database partition information into consideration
(for example, CREATE DATABASE PARTITION GROUP). DDL is the subset of SQL
statements used to describe data relationships in a database.

A federated database is a relational database whose data is stored in multiple data
sources (such as separate relational databases). The data appears as if it were all in
a single large database and can be accessed through traditional SQL queries.
Changes to the data can be explicitly directed to the appropriate data source.

Designing databases
When designing a database, you are modeling a real business system that contains
a set of entities and their characteristics, or attributes, and the rules or relationships
between those entities.

The first step is to describe the system that you want to represent. For example, if
you were creating a database for publishing system, the system would contain
several types of entities, such as books, authors, editors, and publishers. For each
of these entities, there are certain pieces of information, or attributes, that you must
record:
v Books: titles, ISBN, date published, location, publisher,
v Authors: name, address, phone and fax numbers, email address,
v Editors: name, address, phone and fax numbers, email address,
v Publishers: name, address, phone and fax numbers, email address,

You will need the database to represent not only these types of entities and their
attributes, but you also need a way to relate these entities to each other. For
example, you need to represent the relationship between books and their authors,
the relationship between books/authors and editors, and the relationship between
books/authors and publishers.

© Copyright IBM Corp. 2014 109

There are three types of relationships between the entities in a database:

One-to-one relationships
In this type of relationship, each instance of an entity relates to only one
instance of another entity. Currently, no one-to-one relationships exist in
the scenario described previously.

One-to-many relationships
In this type of relationship, each instance of an entity relates to one or
more instances of another entity. For example, an author could have
written multiple books, but certain books have only one author. This is the
most common type of relationship modeled in relational databases.

Many-to-many relationships
In this type of relationship, many instances of a given entity relate to one
or more instances of another entity. For example, co-authors could write a
number of books.

Because databases consist of tables, you must construct a set of tables that will best
hold this data, with each cell in the table holding a single view. There are many
possible ways to perform this task. As the database designer, your job is to come
up with the best set of tables possible.

For example, you could create a single table, with many rows and columns, to
hold all of the information. However, using this method, some information would
be repeated. Secondly, data entry and data maintenance would be time-consuming
and error prone. In contrast to this single-table design, a relational database allows
you to have multiple simple tables, reducing redundancy and avoiding the
difficulties posed by a large and unmanageable table. In a relational database,
tables should contain information about a single type of entity.

Also, the integrity of the data in a relational database must be maintained as
multiple users access and change the data. Whenever data is shared, there is a
need to ensure the accuracy of the values within database tables.

You can:
v Use isolation levels to determines how data is locked or isolated from other

processes while the data is being accessed.
v Protect data and define relationships between data by defining constraints to

enforce business rules.
v Create triggers that can do complex, cross-table data validation.
v Implement a recovery strategy to protect data so that it can be restore to a

consistent state.

Database design is a much more complex task than is indicated here, and there are
many items that must be considered, such as space requirements, keys, indexes,
constraints, security and authorization, and so forth. You can find some of this
information in the DB2 Information Center, and in the many DB2 retail books that
are available on this subject.

Creating databases
You create a database using the CREATE DATABASE command. To create a database
from a client application, call the sqlecrea API. All databases are created with the
default storage group IBMSTOGROUP, unless you specify otherwise. Automatic
storage managed table spaces use storage groups for their storage definitions.

110 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Before you begin

The DB2 database manager must be running. Use the db2start command to start
the database manager.

It is important to plan your database, keeping in mind the contents, layout,
potential growth, and how it will be used before you create it. After it has been
created and populated with data, changes can be made.

The following database privileges are automatically granted to PUBLIC:
CREATETAB, BINDADD, CONNECT, IMPLICIT_SCHEMA, and SELECT on the
system catalog views. However, if the RESTRICTIVE option is present, no privileges
are automatically granted to PUBLIC. For more information about the RESTRICTIVE
option, see the CREATE DATABASE command.

Restrictions
v Storage paths cannot be specified using relative path names; you must use

absolute path names. The storage path can be up to 175 characters long.
v On Windows operating systems, the database path must be a drive letter only,

unless the DB2_CREATE_DB_ON_PATH registry variable is set to YES.
v If you do not specify a database path using the DBPATH ON clause of the CREATE

DATABASE command, the database manager uses the first storage path specified
for the ON clause for the database path. (On Windows operating systems, if this
clause is specified as a path, and if the DB2_CREATE_DB_ON_PATH registry variable
is not set to YES, you receive a SQL1052N error message.) If no ON clause is
specified, the database is created on the default database path that is specified in
the database manager configuration file (dftdbpath parameter). The path is also
used as the location for the single storage path associated with the database.

v For partitioned databases, you must use the same set of storage paths on each
database partition (unless you use database partition expressions).

v Database partition expressions are not valid in database paths, whether you
specify them explicitly by using the DBPATH ON clause of the CREATE DATABASE
command, or implicitly by using a database partition expression in the first
storage path.

v A storage group must have at least one storage path associated with it.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE NO
clause, the AUTOMATIC STORAGE clause is deprecated and might be removed from a
future release.

About this task

When you create a database, each of the following tasks are done for you:
v Setting up of all the system catalog tables that are needed by the database
v Allocation of the database recovery log
v Creation of the database configuration file and the default values are set
v Binding of the database utilities to the database

Procedure
v To create a database from a client application, call the sqlecrea API.
v To create a database using the command line processor, issue the CREATE

DATABASE command.

Chapter 13. Databases 111

For example, the following command creates a database called PERSON1, in the
default location, with the associated comment "Personnel DB for BSchiefer Co".
CREATE DATABASE person1

WITH "Personnel DB for BSchiefer Co"

v To create a database using IBM Data Studio, right-click the instance on which
you want to create the database and select the task assistant to the create it. For
more information, see IBM Data Studio: Administering databases with task
assistants.

Example

Example 1: Creating a database on a UNIX or Linux operating system:

To create a database named TESTDB1 on path /DPATH1 using /DATA1 and /DATA2 as
the storage paths defined to the default storage group IBMSTOGROUP, use the
following command:

CREATE DATABASE TESTDB1 ON ’/DATA1’,’/DATA2’ DBPATH ON ’/DPATH1’

Example 2: Creating a database on a Windows operating system, specifying both storage
and database paths:

To create a database named TESTDB2 on drive D:, with storage on E:\DATA, use the
following command:

CREATE DATABASE TESTDB2 ON ’E:\DATA’ DBPATH ON ’D:’

In this example, E:\DATA is used as both the storage path defined to the default
storage group IBMSTOGROUP and the database path.

Example 3: Creating a database on a Windows operating system, specifying only a storage
path:

To create a database named TESTDB3 with storage on drive F:, use the following
command:

CREATE DATABASE TESTDB3 ON ’F:’

In this example, F: is used as both the storage path defined to the default storage
group IBMSTOGROUP and the database path.

If you specify a directory name such as F:\DATA for the storage path, the command
fails, because:
1. When DBPATH is not specified, the storage path -- in this case, F:\DATA -- is used

as the database path
2. On Windows, the database path can only be a drive letter (unless you change

the default for the DB2_CREATE_DB_ON_PATH registry variable from NO to YES).

If you want to specify a directory as the storage path on Windows operating
systems, you must also include the DBPATH ON drive clause, as shown in Example
2.

Example 4: Creating a database on a UNIX or Linux operating system without specifying
a database path:

To create a database named TESTDB4 with storage on /DATA1 and /DATA2, use the
following command:

CREATE DATABASE TESTDB4 ON ’/DATA1’,’/DATA2’

112 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

In this example, /DATA1 and /DATA2 are used as the storage paths defined to the
default storage group IBMSTOGROUP and /DATA1 is the database path.

What to do next

Configuration Advisor
The Configuration Advisor helps you to tune performance and to balance
memory requirements for a single database per instance by suggesting
which configuration parameters to modify and providing suggested values
for them. The Configuration Advisor is automatically invoked by default
when you create a database.

You can override this default so that the configuration advisor is not
automatically invoked by using one of the following methods:
v Issue the CREATE DATABASE command with the AUTOCONFIGURE APPLY NONE

parameter.
v Set the DB2_ENABLE_AUTOCONFIG_DEFAULT registry variable to NO:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

However, if you specify the AUTOCONFIGURE parameter with the CREATE
DATABASE command, the setting of this registry variable is ignored.

Also, the following automatic features are enabled by default when you
create a database:
v Automatic storage
v Automatic background statistics collection
v Automatic real-time statistics collection
v Self-tuning memory (single-partition environments)

Event Monitor
At the same time a database is created, a detailed deadlocks event monitor
is also created. As with any monitor, there is extra processing time and
resources associated with this event monitor. If you do not want the
detailed deadlocks event monitor, then the event monitor can be dropped
by using the command:
DROP EVENT MONITOR db2detaildeadlock

To limit the amount of disk space that this event monitor consumes, the
event monitor deactivates, and a message is written to the administration
notification log, once it has reached its maximum number of output files.
Removing output files that are no longer needed allows the event monitor
to activate again on the next database activation.

Remote databases

You can create a database in a different, possibly remote, instance. To
create a database at another (remote) database partition server, you must
first attach to that server. A database connection is temporarily established
by the following command during processing:
CREATE DATABASE database_name AT DBPARTITIONNUM options

In this type of environment, you can perform instance-level administration
against an instance other than your default instance, including remote
instances. For instructions on how to do this, see the db2iupdt (update
instance) command.

Database code pages

Chapter 13. Databases 113

By default, databases are created in the UTF-8 (Unicode) code set.

To override the default code page for the database, it is necessary to
specify the required code set and territory when creating the database. See
the CREATE DATABASE command or the sqlecrea API for information about
setting the code set and territory.

Converting a nonautomatic storage database to use automatic storage
You can convert an existing nonautomatic storage database to use automatic
storage by using the CREATE STOGROUP statement to define the default storage
group within a database.

Before you begin

You must have a storage location that you can identify with a path (for Windows
operating systems, a path or a drive letter) available to use as a storage path for
your automatic storage table spaces.

Restrictions

v Once you have created a storage group, you cannot drop all storage groups for a
database.

v Only DMS table spaces can be converted to use automatic storage.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

About this task

Databases that are created specifying the AUTOMATIC STORAGE NO clause of
the CREATE DATABASE command do not have storage groups associated with them.
Instead, storage is associated with the table spaces for the database. When you
define a storage group for a database, existing table spaces are not automatically
converted to use automatic storage. By default, only future table spaces that you
create are automatic storage table spaces. You must use the ALTER TABLESPACE
statement to convert existing table spaces to use automatic storage.

Procedure

You can convert an existing database to an automatic storage database by using the
CREATE STOGROUP statement to create a storage group within it.

To create a storage group within a database, use the following statement:
CREATE STOGROUP sg ON storagePath

where sg is the storage group and storagePath is the path you want to use for
automatic storage table spaces.

Example

Example 1: Converting a database on UNIX or Linux operating systems

Assume that the database EMPLOYEE is a nonautomatic storage database, and
that /data1/as and /data2/as are the paths you want to use for automatic storage

114 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

table spaces. To convert EMPLOYEE to an automatic storage database, create a
storage group with /data1/as and /data2/as as paths:

CREATE STOGROUP sg ON ’/data1/as’, ’/data2/as’

Example 2: Converting a database on Windows operating systems

Assume that the database SALES is a nonautomatic storage database, and that
F:\DB2DATA and G: are the paths you want to use for automatic storage table
spaces. To convert SALES to an automatic storage database, create a storage group
with F:\DB2DATA and G: as paths:

CREATE STOGROUP sg ON ’F:\DB2DATA’, ’G:’

What to do next

If you have existing DMS table spaces that you want to convert to use automatic
storage, use the ALTER TABLESPACE statement with the MANAGED BY
AUTOMATIC STORAGE clause to change them. If you do not specify the USING
STOGROUP clause, then the table space uses the storage paths in the designated
default storage group.

Once you have created a storage group you can create automatic storage table
spaces in which to store tables, indexes and other database objects by using the
CREATE TABLESPACE statement.

Chapter 13. Databases 115

116 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 14. Buffer pools

A buffer pool is an area of main memory that has been allocated by the database
manager for the purpose of caching table and index data as it is read from disk.
Every DB2 database must have a buffer pool.

Each new database has a default buffer pool defined, called IBMDEFAULTBP.
Additional buffer pools can be created, dropped, and modified, using the CREATE
BUFFERPOOL, DROP BUFFERPOOL, and ALTER BUFFERPOOL statements. The
SYSCAT.BUFFERPOOLS catalog view accesses the information for the buffer pools
defined in the database.

In a DB2 pureScale environment, each member has its own local buffer pool (LBP).
However there is an additional group buffer pool (GBP) that is maintained by the
cluster caching facility. The GBP is shared by all members. It is used as a cache for
pages used be individual members across a DB2 pureScale instance to improve
performance and ensure consistency.

How buffer pools are used

Note: The information that follows discusses buffer pools in environments other
than DB2 pureScale environments. Buffer pools work differently in DB2 pureScale
environments. For more information, see “Buffer pool monitoring in a DB2
pureScale environment”, in the Database Monitoring Guide and Reference.

When a row of data in a table is first accessed, the database manager places the
page that contains that data into a buffer pool. Pages stay in the buffer pool until
the database is shut down or until the space occupied by the page is required by
another page.

Pages in the buffer pool can be either in-use or not, and they can be dirty or clean:
v In-use pages are currently being read or updated. To maintain data consistency,

the database manager only allows one agent to be updating a given page in a
buffer pool at one time. If a page is being updated, it is being accessed
exclusively by one agent. If it is being read, it might be read by multiple agents
simultaneously.

v "Dirty" pages contain data that has been changed but has not yet been written to
disk.

v After a changed page is written to disk, it is clean and might remain in the
buffer pool.

A large part of tuning a database involves setting the configuration parameters that
control the movement of data into the buffer pool and the writing of data from the
buffer out to disk. If not needed by a recent agent, the page space can be used for
new page requests from new applications. Database manager performance is
degraded by extra disk I/O.

© Copyright IBM Corp. 2014 117

Designing buffer pools
The sizes of all buffer pools can have a major impact on the performance of your
database.

Before you create a new buffer pool, resolve the following items:
v What buffer pool name do you want to use?
v Whether the buffer pool is to be created immediately or following the next time

that the database is deactivated and reactivated?
v Whether the buffer pool should exist for all database partitions, or for a subset

of the database partitions?
v What page size you want for the buffer pool? See “Buffer pool page sizes”.
v Whether the buffer pool will be a fixed size, or whether the database manager

will automatically adjust the size of the buffer pool in response to your
workload? It is suggested that you allow the database manager to tune your
buffer pool automatically by leaving the SIZE parameter unspecified during
buffer pool creation. For details, see the SIZE parameter of the “CREATE
BUFFERPOOL statement” and “Buffer pool memory considerations” on page
119.

v Whether you want to reserve a portion of the buffer pool for block based I/O?
For details, see: “Block-based buffer pools for improved sequential prefetching”.

Relationship between table spaces and buffer pools

When designing buffer pools, you must understand the relationship between table
spaces and buffer pools. Each table space is associated with a specific buffer pool.
IBMDEFAULTBP is the default buffer pool. The database manager also allocates
these system buffer pools: IBMSYSTEMBP4K, IBMSYSTEMBP8K,
IBMSYSTEMBP16K, and IBMSYSTEMBP32K (formerly known as the “hidden
buffer pools”). To associate another buffer pool with a table space, the buffer pool
must exist and the two must have the same page size. The association is defined
when the table space is created (using the CREATE TABLESPACE statement), but it
can be changed at a later time (using the ALTER TABLESPACE statement).

Having more than one buffer pool allows you to configure the memory used by
the database to improve overall performance. For example, if you have a table
space with one or more large (larger than available memory) tables that are
accessed randomly by users, the size of the buffer pool can be limited, because
caching the data pages might not be beneficial. The table space for an online
transaction application might be associated with a larger buffer pool, so that the
data pages used by the application can be cached longer, resulting in faster
response times. Care must be taken in configuring new buffer pools.

Buffer pool page sizes

The page size for the default buffer pool is set when you use the CREATE DATABASE
command. This default represents the default page size for all future CREATE
BUFFERPOOL and CREATE TABLESPACE statements. If you do not specify the
page size when creating the database, the default page size is 4 KB.

Note: If you have determined that a page size of 8 KB, 16 KB, or 32 KB is required
by your database, you must have at least one buffer pool of the matching page size
defined and associated with table space in your database.

118 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

However, you might need a buffer pool that has different characteristics than the
system buffer pool. You can create new buffer pools for the database manager to
use. You might have to restart the database for table space and buffer pool changes
to take effect. The page sizes that you specify for your table spaces should
determine the page sizes that you choose for your buffer pools. The choice of page
size used for a buffer pool is important because you cannot alter the page size
after you create a buffer pool.

Buffer pool memory considerations

Memory requirements
When designing buffer pools, you should also consider the memory
requirements based on the amount of installed memory on your computer
and the memory required by other applications running concurrently with
the database manager on the same computer. Operating system data
swapping occurs when there is insufficient memory to hold all the data
being accessed. This occurs when some data is written or swapped to
temporary disk storage to make room for other data. When the data on
temporary disk storage is needed, it is swapped back into main memory.

Buffer pool memory protection

With Version 9.5, data pages in buffer pool memory are protected using
storage keys, which are available only if explicitly enabled by the
DB2_MEMORY_PROTECT registry variable, and only on AIX (5.3 TL06
5.4), running on POWER6®.

Buffer pool memory protection works on a per-agent level; any particular
agent will only have access to buffer pool pages when that agent needs
access. Memory protection works by identifying at which times the DB2
engine threads should have access to the buffer pool memory and at which
times they should not have access. For details, see: “Buffer pool memory
protection (AIX running on POWER6).”

Address Windowing Extensions (AWE) and Extended Storage (ESTORE)

Note: AWE and ESTORE features have been discontinued, including the
ESTORE-related keywords, monitor elements, and data structures. To
allocate more memory, you must upgrade to a 64-bit hardware operating
system, and associated DB2 products. You should also modify applications
and scripts to remove references to this discontinued functionality.

Buffer pool hit ratios
Buffer pool hit ratios reflect the extent to which data needed for queries is found in
memory, as opposed to having to be read in from external storage. You can
calculate hit rates and ratios with formulas that are based on buffer pool monitor
elements. For more information, see “Formulas for calculating buffer pool hit
ratios” at the following URL: http://publib.boulder.ibm.com/infocenter/db2luw/
v10r1/topic/com.ibm.db2.luw.admin.mon.doc/doc/r0056871.html

Buffer pool memory protection (AIX running on POWER6)
The database manager uses the buffer pool to apply additions, modifications, and
deletions to much of the database data.

Storage keys is a new feature in IBM Power6 processors and the AIX operating
system that allows the protection of ranges of memory using hardware keys at a

Chapter 14. Buffer pools 119

kernel thread level. Storage key protection reduces buffer pool memory corruption
problems and limits errors that might halt the database. Attempts to illegally access
the buffer pool by programming means cause an error condition that the database
manager can detect and deal with.

Note: Buffer pool memory protection works on a per-agent level; any particular
agent has access to buffer pool pages only when that agent needs access.

The database manager protects buffer pools by restricting access to buffer pool
memory. When an agent requires access to the buffer pools to perform its work, it
is temporarily granted access to the buffer pool memory. When the agent no longer
requires access to the buffer pools, access is revoked. This behavior ensures that
agents are only allowed to modify buffer pool contents when needed, reducing the
likelihood of buffer pool corruptions. Any illegal access to buffer pool memory
results in a segmentation error. Tools to diagnose these errors are provided, such as
the db2diag, db2fodc, db2pdcfg, and db2support commands.

To enable the buffer pool memory protection feature, in order to increase the
resilience of the database engine, enable the DB2_MEMORY_PROTECT registry variable:

DB2_MEMORY_PROTECT registry variable
This registry variable enables and disables the buffer pool memory
protection feature. When DB2_MEMORY_PROTECT is enabled (set to YES), and a
DB2 engine thread tries to illegally access buffer pool memory, that engine
thread traps. The default is NO.

Note: The buffer pool memory protection feature depends on the implementation
of AIX Storage Protect Keys and it might not work with the pinned shared
memory. If DB2_MEMORY_PROTECT is specified with DB2_PINNED_BP or
DB2_LARGE_PAGE_MEM setting, AIX Storage Protect Keys may not be enabled.
For more information about AIX Storage Protect Keys, see
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/
index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/
storage_protect_keys.htm.

You cannot use the memory protection if DB2_LGPAGE_BP is set to YES. Even
if DB2_MEMORY_PROTECT is set to YES, DB2 database manager will fail to
protect the buffer pool memory and disable the feature.

Creating buffer pools
Use the CREATE BUFFERPOOL statement to define a new buffer pool to be used
by the database manager.

Before you begin

There needs to be enough real memory on the computer for the total of all the
buffer pools that you created. The operating system also needs some memory to
operate.

About this task

On partitioned databases, you can also define the buffer pool to be created
differently, including different sizes, on each database partition. The default ALL
DBPARTITIONNUMS clause creates the buffer pool on all database partitions in
the database.

120 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm

Procedure

To create a buffer pool using the command line:
1. Get the list of buffer pool names that exist in the database. Issue the following

SQL statement:
SELECT BPNAME FROM SYSCAT.BUFFERPOOLS

2. Choose a buffer pool name that is not currently found in the result list.
3. Determine the characteristics of the buffer pool you are going to create.
4. Ensure that you have the correct authorization ID to run the CREATE

BUFFERPOOL statement.
5. Issue the CREATE BUFFERPOOL statement. A basic CREATE BUFFERPOOL

statement is:
CREATE BUFFERPOOL buffer-pool-name

PAGESIZE 4096

Results

If there is sufficient memory available, the buffer pool can become active
immediately. By default new buffer pools are created using the IMMEDIATE
keyword, and on most platforms, the database manager is able to acquire more
memory. The expected return is successful memory allocation. In cases where the
database manager is unable to allocate the extra memory, the database manager
returns a warning condition stating that the buffer pool could not be started. This
warning is provided on the subsequent database startup. For immediate requests,
you do not need to restart the database. When this statement is committed, the
buffer pool is reflected in the system catalog tables, but the buffer pool does not
become active until the next time the database is started. For more information
about this statement, including other options, see the “CREATE BUFFERPOOL
statement”.

If you issue a CREATE BUFFERPOOL DEFERRED, the buffer pool is not
immediately activated; instead, it is created at the next database startup. Until the
database is restarted, any new table spaces use an existing buffer pool, even if that
table space is created to explicitly use the deferred buffer pool.

Example

In the following example, the optional DATABASE PARTITION GROUP clause
identifies the database partition group or groups to which the buffer pool
definition applies:

CREATE BUFFERPOOL buffer-pool-name
PAGESIZE 4096
DATABASE PARTITION GROUP db-partition-group-name

If this parameter is specified, the buffer pool is created only on database partitions
in these database partition groups. Each database partition group must currently
exist in the database. If the DATABASE PARTITION GROUP clause is not
specified, this buffer pool is created on all database partitions (and on any
database partitions that are later added to the database).

For more information, see the “CREATE BUFFERPOOL statement”.

Chapter 14. Buffer pools 121

Modifying buffer pools
There are a number of reasons why you might want to modify a buffer pool, for
example, to enable self-tuning memory. To do this, you use the ALTER
BUFFERPOOL statement.

Before you begin

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

About this task

When working with buffer pools, you might need to do one of the following tasks:
v Enable self tuning for a buffer pool, allowing the database manager to adjust the

size of the buffer pool in response to your workload.
v Modify the block area of the buffer pool for block-based I/O.
v Add this buffer pool definition to a new database partition group.
v Modify the size of the buffer pool on some or all database partitions.

To alter a buffer pool using the command line, do the following:
1. To get the list of the buffer pool names that already exist in the database, issue

the following statement:
SELECT BPNAME FROM SYSCAT.BUFFERPOOLS

2. Choose the buffer pool name from the result list.
3. Determine what changes must be made.
4. Ensure that you have the correct authorization ID to run the ALTER

BUFFERPOOL statement.

Note: Two key parameters are IMMEDIATE and DEFERRED. With IMMEDIATE, the
buffer pool size is changed without having to wait until the next database
activation for it to take effect. If there is insufficient database shared memory to
allocate new space, the statement is run as DEFERRED.

With DEFERRED, the changes to the buffer pool will not be applied until the
database is reactivated. Reserved memory space is not needed; the database
manager allocates the required memory from the system at activation time.

5. Use the ALTER BUFFERPOOL statement to alter a single attribute of the buffer
pool object. For example:

ALTER BUFFERPOOL buffer pool name SIZE number of pages

v The buffer pool name is a one-part name that identifies a buffer pool described in
the system catalogs.

v The number of pages is the new number of pages to be allocated to this specific
buffer pool. You can also use a value of -1, which indicates that the size of the
buffer pool should be the value found in the buffpage database configuration
parameter.

The statement can also have the DBPARTITIONNUM <db partition number>
clause that specifies the database partition on which the size of the buffer pool is
modified. If this clause is not specified, the size of the buffer pool is modified on
all database partitions except those that have an exception entry in
SYSCAT.BUFFERPOOLDBPARTITIONS. For details on using this clause for
database partitions, see the ALTER BUFFERPOOL statement.

122 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Changes to the buffer pool as a result of this statement are reflected in the system
catalog tables when the statement is committed. However, no changes to the actual
buffer pool take effect until the next time the database is started, except for
successful ALTER BUFFERPOOL requests specified with the default IMMEDIATE
keyword.

There must be enough real memory on the computer for the total of all the buffer
pools that you have created. There also needs to be sufficient real memory for the
rest of the database manager and for your applications.

Dropping buffer pools
When dropping buffer pools, ensure that no table spaces are assigned to those
buffer pools.

You cannot drop the IBMDEFAULTBP buffer pool.

About this task

Disk storage might not be released until the next connection to the database.
Storage memory is not released from a dropped buffer pool until the database is
stopped. Buffer pool memory is released immediately, to be used by the database
manager.

Procedure

To drop buffer pools, use the DROP BUFFERPOOL statement.
DROP BUFFERPOOL buffer-pool-name

Chapter 14. Buffer pools 123

124 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 15. Table spaces

A table space is a storage structure containing tables, indexes, large objects, and long
data. They are used to organize data in a database into logical storage groupings
that relate to where data is stored on a system. Table spaces are stored in database
partition groups.

Using table spaces to organize storage offers a number of benefits:

Recoverability
Putting objects that must be backed up or restored together into the same
table space makes backup and restore operations more convenient, since
you can backup or restore all the objects in table spaces with a single
command. If you have partitioned tables and indexes that are distributed
across table spaces, you can backup or restore only the data and index
partitions that reside in a given table space.

More tables
There are limits to the number of tables that can be stored in any one table
space; if you have a need for more tables than can be contained in a table
space, you need only to create additional table spaces for them.

Automatic storage management
With automatic storage table spaces, storage is managed automatically. The
database manager creates and extends containers as needed.

Ability to isolate data in buffer pools for improved performance or memory
utilization

If you have a set of objects (for example, tables, indexes) that are queried
frequently, you can assign the table space in which they reside a buffer
pool with a single CREATE or ALTER TABLESPACE statement. You can
assign temporary table spaces to their own buffer pool to increase the
performance of activities such as sorts or joins. In some cases, it might
make sense to define smaller buffer pools for seldom-accessed data, or for
applications that require very random access into a very large table; in
such cases, data need not be kept in the buffer pool for longer than a
single query

Table spaces consist of one or more containers. A container can be a directory name,
a device name, or a file name. A single table space can have several containers. It
is possible for multiple containers (from one or more table spaces) to be created on
the same physical storage device (although you will get the best performance if
each container you create uses a different storage device). If you are using
automatic storage table spaces, the creation and management of containers is
handled automatically by the database manager. If you are not using automatic
storage table spaces, you must define and manage containers yourself.

Figure 5 on page 126 illustrates the relationship between tables and table spaces
within a database, and the containers associated with that database.

© Copyright IBM Corp. 2014 125

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,
which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table
space in container 4. This example shows each container existing on a separate
disk.

The database manager attempts to balance the data load across containers. As a
result, all containers are used to store data. The number of pages that the database
manager writes to a container before using a different container is called the extent
size. The database manager does not always start storing table data in the first
container.

Figure 6 on page 127 shows the HUMANRES table space with an extent size of
two 4 KB pages, and four containers, each with a small number of allocated
extents. The DEPARTMENT and EMPLOYEE tables both have seven pages, and
span all four containers.

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

Figure 5. Table spaces and tables in a database

126 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table spaces for system, user and temporary data
Each database must have a minimal set of table spaces that are used for storing
system, user and temporary data.

A database must contain at least three table spaces:
v A catalog table space

v One or more user table spaces

v One or more temporary table spaces.

Catalog table spaces

A catalog table space contains all of the system catalog tables for the database. This
table space is called SYSCATSPACE, and it cannot be dropped.

User table spaces

A user table space contains user-defined tables. By default, one user table space,
USERSPACE1, is created.

If you do not specify a table space for a table at the time you create it, the database
manager will choose one for you. Refer to the documentation for the IN
tablespace-name clause of the CREATE TABLE statement for more information.

The page size of a table space determines the maximum row length or number of
columns that you can have in a table. The documentation for the CREATE TABLE
statement shows the relationship between page size, and the maximum row size
and column count. Before Version 9.1, the default page size was 4 KB. In Version
9.1 and following, the default page size can be one of the other supported values.
The default page size is declared when creating a new database. Once the default
page size has been declared, you are still free to create a table space with one page
size for the table, and a different table space with a different page size for long or
LOB data. If the number of columns or the row size exceeds the limits for a table

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

Figure 6. Containers and extents in a table space

Chapter 15. Table spaces 127

space's page size, an error is returned (SQLSTATE 42997).

Temporary table spaces

A temporary table space contains temporary tables. Temporary table spaces can be
system temporary table spaces or user temporary table spaces.

System temporary table spaces hold temporary data required by the database
manager while performing operations such as sorts or joins. These types of
operations require extra space to process the results set. A database must have at
least one system temporary table space; by default, one system temporary table
space called TEMPSPACE1 is created at database creation.

When processing queries, the database manager might need access to a system
temporary table space with a page size large enough to manipulate data related to
your query. For example, if your query returns data with rows that are 8KB long,
and there are no system temporary table spaces with page sizes of at least 8KB, the
query might fail. You might need to create a system temporary table space with a
larger page size. Defining a temporary table space with a page size equal to that of
the largest page size of your user table spaces will help you avoid these kinds of
problems.

User temporary table spaces hold temporary data from tables created with a
DECLARE GLOBAL TEMPORARY TABLE or CREATE GLOBAL TEMPORARY
TABLE statement. They are not created by default at the time of database creation.
They also hold instantiated versions of created temporary tables. To allow the
definition of declared or created temporary tables, at least one user temporary
table space should be created with the appropriate USE privileges. USE privileges
are granted using the GRANT statement.

If a database uses more than one temporary table space and a new temporary
object is needed, the optimizer will choose an appropriate page size for this object.
That object will then be allocated to the temporary table space with the
corresponding page size. If there is more than one temporary table space with that
page size, then the table space will be chosen in a round-robin fashion, starting
with one table space with that page size, and then proceeding to the next for the
next object to be allocated, and so, returning to the first table space after all
suitable table spaces have been used. In most circumstances, though, it is not
recommended to have more than one temporary table space with the same page
size.

Types of table spaces
You can set up table spaces in different ways depending on how you choose to
manage their storage.

The three types of table spaces are known as:
v System managed space (SMS), in which the operating system's file manager

controls the storage space once you have defined the location for storing
database files

v Database managed space (DMS), in which the database manager controls the
usage of storage space one you have allocated storage containers.

v Automatic storage table spaces, in which the database manager controls the
creation of containers as needed.

Each can be used together in any combination within a database

128 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Automatic storage table spaces
With automatic storage table spaces, storage is managed automatically. The
database manager creates and extends containers as needed.

Note: Although you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

Any table spaces that you create are managed as automatic storage table spaces
unless you specify otherwise or the database was created using the AUTOMATIC
STORAGE NO clause. With automatic storage table spaces, you are not required to
provide container definitions; the database manager looks after creating and
extending containers to make use of the storage allocated to the database. If you
add storage to a storage group, new containers are automatically created when the
existing containers reach their maximum capacity. If you want to make use of the
newly-added storage immediately, you can rebalance the table space, reallocating
the data across the new, expanded set of containers and stripe sets. Or, if you are
less concerned about I/O parallelism, and just want to add capacity to your table
space, you can forego rebalancing; in this case, as new storage is required, new
stripe sets will be created.

Automatic storage table spaces can be created in a database using the CREATE
TABLESPACE statement. By default, new tables spaces in a database are automatic
storage table spaces, so the MANAGED BY AUTOMATIC STORAGE clause is
optional. You can also specify options when creating the automatic storage table
space, such as its initial size, the amount that the table space size will be increased
when the table space is full, the maximum size that the table space can grow to,
and the storage group it uses. Following are some examples of statements that
create automatic storage table spaces:
CREATE TABLESPACE TS1
CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE
CREATE TEMPORARY TABLESPACE TEMPTS
CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE
CREATE LARGE TABLESPACE LONGTS
CREATE TABLESPACE TS3 INITIALSIZE 8K INCREASESIZE 20 PERCENT MANAGED BY AUTOMATIC STORAGE
CREATE TABLESPACE TS4 MAXSIZE 2G
CREATE TABLESPACE TS5 USING STOGROUP SG_HOT

Each of these examples assumes that the database for which these table spaces are
being created has one or more defined storage groups. When you create a table
space in a database that has no storage groups defined, you cannot use the
MANAGED BY AUTOMATIC STORAGE clause; you must create a storage group,
then try again to create your automatic storage table space.

How automatic storage table spaces manage storage
expansion

If you are using automatic storage table spaces, the database manager creates and
extends containers as needed. If you add storage to the storage group that the
table space uses, new containers are created automatically. How the new storage
space gets used, however, depends on whether you REBALANCE the table space
or not.

When an automatic storage table space is created, the database manager creates a
container on each of the storage paths of the storage group it is defined to use
(where space permits). Once all of the space in a table space is consumed, the

Chapter 15. Table spaces 129

database manager automatically grows the size of the table space by extending
existing containers or by adding a new stripe set of containers.

Storage for automatic table spaces is managed at the storage group level; that is,
you add storage to the database's storage groups, rather than to table spaces as you
do with DMS table spaces. When you add storage to a storage group used by the
table space, the automatic storage feature will create new containers as needed to
accommodate data. However, table spaces that already exist will not start
consuming storage on the new paths immediately. When a table space needs to
grow, the database manager will first attempt to extend those containers in the last
range of the table space. A range is all the containers across a given stripe set. If
this is successful, applications will start using that new space. However, if the
attempt to extend the containers fails, as might happen when one or more of the
file systems are full, for example, the database manager will attempt to create a
new stripe set of containers. Only at this point does the database manager consider
using the newly added storage paths for the table space. Figure 7 illustrates this
process.

In the preceding diagram:

/path1 /path2 /path3

/path1 /path1 /path1/path2 /path2 /path3 /path2 /path3

1 2

3

/path1 /path2 /path3 /path1 /path2 /path3

4 5

Figure 7. How automatic storage adds containers as needed

130 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

1. The table space starts out with two containers that have not yet reached their
maximum capacity. A new storage path is added to the storage group using the
ALTER STOGROUP statement with the ADD clause. However, the new storage
path is not yet being used.

2. The two original containers reach their maximum capacity.
3. A new stripe set of containers is added, and they start to fill up with data.
4. The containers in the new stripe set reaching their maximum capacity.
5. A new stripe set is added because there is no room for the containers to grow.

If you want to have the automatic storage table space start using the newly added
storage path immediately, you can perform a rebalance, using the REBALANCE
clause of the ALTER TABLESPACE command. If you rebalance your table space,
the data will be reallocated across the containers and stripe sets in the
newly-added storage. This is illustrated in Figure 8.

In this example, rather than a new stripe set being created, the rebalance expands
the existing stripe sets into the new storage path, creating containers as needed,
and then reallocates the data across all of the containers.

Container names in automatic storage table spaces
Although container names for automatic storage table spaces are assigned by the
database manager, they are visible if you run commands such as LIST TABLESPACE
CONTAINERS, or GET SNAPSHOT FOR TABLESPACES commands. This topic describes the
conventions used for container names so that you can recognize them when they
appear.

The names assigned to containers in automatic storage table spaces are structured
as follows:
storage path/instance name/NODE####/database name/T#######/C#######.EXT

where:

/path1 /path2 /path3

Second
stripe set

First
stripe set

Path being
addedExisting

paths

/path1 /path2 /path3

Figure 8. Results of adding new storage and rebalancing the table space

Chapter 15. Table spaces 131

storage path
Is a storage path associated with a storage group

instance name
Is the instance under which the database was created

database name
Is the name of the database

NODE####
Is the database partition number (for example, NODE0000)

T#######
Is the table space ID (for example, T0000003)

C#######
Is the container ID (for example, C0000012)

EXT Is an extension based on the type of data being stored:

CAT System catalog table space

TMP System temporary table space

UTM User temporary table space

USR User or regular table space

LRG Large table space

Example

For example, assume an automatic storage table space TBSAUTO has been created
in the database SAMPLE. When the LIST TABLESPACES command is run, it is
shown as having a table space ID of 10:
Tablespace ID = 10
Name = TBSAUTO
Type = Database managed space
Contents = All permanent data. Large table space.
State = 0x0000

Detailed explanation:
Normal

If you now run the LIST TABLESPACE CONTAINERS command for the table space with
the ID of 10, you can see the names assigned to the containers for this table space:
LIST TABLESPACE CONTAINERS FOR 10 SHOW DETAIL

Tablespace Containers for Tablespace 10

Container ID = 0
Name = D:\DB2\NODE0000\SAMPLE\T0000010\C0000000.LRG
Type = File
Total pages = 4096
Useable pages = 4064
Accessible = Yes

In this example, you can see the name of the container, with container ID 0, for
this table space is
D:\DB2\NODE0000\SAMPLE\T0000010\C0000000.LRG

132 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Converting table spaces to use automatic storage
You can convert some or all of your database-managed space (DMS) table spaces
in a database to use automatic storage. Using automatic storage simplifies your
storage management tasks.

Before you begin

Ensure that the database has at least one storage group. To do so, query
SYSCAT.STOGROUPS, and issue the CREATE STOGROUP statement if the result
set is empty.

Note: If you are not using the automatic storage feature, you must not use the
storage paths and naming conventions that are used by automatic storage. If you
use the same storage paths and naming conventions as automatic storage and you
alter a database object to use automatic storage, the container data for that object
might be corrupted.

Procedure

To convert a DMS table space to use automatic storage, use one of the following
methods:
v Alter a single table space. This method keeps the table space online but

involves a rebalance operation that takes time to move data from the
non-automatic storage containers to the new automatic storage containers.
1. Specify the table space that you want to convert to automatic storage.

Indicate which storage group you want the table space to use. Issue the
following statement:
ALTER TABLESPACE tbspc1 MANAGED BY AUTOMATIC STORAGE USING STOGROUP sg_medium

where tbspc1 is the table space and sg_medium is the storage group it is
defined in.

2. Move the user-defined data from the old containers to the storage paths in
the storage group sg_medium by issuing the following statement:
ALTER TABLESPACE tbspc1 REBALANCE

Note: If you do not specify the REBALANCE option now and issue the
ALTER TABLESPACE statement later with the REDUCE option, your
automatic storage containers will be removed. To recover from this problem,
issue the ALTER TABLESPACE statement, specifying the REBALANCE
option.

3. To monitor the progress of the rebalance operation, use the following
statement:
SELECT * from table (MON_GET_REBALANCE_STATUS(’tbspc1’, -2))

v Use a redirected restore operation. When the redirected restore operation is in
progress, you cannot access the table spaces being converted. For a full database
redirected restore, all table spaces are inaccessible until the recovery is
completed.
1. Run the RESTORE DATABASE command, specifying the REDIRECT parameter. If

you want to convert a single table space, also specify the TABLESPACE
parameter:
RESTORE DATABASE database_name TABLESPACE (table_space_name) REDIRECT

2. Run the SET TABLESPACE CONTAINERS command, specifying the USING
AUTOMATIC STORAGE parameter, for each table space that you want to convert:
SET TABLESPACE CONTAINERS FOR tablespace_id USING AUTOMATIC STORAGE

Chapter 15. Table spaces 133

3. Run the RESTORE DATABASE command again, this time specifying the CONTINUE
parameter:
RESTORE DATABASE database_name CONTINUE

4. Run the ROLLFORWARD DATABASE command, specifying the TO END OF LOGS and
AND STOP parameters:
ROLLFORWARD DATABASE database_name TO END OF LOGS AND STOP

If using a redirected restore operation, an additional ALTER TABLESPACE
statement must be issued to update the database catalogs with the correct
storage group association for the table space. The association between table
spaces and storage groups is recorded in the system catalog tables and is not
updated during the redirected restore. Issuing the ALTER TABLESPACE
statement updates only the catalog tables and does not require the extra
processing of a rebalance operation. If the ALTER TABLESPACE statement is not
issued then query performance can be affected. If you modified the default
storage group for the table space during the redirected restore operation, to keep
all database partitions and system catalogs consistent, issue the RESTORE
DATABASE command with the USING STOGROUP parameter.

Example

To convert a database managed table space SALES to automatic storage during a
redirected restore, do the following:
1. To set up a redirected restore to testdb, issue the following command:

RESTORE DATABASE testdb REDIRECT

2. Modify the table space SALES to be managed by automatic storage. The SALES
table space has an ID value of 5.
SET TABLESPACE CONTAINERS FOR 5 USING AUTOMATIC STORAGE

Note: To determine the ID value of a table space during a redirect restore use
the GENERATE SCRIPT option of the RESTORE DATABASE command.

3. To proceed with the restore, issue the following:
RESTORE DATABASE testdb CONTINUE

4. Update the storage group information in the catalog tables.
CONNECT TO testdb
ALTER TABLESPACE SALES MANAGED BY AUTOMATIC STORAGE

5. If you modified the storage group for the table space during the redirected
restore operation, issue the following command:
RESTORE DATABASE testdb USING STOGROUP sg_default

The table space high water mark
The high water mark refers to the page number of the first page in the extent
following the last allocated extent.

For example, if a table space has 1000 pages and an extent size of 10, there are 100
extents. If the 42nd extent is the highest allocated extent in the table space that
means that the high-water mark is 420.

Tip: Extents are indexed from 0. So the high water mark is the last page of the
highest allocated extent + 1.
Practically speaking, it's virtually impossible to determine the high water mark
yourself; there are administrative views and table functions that you can use to

134 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

determine where the current high water mark is, though it can change from
moment to moment as row operations occur.

Note that the high water mark is not an indicator of the number of used pages
because some of the extents below the high-water mark might have been freed as a
result of deleting data. In this case, even through there might be free pages below
it, the high water mark remains as highest allocated page in the table space.

You can lower the high water mark of a table space by consolidating extents
through a table space size reduction operation.

Example

Figure 9 shows a series of allocated extents in a table space.

Extent 0

Object 1

Object 2

Pages
within extent

Extent 1

Extent 2

Extent n

Extent n+1
High

water
mark

Free
space

Object 2

Drop Object 1

High
water
mark

Figure 9. High water mark

Chapter 15. Table spaces 135

When an object is dropped, space is freed in the table space. However, until any
kind of storage consolidation operation is performed, the high water mark remains
at the previous level. It might even move higher, depending how new extents to
the container are added.

Reclaimable storage
Reclaimable storage is a feature of nontemporary automatic storage and DMS table
spaces in DB2 V9.7 and later. You can use it to consolidate in-use extents below the
high water mark and return unused extents in your table space to the system for
reuse.

With table spaces created before DB2 V9.7, the only way to release storage to the
system was to drop containers, or reduce the size of containers by eliminating
unused extents above the high water mark. There was no direct mechanism for
lowering the high water mark. It could be lowered by unloading and reloading
data into an empty table space, or through indirect operations, like performing
table and index reorganizations. With this last approach, it might have been that
the high water mark could still not be lowered, even though there were free
extents below it.

During the extent consolidation process, extents that contain data are moved to
unused extents below the high water mark. After extents are moved, if free extents
still exist below the high water mark, they are released as free storage. Next, the
high water mark is moved to the page in the table space just after the last in-use
extent. In table spaces where reclaimable storage is available, you use the ALTER
TABLESPACE statement to reclaim unused extents. Figure 10 on page 137 shows a
high-level view of how reclaimable storage works.

136 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

All nontemporary automatic storage and DMS table spaces created in DB2 Version
9.7 and later provide the capability for consolidating extents below the high water
mark. For table spaces created in an earlier version, you must first replace the table
space with a new one created using DB2 V9.7. You can either unload and reload
the data or move the data with an online table move operation using the
SYSPROC.ADMIN_MOVE_TABLE procedure. Such a migration is not required,
however. Table spaces for which reclaimable storage is enabled can coexist in the
same database as table spaces without reclaimable storage.

Reducing the size of table spaces through extent movement is an online operation.
In other words, data manipulation language (DML) and data definition language
(DDL) can continue to be run while the reduce operation is taking place. Some
operations, such as a backup or restore cannot run concurrently with extent
movement operations. In these cases, the process requiring access to the extents
being moved (for example, backup) waits until a number of extents have been
moved (this number is non-user-configurable), at which point the backup process
obtains a lock on the extents in question, and continues from there.

You can monitor the progress of extent movement using the
MON_GET_EXTENT_MOVEMENT_STATUS table function.

Extent 0

Object 1

Object 2

Pages
within extent

Extent 1

Extent 2

Extent n

Extent n+1
High

water
mark

Free
space

Object 2 Object 2

Object 2
Free

space

Drop Object 1 Extents moved Free space
is reclaimed

High
water
mark

High
water
mark

High
water
mark

...
...

Figure 10. How reclaimable storage works. When reclaimable storage is enabled for a table
space, the in-use extents can be moved to occupy unused extents lower in the table space.

Chapter 15. Table spaces 137

Tip: To maximize the amount of space that the ALTER TABLESPACE statement
reclaims, first perform a REORG operation on the tables and indexes in the table
space.

Automatic storage table spaces

You can reduce automatic storage table spaces in a number of ways:

Container reduction only
With this option, no extents are moved. The database manager attempts to
reduce the size of the containers by first freeing extents for which deletes
are pending. (It is possible that some “pending delete” extents cannot be
freed for recoverability reasons, so some of these extents may remain.) If
the high water mark was among those extents freed, then the high water
mark is lowered, otherwise no change to the high water mark takes place.
Next, the containers are re-sized such that total amount of space in the
table space is equal to or slightly greater than the high water mark. This
operation is performed using the ALTER TABLESPACE with the REDUCE
clause by itself.

Lower high water mark only
With this option, the maximum number of extents are moved to lower the
high water mark, however, no container resizing operations are performed.
This operation is performed using the ALTER TABLESPACE with the
LOWER HIGH WATER MARK clause by itself.

Lower high water mark and reduce containers by a specific amount
With this option, you can specify an absolute amount in kilo-, mega-, or
gigabytes by which to reduce the table space. Or you can specify a relative
amount to reduce by entering a percentage. Either way, the database
manager first attempts to reduce space by the requested amount without
moving extents. That is, it attempts to reduce the table space by reducing
the container size only, as described in Container reduction only, by freeing
delete pending extents, and attempting to lower the high water mark. If
this approach does not yield a sufficient reduction, the database manager
then begins moving used extents lower in the table space to lower the high
water mark. After extent movement has completed, the containers are
resized such that total amount of space in the table space is equal to or
slightly greater than the high water mark. If the table space cannot be
reduced by the requested amount because there are not enough extents
that can be moved, the high water mark is lowered as much as possible.
This operation is performed using the ALTER TABLESPACE with a
REDUCE clause that includes a specified amount by which to reduce the
size the table space.

Lower high water mark and reduce containers the maximum amount possible
In this case, the database manager moves as many extents as possible to
reduce the size of the table space and its containers. This operation is
performed using the ALTER TABLESPACE with the REDUCE MAX clause.

Once the extent movement process has started, you can stop it using the ALTER
TABLESPACE statement with the REDUCE STOP clause. Any extents that have
been moved are committed, the high water mark lowered as much as possible, and
containers are re-sized to the new, lowered high water mark.

DMS table spaces

DMS table spaces can be reduced in two ways:

138 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Container reduction only
With this option, no extents are moved. The database manager attempts to
reduce the size of the containers by first freeing extents for which deletes
are pending. (It is possible that some “"pending delete"” extents cannot be
deleted for recoverability reasons, so some of these extents might remain.)
If the high water mark was among those extents freed, then the high water
mark is lowered. Otherwise no change to the high water mark takes place.
Next, the containers are resized such that total amount of space in the table
space is equal to or slightly greater than the high water mark. This
operation is performed using the ALTER TABLESPACE with the REDUCE
database-container clause by itself.

Lower high water mark only
With this option, the maximum number of extents are moved to lower the
high water mark, however, no container resizing operations are performed.
This operation is performed using the ALTER TABLESPACE with the
LOWER HIGH WATER MARK clause by itself.

Lowering the high water mark and reducing container size is a combined,
automatic operation with automatic storage table spaces. By contrast, with DMS
table spaces, to achieve both a lowered high water mark and smaller container
sizes, you must perform two operations:
1. First, you must lower the high water mark for the table space using the ALTER

TABLESPACE statement with the LOWER HIGH WATER MARK clause.
2. Next you must use the ALTER TABLESPACE statement with the REDUCE

database-container clause by itself to perform the container resizing operations.

Once the extent movement process has started, you can stop it using the ALTER
TABLESPACE statement with the LOWER HIGH WATER MARK STOP clause. Any
extents that have been moved are committed, the high water mark are reduced to
its new value.

Examples

Example 1: Reducing the size of an automatic storage table space by the maximum amount.

Assuming a database with one automatic storage table space TS and three tables
T1, T2, and T3 exists, we drop tables T1 and T3:

DROP TABLE T1
DROP TABLE T3

Now, assuming that the extents are now free, the following statement causes the
extents formerly occupied by T1 and T3 to be reclaimed, and the high water mark
of the table space reduced:

ALTER TABLESPACE TS REDUCE MAX

Example 2: Reducing the size of an automatic storage table space by a specific amount.

Assume that we have a database with one automatic storage table space TS and
two tables T1, and T2. Next, we drop table T1:

DROP TABLE T1

Now, to reduce the size of the table space by 1 MB, use the following statement:
ALTER TABLESPACE TS REDUCE SIZE 1M

Chapter 15. Table spaces 139

Alternatively, you could reduce the table space by a percentage of its existing size
with a statement such as this:

ALTER TABLESPACE TS REDUCE SIZE 5 PERCENT

Example 3: Reducing the size of an automatic storage table space when there is free space
below the high water mark.

Like Example 1, assume that we have a database with one automatic storage table
space TS and three tables T1, T2, and T3. This time, when we drop T2 and T3,
there is a set of five free extents just below the high water mark. Now, assuming
that each extent in this case was made up of two 4K pages, there is actually 40 KB
of free space just below the high water mark. If you issue a statement such as this
one:

ALTER TABLESPACE TS REDUCE SIZE 32K

the database manager can lower the high water mark and reduce the container size
without the need to perform any extent movement. This scenario is illustrated in
Figure 11 on page 141

140 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example 4: Reducing the size of a DMS table space.

Assume that we have a database with one DMS table space TS and three tables T1,
T2, and T3. Next, we drop tables T1 and T3:

DROP TABLE T1
DROP TABLE T3

To lower the high water mark and reduce the container size with DMS table space
is a two-step operation. First, lower the high water mark through extent movement
with the following statement:

ALTER TABLESPACE TS LOWER HIGH WATER MARK

Next, you would reduce the size of the containers with a statement such as this
one:

ALTER TABLESPACE TS REDUCE (ALL CONTAINERS 5 M)

Extent 0

t1

Pages
within extent

Extent 1

Extent 2

Extent n

Extent n+1
High

water
mark

Delete t2, t3 Reduce table space
operation

High
water
mark

High
water
mark

t2

t3

Free
Space

t1 t1

Figure 11. Lowering the high water mark without needing to move extents.

Chapter 15. Table spaces 141

File system caching configurations
The operating system, by default, caches file data that is read from and written to
disk.

A typical read operation involves physical disk access to read the data from disk
into the file system cache, and then to copy the data from the cache to the
application buffer. Similarly, a write operation involves physical disk access to copy
the data from the application buffer into the file system cache, and then to copy it
from the cache to the physical disk. This behavior of caching data at the file system
level is reflected in the FILE SYSTEM CACHING clause of the CREATE
TABLESPACE statement. Since the database manager manages its own data
caching using buffer pools, the caching at the file system level is not needed if the
size of the buffer pool is tuned appropriately.

Note: The database manager already prevents caching of most DB2 data, except
temporary data and LOBs on AIX, by invalidating the pages from the cache.

In some cases, caching at the file system level and in the buffer pools causes
performance degradation because of the extra CPU cycles required for the double
caching. To avoid this double caching, most file systems have a feature that
disables caching at the file system level. This is generically referred to as
non-buffered I/O. On UNIX, this feature is commonly known as Direct I/O (or DIO).
On Windows, this is equivalent to opening the file with the
FILE_FLAG_NO_BUFFERING flag. In addition, some file systems such as IBM
JFS2 or Symantec VERITAS VxFS also support enhanced Direct I/O, that is, the
higher-performing Concurrent I/O (CIO) feature. The database manager supports
this feature with the NO FILE SYSTEM CACHING table space clause. When this is
set, the database manager automatically takes advantage of CIO on file systems
where this feature exists. This feature might help to reduce the memory
requirements of the file system cache, thus making more memory available for
other uses.

Before Version 9.5, the keyword FILE SYSTEM CACHING was implied if neither
NO FILE SYSTEM CACHING nor FILE SYSTEM CACHING was specified. With
Version 9.5, if neither keyword is specified, the default, NO FILE SYSTEM
CACHING, is used. This change affects only newly created table spaces. Existing
table spaces created prior to Version 9.5 are not affected. This change applies to
AIX, Linux, Solaris, and Windows with the following exceptions, where the default
behavior remains to be FILE SYSTEM CACHING:
v AIX JFS
v Solaris non-VxFS
v Linux for System z®

v All SMS temporary table space files
v Long Field (LF) and Large object (LOB) data files in SMS permanent table space

files.

To override the default setting, specify FILE SYSTEM CACHING or NO FILE
SYSTEM CACHING.

Important: The SMS table space type has been deprecated in Version 10.1 for
user-defined permanent table spaces and might be removed in a future release. The
SMS table space type is not deprecated for catalog and temporary table spaces. For
more information, see “SMS permanent table spaces have been deprecated” in
What's New for DB2 Version 10.1

142 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Supported configurations

Table 13 shows the supported configuration for using table spaces without file
system caching. It also indicates: (a) whether DIO or enhanced DIO will be used in
each case, and (b) the default behavior when neither NO FILE SYSTEM CACHING
nor FILE SYSTEM CACHING is specified for a table space based on the platform
and file system type.

Table 13. Supported configurations for table spaces without file system caching

Platforms File system type and
minimum level required

DIO or CIO requests
submitted by the database
manager when NO FILE
SYSTEM CACHING is
specified

Default behavior when
neither NO FILE SYSTEM
CACHING nor FILE
SYSTEM CACHING is
specified

AIX 6.1 and higher Journal File System (JFS) DIO FILE SYSTEM CACHING
(See Note 1.)

AIX 6.1 and higher General Parallel File System
(GPFS™)

DIO NO FILE SYSTEM
CACHING

AIX 6.1 and higher Concurrent Journal File
System (JFS2)

CIO NO FILE SYSTEM
CACHING

AIX 6.1 and higher VERITAS Storage
Foundation for DB2 4.1
(VxFS)

CIO NO FILE SYSTEM
CACHING

HP-UX Version 11i v3
(Itanium)

VERITAS Storage
Foundation 4.1 (VxFS)

CIO FILE SYSTEM CACHING

Solaris 10, 11 UNIX File System (UFS) CIO FILE SYSTEM CACHING
(See Note 2.)

Solaris 10, 11 VERITAS Storage
Foundation for DB2 4.1
(VxFS)

CIO NO FILE SYSTEM
CACHING

Linux distributions SLES 10
SP3 or higher, and RHEL
5.2 or higher

(on these architectures: x86,
x64, POWER®)

ext2, ext3, reiserfs DIO NO FILE SYSTEM
CACHING

Linux distributions SLES 10
SP3 or higher, and RHEL
5.2 or higher

(on these architectures: x86,
x64, POWER)

VERITAS Storage
Foundation 4.1 (VxFS)

CIO NO FILE SYSTEM
CACHING

Linux distributions SLES 10
SP3 or higher, and RHEL
5.2 or higher

(on this architecture:
zSeries)

ext2, ext3 or reiserfs on a
Small Computer System
Interface (SCSI) disks using
Fibre Channel Protocol
(FCP)

DIO FILE SYSTEM CACHING

Windows No specific requirement,
works on all DB2
supported file systems

DIO NO FILE SYSTEM
CACHING

Note:

1. On AIX JFS, FILE SYSTEM CACHING is the default.

Chapter 15. Table spaces 143

2. On Solaris UFS, NO FILE SYSTEM CACHING is the default.
3. The VERITAS Storage Foundation for the database manager might have

different operating system prerequisites. The platforms listed previously are the
supported platforms for the current release. Consult the VERITAS Storage
Foundation for DB2 support for prerequisite information.

4. If SFDB2 5.0 is used instead of the previously specified minimum levels, the
SFDB2 5.0 MP1 RP1 release must be used. This release includes fixes that are
specific to the 5.0 version.

5. If you do not want the database manager to choose NO FILE SYSTEM
CACHING for the default setting, specify FILE SYSTEM CACHING in the
relevant SQL, commands, or APIs.

Examples

Example 1: By default, this new table space will be created using non-buffered
I/O; the NO FILE SYSTEM CACHING clause is implied:

CREATE TABLESPACE table space name ...

Example 2: On the following statement, the NO FILE SYSTEM CACHING clause
indicates that file system level caching will be OFF for this particular table space:

CREATE TABLESPACE table space name ... NO FILE SYSTEM CACHING

Example 3: The following statement disables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... NO FILE SYSTEM CACHING

Example 4: The following statement enables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... FILE SYSTEM CACHING

Extent sizes in table spaces
An extent is a block of storage within a table space container. It represents the
number of pages of data that will be written to a container before writing to the
next container. When you create a table space, you can choose the extent size based
on your requirements for performance and storage management.

When selecting an extent size, consider:
v The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table one extent at a time. As the
table is populated and an extent becomes full, a new extent is allocated. DMS
table space container storage is pre-reserved which means that new extents are
allocated until the container is completely used.
Space in SMS table spaces is allocated to a table either one extent at a time or
one page at a time. As the table is populated and an extent or page becomes
full, a new extent or page is allocated until all of the extents or pages in the file
system are used. When using SMS table spaces, multipage file allocation is
allowed. Multipage file allocation allows extents to be allocated instead of a
page at a time.
Multipage file allocation is enabled by default. The value of the multipage_alloc
database configuration parameter indicate whether multipage file allocation is
enabled.

144 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note: Multipage file allocation is not applicable to temporary table spaces.
A table is made up of the following separate table objects:
– A data object. This is where the regular column data is stored.
– An index object. This is where all indexes defined on the table are stored.
– A long field (LF) data object. This is where long field data, if your table has

one or more LONG columns, is stored.
– Two large object (LOB) data objects. If your table has one or more LOB

columns, they are stored in these two table objects:
- One table object for the LOB data
- A second table object for metadata describing the LOB data.

– A block map object for multidimensional clustering (MDC) tables.
– An extra XDA object, which stores XML documents.
Each table object is stored separately, and each object allocates new extents as
needed. Each DMS table object is also paired with a metadata object called an
extent map, which describes all of the extents in the table space that belong to
the table object. Space for extent maps is also allocated one extent at a time.
Therefore, the initial allocation of space for an object in a DMS table space is two
extents. (The initial allocation of space for an object in an SMS table space is one
page.)
If you have many small tables in a DMS table space, you might have a relatively
large amount of space allocated to store a relatively small amount of data. In
such a case, specify a small extent size. However, if you have a very large table
that has a high growth rate, and you are using a DMS table space with a small
extent size, you might needlessly allocate additional extents more frequently.

v The type of access to the tables.
If access to the tables includes many queries or transactions that process large
quantities of data, prefetching data from the tables might provide significant
performance benefits.

v The minimum number of extents required.
If there is not enough space in the containers for five extents of the table space,
the table space is not created.

Page, table and table space size
For DMS, temporary DMS and nontemporary automatic storage table spaces, the
page size you choose for your database determines the upper limit for the table
space size. For tables in SMS and temporary automatic storage table spaces, page
size constrains the size of the tables themselves.

You can use a 4K, 8K, 16K or 32K page size limit. Each of these page sizes also has
maximums for each of the table space types that you must adhere to.

Table 14 shows the table space size limits for DMS and nontemporary automatic
storage table spaces, by page size:

Table 14. Size limits for DMS and nontemporary automatic storage table spaces. DMS and
nontemporary automatic storage table spaces are constrained by page size.

Table space type
4K page
size limit

8K page
size limit

16K page
size limit

32K page
size limit

DMS and nontemporary automatic storage
table spaces (regular)

64G 128G 256G 512G

Chapter 15. Table spaces 145

Table 14. Size limits for DMS and nontemporary automatic storage table
spaces (continued). DMS and nontemporary automatic storage table spaces are constrained
by page size.

Table space type
4K page
size limit

8K page
size limit

16K page
size limit

32K page
size limit

DMS, temporary DMS and nontemporary
automatic storage table spaces (large)

8192G 16 384G 32 768G 65 536G

Table 15 shows the table size limits tables in SMS and temporary automatic storage
table spaces, by page size:

Table 15. Size limits for tables in SMS and temporary automatic storage table spaces. With
tables in SMS and temporary automatic storage table spaces, it is the table objects
themselves, not the table spaces that are constrained by page size.

Table space type
4K page
size limit

8K page
size limit

16K page
size limit

32K page
size limit

SMS 64G 128G 256G 512G

Temporary SMS, temporary automatic
storage

8192G 16 384G 32 768G 65 536G

For database and index page size limits for the different types of table spaces, see
the database manager page size-specific limits in “SQL and XML limits” in the SQL
Reference.

Disk I/O efficiency and table space design
The type and design of your table space determines the efficiency of the I/O
performed against that table space.

You should understand the following concepts before considering other issues
concerning table space design and use:

Big-block reads
A read where several pages (usually an extent) are retrieved in a single
request. Reading several pages at once is more efficient than reading each
page separately.

Prefetching
The reading of pages in advance of those pages being referenced by a
query. The overall objective is to reduce response time. This can be
achieved if the prefetching of pages can occur asynchronously to the
execution of the query. The best response time is achieved when either the
CPU or the I/O subsystem is operating at maximum capacity.

Page cleaning
As pages are read and modified, they accumulate in the database buffer
pool. When a page is read in, it is read into a buffer pool page. If the
buffer pool is full of modified pages, one of these modified pages must be
written out to the disk before the new page can be read in. To prevent the
buffer pool from becoming full, page cleaner agents write out modified
pages to guarantee the availability of buffer pool pages for future read
requests.

Whenever it is advantageous to do so, the database manager performs big-block
reads. This typically occurs when retrieving data that is sequential or partially

146 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

sequential in nature. The amount of data read in one read operation depends on
the extent size - the bigger the extent size, the more pages can be read at one time.

Sequential prefetching performance can be further enhanced if pages can be read
from disk into contiguous pages within a buffer pool. Since buffer pools are
page-based by default, there is no guarantee of finding a set of contiguous pages
when reading in contiguous pages from disk. Block-based buffer pools can be used
for this purpose because they not only contain a page area, they also contain a
block area for sets of contiguous pages. Each set of contiguous pages is named a
block and each block contains a number of pages referred to as blocksize. The size
of the page and block area, as well as the number of pages in each block is
configurable.

How the extent is stored on disk affects I/O efficiency. In a DMS table space using
device containers, the data tends to be contiguous on disk, and can be read with a
minimum of seek time and disk latency. If files are being used, a large file that has
been pre-allocated for use by a DMS table space also tends to be contiguous on
disk, especially if the file was allocated in a clean file space. However, the data
might have been broken up by the file system and stored in more than one
location on disk. This occurs most often when using SMS table spaces, where files
are extended one page at a time, making fragmentation more likely.

You can control the degree of prefetching by changing the PREFETCHSIZE option
on the CREATE TABLESPACE or ALTER TABLESPACE statements, or you can set
the prefetch size to AUTOMATIC to have the database manager automatically
choose the best size to use. (The default value for all table spaces in the database is
set by the dft_prefetch_sz database configuration parameter.) The
PREFETCHSIZE parameter tells the database manager how many pages to read
whenever a prefetch is triggered. By setting PREFETCHSIZE to be a multiple of
the EXTENTSIZE parameter on the CREATE TABLESPACE statement, you can
cause multiple extents to be read in parallel. (The default value for all table spaces
in the database is set by the dft_extent_sz database configuration parameter.) The
EXTENTSIZE parameter specifies the number of 4 KB pages that will be written to
a container before skipping to the next container.

For example, suppose you had a table space that used three devices. If you set the
PREFETCHSIZE to be three times the EXTENTSIZE, the database manager can do
a big-block read from each device in parallel, thereby significantly increasing I/O
throughput. This assumes that each device is a separate physical device, and that
the controller has sufficient bandwidth to handle the data stream from each device.
Note that the database manager might have to dynamically adjust the prefetch
parameters at run time based on query speed, buffer pool utilization, and other
factors.

Some file systems use their own prefetching method (such as the Journaled File
System on AIX). In some cases, file system prefetching is set to be more aggressive
than the database manager prefetching. This might cause prefetching for SMS and
DMS table spaces with file containers to seem to outperform prefetching for DMS
table spaces with devices. This is misleading, because it is likely the result of the
additional level of prefetching that is occurring in the file system. DMS table
spaces should be able to outperform any equivalent configuration.

For prefetching (or even reading) to be efficient, a sufficient number of clean buffer
pool pages must exist. For example, there could be a parallel prefetch request that
reads three extents from a table space, and for each page being read, one modified
page is written out from the buffer pool. The prefetch request might be slowed

Chapter 15. Table spaces 147

down to the point where it cannot keep up with the query. Page cleaners should
be configured in sufficient numbers to satisfy the prefetch request.

Table spaces in a partitioned database environment
In a partitioned database environment, each table space is associated with a
specific database partition group. This allows the characteristics of the table space
to be applied to each database partition in the database partition group.

When allocating a table space to a database partition group, the database partition
group must already exist. The association between the table space and the database
partition group is defined when you create the table space using the CREATE
TABLESPACE statement.

You cannot change the association between a table space and a database partition
group. You can only change the table space specification for individual database
partitions within the database partition group using the ALTER TABLESPACE
statement.

In a single-partition environment, each table space is associated with a default
database partition group as follows:
v The catalog table spaces SYSCATSPACE is associated with IBMCATGROUP
v User table spaces are associated with IBMDEFAULTGROUP
v Temporary table spaces are associated with IBMTEMPGROUP.

In a partitioned database environment, the IBMCATGROUP partition will contain
all three default table spaces, and the other database partitions will each contain
only TEMPSPACE1 and USERSPACE1.

Creating table spaces
Creating a table space within a database assigns containers to the table space and
records its definitions and attributes in the database system catalog.

About this task

For automatic storage table spaces, the database manager assigns containers to the
table space based on the storage paths associated with the database.

For non-automatic storage table spaces, you must know the path, device or file
names for the containers that you will use when creating your table spaces. In
addition, for each device or file container you create for DMS table spaces, you
must know the how much storage space you can allocate to each container.

If you are specifying the PREFETCHSIZE, use a value that is a multiple of the
EXTENTSIZE value. For example if the EXTENTSIZE is 10, the PREFETCHSIZE
should be 20 or 30. You should let the database manager automatically determine
the prefetch size by specifying AUTOMATIC as a value.

Use the keywords NO FILE SYSTEM CACHING and FILE SYSTEM CACHING as
part of the CREATE TABLESPACE statement to specify whether the database
manager uses Direct I/O (DIO) or Concurrent I/O (CIO) to access the table space.
If you specify NO FILE SYSTEM CACHING, the database manager attempts to use
CIO wherever possible. In cases where CIO is not supported (for example, if JFS is
used), the database manager uses DIO instead.

148 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

When you issue the CREATE TABLESPACE statement, the dropped table recovery
feature is turned on by default. This feature lets you recover dropped table data
using table space-level restore and rollforward operations. This is useful because it
is faster than database-level recovery, and your database can remain available to
users. However, the dropped table recovery feature can have some performance
impact on forward recovery when there are many drop table operations to recover
or when the history file is very large.

If you plan to drop numerous tables and you use circular logging or you do not
want to recover any of the dropped tables, disable the dropped table recovery
feature by explicitly setting the DROPPED TABLE RECOVERY option to OFF
when you issue the CREATE TABLESPACE statement. Alternatively, you can turn
off the dropped table recovery feature after creating the table space by using the
ALTER TABLESPACE statement.

Procedure
v To create an automatic storage table space using the command line, enter either

of the following statements:
CREATE TABLESPACE name

or
CREATE TABLESPACE name

MANAGED BY AUTOMATIC STORAGE

Assuming the table space is created in an automatic storage database, each of
the two previously shown statements is equivalent; table spaces created in such
a database will, by default, be automatic storage table spaces unless you specify
otherwise.

v To create an SMS table space using the command line, enter:
CREATE TABLESPACE name

MANAGED BY SYSTEM
USING (’path’)

Important: The SMS table space type has been deprecated in Version 10.1 for
user-defined permanent table spaces and might be removed in a future release.
The SMS table space type is not deprecated for catalog and temporary table
spaces. For more information, see “SMS permanent table spaces have been
deprecated” in What's New for DB2 Version 10.1

v To create a DMS table space using the command line, enter:
CREATE TABLESPACE name

MANAGED BY DATABASE
USING (FILE ’path’ size)

Note that by default, DMS table spaces are created as large table spaces.
After the DMS table space is created, you can use the ALTER TABLESPACE
statement to add, drop, or resize containers to a DMS table space and modify
the PREFETCHSIZE, OVERHEAD, and TRANSFERRATE settings for a table
space. You should commit the transaction issuing the table space statement as
soon as possible following the ALTER TABLESPACE SQL statement to prevent
system catalog contention.

Important: Starting with Version 10.1 Fix Pack 1, the DMS table space type is
deprecated for user-defined permanent table spaces and might be removed in a
future release. The DMS table space type is not deprecated for catalog and
temporary table spaces. For more information, see “DMS permanent table spaces
have been deprecated” in What's New for DB2 Version 10.1.

Chapter 15. Table spaces 149

Example

Example 1: Creating an automatic storage table space on Windows.
The following SQL statement creates an automatic storage table space
called RESOURCE in the storage group called STOGROUP1:
CREATE TABLESPACE RESOURCE

MANAGED BY AUTOMATIC STORAGE
USING STOGROUP STOGROUP1

Example 2: Creating an SMS table space on Windows.
The following SQL statement creates an SMS table space called RESOURCE
with containers in three directories on three separate drives:
CREATE TABLESPACE RESOURCE

MANAGED BY SYSTEM
USING (’d:\acc_tbsp’, ’e:\acc_tbsp’, ’f:\acc_tbsp’)

Example 3: Creating a DMS table space on Windows.
The following SQL statement creates a DMS table space with two file
containers, each with 5 000 pages:
CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE
USING (FILE’d:\db2data\acc_tbsp’ 5000,

FILE’e:\db2data\acc_tbsp’ 5000)

In the previous two examples, explicit names are provided for the
containers. However, if you specify relative container names, the container
is created in the subdirectory created for the database.

When creating table space containers, the database manager creates any
directory levels that do not exist. For example, if a container is specified as
/project/user_data/container1, and the directory /project does not exist,
then the database manager creates the directories /project and
/project/user_data.

Any directories created by the database manager are created with
PERMISSION 711. Permission 711 is required for fenced process access.
This means that the instance owner has read, write, and execute access,
and others have execute access. Any user with execute access also has the
authority to traverse through table space container directories. Because
only the instance owner has read and write access, the following scenario
might occur when multiple instances are being created:
v Using the same directory structure as described previously, suppose that

directory levels /project/user_data do not exist.
v user1 creates an instance, named user1 by default, then creates a

database, and then creates a table space with /project/user_data/
container1 as one of its containers.

v user2 creates an instance, named user2 by default, then creates a
database, and then attempts to create a table space with
/project/user_data/container2 as one of its containers.

Because the database manager created directory levels /project/user_data
with PERMISSION 700 from the first request, user2 does not have access to
these directory levels and cannot create container2 in those directories. In
this case, the CREATE TABLESPACE operation fails.

There are two methods to resolve this conflict:
1. Create the directory /project/user_data before creating the table

spaces and set the permission to whatever access is needed for both

150 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

user1 and user2 to create the table spaces. If all levels of table space
directory exist, the database manager does not modify the access.

2. After user1 creates /project/user_data/container1, set the permission
of /project/user_data to whatever access is needed for user2 to create
the table space.

If a subdirectory is created by the database manager, it might also be
deleted by the database manager when the table space is dropped.

The assumption in this scenario is that the table spaces are not associated
with a specific database partition group. The default database partition
group IBMDEFAULTGROUP is used when the following parameter is not
specified in the statement:
IN database_partition_group_name

Example 4: Creating DMS table spaces on AIX.
The following SQL statement creates a DMS table space on an AIX system
using three logical volumes of 10 000 pages each, and specifies their I/O
characteristics:
CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE
USING (DEVICE ’/dev/rdblv6’ 10000,

DEVICE ’/dev/rdblv7’ 10000,
DEVICE ’/dev/rdblv8’ 10000)

OVERHEAD 7.5
TRANSFERRATE 0.06

The UNIX devices mentioned in this SQL statement must already exist,
and the instance owner and the SYSADM group must be able to write to
them.

Example 5: Creating a DMS table space on a UNIX system.
The following example creates a DMS table space on a database partition
group called ODDGROUP in a UNIX multi-partition database.
ODDGROUP must be previously created with a CREATE DATABASE
PARTITION GROUP statement. In this case, the ODDGROUP database
partition group is assumed to be made up of database partitions numbered
1, 3, and 5. On all database partitions, use the device /dev/hdisk0 for
10 000 4 KB pages. In addition, declare a device for each database partition
of 40 000 4 KB pages.
CREATE TABLESPACE PLANS IN ODDGROUP

MANAGED BY DATABASE
USING (DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n1hd01’ 40000)

ON DBPARTITIONNUM 1
(DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n3hd03’ 40000)
ON DBPARTITIONNUM 3

(DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n5hd05’ 40000)
ON DBPARTITIONNUM 5

The database manager can greatly improve the performance of sequential
I/O using the sequential prefetch facility, which uses parallel I/O.

Example 6: Creating an SMS table space with a page size larger than the
default.

You can also create a table space that uses a page size larger than the
default 4 KB size. The following SQL statement creates an SMS table space
on a Linux and UNIX system with an 8 KB page size.

Chapter 15. Table spaces 151

CREATE TABLESPACE SMS8K
PAGESIZE 8192
MANAGED BY SYSTEM
USING (’FSMS_8K_1’)
BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page
size.

The created table space cannot be used until the buffer pool it references is
activated.

Creating temporary table spaces
Temporary table spaces hold temporary data required by the database manager
when performing operations such as sorts or joins, since these activities require
extra space to process the results set. You create temporary table spaces using a
variation of the CREATE TABLESPACE statement.

About this task

A system temporary table space is used to store system temporary tables. A database
must always have at least one system temporary table space since system
temporary tables can only be stored in such a table space. When a database is
created, one of the three default table spaces defined is a system temporary table
space called "TEMPSPACE1". You should have at least one system temporary table
space of each page size for the user table spaces that exist in your database,
otherwise some queries might fail. See “Table spaces for system, user and
temporary data” on page 127 for more information.

User temporary table spaces are not created by default when a database is created. If
your application programs need to use temporary tables, you must create a user
temporary table space where the temporary tables will reside. Like regular table
spaces, user temporary table spaces can be created in any database partition group
other than IBMTEMPGROUP. IBMDEFAULTGROUP is the default database
partition group that is used when creating a user temporary table.

Restrictions

For system temporary table spaces in a partitioned environment, the only database
partition group that can be specified when creating a system temporary table space
is IBMTEMPGROUP.

Procedure
v To create a system temporary table space in addition to the default

TEMPSPACE1, use a CREATE TABLESPACE statement that includes the
keywords SYSTEM TEMPORARY. For example:

CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp
MANAGED BY SYSTEM
USING (’d:\tmp_tbsp’,’e:\tmp_tbsp’)

v To create a user temporary table space, use the CREATE TABLESPACE statement
with the keywords USER TEMPORARY. For example:

CREATE USER TEMPORARY TABLESPACE usr_tbsp
MANAGED BY AUTOMATIC STORAGE

152 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Defining initial table spaces on database creation
When a database is created, three table spaces are defined by default. The
SYSCATSPACE for the system catalog tables. The TEMPSPACE1 for system
temporary tables that are created during database processing. The USERSPACE1
for user-defined tables and indexes. You can also specify additional user table
spaces or characteristics for the default table spaces to be created at the database
creation.

About this task

Note: When you first create a database no user temporary table space is created.

Unless otherwise specified, the three default table spaces are managed by
automatic storage.

Using the CREATE DATABASE command, you can specify the page size for the default
buffer pool and the initial table spaces. This default also represents the default
page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE
statements. If you do not specify the page size when creating the database, the
default page size is 4 KB.

To define initial table spaces using the command line, enter:
CREATE DATABASE name

PAGESIZE page size
CATALOG TABLESPACE

MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE value PREFETCHSIZE value

USER TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE value PREFETCHSIZE value

TEMPORARY TABLESPACE
MANAGED BY AUTOMATIC STORAGE

WITH "comment"

If you do not want to use the default definition for these table spaces, you might
specify their characteristics on the CREATE DATABASE command. For example, the
following command could be used to create your database on Windows:

CREATE DATABASE PERSONL
PAGESIZE 16384
CATALOG TABLESPACE

MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE 16 PREFETCHSIZE 32

USER TABLESPACE
MANAGED BY AUTOMATIC STORAGE
EXTENTSIZE 32 PREFETCHSIZE 64

TEMPORARY TABLESPACE
MANAGED BY AUTOMATIC STORAGE

WITH "Personnel DB for BSchiefer Co"

In this example, the default page size is set to 16 384 bytes, and the definition for
each of the initial table spaces is explicitly provided. You only need to specify the
table space definitions for those table spaces for which you do not want to use the
default definition.

Note: When working in a partitioned database environment, you cannot create or
assign containers to specific database partitions. First, you must create the database

Chapter 15. Table spaces 153

with default user and temporary table spaces. Then you should use the CREATE
TABLESPACE statement to create the required table spaces. Finally, you can drop
the default table spaces.

The coding of the MANAGED BY phrase on the CREATE DATABASE command
follows the same format as the MANAGED BY phrase on the CREATE
TABLESPACE statement.

You can add additional user and temporary table spaces if you want. You cannot
drop the catalog table space SYSCATSPACE, or create another one; and there must
always be at least one system temporary table space with a page size of 4 KB. You
can create other system temporary table spaces. You also cannot change the page
size or the extent size of a table space after it has been created.

Altering automatic storage table spaces
Much of the maintenance of automatic storage table spaces is handled
automatically. The changes that you can make to automatic storage table spaces are
limited to rebalancing, and reducing the size of the overall table space.

Automatic storage table spaces manage the allocation of storage for you, creating
and extending containers as needed up to the limits imposed by storage paths. The
only maintenance operations that you can perform on automatic storage spaces
are:
v Rebalancing
v Reclaiming unused storage by lowering the high water mark
v Reducing the size of the overall table space.
v Changing an automatic storage table space's storage group

You can rebalance an automatic storage table space when you add a storage path
to a storage group. This causes the table space to start using the new storage path
immediately. Similarly, when you drop a storage path from a storage group,
rebalancing moves data out of the containers on the storage paths you are
dropping and allocates it across the remaining containers.

Adding new storage paths, or dropping paths is handled at the storage group
level. To add storage paths to a database, you use the ADD clause of the ALTER
STOGROUP statement. You can rebalance or not, as you prefer, though if you do
not rebalance, the new storage paths are not used until the containers that existed
previously are filled to capacity. If you rebalance, any newly added storage paths
become available for immediate use.

To drop storage paths, use the DROP clause of the ALTER STORGOUP statement.
This action puts the storage paths into a “drop pending” state. Growth of
containers on the storage path you specify cease. However, before the path can be
fully removed from the database, you must rebalance all of the table spaces using
the storage path using the REBALANCE clause on the ALTER TABLESPACE
command. If a temporary table space has containers on a storage path in a drop
pending state, you can either drop and re-create the table space, or restart the
database to remove it from the storage path.

Restriction: You cannot rebalance temporary automatic storage table spaces;
rebalancing is supported only for regular and large automatic storage table spaces.

154 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You can reclaim the storage below the high water mark of a table space using the
LOWER HIGH WATER MARK clause of the ALTER TABLESPACE statement. This
has the effect of moving as many extents as possible to unused extents lower in the
table space. The high water mark for the table space is lowered in the process,
however containers remain the size they were before the operation was performed.

Automatic storage table spaces can be reduced in size using the REDUCE option of
the ALTER TABLESPACE statement. When you reduce the size of an automatic
storage table space, the database manager attempts to lower the high water mark
for the table space and reduce the size of the table space containers. In attempting
to lower the high water mark, the database manager might drop empty containers
and might move used extents to free space nearer the beginning of the table space.
Next, containers are resized such that total amount of space in the table space is
equal to or slightly greater than the high water mark.

Reclaiming unused storage in automatic storage table spaces
When you reduce the size of an automatic storage table space, the database
manager attempts to lower the high water mark for the table space and reduce the
size of the table space containers. In attempting to lower the high water mark, the
database manager might drop empty containers and might move used extents to
free space nearer the beginning of the table space. Next, containers are re-sized
such that total amount of space in the table space is equal to or slightly greater
than the high water mark.

Before you begin

You must have an automatic storage table space that was created with DB2 Version
9.7 or later. Reclaimable storage is not available in table spaces created with earlier
versions of the DB2 product. You can see which table spaces in a database support
reclaimable storage using the MON_GET_TABLESPACE table function.

About this task

You can reduce the size of an automatic storage space for which reclaimable
storage is enabled in a number of ways. You can specify that the database manager
reduce the table space by:
v The maximum amount possible
v An amount that you specify in kilobytes, megabytes or gigabytes, or pages
v A percentage of the current size of the table space.

In each case, the database manager attempts to reduce the size by moving extents
to the beginning of the table space, which, if sufficient free space is available, will
reduce the high water mark of the table space. Once the movement of extents has
completed, the table space size is reduced to the new high water mark.

You use the REDUCE clause of the ALTER TABLESPACE statement to reduce the
table space size for an automatic storage table space. You can specify an amount to
reduce the table space by, as noted previously.

Note:

v If you do not specify an amount by which to reduce the table space, the table
space size is reduced as much as possible without moving extents. The database
manager attempts to reduce the size of the containers by first freeing extents for
which deletes are pending. (It is possible that some “pending delete” extents

Chapter 15. Table spaces 155

cannot be freed for recoverability reasons, so some of these extents may remain.)
If the high water mark was among those extents freed, then the high water mark
is lowered, otherwise no change to the high water mark takes place. Next, the
containers are re-sized such that total amount of space in the table space is equal
to or slightly greater than the high water mark. This operation is performed
using the ALTER TABLESPACE with the REDUCE clause by itself.

v If you only want to lower the high water mark, consolidating in-use extents
lower in the table space without performing any container operations, you can
use the ALTER TABLESPACE statement with the LOWER HIGH WATER MARK
clause.

v Once a REDUCE or LOWER HIGH WATER MARK operation is under way, you
can stop it by using the REDUCE STOP or LOWER HIGH WATER MARK STOP
clause of the ALTER TABLESPACE statement. Any extents that have been
moved will be committed, the high water mark will be reduced to it's new value
and containers will be re-sized to the new high water mark.

Restrictions
v You can reclaim storage only in table spaces created with DB2 Version 9.7 and

later.
v When you specify either the REDUCE or the LOWER HIGH WATER MARK

clause on the ALTER TABLESPACE statement, you cannot specify other
parameters.

v If the extent holding the page currently designated as the high water mark is in
“pending delete” state, the attempt to lower the high water mark through extent
movement might fail, and message ADM6008I will be logged. Extents in
“pending delete” state cannot always be moved, for recoverability reasons.
These extents are eventually freed through normal database maintenance
processes, at which point they can be moved.

v The following clauses are not supported with the ALTER TABLESPACE
statement when executed in DB2 data sharing environments:
– ADD database-container-clause

– BEGIN NEW STRIPE SET database-container-clause

– DROP database-container-clause

– LOWER HIGH WATER MARK
– LOWER HIGH WATER MARK STOP
– REBALANCE
– REDUCE database-container-clause

– REDUCE + LOWER HIGH WATER MARK action
– RESIZE database-container-clause

– USING STOGROUP

Procedure

To reduce the size of an automatic storage table space:
1. Formulate an ALTER TABLESPACE statement that includes a REDUCE clause.

ALTER TABLESPACE table-space-name REDUCE reduction-clause

2. Run the ALTER TABLESPACE statement.

156 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example

Example 1: Reducing an automatic storage table space by the maximum amount possible.
ALTER TABLESPACE TS1 REDUCE MAX

In this case, the keyword MAX is specified as part of the REDUCE clause,
indicating that the database manager should attempt to move the maximum
number of extents to the beginning of the table space.

Example 2: Reducing an automatic storage table space by a percentage of the current table
space size.

ALTER TABLESPACE TS1 REDUCE 25 PERCENT

This attempts to reduce the size of the table space TS1 to 75% of it's original size, if
possible.

Scenarios: Adding and removing storage with automatic
storage table spaces

The three scenarios in this section illustrate the impact of adding and removing
storage paths on automatic storage table spaces.

Once storage paths have been added to or removed from storage groups, you can
use a rebalance operation to create one or more containers on the new storage
paths or remove containers from the dropped paths. The following should be
considered when rebalancing table spaces:
v If for whatever reason the database manager decides that no containers need to

be added or dropped, or if containers could not be added due to “out of space”
conditions, then you will receive a warning.

v The REBALANCE clause must be specified on its own.
v You cannot rebalance temporary automatic storage table spaces; only regular and

large automatic storage table spaces can be rebalanced.
v The invocation of a rebalance is a logged operation that is replayed during a

rollforward (although the storage layout might be different)
v In partitioned database environments, a rebalance is initiated on every database

partition in which the table space resides.
v When storage paths are added or dropped, you are not forced to rebalance. In

fact, subsequent storage path operations can be performed over time before ever
doing a rebalance operation. If a storage path is dropped and is in the “Not In
Use” state, then it is dropped immediately as part of the ALTER STOGROUP
operation. If the storage path is in the “In Use” state and dropped but table
spaces not rebalanced, the storage path (now in the “Drop Pending” state), is not
used to store additional containers or data.

Scenario: Adding a storage path and rebalancing automatic
storage table spaces
This scenario shows how storage paths are added to a storage group and how a
REBALANCE operation creates one or more containers on the new storage paths.

The assumption in this scenario is to add a new storage path to a storage group
and have an existing table space be striped across that new path. I/O parallelism is
improved by adding a new container into each of the table space's stripe sets.

Chapter 15. Table spaces 157

Use the ALTER STOGROUP statement to add a new storage path to a storage
group. Then, use the REBALANCE clause on the ALTER TABLESPACE statement
to allocate containers on the new storage path and to rebalance the data from the
existing containers into the new containers. The number and size of the containers
to be created depend on both the definition of the current stripe sets for the table
space and on the amount of free space on the new storage paths.

Figure 12 illustrates a storage path being added, with the "before" and "after"
layout of a rebalanced table space:

Note: The diagrams that are displayed in this topic are for illustrative purposes
only. They are not intended to suggest a specific approach or best practice for
storage layout. Also, the diagrams illustrate a single table space only; in actual
practice you would likely have several automatic storage table spaces that share
the same storage path.

A similar situation could occur when an existing table space has multiple stripe
sets with differing numbers of containers in them, which could have happened due
to disk full conditions on one or more of the storage paths during the life of the
table space. In this case, it would be advantageous for the database manager to
add containers to those existing storage paths to fill in the “holes” in the stripe sets
(assuming of course that there is now free space to do so). The REBALANCE
operation can be used to do this as well.

Figure 13 on page 159 is an example where a “hole” exists in the stripe sets of a
table space (possibly caused by deleting table rows, for example) being rebalanced,
with the “before” and “after” layout of the storage paths.

/path1 /path2 /path3

Second
stripe set

First
stripe set

Path being
addedExisting

paths

/path1 /path2 /path3

Figure 12. Adding a storage path and rebalancing an automatic storage table space

158 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example

You created a storage group with two storage paths:
CREATE STOGROUP sg ON ’/path1’, ’/path2’

After creating the database, automatic storage table spaces were subsequently
created in this storage group.

You decide to add another storage path to the storage group (/path3) and you
want all of the automatic storage table spaces to use the new storage path.
1. The first step is to add the storage path to the storage group:

ALTER STOGROUP sg ADD ’/path3’

2. The next step is to determine all of the affected permanent table spaces. This
can be done by manually scanning table space snapshot output or via SQL. The
following SQL statement will generate a list of all the regular and large
automatic storage table spaces in the storage group:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

3. Once the table spaces have been identified, the next step is to perform the
following statement for each of the table spaces listed. Provided that there is
sufficient space on the remaining storage paths, it generally shouldn't matter
what order the rebalances are performed in (and they can be run in parallel).
ALTER TABLESPACE tablespace_name REBALANCE

After this, you must determine how you want to handle temporary table spaces.
One option is to stop (deactivate) and start (activate) the database. This results in
the containers being redefined. Alternatively, you can drop and re-create the
temporary table spaces, or create a new temporary table space first, then drop the
old one-this way you do not attempt to drop the last temporary table space in the
database, which is not allowed. To determine the list of affected table spaces, you
can manually scan table space snapshot output or you can execute an SQL

/path1 /path2

Second
stripe set

First
stripe set

/path1 /path2

A "hole"
exists in this

stripe set

Figure 13. Rebalancing an automatic storage table space to fill gaps

Chapter 15. Table spaces 159

statement. The following SQL statement generates a list of all the system
temporary and user temporary automatic storage table spaces in the database:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Scenario: Dropping a storage path and rebalancing automatic
storage table spaces
This scenario shows how storage paths are dropped and how the REBALANCE
operation drops containers from table spaces that are using the paths.

Before the operation of dropping a storage path can be completed, any table space
containers on that path must be removed. If an entire table space is no longer
needed, you can drop it before dropping the storage path from the storage group.
In this situation, no rebalance is required. If, however, you want to keep the table
space, a REBALANCE operation is required. In this case, when there are storage
paths in the “drop pending” state, the database manager performs a reverse
rebalance, where movement of extents starts from the high water mark extent (the
last possible extent containing data in the table space), and ends with extent 0.

When the REBALANCE operation is run:
v A reverse rebalance is performed. Data in any containers in the “drop pending”

state is moved into the remaining containers.
v The containers in the “drop pending” state are dropped.
v If the current table space is the last table space using the storage path, then the

storage path is dropped as well.

If the containers on the remaining storage paths are not large enough to hold all
the data being moved, the database manager might have to first create or extend
containers on the remaining storage paths before performing the rebalance.

Figure 14 on page 161 is an example of a storage path being dropped, with the
“before” and “after” layout of the storage paths after the table space is rebalanced:

160 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example

Create a storage group with three storage paths:
CREATE STOGROUP sg ON ’/path1’, ’/path2’, ’/path3’

After creating the storage group, automatic storage table spaces were subsequently
created using it.

You want to put the /path3 storage path into the "Drop Pending" state by
dropping it from the storage group, then rebalance all table spaces that use this
storage path so that it is dropped.
1. The first step is to drop the storage path from the storage group:

ALTER STOGROUP sg DROP ’/path3’

2. The next step is to determine all the affected non-temporary table spaces. The
following SQL statement generates a list of all the regular and large automatic
storage table spaces in the database that have containers residing on a “Drop
Pending” path:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

3. Once the table spaces have been identified, the next step is to perform the
following statement for each of the table spaces listed:
ALTER TABLESPACE <tablespace_name> REBALANCE

a. If you have dropped multiple storage paths from the storage group and
want to free up storage on a specific path, you can query the list of
containers in the storage group to find the ones that exist on the storage
path. For example, consider a path called /path3. The following query
provides a list of table spaces that have containers that reside on path
/path3:

/path1 /path2 /path3

Path being
dropped

/path1 /path2

Database manager
may need to extend
existing containers or
add new stripe set.

Figure 14. Dropping a storage path and rebalancing an automatic storage table space

Chapter 15. Table spaces 161

SELECT TBSP_NAME FROM SYSIBMADM.SNAPCONTAINER
WHERE CONTAINER_NAME LIKE ’/path3’
GROUP BY TBSP_NAME;

b. You can then issue a REBALANCE statement for each table space in the
result set.

4. To determine the list of affected table spaces, generate a list of all the system
temporary and user temporary automatic storage table spaces that are defined
on the dropped storage paths:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Scenario: Adding and removing storage paths and rebalancing
automatic storage table spaces
This scenario shows how storage paths can be both added and removed, and how
the REBALANCE operation rebalances all of the automatic storage table spaces.

It is possible for storage to be added and dropped from a storage group at the
same time. This operation can be done by using a single ALTER STOGROUP
statement or through multiple ALTER STOGROUP statements separated by some
period (during which the table spaces are not rebalanced).

As described in “Scenario: Adding a storage path and rebalancing automatic
storage table spaces” on page 157, a situation can occur in which the database
manager fills in “holes” in stripe sets when dropping storage paths. In this case the
database manager will create containers and drop containers as part of the process.
In all of these scenarios, the database manager recognizes that some containers
need to be added (where free space allows) and that some need to be removed. In
these scenarios, the database manager might need to perform a two-pass rebalance
operation (the phase and status of which is described in the snapshot monitor
output):
1. First, new containers are allocated on the new paths (or on existing paths if

filling in “holes”).
2. A forward rebalance is performed.
3. A reverse rebalance is performed, moving data off the containers on the paths

being dropped.
4. The containers are physically dropped.

Figure 15 on page 163 is an example of storage paths being added and dropped,
with the "before" and "after" layout of a rebalanced table space:

162 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example

A storage group is created with two storage paths:
CREATE STOGROUP sg ON ’/path1’, ’/path2’, ’/path4’

Assume that you want to add another storage path to the storage group (/path3)
and remove one of the existing paths (/path2), and you also want all of your
automatic storage table spaces to be rebalanced. The first step is to add the new
storage path /path3 to the storage group and to initiate the removal of /path2:
ALTER STOGROUP sg ADD ’/path3’
ALTER STOGROUP sg DROP ’/path2’

The next step is to determine all of the affected table spaces. This analysis can be
done by manually scanning table space snapshot output or using SQL statements.
The following SQL statement generates a list of all the regular and large automatic
storage table spaces in the database:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Once the table spaces are identified, the next step is to perform the following
statement for each of the table spaces listed:
ALTER TABLESPACE tablespace_name REBALANCE

where tablespace_name is the name of the table spaces identified in the previous
step.

/path1 /path2 /path3 /path4 /path1 /path3 /path4

Existing
paths

Paths being
added

First
stripe set

Path being
dropped

Figure 15. Adding and dropping storage paths, and then rebalancing an automatic storage
table space

Chapter 15. Table spaces 163

Note: You cannot rebalance temporary table spaces managed by automatic storage.
If you want to stop using the storage that was allocated to temporary table spaces,
one option is to drop the temporary table spaces and then recreate them.

Monitoring a table space rebalance operation
You can use the MON_GET_REBALANCE_STATUS table function to monitor the progress
of rebalance operations on a database.

About this task

This procedure returns data for a table space only if a rebalance operation is in
progress. Otherwise, no data is returned.

Procedure

To monitor a table space rebalance operation:

Issue the MON_GET_REBALANCE_STATUS table function with the tbsp_name and
dbpartitionnum parameters:
select

varchar(tbsp_name, 30) as tbsp_name,
dbpartitionnum,
member,
rebalancer_mode,
rebalancer_status,
rebalancer_extents_remaining,
rebalancer_extents_processed,
rebalancer_start_time

from table(mon_get_rebalance_status(NULL,-2)) as t

Results

This output is typical of the output for monitoring the progress of a table space
rebalance operation:
TBSP_NAME DBPARTITIONNUM MEMBER REBALANCER_MODE
------------------------------ -------------- ------ ------------------------------
SYSCATSPACE 0 0 REV_REBAL

REBALANCER_STATUS REBALANCER_EXTENTS_REMAINING REBALANCER_EXTENTS_PROCESSED REBALANCER_START_TIME
----------------- ---------------------------- ---------------------------- --------------------------
ACTIVE 6517 4 2011-12-01-12.08.16.000000

1 record(s) selected.

Table space states
This topic provides information about the supported table space states.

There are currently at least 25 table or table space states supported by the IBM DB2
database product. These states are used to control access to data under certain
circumstances, or to elicit specific user actions, when required, to protect the
integrity of the database. Most of them result from events related to the operation
of one of the DB2 database utilities, such as the load utility, or the backup and
restore utilities. The following table describes each of the supported table space
states. The table also provides you with working examples that show you exactly
how to interpret and respond to states that you might encounter while
administering your database. The examples are taken from command scripts that
were run on AIX; you can copy, paste and run them yourself. If you are running
the DB2 database product on a system that is not UNIX, ensure that any path
names are in the correct format for your system. Most of the examples are based

164 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

on tables in the SAMPLE database that comes with the DB2 database product. A
few examples require scenarios that are not part of the SAMPLE database, but you
can use a connection to the SAMPLE database as a starting point.

Table 16. Supported table space states

State
Hexadecimal

state value Description

Backup
Pending

0x20 A table space is in this state after a point-in-time table space rollforward operation, or
after a load operation (against a recoverable database) that specifies the COPY NO option.
The table space (or, alternatively, the entire database) must be backed up before the
table space can be used. If the table space is not backed up, tables within that table
space can be queried, but not updated.
Note: A database must also be backed up immediately after it is enabled for
rollforward recovery. A database is recoverable if the logarchmeth1 database
configuration parameter is set to any value other than OFF. You cannot activate or
connect to such a database until it has been backed up, at which time the value of the
backup_pending informational database configuration parameter is set to NO.Example

Given the staff_data.del input file with the following content:

11,"Melnyk",20,"Sales",10,70000,15000:

Load this data into the staff table specifying the copy no as follows:

update db cfg for sample using logarchmeth1 logretain;
backup db sample;
connect to sample;
load from staff_data.del of del messages load.msg insert into staff copy no;
update staff set salary = 69000 where id = 11;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Backup
Pending state.

Backup in
Progress

0x800 This is a transient state that is only in effect during a backup operation.

Example

Perform an online backup as follows:

backup db sample online;

From another session, execute one of the following scripts while the backup operation
is running:
v connect to sample;

list tablespaces show detail;
connect reset;

v connect to sample;
get snapshot for tablespaces on sample;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Backup in
Progress state.

Chapter 15. Table spaces 165

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description

DMS
Rebalance
in Progress

0x10000000 This is a transient state that is only in effect during a data rebalancing operation. When
new containers are added to a table space that is defined as database managed space
(DMS), or existing containers are extended, a rebalancing of the table space data might
occur. Rebalancing is the process of moving table space extents from one location to
another in an attempt to keep the data striped. An extent is a unit of container space
(measured in pages), and a stripe is a layer of extents across the set of containers for a
table space.

Example

Given the staffdata.del input file with 20000 or more records, create the table
newstaff, load it using this input file, and then add a new container to table space ts1:

connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001/ts1c1’ 1024);
create table newstaff like staff in ts1;
load from staffdata.del of del insert into newstaff nonrecoverable;
alter tablespace ts1 add
(file ’/home/melnyk/melnyk/NODE0000/SQL00001/ts1c2’ 1024);
list tablespaces;
connect reset;

Information returned for TS1 shows that this table space is in DMS Rebalance in
Progress state.

Disable
Pending

0x200 A table space may be in this state during a database rollforward operation and should
no longer be in this state by the end of the rollforward operation. The state is triggered
by conditions that result from a table space going offline and compensation log records
for a transaction not being written. The appearance and subsequent disappearance of
this table space state is transparent to users.

An example illustrating this table space state is beyond the scope of this document.

Drop
Pending

0x8000 A table space is in this state if one or more of its containers is found to have a problem
during a database restart operation. (A database must be restarted if the previous
session with this database terminated abnormally, such as during a power failure, for
example.) If a table space is in Drop Pending state, it will not be available, and can only
be dropped.

An example illustrating this table space state is beyond the scope of this document.

166 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description

Load in
Progress

0x20000 This is a transient state that is only in effect during a load operation (against a
recoverable database) that specifies the COPY NO option. See also Load in Progress table
state.

Example

Given the staffdata.del input file with 20000 or more records, create the table
newstaff and load it specifying COPY NO and this input file:

update db cfg for sample using logarchmeth1 logretain;
backup db sample;
connect to sample;
create table newstaff like staff;
load from staffdata.del of del insert into newstaff copy no;
connect reset;

From another session, get information about table spaces while the load operation is
running by executing one of the sample scripts shown in the Backup in Progress
example.

Information returned for USERSPACE1 shows that this table space is in Load in
Progress (and Backup Pending) state.

Normal 0x0 A table space is in Normal state if it is not in any of the other (abnormal) table space
states. Normal state is the initial state of a table space after it is created.

Example

Create a table space and then get information about that table space as follows:

connect to sample;
create tablespace ts1 managed by automatic storage;
list tablespaces show detail;

Information returned for USERSPACE1 shows that this table space is in Normal state.

Chapter 15. Table spaces 167

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description

Offline and
Not
Accessible

0x4000 A table space is in this state if there is a problem with one or more of its containers. A
container might be inadvertently renamed, moved, or damaged. After the problem has
been rectified, and the containers that are associated with the table space are accessible
again, this abnormal state can be removed by disconnecting all applications from the
database and then reconnecting to the database. Alternatively, you can issue an ALTER
TABLESPACE statement, specifying the SWITCH ONLINE clause, to remove the Offline
and Not Accessible state from the table space without disconnecting other applications
from the database.

Example

Create table space ts1 with containers tsc1 and tsc2, create table staffemp, and import
data from the st_data.del file as follows:

connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001/tsc1’ 1024);
alter tablespace ts1 add
(file ’/home/melnyk/melnyk/NODE0000/SQL00001/tsc2’ 1024);
export to st_data.del of del select * from staff;
create table stafftemp like staff in ts1;
import from st_data.del of del insert into stafftemp;
connect reset;

Rename table space container tsc1 to tsc3 and then try to query the STAFFTEMP table:

connect to sample;
select * from stafftemp;

The query returns SQL0290N (table space access is not allowed), and the LIST
TABLESPACES command returns a state value of 0x4000 (Offline and Not Accessible) for
TS1. Rename table space container tsc3 back to tsc1. This time the query runs
successfully.

Quiesced
Exclusive

0x4 A table space is in this state when the application that invokes the table space quiesce
function has exclusive (read or write) access to the table space. Use the QUIESCE
TABLESPACES FOR TABLE command to explicitly set a table space to Quiesced Exclusive.

Example

Set table spaces to Normal before setting them to Quiesced Exclusive as follows:

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff exclusive;
connect reset;

From another session, execute the following script:

connect to sample;
select * from staff where id=60;
update staff set salary=50000 where id=60;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Quiesced
Exclusive state.

168 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description

Quiesced
Share

0x1 A table space is in this state when both the application that invokes the table space
quiesce function and concurrent applications have read (but not write) access to the
table space. Use the QUIESCE TABLESPACES FOR TABLE command to explicitly set a table
space to Quiesced Share.

Example

Set table spaces to Normal before setting them to Quiesced Share as follows:

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff share;
connect reset;

From another session, execute the following script:

connect to sample;
select * from staff where id=40;
update staff set salary=50000 where id=40;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Quiesced Share
state.

Quiesced
Update

0x2 A table space is in this state when the application that invokes the table space quiesce
function has exclusive write access to the table space. Use the QUIESCE TABLESPACES FOR
TABLE command to explicitly set a table space to Quiesced Update state.

Example

Set table spaces to Normal before setting them to Quiesced Update as follows:

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff intent to update;
connect reset;

From another session, execute the following script:

connect to sample;
select * from staff where id=50;
update staff set salary=50000 where id=50;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this table space is in Quiesced
Update state.

Chapter 15. Table spaces 169

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description

Reorg in
Progress

0x400 This is a transient state that is only in effect during a reorg operation.

Example

Reorganize the staff table as follows:

connect to sample;
reorg table staff;
connect reset;

From another session, get information about table spaces while the reorg operation is
running by executing one of the sample scripts shown in the Backup in Progress
example.

Information returned for USERSPACE1 shows that this table space is in Reorg in
Progress state.
Note: Table reorganization operations involving the SAMPLE database are likely to
complete in a short period of time and, as a result, it may be difficult to observe the
Reorg in Progress state using this approach.

Restore
Pending

0x100 Table spaces for a database are in this state after the first part of a redirected restore
operation (that is, before the SET TABLESPACE CONTAINERS command is issued). The table
space (or the entire database) must be restored before the table space can be used. You
cannot connect to the database until the restore operation has been successfully
completed, at which time the value of the restore_pending informational database
configuration parameter is set to NO.

Example

When the first part of the redirected restore operation in Storage May be Defined
completes, all of the table spaces are in Restore Pending state.

Restore in
Progress

0x2000 This is a transient state that is only in effect during a restore operation.

Example

Enable the sample database for rollforward recovery then back up the sample database
and the USERSPACE1 table space as follows:

update db cfg for sample using logarchmeth1 logretain;
backup db sample;
backup db sample tablespace (userspace1);

Restore the USERSPACE1 table space backup assuming the timestamp for this backup
image is 20040611174124:

restore db sample tablespace (userspace1) online taken at 20040611174124;

From another session, get information about table spaces while the restore operation is
running by executing one of the sample scripts shown in the Backup in Progress
example.

Information returned for USERSPACE1 shows that this table space is in Restore in
Progress state.

170 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description

Roll
Forward
Pending

0x80 A table space is in this state after a restore operation against a recoverable database.
The table space (or the entire database) must be rolled forward before the table space
can be used. A database is recoverable if the logarchmeth1 database configuration
parameter is set to any value other than OFF. You cannot activate or connect to the
database until a rollforward operation has been successfully completed, at which time
the value of the rollfwd_pending informational database configuration parameter is set
to NO.

Example

When the online table space restore operation in Restore in Progress completes, the
table space USERSPACE1 is in Roll Forward Pending state.

Roll
Forward in
Progress

0x40 This is a transient state that is only in effect during a rollforward operation.

Example

Given the staffdata.del input file with 20000 or more record, create a table and
tablespace followed by a database backup:

update db cfg for sample using logarchmeth1 logretain;
backup db sample;
connect to sample;
create tablespace ts1 managed by automatic storage;
create table newstaff like staff in ts1;
connect reset;
backup db sample tablespace (ts1) online;

Assuming that the timestamp for the backup image is 20040630000715, restore the
database backup and rollforward to the end of logs as follows:

connect to sample;
load from staffdata.del of del insert into newstaff copy yes
to /home/melnyk/backups;
connect reset;
restore db sample tablespace (ts1) online taken at 20040630000715;
rollforward db sample to end of logs and stop tablespace (ts1) online;

From another session, get information about table spaces while the rollforward
operation is running by executing one of the sample scripts shown in the Backup in
Progress example.

Information returned for TS1 shows that this table space is in Roll Forward in Progress
state.

Storage
May be
Defined

0x2000000 Table spaces for a database are in this state after the first part of a redirected restore
operation (that is, before the SET TABLESPACE CONTAINERS command is issued). This
allows you to redefine the containers.

Example

Assuming that the timestamp for the backup image is 20040613204955, restore a
database backup as follows:

restore db sample taken at 20040613204955 redirect;
list tablespaces;

Information returned by the LIST TABLESPACES command shows that all of the table
spaces are in Storage May be Defined and Restore Pending state.

Chapter 15. Table spaces 171

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description

Storage
Must be
Defined

0x1000 Table spaces for a database are in this state during a redirected restore operation to a
new database if the set table space containers phase is omitted or if, during the set
table space containers phase, the specified containers cannot be acquired. The latter can
occur if, for example, an invalid path name has been specified, or there is insufficient
disk space.

Example

Assuming that the timestamp for the backup image is 20040613204955, restore a
database backup as follows:

restore db sample taken at 20040613204955 into mydb redirect;
set tablespace containers for 2 using (path ’ts2c1’);
list tablespaces;

Information returned by the LIST TABLESPACES command shows that table space
SYSCATSPACE and table space TEMPSPACE1 are in Storage Must be Defined, Storage
May be Defined, and Restore Pending state. Storage Must be Defined state takes
precedence over Storage May be Defined state.

Suspend
Write

0x10000 A table space is in this state after a write operation has been suspended.

An example illustrating this table space state is beyond the scope of this document.

Table Space
Creation in
Progress

0x40000000 This is a transient state that is only in effect during a create table space operation.

Example

Create table spaces ts1, ts2, and ts3 as follows:

connect to sample;
create tablespace ts1 managed by automatic storage;
create tablespace ts2 managed by automatic storage;
create tablespace ts3 managed by automatic storage;

From another session, get information about table spaces while the create table space
operations are running by executing one of the sample scripts shown in the Backup in
Progress example.

Information returned for TS1, TS2, and TS3 shows that these table spaces are in Table
Space Creation in Progress state.

Table Space
Deletion in
Progress

0x20000000 This is a transient state that is only in effect during a delete table space operation.

Example

Create table spaces ts1, ts2, and ts3 then drop them as follows:

connect to sample;
create tablespace ts1 managed by automatic storage;
create tablespace ts2 managed by automatic storage;
create tablespace ts3 managed by automatic storage;
drop tablespaces ts1, ts2, ts3;

From another session, get information about table spaces while the drop table space
operations are running by executing one of the sample scripts shown in the Backup in
Progress example.

Information returned for TS1, TS2, and TS3 shows that these table spaces are in Table
Space Deletion in Progress state.

172 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Switching table spaces from offline to online
The SWITCH ONLINE clause of the ALTER TABLESPACE statement can be used
to remove the OFFLINE state from a table space if the containers associated with
that table space are accessible.

Procedure

To remove the OFFLINE state from a table space using the command line, enter:
db2 ALTER TABLESPACE name

SWITCH ONLINE

Alternatively, disconnect all applications from the database and then to have the
applications connect to the database again. This removes the OFFLINE state from
the table space.

Results

The table space has the OFFLINE state removed while the rest of the database is
still up and being used.

Dropping table spaces
When you drop a table space, you delete all the data in that table space, free the
containers, remove the catalog entries, and cause all objects defined in the table
space to be either dropped or marked as invalid.

About this task

You can reuse the containers in an empty table space by dropping the table space,
but you must commit the DROP TABLESPACE statement before attempting to
reuse the containers.

Note: You cannot drop a table space without dropping all table spaces that are
associated with it. For example, if you have a table in one table space and its index
created in another table space, you must drop both index and data table spaces in
one DROP TABLESPACE statement.

Procedure
v Dropping user table spaces:

You can drop a user table space that contains all of the table data including
index and LOB data within that single user table space. You can also drop a user
table space that might have tables spanned across several table spaces. That is,
you might have table data in one table space, indexes in another, and any LOBs
in a third table space. You must drop all three table spaces at the same time in a
single statement. All of the table spaces that contain tables that are spanned
must be part of this single statement or the drop request fails.
The following SQL statement drops the table space ACCOUNTING:

DROP TABLESPACE ACCOUNTING

v Dropping user temporary table spaces:
You can drop a user temporary table space only if there are no declared or
created temporary tables currently defined in that table space. When you drop
the table space, no attempt is made to drop all of the declared or created
temporary tables in the table space.

Chapter 15. Table spaces 173

Note: A declared or created temporary table is implicitly dropped when the
application that declared it disconnects from the database.

v Dropping system temporary table spaces:
You cannot drop a system temporary table space that has a page size of 4 KB
without first creating another system temporary table space. The new system
temporary table space must have a page size of 4 KB because the database must
always have at least one system temporary table space that has a page size of 4
KB. For example, if you have a single system temporary table space with a page
size of 4 KB, and you want to add a container to it, and it is an SMS table space,
you must first add a new 4 KB page size system temporary table space with the
proper number of containers, and then drop the old system temporary table
space. (If you are using DMS, you can add a container without needing to drop
and re-create the table space.)
The default table space page size is the page size that the database was created
with (which is 4 KB by default, but can also be 8 KB, 16 KB, or 32 KB).
1. To create a system temporary table space, issue the statement:

CREATE SYSTEM TEMPORARY TABLESPACE name
MANAGED BY SYSTEM USING (’directories’)

2. Then, to drop a system table space using the command line, enter:
DROP TABLESPACE name

3. The following SQL statement creates a system temporary table space called
TEMPSPACE2:

CREATE SYSTEM TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY SYSTEM USING (’d:\systemp2’)

4. After TEMPSPACE2 is created, you can drop the original system temporary
table space TEMPSPACE1 with the statement:

DROP TABLESPACE TEMPSPACE1

174 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 16. Storage groups

A storage group is a named set of storage paths where data can be stored. Storage
groups are configured to represent different classes of storage available to your
database system. You can assign table spaces to the storage group that best suits
the data. Only automatic storage table spaces use storage groups.

A table space can be associated with only one storage group, but a storage group
can have multiple table space associations. To manage storage group objects you
can use the CREATE STOGROUP, ALTER STOGROUP, RENAME STOGROUP,
DROP and COMMENT statements.

With the table partitioning feature, you can place table data in multiple table
spaces. Using this feature, storage groups can store a subset of table data on fast
storage while the remainder of the data is on one or more layers of slower storage.
Use storage groups to support multi-temperature storage which prioritizes data
based on classes of storage. For example, you can create storage groups that map
to the different tiers of storage in your database system. Then the defined table
spaces are associated with these storage groups.

When defining storage groups, ensure that you group the storage paths according
to their quality of service characteristics. The common quality of service
characteristics for data follow an aging pattern where the most recent data is
frequently accessed and requires the fastest access time (hot data) while older data
is less frequently accessed and can tolerate higher access time (warm data or cold
data). The priority of the data is based on:
v Frequency of access
v Acceptable access time
v Volatility of the data
v Application requirements

Typically, the priority of data is inversely proportional to the volume, where there
is significantly more cold and warm data and only a small portion of data is hot.
You can use the DB2 Work Load Manager (WLM) to define rules about how
activities are treated based on a tag that can be assigned to accessed data through
the definition of a table space or a storage group.

Data management using multi-temperature storage
You can configure your databases so that frequently accessed data (hot data) is
stored on fast storage, infrequently accessed data (warm data) is stored on slightly
slower storage, and rarely accessed data (cold data) is stored on slow, less-expensive
storage. As hot data cools down and is accessed less frequently, you can
dynamically move it to the slower storage.

In database systems, there is a strong tendency for a relatively small proportion of
data to be hot data and the majority of the data to be warm or cold data. These
sets of multi-temperature data pose considerable challenges if you want to optimize
the use of fast storage by trying not to store cold data there. As a data warehouse
consumes increasing amounts of storage, optimizing the use of fast storage
becomes increasingly important in managing storage costs.

© Copyright IBM Corp. 2014 175

Storage groups are groups of storage paths with similar qualities. Some critical
attributes of the underlying storage to consider when creating or altering a storage
group are available storage capacity, latency, data transfer rates, and the degree of
RAID protection. You can create storage groups that map to different classes of
storage in your database management system. You can assign automatic storage
table spaces to these storage groups, based on which table spaces have hot, warm,
or cold data. To convert database-managed table spaces to use automatic storage,
you must issue an ALTER TABLESPACE statement specifying the MANAGED BY
AUTOMATIC STORAGE option and then perform a rebalance operation.

Because current data is often considered to be hot data, it typically becomes warm
and then cold as it ages. You can dynamically reassign a table space to a different
storage group by using the ALTER TABLESPACE statement, with the USING
STOGROUP option.

The following example illustrates the use of storage groups with multi-temperature
data. Assume that you are the DBA for a business that does most of its processing
on current-fiscal-quarter data. As shown in Figure 16 on page 177, this business has
enough solid-state drive (SSD) capacity to hold data for an entire quarter and
enough Fibre Channel-based (FC) and Serial Attached SCSI (SAS) drive capacity to
hold data for the remainder of the year. The data that is older then one year is
stored on a large Serial ATA (SATA) RAID array that, while stable, does not
perform quickly enough to withstand a heavy query workload. You can define
three storage groups: one for the SSD storage (sg_hot), one for the FC and SAS
storage (sg_warm), and the other for the SATA storage (sg_cold). You then take the
following actions:
v Assign the table space containing the data for the current quarter to the sg_hot

storage group
v Assign the table space containing the data for the previous three quarters to the

sg_warm storage group
v Assign the table space containing all older data to the sg_cold storage group

After the current quarter passes, you take the following actions:
v Assign a table space for the new quarter to the sg_hot storage group
v Move the table space for the quarter that just passed to the sg_warm storage

group
v Move the data for the oldest quarter in the sg_warm storage group to the

sg_cold storage group

You can do all this work while the database is online.

176 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The following steps provide more details on how to set up multi-temperature data
storage for the sales data in the current fiscal year:
1. Create two storage groups to reflect the two classes of storage, a storage group

to store hot data and a storage group to store warm data.
CREATE STOGROUP sg_hot ON ’/ssd/path1’, ’/ssd/path2’ DEVICE READ RATE 100

OVERHEAD 6.725;
CREATE STOGROUP sg_warm ON ’/hdd/path1’, ’/hdd/path2’;

These statements define an SSD storage group (sg_hot) to store hot data and an
FC and SAS storage group (sg_warm) to store warm data.

2. Create four table spaces, one per quarter of data in a fiscal year, and assign the
table spaces to the storage groups.
CREATE TABLESPACE tbsp_2010q2 USING STOGROUP sg_warm;
CREATE TABLESPACE tbsp_2010q3 USING STOGROUP sg_warm;
CREATE TABLESPACE tbsp_2010q4 USING STOGROUP sg_warm;
CREATE TABLESPACE tbsp_2011q1 USING STOGROUP sg_hot;

This association results in table spaces inheriting the storage group properties.
3. Set up your range partitions in your sales table.

CREATE TABLE sales (order_date DATE, order_id INT, cust_id BIGINT)
PARTITION BY RANGE (order_date)
(PART "2010Q2" STARTING (’2010-04-01’) ENDING (’2010-06-30’) in "tbsp_2010q2",
PART "2010Q3" STARTING (’2010-07-01’) ENDING (’2010-09-30’) in "tbsp_2010q3",
PART "2010Q4" STARTING (’2010-10-01’) ENDING (’2010-12-31’) in "tbsp_2010q4",
PART "2011Q1" STARTING (’2011-01-01’) ENDING (’2011-03-31’) in "tbsp_2011q1");

The 2011Q1 data represents the current fiscal quarter and is using the sg_hot
storage group.

4. After the current quarter passes, create a table space for a new quarter, and
assign the table space to the sg_hot storage group.
CREATE TABLESPACE tbsp_2011q2 USING STOGROUP sg_hot;

Data partition

Legend

Storage
Groups

Table
Spaces

Range
partitions

Table: Sales

TbSpc9TbSpc12 TbSpc1TbSpc11 TbSpc10TbSpc13

sg_coldsg_warm

TbSpc14

2011Q1

sg_hot

SSD RAID Array FC/SAS RAID Array SATA RAID Array

2010Q4 2010Q3 2010Q2 2010Q1 2009Q4 2007Q3

Figure 16. Managing Sales data using multi-temperature data storage

Chapter 16. Storage groups 177

5. Move the table space for the quarter that just passed to the sg_warm storage
group. To change the storage group association for the tbsp_2011q1 table space,
issue the ALTER TABLESPACE statement with the USING STOGROUP option.
ALTER TABLESPACE tbsp_2011q1 USING STOGROUP sg_warm;

Default storage groups
If a database has storage groups, the default storage group is used when an
automatic storage managed table space is created without explicitly specifying the
storage group.

When you create a database, a default storage group named IBMSTOGROUP is
automatically created. However, a database created with the AUTOMATIC
STORAGE NO clause, does not have a default storage group. The first storage
group created with the CREATE STOGROUP statement becomes the designated
default storage group. There can only be one storage group designated as the
default storage group.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

You can designate a default storage group by using either the CREATE
STOGROUP or ALTER STOGROUP statements. When you designate a different
storage group as the default storage group, there is no impact to the existing table
spaces using the old default storage group. To alter the storage group associated
with a table space, use the ALTER TABLESPACE statement.

You can determine which storage group is the default storage group by using the
SYSCAT.STOGROUPS catalog view.

You cannot drop the current default storage group. You can drop the
IBMSTOGROUP storage group if it is not designated as the default storage group
at that time. If you drop the IBMSTOGROUP storage group, you can create another
storage group with that name.

Creating storage groups
Use the CREATE STOGROUP statement to create storage groups. Creating a
storage group within a database assigns storage paths to the storage group.

Before you begin

If you create a database with the AUTOMATIC STORAGE NO clause it does not have a
default storage group. You can use the CREATE STOGROUP statement to create a
default storage group.

Note: Although, you can create a database specifying the AUTOMATIC STORAGE
NO clause, the AUTOMATIC STORAGE clause is deprecated and might be
removed from a future release.

Procedure

To create a storage group by using the command line, enter the following
statement:

178 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

CREATE STOGROUP operational_sg ON ’/filesystem1’, ’/filesystem2’, ’/filesystem3’...

where operational_sg is the name of the storage group and /filesystem1, /filesystem2,
/filesystem3 , ... are the storage paths to be added.

Important: To help ensure predictable performance, all the paths that you assign
to a storage group should have the same media characteristics: latency, device read
rate, and size.

Altering storage groups
You can use the ALTER STOGROUP statement to alter the definition of a storage
group, including setting media attributes, setting a data tag, or setting a default
storage group. You can also add and remove storage paths from a storage group.

If you add storage paths to a storage group and you want to stripe the extents of
their table spaces over all storage paths, you must use the ALTER TABLESPACE
statement with the REBALANCE option for each table space that is associated with
that storage group.

If you drop storage paths from a storage group, you must use the ALTER
TABLESPACE statement with the REBALANCE option to move allocated extents
off the dropped paths.

You can use the DB2 Work Load Manager (WLM) to define rules about how
activities are treated based on a tag that is associated with accessed data. You
associate the tag with data when defining a table space or a storage group.

Adding storage paths
You can add a storage path to a storage group by using the ALTER STOGROUP
statement.

About this task

When you add a storage path for a multipartition database environment, the
storage path must exist on each database partition. If the specified path does not
exist on every database partition, the statement is rolled back.

Procedure
v To add storage paths to a storage group, issue the following ALTER STOGROUP

statement:
ALTER STOGROUP sg ADD ’/hdd/path1’, ’/hdd/path2’, ...

where sg is the storage group and /hdd/path1, /hdd/path2, ... are the storage paths
being added.

Important: All the paths that you assign to a storage group should have similar
media characteristics: underlying disks, latency, device read rate, and size. If
paths have non-uniform media characteristics, performance might be
inconsistent.

v After adding one or more storage paths to the storage group, you can optionally
use the ALTER TABLESPACE statement to rebalance table spaces to immediately
start using the new storage paths. Otherwise, the new storage paths are used
only when there is no space in the containers on the existing storage paths. To
determine all of the affected permanent table spaces in the storage group, run
the following statement:

Chapter 16. Storage groups 179

SELECT TBSP_NAME
FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Once the table spaces have been identified, you can perform the following
statement for each of the table spaces listed:
ALTER TABLESPACE tablespace_name REBALANCE

where tablespace_name is the table space.

Dropping storage paths
You can drop one or more storage paths from a storage group or you can move
data off the storage paths and rebalance them.

Before you begin

To determine whether permanent table spaces are using the storage path, use the
ADMIN_GET_STORAGE_PATHS administrative view. This view displays current
information about the storage paths for each storage group. A storage path can be
in one of three states:

NOT_IN_USE
The storage path has been added to the database but is not in use by any
table space.

IN_USE
One or more table spaces have containers on the storage path.

DROP_PENDING
An ALTER STOGROUP stogroup_name DROP statement has been issued to
drop the path, but table spaces are still using the storage path. The path is
removed from the database when it is no longer being used by a table
space.

If the storage path you dropped has data stored on it and is in the
DROP_PENDING state, you must rebalance all permanent table spaces using the
storage path before the database manager can complete the drop of the path.

To obtain information about table spaces on specific database partitions use the
MON_GET_TABLESPACE administrative view.

Restrictions

A storage group must have at least one path. You cannot drop all paths in a
storage group.

About this task

If you intend to drop a storage path, you must rebalance all permanent table
spaces that use the storage path by using ALTER TABLESPACE tablespace-name
REBALANCE, which moves data off the path to be dropped. In this situation, the
rebalance operation moves data from the storage path that you intend to drop to
the remaining storage paths and keeps the data striped consistently across those
storage paths, maximizing I/O parallelism.

180 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Procedure
1. To drop storage paths from a storage group, issue the following ALTER

STOGROUP statement:
ALTER STOGROUP sg DROP ’/db2/filesystem1’, ’/db2/filesystem2’

where sg is the storage group and /db2/filesystem1 and /db2/filesystem2 are the
storage paths being dropped.

2. Rebalance the containers of the storage paths being dropped. To determine all
the affected permanent table spaces in the database that have containers
residing on a "Drop Pending" path, issue the following statement:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg’

ORDER BY TBSP_ID

Once the table spaces have been identified, you can perform the following
statement for each of the table spaces listed:
ALTER TABLESPACE tablespace_name REBALANCE

where tablespace_name is a table space.
After the last rebalance operation is complete, /db2/filesystem1 and
/db2/filesystem2 are removed from the storage group.

3. Drop the temporary table spaces using the storage group. A table space in
DROP_PENDING state is not dropped if there is a temporary table space on it.

4. Re-create the temporary table spaces that were using the storage group.

What to do next

Query the ADMIN_GET_STORAGE_PATHS administrative view to verify that the
storage path that was dropped is no longer listed. If it is, then one or more table
spaces are still using it.

Monitoring storage paths
You can use administrative views and table functions to get information about the
storage paths used.

The following administrative views and table functions can be used:
v Use the ADMIN_GET_STORAGE_PATHS administrative view to get a list of

storage paths for each storage group and the file system information for each
storage path.

v Use the TBSP_USING_AUTOMATIC_STORAGE and STORAGE_GROUP_NAME
monitor elements in the MON_GET_TABLESPACE table function to understand
if a table space is using automatic storage and to identify which storage group
the table space is using.

v Use the DB_STORAGE_PATH_ID monitor element in the
MON_GET_CONTAINER table function to understand which storage path in a
storage group a container is defined on.

Replacing the paths of a storage group
Replace the storage paths in a storage group with new storage paths.

Chapter 16. Storage groups 181

Procedure

To replace the existing storage paths in a storage group:
1. Add the new storage paths to an existing storage group.

ALTER STOGROUP sg_default ADD ’/hdd/path3’, ’/hdd/path4’

2. Drop the old storage paths.
ALTER STOGROUP sg_default DROP ’/hdd/path1’, ’/hdd/path2’

Note: All storage groups must have at least one path and that last path cannot
be dropped.
This marks the dropped storage paths as DROP PENDING.

3. Determine the affected non-temporary table spaces.
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND STORAGE_GROUP_NAME = ’sg_default’

ORDER BY TBSP_ID

4. Perform the following statement for each of the affected non-temporary table
spaces returned.
ALTER TABLESPACE tablespace-name REBALANCE

5. If there are any temporary table spaces defined on the dropped storage paths,
you must create the new temporary table spaces first before dropping the old
ones.
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
AND STORAGE_GROUP_NAME = ’sg_default’

ORDER BY TBSP_ID

Renaming storage groups
Use the RENAME STOGROUP statement to rename a storage group.

Procedure

Use the following statement to rename a storage group:
RENAME STOGROUP sg_hot TO sg_warm

where sg_warm is the new name of the storage group.

Example

When the first storage group is created at database creation time, the default
storage group name is IBMSTOGROUP. You can use the following statement to
change the designated default name:

RENAME STOGROUP IBMSTOGROUP TO DEFAULT_SG

where DEFAULT_SG is the new default name of the storage group.

Dropping storage groups
You can remove a storage group by using the DROP statement.

182 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

About this task

You must determine whether there are any table spaces that use the storage group
before dropping it. If there are, you must change the storage group that the table
spaces use and complete the rebalance operation before dropping the original
storage group.

Restrictions

You cannot drop the current default storage group.

Procedure

To drop a storage group:
1. Find the table spaces that are using the storage group.

SELECT TBSP_NAME, TBSP_CONTENT_TYPE
FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND STORAGE_GROUP_NAME = STO_GROUP
ORDER BY TBSP_ID

where STO_GROUP is the storage group that you want to drop.
2. If there are regular or large table spaces that use the storage group, assign them

to a different storage group:
ALTER TABLESPACE tablespace_name USING STOGROUP sto_group_new

where sto_group_new is a different storage group.
3. If there are temporary table spaces that use the storage group that you want to

drop, perform these steps:
a. Determine what temporary table spaces use the storage group that you

want to drop:
SELECT TBSP_NAME

FROM table (MON_GET_TABLESPACE(’ ’, -2))
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
AND STORAGE_GROUP_NAME = ’STO_GROUP’

ORDER BY TBSP_ID

b. Drop the temporary table spaces using the storage group:
DROP TABLESPACE table_space

c. Re-create the temporary table spaces that were using the storage group.
4. Monitor the rebalance activity for the storage group to be dropped.

SELECT * from table (MON_GET_REBALANCE_STATUS(’ ’, -2))
WHERE REBALANCER_SOURCE_STORAGE_GROUP_NAME = sto_group_old

An empty result state indicates that all table spaces have finished moving to
the new storage group.

5. Drop the storage group when all table space extents have been successfully
moved to the target storage group.
DROP STOGROUP STO_GROUP

where STO_GROUP is the name of the storage group to be dropped.

Storage group and table space media attributes
Automatic storage table spaces inherit media attribute values, device read rate and
data tag attributes, from the storage group that the table spaces are using by
default.

Chapter 16. Storage groups 183

When you create a storage group by using the CREATE STOGROUP statement,
you can specify the following storage group attributes:

OVERHEAD
This attribute specifies the I/O controller time and the disk seek and
latency time in milliseconds.

DEVICE READ RATE
This attribute specifies the device specification for the read transfer rate in
megabytes per second. This value is used to determine the cost of I/O
during query optimization. If this value is not the same for all storage
paths, the number should be the average for all storage paths that belong
to the storage group.

DATA TAG
This attribute specifies a tag on the data in a particular storage group,
which WLM can use to determine the processing priority of database
activities.

The default values for the storage group attributes are as follows:

Table 17. The default settings for storage group attributes

Attribute Default setting

DATA TAG NONE

DEVICE READ RATE 100 MB/sec

OVERHEAD 6.725 ms

When creating an automatic storage table space, you can specify a tag that
identifies data contained in that table space. If that table space is associated with a
storage group, then the data tag attribute on the table space overrides any data tag
attribute that may be set on the storage group. If the user does not specify a data
tag attribute on the table space and the table space is contained in a storage group,
the table space inherits the data tag value from the storage group. The data tag
attribute can be set for any regular or large table space except the catalog table
space (SQL0109N). The data tag attribute cannot be set for temporary table spaces
and returns the SQL0109N message error.

An automatic storage table space inherits the overhead and transferrate attributes
from the storage group it uses. When a table space inherits the transferrate
attribute from the storage group it uses, the storage group's device read rate is
converted from milliseconds per page read, taking into account the pagesize
setting of the table space, as follows:
TRANSFERRATE = (1 / DEVICE READ RATE) * 1000 / 1024000 * PAGESIZE

The pagesize setting for both an automatic storage table space and a nonautomatic
table space has the corresponding default TRANSFERRATE values:

Table 18. Default TRANSFERRATE values

PAGESIZE TRANSFERRATE

4 KB 0.04 milliseconds per page read

8 KB 0.08 milliseconds per page read

16 KB 0.16 milliseconds per page read

32 KB 0.32 milliseconds per page read

184 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The data tag, device read rate, and overhead media attributes for automatic storage
table spaces can be changed to dynamically inherit the values from its associated
storage group. To have the media attributes dynamically updated, specify the
INHERIT option for the CREATE TABLESPACE or ALTER TABLESPACE
statement.

When a table space inherits the value of an attribute from a storage group, the
SYSCAT.TABLESPACES catalog table view reports a value of -1 for that attribute.
To view the actual values at run time for the overhead, transferrate and data tag
attributes, you can use the following query:
select tbspace,
cast(case when a.datatag = -1 then b.datatag else a.datatag end as smallint)
eff_datatag,
cast(case when a.overhead = -1 then b.overhead else a.overhead end as double)
eff_overhead,
cast(case when a.transferrate = -1 then
(1 / b.devicereadrate) / 1024 * a.pagesize else a.transferrate end as double)
eff_transferrate
from syscat.tablespaces a left outer join syscat.stogroups b on a.sgid = b.sgid

If you upgrade to V10.1, the existing table spaces retain their overhead and
transferrate settings, and the overhead and device read rate attributes for the
storage group are set to undefined. The newly created table spaces in a storage
group with device read rate set to undefined use the DB2 database defaults that
were defined when the database was originally created. If the storage group's
media settings have a valid value, then the newly created table space will inherit
those values. You can set media attributes for the storage group by using the
ALTER STOGROUP statement. For nonautomatic table spaces, the media attributes
are retained.

Associating a table space to a storage group
Using the CREATE TABLESPACE statement or ALTER TABLESPACE statement,
you can specify or change the storage group a table space uses. If a storage group
is not specified when creating a table space, then the default storage group is used.

About this task

When you change the storage group a table space uses, an implicit REBALANCE
operation is issued when the ALTER TABLESPACE statement is committed. It
moves the data from the source storage group to the target storage group.

When using the IBM DB2 pureScale Feature, REBALANCE is not supported and
you cannot change the assigned storage group. The REBALANCE operation is
asynchronous and does not affect the availability of data. You can use the
monitoring table function MON_GET_REBALANCE_STATUS to monitor the
progress of the REBALANCE operation.

During the ALTER TABLESPACE operation, compiled objects that are based on old
table space attributes are soft invalidated. Any new compilations after the ALTER
TABLESPACE commits use the new table space attributes specified in the ALTER
TABLESPACE statement. Soft invalidation support is limited to dynamic SQL only,
you must manually detect and recompile any static SQL dependencies for the new
values to be used.

Any table spaces that use the same storage group can have different PAGESIZE
and EXTENTSIZE values. These attributes are related to the table space definition
and not to the storage group.

Chapter 16. Storage groups 185

Procedure

To associate a table space with a storage group, issue the following statement:
CREATE TABLESPACE tbspc USING STOGROUP storage_group

where tbspc is the new table space, and storage_group is the associated storage
group.

Scenario: Moving a table space to a new storage group
This scenarios shows how a table space can be moved from one storage group to a
different storage group.

The assumption in this scenario is that the table space data is in containers on
storage paths in a storage group. An ALTER TABLESPACE statement is used to
move the table space data to the new storage group.

When the table space is moved to the new storage group, the containers in the old
storage group are marked as drop pending. After the ALTER TABLESPACE
statement is committed, containers are allocated on the new storage group's
storage paths, the existing containers residing in the old storage groups are marked
as drop pending, and an implicit REBALANCE operation is initiated. This
operation allocates containers on the new storage path and rebalances the data
from the existing containers into the new containers. The number and size of the
containers to create depend on both the number of storage paths in the target
storage group and on the amount of free space on the new storage paths. The old
containers are dropped, after all the data is moved.

The following diagram is an example of moving the table space from a storage
group to a different storage group, where:
1. New containers are allocated on the target storage group's storage paths.
2. All original containers are marked drop pending and new allocation request are

satisfied from the new containers.
3. A reverse rebalance is preformed, moving data off of the containers on the

paths being dropped.
4. The containers are physically dropped.

186 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To move a table space to a different storage group, do the following:
1. Create two storage groups, sg_source and sg_target:

CREATE STOGROUP sg_source ON ’/path1’, ’/path2’, ’/path3’
CREATE STOGROUP sg_target ON ’/path4’, ’/path5’, ’/path6’

2. After creating the database, create an automatic storage table space that initially
uses the sg_source storage group:
CREATE TABLESPACE TbSpc USING STOGROUP sg_source

3. Move the automatic storage table space to the sg_target storage group:
ALTER TABLESPACE TbSpc USING sg_target

TbSpc TbSpc

sg_source sg_target

/path1 /path4/path2 /path5/path3 /path6

TbSpc

sg_source

/path1 /path2 /path3

TbSpc

sg_target

/path4 /path5 /path6

Table space containers
marked as drop pending

Figure 17. Moving a table space to a new storage group

Chapter 16. Storage groups 187

188 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 17. Schemas

A schema is a collection of named objects; it provides a way to group those objects
logically. A schema is also a name qualifier; it provides a way to use the same
natural name for several objects, and to prevent ambiguous references to those
objects.

For example, the schema names 'INTERNAL' and 'EXTERNAL' make it easy to
distinguish two different SALES tables (INTERNAL.SALES, EXTERNAL.SALES).

Schemas also enable multiple applications to store data in a single database
without encountering namespace collisions.

A schema is distinct from, and should not be confused with, an XML schema,
which is a standard that describes the structure and validates the content of XML
documents.

A schema can contain tables, views, nicknames, triggers, functions, packages, and
other objects. A schema is itself a database object. It is explicitly created using the
CREATE SCHEMA statement, with the current user or a specified authorization ID
recorded as the schema owner. It can also be implicitly created when another
object is created, if the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the
object is specifically qualified with a schema name when created, the object is
assigned to that schema. If no schema name is specified when the object is created,
the default schema name is used (specified in the CURRENT SCHEMA special
register).

For example, a user with DBADM authority creates a schema called C for user A:
CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in schema
C (provided that user A has the CREATETAB database authority):

CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to the
SYSIBM schema, and the pre-installed user-defined functions belong to the
SYSFUN schema.

When a database is created, if it is not created with the RESTRICTIVE option, all
users have IMPLICIT_SCHEMA authority. With this authority, users implicitly
create a schema whenever they create an object with a schema name that does not
already exist. When schemas are implicitly created, CREATEIN privileges are
granted which allows any user to create other objects in this schema. The ability to
create objects such as aliases, distinct types, functions, and triggers is extended to
implicitly created schemas. The default privileges on an implicitly created schema
provide backward compatibility with previous versions.

The owner of an implicitly created schema is SYSIBM. When the database is
restrictive, PUBLIC does not have the CREATEIN privilege on the schema. The

© Copyright IBM Corp. 2014 189

user who implicitly creates the schema has CREATEIN privilege on the schema.
When the database is not restrictive, PUBLIC has the CREATEIN privilege on the
schema.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be
explicitly created using the CREATE SCHEMA statement, or implicitly created by
users (such as those with DBADM authority) who have been granted
IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA authority
from PUBLIC increases control over the use of schema names, it can result in
authorization errors when existing applications attempt to create objects.

Schemas also have privileges, allowing the schema owner to control which users
have the privilege to create, alter, and drop objects in the schema. This ability
provides a way to control the manipulation of a subset of objects in the database.
A schema owner is initially given all of these privileges on the schema, with the
ability to grant the privileges to others. An implicitly created schema is owned by
the system, and all users are initially given the privilege to create objects in such a
schema, except in a restrictive database environment. A user with ACCESSCTRL or
SECADM authority can change the privileges that are held by users on any
schema. Therefore, access to create, alter, and drop objects in any schema (even one
that was implicitly created) can be controlled.

Designing schemas
when organizing your data into tables, it might be beneficial to group the tables
and other related objects together. This is done by defining a schema through the
use of the CREATE SCHEMA statement.

Information about the schema is kept in the system catalog tables of the database
to which you are connected. As other objects are created, they can be placed within
the schemas you create, however, note that an object can exist in only one schema.

Schemas can be compared to directories, with the current schema being the current
directory. Using this analogy, SET SCHEMA is equivalent to the change directory
command.

Important: It is important to understand that there is no relation between
authorization IDs and schemas except for the default CURRENT SCHEMA setting
(described in the following section).

when designing your databases and tables, you should also consider the schemas
in your system, including their names and the objects that will be associated with
each of them.

Most objects in a database are assigned a unique name that consists of two parts.
The first (leftmost) part is called the qualifier or schema, and the second
(rightmost) part is called the simple (or unqualified) name. Syntactically, these two
parts are concatenated as a single string of characters separated by a period. When
any object that can be qualified by a schema name (such as a table, index, view,
user-defined data type, user-defined function, nickname, package, or trigger) is
first created, it is assigned to a particular schema based on the qualifier in its
name.

For example, the following diagram illustrates how a table is assigned to a
particular schema during the table creation process:

190 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Index

Table

Payroll (Schema)

Table

Index

Sales (Schema)

Staff

'CREATE TABLE 'PAYROLL.STAFF

Table Name

Schema Name

You should also be familiar with how schema access is granted, in order to give
your users the correct authority and instructions:

Schema names
When creating a new schema, the name must not identify a schema name
already described in the catalog and the name cannot begin with "SYS".
For other restrictions and recommendations, see “Schema name restrictions
and recommendations” on page 193.

Access to schemas

Unqualified access to objects within a schema is not allowed since the
schema is used to enforce uniqueness in the database. This becomes clear
when considering the possibility that two users could create two tables (or
other objects) with the same name. Without a schema to enforce
uniqueness, ambiguity would exist if a third user attempted to query the
table. It is not possible to determine which table to use without some
further qualification.

The definer of any objects created as part of the CREATE SCHEMA
statement is the schema owner. This owner can GRANT and REVOKE
schema privileges to other users.

If a user has DBADM authority, then that user can create a schema with
any valid name. When a database is created, IMPLICIT_SCHEMA
authority is granted to PUBLIC (that is, to all users).

If users do not have IMPLICIT_SCHEMA or DBADM authority, the only
schema they can create is one that has the same name as their own
authorization ID.

Default schema

If a schema or qualifier is not specified as part of the name of the object to
be created, that object is assigned to the default schema as indicated in the
CURRENT SCHEMA special register. The default value of this special
register is the value of the session authorization ID.

Chapter 17. Schemas 191

A default schema is needed by unqualified object references in dynamic
statements. You can set a default schema for a specific DB2 connection by
setting the CURRENT SCHEMA special register to the schema that you
want as the default. No designated authorization is required to set this
special register, so any user can set the CURRENT SCHEMA.

The syntax of the SET SCHEMA statement is:
SET SCHEMA = <schema-name>

You can issue this statement interactively or from within an application.
The initial value of the CURRENT SCHEMA special register is equal to the
authorization ID of the current session user. For more information, see the
SET SCHEMA statement.

Note:

v There are other ways to set the default schema upon connection. For
example, by using the cli.ini file for CLI/ODBC applications, or by
using the connection properties for the JDBC application programming
interface.

v The default schema record is not created in the system catalogs, but it
exists only as a value that the database manager can obtain (from the
CURRENT SCHEMA special register) whenever a schema or qualifier is
not specified as part of the name of the object to be created.

Implicit creation

You can implicitly create schemas if you have IMPLICIT_SCHEMA
authority. With this authority, you can implicitly create a schema whenever
you create an object with a schema name that does not already exist. Often
schemas are implicitly created the first time a data object in the schema is
created, provided the user creating the object holds the
IMPLICIT_SCHEMA authority.

Explicit creation

Schemas can also be explicitly created and dropped by executing the
CREATE SCHEMA and DROP SCHEMA statements from the command
line or from an application program. For more information, see the
CREATE SCHEMA and DROP SCHEMA statements.

Table and view aliases by schema

To allow another user to access a table or view without entering the
schema name as part of the qualification on the table or view name
requires that a an alias be established for that user. The definition of the
alias would define the fully-qualified table or view name including the
user's schema; then the user queries using the alias name. The alias would
be fully-qualified by the user's schema as part of the alias definition.

Grouping objects by schema
Database object names might be made up of a single identifier or they might be
schema-qualified objects made up of two identifiers. The schema, or high-order part,
of a schema-qualified object provides a means to classify or group objects in the
database. When an object such as a table, view, alias, distinct type, function, index,
package or trigger is created, it is assigned to a schema. This assignment is done
either explicitly or implicitly.

192 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Explicit use of the schema occurs when you use the high-order part of a two-part
object name when referring to that object in a statement. For example, USER A
issues a CREATE TABLE statement in schema C as follows:

CREATE TABLE C.X (COL1 INT)

Implicit use of the schema occurs when you do not use the high-order part of a
two-part object name. When this happens, the CURRENT SCHEMA special register
is used to identify the schema name used to complete the high-order part of the
object name. The initial value of CURRENT SCHEMA is the authorization ID of
the current session user. If you want to change this during the current session, you
can use the SET SCHEMA statement to set the special register to another schema
name.

Some objects are created within certain schemas and stored in the system catalog
tables when the database is created.

You do not have to explicitly specify in which schema an object is to be created; if
not specified, the authorization ID of the statement is used. For example, for the
following CREATE TABLE statement, the schema name defaults to the
authorization ID that is currently logged on (that is, the CURRENT SCHEMA
special register value):

CREATE TABLE X (COL1 INT)

Dynamic SQL and XQuery statements typically use the CURRENT SCHEMA
special register value to implicitly qualify any unqualified object name references.

Before creating your own objects, you must consider whether you want to create
them in your own schema or by using a different schema that logically groups the
objects. If you are creating objects that will be shared, using a different schema
name can be very beneficial.

Schema name restrictions and recommendations
There are some restrictions and recommendations that you must be aware of when
naming schemas.
v User-defined types (UDTs) cannot have schema names longer than the schema

length listed in “SQL and XML limits” in the SQL Reference.
v The following schema names are reserved words and must not be used:

SYSCAT, SYSFUN, SYSIBM, SYSSTAT, SYSPROC.
v To avoid potential problems upgrading databases in the future, do not use

schema names that begin with SYS. The database manager will not allow you to
create modules, procedures, triggers, user-defined types or user-defined
functions using a schema name beginning with SYS.

v It is recommended that you not use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION. It is therefore possible to have
an application declare a temporary table with a name identical to that of a
persistent table, in which case the application logic can become overly
complicated. Avoid the use of the schema SESSION, except when dealing with
declared temporary tables.

Creating schemas
You can use schemas to group objects as you create those objects. An object can
belong to only one schema. Use the CREATE SCHEMA statement to create
schemas.

Chapter 17. Schemas 193

Information about the schemas is kept in the system catalog tables of the database
to which you are connected.

Before you begin

To create a schema and optionally make another user the owner of the schema,
you need DBADM authority. If you do not hold DBADM authority, you can still
create a schema using your own authorization ID. The definer of any objects
created as part of the CREATE SCHEMA statement is the schema owner. This
owner can GRANT and REVOKE schema privileges to other users.

Procedure

To create a schema from the command line, enter the following statement:
CREATE SCHEMA schema-name [AUTHORIZATION schema-owner-name]

Where schema-name is the name of the schema. This name must be unique within
the schemas already recorded in the catalog, and the name cannot begin with SYS.
If the optional AUTHORIZATION clause is specified, the schema-owner-name
becomes the owner of the schema. If this clause is not specified, the authorization
ID that issued this statement becomes the owner of the schema.
For more information, see the CREATE SCHEMA statement. See also “Schema
name restrictions and recommendations” on page 193.

Dropping schemas
To delete a schema, use the DROP statement.

Before you begin

Before dropping a schema, all objects that were in that schema must be dropped or
moved to another schema.

The schema name must be in the catalog when attempting the DROP statement;
otherwise an error is returned.

Procedure

To drop a schema by using the command line, enter:
DROP SCHEMA name RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the
specified schema for the schema to be deleted from the database. The RESTRICT
keyword is not optional.

Example

In the following example, the schema "joeschma" is dropped:
DROP SCHEMA joeschma RESTRICT

194 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 18. Database objects

Soft invalidation of database objects
When soft invalidation is active, an object can be dropped even if other running
transactions are using it. Transactions that were using the dropped object are
permitted to continue, but any new transaction will be denied access to the
dropped object.

All cached statements and packages that directly or indirectly refer to the object
being dropped or altered are marked as not valid (and are said to be invalidated).
Soft invalidation allows DDL affecting the referenced objects to avoid waits that
otherwise would result from statements being run holding locks on objects to
which they refer, and allows any active access to continue using a cached version
of the object, eliminating the possibility of lock timeouts.

By contrast, when hard invalidation is used, exclusive locking is used when
referencing an object. This guarantees that all processes are using the same
versions of objects and that there are no accesses to an object once it has been
dropped.

Soft invalidation is enabled through the DB2_DDL_SOFT_INVAL registry variable; by
default, this registry variable is set to ON.

The following list shows the data definition language (DDL) statements for which
soft invalidation is supported:
v ALTER TABLE...DETACH PARTITION
v CREATE OR REPLACE ALIAS
v CREATE OR REPLACE FUNCTION
v CREATE OR REPLACE TRIGGER
v CREATE OR REPLACE VIEW
v DROP ALIAS
v DROP FUNCTION
v DROP TRIGGER
v DROP VIEW

Note: In DB2 Version 9.7 Fix Pack 1 and later releases, ALTER TABLE...DETACH
PARTITION performs soft invalidation at all isolation levels on cached statements
that directly or indirectly refer to the partitioned table. A subsequent asynchronous
partition detach task performs hard invalidation on previously soft invalidated
cached statements before converting the detached partition into a stand-alone table.

The DB2_DDL_SOFT_INVAL registry variable does not affect the invalidation done by
ALTER TABLE...DETACH PARTITION.

Soft invalidation support applies only to dynamic SQL and to scans done under
the cursor stability (CS) and uncommitted read (UR) isolation levels. For the
ALTER TABLE...DETACH PARTITION statement, the soft invalidation applies to
scans under all isolation levels.

© Copyright IBM Corp. 2014 195

Example

Assume a view called VIEW1 exists. You open a cursor, and run the statement
SELECT * from VIEW1. Shortly afterward, the database administrator issues the
command DROP VIEW VIEW1 to drop VIEW1 from the database. With hard
invalidation, the DROP VIEW statement will be forced to wait for an exclusive lock
on VIEW1 until the SELECT transaction has finished. With soft invalidation, the
DROP VIEW statement is not given an exclusive lock on the view. The view is
dropped, however, the SELECT statement will continue to run using the most
recent definition of the view. Once the SELECT statement has completed, any
subsequent attempts to use to VIEW1 (even by the same user or process that just
used it) will result in an error (SQL0204N).

Automatic revalidation of database objects
Automatic revalidation is a mechanism whereby invalid database objects are
automatically revalidated when accessed at run time.

A database object usually depends upon one or more different base objects. If the
status of base objects on which the database object depends upon change in any
important way, such as the base object being altered or dropped, the dependent
database object becomes invalid. Invalid database objects must be revalidated
before they can be used again. Revalidation is the process by which the DB2
software reprocesses the definition of an invalid dependent object so that the object
is updated with the current state of its base objects, thereby turning the invalid
dependent object back into a usable, valid object. Automatic revalidation is a
mechanism whereby invalid database objects are automatically revalidated when
accessed at run time.

In general, the database manager attempts to revalidate invalid objects the next
time that those objects are used. Automatic revalidation is enabled through the
auto_reval configuration parameter. By default, this registry variable is set to
DEFERRED, except for databases upgraded from Version 9.5 or earlier, in which
case auto_reval is set to DISABLED.

For information about the dependent objects that are impacted when an object is
dropped, and when those dependent objects are revalidated, see “DROP
statement” in the SQL Reference Volume 1.

The following list shows the data definition language (DDL) statements for which
automatic revalidation is currently supported:
v ALTER MODULE DROP FUNCTION
v ALTER MODULE DROP PROCEDURE
v ALTER MODULE DROP TYPE
v ALTER MODULE DROP VARIABLE
v ALTER NICKNAME (altering the local name or the local type)
v ALTER TABLE ALTER COLUMN
v ALTER TABLE DROP COLUMN
v ALTER TABLE RENAME COLUMN
v CREATE OR REPLACE ALIAS
v CREATE OR REPLACE FUNCTION
v CREATE OR REPLACE NICKNAME
v CREATE OR REPLACE PROCEDURE

196 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v CREATE OR REPLACE SEQUENCE
v CREATE OR REPLACE TRIGGER
v CREATE OR REPLACE VARIABLE
v CREATE OR REPLACE VIEW
v DROP FUNCTION
v DROP NICKNAME
v DROP PROCEDURE
v DROP SEQUENCE
v DROP TABLE
v DROP TRIGGER
v DROP TYPE
v DROP VARIABLE
v DROP VIEW
v RENAME TABLE

You can use the ADMIN_REVALIDATE_DB_OBJECTS procedure to revalidate
existing objects that have been marked invalid.

Creating database object aliases
An alias is an indirect method of referencing a table, nickname, or view, so that an
SQL or XQuery statement can be independent of the qualified name of that table
or view.

About this task

Only the alias definition must be changed if the table or view name changes. An
alias can be created on another alias. An alias can be used in a view or trigger
definition and in any SQL or XQuery statement, except for table check-constraint
definitions, in which an existing table or view name can be referenced.

An alias can be defined for a table, view, or alias that does not exist at the time of
definition. However, it must exist when the SQL or XQuery statement containing
the alias is compiled.

An alias name can be used wherever an existing table name can be used, and can
refer to another alias if no circular or repetitive references are made along the
chain of aliases.

The alias name cannot be the same as an existing table, view, or alias, and can only
refer to a table within the same database. The name of a table or view used in a
CREATE TABLE or CREATE VIEW statement cannot be the same as an alias name
in the same schema.

You do not require special authority to create an alias, unless the alias is in a
schema other than the one owned by your current authorization ID, in which case
DBADM authority is required.

When an alias, or the object to which an alias refers, is dropped, all packages
dependent on the alias are marked as being not valid and all views and triggers
dependent on the alias are marked inoperative.

Chapter 18. Database objects 197

Note: DB2 for z/OS employs two distinct concepts of aliases: ALIAS and
SYNONYM. These two concepts differ from DB2 for Linux, UNIX, and Windows
as follows:
v ALIASes in DB2 for z/OS:

– Require their creator to have special authority or privilege
– Cannot reference other aliases

v SYNONYMs in DB2 for z/OS:
– Can only be used by their creator
– Are always unqualified
– Are dropped when a referenced table is dropped
– Do not share namespace with tables or views

Procedure

To create an alias using the command line, enter:
CREATE ALIAS alias_name FOR table_name

The following SQL statement creates an alias WORKERS for the EMPLOYEE table:
CREATE ALIAS WORKERS FOR EMPLOYEE

The alias is replaced at statement compilation time by the table or view name. If
the alias or alias chain cannot be resolved to a table or view name, an error results.
For example, if WORKERS is an alias for EMPLOYEE, then at compilation time:

SELECT * FROM WORKERS

becomes in effect
SELECT * FROM EMPLOYEE

Creating and maintaining database objects
When creating some types of database objects, you should be aware of the
CREATE with errors support, as well as the REPLACE option.

CREATE with errors support for certain database objects

Some types of objects can be created even if errors occur during their compilation;
for example, creating a view when the table to which it refers does not exist.

Such objects remain invalid until they are accessed. CREATE with errors support
currently extends to views and inline SQL functions (not compiled functions). This
feature is enabled if the auto_reval database configuration parameter is set to
IMMEDIATE or DEFERRED.

The errors that are tolerated during object creation are limited to the following
types:
v Any name resolution error, such as: a referenced table does not exist (SQLSTATE

42704, SQL0204N), a referenced column does not exist (SQLSTATE 42703,
SQL0206N), or a referenced function cannot be found (SQLSTATE 42884,
SQL0440N)

v Any nested revalidation failure. An object being created can reference objects
that are not valid , and revalidation will be invoked for those invalid objects. If
revalidation of any referenced invalid object fails, the CREATE statement
succeeds, and the created object will remain invalid until it is next accessed.

198 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Any authorization error (SQLSTATE 42501, SQL0551N)

An object can be created successfully even if there are multiple errors in its body.
The warning message that is returned contains the name of the first undefined,
invalid, or unauthorized object that was encountered during compilation. The
SYSCAT.INVALIDOBJECTS catalog view contains information about invalid
objects.

You can use the ADMIN_REVALIDATE_DB_OBJECTS procedure to revalidate
existing objects that have been marked invalid.

Example
create view v2 as select * from v1

If v1 does not exist, the CREATE VIEW statement completes successfully, but v2
remains invalid.

REPLACE option on several CREATE statements

The OR REPLACE clause on the CREATE statement for several objects, including
aliases, functions, modules, nicknames, procedures (including federated
procedures), sequences, triggers, variables, and views allows the object to be
replaced if it already exists; otherwise, it is created. This significantly reduces the
effort required to change a database schema.

Privileges that were previously granted on an object are preserved when that object
is replaced. In other respects, CREATE OR REPLACE is semantically similar to
DROP followed by CREATE. In the case of functions, procedures, and triggers,
support applies to both inline objects and compiled objects.

In the case of functions and procedures, support applies to both SQL and external
functions and procedures. If a module is replaced, all the objects within the
module are dropped; the new version of the module contains no objects.

Objects that depend (either directly or indirectly) on an object that is being
replaced are invalidated. Revalidation of all dependent objects following a replace
operation is always done immediately after the invalidation, even if the auto_reval
database configuration parameter is set to DISABLED.

Example

Replace v1, a view that has dependent objects.
create table t1 (c1 int, c2 int);
create table t2 (c1 int, c2 int);

create view v1 as select * from t1;
create view v2 as select * from v1;

create function foo1()
language sql
returns int
return select c1 from v2;

create or replace v1 as select * from t2;

select * from v2;

values foo1();

Chapter 18. Database objects 199

The replaced version of v1 references t2 instead of t1. Both v2 and foo1 are
invalidated by the CREATE OR REPLACE statement. Under revalidation deferred
semantics, select * from v2 successfully revalidates v2, but not foo1, which is
revalidated by values foo1(). Under revalidation immediate semantics, both v2 and
foo1 are successfully revalidated by the CREATE OR REPLACE statement.

200 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 19. Tables

Tables are logical structures maintained by the database manager. Tables are made
up of columns and rows.

At the intersection of every column and row is a specific data item called a value.
A column is a set of values of the same type or one of its subtypes. A row is a
sequence of values arranged so that the nth value is a value of the nth column of
the table.

An application program can determine the order in which the rows are populated
into the table, but the actual order of rows is determined by the database manager,
and typically cannot be controlled. Multidimensional clustering (MDC) provides
some sense of clustering, but not actual ordering between the rows.

Types of tables
DB2 databases store data in tables. In addition to tables used to store persistent
data, there are also tables that are used for presenting results, summary tables and
temporary tables; multidimensional clustering tables offer specific advantages in a
warehouse environment.

Base tables
These types of tables hold persistent data. There are different kinds of base
tables, including

Regular tables
Regular tables with indexes are the "general purpose" table choice.

Multidimensional clustering (MDC) tables
These types of tables are implemented as tables that are physically
clustered on more than one key, or dimension, at the same time.
MDC tables are used in data warehousing and large database
environments. Clustering indexes on regular tables support
single-dimensional clustering of data. MDC tables provide the
benefits of data clustering across more than one dimension. MDC
tables provide guaranteed clustering within the composite
dimensions. By contrast, although you can have a clustered index
with regular tables, clustering in this case is attempted by the
database manager, but not guaranteed and it typically degrades
over time. MDC tables can coexist with partitioned tables and can
themselves be partitioned tables.

Multidimensional clustering tables are not supported in a DB2
pureScale environment.

Insert time clustering (ITC) tables
These types of tables are conceptually, and physically similar to
MDC tables, but rather than being clustered by one or more user
specified dimensions, rows are clustered by the time they are
inserted into the table. ITC tables can be partitioned tables.

ITC tables are not supported in a DB2 pureScale environment.

Range-clustered tables (RCT)
These types of tables are implemented as sequential clusters of
data that provide fast, direct access. Each record in the table has a

© Copyright IBM Corp. 2014 201

predetermined record ID (RID) which is an internal identifier used
to locate a record in a table. RCT tables are used where the data is
tightly clustered across one or more columns in the table. The
largest and smallest values in the columns define the range of
possible values. You use these columns to access records in the
table; this is the most optimal method of using the predetermined
record identifier (RID) aspect of RCT tables.

Range-clustered tables are not supported in a DB2 pureScale
environment.

Partitioned tables
These types of tables use a data organization scheme in which
table data is divided across multiple storage objects, called data
partitions or ranges, according to values in one or more table
partitioning key columns of the table. Data partitions can be added
to, attached to, and detached from a partitioned table, and you can
store multiple data partition ranges from a table in one table space.
Partitioned tables can contain large amounts of data and simplify
the rolling in and rolling out of table data.

Temporal tables
These types of tables are used to associate time-based state
information to your data. Data in tables that do not use temporal
support represents the present, while data in temporal tables is
valid for a period defined by the database system, customer
applications, or both. For example, a database can store the history
of a table (deleted rows or the original values of rows that have
been updated) so you can query the past state of your data. You
can also assign a date range to a row of data to indicate when it is
deemed to be valid by your application or business rules.

Temporary tables
These types of tables are used as temporary work tables for various
database operations. Declared temporary tables (DGTTs) do not appear in the
system catalog, which makes them not persistent for use by, and not able
to be shared with other applications. When the application using this table
terminates or disconnects from the database, any data in the table is
deleted and the table is dropped. By contrast, created temporary tables
(CGTTs) do appear in the system catalog and are not required to be
defined in every session where they are used. As a result, they are
persistent and able to be shared with other applications across different
connections.

Neither type of temporary table supports
v User-defined reference or user-defined structured type columns
v LONG VARCHAR columns

In addition XML columns cannot be used in created temporary tables.

Materialized query tables
These types of tables are defined by a query that is also used to determine
the data in the table. Materialized query tables can be used to improve the
performance of queries. If the database manager determines that a portion
of a query can be resolved using a summary table, the database manager
can rewrite the query to use the summary table. This decision is based on
database configuration settings, such as the CURRENT REFRESH AGE and
the CURRENT QUERY OPTIMIZATION special registers. A summary table
is a specialized type of materialized query table.

202 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You can create all of the preceding types of tables using the CREATE TABLE
statement.

Depending on what your data is going to look like, you might find one table type
offers specific capabilities that can optimize storage and query performance. For
example, if you have data records that are loosely clustered (not monotonically
increasing), consider using a regular table and indexes. If you have data records
that have duplicate (but not unique) values in the key, do not use a range-clustered
table. Also, if you cannot afford to preallocate a fixed amount of storage on disk
for the range-clustered tables you might want, do not use this type of table. If you
have data that has the potential for being clustered along multiple dimensions,
such as a table tracking retail sales by geographic region, division and supplier, a
multidimensional clustering table might suit your purposes.

In addition to the various table types described previously, you also have options
for such characteristics as partitioning, which can improve performance for tasks
such as rolling in table data. Partitioned tables can also hold much more
information than a regular, nonpartitioned table. You can also use capabilities such
as compression, which can help you significantly reduce your data storage costs.

Designing tables
When designing tables, you must be familiar with certain concepts, determine the
space requirements for tables and user data, and determine whether you will take
advantage of certain features, such as compression and optimistic locking.

When designing partitioned tables, you must be familiar with the partitioning
concepts, such as:
v Data organization schemes
v table-partitioning keys
v Keys used for distributing data across data partitions
v Keys used for MDC dimensions

For these and other partitioning concepts, see “Table partitioning and data
organization schemes” on page 232.

Data types and table columns
When you create your table, you must indicate what type of data each column will
store. By thinking carefully about the nature of the data you are going to be
managing, you can set your tables up in a way that will give you optimal query
performance, minimize physical storage requirements, and provide you with
specialized capabilities for manipulating different kinds of data, such as arithmetic
operations for numeric data, or comparing date or time values to one another.

Figure 18 on page 204 shows the data types that are supported by DB2 databases.

Chapter 19. Tables 203

When you declare your database columns all of these data tyoes are available for
you to choose from. In addition to the built-in types, you can also create your own
user-defined data types that are based on the built-in types. For example, if you
might choose to represent an employee with name, job title, job level, hire date and
salary attributes with a user-defined structured type that incorporates VARCHAR
(name, job title), SMALLINT (job level), DATE (hire date) and DECIMAL (salary)
data.

VARCHAR

SMALLINT INTEGER BIGINT DECIMAL

CLOB VARGRAPHIC DBCLOB

stringdatetime

character graphic floating pointbinary

varying length

boolean

BOOLEAN

fixed

length

varying

length

fixed

length

varying

length

timestamptime date

DATE DECFLOAT

BLOB

TIME

CHAR

single

precision

double

precision

binary integer decimal

64 bit32 bit16 bit packed

REAL DOUBLEGRAPHIC

TIMESTAMP

decimal

floating point
exact approximate

XML

signed

numeric

extensible

markup language

built-in data types

Figure 18. Built-in data types

204 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Generated columns
A generated column is defined in a table where the stored value is computed using
an expression, rather than being specified through an insert or update operation.

When creating a table where it is known that certain expressions or predicates will
be used all the time, you can add one or more generated columns to that table. By
using a generated column there is opportunity for performance improvements
when querying the table data.

For example, there are two ways in which the evaluation of expressions can be
costly when performance is important:
1. The evaluation of the expression must be done many times during a query.
2. The computation is complex.

To improve the performance of the query, you can define an additional column
that would contain the results of the expression. Then, when issuing a query that
includes the same expression, the generated column can be used directly; or, the
query rewrite component of the optimizer can replace the expression with the
generated column.

Where queries involve the joining of data from two or more tables, the addition of
a generated column can allow the optimizer a choice of possibly better join
strategies.

Generated columns will be used to improve performance of queries. As a result,
generated columns will likely be added after the table has been created and
populated.

Examples

The following is an example of defining a generated column on the CREATE
TABLE statement:

CREATE TABLE t1 (c1 INT,
c2 DOUBLE,
c3 DOUBLE GENERATED ALWAYS AS (c1 + c2)
c4 GENERATED ALWAYS AS

(CASE WHEN c1 > c2 THEN 1 ELSE NULL END))

After creating this table, indexes can be created using the generated columns. For
example,
CREATE INDEX i1 ON t1(c4)

Queries can take advantage of the generated columns. For example,
SELECT COUNT(*) FROM t1 WHERE c1 > c2

can be written as:
SELECT COUNT(*) FROM t1 WHERE c4 IS NOT NULL

Another example:
SELECT c1 + c2 FROM t1 WHERE (c1 + c2) * c1 > 100

can be written as:
SELECT c3 FROM t1 WHERE c3 * c1 > 100

Chapter 19. Tables 205

Hidden columns
When a table column is defined with the implicitly hidden attribute, that column is
unavailable unless it is explicitly referenced. For example, if a SELECT * query is
run against a table, implicitly hidden columns are not returned in the result table.
An implicitly hidden column can always be referenced explicitly wherever a
column name can be specified.

In cases where columns and their entries are generated by the database manager,
defining such columns as IMPLICITLY HIDDEN can minimize any potential
negative impact on your applications. For example, a system-period temporal table
has three columns whose values are generated by the database manager. The
database manager uses these columns to preserve historical versions of each table
row. Most business applications would work with the historical data, but would
rarely work with these three generated columns. Hiding these columns from your
applications could reduce application processing time.

When inserting data into a table, an INSERT statement without a column list does
not expect values for any implicitly hidden columns. In such cases, if the input
includes a value for an implicitly hidden column, that value does not have a
corresponding target column and an error is returned (SQLSTATE 42802). Because
an INSERT statement without a column list does not include values for implicitly
hidden columns, any columns that are defined as implicitly hidden and NOT
NULL must have a defined default value

When populating a table with data from an input file, utilities like IMPORT,
INGEST, and LOAD require that you specify whether data for the hidden columns
is included in the operation. If a column list is not specified, data movement
utilities must use the implicitlyhiddeninclude or implicitlyhiddenmissing file type
modifiers when working with tables that contain implicitly hidden columns. You
can also use the DB2_DMU_DEFAULT registry variable to set the default behavior
when data movement utilities encounter tables with implicitly hidden columns.
Similarly, EXPORT requires that you specify whether data for the hidden columns
is included in the operation.

The implicitly hidden attribute can be defined on a table column using the
CREATE TABLE statement for new tables, or the ALTER TABLE statement for
existing tables. If a table is created using a CREATE TABLE statement with the
LIKE clause, any implicitly hidden columns in the source table are inherited by the
new table. The ALTER TABLE statement can be used to change hidden columns to
not hidden or to change not hidden columns to hidden. Altering a table to change
the hidden attribute of some columns can impact the behavior of data movement
utilities that are working with the table. For example, this might mean that a load
operation that ran successfully before the table was altered to define some hidden
columns, now returns an error (SQLCODE -2437).

The list of names identifying the columns of a result table from a SELECT query
run with the exposed-name.* option does not include any implicitly hidden columns.
A SELECT query run with the order-by-clause can include implicitly hidden
columns in the simple-column-name.

If an implicitly hidden column is explicitly referenced in a materialized query table
definition, that column will be a part of the materialized query table. However the
column in the materialized query table does not inherit the implicitly hidden
attribute. This same behaviour applies to views and tables created with the
as-result-table clause.

206 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

An implicitly hidden column can be explicitly referenced in a CREATE INDEX
statement, ALTER TABLE statement, or in a referential constraint.

A transition variable exists for any column defined as implicitly hidden. In the
body of a trigger, a transition variable that corresponds to an implicitly hidden
column can be referenced.

Implicitly hidden columns are not supported in created temporary tables and
declared temporary tables.

Hidden columns for a table can be displayed using the DESCRIBE command.
DESCRIBE TABLE tablename SHOW DETAIL

Example
v Example 1: In the following statement, a table is created with an implicitly

hidden column.
CREATE TABLE CUSTOMER
(
CUSTOMERNO INTEGER NOT NULL,
CUSTOMERNAME VARCHAR(80),
PHONENO CHAR(8) IMPLICITLY HIDDEN
);

A SELECT * only returns the column entries for CUSTOMERNO and CUSTOMERNAME.
For example:
A123, ACME
B567, First Choice
C345, National Chain

Entries for the PHONENO column are hidden unless explicitly referenced.
SELECT CUSTOMERNO, CUSTOMERNAME, PHONENO

FROM CUSTOMER

v Example 2: If the database table contains implicitly hidden columns, you must
specify whether data for the hidden columns is included in data movement
operations. The following example uses LOAD to show the different methods to
indicate if data for hidden columns is included:
– Use insert-column to explicitly specify the columns into which data is to be

inserted.
db2 load from delfile1 of del

insert into table1 (c1, c2, c3,...)

– Use one of the hidden column file type modifiers: specify
implicitlyhiddeninclude when the input file contains data for the hidden
columns, or implicitlyhiddenmissing when the input file does not.
db2 load from delfile1 of del modified by implicitlyhiddeninclude

insert into table1

– Use the DB2_DMU_DEFAULT registry variable on the server-side to set the
behavior when data movement utilities encounter tables with implicitly
hidden columns.
db2set DB2_DMU_DEFAULT=IMPLICITLYHIDDENINCLUDE
db2 load from delfile1 of del insert into table1

Auto numbering and identifier columns
An identity column provides a way for DB2 to automatically generate a unique
numeric value for each row that is added to the table.

Chapter 19. Tables 207

When creating a table in which you must uniquely identify each row that will be
added to the table, you can add an identity column to the table. To guarantee a
unique numeric value for each row that is added to a table, you should define a
unique index on the identity column or declare it a primary key.

Other uses of an identity column are an order number, an employee number, a
stock number, or an incident number. The values for an identity column can be
generated by the DB2 database manager: ALWAYS or BY DEFAULT.

An identity column defined as GENERATED ALWAYS is given values that are
always generated by the DB2 database manager. Applications are not allowed to
provide an explicit value. An identity column defined as GENERATED BY
DEFAULT gives applications a way to explicitly provide a value for the identity
column. If the application does not provide a value, then DB2 will generate one.
Since the application controls the value, DB2 cannot guarantee the uniqueness of
the value. The GENERATED BY DEFAULT clause is meant for use for data
propagation where the intent is to copy the contents of an existing table; or, for the
unload and reloading of a table.

Once created, you first have to add the column with the DEFAULT option to get
the existing default value. Then you can ALTER the default to become an identity
column.

If rows are inserted into a table with explicit identity column values specified, the
next internally generated value is not updated, and might conflict with existing
values in the table. Duplicate values will generate an error message if the
uniqueness of the values in the identity column is being enforced by a primary-key
or a unique index that has been defined on the identity column.

To define an identity column on a new table, use the AS IDENTITY clause on the
CREATE TABLE statement.

Example

The following is an example of defining an identity column on the CREATE
TABLE statement:

CREATE TABLE table (col1 INT,
col2 DOUBLE,
col3 INT NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 100, INCREMENT BY 5))

In this example the third column is the identity column. You can also specify the
value used in the column to uniquely identify each row when added. Here the first
row entered has the value of “100” placed in the column; every subsequent row
added to the table has the associated value increased by five.

Constraining column data with constraints, defaults, and null
settings

Data often must adhere to certain restrictions or rules. Such restrictions might
apply to single pieces of information, such as the format and sequence numbers, or
they might apply to several pieces of information.

About this task

Nullability of column data values
Null values represent unknown states. By default, all of the built-in data

208 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

types support the presence of null values. However, some business rules
might dictate that a value must always be provided for some columns, for
example, emergency information. For this condition, you can use the NOT
NULL constraint to ensure that a given column of a table is never assigned
the null value. Once a NOT NULL constraint has been defined for a
particular column, any insert or update operation that attempts to place a
null value in that column will fail.

Default column data values
Just as some business rules dictate that a value must always be provided,
other business rules can dictate what that value should be, for example, the
gender of an employee must be either M or F. The column default
constraint is used to ensure that a given column of a table is always
assigned a predefined value whenever a row that does not have a specific
value for that column is added to the table. The default value provided for
a column can be null, a constraint value that is compatible with the data
type of the column, or a value that is provided by the database manager.
For more information, see: “Default column and data type definitions.”

Keys A key is a single column or a set of columns in a table or index that can be
used to identify or access a specific row of data. Any column can be part
of a key and the same column can be part of more than one key. A key
that consists of a single column is called an atomic key; a key that is
composed of more than one column is called a composite key. In addition
to having atomic or composite attributes, keys are classified according to
how they are used to implement constraints:
v A unique key is used to implement unique constraints.
v A primary key is used to implement entity integrity constraints. (A

primary key is a special type of unique key that does not support null
values.)

v A foreign key is used to implement referential integrity constraints.
(Foreign keys must reference primary keys or unique keys; foreign keys
do not have corresponding indexes.)

Keys are normally specified during the declaration of a table, an index, or
a referential constraint definition.

Constraints
Constraints are rules that limit the values that can be inserted, deleted, or
updated in a table. There are check constraints, primary key constraints,
referential constraints, unique constraints, unique key constraints, foreign
key constraints, and informational constraints. For details about each of
these types of constraints, see: Chapter 21, “Constraints,” on page 299 or
“Types of constraints” on page 299.

Default column and data type definitions
Certain columns and data types have predefined or assigned default values.

For example, default column values for the various data types are as follows:
v NULL

v 0 Used for small integer, integer, decimal, single-precision floating point,
double-precision floating point, and decimal floating point data type.

v Blank: Used for fixed-length and fixed-length double-byte character strings.
v Zero-length string: Used for varying-length character strings, binary large objects,

character large objects, and double-byte character large objects.

Chapter 19. Tables 209

v Date: This the system date at the time the row is inserted (obtained from the
CURRENT_DATE special register). When a date column is added to an existing
table, existing rows are assigned the date January, 01, 0001.

v Time or Timestamp: This is the system time or system date/time of the at the time
the statement is inserted (obtained from the CURRENT_TIME special register).
When a time column is added to an existing table, existing rows are assigned
the time 00:00:00 or a timestamp that contains the date January, 01, 0001 and the
time 00:00:00.

Note: All the rows get the same default time/timestamp value for a given
statement.

v Distinct user-defined data type: This is the built-in default value for the base data
type of the distinct user-defined data type (cast to the distinct user-defined data
type.

Ordering columns to minimize update logging
When you define columns using the CREATE TABLE statement, consider the order
of the columns, particularly for update-intensive workloads. Columns which are
updated frequently should be grouped together, and defined toward or at the end
of the table definition. This results in better performance, fewer bytes logged, and
fewer log pages written, as well as a smaller active log space requirement for
transactions performing a large number of updates.

The database manager does not automatically assume that columns specified in the
SET clause of an UPDATE statement are changing in value. In order to limit index
maintenance and the amount of the row which needs to be logged, the database
compares the new column value against the old column value to determine if the
column is changing. Only the columns that are changing in value are treated as
being updated. Exceptions to this UPDATE behavior occur for columns where the
data is stored outside of the data row (long, LOB, ADT, and XML column types),
or for fixed-length columns when the registry variable DB2ASSUMEUPDATE is
enabled. For these exceptions, the column value is assumed to be changing so no
comparison will be made between the new and old column value.

There are four different types of UPDATE log records.
v Full before and after row image logging. The entire before and after image of the

row is logged. This is the only type of logging performed on tables enabled with
DATA CAPTURE CHANGES, and results in the most number of bytes being
logged for an update to a row.

v Full before row image, changed bytes, and for size increasing updates the new
data appended to end of the row. This is logged for databases supporting
Currently Committed when DATA CAPTURE CHANGES is not in effect for the
table, when update is the first action against this row for a transaction. This logs
the before image required for Currently Committed and the minimum required
on top of that for redo/undo. Ordering frequently updated columns at the end
minimizes the logging for the changed portion of the row.

v Full XOR logging. The XOR differences between the before and after row
images, from the first byte that is changing until the end of the smaller row, then
any residual bytes in the longer row. This results in less logged bytes than the
full before and after image logging, with the number of bytes of data beyond the
log record header information being the size of the largest row image.

v Partial XOR logging. The XOR differences between the before and after row
images, from the first byte that is changing until the last byte that is changing.

210 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Byte positions can be first or last bytes of a column. This results in the least
number of bytes being logged and the most efficient type of log record for an
update to a row.

For the first two types of UPDATE log records listed previously, when DATA
CAPTURE CHANGES is not enabled on the table, the amount of data that is
logged for an update depends on:
v The proximity of the updated columns (COLNO)
v Whether the updated columns are fixed in length or variable length
v Whether row compression (COMPRESS YES) is enabled

When the total length of the row is not changing, even when row compression is
enabled, the database manager computes and writes the optimal partial XOR log
record.

When the total length of the row is changing, which is common when
variable-length columns are updated and row compression is enabled, the database
manager determines which byte is first to be changed and write a full XOR log
record.

Space requirements for tables
When designing tables, you need to take into account the space requirements for
the data the tables will contain. In particular, you must pay attention to columns
with larger data types, such as LOB or XML.

Large object (LOB) data

Large object (LOB) data is stored in two separate table objects that are structured
differently than the storage space for other data types. To estimate the space
required by LOB data, you must consider the two table objects used to store data
defined with these data types:
v LOB Data Objects: Data is stored in 64 MB areas that are broken up into

segments whose sizes are "powers of two" times 1024 bytes. (Hence these
segments can be 1024 bytes, 2048 bytes, 4096 bytes, and so on, up to 64 MB.)
To reduce the amount of disk space used by LOB data, you can specify the
COMPACT option on the lob-options clause of the CREATE TABLE and the
ALTER TABLE statements. The COMPACT option minimizes the amount of disk
space required by allowing the LOB data to be split into smaller segments. This
process does not involve data compression, but simply uses the minimum
amount of space, to the nearest 1 KB boundary. Using the COMPACT option can
result in reduced performance when appending to LOB values.
The amount of free space contained in LOB data objects is influenced by the
amount of update and delete activity, as well as the size of the LOB values being
inserted.

v LOB Allocation Objects: Allocation and free space information is stored in
allocation pages that are separated from the actual data. The number of these
pages is dependent on the amount of data, including unused space, allocated for
the large object data. The extra space is calculated as follows:

Table 19. Allocation page extra space based on the page size

Page size Allocation pages

4 KB One page for every 4 MB, plus one page for every 1 GB

Chapter 19. Tables 211

Table 19. Allocation page extra space based on the page size (continued)

Page size Allocation pages

8 KB One page for every 8 MB, plus one page for every 2 GB

16 KB One page for every 16 MB, plus one page for every 4 GB

32 KB One page for every 32 MB, plus one page for every 8 GB

If character data is less than the page size, and it fits into the record along with
the rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data
types should be used instead of BLOB, CLOB, or DBCLOB.

Note: Some LOB data can be placed into the base table row through the use of the
INLINE LENGTH option of the CREATE and ALTER TABLE statements.

Long field (LF) data

Long field (LF) data is stored in a separate table object that is structured differently
than the storage space for other data types. Data is stored in 32-KB areas that are
broken up into segments whose sizes are "powers of two" times 512 bytes. (Hence
these segments can be 512 bytes, 1024 bytes, 2048 bytes, and so on, up to 32 768
bytes.)

Long field data types (LONG VARCHAR or LONG VARGRAPHIC) are stored in a
way that enables free space to be reclaimed easily. Allocation and free space
information is stored in 4 KB allocation pages, which appear infrequently
throughout the object.

The amount of unused space in the object depends on the size of the long field
data, and whether this size is relatively constant across all occurrences of the data.
For data entries larger than 255 bytes, this unused space can be up to 50 percent of
the size of the long field data.

If character data is less than the page size, and it fits into the record along with the
rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data types
should be used instead of LONG VARCHAR or LONG VARGRAPHIC.

System catalog tables

System catalog tables are created when a database is created. The system tables
grow as database objects and privileges are added to the database. Initially, they
use approximately 3.5 MB of disk space.

The amount of space allocated for the catalog tables depends on the type of table
space, and the extent size of the table space containing the catalog tables. For
example, if a DMS table space with an extent size of 32 is used, the catalog table
space is initially allocated 20 MB of space. Note: For databases with multiple
partitions, the catalog tables reside only on the database partition from which the
CREATE DATABASE command was issued. Disk space for the catalog tables is only
required for that database partition.

Temporary tables

Some statements require temporary tables for processing (such as a work file for
sorting operations that cannot be done in memory). These temporary tables require

212 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

disk space; the amount of space required is dependent upon the size, number, and
nature of the queries, and the size of returned tables.

Your work environment is unique which makes the determination of your space
requirements for temporary tables difficult to estimate. For example, more space
can appear to be allocated for system temporary table spaces than is actually in
use due to the longer life of various system temporary tables. This could occur
when DB2_SMS_TRUNC_TMPTABLE_THRESH registry variable is used.

You can use the database system monitor and the table space query APIs to track
the amount of work space being used during the normal course of operations.

You can use the DB2_OPT_MAX_TEMP_SIZE registry variable to limit the amount of
temporary table space used by queries.

XML data

XML documents you insert into columns of type XML can reside either in the
default storage object, or directly in the base table row. Base table row storage is
under your control and is available only for small documents; larger documents
are always stored in the default storage object.

Table page sizes
Rows of table data are organized into blocks that are called pages. Pages can be
four sizes: 4, 8, 16, and 32 KB. Table data pages do not contain the data for
columns that are defined with LONG VARCHAR, LONG VARGRAPHIC, BLOB,
CLOB, DCLOB, or XML data types. An exception is if the LOB or XML document
is inlined by using INLINE LENGTH option of the column. The rows in a table
data page do, however, contain a descriptor of these columns.

Note: Some LOB and XML data can be placed into the base table row by using the
INLINE LENGTH option of the CREATE and ALTER TABLE statements.

All tables that are created within a table space of a particular size have a matching
page size. A single table or index object can be as large as 64 TB, assuming a 32-KB
page size.

Larger page sizes can reduce the number of levels in the index. Larger pages
support rows of greater length. Using the default of 4-KB pages, tables are
restricted to 500 columns. Larger page sizes (8 KB, 16 KB, and 32 KB) support 1012
columns. The maximum size of the table space is proportional to the page size of
the table space.

Page size defines the size of pages that are used for the table space. The page size
limits the row length and column count of tables according to the figures shown in
Table 1.

Table 20. Implications of page size with regular table space

Page size Row count limit Row size limit
Column count
limit

4 KB 255 4 005 bytes 500

8 KB 255 8 101 bytes 1 012

16 KB 255 16 293 bytes 1 012

32 KB 255 32 677 bytes 1 012

Chapter 19. Tables 213

Note: A large table space can support more than 255 rows per data page. A table
that is created in a large table space can be larger than a table created in a regular
table space. A large table space stores all permanent data just as a regular table
space does. The result is a better use of space on data pages.

To determine the page size for a table space, consider the following points:
v For OLTP applications that run random row read and write operations, a smaller

page size is preferable. It takes less buffer pool space with unwanted rows.
v For DSS applications that access large numbers of consecutive rows at a time, a

larger page size is better. A larger page size reduces the number of I/O requests
that are required to read a specific number of rows. There is, however, an
exception to this rule. If your row size is smaller than pagesize / maximum rows,
there is used space on each page. In this situation, a smaller page size might be
more appropriate.

Space requirements for user table data
By default, table data is stored based on the table space page size in which the
table is in. Each page (regardless of page size) contains 68 bytes of overhead for
the database manager. A row will not span multiple pages. You can have a
maximum of 500 columns when using a 4-KB page size.

Table data pages do not contain the data for columns defined with LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, or XML data types.
The rows in a table data page do, however, contain a descriptor for these columns.

Note: Some LOB data can be placed into the base table row through the use of the
INLINE LENGTH option of the CREATE and ALTER TABLE statements.

Rows are usually inserted into a regular table in first-fit order. The file is searched
(using a free space map) for the first available space that is large enough to hold
the new row. When a row is updated, it is updated in place, unless there is
insufficient space left on the page to contain it. If this is the case, a record is
created in the original row location that points to the new location in the table file
of the updated row.

If the ALTER TABLE statement is issued with the APPEND ON option, data is always
appended, and information about any free space on the data pages is not kept.

If the table has a clustering index defined on it, the database manager will attempt
to physically cluster the data according to the key order of that clustering index.
When a row is inserted into the table, the database manager will first look up its
key value in the clustering index. If the key value is found, the database manager
attempts to insert the record on the data page pointed to by that key; if the key
value is not found, the next higher key value is used, so that the record is inserted
on the page containing records having the next higher key value. If there is
insufficient space on the target page in the table, the free space map is used to
search neighboring pages for space. Over time, as space on the data pages is
completely used up, records are placed further and further from the target page in
the table. The table data would then be considered unclustered, and a table
reorganization can be used to restore clustered order.

If the table is a multidimensional clustering (MDC) table, the database manager
will guarantee that records are always physically clustered along one or more

214 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

defined dimensions, or clustering indexes. When an MDC table is defined with
certain dimensions, a block index is created for each of the dimensions, and a
composite block index is created which maps cells (unique combinations of
dimension values) to blocks. This composite block index is used to determine to
which cell a particular record belongs, and exactly which blocks or extents in the
table contains records belonging to that cell. As a result, when inserting records,
the database manager searches the composite block index for the list of blocks
containing records having the same dimension values, and limits the search for
space to those blocks only. If the cell does not yet exist, or if there is insufficient
space in the cell's existing blocks, then another block is assigned to the cell and the
record is inserted into it. A free space map is still used within blocks to quickly
find available space in the blocks.

The number of 4-KB pages for each user table in the database can be estimated by
calculating:

ROUND DOWN(4028/(average row size + 10)) = records_per_page

and then inserting the result into:
(number_of_records/records_per_page) * 1.1 = number_of_pages

where the average row size is the sum of the average column sizes, and the factor
of "1.1" is for overhead.

Note: This formula provides only an estimate. The estimate's accuracy is reduced
if the record length varies because of fragmentation and overflow records.

You also have the option to create buffer pools or table spaces that have an 8 KB,
16 KB, or 32 KB page size. All tables created within a table space of a particular
size have a matching page size. A single table or index object can be as large as 64
TB, assuming a 32 KB page size. You can have a maximum of 1012 columns when
using an 8 KB, 16 KB, or 32 KB page size. The maximum number of columns is
500 for a 4-KB page size. Maximum row lengths also vary, depending on page size:
v When the page size is 4-KB, the row length can be up to 4005 bytes.
v When the page size is 8 KB, the row length can be up to 8101 bytes.
v When the page size is 16 KB, the row length can be up to 16 293 bytes.
v When the page size is 32 KB, the row length can be up to 32 677 bytes.

A larger page size facilitates a reduction in the number of levels in any index. If
you are working with OLTP (online transaction processing) applications, that
perform random row reads and writes, a smaller page size is better, because it
consumes less buffer space with undesired rows. If you are working with DSS
(decision support system) applications, which access large numbers of consecutive
rows at a time, a larger page size is better because it reduces the number of I/O
requests required to read a specific number of rows.

You cannot restore a backup image to a different page size.

You cannot import IXF data files that represent more than 755 columns.

Declared or created temporary tables can be declared or created only in their own
user temporary table space type. There is no default user temporary table space.
The temporary tables are dropped implicitly when an application disconnects from
the database, and estimates of the space requirements for these tables should take
this into account.

Chapter 19. Tables 215

Storing LOBs inline in table rows
Large objects (LOBs) are generally stored in a location separate from the table row
that references them. However, you can choose to include a LOB to 32 673 bytes
long inline in a base table row to simplify access to it.

It can be impractical (and depending on the data, impossible) to include large data
objects in base table rows. Figure 19 shows an example of an attempt to include
LOBs within a row, and why doing so can be a problem. In this example, the row
is defined as having two LOB columns, 500 and 145 kilobytes in length. However,
the maximum row size for a DB2 table is 32 kilobytes; so such a row definition
could never, in fact, be implemented.

To reduce the difficulties associated with working with LOBs, they are treated
differently from other data types. Figure 20 on page 217, shows that only a LOB
descriptor is placed in the base table row, rather than the LOB itself. Each of the
LOBs themselves are stored in a separate LOBs location controlled by the database
manager. In this arrangement, the movement of rows between the buffer pool and
disk storage will take less time for rows with LOB descriptors than they would if
they included the complete LOBs.

However, manipulation of the LOB data then becomes more difficult because the
actual LOB is stored in a location separate from the base table rows.

Legend

Name Address Phone number

LOB = Large Objects

E-mailLOB
- Graphic file
500 KB

LOB
- Text file
145 KB

Figure 19. The problem of including LOB data within base table rows

216 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To simplify the manipulation of smaller LOBs, you can choose to have LOB data
that falls below a size threshold that you specify included inline within the base
table rows. These LOB data types can then be manipulated as part of the base table
row, which makes operations such as movement to and from the buffer pool
simpler. In addition, the inline LOBs would qualify for row compression if row
compression was enabled.

The INLINE LENGTH option of the CREATE and ALTER TABLE statements
allows LOB data smaller than a length restriction that you specify to be included in
the base table row. By default, even if you don't specify an explicit value for
INLINE LENGTH, LOBs smaller than the maximum size LOB descriptor for the
column are always included in the base table row.

With inline LOBs then, you can have base table rows as shown in Figure 21 on
page 218.

Legend

LOB = Large Objects

Graphic file 500 KB Text file 245 KB

Text file 120 KB Graphic file 850 KB

LOBs location

Name Address Phone number E-mailLOB descriptor LOB descriptor

Figure 20. LOB descriptors within the base table row refer to the LOBs within the separate
LOBs location

Chapter 19. Tables 217

When you are considering the threshold to choose for including LOBs inline, take
into account the current pagesize for your database, and whether inline LOBs will
cause the row size to exceed the current page size. The maximum size for a row in
a table is 32 677 bytes. However, each inline LOB has 4 bytes of extra storage
required. So each LOB you store inline reduces the available storage in the row by
4 bytes. Thus the maximum size for an inline LOB is 32 673 bytes.

Note: In the same way that LOBs can be stored inline, it's also possible to store
XML data inline as well.

Table compression
You can use less disk space for your tables by taking advantage of the DB2 table
compression capabilities. Compression saves disk storage space by using fewer
database pages to store data.

Also, because you can store more rows per page, fewer pages must be read to
access the same amount of data. Therefore, queries on a compressed table need
fewer I/O operations to access the same amount of data. Since there are more rows
of data on a buffer pool page, the likelihood that needed rows are in the buffer
pool increases. For this reason, compression can improve performance through
improved buffer pool hit ratios. In a similar way, compression can also speed up
backup and restore operations, as fewer pages of need to be transferred to the
backup or restore the same amount of data.

You can use compression with both new and existing tables. Temporary tables are
also compressed automatically, if the database manager deems it to be
advantageous to do so.

There are two main types of data compression availble for tables:
v Row compression (available with a license for the DB2 Storage Optimization

Feature).
v Value compression

For a particular table, you can use row compression and value compression
together or individually. However, you can use only one type of row compression
for a particular table.

Legend

LOB = Large Object

LOBName Address Phone number E-mail LOB

= Graphic file less than the
INLINE LENGTH value

= Text file less than the
INLINE LENGTH value

Figure 21. Small LOBs included within base table rows

218 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Value compression
Value compression optimizes space usage for the representation of data, and the
storage structures used internally by the database management system to store
data. Value compression involves removing duplicate entries for a value, and only
storing one copy. The stored copy keeps track of the location of any references to
the stored value.

When creating a table, you can use the optional VALUE COMPRESSION clause of
the CREATE TABLE statement to specify that the table is to use value compression.
You can enable value compression in an existing table with the ACTIVATE VALUE
COMPRESSION clause of the ALTER TABLE statement. To disable value
compression in a table, you use the DEACTIVATE VALUE COMPRESSION clause
of the ALTER TABLE statement.

When VALUE COMPRESSION is used, NULLs and zero-length data that has been
assigned to defined variable-length data types (VARCHAR, VARGRAPHICS,
LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, and DBCLOB) will not be
stored on disk.

If VALUE COMPRESSION is used then the optional COMPRESS SYSTEM
DEFAULT option can also be used to further reduce disk space usage. Minimal
disk space is used if the inserted or updated value is equal to the system default
value for the data type of the column, as the default value will not be stored on
disk. Data types that support COMPRESS SYSTEM DEFAULT include all numeric
type columns, fixed-length character, and fixed-length graphic string data types.
This means that zeros and blanks can be compressed.

When using value compression, the byte count of a compressed column in a row
might be larger than that of the uncompressed version of the same column. If your
row size approaches the maximum allowed for your page size, you must ensure
that sum of the byte counts for compressed and uncompressed columns does not
exceed allowable row length of the table in the table space. For example, in a table
space with 4 KB page size, the allowable row length is 4005 bytes. If the allowable
row length is exceeded, the error message SQL0670N is returned. The formula
used to determine the byte counts for compressed and uncompressed columns is
documented as part of the CREATE TABLE statement.

If you deactivate value compression:
v COMPRESS SYSTEM DEFAULTS will also be deactivated implicitly, if it had

previously been enabled
v The uncompressed columns might cause the row size to exceed the maximum

allowed by the current page size of the current table space. If this occurs, the
error messasge SQL0670N will be returned.

v Existing compressed data will remain compressed until the row is updated or
you perform a table reorganization with the REORG command.

Row compression
Row compression uses a dictionary-based compression algorithm to replace
recurring strings with shorter symbols within data rows.

There are two types of row compression that you can choose from:
v “Classic” row compression.
v Adaptive compression

Chapter 19. Tables 219

Row compression is available with a license for the DB2 Storage Optimization
Feature. Depending on the DB2 product edition that you have, this feature might
be included, or it might be an option that you order separately.

Classic row compression
Classic row compression, sometimes referred to as static compression , compresses
data rows by replacing patterns of values that repeat across rows with shorter
symbol strings.

The benefits of using classic row compression are similar to those of adaptive
compression, in that you can store data in less space, which can significantly save
storage costs. Unlike adaptive compression, however, classic row compression uses
only a table-level dictionary to store globally recurring patterns; it doesn't use the
page-level dictionaries that are used to compress data dynamically.

How classic row compression works

Classic row compression uses a table-level compression dictionary to compress
data by row. The dictionary is used to map repeated byte patterns from table rows
to much smaller symbols; these symbols then replace the longer byte patterns in
the table rows. The compression dictionary is stored with the table data rows in
the data object portions of the table.

What data gets compressed?

Data that is stored in base table rows and log records is eligible for classic row
compression. In addition, the data in XML storage objects is eligible for
compression. You can compress LOB data that you place inline in a table row;
however, storage objects for long data objects are not compressed.

Restriction: You cannot compress data in XML columns that you created with DB2
Version 9.5 or DB2 Version 9.1. However, you can compress inline XML columns
that you add to a table using DB2 Version 9.7 or later, provided the table was
created without XML columns in an earlier release of the product. If a table that
you created in an earlier release already has one or more XML columns and you
want to add a compressed XML column by using DB2 Version 9.7 or later, you
must use the ADMIN_MOVE_TABLE stored procedure to migrate the table before
you can use compression.

Turning classic row compression on or off

To use classic row compression, you must have a license for the DB2 Storage
Optimization Feature. You compress table data by setting the COMPRESS attribute
of the table to YES STATIC. You can set this attribute when you create the table by
specifying the COMPRESS YES STATIC option for the CREATE TABLE statement.
You can also alter an existing table to use compression by using the same option
for the ALTER TABLE statement. After you enable compression, operations that
add data to the table, such as an INSERT, LOAD INSERT, or IMPORT INSERT command
operation, can use classic row compression. In addition, index compression is
enabled for the table. Indexes are created as compressed indexes unless you specify
otherwise and if they are the types of indexes that can be compressed.

Important: When you enable classic row compression for a table, you enable it for
the entire table, even if a table comprises more than one table partition.

220 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To disable compression for a table, use the ALTER TABLE statement with the
COMPRESS NO option; rows that you subsequently add are not compressed. To
extract the entire table, you must perform a table reorganization with the REORG
TABLE command.

If you have a license for theDB2 Storage Optimization Feature, compression for
temporary tables is enabled automatically. You cannot enable or disable
compression for temporary tables.

Effects of update activity on logs and compressed tables

Depending upon update activity and which columns are updated within a data
row, log usage might increase. For information about how to minimize the effects
of update activity on logs, see ““Ordering columns to minimize update logging”
on page 210”.

If a row increases in size, the new version of the row might not fit on the current
data page. Rather, the new image of the row is stored on an overflow page. To
minimize the creation of pointer-overflow records, increase the percentage of each
page that is to be left as free space after a reorganization by using the ALTER
TABLE statement with the PCTFREE option. For example, if you set the PCTFREE
option to 5% before you enabled compression, you might change it to 10% when
you enable compression. Increasing the percentage of each page to be left as free
space is especially important for data that is heavily updated.

Classic row compression for temporary tables

Compression for temporary tables is enabled automatically with the DB2 Storage
Optimization Feature. When executing queries, the DB2 optimizer considers the
storage savings and the impact on query performance that compression of
temporary tables offers to determine whether it is worthwhile to use compression.
If it is worthwhile, compression is used automatically. The minimum size that a
table must be before compression is used is larger for temporary tables than for
regular tables.

You can use the explain facility or the db2pd tool to see whether the optimizer used
compression for temporary tables.

Reclaiming space that was freed by compression

You can reclaim space that was freed by compressing data. For more information,
see “Reclaimable storage” on page 136.

Adaptive compression
Adaptive compression improves upon the compression rates that can be achieved
using classic row compression by itself. Adaptive compression incorporates classic
row compression; however, it also works on a page-by-page basis to further
compress data. Of the various data compression techniques in the DB2 product,
adaptive compression offers the most dramatic possibilities for storage savings.

How adaptive compression works

Adaptive compression actually uses two compression approaches. The first
employs the same table-level compression dictionary used in classic row
compression to compress data based on repetition within a sampling of data from

Chapter 19. Tables 221

the table as a whole. The second approach uses a page-level dictionary-based
compression algorithm to compress data based on data repetition within each page
of data. The dictionaries map repeated byte patterns to much smaller symbols;
these symbols then replace the longer byte patterns in the table. The table-level
compression dictionary is stored within the table object for which it is created, and
is used to compress data throughout the table. The page-level compression
dictionary is stored with the data in the data page, and is used to compression
only the data within that page. For more information about the role each of these
dictionaries in compressing data, see “Compression dictionaries” on page 228.

Note: You can specify that a table be compressed with classic row compression
only by using a table-level compression dictionary. However, you cannot specify
that tables be compressed by using only page-level compression dictionaries.
Adaptive compression uses both table-level and page-level compression
dictionaries.

Data that is eligible for compression

Data that is stored within data rows, including inlined LOB or XML values, can be
compressed with both adaptive and classic row compression. XML storage objects
can be compressed using static compression. However storage objects for long data
objects that are stored outside table rows is not compressed. In addition, though
log records themselves are not compressed, the amount of log data written as a
result of insert, update or delete operations is reduced by virtue of the rows being
compressed.

Restriction: You cannot compress data in XML columns that you created with DB2
Version 9.5 or DB2 Version 9.1. However, you can compress inline XML columns
that you add to a table using DB2 Version 9.7 or later, provided the table was
created without XML columns in an earlier release of the product. If a table that
you created in an earlier release already has one or more XML columns and you
want to add a compressed XML column by using DB2 Version 9.7 or later, you
must use the ADMIN_MOVE_TABLE stored procedure to migrate the table before
you can use compression.

Turning adaptive compression on or off

To use adaptive compression, you must have a license for the DB2 Storage
Optimization Feature. You compress table data by setting the COMPRESS attribute
of the table to YES. You can set this attribute when you create the table by
specifying the COMPRESS YES option for the CREATE TABLE statement. You can
also alter an existing table to use compression by using the same option for the
ALTER TABLE statement. After you enable compression, operations that add data
to the table, such as an INSERT, LOAD INSERT, or IMPORT INSERT command operation,
can use adaptive compression. In addition, index compression is enabled for the
table. Indexes are created as compressed indexes unless you specify otherwise and
if they are the types of indexes that can be compressed.

Important: When you enable adaptive compression for a table, you enable it for
the entire table, even if the table comprises more than one table partition.

To disable compression for a table, use the ALTER TABLE statement with the
COMPRESS NO option; rows that you later add are not compressed. Existing rows
remain compressed. To extract the entire table after you turn off compression, you
must perform a table reorganization with the REORG TABLE command.

222 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If you apply the licence for the DB2 Storage Optimization Feature, compression for
temporary tables is enabled automatically if the database manager deems it
valuable. You cannot enable or disable compression for temporary tables.

Effects of update activity on logs and compressed tables

Depending upon update activity and the position of updates in a data row, log
usage might increase. For information about the impact that the order of columns
in a table has on update logging, see ““Ordering columns to minimize update
logging” on page 210”.

If a row increases in size after adding new data to it, the new version of the row
might not fit on the current data page. Rather, the new image of the row is stored
on an overflow page. To minimize the creation of pointer-overflow records,
increase the percentage of each page that is to be left as free space after a
reorganization by using the ALTER TABLE statement with the PCTFREE option.
For example, if you set the PCTFREE option to 5% before you enabled
compression, you might change it to 10% when you enable compression.
Increasing the percentage of each page to be left as free space is especially
important for data that is heavily updated.

Compression for temporary tables

Compression for temporary tables is enabled automatically with the DB2 Storage
Optimization Feature. Only classic row compression is used for temporary tables.

System temporary tables
When executing queries, the DB2 optimizer considers the storage savings
and the impact on query performance that compression of system-created
temporary tables offers to determine whether it is worthwhile to use
compression. If it is worthwhile, classic row compression is used
automatically. The minimum size that a table must be before compression
is used is larger for temporary tables than for regular tables.

User-created temporary tables
Created global temporary tables (CGTTs) and declared global temporary
tables (DGTTs) are always compressed using classic row compression.

You can use the explain facility or the db2pd tool to see whether the optimizer used
compression for system temporary tables.

Reclaiming space that was freed by compression

You can reclaim space that has been freed by compressing data. For more
information, see “Reclaimable storage” on page 136.

Estimating storage savings offered by adaptive or classic row
compression

You can view an estimate of the storage savings adaptive or classic row
compression can provide for a table by using the
ADMIN_GET_TAB_COMPRESS_INFO table function.

Before you begin

The estimated savings that adaptive or classic row compression offers depend on
the statistics generated by running the RUNSTATS command. To get the most

Chapter 19. Tables 223

accurate estimate of the savings that can be achieved, run the RUNSTATS command
before you perform the following steps.

Procedure

To estimate the storage savings adaptive or classic row compression can offer using
the ADMIN_GET_TAB_COMPRESS_INFO table function:
1. Formulate a SELECT statement that uses the

ADMIN_GET_TAB_COMPRESS_INFO table function. For example, for a table
named SAMPLE1.T1, enter:
SELECT * FROM TABLE(SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO(’SAMPLE1’, ’T1’))

2. Execute the SELECT statement. Executing the statement shown in Step 1 might
yield a report like the following:
TABSCHEMA TABNAME DBPARTITIONNUM DATAPARTITIONID OBJECT_TYPE ROWCOMPMODE ...
--------- ---------- -------------- --------------- ----------- ----------- ...
SAMPLE1 T1 0 0 DATA A ...

1 record(s) selected.

PCTPAGESSAVED_CURRENT AVGROWSIZE_CURRENT PCTPAGESSAVED_STATIC ...
--------------------- ------------------ -------------------- ...

96 24 81 ...

AVGROWSIZE_STATIC PCTPAGESSAVED_ADAPTIVE AVGROWSIZE_ADAPTIVE
----------------- ---------------------- -------------------

148 93 44

Creating a table that uses compression
When you create a new table by issuing the CREATE TABLE statement, you have
the option to compress the data contained in table rows.

Before you begin

You must decide which type of compression you want to use: adaptive
compression, classic row compression, value compression, or a combination of
value compression with either of the two types of row compression. Adaptive
compression and classic row compression almost always save storage because they
attempt to replace data patterns that span multiple columns with shorter symbol
strings. Value compression can offer savings if you have many rows with columns
that contain the same value, such as a city or country name, or if you have
columns that contain the default value for the data type of the column.

Procedure

To create a table that uses compression, issue a CREATE TABLE statement.
v If you want to use adaptive compression, include the COMPRESS YES

ADAPTIVE clause.
v If you want to use classic row compression, include the COMPRESS YES STATIC

clause.
v If you want to use value compression, include the VALUE COMPRESSION

clause. If you want to compress data that represents system default column
values, also include the COMPRESS SYSTEM DEFAULT clause.

Results

After you create the table, all data that you add to the table from that point in time
on is compressed. Any indexes that are associated with the table are also

224 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

compressed, unless you specify otherwise by using the COMPRESS NO clause of
the CREATE INDEX or ALTER INDEX statements.

Examples

Example 1: The following statement creates a table for customer information with
adaptive compression enabled. In this example, the table is compressed by using
both table-level and page-level compression dictionaries.

CREATE TABLE CUSTOMER
(CUSTOMERNUM INTEGER,
CUSTOMERNAME VARCHAR(80),
ADDRESS VARCHAR(200),
CITY VARCHAR(50),
COUNTRY VARCHAR(50),
CODE VARCHAR(15),
CUSTOMERNUMDIM INTEGER)
COMPRESS YES ADAPTIVE;

Example 2: The following statement creates a table for customer information with
classic row compression enabled. In this example, the table is compressed by using
only a table-level compression dictionary.

CREATE TABLE CUSTOMER
(CUSTOMERNUM INTEGER,
CUSTOMERNAME VARCHAR(80),
ADDRESS VARCHAR(200),
CITY VARCHAR(50),
COUNTRY VARCHAR(50),
CODE VARCHAR(15),
CUSTOMERNUMDIM INTEGER)
COMPRESS YES STATIC;

Example 3: The following statement creates a table for employee salaries. The
SALARY column has a default value of 0, and row compression and system
default compression are specified for the column.

CREATE TABLE EMPLOYEE_SALARY
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT COMPRESS SYSTEM DEFAULT)
COMPRESS YES ADAPTIVE;

Note that the VALUE COMPRESSION clause was omitted from this statement.
This statement creates a table that is called EMPLOYEE_SALARY; however, a
warning message is returned:
SQL20140W COMPRESS column attribute ignored because VALUE COMPRESSION is
deactivated for the table. SQLSTATE=01648

In this case, the COMPRESS SYSTEM DEFAULT clause is not applied to the
SALARY column.

Example 4: The following statement creates a table for employee salaries. The
SALARY column has a default value of 0, and row compression and system
default compression are enabled for the column.

CREATE TABLE EMPLOYEE_SALARY
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT COMPRESS SYSTEM DEFAULT)
VALUE COMPRESSION COMPRESS YES ADAPTIVE;

Chapter 19. Tables 225

In this example, the VALUE COMPRESSION clause is included in the statement,
which compresses the default value for the SALARY column.

Enabling compression in an existing table
By using the ALTER TABLE statement, you can modify an existing table to take
advantage of the storage-saving benefits of compression.

Before you begin

You must decide which type of compression you want to use: adaptive
compression, classic row compression, value compression, or a combination of
value compression with either of the two types of row compression. Adaptive
compression and classic row compression almost always save storage because they
attempt to replace data patterns that span multiple columns with shorter symbol
strings. Value compression can offer savings if you have many rows with columns
that contain the same value, such as a city or country name, or if you have
columns that contain the default value for the data type of the column.

Procedure

To enable compression in an existing table:
1. Issue the ALTER TABLE statement.

v If you want to use adaptive compression, include the COMPRESS YES
ADAPTIVE clause.

v If you want to use classic row compression, include the COMPRESS YES
STATIC clause.

v If you want to use value compression, include the ACTIVATE VALUE
COMPRESSION clause for each column that contains a value you want
compressed. If you want to compress data in columns that contain system
default values, also include the COMPRESS SYSTEM DEFAULT clause.

All rows that you subsequently append, insert, load, or update use the new
compressed format.

2. Optional: To immediately apply compression to all the existing rows of a table,
perform a table reorganization by using the REORG TABLE command. If you do
not apply compression to all rows at this point, uncompressed rows will not be
stored in the new compressed format until the next time that you update them,
or the next time the REORG TABLE command runs.

Examples

Example 1: The following statement applies adaptive compression to an existing
table that is named CUSTOMER:

ALTER TABLE CUSTOMER COMPRESS YES ADAPTIVE

Example 2: The following statement applies classic row compression to an existing
table that is named CUSTOMER:

ALTER TABLE CUSTOMER COMPRESS YES STATIC

Example 3: The following statements apply row, value, and system default
compression to the SALARY column of an existing table that is named
EMPLOYEE_SALARY. The table is then reorganized.

226 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

ALTER TABLE EMPLOYEE_SALARY
ALTER SALARY COMPRESS SYSTEM DEFAULT
COMPRESS YES ACTIVATE VALUE COMPRESSION;

REORG TABLE EMPLOYEE_SALARY

Changing or disabling compression for a compressed table
You can change how a table is compressed or disable compression entirely for a
table that has adaptive, classic row, or value compression enabled by using one or
more of the various compression-related clauses of the ALTER TABLE statement.

About this task

If you deactivate adaptive or classic row compression, index compression is not
affected. If you want to uncompress an index, you must use the ALTER INDEX
statement.

Procedure

To deactivate compression for a table, or to change from one type of row
compression to another:
1. Issue an ALTER TABLE statement.

v If you want to deactivate adaptive or classic row compression, include the
COMPRESS NO clause.

v If you want to change to a different type of row compression, specify the
type of compression you want using the COMPRESS YES ADAPTIVE or
COMPRESS YES STATIC clauses. For example, if you have a table that
currently uses classic row compression, and you want to change to adaptive
compression, execute the ALTER TABLE statement with the COMPRESS YES
ADAPTIVE clause

v If you want to deactivate value compression, include the DEACTIVATE
VALUE COMPRESSION clause.

v If you want to deactivate the compression of system default values, include
the COMPRESS OFF option for the ALTER column name clause.

2. Perform an offline table reorganization using the REORG TABLE command.

Results
v If you turned off row compression using the COMPRESS NO clause, all row

data is uncompressed.
v If you changed from one type of row compression to another, the entire table is

compressed using the type of row compression you specified in the ALTER
TABLE statement. (See Example 2.)

v Deactivating value compression has the following effects:
– If a table had columns with COMPRESS SYSTEM DEFAULT enabled,

compression is no longer enabled for these columns.
– Uncompressed columns might cause the row size to exceed the maximum

that the current page size of the current table space allows. If this occurs,
error message SQL0670N is returned.

Chapter 19. Tables 227

Examples

Example 1: Turning off row compression: The following statements turn off adaptive
or classic row compression in an table named CUSTOMER and then reorganizes
the table to uncompress that data that was previously compressed:

ALTER TABLE CUSTOMER COMPRESS NO
REORG TABLE CUSTOMER

Example 2: Changing from static to adaptive compression: Assumes that the SALES
table currently uses classic row compression. The following statements change the
type of compression used to adaptive compression:

ALTER TABLE SALES COMPRESS ADAPTIVE YES
REORG TABLE SALES

Compression dictionaries
The database manager creates a table-level compression dictionary for each table
that you enable for either adaptive or classic row compression. For tables that you
enable for adaptive compression, the database manager also creates page-level
compression dictionaries.

Both types of dictionaries are used to map repeated byte patterns from table rows
to much smaller symbols; these symbols then replace the longer byte patterns in
the table rows.

Table-level compression dictionaries

To build table-level dictionaries, the table is scanned for repeating patterns. Entire
rows, not just certain fields or parts of rows, are examined for repeating entries or
patterns. After collecting the repetitive entries, the database manager builds a
compression dictionary, assigning short, numeric keys to those entries. Generally
speaking, text strings provide greater opportunities for compression than numeric
data; compressing numeric data involves replacing one number with another.
Depending on the size of the numbers being replaced, the storage savings might
not be as significant as those achieved by compressing text.

When a table-level dictionary is first created, it is built using a sample of data in
the table. The dictionary is not updated again unless you explicitly cause the
dictionary to be rebuilt using a classic, offline table reorganization. Even if you
rebuild the dictionary, the dictionary reflects only a sample of the data from the
entire table.

Remember: The table-level dictionary is static; unless you manually rebuild it, it
does not change after it is initially created. Even if you do rebuild it, because of the
sampling techniques used to create it, the dictionary might not reflect strings that
recur within a single page.

The table-level compression dictionary is stored in hidden rows in the same object
that they apply to and is cached in memory for quick access. This dictionary does
not occupy much space. Even for extremely large tables, the compression
dictionary typically occupies only approximately 100 KB.

Page-level compression dictionaries

Adaptive compression uses page-level dictionaries in addition to table-level
dictionaries. However, unlike table-level dictionaries, page-level dictionaries are

228 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

automatically created or recreated as pages are filled by the database manager.
Like table-level compression dictionaries, page-level dictionaries are also stored in
hidden rows within the table.

Table-level compression dictionary creation
Table-level compression dictionaries for tables that you enable for adaptive or
classic row compression can be built automatically or manually. Tables that you
enable for adaptive compression include page-level data dictionaries, which are
always automatically created.

Automatic dictionary creation

Starting with DB2 Version 9.5, a table-level compression dictionary is created
automatically if each of the following conditions is met:
v You set the COMPRESS attribute for the table by using the CREATE TABLE or

ALTER TABLE statement with the COMPRESS YES ADAPTIVE or COMPRESS
YES STATIC clause.

v A table-level compression dictionary does not already exist for the table.
v The table contains sufficient data for constructing a dictionary of repeated data.

Data that you move into the table after the dictionary is created is compressed
using the dictionary if compression remains enabled.

The following diagram shows the process by which the compression dictionary is
automatically created:

1 2 33 4

6 75

EMPTY TABLE
Uncompressed
Row Data

Uncompressed
Row Data

Uncompressed
Row Data

INSERT INSERT INSERT

LOAD LOAD LOAD

Synchronous
Dictionary
Build

Uncompressed
Row Data

Dictionary

Compressed
Row Data

The sequence of events illustrated in the diagram is as follows:
1. A compression dictionary is not yet created, because the table is empty.
2. Data is inserted into the table by using insert or load operations and remains

uncompressed.

Chapter 19. Tables 229

3. As more data is inserted or loaded into the table, the data remains
uncompressed.

4. After a threshold is reached, dictionary creation is triggered automatically if the
COMPRESS attribute is set to YES ADAPTIVE or YES STATIC.

5. The dictionary is created.
6. The dictionary is appended to the table.
7. From this point forward, table-level compression is enabled, and the rows that

are later inserted or added are compressed by the table-level compression
dictionary.

Important: The rows that existed in a table before the dictionary was created
remain uncompressed unless you change them or manually rebuild the dictionary.

If you create a table with DB2 Version 9.7 or later and the table contains at least
one column of type XML, a second compression dictionary is created. This
dictionary is used to compress the XML data that is stored in the default XML
storage object that is associated with the table. Compression dictionary creation for
XML data occurs automatically if each of the following conditions is met:
v You set the COMPRESS attribute on the table to YES ADAPTIVE or YES

STATIC.
v A compression dictionary does not exist within that XML storage object.
v There is sufficient data in the XML storage object.

Restriction: You cannot compress data in XML columns that you created with DB2
Version 9.5 or DB2 Version 9.1. However, you can compress inline XML columns
that you add to a table using DB2 Version 9.7 or later, provided the table was
created without XML columns in an earlier release of the product. If a table that
you created in an earlier release already has one or more XML columns and you
want to add a compressed XML column by using DB2 Version 9.7 or later, you
must use the ADMIN_MOVE_TABLE stored procedure to migrate the table before
you can use compression.

The mechanism for creating table-level compression dictionaries for temporary
tables is similar to the mechanism that is used for permanent tables. However, the
database manager automatically makes the determination whether to use classic
row compression for temporary tables, based on factors such as query complexity
and the size of the result set.

Manual dictionary creation

Although dictionaries are created automatically when compression-enabled tables
grow to a sufficient size, you can also force a table-level compression dictionary to
be created if none exists by using the REORG TABLE command with the
RESETDICTIONARY parameter. This command forces the creation of a compression
dictionary if there is at least one row of data in the table. Table reorganization is an
offline operation; one benefit of using automatic dictionary creation is that the
table remains online as the dictionary is built.

Instead of using the REORG TABLE command to force the creation of a new
dictionary, you can also use the INSPECT command with the ROWCOMPESTIMATE
parameter. This command creates a compression dictionary if the table does not
already have one. The advantage of this approach over performing a table
reorganization is that the table remains online. Rows that you add later are subject
to compression; however, rows that existed before you ran the INSPECT command

230 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

remain uncompressed until you perform a table reorganization. However, if
compression is enabled, automatic dictionary creation will usually take place
shortly after you activate compression, likely before you even have a chance to use
the INSPECT command.

Resetting compression dictionaries

Whether a table-level compression dictionary is created automatically or manually,
the dictionary is static; after it is built, it does not change. As you add or update
rows, they are compressed based on the data that exists in the compression
dictionary. For many situations, this behavior is appropriate. Consider, for example,
a table in a database that is used for maintaining customer accounts for a city
water utility. Such a table might have columns such as STREET_ADDRESS, CITY,
PROVINCE, TELEPHONE_NUM, POSTAL_CODE, and ACCOUNT_TYPE. If a
compression dictionary is built with data from a such table, even if it is only a
modestly sized table, there is likely sufficient repetitive information for classic row
compression to yield significant space savings. Much of the data might be common
from customer to customer, for example, the values of the CITY, POSTAL_CODE,
or PROVINCE column or portions of the value in the STREET_ADDRESS or
TELEPHONE_NUM column.

However, other tables might change significantly over time. Consider a table that is
used for retail sales data as follows:
v A master table is used to accumulate data on a month-by-month basis.
v Each month, a new set of records is loaded into the table.

In this case, a compression dictionary created in, for example, April might not
reflect repeating data from sales in later parts of the year. In situations where data
in a table changes significantly over time, you might want to reset your
compression dictionaries by using the REORG TABLE command with the
RESETDICTIONARY parameter. The advantage of resetting the compression dictionary
is that data from the entire table is considered when the dictionary is built.

Impact of classic table reorganization on table-level
compression dictionaries

When you reorganize a table that you enabled for adaptive compression or classic
row compression using classic, offline table reorganization, you can retain the
table-level compression dictionary or force the database manager to create a new
one.

In DB2 Version 9.5 and later, a table-level compression dictionary is automatically
created for a table that you enable for adaptive or classic row compression by
using the CREATE TABLE or ALTER TABLE statement with the COMPRESS YES
subclause. For a new table, the database manager waits until the table grows to a
minimal size before creating the dictionary. For an existing table, the compression
dictionary is created when the table grows to a sufficient size to allow pattern
repetition to become apparent. Compression is applied only to rows that you insert
or update after enabling compression.

If you reorganize a table with a classic table reorganization, and a table-level
compression dictionary exists, the KEEPDICTIONARY parameter of the REORG TABLE
command is applied implicitly, which retains the dictionary. When you perform the
reorganization, all the rows that are processed are subject to compression using

Chapter 19. Tables 231

that dictionary. If a compression dictionary does not exist and if the table is large
enough, a compression dictionary is created, and the rows are subject to
compression using that dictionary.

You can force a new table-level compression dictionary to be built by performing a
classic table reorganization that uses the RESETDICTIONARY parameter of the REORG
TABLE command. When you specify the RESETDICTIONARY parameter, a new
compression dictionary is built if there is at least one row in the table, replacing
any existing dictionary.

Note: Table-level dictionaries can be rebuilt using only classic table reorganization.
If you attempt to perform an inplace table reorganization of a table that has any
rows compressed using a page-level compression dictionary, the REORG command
fails with a SQL2219 error.

Multiple compression dictionaries for replication source tables
You can combine the DATA CAPTURE CHANGES clause with the COMPRESS
YES STATIC or COMPRESS YES ADAPTIVE option for the CREATE TABLE and
ALTER TABLE statements to enable row compression on source tables for
replication.

When you enable compression, if you also specify the DATA CAPTURE
CHANGES clause as part of the commands REORG TABLE or LOAD REPLACE, a source
table can have two table-level compression dictionaries: an active table-level
compression dictionary and a historical compression dictionary. In other words, if DATA
CAPTURE CHANGES is enabled, the table-level compression dictionary is not
replaced when you run the REORG TABLE or LOAD REPLACE commands. Instead, a
new dictionary is generated, and the previous dictionary is retained.

The historical compression dictionary makes it possible for the db2ReadLog API to
extract the row contents in log records that were written before the active
dictionary was rebuilt as a result of specifying the RESETDICTIONARY option with a
REORG TABLE or LOAD command.

Note: To have log readers return the data within log records in an uncompressed
format instead of a raw compressed format, you must set the iFilterOption
parameter of the db2ReadLog API to DB2READLOG_FILTER_ON.

If you specified the DATA CAPTURE NONE option as part of the CREATE TABLE
statement used to create the table, then issuing the REORG TABLE command or
performing table truncate operations by issuing the LOAD REPLACE, IMPORT REPLACE,
or TRUNCATE TABLE command removes the historical compression dictionary for the
table.

To see whether there is a historical dictionary present for the table, check the
HISTORICAL_DICTIONARY column in the result set of the
ADMIN_GET_TAB_DICTIONARY_INFO table function.

Table partitioning and data organization schemes
Table partitioning is a data organization scheme in which table data is divided
across multiple data partitions according to values in one or more partitioning
columns of the table. Data from a given table is partitioned into multiple storage
objects, which can be in different table spaces.

232 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

For complete details about table partitioning and data organization schemes, see
the Partitioning and Clustering Guide.

Creating tables
The database manager controls changes and access to the data stored in the tables.
You can create tables by using the CREATE TABLE statement.

Complex statements can be used to define all the attributes and qualities of tables.
However, if all the defaults are used, the statement to create a table is simple.

Declaring temporary tables
To define temporary tables from within your applications, use the DECLARE
GLOBAL TEMPORARY TABLE statement.

About this task

Temporary tables, also referred to as user-defined temporary tables, are used by
applications that work with data in the database. Results from manipulation of the
data need to be stored temporarily in a table. A user temporary table space must
exist before declaring temporary tables.

Note: The description of temporary tables does not appear in the system catalog
thus making it not persistent for, and not able to be shared with, other
applications. When the application using this table terminates or disconnects from
the database, any data in the table is deleted and the table is implicitly dropped.
Temporary tables do not support:
v User-defined type columns
v LONG VARCHAR columns
v XML columns for created global temporary tables

Example
DECLARE GLOBAL TEMPORARY TABLE temptbl

LIKE empltabl
ON COMMIT DELETE ROWS
NOT LOGGED
IN usr_tbsp

This statement defines a temporary table called temptbl. This table is defined with
columns that have exactly the same name and description as the columns of the
empltabl. The implicit definition only includes the column name, data type,
nullability characteristic, and column default value attributes. All other column
attributes including unique constraints, foreign key constraints, triggers, and
indexes are not defined. With ON COMMIT DELETE ROWS (any DELETE ROWS
option), the database manager always deletes rows whether there's a cursor with a
HOLD open on the table or not. The database manager optimizes a NOT LOGGED
delete by implementing an internal TRUNCATE, if no WITH HOLD cursors are
open, otherwise, the database manager deletes the rows one at a time.

The table is dropped implicitly when the application disconnects from the
database. For more information, see the DECLARE GLOBAL TEMPORARY TABLE
statement.

Chapter 19. Tables 233

Creating and connecting to created temporary tables
Created temporary tables are created using the CREATE GLOBAL TEMPORARY
TABLE statement. The first time an application refers to a created temporary table
using a connection, a private version of the created temporary table is instantiated
for use by the application using the connection.

About this task

Similar to declared temporary tables, created temporary tables are used by
applications that work with data in the database, where the results from
manipulation of the data need to be stored temporarily in a table. Whereas
declared temporary table information is not saved in the system catalog tables, and
must be defined in every session where it is used, created temporary table
information is saved in the system catalog and is not required to be defined in
every session where it is used, thus making it persistent and able to be shared with
other applications, across different connections. A user temporary table space must
exist before created temporary tables can be created.

Note: The first implicit or explicit reference to the created temporary table that is
executed by any program using the connection creates an empty instance of the
given created temporary table. Each connection that references this created
temporary table has its own unique instance of the created temporary table, and
the instance is not persistent beyond the life of the connection.

References to the created temporary table name in multiple connections refer to the
same, single, persistent created temporary table definition, and to a distinct
instance of the created temporary table for each connection at the current server. If
the created temporary table name that is being referenced is not qualified, it is
implicitly qualified using the standard qualification rules that apply to SQL
statements.

The owner implicitly has all table privileges on the created temporary table,
including the authority to drop it. The owner's table privileges can be granted and
revoked, either individually or with the ALL clause. Another authorization ID can
access the created temporary table only if it has been granted appropriate
privileges.

Indexes and SQL statements that modify data (such as INSERT, UPDATE, and
DELETE) are supported. Indexes can only be created in the same table space as the
created temporary table.

For the CREATE GLOBAL TEMPORARY TABLE statement: locking and recovery
do not apply; logging applies only when the LOGGED clause is specified. For
more options, see the CREATE GLOBAL TEMPORARY statement.

Created temporary tables cannot be:
v Associated with security policies
v Table partitioned
v Multidimensional clustering (MDC) tables
v Insert time clustering (ITC) tables
v Range-clustered (RCT)
v Distributed by replication

Materialized query tables (MQTs) cannot be created on created temporary tables.

234 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Created temporary tables do not support the following column types, object types,
and table or index operations:
v XML columns
v Structured types
v Referenced types
v Constraints
v Index extensions
v LOAD
v LOAD TABLE
v ALTER TABLE
v RENAME TABLE
v RENAME INDEX
v REORG TABLE
v REORG INDEX
v LOCK TABLE

For more information, see the CREATE GLOBAL TEMPORARY TABLE statement.

Example
CREATE GLOBAL TEMPORARY TABLE temptbl

LIKE empltabl
ON COMMIT DELETE ROWS
NOT LOGGED
IN usr_tbsp

This statement creates a temporary table called temptbl. This table is defined with
columns that have exactly the same name and description as the columns of the
empltabl. The implicit definition only includes the column name, data type,
nullability characteristic, and column default value attributes of the columns in
empltab1. All other column attributes including unique constraints, foreign key
constraints, triggers, and indexes are not implicitly defined.

A COMMIT always deletes the rows from the table. If there are any HOLD cursors
open on the table, they can be deleted using TRUNCATE statement, which is
faster, but will “normally” have to be deleted row by row. Changes made to the
temporary table are not logged. The temporary table is placed in the specified user
temporary table space, usr tbsp. This table space must exist or the creation of this
table will fail.

When an application that instantiated a created temporary table disconnects from
the database, the application's instance of the created temporary table is dropped.

Distinctions between DB2 base tables and temporary tables
DB2 base tables and the two types of temporary tables have several distinctions.

The following table summarizes important distinctions between base tables, created
temporary tables, and declared temporary tables.

Chapter 19. Tables 235

Table 21. Important distinctions between DB2 base tables and DB2 temporary tables

Area of distinction Distinction

Creation, persistence,
and ability to share
table descriptions

Base tables: The CREATE TABLE statement puts a description of
the table in the catalog view SYSCAT.TABLES. The table description
is persistent and is shareable across different connections. The name
of the table in the CREATE TABLE statement can be qualified. If the
table name is not qualified, it is implicitly qualified using the
standard qualification rules applied to SQL statements.

Created temporary tables: The CREATE GLOBAL TEMPORARY
TABLE statement puts a description of the table in the catalog view
SYSCAT.TABLES. The table description is persistent and is
shareable across different connections. The name of the table in the
CREATE GLOBAL TEMPORARY TABLE statement can be qualified.
If the table name is not qualified, it is implicitly qualified using the
standard qualification rules applied to SQL statements.

Declared temporary tables: The DECLARE GLOBAL TEMPORARY
TABLE statement does not put a description of the table in the
catalog. The table description is not persistent beyond the life of the
connection that issued the DECLARE GLOBAL TEMPORARY
TABLE statement and the description is known only to that
connection.

Thus, each connection could have its own possibly unique
description of the same declared temporary table. The name of the
table in the DECLARE GLOBAL TEMPORARY TABLE statement
can be qualified. If the table name is qualified, SESSION must be
used as the schema qualifier. If the table name is not qualified,
SESSION is implicitly used as the qualifier.

Table instantiation
and ability to share
data

Base tables: The CREATE TABLE statement creates one empty
instance of the table, and all connections use that one instance of
the table. The table and data are persistent.

Created temporary tables: The CREATE GLOBAL TEMPORARY
TABLE statement does not create an instance of the table. The first
implicit or explicit reference to the table in an open, select, insert,
update, or delete operation that is executed by any program using
the connection creates an empty instance of the given table. Each
connection that references the table has its own unique instance of
the table, and the instance is not persistent beyond the life of the
connection.

Declared temporary tables: The DECLARE GLOBAL TEMPORARY
TABLE statement creates an empty instance of the table for the
connection. Each connection that declares the table has its own
unique instance of the table, and the instance is not persistent
beyond the life of the connection.

236 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 21. Important distinctions between DB2 base tables and DB2 temporary
tables (continued)

Area of distinction Distinction

References to the
table during the
connection

Base tables: References to the table name in multiple connections
refer to the same single persistent table description and to the same
instance at the current server. If the table name that is being
referenced is not qualified, it is implicitly qualified using the
standard qualification rules that apply to SQL statements.

Created temporary tables: References to the table name in multiple
connections refer to the same single persistent table description but
to a distinct instance of the table for each connection at the current
server. If the table name that is being referenced is not qualified, it
is implicitly qualified using the standard qualification rules that
apply to SQL statements.

Declared temporary tables: References to the table name in
multiple connections refer to a distinct description and instance of
the table for each connection at the current server. References to the
table name in an SQL statement (other than the DECLARE
GLOBAL TEMPORARY TABLE statement) must include SESSION
as the schema qualifier. If the table name is not qualified with
SESSION, the reference is assumed to be to a base table.

Table privileges and
authorization

Base tables: The owner implicitly has all table privileges on the
table and the authority to drop the table. The owner's table
privileges can be granted and revoked, either individually or with
the ALL clause.

Another authorization ID can access the table only if it has been
granted appropriate privileges for the table.

Created temporary tables: The owner implicitly has all table
privileges on the table and the authority to drop the table. The
owner's table privileges can be granted and revoked, either
individually or with the ALL clause.

Another authorization ID can access the table only if it has been
granted appropriate privileges for the table.

Declared temporary tables: PUBLIC implicitly has all table
privileges on the table without GRANT authority and also has the
authority to drop the table. These table privileges cannot be granted
or revoked.

Any authorization ID can access the table without requiring a grant
of any privileges for the table.

Indexes and other
SQL statement
support

Base tables: Indexes and SQL statements that modify data (INSERT,
UPDATE, DELETE, and so on) are supported. Indexes can be in
different table spaces.

Created temporary tables: Indexes and SQL statements that modify
data (INSERT, UPDATE, DELETE, and so on) are supported.
Indexes can only be in the same table space as the table.

Declared temporary tables: Indexes and SQL statements that
modify data (INSERT, UPDATE, DELETE, and so on) are
supported. Indexes can only be in the same table space as the table.

Chapter 19. Tables 237

Table 21. Important distinctions between DB2 base tables and DB2 temporary
tables (continued)

Area of distinction Distinction

Locking, logging, and
recovery

Base tables: Locking, logging, and recovery do apply.

Created temporary tables: Locking and recovery do not apply,
however logging does apply when LOGGED is explicitly specified.
Undo recovery (rolling back changes to a savepoint or the most
recent commit point) is supported when only when LOGGED is
explicitly specified.

Declared temporary tables: Locking and recovery do not apply,
however logging only applies when LOGGED is explicitly or
implicitly specified. Undo recovery (rolling back changes to a
savepoint or the most recent commit point) is supported when
LOGGED is explicitly or implicitly specified.

Altering tables
When altering tables, there are some useful options to be aware of, such as the
ALTER COLUMN SET DATA TYPE option and the unlimited REORG-
recommended operations that can be performed within a single transaction.

Alter table SET DATA TYPE support

The ALTER COLUMN SET DATA TYPE option on the ALTER TABLE statement
supports all compatible types.

Altering the column data type can cause data loss. Some of this loss is consistent
with casting rules; for example, blanks can be truncated from strings without
returning an error, and converting a DECIMAL to an INTEGER results in
truncation. To prevent unexpected errors, such as overflow errors, truncation
errors, or any other kind of error returned by casting, existing column data is
scanned, and messages about conflicting rows are written to the notification log.
Column default values are also checked to ensure that they conform to the new
data type.

If a data scan does not report any errors, the column type is set to the new data
type, and the existing column data is cast to the new data type. If an error is
reported, the ALTER TABLE statement fails.

Altering a VARCHAR, VARGRAPHIC, or LOB column to a data type that is
sooner in the data type precedence list (see the Promotion of data types topic) is not
supported.

Example

Change the data type of the SALES column in the SALES table from INTEGER to
SMALLINT.
alter table sales alter column sales set data type smallint
DB20000I The SQL command completed successfully.

Change the data type of the REGION column in the SALES table from
VARCHAR(15) to VARCHAR(14).

238 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

alter table sales alter column region set data type varchar(14)
...
SQL0190N ALTER TABLE "ADMINISTRATOR.SALES" specified attributes for column
"REGION" that are not compatible with the existing column. SQLSTATE=42837

Change a column type in a base table. There are views and functions that are
directly or indirectly dependent on the base table.
create table t1 (c1 int, c2 int);

create view v1 as select c1, c2 from t1;
create view v2 as select c1, c2 from v1;

create function foo1 ()
language sql
returns int
return select c2 from t1;

create view v3 as select c2 from v2
where c2 = foo1();

create function foo2 ()
language sql
returns int
return select c2 from v3;

alter table t1
alter column c1
set data type smallint;

select * from v2;

The ALTER TABLE statement, which down casts the column type from INTEGER
to SMALLINT, invalidates v1, v2, v3, and foo2. Under revalidation deferred
semantics, select * from v2 successfully revalidates v1 and v2, and the c1
columns in both v1 and v2 are changed to SMALLINT. But v3 and foo2 are not
revalidated, because they are not referenced after being invalidated, and they are
above v2 in the dependency hierarchy chain. Under revalidation immediate
semantics, the ALTER TABLE statement revalidates all the dependent objects
successfully.

Multiple ALTER TABLE operations within a single unit of work

Certain ALTER TABLE operations, like dropping a column, altering a column type,
or altering the nullability property of a column may put the table into a reorg
pending state. In this state, many types of queries cannot be run; you must
perform a table reorganization before the table becomes available for some types of
queries. However, even with the table in a reorg pending state, you can still
perform multiple ALTER TABLE operations before doing a reorg.

Beginning with DB2 Version 9.7, you can perform an unlimited number of ALTER
TABLE statements within a single unit of work. However, after three units of work
have been performed that include such operations, a REORG TABLE command
must be run.

Adding and dropping columns
To add columns to existing tables, or to drop columns from existing tables, use the
ALTER TABLE statement with the ADD COLUMN or DROP COLUMN clause. The
table must not be a typed table.

Chapter 19. Tables 239

About this task

For all existing rows in the table, the value of the new column is set to its default
value. The new column is the last column of the table; that is, if initially there are
n columns, the added column is column n+1. Adding the new column must not
make the total byte count of all columns exceed the row size limit.

Procedure
v To add a column, issue the ALTER TABLE statement with the ADD COLUMN

clause. For example:
ALTER TABLE SALES

ADD COLUMN SOLD_QTY
SMALLINT NOT NULL DEFAULT 0

v To delete or drop a column, issue the ALTER TABLE statement with the DROP
COLUMN clause. For example:

ALTER TABLE SALES
DROP COLUMN SOLD_QTY

Modifying DEFAULT clause column definitions
The DEFAULT clause provides a default value for a column in the event that a
value is not supplied on INSERT or is specified as DEFAULT on INSERT or
UPDATE. If a specific default value is not specified following the DEFAULT
keyword, the default value depends on the data type. If a column is defined as an
XML or structured type, then a DEFAULT clause cannot be specified.

About this task

Omission of DEFAULT from a column-definition results in the use of the null
value as the default for the column, as described in: “Default column and data
type definitions” on page 209.

Specific types of values that can be specified with the DEFAULT keyword, see the
ALTER TABLE statement.

Modifying the generated or identity property of a column
You can add and drop the generated or identity property of a column in a table
using the ALTER COLUMN clause in the ALTER TABLE statement.

You can do one of the following actions:
v When working with an existing non-generated column, you can add a generated

expression attribute. The modified column then becomes a generated column.
v When working with an existing generated column, you can drop a generated

expression attribute. The modified column then becomes a normal,
non-generated column.

v When working with an existing non-identity column, you can add a identity
attribute. The modified column then becomes an identity column.

v When working with an existing identity column, you can drop the identity
attribute. The modified column then becomes a normal, non-generated,
non-identity column.

v When working with an existing identity column, you can alter the column from
being GENERATED ALWAYS to GENERATED BY DEFAULT. The reverse is also

240 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

true; that is, you can alter the column from being GENERATED BY DEFAULT to
GENERATED ALWAYS. This is only possible when working with an identity
column.

v You can drop the default attribute from the user-defined default column. When
you do this, the new default value is null.

v You can drop the default, identity, or generation attribute and then set a new
default, identity, or generation attribute in the same ALTER COLUMN
statement.

v For both the CREATE TABLE and ALTER TABLE statements, the “ALWAYS”
keyword is optional in the generated column clause. This means that
GENERATED ALWAYS is equivalent to GENERATED.

Modifying column definitions
Use the ALTER TABLE statement to drop columns, or change their types and
attributes. For example, you can increase the length of an existing VARCHAR or
VARGRAPHIC column. The number of characters might increase up to a value
dependent on the page size used.

About this task

To modify the default value associated with a column, once you have defined the
new default value, the new value is used for the column in any subsequent SQL
operations where the use of the default is indicated. The new value must follow
the rules for assignment and have the same restrictions as documented under the
CREATE TABLE statement.

Note: Generate columns cannot have their default value altered by this statement.

When changing these table attributes using SQL, it is no longer necessary to drop
the table and then re-create it, a time consuming process that can be complex when
object dependencies exist.

Procedure
v To modify the length and type of a column of an existing table using the

command line, enter:
ALTER TABLE table_name

ALTER COLUMN column_name
modification_type

For example, to increase a column up to 4000 characters, use something similar
to the following:

ALTER TABLE t1
ALTER COLUMN colnam1
SET DATA TYPE VARCHAR(4000)

In another example, to allow a column to have a new VARGRAPHIC value, use
a statement similar to the following:

ALTER TABLE t1
ALTER COLUMN colnam2
SET DATA TYPE VARGRAPHIC(2000)

You cannot alter the column of a typed table. However, you can add a scope to
an existing reference type column that does not already have a scope defined.
For example:

ALTER TABLE t1
ALTER COLUMN colnamt1
ADD SCOPE typtab1

Chapter 19. Tables 241

v To modify a column to allow for LOBs to be included inline, enter:
ALTER TABLE table_name

ALTER COLUMN column_name
SET INLINE LENGTH new_LOB_length

For example, if you want LOBs of 1000 bytes or less to be included in a base
table row, use a statement similar to the following:

ALTER TABLE t1
ALTER COLUMN colnam1
SET INLINE LENGTH 1004

In this case, the length is set to 1004, rather than 1000. This is because inline
LOBs require an additional 4 bytes of storage over and above the size of the
LOB itself.

v To modify the default value of a column of an existing table using the command
line, enter:

ALTER TABLE table_name
ALTER COLUMN column_name
SET DEFAULT ’new_default_value’

For example, to change the default value for a column, use something similar to
the following:

ALTER TABLE t1
ALTER COLUMN colnam1
SET DEFAULT ’123’

Altering materialized query table properties
With some restrictions, you can change a materialized query table to a regular
table or a regular table to a materialized query table. You cannot change other
table types; only regular and materialized query tables can be changed. For
example, you cannot change a replicated materialized query table to a regular
table, nor the reverse.

About this task

Once a regular table has been altered to a materialized query table, the table is
placed in a set integrity pending state. When altering in this way, the fullselect
in the materialized query table definition must match the original table definition,
that is:
v The number of columns must be the same.
v The column names and positions must match.
v The data types must be identical.

If the materialized query table is defined on an original table, then the original
table cannot itself be altered into a materialized query table. If the original table
has triggers, check constraints, referential constraints, or a defined unique index,
then it cannot be altered into a materialized query table. If altering the table
properties to define a materialized query table, you are not allowed to alter the
table in any other way in the same ALTER TABLE statement.

When altering a regular table into a materialized query table, the fullselect of the
materialized query table definition cannot reference the original table directly or
indirectly through views, aliases, or materialized query tables.

242 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To change a materialized query table to a regular table, use the following
command:

ALTER TABLE sumtable
SET SUMMARY AS DEFINITION ONLY

To change a regular table to a materialized query table, use the following
command:

ALTER TABLE regtable
SET SUMMARY AS <fullselect>

The restrictions on the fullselect when altering the regular table to a materialized
query table are very much like the restrictions when creating a summary table
using the CREATE SUMMARY TABLE statement.

Refreshing the data in a materialized query table
You can refresh the data in one or more materialized query tables by using the
REFRESH TABLE statement. The statement can be embedded in an application
program, or issued dynamically. To use this statement, you must have
DATAACCESS authority, or CONTROL privilege on the table to be refreshed.

Example

The following example shows how to refresh the data in a materialized query
table:

REFRESH TABLE SUMTAB1

Renaming tables and columns
You can use the RENAME statement to rename an existing table. To rename
columns, use the ALTER TABLE statement.

About this task

When renaming tables, the source table must not be referenced in any existing
definitions (view or materialized query table), triggers, SQL functions, or
constraints. It must also not have any generated columns (other than identity
columns), or be a parent or dependent table. Catalog entries are updated to reflect
the new table name. For more information and examples, see the RENAME
statement.

The RENAME COLUMN clause is an option on the ALTER TABLE statement. You
can rename an existing column in a base table to a new name without losing
stored data or affecting any privileges or label-based access control (LBAC) policies
that are associated with the table.

Only the renaming of base table columns is supported. Renaming columns in
views, materialized query tables (MQTs), declared and created temporary tables,
and other table-like objects is not supported.

Invalidation and revalidation semantics for the rename column operation are
similar to those for the drop column operation; that is, all dependent objects are
invalidated. Revalidation of all dependent objects following a rename column
operation is always done immediately after the invalidation, even if the auto_reval
database configuration parameter is set to DISABLED.

Chapter 19. Tables 243

The following example shows the renaming of a column using the ALTER TABLE
statement:

ALTER TABLE org RENAME COLUMN deptnumb TO deptnum

To change the definition of existing columns, see the "Changing column properties"
topic or the ALTER TABLE statement.

Viewing table definitions
You can use the SYSCAT.TABLES and SYSCAT.COLUMNS catalog views to view
table definitions. For SYSCAT.COLUMNS, each row represents a column defined
for a table, view, or nickname. To see the data in the columns, use the SELECT
statement.

About this task

You can also use the following views and table functions to view table definitions:
v ADMINTEMPCOLUMNS administrative view
v ADMINTEMPTABLES administrative view
v ADMIN_GET_TEMP_COLUMNS table function - Retrieve column information

for temporary tables
v ADMIN_GET_TEMP_TABLES table function - Retrieve information for

temporary tables

Dropping tables
A table can be dropped with a DROP TABLE statement.

About this task

When a table is dropped, the row in the SYSCAT.TABLES system catalog view that
contains information about that table is dropped, and any other objects that
depend on the table are affected. For example:
v All column names are dropped.
v Indexes created on any columns of the table are dropped.
v All views based on the table are marked inoperative.
v All privileges on the dropped table and dependent views are implicitly revoked.
v All referential constraints in which the table is a parent or dependent are

dropped.
v All packages and cached dynamic SQL and XQuery statements dependent on

the dropped table are marked invalid, and remain so until the dependent objects
are re-created. This includes packages dependent on any supertable above the
subtable in the hierarchy that is being dropped.

v Any reference columns for which the dropped table is defined as the scope of
the reference become “unscoped”.

v An alias definition on the table is not affected, because an alias can be undefined
v All triggers dependent on the dropped table are marked inoperative.

Restrictions

An individual table cannot be dropped if it has a subtable.

244 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Procedure
v To drop a table, use a DROP TABLE statement.

The following statement drops the table called DEPARTMENT:
DROP TABLE DEPARTMENT

v To drop all the tables in a table hierarchy, use a DROP TABLE HIERARCHY
statement.
The DROP TABLE HIERARCHY statement must name the root table of the
hierarchy to be dropped. For example:

DROP TABLE HIERARCHY person

Results

There are differences when dropping a table hierarchy compared to dropping a
specific table:
v DROP TABLE HIERARCHY does not activate deletion-triggers that would be

activated by individual DROP TABLE statements. For example, dropping an
individual subtable would activate deletion-triggers on its supertables.

v DROP TABLE HIERARCHY does not make log entries for the individual rows of
the dropped tables. Instead, the dropping of the hierarchy is logged as a single
event.

Chapter 19. Tables 245

246 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 20. Time Travel Query using temporal tables

You can use temporal tables to associate time-based state information with your
data. Data in tables that do not use temporal support are deemed to be applicable
to the present, while data in temporal tables can be valid for a period defined by
the database system, user applications, or both.

There are many business needs requiring the storage and maintenance of
time-based data. Without this capability in a database, it is expensive and complex
to maintain a time-focused data support infrastructure. With temporal tables, the
database can store and retrieve time-based data without additional application
logic. For example, a database can store the history of a table (deleted rows or the
original values of rows that have been updated) so you can query the past state of
your data. You can also assign a date range to a row of data to indicate when it is
deemed to be valid by your applications or business rules.

A temporal table records the period when a row is valid. A period is an interval of
time that is defined by two date or time columns in the temporal table. A period
contains a begin column and an end column. The begin column indicates the
beginning of the period, and the end column indicates the end of the period. The
beginning value of a period is inclusive, while the ending value of a period is
exclusive. For example, a row with a period from January 1 to February 1 is valid
from January 1, until January 31 at midnight.

Two period types are supported:

System periods
A system period consists of a pair of columns with database
manager-maintained values that indicate the period when a row is current.
The begin column contains a timestamp value for when a row was created.
The end column contains a timestamp value for when a row was updated
or deleted. When a system-period temporal table is created, it contains the
currently active rows. Each system-period temporal table is associated with
a history table that contains any changed rows.

Application periods
An application period consists of a pair of columns with user or
application-supplied values that indicate the period when a row is valid.
The begin column indicates the time when a row is valid from. The end
column indicates the time when a row stops being valid. A table with an
application period is called an application-period temporal table.

You can check whether a table has temporal support by querying the
SYSCAT.TABLES system catalog view. For example:
SELECT TABSCHEMA, TABNAME, TEMPORALTYPE FROM SYSCAT.TABLES

The returned values for TEMPORALTYPE are defined as follows:

A Application-period temporal table

B Bitemporal table

N Not a temporal table

S System-period temporal table

© Copyright IBM Corp. 2014 247

System-period temporal tables
A system-period temporal table is a table that maintains historical versions of its
rows. Use a system-period temporal table to store current versions of your data
and use its associated history table to transparently store your updated and
deleted data rows.

A system-period temporal table includes a SYSTEM_TIME period with columns
that capture the begin and end times when the data in a row is current. The
database manager also uses the SYSTEM_TIME period to preserve historical
versions of each table row whenever updates or deletes occur. The database
manager stores these rows in a history table that is exclusively associated with a
system-period temporal table. Adding versioning establishes the link between the
system-period temporal table and the history table. With a system-period temporal
table, your queries have access to your data at the current point in time and the
ability to retrieve data from past points in time.

A system-period temporal table also includes a transaction start-ID column. This
column captures the time when execution started for a transaction that impacts the
row. If multiple rows are inserted or updated within a single SQL transaction, then
the values for the transaction start-ID column are the same for all the rows and are
unique from the values generated for this column by other transactions. This
common start-ID column value means you can use the transaction start-ID column
to identify all the rows in the tables that were written by the same transaction.

History tables
Each system-period temporal table requires a history table. When a row is updated
or deleted from a system-period temporal table, the database manager inserts a
copy of the old row into its associated history table. This storage of old
system-period temporal table data gives you the ability to retrieve data from past
points in time.

In order to store row data, the history table columns and system-period temporal
table columns must have the same names, order, and data types. You can create a
history table with the same names and descriptions as the columns of the
system-period temporal table by using the LIKE clause of the CREATE TABLE
statement, for example:
CREATE TABLE employees_history LIKE employees IN hist_space;

An existing table can be used as a history table if it avoids the restrictions listed in
the description of the ALTER TABLE statement USE HISTORY clause.

After you create a history table, you add versioning to establish the link between
the system-period temporal table and the history table.
ALTER TABLE employees ADD VERSIONING USE HISTORY TABLE employees_history;

A history table is subject to the following rules and restrictions when versioning is
enabled:
v A history table cannot explicitly be dropped. It can only implicitly be dropped

when the associated system-period temporal table is dropped.
v History table columns cannot explicitly be added, dropped, or changed.
v A history table must not be defined as parent, child, or self-referencing in a

referential constraint. Access to the history table is restricted to prevent cascaded
actions to the history table.

248 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v A table space that contains a history table, but not its associated system-period
temporal table, cannot be dropped.

You should rarely need to explicitly change a history table. Doing so might
jeopardize your ability to audit a system-period temporal table data history. You
should restrict access to a history table to protect its data.

Under normal operations, a history table experiences mostly insert and read
activities. Updates and deletes are rare. The absence of updates and deletes means
that history tables typically do not have free space that can be reused for the
inserting of new rows. If row inserts into the history table are negatively impacting
workload performance, you can eliminate the search for free space by altering the
definition of the history table by using the APPEND ON option. This option
avoids the processing associated with free space searches and directly appends
new rows to the end of the table.
ALTER TABLE employees_history APPEND ON;

When a system-period temporal table is dropped, the associated history table and
any indexes defined on the history table are implicitly dropped. To avoid losing
historical data when a system-period temporal table is dropped, you can either
create the history table with the RESTRICT ON DROP attribute or alter the history
table by adding the RESTRICT ON DROP attribute.
CREATE TABLE employees_history LIKE employees WITH RESTRICT ON DROP;

Because history tables experience more inserts than deletes, your history tables are
always growing and so are consuming an increasing amount of storage. Deciding
how to prune your history tables to get rid of the rows that you no longer need
can be a complex task. You need to understand the value of your individual
records. Some content, like customer contracts, might be untouchable and can
never be deleted. While other records, like website visitor information, can be
pruned without concern. Often it is not the age of a row that determines when it
can be pruned and archived, but rather it is some business logic that is the
deciding factor. The following list contains some possible rules for pruning:
v Prune rows selected by a user-supplied query that reflects business rules.
v Prune rows older than a certain age.
v Prune history rows when more than N versions exist for that record (retain only

the latest N versions).
v Prune history rows when the record is deleted from the associated

system-period temporal table (when there are no current versions).

There are several ways to periodically prune old data from a history table:
v Use range partitioning and detach old partitions from the history table.
v Use DELETE statements to remove rows from the table. If using DELETE

statements, you might observe the following guidelines:
– Periodically reorganize the history table to release the free space left behind

by the delete operations.
– Ensure that the history table was not altered to use the APPEND ON option,

allowing inserts to search for free space.

SYSTEM_TIME period
The SYSTEM_TIME period columns for a system-period temporal table indicate
when the version of a row is current.

Chapter 20. Time Travel Query using temporal tables 249

The SYSTEM_TIME period contains a pair of TIMESTAMP(12) columns whose
values are generated by the database manager. The columns must be defined as
NOT NULL with an applicable GENERATED ALWAYS AS option. The begin
column of the period must be a row-begin column and the end column of the
period must be a row-end column.
CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD SYSTEM_TIME (sys_start, sys_end)
) IN policy_space;

Row-begin column
This column represents the time when the row data became current. The
database manager generates a value for this column by using a reading of
the system clock at the moment it executes the first data change statement
in the transaction that generates the row. If multiple rows are inserted or
updated within a single SQL transaction, the values for the row-begin
column are the same for all the impacted rows. The values for these
row-begin columns are unique from the values generated for the row-begin
columns for other transactions. A row-begin column is required as the
begin column of a SYSTEM_TIME period, which must be defined for each
system-period temporal table.

When an existing regular table is altered to make it a system-period
temporal table, a row-begin column is added to the table. The row-begin
column is populated with a default of 0001-01-01-00.00.00.000000000000
for the TIMESTAMP(12) data type value for any existing rows.

Row-end column
This column represents the time when the row data was no longer current.
For rows in a history table, the value in the row-end column represents
when the row was added to the history table. The rows in the
system-period temporal table are by definition current, so the row-end
column is populated with a default value for the TIMESTAMP(12) data
type (for example: 9999-12-30-00.00.00.000000000000). A row-end column
is required as the end column of a SYSTEM_TIME period, which must be
defined for each system-period temporal table.

When an existing regular table is altered to make it a system-period
temporal table, a row-end column is added to the table. The row-end
column is populated with the a value for the TIMESTAMP(12) data type
(default value: 9999-12-30-00.00.00.000000000000) for any existing rows.
The value is intentionally one day earlier than the maximum possible time
stamp to avoid a possible overflow to a 5-digit year when converting the
value to a different time zone.

Since row-begin and row-end are generated columns, there is no implicit check
constraint generated for SYSTEM_TIME that ensures that the value for an end
column is greater than the value for its begin column in a system-period temporal
table. This lack of a check constraint differs from an application-period temporal
table where there is a check constraint associated with its BUSINESS_TIME. A row
where the value for the end column is less than the value for the begin column
cannot be returned when a period-specification is used to query the table. You can
define a constraint to guarantee that the value for end column is greater than the

250 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

value for begin column. This guarantee is useful when supporting operations that
explicitly input data into these generated columns, such as a load operation.

The systime_period_adj database configuration parameter is used to specify what
action to take when a history row for a system-period temporal table is generated
with an end column value that is less than the value for begin column.

Creating a system-period temporal table
Creating a system-period temporal table results in a table that tracks when data
changes occur and preserves historical versions of that data.

About this task

When creating a system-period temporal table, include attributes that indicate
when data in a row is current and when transactions affected the data:
v Include row-begin and row-end columns that are used by the SYSTEM_TIME

period to track when a row is current.
v Include a transaction start-ID column that captures the start times for

transactions that affect rows.
v Create a history table to receive old rows from the system-period temporal table.
v Add versioning to establish the link between the system-period temporal table

and the history table.

The row-begin, row-end, and transaction start-ID columns can be defined as
IMPLICITLY HIDDEN. Since these columns and their entries are generated by the
database manager, hiding them can minimize any potential negative affects on
your applications. These columns are then unavailable unless referenced, for
example:
v A SELECT * query run against a table does not return any implicitly hidden

columns in the result table.
v An INSERT statement does not expect a value for any implicitly hidden

columns.
v The LOAD, IMPORT, and EXPORT commands can use the includeimplicitlyhidden

modifier to work with implicitly hidden columns.

A system-period temporal table can be defined as a parent or a child in a
referential constraint. However, the referential constraints are applied only to the
current data, that is the data in the system-period temporal table. The constraints
are not applied to the associated history table. In order to minimize inconsistencies
when a system-period temporal table is a child table in a referential constraint, the
parent table should also be a system-period temporal table.

Note: While the row-begin, row-end, and transaction start-ID generated columns
are required when creating a system-period temporal table, you can also create a
regular table with these generated columns.

The example in the following section shows the creation of a table that stores
policy information for the customers of an insurance company.

Procedure

To create a system-period temporal table.
1. Create a table with a SYSTEM_TIME attribute. For example:

Chapter 20. Time Travel Query using temporal tables 251

CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD SYSTEM_TIME (sys_start, sys_end)
) IN policy_space;

2. Create a history table. For example:
CREATE TABLE hist_policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
ts_id TIMESTAMP(12) NOT NULL
) IN hist_space;

You can also create a history table with the same names and descriptions as the
columns of the system-period temporal table by using the LIKE clause of the
CREATE TABLE statement. For example:
CREATE TABLE hist_policy_info LIKE policy_info IN hist_space;

3. Add versioning to the system-period temporal table to establish a link to the
history table. For example:
ALTER TABLE policy_info ADD VERSIONING USE HISTORY TABLE hist_policy_info;

Results

The policy_info table stores the insurance coverage level for a customer. The
SYSTEM_TIME period related columns (sys_start and sys_end) show when a
coverage level row is current. The ts_id column lists the time when execution
started for a transaction that impacted the row.

Table 22. Created system-period temporal table (policy_info)

policy_id coverage sys_start sys_end ts_id

The hist_policy_info history table receives the old rows from the policy_info
table.

Table 23. Created history table (hist_policy_info)

policy_id coverage sys_start sys_end ts_id

Example

This section contains more creating system-period temporal table examples.

Hiding columns
The following example creates the policy_info table with the
TIMESTAMP(12) columns (sys_start, sys_end and ts_id) marked as
implicitly hidden.
CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN IMPLICITLY HIDDEN,

252 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END IMPLICITLY HIDDEN,
ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID IMPLICITLY HIDDEN,
PERIOD SYSTEM_TIME (sys_start, sys_end)
) in policy_space;

Creating the hist_policy_info history table using the LIKE clause of the
CREATE TABLE statement results in the history table inheriting the
implicitly hidden attribute from the policy_info table. If you do not use
the LIKE clause when creating the history table, then any columns marked
as hidden in the system-period temporal table must also be marked as
hidden in the associated history table.

Changing an existing table into a system-period temporal table
The following example adds timestamp columns and a SYSTEM_TIME
period to an existing table (employees) enabling system-period temporal
table functions.
ALTER TABLE employees

ADD COLUMN sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN;
ALTER TABLE employees

ADD COLUMN sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END;
ALTER TABLE employees

ADD COLUMN ts_id TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS TRANSACTION START ID;
ALTER TABLE employees ADD PERIOD SYSTEM_TIME(sys_start, sys_end);

These new columns can be hidden by including the IMPLICITLY HIDDEN
clause in the ALTER TABLE statement

A history table must be created and versioning added to finish this task.

Inserting data into a system-period temporal table
For a user, inserting data into a system-period temporal table is similar to inserting
data into a regular table.

About this task

When inserting data into a system-period temporal table, the database manager
automatically generates the values for the row-begin and row-end timestamp
columns. The database manager also generates the transaction start-ID value that
uniquely identifies the transaction that is inserting the row.

Procedure

To insert data into a system-period temporal table, use the INSERT statement to
add data to the table. For example, the following data was inserted on January 31,
2010 (2010-01-31) to the table created in the example in “ Creating a system-period
temporal table.”
INSERT INTO policy_info(policy_id, coverage)

VALUES(’A123’,12000);

INSERT INTO policy_info(policy_id, coverage)
VALUES(’B345’,18000);

INSERT INTO policy_info(policy_id, coverage)
VALUES(’C567’,20000);

Results

The policy_info table now contains the following insurance coverage data. The
sys_start, sys_end, and ts_id column entries were generated by the database
manager.

Chapter 20. Time Travel Query using temporal tables 253

Table 24. Data added to a system-period temporal table (policy_info)

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

B345 18000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

C567 20000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

The his_policy_info history table remains empty because no history rows are
generated by an insert.

Table 25. History table (hist_policy_info) after insert

policy_id coverage sys_start sys_end ts_id

Note: The row-begin column, sys_start, represents the time when the row data
became current. The database manager generates this value by using a reading of
the system clock at the moment it executes the first data change statement in the
transaction that generates the row. The database manager also generates the
transaction start-ID column, ts_id, which captures the time when execution started
for a transaction that impacts the row. In many cases the timestamp values for
both these columns are the same because they result from the execution of the
same transaction.

When multiple transactions are updating the same row, timestamp conflicts can
occur. The database manager can resolve these conflicts by making adjustments to
row-begin column timestamp values. In such cases, the values in row-begin
column and transaction start-ID column would differ. The Example section in “
Updating a system-period temporal table” provides more details on timestamp
adjustments.

Updating data in a system-period temporal table
Updating data in a system-period temporal table results in rows that are added to
its associated history table.

About this task

In addition to updating the values of specified columns in rows of the
system-period temporal table, the UPDATE statement inserts a copy of the existing
row into the associated history table. The history row is generated as part of the
same transaction that updates the row. If a single transactions make multiple
updates to the same row, only one history row is generated and that row reflects
the state of the record before any changes were made by the transaction.

Note: Timestamp value conflicts can occur when multiple transactions are
updating the same row. When these conflicts occur, the setting for the
“systime_period_adj” database configuration parameter determines whether
timestamp adjustments are made or if transactions should fail. The Multiple
changes to a row by different transactions example in the More examples section

254 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

provides more details. Application programmers might consider using SQLCODE
or SQLSTATE values to handle potential timestamp value adjustment-related
return codes from SQL statements.

Procedure

To update data in a system-period temporal table, use the UPDATE statement. For
example, it was discovered that were some errors in the insurance coverage levels
for a customer and the following data was updated on February 28, 2011
(2011-02-28) in the example table that had data added in the “ Inserting data into a
system-period temporal table” topic.
The following table contains the original policy_info table data.

Table 26. Original data in the system-period temporal table (policy_info)

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

v The coverage for policy C567 should be 25000.
UPDATE policy_info

SET coverage = 25000
WHERE policy_id = ’C567’;

The update to policy C567 affects the system-period temporal table and its
history table, causing the following things to occur:
1. The coverage value for the row with policy C567 is updated to 25000.
2. In the system-period temporal table, the database manager updates the

sys_start and ts_id values to the date of the update.
3. The original row is moved to the history table. The database manager

updates the sys_end value to the date of the update. This row can be
interpreted as the valid coverage for policy C567 from 2010-01-31-
22.31.33.495925000000 to 2011-02-28-09.10.12.649592000000.

Table 27. Updated data in the system-period temporal table (policy_info)

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

C567 25000 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Chapter 20. Time Travel Query using temporal tables 255

Table 28. History table (hist_policy_info) after update

policy_id coverage sys_start sys_end ts_id

C567 20000 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

More examples

This section contains more examples of updating system-period temporal tables.

Time specifications
In the following example, a time period is specified as part of the table
update. The following update is run after the update in the preceding
Procedure section.
UPDATE (SELECT * FROM policy_info

FOR SYSTEM_TIME AS OF ’2010-01-31-22.31.33.495925000000’)
SET coverage = coverage + 1000;

This update returns an error because it implicitly attempts to update
history rows. The SELECT explicitly queries the policy_info table and
implicitly queries its associated history table (hist_policy_info). The C567
row in hist_policy_info would be returned by the SELECT, but rows in a
history table that were accessed implicitly cannot be updated.

Multiple changes to a row by different transactions
In the following example, two transactions are executing SQL statements
against the policy_info table at the same time. In this example, the
timestamps are simplified to a placeholder instead of a sample system
clock value. For example, instead of 2010-01-31-22.31.33.495925000000, the
example uses T1. Higher numbered placeholders indicate later actions
within the transaction. For example, T5 is later than T4.

When you insert or update multiple rows within a single SQL transaction,
the values for the row-begin column are the same for all the impacted
rows. That value comes from a reading of the system clock at the moment
the first data change statement in the transaction is executed. For example,
all times associated with transaction ABC will have a time of T1.

Transaction ABC Transaction XYZ
T1: INSERT INTO policy_info

(policy_id, coverage)
VALUES (’S777’,7000);

T2: INSERT INTO policy_info
(policy_id, coverage)
VALUES (’T888’,8000);

T3: COMMIT;
T4: UPDATE policy_info

SET policy_id = ’X999’
WHERE policy_id = ’T888’;

T5: INSERT INTO policy_info
(policy_id, coverage)
VALUES (’Y555’,9000);

T6: COMMIT;

After the inserts at T1 and T2, the policy_info table would look like this
and the history table would be empty (hist_policy_info). The value max
in the sys_end column is populated with the maximum default value for
the TIMESTAMP(12) data type.

256 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 29. Different transaction inserts to the policy_info table

policy_id coverage sys_start sys_end ts_id

S777 7000 T1 max T1

T888 8000 T2 max T2

After the update by transaction ABC at time T4, the policy information
looks like the following tables. All the rows in the policy_info table reflect
the insert and update activities from transaction ABC. The sys_start and
ts_id columns for these rows are populated with time T1, which is the
time of the first data change statement in transaction ABC. The policy
information inserted by transaction XYZ was updated and the original row
is moved to the history table.

Table 30. Different transactions after update to the policy_info table

policy_id coverage sys_start sys_end ts_id

S777 7000 T1 max T1

X999 8000 T1 max T1

Table 31. History table after different transactions update (hist_policy_info)

policy_id coverage sys_start sys_end ts_id

T888 8000 T2 T1 T2

The history table shows a sys_end time that is less than the sys_start. In
this situation, the update at time T4 could not execute and transaction ABC
would fail (SQLSTATE 57062, SQLCODE SQL20528N). To avoid such
failures, the systime_period_adj database configuration parameter can be
set to YES which allows the database manager to adjust the row-begin
timestamp (SQLSTATE 01695, SQLCODE SQL5191W). The sys_start
timestamp for the time T4 update in transaction ABC is set to time T2 plus
a delta (T2+delta). This adjustment only applies to the time T4 update, all
other changes made by transaction ABC would continue to use the time T1
timestamp (for example, the insert of the policy with policy_id Y555).
After this adjustment and the completion of transaction ABC, the insurance
policy tables would contain the following data:

Table 32. Different transactions after time adjustment (policy_info)

policy_id coverage sys_start sys_end ts_id

S777 7000 T1 max T1

X999 8000 T2+delta max T1

Y555 9000 T1 max T1

Table 33. History table after time adjustment (hist_policy_info)

policy_id coverage sys_start sys_end ts_id

T888 8000 T2 T2+delta T2

Multiple changes to a row in the same transaction
In the following example, a transaction makes multiple changes to a row.
Using the insurance policy tables from the previous example, transaction
ABC continues and updates the policy with policy_id X999 at time T6
(originally T6 was a COMMIT statement).

Chapter 20. Time Travel Query using temporal tables 257

Transaction ABC
T6: UPDATE policy_info SET policy_id = ’R111’ WHERE policy_id = ’X999’;
T7: COMMIT;

This row has now experienced the following changes:
1. Created as policy T888 by transaction XYZ at time T2.
2. Updated to policy X999 by transaction ABC at time T4.
3. Updated to policy R111 by transaction ABC at time T6.

When a transaction makes multiple updates to the same row, the database
manager generates a history row only for the first change. This, results in
the following tables:

Table 34. Same transaction after updates (policy_info)

policy_id coverage sys_start sys_end ts_id

S777 7000 T1 max T1

R111 8000 T1 max T1

Y555 9000 T1 max T1

Table 35. History table after same transaction update (hist_policy_info)

policy_id coverage sys_start sys_end ts_id

T888 8000 T2 T2+delta T2

The database manager uses the transaction-start-ID (ts_id) to uniquely
identify the transaction that changes the row. When multiple rows are
inserted or updated within a single SQL transaction, then the values for
the transaction start-ID column are the same for all the rows and are
unique from the values generated for this column by other transactions.
Before generating a history row, the database manager determines that the
last update to the row was for the transaction that started at time T1
(ts_id is T1), which is the same transaction start time for the transaction
that makes the current change and so no history row is generated. The
sys_start value for the row in the policy_info table is changed to time
T1.

Updating a view
A view that references a system-period temporal table or a bitemporal
table can be updated only if the view definition does not contain a FOR
SYSTEM_TIME clause. The following UPDATE statement updates the
policy_info table and generates history rows.
CREATE VIEW viewA AS SELECT * FROM policy_info;
UPDATE viewA SET col2 = col2 + 1000;

A view that references a system-period temporal table or a bitemporal
table with a view definition containing a FOR SYSTEM_TIME clause can
be made updatable by defining an INSTEAD OF trigger. The following
example updates the regular_table table.
CREATE VIEW viewB AS SELECT * FROM policy_info;

FOR SYSTEM_TIME BETWEEN
TIMESTAMP ’2010-01-01 10:00:00’ AND TIMESTAMP ’2011-01-01 10:00:00’;

CREATE TRIGGER update INSTEAD OF UPDATE ON viewB
REFERENCING NEW AS n FOR EACH ROW
UPDATE regular_table SET col1 = n.id;

UPDATE viewB set id = 500;

258 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Deleting data from a system-period temporal table
Deleting data from a system-period temporal table removes rows from the table
and adds rows to the associated history table. The rows are added with the
appropriate system timestamps.

About this task

In addition to deleting the specified rows of the system-period temporal table, the
DELETE FROM statement moves a copy of the existing row into the associated
history table before the row is deleted from the system-period temporal table.

Procedure

To delete data from a system-period temporal table, use the DELETE FROM
statement. For example, the owner of policy B345 decides to cancel insurance
coverage. The data was deleted on September 1, 2011 (2011-09-01) from the table
that was updated in the “ Updating data in a bitemporal table” topic.
DELETE FROM policy_info WHERE policy_id = ’B345’;

Results

The original policy_info table data is as follows:

Table 36. Data in the system-period temporal table (policy_info) before the DELETE
statement

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

B345 18000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

C567 25000 2011-02-28-
09.10.12.649592000000

9999-12-30-
00.00.00.000000000000

2011-02-28-
09.10.12.649592000000

The deletion of policy B345 affects the system-period temporal table and its history
table, causing the following things to occur:
1. The row where the policy_id column value is B345 is deleted from the

system-period temporal table.
2. The original row is moved to the history table. The database manager updates

the sys_end column value to the date of the delete.

Table 37. Data in the system-period temporal table (policy_info) after the DELETE statement

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

C567 25000 2011-02-28-
09.10.12.649592000000

9999-12-30-
00.00.00.000000000000

2011-02-28-
09.10.12.649592000000

Table 38. History table (hist_policy_info) after delete

policy_id coverage sys_start sys_end ts_id

C567 20000 2010-01-31-
22.31.33.495925000000

2011-02-28-
09.10.12.649592000000

2010-01-31-
22.31.33.495925000000

Chapter 20. Time Travel Query using temporal tables 259

Table 38. History table (hist_policy_info) after delete (continued)

policy_id coverage sys_start sys_end ts_id

B345 18000 2010-01-31-
22.31.33.495925000000

2011-09-01-
12.18.22.959254000000

2010-01-31-
22.31.33.495925000000

Example

This section contains more examples of delete operations on system-period
temporal tables.

Time specifications
In the following example, a time period is specified as part of the DELETE
statement. The following delete is run after the delete in the preceding
Procedure section.
DELETE FROM (SELECT * FROM policy_info

FOR SYSTEM_TIME AS OF ’2010-01-31-22.31.33.495925000000’)
WHERE policy_id = C567;

This DELETE statement returns an error. The SELECT statement explicitly
queries the policy_info table and implicitly queries its associated history
table (hist_policy_info). The row with a policy_id column value of C567
in the hist_policy_info table would be returned by the SELECT
statement, but rows in a history table that were accessed implicitly cannot
be deleted.

Querying system-period temporal data
Querying a system-period temporal table can return results for a specified point or
period in time. Those results can include current values and previous historic
values.

About this task

When querying a system-period temporal table, you can include FOR
SYSTEM_TIME in the FROM clause. Using FOR SYSTEM_TIME specifications, you
can query the current and past state of your data. Time periods are specified as
follows:

AS OF value1
Includes all the rows where the begin value for the period is less than or
equal to value1 and the end value for the period is greater than value1. This
enables you to query your data as of a certain point in time.

FROM value1 TO value2
Includes all the rows where the value of the begin column for the specified
period in the row is less than value2, and the value of the end column for
the specified period in the row is greater than value1. No rows are returned
if value1 is greater than or equal to value2.

BETWEEN value1 AND value2
Includes all the rows where any time period overlaps any point in time
between value1 and value2. A row is returned if the begin value for the
period is less than or equal to value2 and the end value for the period is
greater than value1.

See the following section for some sample queries.

260 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Procedure

To query a system-period temporal table, use the SELECT statement. For example,
each of the following queries requests policy information from the result tables in
the Deleting data from a system-period temporal table topic. Each query uses a
variation of the FOR SYSTEM_TIME specification.
The policy_info table and its associated history table are as follows:

Table 39. System-period temporal table: policy_info

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

C567 25000 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 40. History table: hist_policy_info

policy_id coverage sys_start sys_end ts_id

C567 20000 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2010-01-31-
22.31.33.

495925000000

2011-09-01-
12.18.22.

959254000000

2010-01-31-
22.31.33.

495925000000

v Query with no time period specification. For example:
SELECT policy_id, coverage

FROM policy_info
where policy_id = ’C567’

This query returns one row. The SELECT queries only the policy_info table.
The history table is not queried because FOR SYSTEM_TIME was not specified.
C567, 25000

v Query with FOR SYSTEM_TIME AS OF specified. For example:
SELECT policy_id, coverage

FROM policy_info
FOR SYSTEM_TIME AS OF

’2011-02-28-09.10.12.649592000000’

This query returns three rows. The SELECT queries both the policy_info and
the hist_policy_info tables. The begin column of a period is inclusive, while
the end column is exclusive. The history table row with a sys_end column value
of 2011-02-28-22.31.33.495925000000 equals value1, but it must be less than value1
in order to be returned.
A123, 12000
C567, 25000
B345, 18000

v Query with FOR SYSTEM_TIME FROM..TO specified. For example:
SELECT policy_id, coverage, sys_start, sys_end

FROM policy_info
FOR SYSTEM_TIME FROM

’0001-01-01-00.00.00.000000’ TO ’9999-12-30-00.00.00.000000000000’
where policy_id = ’C567’

Chapter 20. Time Travel Query using temporal tables 261

This query returns two rows. The SELECT queries both the policy_info and the
hist_policy_info tables.
C567, 25000, 2011-02-28-09.10.12.649592000000, 9999-12-30-00.00.00.000000000000
C567, 20000, 2010-01-31-22.31.33.495925000000, 2011-02-28-09.10.12.649592000000

v Query with FOR SYSTEM_TIME BETWEEN..AND specified. For example:
SELECT policy_id, coverage

FROM policy_info
FOR SYSTEM_TIME BETWEEN

’2011-02-28-09.10.12.649592000000’ AND ’9999-12-30-00.00.00.000000000000’

This query returns three rows. The SELECT queries both the policy_info and
the hist_policy_info tables. The rows with a sys_start column value of
2011-02-28-09.10.12.649592000000 are equal to value1 and are returned because
the begin time of a period is included. The rows with a sys_end column value of
2011-02-28-09.10.12.649592000000 are equal to value1 and are not returned
because the end time of a period is not included.
A123, 12000
C567, 25000
B345, 18000

More examples

This section contains more querying system-period temporal table examples.

Query using other valid date or timestamp values
The policy_info table was created with its time-related columns declared
as TIMESTAMP(12), so queries using any other valid date or timestamp
value are converted to use TIMESTAMP(12) before execution. For example:
SELECT policy_id, coverage

FROM policy_info
FOR SYSTEM_TIME AS OF ’2011-02-28’

is converted and executed as:
SELECT policy_id, coverage

FROM policy_info
FOR SYSTEM_TIME AS OF ’2011-02-28-00.00.00.000000000000’

Querying a view
A view can be queried as if it were a system-period temporal table. FOR
SYSTEM_TIME specifications can be specified after the view reference.
CREATE VIEW policy_2011(policy, start_date)

AS SELECT policy_id, sys_start FROM policy_info;

SELECT * FROM policy_2011 FOR SYSTEM_TIME BETWEEN
’2011-01-01-00.00.00.000000’ AND ’2011-12-31-23.59.59.999999999999’;

The SELECT on the view policy_2011 queries both the policy_info and
the hist_policy_info tables. Returned are all policies that were active at
anytime in 2011 and includes the date the policies were started.
A123, 2010-01-31-22.31.33.495925000000
C567, 2011-02-28-09.10.12.649592000000
C567, 2010-01-31-22.31.33.495925000000
B345, 2010-01-31-22.31.33.495925000000

If a view definition contains a period specification, then queries against the
view cannot contain period specifications. The following statements return
an error due to multiple period specifications:

262 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

CREATE VIEW all_policies AS SELECT * FROM policy_info;
FOR SYSTEM_TIME AS OF ’2011-02-28-09.10.12.649592000000’;

SELECT * FROM all_policies FOR SYSTEM_TIME BETWEEN
’2011-01-01-00.00.00.000000’ AND ’2011-12-31-23.59.59.999999999999’;

Setting the system time for a session
Setting the system time with the CURRENT TEMPORAL SYSTEM_TIME special
register can reduce or eliminate the changes required when running an application
against different points in time.

About this task

When you have an application that you want to run against a system-period
temporal table to query the state of your business for a number of different dates,
you can set the date in a special register. If you need to query your data as of
today, as of the end of the last quarter, and as of the same date from last year, it
might not be possible to change the application and add AS OF specifications to
each SQL statement. This restriction is likely the case when you are using
packaged applications. To address such scenarios, you can use the CURRENT
TEMPORAL SYSTEM_TIME special register to set the date or timestamp at the
session level.

Setting the CURRENT TEMPORAL SYSTEM_TIME special register does not affect
regular tables. Only queries on temporal tables with versioning enabled
(system-period temporal tables and bitemporal tables) use the time set in the
special register. There is also no affect on DDL statements. The special register does
not apply to any scans run for referential integrity processing. .

Important: When the CURRENT TEMPORAL SYSTEM_TIME special register is set
to a non-null value, data modification statements like INSERT, UPDATE, and
DELETE against system-period temporal tables are blocked. If the special register
was set to some time in the past, for example five years ago, then allowing data
modification operations might result in changes to your historical data records.
Utilities like IMPORT and LOAD are also blocked against system-period temporal
tables when the CURRENT TEMPORAL SYSTEM_TIME special register is set to a
non-null value.

The BIND command contains the SYSTIMESENSITIVE option that indicates
whether references to system-period temporal tables in static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME
special register. For SQL procedures, use the SET_ROUTINE_OPTS procedure to
set the bind-like options, called query compiler variables.

Procedure

When this special register is set to a non-null value, applications that issue a query
will return data as of that date or timestamp. The following examples request
information from the result tables in the Deleting data from a system-period
temporal table topic.
v Set the special register to the current timestamp and query data from one year

ago. Assuming a current timestamp of 2011-05-17-14.45.31.434235000000:
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 YEAR;
SELECT policy_id, coverage FROM policy_info;

v Set the special register to a timestamp and reference a system-period temporal
table in view definitions.

Chapter 20. Time Travel Query using temporal tables 263

CREATE VIEW view1 AS SELECT policy_id, coverage FROM policy_info;
CREATE VIEW view2 AS SELECT * FROM regular_table

WHERE col1 IN (SELECT coverage FROM policy_info);
SET CURRENT TEMPORAL SYSTEM_TIME = TIMESTAMP ’2011-02-28-09.10.12.649592000000’;
SELECT * FROM view1;
SELECT * FROM view2;

v Set the special register to the current timestamp and issue a query that contains
a time period specification. Assuming a current timestamp of
2011-05-17-14.45.31.434235000000:
SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 YEAR;
SELECT *

FROM policy_info FOR SYSTEM_TIME AS OF ’2011-02-28-09.10.12.649592000000’;

Results

The policy_info table and its associated history table are as follows:

Table 41. Data in the system-period temporal table (policy_info) after the DELETE statement

policy_id coverage sys_start sys_end ts_id

A123 12000 2010-01-31-
22.31.33.495925000000

9999-12-30-
00.00.00.000000000000

2010-01-31-
22.31.33.495925000000

C567 25000 2011-02-28-
09.10.12.649592000000

9999-12-30-
00.00.00.000000000000

2011-02-28-
09.10.12.649592000000

Table 42. History table (hist_policy_info) after delete

policy_id coverage sys_start sys_end ts_id

C567 20000 2010-01-31-
22.31.33.495925000000

2011-02-28-
09.10.12.649592000000

2010-01-31-
22.31.33.495925000000

B345 18000 2010-01-31-
22.31.33.495925000000

2011-09-01-
12.18.22.959254000000

2010-01-31-
22.31.33.495925000000

v The request for data from one year ago queries the policy_info table as of
2010-05-17-14.45.31.434235000000. The query is implicitly rewritten to:
SELECT policy_id, coverage FROM policy_info

FOR SYSTEM_TIME AS OF TIMESTAMP ’2010-05-17-14.45.31.434235000000’;

The SELECT queries both the policy_info and the hist_policy_info tables and
returns:
A123, 12000
C567, 20000
B345, 18000

v The query on view1 is implicitly rewritten to:
SELECT * FROM view1 FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME;

The query is then rewritten to:
SELECT policy_id, coverage FROM policy_info

FOR SYSTEM_TIME AS OF TIMESTAMP ’2011-02-28-09.10.12.649592000000’;

The SELECT queries both the policy_info and the hist_policy_info tables and
returns:
A123, 12000
C567, 25000
B345, 18000

264 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The query on view2 involves a view on a regular table that references a
system-period temporal table, causing an implicit relationship between a regular
table and the special register. The query is implicitly rewritten to:
SELECT * FROM view2 FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME;

The query is then rewritten to:
SELECT * FROM regular_table WHERE col1 in (SELECT coverage FROM policy_info

FOR SYSTEM_TIME AS OF TIMESTAMP ’2011-02-28-09.10.12.649592000000’);

The SELECT returns rows where col1 values match values in coverage.
v An error is returned because there are multiple time period specifications. The

special register was set to a non-null value and the query also specified a time.

Dropping a system-period temporal table
Dropping a system-period temporal table also drops its associated history table
and any indexes defined on the history table.

Before you begin

To drop a system-period temporal table, you must be authorized to drop its history
table.

About this task

A history table is implicitly dropped when its associated system-period temporal
table is dropped. A history table cannot be explicitly dropped by using the DROP
statement.

To avoid losing historical data when a system-period temporal table is dropped,
you can either create the history table with the RESTRICT ON DROP attribute or
alter the history table by adding the RESTRICT ON DROP attribute. If you try to
drop a system-period temporal table and its history table has the RESTRICT ON
DROP attribute, the drop of the system-period temporal table fails (SQLSTATE
42893). In such cases, you must break the link between the system-period temporal
table and the history table by removing the VERSIONING attribute and then rerun
the DROP statement.

When a table is altered to drop VERSIONING, all packages with the versioning
dependency on the table are invalidated. Other dependent objects, for example,
views or triggers are marked invalid 'N' in the system catalog. Auto-revalidation is
done. Any objects failing revalidation are left as invalid in the catalog. Some
objects can become valid after only explicit user action.

Procedure

To drop a system-period temporal table and its associated history table:
1. Optional: Protect historical data from deletion:

a. If the history table was not created with the RESTRICT ON DROP attribute,
alter the history table to set the RESTRICT ON DROP attribute. For
example, if audit requirements made it necessary to preserve the history of
insurance policies then the history table must be protected.
ALTER TABLE hist_policy_info ADD RESTRICT ON DROP;

Chapter 20. Time Travel Query using temporal tables 265

b. Break the link between the system-period temporal table and a history table
with RESTRICT ON DROP attribute by removing the VERSIONING
attribute. For example:
ALTER TABLE policy_info DROP VERSIONING;

2. Drop the system-period temporal table with the DROP statement. For example,
the insurance policy tables created in the example in the Creating a
system-period temporal table topic are no longer required.
DROP TABLE policy_info;

Results

The preceding commands affect the policy_info and hist_policy_info tables as
follows:
v The DROP statement explicitly drops the system-period temporal table and

implicitly drops the associated history table. The policy_info and
hist_policy_info tables are deleted. Any objects that are directly or indirectly
dependent on those tables are either deleted or made inoperative.

v After the RESTRICT ON DROP attribute is associated with the history table, any
attempt to drop the policy_info table would fail (SQLSTATE 42893). A
system-period temporal table can also be created or altered to use the RESTRICT
ON DROP attribute.

v After the link between the system-period temporal table and its history table is
broken, the policy_info table can be dropped and the hist_policy_info history
table would remain.

Dropping table spaces

If a table space contains a history table, but does not contain the associated
system-period temporal table, that table space cannot be explicitly dropped. For
example, using the insurance policy tables that were created in the policy_space
and hist_space table spaces, the following statement is blocked:
DROP TABLESPACE hist_space;

If table space that contains a history table and the table space containing the
associated system-period temporal table are included together, then the statement
is allowed. For example, the following statement would succeed:
DROP TABLESPACE policy_space hist_space;

A history table is implicitly dropped when the table space for its associated
system-period temporal table is dropped. For example, the following statement
would drop the hist_policy_info history table:
DROP TABLESPACE policy_space;

Utilities and tools
There are a number of tools and utilities available for you to work with and
manage the data in your temporal tables.

The following tools are available to work with and manage temporal tables:
v Import data (see “Import” on page 267)
v Load data (see “Load” on page 267)
v Online table move (see “ADMIN_MOVE_TABLE procedure” on page 268)
v Quiesce table space (see “QUIESCE TABLESPACES FOR TABLE command” on

page 268)

266 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Replication (see “Replication” on page 268)
v Roll forward (see “Roll forward” on page 269)
v ADMIN_COPY_SCHEMA procedure (see ADMIN_COPY_SCHEMA)

Import

When importing data into system-period temporal tables, you use file type
modifiers to ignore any content in the external file that might be applied to the
database manager generated columns in the system-period temporal table. The
following modifiers are available when importing data into a system-period
temporal table.

periodignore
Use this modifier to inform the import utility that data for the
SYSTEM_TIME period columns is present in the external file, but should
be ignored. When this modifier is specified, all time period column values
are generated by the utility.

periodmissing
Use this modifier to advise the import utility that the external data file
does not contain any data for the SYSTEM_TIME period columns. When
this modifier is specified, all time period column values are generated by
the utility.

transactionidignore
Use this modifier to inform the import utility that data for the transaction
start-ID column is present in the external file, but should be ignored. When
this modifier is specified, the value for the transaction start-ID column is
generated by the utility.

transactionidmissing
Use this modifier to advise the import utility that the external data file
does not contain any data for the transaction start-ID column. When this
modifier is specified, the value for the transaction start-ID column is
generated by the utility.

Unlike the load utility, the import utility does not have modifiers that override the
GENERATED ALWAYS columns.

Load

When loading data into system-period temporal tables, you use file type modifiers
to either ignore any data in the external file that might be applied to the database
manager generated columns, or to load user-supplied values to those generated
columns. The following modifiers are available when loading data into a
system-period temporal table. LOAD REPLACE is blocked on system-period
temporal tables.

periodignore
Use this modifier to inform the load utility that data for the
SYSTEM_TIME period columns is present in the external file, but should
be ignored. When this modifier is specified, all time period column values
are generated by the utility.

periodmissing
Use this modifier to advise the load utility that the external data file does

Chapter 20. Time Travel Query using temporal tables 267

not contain any data for the SYSTEM_TIME period columns. When this
modifier is specified, all time period column values are generated by the
utility.

periodoverride
Use this modifier to instruct the load utility to accept user-supplied values
for the SYSTEM_TIME period row-begin and row-end columns. This
modifier overrides the GENERATED ALWAYS clause. This modifier can be
useful when you want to maintain history data and load data that includes
time stamps into a system-period temporal table. When this modifier is
used, any rows with no data or NULL data in the row-begin and row-end
columns are rejected.

transactionidignore
Use this modifier to inform the load utility that data for the transaction
start-ID column is present in the external file, but should be ignored. When
this modifier is specified, the value for the transaction start-ID column is
generated by the utility.

transactionidmissing
Use this modifier to advise the load utility that the external data file does
not contain any data for the transaction start-ID column. When this
modifier is specified, the value for the transaction start-ID column is
generated by the utility.

transactionidoverride
Use this modifier to instruct the load utility to accept user-supplied values
for the transaction start-ID column. This modifier overrides the
GENERATED ALWAYS clause. When this modifier is used, any rows with
no data or NULL data in a transaction start-ID column are rejected.

ADMIN_MOVE_TABLE procedure

When using the ADMIN_MOVE_TABLE stored procedure to move data in an
active system-period temporal table into a new table with the same name, the
following actions are blocked.
v Alter table operations that change the definition of the system-period temporal

table or the associated history table are blocked during online move operations.
v The KEEP option of ADMIN_MOVE_TABLE is unavailable for system-period

temporal tables

The online-table-move operation is not supported for history tables.

QUIESCE TABLESPACES FOR TABLE command

When running the QUIESCE TABLESPACES FOR TABLE command on a
system-period temporal table, all the table spaces associated with the
system-period temporal table and its history table are quiesced. When running the
command against a history table, all the table spaces associated with the history
table and the associated system-period temporal table are quiesced.

Replication

When replicating a system-period temporal table, columns with following
generated attributes cannot participate in the replication if the target is another
system-period temporal table:
v GENERATED ALWAYS AS ROW BEGIN

268 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v GENERATED ALWAYS AS ROW END
v GENERATED ALWAYS AS TRANSACTION START ID

Similarly, when replicating a bitemporal table, columns with following generated
attributes cannot participate in the replication if the target is another bitemporal
table:

Roll forward

When the table space for a system-period temporal table or a bitemporal table is
rolled-forward to a point in time, the table space for the associated history table
also must be rolled-forward to the same point in time in the same
ROLLFORWARD statement. Similarly when the table space for a history table is
rolled-forward to a point in time, the table space for the system-period temporal
table or a bitemporal table also must be rolled-forward to the same point in time.
You can, however, recover the table space for the system-period temporal table or
the table space for the history table to end of logs individually.

ADMIN_COPY_SCHEMA procedure

The ADMIN_COPY_SCHEMA procedure is used to copy a specific schema and all
objects contained in it. The new target schema objects are created using the same
object names as the objects in the source schema, but with the target schema
qualifier. The ADMIN_COPY_SCHEMA procedure is supported for system-period
temporal tables. The procedure requires that both system-period temporal table
and the history table are in the same schema, otherwise neither table is copied and
an error is recorded.

Schema changes
In order to maintain the integrity of the relationship between the system-period
temporal table and its associated history table, only certain changes to the schema
of a system-period temporal table are permitted. Any changes that would result in
the loss of data are restricted.

You can make the following changes to your system-period temporal tables. These
changes are implicitly propagated to the associated history table if you have the
appropriate privileges. These changes cannot be explicitly made to the history
table.
v ADD COLUMN (except generated columns)
v RENAME COLUMN
v ALTER COLUMN (in cases where no history data is lost). For example, altering

the data type of a column from VARCHAR(50) to VARCHAR(100), or from
INTEGER to DECIMAL is permitted. However, the reverse change from
VARCHAR(100) to VARCHAR(50), or from DECIMAL to INTEGER is blocked
because it would reduce the length or precision of a column and likely cause a
loss of data.

You cannot make the following changes to your system-period temporal tables
because data would likely be lost:
v DROP COLUMN
v ADD COLUMN (generated)
v ALTER COLUMN (in cases where history data might be lost). For example,

altering the data type of a column from VARCHAR(50) to VARCHAR(100), or
from INTEGER to DECIMAL is permitted. However, the reverse change from

Chapter 20. Time Travel Query using temporal tables 269

VARCHAR(100) to VARCHAR(50), or from DECIMAL to INTEGER is blocked
because it would reduce the length or precision of a column.

Versioning establishes a link between your system-period temporal table and its
associated history table. When versioning is active, certain ALTER TABLE
operations are blocked on system-period temporal tables and history tables.
v ALTER TABLE DROP PERIOD
v ALTER TABLE ADD MATERIALIZED
v ALTER TABLE ACTIVATE NOT LOGGED INITIALLY
v ALTER TABLE ADD SECURITY POLICY
v ALTER TABLE DROP SECURITY POLICY
v ALTER TABLE SECURED WITH ALTER

ALTER TABLE operations that are not shown in the previous list are supported,
but are not propagated from a system-period temporal table to its history table.

Additionally, RENAME INDEX and RENAME TABLE are supported, but are not
propagated from a system-period temporal table to its history table.

Cursors and system-period temporal tables
Cursors used to update or delete rows for a query that potentially references rows
in a history table must be read-only.

In the following example, the statement runs successfully because the cursor
appcur is read-only.
DECLARE appcur CURSOR FOR SELECT * FROM policy_info

FOR SYSTEM_TIME AS OF ’2011-02-28’;

However, the following statement results in an error because any cursor references
to the history rows are not read-only:
DECLARE appcur CURSOR FOR SELECT * FROM policy_info

FOR SYSTEM_TIME AS OF ’2011-02-28’ FOR UPDATE;

Table partitioning and system-period temporal tables
A system-period temporal table can have its table data divided across multiple
storage objects called data partitions. A history table associated with a
system-period temporal table can also be partitioned.

When versioning is enabled, the following behaviors apply when attaching a
partition to a system-period temporal table or detaching a partition from a
system-period temporal table:

Attaching partitions

v A table can be attached to a system-period temporal table while
versioning is enabled.

v The table being attached must contain all three timestamp columns
(ROW BEGIN, ROW END, and TRANSACTION START ID). These
timestamp columns must have the same definitions as those columns in
the system-period temporal table.

v The table being attached does not require a SYSTEM_TIME period
definition.

v While versioning is enabled, the SET INTEGRITY ... FOR EXCEPTION
statement cannot be run because moving exception rows into an

270 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

exception table would result in lost history. Because the exception rows
are not recorded in the history table, the auditability of the data in your
system-period temporal table and its associated history table is
jeopardized. You can temporarily stop versioning, run the SET
INTEGRITY ... FOR EXCEPTION statement, and then enable versioning
again.

Detaching partitions

v A table cannot be detached from a system-period temporal table while
versioning is enabled. You can stop versioning and then detach a
partition from the base table. The detached partition becomes an
independent table. Detaching a partition from a history table does not
require that you stop versioning.

v A detached partition retains all three timestamp columns (ROW BEGIN,
ROW END, and TRANSACTION START ID), but not the SYSTEM_TIME
period definition.

v The rows in a detached partition are not automatically moved to the
history table. If you want to maintain the history, then the rows must be
moved manually. If you manually move the rows to the history table,
you should change the ROW END timestamp to the point-in-time when
the rows changed from being current to being history. Without these
changes, time-related queries might return unexpected results.

Data access control for system-period temporal tables
Row and column access control can be defined on both a system-period temporal
table and its associated history table.

Row and column access control (RCAC) is a layer of data security that controls
access to a table at the row level, column level, or both. RCAC can be applied to
system-period temporal tables and history tables. When RCAC is only activated for
a system-period temporal table, the database manager automatically activates row
access control on the history table and creates a default row permission for the
history table.

When the history table is protected by the default row permission, updates and
deletes still generate history rows in the history table. When an AS OF query is
issued against a system-period temporal table, the RCAC row permissions and
column masks for the system-period temporal table are also applied to the rows
returned from the history table.

If a history table is accessed directly, then any row and column rules defined on
the history table are applied.

Restrictions for system-period temporal tables
System-period temporal tables are subject to a number of restrictions. These
restrictions can impact your implementation of system-period temporal tables.

Following are the restrictions for system-period temporal tables:
v Label-based access control (LBAC) is not supported on system-period temporal

tables. While system-period data versioning is enabled, adding row and column
labels to either a system-period temporal table or a history table is blocked.
When versioning is enabled with an ALTER TABLE statement, the database
manager ensures that both the system-period temporal table and the history
table do not have rows or columns secured with labels.

Chapter 20. Time Travel Query using temporal tables 271

v ALTER operations that cause a potential loss of data are not supported on
system-period temporal tables.

v ALTER TABLE ACTIVATE NOT LOGGED INITIALLY statements are blocked for
both the system-period temporal table and the history table.

v A system-period temporal table cannot be altered to become a materialized
query table (MQT).

v Utilities that delete data from system-period temporal tables are blocked,
including LOAD REPLACE and IMPORT REPLACE.

v The TRUNCATE statement is not supported against a system-period temporal
table.

v The following schema-changing operations are not supported against
system-period temporal tables:
– ALTER TABLE DROP COLUMN
– ALTER TABLE ALTER COL (Altering string data types to a type that requires

data truncation is not supported. Altering numeric data types to a lower
precision type is also not supported).

– ALTER TABLE ADD GENERATED COLUMN
v For point-in-time recovery, if a table space that contains the system-period

temporal table is being rolled forward to a point in time, the table space that
contains the associated history table must also be rolled forward to the same
point in time as a set. Similarly when the table space for a history table is
rolled-forward to a point in time, the table space for the system-period temporal
table or a bitemporal table also must be rolled-forward to the same point in
time. However, rolling only the system-period temporal tables table space (or the
history tables table space) to the end of logs is allowed.

v A nickname can be created over a remote system-period temporal table, but the
temporal information is not exposed and temporal operations over nicknames
are not supported. For instance, temporal data definition operations and
temporal queries against federated nicknames are blocked.

v IMPORT and LOAD operations into system-period temporal tables are blocked
if the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null
value.

Application-period temporal tables
An application-period temporal table is a table that stores the in effect aspect of
application data. Use an application-period temporal table to manage data based
on time criteria by defining the time periods when data is valid.

Similar to a system-period temporal table, an application-period temporal table
includes a BUSINESS_TIME period with columns that indicate the time period
when the data in that row is valid or in effect. You provide the begin time and end
time for the BUSINESS_TIME period associated with each row. However, unlike a
system time-period temporal table, there is no separate history table. Past, present,
and future effective dates and their associated business data are maintained in a
single table. You can control data values by BUSINESS_TIME period and use
application-period temporal tables for modeling data in the past, present, and
future.

BUSINESS_TIME period
The BUSINESS_TIME period columns for an application-period temporal table
record when the version of a row is valid from a user or business application
perspective.

272 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The BUSINESS_TIME period contains a pair of DATE or TIMESTAMP(p) columns
where p can be from 0 to 12. These columns are populated by you or a business
application. The two columns in a BUSINESS_TIME period denote the start and
end of the validity period. These columns differs from SYSTEM_TIME period
columns where the time period values are generated by the database manager. The
BUSINESS_TIME period columns must be defined as NOT NULL and must not be
generated columns.

A BUSINESS_TIME period is inclusive-exclusive. The start of the validity period is
included in the BUSINESS_TIME, while the end is excluded.

Whenever a BUSINESS_TIME period is defined on a table, an implicit check
constraint named
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME is generated to
ensure that the value for the end of the validity period is greater than the value for
the start of the validity period. If a constraint with the same name exists, then an
error is returned. This constraint is useful when supporting operations that
explicitly input data into these columns, such as an insert or load operation.

An application-period temporal table can be defined so that rows with the same
key do not have any overlapping periods of BUSINESS_TIME. For example, this
restriction would prevent two versions of an insurance policy from being in effect
at any point in time. These controls can be achieved by adding a BUSINESS_TIME
WITHOUT OVERLAPS clause to a primary key, unique constraint specification, or
create unique index statement. The enforcement is handled by the database
manager. This control is optional.

Creating an application-period temporal table
Creating an application-period temporal table results in a table that manages data
based on when its data is valid or in effect.

About this task

When creating an application-period temporal table, include a BUSINESS_TIME
period that indicates when the data in a row is valid. You can optionally define
that overlapping periods of BUSINESS_TIME are not allowed and that values are
unique with respect to any period. The example in the following section shows the
creation of a table that stores policy information for the customers of an insurance
company.

Procedure

To create an application-period temporal table:
1. Create a table with a BUSINESS_TIME period. For example:

CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME (bus_start, bus_end)
);

2. Optional: Create a unique index that prevents overlapping periods of
BUSINESS_TIME for the same policy_id. For example:
CREATE UNIQUE INDEX ix_policy

ON policy_info (policy_id, BUSINESS_TIME WITHOUT OVERLAPS);

Chapter 20. Time Travel Query using temporal tables 273

Results

The policy_info table stores the insurance coverage level for a customer. The
BUSINESS_TIME period-related columns (bus_start and bus_end) indicate when
an insurance coverage level is valid.

Table 43. Created application-period temporal table (policy_info)

policy_id coverage bus_start bus_end

The ix_policy index, with BUSINESS_TIME WITHOUT OVERLAPS as the final
column in the index key column list, ensures that there are no overlapping time
periods for customer insurance coverage levels.

Example

This section contains more examples of creating application-period temporal tables.

Changing an existing table into an application-period temporal table
The following example adds time columns and a BUSINESS_TIME period
to an existing table (employees) enabling application-period temporal table
functionality. Adding the BUSINESS_TIME WITHOUT OVERLAPS clause
ensures that an employee is listed only once in any time period.
ALTER TABLE employees ADD COLUMN bus_start DATE NOT NULL;
ALTER TABLE employees ADD COLUMN bus_end DATE NOT NULL;
ALTER TABLE employees ADD PERIOD BUSINESS_TIME(bus_start, bus_end);
ALTER TABLE employees ADD CONSTRAINT uniq

UNIQUE(employee_id, BUSINESS_TIME WITHOUT OVERLAPS);

Preventing overlapping periods of time
In the “Procedure” section, an index ensures that there are no overlapping
BUSINESS_TIME periods. In the following alternative example, a
PRIMARY KEY declaration is used when creating the policy_info table,
ensuring that overlapping periods of BUSINESS_TIME are not allowed.
This means that there cannot be two versions of the same policy that are
valid at the same time.
CREATE TABLE policy_info
(

policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME(bus_start, bus_end),
PRIMARY KEY(policy_id, BUSINESS_TIME WITHOUT OVERLAPS)

);

Ensuring uniqueness for periods of time
The following example creates a product_availability table where a
company tracks the products it distributes, the suppliers of those products,
and the prices the suppliers charge. Multiple suppliers can provide the
same product at the same time, but a PRIMARY KEY declaration ensures
that a single supplier can only charge one price at any given point in time.
CREATE TABLE product_availability
(

product_id CHAR(4) NOT NULL,
supplier_id INT NOT NULL,
product_price DECIMAL NOT NULL
bus_start DATE NOT NULL,

274 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

bus_end DATE NOT NULL,
PERIOD BUSINESS_TIME(bus_start, bus_end),
PRIMARY KEY(product_id, supplier_id, BUSINESS_TIME WITHOUT OVERLAPS)

);

If the PRIMARY KEY was defined as
PRIMARY KEY(product_id, BUSINESS_TIME WITHOUT OVERLAPS)

then no two suppliers could deliver the same product at the same time.

Inserting data into an application-period temporal table
Inserting data into an application-period temporal table is similar to inserting data
into a regular table.

About this task

When inserting data into an application-period temporal table, the only special
consideration is the need to include the row-begin and row-end columns that
capture when the row is valid from the perspective of the associated business
applications. This valid period is called the BUSINESS_TIME period. The database
manager automatically generates an implicit check constraint that ensures that the
begin column of the BUSINESS_TIME period is less than its end column. If a
unique constraint or index with BUSINESS_TIME WITHOUT OVERLAPS was
created for the table, you must ensure that no BUSINESS_TIME periods overlap.

Procedure

To insert data into an application-period temporal table, use the INSERT statement
to add data to the table. For example, the following data was inserted to the table
created in the example in Creating an application-period temporal table topic.
INSERT INTO policy_info VALUES(’A123’,12000,’2008-01-01’,’2008-07-01’);

INSERT INTO policy_info VALUES(’A123’,16000,’2008-07-01’,’2009-01-01’);

INSERT INTO policy_info VALUES(’A123’,16000,’2008-06-01’,’2008-08-01’);

INSERT INTO policy_info VALUES(’B345’,18000,’2008-01-01’,’2009-01-01’);

INSERT INTO policy_info VALUES(’C567’,20000,’2008-01-01’,’2009-01-01’);

Results

There were five INSERT statements issued, but only four rows were added to the
table. The second and third INSERT statements are attempting to add rows for
policy A123, but their BUSINESS_TIME periods overlap which results in the
following:
v The second insert adds a row for policy_id A123 with a bus_start value of

2008-07-01 and a bus_end value of 2009-01-01.
v The third insert attempts to add a row for policy_id A123, but it fails because

its BUSINESS_TIME period overlaps that of the previous insert. The policy_info
table was created with a BUSINESS_TIME WITHOUT OVERLAPS index and the
third insert has a bus_end value of 2008-08-01, which is within the time period of
the earlier insert.

The begin column of a period is inclusive, while the end column is exclusive,
meaning that the row with a bus_end value of 2008-07-01 does not have a

Chapter 20. Time Travel Query using temporal tables 275

BUSINESS_TIME period overlap with the row that contains a bus_start value of
2008-07-01. As a result, the policy_info table now contains the following insurance
coverage data:

Table 44. Data added to an application-period temporal table (policy_info)

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-07-01

A123 16000 2008-07-01 2009-01-01

B345 18000 2008-01-01 2009-01-01

C567 20000 2008-01-01 2009-01-01

Updating data in an application-period temporal table
Updating data in an application-period temporal table can be similar to updating
data in a regular table, but data can also be updated for specified points of time in
the past, present, or future. Point in time updates can result in rows being split
and new rows being inserted automatically into the table.

About this task

In addition to the regular UPDATE statement, application-period temporal tables
also support time range updates where the UPDATE statement includes the FOR
PORTION OF BUSINESS_TIME clause. A row is a candidate for updating if its
period-begin column, period-end column, or both fall within the range specified in
the FOR PORTION OF BUSINESS_TIME clause.

Procedure

To update data in an application-period temporal table, use the UPDATE
statement. For example, you discovered some errors in the insurance coverage
information for some customers and the following updates are performed on the
sample table that was introduced in the “ Inserting data into an application-period
temporal table” topic.
The following table contains the original policy_info table data.

Table 45. Original data in the application-period temporal table (policy_info)

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-07-01

A123 16000 2008-07-01 2009-01-01

B345 18000 2008-01-01 2009-01-01

C567 20000 2008-01-01 2009-01-01

The policy_info table was created with a BUSINESS_TIME WITHOUT
OVERLAPS index. When using the regular UPDATE statement, you must ensure
that no BUSINESS_TIME periods overlap. Updating an application-period
temporal table by using the FOR PORTION OF BUSINESS_TIME clause avoids
period overlap problems. This clause causes rows to be changed and can result in
rows that are inserted when the existing time period for a row that is being
updated is not fully contained within the range specified in the UPDATE
statement.
v The coverage for policy B345 actually started on March 1, 2008 (2008-03-01) and

the coverage should be 18500:

276 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

UPDATE policy_info
SET coverage = 18500, bus_start = ’2008-03-01’
WHERE policy_id = ’B345’
AND coverage=18000

The update to policy B345 uses a regular UPDATE statement. There is only one
row in the policy_info table for policy_id B345, so there are no potential
BUSINESS_TIME periods overlaps. As a result, the bus_start column value is
updated to 2008-03-01 and the coverage value is updated to 18500. Note that
updates to a BUSINESS_TIME period column cannot include the FOR PORTION
OF BUSINESS_TIME clause.

Table 46. Policy B345 updated

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-07-01

A123 16000 2008-07-01 2009-01-01

B345 18500 2008-03-01 2009-01-01

C567 20000 2008-01-01 2009-01-01

v The coverage for policy C567 should be 25000 for the year 2008:
UPDATE policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-01-01’ TO ’2009-01-01’
SET coverage = 25000
WHERE policy_id = ’C567’;

The update to policy C567 applies to the BUSINESS_TIME period from
2008-01-01 to 2009-01-01. There is only one row in the policy_info table for
policy_id C567 that includes this time period. The BUSINESS_TIME period is
fully contained within the bus_start and bus_end column values for that row. As
a result, the coverage value is updated to 25000. The bus_start and bus_end
column values are unchanged.

Table 47. Policy C567 updated

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-07-01

A123 16000 2008-07-01 2009-01-01

B345 18500 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

v The coverage for policy A123 shows an increase from 12000 to 16000 on July 1
(2008-07-01), but an earlier increase to 14000 is missing:
UPDATE policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-06-01’ TO ’2008-08-01’
SET coverage = 14000
WHERE policy_id = ’A123’;

The update to policy A123 applies to the BUSINESS_TIME period from
2008-06-01 to 2008-08-01. There are two rows in the policy_info table for
policy_id A123 that include part of this time period.
1. The BUSINESS_TIME period is partially contained in the row that has a

bus_start value of 2008-01-01 and a bus_end value of 2008-07-01. This row
overlaps the beginning of the specified period because the earliest time value
in the BUSINESS_TIME period is greater than the rows bus_start value, but
less than its bus_end value.

Chapter 20. Time Travel Query using temporal tables 277

2. The BUSINESS_TIME period is partially contained in the row that has a
bus_start value of 2008-07-01 and a bus_end value of 2009-01-01. This row
overlaps the end of the specified period because the latest time value in the
BUSINESS_TIME period is greater than the rows bus_start value, but less
than its bus_end value.

As a result, the update causes the following things to occur:
1. When the bus_end value overlaps the beginning of the specified period, the

row is updated to the new coverage value of 14000. In this updated row, the
bus_start value is set to 2008-06-01 which is the begin value of the UPDATE
specified period, and the bus_end value is unchanged. An additional row is
inserted with the original values from the row, except that the bus_end value
is set to 2008-06-01. This new row reflects the BUSINESS_TIME period when
coverage was 12000.

2. When the bus_start value overlaps the end of the specified period, the row
is updated to the new coverage value of 14000. In this updated row, the
bus_start value is unchanged and the bus_end value is set to 2008-08-01
which is the end value of the UPDATE specified period. An additional row is
inserted with the original values from the row, except that the bus_start
value is set to 2008-08-01. This new row reflects the BUSINESS_TIME period
when coverage was 16000.

Table 48. Policy A123 updated

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-07-01

A123 14000 2008-07-01 2008-08-01

A123 16000 2008-08-01 2009-01-01

B345 18500 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

More examples

This section contains more updating application-period temporal table examples.

Merging content
In the following example, a MERGE statement uses the FOR PORTION OF
clause to update the policy_info table with the contents of another table
(merge_policy).

Table 49. Content of the merge_policy table

policy_id coverage bus_start bus_end

C567 30000 2008-10-01 2010-05-01

H789 16000 2008-10-01 2010-05-01

1. Create global variables to hold the FROM and TO dates for the FOR
PORTION OF clause.
CREATE VARIABLE sdate DATE default ’2008-10-01’;
CREATE VARIABLE edate DATE default ’2010-05-01’;

2. Issue a MERGE statement that merges the content of merge_policy into
the policy_info table that resulted from the updates in the preceding
“Procedure” section.

278 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

MERGE INTO policy_info pi1
USING (SELECT policy_id, coverage, bus_start, bus_end

FROM merge_policy) mp2
ON (pi1.policy_id = mp2.policy_id)

WHEN MATCHED THEN
UPDATE FOR PORTION OF BUSINESS_TIME FROM sdate TO edate

SET pi1_coverage = mp2.coverage
WHEN NOT MATCHED THEN

INSERT (policy_id, coverage, bus_start, bus_end)
VALUES (mp2.policy_id, mp2.coverage, mp2.bus_start, mp2.bus_end)

The policy_id C567 is common to both tables. The C567 bus_start value
in merge_policy overlaps the C567 bus_end value in policy_info. This
statement results in the following items:
v The bus_end value for coverage of 25000 is set to 2008-10-01.
v A new row is inserted for coverage of 30000 with the bus_start and

bus_end values from merge_policy.

The policy_id H789 exists only in merge_policy and so a new row is
added to policy_info.

Table 50. Merged updated data in an application-period temporal table (policy_info)

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-07-01

A123 14000 2008-07-01 2008-08-01

A123 16000 2008-08-01 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2008-10-01

C567 30000 2008-10-01 2010-05-01

H789 16000 2008-10-01 2010-05-01

Update targets
The FOR PORTION OF BUSINESS_TIME clause can be used only when
the target of the update statement is a table or a view. The following
updates return errors.
UPDATE (SELECT * FROM policy_info) FOR PORTION OF BUSINESS_TIME

FROM ’2008-01-01’ TO ’06-15-2008’ SET policy_id = policy_id + 1;

UPDATE (SELECT * FROM policy_info FOR BUSINESS_TIME AS OF ’2008-01-01’)
FOR PORTION OF BUSINESS_TIME FROM ’2008-01-01’ TO ’06-15-2008’
SET policy_id = policy_id + 1;

Updating a view
A view with references to an application-period temporal table is
updatable. The following UPDATE would update the policy_info table.
CREATE VIEW viewC AS SELECT * FROM policy_info;
UPDATE viewC SET coverage = coverage + 5000;

A view with an application-period temporal table in its FROM clause that
contains a period specification is also updatable. This condition differs
from views on system-period temporal tables and bitemporal tables.
CREATE VIEW viewD AS SELECT * FROM policy_info

FOR BUSINESS_TIME AS OF CURRENT DATE;
UPDATE viewD SET coverage = coverage - 1000;

Chapter 20. Time Travel Query using temporal tables 279

A FOR PORTION OF update clause can be included against views with
references to application-period temporal tables or bitemporal tables. Such
updates are propagated to the temporal tables referenced in the FROM
clause of the view definition.
CREATE VIEW viewE AS SELECT * FROM policy_info;
UPDATE viewE FOR PORTION OF BUSINESS_TIME

FROM ’2009-01-01’ TO ’2009-06-01’ SET coverage = coverage + 500;

Deleting data from an application-period temporal table
Deleting data from an application-period temporal table removes rows from the
table and can potentially result in new rows that are inserted into the
application-period temporal table itself.

About this task

In addition to the regular DELETE statement, application-period temporal tables
also support time range deletes where the DELETE statement includes the FOR
PORTION OF BUSINESS_TIME clause. A row is a candidate for deletion if its
period-begin column, period-end column, or both fall within the range specified in
the FOR PORTION OF BUSINESS_TIME clause.

Procedure

To delete data from an application-period temporal table, use the DELETE FROM
statement to delete data. For example, it was discovered that policy A123 should
not provide coverage from June 15, 2008 to August 15, 2008 and therefore that data
should be deleted from the table that was updated in the Updating data in an
application-period temporal table topic.
DELETE FROM policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-06-15’ TO ’2008-08-15’
WHERE policy_id = ’A123’;

Results

The original policy_info table data is as follows:

Table 51. Data in the application-period temporal table (policy_info) before the DELETE
statement

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-07-01

A123 14000 2008-07-01 2008-08-01

A123 16000 2008-08-01 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

Deleting data from an application-period temporal table by using the FOR
PORTION OF BUSINESS_TIME clause causes rows to be deleted and can result in
rows that are inserted when the time period for a row covers a portion of the
range specified in the DELETE FROM statement. Deleting data related to policy
A123 applies to the BUSINESS_TIME period from 2008-06-15 to 2008-08-15. There
are three rows in the policy_info table for policy_id A123 that include all or part
of that time period.

280 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The update to policy A123 affects the system-period temporal table and its history
table, causing the following the things to occur:
v There is one row where the BUSINESS_TIME period in the DELETE FROM

statement covers the entire time period for a row. The row with a bus_start
value of 2008-07-01 and a bus_end value of 2008-08-01 is deleted.

v When only the bus_end value falls into the specified period, the row is deleted.
A new row is inserted with the original values from the deleted row, except that
the bus_end value is set to 2008-06-15.

v When only the bus_start value falls into the specified period, the row is
deleted. A new row is inserted with the original values from the deleted row,
except that the bus_start value is set to 2008-08-15.

Table 52. Data in the application-period temporal table (policy_info) after the DELETE
statement

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-06-15

A123 16000 2008-08-15 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

Example

This section contains more deleting application-period temporal table examples.

Delete targets
The FOR PORTION OF BUSINESS_TIME clause can be used only when
the target of the delete statement is a table or a view. The following
DELETE statement returns an error:
DELETE FROM (SELECT * FROM policy_info) FOR PORTION OF BUSINESS_TIME

FROM ’2008-01-01’ TO ’2008-06-15’;

Querying application-period temporal data
Querying an application-period temporal table can return results for a specified
time period.

About this task

When querying an application-period temporal table, you can include FOR
BUSINESS_TIME in the FROM clause. Using FOR BUSINESS_TIME specifications,
you can query the current, past, and future state of your data. Time periods are
specified as follows:

AS OF value1
Includes all the rows where the begin value for the period is less than or
equal to value1 and the end value for the period is greater than value1.

FROM value1 TO value2
Includes all the rows where the begin value for the period is greater than
or equal to value1 and the end value for the period is less than value2. This
means that the begin time is included in the period, but the end time is
not.

Chapter 20. Time Travel Query using temporal tables 281

BETWEEN value1 AND value2
Includes all the rows where any time period overlaps any point in time
between value1 and value2. A row is returned if the begin value for the
period is less than or equal to value2 and the end value for the period is
greater than value1.

See the following section for some sample queries.

Procedure

To query an application-period temporal table, use the SELECT statement. For
example, each of the following queries requests policy information for policy_id
A123 from the result table in the “ Updating data in an application-period
temporal table” topic. Each query uses a variation of the time period specification.
The policy_info table is as follows:

Table 53. Application-period temporal table: policy_info

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

A123 14000 2008-06-01 2008-06-15

A123 16000 2008-08-15 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

v Query with no time period specification. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
where policy_id = ’A123’

This query returns all three rows for policy A123.
A123, 12000, 2008-01-01, 2008-06-01
A123, 14000, 2008-06-01, 2008-06-15
A123, 16000, 2008-08-15, 2009-01-01

v Query with FOR BUSINESS_TIME AS OF specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR BUSINESS_TIME AS OF ’2008-07-15’
where policy_id = ’A123’

This query does not return any rows. There are no rows for A123 where the
begin value for the period is less than or equal to 2008-07-15 and the end value
for the period is greater than 2008-07-15. Policy A123 had no coverage on
2008-07-15.

v Query with FOR BUSINESS_TIME FROM...TO specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR BUSINESS_TIME FROM

’2008-01-01’ TO ’2008-06-15’
where policy_id = ’A123’

This query returns two rows. The begin-column of a period is inclusive, while
the end-column is exclusive. The row with a bus_end value of 2008-06-15 is
valid until 06-14-2008 at midnight and so is less than value2.
A123, 12000, 2008-01-01, 2008-06-01
A123, 14000, 2008-06-01, 2008-06-15

282 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Query with FOR BUSINESS_TIME BETWEEN...AND specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR BUSINESS_TIME BETWEEN

’0001-01-01’ AND ’2008-01-01’

This query returns two rows. The rows with a bus_start value of 2008-01-01 are
equal to value1 and are returned because the begin time of a period is included.
Note that if a row had a bus_end column value of 2008-01-01, that row would
be returned because its end time is equal to value1 and the end time of a period
is included.
A123, 12000, 2008-01-01, 2008-06-01
C567, 25000, 2008-01-01, 2009-01-01

More examples

This section contains more querying application-period temporal table examples.

Querying a view
A view can be queried as if it were an application-period temporal table.
Time period specifications (FOR BUSINESS_TIME) can be specified after
the view reference.
CREATE VIEW policy_year_end(policy, amount, start_date, end_date)

AS SELECT * FROM policy_info;

SELECT * FROM policy_year_end FOR BUSINESS_TIME AS OF ’2008-12-31’;

The SELECT on the view policy_year_end queries the policy_info table
and returns all policies that were in effect at the end of 2008.
A123, 16000, 2008-08-15, 2009-01-01
B345, 18000, 2008-03-01, 2009-01-01
C567, 25000, 2008-01-01, 2009-01-01

If a view definition contains a period specification, then queries against the
view cannot contain period specifications. The following statements return
an error due to multiple period specifications:
CREATE VIEW all_policies AS SELECT * FROM policy_info;

FOR BUSINESS_TIME AS OF ’2008-02-28’;

SELECT * FROM all_policies FOR BUSINESS_TIME BETWEEN
FOR BUSINESS_TIME AS OF ’2008-10-01’;

Setting the application time for a session
Setting the application time in the CURRENT TEMPORAL BUSINESS_TIME
special register can reduce or eliminate the changes required when running an
application against different points in time.

About this task

When you have an application that you want to run against an application-period
temporal table to query the state of your business for a number of different dates,
you can set the date in a special register. If you need to query your data AS OF
today, AS OF the end of the last quarter, or if you are simulating future events, AS
OF some future date, it might not be possible to change the application and add
AS OF specifications to each SQL statement. This restriction is likely the case when

Chapter 20. Time Travel Query using temporal tables 283

you are using packaged applications. To address such scenarios, you can use the
CURRENT TEMPORAL BUSINESS_TIME special register to set the date at the
session level.

Setting the CURRENT TEMPORAL BUSINESS_TIME special register does not
affect regular tables. Only queries on temporal tables with a BUSINESS_TIME
period enabled (application-period temporal tables and bitemporal tables) use the
time set in the special register. There is also no affect on DDL statements.

Note: When the CURRENT TEMPORAL BUSINESS_TIME special register is set to
a non-null value, data modification statements like INSERT, UPDATE, DELETE,
and MERGE against application-period temporal tables are supported. This
behavior differs from the CURRENT TEMPORAL SYSTEM_TIME special register
which blocks data modification statements against system-period temporal table
and bitemporal tables.

The setting for the BUSTIMESENSITIVE bind option determines whether
references to application-period temporal tables and bitemporal tables in both static
SQL statements and dynamic SQL statements in a package are affected by the
value of the CURRENT TEMPORAL BUSINESS_TIME special register. The bind
option can be set to YES or NO. For SQL procedures, use the
SET_ROUTINE_OPTS procedure to set the bind-like options, called query compiler
variables.

Procedure

When this special register is set to a non-null value, applications that issue a query
returns data as of that date. The following examples request information from the
result tables in the “ Deleting data from an application-period temporal table
”topic.
v Set the special register to a non-null value and query data as of that date. For

example:
SET CURRENT TEMPORAL BUSINESS_TIME = ’2008-01-01’;
SELECT * FROM policy_info;

v Set the special register to a time and reference an application-period temporal
table in view definitions.
CREATE VIEW view1 AS SELECT policy_id, coverage FROM policy_info;
CREATE VIEW view2 AS SELECT * FROM regular_table

WHERE col1 IN (SELECT coverage FROM policy_info);
SET CURRENT TEMPORAL BUSINESS_TIME = ’2008-01-01’;
SELECT * FROM view1;
SELECT * FROM view2;

v Set the special register to a past date and issue a query that contains a time
period specification. For example:
SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT DATE - 1 YEAR;
SELECT * FROM policy_info FOR BUSINESS_TIME AS OF ’2008-01-01’;

Results

The policy_info table is as follows:

Table 54. Data in the application-period temporal table (policy_info) after the DELETE
statement

policy_id coverage bus_start bus_end

A123 12000 2008-01-01 2008-06-01

284 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 54. Data in the application-period temporal table (policy_info) after the DELETE
statement (continued)

policy_id coverage bus_start bus_end

A123 14000 2008-06-01 2008-06-15

A123 16000 2008-08-15 2009-01-01

B345 18000 2008-03-01 2009-01-01

C567 25000 2008-01-01 2009-01-01

v The request for data as of 2008-01-01 queries the policy_info table. The query is
implicitly rewritten to:
SELECT * FROM policy_info FOR BUSINESS_TIME AS OF ’2008-01-01’;

The query returns:
A123, 12000, 2008-01-01, 2008-06-01
C567, 25000, 2008-01-01, 2009-01-01

v The query on view1 is implicitly rewritten to:
SELECT * FROM view1 FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME;

and then to:
SELECT policy_id, coverage FROM policy_info

FOR BUSINESS_TIME AS OF ’2008-01-01’;

The query returns:
A123, 12000
C567, 25000

The query on view2 involves a view on a regular table that references an
application-period temporal table, causing an implicit relationship between a
regular table and the special register. The query is implicitly rewritten to:
SELECT * FROM view2 FOR BUSINESS_TIME AS OF CURRENT TEMPORAL BUSINESS_TIME;

and then to:
SELECT * FROM regular_table WHERE col1 in (SELECT coverage FROM policy_info

FOR BUSINESS_TIME AS OF ’2008-01-01’);

The SELECT returns rows where col1 values match values in coverage.
v An error is returned because there are multiple time period specifications. The

special register was set to a non-null value and the query also specified a time.

Bitemporal tables
A bitemporal table is a table that combines the historical tracking of a
system-period temporal table with the time-specific data storage capabilities of an
application-period temporal table. Use bitemporal tables to keep user-based period
information as well as system-based historical information.

Bitemporal tables behave as a combination of system-period temporal tables and
application-period temporal tables. All the restrictions that apply to system-period
temporal tables and application temporal tables also apply to bitemporal tables.

Chapter 20. Time Travel Query using temporal tables 285

Creating a bitemporal table
Creating a bitemporal table results in a table that combines the historical tracking
of a system-period temporal table with the time-specific data storage capabilities of
an application-period temporal table.

About this task

When creating a bitemporal table, you combine the steps used to create a
system-period temporal table with the steps used to create an application-period
temporal table.
v Include both a SYSTEM_TIME period and a BUSINESS_TIME period in the

CREATE TABLE statement.
v Create a history table to receive old rows from the bitemporal table.
v Add versioning to establish the link between the bitemporal table and the

history table.
v Optionally, define that overlapping periods of BUSINESS_TIME are not allowed

and that values are unique with respect to any period.

The examples in the following section show the creation of a table that stores
policy information for the customers of an insurance company.

Procedure

To create a bitemporal table:
1. Create a table with both a SYSTEM_TIME attribute and a BUSINESS_TIME

attribute. For example:
CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
sys_start TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW END,
ts_id TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD BUSINESS_TIME (bus_start, bus_end),
PERIOD SYSTEM_TIME (sys_start, sys_end)
) in policy_space;

2. Create a history table. For example:
CREATE TABLE hist_policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
sys_start TIMESTAMP(12) NOT NULL,
sys_end TIMESTAMP(12) NOT NULL,
ts_id TIMESTAMP(12)
) in hist_space;

You can also create a history table with the same names and descriptions as the
columns of the system-period temporal table using the LIKE clause of the
CREATE TABLE statement. For example:
CREATE TABLE hist_policy_info LIKE policy_info in hist_space;

3. Add versioning to the bitemporal table. For example:

286 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

ALTER TABLE policy_info ADD VERSIONING USE HISTORY TABLE hist_policy_info;

4. Optional: Create a unique index that includes the BUSINESS_TIME period. For
example:
CREATE UNIQUE INDEX ix_policy

ON policy_info (policy_id, BUSINESS_TIME WITHOUT OVERLAPS);

Results

The policy_info table stores the insurance coverage level for a customer. The
BUSINESS_TIME period-related columns (bus_start and bus_end) indicate when
an insurance coverage level is valid. The SYSTEM_TIME period-related columns
(sys_start and sys_end) show when a coverage level row is current. The ts_id
column lists the time when execution started for a transaction that impacted the
row.

Table 55. Created bitemporal table (policy_info)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

The hist_policy_info history table receives the old rows from the policy_info
table.

Table 56. Created history table (hist_policy_info)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

The ix_policy index, with BUSINESS_TIME WITHOUT OVERLAPS as the final
column in the index key column list, ensures that there are no overlapping time
periods for customer insurance coverage levels.

Example

This section contains more creating bitemporal table examples.

Hiding columns
The following example creates the policy_info table with the
TIMESTAMP(12) columns (sys_start, sys_end and ts_id) marked as
implicitly hidden.
CREATE TABLE policy_info
(
policy_id CHAR(4) NOT NULL,
coverage INT NOT NULL,
bus_start DATE NOT NULL,
bus_end DATE NOT NULL,
sys_start TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW BEGIN IMPLICITLY HIDDEN,
sys_end TIMESTAMP(12) NOT NULL

GENERATED ALWAYS AS ROW END IMPLICITLY HIDDEN,
ts_id TIMESTAMP(12)

GENERATED ALWAYS AS TRANSACTION START ID IMPLICITLY HIDDEN,
PERIOD BUSINESS_TIME (bus_start, bus_end),
PERIOD SYSTEM_TIME (sys_start, sys_end)
) in policy_space;

Chapter 20. Time Travel Query using temporal tables 287

Creating the hist_policy_info history table using the LIKE clause of the
CREATE TABLE statement results in the history table inheriting the
implicitly hidden attribute from the policy_info table.

Inserting data into a bitemporal table
Inserting data into a bitemporal table is similar to inserting data into an
application-period temporal table.

About this task

When inserting data into a bitemporal table, include begin and end columns that
capture when the row is valid from the perspective of the associated business
applications. This valid period is called the BUSINESS_TIME period. The database
manager automatically generates an implicit check constraint that ensures that the
begin column of the BUSINESS_TIME period is less than its end column. If a
unique constraint or index with BUSINESS_TIME WITHOUT OVERLAPS was
created for the table, this ensures that no BUSINESS_TIME periods overlap.

Procedure

To insert data into a bitemporal table, use the INSERT statement to add data to the
table. For example, the following data was inserted on January 31, 2010
(2010-01-31) to the table created in the example in “ Creating a bitemporal table”.
INSERT INTO policy_info(policy_id, coverage, bus_start, bus_end)

VALUES(’A123’,12000,’2008-01-01’,’2008-07-01’);

INSERT INTO policy_info(policy_id, coverage, bus_start, bus_end)
VALUES(’A123’,16000,’2008-07-01’,’2009-01-01’);

INSERT INTO policy_info(policy_id, coverage, bus_start, bus_end)
VALUES(’B345’,18000,’2008-01-01’,’2009-01-01’);

INSERT INTO policy_info(policy_id, coverage, bus_start, bus_end)
VALUES(’C567’,20000,’2008-01-01’,’2009-01-01’);

Results

The policy_info table now contains the following insurance coverage data. The
sys_start, sys_end, and ts_id column entries are generated by the database
manager. The begin-column of a period is inclusive, while the end-column is
exclusive, meaning that the row with a bus_end value of 2008-07-01 does not have
a BUSINESS_TIME period overlap with the row that contains a bus_start value of
2008-07-01.

Table 57. Data added to a bitemporal table (policy_info)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00

.000000000000

2010-01-31-
22.31.33.

495925000000

288 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 57. Data added to a bitemporal table (policy_info) (continued)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

The hist_policy_info history table remains empty because no history rows are
generated by an insert.

Table 58. History table (hist_policy_info) after insert

policy_id coverage bus_start bus_end sys_start sys_end ts_id

Updating data in a bitemporal table
Updating data in a bitemporal table results in rows that are added to its associated
history table and can potentially result in rows that are added to the bitemporal
table itself.

About this task

In addition to the regular UPDATE statement, bitemporal tables also support time
range updates where the UPDATE statement includes the FOR PORTION OF
BUSINESS_TIME clause. A row is a candidate for updating if its period-begin
column, period-end column, or both fall within the range specified in the FOR
PORTION OF BUSINESS_TIME clause. Any existing impacted rows are copied to
the history table before they are updated.

Procedure

To update data in a bitemporal table, use the UPDATE statement to change data
rows. For example, it was discovered that there are some errors in the insurance
coverage levels for two customers and the following data was updated on
February 28, 2011 (2011-02-28) in the example table that had data added in the “
Inserting data into a bitemporal table” topic.
The following table is the original policy_info table data.

Table 59. Original data in the bitemporal table (policy_info)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

Updating a bitemporal table by using the FOR PORTION OF BUSINESS_TIME
clause causes rows to be changed and can result in rows that are inserted when the

Chapter 20. Time Travel Query using temporal tables 289

existing time period for rows that are updated is not fully contained within the
range specified in the UPDATE statement.
v The coverage for policy B345 actually started on March 1, 2008 (2008-03-01):

UPDATE policy_info
SET bus_start=’2008-03-01’
WHERE policy_id = ’B345’
AND coverage = 18000;

The update to policy B345 uses a regular UPDATE statement. There is only one
row in the policy_info table for policy_id B345, so there are no potential
BUSINESS_TIME periods overlaps. As a result the following things occur:
1. The bus_start column value is updated to 2008-03-01. Note that updates to a

BUSINESS_TIME period column cannot include the FOR PORTION OF
BUSINESS_TIME clause.

2. The database manager updates the sys_start and ts_id values to the date of
the update.

3. The original row is moved to the history table. The database manager
updates the sys_end value to the date of the update.

The following tables show the update for policy B345.

Table 60. Bitemporal table (policy_info) after policy B345 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

Table 61. History table (hist_policy_info) after policy B345 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

v The coverage for policy C567 should be 25000 for the year 2008:
UPDATE policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-01-01’ TO ’2009-01-01’
SET coverage = 25000
WHERE policy_id = ’C567’;

The update to policy C567 applies to the BUSINESS_TIME period from
2008-01-01 to 2009-01-01. There is only one row in the policy_info table for
policy_id C567 that includes that time period. The BUSINESS_TIME period is
fully contained within the bus_start and bus_end column values for that row. As
a result the following things occur:
1. The coverage value for the row with policy_id C567 is updated to 25000.

290 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

2. The bus_start and bus_end column values are unchanged.
3. The database manager updates the sys_start and ts_id values to the date of

the update.
4. The original row is moved to the history table. The database manager

updates the sys_end value to the date of the update.

The following tables show the update for policy C567.

Table 62. Bitemporal table (policy_info) after policy C567 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

9999-12-30-
00.00.00.

000000000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 63. History table (hist_policy_info) after policy C567 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

v The coverage for policy A123 shows an increase from 12000 to 16000 on July 7
(2008-07-01), but an earlier increase to 14000 is missing:
UPDATE policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-06-01’ TO ’2008-08-01’
SET coverage = 14000
WHERE policy_id = ’A123’;

The update to policy A123 applies to the BUSINESS_TIME period from
2008-06-01 to 2008-08-01. There are two rows in the policy_info table for
policy_id A123 that include part of the update time period.
1. The BUSINESS_TIME period is partially contained in the row that has a

bus_start value of 2008-01-01 and a bus_end value of 2008-07-01. This row
overlaps the beginning of the specified period because the earliest time value
in the BUSINESS_TIME period is greater than the rows bus_start value, but
less than its bus_end value.

2. The BUSINESS_TIME period is partially contained in the row that has a
bus_start value of 2008-07-01 and a bus_end value of 2009-01-01. This row
overlaps the end of the specified period because the latest time value in the
BUSINESS_TIME period is greater than the rows bus_start value, but less
than its bus_end value.

As a result the following things occur:

Chapter 20. Time Travel Query using temporal tables 291

1. When the bus_end value overlaps the beginning of the specified period, the
row is updated to the new coverage value of 14000. In this updated row, the
bus_start value is set to 2008-06-01 which is the begin value of the UPDATE
specified period, and the bus_end value is unchanged. An additional row is
inserted with the original values from the row, except that the bus_end value
is set to 2008-06-01. This new row reflects the BUSINESS_TIME period when
coverage was 12000. The sys_start, sys_end, and ts_id column entries are
generated by the database manager.

2. When the bus_start value overlaps the end of the specified period, the row
is updated to the new coverage value of 14000. In this updated row, the
bus_start value is unchanged and the bus_end value is set to 2008-08-01
which is the end value of the UPDATE specified period. An additional row is
inserted with the original values from the row, except that the bus_start
value is set to 2008-08-01. This new row reflects the BUSINESS_TIME period
when coverage was 16000. The sys_start, sys_end, and ts_id column entries
are generated by the database manager.

3. The original rows are moved to the history table. The database manager
updates the sys_end value to the date of the update.

The following tables show the update for policy A123.

Table 64. Bitemporal table (policy_info) after policy A123 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-06-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 14000 2008-06-01 2008-07-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 14000 2008-07-01 2008-08-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 16000 2008-08-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 65. History table (hist_policy_info) after policy A123 update

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

292 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 65. History table (hist_policy_info) after policy A123 update (continued)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

Deleting data from a bitemporal table
Deleting data from a bitemporal table results in rows that are deleted from the
table, rows that are added to its associated history table and can potentially result
in new rows that are inserted into the bitemporal table itself.

About this task

In addition to the regular DELETE statement, bitemporal tables also support time
range deletes where the DELETE statement includes the FOR PORTION OF
BUSINESS_TIME clause. A row is a candidate for deletion if its period-begin
column, period-end column, or both falls within the range specified in the FOR
PORTION OF BUSINESS_TIME clause. Any existing impacted rows are copied to
the history table before they are deleted.

Procedure

To delete data from a bitemporal table, use the DELETE FROM statement. For
example, it was discovered that policy A123 did not have coverage from June 15,
2008 to August 15, 2008. The data was deleted on September 1, 2011 (2011-09-01)
from the table that was updated in the “ Updating data in a bitemporal table”
topic.
DELETE FROM policy_info

FOR PORTION OF BUSINESS_TIME FROM ’2008-06-15’ TO ’2008-08-15’
WHERE policy_id = ’A123’;

Results

The original policy_info table and hist_policy_info table data is as follows:

Table 66. Data in the bitemporal table (policy_info) before the DELETE statement

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-06-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 14000 2008-06-01 2008-07-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 14000 2008-07-01 2008-08-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

A123 16000 2008-08-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Chapter 20. Time Travel Query using temporal tables 293

Table 66. Data in the bitemporal table (policy_info) before the DELETE
statement (continued)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 67. Data in the history table (hist_policy_info) before the DELETE statement

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

Deleting data from a bitemporal table by using the FOR PORTION OF
BUSINESS_TIME clause causes rows to be deleted and can result in rows that are
inserted when the time period for a row covers a portion of the range specified in
the DELETE FROM statement. Deleting data related to policy A123 applies to the
BUSINESS_TIME period from 2008-06-15 to 2008-08-15. There are three rows in the
policy_info table for policy_id A123 that include all or part of that time period.

As a result, the following things occur:
v There is one row where the BUSINESS_TIME period in the DELETE FROM

statement covers the entire time period for a row. The row with a bus_start
value of 2008-07-01 and a bus_end value of 2008-08-01 is deleted.

v When only the bus_end value falls into the specified period, the row is deleted.
A new row is inserted with the original values from the deleted row, except that
the bus_end value is set to 2008-06-15. The sys_start, sys_end, and ts_id
column entries are generated by the database manager.

v When only the bus_start value falls into the specified period, the row is
deleted. A new row is inserted with the original values from the deleted row,
except that the bus_start value is set to 2008-08-15. The sys_start, sys_end, and
ts_id column entries are generated by the database manager.

v The original rows are moved to the history table. The database manager updates
the sys_end value to the date of the delete.

Table 68. Data in the bitemporal table (policy_info) after the DELETE statement

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-06-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

294 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 68. Data in the bitemporal table (policy_info) after the DELETE statement (continued)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 14000 2008-06-01 2008-06-15 2011-09-01-
12.18.22.

959254000000

9999-12-30-
00.00.00.

000000000000

2011-09-01-
12.18.22.

959254000000

A123 16000 2008-08-15 2009-01-01 2011-09-01-
12.18.22.

959254000000

9999-12-30-
00.00.00.

000000000000

2011-09-01-
12.18.22.

959254000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

649592000000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

649592000000

Table 69. History table (hist_policy_info) after DELETE statement

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

649592000000

2010-01-31-
22.31.33.

495925000000

A123 14000 2008-06-01 2008-07-01 2011-02-28-
09.10.12.

649592000000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

A123 14000 2008-07-01 2008-08-01 2011-02-28-
09.10.12.

649592000000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

A123 16000 2008-08-01 2009-01-01 2011-02-28-
09.10.12

.649592000000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

Querying bitemporal data
Querying a bitemporal table can return results for a specified time period. Those
results can include current values, previous historic values, and future values.

About this task

When querying a bitemporal table, you can include FOR BUSINESS_TIME, FOR
SYSTEM_TIME, or both in the FROM clause. Using these time period
specifications, you can query the current, past, and future state of your data. Time
periods are specified as follows:

AS OF value1
Includes all the rows where the begin value for the period is less than or

Chapter 20. Time Travel Query using temporal tables 295

equal to value1 and the end value for the period is greater than value1. This
enables you to query your data as of a certain point in time.

FROM value1 TO value2
Includes all the rows where the begin value for the period is equal to or
greater than value1 and the end value for the period is less than value2.
This means that the begin time is included in the period, but the end time
is not.

BETWEEN value1 AND value2
Includes all the rows where any time period overlaps any point in time
between value1 and value2. A row is returned if the begin value for the
period is less than or equal to value2 and the end value for the period is
greater than value1.

See the following section for some sample queries.

Procedure

To query a bitemporal table, use the SELECT statement. For example, each of the
following queries requests policy information for policy_id A123 from the result
tables in the “ Deleting data from a bitemporal table” topic. Each query uses a
variation of the time period specification.
The policy_info table and its associated history table are as follows:

Table 70. Bitemporal table: policy_info

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-06-01 2011-02-28-
09.10.12.

64959200000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

64959200000

A123 14000 2008-06-01 2008-06-15 2011-09-01-
12.18.22.

959254000000

9999-12-30-
00.00.00.

000000000000

2011-09-01-
12.18.22.

959254000000

A123 16000 2008-08-15 2009-01-01 2011-09-01-
12.18.22.

959254000000

9999-12-30-
00.00.00.

000000000000

2011-09-01-
12.18.22.

959254000000

B345 18000 2008-03-01 2009-01-01 2011-02-28-
09.10.12.

64959200000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

64959200000

C567 25000 2008-01-01 2009-01-01 2011-02-28-
09.10.12.

64959200000

9999-12-30-
00.00.00.

000000000000

2011-02-28-
09.10.12.

64959200000

Table 71. History table: hist_policy_info

policy_id coverage bus_start bus_end sys_start sys_end ts_id

A123 12000 2008-01-01 2008-07-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

64959200000

2010-01-31-
22.31.33.

495925000000

A123 16000 2008-07-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

64959200000

2010-01-31-
22.31.33.

495925000000

B345 18000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

64959200000

2010-01-31-
22.31.33.

495925000000

296 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 71. History table: hist_policy_info (continued)

policy_id coverage bus_start bus_end sys_start sys_end ts_id

C567 20000 2008-01-01 2009-01-01 2010-01-31-
22.31.33.

495925000000

2011-02-28-
09.10.12.

64959200000

2010-01-31-
22.31.33.

495925000000

A123 14000 2008-06-01 2008-07-01 2011-02-28-
09.10.12.

64959200000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

A123 14000 2008-07-01 2008-08-01 2011-02-28-
09.10.12

.64959200000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

A123 16000 2008-08-01 2009-01-01 2011-02-28-
09.10.12

.64959200000

2011-09-01-
12.18.22.

959254000000

2011-09-01-
12.18.22.

959254000000

v Query with no time period specification. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
where policy_id = ’A123’

This query returns three rows. The SELECT statement queries only the
policy_info table. The history table is not queried because FOR SYSTEM_TIME
was not specified.
A123, 12000, 2008-01-01, 2008-06-01
A123, 14000, 2008-06-01, 2008-06-15
A123, 16000, 2008-08-15, 2009-01-01

v Query with FOR SYSTEM_TIME FROM...TO specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR SYSTEM_TIME FROM

’0001-01-01-00.00.00.000000’ TO ’9999-12-30-00.00.00.000000000000’
where policy_id = ’A123’

This query returns eight rows. The SELECT statement queries both the
policy_info and the hist_policy_info tables.
A123, 12000, 2008-01-01, 2008-06-01
A123, 14000, 2008-06-01, 2008-06-15
A123, 16000, 2008-08-15, 2009-01-01
A123, 12000, 2008-01-01, 2008-07-01
A123, 16000, 2008-07-01, 2009-01-01
A123, 14000, 2008-06-01, 2008-07-01
A123, 14000, 2008-07-01, 2008-08-01
A123, 16000, 2008-08-01, 2009-01-01

v Query with FOR BUSINESS_TIME AS OF specified. For example:
SELECT policy_id, coverage, bus_start, bus_end

FROM policy_info
FOR BUSINESS_TIME AS OF ’2008-07-15’
where policy_id = ’A123’

This query does not return any rows. The SELECT statement queries only the
policy_info table and there are no rows for A123 where the begin value for the
period is less than or equal to 2008-07-15 and the end value for the period is
greater than 2008-07-15. Policy A123 had no coverage on 2008-07-15. The history
table is not queried because FOR SYSTEM_TIME was not specified.

v Query with FOR BUSINESS_TIME AS OF and FOR SYSTEM_TIME FROM...TO
specified. For example:

Chapter 20. Time Travel Query using temporal tables 297

SELECT policy_id, coverage, bus_start, bus_end
FROM policy_info
FOR BUSINESS_TIME AS OF ’2008-07-15’
FOR SYSTEM_TIME FROM

’0001-01-01-00.00.00.000000’ TO ’9999-12-30-00.00.00.000000000000’
where policy_id = ’A123’

This query returns two rows. The SELECT queries both the policy_info and the
hist_policy_info tables. The returned rows are found in the history table.
A123, 16000, 2008-07-01, 2009-01-01
A123, 14000, 2008-07-01, 2008-08-01

298 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 21. Constraints

Within any business, data must often adhere to certain restrictions or rules. For
example, an employee number must be unique. The database manager provides
constraints as a way to enforce such rules.

The following types of constraints are available:
v NOT NULL constraints
v Unique (or unique key) constraints
v Primary key constraints
v Foreign key (or referential integrity) constraints
v (Table) Check constraints
v Informational constraints

Constraints are only associated with tables and are either defined as part of the
table creation process (using the CREATE TABLE statement) or are added to a
table's definition after the table has been created (using the ALTER TABLE
statement). You can use the ALTER TABLE statement to modify constraints. In
most cases, existing constraints can be dropped at any time; this action does not
affect the table's structure or the data stored in it.

Note: Unique and primary constraints are only associated with table objects, they
are often enforced through the use of one or more unique or primary key indexes.

Types of constraints
A constraint is a rule that is used for optimization purposes.

There are five types of constraints:
v A NOT NULL constraint is a rule that prevents null values from being entered

into one or more columns within a table.
v A unique constraint (also referred to as a unique key constraint) is a rule that

forbids duplicate values in one or more columns within a table. Unique and
primary keys are the supported unique constraints. For example, a unique
constraint can be defined on the supplier identifier in the supplier table to
ensure that the same supplier identifier is not given to two suppliers.

v A primary key constraint is a column or combination of columns that has the
same properties as a unique constraint. You can use a primary key and foreign
key constraints to define relationships between tables.

v A foreign key constraint (also referred to as a referential constraint or a referential
integrity constraint) is a logical rule about values in one or more columns in one
or more tables. For example, a set of tables shares information about a
corporation's suppliers. Occasionally, a supplier's name changes. You can define
a referential constraint stating that the ID of the supplier in a table must match a
supplier ID in the supplier information. This constraint prevents insert, update,
or delete operations that would otherwise result in missing supplier information.

v A (table) check constraint (also called a check constraint) sets restrictions on data
added to a specific table. For example, a table check constraint can ensure that
the salary level for an employee is at least $20 000 whenever salary data is
added or updated in a table containing personnel information.

© Copyright IBM Corp. 2014 299

An informational constraint is an attribute of a certain type of constraint, but one
that is not enforced by the database manager.

NOT NULL constraints
NOT NULL constraints prevent null values from being entered into a column.

The null value is used in databases to represent an unknown state. By default, all
of the built-in data types provided with the database manager support the
presence of null values. However, some business rules might dictate that a value
must always be provided (for example, every employee is required to provide
emergency contact information). The NOT NULL constraint is used to ensure that
a given column of a table is never assigned the null value. Once a NOT NULL
constraint has been defined for a particular column, any insert or update operation
that attempts to place a null value in that column will fail.

Because constraints only apply to a particular table, they are usually defined along
with a table's attributes, during the table creation process. The following CREATE
TABLE statement shows how the NOT NULL constraint would be defined for a
particular column:

CREATE TABLE EMPLOYEES (. . .
EMERGENCY_PHONE CHAR(14) NOT NULL,
. . .
);

Unique constraints
Unique constraints ensure that the values in a set of columns are unique and not
null for all rows in the table. The columns specified in a unique constraint must be
defined as NOT NULL. The database manager uses a unique index to enforce the
uniqueness of the key during changes to the columns of the unique constraint.

Unique constraints can be defined in the CREATE TABLE or ALTER TABLE
statement using the UNIQUE clause. For example, a typical unique constraint in a
DEPARTMENT table might be that the department number is unique and not null.

Figure 22 shows that a duplicate record is prevented from being added to a table
when a unique constraint exists for the table:

The database manager enforces the constraint during insert and update operations,
ensuring data integrity.

Department
number

001

003

002

003

004

005

Invalid record

Figure 22. Unique constraints prevent duplicate data

300 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

A table can have an arbitrary number of unique constraints, with at most one
unique constraint defined as the primary key. A table cannot have more than one
unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint
is called the parent key.
v When a unique constraint is defined in a CREATE TABLE statement, a unique

index is automatically created by the database manager and designated as a
primary or unique system-required index.

v When a unique constraint is defined in an ALTER TABLE statement and an
index exists on the same columns, that index is designated as unique and
system-required. If such an index does not exist, the unique index is
automatically created by the database manager and designated as a primary or
unique system-required index.

Note: There is a distinction between defining a unique constraint and creating a
unique index. Although both enforce uniqueness, a unique index allows nullable
columns and generally cannot be used as a parent key.

Primary key constraints
You can use primary key and foreign key constraints to define relationships
between tables.

A primary key is a column or combination of columns that has the same properties
as a unique constraint. Because the primary key is used to identify a row in a
table, it must be unique, and must have the NOT NULL attribute. A table cannot
have more than one primary key, but it can have multiple unique keys. Primary
keys are optional, and can be defined when a table is created or altered. They are
also beneficial, because they order the data when data is exported or reorganized.

(Table) Check constraints
A check constraint (also referred to as a table check constraint) is a database rule that
specifies the values allowed in one or more columns of every row of a table.
Specifying check constraints is done through a restricted form of a search
condition.

Designing check constraints
When creating check constraints, one of two things can happen: (i) all the rows
meet the check constraint, or (ii) some or all the rows do not meet the check
constraint.

About this task

All the rows meet the check constraint
When all the rows meet the check constraint, the check constraint will be
created successfully. Future attempts to insert or update data that does not
meet the constraint business rule will be rejected.

Some or all the rows do not meet the check constraint
When there are some rows that do not meet the check constraint, the check
constraint will not be created (that is, the ALTER TABLE statement will
fail). The ALTER TABLE statement, which adds a new constraint to the
EMPLOYEE table, is shown in the following example. The check constraint
is named CHECK_JOB. The database manager will use this name to inform

Chapter 21. Constraints 301

you about which constraint was violated if an INSERT or UPDATE
statement fails. The CHECK clause is used to define a table-check
constraint.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT check_job
CHECK (JOB IN (’Engineer’, ’Sales’, ’Manager’));

An ALTER TABLE statement was used because the table had already been
defined. If there are values in the EMPLOYEE table that conflict with the
constraint being defined, the ALTER STATEMENT will not be completed
successfully.

As check constraints and other types of constraints are used to implement business
rules, you might need to change them from time to time. This could happen when
the business rules change in your organization. Whenever a check constraint needs
to be changed, you must drop it and re-create a new one. Check constraints can be
dropped at any time, and this action will not affect your table or the data within it.
When you drop a check constraint, you must be aware that data validation
performed by the constraint will no longer be in effect.

Comparison of check constraints and BEFORE triggers
You must consider the difference between check constraints when considering
whether to use triggers or check constraints to preserve the integrity of your data.

The integrity of the data in a relational database must be maintained as multiple
users access and change the data. Whenever data is shared, there is a need to
ensure the accuracy of the values within databases.

Check constraints
A (table) check constraint sets restrictions on data added to a specific table.
You can use a table check constraint to define restrictions, beyond those of
the data type, on the values that are allowed for a column in the table.
Table check constraints take the form of range checks or checks against
other values in the same row of the same table.

If the rule applies for all applications that use the data, use a table check
constraint to enforce your restriction on the data allowed in the table. Table
check constraints make the restriction generally applicable and easier to
maintain.

The enforcement of check constraints is important for maintaining data
integrity, but it also carries a certain amount of system activity that can
impact performance whenever large volumes of data are modified.

BEFORE triggers
By using triggers that run before an update or insert, values that are being
updated or inserted can be modified before the database is actually
modified. These can be used to transform input from the application (user
view of the data) to an internal database format where desired. BEFORE
triggers can also be used to cause other non-database operations to be
activated through user-defined functions.

In addition to modification, a common use of the BEFORE triggers is for
data verification using the SIGNAL clause.

There are two differences between BEFORE triggers and check constraints
when used for data verification:

302 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

1. BEFORE triggers, unlike check constraints, are not restricted to access
other values in the same row of the same table.

2. During a SET INTEGRITY operation on a table after a LOAD operation,
triggers (including BEFORE triggers) are not executed. Check
constraints, however, are verified.

Foreign key (referential) constraints
Foreign key constraints (also known as referential constraints or referential integrity
constraints) enable you to define required relationships between and within tables.

For example, a typical foreign key constraint might state that every employee in
the EMPLOYEE table must be a member of an existing department, as defined in
the DEPARTMENT table.

Referential integrity is the state of a database in which all values of all foreign keys
are valid. A foreign key is a column or a set of columns in a table whose values are
required to match at least one primary key or unique key value of a row in its
parent table. A referential constraint is the rule that the values of the foreign key are
valid only if one of the following conditions is true:
v They appear as values of a parent key.
v Some component of the foreign key is null.

To establish this relationship, you would define the department number in the
EMPLOYEE table as the foreign key, and the department number in the
DEPARTMENT table as the primary key.

Figure 23 on page 304 shows how a record with an invalid key is prevented from
being added to a table when a foreign key constraint exists between two tables:

Chapter 21. Constraints 303

The table containing the parent key is called the parent table of the referential
constraint, and the table containing the foreign key is said to be a dependent of that
table.

Referential constraints can be defined in the CREATE TABLE statement or the
ALTER TABLE statement. Referential constraints are enforced by the database
manager during the execution of INSERT, UPDATE, DELETE, ALTER TABLE,
MERGE, ADD CONSTRAINT, and SET INTEGRITY statements.

Referential integrity rules involve the following terms:

Table 72. Referential integrity terms

Concept Terms

Parent key A primary key or a unique key of a referential constraint.

Parent row A row that has at least one dependent row.

Parent table A table that contains the parent key of a referential constraint. A table can
be a parent in an arbitrary number of referential constraints. A table that
is the parent in a referential constraint can also be the dependent in a
referential constraint.

Employee table

Department table

Department
number

001

002

003

Invalid
record

Employee
name

John Doe

Barb Smith

Fred Vickers

Jane Doe

Department
number

Department
name

001 Sales

002 Training

003

015

Communications

...

Program
development

Foreign
key

Primary
key

...

027

Figure 23. Foreign and primary key constraints

304 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 72. Referential integrity terms (continued)

Concept Terms

Dependent table A table that contains at least one referential constraint in its definition. A
table can be a dependent in an arbitrary number of referential constraints.
A table that is the dependent in a referential constraint can also be the
parent in a referential constraint.

Descendent
table

A table is a descendent of table T if it is a dependent of T or a descendent
of a dependent of T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row r if it is a dependent of r or a descendent of
a dependent of r.

Referential cycle A set of referential constraints such that each table in the set is a
descendent of itself.

Self-referencing
table

A table that is a parent and a dependent in the same referential constraint.
The constraint is called a self-referencing constraint.

Self-referencing
row

A row that is a parent of itself.

The purpose of a referential constraint is to guarantee that table relationships are
maintained and that data entry rules are followed. This means that as long as a
referential constraint is in effect, the database manager guarantees that for each
row in a child table that has a non-null value in its foreign key columns, a row
exists in a corresponding parent table that has a matching value in its parent key.

When an SQL operation attempts to change data in such a way that referential
integrity will be compromised, a foreign key (or referential) constraint could be
violated. The database manager handles these types of situations by enforcing a set
of rules that are associated with each referential constraint. This set of rules consist
of:
v An insert rule
v An update rule
v A delete rule

When an SQL operation attempts to change data in such a way that referential
integrity will be compromised, a referential constraint could be violated. For
example,
v An insert operation could attempt to add a row of data to a child table that has

a value in its foreign key columns that does not match a value in the
corresponding parent table's parent key.

v An update operation could attempt to change the value in a child table's foreign
key columns to a value that has no matching value in the corresponding parent
table's parent key.

v An update operation could attempt to change the value in a parent table's
parent key to a value that does not have a matching value in a child table's
foreign key columns.

v A delete operation could attempt to remove a record from a parent table that has
a matching value in a child table's foreign key columns.

The database manager handles these types of situations by enforcing a set of rules
that are associated with each referential constraint. This set of rules consists of:
v An insert rule

Chapter 21. Constraints 305

v An update rule
v A delete rule

Insert rule

The insert rule of a referential constraint is that a non-null insert value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null. This
rule is implicit when a foreign key is specified.

Update rule

The update rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION and RESTRICT. The update rule
applies when a row of the parent or a row of the dependent table is updated.

In the case of a parent row, when a value in a column of the parent key is
updated, the following rules apply:
v If any row in the dependent table matches the original value of the key, the

update is rejected when the update rule is RESTRICT.
v If any row in the dependent table does not have a corresponding parent key

when the update statement is completed (excluding AFTER triggers), the update
is rejected when the update rule is NO ACTION.

The value of the parent unique keys cannot be changed if the update rule is
RESTRICT and there are one or more dependent rows. However, if the update rule
is NO ACTION, parent unique keys can be updated as long as every child has a
parent key by the time the update statement completes. A non-null update value of
a foreign key must be equal to a value of the primary key of the parent table of the
relationship.

Also, the use of NO ACTION or RESTRICT as update rules for referential
constraints determines when the constraint is enforced. An update rule of
RESTRICT is enforced before all other constraints, including those referential
constraints with modifying rules such as CASCADE or SET NULL. An update rule
of NO ACTION is enforced after other referential constraints. Note that the
SQLSTATE returned is different depending on whether the update rule is
RESTRICT or NO ACTION.

In the case of a dependent row, the NO ACTION update rule is implicit when a
foreign key is specified. NO ACTION means that a non-null update value of a
foreign key must match some value of the parent key of the parent table when the
update statement is completed.

The value of a composite foreign key is null if any component of the value is null.

Delete rule

The delete rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, or SET
NULL. SET NULL can be specified only if some column of the foreign key allows
null values.

If the identified table or the base table of the identified view is a parent, the rows
selected for delete must not have any dependents in a relationship with a delete

306 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

rule of RESTRICT, and the DELETE must not cascade to descendent rows that
have dependents in a relationship with a delete rule of RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected
rows are deleted. Any rows that are dependents of the selected rows are also
affected:
v The nullable columns of the foreign keys of any rows that are their dependents

in a relationship with a delete rule of SET NULL are set to the null value.
v Any rows that are their dependents in a relationship with a delete rule of

CASCADE are also deleted, and the rules mentioned previously apply, in turn,
to those rows.

The delete rule of NO ACTION is checked to enforce that any non-null foreign key
refers to an existing parent row after the other referential constraints have been
enforced.

The delete rule of a referential constraint applies only when a row of the parent
table is deleted. More precisely, the rule applies only when a row of the parent
table is the object of a delete or propagated delete operation (defined in the
following section), and that row has dependents in the dependent table of the
referential constraint. Consider an example where P is the parent table, D is the
dependent table, and p is a parent row that is the object of a delete or propagated
delete operation. The delete rule works as follows:
v With RESTRICT or NO ACTION, an error occurs and no rows are deleted.
v With CASCADE, the delete operation is propagated to the dependents of p in

table D.
v With SET NULL, each nullable column of the foreign key of each dependent of p

in table D is set to null.

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent
of P, or a dependent of a table to which delete operations from P cascade.

The following restrictions apply to delete-connected relationships:
v When a table is delete-connected to itself in a referential cycle of more than one

table, the cycle must not contain a delete rule of either RESTRICT or SET NULL.
v A table must not both be a dependent table in a CASCADE relationship

(self-referencing or referencing another table) and have a self-referencing
relationship with a delete rule of either RESTRICT or SET NULL.

v When a table is delete-connected to another table through multiple relationships
where such relationships have overlapping foreign keys, these relationships must
have the same delete rule and none of these can be SET NULL.

v When a table is delete-connected to another table through multiple relationships
where one of the relationships is specified with delete rule SET NULL, the
foreign key definition of this relationship must not contain any distribution key
or MDC key column, a table-partitioning key column, or RCT key column.

v When two tables are delete-connected to the same table through CASCADE
relationships, the two tables must not be delete-connected to each other where
the delete connected paths end with delete rule RESTRICT or SET NULL.

Chapter 21. Constraints 307

Examples of interaction between triggers and referential
constraints

Update operations can cause the interaction of triggers with referential constraints
and check constraints.

Figure 24 and the associated description are representative of the processing that is
performed for an statement that updates data in the database.

Figure 24 shows the general order of processing for an statement that updates a
table. It assumes a situation where the table includes BEFORE triggers, referential
constraints, check constraints and AFTER triggers that cascade. The following is a
description of the boxes and other items found in Figure 24.
v statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process. The
statement S1 identifies a table (or an updatable view over some table) referred to
as the subject table throughout this description.

v Determine set of affected rows
This step is the starting point for a process that repeats for referential constraint
delete rules of CASCADE and SET NULL and for cascaded statements from
AFTER triggers.
The purpose of this step is to determine the set of affected rows for the statement.
The set of rows included is based on the statement:
– for DELETE, all rows that satisfy the search condition of the statement (or the

current row for a positioned DELETE)
– for INSERT, the rows identified by the VALUES clause or the fullselect
– for UPDATE, all rows that satisfy the search condition (or the current row for

a positioned UPDATE).
If the set of affected rows is empty, there will be no BEFORE triggers, changes to
apply to the subject table, or constraints to process for the statement.

v Process BEFORE triggers

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 24. Processing an statement with associated triggers and constraints

308 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

All BEFORE triggers are processed in ascending order of creation. Each BEFORE
trigger will process the triggered action once for each row in the set of affected
rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original statement S1 (so far) are rolled back.
If there are no BEFORE triggers or the set of affected is empty, this step is
skipped.

v Apply the set of affected rows to the subject table
The actual delete, insert, or update is applied using the set of affected rows to
the subject table in the database.
An error can occur when applying the set of affected rows (such as attempting
to insert a row with a duplicate key where a unique index exists) in which case
all changes made as a result of the original statement S1 (so far) are rolled back.

v Apply Constraints
The constraints associated with the subject table are applied if set of affected
rows is not empty. This includes unique constraints, unique indexes, referential
constraints, check constraints and checks related to the WITH CHECK OPTION
on views. Referential constraints with delete rules of cascade or set null might
cause additional triggers to be activated.
A violation of any constraint or WITH CHECK OPTION results in an error and
all changes made as a result of S1 (so far) are rolled back.

v Process AFTER triggers
All AFTER triggers activated by S1 are processed in ascending order of creation.
FOR EACH STATEMENT triggers will process the triggered action exactly once,
even if the set of affected rows is empty. FOR EACH ROW triggers will process
the triggered action once for each row in the set of affected rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original S1 (so far) are rolled back.
The triggered action of a trigger can include triggered statements that are
DELETE, INSERT or UPDATE statements. For the purposes of this description,
each such statement is considered a cascaded statement.
A cascaded statement is a DELETE, INSERT, or UPDATE statement that is
processed as part of the triggered action of an AFTER trigger. This statement
starts a cascaded level of trigger processing. This can be thought of as assigning
the triggered statement as a new S1 and performing all of the steps described
here recursively.
Once all triggered statements from all AFTER triggers activated by each S1 have
been processed to completion, the processing of the original S1 is completed.

v R = roll back changes to before S1

Any error (including constraint violations) that occurs during processing results
in a roll back of all the changes made directly or indirectly as a result of the
original statement S1. The database is therefore back in the same state as
immediately before the execution of the original statement S1

Informational constraints
An informational constraint is a constraint attribute that can be used by the SQL
compiler to improve the access to data. Informational constraints are not enforced
by the database manager, and are not used for additional verification of data;
rather, they are used to improve query performance.

Chapter 21. Constraints 309

Informational constraints are defined using the CREATE TABLE or ALTER TABLE
statements. You first add referential integrity or check constraints and then
associate constraint attributes to them specifying whether the database manager is
to enforce the constraint or not. For check constraints you can further specify that
the constraint can be trusted. For referential integrity constraints, if the constraint is
not enforced, you can further specify whether the constraint can be trusted or not.
A not enforced and not trusted constraint is also known as a statistical referential
integrity constraint. After you have specified the constraint you can then specify
whether the constraint is to be used for query optimization or not.

Informational RI (referential integrity) constraints are used to optimize query
performance, the incremental processing of REFRESH IMMEDIATE MQT, and
staging tables. Query results, MQT data, and staging tables might be incorrect if
informational constraints are violated.

For example, the order in which parent-child tables are maintained is important.
When you want to add rows to a parent-child table, you must insert rows into the
parent table first. To remove rows from a parent-child table, you must delete rows
from the child table first. This ensures that there are no orphan rows in the child
table at any time. Otherwise the informational constraint violation might affect the
correctness of queries being executed during table maintenance, as well as the
correctness of the incremental maintenance of dependent MQT data and staging
tables.

Designing informational constraints
Constraints that are enforced by the database manager when records are inserted
or updated can lead to high amounts of system activity, especially when loading
large quantities of records that have referential integrity constraints. If an
application has already verified information before inserting a record into the table,
it might be more efficient to use informational constraints, rather than normal
constraints.

Informational constraints tell the database manager what rules the data conforms
to, but the rules are not enforced by the database manager. However, this
information can be used by the DB2 optimizer and could result in better
performance of SQL queries.

The following example illustrates the use of information constraints and how they
work. This simple table contains information about applicants' age and gender:

CREATE TABLE APPLICANTS
(
AP_NO INT NOT NULL,

GENDER CHAR(1) NOT NULL,
CONSTRAINT GENDEROK

CHECK (GENDER IN (’M’, ’F’))
NOT ENFORCED
ENABLE QUERY OPTIMIZATION,

AGE INT NOT NULL,
CONSTRAINT AGEOK

CHECK (AGE BETWEEN 1 AND 80)
NOT ENFORCED
ENABLE QUERY OPTIMIZATION,

);

This example contains two options that change the behavior of the column
constraints. The first option is NOT ENFORCED, which instructs the database
manager not to enforce the checking of this column when data is inserted or

310 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

updated. This option can be further specified to be either TRUSTED or NOT
TRUSTED. If the informational constraint is specified to be TRUSTED then the
database manager can trust that the data will conform to the constraint. This is the
default option. If NOT TRUSTED is specified then the database manager knows
that most of the data, but not all, will not conform to the constraint. In this
example, the option is NOT ENFORCED TRUSTED by default since the option of
trusted or not trusted was not specified.

The second option is ENABLE QUERY OPTIMIZATION which is used by the
database manager when SELECT statements are run against this table. When this
value is specified, the database manager will use the information in the constraint
when optimizing the SQL.

If the table contains the NOT ENFORCED option, the behavior of insert statements
might appear odd. The following SQL will not result in any errors when run
against the APPLICANTS table:

INSERT INTO APPLICANTS VALUES
(1, ’M’, 54),
(2, ’F’, 38),
(3, ’M’, 21),
(4, ’F’, 89),
(5, ’C’, 10),
(6, ’S’,100),

Applicant number five has a gender (C), for child, and applicant number six has
both an unusual gender and exceeds the age limits of the AGE column. In both
cases the database manager will allow the insert to occur since the constraints are
NOT ENFORCED and TRUSTED. The result of a select statement against the table
is shown in the following example:

SELECT * FROM APPLICANTS
WHERE GENDER = ’C’;

APPLICANT GENDER AGE
--------- ------ ---

0 record(s) selected.

The database manager returned the incorrect answer to the query, even though the
value 'C' is found within the table, but the constraint on this column tells the
database manager that the only valid values are either 'M' or 'F'. The ENABLE
QUERY OPTIMIZATION keyword also allowed the database manager to use this
constraint information when optimizing the statement. If this is not the behavior
that you want, then the constraint needs to be changed through the use of the
ALTER TABLE statement, as shown in the following example:

ALTER TABLE APPLICANTS
ALTER CHECK AGEOK DISABLE QUERY OPTIMIZATION

If the query is reissued, the database manager will return the following correct
results:

SELECT * FROM APPLICANTS
WHERE SEC = ’C’;

APPLICANT GENDER AGE
--------- ------ ---

5 C 10

1 record(s) selected.

Chapter 21. Constraints 311

Note: If the constraint attributes NOT ENFORCED NOT TRUSTED and ENABLE
QUERY OPTIMIZATION were specified from the beginning for the table
APPLICANTS, then the correct results shown previously would have been
returned after the first SELECT statement was issued.

The best scenario for using NOT ENFORCED TRUSTED informational constraints
occurs when you can guarantee that the application program is the only
application inserting and updating the data. If the application already checks all of
the information beforehand (such as gender and age in the previous example) then
using informational constraints can result in faster performance and no duplication
of effort. Another possible use of informational constraints is in the design of data
warehouses. Also, if you cannot guarantee that the data in the table will always
conform to the constraint you can set the constraints to be NOT ENFORCED and
NOT TRUSTED. This type of constraint can be used when strict matching between
the values in the foreign keys and the primary keys are not needed. This constraint
can also still be used as part of a statistical view enabling the optimization of
certain SQL queries.

Creating and modifying constraints
Constraints can be added to existing tables with the ALTER TABLE statement.

About this task

The constraint name cannot be the same as any other constraint specified within an
ALTER TABLE statement, and must be unique within the table (this includes the
names of any referential integrity constraints that are defined). Existing data is
checked against the new condition before the statement succeeds.

Creating and modifying unique constraints
Unique constraints can be added to an existing table. The constraint name
cannot be the same as any other constraint specified within the ALTER
TABLE statement, and must be unique within the table (this includes the
names of any referential integrity constraints that are defined). Existing
data is checked against the new condition before the statement succeeds.

To define unique constraints using the command line, use the ADD
CONSTRAINT option of the ALTER TABLE statement. For example, the
following statement adds a unique constraint to the EMPLOYEE table that
represents a new way to uniquely identify employees in the table:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

To modify this constraint, you would have to drop it, and then re-create it.

Creating and modifying primary key constraints
A primary key constraint can be added to an existing table. The constraint
name must be unique within the table (this includes the names of any
referential integrity constraints that are defined). Existing data is checked
against the new condition before the statement succeeds.

To add primary keys using the command line, enter:
ALTER TABLE <name>

ADD CONSTRAINT <column_name>
PRIMARY KEY <column_name>

312 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

An existing constraint cannot be modified. To define another column, or
set of columns, as the primary key, the existing primary key definition
must first be dropped, and then re-created.

Creating and modifying check constraints
When a table check constraint is added, packages and cached dynamic
SQL that insert or update the table might be marked as invalid.

To add a table check constraint using the command line, enter:
ALTER TABLE EMPLOYEE

ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

To modify this constraint, you would have to drop it, and then re-create it.

Creating and modifying foreign key (referential) constraints
A foreign key is a reference to the data values in another table. There are
different types of foreign key constraints.

When a foreign key is added to a table, packages and cached dynamic SQL
containing the following statements might be marked as invalid:
v Statements that insert or update the table containing the foreign key
v Statements that update or delete the parent table.

To add foreign keys using the command line, enter:
ALTER TABLE <name>

ADD CONSTRAINT <column_name>
FOREIGN KEY <column_name>
ON DELETE <action_type>
ON UPDATE <action_type>

The following examples show the ALTER TABLE statement to add primary
keys and foreign keys to a table:

ALTER TABLE PROJECT
ADD CONSTRAINT PROJECT_KEY

PRIMARY KEY (PROJNO)
ALTER TABLE EMP_ACT

ADD CONSTRAINT ACTIVITY_KEY
PRIMARY KEY (EMPNO, PROJNO, ACTNO)

ADD CONSTRAINT ACT_EMP_REF
FOREIGN KEY (EMPNO)
REFERENCES EMPLOYEE
ON DELETE RESTRICT

ADD CONSTRAINT ACT_PROJ_REF
FOREIGN KEY (PROJNO)
REFERENCES PROJECT
ON DELETE CASCADE

To modify this constraint, you would have to drop it and then re-create it.

Creating and modifying informational constraints
To improve the performance of queries, you can add informational
constraints to your tables. You add informational constraints using the
CREATE TABLE or ALTER TABLE statement when you specify the NOT
ENFORCED option on the DDL. Along with the NOT ENFORCED option you
can further specify the constraint to be either TRUSTED or NOT
TRUSTED.

Restriction: After you define informational constraints on a table, you can
only alter the column names for that table after you remove the
informational constraints.

Chapter 21. Constraints 313

To specify informational constraints on a table using the command line,
enter one of the following commands for a new table:

ALTER TABLE <name> <constraint attributes> NOT ENFORCED

ALTER TABLE <name> <constraint attributes> NOT ENFORCED TRUSTED

ALTER TABLE <name> <constraint attributes> NOT ENFORCED NOT TRUSTED

ENFORCED or NOT ENFORCED: Specifies whether the constraint is
enforced by the database manager during normal operations such as insert,
update, or delete.
v ENFORCED cannot be specified for a functional dependency (SQLSTATE

42621).
v NOT ENFORCED should only be specified if the table data is

independently known to conform to the constraint. Query results might
be unpredictable if the data does not actually conform to the constraint.
You can also specify if the NOT ENFORCED constraint is to be
TRUSTED or NOT TRUSTED.
– TRUSTED: Informs the database manager that the data can be trusted

to conform to the constraint. This is the default option. This option
must only be used if the data is independently known to conform to
the constraint

– NOT TRUSTED: Informs the database manager that the data cannot
be trusted to conform to the constraint. This option is intended for
cases where the data conforms to the constraint for most rows, but it
is not independently known to conform to the constraint. NOT
TRUSTED can be specified only for referential integrity constraints
(SQLSTATE 42613).

To modify this constraint, you would have to drop it and then re-create it.

Table constraint implications for utility operations
If the table being loaded into has referential integrity constraints, the load utility
places the table into the set integrity pending state to inform you that the SET
INTEGRITY statement is required to be run on the table, in order to verify the
referential integrity of the loaded rows. After the load utility has completed, you
will need to issue the SET INTEGRITY statement to carry out the referential
integrity checking on the loaded rows and to bring the table out of the set integrity
pending state.

For example, if the DEPARTMENT and EMPLOYEE tables are the only tables that
have been placed in set integrity pending state, you can execute the following
statement:

SET INTEGRITY FOR DEPARTMENT ALLOW WRITE ACCESS,
EMPLOYEE ALLOW WRITE ACCESS,
IMMEDIATE CHECKED FOR EXCEPTION IN DEPARTMENT,
USE DEPARTMENT_EX,
IN EMPLOYEE USE EMPLOYEE_EX

The import utility is affected by referential constraints in the following ways:
v The REPLACE and REPLACE CREATE functions are not allowed if the object

table has any dependents other than itself.
To use these functions, first drop all foreign keys in which the table is a parent.
When the import is complete, re-create the foreign keys with the ALTER TABLE
statement.

314 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The success of importing into a table with self-referencing constraints depends
on the order in which the rows are imported.

Statement dependencies when changing objects
Statement dependencies include package and cached dynamic SQL and XQuery
statements. A package is a database object that contains the information needed by
the database manager to access data in the most efficient way for a particular
application program. Binding is the process that creates the package the database
manager needs in order to access the database when the application is executed.

Packages and cached dynamic SQL and XQuery statements can be dependent on
many types of objects.

These objects could be explicitly referenced, for example, a table or user-defined
function that is involved in an SQL SELECT statement. The objects could also be
implicitly referenced, for example, a dependent table that needs to be checked to
ensure that referential constraints are not violated when a row in a parent table is
deleted. Packages are also dependent on the privileges which have been granted to
the package creator.

If a package or cached dynamic query statement depends on an object and that
object is dropped, the package or cached dynamic query statement is placed in an
“invalid” state. If a package depends on a user-defined function and that function
is dropped, the package is placed in an “inoperative” state, with the following
conditions:
v A cached dynamic SQL or XQuery statement that is in an invalid state is

automatically re-optimized on its next use. If an object required by the statement
has been dropped, execution of the dynamic SQL or XQuery statement might
fail with an error message.

v A package that is in an invalid state is implicitly rebound on its next use. Such a
package can also be explicitly rebound. If a package was marked as being not
valid because a trigger was dropped, the rebound package no longer invokes the
trigger.

v A package that is in an inoperative state must be explicitly rebound before it can
be used.

Federated database objects have similar dependencies. For example, dropping a
server or altering a server definition invalidates any packages or cached dynamic
SQL referencing nicknames associated with that server.

In some cases, it is not possible to rebind the package. For example, if a table has
been dropped and not re-created, the package cannot be rebound. In this case, you
must either re-create the object or change the application so it does not use the
dropped object.

In many other cases, for example if one of the constraints was dropped, it is
possible to rebind the package.

The following system catalog views help you to determine the state of a package
and the package's dependencies:
v SYSCAT.PACKAGEAUTH
v SYSCAT.PACKAGEDEP
v SYSCAT.PACKAGES

Chapter 21. Constraints 315

Reuse of indexes with unique or primary key constraints
If you use the ALTER TABLE command to add a unique or primary key constraint
to a partitioned table with a partitioned index, depending on the indexes that
already exist, one might be altered to enforce the new constraint, or a new one
might be created.

When you run the ALTER TABLE statement to add or change a unique or primary
key for a table, a check is performed to determine whether any existing index
matches the unique or primary key being defined (INCLUDE columns are
ignored). An index definition matches if it identifies the same set of columns,
regardless of the order or the direction (for example ASC/DESC) of the columns.

In the case of partitioned tables that have partitioned, non-unique indexes, if the
index columns of the table being altered are not included among the columns that
form the partition key, the index will not be considered a matching index.

If the table does have a matching index definition, it will changed to be a UNIQUE
index if it wasn't one already, and will marked as required by the system. If the
table has more than one existing index that matches, then an existing unique index
is selected. If there is more than one matching unique index, or if there are more
than one matching non-unique indexes and no matching unique indexes, then a
partitioned index is favoured. Otherwise the selection of an index is arbitrary.

If no matching index is found, then a unique bidirectional index is automatically
created for the columns.

Viewing constraint definitions for a table
Constraint definitions on a table can be found in the SYSCAT.INDEXES and
SYSCAT.REFERENCES catalog views.

About this task

The UNIQUERULE column of the SYSCAT.INDEXES view indicates the
characteristic of the index. If the value of this column is P, the index is a primary
key, and if it is U, the index is a unique index (but not a primary key).

The SYSCAT.REFERENCES catalog view contains referential integrity (foreign key)
constraint information.

Dropping constraints
You can explicitly drop a table check constraint using the ALTER TABLE statement,
or implicitly drop it as the result of a DROP TABLE statement.

About this task

To drop constraints, use the ALTER TABLE statement with the DROP or DROP
CONSTRAINT clauses. This allows you to BIND and continue accessing the tables
that contain the affected columns. The name of all unique constraints on a table
can be found in the SYSCAT.INDEXES system catalog view.

316 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Procedure
v To explicitly drop unique constraints, use the DROP UNIQUE clause of the

ALTER TABLE statement.
The DROP UNIQUE clause of the ALTER TABLE statement drops the definition
of the unique constraint constraint-name and all referential constraints that are
dependent upon this unique constraint. The constraint-name must identify an
existing unique constraint.

ALTER TABLE table-name
DROP UNIQUE constraint-name

Dropping this unique constraint invalidates any packages or cached dynamic
SQL that used the constraint.

v To drop primary key constraints, use the DROP PRIMARY KEY clause of the
ALTER TABLE statement.
The DROP PRIMARY KEY clause of the ALTER TABLE statement drops the
definition of the primary key and all referential constraints that are dependent
upon this primary key. The table must have a primary key. To drop a primary
key using the command line, enter:

ALTER TABLE table-name
DROP PRIMARY KEY

v To drop (table) check constraints, use the DROP CHECK clause of the ALTER
TABLE statement.
When you drop a check constraint, all packages and cached dynamic statements
with INSERT or UPDATE dependencies on the table are invalidated. The name
of all check constraints on a table can be found in the SYSCAT.CHECKS catalog
view. Before attempting to drop a table check constraint having a
system-generated name, look for the name in the SYSCAT.CHECKS catalog view.
The following statement drops the check constraint constraint-name. The
constraint-name must identify an existing check constraint defined on the table.
To drop a table check constraint using the command line:

ALTER TABLE table_name
DROP CHECK check_constraint_name

Alternatively, you can use the ALTER TABLE statement with the DROP
CONSTRAINT option.

v To drop foreign key (referential) constraints, use the DROP CONSTRAINT clause
of the ALTER TABLE statement.
The DROP CONSTRAINT clause of the ALTER TABLE statement drops the
constraint constraint-name. The constraint-name must identify an existing foreign
key constraint, primary key, or unique constraint defined on the table. To drop
foreign keys using the command line, enter:

ALTER TABLE table-name
DROP FOREIGN KEY foreign_key_name

When a foreign key constraint is dropped, packages or cached dynamic
statements containing the following might be marked as invalid:
– Statements that insert or update the table containing the foreign key
– Statements that update or delete the parent table.

Example

The following examples use the DROP PRIMARY KEY and DROP FOREIGN KEY
clauses in the ALTER TABLE statement to drop primary keys and foreign keys on
a table:

Chapter 21. Constraints 317

ALTER TABLE EMP_ACT
DROP PRIMARY KEY
DROP FOREIGN KEY ACT_EMP_REF
DROP FOREIGN KEY ACT_PROJ_REF

ALTER TABLE PROJECT
DROP PRIMARY KEY

318 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 22. Indexes

An index is a set of pointers that are logically ordered by the values of one or more
keys. The pointers can refer to rows in a table, blocks in an MDC or ITC table,
XML data in an XML storage object, and so on.

Indexes are used to:
v Improve performance. In most cases, access to data is faster with an index.

Although an index cannot be created for a view, an index created for the table
on which a view is based can sometimes improve the performance of operations
on that view.

v Ensure uniqueness. A table with a unique index cannot have rows with identical
keys.

As data is added to a table, it is appended to the bottom (unless other actions have
been carried out on the table or the data being added). There is no inherent order
to the data. When searching for a particular row of data, each row of the table
from first to last must be checked. Indexes are used as a means to access the data
within the table in an order that might otherwise not be available.

Typically, when you search for data in a table, you are looking for rows with
columns that have specific values. A column value in a row of data can be used to
identify the entire row. For example, an employee number would probably
uniquely define a specific individual employee. Or, more than one column might
be needed to identify the row. For example, a combination of customer name and
telephone number. Columns in an index used to identify data rows are known as
keys. A column can be used in more than one key.

An index is ordered by the values within a key. Keys can be unique or non-unique.
Each table should have at least one unique key; but can also have other,
non-unique keys. Each index has exactly one key. For example, you might use the
employee ID number (unique) as the key for one index and the department
number (non-unique) as the key for a different index.

Not all indexes point to rows in a table. MDC and ITC block indexes point to
extents (or blocks) of the data. XML indexes for XML data use particular XML
pattern expressions to index paths and values in XML documents stored within a
single column. The data type of that column must be XML. Both MDC and ITC
block indexes and XML indexes are system generated indexes.

Example

Table A in Figure 25 on page 320 has an index based on the employee numbers in
the table. This key value provides a pointer to the rows in the table. For example,
employee number 19 points to employee KMP. An index allows efficient access to
rows in a table by creating a path to the data through pointers.

Unique indexes can be created to ensure uniqueness of the index key. An index key
is a column or an ordered collection of columns on which an index is defined.
Using a unique index will ensure that the value of each index key in the indexed
column or columns is unique.

© Copyright IBM Corp. 2014 319

Figure 25 shows the relationship between an index and a table.

Figure 26 illustrates the relationships among some database objects. It also shows
that tables, indexes, and long data are stored in table spaces.

Types of indexes
There are different types of indexes that can be created for different purposes. For
example, unique indexes enforce the constraint of uniqueness in your index keys;
bidirectional indexes allow for scans in both the forward and reverse directions;
clustered indexes can help improve the performance of queries that traverse the
table in key order.

Unique and non-unique indexes

Unique indexes are indexes that help maintain data integrity by ensuring that no
two rows of data in a table have identical key values.

17

19

19

47

81 81

85

87 87

93

93

47

17

85

ABC

QRS

FCP

MLI

CJP

DJS

KMP

Column

Row

Table AIndex A

Database

Figure 25. Relationship between an index and a table

Instance

System

Database

Database partition group

Table spaces
• Tables
• Indexes
• Long data

Figure 26. Relationships among selected database objects

320 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

When attempting to create a unique index for a table that already contains data,
values in the column or columns that comprise the index are checked for
uniqueness; if the table contains rows with duplicate key values, the index creation
process fails. Once a unique index has been defined for a table, uniqueness is
enforced whenever keys are added or changed within the index. (This includes
insert, update, load, import, and set integrity, to name a few.) In addition to
enforcing the uniqueness of data values, a unique index can also be used to
improve data retrieval performance during query processing.

Non-unique indexes, are not used to enforce constraints on the tables with which
they are associated. Instead, non-unique indexes are used solely to improve query
performance by maintaining a sorted order of data values that are used frequently.

Clustered and non-clustered indexes

Index architectures are classified as clustered or non-clustered. Clustered indexes
are indexes whose order of the rows in the data pages correspond to the order of
the rows in the index. This is why only one clustered index can exist in a given
table, whereas, many non-clustered indexes can exist in the table. In some
relational database management systems, the leaf node of the clustered index
corresponds to the actual data, not a pointer to data that resides elsewhere.

Both clustered and non-clustered indexes contain only keys and record IDs in the
index structure. The record IDs always point to rows in the data pages. The only
difference between clustered and non-clustered indexes is that the database
manager attempts to keep the data in the data pages in the same order as the
corresponding keys appear in the index pages. Thus the database manager will
attempt to insert rows with similar keys onto the same pages. If the table is
reorganized, it will be inserted into the data pages in the order of the index keys.

Reorganizing a table with respect to a chosen index re-clusters the data. A
clustered index is most useful for columns that have range predicates because it
allows better sequential access of data in the table. This results in fewer page
fetches, since like values are on the same data page.

In general, only one of the indexes in a table can have a high degree of clustering.

Clustering indexes can improve the performance of most query operations because
they provide a more linear access path to data, which has been stored in pages. In
addition, because rows with similar index key values are stored together,
sequential detection prefetching is usually more efficient when clustering indexes
are used.

However, clustering indexes cannot be specified as part of the table definition used
with the CREATE TABLE statement. Instead, clustering indexes are only created by
executing the CREATE INDEX statement with the CLUSTER option specified. Then
the ALTER TABLE statement should be used to add a primary key that
corresponds to the clustering index created to the table. This clustering index will
then be used as the table's primary key index.

Note: Setting PCTFREE in the table to an appropriate value using the ALTER
TABLE statement can help the table remain clustered by leaving adequate free
space to insert rows in the pages with similar values. For more information, see
“ALTER TABLE statement” in the SQL Reference and “Reducing the need to
reorganize tables and indexes” in Troubleshooting and Tuning Database Performance.

Chapter 22. Indexes 321

Improving performance with clustering indexes

Generally, clustering is more effectively maintained if the clustering index is
unique.

Differences between primary key or unique key constraints and
unique indexes

It is important to understand that there is no significant difference between a
primary unique key constraint and a unique index. The database manager uses a
combination of a unique index and the NOT NULL constraint to implement the
relational database concept of primary and unique key constraints. Therefore,
unique indexes do not enforce primary key constraints by themselves because they
allow null values. (Although null values represent unknown values, when it comes
to indexing, a null value is treated as being equal to other null values.)

Therefore, if a unique index consists of a single column, only one null value is
allowed-more than one null value would violate the unique constraint. Similarly, if
a unique index consists of multiple columns, a specific combination of values and
nulls can be used only once.

Bidirectional indexes

By default, bidirectional indexes allow scans in both the forward and reverse
directions. The ALLOW REVERSE SCANS clause of the CREATE INDEX statement
enables both forward and reverse index scans, that is, in the order defined at index
creation time and in the opposite (or reverse) order. This option allows you to:
v Facilitate MIN and MAX functions
v Fetch previous keys
v Eliminate the need for the database manager to create a temporary table for the

reverse scan
v Eliminate redundant reverse order indexes

If DISALLOW REVERSE SCANS is specified then the index cannot be scanned in
reverse order. (But physically it will be exactly the same as an ALLOW REVERSE
SCANS index.)

Partitioned and nonpartitioned indexes

Partitioned data can have indexes that are nonpartitioned, existing in a single table
space within a database partition, indexes that are themselves partitioned across
one or more table spaces within a database partition, or a combination of the two.
Partitioned indexes are particularly beneficial when performing roll-in operations
with partitioned tables (attaching a data partition to another table using the
ATTACH PARTITION clause on the ALTER table statement.)

Indexes on partitioned tables
Partitioned tables can have indexes that are nonpartitioned (existing in a single
table space within a database partition), indexes that are themselves partitioned
across one or more table spaces within a database partition, or a combination of
the two.

Partitioned indexes offer benefits when performing roll-in operations with
partitioned tables (attaching a data partition to another table by using the ATTACH

322 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

PARTITION clause on the ALTER table statement.) With a partitioned index, you
can avoid the index maintenance that you would otherwise have to perform with
nonpartitioned indexes. When a partitioned table uses a nonpartitioned index, you
must use the SET INTEGRITY statement to maintain the nonpartitioned index by
incorporating the index keys from newly attached partitions. Not only is this time
consuming, it also can require a large amount of log space, depending on the
number of rows that are being rolled in.

There are some types of indexes that cannot be partitioned:
v Indexes over nonpartitioned data
v Indexes over spatial data
v XML column path indexes (system generated)

You must always create these indexes as nonpartitioned. In addition, the index key
for partitioned unique indexes must include all columns from the table-partitioning
key, whether they are user- or system-generated. The latter would be the case for
indexes created by the system for enforcing unique or primary constraints on data.

Starting in DB2 Version 9.7 Fix Pack 1, you can create an index over XML data on
a partitioned table as either partitioned or nonpartitioned. The default is a
partitioned index. Unique indexes over XML data are always nonpartitioned.

Nonpartitioned indexes on partitioned tables
A nonpartitioned index is a single index object that refers to all rows in a partitioned
table. Nonpartitioned indexes are always created as independent index objects in a
single table space, even if the table data partitions span multiple table spaces.

When you create an index for a partitioned table, the index is a partitioned index by
default unless you create one of the following types of indexes:
v A unique index where the index key does not include all of the

table-partitioning columns
v A spatial index

In these cases, the index that you create is nonpartitioned. However, there are
times when it is useful or necessary to create a nonpartitioned index even though
your data is partitioned. In these cases, use the NOT PARTITIONED clause of the
CREATE INDEX statement to create a nonpartitioned index on a partitioned table.
When you create a nonpartitioned index, by default, it is stored in the same table
space as the first visible or attached data partition. Figure 27 on page 324 shows an
example of a single index, X1, that references all of the partitions in a table. The
index was created in the same table space as the first visible partition for the table.

Chapter 22. Indexes 323

Figure 28 shows an example of two nonpartitioned indexes. In this case, each index
partition is in a table space separate from the table space of the data partitions.
Note again how each index references all of the partitions in the table.

You can override the location for a nonpartitioned index at the following times:
v When you create the table, by using the INDEX IN clause of the CREATE

TABLE statement
v When you create the index, by using the IN clause of the CREATE INDEX

statement.

The second approach always takes precedence over the first.

Table space (ts2)Table space (ts1)

Index (x1)

TableA

Figure 27. Nonpartitioned index on a partitioned table

Figure 28. Nonpartitioned indexes on a partitioned table, with indexes in their own table
spaces

324 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If you roll data into a partitioned table by using the ATTACH PARTITION clause
of the ALTER TABLE statement, you must run the SET INTEGRITY statement to
bring the attached partition data online for queries. If the indexes are
nonpartitioned, bringing the attached partition data online can be a
time-consuming operation that uses considerable amounts of log space, because
SET INTEGRITY must insert data from the newly attached partition into the
nonpartitioned indexes.

SET INTEGRITY is not required to be run after detaching a partition.

Partitioned indexes on partitioned tables
A partitioned index is made up of a set of index partitions, each of which contains the
index entries for a single data partition. Each index partition contains references
only to data in its corresponding data partition. Both system- and user-generated
indexes can be partitioned.

A partitioned index becomes beneficial if:
v You are rolling data in or out of partitioned tables by using the ATTACH

PARTITION or DETACH PARTITION clauses of the ALTER TABLE statement.
With a nonpartitioned index, the SET INTEGRITY statement that you must run
before the data in the newly attached partition is available can be time
consuming and require large amounts of log space. When you attach a table
partition that uses a partitioned index, you still must issue a SET INTEGRITY
statement to perform tasks such as range validation and constraint checking.

Tip: If data integrity checking, including range validation and other constraints
checking, can be done through application logic that is independent of the data
server before an attach operation, newly attached data can be made available for
use much sooner. You can optimize the data roll-in process by using the SET
INTEGRITY...ALL IMMEDIATE UNCHECKED statement to skip range and
constraints violation checking. In this case, the table is brought out of SET
INTEGRITY pending state, and the new data is available for applications to use
immediately, as long as there are no nonpartitioned user indexes on the target
table.
If the indexes for the source table the index partitions for the target table, SET
INTEGRITY processing does not incur the performance and log processing
associated with index maintenance; the newly rolled-in data is accessible more
quickly than it would be using nonpartitioned indexes. See “Conditions for
matching a source table index with a target table partitioned index during
ATTACH PARTITION” in Partitioning and Clustering Guide for more information
about index matching.

v You are performing maintenance on data in a specific partition that necessitates
an index reorganization. For example, consider a table with 12 partitions, each
corresponding to a specific month of the year. You might want to update or
delete many rows that are specific to one month of the year. This action could
result in a fragmented index, which might require that you perform an index
reorganization. With a partitioned index, you can reorganize just the index
partition that corresponds to the data partition where the changes were made,
which could save a significant amount of time compared to reorganizing an
entire, nonpartitioned index.

There are some types of indexes that cannot be partitioned:
v Indexes over nonpartitioned data
v Indexes over spatial data

Chapter 22. Indexes 325

v XML column path indexes (system generated)

You must always create these indexes as nonpartitioned. In addition, the index key
for partitioned unique indexes must include all columns from the table-partitioning
key, whether they are user- or system-generated. The latter would be the case for
indexes created by the system for enforcing unique or primary constraints on data.

Figure 29 shows an example of partitioned indexes.

In this example, all of the data partitions for table A and all of the index partitions
for table A are in a single table space. The index partitions reference only the rows
in the data partition with which they are associated. (Contrast a partitioned index
with a nonpartitioned index, where the index references all rows across all data
partitions). Also, index partitions for a data partition are in the same index object.
This particular arrangement of indexes and index partitions would be established
with statements like the following statements:
CREATE TABLE A (columns) in ts1

PARTITION BY RANGE (column expression)
(PARTITION PART0 STARTING FROM constant ENDING constant,
PARTITION PART1 STARTING FROM constant ENDING constant,
PARTITION PART2 STARTING FROM constant ENDING constant,

CREATE INDEX x1 ON A (...) PARTITIONED;
CREATE INDEX x2 ON A (...) PARTITIONED;

Figure 30 on page 327 shows another example of a partitioned index.

TableA

Table space (ts1)

Index(x2)

Index(x2)

Index(x2)

Index (x1)

Index (x1)

Index (x1)

Part0

Part1

Part2

Figure 29. Partitioned indexes that share a table space with data partitions of a table

326 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

In this example, the data partitions for table A are distributed across two table
spaces, TS1, and TS3. The index partitions are also in different table spaces. The
index partitions reference only the rows in the data partition with which they are
associated. This particular arrangement of indexes and index partitions would be
established with statements like the following statements:
CREATE TABLE A (columns)

PARTITION BY RANGE (column expression)
(PARTITION PART0 STARTING FROM constant ENDING constant IN ts1 INDEX IN ts2,
PARTITION PART1 STARTING FROM constant ENDING constant IN ts3 INDEX IN ts4,
PARTITION PART2 STARTING FROM constant ENDING constant IN ts3,INDEX IN ts5)

CREATE INDEX x1 ON A (...);
CREATE INDEX x2 ON A (...);

In this case, the PARTITIONED clause was omitted from the CREATE INDEX
statement; the indexes are still created as partitioned indexes, as this setting is the
default for partitioned tables.

The Figure 31 on page 328 diagram shows an example of a partitioned table with
both nonpartitioned and partitioned indexes.

Table space (ts4)

Table space (ts2)

TableA

Table space (ts1)

Table space (ts3)

Table space (ts5)

Part0

Part1

Part2

Index (x2)

Index (x1)

Index (x2)

Index (x1)

Index (x2)

Index (x1)

Figure 30. Partitioned indexes with data partitions and index partitions in different table
spaces.

Chapter 22. Indexes 327

In this diagram, index X1 is a nonpartitioned index that references all of the
partitions of table T1. Indexes X2 and X3 are partitioned indexes that reside in
various table spaces. This particular arrangement of indexes and index partitions
would be established with statements like the following statements:

CREATE TABLE t1 (columns) in ts1 INDEX IN ts2 �1�
PARTITION BY RANGE (column expression)
(PARTITION PART0 STARTING FROM constant ENDING constant IN ts3, �2�
PARTITION PART1 STARTING FROM constant ENDING constant INDEX IN ts5,
PARTITION PART2 STARTING FROM constant ENDING constant INDEX IN ts4,
PARTITION PART3 STARTING FROM constant ENDING constant INDEX IN ts4,
PARTITION PART4 STARTING FROM constant ENDING constant)

CREATE INDEX x1 ON t1 (...) NOT PARTITIONED;
CREATE INDEX x2 ON t1 (...) PARTITIONED;
CREATE INDEX x3 ON t1 (...) PARTITIONED;

Note that:

Part0

Table space (ts3)

Table space (ts4)

Table space (ts5)

Part1 Index (x3)

Index (x2)

Part2 Index (x3)

Index (x2)

Part3 Index (x3)

Index (x2)

Part4 Index (x3)

Index (x2)

Table space (ts2)

Index (x1)

Index (x3)

Index (x2)

t1

Table space (ts1)

Figure 31. Combination of nonpartitioned and partitioned indexes for a partitioned table

328 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The nonpartitioned index X1 is stored in table space TS2, because this location is
the default specified (see �1�) for nonpartitioned indexes for table T1.

v The index partition for data partition 0 (Part0) is stored in table space TS3,
because the default location for an index partition is the same as the data
partition it references (see �2�).

v Part4 is stored in TS1, which is the default table space for data partitions in table
T1 (see �1�); the index partitions for this data partition also reside in TS1, again
because the default location for an index partition is the same as the data
partition it references.

Important: Unlike nonpartitioned indexes, with partitioned indexes you cannot
use the INDEX IN clause of the CREATE INDEX statement to specify the table
space in which to store index partitions. The only way to override the default
storage location for index partitions is to specify the location at the time you create
the table by using the partition-level INDEX IN clause of the CREATE TABLE
statement. The table-level INDEX IN clause has no effect on index partition
placement.

You create partitioned indexes for a partitioned table by including the
PARTITIONED option in a CREATE INDEX statement. For example, for a table
named SALES partitioned with sales_date as the table-partitioning key, to create a
partitioned index, you could use a statement like this statement:

CREATE INDEX partIDbydate on SALES (sales_date, partID) PARTITIONED

If you are creating a partitioned unique index, then the table partitioning columns
must be included in the index key columns. So, using the previous example, if you
tried to create a partitioned index with the following statement:

CREATE UNIQUE INDEX uPartID on SALES (partID) PARTITIONED

the statement would fail because the column sales_date, which forms the
table-partitioning key is not included in the index key.

If you omit the PARTITIONED keyword when you create an index on a
partitioned table, the database manager creates a partitioned index by default
unless the following conditions apply:
v You are creating a unique index, and the index key does not include all of the

table-partitioning keys.
v You are creating one of the types of indexes that are described at the beginning

of this topic as not able to be created as partitioned indexes.

In either of these cases, the index is created as a nonpartitioned index.

Although creating a nonpartitioned index with a definition that matches that of an
existing nonpartitioned index returns SQL0605W, a partitioned index can coexist
with a nonpartitioned index with a similar definition. This coexistence is intended
to allow for easier adoption of partitioned indexes.

Designing indexes
Indexes are typically used to speed up access to a table. However, they can also
serve a logical data design purpose.

Chapter 22. Indexes 329

For example, a unique index does not allow entry of duplicate values in the
columns, thereby guaranteeing that no two rows of a table are the same. Indexes
can also be created to order the values in a column in ascending or descending
sequence.

Important: When creating indexes, keep in mind that although they can improve
read performance, they negatively impact write performance. This negative impact
occurs because for every row that the database manager writes to a table, it must
also update any affected indexes. Therefore, create indexes only when there is a
clear overall performance advantage.

When creating indexes, also take into account the structure of the tables and the
type of queries that are most frequently performed on them. For example, columns
that appear in the WHERE clause of a frequently issued query are good candidates
for indexes. In less frequently run queries, however, the cost that an index incurs
for performance in INSERT and UPDATE statements might outweigh the benefits.

Similarly, columns that figure in a GROUP BY clause of a frequent query might
benefit from the creation of an index, particularly if the number of values used to
group the rows is small relative to the number of rows being grouped.

When creating indexes, keep in mind that they can also be compressed. You can
modify the indexes later, by enabling or disabling compression by using the
ALTER INDEX statement.

To remove or delete indexes, you can use the DROP INDEX command. Dropping
indexes has the reverse requirements of inserting indexes; that is, to remove (or
mark as deleted) the index entries.

Guidelines and considerations when designing indexes
v Although the order of the columns that make up an index key does not make a

difference to index key creation, it might make a difference to the optimizer
when it is deciding whether to use an index. For example, if a query has an
ORDER BY col1,col2 clause, an index created on (col1,col2) could be used, but
an index created on (col2,col1) is of no help. Similarly, if the query specified a
condition such as where col1 >= 50 and col1 <= 100 or where col1=74, then an
index on (col1) or on (col1,col2) could be helpful, but an index on (col2,col1)
is far less helpful.

Note: Whenever possible, order the columns in an index key from the most
distinct to the least distinct. This ordering provides the best performance.

v Any number of indexes can be defined on a particular table, to a maximum of
32 767, and they can have a beneficial effect on the performance of queries. The
index manager must maintain the indexes during update, delete and insert
operations. Creating a large number of indexes for a table that receives many
updates can slow down processing of requests. Similarly, large index keys can
also slow down processing of requests. Therefore, use indexes only where a clear
advantage for frequent access exists.

v Column data which is not part of the unique index key but which is to be stored
or maintained in the index is called an include column. Include columns can be
specified for unique indexes only. When creating an index with include columns,
only the unique key columns are sorted and considered for uniqueness. The use
of include columns can enable index only access for data retrieval, thus
improving performance.

330 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v If the table that is being indexed is empty, an index is still created, but no index
entries are made until the table is loaded or rows are inserted. If the table is not
empty, the database manager creates the index entries while processing the
CREATE INDEX statement.

v For a clustering index, the database manager attempts to place new rows for the
table physically close to existing rows with similar key values (as defined by the
index).

v If you want a primary key index to be a clustering index, a primary key should
not be specified on the CREATE TABLE statement. Once a primary key is
created, the associated index cannot be modified. Instead, issue a CREATE
TABLE without a primary key clause. Then issue a CREATE INDEX statement,
specifying clustering attributes. Finally, use the ALTER TABLE statement to add
a primary key that corresponds to the index just created. This index is used as
the primary key index.

v If you have a partitioned table, by default, any index that you create is a
partitioned index unless you create a unique index that does not include the
partitioning key. You can also create the index as a nonpartitioned index.
Starting in DB2 Version 9.7 Fix Pack 1, you can create an index over XML data
on a partitioned table as either partitioned or nonpartitioned. The default is a
partitioned index.
Partitioned indexes offer benefits when performing roll-in operations with
partitioned tables (attaching a data partition to another table by using the
ATTACH PARTITION clause on the ALTER table statement.) With a partitioned
index, you can avoid the index maintenance that you would otherwise have to
perform with nonpartitioned indexes. When a partitioned table uses a
nonpartitioned index, you must use the SET INTEGRITY statement to maintain
the nonpartitioned index by incorporating the index keys from newly attached
partitions. Not only is this time consuming, it also can require a large amount of
log space, depending on the number of rows that are being rolled in.

v Indexes consume disk space. The amount of disk space varies depending on the
length of the key columns and the number of rows being indexed. The size of
the index increases as more data is inserted into the table. Therefore, consider
the amount of data that is being indexed when planning the size of the
database. Some of the indexing sizing considerations include:
– Primary and unique key constraints always create a system-generated unique

index.
– The creation of an MDC or ITC table also creates system-generated block

indexes.
– XML columns always cause system-generated indexes, including column path

indexes and region indexes, to be created.
– It is usually beneficial to create indexes on foreign key constraint columns.
– Whether the index is compressed or not (by using the COMPRESS option).

Note: The maximum number of columns in an index is 64. However, if you are
indexing a typed table, the maximum number of columns in an index is 63. The
maximum length of an index key, including all components, is IndexPageSize ÷ 4.
The maximum number of indexes allowed on a table is 32,767. The maximum
length of an index key must not be greater than the index key length limit for
the page size. For column stored lengths, see the “CREATE TABLE statement”.
For the key length limits, see the “SQL and XQuery limits” topic.

Chapter 22. Indexes 331

v During database upgrade, existing indexes are not compressed. If a table is
enabled for data row compression, new indexes created after the upgrade might
be compressed, unless the COMPRESS NO option is specified on the CREATE
INDEX statement.

Tools for designing indexes
Once you have created your tables, you need to consider how rapidly the database
manager will be able to retrieve data from them. You can use the Design Advisor
or the db2advis command to help you design your indexes.

Creating useful indexes on your tables can significantly improve query
performance. Like indexes of a book, indexes on tables allow specific information
to be located rapidly, with minimal searching. Using an index to retrieve particular
rows from a table can reduce the number of expensive input/output operations
that the database manager needs to perform. This is because an index allows the
database manager to locate a row by reading in a relatively small number of data
pages, rather than by performing an exhaustive search of all data pages until all
matches are found.

The DB2 Design Advisor is a tool that can help you significantly improve your
workload performance. The task of selecting which indexes, MQTs, clustering
dimensions, or database partitions to create for a complex workload can be quite
daunting. The Design Advisor identifies all of the objects needed to improve the
performance of your workload. Given a set of SQL statements in a workload, the
Design Advisor will generate recommendations for:
v New indexes
v New materialized query tables (MQTs)
v Conversion to multidimensional clustering (MDC) tables
v Redistribution of tables
v Deletion of indexes and MQTs unused by the specified workload (through the

GUI tool)

You can have the Design Advisor implement some or all of these recommendations
immediately or schedule them for a later time.

The Design Advisor can help simplify the following tasks:
v Planning for or setting up a new database
v Workload performance tuning

Space requirements for indexes
When designing indexes, you must be aware of their space requirements. For
compressed indexes, the estimates you derive from the formulas in this topic can
be used as an upper bound, however, it will likely be much smaller.

Space requirements for uncompressed indexes

For each uncompressed index, the space needed can be estimated as:
(average index key size + index key overhead) × number of rows × 2

where:
v The average index key size is the byte count of each column in the index key.

When estimating the average column size for VARCHAR and VARGRAPHIC
columns, use an average of the current data size, plus two bytes.

332 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The index key overhead depends on the type of table on which the index is
created:

Table 73. Index key overhead for different tables

Type of table
space Table type Index type Index key overhead

Any Any XML paths or regions 11 bytes

Regular Nonpartitioned Any 9 bytes

Partitioned Partitioned 9

Nonpartitioned 11

Large Partitioned Partitioned 11

Nonpartitioned 13

v The number of rows is the number of rows in a table or the number of rows in a
given data partition. Using the number of rows in the entire table in this
calculation will give you an estimate the size for the index (for a nonpartitioned
index) or for all index partitions combined (for a partitioned index). Using the
number of rows in a data partition will give you an estimate of the size for the
index partition.

v The factor of “2” is for overhead, such as non-leaf pages and free space.

Note:

1. For every column that allows null values, add one extra byte for the null
indicator.

2. For block indexes created internally for multidimensional clustering (MDC) or
insert time clustering (ITC) tables, the “number of rows” would be replaced by
the “number of blocks”.

Space requirements for XML indexes

For each index on an XML column, the space needed can be estimated as:
(average index key + index key overhead) × number of indexed nodes × 2

where:
v The average index key is the sum of the key parts that make up the index. The

XML index is made up of several XML key parts plus a value (sql-data-type):
14 + variable overhead + byte count of sql-data-type

where:
– 14 represents the number of bytes of fixed overhead
– The variable overhead is the average depth of the indexed node plus 4 bytes.
– The byte count of sql-data-type follows the same rules as SQL.

v The number of indexed nodes is the number of documents to be inserted
multiplied by the number of nodes in a sample document that satisfy the XML
pattern expression (XMLPATTERN) in the index definition. The number of indexed
nodes could be the number of nodes in a partition or the entire table.

Temporary space requirements for index creation

Temporary space is required when creating the index. The maximum amount of
temporary space required during index creation can be estimated as:

(average index key size + index key overhead) × number of rows × 3.2

Chapter 22. Indexes 333

For those indexes for which there could be more than one index key per row, such
as spatial indexes, indexes on XML columns and internal XML regions indexes, the
temporary space required can be estimated as:

(average index key size + index key overhead) × number of indexed nodes × 3.2

where the factor of “3.2” is for index overhead, and space required for sorting
during index creation. The number of rows or the number of indexed nodes is the
number in an entire table or in a given data partition.

Note: In the case of non-unique indexes, only one copy of a given duplicate key
entry is stored on any given leaf node. For indexes on tables in LARGE table
spaces the size for duplicate keys is 9 for nonpartitioned indexes, 7 for partitioned
indexes and indexes on nonpartitioned tables. For indexes on tables in REGULAR
table spaces these values are 7 for nonpartitioned indexes, 5 for partitioned indexes
and indexes on nonpartitioned tables. The only exception to these rules are XML
paths and XML regions indexes where the size of duplicate keys is always 7.The
estimate shown previously assumes no duplicates. The space required to store an
index might be over-estimated by the formula shown previously.

Temporary space is required when inserting if the number of index nodes exceeds
64 KB of data. The amount of temporary space can be estimated as:

average index key size × number of indexed nodes × 1.2

Estimating the number of keys per leaf page

The following two formulas can be used to estimate the number of keys per index
leaf page (the second provides a more accurate estimate). The accuracy of these
estimates depends largely on how well the averages reflect the actual data.

Note: For SMS table spaces, the minimum required space for leaf pages is three
times the page size. For DMS table spaces, the minimum is an extent.
1. A rough estimate of the average number of keys per leaf page is:

((.9 * (U - (M×2))) × (D + 1)) ÷ (K + 7 + (Ds × D))

where:
v U, the usable space on a page, is approximately equal to the page size minus

100. For example, with a page size of 4096, U would be 3996.
v M = U ÷ (9 + minimumKeySize)
v Ds = duplicateKeySize (See the note under “Temporary space requirements for

index creation”.)
v D = average number of duplicates per key value
v K = averageKeySize

Remember that minimumKeySize and averageKeysize must include an extra byte
for each nullable key part, and an extra two bytes for the length of each
variable length key part.
If there are include columns, they should be accounted for in minimumKeySize
and averageKeySize.
The minimum key size is the sum of the key parts that make up the index:

fixed overhead + variable overhead + byte count of sql-data-type

where:
v The fixed overhead is 13 bytes.
v The variable overhead is the minimum depth of the indexed node plus 4 bytes.

334 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The byte count of sql-data-type value follows the same rules as SQL.
The .9 can be replaced by any (100 - pctfree)/100 value, if a percent free value
other than the default value of ten percent is specified during index creation.

2. A more accurate estimate of the average number of keys per leaf page is:
number of leaf pages = x / (avg number of keys on leaf page)

where x is the total number of rows in the table or partition.
For the index on an XML column, x is the total number of indexed nodes in the
column.
You can estimate the original size of an index as:

(L + 2L/(average number of keys on leaf page)) × pagesize

For DMS table spaces, add the sizes of all indexes on a table and round up to a
multiple of the extent size for the table space on which the index resides.
You should provide additional space for index growth due to
INSERT/UPDATE activity, from which page splits might result.
Use the following calculation to obtain a more accurate estimate of the original
index size, as well as an estimate of the number of levels in the index. (This
might be of particular interest if include columns are being used in the index
definition.) The average number of keys per non-leaf page is roughly:

((.9 × (U - (M × 2))) × (D + 1))÷(K + 13 + (9 * D))

where:
v U, the usable space on a page, is approximately equal to the page size minus

100. For a page size of 4096, U is 3996.
v D is the average number of duplicates per key value on non-leaf pages (this

will be much smaller than on leaf pages, and you might want to simplify the
calculation by setting the value to 0).

v M = U ÷ (9 + minimumKeySize for non-leaf pages)
v K = averageKeySize for non-leaf pages
The minimumKeySize and the averageKeySize for non-leaf pages will be the same
as for leaf pages, except when there are include columns. Include columns are
not stored on non-leaf pages.
You should not replace .9 with (100 - pctfree)÷100, unless this value is greater
than .9, because a maximum of 10 percent free space will be left on non-leaf
pages during index creation.
The number of non-leaf pages can be estimated as follows:

if L > 1 then {P++; Z++}
While (Y > 1)
{

P = P + Y
Y = Y / N

Z++
}

where:
v P is the number of pages (0 initially).
v L is the number of leaf pages.
v N is the number of keys for each non-leaf page.
v Y = L ÷ N

v Z is the number of levels in the index tree (1 initially).

Chapter 22. Indexes 335

Note: The previous calculation applies to single, nonpartitioned indexes, or to a
single index partition for partitioned indexes.
Total number of pages is:

T = (L + P + 2) × 1.0002

The additional 0.02% (1.0002) is for overhead, including space map pages.
The amount of space required to create the index is estimated as:

T × page size

Index compression
Indexes, including indexes on declared or created temporary tables, can be
compressed in order to reduce storage costs. This is especially useful for large
OLTP and data warehouse environments.

By default, index compression is enabled for compressed tables, and disabled for
uncompressed tables. You can override this default behavior by using the COMPRESS
YES option of the CREATE INDEX statement. When working with existing indexes,
use the ALTER INDEX statement to enable or disable index compression; you must
then perform an index reorganization to rebuild the index.

Restriction: Index compression is not supported for the following types of indexes:
v block indexes
v XML path indexes.

In addition:
v Index specifications cannot be compressed
v Compression attributes for indexes on temporary tables cannot be altered with

the ALTER INDEX command.

When index compression is enabled, the on-disk and memory format of index
pages are modified based on the compression algorithms chosen by the database
manager so as to minimize storage space. The degree of compression achieved will
vary based on the type of index you are creating, as well as the data the index
contains. For example, the database manager can compress an index with a large
number of duplicate keys by storing an abbreviated format of the record identifier
(RID) for the duplicate keys. In an index where there is a high degree of
commonality in the prefixes of the index keys, the database manager can apply
compression based on the similarities in prefixes of index keys.

There can be limitations and trade-offs associated with compression. If the indexes
do not share common index column values or partial common prefixes, the
benefits of index compression in terms of reduced storage might be negligible. And
although a unique index on a timestamp column might have very high
compression capabilities due to common values for year, month, day, hour, minute,
or even seconds on the same leaf page, examining if common prefixes exist could
cause performance to degrade.

If you believe that compression is not offering a benefit in your particular
situation, you can either re-create the indexes without compression or alter the
indexes and then perform an index reorganization to disable index compression.

There are a few things you should keep in mind when you are considering using
index compression:

336 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v If you enable row compression using the COMPRESS YES option on the CREATE
TABLE or ALTER TABLE command, then by default, compression is enabled for
all indexes for which compression is supported that are created after that point
for that table, unless explicitly disabled by the CREATE INDEX or ALTER
INDEX commands. Similarly, if you disable row compression with the CREATE
TABLE or ALTER TABLE command, index compression is disabled for all
indexes created after that point for that table unless explicitly enabled by the
CREATE INDEX or ALTER INDEX commands.

v If you enable index compression using the ALTER INDEX command,
compression will not take place until an index reorganization is performed.
Similarly, if you disable compression, the index will remain compressed until
you perform an index reorganization.

v During database migration, compression is not enabled for any indexes that
might have been migrated. If you want compression to be used, you must use
the ALTER INDEX command and then perform an index reorganization.

v CPU usage might increase slightly as a result of the processing required for
index compression or decompression. If this is not acceptable, you can disable
index compression for new or existing indexes.

Examples

Example 1: Checking whether an index is compressed.

The two statements that follow create a new table T1 that is enabled for row
compression, and create an index I1 on T1.

CREATE TABLE T1 (C1 INT, C2 INT, C3 INT) COMPRESS YES
CREATE INDEX I1 ON T1(C1)

By default, indexes for T1 are compressed. The compression attribute for index T1,
which shows whether compression is enabled, can be checked by using the catalog
table or the admin table function:
SELECT COMPRESSION FROM SYSCAT.INDEXES WHERE TABNAME=’T1’

COMPRESSION

Y

1 record(s) selected.

Example 2: Determining whether compressed indexes require reorganization.

To see if compressed indexes require reorganization, use the REORGCHK command.
Figure 32 on page 338 shows the command being run on a table called T1:

Chapter 22. Indexes 337

The output of the REORGCHK command has been formatted to fit the page.

Example 3: Determining the potential space savings of index compression.

For an example of how you can calculate potential index compression savings,
refer to the documentation for the ADMIN_GET_INDEX_COMPRESS_INFO table
function.

Creating indexes
Indexes can be created for many reasons, including: to allow queries to run more
efficiently; to order the rows of a table in ascending or descending sequence
according to the values in a column; to enforce constraints such as uniqueness on
index keys. You can use the CREATE INDEX statement, the DB2 Design Advisor ,
or the db2advis Design Advisor command to create the indexes.

Before you begin

On Solaris platforms, patch 122300-11 on Solaris 9 or 125100-07 on Solaris 10 is
required to create indexes with RAW devices. Without this patch, the CREATE
INDEX statement hangs if a RAW device is used.

REORGCHK ON TABLE SCHEMA1.T1

Doing RUNSTATS

Table statistics:

F1: 100 * OVERFLOW / CARD < 5
F2: 100 * (Effective Space Utilization of Data Pages) > 70
F3: 100 * (Required Pages / Total Pages) > 80

SCHEMA.NAME CARD OV NP FP ACTBLK TSIZE F1 F2 F3 REORG

Table: SCHEMA1.T1

879 0 14 14 - 51861 0 100 100 ---

Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80
F5: 100 * (Space used on leaf pages / Space available on non-empty leaf pages) >

MIN(50, (100 - PCTFREE))
F6: (100 - PCTFREE) * (Amount of space available in an index with one less level /

Amount of space required for all keys) < 100
F7: 100 * (Number of pseudo-deleted RIDs / Total number of RIDs) < 20
F8: 100 * (Number of pseudo-empty leaf pages / Total number of leaf pages) < 20

SCHEMA.NAME INDCARD LEAF ELEAF LVLS NDEL KEYS LEAF_RECSIZE NLEAF_RECSIZE...
--...
Table: SCHEMA1.T1
Index: SCHEMA1.I1

879 15 0 2 0 682 20 20...
--...

...LEAF_PAGE_OVERHEAD NLEAF_PAGE_OVERHEAD PCT_PAGES_SAVED F4 F5 F6 F7 F8 REORG

...--

... 596 596 28 56 31 - 0 0 -----

...--

Figure 32. Output of REORGCHK command

338 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

About this task

This task assumes that you are creating an index on a nonpartitioned table.

Procedure

To create an index from the command line, use the CREATE INDEX statement.
For example:

CREATE UNIQUE INDEX EMP_IX
ON EMPLOYEE(EMPNO)
INCLUDE(FIRSTNAME, JOB)

The INCLUDE clause, applicable only on unique indexes, specifies additional
columns to be appended to the set of index key columns. Any columns included
with this clause are not used to enforce uniqueness. These included columns can
improve the performance of some queries through index only access. This option
might:
v Eliminate the need to access data pages for more queries
v Eliminate redundant indexes

If SELECT EMPNO, FIRSTNAME, JOB FROM EMPLOYEE is issued to the table on
which this index resides, all of the required data can be retrieved from the index
without reading data pages. This improves performance.

What to do next

When a row is deleted or updated, the index keys are marked as deleted and are
not physically removed from a page until cleanup is done some time after the
deletion or update is committed. These keys are referred to as pseudo-deleted
keys. Such a cleanup might be done by a subsequent transaction which is changing
the page where the key is marked deleted. Clean up of pseudo-deleted keys can be
explicitly triggered by using the CLEANUP ONLY ALL parameter in the REORG INDEXES
command.

Creating nonpartitioned indexes on partitioned tables
When you create a nonpartitioned index on a partitioned table, you create a single
index object that refers to all rows in the table. Nonpartitioned indexes are always
created in a single table space, even if the table data partitions span multiple table
spaces.

Before you begin

This task assumes that your partitioned table has already been created.

Procedure
1. Formulate a CREATE INDEX statement for your table, using the NOT

PARTITIONED clause. For example:
CREATE INDEX indexName ON tableName(column) NOT PARTITIONED

2. Execute the CREATE INDEX statement from a supported DB2 interface.

Example

Example 1: Creating a nonpartitioned index in the same table space as the data
partition.

Chapter 22. Indexes 339

Assume the SALES table is defined as follows:
CREATE TABLE sales(store_num INT, sales_date DATE, total_sales DECIMAL (6,2)) IN ts1

PARTITION BY RANGE(store_num)
(STARTING FROM (1) ENDING AT (100),
STARTING FROM (101) ENDING AT (150),
STARTING FROM (151) ENDING AT (200))

The three partitions of the SALES table are stored in table space TS1. By default,
any indexes created for this table are also stored in TS1, because that was the table
space specified for this table. To create a nonpartitioned index STORENUM on the
STORE_NUM column, use the following statement:

CREATE INDEX StoreNum ON sales(store_num) NOT PARTITIONED

Note that the NOT PARTITIONED clause is required, otherwise the index is
created as a partitioned index, the default for partitioned tables.

Example 2: Creating a nonpartitioned index in a table space other than the default

Assume that a table called PARTS is defined as follows:
CREATE TABLE parts(part_number INT, manufacturer CHAR, description CLOB,

price DECIMAL (4,2)) IN ts1 INDEX in ts2
PARTITION BY RANGE (part_number)
(STARTING FROM (1) ENDING AT (10) IN ts3,
STARTING FROM (11) ENDING AT (20) INDEX IN ts1,
STARTING FROM (21) ENDING AT (30) IN ts2 INDEX IN ts4);

The PARTS table consists of three partitions: the first is in table space TS3, the
second is in TS2 and the third in TS3. If you issue the following statement a
nonpartitioned index that orders the rows in descending order of manufacturer
name is created:

CREATE INDEX manufct on parts(manufacturer DESC) NOT PARTITIONED IN TS3;

This index is created in table space TS3; the INDEX IN clause of the CREATE
TABLE statement is overridden by the IN tablespace clause of the CREATE INDEX
statement. Because the table PARTS is partitioned, you must include the NOT
PARTITIONED clause in the CREATE INDEX statement to create a nonpartitioned
index.

Creating partitioned indexes
When you create a partitioned index for a partitioned table, each data partition is
indexed in its own index partition. By default, the index partition is stored in same
table space as the data partition it indexes. Data in the indexes is distributed based
on the distribution key of the table.

Before you begin

This task assumes that your partitioned table has already been created.

About this task

Restrictions

There are some types of indexes that cannot be partitioned:
v Indexes over nonpartitioned data
v Indexes over spatial data
v XML column path indexes (system generated)

340 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You must always create these indexes as nonpartitioned. In addition, the index key
for partitioned unique indexes must include all columns from the table-partitioning
key, whether they are user- or system-generated. The latter would be the case for
indexes created by the system for enforcing unique or primary constraints on data.

Also, The IN clause of the CREATE INDEX statement is not supported for creating
partitioned indexes. By default, index partitions are created in the same table space
as the data partitions they index. To specify an alternative table space in which to
store the index partition, you must use the partition-level INDEX IN clause of the
CREATE TABLE statement to specify a table space for indexes on a
partition-by-partition basis. If you omit this clause, the index partitions will reside
in the same table space as the data partitions they index.

Procedure
1. Formulate a CREATE INDEX statement for your table, using the

PARTITIONED clause.
2. Execute the CREATE INDEX statement from a supported DB2 interface.

Example

Note: These examples are for illustrative purposes only, and do not reflect best
practices for creating partitioned tables or indexes.
Example 1: Creating a partitioned index in the same table spaces as the data
partition.

In this example, assume the SALES table is has been defined as follows:
CREATE TABLE sales(store_num INT, sales_date DATE, total_sales DECIMAL (6,2))
IN ts1
PARTITION BY RANGE(store_num)
(STARTING FROM (1) ENDING AT (100),
STARTING FROM (101) ENDING AT (150),
STARTING FROM (151) ENDING AT (200))

In this case, the three partitions of the table SALES are stored in table space ts1.
Any partitioned indexes created for this table will also be stored in ts1, because
that is the table space in which each partition for this table will be stored. To create
a partitioned index on the store number, use the following statement:

CREATE INDEX StoreNum ON sales(store_num) PARTITIONED

Example 2: Choosing an alternative location for all index partitions.

In this example, assume the EMPLOYEE table is has been defined as follows:
CREATE TABLE employee(employee_number INT, employee_name CHAR,

job_code INT, city CHAR, salary DECIMAL (6,2))
IN ts1 INDEX IN ts2

PARTITION BY RANGE (job_code)
(STARTING FROM (1) ENDING AT (10) INDEX IN ts2,
STARTING FROM (11) ENDING AT (20) INDEX IN ts2,
STARTING FROM (21) ENDING AT (30) INDEX IN ts2)

To create a partitioned index on the job codes, use the following statement:
CREATE INDEX JobCode ON employee(job_code) PARTITIONED

In this example, the partitions of the EMPLOYEE table are stored in table space
ts1, however, all index partitions will be stored in ts2.

Example 3: Indexes created in several partitions.

Chapter 22. Indexes 341

Assume a table called PARTS has been defined as follows:
CREATE TABLE parts(part_number INT, manufacturer CHAR,

description CLOB, price DECIMAL (4,2)) IN ts1 INDEX in ts2
PARTITION BY RANGE (part_number)
(STARTING FROM (1) ENDING AT (10) IN ts3,
STARTING FROM (11) ENDING AT (20) INDEX IN ts1,
STARTING FROM (21) ENDING AT (30) IN ts2 INDEX IN ts4);

In this case, the PARTS table consists of three partitions: the first is in table space
ts3, the second in ts1 and the 3rd in ts2. If the following statements are issued:

CREATE INDEX partNoasc ON parts(part_number ASC) PARTITIONED
CREATE INDEX manufct on parts(manufacturer DESC) NOT PARTITIONED IN TS3;

then two indexes are created. The first is a partitioned index to order the rows in
ascending order of part number. The first index partition is created in table space
ts3, the second in ts1 and the third in ts4. The second index is a nonpartitioned
index which orders the rows in descending order of the manufacturer's name. This
index is created in ts3. Note that the IN clause is allowed in CREATE INDEX
statements for nonpartitioned indexes. Also, in this case, because the table PARTS
is partitioned, to create a nonpartitioned index, the clause NOT PARTITIONED
must be included in the CREATE INDEX statement.

Modifying indexes
If you want to modify your index, other than using the ALTER INDEX statement
to enable or disable index compression, you must drop the index first and then
create the index again.

Example

For example, you cannot add a column to the list of key columns without
dropping the previous definition and creating a new index. You can, however, add
a comment to describe the purpose of the index using the COMMENT statement.

Renaming indexes
You can use the RENAME statement to rename an existing index.

About this task

When renaming an index, the source index must not be a system-generated index.

Procedure

To rename an existing index, issue the following statement from the command line:
RENAME INDEX source_index_name TO target_index_name

source_index_name is the name of the existing index that is to be renamed. The
name, including the schema name, must identify an index that exists in the
database. It must not be the name of an index on a declared temporary table or on
a created temporary table. The schema name must not be SYSIBM, SYSCAT,
SYSFUN, or SYSSTAT.
target_index_name specifies the new name for the index without a schema name.
The schema name of the source object is used to qualify the new name for the
object. The qualified name must not identify an index that exists in the database.

342 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Results

If the RENAME statement is successful, the system catalog tables are updated to
reflect the new index name.

Rebuilding indexes
Certain database operations, such as a rollforward through a create index that was
not fully logged, can cause an index object to become invalid because the index is
not created during the rollforward operation. The index object can be recovered by
recreating the indexes in it.

About this task

When the database manager detects that an index is no longer valid, it
automatically attempts to rebuild it. When the rebuild takes place, it is controlled
by the indexrec parameter of the database or database manager configuration file.
There are five possible settings for this:
v SYSTEM
v RESTART
v RESTART_NO_REDO
v ACCESS
v ACCESS_NO_REDO

RESTART_NO_REDO and ACCESS_NO_REDO are similar to RESTART and
ACCESS.

The NO_REDO options mean that even if the index was fully logged during the
original operation, such as CREATE INDEX, the index will not be recreated during
rollforward, but will instead be created either at restart time or first access. See the
indexrec parameter for more information.

If database restart time is not a concern, it is better for invalid indexes to be rebuilt
as part of the process of returning a database to a consistent state. When this
approach is used, the time needed to restart a database will be longer due to the
index recreation process; however, normal processing will not be impacted once
the database has been returned to a consistent state.

On the other hand, when indexes are rebuilt as they are accessed, the time taken to
restart a database is faster, but an unexpected degradation in response time can
occur as a result of an index being recreated; for example, users accessing a table
that has an invalid index would have to wait for the index to be rebuilt. In
addition, unexpected locks can be acquired and held long after an invalid index
has been recreated, especially if the transaction that caused the index recreation to
occur never terminates (that is, commits or rolls back the changes made).

Dropping indexes
To delete an index, use the DROP statement.

About this task

Other than changing the COMPRESSION attribute of an index, you cannot change
any clause of an index definition; you must drop the index and create it again.
Dropping an index does not cause any other objects to be dropped but might cause
some packages to be invalidated.

Chapter 22. Indexes 343

Restrictions

A primary key or unique key index cannot be explicitly dropped. You must use
one of the following methods to drop it:
v If the primary index or unique constraint was created automatically for the

primary key or unique key, dropping the primary key or unique key causes the
index to be dropped. Dropping is done through the ALTER TABLE statement.

v If the primary index or the unique constraint was user-defined, the primary key
or unique key must be dropped first, through the ALTER TABLE statement.
After the primary key or unique key is dropped, the index is no longer
considered the primary index or unique index, and it can be explicitly dropped.

Procedure

To drop an index by using the command line, enter:
DROP INDEX index_name

Results

Any packages and cached dynamic SQL and XQuery statements that depend on
the dropped indexes are marked invalid. The application program is not affected
by changes resulting from adding or dropping indexes.

344 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 23. Triggers

A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation is
executed, the trigger is said to have been activated. Triggers are optional and are
defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to
enforce data integrity rules. Triggers can also be used to cause updates to other
tables, automatically generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

Triggers are a useful mechanism for defining and enforcing transitional business
rules, which are rules that involve different states of the data (for example, a salary
that cannot be increased by more than 10 percent).

Using triggers places the logic that enforces business rules inside the database. This
means that applications are not responsible for enforcing these rules. Centralized
logic that is enforced on all of the tables means easier maintenance, because
changes to application programs are not required when the logic changes.

The following are specified when creating a trigger:
v The subject table specifies the table for which the trigger is defined.
v The trigger event defines a specific SQL operation that modifies the subject table.

The event can be an insert, update, or delete operation.
v The trigger activation time specifies whether the trigger should be activated before

or after the trigger event occurs.

The statement that causes a trigger to be activated includes a set of affected rows.
These are the rows of the subject table that are being inserted, updated, or deleted.
The trigger granularity specifies whether the actions of the trigger are performed
once for the statement or once for each of the affected rows.

The triggered action consists of an optional search condition and a set of statements
that are executed whenever the trigger is activated. The statements are only
executed if the search condition evaluates to true. If the trigger activation time is
before the trigger event, triggered actions can include statements that select, set
transition variables, or signal SQL states. If the trigger activation time is after the
trigger event, triggered actions can include statements that select, insert, update,
delete, or signal SQL states.

The triggered action can refer to the values in the set of affected rows using
transition variables. Transition variables use the names of the columns in the subject
table, qualified by a specified name that identifies whether the reference is to the
old value (before the update) or the new value (after the update). The new value
can also be changed using the SET Variable statement in before, insert, or update
triggers.

Another means of referring to the values in the set of affected rows is to use
transition tables. Transition tables also use the names of the columns in the subject
table, but specify a name to allow the complete set of affected rows to be treated as

© Copyright IBM Corp. 2014 345

a table. Transition tables can only be used in AFTER triggers (that is, not with
BEFORE and INSTEAD OF triggers), and separate transition tables can be defined
for old and new values.

Multiple triggers can be specified for a combination of table, event (INSERT,
UPDATE, DELETE), or activation time (BEFORE, AFTER, INSTEAD OF). When
more than one trigger exists for a particular table, event, and activation time, the
order in which the triggers are activated is the same as the order in which they
were created. Thus, the most recently created trigger is the last trigger to be
activated.

The activation of a trigger might cause trigger cascading, which is the result of the
activation of one trigger that executes statements that cause the activation of other
triggers or even the same trigger again. The triggered actions might also cause
updates resulting from the application of referential integrity rules for deletions
that can, in turn, result in the activation of additional triggers. With trigger
cascading, a chain of triggers and referential integrity delete rules can be activated,
causing significant change to the database as a result of a single INSERT, UPDATE,
or DELETE statement.

When multiple triggers have insert, update, or delete actions against the same
object, conflict resolution mechanism, like temporary tables, are used to resolve
access conflicts, and this can have a noticeable impact on performance, particularly
in partitioned database environments.

Types of triggers
A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation is
executed, the trigger is said to have been activated. Triggers are optional and are
defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to
enforce data integrity rules. Triggers can also be used to cause updates to other
tables, automatically generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

The following types of triggers are supported:

BEFORE triggers
Run before an update, or insert. Values that are being updated or inserted
can be modified before the database is actually modified. You can use
triggers that run before an update or insert in several ways:
v To check or modify values before they are actually updated or inserted

in the database. This is useful if you must transform data from the way
the user sees it to some internal database format.

v To run other non-database operations coded in user-defined functions.

BEFORE DELETE triggers
Run before a delete. Checks values (a raises an error, if necessary).

AFTER triggers
Run after an update, insert, or delete. You can use triggers that run after an
update or insert in several ways:
v To update data in other tables. This capability is useful for maintaining

relationships between data or in keeping audit trail information.

346 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v To check against other data in the table or in other tables. This capability
is useful to ensure data integrity when referential integrity constraints
aren't appropriate, or when table check constraints limit checking to the
current table only.

v To run non-database operations coded in user-defined functions. This
capability is useful when issuing alerts or to update information outside
the database.

INSTEAD OF triggers
Describe how to perform insert, update, and delete operations against
views that are too complex to support these operations natively. They
allow applications to use a view as the sole interface for all SQL operations
(insert, delete, update and select).

BEFORE triggers
By using triggers that run before an update or insert, values that are being
updated or inserted can be modified before the database is actually modified.
These can be used to transform input from the application (user view of the data)
to an internal database format where desired.

These BEFORE triggers can also be used to cause other non-database operations to
be activated through user-defined functions.

BEFORE DELETE triggers run before a delete operation. They check the values and
raise an error, if necessary.

Examples

The following example defines a DELETE TRIGGER with a complex default:
CREATE TRIGGER trigger1

BEFORE UPDATE ON table1
REFERENCING NEW AS N
WHEN (N.expected_delivery_date IS NULL)
SET N.expected_delivery_date = N.order_date + 5 days;

The following example defines a DELETE TRIGGER with a cross table constraint
that is not a referential integrity constraint:

CREATE TRIGGER trigger2
BEFORE UPDATE ON table2
REFERENCING NEW AS N
WHEN (n.salary > (SELECT maxsalary FROM salaryguide WHERE rank = n.position))
SIGNAL SQLSTATE ’78000’ SET MESSAGE_TEXT = ’Salary out of range’);

AFTER triggers
Triggers that run after an update, insert, or delete can be used in several ways.
v Triggers can update, insert, or delete data in the same or other tables. This is

useful to maintain relationships between data or to keep audit trail information.
v Triggers can check data against values of data in the rest of the table or in other

tables. This is useful when you cannot use referential integrity constraints or
check constraints because of references to data from other rows from this or
other tables.

v Triggers can use user-defined functions to activate non-database operations. This
is useful, for example, for issuing alerts or updating information outside the
database.

Chapter 23. Triggers 347

Example

The following example presents an AFTER trigger that increases the number of
employees when a new employee is hired.

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

INSTEAD OF triggers
INSTEAD OF triggers describe how to perform insert, update, and delete
operations against complex views. INSTEAD OF triggers allow applications to use
a view as the sole interface for all SQL operations (insert, delete, update and
select).

Usually, INSTEAD OF triggers contain the inverse of the logic applied in a view
body. For example, consider a view that decrypts columns from its source table.
The INSTEAD OF trigger for this view encrypts data and then inserts it into the
source table, thus performing the symmetrical operation.

Using an INSTEAD OF trigger, the requested modify operation against the view
gets replaced by the trigger logic, which performs the operation on behalf of the
view. From the perspective of the application this happens transparently, as it
perceives that all operations are performed against the view. Only one INSTEAD
OF trigger is allowed for each kind of operation on a given subject view.

The view itself must be an untyped view or an alias that resolves to an untyped
view. Also, it cannot be a view that is defined using WITH CHECK OPTION (a
symmetric view) or a view on which a symmetric view has been defined directly
or indirectly.

Example

The following example presents three INSTEAD OF triggers that provide logic for
INSERTs, UPDATEs, and DELETEs to the defined view (EMPV). The view EMPV
contains a join in its from clause and therefore cannot natively support any modify
operation.

CREATE VIEW EMPV(EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME)

AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME
FROM EMPLOYEE, DEPARTMENT WHERE

EMPLOYEE.WORKDEPT = DEPARTMENT.DEPTNO

CREATE TRIGGER EMPV_INSERT INSTEAD OF INSERT ON EMPV
REFERENCING NEW AS NEWEMP FOR EACH ROW
INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,

WORKDEPT, PHONENO, HIREDATE)
VALUES(EMPNO, FIRSTNME, MIDINIT, LASTNAME,

COALESCE((SELECT DEPTNO FROM DEPARTMENT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

RAISE_ERROR(’70001’, ’Unknown dept name’)),
PHONENO, HIREDATE)

CREATE TRIGGER EMPV_UPDATE INSTEAD OF UPDATE ON EMPV
REFERENCING NEW AS NEWEMP OLD AS OLDEMP

FOR EACH ROW
BEGIN ATOMIC
VALUES(CASE WHEN NEWEMP.EMPNO = OLDEMP.EMPNO THEN 0

348 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

ELSE RAISE_ERROR(’70002’, ’Must not change EMPNO’) END);
UPDATE EMPLOYEE AS E

SET (FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE)
= (NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,

COALESCE((SELECT DEPTNO FROM DEPARTMENT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

RAISE_ERROR (’70001’, ’Unknown dept name’)),
NEWEMP.PHONENO, NEWEMP.HIREDATE)

WHERE NEWEMP.EMPNO = E.EMPNO;
END

CREATE TRIGGER EMPV_DELETE INSTEAD OF DELETE ON EMPV
REFERENCING OLD AS OLDEMP FOR EACH ROW
DELETE FROM EMPLOYEE AS E WHERE E.EMPNO = OLDEMP.EMPNO

Designing triggers
When creating a trigger, you must associate it with a table; when creating an
INSTEAD OF trigger, you must associate it with a view. This table or view is
called the target table of the trigger. The term modify operation refers to any change
in the state of the target table.

About this task

A modify operation is initiated by:
v an INSERT statement
v an UPDATE statement, or a referential constraint which performs an UPDATE
v a DELETE statement, or a referential constraint which performs a DELETE
v a MERGE statement

You must associate each trigger with one of these three types of modify operations.
The association is called the trigger event for that particular trigger.

You must also define the action, called the triggered action, that the trigger performs
when its trigger event occurs. The triggered action consists of one or more
statements which can execute either before or after the database manager performs
the trigger event. Once a trigger event occurs, the database manager determines
the set of rows in the subject table that the modify operation affects and executes
the trigger.

Guidelines when creating triggers:
When creating a trigger, you must declare the following attributes and
behavior:
v The name of the trigger.
v The name of the subject table.
v The trigger activation time (BEFORE or AFTER the modify operation

executes).
v The trigger event (INSERT, DELETE, or UPDATE).
v The old transition variable value, if any.
v The new transition variable value, if any.
v The old transition table value, if any.
v The new transition table value, if any.
v The granularity (FOR EACH STATEMENT or FOR EACH ROW).
v The triggered action of the trigger (including a triggered action condition

and triggered statement(s)).

Chapter 23. Triggers 349

v If the trigger event is UPDATE a trigger-column list if the trigger should
only fire when specific columns are specified in the update statement.

Designing multiple triggers:
When triggers are defined using the CREATE TRIGGER statement, their
creation time is registered in the database in form of a timestamp. The
value of this timestamp is subsequently used to order the activation of
triggers when there is more than one trigger that should be run at the
same time. For example, the timestamp is used when there is more than
one trigger on the same subject table with the same event and the same
activation time. The timestamp is also used when there are one or more
AFTER or INSTEAD OF triggers that are activated by the trigger event and
referential constraint actions caused directly or indirectly (that is,
recursively by other referential constraints) by the triggered action.

Consider the following two triggers:
CREATE TRIGGER NEW_HIRED

AFTER INSERT ON EMPLOYEE
FOR EACH ROW
BEGIN ATOMIC

UPDATE COMPANY_STATS
SET NBEMP = NBEMP + 1;

END

CREATE TRIGGER NEW_HIRED_DEPT
AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS EMP
FOR EACH ROW

BEGIN ATOMIC
UPDATE DEPTS
SET NBEMP = NBEMP + 1
WHERE DEPT_ID = EMP.DEPT_ID;

END

The preceding triggers are activated when you run an INSERT operation
on the employee table. In this case, the timestamp of their creation defines
which of the preceding two triggers is activated first.

The activation of the triggers is conducted in ascending order of the
timestamp value. Thus, a trigger that is newly added to a database runs
after all the other triggers that are previously defined.

Old triggers are activated before new triggers to ensure that new triggers
can be used as incremental additions to the changes that affect the database.
For example, if a triggered statement of trigger T1 inserts a new row into a
table T, a triggered statement of trigger T2 that is run after T1 can be used
to update the same row in T with specific values. Because the activation
order of triggers is predictable, you can have multiple triggers on a table
and still know that the newer ones will be acting on a table that has
already been modified by the older ones.

Trigger interactions with referential constraints:
A trigger event can occur as a result of changes due to referential
constraint enforcement. For example, given two tables DEPT and EMP, if
deleting or updating DEPT causes propagated deletes or updates to EMP
by means of referential integrity constraints, then delete or update triggers
defined on EMP become activated as a result of the referential constraint
defined on DEPT. The triggers on EMP are run either BEFORE or AFTER
the deletion (in the case of ON DELETE CASCADE) or update of rows in
EMP (in the case of ON DELETE SET NULL), depending on their
activation time.

350 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Specifying what makes a trigger fire (triggering statement or
event)

Every trigger is associated with an event. Triggers are activated when their
corresponding event occurs in the database. This trigger event occurs when the
specified action, either an UPDATE, INSERT, or DELETE statement (including
those caused by actions of referential constraints), is performed on the target table.

About this task

For example:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The preceding statement defines the trigger new_hire, which activates when you
perform an insert operation on table employee.

You associate every trigger event, and consequently every trigger, with exactly one
target table and exactly one modify operation. The modify operations are:

Insert operation
An insert operation can only be caused by an INSERT statement or the
insert operation of a MERGE statement. Therefore, triggers are not
activated when data is loaded using utilities that do not use INSERT, such
as the LOAD command.

Delete operation
A delete operation can be caused by a DELETE statement, or the delete
operation of a MERGE statement, or as a result of a referential constraint
rule of ON DELETE CASCADE.

Update operation
An update operation can be caused by an UPDATE statement, or the
update operation of a MERGE statement, or as a result of a referential
constraint rule of ON DELETE SET NULL.

If the trigger event is an update operation, the event can be associated with
specific columns of the target table. In this case, the trigger is only activated if the
update operation attempts to update any of the specified columns. This provides a
further refinement of the event that activates the trigger.

For example, the following trigger, REORDER, activates only if you perform an
update operation on the columns ON_HAND or MAX_STOCKED, of the table
PARTS:

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC
VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

N_ROW.ON_HAND,
N_ROW.PARTNO));

END

When a trigger is activated, it runs according to its level of granularity as follows:

Chapter 23. Triggers 351

FOR EACH ROW
It runs as many times as the number of rows in the set of affected rows. If
you need to refer to the specific rows affected by the triggered action, use
FOR EACH ROW granularity. An example of this is the comparison of the
new and old values of an updated row in an AFTER UPDATE trigger.

FOR EACH STATEMENT
It runs once for the entire trigger event.

If the set of affected rows is empty (that is, in the case of a searched UPDATE or
DELETE in which the WHERE clause did not qualify any rows), a FOR EACH
ROW trigger does not run. But a FOR EACH STATEMENT trigger still runs once.

For example, keeping a count of number of employees can be done using FOR
EACH ROW.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

You can achieve the same affect with one update by using a granularity of FOR
EACH STATEMENT.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
REFERENCING NEW_TABLE AS NEWEMPS
FOR EACH STATEMENT
UPDATE COMPANY_STATS
SET NBEMP = NBEMP + (SELECT COUNT(*) FROM NEWEMPS)

Note:

v A granularity of FOR EACH STATEMENT is not supported for BEFORE
triggers.

v The maximum nesting level for triggers is 16. That is, the maximum number of
cascading trigger activations is 16. A trigger activation refers to the activation of
a trigger upon a triggering event, such as insert, update, or delete of data in a
column of a table, or generally to a table.

Specifying when a trigger fires (BEFORE, AFTER, and
INSTEAD OF clauses)

The trigger activation time specifies when the trigger should be activated, relative to
the trigger event.

About this task

There are three activation times that you can specify: BEFORE, AFTER, or
INSTEAD OF:
v If the activation time is BEFORE, the triggered actions are activated for each row

in the set of affected rows before the trigger event executes. Hence, the subject
table will only be modified after the BEFORE trigger has completed execution
for each row. Note that BEFORE triggers must have a granularity of FOR EACH
ROW.

v If the activation time is AFTER, the triggered actions are activated for each row
in the set of affected rows or for the statement, depending on the trigger
granularity. This occurs after the trigger event has been completed, and after the
database manager checks all constraints that the trigger event might affect,

352 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

including actions of referential constraints. Note that AFTER triggers can have a
granularity of either FOR EACH ROW or FOR EACH STATEMENT.
For example, the activation time of the following trigger is AFTER the INSERT
operation on employee:

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

v If the activation time is INSTEAD OF, the triggered actions are activated for each
row in the set of affected rows instead of executing the trigger event. INSTEAD
OF triggers must have a granularity of FOR EACH ROW, and the subject table
must be a view. No other triggers are able to use a view as the subject table.

Example

The following diagram illustrates the execution model of BEFORE and AFTER
triggers:

Chapter 23. Triggers 353

For a given table with both before and AFTER triggers, and a modifying event that
is associated with these triggers, all the BEFORE triggers are activated first. The
first activated BEFORE trigger for a given event operates on the set of rows
targeted by the operation and makes any update modifications to the set that its
logic prescribes. The output of this BEFORE trigger is accepted as input by the
next before-trigger. When all of the BEFORE triggers that are activated by the
event have been fired, the intermediate result set, the result of the BEFORE trigger
modifications to the rows targeted by the trigger event operation, is applied to the
table. Then each AFTER trigger associated with the event is fired. The AFTER
triggers might modify the same table, another table, or perform an action external
to the database.

The different activation times of triggers reflect different purposes of triggers.
Basically, BEFORE triggers are an extension to the constraint subsystem of the
database management system. Therefore, you generally use them to:
v Perform validation of input data
v Automatically generate values for newly inserted rows

E-mail

A set-oriented
insert modification

Database tables

Base
table C

Base
table B

Base
table A

. . .

Before insert trigger-1
on table A

Set of rows specified
for the insert modification
on base table A

Before insert trigger-2
on table A

Before insert trigger-3
on table A

Intermediate
result set

Intermediate
result set

After insert trigger-1
on table A

After insert trigger-2
on table A

After insert trigger-3
on table A

Trigger
activated

Trigger
activated

Trigger
activated

Trigger modifies
table A

Trigger modifies
table B

Trigger modifies
table C

Trigger invokes a function
(UDF) that contains complex
logic, modifies table C,
and sends an e-mail.

The intermediate
result set rows are
inserted into table A.

Intermediate
result set

Figure 33. Trigger execution model

354 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Read from other tables for cross-referencing purposes

BEFORE triggers are not used for further modifying the database because they are
activated before the trigger event is applied to the database. Consequently, they are
activated before integrity constraints are checked.

Conversely, you can view AFTER triggers as a module of application logic that
runs in the database every time a specific event occurs. As a part of an application,
AFTER triggers always see the database in a consistent state. Note that they are
run after the integrity constraint validations. Consequently, you can use them
mostly to perform operations that an application can also perform. For example:
v Perform follow on modify operations in the database.
v Perform actions outside the database, for example, to support alerts. Note that

actions performed outside the database are not rolled back if the trigger is rolled
back.

In contrast, you can view an INSTEAD OF trigger as a description of the inverse
operation of the view it is defined on. For example, if the select list in the view
contains an expression over a table, the INSERT statement in the body of its
INSTEAD OF INSERT trigger will contain the reverse expression.

Because of the different nature of BEFORE, AFTER, and INSTEAD OF triggers, a
different set of SQL operations can be used to define the triggered actions of
BEFORE and AFTER, INSTEAD OF triggers. For example, update operations are
not allowed in BEFORE triggers because there is no guarantee that integrity
constraints will not be violated by the triggered action. Similarly, different trigger
granularities are supported in BEFORE, AFTER, and INSTEAD OF triggers.

The triggered SQL statement of all triggers can be a dynamic compound statement.
However, BEFORE triggers face some restrictions; they cannot contain the
following SQL statements:
v UPDATE
v DELETE
v INSERT
v MERGE

Defining conditions for when trigger-action will fire (WHEN
clause)

The activation of a trigger results in the running of its associated triggered action.
Every trigger has exactly one triggered action which, in turn, has two components:
an optional triggered action condition or WHEN clause, and a set of triggered
statement(s).

About this task

The triggered action condition is an optional clause of the triggered action which
specifies a search condition that must evaluate to true to run statements within the
triggered action. If the WHEN clause is omitted, then the statements within the
triggered action are always executed.

The triggered action condition is evaluated once for each row if the trigger is a
FOR EACH ROW trigger, and once for the statement if the trigger is a FOR EACH
STATEMENT trigger.

Chapter 23. Triggers 355

This clause provides further control that you can use to fine tune the actions
activated on behalf of a trigger. An example of the usefulness of the WHEN clause
is to enforce a data dependent rule in which a triggered action is activated only if
the incoming value falls inside or outside of a certain range.

The activation of a trigger results in the running of its associated triggered action.
Every trigger has exactly one triggered action which, in turn, has two components:

The triggered action condition defines whether or not the set of triggered
statements are performed for the row or for the statement for which the triggered
action is executing. The set of triggered statements define the set of actions
performed by the trigger in the database as a consequence of its event having
occurred.

Example

For example, the following trigger action specifies that the set of triggered
statements should only be activated for rows in which the value of the on_hand
column is less than ten per cent of the value of the max_stocked column. In this
case, the set of triggered statements is the invocation of the issue_ship_request
function.

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW

WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO));

END

The set of triggered statements carries out the real actions caused by activating a
trigger. Not every SQL operation is meaningful in every trigger. Depending on
whether the trigger activation time is BEFORE or AFTER, different kinds of
operations might be appropriate as a triggered statement.

In most cases, if any triggered statement returns a negative return code, the
triggering statement together with all trigger and referential constraint actions are
rolled back. The trigger name, SQLCODE, SQLSTATE and many of the tokens from
the failing triggered statement are returned in the error message.

Supported SQL PL statements in triggers
The triggered SQL statement of all triggers can be a dynamic compound statement.

That is, triggered SQL statements can contain one or more of the following
elements:
v CALL statement
v DECLARE variable statement
v SET variable statement
v WHILE loop
v FOR loop
v IF statement
v SIGNAL statement

356 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v ITERATE statement
v LEAVE statement
v GET DIGNOSTIC statement
v fullselect

However, only AFTER and INSTEAD OF triggers can contain one or more of the
following SQL statements:
v UPDATE statement
v DELETE statement
v INSERT statement
v MERGE statement

Accessing old and new column values in triggers using
transition variables

When you implement a FOR EACH ROW trigger, it might be necessary to refer to
the value of columns of the row in the set of affected rows, for which the trigger is
currently executing. Note that to refer to columns in tables in the database
(including the subject table), you can use regular SELECT statements.

About this task

A FOR EACH ROW trigger can refer to the columns of the row for which it is
currently executing by using two transition variables that you can specify in the
REFERENCING clause of a CREATE TRIGGER statement. There are two kinds of
transition variables, which are specified as OLD and NEW, together with a
correlation-name. They have the following semantics:

OLD AS correlation-name
Specifies a correlation name which captures the original state of the row,
that is, before the triggered action is applied to the database.

NEW AS correlation-name
Specifies a correlation name which captures the value that is, or was, used
to update the row in the database when the triggered action is applied to
the database.

Example

Consider the following example:
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED
AND N_ROW.ORDER_PENDING = ’N’)
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO));

UPDATE PARTS SET PARTS.ORDER_PENDING = ’Y’
WHERE PARTS.PARTNO = N_ROW.PARTNO;

END

Chapter 23. Triggers 357

What to do next

Based on the definition of the OLD and NEW transition variables given previously,
it is clear that not every transition variable can be defined for every trigger.
Transition variables can be defined depending on the kind of trigger event:

UPDATE
An UPDATE trigger can refer to both OLD and NEW transition variables.

INSERT
An INSERT trigger can only refer to a NEW transition variable because
before the activation of the INSERT operation, the affected row does not
exist in the database. That is, there is no original state of the row that
would define old values before the triggered action is applied to the
database.

DELETE
A DELETE trigger can only refer to an OLD transition variable because
there are no new values specified in the delete operation.

Note: Transition variables can only be specified for FOR EACH ROW triggers. In a
FOR EACH STATEMENT trigger, a reference to a transition variable is not
sufficient to specify to which of the several rows in the set of affected rows the
transition variable is referring. Instead, refer to the set of new and old rows by
using the OLD TABLE and NEW TABLE clauses of the CREATE TRIGGER
statement. For more information about these clauses, see the CREATE TRIGGER
statement.

Referencing old and new table result sets using transition
tables

In both FOR EACH ROW and FOR EACH STATEMENT triggers, it might be
necessary to refer to the whole set of affected rows. This is necessary, for example,
if the trigger body needs to apply aggregations over the set of affected rows (for
example, MAX, MIN, or AVG of some column values).

About this task

A trigger can refer to the set of affected rows by using two transition tables that
can be specified in the REFERENCING clause of a CREATE TRIGGER statement.
Just like the transition variables, there are two kinds of transition tables, which are
specified as OLD_TABLE and NEW_TABLE together with a table-name, with the
following semantics:

OLD_TABLE AS table-name
Specifies the name of the table which captures the original state of the set
of affected rows (that is, before the triggering SQL operation is applied to
the database).

NEW_TABLE AS table-name
Specifies the name of the table which captures the value that is used to
update the rows in the database when the triggered action is applied to the
database.

Example

For example:

358 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW_TABLE AS N_TABLE
NEW AS N_ROW
FOR EACH ROW
WHEN ((SELECT AVG (ON_HAND) FROM N_TABLE) > 35)
BEGIN ATOMIC

VALUES(INFORM_SUPERVISOR(N_ROW.PARTNO,
N_ROW.MAX_STOCKED,
N_ROW.ON_HAND));

END

Note that NEW_TABLE always has the full set of updated rows, even on a FOR
EACH ROW trigger. When a trigger acts on the table on which the trigger is
defined, NEW_TABLE contains the changed rows from the statement that activated
the trigger. However, NEW_TABLE does not contain the changed rows that were
caused by statements within the trigger, as that would cause a separate activation
of the trigger.

What to do next

The transition tables are read-only. The same rules that define the kinds of
transition variables that can be defined for which trigger event, apply for transition
tables:

UPDATE
An UPDATE trigger can refer to both OLD_TABLE and NEW_TABLE
transition tables.

INSERT
An INSERT trigger can only refer to a NEW_TABLE transition table
because before the activation of the INSERT operation the affected rows do
not exist in the database. That is, there is no original state of the rows that
defines old values before the triggered action is applied to the database.

DELETE
A DELETE trigger can only refer to an OLD_TABLE transition table
because there are no new values specified in the delete operation.

Note: It is important to observe that transition tables can be specified for both
granularities of AFTER triggers: FOR EACH ROW and FOR EACH STATEMENT.

The scope of the OLD_TABLE and NEW_TABLE table-name is the trigger body. In this
scope, this name takes precedence over the name of any other table with the same
unqualified table-name that might exist in the schema. Therefore, if the OLD_TABLE or
NEW_TABLE table-name is for example, X, a reference to X (that is, an unqualified X)
in the FROM clause of a SELECT statement will always refer to the transition table
even if there is a table named X in the in the schema of the trigger creator. In this
case, the user has to make use of the fully qualified name in order to refer to the
table X in the schema.

Creating triggers
A trigger defines a set of actions that are executed with, or triggered by, an
INSERT, UPDATE, or DELETE clause on a specified table or a typed table.

Chapter 23. Triggers 359

About this task

Use triggers to:
v Validate input data
v Generate a value for a newly inserted row
v Read from other tables for cross-referencing purposes
v Write to other tables for audit-trail purposes

You can use triggers to support general forms of integrity or business rules. For
example, a trigger can check a customer's credit limit before an order is accepted
or update a summary data table.

Benefits:

v Faster application development: Because a trigger is stored in the
database, you do not have to code the actions that it performs in every
application.

v Easier maintenance: After a trigger is defined, it is automatically invoked
when the table that it is created on is accessed.

v Global enforcement of business rules: If a business policy changes, you
only need to change the trigger and not each application program.

When creating an atomic trigger, care must be taken with the end-of-statement
character. The command line processor, by default, considers a “;” the
end-of-statement marker. You should manually edit the end-of-statement character
in your script to create the atomic trigger so that you are using a character other
than “;”. For example, the “;” can be replaced by another special character like “#”.
You can also precede the CREATE TRIGGER DDL with:

--#SET TERMINATOR @

To change the terminator in the CLP on the fly, the following syntax sets it back:
--#SET TERMINATOR

To create a trigger from the command line, enter:
db2 -td delimiter -vf script

where the delimiter is the alternative end-of-statement character and the script is the
modified script with the new delimiter in it.

A trigger body can include one or more of the following statements: INSERT,
searched UPDATE, searched DELETE, fullselect, SET Variable, and SIGNAL
SQLSTATE. The trigger can be activated before or after the INSERT, UPDATE, or
DELETE statement to which it refers.

Restrictions
v You cannot use triggers with nicknames.
v If the trigger is a BEFORE trigger, the column name specified by the triggered

action must not be a generated column other than an identity column. That is,
the generated identity value is visible to BEFORE triggers.

Procedure

To create a trigger from the command line, enter:

360 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

CREATE TRIGGER name
action ON table_name
operation
triggered_action

Example

The following statement creates a trigger that increases the number of employees
each time a new person is hired, by adding 1 to the number of employees
(NBEMP) column in the COMPANY_STATS table each time a row is added to the
EMPLOYEE table.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

Modifying and dropping triggers
Triggers cannot be modified. They must be dropped and then created again
according to the new definitions you require.

Before you begin

Trigger dependencies

v All dependencies of a trigger on some other object are recorded in the
SYSCAT.TRIGDEP system catalog view. A trigger can depend on many
objects.

v If an object that a trigger is dependent on is dropped, the trigger
becomes inoperative but its definition is retained in the system catalog
view. To re-validate this trigger, you must retrieve its definition from the
system catalog view and submit a new CREATE TRIGGER statement.

v If a trigger is dropped, its description is deleted from the
SYSCAT.TRIGGERS system catalog view and all of its dependencies are
deleted from the SYSCAT.TRIGDEP system catalog view. All packages
having UPDATE, INSERT, or DELETE dependencies on the trigger are
invalidated.

v If the view is dependent on the trigger and it is made inoperative, the
trigger is also marked inoperative. Any packages dependent on triggers
that have been marked inoperative are invalidated.

About this task

A trigger object can be dropped using the DROP TRIGGER statement, but this
procedure will cause dependent packages to be marked invalid, as follows:
v If an update trigger without an explicit column list is dropped, then packages

with an update usage on the target table are invalidated.
v If an update trigger with a column list is dropped, then packages with update

usage on the target table are only invalidated if the package also had an update
usage on at least one column in the column-name list of the CREATE TRIGGER
statement.

v If an insert trigger is dropped, packages that have an insert usage on the target
table are invalidated.

v If a delete trigger is dropped, packages that have a delete usage on the target
table are invalidated.

Chapter 23. Triggers 361

A package remains invalid until the application program is explicitly bound or
rebound, or it is run and the database manager automatically rebinds it.

Examples of triggers and trigger use

Examples of interaction between triggers and referential
constraints

Update operations can cause the interaction of triggers with referential constraints
and check constraints.

Figure 24 on page 308 and the associated description are representative of the
processing that is performed for an statement that updates data in the database.

Figure 24 on page 308 shows the general order of processing for an statement that
updates a table. It assumes a situation where the table includes BEFORE triggers,
referential constraints, check constraints and AFTER triggers that cascade. The
following is a description of the boxes and other items found in Figure 24 on page
308.
v statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process. The
statement S1 identifies a table (or an updatable view over some table) referred to
as the subject table throughout this description.

v Determine set of affected rows
This step is the starting point for a process that repeats for referential constraint
delete rules of CASCADE and SET NULL and for cascaded statements from
AFTER triggers.
The purpose of this step is to determine the set of affected rows for the statement.
The set of rows included is based on the statement:
– for DELETE, all rows that satisfy the search condition of the statement (or the

current row for a positioned DELETE)
– for INSERT, the rows identified by the VALUES clause or the fullselect

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 34. Processing an statement with associated triggers and constraints

362 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

– for UPDATE, all rows that satisfy the search condition (or the current row for
a positioned UPDATE).

If the set of affected rows is empty, there will be no BEFORE triggers, changes to
apply to the subject table, or constraints to process for the statement.

v Process BEFORE triggers
All BEFORE triggers are processed in ascending order of creation. Each BEFORE
trigger will process the triggered action once for each row in the set of affected
rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original statement S1 (so far) are rolled back.
If there are no BEFORE triggers or the set of affected is empty, this step is
skipped.

v Apply the set of affected rows to the subject table
The actual delete, insert, or update is applied using the set of affected rows to
the subject table in the database.
An error can occur when applying the set of affected rows (such as attempting
to insert a row with a duplicate key where a unique index exists) in which case
all changes made as a result of the original statement S1 (so far) are rolled back.

v Apply Constraints
The constraints associated with the subject table are applied if set of affected
rows is not empty. This includes unique constraints, unique indexes, referential
constraints, check constraints and checks related to the WITH CHECK OPTION
on views. Referential constraints with delete rules of cascade or set null might
cause additional triggers to be activated.
A violation of any constraint or WITH CHECK OPTION results in an error and
all changes made as a result of S1 (so far) are rolled back.

v Process AFTER triggers
All AFTER triggers activated by S1 are processed in ascending order of creation.
FOR EACH STATEMENT triggers will process the triggered action exactly once,
even if the set of affected rows is empty. FOR EACH ROW triggers will process
the triggered action once for each row in the set of affected rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original S1 (so far) are rolled back.
The triggered action of a trigger can include triggered statements that are
DELETE, INSERT or UPDATE statements. For the purposes of this description,
each such statement is considered a cascaded statement.
A cascaded statement is a DELETE, INSERT, or UPDATE statement that is
processed as part of the triggered action of an AFTER trigger. This statement
starts a cascaded level of trigger processing. This can be thought of as assigning
the triggered statement as a new S1 and performing all of the steps described
here recursively.
Once all triggered statements from all AFTER triggers activated by each S1 have
been processed to completion, the processing of the original S1 is completed.

v R = roll back changes to before S1

Any error (including constraint violations) that occurs during processing results
in a roll back of all the changes made directly or indirectly as a result of the
original statement S1. The database is therefore back in the same state as
immediately before the execution of the original statement S1

Chapter 23. Triggers 363

Examples of defining actions using triggers
Assume that your general manager wants to keep the names of customers who
have sent three or more complaints in the last 72 hours in a separate table. The
general manager also wants to be informed whenever a customer name is inserted
in this table more than once.

To define such actions, you define:
v An UNHAPPY_CUSTOMERS table:

CREATE TABLE UNHAPPY_CUSTOMERS (
NAME VARCHAR (30),
EMAIL_ADDRESS VARCHAR (200),
INSERTION_DATE DATE)

v A trigger to automatically insert a row in UNHAPPY_CUSTOMERS if 3 or more
messages were received in the last 3 days (assumes the existence of a
CUSTOMERS table that includes a NAME column and an E_MAIL_ADDRESS
column):

CREATE TRIGGER STORE_UNHAPPY_CUST
AFTER INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW
WHEN (3 <= (SELECT COUNT(*)

FROM ELECTRONIC_MAIL
WHERE SENDER = N.SENDER

AND SENDING_DATE(MESSAGE) > CURRENT DATE - 3 DAYS)
)

BEGIN ATOMIC
INSERT INTO UNHAPPY_CUSTOMERS
VALUES ((SELECT NAME
FROM CUSTOMERS
WHERE EMAIL_ADDRESS = N.SENDER), N.SENDER, CURRENT DATE);

END

v A trigger to send a note to the general manager if the same customer is inserted
in UNHAPPY_CUSTOMERS more than once (assumes the existence of a
SEND_NOTE function that takes 2 character strings as input):

CREATE TRIGGER INFORM_GEN_MGR
AFTER INSERT ON UNHAPPY_CUSTOMERS
REFERENCING NEW AS N
FOR EACH ROW
WHEN (1 <(SELECT COUNT(*)

FROM UNHAPPY_CUSTOMERS
WHERE EMAIL_ADDRESS = N.EMAIL_ADDRESS)

)
BEGIN ATOMIC

VALUES(SEND_NOTE(’Check customer:’ CONCAT N.NAME,
’bigboss@vnet.ibm.com’));

END

Example of defining business rules using triggers
Suppose your company has the policy that all email dealing with customer
complaints must have Mr. Nelson, the marketing manager, in the carbon copy (CC)
list.

Because this is a rule, you might want to express it as a constraint such as one of
the following (assuming the existence of a CC_LIST UDF to check it):

ALTER TABLE ELECTRONIC_MAIL ADD
CHECK (SUBJECT <> ’Customer complaint’ OR

CONTAINS (CC_LIST(MESSAGE), ’nelson@vnet.ibm.com’) = 1)

364 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

However, such a constraint prevents the insertion of email dealing with customer
complaints that do not have the marketing manager in the cc list. This is certainly
not the intent of your company's business rule. The intent is to forward to the
marketing manager any email dealing with customer complaints that were not
copied to the marketing manager. Such a business rule can only be expressed with
a trigger because it requires taking actions that cannot be expressed with
declarative constraints. The trigger assumes the existence of a SEND_NOTE
function with parameters of type E_MAIL and character string.

CREATE TRIGGER INFORM_MANAGER
AFTER INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW
WHEN (N.SUBJECT = ’Customer complaint’ AND

CONTAINS (CC_LIST(MESSAGE), ’nelson@vnet.ibm.com’) = 0)
BEGIN ATOMIC

VALUES(SEND_NOTE(N.MESSAGE, ’nelson@vnet.ibm.com’));
END

Example of preventing operations on tables using triggers
Suppose you want to prevent undeliverable email from being stored in a table
named ELECTRONIC_MAIL. To do so, you must prevent the execution of certain
SQL INSERT statements.

There are two ways to do this:
v Define a BEFORE trigger that returns an error whenever the subject of an email

is undelivered mail:
CREATE TRIGGER BLOCK_INSERT

NO CASCADE BEFORE INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW
WHEN (SUBJECT(N.MESSAGE) = ’undelivered mail’)
BEGIN ATOMIC

SIGNAL SQLSTATE ’85101’
SET MESSAGE_TEXT = (’Attempt to insert undelivered mail’);
END

v Define a check constraint forcing values of the new column SUBJECT to be
different from undelivered mail:

ALTER TABLE ELECTRONIC_MAIL
ADD CONSTRAINT NO_UNDELIVERED
CHECK (SUBJECT <> ’undelivered mail’)

Chapter 23. Triggers 365

366 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 24. Sequences

A sequence is a database object that allows the automatic generation of values, such
as cheque numbers. Sequences are ideally suited to the task of generating unique
key values. Applications can use sequences to avoid possible concurrency and
performance problems resulting from column values used to track numbers. The
advantage that sequences have over numbers created outside the database is that
the database server keeps track of the numbers generated. A crash and restart will
not cause duplicate numbers from being generated.

The sequence numbers generated have the following properties:
v Values can be any exact numeric data type with a scale of zero. Such data types

include: SMALLINT, BIGINT, INTEGER, and DECIMAL.
v Consecutive values can differ by any specified integer increment. The default

increment value is 1.
v Counter value is recoverable. The counter value is reconstructed from logs when

recovery is required.
v Values can be cached to improve performance. Pre-allocating and storing values

in the cache reduces synchronous I/O to the log when values are generated for
the sequence. In the event of a system failure, all cached values that have not
been used are considered lost. The value specified for CACHE is the maximum
number of sequence values that could be lost.

There are two expressions that can used with sequences:
v NEXT VALUE expression: returns the next value for the specified sequence. A

new sequence number is generated when a NEXT VALUE expression specifies
the name of the sequence. However, if there are multiple instances of a NEXT
VALUE expression specifying the same sequence name within a query, the
counter for the sequence is incremented only once for each row of the result,
and all instances of NEXT VALUE return the same value for each row of the
result.

v PREVIOUS VALUE expression: returns the most recently generated value for
the specified sequence for a previous statement within the current application
process. That is, for any given connection, the PREVIOUS VALUE remains
constant even if another connection invokes NEXT VALUE.

For complete details and examples of these expressions, see “Sequence reference”
in SQL Reference Volume 1.

Designing sequences
When designing sequences you must consider the differences between identity
columns and sequences, and which is more appropriate for your environment. If
you decide to use sequences, you must be familiar with the available options and
parameters.

About this task

Before designing sequences, see “Sequences compared to identity columns” on
page 370.

© Copyright IBM Corp. 2014 367

In addition to being simple to set up and create, the sequence has a variety of
additional options that allows you more flexibility in generating the values:
v Choose from a variety of data types (SMALLINT, INTEGER, BIGINT,

DECIMAL)
v Change starting values (START WITH)
v Change the sequence increment, including specifying increasing or decreasing

values (INCREMENT BY)
v Set minimum and maximum values where the sequence numbering starts and

stops (MINVALUE/MAXVALUE)
v Allow wrapping of values so that sequences can start over again, or disallow

cycling (CYCLE/NO CYCLE)
v Allow caching of sequence values to improve performance, or disallow

caching(CACHE/NO CACHE)

Even after the sequence has been generated, many of these values can be altered.
For instance, you might want to set a different starting value depending on the
day of the week. Another practical example of using sequences is for the
generation and processing of bank checks. The sequence of bank check numbers is
extremely important, and there are serious consequences if a batch of sequence
numbers is lost or corrupted.

For improved performance, you should also be aware of and make use of the
CACHE option. This option tells the database manager how many sequence values
should be generated by the system before going back to the catalog to generate
another set of sequences. The default CACHE value is 20, if not specified. Using
the default as an example, the database manager automatically generates 20
sequential values in memory (1, 2,, 20) when the first sequence value is
requested. Whenever a new sequence number is required, this memory cache of
values is used to return the next value. Once this cache of values is used up, the
database manager will generate the next twenty values (21, 22,, 40).

By implementing caching of sequence numbers, the database manager does not
have to continually go to the catalog tables to get the next value. This reduces the
extra processing associated with retrieving sequence numbers, but it also leads to
possible gaps in the sequences if a system failure occurs, or if the system is shut
down. For instance, if you decide to set the sequence cache to 100, the database
manager will cache 100 values of these numbers and also set the system catalog to
show that the next sequence of values should begin at 201. In the event that the
database is shut down, the next set of sequence numbers will begin at 201. The
numbers that were generated from 101 to 200 will be lost from the set of sequences
if they were not used. If gaps in generated values cannot be tolerated in your
application, you must set the caching value to NO CACHE despite the higher
system overhead this will cause.

For more information about all available options and associated values, see the
CREATE SEQUENCE statement.

Managing sequence behavior
You can tailor the behavior of sequences to meet the needs of your application.
You change the attributes of a sequence when you issue the CREATE SEQUENCE
statement to create a new sequence, and when you issue the ALTER SEQUENCE
statement for an existing sequence.

Following are some of the attributes of a sequence that you can specify:

368 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Data type
The AS clause of the CREATE SEQUENCE statement specifies the numeric
data type of the sequence. The data type determines the possible minimum
and maximum values of the sequence. The minimum and maximum
values for a data type are listed in the SQL Reference. You cannot change
the data type of a sequence; instead, you must drop the sequence by
issuing the DROP SEQUENCE statement and issue a CREATE SEQUENCE
statement with the new data type.

Start value
The START WITH clause of the CREATE SEQUENCE statement sets the
initial value of the sequence. The RESTART WITH clause of the ALTER
SEQUENCE statement resets the value of the sequence to a specified value.

Minimum value
The MINVALUE clause sets the minimum value of the sequence.

Maximum value
The MAXVALUE clause sets the maximum value of the sequence.

Increment value
The INCREMENT BY clause sets the value that each NEXT VALUE
expression adds to the current value of the sequence. To decrement the
value of the sequence, specify a negative value.

Sequence cycling
The CYCLE clause causes the value of a sequence that reaches its
maximum or minimum value to generate its respective minimum value or
maximum value on the following NEXT VALUE expression.

Note: CYCLE should only be used if unique numbers are not required or
if it can be guaranteed that older sequence values are not in use anymore
once the sequence cycles.

For example, to create a sequence called id_values that starts with a minimum
value of 0, has a maximum value of 1000, increments by 2 with each NEXT
VALUE expression, and returns to its minimum value when the maximum value is
reached, issue the following statement:
CREATE SEQUENCE id_values

START WITH 0
INCREMENT BY 2
MAXVALUE 1000
CYCLE

Application performance and sequences
Like identity columns, using sequences to generate values generally improves the
performance of your applications in comparison to alternative approaches. The
alternative to sequences is to create a single-column table that stores the current
value and to increment that value with either a trigger or under the control of the
application. However, in a distributed environment where applications
concurrently access the single-column table, the locking required to force serialized
access to the table can seriously affect performance.

Sequences avoid the locking issues that are associated with the single-column table
approach and can cache sequence values in memory to improve response time. To
maximize the performance of applications that use sequences, ensure that your
sequence caches an appropriate amount of sequence values. The CACHE clause of

Chapter 24. Sequences 369

the CREATE SEQUENCE and ALTER SEQUENCE statements specifies the
maximum number of sequence values that the database manager generates and
stores in memory.

If your sequence must generate values in order, without introducing gaps in that
order because of a system failure or database deactivation, use the ORDER and
NO CACHE clauses in the CREATE SEQUENCE statement. The NO CACHE
clause guarantees that no gaps appear in the generated values at the cost of some
of your application's performance because it forces your sequence to write to the
database log every time it generates a new value. Note that gaps can still appear
due to transactions that rollback and do not actually use that sequence value that
they requested.

Sequences compared to identity columns
Although sequences and identity columns seem to serve similar purposes for DB2
applications, there is an important difference. An identity column automatically
generates values for a column in a single table using the LOAD utility. A sequence
generates sequential values upon request that can be used in any SQL statement
using the CREATE SEQUENCE statement.

Identity columns
Allow the database manager to automatically generate a unique numeric
value for each row that is added to the table. If you are creating a table
and you know you need to uniquely identify each row that is added to
that table, then you can add an identity column to the table definition as
part of the CREATE TABLE statement:

CREATE TABLE table_name
(column_name_1 INT,
column_name_2, DOUBLE,
column_name_3 INT NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH value_1, INCREMENT BY value_2))

In this example, the third column identifies the identity column. One of the
attributes that you can define is the value used in the column to uniquely
define each row when a row is added. The value following the
INCREMENT BY clause shows by how much subsequent values of the
identity column contents increase for every row added to the table.

After they are created, the identity properties can be changed or removed
using the ALTER TABLE statement. You can also use the ALTER TABLE
statement to add identity properties on other columns.

Sequences
Allow the automatic generation of values. Sequences are ideally suited to
the task of generating unique key values. Applications can use sequences
to avoid possible concurrency and performance problems resulting from
the generation of a unique counter through other means. Unlike an identity
column, a sequence is not tied to a particular table column, nor is it bound
to a unique table column and only accessible through that table column.

A sequence can be created, and later altered, so that it generates values by
incrementing or decrementing values either without a limit; or to a
user-defined limit, and then stopping; or to a user-defined limit, then
cycling back to the beginning and starting again.

The following example shows how to create a sequence called orderseq:

370 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

CREATE SEQUENCE orderseq
START WITH 1
INCREMENT BY 1
NOMAXVALUE
NOCYCLE
CACHE 50

In this example, the sequence starts at 1 and increases by 1 with no upper
limit. There is no reason to cycle back to the beginning and restart from 1
because there is no assigned upper limit. The CACHE parameter specifies
the maximum number of sequence values that the database manager
preallocates and keeps in memory.

Creating sequences
To create sequences, use the CREATE SEQUENCE statement. Unlike an identity
column attribute, a sequence is not tied to a particular table column nor is it bound
to a unique table column and only accessible through that table column.

About this task

There are several restrictions on where NEXT VALUE or PREVIOUS VALUE
expressions can be used. A sequence can be created, or altered, so that it generates
values in one of these ways:
v Increment or decrement monotonically (changing by a constant amount) without

bound
v Increment or decrement monotonically to a user-defined limit and stop
v Increment or decrement monotonically to a user-defined limit and cycle back to

the beginning and start again

Note: Use caution when recovering databases that use sequences: For sequence
values that are used outside the database, for example sequence numbers used for
bank checkes, if the database is recovered to a point in time before the database
failure, then this could cause the generation of duplicate values for some
sequences. To avoid possible duplicate values, databases that use sequence values
outside the database should not be recovered to a prior point in time.

To create a sequence called order_seq using defaults for all the options, issue the
following statement in an application program or through the use of dynamic SQL
statements:

CREATE SEQUENCE order_seq

This sequence starts at 1 and increases by 1 with no upper limit.

This example could represent processing for a batch of bank checks starting from
101 to 200. The first order would have been from 1 to 100. The sequence starts at
101 and increase by 1 with an upper limit of 200. NOCYCLE is specified so that
duplicate cheque numbers are not produced. The number associated with the
CACHE parameter specifies the maximum number of sequence values that the
database manager preallocates and keeps in memory.

CREATE SEQUENCE order_seq
START WITH 101
INCREMENT BY 1
MAXVALUE 200
NOCYCLE
CACHE 25

Chapter 24. Sequences 371

For more information about these and other options, and authorization
requirements, see the CREATE SEQUENCE statement.

Generating sequential values
Generating sequential values is a common database application development
problem. The best solution to that problem is to use sequences and sequence
expressions in SQL. Each sequence is a uniquely named database object that can be
accessed only by sequence expressions.

There are two sequence expressions: the PREVIOUS VALUE expression and the
NEXT VALUE expression. The PREVIOUS VALUE expression returns the value
most recently generated in the application process for the specified sequence. Any
NEXT VALUE expressions occurring in the same statement as the PREVIOUS
VALUE expression have no effect on the value generated by the PREVIOUS
VALUE expression in that statement. The NEXT VALUE sequence expression
increments the value of the sequence and returns the new value of the sequence.

To create a sequence, issue the CREATE SEQUENCE statement. For example, to
create a sequence called id_values using the default attributes, issue the following
statement:

CREATE SEQUENCE id_values

To generate the first value in the application session for the sequence, issue a
VALUES statement using the NEXT VALUE expression:
VALUES NEXT VALUE FOR id_values

1

1

1 record(s) selected.

To update the value of a column with the next value of the sequence, include the
NEXT VALUE expression in the UPDATE statement, as follows:
UPDATE staff

SET id = NEXT VALUE FOR id_values
WHERE id = 350

To insert a new row into a table using the next value of the sequence, include the
NEXT VALUE expression in the INSERT statement, as follows:
INSERT INTO staff (id, name, dept, job)

VALUES (NEXT VALUE FOR id_values, ’Kandil’, 51, ’Mgr’)

Determining when to use identity columns or sequences
Although there are similarities between identity columns and sequences, there are
also differences. The characteristics of each can be used when designing your
database and applications.

Depending on your database design and the applications using the database, the
following characteristics will assist you in determining when to use identity
columns and when to use sequences.

Identity column characteristics

v An identity column automatically generates values for a single table.

372 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v When an identity column is defined as GENERATED ALWAYS, the
values used are always generated by the database manager. Applications
are not allowed to provide their own values during the modification of
the contents of the table.

v After inserting a row, the generated identity value can be retrieved either
by using the IDENTITY_VAL_LOCAL() function or by selecting the
identity column back from the insert by using the SELECT FROM
INSERT statement.

v The LOAD utility can generate IDENTITY values.

Sequence characteristics

v Sequences are not tied to any one table.
v Sequences generate sequential values that can be used in any SQL or

XQuery statement.
Since sequences can be used by any application, there are two
expressions used to control the retrieval of the next value in the
specified sequence and the value generated previous to the statement
being executed. The PREVIOUS VALUE expression returns the most
recently generated value for the specified sequence for a previous
statement within the current session. The NEXT VALUE expression
returns the next value for the specified sequence. The use of these
expressions allows the same value to be used across several SQL and
XQuery statements within several tables.

Sequence Modification
Modify the attributes of an existing sequence with the ALTER SEQUENCE
statement.

The attributes of the sequence that can be modified include:
v Changing the increment between future values
v Establishing new minimum or maximum values
v Changing the number of cached sequence numbers
v Changing whether the sequence cycles or not
v Changing whether sequence numbers must be generated in order of request
v Restarting the sequence

There are two tasks that are not found as part of the creation of the sequence. They
are:
v RESTART: Resets the sequence to the value specified implicitly or explicitly as

the starting value when the sequence was created.
v RESTART WITH numeric-constant: Resets the sequence to the exact numeric

constant value. The numeric constant can be any positive or negative value with
no non-zero digits to the right of any decimal point.

Restrictions

The data type of a sequence cannot be changed. Instead, you must drop the
current sequence and then create a sequence specifying the new data type.

After restarting a sequence or changing to CYCLE, it is possible to generate
duplicate sequence numbers. Only future sequence numbers are affected by the
ALTER SEQUENCE statement.

Chapter 24. Sequences 373

All cached sequence values not used by the database manager are lost when a
sequence is altered.

Viewing sequence definitions
Use the VALUES statement using the PREVIOUS VALUE option to view the
reference information associated with a sequence or to view the sequence itself.

Procedure

To display the current value of the sequence, issue a VALUES statement using the
PREVIOUS VALUE expression:
VALUES PREVIOUS VALUE FOR id_values

1

1

1 record(s) selected.

You can repeatedly retrieve the current value of the sequence, and the value that
the sequence returns does not change until you issue a NEXT VALUE expression.
This is even true if another connection consumes sequence values at the same time.

Example

In the following example, the PREVIOUS VALUE expression returns a value of 1,
until the NEXT VALUE expression in the current connection increments the value
of the sequence:
VALUES PREVIOUS VALUE FOR id_values

1

1

1 record(s) selected.

VALUES PREVIOUS VALUE FOR id_values

1

1

1 record(s) selected.

VALUES NEXT VALUE FOR id_values

1

2

1 record(s) selected.

VALUES PREVIOUS VALUE FOR id_values

1

2

1 record(s) selected.

374 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Dropping sequences
To delete a sequence, use the DROP statement.

Before you begin

When dropping sequences, the authorization ID of the statement must have
DBADM authority.

Restrictions

Sequences that are system-created for IDENTITY columns cannot be dropped by
using the DROP SEQUENCE statement.

Procedure

To drop a specific sequence, enter:
DROP SEQUENCE sequence_name

where the sequence_name is the name of the sequence to be dropped and includes
the implicit or explicit schema name to exactly identify an existing sequence.

Results

Once a sequence is dropped, all privileges on the sequence are also dropped.

Examples of how to code sequences
Many applications that are written require the use of sequence number to track
invoice numbers, customer numbers, and other objects which get incremented by
one whenever a new item is required. The database manager can auto-increment
values in a table through the use of identity columns. Although this technique
works well for individual tables, it might not be the most convenient way of
generating unique values that must be used across multiple tables.

The sequence object lets you create a value that gets incremented under
programmer control and can be used across many tables. The following example
shows a sequence number being created for customer numbers using a data type
of integer:

CREATE SEQUENCE customer_no AS INTEGER

By default the sequence number starts at one and increments by one at a time and
is of an INTEGER data type. The application needs to get the next value in the
sequence by using the NEXT VALUE function. This function generates the next
value for the sequence which can then be used for subsequent SQL statements:

VALUES NEXT VALUE FOR customer_no

Instead of generating the next number with the VALUES function, the programmer
could have used this function within an INSERT statement. For instance, if the first
column of the customer table contained the customer number, an INSERT
statement could be written as follows:

INSERT INTO customers VALUES
(NEXT VALUE FOR customer_no, ’comment’, ...)

Chapter 24. Sequences 375

If the sequence number needs to be used for inserts into other tables, the
PREVIOUS VALUE function can be used to retrieve the previously generated
value. For instance, if the customer number just created needs to be used for a
subsequent invoice record, the SQL would include the PREVIOUS VALUE
function:

INSERT INTO invoices
(34,PREVIOUS VALUE FOR customer_no, 234.44, ...)

The PREVIOUS VALUE function can be used multiple times within the application
and it will only return the last value generated by that application. It might be
possible that subsequent transactions have already incremented the sequence to
another value, but you will always see the last number that is generated.

Sequence reference
A sequence reference is an expression which references a sequence defined at the
application server.

sequence-reference:

nextval-expression
prevval-expression

nextval-expression:

NEXT VALUE FOR sequence-name

prevval-expression:

PREVIOUS VALUE FOR sequence-name

NEXT VALUE FOR sequence-name
A NEXT VALUE expression generates and returns the next value for the
sequence specified by sequence-name.

PREVIOUS VALUE FOR sequence-name
A PREVIOUS VALUE expression returns the most recently generated value for
the specified sequence for a previous statement within the current application
process. This value can be referenced repeatedly by using PREVIOUS VALUE
expressions that specify the name of the sequence. There may be multiple
instances of PREVIOUS VALUE expressions specifying the same sequence
name within a single statement; they all return the same value. In a partitioned
database environment, a PREVIOUS VALUE expression may not return the
most recently generated value.

A PREVIOUS VALUE expression can only be used if a NEXT VALUE
expression specifying the same sequence name has already been referenced in
the current application process, in either the current or a previous transaction
(SQLSTATE 51035).

Notes
v Authorization: If a sequence-reference is used in a statement, the privileges held

by the authorization ID of the statement must include at least one of the
following privileges:

376 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

– The USAGE privilege on the sequence
– DATAACCESS authority

v A new value is generated for a sequence when a NEXT VALUE expression
specifies the name of that sequence. However, if there are multiple instances of a
NEXT VALUE expression specifying the same sequence name within a query,
the counter for the sequence is incremented only once for each row of the result,
and all instances of NEXT VALUE return the same value for a row of the result.

v The same sequence number can be used as a unique key value in two separate
tables by referencing the sequence number with a NEXT VALUE expression for
the first row (this generates the sequence value), and a PREVIOUS VALUE
expression for the other rows (the instance of PREVIOUS VALUE refers to the
sequence value most recently generated in the current session), as shown in the
following example:

INSERT INTO order(orderno, cutno)
VALUES (NEXT VALUE FOR order_seq, 123456);

INSERT INTO line_item (orderno, partno, quantity)
VALUES (PREVIOUS VALUE FOR order_seq, 987654, 1);

v NEXT VALUE and PREVIOUS VALUE expressions can be specified in the
following places:
– select-statement or SELECT INTO statement (within the select-clause,

provided that the statement does not contain a DISTINCT keyword, a
GROUP BY clause, an ORDER BY clause, a UNION keyword, an INTERSECT
keyword, or EXCEPT keyword)

– INSERT statement (within a VALUES clause)
– INSERT statement (within the select-clause of the fullselect)
– UPDATE statement (within the SET clause (either a searched or a positioned

UPDATE statement), except that NEXT VALUE cannot be specified in the
select-clause of the fullselect of an expression in the SET clause)

– SET Variable statement (except within the select-clause of the fullselect of an
expression; a NEXT VALUE expression can be specified in a trigger, but a
PREVIOUS VALUE expression cannot)

– VALUES INTO statement (within the select-clause of the fullselect of an
expression)

– CREATE PROCEDURE statement (within the routine-body of an SQL
procedure)

– CREATE TRIGGER statement within the triggered-action (a NEXT VALUE
expression may be specified, but a PREVIOUS VALUE expression cannot)

v NEXT VALUE and PREVIOUS VALUE expressions cannot be specified
(SQLSTATE 428F9) in the following places:
– Join condition of a full outer join
– DEFAULT value for a column in a CREATE or ALTER TABLE statement
– Generated column definition in a CREATE OR ALTER TABLE statement
– Summary table definition in a CREATE TABLE or ALTER TABLE statement
– Condition of a CHECK constraint
– CREATE TRIGGER statement (a NEXT VALUE expression may be specified,

but a PREVIOUS VALUE expression cannot)
– CREATE VIEW statement
– CREATE METHOD statement
– CREATE FUNCTION statement
– An argument list of an XMLQUERY, XMLEXISTS, or XMLTABLE expression

Chapter 24. Sequences 377

v In addition, a NEXT VALUE expression cannot be specified (SQLSTATE 428F9)
in the following places:
– CASE expression
– Parameter list of an aggregate function
– Subquery in a context other than those explicitly allowed, as described

previously
– SELECT statement for which the outer SELECT contains a DISTINCT

operator
– Join condition of a join
– SELECT statement for which the outer SELECT contains a GROUP BY clause
– SELECT statement for which the outer SELECT is combined with another

SELECT statement using the UNION, INTERSECT, or EXCEPT set operator
– Nested table expression
– Parameter list of a table function
– WHERE clause of the outer-most SELECT statement, or a DELETE or

UPDATE statement
– ORDER BY clause of the outer-most SELECT statement
– select-clause of the fullselect of an expression, in the SET clause of an

UPDATE statement
– IF, WHILE, DO ... UNTIL, or CASE statement in an SQL routine

v When a value is generated for a sequence, that value is consumed, and the next
time that a value is requested, a new value will be generated. This is true even
when the statement containing the NEXT VALUE expression fails or is rolled
back.
If an INSERT statement includes a NEXT VALUE expression in the VALUES list
for the column, and if an error occurs at some point during the execution of the
INSERT (it could be a problem in generating the next sequence value, or a
problem with the value for another column), then an insertion failure occurs
(SQLSTATE 23505), and the value generated for the sequence is considered to be
consumed. In some cases, reissuing the same INSERT statement might lead to
success.
For example, consider an error that is the result of the existence of a unique
index for the column for which NEXT VALUE was used and the sequence value
generated already exists in the index. It is possible that the next value generated
for the sequence is a value that does not exist in the index and so the
subsequent INSERT would succeed.

v Scope of PREVIOUS VALUE: The value of PREVIOUS VALUE persists until the
next value is generated for the sequence in the current session, the sequence is
dropped or altered, or the application session ends. The value is unaffected by
COMMIT or ROLLBACK statements. The value of PREVIOUS VALUE cannot be
directly set and is a result of executing the NEXT VALUE expression for the
sequence.
A technique commonly used, especially for performance, is for an application or
product to manage a set of connections and route transactions to an arbitrary
connection. In these situations, the availability of the PREVIOUS VALUE for a
sequence should be relied on only until the end of the transaction. Examples of
where this type of situation can occur include applications that use XA
protocols, use connection pooling, use the connection concentrator, and use
HADR to achieve failover.

v If in generating a value for a sequence, the maximum value for the sequence is
exceeded (or the minimum value for a descending sequence) and cycles are not

378 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

permitted, then an error occurs (SQLSTATE 23522). In this case, the user could
ALTER the sequence to extend the range of acceptable values, or enable cycles
for the sequence, or DROP and CREATE a new sequence with a different data
type that has a larger range of values.
For example, a sequence may have been defined with a data type of SMALLINT,
and eventually the sequence runs out of assignable values. DROP and re-create
the sequence with the new definition to redefine the sequence as INTEGER.

v A reference to a NEXT VALUE expression in the select statement of a cursor
refers to a value that is generated for a row of the result table. A sequence value
is generated for a NEXT VALUE expression for each row that is fetched from the
database. If blocking is done at the client, the values may have been generated
at the server before the processing of the FETCH statement. This can occur when
there is blocking of the rows of the result table. If the client application does not
explicitly FETCH all the rows that the database has materialized, then the
application will not see the results of all the generated sequence values (for the
materialized rows that were not returned).

v A reference to a PREVIOUS VALUE expression in the select statement of a
cursor refers to a value that was generated for the specified sequence before the
opening of the cursor. However, closing the cursor can affect the values returned
by PREVIOUS VALUE for the specified sequence in subsequent statements, or
even for the same statement in the event that the cursor is reopened. This would
be the case when the select statement of the cursor included a reference to NEXT
VALUE for the same sequence name.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– NEXTVAL and PREVVAL can be specified in place of NEXT VALUE and

PREVIOUS VALUE
– sequence-name.NEXTVAL can be specified in place of NEXT VALUE FOR

sequence-name

– sequence-name.CURRVAL can be specified in place of PREVIOUS VALUE FOR
sequence-name

Examples

Assume that there is a table called "order", and that a sequence called "order_seq"
is created as follows:

CREATE SEQUENCE order_seq
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 24

Following are some examples of how to generate an "order_seq" sequence number
with a NEXT VALUE expression:

INSERT INTO order(orderno, custno)
VALUES (NEXT VALUE FOR order_seq, 123456);

or
UPDATE order

SET orderno = NEXT VALUE FOR order_seq
WHERE custno = 123456;

or

Chapter 24. Sequences 379

VALUES NEXT VALUE FOR order_seq INTO :hv_seq;

380 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 25. Views

A view is an efficient way of representing data without the need to maintain it. A
view is not an actual table and requires no permanent storage. A “virtual table” is
created and used.

A view provides a different way of looking at the data in one or more tables; it is a
named specification of a result table. The specification is a SELECT statement that
is run whenever the view is referenced in an SQL statement. A view has columns
and rows just like a table. All views can be used just like tables for data retrieval.
Whether a view can be used in an insert, update, or delete operation depends on
its definition.

A view can include all or some of the columns or rows contained in the tables on
which it is based. For example, you can join a department table and an employee
table in a view, so that you can list all employees in a particular department.

Figure 35 shows the relationship between tables and views.

You can use views to control access to sensitive data, because views allow multiple
users to see different presentations of the same data. For example, several users
might be accessing a table of data about employees. A manager sees data about his
or her employees but not employees in another department. A recruitment officer
sees the hire dates of all employees, but not their salaries; a financial officer sees
the salaries, but not the hire dates. Each of these users works with a view derived
from the table. Each view appears to be a table and has its own name.

When the column of a view is directly derived from the column of a base table,
that view column inherits any constraints that apply to the table column. For

Column

Row

Database

Table B

19

81

87

93

47

17

85

ABS

QRS

FCP

MLI

CJP

DJS

KMP

Table A

View AB

CREATE VIEW_AB
AS SELECT. . .

FROM TABLE_A, TABLE_B
WHERE. . .

View A

CREATE VIEW_A
AS SELECT. . .

FROM TABLE_A
WHERE. . .

Figure 35. Relationship between tables and views

© Copyright IBM Corp. 2014 381

example, if a view includes a foreign key of its table, insert and update operations
using that view are subject to the same referential constraints as is the table. Also,
if the table of a view is a parent table, delete and update operations using that
view are subject to the same rules as are delete and update operations on the table.

A view can derive the data type of each column from the result table, or base the
types on the attributes of a user-defined structured type. This is called a typed view.
Similar to a typed table, a typed view can be part of a view hierarchy. A subview
inherits columns from its superview. The term subview applies to a typed view and
to all typed views that are below it in the view hierarchy. A proper subview of a
view V is a view below V in the typed view hierarchy.

A view can become inoperative (for example, if the table is dropped); if this occurs,
the view is no longer available for SQL operations.

Designing views
A view provides a different way of looking at the data in one or more tables; it is a
named specification of a result table.

The specification is a SELECT statement that is run whenever the view is
referenced in an SQL statement. A view has columns and rows just like a base
table. All views can be used just like tables for data retrieval. Whether a view can
be used in an insert, update, or delete operation depends on its definition.

Views are classified by the operations they allow. They can be:
v Deletable
v Updatable
v Insertable
v Read-only

The view type is established according to its update capabilities. The classification
indicates the kind of SQL operation that is allowed against the view.

Referential and check constraints are treated independently. They do not affect the
view classification.

For example, you might not be able to insert a row into a table due to a referential
constraint. If you create a view using that table, you also cannot insert that row
using the view. However, if the view satisfies all the rules for an insertable view, it
will still be considered an insertable view. This is because the insert restriction is
on the table, not on the view definition.

For more information, see the CREATE VIEW statement.

System catalog views
The database manager maintains a set of tables and views that contain information
about the data under its control. These tables and views are collectively known as
the system catalog.

The system catalog contains information about the logical and physical structure of
database objects such as tables, views, indexes, packages, and functions. It also
contains statistical information. The database manager ensures that the descriptions
in the system catalog are always accurate.

382 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The system catalog views are like any other database view. SQL statements can be
used to query the data in the system catalog views. A set of updatable system
catalog views can be used to modify certain values in the system catalog.

Views with the check option
A view that is defined WITH CHECK OPTION enforces any rows that are
modified or inserted against the SELECT statement for that view. Views with the
check option are also called symmetric views. For example, a symmetric view that
only returns only employees in department 10 will not allow insertion of
employees in other departments. This option, therefore, ensures the integrity of the
data being modified in the database, returning an error if the condition is violated
during an INSERT or UPDATE operation.

If your application cannot define the required rules as table check constraints, or
the rules do not apply to all uses of the data, there is another alternative to placing
the rules in the application logic. You can consider creating a view of the table
with the conditions on the data as part of the WHERE clause and the WITH
CHECK OPTION clause specified. This view definition restricts the retrieval of
data to the set that is valid for your application. Additionally, if you can update
the view, the WITH CHECK OPTION clause restricts updates, inserts, and deletes
to the rows applicable to your application.

The WITH CHECK OPTION must not be specified for the following views:
v Views defined with the read-only option (a read-only view)
v View that reference the NODENUMBER or PARTITION function, a

nondeterministic function (for example, RAND), or a function with external
action

v Typed views

Example 1

Following is an example of a view definition using the WITH CHECK OPTION.
This option is required to ensure that the condition is always checked. The view
ensures that the DEPT is always 10. This will restrict the input values for the DEPT
column. When a view is used to insert a new value, the WITH CHECK OPTION is
always enforced:

CREATE VIEW EMP_VIEW2
(EMPNO, EMPNAME, DEPTNO, JOBTITLE, HIREDATE)

AS SELECT ID, NAME, DEPT, JOB, HIREDATE FROM EMPLOYEE
WHERE DEPT=10

WITH CHECK OPTION;

If this view is used in an INSERT statement, the row will be rejected if the
DEPTNO column is not the value 10. It is important to remember that there is no
data validation during modification if the WITH CHECK OPTION is not specified.

If this view is used in a SELECT statement, the conditional (WHERE clause) would
be invoked and the resulting table would only contain the matching rows of data.
In other words, the WITH CHECK OPTION does not affect the result of a SELECT
statement.

Chapter 25. Views 383

Example 2

With a view, you can make a subset of table data available to an application
program and validate data that is to be inserted or updated. A view can have
column names that are different from the names of corresponding columns in the
original tables. For example:

CREATE VIEW <name> (<column>, <column>, <column>)
SELECT <column_name> FROM <table_name>
WITH CHECK OPTION

Example 3

The use of views provides flexibility in the way your programs and end-user
queries can look at the table data.

The following SQL statement creates a view on the EMPLOYEE table that lists all
employees in Department A00 with their employee and telephone numbers:

CREATE VIEW EMP_VIEW (DA00NAME, DA00NUM, PHONENO)
AS SELECT LASTNAME, EMPNO, PHONENO FROM EMPLOYEE
WHERE WORKDEPT = ’A00’
WITH CHECK OPTION

The first line of this statement names the view and defines its columns. The name
EMP_VIEW must be unique within its schema in SYSCAT.TABLES. The view name
appears as a table name although it contains no data. The view will have three
columns called DA00NAME, DA00NUM, and PHONENO, which correspond to
the columns LASTNAME, EMPNO, and PHONENO from the EMPLOYEE table.
The column names listed apply one-to-one to the select list of the SELECT
statement. If column names are not specified, the view uses the same names as the
columns of the result table of the SELECT statement.

The second line is a SELECT statement that describes which values are to be
selected from the database. It might include the clauses ALL, DISTINCT, FROM,
WHERE, GROUP BY, and HAVING. The name or names of the data objects from
which to select columns for the view must follow the FROM clause.

Example 4

The WITH CHECK OPTION clause indicates that any updated or inserted row to
the view must be checked against the view definition, and rejected if it does not
conform. This enhances data integrity but requires additional processing. If this
clause is omitted, inserts and updates are not checked against the view definition.

The following SQL statement creates the same view on the EMPLOYEE table using
the SELECT AS clause:

CREATE VIEW EMP_VIEW
SELECT LASTNAME AS DA00NAME,

EMPNO AS DA00NUM,
PHONENO

FROM EMPLOYEE
WHERE WORKDEPT = ’A00’
WITH CHECK OPTION

For this example, the EMPLOYEE table might have salary information in it, which
should not be made available to everyone. The employee's phone number,
however, should be generally accessible. In this case, a view could be created from
the LASTNAME and PHONENO columns only. Access to the view could be

384 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

granted to PUBLIC, while access to the entire EMPLOYEE table could be restricted
to those who have the authorization to see salary information.

Nested view definitions
If a view is based on another view, the number of predicates that must be
evaluated is based on the WITH CHECK OPTION specification.

If a view is defined without WITH CHECK OPTION, the definition of the view is
not used in the data validity checking of any insert or update operations. However,
if the view directly or indirectly depends on another view defined with the WITH
CHECK OPTION, the definition of that super view is used in the checking of any
insert or update operation.

If a view is defined with the WITH CASCADED CHECK OPTION or just the
WITH CHECK OPTION (CASCADED is the default value of the WITH CHECK
OPTION), the definition of the view is used in the checking of any insert or update
operations. In addition, the view inherits the search conditions from any updatable
views on which the view depends. These conditions are inherited even if those
views do not include the WITH CHECK OPTION. Then the inherited conditions
are multiplied together to conform to a constraint that is applied for any insert or
update operations for the view or any views depending on the view.

As an example, if a view V2 is based on a view V1, and the check option for V2 is
defined with the WITH CASCADED CHECK OPTION, the predicates for both
views are evaluated when INSERT and UPDATE statements are performed against
the view V2:

CREATE VIEW EMP_VIEW2 AS
SELECT EMPNO, EMPNAME, DEPTNO FROM EMP

WHERE DEPTNO = 10
WITH CHECK OPTION;

The following example shows a CREATE VIEW statement using the WITH
CASCADED CHECK OPTION. The view EMP_VIEW3 is created based on a view
EMP_VIEW2, which has been created with the WITH CHECK OPTION. If you
want to insert or update a record to EMP_VIEW3, the record should have the
values DEPTNO=10 and EMPNO=20.

CREATE VIEW EMP_VIEW3 AS
SELECT EMPNO, EMPNAME, DEPTNO FROM EMP_VIEW2

WHERE EMPNO > 20
WITH CASCADED CHECK OPTION;

Note: The condition DEPTNO=10 is enforced for inserting or updating operations
to EMP_VIEW3 even if EMP_VIEW2 does not include the WITH CHECK OPTION.

The WITH LOCAL CHECK OPTION can also be specified when creating a view. If
a view is defined with the LOCAL CHECK OPTION, the definition of the view is
used in the checking of any insert or update operations. However, the view does
not inherit the search conditions from any updatable views on which it depends.

Deletable views
Depending on how a view is defined, the view can be deletable. A deletable view
is a view against which you can successfully issue a DELETE statement.

There are a few rules that must be followed for a view to be considered deletable:

Chapter 25. Views 385

v Each FROM clause of the outer fullselect identifies only one table (with no
OUTER clause), deletable view (with no OUTER clause), deletable nested table
expression, or deletable common table expression.

v The database manager needs to be able to derive the rows to be deleted in the
table using the view definition. Certain operations make this impossible
– A grouping of multiple rows into one using a GROUP BY clause or column

functions result in a loss of the original row and make the view non deletable.
– Similarly when th rows are derived from a VALUES there is no table to delete

from. Again the view is not deletable.
v The outer fullselect doesn't use the GROUP BY or HAVING clauses.
v The outer fullselect doesn't include column functions in its select list.
v The outer fullselect doesn't use set operations (UNION, EXCEPT, or

INTERSECT) with the exception of UNION ALL
v The tables in the operands of a UNION ALL must not be the same table, and

each operand must be deletable.
v The select list of the outer fullselect does not include DISTINCT.

A view must meet all the rules listed previously to be considered a deletable view.
For example, the following view is deletable. It follows all the rules for a deletable
view.

CREATE VIEW deletable_view
(number, date, start, end)

AS
SELECT number, date, start, end
FROM employee.summary
WHERE date=’01012007’

Insertable views
Insertable views allow you to insert rows using the view definition. A view is
insertable if an INSTEAD OF trigger for the insert operation has been defined for
the view, or at least one column of the view is updatable (independent of an
INSTEAD OF trigger for update), and the fullselect of the view does not include
UNION ALL. A given row can be inserted into a view (including a UNION ALL)
if, and only if, it fulfills the check constraints of exactly one of the underlying
tables. To insert into a view that includes non-updatable columns, those columns
must be omitted from the column list.

The following example shows an insertable view. However, in this example, an
attempt to insert the view will fail. This is because there are columns in the table
that do not accept null values. Some of these columns are not present in the view
definition. When you try to insert a value using the view, the database manager
will try to insert a null value into a NOT NULL column. This action is not
permitted.

CREATE VIEW insertable_view
(number, name, quantity)

AS
SELECT number, name, quantify FROM ace.supplies

Note: The constraints defined on the table are independent of the operations that
can be performed using a view based on that table.

Updatable views
An updatable view is a special case of a deletable view. A deletable view becomes
an updatable view when at least one of its columns is updatable.

386 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

A column of a view is updatable when all of the following rules are true:
v The view is deletable.
v The column resolves to a column of a table (not using a dereference operation)

and the READ ONLY option is not specified.
v All the corresponding columns of the operands of a UNION ALL have exactly

matching data types (including length or precision and scale) and matching
default values if the fullselect of the view includes a UNION ALL.

The following example uses constant values that cannot be updated. However, the
view is a deletable view and at least one of its columns is updatable. Therefore, it
is an updatable view.

CREATE VIEW updatable_view
(number, current_date, current_time, temperature)

AS
SELECT number, CURRENT DATE, CURRENT TIME, temperature)

FROM weather.forecast
WHERE number = 300

Read-only views
A view is read-only if it is not deletable, updatable, or insertable. A view can be
read-only if it is a view that does not comply with at least one of the rules for
deletable views.

The READONLY column in the SYSCAT.VIEWS catalog view indicates a view is
read-only (R).

The following example does not show a deletable view as it uses the DISTINCT
clause and the SQL statement involves more than one table:

CREATE VIEW read_only_view
(name, phone, address)

AS
SELECT DISTINCT viewname, viewphone, viewaddress
FROM employee.history adam, employer.dept sales
WHERE adam.id = sales.id

Creating views
Views are derived from one or more tables, nicknames, or views, and can be used
interchangeably with tables when retrieving data. When changes are made to the
data shown in a view, the data is changed in the table itself. The table, nickname,
or view on which the view is to be based must already exist before the view can
be created.

About this task

A view can be created to limit access to sensitive data, while allowing more
general access to other data.

When inserting into a view where the select list of the view definition directly or
indirectly includes the name of an identity column of a table, the same rules apply
as if the INSERT statement directly referenced the identity column of the table.

In addition to using views as described previously, a view can also be used to:
v Alter a table without affecting application programs. This can happen by

creating a view based on an underlying table. Applications that use the
underlying table are not affected by the creation of the new view. New

Chapter 25. Views 387

applications can use the created view for different purposes than those
applications that use the underlying table.

v Sum the values in a column, select the maximum values, or average the values.
v Provide access to information in one or more data sources. You can reference

nicknames within the CREATE VIEW statement and create multi-location/global
views (the view could join information in multiple data sources located on
different systems).
When you create a view that references nicknames using standard CREATE
VIEW syntax, you will see a warning alerting you to the fact that the
authentication ID of view users will be used to access the underlying object or
objects at data sources instead of the view creator authentication ID. Use the
FEDERATED keyword to suppress this warning.

A typed view is based on a predefined structured type. You can create a typed
view using the CREATE VIEW statement.

An alternative to creating a view is to use a nested or common table expression to
reduce catalog lookup and improve performance.

A sample CREATE VIEW statement is shown in the following example. The
underlying table, EMPLOYEE, has columns named SALARY and COMM. For
security reasons this view is created from the ID, NAME, DEPT, JOB, and
HIREDATE columns. In addition, access on the DEPT column is restricted. This
definition will only show the information of employees who belong to the
department whose DEPTNO is 10.

CREATE VIEW EMP_VIEW1
(EMPID, EMPNAME, DEPTNO, JOBTITLE, HIREDATE)
AS SELECT ID, NAME, DEPT, JOB, HIREDATE FROM EMPLOYEE

WHERE DEPT=10;

After the view has been defined, the access privileges can be specified. This
provides data security since a restricted view of the table is accessible. As shown in
the previous example, a view can contain a WHERE clause to restrict access to
certain rows or can contain a subset of the columns to restrict access to certain
columns of data.

The column names in the view do not have to match the column names of the
base table. The table name has an associated schema as does the view name.

Once the view has been defined, it can be used in statements such as SELECT,
INSERT, UPDATE, and DELETE (with restrictions). The DBA can decide to provide
a group of users with a higher level privilege on the view than the table.

Creating views that use user-defined functions (UDFs)
Once you create a view that uses a UDF, the view will always use this same UDF
as long as the view exists even if you create other UDFs with the same names later.
If you want to pick up a new UDF you must re-create the view.

About this task

The following SQL statement creates a view with a function in its definition:
CREATE VIEW EMPLOYEE_PENSION (NAME, PENSION)

AS SELECT NAME, PENSION(HIREDATE,BIRTHDATE,SALARY,BONUS)
FROM EMPLOYEE

388 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The UDF function PENSION calculates the current pension an employee is eligible
to receive, based on a formula involving their HIREDATE, BIRTHDATE, SALARY,
and BONUS.

Modifying typed views
Certain properties of a typed view can be changed without requiring the view to
be dropped and recreated. One such property is the adding of a scope to a
reference column of a typed view.

About this task

The ALTER VIEW statement modifies an existing typed view definition by altering
a reference type column to add a scope. The DROP statement deletes a typed view.
You can also:
v Modify the contents of a typed view through INSTEAD OF triggers
v Alter a typed view to enable statistics collection

Changes you make to the underlying content of a typed view require that you use
triggers. Other changes to a typed view require that you drop and then re-create
the typed view.

The data type of the column-name in the ALTER VIEW statement must be REF
(type of the typed table name or typed view name).

Procedure

To alter a typed view by using the command line, issue the ALTER VIEW
statement. For example:

ALTER VIEW view_name ALTER column_name
ADD SCOPE typed_table_or_view_name

Results

Other database objects such as tables and indexes are not affected although
packages and cached dynamic statements are marked invalid.

Recovering inoperative views
An inoperative view is a view that is no longer available for SQL statements.

About this task

Views can become inoperative:
v As a result of a revoked privilege on an underlying table
v If a table, alias, or function is dropped.
v If the superview becomes inoperative. (A superview is a typed view upon which

another typed view, a subview, is based.)
v When the views they are dependent on are dropped.

If you do not want to recover an inoperative view, you can explicitly drop it with
the DROP VIEW statement, or you can create a view with the same name but a
different definition.

Chapter 25. Views 389

An inoperative view has entries only in the SYSCAT.TABLES and SYSCAT.VIEWS
catalog views; all entries in the SYSCAT.TABDEP, SYSCAT.TABAUTH,
SYSCAT.COLUMNS, and SYSCAT.COLAUTH catalog views are removed.

Procedure

The following steps can help you recover an inoperative view:
1. Determine the SQL statement that was initially used to create the view. You can

obtain this information from the TEXT column of the SYSCAT.VIEW catalog
view.

2. Set the current schema to the content of the QUALIFIER column.
3. Set the function path to the content of the FUNC_PATH column.
4. Re-create the view by using the CREATE VIEW statement with the same view

name and same definition.
5. Use the GRANT statement to regrant all privileges that were previously

granted on the view. (Note that all privileges granted on the inoperative view
are revoked.)

Dropping views
Use the DROP VIEW statement to drop views. Any views that are dependent on
the view being dropped are made inoperative.

Procedure

To drop a view by using the command line, enter:
DROP VIEW view_name

Example

The following example shows how to drop a view named EMP_VIEW:
DROP VIEW EMP_VIEW

As in the case of a table hierarchy, it is possible to drop an entire view hierarchy in
one statement by naming the root view of the hierarchy, as in the following
example:

DROP VIEW HIERARCHY VPerson

390 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 26. Usage lists

A usage list is a database object that records each DML statement section that
references a particular table or index. A section is the executable form of the query.
Statistics are captured for each statement section as it executes. Use usage lists
when you want to determine which DML statements, if any, affected a table or
index.

Data is collected in a usage list only when the usage list is active. Each entry in a
usage list contains data for every DML statement that references the table or index
for which the usage list was created. Each entry includes information about the
number of times that the section executed and aggregate statistics indicating how
the section affected the table or index across all executions.

References in the list can be aggregated by the values that are listed in the
following table.

Table 74. Aggregation values for usage list references

Value Description

executable_ID Identifies the SQL statement that was
executed.

mon_interval_ID Identifies the monitoring interval at the time
that the executable_ID was added to the
usage list.

Consider the following example of using usage lists. As part of routine monitoring,
you see a high value for the rows_read monitor element for a specific table in the
output for the MON_GET_TABLE table function. You can use a usage list on that
table to identify which DML statements contributed to the high value. If you
determine that a problem exists, you can use the statistics from the usage list to
determine which specific statements might require further monitoring or tuning.

You can create more than one usage list for a table or index. However, activating
more than one usage list at a time might negatively affect database performance
and memory usage.

Restrictions

The following restrictions apply to usage lists:
v Usage lists can capture information about only DML statements.
v You can create a usage list only for untyped tables. The following table types

and objects are not supported:
– Aliases
– Created temporary tables
– Detached tables
– Hierarchy tables
– Nicknames
– Typed tables
– Views

© Copyright IBM Corp. 2014 391

v You can create a usage list only for the following types of indexes:
– Block indexes
– Clustering indexes
– Dimension block indexes
– Regular indexes

v The db2look utility does not extract the DDL statements that are required to
create copies of usage lists.

Usage list memory considerations and validation dependencies
After a usage list is activated, the database manager allocates memory to store the
collected data the first time that a section references the object for which the usage
list is defined. Throughout the life of the usage list, various actions might affect
this memory, invalidate the usage list, or both.

General memory considerations are as follows:
v Usage list size considerations: Select a reasonable list size or set the mon_heap_sz

configuration parameter to AUTOMATIC so that the database manager manages
the monitor heap size.

v Performance considerations: To maintain high performance, create usage lists
such that they are limited to the amount required to gather the information you
need. Each usage list requires system memory; system performance can degrade
as additional usage lists are activated.

The following table shows more specifically how various actions affect the
allocated memory.

Action Effect

Effect if usage list is
for a partitioned table
or index

Effect in a partitioned
database environment
or DB2 pureScale
environment

After you activate a
usage list for the first
time, a section
references the object for
which the usage list is
defined.

Memory is allocated for
the usage list.

Memory is allocated for
each data partition. For
example, if the usage
list requires 2 MB of
memory, and three data
partitions exist, 6 MB of
total memory is
allocated.

Memory is allocated for
each member. For
example, if the usage
list requires 2 MB of
memory, and three
members exist, 6 MB of
total memory is
allocated.

You change the size of
the usage list.

The amount of memory
that is associated with
the usage list changes
the next time that the
usage list is activated.

The amount of memory
that is associated with
the usage list for each
data partition changes
the next time that the
usage list is activated.

The amount of memory
that is associated with
the usage list for each
member changes the
next time that the usage
list is activated.

You add or attach a
new data partition to
the table or index for
which the usage list is
defined.

Does not apply. Memory is allocated for
the new data partition
the next time that a
section references the
table or index.

Does not apply.

You drop the usage list. The memory that is
associated with the
usage list is freed.

The memory that is
associated with the
usage list is freed for all
data partitions.

The memory that is
associated with the
usage list is freed on all
members.

392 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Action Effect

Effect if usage list is
for a partitioned table
or index

Effect in a partitioned
database environment
or DB2 pureScale
environment

You drop the table or
index for which the
usage list is defined.

The memory that is
associated with the
usage list is freed and
the catalog entry for the
usage list is invalidated.
The catalog entry can be
validated again by using
the
ADMIN_REVALIDATE
_DB_OBJECTS
procedure.

The memory that is
associated with the
usage list is freed for all
data partitions and the
catalog entry for the
usage list is invalidated.
The catalog entry can be
validated again by
using the
ADMIN_REVALIDATE
_DB_OBJECTS
procedure.

The memory that is
associated with the
usage list is freed on all
members and the
catalog entry for the
usage list is invalidated.
The catalog entry can be
validated again by using
the
ADMIN_REVALIDATE
_DB_OBJECTS
procedure.

You deactivate the
instance or database.

The memory that is
associated with the
usage list is freed.

The memory that is
associated with the
usage list is freed for all
data partitions.

The memory that is
associated with the
usage list is freed on all
members.

You use the SET
USAGE LIST STATE
statement to free the
memory that is
associated with the
usage list.

The memory that is
associated with the
usage list is freed.

The memory that is
associated with the
usage list is freed for all
data partitions.

The memory that is
associated with the
usage list is freed on all
members.

You detach a data
partition from the table
or index for which the
usage list was created.

Does not apply. The memory that is
associated with the data
partition that you
detached is freed.

Does not apply.

You drop or deactivate
a database member.

Does not apply. Does not apply. The memory that is
associated with the
member that you
dropped or deactivated
is freed.

Chapter 26. Usage lists 393

394 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 27. pureXML

The pureXML® feature allows you to store well-formed XML documents in
database table columns that have the XML data type. By storing XML data in XML
columns, the data is kept in its native hierarchical form, rather than stored as text
or mapped to a different data model.

Because pureXML data storage is fully integrated, the stored XML data can be
accessed and managed by leveraging existing DB2 database server functionality.

The storage of XML data in its native hierarchical form enables efficient search,
retrieval, and updates of XML. XQuery, SQL, or a combination of both can be used
to query and update XML data. SQL functions that return XML data or take XML
arguments (referred to as SQL/XML functions) also enable XML data to be
constructed or published from values retrieved from the database.

Querying and updating

XML documents stored in XML columns can be queried and updated using the
following methods:

XQuery
XQuery is a generalized language for interpreting, retrieving, and
modifying XML data. The DB2 database server allows XQuery to be
invoked directly or from within SQL. Because the XML data is stored in
DB2 tables and views, functions are provided that extract the XML data
from specified tables and views by naming the table or view directly, or by
specifying an SQL query. XQuery supports various expressions for
processing XML data, for updating existing XML objects such as elements
and attributes, and for constructing new XML objects. The programming
interface to XQuery provides facilities similar to those of SQL to execute
queries and retrieve results.

SQL statements and SQL/XML functions
Many SQL statements support the XML data type. This enables you to
perform many common database operations with XML data, such as
creating tables with XML columns, adding XML columns to existing tables,
creating indexes over XML columns, creating triggers on tables with XML
columns, and inserting, updating, or deleting XML documents. The set of
SQL/XML functions, expressions, and specifications supported by DB2
database server has been enhanced to take full advantage of the XML data
type.

XQuery can be invoked from within an SQL query. In this case, the SQL
query can pass data to XQuery in the form of bound variables.

Application development

Support for application development is provided by several programming
languages, and through SQL and external procedures:

Programming language support
Application development support of the new pureXML feature enables
applications to combine XML and relational data access and storage. The
following programming languages support the XML data type:

© Copyright IBM Corp. 2014 395

v C or C++ (embedded SQL or CLI)
v COBOL
v Java (JDBC or SQLJ)
v C# and Visual Basic (IBM Data Server Provider for .NET)
v PHP
v Perl

SQL and external procedures
XML data can be passed to SQL procedures and external procedures by
including parameters of data type XML in CREATE PROCEDURE
parameter signatures. Existing procedure features support the
implementation of procedural logic flow around SQL statements that
produce or make use of XML values as well as the temporary storage of
XML data values in variables.

Administration

The pureXML feature provides a repository for managing the URI dependencies of
XML documents and enables XML data movement for database administration:

XML schema repository (XSR)
The XML schema repository (XSR) is a repository for all XML artifacts
required to process XML instance documents stored in XML columns. It
stores XML schemas, DTDs, and external entities referenced in XML
documents.

Import, export and load utilities
The import, export and load utilities have been updated to support the
native XML data type. These utilities treat XML data like LOB data: both
types of data are stored outside the actual table. Application development
support for importing, exporting and loading XML data is also provided
by updated db2Import, db2Export and db2Load APIs. These updated
utilities permit data movement of XML documents stored in XML columns
that is similar to the data movement support for relational data.

Performance

Several performance oriented features are available to you when working with
XML documents stored in XML columns:

Indexes over XML data
Indexing support is available for data stored in XML columns. The use of
indexes over XML data can improve the efficiency of queries issued against
XML documents. Similar to a relational index, an index over XML data
indexes a column. They differ, however, in that a relational index indexes
an entire column, while an index over XML data indexes part of a column.
You indicate which parts of an XML column are indexed by specifying an
XML pattern, which is a limited XPath expression.

Optimizer
The optimizer has been updated to support the evaluation of SQL, XQuery,
and SQL/XML functions that embed XQuery, against XML and relational
data. The optimizer exploits statistics gathered over XML data, as well as
data from indexes over XML data, to produce efficient query execution
plans.

Explain facility
The Explain facility has been updated to support SQL enhancements for

396 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

querying XML data and to support XQuery expressions. These updates to
the Explain facility allow you to see quickly how DB2 database server
evaluates query statements against XML data.

Tooling

Support for the XML data type is available in tools including the command line
processor, IBM Data Studio, and IBM Database Add-Ins for Microsoft Visual
Studio.

Annotated XML schema decomposition

The pureXML feature enables you to store and access XML data as XML, in its
hierarchical form, there can be cases where accessing XML data as relational data is
required. Annotated XML schema decomposition decomposes documents based on
annotations specified in an XML schema.

Comparison of the XML model and the relational model
When you design your databases, you must decide whether your data is better
suited to the XML model or the relational model. Take advantage of the hybrid
nature of DB2 databases that supports both relational and XML data in a single
database.

While this discussion explains some of the main differences between the models
and the factors that apply to each, there are numerous factors that can determine
the most suitable choice for your implementation. Use this discussion as a
guideline to assess the factors that can impact your specific implementation.

Major differences between XML data and relational data

XML data is hierarchical; relational data is represented in a model of logical
relationships

An XML document contains information about the relationship of data
items to each other in the form of the hierarchy. With the relational model,
the only types of relationships that can be defined are parent table and
dependent table relationships.

XML data is self-describing; relational data is not
An XML document contains not only the data, but also tagging for the
data that explains what it is. A single document can have different types of
data. With the relational model, the content of the data is defined by its
column definition. All data in a column must have the same type of data.

XML data has inherent ordering; relational data does not
For an XML document, the order in which data items are specified is
assumed to be the order of the data in the document. There is often no
other way to specify order within the document. For relational data, the
order of the rows is not guaranteed unless you specify an ORDER BY
clause on one or more columns.

Factors influencing data model choice

What kind of data you store can help you determine how you store it. For
example, if the data is naturally hierarchical and self-describing, you might store it
as XML data. However, there are other factors that might influence your decision
about which model to use:

Chapter 27. pureXML overview 397

When you need maximum flexibility
Relational tables follow a fairly rigid model. For example, normalizing one
table into many or denormalizing many tables into one can be very
difficult. If the data design changes often, representing it as XML data is a
better choice. XML schemas can be evolved over time, for example.

When you need maximum performance for data retrieval
Some expense is associated with serializing and interpreting XML data. If
performance is more of an issue than flexibility, relational data might be
the better choice.

When data is processed later as relational data
If subsequent processing of the data depends on the data being stored in a
relational database, it might be appropriate to store parts of the data as
relational, using decomposition. An example of this situation is when
online analytical processing (OLAP) is applied to the data in a data
warehouse. Also, if other processing is required on the XML document as a
whole, then storing some of the data as relational as well as storing the
entire XML document might be a suitable approach in this case.

When data components have meaning outside a hierarchy
Data might be inherently hierarchical in nature, but the child components
do not need the parents to provide value. For example, a purchase order
might contain part numbers. The purchase orders with the part numbers
might be best represented as XML documents. However, each part number
has a part description associated with it. It might be better to include the
part descriptions in a relational table, because the relationship between the
part numbers and the part descriptions is logically independent of the
purchase orders in which the part numbers are used.

When data attributes apply to all data, or to only a small subset of the data
Some sets of data have a large number of possible attributes, but only a
small number of those attributes apply to any particular data value. For
example, in a retail catalog, there are many possible data attributes, such as
size, color, weight, material, style, weave, power requirements, or fuel
requirements. For any given item in the catalog, only a subset of those
attributes is relevant: power requirements are meaningful for a table saw,
but not for a coat. This type of data is difficult to represent and search with
a relational model, but relatively easy to represent and search with an XML
model.

When the ratio of data complexity to volume is high
Many situations involve highly structured information in very small
quantities. Representation of that data with a relational model can involve
complex star schemas in which each dimension table is joined to many
more dimension tables, and most of the tables have only a few rows. A
better way to represent this data is to use a single table with an XML
column, and to create views on that table, where each view represents a
dimension.

When referential integrity is required
XML columns cannot be defined as part of referential constraints.
Therefore, if values in XML documents need to participate in referential
constraints, you should store the data as relational data.

When the data needs to be updated often
You update XML data in an XML column only by replacing full
documents. If you need to frequently update small fragments of very large
documents for a large number of rows, it can be more efficient to store the

398 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

data in non-XML columns. If, however, you are updating small documents
and only a few documents at a time, storing as XML can be efficient as
well.

XML data type
Use the XML data type to define columns of a table and store XML values. All
XML values must be well-formed XML documents. You can use this native data
type to store well-formed XML documents in their native hierarchical format in the
database alongside other relational data.

XML values are processed in an internal representation that is not a string and not
directly comparable to string values. An XML value can be transformed into a
serialized string value representing the XML document using the XMLSERIALIZE
function or by binding the value to an application variable of an XML, string, or
binary type. Similarly, a string value that represents an XML document can be
transformed to an XML value using the XMLPARSE function or by binding an
application string, binary, or XML application type to an XML value. In SQL data
change statements (such as INSERT) involving XML columns, a string or binary
value that represents an XML document is transformed into an XML value using
an injected XMLPARSE function. An XML value can be implicitly parsed or
serialized when exchanged with application string and binary data types.

There is no architectural limit on the size of an XML value in a database. However,
note that serialized XML data exchanged with DB2 database server is effectively
limited to 2 GB.

XML documents can be inserted, updated and deleted using SQL data
manipulation statements. Validation of an XML document against an XML schema,
typically performed during insert or update, is supported by the XML schema
repository (XSR). The DB2 database system also provides mechanisms for
constructing and querying XML values, as well as exporting and importing XML
data. An index over XML data can be defined on an XML column, providing
improved search performance of XML data. The XML data in table or view
columns can be retrieved as serialized string data through various application
interfaces.

Creation of tables with XML columns
To create tables with XML columns, you specify columns with the XML data type
in the CREATE TABLE statement. A table can have one or more XML columns.

You do not specify a length when you define an XML column. However, serialized
XML data that is exchanged with a DB2 database is limited to 2 GB per value of
type XML, so the effective limit of an XML document is 2 GB.

Like a LOB column, an XML column holds only a descriptor of the column. The
data is stored separately.

Note:

v If you enable data row compression for the table, XML documents require less
storage space.

v You can optionally store smaller and medium-size XML documents in the row of
the base table instead of storing them in the default XML storage object.

Chapter 27. pureXML overview 399

Example: The sample database contains a table for customer data that contains two
XML columns. The definition looks like this:
CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY,

Info XML,
History XML)

Example: The VALIDATED predicate checks whether the value in the specified
XML column has been validated. You can define a table check constraint on XML
columns, using the VALIDATED predicate, to ensure that all documents inserted or
updated in a table are valid.
CREATE TABLE TableValid (id BIGINT,

xmlcol XML,
CONSTRAINT valid_check CHECK (xmlcol IS VALIDATED))

Example: Setting the COMPRESS attribute to YES enables data row compression.
XML documents stored in XML columns are subject to row compression.
Compressing data at the row level allows repeating patterns to be replaced with
shorter symbol strings.
CREATE TABLE TableXmlCol (id BIGINT,

xmlcol XML) COMPRESS YES

Example: The following CREATE TABLE statement creates a patient table
partitioned by visit date. All records between January 01, 2000 and December 31,
2006 are in the first partition. The more recent data are partitioned every 6 months.
CREATE TABLE Patients (patientID BIGINT, visit_date DATE, diagInfo XML,

prescription XML)
INDEX IN indexTbsp LONG IN ltbsp
PARTITION BY (visit_date)

(STARTING ’1/1/2000’ ENDING ’12/31/2006’,
STARTING ’1/1/2007’ ENDING ’6/30/2007’,

ENDING ’12/31/2007’,
ENDING ’6/30/2008’,
ENDING ’12/31/2008’,
ENDING ’6/30/2009’);

Addition of XML columns to existing tables
To add XML columns to existing tables, you specify columns with the XML data
type in the ALTER TABLE statement with the ADD clause. A table can have one or
more XML columns.

Example The sample database contains a table for customer data that contains two
XML columns. The definition looks like this:
CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY,

Info XML,
History XML)

Create a table named MyCustomer that is a copy of Customer, and add an XML
column to describe customer preferences:
CREATE TABLE MyCustomer LIKE Customer;
ALTER TABLE MyCustomer ADD COLUMN Preferences XML;

Example: Setting the COMPRESS attribute to YES enables data row compression.
XML documents stored in XML columns are subject to row compression.
Compressing data at the row level allows repeating patterns to be replaced with
shorter symbol strings.
ALTER TABLE MyCustomer ADD COLUMN Preferences XML COMPRESS YES;

400 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example: The following CREATE TABLE statement creates a patient table
partitioned by visit date. All records between January 01, 2000 and December 31,
2006 are in the first partition. The more recent data are partitioned every 6 months.
CREATE TABLE Patients (patientID INT, Name Varchar(20), visit_date DATE,

diagInfo XML)
PARTITION BY (visit_date)

(STARTING ’1/1/2000’ ENDING ’12/31/2006’,
STARTING ’1/1/2007’ ENDING ’6/30/2007’,

ENDING ’12/31/2007’,
ENDING ’6/30/2008’,
ENDING ’12/31/2008’,
ENDING ’6/30/2009’);

The following ALTER table statement adds another XML column for patient
prescription information:
ALTER TABLE Patients ADD COLUMN prescription XML ;

Inserting XML columns
To insert data into an XML column, use the SQL INSERT statement. The input to
the XML column must be a well-formed XML document, as defined in the XML 1.0
specification. The application data type can be an XML, character, or binary type.

It is recommended that XML data be inserted from host variables, rather than
literals, so that the DB2 database server can use the host variable data type to
determine some of the encoding information.

XML data in an application is in its serialized string format. When you insert the
data into an XML column, it must be converted to its XML hierarchical format. If
the application data type is an XML data type, the DB2 database server performs
this operation implicitly. If the application data type is not an XML type, you can
invoke the XMLPARSE function explicitly when you perform the insert operation,
to convert the data from its serialized string format to the XML hierarchical format.

During document insertion, you might also want to validate the XML document
against a registered XML schema. You can do that with the XMLVALIDATE
function.

The following examples demonstrate how XML data can be inserted into XML
columns. The examples use table MyCustomer, which is a copy of the sample
Customer table. The XML data that is to be inserted is in file c6.xml, and looks like
this:
<customerinfo Cid="1015">

<name>Christine Haas</name>
<addr country="Canada">

<street>12 Topgrove</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X-7F8</pcode-zip>

</addr>
<phone type="work">905-555-5238</phone>
<phone type="home">416-555-2934</phone>

</customerinfo>

Example: In a JDBC application, read XML data from file c6.xml as binary data,
and insert the data into an XML column:
PreparedStatement insertStmt = null;
String sqls = null;
int cid = 1015;

Chapter 27. pureXML overview 401

sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
File file = new File("c6.xml");
insertStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());
insertStmt.executeUpdate();

Example: In a static embedded C application, insert data from a binary XML host
variable into an XML column:
EXEC SQL BEGIN DECLARE SECTION;

sqlint64 cid;
SQL TYPE IS XML AS BLOB (10K) xml_hostvar;

EXEC SQL END DECLARE SECTION;
...
cid=1015;
/* Read data from file c6.xml into xml_hostvar */
...
EXEC SQL INSERT INTO MyCustomer (Cid,Info) VALUES (:cid, :xml_hostvar);

Querying XML data
You can query or retrieve XML data stored in the database through two main
query languages, either by using each language on its own or by using a
combination of the two.

The following options are available to you:
v XQuery expressions only
v XQuery expressions that invoke SQL statements
v SQL statements only
v SQL statements that executes XQuery expressions

These various methods allow you to query or retrieve XML and other relational
data from either an SQL or XQuery context.

Pieces of or entire XML documents can be queried and retrieved using these
methods. Queries can return fragments or entire XML documents, and results
returned from queries can be limited by using predicates. Because queries on XML
data return XML sequences, a query's result can be used in the construction of
XML data as well.

Comparison of methods for querying XML data
Because XML data can be queried in a number of ways, using XQuery, SQL, or a
combination of these, the method to choose can differ depending on your situation.
The following sections describe conditions that are advantageous for a particular
query method.

XQuery only

Querying with XQuery alone can be a suitable choice when:
v applications access only XML data, without the need to query non-XML

relational data
v migrating queries previously written in XQuery to DB2 for Linux, UNIX, and

Windows
v returning query results to be used as values for constructing XML documents
v the query author is more familiar with XQuery than SQL

402 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

XQuery that invokes SQL

Querying with XQuery that invokes SQL can be a suitable choice when (in
addition to the scenarios identified in the previous section on using XQuery only):
v queries involve XML data and relational data; SQL predicates and indexes

defined on the relational columns can be leveraged in the query
v you want to apply XQuery expressions to the results of:

– UDF calls, as these cannot be invoked directly from XQuery
– XML values constructed from relational data using SQL/XML publishing

functions
– queries that use DB2 Net Search Extender which offers full text search of

XML documents but which must be used with SQL

SQL only

When retrieving XML data using only SQL, without any XQuery, you can query
only at the XML column level. For this reason, only entire XML documents can be
returned from the query. This usage is suitable when:
v you want to retrieve entire XML documents
v you do not need to query based on values within the stored documents, or

where the predicates of your query are on other non-XML columns of the table

SQL/XML functions that execute XQuery expressions

The SQL/XML functions XMLQUERY and XMLTABLE, as well as the XMLEXISTS
predicate, enable XQuery expressions to be executed from within the SQL context.
Executing XQuery within SQL can be a suitable choice when:
v existing SQL applications need to be enabled for querying within XML

documents. To query within XML documents, XQuery expressions need to be
executed, which can be done using SQL/XML

v applications querying XML data need to pass parameter markers to the XQuery
expression. (The parameter markers are first bound to XQuery variables in
XMLQUERY or XMLTABLE.)

v the query author is more familiar with SQL than XQuery
v both relational and XML data needs to be returned in a single query
v you need to join XML and relational data
v you want to group or aggregate XML data. You can apply the GROUP BY or

ORDER BY clauses of a subselect to the XML data (for example, after the XML
data has been retrieved and collected in table format by using the XMLTABLE
function)

Indexing XML data
An index over XML data can be used to improve the efficiency of queries on XML
documents that are stored in an XML column.

In contrast to traditional relational indexes, where index keys are composed of one
or more table columns you specify, an index over XML data uses a particular XML
pattern expression to index paths and values in XML documents stored within a
single column. The data type of that column must be XML.

Instead of providing access to the beginning of a document, index entries in an
index over XML data provide access to nodes within the document by creating

Chapter 27. pureXML overview 403

index keys based on XML pattern expressions. Because multiple parts of a XML
document can satisfy an XML pattern, multiple index keys may be inserted into
the index for a single document.

You create an index over XML data using the CREATE INDEX statement, and drop
an index over XML data using the DROP INDEX statement. The GENERATE KEY
USING XMLPATTERN clause you include with the CREATE INDEX statement
specifies what you want to index.

Some of the keywords used with the CREATE INDEX statement for indexes on
non-XML columns do not apply to indexes over XML data. The UNIQUE keyword
also has a different meaning for indexes over XML data.

Example: Creating an index over XML data

Suppose that table companyinfo has an XML column named companydocs, which
contains XML document fragments like these:

Document for Company1
<company name="Company1">

<emp id="31201" salary="60000" gender="Female">
<name>

<first>Laura</first>
<last>Brown</last>

</name>
<dept id="M25">

Finance
</dept>

</emp>
</company>

Document for Company2
<company name="Company2">

<emp id="31664" salary="60000" gender="Male">
<name>

<first>Chris</first>
<last>Murphy</last>

</name>
<dept id="M55">

Marketing
</dept>

</emp>
<emp id="42366" salary="50000" gender="Female">

<name>
<first>Nicole</first>
<last>Murphy</last>

</name>
<dept id="K55">

Sales
</dept>

</emp>
</company>

Users of the companyinfo table often retrieve employee information using the
employee ID. You might use an index like this one to make that retrieval more
efficient:

CREATE INDEX empindex on companyinfo(companydocs) �1�
GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ �2�
AS SQL DOUBLE �3�

Figure 36. Example of an index over XML data

404 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Notes to Figure 36 on page 404:

�1� The index over XML data is defined on the companydocs column of the
companyinfo table. companydocs must be of the XML data type.

�2� The GENERATE KEY USING XMLPATTERN clause provides information
about what you want to index. This clause is called an XML index
specification. The XML index specification contains an XML pattern clause.
The XML pattern clause in this example indicates that you want to index
the values of the id attribute of each employee element.

�3� AS SQL DOUBLE indicates that indexed values are stored as DOUBLE
values.

Updating XML data
To update data in an XML column, use the SQL UPDATE statement. Include a
WHERE clause when you want to update specific rows.

The entire column value will be replaced. The input to the XML column must be a
well-formed XML document. The application data type can be an XML, character,
or binary type.

When you update an XML column, you might also want to validate the input XML
document against a registered XML schema. You can do that with the
XMLVALIDATE function.

You can use XML column values to specify which rows are to be updated. To find
values within XML documents, you need to use XQuery expressions. One way of
specifying XQuery expressions is the XMLEXISTS predicate, which allows you to
specify an XQuery expression and determine if the expression results in an empty
sequence. When XMLEXISTS is specified in the WHERE clause, rows will be
updated if the XQuery expression returns a non-empty sequence.

The following examples demonstrate how XML data can be updated in XML
columns. The examples use table MYCUSTOMER, which is a copy of the sample
CUSTOMER table. The examples assume that MYCUSTOMER already contains a
row with a customer ID value of 1004. The XML data that updates existing column
data is assumed to be stored in a file c7.xml, whose contents look like this:
<customerinfo Cid="1004">

<name>Christine Haas</name>
<addr country="Canada">

<street>12 Topgrove</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9Y-8G9</pcode-zip>

</addr>
<phone type="work">905-555-5238</phone>
<phone type="home">416-555-2934</phone>

</customerinfo>

Example: In a JDBC application, read XML data from file c7.xml as binary data,
and use it to update the data in an XML column:
PreparedStatement updateStmt = null;
String sqls = null;
int cid = 1004;
sqls = "UPDATE MyCustomer SET Info=? WHERE Cid=?";
updateStmt = conn.prepareStatement(sqls);

Chapter 27. pureXML overview 405

updateStmt.setInt(1, cid);
File file = new File("c7.xml");
updateStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());
updateStmt.executeUpdate();

Example: In an embedded C application, update data in an XML column from a
binary XML host variable:
EXEC SQL BEGIN DECLARE SECTION;

sqlint64 cid;
SQL TYPE IS XML AS BLOB (10K) xml_hostvar;

EXEC SQL END DECLARE SECTION;
...
cid=1004;
/* Read data from file c7.xml into xml_hostvar */
...
EXEC SQL UPDATE MyCustomer SET Info=:xml_hostvar WHERE Cid=:cid;

In these examples, the value of the Cid attribute within the <customerinfo>
element happens to be stored in the CID relational column as well. Because of this,
the WHERE clause in the UPDATE statements used the relational column CID to
specify the rows to update. In the case where the values that determine which
rows are chosen for update are found only within the XML documents themselves,
the XMLEXISTS predicate can be used. For example, the UPDATE statement in the
previous embedded C application example can be changed to use XMLEXISTS as
follows:
EXEC SQL UPDATE MyCustomer SET Info=:xml_hostvar

WHERE XMLEXISTS (’$doc/customerinfo[@Cid = $c]’
passing INFO as "doc", cast(:cid as integer) as "c");

Example: The following example updates existing XML data from the
MYCUSTOMER table. The SQL UPDATE statement operates on a row of the
MYCUSTOMER table and replaces the document in the INFO column of the row
with the logical snapshot of the document modified by the transform expression:
UPDATE MyCustomer
SET info = XMLQUERY(

’transform
copy $newinfo := $info
modify do insert <status>Current</status>

as last into $newinfo/customerinfo
return $newinfo’ passing info as "info")

WHERE cid = 1004

XML data movement
Support for XML data movement is provided by the load, import and export
utilities. Support for moving tables that contain XML columns without taking the
tables offline is provided by the ADMIN_MOVE_TABLE stored procedure.

Importing XML data

The import utility can be used to insert XML documents into a regular relational
table. Only well-formed XML documents can be imported.

Use the XML FROM option of the IMPORT command to specify the location of the
XML documents to import. The XMLVALIDATE option specifies how imported
documents should be validated. You can select to have the imported XML data
validated against a schema specified with the IMPORT command, against a
schema identified by a schema location hint inside of the source XML document,
or by the schema identified by the XML Data Specifier in the main data file. You

406 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

can also use the XMLPARSE option to specify how whitespace is handled when
the XML document is imported. The xmlchar and xmlgraphic file type modifiers
allow you to specify the encoding characteristics for the imported XML data.

Loading XML data

The load utility offers an efficient way to insert large volumes of XML data into a
table. This utility also allows certain options unavailable with the import utility,
such as the ability to load from a user-defined cursor.

Like the IMPORT command, with the LOAD command you can specify the
location of the XML data to load, validation options for the XML data, and how
whitespace is handled. As with IMPORT, you can use the xmlchar and xmlgraphic
file type modifiers to specify the encoding characteristics for the loaded XML data.

Exporting XML data

Data may be exported from tables that include one or more columns with an XML
data type. Exported XML data is stored in files separate from the main data file
containing the exported relational data. Information about each exported XML
document is represented in the main exported data file by an XML data specifier
(XDS). The XDS is a string that specifies the name of the system file in which the
XML document is stored, the exact location and length of the XML document
inside of this file, and the XML schema used to validate the XML document.

You can use the XMLFILE, XML TO, and XMLSAVESCHEMA parameters of the
EXPORT command to specify details about how exported XML documents are
stored. The xmlinsepfiles, xmlnodeclaration, xmlchar, and xmlgraphic file type
modifiers allow you to specify further details about the storage location and the
encoding of the exported XML data.

Moving tables online

The ADMIN_MOVE_TABLE stored procedure moves the data in an active table
into a new table object with the same name, while the data remains online and
available for access. The table can include one or more columns with an XML data
type. Use an online table move instead of an offline table move if you value
availability more than cost, space, move performance, and transaction overhead

You can call the procedure once or multiple times, one call for each operation
performed by the procedure. Using multiple calls provides you with additional
options, such as cancelling the move or controlling when the target table is taken
offline to be updated.

pureXML tutorial
You can use this tutorial to learn how to set up a DB2 database to store XML data
and to perform basic operations with the pureXML feature. The pureXML XML
data type can store a single, well-formed XML document in each row. The tutorial
is available at http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/
com.ibm.db2.luw.xml.doc/doc/c0023610.html.

Chapter 27. pureXML overview 407

408 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 4. Monitoring DB2 Activity

Monitoring DB2 Activity consist of performing tasks that are associated with
examining the operational status of your database. DB2 provides multiples
interfaces for database and workload monitoring. It also provides tools for
obtaining information about access plans and troubleshooting problems.

Database monitoring is a vital activity for the maintenance of the performance and
health of your database management system. To facilitate monitoring, DB2 collects
information from the database manager, its databases, and any connected
applications. With this information you can perform the following types of tasks,
and more:
v Forecast hardware requirements based on database usage patterns.
v Analyze the performance of individual applications or SQL queries.
v Track the usage of indexes and tables.
v Pinpoint the cause of poor system performance.
v Assess the impact of optimization activities (for example, altering database

manager configuration parameters, adding indexes, or modifying SQL queries).

© Copyright IBM Corp. 2014 409

410 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 28. Database monitoring

There are two ways to monitor operations in your database. You can view
information that shows the state of various aspects of the database at a specific
point in time. Or, you can set up event monitors to capture historical information
as specific types of database events take place.

You can monitor your database operations in real-time using monitoring table
functions. For example, you can use a monitoring table function to examine the
total amount of space used in a table space. These table functions let you examine
monitor elements and metrics that report on virtually all aspects of database
operations using SQL. The monitoring table functions use the newer, lightweight,
high-speed monitoring infrastructure that was introduced in Version 9.7. In
addition to the table functions, snapshot monitoring routines are also available.
The snapshot monitoring facilities in DB2 use monitoring infrastructure that
existed before Version 9.7. Generally speaking, snapshot monitoring facilities are no
longer being enhanced in the product; where possible, use the monitoring table
functions to retrieve the data you want to see.

Event monitors capture information about database operations over time, as
specific types of events occur. For example, you can create an event monitor to
capture information about locks and deadlocks as they occur in the system. Or you
might create an event monitor to record when a threshold that you specify (for
example the total processor time used by an application or workload) is exceeded.
Event monitors generate output in different formats; all of them can write event
data to regular tables; some event monitors have additional output options.

IBM InfoSphere Optim Performance Manager provides a Web interface that you
can use to isolate and analyze typical database performance problems. You can also
view a summary of the health of your databases and drill down. For more details,
see Monitoring with Optim Performance Manager at http://
publib.boulder.ibm.com/infocenter/idm/docv3/topic/
com.ibm.datatools.perfmgmt.monitor.doc/p_monitor.html.

Monitoring DB2 Activity with table functions
Starting with DB2 Version 9.7, you can access monitor data through a light-weight
alternative to the traditional system monitor. Use monitor table functions to collect
and view data for systems, activities, or data objects.

Data for monitored elements are continually accumulated in memory and available
for querying. You can choose to receive data for a single object (for example,
service class A or table TABLE1) or for all objects.

When using these table functions in a database partitioned environment, you can
choose to receive data for a single partition or for all partitions. If you choose to
receive data for all partitions, the table functions return one row for each partition.
Using SQL, you can sum the values across partitions to obtain the value of a
monitor element across partitions.

Monitoring system information using table functions
The system monitoring perspective encompasses the complete volume of work and
effort expended by the data server to process application requests. From this

© Copyright IBM Corp. 2014 411

http://publib.boulder.ibm.com/infocenter/idm/docv3/topic/com.ibm.datatools.perfmgmt.monitor.doc/p_monitor.html
http://publib.boulder.ibm.com/infocenter/idm/docv3/topic/com.ibm.datatools.perfmgmt.monitor.doc/p_monitor.html
http://publib.boulder.ibm.com/infocenter/idm/docv3/topic/com.ibm.datatools.perfmgmt.monitor.doc/p_monitor.html

perspective, you can determine what the data server is doing as a whole as well as
for particular subsets of application requests.

Monitor elements for this perspective, referred to as request monitor elements,
cover the entire range of data server operations associated with processing
requests.

Request monitor elements are continually accumulated and aggregated in memory
so they are immediately available for querying. Request monitor elements are
aggregated across requests at various levels of the workload management (WLM)
object hierarchy: by unit of work, by workload, by service class. They are also
aggregated by connection.

Use the following table functions for accessing current system monitoring
information:
v MON_GET_SERVICE_SUBCLASS and

MON_GET_SERVICE_SUBCLASS_DETAILS
v MON_GET_WORKLOAD and MON_GET_WORKLOAD_DETAILS
v MON_GET_CONNECTION and MON_GET_CONNECTION_DETAILS
v MON_GET_UNIT_OF_WORK and MON_GET_UNIT_OF_WORK_DETAILS

This set of table functions enables you to drill down or focus on request monitor
elements at a particular level of aggregation. Table functions are provided in pairs:
one for relational access to commonly used data and the other for XML access to
the complete set of available monitor elements.

The system monitoring information is collected by these table functions by default
for a new database. You can change default settings using one or both of the
following settings:
v The database configuration parameter mon_req_metrics specifies the minimum

level of collection in all service classes.
v The COLLECT REQUEST METRICS clause of the CREATE/ALTER SERVICE

CLASS statement specifies the level of collection for a service superclass. Use
this setting to increase the level of collection for a given service class over the
minimum level of collection set for all service classes.

The possible values for each setting are the following:

None No request monitor elements are collected

Base All request monitor elements are collected

For example, to collect system monitoring information for only a subset of service
classes, do the following:
1. Set the database configuration parameter mon_req_metrics to NONE.
2. For each required service class, set the COLLECT REQUEST METRICS clause

of the CREATE/ALTER SERVICE CLASS statement to BASE.

Monitoring activities using table functions
The activity monitoring perspective focuses on the subset of data server processing
related to executing activities. In the context of SQL statements, the term activity
refers to the execution of the section for a SQL statement.

412 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Monitor elements for this perspective, referred to as activity monitor elements, are
a subset of the request monitor elements. Activity monitor elements measure
aspects of work done for statement section execution. Activity monitoring includes
other information such as SQL statement text for the activity.

For activities in progress, activity metrics are accumulated in memory. For activities
that are SQL statements, activity metrics are also accumulated in the package
cache. In the package cache activity metrics are aggregated over all executions of
each SQL statement section.

Use the following table functions to access current data for activities:

MON_GET_ACTIVITY_DETAILS
Returns data about the individual activities in progress when the table
function is called. Data is returned in a relational form, however, the
detailed metrics are returned in an XML document in the DETAILS column
of the results table.

MON_GET_PKG_CACHE_STMT
Returns a point-in-time view of both static and dynamic SQL statements in
the database package cache. Data is returned in a relational form.

MON_GET_PKG_CACHE_STMT_DETAILS
Returns detailed metrics for one or more package cache entries. Data is
returned in a relational form, however, the detailed metrics are returned in
an XML document in the DETAILS column of the results table.

Activity monitoring information is collected by default for a new database. You can
change default settings using one or both of the following settings:
v The mon_act_metrics database configuration parameter specifies the minimum

level of collection in all workloads.
v The COLLECT ACTIVITY METRICS clause of the CREATE/ALTER

WORKLOAD statement specifies the level of collection for a given workload
over the minimum level of collection set for all workloads.

The possible values for each setting are the following:

None No activity monitor elements are collected

Base All activity monitor elements are collected

For example, to collect activity monitor elements for only selected workloads, do
the following:
1. Set the mon_act_metrics database configuration parameter to NONE.
2. Set the COLLECT ACTIVITY METRICS clause of the CREATE/ALTER

WORKLOAD statement to BASE. By default, the values for other workloads is
NONE.

Monitoring data objects using table functions
The data object monitoring perspective provides information about operations
performed on data objects, that is tables, indexes, buffer pools, table spaces, and
containers.

A different set of monitor elements is available for each object type. Monitor
elements for a data object are incremented each time a request involves processing
that object. For example, when processing a request that involves reading rows
from a particular table, the metric for rows read is incremented for that table.

Chapter 28. Interfaces for database monitoring 413

Use the following table functions to access current details for data objects:
v MON_GET_BUFFERPOOL
v MON_GET_TABLESPACE
v MON_GET_CONTAINER
v MON_GET_TABLE
v MON_GET_INDEX

These table functions return data in a relational form.

You cannot access historical data for data objects.

Data object monitor elements are collected by default for new databases. You can
use the mon_obj_metrics database configuration parameter to reduce the amount of
data collected by the table functions.

The possible values for this configuration parameter are the following:

None No data object monitor elements are collected

Base Some data object monitor elements are collected

Extended
All data object monitor elements are collected

To stop collecting data object monitor elements reported by the following table
functions, set the mon_obj_metrics configuration parameter to NONE.
v MON_GET_BUFFERPOOL
v MON_GET_TABLESPACE
v MON_GET_CONTAINER

Object usage
When SQL statements are executed, they use various database objects, such as
tables and indexes. Knowing which database objects a statement accesses and how
the statement affects them can help you identify targets for monitoring or
performance tuning.

The following table shows the entities that you can use to explore the relationship
between database objects and statements.

Table 75. Ways to identify object usage

Mechanism Definition Usage

Usage list A usage list is a database
object that records each DML
statement section that
references a particular table
or index and captures
statistics about that section
as it executes.

Identify the statements that
affected a table or index. If
you notice an unusual value
for a metric when
monitoring a database object,
use a usage list to determine
whether a particular
statement contributed to that
metric. You can also view
statistics for each statement
that affected the object.

414 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 75. Ways to identify object usage (continued)

Mechanism Definition Usage

Section explain with actuals A section explain is a set of
information about the access
plan that the optimizer chose
for an SQL statement. You
can capture section actuals as
part of the explain. Section
actuals are runtime statistics
that are collected when a
section executes.

Identify the tables or indexes
that a statement affects. You
can view statistics for each
table or index and use these
statistics to determine how
the statement affects each
object and where tuning
might be required.

You can use the information in a usage list or section explain with actuals as
baseline data for performance tuning. Collect information about object usage before
tuning statements or database configuration parameters. After tuning, collect the
information again to verify that tuning improved performance.

Identifying the statements that affect a table
Use usage lists to identify DML statement sections that affect a particular table
when the statement sections execute. You can view statistics for each statement and
use these statistics to determine where additional monitoring or tuning might be
required.

Before you begin

Do the following tasks:
v Identify a table for which you want to view object usage statistics. You can use

the MON_GET_TABLE table function to view monitor metrics for one or more
tables.

v To issue the required statements, ensure that the privileges that are held by the
authorization ID of each statement include DBADM authority or SQLADM
authority.

v Ensure that you have EXECUTE privilege on the
MON_GET_TABLE_USAGE_LIST and MON_GET_USAGE_LIST_STATUS table
functions.

About this task

When you view the output of the MON_GET_TABLE table function, you might see
an unusual value for a monitor element. You can use usage lists to determine
whether any DML statements contributed to this value.

Usage lists contain statistics about factors like locks and buffer pool usage for each
statement that affected a table during a particular time frame. If you determine
that a statement affected a table negatively, use these statistics to determine where
further monitoring might be required or how the statement can be tuned.

Procedure

To identify the statements that affect a table:
1. Set the mon_obj_metrics configuration parameter to EXTENDED by issuing the

following command:
DB2 UPDATE DATABASE CONFIGURATION USING MON_OBJ_METRICS EXTENDED

Chapter 28. Interfaces for database monitoring 415

Setting this configuration parameter to EXTENDED ensures that statistics are
collected for each entry in the usage list.

2. Create a usage list for the table by using the CREATE USAGE LIST statement.
For example, to create the INVENTORYUL usage list for the
SALES.INVENTORY table, issue the following command:
CREATE USAGE LIST INVENTORYUL FOR TABLE SALES.INVENTORY

3. Activate the collection of object usage statistics by using the SET USAGE LIST
STATE statement. For example, to activate collection for the INVENTORYUL
usage list, issue the following command:
SET USAGE LIST INVENTORYUL STATE = ACTIVE

4. During the collection of object statistics, ensure that the usage list is active and
that sufficient memory is allocated for the usage list by using the
MON_GET_USAGE_LIST_STATUS table function. For example, to check the
status of the INVENTORYUL usage list, issue the following command:
SELECT MEMBER,

STATE,
LIST_SIZE,
USED_ENTRIES,
WRAPPED

FROM TABLE(MON_GET_USAGE_LIST_STATUS(’SALES’, ’INVENTORYUL’, -2))

5. When the time period for which you want to collect object usage statistics is
elapsed, deactivate the collection of usage list data by using the SET USAGE
LIST STATE statement. For example, to deactivate collection for the
INVENTORYUL usage list, issue the following command:
SET USAGE LIST SALES.INVENTORYUL STATE = INACTIVE

6. View the information that you collected by using the
MON_GET_TABLE_USAGE_LIST function. You can view statistics for a subset
or for all of the statements that affected the table during the time period for
which you collected statistics. For example, to see only the 10 statements that
read the most rows of the table, issue the following command:
SELECT MEMBER,

EXECUTABLE_ID,
NUM_REFERENCES,
NUM_REF_WITH_METRICS,
ROWS_READ,
ROWS_INSERTED,
ROWS_UPDATED,
ROWS_DELETED

FROM TABLE(MON_GET_TABLE_USAGE_LIST(’SALES’, ’INVENTORYUL’, -2))
ORDER BY ROWS_READ DESC
FETCH FIRST 10 ROWS ONLY

7. If you want to view the text of a statement that affected the table, use the value
of the executable_id element in the MON_GET_TABLE_USAGE_LIST output
as input for the MON_GET_PKG_CACHE_STMT table function. For example,
issue the following command to view the text of a particular statement:
SELECT STMT_TEXT
FROM TABLE
(MON_GET_PKG_CACHE_STMT(NULL,
x’01000000000000007C0000000000000000000000020020081126171720728997’,
NULL, -2))

8. Use the list of statements and the statistics that are provided for the statements
to determine where additional monitoring or tuning, if any, is required. For
example, a statement that has a low value for the pool_writes monitor element
compared to the direct_writes monitor element value might have buffer pool
issues that require attention.

416 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

What to do next

When you do not require the information in the usage list, free the memory that is
associated with the usage list by using the SET USAGE LIST STATE statement. For
example, to free the memory that is associated with the INVENTORYUL usage list,
issue the following command:
SET USAGE LIST SALES.INVENTORYUL STATE = RELEASED

Identifying how a statement affects database objects
Use a section explain that includes section actuals information to identify how a
statement affects database objects. You can use statistics about how the statement
section affected each table or index to determine whether additional monitoring or
tuning is required.

Before you begin

Do the following tasks:
v Identify a statement for which you want to view object usage statistics.
v Ensure that you migrated your explain tables to DB2 Version 10.1.
v Ensure that automatic statistics profile generation is not enabled.
v Ensure that you have the privileges that are required to call the

EXPLAIN_FROM_ACTIVITY procedure.

About this task

After you identify a statement for which you want to view object usage statistics,
you can get a section explain that includes section actuals information. Section
actuals information indicates how the statement affected each table or index that
the statement used when it executed.

Actuals information includes runtime statistics about factors like locks and buffer
pool usage for each table or index. You can compare these statistics to baseline
data and use them to determine where additional monitoring or tuning might be
required.

Procedure

To determine how database objects are affected by a statement:
1. Enable the collection of section actuals at the database level by issuing the

following command:
DB2 UPDATE DATABASE CONFIGURATION USING SECTION_ACTUALS BASE

2. Create a workload to collect section actuals information for activities that are
submitted by the application that issues the statement. For example, to create
the ACTWORKLOAD workload for activities that are submitted by the TEST
application and enable collection for those activities, issue the following
command:
CREATE WORKLOAD ACTWORKLOAD APPLNAME (’TEST’)
COLLECT ACTIVITY DATA ON ALL WITH DETAILS,SECTION INCLUDE ACTUALS BASE

Enabling collection of section actuals can also be accomplished in the
following ways:
v The CREATE SERVICE CLASS or ALTER SERVICE CLASS statement
v The CREATE WORK ACTION SET or ALTER WORK ACTION SET

statement

Chapter 28. Interfaces for database monitoring 417

v The WLM_SET_CONN_ENV procedure
v The section_actuals configuration parameter

3. Create an activity event monitor by using the CREATE EVENT MONITOR
statement. For example, to create the ACTEVMON activity event monitor,
issue the following command:
CREATE EVENT MONITOR ACTEVMON

FOR ACTIVITIES
WRITE TO TABLE
CONTROL (TABLE CONTROL_ACTEVMON),
ACTIVITY (TABLE ACTIVITY_ACTEVMON),
ACTIVITYSTMT (TABLE ACTIVITYSTMT_ACTEVMON),
ACTIVITYVALS (TABLE ACTIVITYVALS_ACTEVMON),
ACTIVITYMETRICS (TABLE ACTIVITYMETRICS_ACTEVMON)

4. Activate the activity event monitor that you created by using the SET EVENT
MONITOR STATE statement. For example, to activate the ACTEVMON
activity event monitor, issue the following command:
SET EVENT MONITOR ACTEVMON STATE 1

5. Run the application that issues the statement for which you want to view
object statistics.

6. Find identifier information for the statement section by using the following
command to query the activity event monitor tables:
SELECT APPL_ID,

UOW_ID,
ACTIVITY_ID,
STMT_TEXT

FROM ACTIVITYSTMT_ACTEVMON

7. Obtain a section explain with actuals by using the activity identifier
information as input for the EXPLAIN_FROM_ACTIVITY procedure. For
example, to obtain a section explain for a section with an application ID of
*N2.DB2INST1.0B5A12222841, a unit of work ID of 16, and an activity ID of 4,
issue the following command:
CALL EXPLAIN_FROM_ACTIVITY(’*N2.DB2INST1.0B5A12222841’, 16, 4, ’ACTEVMON’,
’MYSCHEMA’, ?, ?, ?, ?, ?)

You get output that looks like the following sample output:
Value of output parameters

Parameter Name : EXPLAIN_SCHEMA
Parameter Value : MYSCHEMA

Parameter Name : EXPLAIN_REQUESTER
Parameter Value : GSDBUSER3

Parameter Name : EXPLAIN_TIME
Parameter Value : 2010-11-23-10.51.09.631945

Parameter Name : SOURCE_NAME
Parameter Value : SQLC2J21

Parameter Name : SOURCE_SCHEMA
Parameter Value : NULLID

Parameter Name : SOURCE_VERSION
Parameter Value :

Return Status = 0

8. Format the explain data by using the db2exfmt command. Use the values of
the explain_requester, explain_time, source_name, source_schema, and

418 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

source_version parameters in the output from the
EXPLAIN_FROM_ACTIVITY procedure as input for the command.

9. View the explain output to determine how the section affected the database
objects that it used when it executed. Statistics in the output might indicate
that additional monitoring or tuning is required. For example, if a table that
the section uses has a high value for the lock_wait monitor element, lock
management might be required.

10. If you tune the statement, repeat steps 5 on page 418 through 9 to verify that
performance is improved.

What to do next

Deactivate the activity event monitor by using the SET EVENT MONITOR STATE
statement. For example, to deactivate the ACTEVMON activity event monitor,
issue the following command:
SET EVENT MONITOR ACTEVMON STATE 0

Monitoring locking using table functions
You can retrieve information about locks using table functions. Unlike request,
activity or data object monitor elements, information about locks is always
available from the database manager. You do not need to enable the collection of
this information.

Use the following monitor table functions to access current information for locks in
the system:
v MON_GET_LOCKS
v MON_GET_APPL_LOCKWAIT

Both table functions return data in relational form.

Monitoring system memory using table functions
You can retrieve information about system memory usage using table functions.

You can examine memory usage at the level of memory sets, which are allocations
of memory from the operating system. You can also examine memory usage by
specific memory pools within a given memory set. Use the following monitor
functions to access current information about memory usage:
v MON_GET_MEMORY_SET
v MON_GET_MEMORY_POOL

Other monitoring table functions
Besides table functions that return information about the system, activities, locks,
or data objects there are also table functions that return various types of
miscellaneous information. These functions include ones that return information
related to the fast communications manager (FCM), and about the status of table
space extent movement.

Each of the table functions that follow can be used at any time. Unlike the table
functions that return request metrics (the system monitoring perspective), activity
metrics (the activity monitoring perspective) or metrics related to data objects (the
data object monitoring perspective), it is not necessary to first enable the collection
of the monitor elements returned by these functions.
v MON_GET_FCM

Chapter 28. Interfaces for database monitoring 419

v MON_GET_FCM_CONNECTION_LIST
v MON_GET_EXTENT_MOVEMENT_STATUS

Interfaces that return monitor data in XML documents
Some monitor data is reported as elements in XML documents.

Using XML to report monitor information provides improved extensibility and
flexibility. New monitor elements can be added without having to add new
columns to an output table. Also, XML documents can be processed in a number
of ways, depending on your needs. For example:
v You can use XQuery to run queries against the XML document.
v You can use the XSLTRANSFORM scalar function to transform the document

into other formats.
v You can view their contents as formatted text by using built-in

MON_FORMAT_XML_* formatting functions, or the XMLTABLE table function.

XML documents that contain monitor elements are produced by several monitoring
interfaces. The sections that follow describe how results are returned as XML
documents.
v “Monitor table functions with names that end with "_DETAILS"”
v “XML data returned by event monitors” on page 421.

Monitor table functions with names that end with “_DETAILS”

Examples of these table functions include:
v MON_GET_PKG_CACHE_STMT_DETAILS
v MON_GET_WORKLOAD_DETAILS
v MON_GET_CONNECTION_DETAILS
v MON_GET_SERVICE_SUBCLASS_DETAILS
v MON_GET_ACTIVITY_DETAILS
v MON_GET_UNIT_OF_WORK_DETAILS

These table functions return monitor elements from the system and the activity
monitoring perspectives. Most of the monitor elements returned by these functions
are contained in an XML document. For example, the
MON_GET_CONNECTION_DETAILS table function returns the following
columns:
v APPLICATION_HANDLE
v MEMBER
v DETAILS

The DETAILS column of each row contains an XML document that contains
monitor element data. This XML document is composed of several document
elements that correspond to monitor elements. Figure 37 on page 421 illustrates the
DETAILS column that contains the XML documents. In addition, it shows monitor
elements returned in the XML documents in the DETAILS column.

420 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

In the preceding example, the <agent_wait_time> XML document element
corresponds to agent_wait_time monitor element.

The schema for the XML document that is returned in the DETAILS column is
available in the file sqllib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sqllib/misc/DB2MonCommon.xsd.

Some of the monitor elements contained in the document in the DETAILS column
might be grouped into higher-level document elements. For example, monitor
elements that report on activity-related metrics are part of the activity_metrics
element. Similarly, system-level metrics are part of the system_metrics element.

XML data returned by event monitors

Several event monitors return data in XML format. They are summarized in
Table 76 on page 422. Details about the XML documents returned by the various
event monitor are described in the sections that follow.

XML

XML

XML

1

APPLICATION_HANDLE MEMBER DETAILS

Legend

Other content

Figure 37. Table returned by MON_GET_CONNECTION_DETAILS, showing the DETAILS
column that contains XML documents. The contents of the XML document in the third row
(�1�) are shown following the table.

Chapter 28. Interfaces for database monitoring 421

Table 76. XML documents returned by various event monitors

Event monitor
Event monitor output
format XML document returned

“Statistics event
monitor”

Relational table
File
Named pipe

metrics The metrics reported in this
document reflect the change in
value for each metric since the last
time statistics were collected.

details_xml
The metrics reported in this
document accumulate until the
database is deactivated.

“Activity event
monitor” on page
423

Relational table
File
Named pipe

details_xml

“Package cache
event monitor” on
page 424

Unformatted event (UE)
table

metrics

This document can be viewed only after
the UE table is transformed to either XML
or relational tables.

“Unit of work event
monitor” on page
424

Unformatted event (UE)
table

metrics

This document can be viewed only after
the UE table is transformed to either XML
or relational tables.

Statistics event monitor

The statistics event monitor records metrics in XML format when either of the two
following logical data groups are included in the event monitor output:
v EVENT_SCSTATS
v EVENT_WLSTATS

When you create a statistics event monitor to report on monitor elements in either
of these groups, some system metrics are collected as part of two XML documents.
One for each of the details_xml and metrics monitor elements. Both XML
documents contain the same set of monitor elements. In the metrics document, the
values of the elements reflect the change in value for each element since the last
time statistics were collected. The values of the elements contained in details_xml
are not reset at each interval; they are reset only when the database is reactivated.
If the data is written to a file or named pipe, these elements are part of the
self-describing data stream. If the event monitor data is written to a table, the
metrics document is stored in a column called METRICS; details_xml is stored in
a column called DETAILS_XML. Figure 38 on page 423 shows the XML documents
in the METRICS and DETAILS_XML columns as they appear in the SCSTATS table
produced by the statistics event monitor:

422 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Each of the documents contained in these columns contains system_metrics as the
top-level element, which, in turn, contains a number of monitor elements that
report on system-related metrics.

In addition to viewing system metrics from the XML document in the metrics
monitor element, you can view the individual metrics directly from the output
associated with the EVENT_SCMETRICS and EVENT_WLMETRICS logical data
groups.

Notes:

v The system_metrics element that is reported in the details_xml document
contained in the DETAILS_XML column produced by the statistics event monitor
is also a part of the XML document contained in the DETAILS column returned
by the MON_GET_SERVICE_SUBCLASS_DETAILS and
MON_GET_WORKLOAD_DETAILS table functions. Like the metrics reported in
the details_xml document, the values for the metrics reported in the document
contained in the DETAILS column accumulate until the database is deactivated.

Activity event monitor

When you create an activity event monitor to report on monitor elements in the
event_activity logical data group, one of the columns produced is DETAILS_XML.
If the event monitor is written to a table, DETAILS_XML is a column. If it is

XML

XML

XML

XML

XML

XML

1 1

Legend

Other content

CONCURRENT_WLO_ACT_TOP PARTITION_NUMBERMETRICSLAST_WLM_RESETDETAILS_XML

Figure 38. Output of statistics event monitor (when written to a table), showing the
DETAILS_XML and METRICS columns.. The contents of the XML document in the third row
(�1�) are shown following the table.

Chapter 28. Interfaces for database monitoring 423

written to a file or named pipe, DETAILS_XML is part of the self-describing data
stream. Either way, the document contains the activity_metrics monitor element,
which, in turn, contains a number of monitor elements that report on metrics
related to activities.

Note: activity_metrics as reported in the XML document in the DETAILS_XML
column produced by the activity event monitor is also a part of the XML document
contained in the DETAILS column returned by the
MON_GET_ACTIVITY_DETAILS table function.

Package cache event monitor

The package cache event monitor writes its output to an unformatted event (UE)
table. If you convert the data in this table with the
EVMON_FORMAT_UE_TO_TABLES table function, one of the tables produced is
PKGCACHE_EVENT. This table contains a METRICS column. In each row, this
column contains an XML document with elements associated with package cache
event monitor elements.

Note: The EVMON_FORMAT_UE_TO_TABLES function also creates a separate
table for the metrics collected by this event monitor called PKGCACHE_METRICS.
This table contains the same information reported in the METRICS column of the
PKGCACHE_EVENT table. So, you can retrieve metrics from the columns of the
PKGCACHE_METRICS table, or you can use the XML document contained in the
METRICS column of the PKGCACHE_EVENT table.

The EVMON_FORMAT_UE_TO_XML table function also produces an XML
document with elements associated with package cache event monitor elements.
For example, the XML document element <num_executions> corresponds to the
num_executions monitor element.

Unit of work event monitor

The unit of work event monitor writes its output to an unformatted event (UE)
table. If you convert the data in this table with the
EVMON_FORMAT_UE_TO_TABLES table function, one of the tables produced is
UOW_EVENT. This table contains a METRICS column, which contains an XML
document with elements associated with unit of work event monitor elements.

The EVMON_FORMAT_UE_TO_XML function also produces an XML document
with elements associated with unit of work event monitor elements. For example,
the XML document element <workload_name> corresponds to the workload_name
monitor element.

Snapshot monitor
You can use the snapshot monitor to capture information about the database and
any connected applications at a specific time. Snapshots are useful for determining
the status of a database system.

Taken at regular intervals, they are also useful for observing trends and foreseeing
potential problems. Some of the data from the snapshot monitor is obtained from
the system monitor. The data available from the system monitor is determined by
system monitor switches.

424 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The system monitor accumulates information for a database only while it is active.
If all applications disconnect from a database and the database deactivates, then
the system monitor data for that database is no longer available. You can keep the
database active until your final snapshot has been taken, either by starting the
database with the ACTIVATE DATABASE command, or by maintaining a
permanent connection to the database.

Snapshot monitoring requires an instance attachment. If there is not an attachment
to an instance, then a default instance attachment is created. An instance
attachment is usually done implicitly to the instance specified by the
DB2INSTANCE environment variable when the first database system monitor API
is invoked by the application. It can also be done explicitly, using the ATTACH TO
command. Once an application is attached, all system monitor requests that it
invokes are directed to that instance. This allows a client to monitor a remote
server by simply attaching to the instance on it.

In partitioned database environments, snapshots can be taken at any partition of
the instance, or globally using a single instance connection. A global snapshot
aggregates the data collected at each partition and returns a single set of values.

In DB2 pureScale environments, snapshots can be taken at any member or globally.
A global snapshot aggregates the data collected at each member and returns a
single set of values.

You can capture a snapshot from the CLP, from SQL table functions, or by using
the snapshot monitor APIs in a C or C++ application. A number of different
snapshot request types are available, each returning a specific type of monitoring
data. For example, you can capture a snapshot that returns only buffer pool
information, or a snapshot that returns database manager information. Before
capturing a snapshot, consider if you need information from monitor elements that
are under monitor switch control. If a particular monitor switch is off, the monitor
elements under its control will not be collected.

Access to system monitor data: SYSMON authority
Users that are part of the SYSMON database manager level group have the
authority to gain access to database system monitor data. System monitor data is
accessed using the snapshot monitor APIs, CLP commands, or SQL table functions.

The SYSMON authority group provides the means to enable users without system
administration or system control authorities to access database system monitor
data.

Aside from SYSMON authority, the only way to access system monitor data using
the snapshot monitor is with system administration or system control authority.

Any user that is part of the SYSMON group or has system administration or
system control authority can perform the following snapshot monitor functions:
v CLP Commands:

– GET DATABASE MANAGER MONITOR SWITCHES
– GET MONITOR SWITCHES
– GET SNAPSHOT
– LIST ACTIVE DATABASES
– LIST APPLICATIONS
– LIST DCS APPLICATIONS

Chapter 28. Interfaces for database monitoring 425

– LIST UTILITIES
– RESET MONITOR
– UPDATE MONITOR SWITCHES

v APIs:
– db2GetSnapshot - Get Snapshot
– db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output

Buffer
– db2MonitorSwitches - Get/Update Monitor Switches
– db2ResetMonitor - Reset Monitor

v Snapshot SQL table functions without previously running
SYSPROC.SNAP_WRITE_FILE

Capturing database system snapshots by using snapshot
administrative views and table functions

Authorized users can capture snapshots of monitor information for a DB2 instance
by using snapshot administrative views or snapshot table functions. The snapshot
administrative views provide a simple means of accessing data for all database
partitions of the connected database.

The snapshot table functions allow you to request data for a specific database
partition, globally aggregated data, or data from all database partitions. Some
snapshot table functions allow you to request data from all active databases.

Before you begin

You must have SYSADM, SYSCTRL, SYSMAINT, or SYSMON authority to capture
a database snapshot. To obtain a snapshot of a remote instance, you must first
connect to a local database belonging to that instance.

About this task

While new snapshot table functions might be required in future releases if new
monitor data is available, the set of snapshot administrative views will remain the
same with new columns added to the view, making the administrative views a
good choice for application maintenance over time.

Each snapshot view returns a table with one row per monitored object per
database partition with each column representing a monitor element. Each table
function returns a table with one row per monitored object for the specified
partition. The column names of the returned table correlate with the monitor
element names.

For example, a snapshot of general application information for the SAMPLE
database is captured as follows by using the SNAPAPPL administrative view:
SELECT * FROM SYSIBMADM.SNAPAPPL

You can also select individual monitor elements from the returned table. For
example, the following statement returns only the agent_id and db_name monitor
elements:
SELECT agent_id, db_name FROM SYSIBMADM.SNAPAPPL

Restrictions

426 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Snapshot administrative views and table functions cannot be used with either of
the following:
v Monitor switches commands or APIs
v Monitor reset commands or APIs

This restriction includes:
v GET MONITOR SWITCHES

v UPDATE MONITOR SWITCHES

v RESET MONITOR

This limitation is because such commands use an ATTACH command, while
snapshot table functions use CONNECT statement..

Procedure
v To capture a snapshot using a snapshot administrative view:

1. Connect to a database. This can be any database in the instance you need to
monitor. To be able to issue an SQL query with a snapshot administrative
view, you must be connected to a database.

2. Determine the type of snapshot you need to capture. If you want to capture
a snapshot for a database other than the currently connected database, or if
you want to retrieve data from a single database partition, or global
aggregate data, you need to use a snapshot table function instead.

3. Issue a query with the appropriate snapshot administrative view. For
example, here is a query that captures a snapshot of lock information for the
currently connected database:

SELECT * FROM SYSIBMADM.SNAPLOCK

v To capture a snapshot using a snapshot table function:
1. Connect to a database. This can be any database in the instance you need to

monitor. To be able to issue an SQL query with a snapshot table function,
you must be connected to a database.

2. Determine the type of snapshot you need to capture.
3. Issue a query with the appropriate snapshot table function. For example,

here is a query that captures a snapshot of lock information about the
SAMPLE database for the current connected database partition:

SELECT * FROM TABLE(SNAP_GET_LOCK(’SAMPLE’,-1)) AS SNAPLOCK

The SQL table functions have two input parameters:

database name
VARCHAR(255). If you enter NULL, the name of the currently connected
database is used.

partition number
SMALLINT. For the database partition number parameter, enter the
integer (a value between 0 and 999) corresponding to the database
partition number you need to monitor. To capture a snapshot for the
currently connected database partition, enter a value of -1. To capture a
global aggregate snapshot, enter a value of -2. To capture a snapshot
from all database partitions, do not specify a value for this parameter.

Note:

a. For the following list of snapshot table functions, if you enter a NULL for
the currently connected database, you will get snapshot information for
all databases in the instance:

Chapter 28. Interfaces for database monitoring 427

– SNAP_GET_DB
– SNAP_GET_DB_MEMORY_POOL
– SNAP_GET_DETAILLOG
– SNAP_GET_HADR
– SNAP_GET_STORAGE_PATHS
– SNAP_GET_APPL
– SNAP_GET_APPL_INFO
– SNAP_GET_AGENT
– SNAP_GET_AGENT_MEMORY_POOL
– SNAP_GET_STMT
– SNAP_GET_SUBSECTION
– SNAP_GET_BP
– SNAP_GET_BP_PART

b. The database name parameter does not apply to the database manager
level snapshot table functions; they have only a parameter for database
partition number. The database partition number parameter is optional.

Capturing database system snapshot information to a file
using the SNAP_WRITE_FILE stored procedure

With the SNAP_WRITE_FILE stored procedure you can capture snapshots of
monitor data and save this information to files on the database server and allow
access to the data by users who do not have SYSADM, SYSCTRL, SYSMAINT, or
SYSMON authority.

Any user can then issue a query with a snapshot table function to access the
snapshot information in these files. In providing open access to snapshot monitor
data, sensitive information (such as the list of connected users and the SQL
statements they have submitted to the database) is available to all users who have
the execution privilege for the snapshot table functions. The privilege to execute
the snapshot table functions is granted to PUBLIC by default. (Note, however, that
no actual data from tables or user passwords can be exposed using the snapshot
monitor table functions.)

Before you begin

You must have SYSADM, SYSCTRL, SYSMAINT, or SYSMON authority to capture
a database snapshot with the SNAP_WRITE_FILE stored procedure.

About this task

When issuing a call to the SNAP_WRITE_FILE stored procedure, in addition to
identifying the database and partition to be monitored, you need to specify a
snapshot request type. Each snapshot request type determines the scope of monitor
data that is collected. Choose the snapshot request types based on the snapshot
table functions users will need to run. The following table lists the snapshot table
functions and their corresponding request types.

Table 77. Snapshot request types

Snapshot table function Snapshot request type

SNAP_GET_AGENT APPL_ALL

SNAP_GET_AGENT_MEMORY_POOL APPL_ALL

428 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 77. Snapshot request types (continued)

Snapshot table function Snapshot request type

SNAP_GET_APPL APPL_ALL

SNAP_GET_APPL_INFO APPL_ALL

SNAP_GET_STMT APPL_ALL

SNAP_GET_SUBSECTION APPL_ALL

SNAP_GET_BP_PART BUFFERPOOLS_ALL

SNAP_GET_BP BUFFERPOOLS_ALL

SNAP_GET_DB DBASE_ALL

SNAP_GET_DETAILLOG DBASE_ALL

SNAP_GET_DB_MEMORY_POOL DBASE_ALL

SNAP_GET_HADR DBASE_ALL

SNAP_GET_STORAGE_PATHS DBASE_ALL

SNAP_GET_DBM DB2

SNAP_GET_DBM_MEMORY_POOL DB2

SNAP_GET_FCM DB2

SNAP_GET_FCM_PART DB2

SNAP_GET_SWITCHES DB2

SNAP_GET_DYN_SQL DYNAMIC_SQL

SNAP_GET_LOCK DBASE_LOCKS

SNAP_GET_LOCKWAIT APPL_ALL

SNAP_GET_TAB DBASE_TABLES

SNAP_GET_TAB_REORG DBASE_TABLES

SNAP_GET_TBSP DBASE_TABLESPACES

SNAP_GET_TBSP_PART DBASE_TABLESPACES

SNAP_GET_CONTAINER DBASE_TABLESPACES

SNAP_GET_TBSP_QUIESCER DBASE_TABLESPACES

SNAP_GET_TBSP_RANGE DBASE_TABLESPACES

SNAP_GET_UTIL DB2

SNAP_GET_UTIL_PROGRESS DB2

Procedure
1. Connect to a database. This can be any database in the instance you need to

monitor. To be able to call a stored procedure, you must be connected to a
database.

2. Determine the snapshot request type, and the database and partition you need
to monitor.

3. Call the SNAP_WRITE_FILE stored procedure with the appropriate parameter
settings for the snapshot request type, database, and partition. For example,
here is a call that will capture a snapshot of application information about the
SAMPLE database for the current connected partition:

CALL SNAP_WRITE_FILE(’APPL_ALL’,’SAMPLE’,-1)

The SNAP_WRITE_FILE stored procedure has three input parameters:

Chapter 28. Interfaces for database monitoring 429

v a snapshot request type (see Table 77 on page 428, which provides a
cross-reference of the snapshot table functions and their corresponding
request types)

v a VARCHAR (128) for the database name. If you enter NULL, the name of
the currently connected database is used.

Note: This parameter does not apply to the database manager level snapshot
table functions; they only have parameters for request type and partition
number.

v a SMALLINT for the partition number (a value between 0 and 999). For the
partition number parameter, enter the integer corresponding to partition
number you want to monitor. To capture a snapshot for the currently
connected partition, enter a value of -1 or a NULL. To capture a global
snapshot, enter a value of -2.

Results

Once the snapshot data has been saved to a file, all users can issue queries with
the corresponding snapshot table functions, specifying (NULL, NULL) as input
values for database-level table functions, and (NULL) for database manager level
table functions. The monitor data they receive is pulled from the files generated by
the SNAP_WRITE_FILE stored procedure.

Note: While this provides a means to limit user access to sensitive monitor data,
this approach does have some limitations:
v The snapshot monitor data available from the SNAP_WRITE_FILE files is only

as recent as the last time the SNAP_WRITE_FILE stored procedure was called.
You can ensure that recent snapshot monitor data is available by making calls to
the SNAP_WRITE_FILE stored procedure at regular intervals. For instance, on
UNIX systems you can set a cron job to do this.

v Users issuing queries with the snapshot table functions cannot identify a
database or partition to monitor. The database name and partition number
identified by the user issuing the SNAP_WRITE_FILE calls determine the
contents of the files accessible by the snapshot table functions.

v If a user issues an SQL query containing a snapshot table function for which a
corresponding SNAP_WRITE_FILE request type has not been run, a direct
snapshot is attempted for the currently connected database and partition. This
operation is successful only if the user has SYSADM, SYSCTRL, SYSMAINT, or
SYSMON authority.

Accessing database system snapshots using snapshot table
functions in SQL queries (with file access)

For every request type that authorized users have called the SNAP_WRITE_FILE
stored procedure, any user can issue queries with the corresponding snapshot table
functions. The monitor data they receive will be retrieved from the files generated
by the SNAP_WRITE_FILE stored procedure.

Before you begin

For every snapshot table function with which you intend to access
SNAP_WRITE_FILE files, an authorized user must have issued a
SNAP_WRITE_FILE stored procedure call with the corresponding snapshot request
types. If you issue an SQL query containing a snapshot table function for which a
corresponding SNAP_WRITE_FILE request type has not been run, a direct

430 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

snapshot is attempted for the currently connected database and partition. This
operation is successful only if the user has SYSADM, SYSCTRL, SYSMAINT, or
SYSMON authority.

About this task

Users who access snapshot data from SNAP_WRITE_FILE files with snapshot table
functions cannot identify a database or partition to monitor. The database name
and partition number identified by the user issuing the SNAP_WRITE_FILE calls
determine the contents of the SNAP_WRITE_FILE files. The snapshot monitor data
available from the SNAP_WRITE_FILE files is only as recent as the last time the
SNAP_WRITE_FILE stored procedure captured snapshots.

Procedure
1. Connect to a database. This can be any database in the instance you need to

monitor. To issue an SQL query with a snapshot table function, you must be
connected to a database.

2. Determine the type of snapshot you need to capture.
3. Issue a query with the appropriate snapshot table function. For example, here is

a query that will capture a snapshot of table space information:
SELECT * FROM TABLE(SNAP_GET_TBSP(CAST(NULL AS VARCHAR(1)),

CAST (NULL AS INTEGER))) AS SNAP_GET_TBSP

Note: You must enter NULL values for the database name and partition
number parameters. The database name and partition for the snapshot are
determined in the call of the SNAP_WRITE_FILE stored procedure. Also, the
database name parameter does not apply to the database manager level
snapshot table functions; they only have a parameter for partition number.
Each snapshot table function returns a table with one or more rows, with each
column representing a monitor element. Accordingly, the monitor element
column names correlate to the monitor element names.

4. You can also select individual monitor elements from the returned table. For
example, the following statement will return only the agent_id monitor
element:
SELECT agent_id FROM TABLE(

SNAP_GET_APPL(CAST(NULL AS VARCHAR(1)),
CAST(NULL AS INTEGER)))

as SNAP_GET_APPL

Snapshot monitor SQL Administrative Views
There are a number of different snapshot monitor SQL administrative views
available, each returning monitor data about a specific area of the database system.
For example, the SYSIBMADM.SNAPBP SQL administrative view captures a
snapshot of buffer pool information.

The following table lists each available snapshot monitor administrative view.

Table 78. Snapshot Monitor SQL Administrative Views

Monitor
level SQL Administrative Views Information returned

Database
manager

SYSIBMADM.SNAPDBM Database manager level information.

Database
manager

SYSIBMADM.SNAPFCM Database manager level information
regarding the fast communication
manager (FCM).

Chapter 28. Interfaces for database monitoring 431

Table 78. Snapshot Monitor SQL Administrative Views (continued)

Monitor
level SQL Administrative Views Information returned

Database
manager

SYSIBMADM.SNAPFCM_PART Database manager level information for a
partition regarding the fast
communication manager (FCM).

Database
manager

SYSIBMADM.SNAPSWITCHES Database manager monitor switch
settings.

Database
manager

SYSIBMADM.SNAPDBM_MEMORY_POOL Database manager level information about
memory usage.

Database SYSIBMADM.SNAPDB Database level information and counters
for a database. Information is returned
only if there is at least one application
connected to the database.

Database SYSIBMADM.SNAPDB_MEMORY_POOL Database level information about memory
usage for UNIX platforms only.

Application SYSIBMADM.SNAPAPPL General application level information for
each application that is connected to the
database. This includes cumulative
counters, status information, and most
recent SQL statement executed (if
statement switch is set).

Application SYSIBMADM.SNAPAPPL_INFO General application level identification
information for each application that is
connected to the database.

Application SYSIBMADM.SNAPLOCKWAIT Application level information regarding
lock waits for the applications connected
to the database.

Application SYSIBMADM.SNAPSTMT Application level information regarding
statements for the applications connected
to the database. This includes the most
recent SQL statement executed (if the
statement switch is set).

Application SYSIBMADM.SNAPAGENT Application level information regarding
the agents associated with applications
connected to the database.

Application SYSIBMADM.SNAPSUBSECTION Application level information regarding
the subsections of access plans for the
applications connected to the database.

Application SYSIBMADM.SNAPAGENT_MEMORY_POOL Information about memory usage at the
agent level.

Table SYSIBMADM.SNAPTAB Table activity information at the database
and application level for each application
connected to the database. Table activity
information at the table level for each
table that was accessed by an application
connected to the database. Requires the
table switch.

Table SYSIBMADM.SNAPTAB_REORG Table reorganization information at the
table level for each table in the database
undergoing reorganization.

Lock SYSIBMADM.SNAPLOCK Lock information at the database level,
and application level for each application
connected to the database. Requires the
lock switch.

432 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 78. Snapshot Monitor SQL Administrative Views (continued)

Monitor
level SQL Administrative Views Information returned

Table space SYSIBMADM.SNAPTBSP Information about table space activity at
the database level, the application level
for each application connected to the
database, and the table space level for
each table space that has been accessed by
an application connected to the database.
Requires the buffer pool switch.

Table space SYSIBMADM.SNAPTBSP_PART Information about table space
configuration.

Table space SYSIBMADM.SNAPTBSP_QUIESCER Information about quiescers at the table
space level.

Table space SYSIBMADM.SNAPCONTAINER Information about table space container
configuration at the table space level.

Table space SYSIBMADM.SNAPTBSP_RANGE Information about ranges for a table space
map.

Buffer pool SYSIBMADM.SNAPBP Buffer pool activity counters for the
specified database. Requires the buffer
pool switch.

Buffer pool SYSIBMADM.SNAPBP_PART Information on buffer size and usage,
calculated per partition.

Dynamic
SQL

SYSIBMADM.SNAPDYN_SQL Point-in-time statement information from
the SQL statement cache for the database.

Database SYSIBMADM.SNAPUTIL Information about utilities.

Database SYSIBMADM.SNAPUTIL_PROGRESS Information about the progress of utilities.

Database SYSIBMADM.SNAPDETAILLOG Database level information about log files.

Database SYSPROC.ADMIN_GET_STORAGE_PATHS Returns a list of automatic storage paths
for the database that includes file system
information for each storage path.

Before capturing a snapshot, consider if you need information from monitor
elements that are under monitor switch control. If a particular monitor switch is
off, the monitor elements under its control will not be collected. See the individual
monitor elements to determine if an element you need is under switch control.

All snapshot monitoring administrative views and associated table functions use a
separate instance connection, which is different from the connection the current
session uses. Therefore, an implicit instance attachment might be established, and
only default database manager monitor switches are effective. Ineffective monitor
switches include any that are turned on or off dynamically from the current
session or application.

Also, there is a set of administrative views that do not only return values of
individual monitor elements, but also return computed values that are commonly
required in monitoring tasks. For example, the SYSIBMADM.BP_HITRATIO
administrative view returns calculated values for buffer pool hit ratios, which
combine a number of individual monitor elements.

Table 79. Snapshot Monitor SQL Administrative Convenience Views

SQL Administrative Convenience Views Information returned

SYSIBMADM.APPLICATIONS Information about connected
database applications.

Chapter 28. Interfaces for database monitoring 433

Table 79. Snapshot Monitor SQL Administrative Convenience Views (continued)

SQL Administrative Convenience Views Information returned

SYSIBMADM.APPL_PERFORMANCE Information about the rate of rows
selected versus the number of rows
read by an application.

SYSIBMADM.BP_HITRATIO Buffer pool hit ratios, including total,
data, and index, in the database.

SYSIBMADM.BP_READ_IO Information about buffer pool read
performance.

SYSIBMADM.BP_WRITE_IO Information about buffer pool write
performance.

SYSIBMADM.CONTAINER_UTILIZATION Information about table space
containers and utilization rates.

SYSIBMADM.LOCKS_HELD Information on current locks held.

SYSIBMADM.LOCKWAITS Information about DB2 agents
working on behalf of applications
that are waiting to obtain locks.

SYSIBMADM.LOG_UTILIZATION Information about log utilization for
the currently connected database.

SYSIBMADM.LONG_RUNNING_SQL Information about the longest
running SQL in the currently
connected database.

SYSIBMADM.QUERY_PREP_COST Information about the time required
to prepare different SQL statements.

SYSIBMADM.TBSP_UTILIZATION Table space configuration and
utilization information.

SYSIBMADM.TOP_DYNAMIC_SQL The top dynamic SQL statements
sortable by number of executions,
average execution time, number of
sorts, or sorts per statement.

Event monitors
Monitoring table functions and snapshot routines return the values of monitor
elements at the specific point in time the routine is run, which is useful when you
want to check the current state of your system. However, you might not always
want to monitor points in time.

There are many times when you need to capture information about the state of
your system at exactly the time that a specific event occurs. Event monitors serve
this purpose.

Event monitors can be created to capture point-in-time information related to
different kinds of events that take place in your system. For example, you can
create an event monitor to capture information when a specific threshold that you
define is exceeded. The information captured includes such things as the ID of the
application that was running when the threshold was exceeded. Or, you might
create an event monitor to determine what statement was running when a lock
event occurred.

434 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Types of events for which event monitors capture data
You can use event monitors to capture information related to many different kinds
of events that take place on your system.

The following tables lists the types of events that occur in the system that you can
monitor with an event monitor. It also describes the type of data collected for
different events, as well as when the monitoring data is collected. The names of the
event monitors shown in column two correspond to the keywords used to create
that type of event monitor using the CREATE EVENT MONITOR statement.

Table 80. Event Types

Type of event to
monitor Event monitor name Event monitor properties Details

Locks and
deadlocks

LOCKING Uses of this event monitor To determine when locks or deadlocks occur, and the
applications that are involved. The advantages of using
the LOCKING event monitor instead of the deprecated
DEADLOCKS event monitor include consolidated
reporting of both lock and deadlock events, as well as the
inclusion of information about lock waits and lock
time-outs.

Data collected Comprehensive information regarding applications
involved, including the identification of participating
statements (and statement text) and a list of locks being
held.

When the event data is
generated1

Upon detection of any of the following event types,
depending on how you configure the event monitor:

v lock timeout

v deadlock

v lock wait beyond a specified duration

Execution of a
SQL statements
or other
operation that
spawns a
database activity.

ACTIVITIES Uses of this event monitor To track the execution of individual statements and other
activities to understand what activities are running in the
system. Also to capture activities for diagnostic reasons,
and to study the resource consumption of SQL.

Data collected Activity level data, generally for activities involving
workload management objects.

v If WITH DETAILS was specified as part of COLLECT
ACTIVITY DATA clause on the CREATE or ALTER
statements for a workload management object, then
information collected includes statement and
compilation environment information for those
activities that have it. If WITH SECTION is also
specified, then statement, compilation environment,
section environment data, and section actuals are also
captured.

v If AND VALUES was also specified on the CREATE
OR ALTER statement for the workload management
object, the information collected will also include input
data values for those activities that have it.

When event data is
generated1

v Upon completion of an activity that executed in a
service class, workload or work class that had its
COLLECT ACTIVITY DATA option turned on.

v When an activity violates a threshold that has the
COLLECT ACTIVITY DATA option enabled.

v At the instant the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored
procedure is executed.

v When an activity is executed by a connection for
which activity collection has been enabled using the
WLM_SET_CONN_ENV stored procedure.

Chapter 28. Interfaces for database monitoring 435

Table 80. Event Types (continued)

Type of event to
monitor Event monitor name Event monitor properties Details

Execution of an
SQL statement

STATEMENTS Uses of this event monitor To see what requests are being made to the database as a
result of the execution of SQL statements.

Data collected Statement start or stop time, CPU used, text of dynamic
SQL, SQLCA (return code of SQL statement), and other
metrics such as fetch count. For partitioned databases:
CPU used, execution time, table and table queue
information.
Notes:

v When monitoring the execution of SQL procedures
using statement event monitors, data manipulation
language (DML) statements, such as INSERT, SELECT,
DELETE, and UPDATE, generate events. Procedural
statements, such as variable assignments and control
structures (for example, WHILE or IF), do not generate
events in a deterministic fashion.

v Statement start or stop time is unavailable when the
Timestamp switch is off.

When event data is
generated

End of SQL statement2; for partitioned databases, End of
subsection2

Completion of a
unit of work
(transaction)

UNIT OF WORK Uses of this event monitor To gather resource usage information and performance
metrics for units of work that run on the system. This
information can be used for purposes ranging from
generating reports for billing or charge-back purposes of
system resources used by an application, to
troubleshooting performance problems caused by
slow-running routines.

Recommended over the TRANSACTIONS event monitor.

Data collected Information about units of work (transactions), such as
start and stop time, the workload and service class under
which they ran. Option to include information about
packages or executable IDs for statements run as part of
the unit of work, as well as request metrics.

When event data is
generated1

Upon completion of a unit of work

Eviction of
sections from the
package cache

PACKAGE CACHE Uses of this event monitor To capture a history of statements (and related metrics)
that are no longer in the package cache. This information
can be used if you need to examine performance metrics
for statements that are no longer available in memory.

Data collected Includes statement text and metrics aggregated over all
executions of the section.

When event data is
generated1

As entries are evicted from the package cache.

Connections to
the database by
applications

CONNECTIONS Uses of this event monitor To capture metrics and other monitor elements for each
connection to the database by an application.

Data collected All application-level counters. For example, the time that
the application connected to or disconnected from the
database, or number of lock escalations that the
application was involved with.

When event data is
generated

End of connection2

436 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 80. Event Types (continued)

Type of event to
monitor Event monitor name Event monitor properties Details

Deactivation of
database

DATABASE Uses of this event monitor To capture metrics and other monitor elements that
reflect information about the database as whole, since
activation.

Data collected All database level counters. For example, the number of
connections made to a database, time spent waiting on
locks, or rows of data inserted since its activation.

When event data is
generated

Database deactivation2

BUFFERPOOLS
TABLESPACES

Uses of this event monitor To capture metrics related to buffer pools and table
spaces.

Data collected Counters for buffer pools, prefetchers, page cleaners and
direct I/O for each buffer pool.

When event data is
generated

Database deactivation2

TABLES Uses of this event monitor To capture metrics related to tables that have changed
since database activation.

Data collected Table level counters, such as rows read or written, or
disk pages used by data,LOB or index objects.

When event data is
generated

Database deactivation2

Statistics and
metrics on
workload
management
objects

STATISTICS Uses of this event monitor To capture processing metrics related to workload
management objects (for example service superclasses, or
workloads) in the database. For example, you could use a
statistics event monitor to check on CPU utilization over
time for a given workload.

Data collected Statistics computed from the activities that executed
within each service class, workload, or work class that
exists on the system.

When event data is
generated

Statistics can be collected automatically at regular
intervals. This interval is defined with the
wlm_collect_int database configuration parameter.

Data can also collected manually, using the
WLM_COLLECT_STATS stored procedure.
Note: With either collection mechanism, the values of
statistics monitor elements are reset to 0 after collection
has taken place.

Exceeding a
workload
manager
threshold

THRESHOLD
VIOLATIONS

Uses of this event monitor To determine when specific thresholds that you set are
exceeded during database operations. Thresholds can be
set for a variety of things, ranging from CPU time to the
number of database connections, to the execution of
specific statements. Data collected can be used for a
variety of purposes, including monitoring for potential
problems (such as approaching limits on temporary table
space).

Data collected Threshold violation information.

When event data is
generated

Upon detection of a threshold violation. Thresholds are
defined using the CREATE THRESHOLD statement.

Chapter 28. Interfaces for database monitoring 437

Table 80. Event Types (continued)

Type of event to
monitor Event monitor name Event monitor properties Details

Changes to
database or
database
manager
configuration

CHANGE HISTORY Uses of this event monitor To captures change to database and database manager
configuration and registry settings, execution of DDL
statements, and execution of utilities

Data collected Database and database manager configuration parameter
changes, registry variable changes, execution of DDL
statements, execution of certain DB2 utilities and
commands, and change history event monitor startup.
Note: Generally, information related to events that occur
while the change history event monitor is inactive or the
database is offline are not captured. However, changes to
registry variables and configuration parameters are
recorded.

When event data is
generated1

Upon monitor startup, when a parameter or variable
changes, or when a command, DDL, or utility completes.

Notes:

1. If a database is deactivated while an activity event monitor is active, backlogged activity records in the queue are discarded. To
ensure that you obtain all activities event monitor records and that none are discarded, deactivate the activities event monitor
before deactivating the database. When an activities event monitor is explicitly deactivated, all backlogged activity records in
the queue are processed before the event monitor deactivates.

2. In addition to the defined times where data collection automatically occurs, you can use the FLUSH EVENT MONITOR SQL
statement to generate events. The events generated by this method are written with the current database monitor values for all
the monitor types (except for DEADLOCKS and DEADLOCKS WITH DETAILS) associated with the flushed event monitor.

438 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 81. Event Types For Deprecated Event Monitors

Type of event to
monitor Event monitor name Event monitor properties Details

Deadlocks DEADLOCKS2 Uses of this event monitor To determine when deadlocks occur, and the applications
that are involved.

Data collected Applications involved, and locks in contention.

When event data is
generated

Detection of a deadlock

DEADLOCKS WITH
DETAILS2

Uses of this event monitor To determine when deadlocks occur, and the applications
that are involved.

Data collected Comprehensive information regarding applications
involved, including the identification of participating
statements (and statement text) and a list of locks being
held. Using a DEADLOCKS WITH DETAILS event
monitor instead of a DEADLOCKS event monitor will
incur a performance cost when deadlocks occur, due to
the extra information that is collected.

When event data is
generated

Detection of a deadlock

DEADLOCKS WITH
DETAILS HISTORY2

Uses of this event monitor To determine when deadlocks occur, and the applications
that are involved.

Data collected All information reported in a DEADLOCKS WITH
DETAILS event monitor, along with the statement history
for the current unit of work of each application owning a
lock participating in a deadlock scenario for the database
partition where that lock is held. Using a DEADLOCKS
WITH DETAILS HISTORY event monitor will incur a
minor performance cost when activated due to statement
history tracking.

When event data is
generated

Detection of a deadlock

DEADLOCKS WITH
DETAILS HISTORY
VALUES2

Uses of this event monitor

Data collected All information reported in a deadlock with details and
history, along with the values provided for any
parameter markers at the time of execution of a
statement. Using a DEADLOCKS WITH DETAILS
HISTORY VALUES event monitor will incur a more
significant performance cost when activated due to extra
copying of data values.

When event data is
generated

Detection of a deadlock

Completion of a
unit of work
(transaction)

TRANSACTIONS3 Uses of this event monitor

Data collected UOW work start or stop time, previous UOW time, CPU
consumed, locking and logging metrics. Transaction
records are not generated if running with XA.

When event data is
generated

Upon completion of a unit of work1

Notes:

1. In addition to the defined times where data collection automatically occurs, you can use the FLUSH EVENT MONITOR SQL
statement to generate events. The events generated by this method are written with the current database monitor values for all
the monitor types (except for DEADLOCKS and DEADLOCKS WITH DETAILS) associated with the flushed event monitor.

2. This event monitor has been deprecated. Its use is no longer recommended and might be removed in a future release. Use the
CREATE EVENT MONITOR FOR LOCKING statement to monitor lock-related events, such as lock timeouts, lock waits, and
deadlocks.

3. This event monitor has been deprecated. Its use is no longer recommended and might be removed in a future release. Use the
CREATE EVENT MONITOR FOR UNIT OF WORK statement to monitor transaction events.

Chapter 28. Interfaces for database monitoring 439

Note: A detailed deadlock event monitor is created for each newly created
database. This event monitor, named DB2DETAILDEADLOCK, starts when the
database is activated and will write to files in the database directory. You can avoid
the additional processor time this event monitor requires by dropping it. The
DB2DETAILDEADLOCK event monitor is deprecated. Its use is no longer
recommended and might be removed in a future release. Use the CREATE EVENT
MONITOR FOR LOCKING statement to monitor lock-related events, such as lock
timeouts, lock waits, and deadlocks.

Event monitors that write to tables
Starting in DB2 V10.1, all event monitors can write output to regular tables that
can be queried directly using SQL.

In addition, starting with DB2 V10.1, you can use the procedure
EVMON_UPGRADE_TABLES to upgrade the tables produced by event monitors in
earlier releases. This capability lets you more easily retain event monitor data as
you upgrade your DB2 product.

Working with event monitors
Generally, the process of creating and using event monitors to capture information
about the system when certain events occur is similar for all event monitor types.
First you create the event monitor, then you enable data collection, and finally, you
access the data gathered.

About this task

This topic provides an outline of the general steps to follow when working with
event monitors.

Procedure

To use an event monitor to capture event information:
1. Create the event monitor. To create an event monitor, use the appropriate

version of the CREATE EVENT MONITOR statement. When you create an
event monitor, you must choose how to record the data the event monitor
collects. All event monitors can write their output to relational tables; however,
depending on your specific purposes, there are different options that might be
more appropriate.

2. Activate the event monitor. To activate the event monitor, use the SET EVENT
MONITOR STATE statement. For example, for an event monitor called
capturestats, use the following command:
SET EVENT MONITOR capturestats STATE 1

To turn off data collection by the event monitor, use the following statement:
SET EVENT MONITOR capturestats STATE 0

By default, some event monitors activate automatically upon database
activation; others require that you activate them manually. However, an event
monitor created with the AUTOSTART option will not automatically be
activated until the next database activation. Use the SET EVENT MONITOR
STATE statement to force a recently-created event monitor into the active state.
To determine whether an event monitor starts automatically, refer to the
reference information for the relevant CREATE EVENT MONITOR statement.

440 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

3. Enable the collection of data. (Only for LOCKING, ACTIVITIES, STATISTICS,
UNIT OF WORK and PACKAGE CACHE event monitors) Enabling data
collection involves configuring the database manager to gather specific types of
data to be recorded by event monitors.
Not all event monitors require data collection to be enabled; for those that do
not, such as the TABLE event monitor, creating and activating them is sufficient
to cause data to be collected. The threshold violations event monitor also starts
data collection automatically; however, in this case, you must also define the
thresholds for which you want data captured using the CREATE THRESHOLD
statement.
For those event monitors that require data collection to be enabled, there are
different options available to you. Depending on the type of event monitor you
are working with, you might set a database configuration parameter to enable
data collection across the entire database. Alternatively, you might choose to
enable the collection of specific kinds of data for specific types of workload
objects. For example, to configure the collection of basic information for a unit
of work event monitor when any unit of work in the system finishes, you can
set the mon_uow_data parameter to BASE. Alternatively, to capture unit of work
information only for a specific workload, you can specify the COLLECT UNIT
OF WORK DATA BASE clause as part of the CREATE WORKLOAD or ALTER
WORKLOAD statements.

4. Run your applications or queries. After the event monitor has been created, and
activated, and you have enabled data collection, run the applications or queries
for which you want to collect data.

5. Optional: Deactivate the event monitor. After you run the applications or
queries for which you want data collected, you can deactivate the event
monitor using the SET EVENT MONITOR STATE statement. (see step 2 on
page 440). Deactivating the event monitor is not necessary before proceeding to
the next step, however leaving the event monitor active will result in disk
space being used for data that you might not be interested in looking at.

6. Examine the data collected by the event monitor. Depending on the type of
output the event monitor creates, there are different options for accessing the
data collected. If the data is written directly to a relational table, you can use
SQL to access the data contained in the table columns. On the other hand, if the
event monitor writes to an unformatted event (UE) table, you must
post-process the UE table using a command like db2evmonfmt or a procedure
like EVMON_FORMAT_UE_TO_TABLES before you can view the event data.

7. Optional: Prune data that is no longer needed from the event monitor tables.
For event monitors that you use on a regular basis, you might want to prune
unneeded data from the tables. For example, if you use a unit of work event
monitor to generate daily accounting reports about the system resources used
by different applications, you might want to delete the current day's data from
the event monitor tables once the reports have been generated.

Tip: If you need to prune event monitor output regularly, consider using an
unformatted event (UE) table to record event monitor output. Starting in DB2
V10.1, UE tables can be pruned automatically after data is transferred to regular
tables.

Output options for event monitors
Event monitors can report the data they collect in a number of ways. All event
monitors can write the data they collect to tables; some write to unformatted event
(UE) tables, which can help improve performance. Others can also write directly to
a file or named pipe.

Chapter 28. Interfaces for database monitoring 441

Depending on how you want to use the information collected by event monitors,
and on the type of event monitor, you can choose to have the output that the event
monitors collect produced in different ways. The output types available include:

Regular tables
As of DB2 V10.1, all event monitors can write to regular tables that can be
queried directly using SQL. For a given event, each of the monitor
elements or metrics collected for the event is written to its own column in
the table. This makes it possible to use a SELECT statement query the
output to examine the values for a specific monitor element.

To create an event monitor that writes to tables, specify the WRITE TO
TABLE clause in the CREATE EVENT MONITOR statement. Depending on
the event monitor, one or more tables are created to contain the ouput,
each table containing monitor elements that belong to a single logical
group.

Tables can be stored in a table space of your choosing; however the target
table of a CREATE EVENT MONITOR statement must be a non-partitioned
table.

Note: There are two types of event monitors that write to tables. The first
type includes event monitors created in Version 9.7 and later releases.
These include the unit of work, package cache, locking and change history
event monitor. As of DB2 Version 10.1, the first three of these event
monitors can write their output to regular tables as an alternative to UE
tables. The change history event monitor writes only to regular tables.

The second type are the event monitors implemented before DB2 Version
9.7. These include all other event monitors.

Generally, after an event monitor of either type has been created, they
work in much the same way. That is, you can use SQL to directly access
the data in the tables that they produce. However, the older event monitors
in the second category have additional options that you can specify when
creating the event monitor. In addition, only event monitors in the second
category are capable of writing also to files and named pipes.

Unformatted event (UE) tables
UE tables were introduced in DB2 Version 9.7 for the new event monitors
added in that release. UE tables are relational tables, however, they have
only a limited number of columns. Most of the data associated with each
event is written to a column containing an inline binary (BLOB) object.
Writing event data in binary format reduces the time it takes to write each
record to the table. For this reason, UE tables are particularly useful where
event monitor performance is important, which might be the case on
highly I/O or CPU-bound systems.

However, because the event data is written in binary format, you cannot
use SQL to extract legible data. You must perform post-processing on the
UE table to extract the data stored in binary format. Another benefit of
using UE tables is that you can have UE table data pruned automatically
during post-processing. The EVMON_FORMAT_UE_TO_TABLES
procedure has an option to delete data from the UE table after it has been
successfully extracted.

442 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To create an event monitor that writers to an unformatted event table,
specify the WRITE TO UNFORMATTED EVENT TABLE clause in the
CREATE EVENT MONITOR statement. Only one UE table is created per
event monitor.

Files Some event monitors support sending their output directly to files
maintained by the file system. This type of output is useful if you do not
want the event monitor output to be subject to the additional processing
time caused when being managed within the database, or if you want to
look at the data while the database is offline. To create an event monitor
that writes to files, specify the WRITE TO FILE clause in the CREATE
EVENT MONITOR statement.

Named pipes
If you want to have an application process event data as it is generated,
you can use a named pipe event monitor. These types of event monitors
send their output directly to a named pipe so that the data can be used by
another application immediately. This might be useful if you need to
manipulate event data in real time.

To create an event monitor that writers to a named pipe, specify the
WRITE TO PIPE clause in the CREATE EVENT MONITOR statement.

Depending on your needs, one type of event monitor output might be more
appropriate than another. Table 82 provides an summary of when specific output
types are particularly useful.

Table 82. Summary of different event monitor output types

Output type Scenarios where this output type is useful

Regular tables v When you want to examine monitoring data at a later point in time

v In systems that are not approaching the maximum capacity for CPU,
log file or disk storage

v Where immediate access to data using SQL is desirable

Unformatted
event (UE) tables

v When you want to examine monitoring data at a later point in time

v In systems where event monitor performance is a priority, or where
there are constraints on CPU, log file or disk usage

v Where the added step of post-processing of data is not an issue

Files v In systems where you do not want or need to manage monitor data
as part of the database. (Eliminates the additional processing time of
logging, inserts, maintaining consistency)

v When you want to store the data outside of the database being
monitored

v When you want to examine the data offline at later point in time

Pipes v Streaming event data to an application that processes it immediately.

v When there is no need to access event data at a later point in time.

Not all event monitors support all output types. For example, only the unit of
work, package cache and locking event monitor can produce a UE table. Table 83
on page 444 shows what output options are available for different types of event
monitors:

Chapter 28. Interfaces for database monitoring 443

Table 83. Output options for event monitors

Event monitor
type Regular table

Unformatted
event table File Named pipe

Activity Yes Yes Yes

Buffer pool Yes Yes Yes

Change history Yes

Connections Yes Yes Yes

Database Yes Yes Yes

Deadlocks*(all
variations)

Yes Yes Yes

Locking Yes Yes

Package cache Yes Yes

Statement Yes Yes Yes

Statistics Yes Yes Yes

Table space Yes Yes Yes

Table Yes Yes Yes

Threshold
violations

Yes Yes Yes

Transaction* Yes Yes Yes

Unit of work Yes Yes
* Deprecated event monitor.

Creating event monitors
You create different types of event monitors by using variations on the CREATE
EVENT MONITOR statement. You can use the options for that statement to specify
the type of data that event monitors collect and how the event monitors produce
their output.

The sections that follow describe the different output options and how to create
event monitors that produce these types of output.

Before you begin

Before creating an event monitor, it is important to understand the different
options for the output that event monitors can produce. Most event monitors can
produce output in at least two formats; some let you choose from up to four
formats.

Procedure

To create an event monitor:
1. Determine what kind of event monitor you need.
2. Decide what type of output you want from the event monitor. Do you want

data to be written to a regular table, an unformatted event table, a file, or a
pipe?

3. Issue a CREATE EVENT MONITOR statement.
4. Optional: If the type of event monitor that you created requires activation,

activate it by issuing the SET EVENT MONITOR STATE statement.

444 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Creating event monitors that write to tables
To create an event monitor, use the CREATE EVENT MONITOR STATEMENT.
There are different forms of this statement that you use, depending on the type of
events that you intend to monitor.

Before you begin
v You need SQLADM or DBADM authority to create a table event monitor.
v The target table of a CREATE EVENT MONITOR statement - that is, the table to

which the event monitor writes its output - must be a non-partitioned table.

About this task

The various options for table event monitors are set in the CREATE EVENT
MONITOR statement. For further assistance in generating CREATE EVENT
MONITOR SQL statements for write-to-table event monitors, you can use the
db2evtbl command. Simply provide the name of the event monitor and the
required event type (or types), and the CREATE EVENT MONITOR statement is
generated, complete with listings of all the target tables. You can then copy the
generated statement, make modifications, and then execute the statement from the
command line processor.

Procedure

To create an event monitor that writes its output to a regular table, perform the
following steps:
1. Formulate a CREATE EVENT MONITOR statement using the WRITE TO

TABLE clause to indicate that event monitor data is to be collected in a table
(or set of tables).
CREATE EVENT MONITOR evmon-name FOR eventtype

WRITE TO TABLE

Where evmon-name is the name of the event monitor, and eventtype is one of
the following values:
v ACTIVITIES
v BUFFERPOOLS
v CHANGE HISTORY
v CONNECTIONS
v DATABASE
v DEADLOCKS
v LOCKING
v PACKAGE CACHE
v STATEMENTS
v STATISTICS
v TABLE
v TABLESPACE
v THRESHOLD VIOLATIONS
v TRANSACTIONS
v UNIT OF WORK

For example, to create a unit of work event monitor called myevmon, use a
statement like the one that follows:
CREATE EVENT MONITOR myevmon FOR UNIT OF WORK

WRITE TO TABLE

Chapter 28. Interfaces for database monitoring 445

The preceding statement creates a unit of work event monitor that uses defaults
for the logical groups of monitor elements collected, the corresponding output
table names, and the target table spaces for the tables. For more information on
these defaults, refer to the documentation for the appropriate CREATE EVENT
MONITOR statement.

2. Optional: Specify the logical groups for which you want data collected. By
default, event data is collected for all logical data groups for the event monitor
type. If you want only data for selected logical groups collected, you can
specify the names of the logical groups to include in the CREATE EVENT
MONITOR statement. For example, with a locking event monitor, you might
want to collect only the information associated with the LOCK and
PARTICIPANT logical groups. To include only these logical groups, you can
use a statement like the one that follows:
CREATE EVENT MONITOR mylocks FOR LOCKING

WRITE TO TABLE
LOCK, PARTICIPANTS

3. Optional: Specify the table names to use for the output tables. Unless you
specify otherwise, default names are used for the tables for each logical group
of monitor elements. The default name used is derived by concatenating the
logical group name with the name of the event monitor. For example, for the
locking event monitor created by the statement in the preceding step, the
unqualified names for the tables produced are LOCK_MYLOCKS and
PARTICIPANTS_MYLOCKS. To override the default names, include the table
names to use when specifying the logical groups:
CREATE EVENT MONITOR mylocks FOR LOCKING

WRITE TO TABLE
LOCK(TABLE LOCKDATA), PARTICIPANTS(TABLE PARTICIP)

In the preceding example, the names used for the tables for the LOCK and
PARTICIPANTS logical groups are LOCKDATA_MYLOCKS and
PARTICIP_MYLOCKS.
You can also override the table space to be used for each table by including the
name of the table space to use:
CREATE EVENT MONITOR mylocks FOR LOCKING

WRITE TO TABLE
LOCK(TABLE LOCKDATA IN EVMONSPACE), PARTICIPANTS(TABLE PARTICIP IN EVMONSPACE)

In the preceding example, the EVMONSPACE table space is used for both
output tables.

Additional options

Different event monitors provide different configuration options. For details on the
options available for a specific type of event monitor, refer to the documentation
for the CREATE EVENT MONITOR statement for the type of event monitor you
want to use. The examples that follow show some of the configuration options you
can choose for different event monitors:

Capturing multiple event types with a single event monitor
Some types2 of event monitors can capture different types of events with a
single event monitor. If you want to capture multiple types of events with
this event monitor, specify additional values for eventtype, separated by a

2. Event monitors for BUFFERPOOLS, CONNECTIONS, DATABASE, DEADLOCKS, STATEMENTS, TABLES, and TABLESPACES
support this option.

446 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

comma. For example, you might want to combine bufferpool and table
space monitoring in a single event monitor:
CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES

WRITE TO TABLE

This event monitor will monitor for the BUFFERPOOL and TABLESPACE
event types. Assuming that the previously listed statement was issued by
the user dbadmin, the derived names and table spaces of the target tables
are as follows:
v DBADMIN.BUFFERPOOL_MYEVMON
v DBADMIN.TABLESPACE_MYEVMON
v DBADMIN.CONTROL_,MYEVMON

Adjusting the size of event monitor output buffers
You can alter the size of the table event monitor buffers (in 4K pages) for
some types2 of event monitors by adjusting the BUFFERSIZE value. For
example, in the following statement:
CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES

WRITE TO TABLE BUFFERSIZE 8

8 is the combined capacity (in 4K pages) of the two event table buffers.
This adds up to 32K of buffer space; 16K for each buffer.

The default size of each buffer is 4 pages (two 16K buffers are allocated).
The minimum size is 1 page. The maximum size of the buffers is limited
by the size of the monitor heap, because the buffers are allocated from that
heap. For performance reasons, highly active event monitors should have
larger buffers than relatively inactive event monitors.

Controlling whether event monitor output is blocked or non-blocked
Some event monitors2 let you control how to proceed when event monitor
output buffers are full. For blocked event monitors, each agent that
generates an event will wait for the event buffers to be written to table if
they are full. This can degrade database performance, as the suspended
agent and any dependent agents cannot run until the buffers are clear. Use
the BLOCKED clause to ensure no losses of event data:
CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES

WRITE TO TABLE BUFFERSIZE 8 BLOCKED

If database performance is of greater importance than collecting every
single event record, use non-blocked event monitors. In this case, each
agent that generates an event will not wait for the event buffers to be
written to table if they are full. As a result, non-blocked event monitors are
subject to data loss on highly active systems. Use the NONBLOCKED
clause to minimize the additional processing time caused by event
monitoring:
CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES

WRITE TO TABLE BUFFERSIZE 8 NONBLOCKED

Controlling what monitor elements for which data is collected
Which monitor elements to collect data for. If you are interested in only a
few monitor elements, you can specify which ones you want to collect for
some event monitors2 by specifying the element name in the CREATE
EVENT MONITOR statement:

Chapter 28. Interfaces for database monitoring 447

CREATE EVENT MONITOR myevmon FOR DATABASE, BUFFERPOOLS, TABLESPACES
WRITE TO TABLE DB, DBMEMUSE,
BUFFERPOOL (EXCLUDES(db_path, files_closed)),
TABLESPACE (INCLUDES

(tablespace_name, direct_reads, direct_writes))
BUFFERSIZE 8 NONBLOCKED

All the monitor elements for the DB and DBMEMUSE logical data groups
are captured (this is the default behavior). For BUFFERPOOL, all monitor
elements except db_path and files_closed are captured. And finally, for
TABLESPACE, tablespace_name, direct_reads and direct_writes are the
only monitor elements captured.

Setting a threshold for deactivating an event monitor based on table space used
All event monitors provide the option to specify how full the table space
can get before the event monitor automatically deactivates:
CREATE EVENT MONITOR myevmon FOR BUFFERPOOLS, TABLESPACES

PCTDEACTIVATE 90

When the table space reaches 90% capacity, the myevmon event monitor
automatically shuts off. The PCTDEACTIVATE clause can only be used for
DMS table spaces. If the target table space has auto-resize enabled, set the
PCTDEACTIVATE clause to 100.

What to do next

By default, event monitors that were introduced in Version 9.7 or later are created
as AUTOSTART event monitors. They are activated automatically when the
database is next activated, and on subsequent database activations thereafter. If
you want to activate the event monitor immediately, before the next database
activation, use the SET EVENT MONITOR STATE statement to manually start the
event monitor. In addition for each of the locking, unit of work and package cache
event monitors, you must also enable data collection.

Logical data groups and event monitor output tables
Monitor elements that are frequently used together are grouped into logical data
groups. Event monitors that write to tables generally produce one output table for
each logical data group of monitor elements that they capture. A complete list of
all default target table names by event type is available at http://
publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/
com.ibm.db2.luw.admin.mon.doc/doc/r0059240.html.

Enabling event monitor data collection
Depending on the type of event monitor you are using, you might need to
configure collection after you create the event monitor.

By default, some event monitors collect certain data immediately when activated.
Other event monitors require that you explicitly configure data collection
independently of creating the event monitor. These types of event monitors are
sometimes referred to as passive event monitors.

Before you begin

All event monitors must be activated before any data is written its target output
table or tables (regular or UE), file or pipe. Some event monitors are configured by
default as AUTOSTART event monitors. This means they are activated

448 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

automatically when the database is activated. Others are configured by default to
required that you activate them manually. Either way, you can override the default
startup options. However, to start an automatic event monitor after you create it,
but before the next database activation, you must use the SET EVENT MONITOR
STATE statement to activate it manually.

About this task

Some event monitors support the use of a WHERE clause on the CREATE or
ALTER EVENT MONITOR statement to capture event information selectively. The
following event monitors, however, provide the ability to control what event data
is collected independently of the event monitor definition:
v Activities
v Change history
v Locking
v Statistics
v Unit of work

Some of the event monitors listed collect certain types of data by default after the
event monitor is activated; others require that you explicitly enable data collection.
Either way, you can enable data collection in one of two ways, depending on the
scope of activities for which you want data collected:

All activities in the database
To have monitor data collected across all activities in the database, you
modify the appropriate configuration parameter for the type of data you
are interested in. For example, to have unit of work data collected for all
units of work that run in the database, set mon_uow_data to BASE. In some
cases, the default settings for configuration parameters are such that some
type of data is always collected if there is an appropriate event monitor
active to receive the date. For example, the default setting for
mon_req_metrics is BASE; unless you override this setting, any active
statistics or unit of work event monitor will record the values for the BASE
set of request monitor elements.

Remember: Event monitors that support the use of the WHERE predicate
collect only the data that satisfies the conditions specified in that predicate,
regardless of the settings for any relevant configuration parameters.

Selected activities
Some event monitors - in particular, the workload management event
monitors (threshold violations, statistics and activities) - provide the ability
to control data collection for specific workload management objects. For
example, you might choose to collect activity information for activities
running in a specific service superclass. Configuring collection at this level
generally involves adding a COLLECT clause to the CREATE or ALTER
WORKLOAD (or SERVICE CLASS or WORK ACTION) statements to
specify what type of information to collect for activities running under the
auspices of that WLM object. For example, to enable the collection of
extended statistics information for the service class urgent, you might use
the following statement:
ALTER SERVICE CLASS urgent

COLLECT AGGREGATE ACTIVITY DATA EXTENDED

Note: If a COLLECT clause is specified in a WLM CREATE or ALTER statement,
the settings specified in the clause take precedence for that WLM object over any

Chapter 28. Interfaces for database monitoring 449

database-wide setting configured using a configuration parameter. For example, if
mon_req_metrics is set to EXTENDED, and if workload payroll was configured to
collect BASErequest metrics (for example, CREATE WORKLOAD payroll
COLLECT REQUEST METRICS BASE), then extended request metrics are collected
for all activities in the database except for the payroll workload.

Procedure

To enable collection of data for one of the types of event monitors shown at the
beginning of this section, perform the following steps:
1. Determine what, if any data is already collected by default. The data you are

interested in might be collected without you having to change any settings.
2. Decide on the scope of activities for which you want to collect data. Do you

want to collect data for the entire database, or only for specific workloads,
service class or work actions?

3. Decide what types of monitor elements you want to collect. Some event
monitors support the collection of different types of monitor data, such as
request monitor elements, activity data, and so on.

4. For the different sets of monitor data collected, decide the scope of data to be
collected within each set. You generally have the choice of collecting no data
(NONE), basic data (BASE), or extended data (EXTENDED). See to determine
what data is collected for each setting.

5. Based on the decisions made in the preceding steps, configure data collection
using either a configuration parameter or a COLLECT clause.
a. To configure collection across the entire database, set the appropriate

configuration parameter. For example, to enable the collection of lock wait
information with history by the locking event monitor on the database
SALES, run the following command.
UPDATE DATABASE CONFIGURATION for SALES USING mon_lockwait HISTORY

b. To configure collection for a specific workload, create or modify the
workload, including the appropriate COLLECT clause. For example, to
configure the collection of lock wait data with statement history for locks
waiting longer than 5 seconds in the MANAGERS workload, run a
statement like the one that follows:

ALTER WORKLOAD MANAGERS
COLLECT LOCK WAIT DATA FOR LOCKS WAITING MORE THAN 5 SECONDS

WITH HISTORY

What to do next

Now that the event monitor is created and active, and data collection is enabled,
run your applications or workload.

Methods for accessing event monitor information
Depending on the type of event monitor that you are using and the type of output
it generates, there are different options for accessing and viewing event monitor
data.

For example:
v Data produced by table event monitors can be queried directly using SQL.
v Data from event monitors that write to pipes can be viewed as it is produced.
v Data from file event monitors can be viewed by opening the output file after the

event monitor is deactivated.

450 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Data from both file and pipe event monitors can also be formatted into a report
using the db2evmon command.

v Data written to UE tables must be post-processed before it can be examined. UE
event monitor data can be converted to tables or to XML, which makes it
possible to query the data using SQL or XML query techniques. Alternatively,
you can format the data in a UE table into a formatted report without going
through a conversion process.

The sections that follow describe the different ways you can access information
produced by event monitors.

Accessing event monitor data in regular tables
You can use SQL to directly access event monitor data that is written to regular
relational tables.

Before you begin

Before accessing data, you must perform the following tasks:
v Create and activate the event monitor
v Enable data collection if required for the type of event monitor that you are

using and the type of data that you want to collect
v Run the workload or applications for which you want to collect monitoring data

Optionally, depending on how you are using the event monitor data, deactivate
data collection before you start examining the event data. If the event monitor
remains active, it continues to write data to the output tables. Therefore, the results
from one query might differ from the results that you obtain by running the same
query later on.

About this task

Accessing event monitor data from relational tables involves using SQL to
formulate queries to retrieve data from the tables produced by the event monitor.

Procedure

To retrieve information from the tables that are produced by an event monitor that
writes to tables:
1. Formulate a SELECT statement to display the monitor element data you want

to see. For example, to request lock data for the payroll workload from a
locking event monitor named mylocks, you might use a query such as the
following one:
SELECT DISTINCT CAST(STMT_TEXT AS VARCHAR(25)) STMT, LP.PARTICIPANT_NO,

VARCHAR(LP.APPL_NAME,10) APPL_NAME, LP.LOCK_MODE_REQUESTED,
LP.PARTICIPANT_TYPE

FROM LOCK_PARTICIPANT_ACTIVITIES_LOCK_MYLOCKS AS LPA
JOIN LOCK_PARTICIPANTS_LOCK_MYLOCKS AS LP

ON LPA.EVENT_ID = LP.EVENT_ID
WHERE LP.WORKLOAD_NAME = ’PAYROLL’

In this example, data from the LOCK_PARTICIPANTS table from the event
monitor mylocks is joined with information from the
LOCK_PARTICIPANTS_ACTIVITIES table to return the following results.

2. Run the SQL statement.

Chapter 28. Interfaces for database monitoring 451

Results
STMT PARTICIPANT_NO APPL_NAME LOCK_WAIT_VAL
------------------------- -------------- ---------- --------------------
select * from staff 2 db2bp 0
select * from staff 1 db2bp 1000

LOCK_MODE_REQUESTED PARTICIPANT_TYPE
-------------------- ----------------

0 OWNER
1 REQUESTER

2 record(s) selected.

Methods for accessing information in unformatted event tables
There are different ways to access the information in unformatted event (UE)
tables. You can generate a text report intended to be read. Alternatively, you can
extract the data into relational tables or XML; this approach lets you query the data
using SQL or pureXML.

Event monitors that write to UE tables write event data in a binary format. You
can access this data using the db2evmonfmt command or routines provided for
this purpose.

With the db2evmonfmt command you can:
v select events of interest based on the following attributes: event ID, event type,

time period, application, workload, or service class.
v choose whether to receive the output in the form of a text report or a formatted

XML document.
v completely control the output format by creating your own XSLT style sheets

instead of using the ones provided with db2evmonfmt.

You can also extract data from an unformatted event table using the following
routines:
v EVMON_FORMAT_UE_TO_XML - extracts data from an unformatted event

table into an XML document.
v EVMON_FORMAT_UE_TO_TABLES - extracts data from an unformatted event

table into a set of relational tables.

With these two routines, you can use a SELECT statement to specify the exact rows
from the unformatted event table that you want to extract.

Routines for extracting data from unformatted event tables
If you want to perform queries on the data collected by an event monitor that
writes to a unformatted event (UE) table, you must first extract the data from UE
table using one of the two routines provided for this purpose.

The EVMON_FORMAT_UE_TO_TABLES procedure extracts data from the UE
table to create relational tables. The EVMON_FORMAT_UE_TO_XML table
function creates an XML document.

EVMON_FORMAT_UE_TO_TABLES
The EVMON_FORMAT_UE_TO_TABLES procedure examines the UE table
produced by an event monitor, and extracts the data it contains into
relational tables that you can query. The number of tables produced
depends on the type of event monitor; and the logical data groups for
which that event monitor collects data. Generally speaking, the data from
each logical data group is written to a separate table. For example, the

452 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

package cache event monitor collects event data from three logical data
groups: pkgcache and pkgcache_metrics, and pkgcache_stmt_args. Thus,
three tables are produced by EVMON_FORMAT_UE_TO_TABLES.

Note: EVMON_FORMAT_UE_TO_TABLES does not create a table for the
control logical data group.

In addition to creating relational tables from UE tables, as of Version 10.1
the EVMON_FORMAT_UE_TO_TABLES procedure provides the capability
to prune data from UE tables. When you use the PRUNE_UE_TABLES option
for EVMON_FORMAT_UE_TO_TABLES, data that is successfully inserted
into relational tables is deleted from the unformated event (UE) table.

EVMON_FORMAT_UE_TO_XML
The EVMON_FORMAT_UE_TO_XML table function examines the UE table
produced by an event monitor, and extracts the data it contains into an
XML document. This document can then be queried as often as needed
using pureXML.

Notes:

v This table function works similarly to the db2evmonfmt utility when that
utility is used with the -fxml option. The differences between using
EVMON_FORMAT_UE_TO_XML instead of db2evmonfmt are as follows:
– EVMON_FORMAT_UE_TO_XML is a table function. As such, it is

invoked as part of an SQL statement. db2evmonfmt runs as a separate
utility.

– EVMON_FORMAT_UE_TO_XML lets you specify a SELECT
statement with a WHERE clause to filter events from the UE table.
db2evmonfmt has only limited capabilities for filtering event data.

v The output XML document from EVMON_FORMAT_UE_TO_XML can
be formatted by db2evmonfmt to create a flat text file.

With both routines, you must include a SELECT statement in the call to the routine
to specify conditions for which data to extract.

Pruning data from UE tables
If you use the EVMON_FORMAT_UE_TO_TABLES procedure to extract data from
UE tables, you can use the PRUNE_UE_TABLE option to remove data that you no
longer need.

Before you begin

Before you can extract data from a UE table, you must have created, activated, and
enabled data collection for an event monitor that writes to a UE table.

About this task

In addition to the performance advantages that UE tables offer, using UE tables as
output for an event monitor lets you take advantage of the automatic pruning
feature of the EVMON_FORMAT_UE_TO_TABLES procedure. When you use this
procedure, any data that is extracted from the UE table and written to a regular
table can be automatically removed from the UE table. This procedure makes it
easier to manage a UE table. For example, assume that you want to use a unit of
work event monitor to capture information to generate daily reports for accounting
purposes, such as charging departments for CPU time that is used by an

Chapter 28. Interfaces for database monitoring 453

application or query. In that case, you might want to prune that data after
producing the reports.

Procedure

To extract and then prune data from a UE table:

Issue an SQL statement that calls the EVMON_FORMAT_UE_TO_TABLES
procedure with the PRUNE_UE_TABLE option to extract data into a regular table.
For example, if you have a unit of work event monitor called TRACKWORK, you
might create a statement such as the one that follows:
CALL EVMON_FORMAT_UE_TO_TABLES

(’UOW’, NULL, NULL, NULL, NULL, NULL, ’PRUNE_UE_TABLE’, -1,
’SELECT * FROM TRACKWORK’)

All event data is copied from the UE table to the UOW_EVENT_TRACKWORK
and UOW_METRICS_TRACKWORK tables. In addition, all records that were
copied are removed from the UE table.

Formatting file or pipe event monitor output from a command
line
The output of a file or pipe event monitor is a binary stream of logical data
groupings. You can format this data stream from a command line by using the
db2evmon command.

This productivity tool reads in event records from an event monitor's files or pipe,
then writes them to the screen (standard output).

Before you begin

No authorization is required unless you are connecting to the database, in which
case one of the following authorities is required:
v SYSADM
v SYSCTRL
v SYSMAINT
v DBADM

About this task

You can indicate which event monitor output to format by either providing the
path of the event files, or providing the name of the database and the event
monitor name.

Procedure

To format event monitor output:
v Specify the directory containing the event monitor files:

db2evmon -path ’/tmp/dlevents’

/tmp/dlevents represents a (UNIX) path.
v Specify the database and event monitor name:

db2evmon -db ’sample’ -evm ’dlmon’

sample represents the database the event monitor belongs to.

454 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

dlmon represents an event monitor.

Altering an event monitor
You can add one or more logical data groups to the set of logical data groups that
the event monitor collects by using the ALTER EVENT MONITOR statement.

About this task

When you create an event monitor that writes to tables, by default, all logical data
groups of monitor elements that are associated with that event monitor are
captured. However, if you include the names of logical data groups in the CREATE
EVENT MONITOR statement, only those groups are captured. For example, you
might create an activities event monitor that captures data only from the
event_activity and event_activity_metrics logical data groups, as shown in the
following example:
CREATE EVENT MONITOR myacts FOR ACTIVITIES

WRITE TO TABLE
event_activity, event_activity_metrics

The preceding DDL statement creates an event monitor that writes to two tables:
ACTIVITY_myacts and ACTIVITY_METRICS_myacts.

Restrictions

You can use the ALTER EVENT MONITOR statement only to add logical data
groups to an event monitor. You cannot remove a logical data group. You also
cannot change the name, the target table space, or the value for PCTDEACTIVATE
that is associated with the table that is used to capture the data in monitor
elements that belong to a data group.

Procedure

To add additional logical data groups to an event monitor:
1. Decide which logical data group you want to add. Using the preceding

example of a locking event monitor where only two logical data groups are
being captured, assume that you want to add the event_activitystmt and
event_activityvals logical data groups.

2. Formulate an ALTER EVENT MONITOR statement to add these new logical
data groups.
ALTER EVENT MONITOR mylacts

ADD LOGICAL GROUP event_activitystmt
ADD LOGICAL GROUP event_activityvals

3. Execute the statement.

Results

When the ALTER EVENT MONITOR statement completes execution, two
additional tables are created for the event monitor myacts:

ACTIVITYSTMT_myacts
ACTIVITYVALS_myacts

The next time the event monitor is activated, these tables are populated with data
from their corresponding logical data groups.

Chapter 28. Interfaces for database monitoring 455

Remember: If you add new logical data groups to an event monitor, any data that
existed for the logical data groups that were originally part of the table will not
have any corresponding rows in the tables for the newly added logical group.
Adjust your queries as needed, or consider pruning old data from the table after
adding the logical groups.

Example

A database administrator creates a locking event monitor called mylocks by using
the following SQL statement:
CREATE EVENT MONITOR mylocks FOR LOCKING WRITE TO TABLE LOCK, LOCK_PARTICIPANTS

This statement collects information for monitor elements in the lock and
lock_participants logical data groups. The tables to which the monitor element data
is written are created with the default table names LOCK_MYLOCKS and
LOCK_PARTICIPANTS_MYLOCKS.

Later on, the database administrator decides that she wants to collect information
in the LOCK_PARTICIPANT_ACTIVITIES logical data group. She uses the
following statement to modify the event monitor:
ALTER EVENT MONITOR mylocks ADD LOGICAL GROUP LOCK_PARTICIPANT_ACTIVITIES

This statement causes the monitor elements in the lock_participant_activities to be
collected in addition to the other elements that already were collected. This new
set of monitor elements are written to the table
LOCK_PARTICIPANT_ACTIVITIES_MYLOCKS.

Later, the database administrator decides that she also needs the data from the
control logical data group. However, she wants this data to be written to a table
with a name other than the default name, and to a table space other than the
default table space. She uses the following statement:
ALTER EVENT MONITOR mylocks ADD LOGICAL GROUP CONTROL TABLE ctl_mylocks IN mytbsp3

This statement adds the control logical data group to the output of the event
monitor. This statement adds the control logical data group to the output of the
event monitor. The data is written to the CTL_MYLOCKS table, and the table is
written to the table space mytbsp3, instead of the default table space.

Reports generated using the MONREPORT module
The MONREPORT module generates text reports of monitoring data that you can
use to troubleshoot SQL performance problems.

You can generate the following reports using the MONREPORT module:

Table 84. List of reports generated using the MONREPORT module
Report Name Procedure to create report Main data source / table functions

Summary report MONREPORT.DBSUMMARY MON_GET_SERVICE_SUBCLASS and selected details from
MON_GET_CONNECTION and MON_GET_WORKLOAD

Connection
report

MONREPORT.CONNECTION MON_GET_CONNECTION

Current
Applications
report

MONREPORT.CURRENTAPPS Includes fields from MON_GET_CONNECTION,
MON_GET_UNIT_OF_WORK, WLM_GET_SERVICE_CLASS_AGENTS,
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

Current SQL
report

MONREPORT.CURRENTSQL MON_GET_PKG_CACHE_STMT (For the executable_id obtained from the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function.)

Package Cache
report

MONREPORT.PKGCACHE MON_GET_PKG_CACHE_STMT

456 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 84. List of reports generated using the MONREPORT module (continued)
Report Name Procedure to create report Main data source / table functions

Current Lock
Wait report

MONREPORT.LOCKWAIT Most data from MON_GET_APPL_LOCKWAIT; additional data from
MON_GET_CONNECTION, WLM_GET_SERVICE_CLASS_AGENTS,
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES,
MON_GET_PKG_CACHE_STMT, MON_GET_TABLE

Most reports start with a summary section that provides one line of key
information for each item in the report. For example, the Connection report
contains a one-line summary of each connection. The main body of the report
consists of a detailed section for each item in the summary.

Each metric in the report is labeled with the underlying monitor element name (for
example: CLIENT_IDLE_WAIT_TIME = 44). To determine what the metric
represents, search the Information Center for the monitor element name.

You can customize the reports generated by the MONREPORT module. The
MONREPORT module is implemented entirely using SQL and you can obtain the
module code from the database catalog and create a customized version.

Reports for initial diagnosis

An important use of these reports is to troubleshoot SQL performance slowdowns.
Each report is designed to answer certain diagnosis questions. Some reports
support initial diagnosis, while others support subsequent detailed diagnosis of
particular types of problems.

Initial diagnosis involves:
v Determining the problem category, by narrowing the problem down to the

aspect or stage of processing that has slowed down.
v Identifying the SQL statements involved in the problem and collecting

information about the SQL statements for further analysis.

Table 85. MONREPORT module reports suitable for initial diagnosis

Procedure name Information provided and usage

MONREPORT.DBSUMMARY

Part 1: System Performance

Part 1 of the Summary report provides monitor data for
most aspects of processing aggregated across the entire
database.

This information is useful for answering questions about
the aspect or stage of processing that has slowed down.
For example:

v Is the problem inside or outside the data server?

v Is there a computing resource bottleneck?

v Are requests in a wait state? If so, for what resource?

v Is the slowdown located in a particular data server
processing component?

Chapter 28. Interfaces for database monitoring 457

Table 85. MONREPORT module reports suitable for initial diagnosis (continued)

Procedure name Information provided and usage

MONREPORT.DBSUMMARY

Part 2: Application
Performance

Part 2 of the Summary report provides key performance
indicators for each connection, workload, and service class.

This information is useful for answering questions about
the scope of application requests involved in the
slowdown. For example:

v Is this slowdown a general system slowdown that
affects much or all the workload?

v Is this slowdown limited to SQL statements issued from
a particular source such as particular connections, DB2
workloads or DB2 service classes?

MONREPORT.DBSUMMARY

Part 3: Member level
information

Part 3 of the Summary report provides key performance
indicators for each member.

This information is useful for determining whether the
slowdown is isolated to one or a few members.

MONREPORT.CURRENTSQL The current SQL report provides information about
statements that are currently running, in the form of
several lists of the top N activities. The statements are
ranked by different metrics: processing resource, rows
processed, direct reads and direct writes.

This information is useful for determining whether the
slowdown is isolated to one or a few SQL statements. If
the slowdown is isolated to one or a few SQL statements,
those statements are likely to appear in this report of top
statements.

MONREPORT.PKGCACHE The package cache report provides information about
statements that have run recently and are stored in the
package cache. This report shows several summaries, each
listing the top N activities. The activities are ranked by the
following monitor elements:

v CPU

v wait time

v rows processed

v num_coord_exec_with_metrics - Number of executions
by coordinator agent with metrics monitor element (if
no member was specified) or num_exec_with_metrics -
Number of executions with metrics collected monitor
element (if a member was specified)

v I/O wait time

This report contains a summary for each of these metrics
as well as a report for each execution.

This information is useful for determining whether the
slowdown is isolated to one or a few SQL statements. If
so, those statements are likely to appear at the top in this
report. The information per execution can help identify the
most costly statements while the information summed
across executions can help identify statements with the
most impact on the system cumulatively considering both
the statement cost and frequency of execution.

458 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 85. MONREPORT module reports suitable for initial diagnosis (continued)

Procedure name Information provided and usage

MONREPORT.CURRENTAPPS The current applications report show the current
processing state for units of work, agents, and activities.
The report starts with a summary section showing the
number of current connections and activities, as well as a
series of summaries, such as the summary of current units
of work by workload occurrence state. The body of the
report consists of one section for each connection that
provides the details of the connection.

This information is useful for viewing all the work
currently running on the system. This allows you to check
for patterns that might identify the problem category.

Reports for detailed diagnosis

After completing the initial diagnosis, you might need to pursue a specialized or
detailed set of troubleshooting analyses for the problem category you identified
during the initial diagnosis phase.

Table 86. MONREPORT module reports suitable for detailed diagnosis

Procedure name Information provided and usage

MONREPORT.CONNECTION If the MONREPORT.DBSUMMARY report showed that the
slowdown is limited to SQL statements issued from a
particular connection, then you can view detailed
information about the affected connection.

This report contains the same metrics as Part 1 of the
MONREPORT.DBSUMMARY report, but it presents this
information for each connection.

MONREPORT.LOCKWAIT If the reports viewed during the initial diagnosis suggest
there is a lock wait problem, then you can view detailed
information about each lock wait currently in progress.

This information includes lock holder and lock requester
details, as well as characteristics of the lock held and the
lock requested.

Chapter 28. Interfaces for database monitoring 459

460 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 29. Monitoring DB2 workload management
environments

The third domain of workload management is monitoring, which must be
performed on an ongoing basis.

The primary purpose of monitoring is to validate the health and efficiency of your
system and the individual workloads running on it. Using table functions, you can
access real-time operational data such as a list of running workload occurrences
and the activities running in a service class or average response times. Using event
monitors you can capture detailed activity information and aggregate activity
statistics for historical analysis.

Looking at aggregate information should usually be the first step when you build
a monitoring strategy. Aggregates give a good picture of overall data server
activity and are also cheaper because you do not have to collect information on
every activity in which you might be interested. You can collect more detailed
information as you understand the scope of your monitoring needs.

Typical monitoring tasks you can perform are:
v Analyzing the workload on your system to help design your initial DB2

workload management configuration.
v Tracking and investigating the behavior of your system by obtaining types of

operational information that permit you to:
– Analyze system performance degradation
– Diagnose activities that are taking too long to complete
– Investigate agent contention
– Isolate poorly performing queries

Information is available for activities, service classes, workloads, work classes,
threshold queues, and threshold violations.

v Exercising control over the execution environment by canceling queued activities
that you expect will cause problems or cancel running activities that you have
diagnosed as negatively impacting the system.

Real-time monitoring with table functions
Real-time monitoring data includes information about work currently running on
the system, statistics, and metrics for work that has been performed on the system
that can help you to determine usage patterns and resource allocation and identify
problem areas. You use DB2 table functions to obtain this operational information.

Table functions with names that begin with WLM_ are DB2 workload management
table functions. These table functions provide access to a set of data relevant to
managing your workload, such as workload management statistics, as a virtual
DB2 table against which you can issue a SELECT statement. This enables you to
write applications to query data and analyze it as if it were in a physical table on
the data server. The DB2 workload management table functions are qualified with
the SYSPROC schema name.

© Copyright IBM Corp. 2014 461

Table functions with names that begin with MON_ are monitoring metrics
functions. Monitoring metrics provide monitoring data about the health of and
query performance on your DB2 data server, which can then be used as input to a
3rd party tool or in conjunction with additional scripting you provide to analyze
the metrics returned. Only those monitoring metrics functions that are relevant for
DB2 workload management are included here. The monitor metrics table functions
are similar to the workload management statistics table functions. Both return
elements describing work that has taken place on the system. The key differences
between these monitoring metrics table functions and the DB2 workload
management table functions are:
v The DB2 workload management table functions provide data that is more

statistical in nature, such as computed values like averages, high watermarks,
standard deviations, etc. In contrast, the monitoring metrics table functions
provide a much more complete set of raw monitoring data.

v The data reported by the DB2 statistics functions is reset when data is sent to a
statistics event monitor. This resetting of data is necessary to make values such
as high watermarks meaningful over a specific collection interval. Data reported
by the monitoring metrics functions is also captured by a statistics event
monitor, but is never reset. The data reported by monitoring interfaces
accumulates from the time a database is activated until the time it is deactivated.

Statistical information

General statistical information is also available for a number of different objects.
You can use this statistical information for a number of different purposes, such as
for verifying that changes to your DB2 workload management configuration have
had the expected effect. If you create a new work class to classify READ activities,
for example, you can verify that READ activities are being classified under the
new work class correctly. You can also use table functions to quickly recognize
certain problems with the system. For example, you can use table functions to
determine an acceptable value for the average activity lifetime and recognize when
this value exceeds its usual range, possibly indicating a problem that requires
further investigation.

Statistics are useful only if the time period during which they are collected is
meaningful. Collecting statistics over a very long time, and for any length of time
using the WLM_COLLECT_STATS stored procedure, might be less useful if it
becomes difficult to identify changes to trends or problem areas because there is
too much old data. Thus, you can reset statistics at any time.

Because of the default workload and default user service classes, monitoring
capabilities exist from the moment that you install the DB2 data server. These can
help you to start identifying sources of activities that you can use to create
workloads and the service classes to which you can assign them.

Example: Using DB2 workload management table functions
A large amount of data is available through DB2 workload management real-time
monitoring. The example in this topic shows how you might start using the
information.

In this situation, only the default workload and service class are in place. Use this
example to understand how you can use the table functions to understand what,
exactly, is running on the data server. Follow these steps:
1. Use the Service Superclass Statistics table function to show all of the service

superclasses. After you install or upgrade to DB2 9.5 or later, three default

462 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

superclasses are defined: one for maintenance activities, one for system
activities, and one for user activities. SYSDEFAULTUSERCLASS is the service
class of interest.
SELECT VARCHAR(SERVICE_SUPERCLASS_NAME,30) AS SUPERCLASS

FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS(’’,-1)) AS T

SUPERCLASS

SYSDEFAULTSYSTEMCLASS
SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTUSERCLASS

3 record(s) selected.

2. Use the Service Subclass Statistics table function to show statistics for all the
service subclasses of the SYSDEFAULTUSERCLASS superclass. For each service
subclass you can see the current volume of requests that are being processed,
the number of activities that have completed execution, and the overall
distribution of activities across members (possibly indicating a problem if the
distribution is uneven). You can optionally obtain additional statistics including
the average lifetime for activities, the average amount of time activities spend
queued, and so on. You can obtain optional statistics for a service subclass by
specifying the COLLECT AGGREGATE ACTIVITY DATA keyword on the
ALTER SERVICE CLASS statement to enable aggregate activity statistics
collection.
SELECT VARCHAR(SERVICE_SUPERCLASS_NAME, 20) AS SUPERCLASS,

VARCHAR(SERVICE_SUBCLASS_NAME, 20) AS SUBCLASS,
COORD_ACT_COMPLETED_TOTAL,
COORD_ACT_ABORTED_TOTAL,
COORD_ACT_REJECTED_TOTAL,
CONCURRENT_ACT_TOP

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(
’SYSDEFAULTUSERCLASS’, ’SYSDEFAULTSUBCLASS’, -1))
AS T

SUPERCLASS SUBCLASS COORD_ACT_COMPLETED_TOTAL COORD_ACT_ABORTED_TOTAL COORD_ACT_REJECTED_TOTAL CONCURRENT_ACT_TOP
-------------------- -------------------- ------------------------- ----------------------- ------------------------ ------------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 0 1

1 record(s) selected.

3. For a given service subclass, use the Workload Occurrence Information table
function to list the occurrences of a workload that are mapped to the service
subclass. The table function displays all of the connection attributes, which you
can use to identify the source of the activities. This information can be quite
useful in determining custom workload definitions in the future. For example,
perhaps a specific workload occurrence listed here has a large volume of work
from an application as shown by the activities completed counter.
SELECT APPLICATION_HANDLE,

VARCHAR(WORKLOAD_NAME, 30) AS WORKLOAD,
VARCHAR(SESSION_AUTH_ID, 20) AS SESSION_AUTH_ID,
VARCHAR(APPLICATION_NAME, 20) AS APPL_NAME

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(
’SYSDEFAULTUSERCLASS’, ’SYSDEFAULTSUBCLASS’, -1))
AS T

APPLICATION_HANDLE WORKLOAD SESSION_AUTH_ID APPL_NAME
-------------------- ------------------------------ -------------------- --------------------

431 SYSDEFAULTUSERWORKLOAD SWALKTY db2bp

1 record(s) selected.

a. For that application, use the Workload Occurrence Activities Information
table function to show the current activities across database members that

Chapter 29. Monitoring and intervention 463

were created from the application's connection. You can use this information
for a number of purposes, including identifying activities that might be
causing problems on the data server.
SELECT APPLICATION_HANDLE,

LOCAL_START_TIME,
UOW_ID,
ACTIVITY_ID,
ACTIVITY_TYPE

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(431,-1)) AS T
APPLICATION_HANDLE LOCAL_START_TIME UOW_ID ACTIVITY_ID ACTIVITY_TYPE
-------------------- -------------------------- ----------- ----------- --------------------------------

431 2008-06-17-12.49.46.854259 11 1 READ_DML

1 record(s) selected

b. For each activity, retrieve more detailed information by using the Activity
Details table function. The data might show that some SQL statements are
returning huge numbers of rows, that some activities have been idle for a
long time, or that some queries are running that have an extremely large
estimated cost. In situations such as these, it might make sense to define
some thresholds to identify and prevent potentially damaging behavior in
the future.
SELECT VARCHAR(NAME, 20) AS NAME,

VARCHAR(VALUE, 40) AS VALUE
FROM TABLE(WLM_GET_ACTIVITY_DETAILS(431,11,1,-1))

AS T WHERE NAME IN (’UOW_ID’, ’ACTIVITY_ID’, ’STMT_TEXT’)

NAME VALUE
-------------------- --
UOW_ID 1
ACTIVITY_ID 1
STMT_TEXT select * from syscat.tables

3 record(s) selected.

Example: Monitoring current system behavior at different
levels

DB2 workload management provides a number of table functions that you can use
to obtain data about your workload management configuration.

Installing DB2 Version 9.5 or later creates a set of default workloads and service
classes. Before deciding how to implement your own DB2 workload management
solution, you can use the table functions to observe work being performed in the
system in terms of the default workload occurrences, service classes, and activities.

You can start by obtaining the list of workload occurrences in a service class. To do
this, use the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table
function. In the following example, an empty string is passed for
service_superclass_name and service_subclass_name, and -2 (a wildcard character) is
passed for member:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(COORD_MEMBER),1,4) AS COORDMEMB,
SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,
SUBSTR(CHAR(WORKLOAD_NAME),1,22) AS WORKLOAD_NAME,
SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, -2)) AS SCINFO
ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, MEMB, APPHNDL, WORKLOAD_NAME, WLO_ID

464 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Assume that the system has four database members and that there are two
applications performing activities on the database when you issue the query. The
results would resemble the following ones:
SUPERCLASS_NAME SUBCLASS_NAME MEMB COORDMEMB APPHNDL WORKLOAD_NAME WLO_ID
------------------- ------------------ ---- --------- ------- -----------------------------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 1 SYSDEFAULTUSERWORKLOAD 1
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 2 SYSDEFAULTUSERWORKLOAD 2

The results indicate that both workload occurrences were assigned to the
SYSDEFAULTUSERWORKLOAD workload. The results also show that both
workload occurrences were assigned to the SYSDEFAULTSUBCLASS service
subclass in the SYSDEFAULTUSERCLASS service superclass and that both
workload occurrences are from the same coordinator member (member 0).

Next, you can also use the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function again
to determine the connection attributes of the two workload occurrences:
SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,

SUBSTR(CHAR(WORKLOAD_NAME),1,22) AS WORKLOAD_NAME,
SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID,
SUBSTR(CHAR(SYSTEM_AUTH_ID),1,9) AS SYSAUTHID,
SUBSTR(CHAR(APPLICATION_NAME),1,15) AS APPLNAME

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, 0)) AS SCINFO
ORDER BY APPHNDL, WORKLOAD_NAME, WLO_ID

APPHNDL WORKLOAD_NAME WLO_ID SYSAUTHID APPLNAME
------- ---------------------- ------ --------- ---------------
1 SYSDEFAULTUSERWORKLOAD 1 LYNN accountspay
2 SYSDEFAULTUSERWORKLOAD 2 KATE businessobjects

Then, you can use the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES
table function to show the current activities of one of the workload occurrences:
SELECT SUBSTR(CHAR(COORD_MEMBER),1,5) AS COORD,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,
SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,
SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,
SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,
SUBSTR(ACTIVITY_TYPE,1,9) AS ACTTYPE,
SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(1, -2)) AS WLOACTS
ORDER BY MEMB, UOWID, ACTID

COORD MEMB UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING
----- ---- ----- ----- -------- -------- -------- -------
0 0 1 3 - - CALL 0
0 0 1 5 1 3 READ_DML 1
0 1 1 5 - - READ_DML 1
0 2 1 5 - - READ_DML 1
0 3 1 5 - - READ_DML 1

The query results show that workload occurrence 1 is running two activities. One
activity is a stored procedure (indicated by the activity type of CALL), and the
other activity is a DML activity that performs a read (for example, a SELECT
statement). The DML activity is nested in the stored procedure call. You can tell
that the DML activity is nested because the parent unit of work identifier and
parent activity identifier of the DML activity match the unit of work identifier and
the activity identifier of the CALL activity. You can also tell that the DML activity
is executing on database members 0, 1, 2, and 3. The parent identifier information
is available only on the coordinator member.

Chapter 29. Monitoring and intervention 465

You can obtain more information about an individual activity that is currently
running by using the MON_GET_ACTIVITY_DETAILS table function. This table
function returns an XML document where the elements in the document describe
the activity. In this example, the XMLTABLE function is used to return a result
table from the XML output.
SELECT D.APP_HANDLE,

D.MEMBER,
D.COORD_MEMBER,
D.LOCAL_START_TIME,
D.UOW_ID,
D.ACTIVITY_ID,
D.PARENT_UOW_ID,
D.PARENT_ACTIVITY_ID,
D.ACTIVITY_TYPE,
D.NESTING_LEVEL,
D.INVOCATION_ID,
D.ROUTINE_ID

FROM TABLE(MON_GET_ACTIVITY_DETAILS(65592, 1, 1, -2)) AS ACTDETAILS,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),

’$details/db2_activity_details’ PASSING XMLPARSE(DOCUMENT
ACTDETAILS.DETAILS) as "details"

COLUMNS "APP_HANDLE" BIGINT PATH ’application_handle’,
"MEMBER" BIGINT PATH ’member’,
"COORD_MEMBER" BIGINT PATH ’coord_member’,
"LOCAL_START_TIME" VARCHAR(26) PATH ’local_start_time’,
"UOW_ID" BIGINT PATH ’uow_id’,
"ACTIVITY_ID" BIGINT PATH ’activity_id’,
"PARENT_UOW_ID" BIGINT PATH ’parent_uow_id’,
"PARENT_ACTIVITY_ID" BIGINT PATH ’parent_activity_id’,
"ACTIVITY_TYPE" VARCHAR(10) PATH ’activity_type’,
"NESTING_LEVEL" BIGINT PATH ’nesting_level’,
"INVOCATION_ID" BIGINT PATH ’invocation_id’,
"ROUTINE_ID" BIGINT PATH ’routine_id’

) AS D;

APP_HANDLE MEMBER COORD_MEMBER LOCAL_START_TIME UOW_ID ACTIVITY_ID
---------- ------ ------------ --------------------------- ------ -----------
65592 1 1 2009-04-07-18.39.42.549197 1 1
65592 0 1 2009-04-07-18.39.42.552763 1 1
PARENT_UOW_ID PARENT_ACTIVITY_ID ACTIVITY_TYPE NESTING_LEVEL INVOCATION_ID ROUTINE_ID
------------- ------------------ ------------- ------------- ------------- ----------
- - READ_DML 0 0 0
- - READ_DML 0 0 0

2 record(s) selected.

Note: The query results have been divided in two parts for readability purposes.

The table functions mentioned previously provide a high-level description of work
that is running in the system. The information that these table functions provide
regarding the status of the work is limited to an activity state such as
EXECUTING. If you want to probe further to discover what exactly is occurring in
a service class at a point in time, you can run the
WLM_GET_SERVICE_CLASS_AGENTS table function.

In the following example, WLM_GET_SERVICE_CLASS_AGENTS is called by
passing 1 for application_handle and -2 (a wildcard character) for member:
SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,

SUBSTR(CHAR(MEMBER),1,4) AS MEMB,
SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,
SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,
SUBSTR(AGENT_STATE,1,10) AS AGENTSTATE,
SUBSTR(REQUEST_TYPE,1,14) AS REQTYPE,
SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,
SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

466 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, 1, -2)) AS SCDETAILS
ORDER BY APPHANDLE, MEMB, AGENT_TID

APPHANDLE MEMB AGENT_TID AGENTTYPE AGENTSTATE REQTYPE UOW_ID ACT_ID
--------- ---- --------- ----------- ---------- --------------------------
1 0 3 COORDINATOR ACTIVE FETCH 1 5
1 0 4 PDBSUBAGENT ACTIVE SUBSECTION:1 1 5
1 1 2 PDBSUBAGENT ACTIVE SUBSECTION:2 1 5

The results show a coordinator agent and a subagent on member 0 and a subagent
on member 1 operating on behalf of an activity with a unit of work identifier of 1
and an activity identifier of 5. The coordinator agent information indicates that the
request is a fetch request.

Historical monitoring with WLM event monitors
DB2 workload management uses event monitors to capture information that might
be of use in the future or for historical analysis.

Three event monitors are available for you to use. Each event monitor serves a
different purpose:

Activity event monitor
This monitor captures information about individual activities in a service
class, workload, or work class or activities that violated a threshold. The
amount of data that is captured for each activity is configurable and
should be considered when you determine the amount of disk space and
the length of time required to keep the monitor data. A common use for
activity data is to use it as input to tools such as db2advis or to use access
plans (from the explain utility) to help determine table, column, and index
usage for a set of queries.

You can collect information about an activity by specifying COLLECT
ACTIVITY DATA for the service class, workload, or work action to which
such an activity belongs or a threshold that might be violated by such an
activity. The information is collected when the activity completes,
regardless of whether the activity completes successfully.

Note that if an activities event monitor is active when the database
deactivates, any backlogged activity records in the queue are discarded. To
ensure that you obtain all activities event monitor records and that none
are discarded, explicitly deactivate the activities event monitor first before
deactivating the database. When an activities event monitor is explicitly
deactivated, all backlogged activity records in the queue are processed
before the event monitor deactivates.

Threshold violations event monitor
This monitor captures information when a threshold is violated. It
indicates what threshold was violated, the activity that caused the
violation, and what action was taken when it occurred.

If you specify COLLECT ACTIVITY DATA for the threshold and an
activities event monitor is created and active, information is also collected
about activities that violate the threshold, but this information is collected
when the activity ends (either successfully or unsuccessfully).

You can obtain details about a threshold by querying the
SYSCAT.THRESHOLDS view.

Statistics event monitor
This monitor serves as a low-overhead alternative to capturing detailed

Chapter 29. Monitoring and intervention 467

activity information by collecting aggregate data (for example, the number
of activities completed and average execution time). Aggregate data
includes histograms for a number of activity measurements including
lifetime, queue time, execution time and estimated cost. You can use
histograms to understand the distribution of values, identify outliers, and
compute additional statistics such as averages and standard deviations. For
example, histograms can help you understand the variation in lifetime that
users experience. The average life time alone does not reflect what a user
experiences if there is a high degree of variability.See “Collecting workload
management statistics using a statistics event monitor” for a description of
how to send statistics to the event monitor.

The following figure shows the different monitoring options available to access
workload information: table functions to access real-time statistics, and activity
details and historical information captured as efficient aggregates or as details
about individual activities:

468 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Unlike statement, connection, and transaction event monitors, the activity, statistics,
and threshold violations event monitors do not have event conditions (that is,
conditions specified on the WHERE keyword of the CREATE EVENT MONITOR
statement). Instead, these event monitors rely on the attributes of service classes,
workloads, work classes, and thresholds to determine whether these objects send
their activity information or aggregate information to these monitors.

Service
superclass 1

System
requests

User
requests

User
requests

User
requests

User
requests

User
requests

Workload A

Default system
class

Activity
information

Aggregate activity
information

Service
subclass B

Default user
class

Workload D

Workload B

Workload C

Data server

SQL using table
functions

Service
subclass A

Default user
workload

Legend

Monitoring interface

Maintenance
requests

Default
maintenance
class

Figure 39. Workload management with monitoring

Chapter 29. Monitoring and intervention 469

Typically, event monitors write data to either tables or files. You need to prune
these tables or files periodically because they are not automatically pruned.

You can use the wlmevmon.ddl script in the sqllib/misc directory to create and
enable three event monitors called DB2ACTIVITIES, DB2STATISTICS, and
DB2THRESHOLDVIOLATIONS. If necessary, modify the script to change the table space
or other parameters.

Example

Example: Identify queries with a large estimated cost using the statistics event
monitor: You suspect that your database workload occasionally includes large,
expensive queries, possibly due to the poor optimization of the queries themselves.
You want to identify these queries so that you can prevent them from consuming
excessive resources on your system, with a long-term goal of perhaps rewriting
some of the queries to improve performance. The statistics event monitor provides
you with a low-overhead way to measure the estimated cost of your queries which
you can then use to determine what the maximum acceptable estimated cost for a
query on your data server should be. A query that is poorly optimized is typically
distinguished by a large estimated cost that is many times larger than the
estimated cost of most other queries.

To get started, you need to create and activate a statistics event monitor and to
start collecting extended aggregate activity data for the service class where the
queries run:
CREATE EVENT MONITOR DB2STATISTICS

FOR STATISTICS WRITE TO TABLE

SET EVENT MONITOR DB2STATISTICS STATE 1

In this example, all queries run in the SYSDEFAULTSUBCLASS subclass of the
SYSDEFAULTUSERCLASS service class, which you can alter to collect the required
data:
ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS

COLLECT AGGREGATE ACTIVITY DATA EXTENDED

A full day of work might provide a reasonable approximation of the range of
queries your data server typically processes. At the end of the day, you can copy
the statistics collected from memory to the statistics event monitor by running the
WLM_COLLECT_STATS stored procedure:
CALL WLM_COLLECT_STATS()

Included with the different statistics written to the event monitor tables are the
estimated cost statistics of queries. To see them, you can query the service class
statistics table SCSTATS_DB2STATISTICS:
SELECT STATISTICS_TIMESTAMP,

COORD_ACT_EST_COST_AVG,
COST_ESTIMATE_TOP

FROM SCSTATS_DB2STATISTICS
WHERE SERVICE_SUPERCLASS_NAME = ’SYSDEFAULTUSERCLASS’

AND SERVICE_SUBCLASS_NAME = ’SYSDEFAULTSUBCLASS’

STATISTICS_TIMESTAMP COORD_ACT_EST_COST_AVG COST_ESTIMATE_TOP
-------------------------- ---------------------- --------------------
2008-09-03-09.49.04.455979 169440 13246445

1 record(s) selected.

470 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The output shows that the average query has an estimated cost in the range of
hundreds of thousands of timerons, and that the largest queries have estimated
costs larger than ten million timerons. You can confirm that queries of ten million
or more timerons are outliers by looking at the estimated cost histogram, which
was generated at the same time that the average and high watermarks shown in
the output were written to the event monitor table. You can look at the histogram
by querying the HISTOGRAMBIN_DB2STATISTICS table as follows:
SELECT STATISTICS_TIMESTAMP,

TOP,
NUMBER_IN_BIN

FROM HISTOGRAMBIN_DB2STATISTICS HIST,
SYSCAT.SERVICECLASSES SC

WHERE HIST.SERVICE_CLASS_ID = SC.SERVICECLASSID
AND SC.PARENTSERVICECLASSNAME = ’SYSDEFAULTUSERCLASS’
AND SC.SERVICECLASSNAME = ’SYSDEFAULTSUBCLASS’
AND HISTOGRAM_TYPE = ’COORDACTESTCOST’"

STATISTICS_TIMESTAMP TOP NUMBER_IN_BIN
-------------------------- -------------------- --------------------
2008-09-03-09.49.04.455979 1 0
2008-09-03-09.49.04.455979 2 0
2008-09-03-09.49.04.455979 3 0
2008-09-03-09.49.04.455979 5 0
2008-09-03-09.49.04.455979 8 0
2008-09-03-09.49.04.455979 12 1
2008-09-03-09.49.04.455979 19 0
2008-09-03-09.49.04.455979 29 0
2008-09-03-09.49.04.455979 44 2
2008-09-03-09.49.04.455979 68 5
2008-09-03-09.49.04.455979 103 22
2008-09-03-09.49.04.455979 158 14
2008-09-03-09.49.04.455979 241 54
2008-09-03-09.49.04.455979 369 2
2008-09-03-09.49.04.455979 562 142
2008-09-03-09.49.04.455979 858 21
2008-09-03-09.49.04.455979 1309 123
2008-09-03-09.49.04.455979 1997 512
2008-09-03-09.49.04.455979 3046 643
2008-09-03-09.49.04.455979 4647 201
2008-09-03-09.49.04.455979 7089 875
2008-09-03-09.49.04.455979 10813 1445
2008-09-03-09.49.04.455979 16493 5386
2008-09-03-09.49.04.455979 25157 2409
2008-09-03-09.49.04.455979 38373 8940
2008-09-03-09.49.04.455979 58532 9820
2008-09-03-09.49.04.455979 89280 2149
2008-09-03-09.49.04.455979 136181 798
2008-09-03-09.49.04.455979 207720 2411
2008-09-03-09.49.04.455979 316840 14989
2008-09-03-09.49.04.455979 483283 9831
2008-09-03-09.49.04.455979 737162 1451
2008-09-03-09.49.04.455979 1124409 213
2008-09-03-09.49.04.455979 1715085 24
2008-09-03-09.49.04.455979 2616055 1
2008-09-03-09.49.04.455979 3990325 0
2008-09-03-09.49.04.455979 6086529 0
2008-09-03-09.49.04.455979 9283913 0
2008-09-03-09.49.04.455979 14160950 3
2008-09-03-09.49.04.455979 21600000 0
2008-09-03-09.49.04.455979 -1 0

In the histogram, the value in the number_in_bin column for queries whose top is
greater than 2616055 is zero until top reaches 14160950, where the number_in_bin
becomes 3. These three queries are outliers and can be controlled with an
ESTIMATEDSQLCOST threshold set to trigger if the estimated cost of a query

Chapter 29. Monitoring and intervention 471

exceeds 10 million timerons which you can use to prevent such activities from
executing and to monitor them more closely.

Example: Using the threshold violations event monitor: To control activities of a
certain estimated cost, you want to define an ESTIMATEDSQLCOST threshold on
your workload that applies only to that subset of your total workload exceeding a
certain estimated cost. Having looked at the estimated cost histogram, you
determined that activities with an estimated cost in the range of 0 to under 3
million timerons occur frequently and that activities with an estimated cost over 10
million timerons occur rarely (perhaps only a few times a day and perhaps always
due to some flaw in the query, such as the use of a Cartesian join).

To verify that a threshold of 10 million timerons is effective in stopping those few
activities a day that should not be allowed to run, you can create and activate a
threshold event monitor:
CREATE THRESHOLD TH1

FOR DATABASE ACTIVITIES
ENFORCEMENT DATABASE
WHEN ESTIMATEDSQLCOST > 10000000
STOP EXECUTION

CREATE EVENT MONITOR DB2THRESHOLDVIOLATIONS
FOR THRESHOLD VIOLATIONS
WRITE TO TABLE

SET EVENT MONITOR DB2THRESHOLDVIOLATIONS STATE 1

After the end of the day, you can see what threshold violations occurred by
querying the threshold violations table:
SELECT THRESHOLDID,

SUBSTR(THRESHOLD_PREDICATE, 1, 20) PREDICATE,
TIME_OF_VIOLATION,
THRESHOLD_MAXVALUE,
THRESHOLD_ACTION

FROM THRESHOLDVIOLATIONS_DB2THRESHOLDVIOLATIONS
ORDER BY TIME_OF_VIOLATION, THRESHOLDID

THRESHOLDID PREDICATE TIME_OF_VIOLATION THRESHOLD_MAXVALUE THRESHOLD_ACTION
----------- -------------------- -------------------------- -------------------- ----------------

1 EstimatedSQLCost 2008-09-02-22.39.10.000000 10000000 Stop

1 record(s) selected.

Example: Using the activity event monitor

The previous example showed how you can collect threshold information in an
event monitor table to confirm that activities with a large estimated cost are being
prevented from executing by a threshold. After seeing these threshold violations,
you want to determine what the SQL statement texts producing these large queries
are, so that you can use the explain facility to determine if an index is needed on
the tables being queried.

Collecting this additional information requires creating and activating an activity
event monitor and altering the threshold to turn on activity collection with details:
CREATE EVENT MONITOR DB2ACTIVITIES

FOR ACTIVITIES WRITE TO TABLE

SET EVENT MONITOR DB2ACTIVITIES STATE 1

472 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

ALTER THRESHOLD TH1
WHEN EXCEEDED
COLLECT ACTIVITY DATA WITH DETAILS

When you query the threshold violations table again after another business day
has passed, you can perform a join with the ACTIVITYSTMT_DB2ACTIVITIES
table to see the SQL statement text of any activity that violated the threshold:
SELECT THRESHOLDID,

SUBSTR(THRESHOLD_PREDICATE, 1, 20) PREDICATE,
TIME_OF_VIOLATION,
SUBSTR(STMT_TEXT,1,70) STMT_TEXT

FROM THRESHOLDVIOLATIONS_DB2THRESHOLDVIOLATIONS TV,
ACTIVITYSTMT_DB2ACTIVITIES A

WHERE TV.APPL_ID = A.APPL_ID
AND TV.UOW_ID = A.UOW_ID
AND TV.ACTIVITY_ID = A.ACTIVITY_ID

THRESHOLDID PREDICATE TIME_OF_VIOLATION STMT_TEXT
----------- -------------------- -------------------------- --

1 EstimatedSQLCost 2008-09-02-23.04.49.000000 select count(*) from syscat.tables,syscat.tables,syscat.tables

1 record(s) selected.

DB2 workload management monitoring data
Monitoring data is available from workloads, service subclasses and service
superclasses, work classes, and threshold queues. You can use this data to diagnose
and correct problems and for performance tuning.

Workload monitoring data

The following figure shows the monitoring information that is available for
workloads. You can collect workload statistics and information about activities that
run in the workloads using event monitors. For workloads, you can also obtain
aggregate activity statistics. You can access workload statistics and information
about workload occurrences in real time using table functions.

Service class monitoring data

The following figure shows the monitoring information that is available for service
classes. You can collect statistics for service subclasses and service superclasses. For

SQL using table
functions

Activity
information

Workload
statistics

Workload

Figure 40. Monitoring data that is available for workloads

Chapter 29. Monitoring and intervention 473

service subclasses, you can also obtain aggregate activity and request statistics, and
information about activities that run in the service subclass. You can access service
superclass and service subclass statistics and information about agents running in a
particular service class in real time using table functions.

Work class monitoring data

The following figure shows the monitoring information that is available for work
classes. You can collect work class statistics and information about activities that
are associated with a particular work class. You can access work class statistics in
real time using table functions.

Threshold monitoring data

The following figure shows the monitoring information that is available for
thresholds. You can obtain information about threshold violations, the activities
that caused the threshold violations, and queuing statistics (for queuing
thresholds). You can access queuing threshold statistics in real time using table

Service
superclass

SQL using table
functions

Activity
information

Service superclass
statistics

Service
subclass

Service subclass
statistics

Service
subclass

Figure 41. Monitoring data that is available for service classes

SQL using table
functions

Activity
information

Work class
statistics

Service
subclass

Work class

Figure 42. Monitoring data that is available for work classes

474 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

functions.

DB2 workload management stored procedures
You can use stored procedures for canceling an activity, capturing details about an
activity, resetting the statistics on DB2 workload management objects, and setting
client information at the data server.

The following stored procedures are available for use with DB2 workload
management:

WLM_CANCEL_ACTIVITY(application_handle, uow_id, activity_id)
Use this stored procedure to cancel a running or queued activity. You
identify the activity by its application handle, unit of work identifier, and
activity identifier. You can cancel any type of activity. The application with
the cancelled activity receives the error SQL4725N.

WLM_CAPTURE_ACTIVITY_IN_PROGRESS(application_handle, uow_id,
activity_id)

Use this stored procedure to send information about an individual activity
that is currently executing to the activities event monitor. This stored
procedure sends the information immediately, rather than waiting until the
activity completes.

WLM_COLLECT_STATS()
Use this stored procedure to collect and reset statistics for DB2 workload
management objects. All statistics tracked for service classes, workloads,
threshold queues, and work action sets are sent to the active statistics
event monitor (if one exists) and reset. If there is no active statistics event
monitor, the statistics are only reset, but not collected.

WLM_SET_CLIENT_INFO(client_userid, client_wrkstnname,client_applname,
client_acctstr,client_workload)

Use this procedure to set the client information attributes used at the data
server to record the identity of the application or end-user currently using

Queue statistics

Threshold violation
information

Activity
information

SQL using table
functions

Threshold

Figure 43. Monitoring data that is available for thresholds

Chapter 29. Monitoring and intervention 475

the connection. In cases where middleware exists between applications or
users and your data server, use the WLM_SET_CLIENT_INFO procedure
to set distinguishing connection attributes explicitly.

Workload management table functions and snapshot monitor
integration

You can use DB2 workload management table functions with the snapshot monitor
table functions when performing problem determination or performance tuning.

The DB2 workload management table functions and the snapshot monitor table
functions share the following fields. You can perform joins on these fields to derive
data that you need to perform diagnostic and performance-tuning activities. Note
that, unlike the snapshot table functions, the WLM table functions do not get their
information from the snapshot monitor, so that the information available in the
WLM table functions is not available from the snapshot monitor.

Table 87. Fields shared between the DB2 workload management and snapshot monitor
table functions

Workload management table function field Snapshot monitor table function field

agent_tid agent_pid

application_handle agent_id
agent_id_holding_lock

session_auth_id session_auth_id

member node_number

utility_id utility_id

workload_id workload_id

As an example of a reason to use a join between different table functions, assume
that you want to obtain basic information about all of the utilities running in the
BATCH service superclass. You might issue the following query:
SELECT SUBSTR(UTILITY_TYPE,1,4) TYPE,

UTILITY_PRIORITY PRIORITY,
SUBSTR(UTILITY_DESCRIPTION,1,12) DESCRIPTION,
SUBSTR(UTILITY_DBNAME,1,8) DBNAME,
UTILITY_STATE STATE,
SUBSTR(UTILITY_INVOKER_TYPE,1,7) INVOKER,
SUBSTR(CHAR(WLM.MEMBER),1,4) MEMB,
SUBSTR(CLASSES.PARENTSERVICECLASSNAME,1,19) SUPERCLASS_NAME,
SUBSTR(CLASSES.SERVICECLASSNAME,1,18) SUBCLASS_NAME

FROM SYSIBMADM.SNAPUTIL SNAP,
TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(CAST(NULL AS BIGINT), -2)) WLM,
SYSCAT.SERVICECLASSES CLASSES

WHERE SNAP.UTILITY_ID = WLM.UTILITY_ID
AND WLM.SERVICE_CLASS_ID = CLASSES.SERVICECLASSID
AND CLASSES.SERVICECLASSNAME = ’SYSDEFAULTSUBCLASS’
AND CLASSES.PARENTSERVICECLASSNAME = ’BATCH’

ORDER BY WLM.MEMBER

The output might resemble the following output:
TYPE PRIORITY DESCRIPTION DBNAME STATE INVOKER MEMB SUPERCLASS_NAME SUBCLASS_NAME
---- -------- ------------ ------ ------- ------- ---- --------------- ------------------
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 1 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 1 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 1 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 2 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 2 BATCH SYSDEFAULTSUBCLASS

476 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 2 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 3 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 3 BATCH SYSDEFAULTSUBCLASS
LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 3 BATCH SYSDEFAULTSUBCLASS

Monitoring metrics for DB2 workload management
Monitoring metrics provide data about the health of and query performance on
your DB2 data server, which can then be used as input to a 3rd party tool or in
conjunction with additional scripting you provide to analyze the metrics returned.

Metrics are maintained for a number of DB2 database objects. These metrics reside
in memory and can be viewed in real-time using DB2 monitoring metrics table
functions, or the metrics can be collected and sent to an event monitor where they
can be viewed later for historical analysis.

Monitoring metrics for activities

You can obtain monitoring metrics for activities using:
v The activities event monitor (the ACTIVITYMETRICS table or the

DETAILS_XML column of the ACTIVITY table)
v The MON_GET_ACTIVITY_DETAILS table function

Monitoring metrics for activities are controlled by the mon_act_metrics database
configuration parameter and the COLLECT ACTIVITY METRICS clause on a
workload. Metrics will be collected for an activity, if the database configuration
parameter is set to a value other than NONE or if the activity is submitted by a
connection that is associated with a workload which has a COLLECT ACTIVITY
METRICS setting other than NONE.

You can use workload-level controls to achieve better monitoring granularity, if
you do not want to collect metrics for all activities. If activity metrics collection is
enabled at the database level (enabled by default), then metrics are collected for all
activities, regardless of the setting at the workload level.

See the monitoring documentation for more details.

System-level monitoring metrics

You can obtain system-level monitoring metrics aggregated by service classes and
workloads using:
v The statistics event monitor (the details_xml and metrics monitor elements in

the EVENT_SCSTATS and EVENT_WLSTATS logical data groups or individual
monitor elements in the EVENT_SCMETRICS and EVENT_WLMETRICS logical
data groups)

v The MON_GET_SERVICE_SUBCLASS,
MON_GET_SERVICE_SUBCLASS_DETAILS, MON_GET_WORKLOAD and
MON_GET_WORKLOAD_DETAILS table functions

Monitoring metrics for requests to the data server, including those requests that are
part of an activity, are controlled by the mon_req_metrics database configuration
parameter and the COLLECT REQUEST METRICS clause on a service superclass.
Metrics will be collected for a request, if the database configuration parameter is
set to a value other than NONE or if the request is submitted by a connection that
mapped to a subclass under a superclass which has a COLLECT COLLECT
REQUEST METRICS setting other than NONE.

Chapter 29. Monitoring and intervention 477

You can use service superclass-level controls to achieve better monitoring
granularity, if you do not want to collect metrics for all requests. If request metrics
collection is enabled at the database level (enabled by default), then metrics are
collected for all requests, regardless of the setting at the service superclass level.

See the monitoring documentation for more details.

Monitoring threshold violations
When a DB2 workload manager threshold is violated, a threshold violation record
is written to the active THRESHOLD VIOLATIONS event monitor, if one exists.

About this task

The threshold violation record includes the following information:
v A description of the threshold that was violated (the identifier, maximum value,

and so on).
v An identification of the activity that violated the threshold, including the

identifier of the application that submitted the activity, the unique activity
identifier, and the unit of work identifier.

v The time that the threshold was violated.
v The action that was taken. The action indicates whether the activity that violated

the threshold was permitted to continue or was stopped. If the activity was
stopped, the application that submitted the activity will have received an
SQL4712N error.

When a threshold violation occurs for a threshold that has a REMAP ACTIVITY
action defined for it, a threshold violation record is optional. Whether or not a
threshold violation record is recorded is determined by the NO EVENT MONITOR
RECORD or LOG EVENT MONITOR RECORD clause of your CREATE
THRESHOLD statement.

You can optionally have detailed activity information (including statement text)
written to an active activities event monitor if the threshold violation is caused by
an activity. The activity information is written when the activity completes, not
when the threshold is violated. Specify that activity information should be
collected when a threshold is violated by using the COLLECT ACTIVITY DATA
keyword on either the CREATE or ALTER threshold or work action set statements.

Procedure

To monitor threshold violations:
1. Use the CREATE EVENT MONITOR statement to create an event monitor of

type THRESHOLD VIOLATIONS. For example:
CREATE EVENT MONITOR VIOLATIONS FOR THRESHOLD VIOLATIONS WRITE TO TABLE

2. Use the COMMIT statement to commit your changes.
3. Use the SET EVENT MONITOR STATE statement to activate the event monitor.

Instead of using the SET EVENT MONITOR STATE statement, you can use the
AUTOSTART default for the THRESHOLD VIOLATIONS event monitor to
have it activated the next time that the database is activated. If you want to
define multiple THRESHOLD VIOLATIONS event monitors, you should not
use the AUTOSTART option.

4. Use the COMMIT statement to commit your changes.

478 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note: If you create any thresholds, you should create and activate a threshold
violations event monitor so you can monitor any threshold violations that
occur. A threshold violations event monitor does not have any impact unless
thresholds are violated.

Example

This example shows how you can determine what remappings of a particular
activity occurred as the result of a threshold violation that included a REMAP
ACTIVITY action. To find the activities that were remapped, use a statement like
the following:
SELECT VARCHAR(APPL_ID, 30) AS APPLID,

UOW_ID,
ACTIVITY_ID,
VARCHAR(T.PARENTSERVICECLASSNAME,20) AS SERVICE_SUPERCLASS,
VARCHAR(T.SERVICECLASSNAME,20) AS FROM_SERVICE_SUBCLASS,
VARCHAR(S.SERVICECLASSNAME,20) AS TO_SERVICE_SUBCLASS

FROM THRESHOLDVIOLATIONS_TH1,
SYSCAT.SERVICECLASSES AS T,
SYSCAT.SERVICECLASSES AS S

WHERE SOURCE_SERVICE_CLASS_ID = T.SERVICECLASSID AND
DESTINATION_SERVICE_CLASS_ID = S.SERVICECLASSID AND
THRESHOLD_ACTION = ’REMAP’

ORDER BY APPLID, ACTIVITY_ID, UOW_ID, TIME_OF_VIOLATION ASC;

In this example, two remappings occurred for the activity submitted by the
application with the ID *N0.swalkty.080613140844 which is identified by activity ID
1 and unit of work (UOW) ID 1:

APPLID UOW_ID ACTIVITY_ID SERVICE_SUPERCLASS FROM_SERVICE_SUBCLASS TO_SERVICE_SUBCLASS
------------------------------ ----------- -------------------- -------------------- --------------------- --------------------
*N0.swalkty.080613140844 1 1 WORK HIGH MED
*N0.swalkty.080613140844 1 1 WORK MED LOW

2 record(s) selected.

The output is ordered by the time of threshold violation and shows that the
activity was remapped twice after it started executing. Although not shown in the
output, the initial service subclass the activity was mapped to is likely a high
priority service subclass, typical of a three-tiered configuration that permits shorter
running queries to complete more quickly. Because the activity did not complete
quickly enough in the high priority service subclass, it violated a threshold and
was remapped to a medium priority service subclass, and then remapped again to
a low priority service subclass after a second threshold violation later on.

Collecting data for individual activities
You can use an ACTIVITIES event monitor to collect data for individual activities
that run in your system. The data collected includes items such as statement text
and compilation environment, and can be used to investigate and diagnose
problems, and as input to other tools (for example, the Design Advisor).

About this task

You can collect information about individual activities for service subclasses,
workloads, work classes (through work actions), and threshold violations. You
enable activity collection using the COLLECT ACTIVITY DATA keyword of the
CREATE and ALTER statements for these DB2 workload management objects.
When an activity completes, information about the activity is sent to the active
ACTIVITIES event monitor if:

Chapter 29. Monitoring and intervention 479

v The activity was submitted by an application that is mapped to a workload for
which COLLECT ACTIVITY DATA is specified, or

v The activity runs in a service subclass for which COLLECT ACTIVITY DATA is
specified, or

v The activity has a COLLECT ACTIVITY DATA work action applied to it, or
v The activity violates a threshold that was defined with the COLLECT ACTIVITY

DATA action

You can also use the WLM_SET_CONN_ENV procedure to turn on activity
collection for your own application's connection before executing the user's query,
then execute the user's query, then use WLM_SET_CONN_ENV to turn off activity
collection for your application's own connection. Assuming that you have created
and activated an activity event monitor, the application could look something like
the following:
call WLM_SET_CONN_ENV(cast (NULL as bigint),

’<collectactdata>WITHOUT DETAILS</collectactdata>’)

... execute user's query ...
call WLM_SET_CONN_ENV(cast(NULL as bigint), ’<collectactdata>NONE</collectactdata>’)

The COLLECT ACTIVITY DATA keyword also controls the amount of information
that is sent to the ACTIVITIES event monitor. If the keyword specifies WITH
DETAILS, statement information (such as statement text) is collected. If the
keyword specifies WITH DETAILS AND VALUES, data values are collected as
well.

An activity might have multiple COLLECT ACTIVITY DATA keywords applied to
it. For example, the activity might run in a service subclass for which COLLECT
ACTIVITY DATA is specified, and while executing it might violate a threshold that
has the COLLECT ACTIVITY DATA action. In this situation, the activity is only
collected once. The COLLECT keyword that specifies the largest amount of
information to be collected is applied to the activity. For example, if both
COLLECT ACTIVITY DATA WITHOUT DETAILS and COLLECT ACTIVITY DATA
WITH DETAILS are applied to an activity, the activity is collected with detailed
information.

If the ON ALL DATABASE MEMBERS keywords are used with the COLLECT
ACTIVITY DATA clause, an activity record will be captured on each member
where the activity executes in a multimember database environment. Activity event
monitor records are written when the last agent working on the activity at that
member completes execution. Depending on the sequencing of events in a section,
it is possible for agents to start and stop working on an activity at a member
several times, causing multiple activity records to be captured at that member for
the same query. The total work done by the activity on that member is the
aggregate of the metrics for each record that is captured for the activity on the
member.

Procedure

To enable collection of activities for a given DB2 workload management object:
1. Use the CREATE EVENT MONITOR statement to create an ACTIVITIES event

monitor.
2. Use the COMMIT statement to commit your changes.

480 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

3. Use the SET EVENT MONITOR STATE statement to activate the event monitor.
Instead of using the SET EVENT MONITOR STATE statement, you can use the
AUTOSTART default for the ACTIVITIES event monitor to have it activated the
next time that the database is activated. If you want to define multiple
ACTIVITIES event monitors, you should not use the AUTOSTART option.

4. Use the COMMIT statement to commit your changes.
5. Identify the objects for which you want to collect activities by using the ALTER

SERVICE CLASS, ALTER WORK ACTION SET, ALTER THRESHOLD, or
ALTER WORKLOAD statement and specify the COLLECT ACTIVITY DATA
keywords.

6. Use the COMMIT statement to commit your changes.

Results

Note: Individual activity collection is more expensive than workload management
statistics collection. You should try to set up activity collection to collect as few
activities as possible. For example, if you need to investigate activities submitted
by a specific application, you could isolate that application by creating a workload
or service class specifically for that application, and only enable activity collection
for that workload or service class.

You might not always know in advance that you will want to capture an activity.
For example, you might have a query that is taking a long time to run and you
want to collect information about it for later analysis. In this situation, it is too late
to specify the COLLECT ACTIVITY DATA keyword on the DB2 workload
management objects, because the activity has already entered the system. In this
situation, you can use the WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored
procedure. The WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure
sends information about an executing activity to the active ACTIVITIES event
monitor. You identify the activity to be collected using the application handle, unit
of work identifier, and activity identifier. Information about the activity is
immediately be sent to the ACTIVITIES event monitor when the procedure is
invoked: you do not need to wait for the activity to complete.

Chapter 29. Monitoring and intervention 481

482 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 30. Explain facility

The DB2 explain facility provides detailed information about the access plan that
the optimizer chooses for an SQL or XQuery statement.

The information provided describes the decision criteria that are used to choose the
access plan. The information can also help you to tune the statement or your
instance configuration to improve performance. More specifically, explain
information can help you with the following tasks:
v Understanding how the database manager accesses tables and indexes to satisfy

your query.
v Evaluating your performance-tuning actions. After altering a statement or

making a configuration change, examine the new explain information to
determine how your action has affected performance.

The captured information includes the following information:
v The sequence of operations that were used to process the query
v Cost information
v Predicates and selectivity estimates for each predicate
v Statistics for all objects that were referenced in the SQL or XQuery statement at

the time that the explain information was captured
v Values for host variables, parameter markers, or special registers that were used

to reoptimize the SQL or XQuery statement

The explain facility is invoked by issuing the EXPLAIN statement, which captures
information about the access plan chosen for a specific explainable statement and
writes this information to explain tables. You must create the explain tables prior to
issuing the EXPLAIN statement. You can also set CURRENT EXPLAIN MODE or
CURRENT EXPLAIN SNAPSHOT, special registers that control the behavior of the
explain facility.

For privileges and authorities that are required to use the explain utility, see the
description of the EXPLAIN statement. The EXPLAIN authority can be granted to
an individual who requires access to explain information but not to the data that is
stored in the database. This authority is a subset of the database administrator
authority and has no inherent privilege to access data stored in tables.

To display explain information, you can use a command-line tool. The tool that
you use determines how you set the special registers that control the behavior of
the explain facility. If you expect to perform detailed analysis with one of the
command-line utilities or with custom SQL or XQuery statements against the
explain tables, capture all explain information.

In IBM Data Studio Version 3.1 or later, you can generate a diagram of the current
access plan for an SQL or XPATH statement. For more details, see Diagramming
access plans with Visual Explain.

Tuning SQL statements using the explain facility
The explain facility is used to display the query access plan that was chosen by the
query optimizer to run an SQL statement.

© Copyright IBM Corp. 2014 483

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.visualexplain.data.doc/topics/tvetop.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.visualexplain.data.doc/topics/tvetop.html

It contains extensive details about the relational operations used to run the SQL
statement, such as the plan operators, their arguments, order of execution, and
costs. Because the query access plan is one of the most critical factors in query
performance, it is important to understand explain facility output when diagnosing
query performance problems.

Explain information is typically used to:
v Understand why application performance has changed
v Evaluate performance tuning efforts

Analyzing performance changes

To help you understand the reasons for changes in query performance, perform the
following steps to obtain “before and after” explain information:
1. Capture explain information for the query before you make any changes, and

save the resulting explain tables. Alternatively, you can save output from the
db2exfmt utility. However, having explain information in the explain tables
makes it easy to query them with SQL, and facilitates more sophisticated
analysis. As well, it provides all of the obvious maintenance benefits of having
data in a relational DBMS. The db2exfmt tool can be run at any time.

2. Save or print the current catalog statistics. You can also use the db2look
command to help perform this task. In DB2 Version 9.7, you can collect an
explain snapshot when the explain tables are populated. The explain snapshot
contains all of the relevant statistics at the time that the statement is explained.
The db2exfmt utility will automatically format the statistics that are contained
in the snapshot. This is especially important when using automatic or real-time
statistics collection, because the statistics used for query optimization might not
yet be in the system catalog tables, or they might have changed between the
time that the statement was explained and when the statistics were retrieved
from the system catalog.

3. Save or print the data definition language (DDL) statements, including those
for CREATE TABLE, CREATE VIEW, CREATE INDEX, and CREATE
TABLESPACE. The db2look command will also perform this task.

The information that you collect in this way provides a reference point for future
analysis. For dynamic SQL statements, you can collect this information when you
run your application for the first time. For static SQL statements, you can also
collect this information at bind time. It is especially important to collect this
information before a major system change, such as the installation of a new service
level or DB2 release, or before a significant configuration change, such as adding
or dropping database partitions and redistributing data. This is because these types
of system changes might result in an adverse change to access plans. Although
access plan regression should be a rare occurrence, having this information
available will help you to resolve performance regressions faster. To analyze a
performance change, compare the information that you collected previously with
information about the query and environment that you collect when you start your
analysis.

As a simple example, your analysis might show that an index is no longer being
used as part of an access plan. Using the catalog statistics information displayed by
db2exfmt, you might notice that the number of index levels (NLEVELS column) is
now substantially higher than when the query was first bound to the database.
You might then choose to perform one of the following actions:
v Reorganize the index
v Collect new statistics for your table and indexes

484 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Collect explain information when rebinding your query

After you perform one of these actions, examine the access plan again. If the index
is being used once again, query performance might no longer be a problem. If the
index is still not being used, or if performance is still a problem, try a second
action and examine the results. Repeat these steps until the problem is resolved.

Evaluating performance tuning efforts

You can take a number of actions to help improve query performance, such as
adjusting configuration parameters, adding containers, or collecting fresh catalog
statistics.

After you make a change in any of these areas, you can use the explain facility to
determine the affect, if any, that the change has had on the chosen access plan. For
example, if you add an index or materialized query table (MQT) based on index
guidelines, the explain data can help you to determine whether the index or
materialized query table is actually being used as expected.

Although the explain output provides information that allows you to determine
the access plan that was chosen and its relative cost, the only way to accurately
measure the performance improvement for a query is to use benchmark testing
techniques.

Explain tables and the organization of explain information
An explain instance represents one invocation of the explain facility for one or more
SQL or XQuery statements. The explain information that is captured in one explain
instance includes information about the compilation environment and the access
plan that is chosen to satisfy the SQL or XQuery statement that is being compiled.

For example, an explain instance might consist of any one of the following items:
v All eligible SQL or XQuery statements in one package, for static query

statements. For SQL statements (including those that query XML data), you can
capture explain information for CALL, compound SQL (dynamic), DELETE,
INSERT, MERGE, REFRESH TABLE, SELECT, SELECT INTO, SET INTEGRITY,
UPDATE, VALUES, and VALUES INTO statements. In the case of XQuery
statements, you can obtain explain information for XQUERY db2-fn:xmlcolumn
and XQUERY db2-fn:sqlquery statements.

Note: REFRESH TABLE and SET INTEGRITY statements are compiled only
dynamically.

v One particular SQL statement, for incremental bind SQL statements.
v One particular SQL statement, for dynamic SQL statements.
v Each EXPLAIN statement (dynamic or static).

The explain facility, which you can invoke by issuing the EXPLAIN statement or
by using the section explain interfaces, captures information about the access plan
that is chosen for a specific explainable statement and writes this information to
explain tables. You must create the explain tables before issuing the EXPLAIN
statement. To create the tables, use one of the following methods:
v Run the EXPLAIN.DDL script in the misc subdirectory of the sqllib subdirectory.
v Use the SYSPROC.SYSINSTALLOBJECTS procedure. You can also use this

procedure to drop and validate explain tables.

Chapter 30. Explain facility 485

You can create the tables under a specific schema and table space. You can find an
example in the EXPLAIN.DDL file.

Explain tables can be common to more than one user. You can define tables for one
user and then create aliases pointing to the defined tables for each additional user.
Alternatively, you can define the explain tables under the SYSTOOLS schema. The
explain facility uses the SYSTOOLS schema as the default if no explain tables or
aliases are found under your session ID (for dynamic SQL or XQuery statements)
or under the statement authorization ID (for static SQL or XQuery statements).
Each user sharing common explain tables must hold the INSERT privilege on those
tables.

The following table summarizes the purpose of each explain table.

Table 88. Summary of the explain tables

Table Name Description

ADVISE_INDEX Stores information about recommended indexes.
The table can be populated by the query compiler
or the db2advis command, or you can populate it.
This table is used to get recommended indexes and
to evaluate proposed indexes.

ADVISE_INSTANCE Contains information about db2advis command
execution, including start time. This table contains
one row for each execution of the db2advis
command.

ADVISE_MQT Contains the following information:

v The query that defines each recommended
materialized query table (MQT)

v The column statistics for each MQT, such as
COLSTATS (in XML form) and NUMROWS

v The sampling query to obtain detailed statistics
for each MQT

ADVISE_PARTITION Stores virtual database partitions that are generated
and evaluated by the db2advis command.

ADVISE_TABLE Stores the data definition language (DDL)
statements for table creation, using the final Design
Advisor recommendations for MQTs,
multidimensional clustering tables (MDCs), and
database partitioning.

ADVISE_WORKLOAD Contains a row for each SQL or XQuery statement
in a workload. The db2advis command uses this
table to collect and store workload information.

EXPLAIN_ACTUALS Contains the explain section actuals information.

EXPLAIN_ARGUMENT Contains information about the unique
characteristics of each operator, if any.

EXPLAIN_DIAGNOSTIC Contains an entry for each diagnostic message that
is produced for a particular instance of an explained
statement in the EXPLAIN_STATEMENT table.

EXPLAIN_DIAGNOSTIC_DATA Contains message tokens for diagnostic messages
that are recorded in the EXPLAIN_DIAGNOSTIC
table. The message tokens provide additional
information that is specific to the execution of the
SQL statement that generated the message.

486 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 88. Summary of the explain tables (continued)

Table Name Description

EXPLAIN_INSTANCE Is the main control table for all explain information.
Each row in the explain tables is linked to a unique
row in this table. Basic information about the source
of the SQL or XQuery statements being explained
and environmental information are kept in this
table.

EXPLAIN_OBJECT Identifies the data objects that are required by the
access plan that is generated to satisfy an SQL or
XQuery statement.

EXPLAIN_OPERATOR Contains all of the operators that the query
compiler needs to satisfy an SQL or XQuery
statement.

EXPLAIN_PREDICATE Identifies the predicates that are applied by a
specific operator.

EXPLAIN_STATEMENT Contains the text of the SQL or XQuery statement
for the different levels of explain information. The
SQL or XQuery statement that you issued and the
version that the optimizer uses to choose an access
plan are stored in this table.

When an explain snapshot is requested, additional
explain information is recorded to describe the
access plan that was selected by the query
optimizer. This information is stored in the
SNAPSHOT column of the EXPLAIN_STATEMENT
table.

EXPLAIN_STREAM Represents the input and output data streams
between individual operators and data objects. The
operators are represented in the
EXPLAIN_OPERATOR table. The data objects are
represented in the EXPLAIN_OBJECT table.

OBJECT_METRICS Contains runtime statistics for each object that is
referenced in a specific execution of a section at a
specific time. If object statistics are collected on
multiple members, this table contains a row for
each member on which the object was referenced. If
object statistics are collected for a partitioned object,
this table contains a row for each data partition.

This table contains information only if the activity
event monitor captures section actuals.

Creating the explain tables
A number of steps are required to create explain tables.

About this task

To create explain snapshots, you must ensure that the following explain tables exist
for your user ID:
v EXPLAIN_INSTANCE
v EXPLAIN_STATEMENT

Chapter 30. Explain facility 487

To check if they exist, use the LIST TABLES command.

Procedure

If the explain tables do not exist, you must create them using the following
instructions:
1. If the DB2 database manager has not already been started, issue the db2start

command.
2. From the CLP prompt, connect to the database that you want to use.
3. Create the explain tables by using one of the following methods:

v Call the SYSPROC.SYSINSTALLOBJECTS procedure:
db2 CONNECT TO database-name
db2 CALL SYSPROC.SYSINSTALLOBJECTS(’EXPLAIN’, ’C’,

CAST (NULL AS VARCHAR(128)), CAST (NULL AS VARCHAR(128)))

This call creates the explain tables under the SYSTOOLS schema. To create
them under a different schema, specify a schema name as the last parameter
in the call.

v Run the EXPLAIN.DDL command file:
db2 CONNECT TO database-name
db2 -tf EXPLAIN.DDL

This command file creates explain tables under the current schema. It is at
the DB2PATH\misc directory on Windows operating systems, and the
INSTHOME/sqllib/misc directory on Linux and UNIX operating systems.
DB2PATH is the location where you install your DB2 copy and INSTHOME is the
instance home directory.

Calling the SYSPROC.SYSINSTALLOBJECTS procedure is preferred over using the
EXPLAIN.DDL file since it can automatically adapt to different database
configurations. For example, if BLOCKNONLOGGED parameter is set to yes, then
some statements in EXPLAIN.DDL fail because NOT LOGGED clause is used for LOB
columns. However, if BLOCKNONLOGGED parameter is set to yes then the
SYSPROC.SYSINSTALLOBJECTS procedure automatically avoids the use of NOT
LOGGED clause.

Guidelines for capturing explain information
Explain data can be captured by request when an SQL or XQuery statement is
compiled.

If incremental bind SQL or XQuery statements are compiled at run time, data is
placed in the explain tables at run time, not at bind time. For these statements, the
inserted explain table qualifier and authorization ID are that of the package owner,
not of the user running the package.

Explain information is captured only when an SQL or XQuery statement is
compiled. After initial compilation, dynamic query statements are recompiled
when a change to the environment requires it, or when the explain facility is
active. If you issue the same PREPARE statement for the same query statement, the
query is compiled and explain data is captured every time that this statement is
prepared or executed.

If a package is bound using the REOPT ONCE or REOPT ALWAYS bind option, SQL or
XQuery statements containing host variables, parameter markers, global variables,

488 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

or special registers are compiled, and the access path is created using real values
for these variables if they are known, or default estimates if the values are not
known at compilation time.

If the REOPT ONCE option is used, an attempt is made to match the specified SQL or
XQuery statement with the same statement in the package cache. Values for this
already re-optimized and cached query statement will be used to re-optimize the
specified query statement. If the user has the required access privileges, the explain
tables will contain the newly re-optimized access plan and the values that were
used for re-optimization.

In a multi-partition database system, the statement should be explained on the
same database partition on which it was originally compiled and re-optimized
using REOPT ONCE; otherwise, an error is returned.

Capturing information in the explain tables
v Static or incremental bind SQL and XQuery statements

Specify either EXPLAIN ALL or EXPLAIN YES options on the BIND or the PREP
command, or include a static EXPLAIN statement in the source program.

v Dynamic SQL and XQuery statements
Explain table information is captured in any of the following cases.
– If the CURRENT EXPLAIN MODE special register is set to:

- YES: The SQL and XQuery compiler captures explain data and executes the
query statement.

- EXPLAIN: The SQL and XQuery compiler captures explain data, but does
not execute the query statement.

- RECOMMEND INDEXES: The SQL and XQuery compiler captures explain
data, and recommended indexes are placed in the ADVISE_INDEX table,
but the query statement is not executed.

- EVALUATE INDEXES: The SQL and XQuery compiler uses indexes that
were placed by the user in the ADVISE_INDEX table for evaluation. In this
mode, all dynamic statements are explained as though these virtual indexes
were available. The query compiler then chooses to use the virtual indexes
if they improve the performance of the statements. Otherwise, the indexes
are ignored. To find out if proposed indexes are useful, review the
EXPLAIN results.

- REOPT: The query compiler captures explain data for static or dynamic
SQL or XQuery statements during statement re-optimization at execution
time, when actual values for host variables, parameter markers, global
variables, or special registers are available.

v If the EXPLAIN ALL option has been specified on the BIND or PREP command, the
query compiler captures explain data for dynamic SQL and XQuery statements
at run time, even if the CURRENT EXPLAIN MODE special register is set to
NO.

Capturing explain snapshot information

When an explain snapshot is requested, explain information is stored in the
SNAPSHOT column of the EXPLAIN_STATEMENT table.

Explain snapshot data is captured when an SQL or XQuery statement is compiled
and explain data has been requested, as follows:
v Static or incremental bind SQL and XQuery statements

Chapter 30. Explain facility 489

An explain snapshot is captured when either the EXPLSNAP ALL or the EXPLSNAP
YES clause is specified on the BIND or the PREP command, or when the source
program includes a static EXPLAIN statement that uses a FOR SNAPSHOT or a
WITH SNAPSHOT clause.

v Dynamic SQL and XQuery statements
An explain snapshot is captured in any of the following cases.
– You issue an EXPLAIN statement with a FOR SNAPSHOT or a WITH

SNAPSHOT clause. With the former, only explain snapshot information is
captured; with the latter, all explain information is captured.

– If the CURRENT EXPLAIN SNAPSHOT special register is set to:
- YES: The SQL and XQuery compiler captures explain snapshot data and

executes the query statement.
- EXPLAIN: The SQL and XQuery compiler captures explain snapshot data,

but does not execute the query statement.
– You specify the EXPLSNAP ALL option on the BIND or PREP command. The

query compiler captures explain snapshot data at run time, even if the
CURRENT EXPLAIN SNAPSHOT special register is set to NO.

Creating explain snapshots for dynamic SQL or XQuery
statements

A number of steps are required to create explain snapshots for dynamic SQL or
XQuery statements

Procedure

To create an explain snapshot for a dynamic SQL or XQuery statement:
1. If the database manager has not already been started, issue the db2start

command.
2. Ensure that explain tables exist in your database.

To do this, follow the instructions in “Creating the explain tables” on page 487.
3. From the CLP prompt, connect to the database that you want to use.

For example, to connect to the SAMPLE database, issue the connect to sample
command.

4. Create an explain snapshot for a dynamic SQL or XQuery statement, using
either of the following commands from the CLP prompt:
v To create an explain snapshot without executing the SQL or XQuery

statement, issue the set current explain snapshot=explain command.
v To create an explain snapshot and execute the SQL or XQuery statement,

issue the set current explain snapshot=yes command.
This command sets the explain special register. Once it is set, all subsequent
SQL or XQuery statements are affected. For more information, see the
CURRENT EXPLAIN SNAPSHOT special register and the SET CURRENT
EXPLAIN SNAPSHOT statement.

5. Submit your SQL or XQuery statements from the CLP prompt.
6. Optional: To turn off the snapshot facility, issue the set current explain

snapshot=no command after you submit your SQL or XQuery statements.

490 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Creating explain snapshots for static SQL or XQuery
statements

A number of steps are required create explain snapshots for static SQL or XQuery
statements

Procedure

To create an explain snapshot for a static SQL or XQuery statement:
1. If the database manager has not already been started, issue the db2start

command.
2. Ensure that explain tables exist in your database.

To do this, follow the instructions in “Creating the explain tables” on page 487.
3. From the CLP prompt, connect to the database that you want to use.

For example, to connect to the SAMPLE database, issue the connect to sample
command.

4. Create an explain snapshot for a static SQL or XQuery statement by using the
EXPLSNAP option when binding or preparing your application.
For example, issue the BIND your_file EXPLSNAP YES command.

What to do next

For information about using the EXPLSNAP option see the CURRENT EXPLAIN
SNAPSHOT special register, the BIND and REBIND commands, and the EXPLAIN
statement.

Guidelines for capturing section explain information
The section explain functionality captures (either directly or via tooling) explain
information about a statement using only the contents of the runtime section. The
section explain is similar to the functionality provided by the db2expln command,
but the section explain gives a level of detail approaching that which is provided
by the explain facility.

By explaining a statement using the contents of the runtime section, you can obtain
information and diagnostics about what will actually be run (or was run, if the
section was captured after execution), as opposed to issuing an EXPLAIN
statement which might produce a different access plan (for example, in the case of
dynamic SQL, the statistics might have been updated since the last execution of the
statement resulting in a different access plan being chosen when the EXPLAIN
statement compiles the statement being explained).

The section explain interfaces will populate the explain tables with information
that is similar to what is produced by an EXPLAIN statement. However, there are
some differences. After the data has been written to the explain tables, it may be
processed by any of the existing explain tools you want to use (for example, the
db2exfmt command).

Section explain interfaces

There are four interface procedures, in the following list, that can perform a section
explain. The procedures differ by only the input that is provided (that is, the
means by which the section is located):

EXPLAIN_FROM_ACTIVITY
Takes application ID, activity ID, uow ID, and activity event monitor name

Chapter 30. Explain facility 491

as input. The procedure searches for the section corresponding to this
activity in the activity event monitor (an SQL activity is a specific
execution of a section). A section explain using this interface contains
section actuals because a specific execution of the section is being
performed.

EXPLAIN_FROM_CATALOG
Takes package name, package schema, unique ID, and section number as
input. The procedure searches the catalog tables for the specific section.

EXPLAIN_FROM_DATA
Takes executable ID, section, and statement text as input.

EXPLAIN_FROM_SECTION
Takes executable ID and location as input, where location is specified by
using one of the following:
v In-memory package cache
v Package cache event monitor name

The procedure searches for the section in the given location.

An executable ID uniquely and consistently identifies a section. The executable ID
is an opaque, binary token generated at the data server for each section that has
been executed. The executable ID is used as input to query monitoring data for the
section, and to perform a section explain.

In each case, the procedure performs an explain, using the information contained
in the identified runtime section, and writes the explain information to the explain
tables identified by an explain_schema input parameter. It is the responsibility of the
caller to perform a commit after invoking the procedure.

Differences between section explain and EXPLAIN statement
output

The results obtained after issuing a section explain are similar to those collected
after running the EXPLAIN statement. There are slight differences which are
described per affected explain table and by the implications, if any, to the output
generated by the db2exfmt utility.

The stored procedure output parameters EXPLAIN_REQUESTER, EXPLAIN_TIME,
SOURCE_NAME, SOURCE_SCHEMA, and SOURCE_VERSION comprise the key
used to look up the information for the section in the explain tables. Use these
parameters with any existing explain tools (for example, db2exfmt) to format the
explain information retrieved from the section.

EXPLAIN_INSTANCE table

The following columns are set differently for the row generated by a section
explain:
v EXPLAIN_OPTION is set to value S

v SNAPSHOT_TAKEN is always set to N

v REMARKS is always NULL

EXPLAIN_STATEMENT table

When a section explain has generated an explain output, the EXPLAIN_LEVEL
column is set to value S. It is important to note that the EXPLAIN_LEVEL column

492 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

is part of the primary key of the table and part of the foreign key of most other
EXPLAIN tables; hence, this EXPLAIN_LEVEL value will also be present in those
other tables.

In the EXPLAIN_STATEMENT table, the remaining column values that are usually
associated with a row with EXPLAIN_LEVEL = P, are instead present when
EXPLAIN_LEVEL = S, with the exception of SNAPSHOT. SNAPSHOT is always
NULL when EXPLAIN_LEVEL is S.

If the original statement was not available at the time the section explain was
generated (for example, if the statement text was not provided to the
EXPLAIN_FROM_DATA procedure), STATEMENT_TEXT is set to the string
UNKNOWN when EXPLAIN_LEVEL is set to O.

In the db2exfmt output for a section explain, the following extra line is shown after
the optimized statement:
Explain level: Explain from section

EXPLAIN_OPERATOR table

Considering all of the columns recording a cost, only the TOTAL_COST and
FIRST_ROW_COST columns are populated with a value after a section explain. All
the other columns recording cost have a value of -1.

In the db2exfmt output for a section explain, the following differences are obtained:
v In the access plan graph, the I/O cost is shown as NA

v In the details for each operator, the only costs shown are Cumulative Total Cost
and Cumulative First Row Cost

EXPLAIN_PREDICATE table

No differences.

EXPLAIN_ARGUMENT table

A small number of argument types are not written to the EXPLAIN_ARGUMENT
table when a section explain is issued.

EXPLAIN_STREAM table

The following columns do not have values after a section explain:
v SINGLE_NODE
v PARTITION_COLUMNS
v SEQUENCE_SIZES

The following column always has a value of -1 after a section explain:
v PREDICATE_ID

The following columns will have values only for streams originating from a base
table object or default to no value and -1 respectively after a section explain:
v COLUMN_NAMES
v COLUMN_COUNT

Chapter 30. Explain facility 493

In the db2exfmt output for a section explain, the information from these listed
columns is omitted from the Input Streams and Output Streams section for each
operator when they do not have values, or have a value of -1.

EXPLAIN_OBJECT table

After issuing a section explain, the STATS_SRC column is always set to an empty
string and the CREATE_TIME column is set to NULL.

The following columns always have values of -1 after a section explain:
v COLUMN_COUNT
v WIDTH
v FIRSTKEYCARD
v FIRST2KEYCARD
v FIRST3KEYCARD
v FIRST4KEYCARD
v SEQUENTIAL_PAGES
v DENSITY
v AVERAGE_SEQUENCE_GAP
v AVERAGE_SEQUENCE_FETCH_GAP
v AVERAGE_SEQUENCE_PAGES
v AVERAGE_SEQUENCE_FETCH_PAGES
v AVERAGE_RANDOM_PAGES
v AVERAGE_RANDOM_FETCH_PAGES
v NUMRIDS
v NUMRIDS_DELETED
v NUM_EMPTY_LEAFS
v ACTIVE_BLOCKS
v NUM_DATA_PART

The following columns will also have values of -1 after a section explain for
partitioned objects:
v OVERHEAD
v TRANSFER_RATE
v PREFETCHSIZE

In the db2exfmt output for a section explain, the information from these listed
columns is omitted from the per-table and per-index statistical information found
near the bottom of the output.

Section explain does not include compiler-referenced objects in its output (that is,
rows where OBJECT_TYPE starts with a +). These objects are not shown in the
db2exfmt output.

Capturing and accessing section actuals
Section actuals are runtime statistics collected during the execution of the section
for an access plan. To capture a section with actuals, you use the activity event
monitor. To access the section actuals, you perform a section explain using the
EXPLAIN_FROM_ACTIVITY stored procedure.

494 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To be able to view section actuals, you must perform a section explain on a section
for which section actuals were captured (that is, both the section and the section
actuals are the inputs to the explain facility). Information about enabling,
capturing, and accessing section actuals is provided here.

Enabling section actuals

Section actuals will only be updated at runtime if they have been enabled. Enable
section actuals for the entire database using the section_actuals database
configuration parameter or for a specific application using the
WLM_SET_CONN_ENV procedure.

Section actuals will only be updated at runtime if they have been enabled. Enable
section actuals using the section_actuals database configuration parameter. To
enable section actuals, set the parameter to BASE (the default value is NONE). For
example:
db2 update database configuration using section_actuals base

To enable section actuals for a specific application, use the WLM_SET_CONN_ENV
procedure and specify BASE for the section_actuals element. For example:
CALL WLM_SET_CONN_ENV(NULL,

’<collectactdata>WITH DETAILS, SECTION</collectactdata>
<collectsectionactuals>BASE</collectsectionactuals>
’)

Note:

1. The setting of the section_actuals database configuration parameter that was
in effect at the start of the unit of work is applied to all statements in that unit
of work. When the section_actuals database configuration parameter is
changed dynamically, the new value will not be seen by an application until
the next unit of work.

2. The section_actuals setting specified by the WLM_SET_CONN_ENV procedure for
an application takes effect immediately. Section actuals will be collected for the
next statement issued by the application.

3. Section actuals cannot be enabled if automatic statistics profile generation is
enabled (SQLCODE -5153).

Capturing section actuals

The mechanism for capturing a section, with section actuals, is the activity event
monitor. An activity event monitor writes out details of an activity when the
activity completes execution, if collection of activity information is enabled.
Activity information collection is enabled using the COLLECT ACTIVITY DATA
clause on a workload, service class, threshold, or work action. To specify collection
of a section and actuals (if the latter is enabled), the SECTION option of the
COLLECT ACTIVITY DATA clause is used. For example, the following statement
indicates that any SQL statement, issued by a connection associated with the WL1
workload, will have information (including section and actuals) collected by any
active activity event monitor when the statement completes:
ALTER WORKLOAD WL1 COLLECT ACTIVITY DATA WITH DETAILS,SECTION

In a partitioned database environment, section actuals are captured by an activity
event monitor on all partitions where the activity was executed, if the statement
being executed has a COLLECT ACTIVITY DATA clause applied to it and the
COLLECT ACTIVITY DATA clause specifies both the SECTION keyword and the

Chapter 30. Explain facility 495

ON ALL DATABASE PARTITIONS clause. If the ON ALL DATABASE
PARTITIONS clause is not specified, then actuals are captured on only the
coordinator partition. In addition, besides the COLLECT ACTIVITY DATA clause
on a workload, service class, threshold, or work action, activity collection can be
enabled (for an individual application) using the WLM_SET_CONN_ENV
procedure with a second argument that includes the collectactdata tag with a value
of "WITH DETAILS, SECTION".

Limitations
The limitations, with respect to the capture of section actuals, are the
following:
v Section actuals will not be captured when the

WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure is used to
send information about a currently executing activity to an activity event
monitor. Any activity event monitor record generated by the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure will have
a value of 1 in its partial_record column.

v When a reactive threshold has been violated, section actuals will be
captured on only the coordinator partition.

v Explain tables must be migrated to DB2 Version 9.7 Fix Pack 1, or later,
before section actuals can be accessed using a section explain. If the
explain tables have not been migrated, the section explain will work, but
section actuals information will not be populated in the explain tables.
In this case, an entry will be written to the EXPLAIN_DIAGNOSTIC
table.

v Existing DB2 V9.7 activity event monitor tables (in particular, the activity
table) must be recreated before section actuals data can be captured by
the activity event monitor. If the activity logical group does not contain
the SECTION_ACTUALS column, a section explain may still be
performed using a section captured by the activity event monitor, but
the explain will not contain any section actuals data.

Accessing section actuals

Section actuals can be accessed using the EXPLAIN_FROM_ACTIVITY procedure.
When you perform a section explain on an activity for which section actuals were
captured, the EXPLAIN_ACTUALS explain table will be populated with the
actuals information.

Note: Section actuals are only available when a section explain is performed using
the EXPLAIN_FROM_ACTIVITY procedure.

The EXPLAIN_ACTUALS table is the child table of the existing
EXPLAIN_OPERATOR explain table. When EXPLAIN_FROM_ACTIVITY is
invoked, if the section actuals are available, the EXPLAIN_ACTUALS table will be
populated with the actuals data. If the section actuals are collected on multiple
database partitions, there is one row per database partition for each operator in the
EXPLAIN_ACTUALS table.

Analysis of section actuals information in explain output
Section actuals, when available, are displayed in different parts of the explain
output. Where to find section actuals information, operator details, and object
statistics in explain output is described here.

496 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Section actuals in db2exfmt command graph output

If explain actuals are available, they are displayed in the graph under the
estimated rows. Graph output includes actuals only for operators, not for objects.
NA (not applicable) is displayed for objects in the graph.

An example of graph output from thedb2exfmt command is as follows:
Rows

Rows Actual
RETURN
(1)
Cost
I/O
|

3.21948 << The estimated rows that are used by the optimizer
301 << The actuals rows that are collected in run time
DTQ
(2)
75.3961

NA
|

3.21948
130

HSJOIN
(3)
72.5927

NA
/--+---\

674 260
220 130

TBSCAN TBSCAN
(4) (5)
40.7052 26.447

NA NA
| |
337 130
NA NA << Graph output does not include actuals for objects

TABLE: FF TABLE: FF
T1 T2

In a partitioned database environment, the cardinality that is displayed in the
graph is the average cardinality for the database partitions where the actuals are
collected. The average is displayed because that is the value that is estimated by
the optimizer. The actual average is a meaningful value to compare against the
estimated average. In addition, a breakdown of section actuals per database
partition is provided in the operator details output. You can examine these details
to determine other information, such as total (across all partitions), minimum, and
maximum.

Operator details in db2exfmt command output

The actual cardinality for an operator is displayed in the stream section following
the line containing Estimated number of rows (Actual number of rows in the
explain output). In a partitioned database environment, if the operator is running
on more than one database member, the actual cardinality that is displayed is the
average cardinality for the environment. The values per database partition are
displayed under a separate section, Explain Actuals. This section is shown only
for a partitioned database environment, but not in the serial mode. If the actuals
are not available for a particular database partition, NA is displayed in the list of
values per database partition next to the partition number. Actual number of rows
in the section Output Streams is also shown as NA.

Chapter 30. Explain facility 497

An example of operator details output from the db2exfmt command is as follows:
9) UNION : (Union)

Cumulative Total Cost: 10.6858
Cumulative First Row Cost: 9.6526

Arguments:

UNIONALL: (UnionAll Parameterized Base Table)

DISJOINT

Input Streams:

5) From Operator #10

Estimated number of rows: 30
Actual number of rows: 63
Partition Map ID: 3

7) From Operator #11

Estimated number of rows: 16
Actual number of rows: 99
Partition Map ID: 3

Output Streams:

8) To Operator #8

Estimated number of rows: 30
Actual number of rows: 162
Partition Map ID: 3

Explain Actuals: << This section is shown only show
in a partitioned database environment

DB Partition number Cardinality
------------------- -----------

1 193
2 131

Object statistics in db2exfmt command output

The explain output includes statistics for each object that is used in the access plan.
For partitioned tables and indexes, the statistics are per data partition. In a
partitioned database environment or DB2 pureScale environment, the statistics are
per member. If the statistics are not available for a particular member, NA is
displayed in the values list for that member next to the member number.

The following example shows how object statistics are displayed in the output of
the db2exfmt command:
Runtime statistics for objects Used in Access Plan:

Schema: GOSALES
Name: ORDER_DETAILS
Type: Table

Member 0

Metrics

lock_wait_time:85899

498 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

lock_wait_time_global:25769
lock_waits_local:21474
lock_waits_global:85899
lock_escals_local:17179
lock_escals_global:2
direct_writes:12884
direct_read_reqs:1
pool_data_gbp_invalid_pages:446
pool_data_lbp_pages_found:445
pool_xda_l_reads:446
pool_xda_p_reads:15

Guidelines for using explain information
You can use explain information to understand why application performance has
changed or to evaluate performance tuning efforts.

Analysis of performance changes

To help you understand the reasons for changes in query performance, you need
“before and after” explain information, which you can obtain by performing the
following steps:
1. Capture explain information for the query before you make any changes and

save the resulting explain tables. Alternatively, save output from the db2exfmt
explain tool.

2. Save or print the current catalog statistics. You could use the db2look
productivity tool to help you perform this task.

3. Save or print the data definition language (DDL) statements, including
CREATE TABLE, CREATE VIEW, CREATE INDEX, or CREATE TABLESPACE.

The information that you collect in this way provides a reference point for future
analysis. For dynamic SQL or XQuery statements, you can collect this information
when you run your application for the first time. For static SQL and XQuery
statements, you can collect this information at bind time. To analyze a performance
change, compare the information that you collect with this reference information
that was collected previously.

For example, your analysis might show that an index is no longer being used
when determining an access path. Using the catalog statistics information, you
might notice that the number of index levels (the NLEVELS column) is now
substantially higher than when the query was first bound to the database. You
might then choose to perform one of the following actions:
v Reorganize the index
v Collect new statistics for your table and indexes
v Collect explain information when rebinding your query

After you perform one of these actions, examine the access plan again. If the index
is being used, query performance might no longer be a problem. If the index is still
not being used, or if performance is still a problem, choose another action from
this list and examine the results. Repeat these steps until the problem is resolved.

Evaluation of performance tuning efforts

You can take a number of actions to help improve query performance, such as
updating configuration parameters, adding containers, collecting fresh catalog
statistics, and so on.

Chapter 30. Explain facility 499

After you make a change in any of these areas, use the explain facility to
determine what affect, if any, the change has had on the chosen access plan. For
example, if you add an index or materialized query table (MQT) based on the
index guidelines, the explain data can help you to determine if the index or MQT
is actually being used as expected.

Although the explain output enables you to determine the access plan that was
chosen and its relative cost, the only way to accurately measure the performance
improvement for a specific query is to use benchmark testing techniques.

Guidelines for analyzing explain information
The primary use for explain information is the analysis of access paths for query
statements. There are a number of ways in which analyzing the explain data can
help you to tune your queries and environment.

Consider the following kinds of analysis:
v Index use

The proper indexes can significantly benefit performance. Using explain output,
you can determine whether the indexes that you have created to help a specific
set of queries are being used. Look for index usage in the following areas:
– Join predicates
– Local predicates
– GROUP BY clause
– ORDER BY clause
– WHERE XMLEXISTS clause
– The select list
You can also use the explain facility to evaluate whether a different index or no
index at all might be better. After you create a new index, use the RUNSTATS
command to collect statistics for that index, and then recompile your query.
Over time, you might notice (through explain data) that a table scan is being
used instead of an index scan. This can result from a change in the clustering of
the table data. If the index that was previously being used now has a low cluster
ratio, you might want to:
– Reorganize the table to cluster its data according to that index
– Use the RUNSTATS command to collect statistics for both index and table
– Recompile the query

To determine whether reorganizing the table has improved the access plan,
examine explain output for the recompiled query.

v Access type
Analyze the explain output, and look for data access types that are not usually
optimal for the type of application that you are running. For example:
– Online transaction processing (OLTP) queries

OLTP applications are prime candidates for index scans with range-delimiting
predicates, because they tend to return only a few rows that are qualified by
an equality predicate against a key column. If your OLTP queries are using a
table scan, you might want to analyze the explain data to determine why an
index scan is not being used.

– Browse-only queries
The search criteria for a “browse” type query can be very vague, resulting in
a large number of qualifying rows. If users usually look at only a few screens

500 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

of output data, you might specify that the entire answer set need not be
computed before some results are returned. In this case, the goals of the user
are different than the basic operating principle of the optimizer, which
attempts to minimize resource consumption for the entire query, not just the
first few screens of data.
For example, if the explain output shows that both merge scan join and sort
operators were used in the access plan, the entire answer set will be
materialized in a temporary table before any rows are returned to the
application. In this case, you can attempt to change the access plan by using
the OPTIMIZE FOR clause on the SELECT statement. If you specify this
option, the optimizer can attempt to choose an access plan that does not
produce the entire answer set in a temporary table before returning the first
rows to the application.

v Join methods
If a query joins two tables, check the type of join being used. Joins that involve
more rows, such as those in decision-support queries, usually run faster with a
hash join or a merge join. Joins that involve only a few rows, such as those in
OLTP queries, typically run faster with nested-loop joins. However, there might
be extenuating circumstances in either case-such as the use of local predicates or
indexes-that could change how these typical joins work.

Tools for collecting and analyzing explain information
The DB2 database server has a comprehensive explain facility that provides
detailed information about the access plan that the optimizer chooses for an SQL
or XQuery statement.

The tables that store explain data are accessible on all supported platforms and
contain information for both static and dynamic SQL and XQuery statements.
Several tools are available to give you the flexibility that you need to capture,
display, and analyze explain information.

Detailed query optimizer information that enables the in-depth analysis of an
access plan is stored in explain tables that are separate from the actual access plan
itself. Use one or more of the following methods to get information from the
explain tables:
v Use the db2exfmt tool to display explain information in formatted output.
v Write your own queries against the explain tables. Writing your own queries

enables the easy manipulation of output, comparisons among different queries,
or comparisons among executions of the same query over time.

Use the db2expln tool to see the access plan information that is available for one or
more packages of static SQL or XQuery statements. This utility shows the actual
implementation of the chosen access plan; it does not show optimizer information.
By examining the generated access plan, the db2expln tool provides a relatively
compact, verbal overview of the operations that will occur at run time.

The command line explain tools can be found in the misc subdirectory of the
sqllib directory.

The following table summarizes the different tools that are available with the DB2
explain facility. Use this table to select the tool that is most suitable for your
environment and needs.

Chapter 30. Explain facility 501

Table 89. Explain Facility Tools

Desired characteristics Explain tables db2expln db2exfmt

Text output Yes Yes

“Quick and dirty” static SQL and XQuery
analysis

Yes

Static SQL and XQuery support Yes Yes Yes

Dynamic SQL and XQuery support Yes Yes Yes

CLI application support Yes Yes

Available to DRDA® Application
Requesters

Yes

Detailed optimizer information Yes Yes

Suited for analysis of multiple statements Yes Yes Yes

Information is accessible from within an
application

Yes

In addition to these tools, you can use IBM Data Studio Version 3.1 or later to
generate a diagram of the current access plan for SQL or XPATH statements. For
more details, see Diagramming access plans with Visual Explain.

Displaying catalog statistics that are in effect at explain time

The explain facility captures the statistics that are in effect when a statement is
explained. These statistics might be different than those that are stored in the
system catalog, especially if real-time statistics gathering is enabled. If the explain
tables are populated, but an explain snapshot was not created, only some statistics
are recorded in the EXPLAIN_OBJECT table.

To capture all catalog statistics that are relevant to the statement being explained,
create an explain snapshot at the same time that explain tables are being
populated, then use the SYSPROC.EXPLAIN_FORMAT_STATS scalar function to
format the catalog statistics in the snapshot.

If the db2exfmt tool is used to format the explain information, and an explain
snapshot was collected, the tool automatically uses the
SYSPROC.EXPLAIN_FORMAT_STATS function to display the catalog statistics.

SQL and XQuery explain tool
The db2expln command describes the access plan selected for SQL or XQuery
statements.

You can use this tool to obtain a quick explanation of the chosen access plan when
explain data was not captured. For static SQL and XQuery statements, db2expln
examines the packages that are stored in the system catalog. For dynamic SQL and
XQuery statements, db2expln examines the sections in the query cache.

The explain tool is located in the bin subdirectory of your instance sqllib
directory. If db2expln is not in your current directory, it must be in a directory that
appears in your PATH environment variable.

The db2expln command uses the db2expln.bnd, db2exsrv.bnd, and db2exdyn.bnd
files to bind itself to a database the first time the database is accessed.

502 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.visualexplain.data.doc/topics/tvetop.html

Description of db2expln output
Explain output from the db2expln command includes both package information
and section information for each package.
v Package information includes the date of the bind operation and relevant bind

options
v Section information includes the section number and the SQL or XQuery

statement being explained

Explain output pertaining to the chosen access plan for the SQL or XQuery
statement appears below the section information.

The steps of an access plan, or section, are presented in the order that the database
manager executes them. Each major step is shown as a left-aligned heading with
information about that step indented below it. Indentation bars are displayed in
the left margin of the explain output for an access plan. These bars also mark the
scope of each operation. Operations at a lower level of indentation, farther to the
right, are processed before those that appear in the previous level of indentation.

The chosen access plan is based on an augmented version of the original SQL
statement, the effective SQL statement if statement concentrator is enabled, or the
XQuery statement that is shown in the output. Because the query rewrite
component of the compiler might convert the SQL or XQuery statement into an
equivalent but more efficient format, the access plan shown in explain output
might differ substantially from what you expect. The explain facility, which
includes the explain tables, and the SET CURRENT EXPLAIN MODE statement,
shows the actual SQL or XQuery statement that was used for optimization in the
form of an SQL- or XQuery-like statement that is created by reverse-translating the
internal representation of the query.

When you compare output from db2expln to output from the explain facility, the
operator ID option (-opids) can be useful. Each time that db2expln begins
processing a new operator from the explain facility, the operator ID number is
printed to the left of the explained plan. The operator IDs can be used to compare
steps in the different representations of the access plan. Note that there is not
always a one-to-one correspondence between the operators in explain facility
output and the operations shown by db2expln.

Using access plans to self-diagnose performance problems with
REFRESH TABLE and SET INTEGRITY statements

Invoking the explain utility against REFRESH TABLE or SET INTEGRITY
statements enables you to generate access plans that can be used to self-diagnose
performance problems with these statements. This can help you to better maintain
your materialized query tables (MQTs).

To get the access plan for a REFRESH TABLE or a SET INTEGRITY statement, use
either of the following methods:
v Use the EXPLAIN PLAN FOR REFRESH TABLE or EXPLAIN PLAN FOR SET

INTEGRITY option on the EXPLAIN statement.
v Set the CURRENT EXPLAIN MODE special register to EXPLAIN before issuing

the REFRESH TABLE or SET INTEGRITY statement, and then set the CURRENT
EXPLAIN MODE special register to NO afterwards.

Chapter 30. Explain facility 503

Restrictions
v The REFRESH TABLE and SET INTEGRITY statements do not qualify for

re-optimization; therefore, the REOPT explain mode (or explain snapshot) is not
applicable to these two statements.

v The WITH REOPT ONCE clause of the EXPLAIN statement, which indicates
that the specified explainable statement is to be re-optimized, is not applicable to
the REFRESH TABLE and SET INTEGRITY statements.

Scenario

This scenario shows how you can generate and use access plans from EXPLAIN
and REFRESH TABLE statements to self-diagnose the cause of your performance
problems.
1. Create and populate your tables. For example:

create table t (
i1 int not null,
i2 int not null,
primary key (i1)

);

insert into t values (1,1), (2,1), (3,2), (4,2);

create table mqt as (
select i2, count(*) as cnt from t group by i2

)
data initially deferred
refresh deferred;

2. Issue the EXPLAIN and REFRESH TABLE statements, as follows:
explain plan for refresh table mqt;

This step can be replaced by setting the EXPLAIN mode on the SET CURRENT
EXPLAIN MODE special register, as follows:

set current explain mode explain;
refresh table mqt;
set current explain mode no;

3. Use the db2exfmt command to format the contents of the explain tables and
obtain the access plan. This tool is located in the misc subdirectory of the
instance sqllib directory.

db2exfmt -d dbname -o refresh.exp -1

4. Analyze the access plan to determine the cause of the performance problem. In
the previous example, if T is a large table, a table scan would be very
expensive. Creating an index might improve the performance of the query.

504 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 31. Problem-determination tools

Use the problem-determination tools and resources that are provided with your
DB2 products to help you understand, isolate, and resolve problems.

DB2 diagnostic (db2diag) log files
The DB2 diagnostic db2diag log files are primarily intended for use by IBM
Software Support for troubleshooting purposes. The administration notification log
is primarily intended for troubleshooting use by database and system
administrators. Administration notification log messages are also logged to the
db2diag log files using a standardized message format.

Overview

With DB2 diagnostic and administration notification messages both logged within
the db2diag log files, this often makes the db2diag log files the first location to
examine in order to obtain information about the operation of your databases.
Help with the interpretation of the contents of these diagnostic log files is provided
in the topics listed in the "Related links" section. If your troubleshooting attempts
are unable to resolve your problem and you feel you require assistance, you can
contact IBM Software Support (for details, see the "Contacting IBM Software
Support" topic). In gathering relevant diagnostic information that will be requested
to be sent to IBM Software Support, you can expect to include your db2diag log
files among other sources of information which includes other relevant logs,
storage dumps, and traces.

The db2diag log file can exist in two different forms:

Single diagnostic log file
One active diagnostic log file, named db2diag.log, that grows in size
indefinitely. This is the default form and it exists whenever the diagsize
database manager configuration parameter has the value of 0 (the default
value for this parameter is 0).

Rotating diagnostic log files
A single active log file (named db2diag.N.log, where N is the file name
index that is a continuously growing number starting from 0), although a
series of diagnostic log files can be found in the location defined by the
diagpath configuration parameter, each growing until reaching a limited
size, at which time the log file is closed and a new one is created and
opened for logging with an incremented file name index
(db2diag.N+1.log). It exists whenever the diagsize database manager
configuration parameter has a nonzero value.

You can choose which of these two forms exist on your system by appropriately
setting the diagsize database manager configuration parameter.

Configuration

The db2diag log files can be configured in size, location, and the types of
diagnostic errors recorded by setting the following database manager configuration
parameters:

© Copyright IBM Corp. 2014 505

diagsize
The value of diagsize decides what form of diagnostic log file will be
adopted. If the value is 0, a single diagnostic log file will be adopted. If the
value is not 0, rotating diagnostic log files will be adopted, and this
nonzero value also specifies the total size of all rotating diagnostic log files
and all rotating administration notification log files. The instance must be
restarted for the new value of the diagsize parameter to take effect. See
the "diagsize - Diagnostic log file size configuration parameter" topic for
complete details.

diagpath
Diagnostic information can be specified to be written to db2diag log files in
the location defined by the diagpath configuration parameter. See the
"diagpath - Diagnostic data directory path configuration parameter" topic
for complete details.

alt_diagpath
The alt_diagpath database manager configuration parameter provides an
alternate diagnostic data directory path for storing diagnostic information.
If the database manager fails to write to the path specified by diagpath, the
path specified by alt_diagpath is used to store diagnostic information.

diaglevel
The types of diagnostic errors written to the db2diag log files can be
specified with the diaglevel configuration parameter. See the "diaglevel -
Diagnostic error capture level configuration parameter" topic for complete
details.

Note: If the diagsize configuration parameter is set to a non-zero value, that value
specifies the total size of the combination of all rotating administration notification
log files and all rotating diagnostic log files contained within the diagnostic data
directory. For example, if a system with 4 database partitions has diagsize set to 1
GB, the maximum total size of the combined notification and diagnostic logs can
reach is 4 GB (4 x 1 GB).

Interpretation of diagnostic log file entries
Use the db2diag log files analysis tool (db2diag) to filter and format the db2diag
log files. With the addition of administration notification log messages being
logged to the db2diag log files using a standardized message format, viewing the
db2diag log files first is a recommended choice to understand what has been
happening to the database.

As an alternative to using db2diag, you can use a text editor to view the diagnostic
log file on the machine where you suspect a problem to have occurred. The most
recent events recorded are the furthest down the file.

Note: The administration notification (instance_name.nfy) and diagnostic (db2diag)
logs grow continuously as single log files. When the diagsize database manager
configuration parameter is set to a nonzero value, both the administration
notification and the db2diag log files become a series of rotating log files
(instance_name.N.nfy and db2diag.N.log) having a limited total size which is
determined by the value of the diagsize configuration parameter.

The following example shows the header information for a sample log entry, with
all the parts of the log identified.

506 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note: Not every log entry will contain all of these parts. Only the first several
fields (timestamp to TID) and FUNCTION will be present in all the db2diag log
file records.
2007-05-18-14.20.46.973000-240�1� I27204F655�2� LEVEL: Info�3�
PID : 3228�4� TID : 8796�5� PROC : db2syscs.exe�6�
INSTANCE: DB2MPP�7� NODE : 002�8� DB : WIN3DB1�9�
APPHDL : 0-51�10� APPID: 9.26.54.62.45837.070518182042�11�
AUTHID : UDBADM�12�
EDUID : 8796�13� EDUNAME: db2agntp�14� (WIN3DB1) 2
FUNCTION:�15� DB2 UDB, data management, sqldInitDBCB, probe:4820
DATA #1 :�16� String, 26 bytes
Setting ADC Threshold to:
DATA #2 : unsigned integer, 8 bytes
1048576

Legend:

1. A timestamp and timezone for the message.

Note: Timestamps in the db2diag log files contain a time zone. For
example: 2006-02-13-14.34.35.965000-300, where "-300" is the difference
between UTC (Coordinated Universal Time, formerly known as GMT) and
local time at the application server in minutes. Thus -300 represents UTC -
5 hours, for example, EST (Eastern Standard Time).

2. The record ID field. The recordID of the db2diag log files specifies the file
offset at which the current message is being logged (for example, “27204”)
and the message length (for example, “655”) for the platform where the
DB2 diagnostic log was created.

3. The diagnostic level of the message. The levels are Info, Warning, Error,
Severe, Critical, and Event.

4. The process ID

5. The thread ID

6. The process name

7. The name of the instance generating the message.

8. For multi-partition systems, the database partition generating the message.
(In a non-partitioned database, the value is "000".)

9. The database name

10. The application handle. This value aligns with that used in db2pd output
and lock dump files. It consists of the coordinator partition number
followed by the coordinator index number, separated by a dash.

11. Identification of the application for which the process is working. In this
example, the process generating the message is working on behalf of an
application with the ID 9.26.54.62.45837.070518182042.

A TCP/IP-generated application ID is composed of three sections
1. IP address: It is represented as a 32-bit number displayed as a

maximum of 8 hexadecimal characters.
2. Port number: It is represented as 4 hexadecimal characters.
3. A unique identifier for the instance of this application.

Note: When the hexadecimal versions of the IP address or port number
begin with 0 through to 9, they are changed to G through to P. For
example, "0" is mapped to "G", "1" is mapped to "H", and so on. The IP

Chapter 31. Problem-determination tools 507

address, AC10150C.NA04.006D07064947 is interpreted as follows: The IP
address remains AC10150C, which translates to 172.16.21.12. The port
number is NA04. The first character is "N", which maps to "7". Therefore,
the hexadecimal form of the port number is 7A04, which translates to
31236 in decimal form.

This value is the same as the appl_id monitor element data. For detailed
information about how to interpret this value, see the documentation for
the appl_id monitor element.

To identify more about a particular application ID, either:
v Use the LIST APPLICATIONS command on a DB2 server or LIST DCS

APPLICATIONS on a DB2 Connect gateway to view a list of application
IDs. From this list, you can determine information about the client
experiencing the error, such as its database partition name and its
TCP/IP address.

v Use the GET SNAPSHOT FOR APPLICATION command to view a list of
application IDs.

v Use the db2pd -applications -db <dbname> command.

12 The authorization identifier.

13 The engine dispatchable unit identifier.

14 The name of the engine dispatchable unit.

15. The product name ("DB2"), component name (“data management”), and
function name (“sqlInitDBCB”) that is writing the message (as well as the
probe point (“4820”) within the function).

16. The information returned by a called function. There may be multiple data
fields returned.

Now that you have seen a sample db2diag log file entry, here is a list of all of the
possible fields:
<timestamp><timezone> <recordID> LEVEL: <level> (<source>)
PID : <pid> TID : <tid> PROC : <procName>
INSTANCE: <instance> NODE : <node> DB : <database>
APPHDL : <appHandle> APPID: <appID>
AUTHID : <authID>
EDUID : <eduID> EDUNAME: <engine dispatchable unit name>
FUNCTION: <prodName>, <compName>, <funcName>, probe:<probeNum>
MESSAGE : <messageID> <msgText>
CALLED : <prodName>, <compName>, <funcName> OSERR: <errorName> (<errno>)
RETCODE : <type>=<retCode> <errorDesc>
ARG #N : <typeTitle>, <typeName>, <size> bytes
... argument ...
DATA #N : <typeTitle>, <typeName>, <size> bytes
... data ...

The fields which were not already explained in the example, are:
v

<source> Indicates the origin of the logged error. (You can find it at the end of
the first line in the sample.) The possible values are:
– origin - message is logged by the function where error originated (inception

point)
– OS - error has been produced by the operating system
– received - error has been received from another process (client/server)
– sent - error has been sent to another process (client/server)

508 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v

MESSAGE Contains the message being logged. It consists of:
– <messageID> - message number, for example, ECF=0x9000004A or DIA8604C
– <msgText> - error description
When the CALLED field is also present, <msgText> is an impact of the error
returned by the CALLED function on the function logging a message (as specified
in the FUNCTION field)

v

CALLED This is the function that returned an error. It consists of:
– <prodName> - The product name: "OS", "DB2", "DB2 Tools" or "DB2 Common"
– <compName> - The component name ('-' in case of a system call)
– <funcName> - The called function name

v OSERR This is the operating system error returned by the CALLED system call.
(You can find it at the end of the same line as CALLED.) It consists of:
– <errorName> - the system specific error name
– <errno> - the operating system error number

v ARG This section lists the arguments of a function call that returned an error. It
consists of:
– <N> - The position of an argument in a call to the "called" function
– <typeTitle> - The label associated with the Nth argument typename
– <typeName> - The name of the type of argument being logged
– <size> - The size of argument to be logged

v DATA This contains any extra data dumped by the logging function. It consists of:
– <N> - The sequential number of data object being dumped
– <typeTitle> - The label of data being dumped
– <typeName> - The name of the type of data field being logged, for example,

PD_TYPE_UINT32, PD_TYPE_STRING
– <size> - The size of a data object

Interpreting the informational record of the db2diag log files
The first message in the db2diag log files should always be an informational
record.

An example of an informational record is as follows:
2006-02-09-18.07.31.059000-300 I1H917 LEVEL: Event
PID : 3140 TID : 2864 PROC : db2start.exe
INSTANCE: DB2 NODE : 000
FUNCTION: DB2 UDB, RAS/PD component, _pdlogInt, probe:120
START : New Diagnostic Log file
DATA #1 : Build Level, 124 bytes
Instance "DB2" uses "32" bits and DB2 code release "SQL09010"
with level identifier "01010107".
Informational tokens are "DB2 v9.1.0.190", "s060121", "", Fix Pack "0".
DATA #2 : System Info, 1564 bytes
System: WIN32_NT MYSRVR Service Pack 2 5.1 x86 Family 15, model 2, stepping 4
CPU: total:1 online:1 Cores per socket:1 Threading degree per core:1
Physical Memory(MB): total:1024 free:617 available:617
Virtual Memory(MB): total:2462 free:2830
Swap Memory(MB): total:1438 free:2213
Information in this record is only valid at the time when this file was created
(see this record’s time stamp)

Chapter 31. Problem-determination tools 509

The Informational record is output for db2start on every logical partition. This
results in multiple informational records: one per logical partition. Since the
informational record contains memory values which are different on every
partition, this information might be useful.

Setting the error capture level of the diagnostic log files
The DB2 diagnostic (db2diag) log files are files that contain text information logged
by DB2 database systems. This information is used for troubleshooting and much
of it is primarily intended for IBM Software Support.

About this task

The types of diagnostic errors that are recorded in the db2diag log files are
determined by the diaglevel database manager configuration parameter setting.

Procedure
v To check the current setting, issue the command GET DBM CFG.

Look for the following variable:
Diagnostic error capture level (DIAGLEVEL) = 3

v To change the value dynamically, use the UPDATE DBM CFG command.
To change a database manager configuration parameter online:
db2 attach to instance-name
db2 update dbm cfg using parameter-name value
db2 detach

For example:
DB2 UPDATE DBM CFG USING DIAGLEVEL X

where X is the notification level you want. If you are diagnosing a problem that
can be reproduced, IBM Software Support personnel might suggest that you use
diaglevel 4 while performing troubleshooting.

First occurrence data capture information
First occurrence data capture (FODC) collects diagnostic information about a DB2
instance, host or member when a problem occurs. FODC reduces the need to
reproduce a problem to obtain diagnostic information, because diagnostic
information can be collected as the problem occurs.

FODC can be invoked manually with the db2fodc command when you observe a
problem or invoked automatically whenever a predetermined scenario or symptom
is detected. After the diagnostic information has been collected, it is used to help
determine the potential causes of the problem. In some cases, you might be able to
determine the problem cause yourself, or involvement from IBM support personnel
will be required.

Once execution of the db2fodc command has finished, the db2support tool must be
executed to collect the resulting diagnostic files and prepare the FODC package to
be submitted to IBM Support. The db2support command will collect the contents of
all FODC package directories found or specified with the -fodcpath parameter.
This is done to avoid additional requests, from IBM Support for diagnostic
information.

510 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Collecting diagnosis information based on common outage
problems

Diagnostic information can be gathered automatically in a first occurrence data
collection (FODC) package as the problem that affects an instance, host, or member
is occurring. The information in the FODC package can also be collected manually.

Automatic collection of diagnostic information

The database manager invokes the db2fodc command for automatic First
Occurrence Data Capture (FODC), which in turn invokes one of the DB2 call-out
scripts (COS).

To correlate the outage with the DB2 diagnostic logs and the other troubleshooting
files, a diagnostic message is written to both the administration notification and the
db2diag log files. The FODC package directory name includes the FODC_ prefix, the
outage type, the timestamp when the FODC directory was created, and the member
or partition number where the problem occurred. The FODC package description
file is placed in the new FODC package directory.

Table 90. Automatic FODC types and packages

Package Description Script executed

FODC_Trap_timestamp_
memberNumber

An instance wide trap has
occurred

db2cos_trap (.bat)

FODC_Panic_timestamp_
memberNumber

Engine detected an incoherence
and decided not to continue

db2cos_trap (.bat)

FODC_BadPage_timestamp
_memberNumber

A Bad Page has been detected db2cos_datacorruption
(.bat)

FODC_DBMarkedBad_
timestamp_
memberNumber

A database has been marked bad
due to an error

db2cos (.bat)

FODC_IndexError_
timestamp_PID_EDUID
_memberNumber

An EDU wide index error
occurred.

db2cos_indexerror_short
(.bat) or
db2cos_indexerror_long
(.bat)

FODC_Member_timestamp
_memberNumber

A member or partition has failed
or has received a kill signal

db2cos_member (.bat)

Manual collection of diagnostic information

You use the db2fodc command manually when you suspect a problem is occurring.
Problem scenarios that you can collect diagnostic data for include apparent system
hangs, performance issues, or when an upgrade operation or instance creation did
not complete as expected. When the db2fodc command is run manually, a new
FODC package directory is created. The FODC package directory name includes
the FODC_ prefix, the problem scenario, the timestamp when the FODC directory was
created, and the member(s) or partition number(s) where FODC was performed.

Chapter 31. Problem-determination tools 511

Table 91. Manual FODC types and packages

Package Description Script executed

FODC_Clp_timestamp_
member

User invoked db2fodc -clp to
collect environment and
configuration related
information, used to troubleshoot
problems related to instance
creation.

db2cos_clp script (.bat)

FODC_Connections_
timestamp_member

User invoked db2fodc
-connections to collect
connection-related diagnostic
data, used to diagnose problems
such as sudden spikes in the
number of applications in the
executing or compiling state or
new database connections being
denied.

db2cos_threshold script
(.bat)

FODC_Cpu_timestamp_
member

User invoked db2fodc -cpu to
collect processor-related
performance and diagnostic data,
used to diagnose problems such
as high processor utilization
rates, a high number of running
processes, or high processor wait
times.

db2cos_threshold script
(.bat)

FODC_Hang_timestamp_
memberList

User invoked db2fodc -hang to
collect data for hang
troubleshooting (or severe
performance)

db2cos_hang (.bat)

FODC_Memory_timestamp
_member

User invoked db2fodc -memory to
collect memory-related diagnostic
data, used to diagnose problems
such as no free memory
available, swap space being used
at a high rate, excessive paging
or a suspected a memory leak.

db2cos_threshold script
(.bat)

FODC_Perf_timestamp_
memberList

User invoked db2fodc -perf to
collect data for performance
troubleshooting

db2cos_perf (.bat)

FODC_Preupgrade_
timestamp_member

User invoked db2fodc
-preupgrade to collect
performance related information
before a critical upgrade or
update such as upgrading an
instance or updating to the next
fix pack

db2cos_preupgrade (.bat)

512 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 91. Manual FODC types and packages (continued)

Package Description Script executed

Scripts located in
FODC_IndexError_
timestamp_PID_EDUID_
memberList

User could issue db2fodc
-indexerror
FODC_IndexError_directory [basic
| full] (default is basic) to
invoke the db2dart commands in
the script(s).

On partitioned database
environments, use db2_all
"<<+node#< db2fodc -indexerror
FODC_IndexError_directory [basic
| full]". The node# is the last
number in the
FODC_IndexError_directory
directory name. An absolute path
is required when using db2fodc
-indexerror with the db2_all
command.

db2cos_indexerror_long
(.bat) or
db2cos_indexerror_short
(.bat)

First occurrence data capture configuration
First occurrence data capture configuration (FODC) behaviour, including the path
used to store the FODC package, is controlled by the DB2FODC registry variable,
which can be set persistently with the db2set command or changed dynamically
(in-memory only) through the db2pdcfg command. FODC behavior can also be
customized by updating the call-out scripts (COS) invoked during FODC.

Each partition or member in the instance has its own FODC settings, and you can
control how FODC takes place at the partition or member level. If FODC settings
exist both at the member or partition level and at the instance level, the member or
partition level settings override the instance level settings. For manual FODC,
settings can also be overridden by command line parameters you specify, such as
the -fodcpath parameter. In partitioned or DB2 pureScale database environments,
if you specify a list of members or partitions for manual FODC, the settings for the
first member or partition specified are used.

Persistent settings made with the db2set command do not become effective until
the instance is recycled; dynamic settings made with the db2pdcfg command are
effective immediately and remain effective in memory until the instance is
recycled.

To help you control how FODC packages are handled, several DB2FODC registry
variable settings are available, but not all settings are available on all platforms.
You can control the following behaviors through the DB2FODC registry variable:
v Where the generated FODC packages are stored (with the FODCPATH setting)
v Whether core dump files are generated or not (with the DUMPCORE setting)
v How big core dump files can become (with the CORELIMIT setting)
v Where the generated core files are stored (with the DUMPDIR setting)

FODC by default invokes a db2cos call-out script to collect diagnostic information
when the database manager cannot continue processing due to a panic, trap,
segmentation violation or exception. To help you control the call-out script that is

Chapter 31. Problem-determination tools 513

invoked during FODC, several COS parameter settings are available. You can
control the following behaviors through the COS parameter of the DB2FODC
registry variable:
v Whether the db2cos script is invoked when the database manager cannot

continue processing (with the ON and OFF setting; the default is ON)
v How often the db2cos script checks the size of the output files generated (with

the COS_SLEEP setting)
v How long FODC should wait for the db2cos script to finish (with the

COS_TIMEOUT setting)
v How often the db2cos script is invoked during a database manager trap (with

the COS_COUNT setting)
v Whether the db2cos script is enabled when the SQLO_SIG_DUMP signal is

received (with the COS_SQLO_SIG_DUMP setting)

FODC package directory settings (FODCPATH)

FODC packages can result in the generation of large volumes of diagnostic data
that require space to store and can impose a significant processor usage on the
system. You can control what directory path FODC sends diagnostic data to, so
that you can pick a directory path with sufficient free space available.

The following order is used to determine what FODC path to use:

Automatic FODC

FODCPATH registry variable setting
The FODCPATH parameter for the DB2FODC registry variable can be set
at the member or partition level and at the instance level. FODC
uses the FODCPATH parameter setting for each partition or member,
if set. If a partition or member level setting does not exist, the
instance level setting is used.

No FODC path settings
By default, if you do not specify any FODCPATH setting at either the
member or instance level, FODC sends diagnostic information to
the current diagnostic directory path (diagpath or alt_diagpath).

Manual FODC

db2fodc -fodcpath command parameter option
When manually invoking the db2fodc command, you can indicate
the location where the FODC package directory is created by
specifying the -fodcpath parameter option together with the
command. If you specify the -fodcpath parameter with a valid
path name, the FODCpackage directory is created in that path.

FODCPATH registry variable setting
If you do not specify the -fodcpath parameter with the db2fodc
command, and you specified a list of partitions or members, the
db2fodc command uses the FODCPATH parameter setting for the
DB2FODC registry variable of the first partition or member from the
list specified. If the value for that FODCPATH parameter is not set,
db2fodc uses the instance level FODCPATH setting. If you do not
specify the -fodcpath parameter and do no specify a list of
partitions or members, the db2fodc command first tries to use the
FODCPATH parameter setting for the current partition or member; if
not set, the instance level setting is used.

514 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

No FODC path settings
By default, if you do not specify any FODC path, first occurrence
data capture sends diagnostic information to the current diagnostic
directory path (diagpath or alt_diagpath).

Assume that you have a partitioned database environment with 3 members or
partitions (0, 1, and 2). The following example shows how to set the FODC path
persistently at the instance level for all 3 partitions or members using the db2set
command:
db2set DB2FODC=FODCPATH=/home/hotel49/juntang/FODC

FODC path settings can also be performed persistently at the member level for
each member, overriding the instance level setting. To make these settings effective,
the instance must be recycled. For example, to change the FODC path on member
0, issue the following command:
db2set DB2FODC=FODCPATH=/home/hotel49/juntang/FODC/FODC0 -i juntang 0

If you now want to change the FODC path dynamically on member 1 and member
2, you use the following db2pdcfg commands. These settings are effective
immediately and remain in memory until the instance is recycled.
db2pdcfg -fodc FODCPATH=/home/hotel49/juntang/FODC/FODC1 -member 1

db2pdcfg -fodc FODCPATH=/home/hotel49/juntang/FODC/FODC2 -member 2

If you want to know what the current FODC settings are for each member or
partition in a system, you can use the db2pdcfg -fodc -member all command (in
the example, output is abridged and only the FODC path output is shown):
Database Member 0
FODC package path (FODCPATH)= /home/hotel49/juntang/FODC/FODC0/

Database Member 1
FODC package path (FODCPATH)= /home/hotel49/juntang/FODC/FODC1/

Database Member 2
FODC package path (FODCPATH)= /home/hotel49/juntang/FODC/FODC2/

Customized data collection

The behavior of data collection by db2fodc -hang and db2fodc -perf is also
controlled by parameters defined in the TOOL OPTIONS section of the DB2
call-out script that is invoked during FODC. These parameters can be customized
by changing the script that is executed during FODC.

To customize the data collection on UNIX systems, copy the script placed in
/bin/db2cos_symptom to /adm/db2cos_symptom, where symptom is either hang or
perf. Once in this new directory, modify the script as you like. On Windows
systems, simply modify the default script \bin\db2cos_symptom.bat. On UNIX
systems, db2fodc first tries to execute the script in /adm/db2cos_symptom, and, if it
is not found, executes the original script in /bin/db2cos_symptom. On Windows
systems, the script \bin\db2cos_symptom.bat is always executed.

Data collected as part of FODC
First occurrence data capture (FODC) results in the creation of a FODC package
directory and subdirectories where diagnostic information is collected. The parent
package directory, subdirectories and files that get collected are collectively known
as a FODC package.

Chapter 31. Problem-determination tools 515

Files containing diagnostic information that are collected by
FODC

FODC collects diagnostic information from a number of sources. The exact
diagnostic information captured by FODC depends on the type of problem
encountered and might include:

Administration notification log (instance_name.nfy)

v Operating system: All
v Default location:

– Linux and UNIX: Located in the directory specified by the diagpath
database manager configuration parameter.

– Windows: Use the Event Viewer Tool (Start > Control Panel >
Administrative Tools > Event Viewer)

v Created automatically when the instance is created.
v When significant events occur, DB2 writes information to the

administration notification log. The information is intended for use by
database and system administrators. The type of message recorded in
this file is determined by the notifylevel configuration parameter.

Note: When the diagsize database manager configuration parameter is
set to a nonzero value, the single administration notification log file
behavior (instance_name.nfy) will be changed to a rotating log behavior
(instance_name.N.nfy).

DB2 diagnostic log (db2diag log file)

v Operating system: All
v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.
v Created automatically when the instance is created.
v This text file contains diagnostic information about error and warnings

encountered by the instance. This information is used for
troubleshooting and is intended for technicians at IBM Software Support.
The type of message recorded in this file is determined by the diaglevel
database manager configuration parameter.

Note: When the diagsize database manager configuration parameter is
set to a nonzero value, the single diagnostic log file behavior (a single
db2diag.log file) will be changed to a rotating log behavior
(db2diag.N.log).

DB2 administration server (DAS) diagnostic log (db2dasdiag.log)

v Operating system: All
v Default location:

– Linux and UNIX: Located in DASHOME/das/dump, where DASHOME is the
home directory of the DAS owner

– Windows: Located in "dump" folder, in the DAS home directory. For
example: C:\Program Files\IBM\SQLLIB\DB2DAS00\dump

v Created automatically when the DAS is created.
v This text file contains diagnostic information about errors and warnings

encountered by the DAS.

DB2 event log (db2eventlog.xxx, where xxx is the database partition number)

v Operating system: All

516 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Default location: Located in the directory specified by the diagpath
database manager configuration parameter

v Created automatically when the instance is created.
v The DB2 event log file is a circular log of infrastructure-level events

occurring in the database manager. The file is fixed in size, and acts as
circular buffer for the specific events that are logged as the instance
runs. Every time you stop the instance, the previous event log will be
replaced, not appended. If the instance traps, a db2eventlog.XXX.crash
file is also generated. These files are intended for use by IBM Software
Support.

DB2 callout script (db2cos) output files

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If db2cos scripts are executed as a consequence of an FODC outage,

db2cos output files will be placed under the FODC directory that was
created in the location specified by the diagpath database manager
configuration parameter.

v Created automatically when a panic, trap or segmentation violation
occurs. Can also be created during specific problem scenarios, as
specified using the db2pdcfg command.

v The default db2cos script will invoke db2pd commands to collect
information in an unlatched manner. The contents of the db2cos output
files will vary depending on the commands contained in the db2cos
script, such as operating system commands and other DB2 diagnosing
tools. For more details on the tools that are executed with the db2cos
script, open the script file in a text editor.

v The db2cos script is shipped under the bin/ directory. On UNIX, this
directory is read-only. To create your own modifiable version of this
script, copy the db2cos script to the adm/ directory. You are free to
modify this version of the script. If the script is found in the adm/
directory, it is that version that is run. Otherwise, the default version in
the bin/ directory is run.

Dump files

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.
v Created automatically when particular problem scenarios arise.
v For some error conditions, extra information is logged in binary files

named after the failing process ID. These files are intended for use by
IBM Software Support.

Trap files

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.

Chapter 31. Problem-determination tools 517

v Created automatically when the instance ends abnormally. Can also be
created at will using the db2pd command.

v The database manager generates a trap file if it cannot continue
processing due to a trap, segmentation violation, or exception.

Core files

v Operating system: Linux and UNIX
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.
v Created by the operating system when the DB2 instance terminates

abnormally.
v Among other things, the core image will include most or all of the

memory allocations of DB2, which may be required for problem
descriptions.

FODC package path and contents

FODC creates the FODC package directory in the FODC path specified. You
specify the FODC path through the FODCPATH registry variable setting or the
db2fodc -fodcpath command parameter option. If you do not specify any FODC
path, first occurrence data capture sends diagnostic information to the current
diagnostic directory path (diagpath or alt_diagpath). A db2diag log file diagnostic
message is logged to identify the directory name used for FODC. The capture of
diagnostic information can generate a significant volume of diagnostic data,
depending on what parameters are specified, and enough space must be available
in the directory path where FODC stores diagnostic information. To avoid a
scenario where FODC fills all the available space in the file system and impacts
your data server, it is recommended that you specify a FODC path where FODC
can store the diagnostic data.

For automatic FODC, a package is collected for the member or partition where the
problem is occurring; if the problem is occurring on multiple members, multiple
packages are collected in separate FODC package directories. The FODC package
directory follows the naming convention
FODC_outageType_timestamp_member_number, where outageType is the problem
symptom, timestamp is the time of FODC invocation, and member_number is the
member or partition number where the problem occurred. For example, when a
trap occurs on member 1, FODC might automatically create a package named like
FODC_Trap_ 2010-11-17-20.58.30.695243_0001.

For manual FODC, a package is collected for the member(s) or partition(s) you
specify. The naming convention for the FODC package directory is
FODC_manualOutageType_timestamp_memberList, where manualOutageType is the
problem symptom, timestamp is the time of FODC invocation, and memberList is a
list of the members or partitions where the problem occurred. For example, the
manually issued command db2fodc -hang -basic -member 1,2,3 -db sample
creates a manual FODC package for members 1,2 and 3, and might be named like
FODC_hang_ 2010-11-17-20.58.30.695243_0001.0002.0003.

One or more of the following subdirectories is created under the FODC package
directory:
v DB2CONFIG containing DB2 configuration output and files

518 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v DB2PD containing db2pd output or output files
v DB2SNAPS containing DB2 snapshots
v DB2TRACE containing DB2 traces
v OSCONFIG containing operating system configuration files
v OSSNAPS containing operating system monitor information
v OSTRACE containing operating system traces

Not all of these directories might exist, depending on your FODC configuration
and the outage type for which the db2fodc command is run.

FODC sends the following diagnostic information to the FODC package directory:

db2fodc -clp collects the following information:

v Operating system information
v Instance and database configuration information

db2fodc -hang collects the following information:
db2fodc -hang collects the following info:
v Basic operating system information. The problem could be due to OS

level, patches, and so on.
v Basic DB2 configuration information.
v Operating system monitor information: vmstat, netstat, iostat, and so on.

– 2 iterations at least: with timestamps saved
v Partial call stacks: DB2 stack traces of top CPU agents.
v Operating system trace: trace on AIX.
v Diagnostic information collected by db2pd.
v DB2 trace.
v Full DB2 call stacks.
v Second round of DB2 configuration information.

– Including second DB2 trace collection.
v Snapshot information: db2 get snapshot for database, applications,

tables, and so on.
– Information will be collected per node in case of multiple logical

nodes.

db2fodc -perf monitors the system possibly collecting the following
information:

v Snapshots
v Stacktraces
v Virtual Memory (Vmstat)
v Input/Output information (Iostat)
v traces
v Some other information depending on the case. See the script for more

details.

db2fodc -indexerror collects the following information:

v Basic Mode
– db2cos_indexerror_short(.bat) script is run. See script for additional

details.

Chapter 31. Problem-determination tools 519

– If applicable db2dart commands exist in the script, the db2dart /DD,
db2dart /DI, or both data formatting actions are run with number of
pages limited to 100.

v Full Mode
– db2cos_indexerror_short(.bat) and db2cos_indexerror_long(.bat)

scripts are run. See scripts for additional details.
– If applicable db2dart commands exist in the script

db2cos_indexerror_short(.bat), the db2dart /DD, db2dart /DI, or
both data formatting actions are run with number of pages limited to
100.

– If applicable db2dart commands exist in the script
db2cos_indexerror_long(.bat), the db2dart /DD, db2dart /DI, or both
data formatting actions are run with no limit to the number of pages.

– If applicable db2dart commands exist in the
db2cos_indexerror_long(.bat) script, the db2dart /T command is
run. This command requires the database be offline.

db2fodc -preupgrade collects the following information:

v Operating system information
v Instance and database configuration information, such as output of the

db2level command, environment variables, output of the db2 get dbm
cfg command, and the db2nodes.cfg file

v System catalog data and statistics, such as optimizer information
collected by the db2support -d dbname -c -s -cl 0 command

v Operating system monitoring data, such as output of the netstat -v and
ps -elf commands

v System files
v Package information, as returned by the DB2 LIST PACKAGES FOR

SCHEMA schema-name SHOW DETAIL command for all schema names
v Any FODC_Preupgrade directories found in db2dump/. These directories

contain information such as performance data, top dynamic SQL queries,
and explain plans

v The logfile from the db2ckupgrade command in /tmp/
db2ckupgrade.log.processID, if it exists

v Output from the db2prereqcheck command

The following diagnostic information is also included when you specify the
members on which to collect:
v Snapshots (after turning on all monitor switches)
v The db2pd command output for the -everything, -agents, -applications,

-mempools, and -fcm parameters
v The dynamic SQL statements used most frequently
v The query plans for SQL statements
v The explain plans for static packages

Manual db2fodc command invocation results in the creation of a log file named
db2fodc_symptom.log in the FODC_symptom directory, where symptom is one of the
collection types, such as hang or perf. Inside this file, the db2fodc command also
stores status information and metadata describing the FODC package inside the
FODC subdirectory. This file contains information about the type of FODC, the
timestamp of the start and end of data collection, and other information useful for
the analysis of the FODC package.

520 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Automatic FODC data generation
When an outage occurs and automatic first occurrence data capture (FODC) is
enabled, data is collected based on symptoms. The data collected is specific to
what is needed to diagnose the outage.

One or many messages, including those defined as "critical" are used to mark the
origin of an outage.

Trap files contain information such as:
v The amount of free virtual storage
v Values associated with the product's configuration parameters and registry

variables at the time the trap occurred
v Estimated amount of memory used by the DB2 product at the time of the trap
v Information that provides a context for the outage

The raw stack dump might be included in an ASCII trap file.

Dump files that are specific to components within the database manager are stored
in the appropriate FODC package directory.

Monitor and audit facilities using First Occurrence Data
Capture (FODC)

If you find you are required to investigate monitor or audit facility problems, there
are logs that contain information about the probable cause for the difficulties you
may be experiencing.

DB2 audit log ("db2audit.log")

v Operating system: All
v Default location:

– Windows: Located in the $DB2PATH\instance_name\security directory
– Linux and UNIX: Located in the $HOME\sqllib\security directory,

where $HOME is the instance owner's home directory
v Created when the db2audit facility is started.
v Contains audit records generated by the DB2 audit facility for a series of

predefined database events.

DB2 governor log ("mylog.x", where x is the number of database partitions on
which the governor is running)

v Operating system: All
v Default location:

– Windows: Located in the $DB2PATH\instance_name\log directory
– Linux and UNIX: Located in the $HOME\sqllib\log directory, where

$HOME is the instance owner's home directory
v Created when using the governor utility. The base of the log file name is

specified in the db2gov command.
v Records information about actions performed by the governor daemon

(for example, forcing an application, reading the governor configuration
file, starting or ending the utility) as well as errors and warnings.

Event monitor file (for example, "00000000.evt")

v Operating system: All

Chapter 31. Problem-determination tools 521

v Default location: When you create a file event monitor, all of the event
records are written to the directory specified in the CREATE EVENT
MONITOR statement.

v Generated by the event monitor when events occur.
v Contains event records that are associated with the event monitor.

db2ls command
The db2ls command lists where DB2 products are installed on your system and the
DB2 product level. It can also list all or specific DB2 products and features for a
particular installation path.

Listing DB2 database products installed on your system
(Linux and UNIX)

On Linux and UNIX operating systems, use the db2ls command to list the DB2
database products and DB2 features installed on your system.

Before you begin

At least one DB2 Version 9 (or later) database product must already be installed by
a root user for a symbolic link to the db2ls command to be available in the
/usr/local/bin directory.

About this task

With the ability to install multiple copies of DB2 database products on your system
and the flexibility to install DB2 database products and features in the path of your
choice, you need a tool to help you keep track of what is installed and where it is
installed. On supported Linux and UNIX operating systems, the db2ls command
lists the DB2 products and features installed on your system, including the DB2
HTML documentation.

The db2ls command can be found both in the installation media and in a DB2
install copy on the system. The db2ls command can be run from either location.
The db2ls command can be run from the installation media for all products except
IBM Data Server Driver Package.

The db2ls command can be used to list:
v Where DB2 database products are installed on your system and list the DB2

database product level
v All or specific DB2 database products and features in a particular installation

path

Restrictions

The output that the db2ls command lists is different depending on the ID used:
v When the db2ls command is run with root authority, only root DB2 installations

are queried.
v When the db2ls command is run with a non-root ID, root DB2 installations and

the non-root installation owned by matching non-root ID are queried. DB2
installations owned by other non-root IDs are not queried.

The db2ls command is the only method to query a DB2 database product. You
cannot query DB2 database products using Linux or UNIX operating system native

522 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

utilities, such as pkginfo, rpm, SMIT, or swlist. Any existing scripts containing a
native installation utility that you use to query and interface with DB2 installations
must change.

You cannot use the db2ls command on Windows operating systems.

Procedure
v To list the path where DB2 database products are installed on your system and

list the DB2 database product level, enter:
db2ls

The command lists the following information for each DB2 database product
installed on your system:
– Installation path
– Level
– Fix pack
– Special Install Number. This column is used by IBM DB2 Support.
– Installation date. This column shows when the DB2 database product was last

modified.
– Installer UID. This column shows the UID with which the DB2 database

product was installed.
v To list information about DB2 database products or features in a particular

installation path the q parameter must be specified:
db2ls -q -p -b baseInstallDirectory

where:
– q specifies that you are querying a product or feature. This parameter is

mandatory.
– p specifies that the listing displays products rather than listing the features.
– b specifies the installation directory of the product or feature. This parameter

is mandatory if you are not running the command from the installation
directory.

Results

Depending on the parameters provided, the command lists the following
information:
v Installation path. This is specified only once, not for each feature.
v The following information is displayed:

– Response file ID for the installed feature, or if the p option is specified, the
response file ID for the installed product. For example,
ENTERPRISE_SERVER_EDITION.

– Feature name, or if the p option is specified, product name.
– Product version, release, modification level, fix pack level (VRMF). For

example, 10.1.0.0
– Fix pack, if applicable. For example, if Fix Pack 1 is installed, the value

displayed is 1. This includes interim fix packs, such as Fix Pack 1a.
v If any of the product's VRMF information do not match, a warning message

displays at the end of the output listing. The message suggests the fix pack to
apply.

Chapter 31. Problem-determination tools 523

db2mtrk command
You can use the db2mtrk command to generate a complete report of memory
status, for instances, databases, agents, and applications. The command output
includes memory pool allocation information such as current size, maximum size,
and type of function for which memory is used.

Buffer pools memory allocation
You can use the db2mtrk command to view the amount of database memory that
is allocated to buffer pools. The buffer pool heaps are always fully allocated so the
memory tracker reports the same values for the current and maximum sizes of
these heaps. If a bufferpool size is set to automatic, then the current and maximum
size of the buffer pool heap will be adjusted over time based on workload and
available memory.

Example 1
To report the database and instance memory usage every 10 seconds, issue the
following command: db2mtrk -v -i -d -r 10.

Example 2
In addition to database and instance memory usage, to report detailed application
memory usage that is grouped by application ID, issue the following command:
db2mtrk -a -v -i -d.

db2pd command
You can use the db2pd command for monitoring and troubleshooting because it
can return quick and immediate information from the DB2 memory sets.

Overview

The tool collects information without acquiring any latches or using any engine
resources. It is therefore possible (and expected) to retrieve information that is
changing while db2pd is collecting information; hence the data might not be
completely accurate. If changing memory pointers are encountered, a signal
handler is used to prevent db2pd from ending abnormally. This can result in
messages such as "Changing data structure forced command termination" to
appear in the output. Nonetheless, the tool can be helpful for troubleshooting. Two
benefits to collecting information without latching include faster retrieval and no
competition for engine resources.

If you want to capture information about the database management system when a
specific SQLCODE, ZRC code or ECF code occurs, this can be accomplished using
the db2pdcfg -catch command. When the errors are caught, the db2cos (callout
script) is launched. The db2cos script can be dynamically altered to run any db2pd
command, operating system command, or any other command needed to resolve
the problems. The template db2cos script file is located in sqllib/bin on UNIX
and Linux. On the Windows operating system, db2cos is located in the
$DB2PATH\bin directory.

When adding a new node, you can monitor the progress of the operation on the
database partition server, that is adding the node, using the db2pd -addnode
command with the optional oldviewapps and detail parameters for more detailed
information.

524 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If you require a list of event monitors that are currently active or have been, for
some reason, deactivated, run the db2pd -gfw command. This command also
returns statistics and information about the targets, into which event monitors
write data, for each fast writer EDU.

Examples

The following list is a collection of examples in which the db2pd command can be
used to expedite troubleshooting:
v Example 1: Diagnosing a lockwait
v Example 2: Using the -wlocks parameter to capture all the locks being waited on
v Example 3: Using the -apinfo parameter to capture detailed runtime information

about the lock owner and the lock waiter
v Example 4: Using the callout scripts when considering a locking problem
v Example 5: Mapping an application to a dynamic SQL statement
v Example 6: Monitoring memory usage
v Example 7: Determine which application is using up your table space
v Example 8: Monitoring recovery
v Example 9: Determining the amount of resources a transaction is using
v Example 10: Monitoring log usage
v Example 11: Viewing the sysplex list
v Example 12: Generating stack traces
v Example 13: Viewing memory statistics for a database partition
v Example 14: Monitoring the progress of index reorganization
v Example 15: Displaying the top EDUs by processor time consumption and

displaying EDU stack information
v Example 16: Displaying agent event metrics

The results text show in the examples is an extract of the the db2cmd command
ouput for better readability.

Example 1: Diagnosing a lockwait

If you run db2pd -db databasename -locks -transactions -applications -dynamic,
the results are similar to the following ones:
Locks:
TranHdl Lockname Type Mode Sts Owner Dur HldCnt Att ReleaseFlg
3 00020002000000040000000052 Row ..X G 3 1 0 0x0000 0x40000000
2 00020002000000040000000052 Row ..X W* 2 1 0 0x0000 0x40000000

For the database that you specified using the -db database name option, the first
results show the locks for that database. The results show that TranHdl 2 is
waiting on a lock held by TranHdl 3.
Transactions:
AppHandl [nod-index] TranHdl Locks State Tflag Tflag2 ...
11 [000-00011] 2 4 READ 0x00000000 0x00000000 ...
12 [000-00012] 3 4 WRITE 0x00000000 0x00000000 ...

We can see that TranHdl 2 is associated with AppHandl 11 and TranHdl 3 is
associated with AppHandl 12.

Chapter 31. Problem-determination tools 525

Applications:
AppHandl NumAgents CoorPid Status C-AnchID C-StmtUID L-AnchID L-StmtUID Appid

12 1 1073336 UOW-Waiting 0 0 17 1 ...5602
11 1 1040570 UOW-Executing 17 1 94 1 ...5601

We can see that AppHandl 12 last ran dynamic statement 17, 1. AppHandl 11 is
currently running dynamic statement 17, 1 and last ran statement 94, 1.
Dynamic SQL Statements:
AnchID StmtUID NumEnv NumVar NumRef NumExe Text
17 1 1 1 2 2 update pdtest set c1 = 5
94 1 1 1 2 2 set lock mode to wait 1

We can see that the text column shows the SQL statements that are associated with
the lock timeout.

Example 2: Using the -wlocks parameter to capture all the locks being waited on

If you run db2pd -wlocks -db pdtest, results similar to the following ones are
generated. They show that the first application (AppHandl 47) is performing an
insert on a table and that the second application (AppHandl 46) is performing a
select on that table:
venus@boson:/home/venus =>db2pd -wlocks -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:22

Locks being waited on :
AppHandl TranHdl Lockname Type Mode Conv Sts CoorEDU AppName AuthID AppID
47 8 00020004000000000840000652 Row ..X G 5160 db2bp VENUS ...13730
46 2 00020004000000000840000652 Row .NS W 5913 db2bp VENUS ...13658

Example 3: Using the -apinfo parameter to capture detailed runtime information
about the lock owner and the lock waiter

The following sample output was generated under the same conditions as those
for Example 2:
venus@boson:/home/venus =>db2pd -apinfo 47 -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:30

Application :
Address : 0x0780000001676480
AppHandl [nod-index] : 47 [000-00047]
Application PID : 876558
Application Node Name : boson
IP Address: n/a
Connection Start Time : (1197063450)Fri Dec 7 16:37:30 2007
Client User ID : venus
System Auth ID : VENUS
Coordinator EDU ID : 5160
Coordinator Partition : 0
Number of Agents : 1
Locks timeout value : 4294967294 seconds
Locks Escalation : No
Workload ID : 1
Workload Occurrence ID : 2
Trusted Context : n/a
Connection Trust Type : non trusted
Role Inherited : n/a
Application Status : UOW-Waiting
Application Name : db2bp
Application ID : *LOCAL.venus.071207213730

ClientUserID : n/a

526 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

ClientWrkstnName : n/a
ClientApplName : n/a
ClientAccntng : n/a

List of inactive statements of current UOW :
UOW-ID : 2
Activity ID : 1
Package Schema : NULLID
Package Name : SQLC2G13
Package Version :
Section Number : 203
SQL Type : Dynamic
Isolation : CS
Statement Type : DML, Insert/Update/Delete
Statement : insert into pdtest values 99

venus@boson:/home/venus =>db2pd -apinfo 46 -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:39

Application :
Address : 0x0780000000D77A60
AppHandl [nod-index] : 46 [000-00046]
Application PID : 881102
Application Node Name : boson
IP Address: n/a
Connection Start Time : (1197063418)Fri Dec 7 16:36:58 2007
Client User ID : venus
System Auth ID : VENUS
Coordinator EDU ID : 5913
Coordinator Partition : 0
Number of Agents : 1
Locks timeou t value : 4294967294 seconds
Locks Escalation : No
Workload ID : 1
Workload Occurrence ID : 1
Trusted Context : n/a
Connection Trust Type : non trusted
Role Inherited : n/a
Application Status : Lock-wait
Application Name : db2bp
Application ID : *LOCAL.venus.071207213658

ClientUserID : n/a
ClientWrkstnName : n/a
ClientApplName : n/a
ClientAccntng : n/a

List of active statements :
*UOW-ID : 3
Activity ID : 1
Package Schema : NULLID
Package Name : SQLC2G13
Package Version :
Section Number : 201
SQL Type : Dynamic
Isolation : CS
Statement Type : DML, Select (blockable)
Statement : select * from pdtest

Example 4: Using the callout scripts when considering a locking problem

To use the callout scripts, find the db2cos output files. The location of the files is
controlled by the database manager configuration parameter diagpath. The
contents of the output files will differ depending on what commands you enter in

Chapter 31. Problem-determination tools 527

the db2cos script file. An example of the output provided when the db2cos script
file contains a db2pd -db sample -locks command is as follows:
Lock Timeout Caught
Thu Feb 17 01:40:04 EST 2006
Instance DB2
Database: SAMPLE
Partition Number: 0
PID: 940
TID: 2136
Function: sqlplnfd
Component: lock manager
Probe: 999
Timestamp: 2006-02-17-01.40.04.106000
AppID: *LOCAL.DB2...
AppHdl:
...
Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:06:53
Locks:
Address TranHdl Lockname Type Mode Sts Owner Dur HldCnt Att Rlse
0x402C6B30 3 00020003000000040000000052 Row ..X W* 3 1 0 0 0x40

In the output, W* indicates the lock that experienced the timeout. In this case, a
lockwait has occurred. A lock timeout can also occur when a lock is being
converted to a higher mode. This is indicated by C* in the output.

You can map the results to a transaction, an application, an agent, or even an SQL
statement with the output provided by other db2pd commands in the db2cos file.
You can narrow down the output or use other commands to collect the information
that you need. For example, you can use the db2pd -locks wait parameters to
print only locks with a wait status. You can also use the -app and -agent
parameters.

Example 5: Mapping an application to a dynamic SQL statement

The command db2pd -applications -dynamic reports the current and last anchor
ID and statement unique ID for dynamic SQL statements. This allows direct
mapping from an application to a dynamic SQL statement.
Applications:
Address AppHandl [nod-index] NumAgents CoorPid Status
0x00000002006D2120 780 [000-00780] 1 10615 UOW-Executing

C-AnchID C-StmtUID L-AnchID L-StmtUID Appid
163 1 110 1 *LOCAL.burford.050202200412

Dynamic SQL Statements:
Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text
0x0000000220A02760 163 1 2 2 2 1 CREATE VIEW MYVIEW
0x0000000220A0B460 110 1 2 2 2 1 CREATE VIEW YOURVIEW

Example 6: Monitoring memory usage

The db2pd -memblock command can be useful when you are trying to understand
memory usage, as shown in the following sample output:
All memory blocks in DBMS set.

Address PoolID PoolName BlockAge Size(Bytes) I LOC File
0x0780000000740068 62 resynch 2 112 1 1746 1583816485
0x0780000000725688 62 resynch 1 108864 1 127 1599127346
0x07800000001F4348 57 ostrack 6 5160048 1 3047 698130716
0x07800000001B5608 57 ostrack 5 240048 1 3034 698130716
0x07800000001A0068 57 ostrack 1 80 1 2970 698130716
0x07800000001A00E8 57 ostrack 2 240 1 2983 698130716

528 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

0x07800000001A0208 57 ostrack 3 80 1 2999 698130716
0x07800000001A0288 57 ostrack 4 80 1 3009 698130716
0x0780000000700068 70 apmh 1 360 1 1024 3878879032
0x07800000007001E8 70 apmh 2 48 1 914 1937674139
0x0780000000700248 70 apmh 3 32 1 1000 1937674139
...

This is followed by the sorted 'per-pool' output:
Memory blocks sorted by size for ostrack pool:
PoolID PoolName TotalSize(Bytes) TotalCount LOC File
57 ostrack 5160048 1 3047 698130716
57 ostrack 240048 1 3034 698130716
57 ostrack 240 1 2983 698130716
57 ostrack 80 1 2999 698130716
57 ostrack 80 1 2970 698130716
57 ostrack 80 1 3009 698130716
Total size for ostrack pool: 5400576 bytes

Memory blocks sorted by size for apmh pool:
PoolID PoolName TotalSize(Bytes) TotalCount LOC File
70 apmh 40200 2 121 2986298236
70 apmh 10016 1 308 1586829889
70 apmh 6096 2 4014 1312473490
70 apmh 2516 1 294 1586829889
70 apmh 496 1 2192 1953793439
70 apmh 360 1 1024 3878879032
70 apmh 176 1 1608 1953793439
70 apmh 152 1 2623 1583816485
70 apmh 48 1 914 1937674139
70 apmh 32 1 1000 1937674139
Total size for apmh pool: 60092 bytes
...

The final section of output sorts the consumers of memory for the entire memory
set:
All memory consumers in DBMS memory set:
PoolID PoolName TotalSize(Bytes) %Bytes TotalCount %Count LOC File
57 ostrack 5160048 71.90 1 0.07 3047 698130716
50 sqlch 778496 10.85 1 0.07 202 2576467555
50 sqlch 271784 3.79 1 0.07 260 2576467555
57 ostrack 240048 3.34 1 0.07 3034 698130716
50 sqlch 144464 2.01 1 0.07 217 2576467555
62 resynch 108864 1.52 1 0.07 127 1599127346
72 eduah 108048 1.51 1 0.07 174 4210081592
69 krcbh 73640 1.03 5 0.36 547 4210081592
50 sqlch 43752 0.61 1 0.07 274 2576467555
70 apmh 40200 0.56 2 0.14 121 2986298236
69 krcbh 32992 0.46 1 0.07 838 698130716
50 sqlch 31000 0.43 31 2.20 633 3966224537
50 sqlch 25456 0.35 31 2.20 930 3966224537
52 kerh 15376 0.21 1 0.07 157 1193352763
50 sqlch 14697 0.20 1 0.07 345 2576467555
...

You can also report memory blocks for private memory on UNIX and Linux
operating systems. For example, if you run db2pd -memb pid=159770, results similar
to the following ones are generated:
All memory blocks in Private set.

PoolID PoolName BlockAge Size(Bytes) I LOC File
88 private 1 2488 1 172 4283993058
88 private 2 1608 1 172 4283993058
88 private 3 4928 1 172 4283993058
88 private 4 7336 1 172 4283993058
88 private 5 32 1 172 4283993058

Chapter 31. Problem-determination tools 529

88 private 6 6728 1 172 4283993058
88 private 7 168 1 172 4283993058
88 private 8 24 1 172 4283993058
88 private 9 408 1 172 4283993058
88 private 10 1072 1 172 4283993058
88 private 11 3464 1 172 4283993058
88 private 12 80 1 172 4283993058
88 private 13 480 1 1534 862348285
88 private 14 480 1 1939 862348285
88 private 80 65551 1 1779 4231792244
Total set size: 94847 bytes

Memory blocks sorted by size:
PoolID PoolName TotalSize(Bytes) TotalCount LOC File
88 private 65551 1 1779 4231792244
88 private 28336 12 172 4283993058
88 private 480 1 1939 862348285
88 private 480 1 1534 862348285
Total set size: 94847 bytes

Example 7: Determine which application is using up your table space

Using db2pd -tcbstats command, you can identify the number of inserts for a
table. The following example shows sample information for a user-defined global
temporary table called TEMP1:
TCB Table Information:
TbspaceID TableID PartID ... TableName SchemaNm ObjClass DataSize LfSize LobSize XMLSize
3 2 n/a ... TEMP1 SESSION Temp 966 0 0 0

TCB Table Stats:
TableName Scans UDI PgReorgs ... Reads FscrUpdates Inserts Updates Deletes OvFlReads OvFlCrtes
TEMP1 0 0 0 ... 0 0 43968 0 0 0 0

You can then obtain the information for table space 3 by using the db2pd
-tablespaces command. Sample output is as follows:
Tablespace 3 Configuration:
Type Content PageSz ExtentSz Auto Prefetch BufID FSC NumCntrs MaxStripe LastConsecPg Name
DMS UsrTmp 4096 32 Yes 32 1 On 1 0 31 TEMPSPACE2

Tablespace 3 Statistics:
TotalPgs UsablePgs UsedPgs PndFreePgs FreePgs HWM State MinRecTime NQuiescers
5000 4960 1088 0 3872 1088 0x00000000 0 0

Tablespace 3 Autoresize Statistics:
AS AR InitSize IncSize IIP MaxSize LastResize LRF
No No 0 0 No 0 None No

Containers:
ContainNum Type TotalPgs UseablePgs StripeSet Container
0 File 5000 4960 0 /home/db2inst1/tempspace2a

The MinRecTime column returns a value that is a UNIX time stamp in a
Coordinated Universal Time (UTC) timezone format. To convert the value to a
GMT time zone format, you can use the DB2 time stamp function. For example, if
MinRecTime returns a value of 1369626329, to convert this value to a GMT format
run the following statement:
db2 "values timestamp(’1970-01-01-00.00.00’) + 1369626329 seconds"

The query will return a GMT value of 2013-05-27-03.45.29.000000.

The FreePgs column shows that space is filling up. As the free pages value
decreases, there is less space available. Notice also that the value for FreePgs plus
the value for UsedPgs equals the value of UsablePgs.

530 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Once this is known, you can identify the dynamic SQL statement that is using the
table TEMP1 by running the db2pd -db sample -dyn:
Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:13:06

Dynamic Cache:
Current Memory Used 1022197
Total Heap Size 1271398
Cache Overflow Flag 0
Number of References 237
Number of Statement Inserts 32
Number of Statement Deletes 13
Number of Variation Inserts 21
Number of Statements 19

Dynamic SQL Statements:
AnchID StmtUID NumEnv NumVar NumRef NumExe Text
78 1 2 2 3 2 declare global temporary table temp1 ...
253 1 1 1 24 24 insert into session.temp1 values(’TEST’)

Finally, you can map the information from the preceding output to the applications
output to identify the application by running db2pd -db sample -app.
Applications:
AppHandl [nod-index] NumAgents CoorPid Status C-AnchID C-StmtUID
501 [000-00501] 1 11246 UOW-Waiting 0 0

L-AnchID L-StmtUID Appid
253 1 *LOCAL.db2inst1.050202160426

You can use the anchor ID (AnchID) value that identified the dynamic SQL
statement to identify the associated application. The results show that the last
anchor ID (L-AnchID) value is the same as the anchor ID (AnchID) value. You use
the results from one run of db2pd in the next run of db2pd.

The output from db2pd -agent shows the number of rows read (in the Rowsread
column) and rows written (in the Rowswrtn column) by the application. These
values give you an idea of what the application has completed and what the
application still has to complete, as shown in the following sample output:
AppHandl [nod-index] AgentPid Priority Type DBName
501 [000-00501] 11246 0 Coord SAMPLE

State ClientPid Userid ClientNm Rowsread Rowswrtn LkTmOt
Inst-Active 26377 db2inst1 db2bp 22 9588 NotSet

You can map the values for AppHandl and AgentPid resulting from running the
db2pd -agent command to the corresponding values for AppHandl and CoorPiid
resulting from running the db2pd -app command.

The steps are slightly different if you suspect that an internal temporary table is
filling up the table space. You still use db2pd -tcbstats to identify tables with
large numbers of inserts, however. Following is sample information for an implicit
temporary table:
TCB Table Information:
TbspaceID TableID PartID MasterTbs MasterTab TableName SchemaNm ObjClass DataSize ...
1 2 n/a 1 2 TEMP (00001,00002) <30> <JMC Temp 2470 ...
1 3 n/a 1 3 TEMP (00001,00003) <31> <JMC Temp 2367 ...
1 4 n/a 1 4 TEMP (00001,00004) <30> <JMC Temp 1872 ...

TCB Table Stats:
TableName Scans UDI PgReorgs NoChgUpdts Reads FscrUpdates Inserts ...
TEMP (00001,00002) 0 0 0 0 0 0 43219 ...
TEMP (00001,00003) 0 0 0 0 0 0 42485 ...
TEMP (00001,00004) 0 0 0 0 0 0 0 ...

Chapter 31. Problem-determination tools 531

In this example, there are a large number of inserts for tables with the naming
convention TEMP (TbspaceID, TableID). These are implicit temporary tables. The
values in the SchemaNm column have a naming convention of the value for AppHandl
concatenated with the value for SchemaNm, which makes it possible to identify the
application doing the work.

You can then map that information to the output from db2pd -tablespaces to see
the used space for table space 1. Take note of the relationship between the UsedPgs
and UsablePgs values in the table space statistics in the following output:
Tablespace Configuration:
Id Type Content PageSz ExtentSz Auto Prefetch ... FSC NumCntrs MaxStripe LastConsecPg Name
1 SMS SysTmp 4096 32 Yes 320 ... On 10 0 31 TEMPSPACE1

Tablespace Statistics:
Id TotalPgs UsablePgs UsedPgs PndFreePgs FreePgs HWM State MinRecTime NQuiescers
1 6516 6516 6516 0 0 0 0x00000000 0 0

Tablespace Autoresize Statistics:
Address Id AS AR InitSize IncSize IIP MaxSize LastResize LRF
0x07800000203FB5A0 1 No No 0 0 No 0 None No

Containers:
...

You can then identify application handles 30 and 31 (because you saw them in the
-tcbstats output) by using the command db2pd -app:
Applications:
AppHandl NumAgents CoorPid Status C-AnchID C-StmtUID L-AnchID L-StmtUID Appid
31 1 4784182 UOW-Waiting 0 0 107 1 ...4142
30 1 8966270 UOW-Executing 107 1 107 1 ...4013

Finally, map the information from the preceding output to the Dynamic SQL
output obtained by running the db2pd -dyn command:
Dynamic SQL Statements:
AnchID StmtUID NumEnv NumVar NumRef NumExe Text
107 1 1 1 43 43 select c1, c2 from test group by c1,c2

Example 8: Monitoring recovery

If you run the command db2pd -recovery, the output shows several counters that
you can use to verify that recovery is progressing, as shown in the following
sample output. The Current Log and Current LSO values provide the log position.
The CompletedWork value is the number of bytes completed thus far.
Recovery:
Recovery Status 0x00000401
Current Log S0000005.LOG
Current LSN 0000001F07BC
Current LSO 000002551BEA
Job Type ROLLFORWARD RECOVERY
Job ID 7
Job Start Time (1107380474) Wed Feb 2 16:41:14 2005
Job Description Database Rollforward Recovery
Invoker Type User
Total Phases 2
Current Phase 1

Progress:
Address PhaseNum Description StartTime CompletedWork TotalWork
0x0000000200667160 1 Forward Wed Feb 2 16:41:14 2005 2268098 bytes Unknown
0x0000000200667258 2 Backward NotStarted 0 bytes Unknown

Example 9: Determining the amount of resources a transaction is using

If you run the command db2pd -transactions, the output shows the number of
locks, the first log sequence number (LSN), the last LSN, the first LSO, the last

532 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

LSO, the log space used, and the space reserved, as shown in the following sample
output. This can be useful for understanding the behavior of a transaction.
Transactions:
Address AppHandl [nod-index] TranHdl Locks State Tflag
0x000000022026D980 797 [000-00797] 2 108 WRITE 0x00000000
0x000000022026E600 806 [000-00806] 3 157 WRITE 0x00000000
0x000000022026F280 807 [000-00807] 4 90 WRITE 0x00000000

Tflag2 Firstlsn Lastlsn Firstlso Lastlso
0x00000000 0x0000001A4212 0x0000001C2022 0x000001072262 0x0000010B2C8C
0x00000000 0x000000107320 0x0000001S3462 0x000001057574 0x0000010B3340
0x00000000 0x0000001BC00C 0x0000001X2F03 0x00000107CF0C 0x0000010B2FDE
LogSpace SpaceReserved TID AxRegCnt GXID
4518 95450 0x000000000451 1 0
6576 139670 0x0000000003E0 1 0
3762 79266 0x000000000472 1 0

Example 10: Monitoring log usage

The command db2pd -logs is useful for monitoring log usage for a database. By
using thePages Written value, as shown in the following sample output, you can
determine whether the log usage is increasing:
Logs:
Current Log Number 2
Pages Written 846
Method 1 Archive Status Success
Method 1 Next Log to Archive 2
Method 1 First Failure n/a
Method 2 Archive Status Success
Method 2 Next Log to Archive 2
Method 2 First Failure n/a

Address StartLSN StartLSO State Size Pages Filename
0x000000023001BF58 0x00000022F032 0x000001B58000 0x00000000 1000 1000 S0000002.LOG
0x000000023001BE98 0x000000000000 0x000001F40000 0x00000000 1000 1000 S0000003.LOG
0x0000000230008F58 0x000000000000 0x000002328000 0x00000000 1000 1000 S0000004.LOG

You can identify two types of problems by using this output:
v If the most recent log archive fails, Archive Status is set to a value of Failure. If

there is an ongoing archive failure, preventing logs from being archived at all,
Archive Status is set to a value of First Failure.

v If log archiving is proceeding very slowly, the Next Log to Archive value is
lower than the Current Log Number value. If archiving is very slow, space for
active logs might run out, which in turn might prevent any data changes from
occurring in the database.

Note: S0000003.LOG and S0000004.LOG do not contain any log records yet and
therefore the StartLSN is 0x0

Example 11: Viewing the sysplex list

Without the db2pd -sysplex command showing the following sample output, the
only other way to report the sysplex list is by using a DB2 trace.
Sysplex List:
Alias: HOST
Location Name: HOST1
Count: 1

IP Address Port Priority Connections Status PRDID
1.2.34.56 400 1 0 0

Chapter 31. Problem-determination tools 533

Example 12: Generating stack traces

You can use the db2pd -stack all command for Windows operating systems or
the -stack command for UNIX operating systems to produce stack traces for all
processes in the current database partition. You might want to use this command
iteratively when you suspect that a process or thread is looping or hanging.

You can obtain the current call stack for a particular engine dispatchable unit
(EDU) by issuing the command db2pd -stack eduid, as shown in the following
example:
Attempting to dump stack trace for eduid 137.
See current DIAGPATH for trapfile.

If the call stacks for all of the DB2 processes are desired, use the command db2pd
-stack all, for example (on Windows operating systems):

Attempting to dump all stack traces for instance.
See current DIAGPATH for trapfiles.

If you are using a partitioned database environment with multiple physical nodes,
you can obtain the information from all of the partitions by using the command
db2_all "; db2pd -stack all". If the partitions are all logical partitions on the
same machine, however, a faster method is to use db2pd -alldbp -stacks.

You can also redirect the output of the db2pdb -stacks command for db2sysc
processes to a specific directory path with the dumpdir parameter. The output can
be redirected for a specific duration only with the timeout parameter. For example,
to redirect the output of stack traces for all EDUs in db2sysc processes to
/home/waleed/mydir for 30 seconds, issue the following command:
db2pd -alldbp -stack all dumpdir=/home/waleed/mydir timeout=30

Example 13: Viewing memory statistics for a database partition

The db2pd -dbptnmem command shows how much memory the DB2 server is
currently consuming and, at a high level, which areas of the server are using that
memory.

The following example shows the output from running db2pd -dbptnmem on an AIX
machine:
Database Partition Memory Controller Statistics

Controller Automatic: Y
Memory Limit: 122931408 KB
Current usage: 651008 KB
HWM usage: 651008 KB
Cached memory: 231296 KB

The descriptions of these data fields and columns are as follows:

Controller Automatic
Indicates the memory controller setting. It shows the value "Y" if the
instance_memory configuration parameter is set to AUTOMATIC. This means
that database manager automatically determines the upper boundary of
memory consumption.

Memory Limit
If an instance memory limit is enforced, the value of the instance_memory
configuration parameter is the upper bound limit of DB2 server memory
that can be consumed.

534 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Current usage
The amount of memory the server is currently consuming.

HWM usage
The high water mark (HWM) or peak memory usage that has been
consumed since the activation of the database partition (when the db2start
command was run).

Cached memory
The amount of the current usage that is not currently being used but is
cached for performance reasons for future memory requests.

Following is the continuation of the sample output from running db2pd -dbptnmem
on an AIX operating system:
Individual Memory Consumers:
Name Mem Used (KB) HWM Used (KB) Cached (KB)
===
APPL-DBONE 160000 160000 159616
DBMS-name 38528 38528 3776
FMP_RESOURCES 22528 22528 0
PRIVATE 13120 13120 740
FCM_RESOURCES 10048 10048 0
LCL-p606416 128 128 0
DB-DBONE 406656 406656 67200

All registered “consumers” of memory within the DB2 server are listed with the
amount of the total memory they are consuming. The column descriptions are as
follows:

Name A short, distinguishing name of a consumer of memory, such as the
following ones:

APPL-dbname
Application memory consumed for database dbname

DBMS-name
Global database manager memory requirements

FMP_RESOURCES
Memory required to communicate with db2fmps

PRIVATE
Miscellaneous private memory requirements

FCM_RESOURCES
Fast Communication Manager resources

LCL-pid
The memory segment used to communicate with local applications

DB-dbname
Database memory consumed for database dbname

Mem Used (KB)
The amount of memory that is currently allotted to the consumer

HWM Used (KB)
The high-water mark (HWM) of the memory, or the peak memory, that the
consumer has used

Cached (KB)
Of the Mem Used (KB), the amount of memory that is not currently being
used but is immediately available for future memory allocations

Chapter 31. Problem-determination tools 535

Example 14: Monitoring the progress of index reorganization

In DB2 Version 9.8 Fix Pack 3 and later fix packs, the progress report of an index
reorganization has the following characteristics:
v The db2pd -reorgs index command reports index reorg progress for partitioned

indexes (Fix Pack 1 introduced support for only non-partitioned indexes).
v The db2pd -reorgs index command supports the monitoring of index reorg at

the partition level (that is, during reorganization of a single partition).
v The reorg progress for non-partitioned and partitioned indexes is reported in

separate outputs. One output shows the reorg progress for non-partitioned
indexes, and the following outputs show the reorg progress for partitioned
indexes on each table partition; the index reorg statistics of only one partition is
reported in each output.

v Non-partitioned indexes are processed first, followed by partitioned indexes in
serial fashion.

v The db2pd -reorgs index command displays the following additional
information fields in the output for partitioned indexes:
– MaxPartition - Total number of partitions for the table being processed. For

partition-level reorg, MaxPartition will always have a value of 1 since only a
single partition is being reorganized.

– PartitionID - The data partition identifier for the partition being processed.

The following example shows an output obtained using the db2pd -reorgs index
command which reports the index reorg progress for a range-partitioned table with
2 partitions.

Note: The first output reports the Index Reorg Stats of the non-partitioned indexes.
The following outputs report the Index Reorg Stats of the partitioned indexes on
each partition.
Index Reorg Stats:
Retrieval Time: 02/08/2010 23:04:21
TbspaceID: -6 TableID: -32768
Schema: ZORAN TableName: BIGRPT
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:03:55 End Time: 02/08/2010 23:04:04
Total Duration: 00:00:08
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 750000

Retrieval Time: 02/08/2010 23:04:21
TbspaceID: 2 TableID: 5
Schema: ZORAN TableName: BIGRPT
PartitionID: 0 MaxPartition: 2
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:04:04 End Time: 02/08/2010 23:04:08
Total Duration: 00:00:04
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 375000

536 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Retrieval Time: 02/08/2010 23:04:21
TbspaceID: 2 TableID: 6
Schema: ZORAN TableName: BIGRPT
PartitionID: 1 MaxPartition: 2
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:04:08 End Time: 02/08/2010 23:04:12
Total Duration: 00:00:04
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 375000

Example 15: Displaying the top EDUs by processor time consumption and
displaying EDU stack information

If you issue the db2pd command with the -edus parameter option, the output lists
all engine dispatchable units (EDUs). Output for EDUs can be returned at the level
of granularity you specify, such as at the instance level or at the member. On Linux
and UNIX operating systems only, you can also specify the interval parameter
suboption so that two snapshots of all EDUs are taken, separated by an interval
you specify. When the interval parameter is specified, two additional columns in
the output indicate the delta of processor user time (USR DELTA column) and the
delta of processor system time (SYS DELTA column) across the interval.

In the following example, the deltas for processor user time and processor system
time are given across a five-second interval:
$ db2pd -edus interval=5

Database Partition 0 -- Active -- Up 0 days 00:53:29 -- Date 06/04/2010 03:34:59

List of all EDUs for database partition 0

db2sysc PID: 1249522
db2wdog PID: 2068678

EDU ID TID Kernel TID EDU Name USR SYS USR DELTA SYS DELTA
==
6957 6957 13889683 db2agntdp (SAMPLE) 0 58.238506 0.820466 1.160726 0.014721
6700 6700 11542589 db2agent (SAMPLE) 0 52.856696 0.754420 1.114821 0.015007
5675 5675 4559055 db2agntdp (SAMPLE) 0 60.386779 0.854234 0.609233 0.014304
3088 3088 13951225 db2agntdp (SAMPLE) 0 80.073489 2.249843 0.499766 0.006247
3615 3615 2887875 db2loggw (SAMPLE) 0 0.939891 0.410493 0.011694 0.004204
4900 4900 6344925 db2pfchr (SAMPLE) 0 1.748413 0.014378 0.014343 0.000103
7986 7986 13701145 db2agntdp (SAMPLE) 0 1.410225 0.025900 0.003636 0.000074
2571 2571 8503329 db2ipccm 0 0.251349 0.083787 0.002551 0.000857
7729 7729 14168193 db2agntdp (SAMPLE) 0 1.717323 0.029477 0.000998 0.000038
7472 7472 11853991 db2agnta (SAMPLE) 0 1.860115 0.032926 0.000860 0.000012
3358 3358 2347127 db2loggr (SAMPLE) 0 0.151042 0.184726 0.000387 0.000458
515 515 13820091 db2aiothr 0 0.405538 0.312007 0.000189 0.000178
7215 7215 2539753 db2agntdp (SAMPLE) 0 1.165350 0.019466 0.000291 0.000008
6185 6185 2322517 db2wlmd (SAMPLE) 0 0.061674 0.034093 0.000169 0.000100
6442 6442 2756793 db2evmli (DB2DETAILDEADLOCK) 0 0.072142 0.052436 0.000092 0.000063
4129 4129 15900799 db2glock (SAMPLE) 0 0.013239 0.000741 0.000064 0.000001
2 2 11739383 db2alarm 0 0.036904 0.028367 0.000009 0.000009
4386 4386 13361367 db2dlock (SAMPLE) 0 0.015653 0.001281 0.000014 0.000003
1029 1029 15040579 db2fcms 0 0.041929 0.016598 0.000010 0.000004
5414 5414 14471309 db2pfchr (SAMPLE) 0 0.000093 0.000002 0.000000 0.000000
258 258 13656311 db2sysc 0 8.369967 0.263539 0.000000 0.000000
5157 5157 7934145 db2pfchr (SAMPLE) 0 0.027598 0.000177 0.000000 0.000000
1543 1543 2670647 db2fcmr 0 0.004191 0.000079 0.000000 0.000000
1286 1286 8417339 db2extev 0 0.000312 0.000043 0.000000 0.000000
2314 2314 14360813 db2licc 0 0.000371 0.000051 0.000000 0.000000
5928 5928 3137537 db2taskd (SAMPLE) 0 0.004903 0.000572 0.000000 0.000000
3872 3872 2310357 db2lfr (SAMPLE) 0 0.000126 0.000007 0.000000 0.000000
4643 4643 11694287 db2pclnr (SAMPLE) 0 0.000094 0.000002 0.000000 0.000000
1800 1800 5800175 db2extev 0 0.001212 0.002137 0.000000 0.000000

Chapter 31. Problem-determination tools 537

772 772 7925817 db2thcln 0 0.000429 0.000072 0.000000 0.000000
2057 2057 6868993 db2pdbc 0 0.002423 0.001603 0.000000 0.000000
2828 2828 10866809 db2resync 0 0.016764 0.003098 0.000000 0.000000

To provide information only about the EDUs that are the top consumers of
processor time and to reduce the amount of output returned, you can further
include the top parameter option. In the following example, only the top five
EDUs are returned, across an interval of 5 seconds. Stack information is also
returned, and can be found stored separately in the directory path specified by
DUMPDIR, which defaults to diagpath.
$ db2pd -edus interval=5 top=5 stacks

Database Partition 0 -- Active -- Up 0 days 00:54:00 -- Date 06/04/2010 03:35:30

List of all EDUs for database partition 0

db2sysc PID: 1249522
db2wdog PID: 2068678

EDU ID TID Kernel TID EDU Name USR SYS USR DELTA SYS DELTA
==
3358 3358 2347127 db2loggr (SAMPLE) 0 0.154906 0.189223 0.001087 0.001363
3615 3615 2887875 db2loggw (SAMPLE) 0 0.962744 0.419617 0.001779 0.000481
515 515 13820091 db2aiothr 0 0.408039 0.314045 0.000658 0.000543
258 258 13656311 db2sysc 0 8.371388 0.264812 0.000653 0.000474
6700 6700 11542589 db2agent (SAMPLE) 0 54.814420 0.783323 0.000455 0.000310

$ ls -ltr
total 552
drwxrwxr-t 2 vbmithun build 256 05-31 09:59 events/
drwxrwxr-t 2 vbmithun build 256 06-04 03:17 stmmlog/
-rw-r--r-- 1 vbmithun build 46413 06-04 03:35 1249522.3358.000.stack.txt
-rw-r--r-- 1 vbmithun build 22819 06-04 03:35 1249522.3615.000.stack.txt
-rw-r--r-- 1 vbmithun build 20387 06-04 03:35 1249522.515.000.stack.txt
-rw-r--r-- 1 vbmithun build 50426 06-04 03:35 1249522.258.000.stack.txt
-rw-r--r-- 1 vbmithun build 314596 06-04 03:35 1249522.6700.000.stack.txt
-rw-r--r-- 1 vbmithun build 94913 06-04 03:35 1249522.000.processObj.txt

Example 16: Displaying agent event metrics

The db2pd command supports returning event metrics for agents. If you need to
determine whether an agent changed state during a specific period of time, use the
event option together with the -agents parameter. The
AGENT_STATE_LAST_UPDATE_TIME(Tick Value) column that is returned shows
the last time that the event being processed by the agent was changed. Together
with a previously obtained value for AGENT_STATE_LAST_UPDATE_TIME(Tick
Value), you can determine whether an agent has moved on to a new task or
whether it continues to process the same task over an extended period of time.
db2pd -agents event
Database Partition 0 -- Active -- Up 0 days 03:18:52 -- Date 06/27/2011 11:47:10

Agents:
Current agents: 12
Idle agents: 0
Active coord agents: 10
Active agents total: 10
Pooled coord agents: 2
Pooled agents total: 2

AGENT_STATE_LAST_UPDATE_TIME(Tick Value) EVENT_STATE EVENT_TYPE EVENT_OBJECT EVENT_OBJECT_NAME
2011-06-27-14.44.38.859785(...968075) IDLE WAIT REQUEST n/a

538 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Troubleshooting scripts
You may have internal tools or scripts that are based on the processes running in
the database engine. These tools or scripts may no longer work because all agents,
prefetchers, and page cleaners are now considered threads in a single,
multi-threaded process.

Your internal tools and scripts will have to be modified to account for a threaded
process. For example, you may have scripts that start the ps command to list the
process names; and then perform tasks against certain agent processes. Your scripts
must be rewritten.

The problem determination database command db2pd will have a new option -edu
(short for “engine dispatchable unit”) to list all agent names along with their
thread IDs. The db2pd -stack command continues to work with the threaded
engine to dump individual EDU stacks or to dump all EDU stacks for the current
node.

db2dart command
The db2dart command can be used to verify the architectural correctness of
databases and the objects within them. It can also be used to display the contents
of database control files in order to extract data from tables that might otherwise
be inaccessible.

To display all of the possible options, issue the db2dart command without any
parameters. Some options that require parameters, such as the table space ID, are
prompted for if they are not explicitly specified on the command line.

By default, the db2dart utility will create a report file with the name
databaseName.RPT. For single-partition database partition environments, the file is
created in the current directory. For multiple-partition database partition
environments, the file is created under a subdirectory in the diagnostic directory.
The subdirectory is called DART####, where #### is the database partition number.

In a DB2 pureScale environment, some metadata files (such as bufferpool
configuration files) exist for each member and are validated or updated on a
per-member basis (rather than per-database).

The db2dart utility accesses the data and metadata in a database by reading them
directly from disk. Because of that, you should never run the tool against a
database that still has active connections. If there are connections, the tool will not
know about pages in the buffer pool or control structures in memory, for example,
and might report false errors as a result. Similarly, if you run db2dart against a
database that requires crash recovery or that has not completed rollforward
recovery, similar inconsistencies might result due to the inconsistent nature of the
data on disk.

Comparison of INSPECT and db2dart
The INSPECT command inspects a database for architectural integrity, checking the
pages of the database for page consistency. The INSPECT command checks that the
structures of table objects and structures of table spaces are valid. Cross object
validation conducts an online index to data consistency check. The db2dart
command examines databases for architectural correctness and reports any
encountered errors.

Chapter 31. Problem-determination tools 539

The INSPECT command is similar to the db2dart command in that it allows you to
check databases, table spaces, and tables. A significant difference between the two
commands is that the database needs to be deactivated before you run db2dart,
whereas INSPECT requires a database connection and can be run while there are
simultaneous active connections to the database.

If you do not deactivate the database, db2dart will yield unreliable results.

The following tables list the differences between the tests that are performed by the
db2dart and INSPECT commands.

Table 92. Feature comparison of db2dart and INSPECT for table spaces

Tests performed db2dart INSPECT

SMS table spaces

Check table space files YES NO

Validate contents of internal
page header fields

YES YES

DMS table spaces

Check for extent maps
pointed at by more than one
object

YES NO

Check every extent map
page for consistency bit
errors

NO YES

Check every space map page
for consistency bit errors

NO YES

Validate contents of internal
page header fields

YES YES

Verify that extent maps agree
with table space maps

YES NO

Table 93. Feature comparison of db2dart and INSPECT for data objects

Tests performed db2dart INSPECT

Check data objects for
consistency bit errors

YES YES

Check the contents of special
control rows

YES NO

Check the length and
position of variable length
columns

YES NO

Check the LONG
VARCHAR, LONG
VARGRAPHIC, and large
object (LOB) descriptors in
table rows

YES NO

Check the summary total
pages, used pages and free
space percentage

NO YES

Validate contents of internal
page header fields

YES YES

540 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 93. Feature comparison of db2dart and INSPECT for data objects (continued)

Tests performed db2dart INSPECT

Verify each row record type
and its length

YES YES

Verify that rows are not
overlapping

YES YES

Table 94. Feature comparison of db2dart and INSPECT for index objects

Tests performed db2dart INSPECT

Check for consistency bit
errors

YES YES

Check the location and
length of the index key and
whether there is overlapping

YES YES

Check the ordering of keys
in the index

YES NO

Determine the summary total
pages and used pages

NO YES

Validate contents of internal
page header fields

YES YES

Verify the uniqueness of
unique keys

YES NO

Check for the existence of
the data row for a given
index entry

NO YES

Verify each key to a data
value

NO YES

Table 95. Feature comparison of db2dart and INSPECT for block map objects

Tests performed db2dart INSPECT

Check for consistency bit
errors

YES YES

Determine the summary total
pages and used pages

NO YES

Validate contents of internal
page header fields

YES YES

Table 96. Feature comparison of db2dart and INSPECT for long field and LOB objects

Tests performed db2dart INSPECT

Check the allocation
structures

YES YES

Determine the summary total
pages and used pages (for
LOB objects only)

NO YES

In addition, the following actions can be performed using the db2dart command:
v Format and dump data pages
v Format and dump index pages

Chapter 31. Problem-determination tools 541

v Format data rows to delimited ASCII
v Mark an index invalid

The INSPECT command cannot be used to perform those actions.

db2val command
The db2val command verifies the basic functions of a DB2 copy by checking the
state of installation files, instance setup, and local database connections.

Validating your DB2 copy
Use the db2val command to determine whether your DB2 copy is functioning
properly.

About this task

The db2val tool verifies the core function of a DB2 copy by validating installation
files, instances, database creation, connections to that database, and the state of
partitioned database environments. This validation can be helpful if you have
manually deployed a DB2 copy on Linux and UNIX operating systems using
tar.gz files. The db2val command can quickly ensure that all the configuration has
been correctly done and ensure that the DB2 copy is what you expect it to be. You
can specify instances and databases or you can run db2val against all of the
instances. The db2val command can be found in the DB2-install-path\bin and
sqllib/bin directories.

Example

For example, to validate all the instances for the DB2 copy, run the following
command:

db2val -a

For complete db2val command details and further example, refer to the “db2val -
DB2 copy validation tool command” topic.

542 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 5. DB2 commands for database administration

Version 10.1 introduces changes to DB2 CLP commands, DB2 system commands,
and SQL statements to support new capabilities. These changes can affect your
existing database applications or database administration scripts.

© Copyright IBM Corp. 2014 543

544 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 32. Data movement options

There are various data movement options available in DB2 for Linux, UNIX, and
Windows. This topic provides an overview of the data movement tools, utilities,
stored procedures, and commands available to you.

Use these tables as a guide to help you determine which data movement options
might best suit your needs.

Table 97. Load utility

Method Load utility

Purpose
To efficiently move large quantities of data into newly created
tables, or into tables that already contain data.

Cross platform compatible Yes

Best practice usage

This utility is best suited to situations where performance is
your primary concern. This utility can be used as an
alternative to the import utility. It is faster then the import
utility because it writes formatted pages directly into the
database rather than using SQL INSERTS. In addition, the load
utility allows you the option to not log the data or use the
COPY option to save a copy of the loaded data. Load operations
can fully exploit resources, such as CPUs and memory on SMP
and MPP environments.

References Loading data

Table 98. Ingest utility

Method Ingest utility

Purpose
Streams data from files and pipes into DB2 target tables, while
still keeping those tables available.

Cross platform compatible Yes

Best practice usage

This utility strikes a good balance between performance and
availability, but if the latter is more important to you, then you
should choose the ingest utility instead of the load utility.
Similar to the import utility, ingest is suitable if the target
tables are updatable views, range-clustered tables, or
nicknames; however, the ingest utility has superior
performance.

References Ingesting data

Table 99. Import utility

Method Import utility

Purpose
To insert data from an external file into a table, hierarchy,
view, or nickname

Cross platform compatible Yes

© Copyright IBM Corp. 2014 545

Table 99. Import utility (continued)

Best practice usage

The import utility can be a good alternative to the load utility
in the following situations:

v where the target table is a view

v the target table has constraints and you don't want the
target table to be put in the Set Integrity Pending state

v the target table has triggers and you want them fired

References Importing data

Table 100. Export utility

Method Export utility

Purpose
To export data from a database to one of several external file
formats. The data can then be imported or loaded at a later
time.

Cross platform compatible Yes

Best practice usage

This utility is best suited in situations where you want to store
data in an external file, to either process it further or move
data to another table. High Performance Unload (HPU) is an
alternative, however, it must be purchased separately. Export
supports XML columns.

References Exporting data

Table 101. db2move command

Method db2move command

Purpose

Using the db2move utility with the COPY option, allows you to
copy schema templates (with or without data) from a source
database to a target database or move an entire schema from a
source database to a target database. Using the db2move utility
with the IMPORT or EXPORT option facilitates the movement of a
large numbers of tables between DB2 databases.

Cross platform compatible Yes

Best practice usage

When used with the COPY option, the source and the target
database must be different. The COPY option is useful in
making schema templates. Use the IMPORT or EXPORT option for
cloning databases when there is no support for cross-platform
backup and restore operations. The IMPORT and EXPORT options
are used in conjunction with the db2look command.

References v “Copying a schema” in Database Administration Concepts and
Configuration Reference

Table 102. RESTORE command

Method
RESTORE command with the REDIRECT option and the GENERATE
SCRIPT option

Purpose
To copy an entire database from one system to another using a
script from an existing backup image.

Cross platform compatible Limited. See References

Best practice usage
This utility is best suited in situations where a backup image
exists.

546 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 102. RESTORE command (continued)

References

v “Performing a redirected restore using an automatically
generated script” in Data Recovery and High Availability Guide
and Reference

v “Backup and restore operations between different operating
systems and hardware platforms” in Data Recovery and High
Availability Guide and Reference

Table 103. db2relocatedb command

Method db2relocatedb command

Purpose
To rename a database, or relocate a database or part of a
database to the same system or a different system.

Cross platform compatible No

Best practice usage

v This utility can be used for situations where a backup and
restore could be time consuming.

v This utility is an alternative to using backup and restore to
move or create copies of databases.

v It also provides a quick method of cloning a database for
alternative environments such as testing.

v It can be used to move table space containers to a new set
of storage devices

References
“db2relocatedb - Relocate database command” in Command
Reference

Table 104. ADMIN_COPY_SCHEMA procedure

Method ADMIN_COPY_SCHEMA procedure

Purpose

Allows you to make a copy of all the objects in a single
schema and re-create those objects in a new schema. This copy
operation can be performed with or without data, within a
database.

Cross platform compatible Yes

Best practice usage

This utility is useful for making schema templates. It is also
useful if you want to experiment with a schema (for example,
try out new indexes) without impacting the source schema's
behavior. The key differences between the
ADMIN_COPY_SCHEMA procedure and the db2move utility
are:

v The ADMIN_COPY_SCHEMA procedure is used on a single
database while the db2move utility is used across databases

v The db2move utility fails when invoked if it cannot create a
physical object such as a table or index. The
ADMIN_COPY_SCHEMA procedure logs errors and
continues.

v The ADMIN_COPY_SCHEMA procedure uses load from
cursor to move data from one schema to the other. The
db2move utility uses a remote load, similar to a load from
cursor, which pulls in the data from the source database.

References
“Copying a schema” in Database Administration Concepts and
Configuration Reference

Chapter 32. Data movement options 547

Table 105. ADMIN_MOVE_TABLE procedure

Method ADMIN_MOVE_TABLE procedure

Purpose

Allows you to move the data in a table to a new table object
of the same name (but with possibly different storage
characteristics) while the data remains online and available for
access.

Cross platform compatible Yes

Best practice usage

This utility automates the process of moving table data to a
new table object while allowing the data to remain online for
select, insert, update, and delete access. You can also generate
a compression dictionary when a table is moved.

v Avoid making multiple moves into same table space at the
same time.

v Run this procedure when activity on the table is low.

v Use a multi-step move operation. The INIT and COPY
phases can be called at any time. Execute the REPLAY phase
multiple times in order to keep the staging table size small,
and then issue the SWAP during a time of low activity on
the table.

v Consider using an offline table move if you are working
with tables without unique indexes or tables with no index.

References

v “ADMIN_MOVE_TABLE procedure - Move an online table”
in Command Reference

v Moving tables online by using the ADMIN_MOVE_TABLE
procedure

Table 106. Split mirror

Method Split mirror

Purpose To create a clone, standby, or backup database

Cross platform compatible No

Best practice usage

v create a standby system in case of a primary failure to
reduce down time

v move backup operations away from a live production
machine onto a split database

v provides a quick method of cloning a database for alternate
environments, such as testing

Considerations

v only DMS table spaces can be backed up on the split
version of the database

v usually used in conjunction with some flashcopy
technology provided with storage systems

v an alternative is to issue a file copy once the database is
suspended, however this duplicates the amount of storage
for the database

References
“High availability through online split mirror and suspended
I/O support” in Data Recovery and High Availability Guide and
Reference

548 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 33. Load utility

The load utility is capable of efficiently moving large quantities of data into newly
created tables, or into tables that already contain data.

The utility can handle most data types, including XML, large objects (LOBs), and
user-defined types (UDTs).

The load utility is faster than the import utility, because it writes formatted pages
directly into the database, while the import utility performs SQL INSERTs.

The load utility does not fire triggers, and does not perform referential or table
constraints checking (other than validating the uniqueness of the indexes).

The load process consists of four distinct phases (see Figure 44):
1. Load

During the load phase, data is loaded into the table, and index keys and table
statistics are collected, if necessary. Save points, or points of consistency, are
established at intervals specified through the SAVECOUNT parameter in the LOAD
command. Messages are generated, indicating how many input rows were
successfully loaded at the time of the save point.

2. Build
During the build phase, indexes are produced based on the index keys
collected during the load phase. The index keys are sorted during the load
phase, and index statistics are collected (if the STATISTICS USE PROFILE option
was specified, and profile indicates collecting index statistics). The statistics are
similar to those collected through the RUNSTATS command.

3. Delete
During the delete phase, the rows that caused a unique or primary key
violation are removed from the table. These deleted rows are stored in the load
exception table, if one was specified.

4. Index copy
During the index copy phase, the index data is copied from a system
temporary table space to the original table space. This will only occur if a
system temporary table space was specified for index creation during a load
operation with the READ ACCESS option specified.

Note: After you invoke the load utility, you can use the LIST UTILITIES command
to monitor the progress of the load operation.

The following information is required when loading data:
v The path and the name of the input file, named pipe, or device.
v The name or alias of the target table.

Load
Phase
Starts

Load
Phase
Ends

Build
Phase
Starts

Delete
Phase
Starts

Build
Phase
Ends

Phase
Ends

Delete Index Copy
Phase
Starts

Index Copy
Phase
Ends

Figure 44. The Four Phases of the Load Process: Load, Build, Delete, and Index Copy

© Copyright IBM Corp. 2014 549

v The format of the input source. This format can be DEL, ASC, PC/IXF, or
CURSOR.

v Whether the input data is to be appended to the table, or is to replace the
existing data in the table.

v A message file name, if the utility is invoked through the application
programming interface (API), db2Load.

Load modes
v INSERT

In this mode, load appends input data to the table without making any changes
to the existing data.

v REPLACE
In this mode, load deletes existing data from the table and populates it with the
input data.

v RESTART
In this mode, an interrupted load is resumed. In most cases, the load is resumed
from the phase it failed in. If that phase was the load phase, the load is resumed
from the last successful consistency point.

v TERMINATE
In this mode, a failed load operation is rolled back.

The options you can specify include:
v That the data to be loaded resides on the client, if the load utility is invoked

from a remotely connected client. Note that XML and LOB data are always read
from the server, even you specify the CLIENT option.

v The method to use for loading the data: column location, column name, or
relative column position.

v How often the utility is to establish consistency points.
v The names of the table columns into which the data is to be inserted.
v Whether or not preexisting data in the table can be queried while the load

operation is in progress.
v Whether the load operation should wait for other utilities or applications to

finish using the table or force the other applications off before proceeding.
v An alternate system temporary table space in which to build the index.
v The paths and the names of the input files in which LOBs are stored.

Note: The load utility does not honor the COMPACT lob option.
v A message file name. During load operations, you can specify that message files

be created to contain the error, warning, and informational messages associated
with those operations. Specify the name of these files with the MESSAGES
parameter.

Note:

1. You can only view the contents of a message file after the operation is
finished. If you want to view load messages while a load operation is
running, you can use the LOAD QUERY command.

2. Each message in a message file begins on a new line and contains
information provided by the DB2 message retrieval facility.

v Whether column values being loaded have implied decimal points.
v Whether the utility should modify the amount of free space available after a

table is loaded.

550 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Whether statistics are to be gathered during the load process. This option is only
supported if the load operation is running in REPLACE mode. Statistics are
collected according to the profile defined for the table. The profile must be
created by the RUNSTATS command before the LOAD command is executed. If the
profile does not exist and the load operation is instructed to collect statistics
according to the profile, the load will fail, and an error message will be returned.
If data is appended to a table, statistics are not collected. To collect current
statistics on an appended table, invoke the RUNSTATS utility following completion
of the load process. If gathering statistics on a table with a unique index, and
duplicate keys are deleted during the delete phase, statistics are not updated to
account for the deleted records. If you expect to have a significant number of
duplicate records, do not collect statistics during the load operation. Instead,
invoke the RUNSTATS utility following completion of the load process.

v Whether to keep a copy of the changes made. This is done to enable rollforward
recovery of the database. This option is not supported if rollforward recovery is
disabled for the database; that is, if the database configuration parameters
logarchmeth1 and logarchmeth2 are set to OFF. If no copy is made, and
rollforward recovery is enabled, the table space is left in Backup Pending state at
the completion of the load operation.
Logging is required for fully recoverable databases. The load utility almost
completely eliminates the logging associated with the loading of data. In place of
logging, you have the option of making a copy of the loaded portion of the
table. If you have a database environment that allows for database recovery
following a failure, you can do one of the following:
– Explicitly request that a copy of the loaded portion of the table be made.
– Take a backup of the table spaces in which the table resides immediately after

the completion of the load operation.
If the database configuration parameter logindexbuild is set, and if the load
operation is invoked with the COPY YES recoverability option and the
INCREMENTAL indexing option, the load logs all index modifications. The benefit
of using these options is that when you roll forward through the log records for
this load, you also recover the indexes (whereas normally the indexes are not
recovered unless the load uses the REBUILD indexing mode).
If you are loading a table that already contains data, and the database is
non-recoverable, ensure that you have a backed-up copy of the database, or the
table spaces for the table being loaded, before invoking the load utility, so that
you can recover from errors.
If you want to perform a sequence of multiple load operations on a recoverable
database, the sequence of operations will be faster if you specify that each load
operation is non-recoverable, and take a backup at the end of the load sequence,
than if you invoke each of the load operations with the COPY YES option. You can
use the NONRECOVERABLE option to specify that a load transaction is to be marked
as non-recoverable, and that it will not be possible to recover it by a subsequent
rollforward operation. The rollforward utility will skip the transaction, and will
mark the table into which data was being loaded as "invalid". The utility will
also ignore any subsequent transactions against that table. After the rollforward
operation is completed, such a table can only be dropped (see Figure 45 on page
552). With this option, table spaces are not put in backup pending state
following the load operation, and a copy of the loaded data does not have to be
made during the load operation.

Chapter 33. Load overview 551

v The fully qualified path to be used when creating temporary files during a load
operation. The name is specified by the TEMPFILES PATH parameter of the LOAD
command. The default value is the database path. The path resides on the server
machine, and is accessed by the DB2 instance exclusively. Therefore, any path
name qualification given to this parameter must reflect the directory structure of
the server, not the client, and the DB2 instance owner must have read and write
permission on the path.

Privileges and authorities required to use load
Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects for
which they have the appropriate authorization; that is, the required privilege or
authority.

To load data into a table, you must have one of the following:
v DATAACCESS authority
v LOAD or DBADM authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT
mode, TERMINATE mode (to terminate a previous load insert operation), or
RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked
in REPLACE mode, TERMINATE mode (to terminate a previous load replace
operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the
load operation.

– SELECT privilege on SYSCAT.TABLES is required in some cases where LOAD
queries the catalog tables.

Since all load processes (and all DB2 server processes, in general), are owned by
the instance owner, and all of these processes use the identification of the instance
owner to access needed files, the instance owner must have read access to input
data files. These input data files must be readable by the instance owner, regardless
of who invokes the command.

If the REPLACE option is specified, the session authorization ID must have the
authority to drop the table.

On Windows, and Windows.NET operating systems where DB2 is running as a
Windows service, if you are loading data from files that reside on a network drive,
you must configure the DB2 service to run under a user account that has read
access to these files.

full DB
restore

rollforward
begins

load to table X
ignored

transaction to
table X ignored

rollforward
ends

table X
dropped

(recovery time-line)

Figure 45. Non-recoverable Processing During a Roll Forward Operation

552 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note:

v To load data into a table that has protected columns, the session authorization
ID must have LBAC credentials that allow write access to all protected columns
in the table.

v To load data into a table that has protected rows, the session authorization ID
must have been granted a security label for write access that is part of the
security policy protecting the table.

LOAD authority
Users having LOAD authority at the database level, as well as INSERT privilege on
a table, can use the LOAD command to load data into a table.

Note: Having DATAACCESS authority gives a user full access to the LOAD
command.

Users having LOAD authority at the database level, as well as INSERT privilege on
a table, can LOAD RESTART or LOAD TERMINATE if the previous load operation is a
load to insert data.

Users having LOAD authority at the database level, as well as the INSERT and
DELETE privileges on a table, can use the LOAD REPLACE command.

If the previous load operation was a load replace, the DELETE privilege must also
have been granted to that user before the user can LOAD RESTART or LOAD
TERMINATE.

If the exception tables are used as part of a load operation, the user must have
INSERT privilege on the exception tables.

The user with this authority can perform QUIESCE TABLESPACES FOR TABLE,
RUNSTATS, and LIST TABLESPACES commands.

Loading data
The load utility efficiently moves large quantities of data into newly created tables,
or into tables that already contain data.

Before you begin

Before invoking the load utility, you must be connected to (or be able to implicitly
connect to) the database into which you want to load the data.

Since the utility issues a COMMIT statement, complete all transactions and release
all locks by issuing either a COMMIT or a ROLLBACK statement before invoking
the load utility.

Data is loaded in the sequence that appears in the input file, except when using
multidimensional clustering (MDC) tables, partitioned tables, or the anyorder file
type modifier. If you want a particular sequence, sort the data before attempting a
load operation. If clustering is required, the data should be sorted on the clustering
index before loading. When loading data into multidimensional clustered tables
(MDC), sorting is not required before the load operation, and data is clustered
according to the MDC table definition. When loading data into partitioned tables,
sorting is not required before the load operation, and data is partitioned according
to the table definition.

Chapter 33. Load overview 553

Restrictions

These are some of the restrictions that apply to the load utility:
v Loading data into nicknames is not supported.
v Loading data into typed tables, or tables with structured type columns, is not

supported.
v Loading data into declared temporary tables and created temporary tables is not

supported.
v XML data can only be read from the server side; if you want to have the XML

files read from the client, use the import utility.
v You cannot create or drop tables in a table space that is in Backup Pending state.
v You cannot load data into a database accessed through DB2 Connect or a server

level before DB2 Version 2. Options that are only available with the current
cannot be used with a server from the previous release.

v If an error occurs during a LOAD REPLACE operation, the original data in the table
is lost. Retain a copy of the input data to allow the load operation to be
restarted.

v Triggers are not activated on newly loaded rows. Business rules associated with
triggers are not enforced by the load utility.

v Loading encrypted data is not supported.

These are some of the restrictions that apply to the load utility when loading into a
partitioned table:
v Consistency points are not supported when the number of partitioning agents is

greater than one.
v Loading data into a subset of data partitions while keeping the remaining data

partitions fully online is not supported.
v The exception table used by a load operation or a set integrity pending

operation cannot be partitioned.
v A unique index cannot be rebuilt when the load utility is running in insert mode

or restart mode, and the load target table has any detached dependents.

Procedure

To invoke the load utility:
v Issue a LOAD command in the command line processor (CLP).
v Call the db2Load application programming interface (API) from a client

application.
v Open the task assistant in IBM Data Studio for the LOAD command.

Example

The following is an example of a LOAD command issued through the CLP:
db2 load from stafftab.ixf of ixf messages staff.msgs

insert into userid.staff copy yes use tsm data buffer 4000

In this example:
v Any warning or error messages are placed in the staff.msgs file.
v A copy of the changes made is stored in Tivoli Storage Manager (TSM).
v 4000 pages of buffer space are to be used during the load operation.

554 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The following is another example of a LOAD command issued through the CLP:
db2 load from stafftab.ixf of ixf messages staff.msgs

tempfiles path /u/myuser replace into staff

In this example:
v The table data is being replaced.
v The TEMPFILES PATH parameter is used to specify /u/myuser as the server path

into which temporary files are written.

Note: These examples use relative path names for the load input file. Relative path
names are only allowed on calls from a client on the same database partition as the
database. The use of fully qualified path names is recommended.

What to do next

After you invoke the load utility, you can use the LIST UTILITIES command to
monitor the progress of the load operation. If a load operation is performed in
either INSERT mode, REPLACE mode, or RESTART mode, detailed progress monitoring
support is available. Issue the LIST UTILITIES command with the SHOW DETAILS
parameter to view detailed information about the current load phase. Details are
not available for a load operation performed in TERMINATE mode. The LIST
UTILITIES command simply shows that a load terminate utility is currently
running.

A load operation maintains unique constraints, range constraints for partitioned
tables, generated columns, and LBAC security rules. For all other constraints, the
table is placed in the Set Integrity Pending state at the beginning of a load
operation. After the load operation is complete, the SET INTEGRITY statement
must be used to take the table out of Set Integrity Pending state.

Load sessions - CLP examples
Example 1

TABLE1 has 5 columns:
v COL1 VARCHAR 20 NOT NULL WITH DEFAULT
v COL2 SMALLINT
v COL3 CHAR 4
v COL4 CHAR 2 NOT NULL WITH DEFAULT
v COL5 CHAR 2 NOT NULL

ASCFILE1 has 6 elements:
v ELE1 positions 01 to 20
v ELE2 positions 21 to 22
v ELE3 positions 23 to 23
v ELE4 positions 24 to 27
v ELE5 positions 28 to 31
v ELE6 positions 32 to 32
v ELE7 positions 33 to 40

Data Records:

Chapter 33. Load overview 555

1...5...10...15...20...25...30...35...40
Test data 1 XXN 123abcdN
Test data 2 and 3 QQY XXN
Test data 4,5 and 6 WWN6789 Y

The following command loads the table from the file:
db2 load from ascfile1 of asc modified by striptblanks reclen=40

method L (1 20, 21 22, 24 27, 28 31)
null indicators (0,0,23,32)
insert into table1 (col1, col5, col2, col3)

Note:

1. The specification of striptblanks in the MODIFIED BY parameter forces the
truncation of blanks in VARCHAR columns (COL1, for example, which is 11, 17
and 19 bytes long, in rows 1, 2 and 3, respectively).

2. The specification of reclen=40 in the MODIFIED BY parameter indicates that
there is no newline character at the end of each input record, and that each
record is 40 bytes long. The last 8 bytes are not use to load the table.

3. Since COL4 is not provided in the input file, it will be inserted into TABLE1
with its default value (it is defined NOT NULL WITH DEFAULT).

4. Positions 23 and 32 are used to indicate whether COL2 and COL3 of TABLE1
will be loaded NULL for a given row. If there is a Y in the column's null
indicator position for a given record, the column will be NULL. If there is an N,
the data values in the column's data positions of the input record (as defined in
L(........)) are used as the source of column data for the row. In this example,
neither column in row 1 is NULL; COL2 in row 2 is NULL; and COL3 in row 3
is NULL.

5. In this example, the NULL INDICATORS for COL1 and COL5 are specified as
0 (zero), indicating that the data is not nullable.

6. The NULL INDICATOR for a given column can be anywhere in the input
record, but the position must be specified, and the Y or N values must be
supplied.

Example 2 (using dump files)

Table FRIENDS is defined as:
table friends "(c1 INT NOT NULL, c2 INT, c3 CHAR(8))"

If an attempt is made to load the following data records into this table,
23, 24, bobby
, 45, john
4,, mary

the second row is rejected because the first INT is NULL, and the column
definition specifies NOT NULL. Columns which contain initial characters that are
not consistent with the DEL format will generate an error, and the record will be
rejected. Such records can be written to a dump file.

DEL data appearing in a column outside of character delimiters is ignored, but
does generate a warning. For example:

22,34,"bob"
24,55,"sam" sdf

The utility will load "sam" in the third column of the table, and the characters "sdf"
will be flagged in a warning. The record is not rejected. Another example:

556 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

22 3, 34,"bob"

The utility will load 22,34,"bob", and generate a warning that some data in
column one following the 22 was ignored. The record is not rejected.

Example 3 (Loading a table with an identity column)

TABLE1 has 4 columns:
v C1 VARCHAR(30)
v C2 INT GENERATED BY DEFAULT AS IDENTITY
v C3 DECIMAL(7,2)
v C4 CHAR(1)

TABLE2 is the same as TABLE1, except that C2 is a GENERATED ALWAYS
identity column.

Data records in DATAFILE1 (DEL format):
"Liszt"
"Hummel",,187.43, H
"Grieg",100, 66.34, G
"Satie",101, 818.23, I

Data records in DATAFILE2 (DEL format):
"Liszt", 74.49, A
"Hummel", 0.01, H
"Grieg", 66.34, G
"Satie", 818.23, I

Note:

1. The following command generates identity values for rows 1 and 2, since no
identity values are supplied in DATAFILE1 for those rows. Rows 3 and 4,
however, are assigned the user-supplied identity values of 100 and 101,
respectively.

db2 load from datafile1.del of del replace into table1

2. To load DATAFILE1 into TABLE1 so that identity values are generated for all
rows, issue one of the following commands:

db2 load from datafile1.del of del method P(1, 3, 4)
replace into table1 (c1, c3, c4)

db2load from datafile1.del of del modified by identityignore
replace into table1

3. To load DATAFILE2 into TABLE1 so that identity values are generated for each
row, issue one of the following commands:

db2 load from datafile2.del of del replace into table1 (c1, c3, c4)
db2 load from datafile2.del of del modified by identitymissing

replace into table1

4. To load DATAFILE1 into TABLE2 so that the identity values of 100 and 101 are
assigned to rows 3 and 4, issue the following command:

db2 load from datafile1.del of del modified by identityoverride
replace into table2

In this case, rows 1 and 2 will be rejected, because the utility has been
instructed to override system-generated identity values in favor of
user-supplied values. If user-supplied values are not present, however, the row
must be rejected, because identity columns are implicitly not NULL.

Chapter 33. Load overview 557

5. If DATAFILE1 is loaded into TABLE2 without using any of the identity-related
file type modifiers, rows 1 and 2 will be loaded, but rows 3 and 4 will be
rejected, because they supply their own non-NULL values, and the identity
column is GENERATED ALWAYS.

Example 3 (loading from CURSOR)

MY.TABLE1 has 3 columns:
v ONE INT
v TWO CHAR(10)
v THREE DATE

MY.TABLE2 has 3 columns:
v ONE INT
v TWO CHAR(10)
v THREE DATE

Cursor MYCURSOR is defined as follows:
declare mycursor cursor for select * from my.table1

The following command loads all the data from MY.TABLE1 into MY.TABLE2:
load from mycursor of cursor method P(1,2,3) insert into

my.table2(one,two,three)

Note:

1. Only one cursor name can be specified in a single LOAD command. That is,
load from mycurs1, mycurs2 of cursor... is not allowed.

2. P and N are the only valid METHOD values for loading from a cursor.
3. In this example, METHOD P and the insert column list (one,two,three) could

have been omitted since they represent default values.
4. MY.TABLE1 can be a table, view, alias, or nickname.

LBAC-protected data load considerations
For a successful load operation into a table with protected rows, you must have
LBAC (label-based access control) credentials. You must also provide a valid
security label, or a security label that can be converted to a valid label, for the
security policy currently associated with the target table.

If you do not have valid LBAC credentials, the load fails and an error (SQLSTATE
42512) is returned. In cases where the input data does not contain a security label
or that security label is not in its internal binary format, you can use several file
type modifiers to allow your load to proceed.

When you load data into a table with protected rows, the target table has one
column with a data type of DB2SECURITYLABEL. If the input row of data does
not contain a value for that column, that row is rejected unless the usedefaults file
type modifier is specified in the load command, in which case the security label
you hold for write access from the security policy protecting the table is used. If
you do not hold a security label for write access, the row is rejected and processing
continues on to the next row.

When you load data into a table that has protected rows and the input data does
include a value for the column with a data type of DB2SECURITYLABEL, the

558 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

same rules are followed as when you insert data into that table. If the security
label protecting the row being loaded (the one in that row of the data file) is one
that you are able to write to, then that security label is used to protect the row. (In
other words, it is written to the column that has a data type of
DB2SECURITYLABEL.) If you are not able to write to a row protected by that
security label, what happens depends on how the security policy protecting the
source table was created:
v If the CREATE SECURITY POLICY statement that created the policy included

the option RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL, the row is rejected.
v If the CREATE SECURITY POLICY statement did not include the option or if it

instead included the OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option, the
security label in the data file for that row is ignored and the security label you
hold for write access is used to protect that row. No error or warning is issued
in this case. If you do not hold a security label for write access, the row is
rejected and processing continues on to the next row.

Delimiter considerations

When loading data into a column with a data type of
DB2SECURITYLABEL, the value in the data file is assumed by default to
be the actual bytes that make up the internal representation of that security
label. However, some raw data might contain newline characters which
could be misinterpreted by the LOAD command as delimiting the row. If
you have this problem, use the delprioritychar file type modifier to
ensure that the character delimiter takes precedence over the row delimiter.
When you use delprioritychar, any record or column delimiters that are
contained within character delimiters are not recognized as being
delimiters. Using the delprioritychar file type modifier is safe to do even
if none of the values contain a newline character, but it does slow the load
down slightly.

If the data being loaded is in ASC format, you might have to take an extra
step in order to prevent any trailing white space from being included in
the loaded security labels and security label names. ASCII format uses
column positions as delimiters, so this might occur when loading into
variable-length fields. Use the striptblanks file type modifier to truncate
any trailing blank spaces.

Nonstandard security label values

You can also load data files in which the values for the security labels are
strings containing the values of the components in the security label, for
example, S:(ALPHA,BETA). To do so you must use the file type modifier
seclabelchar. When you use seclabelchar, a value for a column with a
data type of DB2SECURITYLABEL is assumed to be a string constant
containing the security label in the string format for security labels. If a
string is not in the proper format, the row is not inserted and a warning
(SQLSTATE 01H53) is returned. If the string does not represent a valid
security label that is part of the security policy protecting the table, the row
is not inserted and a warning (SQLSTATE 01H53) is returned.

You can also load a data file in which the values of the security label
column are security label names. To load this sort of file you must use the
file type modifier seclabelname. When you use seclabelname, all values for
columns with a data type of DB2SECURITYLABEL are assumed to be
string constants containing the names of existing security labels. If no

Chapter 33. Load overview 559

security label exists with the indicated name for the security policy
protecting the table, the row is not loaded and a warning (SQLSTATE
01H53) is returned.

Rejected rows

Rows that are rejected during the load are sent to either a dumpfile or an
exception table (if they are specified in the LOAD command), depending on
the reason why the rows were rejected. Rows that are rejected due to
parsing errors are sent to the dumpfile. Rows that violate security policies
are sent to the exception table.

Note: You cannot specify an exception table if the target table contains an
XML column.

Examples

For all examples, the input data file myfile.del is in DEL format. All are loading
data into a table named REPS, which was created with this statement:
create table reps (row_label db2securitylabel,
id integer,
name char(30))
security policy data_access_policy

For this example, the input file is assumed to contain security labels in the default
format:
db2 load from myfile.del of del modified by delprioritychar insert into reps

For this example, the input file is assumed to contain security labels in the security
label string format:
db2 load from myfile.del of del modified by seclabelchar insert into reps

For this example, the input file is assumed to contain security labels names for the
security label column:
db2 load from myfile.del of del modified by seclabelname insert into reps

Identity column load considerations
The load utility can be used to load data into a table containing an identity column
whether or not the input data has identity column values.

If no identity-related file type modifiers are used, the utility works according to the
following rules:
v If the identity column is GENERATED ALWAYS, an identity value is generated

for a table row whenever the corresponding row in the input file is missing a
value for the identity column, or a NULL value is explicitly given. If a
non-NULL value is specified for the identity column, the row is rejected
(SQL3550W).

v If the identity column is GENERATED BY DEFAULT, the load utility makes use
of user-supplied values, if they are provided; if the data is missing or explicitly
NULL, a value is generated.

The load utility does not perform any extra validation of user-supplied identity
values beyond what is normally done for values of the identity column's data type
(that is, SMALLINT, INT, BIGINT, or DECIMAL). Duplicate values are not
reported.

560 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

In most cases the load utility cannot guarantee that identity column values are
assigned to rows in the same order that these rows appear in the data file. Because
the assignment of identity column values is managed in parallel by the load utility,
those values are assigned in arbitrary order. The exceptions to this are as follows:
v In single-partition databases, rows are not processed in parallel when

CPU_PARALLELISM is set to 1. In this case, identity column values are implicitly
assigned in the same order that rows appear in the data file parameter.

v In multi-partition databases, identity column values are assigned in the same
order that the rows appear in the data file if the identity column is in the
distribution key and if there is a single partitioning agent (that is, if you do not
specify multiple partitioning agents or the anyorder file type modifier).

When loading a table in a partitioned database where the table has an identity
column in the partitioning key and the identityoverride modifier is not specified,
the SAVECOUNT option cannot be specified. When there is an identity column in the
partitioning key and identity values are being generated, restarting a load from the
load phase on at least one database partition requires restarting the whole load
from the beginning of the load phase, which means that there can't be any
consistency points.

Note: A load RESTART operation is not permitted if all of the following criteria are
met:
v The table being loaded is in a partitioned database environment, and it contains

at least one identity column that is either in the distribution key or is referenced
by a generated column that is part of the distribution key.

v The identityoverride modifier is not specified.
v The previous load operation that failed included loading database partitions that

failed after the load phase.

A load TERMINATE or REPLACE operation should be issued instead.

There are three mutually exclusive ways you can simplify the loading of data into
tables that contain an identity column: the identitymissing, the identityignore,
and the identityoverride file type modifiers.

Loading data without identity columns

The identitymissing modifier makes loading a table with an identity column more
convenient if the input data file does not contain any values (not even NULLS) for
the identity column. For example, consider a table defined with the following SQL
statement:

create table table1 (c1 varchar(30),
c2 int generated by default as identity,
c3 decimal(7,2),
c4 char(1))

If you want to load TABLE1 with data from a file (load.del) that has been
exported from a table that does not have an identity column, see the following
example:

Robert, 45.2, J
Mike, 76.9, K
Leo, 23.4, I

One way to load this file would be to explicitly list the columns to be loaded
through the LOAD command as follows:

db2 load from load.del of del replace into table1 (c1, c3, c4)

Chapter 33. Load overview 561

For a table with many columns, however, this syntax might be cumbersome and
prone to error. An alternate method of loading the file is to use the
identitymissing file type modifier as follows:

db2 load from load.del of del modified by identitymissing
replace into table1

This command would result in the three columns in the data file being loaded into
c1, c3, and c4 of TABLE1. A value will be generated for each row in c2.

Loading data with identity columns

The identityignore modifier indicates to the load utility that even though the
input data file contains data for the identity column, the data should be ignored,
and an identity value should be generated for each row. For example, a user might
want to load TABLE1, as defined previously, from a data file (load.del) containing
the following data:

Robert, 1, 45.2, J
Mike, 2, 76.9, K
Leo, 3, 23.4, I

If the user-supplied values of 1, 2, and 3 are not used for the identity column, you
can issue the following LOAD command:

db2 load from load.del of del method P(1, 3, 4)
replace into table1 (c1, c3, c4)

Again, this approach might be cumbersome and prone to error if the table has
many columns. The identityignore modifier simplifies the syntax as follows:

db2 load from load.del of del modified by identityignore
replace into table1

Loading data with user-supplied values

The identityoverride modifier is used for loading user-supplied values into a
table with a GENERATED ALWAYS identity column. This can be quite useful
when migrating data from another database system, and the table must be defined
as GENERATED ALWAYS, or when loading a table from data that was recovered
using the DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE command.
When this modifier is used, any rows with no data (or NULL data) for the identity
column are rejected (SQL3116W). You should also note that when using this
modifier, it is possible to violate the uniqueness property of GENERATED
ALWAYS columns.In this situation, perform a load TERMINATE operation, followed
by a subsequent load INSERT or REPLACE operation.

Generated column load considerations
You can load data into a table containing (nonidentity) generated columns whether
or not the input data has generated column values. The load utility generates the
column values.

If no generated column-related file type modifiers are used, the load utility works
according to the following rules:
v Values are created for generated columns when the corresponding row of the

data file is missing a value for the column or a NULL value is supplied. If a
non-NULL value is supplied for a generated column, the row is rejected
(SQL3550W).

562 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v If a NULL value is created for a generated column that is not nullable, the entire
row of data is rejected (SQL0407N). This could occur if, for example, a
non-nullable generated column is defined as the sum of two table columns that
include NULL values in the data file.

There are three mutually exclusive ways you can simplify the loading of data into
tables that contain a generated column: the generatedmissing, the
generatedignore, and the generatedoverride file type modifiers:

Loading data without generated columns

The generatedmissing modifier makes loading a table with generated
columns more convenient if the input data file does not contain any values
(not even NULLS) for all generated columns present in the table. For
example, consider a table defined with the following SQL statement:

CREATE TABLE table1 (c1 INT,
c2 INT,
g1 INT GENERATED ALWAYS AS (c1 + c2),
g2 INT GENERATED ALWAYS AS (2 * c1),
c3 CHAR(1))

If you want to load TABLE1 with data from a file (load.del) that has been
exported from a table that does not have any generated columns, see the
following example:

1, 5, J
2, 6, K
3, 7, I

One way to load this file would be to explicitly list the columns to be
loaded through the LOAD command as follows:

DB2 LOAD FROM load.del of del REPLACE INTO table1 (c1, c2, c3)

For a table with many columns, however, this syntax might be
cumbersome and prone to error. An alternate method of loading the file is
to use the generatedmissing file type modifier as follows:

DB2 LOAD FROM load.del of del MODIFIED BY generatedmissing
REPLACE INTO table1

This command will result in the three columns of data file being loaded
into c1, c2, and c3 of TABLE1. Due to the generatedmissing modifier,
values for columns g1 and g2 of TABLE1 will be generated automatically
and will not map to any of the data file columns.

Loading data with generated columns

The generatedignore modifier indicates to the load utility that even though
the input data file contains data for all generated columns present in the
target table, the data should be ignored, and the computed values should
be loaded into each generated column. For example, if you want to load
TABLE1, as defined previously, from a data file (load.del) containing the
following data:

1, 5, 10, 15, J
2, 6, 11, 16, K
3, 7, 12, 17, I

The user-supplied, non-NULL values of 10, 11, and 12 (for g1), and 15, 16,
and 17 (for g2) result in the row being rejected (SQL3550W) if no
generated-column related file type modifiers are used. To avoid this, the
user could issue the following LOAD command:

Chapter 33. Load overview 563

DB2 LOAD FROM load.del of del method P(1, 2, 5)
REPLACE INTO table1 (c1, c2, c3)

Again, this approach might be cumbersome and prone to error if the table
has many columns. The generatedignore modifier simplifies the syntax as
follows:

DB2 LOAD FROM load.del of del MODIFIED BY generatedignore
REPLACE INTO table1

This command will result in the columns of data file being loaded into c1
(with the data 1, 2, 3), c2 (with the data 5,6,7), and c3 (with the data J, K, I)
of TABLE1. Due to the generatedignore modifier, values for columns g1
and g2 of TABLE1 will be generated automatically and the data file
columns (10, 11, 12 and 15, 16, 17) will be ignored.

Loading data with user-supplied values

The generatedoverride modifier is used for loading user-supplied values
into a table with generated columns. This can be useful when migrating
data from another database system, or when loading a table from data that
was recovered using the RECOVER DROPPED TABLE option of the ROLLFORWARD
DATABASE command. When this modifier is used, any rows with no data (or
NULL data) for non-nullable generated columns are rejected (SQL3116W).

When this modifier is used, the table is placed in the Set Integrity Pending
state after the load operation. To take the table out of Set Integrity Pending
state without verifying the user-supplied values, issue the following
command:

SET INTEGRITY FOR table-name GENERATED COLUMN IMMEDIATE
UNCHECKED

To take the table out of the Set Integrity Pending state and force
verification of the user-supplied values, issue the following command:

SET INTEGRITY FOR table-name IMMEDIATE CHECKED

If a generated column is in any of the partitioning, dimension, or
distribution keys, the generatedoverride modifier is ignored and the load
utility generates values as if the generatedignore modifier is specified. This
is done to avoid a scenario where a user-supplied generated column value
conflicts with its generated column definition, which would place the
resulting record in the wrong physical location, such as the wrong data
partition, MDC block, or database partition.

Note: The LOAD utility does not support generating column values when
one of the generated column expressions contains one of the following:
v a user-defined function that is a compiled compound SQL
v a user-defined function that is FENCED

If you attempt to load into such tables the load operation fails. However,
you can provide your own values for these types of generated columns by
using the generatedoverride file type modifier.

Moving data using the CURSOR file type
By specifying the CURSOR file type when using the LOAD command, you can load
the results of an SQL query directly into a target table without creating an
intermediate exported file.

564 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Additionally, you can load data from another database by referencing a nickname
within the SQL query, by using the DATABASE option within the DECLARE
CURSOR statement, or by using the sqlu_remotefetch_entry media entry when
using the API interface.

There are three approaches for moving data using the CURSOR file type. The first
approach uses the Command Line Processor (CLP), the second the API, and the
third uses the ADMIN_CMD procedure. The key differences between the CLP and
the ADMIN_CMD procedure are outlined in the following table.

Table 107. Differences between the CLP and ADMIN_CMD procedure.

Differences CLP ADMIN_CMD_procedure

Syntax The query statement as well
as the source database used
by the cursor are defined
outside of the LOAD
command using a DECLARE
CURSOR statement.

The query statement as well
as the source database used
by the cursor is defined
within the LOAD command
using the LOAD from
(DATABASE database-alias
query-statement)

User authorization for
accessing a different database

If the data is in a different
database than the one you
currently connect to, the
DATABASE keyword must
be used in the DECLARE
CURSOR statement. You can
specify the user id and
password in the same
statement as well. If the user
id and password are not
specified in the DECLARE
CURSOR statement, the user
id and password explicitly
specified for the source
database connection are used
to access the target database.

If the data is in a different
database than the one you
are currently connected to,
the DATABASE keyword
must be used in the LOAD
command before the query
statement. The user id and
password explicitly specified
for the source database
connection are required to
access the target database.
You cannot specify a userid
or password for the source
database. Therefore, if no
userid and password were
specified when the
connection to the target
database was made, or the
userid and password
specified cannot be used to
authenticate against the
source database, the
ADMIN_CMD procedure
cannot be used to perform
the load.

To execute a LOAD FROM CURSOR operation from the CLP, a cursor must first be
declared against an SQL query. Once this is declared, you can issue the LOAD
command using the declared cursor's name as the cursorname and CURSOR as the
file type.

For example:
1. Suppose a source and target table both reside in the same database with the

following definitions:
Table ABC.TABLE1 has 3 columns:
v ONE INT
v TWO CHAR(10)

Chapter 33. Load overview 565

v THREE DATE
Table ABC.TABLE2 has 3 columns:
v ONE VARCHAR
v TWO INT
v THREE DATE
Executing the following CLP commands will load all the data from
ABC.TABLE1 into ABC.TABLE2:
DECLARE mycurs CURSOR FOR SELECT TWO, ONE, THREE FROM abc.table1

LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Note: The preceding example shows how to load from an SQL query through
the CLP. However, loading from an SQL query can also be accomplished
through the db2Load API. Define the piSourceList of the sqlu_media_list
structure to use the sqlu_statement_entry structure and SQLU_SQL_STMT media
type and define the piFileType value as SQL_CURSOR.

2. Suppose the source and target tables reside in different databases with the
following definitions:

Table ABC.TABLE1 in database 'dbsource' has 3 columns:
v ONE INT
v TWO CHAR(10)
v THREE DATE

Table ABC.TABLE2 in database 'dbtarget' has 3 columns:
v ONE VARCHAR
v TWO INT
v THREE DATE

Provided that you have enabled federation and cataloged the data source
('dsdbsource'), you can declare a nickname against the source database, then
declare a cursor against this nickname, and invoke the LOAD command with the
FROM CURSOR option, as demonstrated in the following example:
CREATE NICKNAME myschema1.table1 FOR dsdbsource.abc.table1
DECLARE mycurs CURSOR FOR SELECT TWO,ONE,THREE FROM myschema1.table1
LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Or, you can use the DATABASE option of the DECLARE CURSOR statement, as
demonstrated in the following example:
DECLARE mycurs CURSOR DATABASE dbsource USER dsciaraf USING mypasswd
FOR SELECT TWO,ONE,THREE FROM abc.table1
LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Using the DATABASE option of the DECLARE CURSOR statement (also known as
the remotefetch media type when using the Load API) has some benefits over the
nickname approach:

Performance

Fetching of data using the remotefetch media type is tightly integrated
within a load operation. There are fewer layers of transition to fetch a
record compared to the nickname approach. Additionally, when source and
target tables are distributed identically in a multi-partition database, the
load utility can parallelize the fetching of data, which can further improve
performance.

566 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Ease of use

There is no need to enable federation, define a remote datasource, or
declare a nickname. Specifying the DATABASE option (and the USER and
USING options if necessary) is all that is required.

While this method can be used with cataloged databases, the use of nicknames
provides a robust facility for fetching from various data sources which cannot
simply be cataloged.

To support this remotefetch functionality, the load utility makes use of
infrastructure which supports the SOURCEUSEREXIT facility. The load utility
spawns a process which executes as an application to manage the connection to the
source database and perform the fetch. This application is associated with its own
transaction and is not associated with the transaction under which the load utility
is running.

Note:

1. The previous example shows how to load from an SQL query against a
cataloged database through the CLP using the DATABASE option of the
DECLARE CURSOR statement. However, loading from an SQL query against a
cataloged database can also be done through the db2Load API, by defining the
piSourceList and piFileTypevalues of the db2LoadStruct structure to use the
sqlu_remotefetch_entry media entry and SQLU_REMOTEFETCH media type
respectively.

2. As demonstrated in the previous example, the source column types of the SQL
query do not need to be identical to their target column types, although they
do have to be compatible.

Restrictions

When loading from a cursor defined using the DATABASE option (or equivalently
when using the sqlu_remotefetch_entry media entry with the db2Load API), the
following restrictions apply:
1. The SOURCEUSEREXIT option cannot be specified concurrently.
2. The METHOD N option is not supported.
3. The usedefaults file type modifier is not supported.

Refreshing dependent immediate materialized query tables
If the underlying table of an immediate refresh materialized query table is loaded
using the INSERT option, executing the SET INTEGRITY statement on the
dependent materialized query tables defined with REFRESH IMMEDIATE results in an
incremental refresh of the materialized query table.

During an incremental refresh, the rows corresponding to the appended rows in
the underlying tables are updated and inserted into the materialized query tables.
Incremental refresh is faster in the case of large underlying tables with small
amounts of appended data. There are cases in which incremental refresh is not
allowed, and full refresh (that is, recomputation of the materialized query table
definition query) is used.

When the INCREMENTAL option is specified, but incremental processing of the
materialized query table is not possible, an error is returned if:

Chapter 33. Load overview 567

v A load replace operation has taken place into an underlying table of the
materialized query table or the NOT LOGGED INITIALLY WITH EMPTY
TABLE option has been activated since the last integrity check on the underlying
table.

v The materialized query table has been loaded (in either REPLACE or INSERT
mode).

v An underlying table has been taken out of Set Integrity Pending state before the
materialized query table is refreshed by using the FULL ACCESS option during
integrity checking.

v An underlying table of the materialized query table has been checked for
integrity non-incrementally.

v The materialized query table was in Set Integrity Pending state before an
upgrade.

v The table space containing the materialized query table or its underlying table
has been rolled forward to a point in time, and the materialized query table and
its underlying table reside in different table spaces.

If the materialized query table has one or more W values in the CONST_CHECKED
column of the SYSCAT.TABLES catalog, and if the NOT INCREMENTAL option is not
specified in the SET INTEGRITY statement, the table is incrementally refreshed and
the CONST_CHECKED column of SYSCAT.TABLES is marked U to indicate that
not all data has been verified by the system.

The following example illustrates a load insert operation into the underlying table
UTI of the materialized query table AST1. UT1 is checked for data integrity and is
placed in the no data movement mode. UT1 is put back into full access state once
the incremental refresh of AST1 is complete. In this scenario, both the integrity
checking for UT1 and the refreshing of AST1 are processed incrementally.

LOAD FROM IMTFILE1.IXF of IXF INSERT INTO UT1;
LOAD FROM IMTFILE2.IXF of IXF INSERT INTO UT1;
SET INTEGRITY FOR UT1 IMMEDIATE CHECKED;
REFRESH TABLE AST1;

MDC and ITC load considerations
The following restrictions apply when loading data into multidimensional
clustering (MDC) and insert time clustering (ITC) tables:
v The SAVECOUNT option of the LOAD command is not supported.
v The totalfreespace file type modifier is not supported since these tables

manage their own free space.
v The anyorder file type modifier is required for MDC or ITC tables. If a load is

executed into an MDC or ITC table without the anyorder modifier, it will be
explicitly enabled by the utility.

When using the LOAD command with an MDC or ITC table, violations of unique
constraints are be handled as follows:
v If the table included a unique key before the load operation and duplicate

records are loaded into the table, the original record remains and the new
records are deleted during the delete phase.

v If the table did not include a unique key before the load operation and both a
unique key and duplicate records are loaded into the table, only one of the
records with the unique key is loaded and the others are deleted during the
delete phase.

568 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Note: There is no explicit technique for determining which record is loaded and
which is deleted.

Performance Considerations

To improve the performance of the load utility when loading MDC tables with
more than one dimension, the util_heap_sz database configuration parameter value
should be increased. The mdc-load algorithm performs significantly better when
more memory is available to the utility. This reduces disk I/O during the
clustering of data that is performed during the load phase. Beginning in version
9.5, the value of the DATA BUFFER option of the LOAD command can temporarily
exceed util_heap_sz if more memory is available in the system. .

MDC or ITC load operations always have a build phase since all MDC and ITC
tables have block indexes.

During the load phase, extra logging for the maintenance of the block map is
performed. There are approximately two extra log records per extent allocated. To
ensure good performance, the logbufsz database configuration parameter should be
set to a value that takes this into account.

A system temporary table with an index is used to load data into MDC and ITC
tables. The size of the table is proportional to the number of distinct cells loaded.
The size of each row in the table is proportional to the size of the MDC dimension
key. ITC tables only have one cell and use a 2-byte dimension key. To minimize
disk I/O caused by the manipulation of this table during a load operation, ensure
that the buffer pool for the temporary table space is large enough.

Partitioned tables load considerations
All of the existing load features are supported when the target table is partitioned
with the exception of the following general restrictions:
v Consistency points are not supported when the number of partitioning agents is

greater than one.
v Loading data into a subset of data partitions while the remaining data partitions

remain fully online is not supported.
v The exception table used by a load operation cannot be partitioned.
v An exception table cannot be specified if the target table contains an XML

column.
v A unique index cannot be rebuilt when the load utility is running in insert mode

or restart mode, and the load target table has any detached dependents.
v Similar to loading MDC tables, exact ordering of input data records is not

preserved when loading partitioned tables. Ordering is only maintained within
the cell or data partition.

v Load operations utilizing multiple formatters on each database partition only
preserve approximate ordering of input records. Running a single formatter on
each database partition, groups the input records by cell or table partitioning
key. To run a single formatter on each database partition, explicitly request
CPU_PARALLELISM of 1.

General load behavior

The load utility inserts data records into the correct data partition. There is
no requirement to use an external utility, such as a splitter, to partition the
input data before loading.

Chapter 33. Load overview 569

The load utility does not access any detached or attached data partitions.
Data is inserted into visible data partitions only. Visible data partitions are
neither attached nor detached. In addition, a load replace operation does
not truncate detached or attached data partitions. Since the load utility
acquires locks on the catalog system tables, the load utility waits for any
uncommitted ALTER TABLE transactions. Such transactions acquire an
exclusive lock on the relevant rows in the catalog tables, and the exclusive
lock must terminate before the load operation can proceed. This means that
there can be no uncommitted ALTER TABLE ...ATTACH, DETACH, or
ADD PARTITION transactions while load operation is running. Any input
source records destined for an attached or detached data partition are
rejected, and can be retrieved from the exception table if one is specified.
An informational message is written to the message file to indicate some of
the target table data partitions were in an attached or detached state. Locks
on the relevant catalog table rows corresponding to the target table prevent
users from changing the partitioning of the target table by issuing any
ALTER TABLE ...ATTACH, DETACH, or ADD PARTITION operations
while the load utility is running.

Handling of invalid rows

When the load utility encounters a record that does not belong to any of
the visible data partitions the record is rejected and the load utility
continues processing. The number of records rejected because of the range
constraint violation is not explicitly displayed, but is included in the
overall number of rejected records. Rejecting a record because of the range
violation does not increase the number of row warnings. A single message
(SQL0327N) is written to the load utility message file indicating that range
violations are found, but no per-record messages are logged. In addition to
all columns of the target table, the exception table includes columns
describing the type of violation that had occurred for a particular row.
Rows containing invalid data, including data that cannot be partitioned,
are written to the dump file.

Because exception table inserts are expensive, you can control which
constraint violations are inserted into the exception table. For instance, the
default behavior of the load utility is to insert rows that were rejected
because of a range constraint or unique constraint violation, but were
otherwise valid, into the exception table. You can turn off this behavior by
specifying, respectively, NORANGEEXC or NOUNIQUEEXC with the FOR
EXCEPTION clause. If you specify that these constraint violations should
not be inserted into the exception table, or you do not specify an exception
table, information about rows violating the range constraint or unique
constraint is lost.

History file

If the target table is partitioned, the corresponding history file entry does
not include a list of the table spaces spanned by the target table. A
different operation granularity identifier ('R' instead of 'T') indicates that a
load operation ran against a partitioned table.

Terminating a load operation

Terminating a load replace completely truncates all visible data partitions,
terminating a load insert truncates all visible data partitions to their
lengths before the load. Indexes are invalidated during a termination of an
ALLOW READ ACCESS load operation that failed in the load copy phase.
Indexes are also invalidated when terminating an ALLOW NO ACCESS

570 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

load operation that touched the index (It is invalidated because the
indexing mode is rebuild, or a key was inserted during incremental
maintenance leaving the index in an inconsistent state). Loading data into
multiple targets does not have any effect on load recovery operations
except for the inability to restart the load operation from a consistency
point taken during the load phase In this case, the SAVECOUNT load option is
ignored if the target table is partitioned. This behavior is consistent with
loading data into a MDC target table.

Generated columns

If a generated column is in any of the partitioning, dimension, or
distribution keys, the generatedoverride file type modifier is ignored and
the load utility generates values as if the generatedignore file type
modifier is specified. Loading an incorrect generated column value in this
case can place the record in the wrong physical location, such as the wrong
data partition, MDC block or database partition. For example, once a
record is on a wrong data partition, set integrity has to move it to a
different physical location, which cannot be accomplished during online set
integrity operations.

Data availability

The current ALLOW READ ACCESS load algorithm extends to partitioned
tables. An ALLOW READ ACCESS load operation allows concurrent
readers to access the whole table, including both loading and non-loading
data partitions.

Important: Starting with Version 10.1 Fix Pack 1, the ALLOW READ
ACCESS parameter is deprecated and might be removed in a future
release. For more details, see “ALLOW READ ACCESS parameter in the
LOAD command is deprecated” in What's New for DB2 Version 10.1.

The ingest utility also supports partitioned tables and is better suited to
allow data concurrency and availability than the LOAD command with the
ALLOW READ ACCESS parameter. It can move large amounts of data
from files and pipes without locking the target table. In addition, data
becomes accessible as soon as it is committed based on elapsed time or
number of rows.

Data partition states

After a successful load, visible data partitions might change to either or
both Set Integrity Pending or Read Access Only table state, under certain
conditions. Data partitions might be placed in these states if there are
constraints on the table which the load operation cannot maintain. Such
constraints might include check constraints and detached materialized
query tables. A failed load operation leaves all visible data partitions in the
Load Pending table state.

Error isolation

Error isolation at the data partition level is not supported. Isolating the
errors means continuing a load on data partitions that did not run into an
error and stopping on data partitions that did run into an error. Errors can
be isolated between different database partitions, but the load utility
cannot commit transactions on a subset of visible data partitions and roll
back the remaining visible data partitions.

Other considerations

Chapter 33. Load overview 571

v Incremental indexing is not supported if any of the indexes are marked
invalid. An index is considered invalid if it requires a rebuild or if
detached dependents require validation with the SET INTEGRITY
statement.

v Loading into tables partitioned using any combination of partitioned by
range, distributed by hash, or organized by dimension algorithms is also
supported.

v For log records which include the list of object and table space IDs
affected by the load, the size of these log records (LOAD START and
COMMIT (PENDING LIST)) could grow considerably and hence reduce
the amount of active log space available to other applications.

v When a table is both partitioned and distributed, a partitioned database
load might not affect all database partitions. Only the objects on the
output database partitions are changed.

v During a load operation, memory consumption for partitioned tables
increases with the number of tables. Note, that the total increase is not
linear as only a small percentage of the overall memory requirement is
proportional to the number of data partitions.

Loading XML data
The load utility can be used for the efficient movement of large volumes of XML
data into tables.

When loading data into an XML table column, you can use the XML FROM option
to specify the paths of the input XML data file or files. For example, to load data
from an XML file /home/user/xmlpath/xmlfile1.xml you could use the following
command:

LOAD FROM data1.del OF DEL XML FROM /home/user/xmlpath INSERT INTO USER.T1

The delimited ASCII input file data1.del contains an XML data specifier (XDS)
that describes the location of the XML data to load. For example, the following
XDS describes an XML document at offset 123 bytes in file xmldata.ext that is 456
bytes in length:
<XDS FIL=’xmldata.ext’ OFF=’123’ LEN=’456’ />

Loading XML data using a declared cursor is supported. The following example
declares a cursor and uses the cursor and the LOAD command to add data from the
table CUSTOMERS into the table LEVEL1_CUSTOMERS:
DECLARE cursor_income_level1 CURSOR FOR

SELECT * FROM customers
WHERE XMLEXISTS(’$DOC/customer[income_level=1]’);

LOAD FROM cursor_income_level1 OF CURSOR INSERT INTO level1_customers;

The ANYORDER file type modifier of the LOAD command is supported for loading
XML data into an XML column.

During load, distribution statistics are not collected for columns of type XML.

Loading XML data in a partitioned database environment

For tables that are distributed among database partitions, you can load XML data
from XML data files into the tables in parallel. When loading XML data from files

572 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

into tables, the XML data files must be read-accessible to all the database partitions
where loading is taking place

Validating inserted documents against schemas

The XMLVALIDATE option allows XML documents to be validated against XML
schemas as they are loaded. In the following example, incoming XML documents
are validated against the schema identified by the XDS in the delimited ASCII
input file data2.del:

LOAD FROM data2.del OF DEL XML FROM /home/user/xmlpath XMLVALIDATE
USING XDS INSERT INTO USER.T2

In this case, the XDS contains an SCH attribute with the fully qualified SQL
identifier of the XML schema to use for validation, "S1.SCHEMA_A":
<XDS FIL=’xmldata.ext’ OFF=’123’ LEN=’456’ SCH=’S1.SCHEMA_A’ />

Specifying parse options

You can use the XMLPARSE option to specify whether whitespace in the loaded
XML documents is preserved or stripped. In the following example, all loaded
XML documents are validated against the schema with SQL identifier
"S2.SCHEMA_A" and these documents are parsed with whitespace preserved:

LOAD FROM data2.del OF DEL XML FROM /home/user/xmlpath XMLPARSE PRESERVE
WHITESPACE XMLVALIDATE USING SCHEMA S2.SCHEMA_A INSERT INTO USER.T1

Load in partitioned database environments
In a multi-partition database, large amounts of data are located across many
database partitions. Distribution keys are used to determine on which database
partition each portion of the data resides. The data must be distributed before it can
be loaded at the correct database partition.

When loading tables in a multi-partition database, the load utility can:
v Distribute input data in parallel
v Load data simultaneously on corresponding database partitions
v Transfer data from one system to another system

Loading data into a multi-partition database takes place in two phases: the setup
phase, during which database partition resources such as table locks are acquired,
and the load phase, during which the data is loaded into the database partitions.
You can use the ISOLATE_PART_ERRS option of the LOAD command to select how
errors are handled during either of these phases, and how errors on one or more of
the database partitions affect the load operation on the database partitions that are
not experiencing errors.

When loading data into a multi-partition database you can use one of the
following modes:

PARTITION_AND_LOAD
Data is distributed (perhaps in parallel) and loaded simultaneously on the
corresponding database partitions.

PARTITION_ONLY
Data is distributed (perhaps in parallel) and the output is written to files in
a specified location on each loading database partition. Each file includes a

Chapter 33. Load overview 573

partition header that specifies how the data was distributed across the
database partitions, and that the file can be loaded into the database using
the LOAD_ONLY mode.

LOAD_ONLY
Data is assumed to be already distributed across the database partitions;
the distribution process is skipped, and the data is loaded simultaneously
on the corresponding database partitions.

LOAD_ONLY_VERIFY_PART
Data is assumed to be already distributed across the database partitions,
but the data file does not contain a partition header. The distribution
process is skipped, and the data is loaded simultaneously on the
corresponding database partitions. During the load operation, each row is
checked to verify that it is on the correct database partition. Rows
containing database partition violations are placed in a dump file if the
dumpfile file type modifier is specified. Otherwise, the rows are discarded.
If database partition violations exist on a particular loading database
partition, a single warning is written to the load message file for that
database partition.

ANALYZE
An optimal distribution map with even distribution across all database
partitions is generated.

Concepts and terminology

The following terminology is used when discussing the behavior and operation of
the load utility in a partitioned database environment with multiple database
partitions:
v The coordinator partition is the database partition to which the user connects in

order to perform the load operation. In the PARTITION_AND_LOAD,
PARTITION_ONLY, and ANALYZE modes, it is assumed that the data file
resides on this database partition unless the CLIENT option of the LOAD command
is specified. Specifying CLIENT indicates that the data to be loaded resides on a
remotely connected client.

v In the PARTITION_AND_LOAD, PARTITION_ONLY, and ANALYZE modes, the
pre-partitioning agent reads the user data and distributes it in round-robin fashion
to the partitioning agents which then distribute the data. This process is always
performed on the coordinator partition. A maximum of one partitioning agent is
allowed per database partition for any load operation.

v In the PARTITION_AND_LOAD, LOAD_ONLY, and
LOAD_ONLY_VERIFY_PART modes, load agents run on each output database
partition and coordinate the loading of data to that database partition.

v Load to file agents run on each output database partition during a
PARTITION_ONLY load operation. They receive data from partitioning agents
and write it to a file on their database partition.

v The SOURCEUSEREXIT option provides a facility through which the load utility can
execute a customized script or executable, referred to herein as the user exit.

574 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Loading data in a partitioned database environment
Using the load utility to load data into a partitioned database environment.

Before you begin

Before loading a table in a multi-partition database:
v Ensure that the svcename database manager configuration parameter and the

DB2COMM profile registry variable are set correctly. This step is important because
the load utility uses TCP/IP to transfer data from the pre-partitioning agent to
the partitioning agents, and from the partitioning agents to the loading database
partitions.

v Before invoking the load utility, you must be connected to (or be able to
implicitly connect to) the database into which you want to load the data.

v Since the load utility issues a COMMIT statement, complete all transactions and
release any locks by issuing either a COMMIT or a ROLLBACK statement before
beginning the load operation. If the PARTITION_AND_LOAD, PARTITION_ONLY, or
ANALYZE mode is being used, the data file that is being loaded must reside on
this database partition unless:
1. The CLIENT parameter has been specified, in which case the data must reside

on the client machine;
2. The input source type is CURSOR, in which case there is no input file.

v Run the Design Advisor to determine the best database partition for each table.
For more information, see “The Design Advisor” in Troubleshooting and Tuning
Database Performance.

Restrictions

The following restrictions apply when using the load utility to load data in a
multi-partition database:
v The location of the input files to the load operation cannot be a tape device.

Partitioning
agent

Partitioning
agent

Pre-partitioning
agent

Load agent

Load agent

Load agent

Figure 46. Partitioned Database Load Overview. The source data is read by the
pre-partitioning agent, and approximately half of the data is sent to each of two partitioning
agents which distribute the data and send it to one of three database partitions. The load
agent at each database partition loads the data.

Chapter 33. Load overview 575

v The ROWCOUNT parameter is not supported unless the ANALYZE mode is being
used.

v If the target table has an identity column that is needed for distributing and the
identityoverride file type modifier is not specified, or if you are using multiple
database partitions to distribute and then load the data, the use of a SAVECOUNT
greater than 0 on the LOAD command is not supported.

v If an identity column forms part of the distribution key, only the
PARTITION_AND_LOAD mode is supported.

v The LOAD_ONLY and LOAD_ONLY_VERIFY_PART modes cannot be used with the
CLIENT parameter of the LOAD command.

v The LOAD_ONLY_VERIFY_PART mode cannot be used with the CURSOR input source
type.

v The distribution error isolation modes LOAD_ERRS_ONLY and SETUP_AND_LOAD_ERRS
cannot be used with the ALLOW READ ACCESS and COPY YES parameters of the LOAD
command.

v Multiple load operations can load data into the same table concurrently if the
database partitions specified by theOUTPUT_DBPARTNUMS and
PARTITIONING_DBPARTNUMS options do not overlap. For example, if a table is
defined on database partitions 0 through 3, one load operation can load data
into database partitions 0 and 1 while a second load operation can load data into
database partitions 2 and 3. If the database partitions specified by the
PARTITIONING_DBPARTNUMS options do overlap, then load will automatically
choose a PARTITIONING_DBPARTNUMS parameter where no load partitioning
subagent is already executing on the table, or fail if none are available.
Starting with Version 9.7 Fix Pack 6, if the database partitions specified by the
PARTITIONING_DBPARTNUMS options do overlap, the load utility automatically tries
to pick up a PARTITIONING_DBPARTNUMS parameter from the database partitions
indicated by OUTPUT_DBPARTNUMS where no load partitioning subagent is already
executing on the table, or fail if none are available.
It is strongly recommended that if you are going to explicitly specify partitions
with the PARTITIONING_DBPARTNUMS option, you should use that option with all
concurrent LOAD commands, with each command specifying different partitions.
If you only specify PARTITIONING_DBPARTNUMS on some of the concurrent load
commands or if you specify overlapping partitions, the LOAD command will need
to pick alternate partitioning nodes for at least some of the concurrent loads, and
in rare cases the command might fail (SQL2038N).

v Only non-delimited ASCII (ASC) and Delimited ASCII (DEL) files can be
distributed across tables spanning multiple database partitions. PC/IXF files
cannot be distributed, however, you can load a PC/IXF file into a table that is
distributed over multiple database partitions by using the load operation in the
LOAD_ONLY_VERIFY_PART mode.

Example

The following examples illustrate how to use the LOAD command to initiate various
types of load operations. The database used in the following examples has five
database partitions: 0, 1, 2, 3 and 4. Each database partition has a local directory
/db2/data/. Two tables, TABLE1 and TABLE2, are defined on database partitions 0,
1, 3 and 4. When loading from a client, the user has access to a remote client that
is not one of the database partitions.

Distribute and load example

In this scenario, you are connected to a database partition that might or
might not be a database partition where TABLE1 is defined. The data file

576 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

load.del resides in the current working directory of this database partition.
To load the data from load.del into all of the database partitions where
TABLE1 is defined, issue the following command:
LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1

Note: In this example, default values are used for all of the configuration
parameters for partitioned database environments: The MODE parameter
defaults to PARTITION_AND_LOAD. The OUTPUT_DBPARTNUMS parameter defaults
to all database partitions on which TABLE1 is defined. The
PARTITIONING_DBPARTNUMS defaults to the set of database partitions selected
according to the LOAD command rules for choosing database partitions
when none are specified.

To perform a load operation where data is distributed over database
partitions 3 and 4, issue the following command:
LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG PARTITIONING_DBPARTNUMS (3,4)

Distribute only example

In this scenario, you are connected to a database partition that might or
might not be a database partition where TABLE1 is defined. The data file
load.del resides in the current working directory of this database partition.

Figure 47. Loading data into database partitions 3 and 4.. This diagram illustrates the
behavior resulting when the previous command is issued. Data is loaded into database
partitions 3 and 4.

Chapter 33. Load overview 577

To distribute (but not load) load.del to all the database partitions on
which TABLE1 is defined, using database partitions 3 and 4 issue the
following command:
LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE PARTITION_ONLY
PART_FILE_LOCATION /db2/data
PARTITIONING_DBPARTNUMS (3,4)

This results in a file load.del.xxx being stored in the /db2/data directory
on each database partition, where xxx is a three-digit representation of the
database partition number.

To distribute the load.del file to database partitions 1 and 3, using only
one partitioning agent running on database partition 0 (which is the
default for PARTITIONING_DBPARTNUMS), issue the following command:
LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE PARTITION_ONLY
PART_FILE_LOCATION /db2/data
OUTPUT_DBPARTNUMS (1,3)

Load only example

Figure 48. Loading data into database partitions 1 and 3 using one partitioning agent.. This
diagram illustrates the behavior that results when the previous command is issued. Data is
loaded into database partitions 1 and 3, using one partitioning agent running on database
partition 0.

578 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If you have already performed a load operation in the PARTITION_ONLY
mode and want to load the partitioned files in the /db2/data directory of
each loading database partition to all the database partitions on which
TABLE1 is defined, issue the following command:
LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY
PART_FILE_LOCATION /db2/data

To load into database partition 4 only, issue the following command:
LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY
PART_FILE_LOCATION /db2/data
OUTPUT_DBPARTNUMS (4)

Loading pre-distributed files without distribution map headers

The LOAD command can be used to load data files without distribution
headers directly into several database partitions. If the data files exist in
the /db2/data directory on each database partition where TABLE1 is
defined and have the name load.del.xxx, where xxx is the database
partition number, the files can be loaded by issuing the following
command:
LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows
REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART
PART_FILE_LOCATION /db2/data

Figure 49. Loading data into all database partitions where a specific table is defined.. This
diagram illustrates the behavior resulting when the previous command is issued. Distributed
data is loaded to all database partitions where TABLE1 is defined.

Chapter 33. Load overview 579

To load the data into database partition 1 only, issue the following
command:
LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows
REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART
PART_FILE_LOCATION /db2/data
OUTPUT_DBPARTNUMS (1)

Note: Rows that do not belong on the database partition from which they
were loaded are rejected and put into the dump file, if one has been
specified.

Loading from a remote client to a multi-partition database

To load data into a multi-partition database from a file that is on a remote
client, you must specify the CLIENT parameter of the LOAD command. This
parameter indicates that the data file is not on a server partition. For
example:
LOAD CLIENT FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

Note: You cannot use the LOAD_ONLY or LOAD_ONLY_VERIFY_PART modes with
the CLIENT parameter.

Loading from a cursor

As in a single-partition database, you can load from a cursor into a
multi-partition database. In this example, for the PARTITION_ONLY and
LOAD_ONLY modes, the PART_FILE_LOCATION parameter must specify a fully
qualified file name. This name is the fully qualified base file name of the
distributed files that are created or loaded on each output database
partition. Multiple files can be created with the specified base name if there
are LOB columns in the target table.

To distribute all the rows in the answer set of the statement SELECT *
FROM TABLE1 to a file on each database partition named
/db2/data/select.out.xxx (where xxx is the database partition number),
for future loading into TABLE2, issue the following commands:
DECLARE C1 CURSOR FOR SELECT * FROM TABLE1

LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2
PARTITIONED DB CONFIG MODE PARTITION_ONLY
PART_FILE_LOCATION /db2/data/select.out

The data files produced by the previous operation can then be loaded by
issuing the following LOAD command:
LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2
PARTITIONED CB CONFIG MODE LOAD_ONLY
PART_FILE_LOCATION /db2/data/select.out

Load sessions in a partitioned database environment - CLP
examples

The following examples demonstrate loading data in a multi-partition database.

The database has four database partitions numbered 0 through 3. Database WSDB
is defined on all of the database partitions, and table TABLE1 resides in the default
database partition group which is also defined on all of the database partitions.

580 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example 1

To load data into TABLE1 from the user data file load.del which resides on
database partition 0, connect to database partition 0 and then issue the following
command:

load from load.del of del replace into table1

If the load operation is successful, the output will be as follows:
Agent Type Node SQL Code Result

LOAD 000 +00000000 Success.

LOAD 001 +00000000 Success.

LOAD 002 +00000000 Success.

LOAD 003 +00000000 Success.

PARTITION 001 +00000000 Success.

PRE_PARTITION 000 +00000000 Success.

RESULTS: 4 of 4 LOADs completed successfully.

Summary of Partitioning Agents:
Rows Read = 100000
Rows Rejected = 0
Rows Partitioned = 100000

Summary of LOAD Agents:
Number of rows read = 100000
Number of rows skipped = 0
Number of rows loaded = 100000
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 100000

The output indicates that there was one load agent on each database partition and
each ran successfully. It also shows that there was one pre-partitioning agent
running on the coordinator partition and one partitioning agent running on
database partition 1. These processes completed successfully with a normal SQL
return code of 0. The statistical summary shows that the pre-partitioning agent
read 100,000 rows, the partitioning agent distributed 100,000 rows, and the sum of
all rows loaded by the load agents is 100,000.

Example 2

In the following example, data is loaded into TABLE1 in the PARTITION_ONLY mode.
The distributed output files is stored on each of the output database partitions in
the directory /db/data:

load from load.del of del replace into table1 partitioned db config mode
partition_only part_file_location /db/data

The output from the load command is as follows:
Agent Type Node SQL Code Result

LOAD_TO_FILE 000 +00000000 Success.

LOAD_TO_FILE 001 +00000000 Success.

Chapter 33. Load overview 581

LOAD_TO_FILE 002 +00000000 Success.

LOAD_TO_FILE 003 +00000000 Success.

PARTITION 001 +00000000 Success.

PRE_PARTITION 000 +00000000 Success.

Summary of Partitioning Agents:
Rows Read = 100000
Rows Rejected = 0
Rows Partitioned = 100000

The output indicates that there was a load-to-file agent running on each output
database partition, and these agents ran successfully. There was a pre-partitioning
agent on the coordinator partition, and a partitioning agent running on database
partition 1. The statistical summary indicates that 100,000 rows were successfully
read by the pre-partitioning agent and 100,000 rows were successfully distributed
by the partitioning agent. Since no rows were loaded into the table, no summary of
the number of rows loaded appears.

Example 3

To load the files that were generated during the PARTITION_ONLY load operation
shown previously, issue the following command:

load from load.del of del replace into table1 partitioned db config mode
load_only part_file_location /db/data

The output from the load command will be as follows:
Agent Type Node SQL Code Result

LOAD 000 +00000000 Success.

LOAD 001 +00000000 Success.

LOAD 002 +00000000 Success.

LOAD 003 +00000000 Success.

RESULTS: 4 of 4 LOADs completed successfully.

Summary of LOAD Agents:
Number of rows read = 100000
Number of rows skipped = 0
Number of rows loaded = 100000
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 100000

The output indicates that the load agents on each output database partition ran
successfully and that the sum of the number of rows loaded by all load agents is
100,000. No summary of rows distributed is indicated since distribution was not
performed.

Example 4

If the following LOAD command is issued:
load from load.del of del replace into table1

582 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

and one of the loading database partitions runs out of space in the table space
during the load operation, the following output might be returned:

SQL0289N Unable to allocate new pages in table space "DMS4KT".
SQLSTATE=57011

Agent Type Node SQL Code Result
__
LOAD 000 +00000000 Success.
__
LOAD 001 -00000289 Error. May require RESTART.
__
LOAD 002 +00000000 Success.
__
LOAD 003 +00000000 Success.
__
PARTITION 001 +00000000 Success.
__
PRE_PARTITION 000 +00000000 Success.
__
RESULTS: 3 of 4 LOADs completed successfully.
__

Summary of Partitioning Agents:
Rows Read = 0
Rows Rejected = 0
Rows Partitioned = 0

Summary of LOAD Agents:
Number of rows read = 0
Number of rows skipped = 0
Number of rows loaded = 0
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 0

The output indicates that the load operation returned error SQL0289. The database
partition summary indicates that database partition 1 ran out of space. If additional
space is added to the containers of the table space on database partition 1, the load
operation can be restarted as follows:

load from load.del of del restart into table1

Load features for maintaining referential integrity
Although the load utility is typically more efficient than the import utility, it
requires a number of features to ensure the referential integrity of the information
being loaded:
v Table locks, which provide concurrency control and prevent uncontrolled data

access during a load operation
v Table states and table space states, which can either control access to data or

elicit specific user actions
v Load exception tables, which ensure that rows of invalid data are not simply

deleted without your knowledge

Checking for integrity violations following a load operation
Following a load operation, the loaded table might be in set integrity pending state
in either READ or NO ACCESS mode if any of the following conditions exist:
v The table has table check constraints or referential integrity constraints defined

on it.

Chapter 33. Load overview 583

v The table has generated columns and a V7 or earlier client was used to initiate
the load operation.

v The table has descendent immediate materialized query tables or descendent
immediate staging tables referencing it.

v The table is a staging table or a materialized query table.

The STATUS flag of the SYSCAT.TABLES entry corresponding to the loaded table
indicates the set integrity pending state of the table. For the loaded table to be
fully usable, the STATUS must have a value of N and the ACCESS MODE must have a
value of F, indicating that the table is fully accessible and in normal state.

If the loaded table has descendent tables, the SET INTEGRITY PENDING
CASCADE parameter can be specified to indicate whether or not the set integrity
pending state of the loaded table should be immediately cascaded to the
descendent tables.

If the loaded table has constraints as well as descendent foreign key tables,
dependent materialized query tables and dependent staging tables, and if all of the
tables are in normal state before the load operation, the following will result based
on the load parameters specified:

INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE
IMMEDIATE

The loaded table, its dependent materialized query tables and dependent
staging tables are placed in set integrity pending state with read access.

INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE
DEFERRED

Only the loaded table is placed in set integrity pending with read access.
Descendent foreign key tables, descendent materialized query tables and
descendent staging tables remain in their original states.

INSERT, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE
IMMEDIATE

The loaded table, its dependent materialized query tables and dependent
staging tables are placed in set integrity pending state with no access.

INSERT or REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING
CASCADE DEFERRED

Only the loaded table is placed in set integrity pending state with no
access. Descendent foreign key tables, descendent immediate materialized
query tables and descendent immediate staging tables remain in their
original states.

REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE
IMMEDIATE

The table and all its descendent foreign key tables, descendent immediate
materialized query tables, and descendent immediate staging tables are
placed in set integrity pending state with no access.

Note: Specifying the ALLOW READ ACCESS option in a load replace operation
results in an error.

To remove the set integrity pending state, use the SET INTEGRITY statement. The
SET INTEGRITY statement checks a table for constraints violations, and takes the
table out of set integrity pending state. If all the load operations are performed in

584 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

INSERT mode, the SET INTEGRITY statement can be used to incrementally process
the constraints (that is, it checks only the appended portion of the table for
constraints violations). For example:

db2 load from infile1.ixf of ixf insert into table1
db2 set integrity for table1 immediate checked

Only the appended portion of TABLE1 is checked for constraint violations.
Checking only the appended portion for constraints violations is faster than
checking the entire table, especially in the case of a large table with small amounts
of appended data.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for setting
integrity. Task assistants can guide you through the process of setting options,
reviewing the automatically generated commands to perform the task, and running
these commands. For more details, see Administering databases with task
assistants.

If a table is loaded with the SET INTEGRITY PENDING CASCADE DEFERRED
option specified, and the SET INTEGRITY statement is used to check for integrity
violations, the descendent tables are placed in set integrity pending state with no
access. To take the tables out of this state, you must issue an explicit request.

If a table with dependent materialized query tables or dependent staging tables is
loaded using the INSERT option, and the SET INTEGRITY statement is used to
check for integrity violations, the table is taken out of set integrity pending state
and placed in No Data Movement state. This is done to facilitate the subsequent
incremental refreshes of the dependent materialized query tables and the
incremental propagation of the dependent staging tables. In the No Data
Movement state, operations that might cause the movement of rows within the
table are not allowed.

You can override the No Data Movement state by specifying the FULL ACCESS
option when you issue the SET INTEGRITY statement. The table is fully accessible,
however a full re-computation of the dependent materialized query tables takes
place in subsequent REFRESH TABLE statements and the dependent staging tables
are forced into an incomplete state.

If the ALLOW READ ACCESS option is specified for a load operation, the table
remains in read access state until the SET INTEGRITY statement is used to check
for constraints violations. Applications can query the table for data that existed
before the load operation once it has been committed, but will not be able to view
the newly loaded data until the SET INTEGRITY statement is issued.

Several load operations can take place on a table before checking for constraints
violations. If all of the load operations are completed in ALLOW READ ACCESS
mode, only the data that existed in the table before the first load operation is
available for queries.

One or more tables can be checked in a single invocation of this statement. If a
dependent table is to be checked on its own, the parent table can not be in set
integrity pending state. Otherwise, both the parent table and the dependent table
must be checked at the same time. In the case of a referential integrity cycle, all the
tables involved in the cycle must be included in a single invocation of the SET
INTEGRITY statement. It might be convenient to check the parent table for
constraints violations while a dependent table is being loaded. This can only occur
if the two tables are not in the same table space.

Chapter 33. Load overview 585

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

When issuing the SET INTEGRITY statement, you can specify the INCREMENTAL
option to explicitly request incremental processing. In most cases, this option is not
needed, because the DB2 database selects incremental processing. If incremental
processing is not possible, full processing is used automatically. When the
INCREMENTAL option is specified, but incremental processing is not possible, an
error is returned if:
v New constraints are added to the table while it is in set integrity pending state.
v A load replace operation takes place, or the NOT LOGGED INITIALLY WITH

EMPTY TABLE option is activated, after the last integrity check on the table.
v A parent table is load replaced or checked for integrity non-incrementally.
v The table is in set integrity pending state before an upgrade. Full processing is

required the first time the table is checked for integrity after an upgrade.
v The table space containing the table or its parent is rolled forward to a point in

time and the table and its parent reside in different table spaces.

If a table has one or more W values in the CONST_CHECKED column of the
SYSCAT.TABLES catalog, and if the NOT INCREMENTAL option is not specified
in the SET INTEGRITY statement, the table is incrementally processed and the
CONST_CHECKED column of SYSCAT.TABLES is marked as U to indicate that not
all data has been verified by the system.

The SET INTEGRITY statement does not activate any DELETE triggers as a result
of deleting rows that violate constraints, but once the table is removed from set
integrity pending state, triggers are active. Thus, if you correct data and insert
rows from the exception table into the loaded table, any INSERT triggers defined
on the table are activated. The implications of this should be considered. One
option is to drop the INSERT trigger, insert rows from the exception table, and
then re-create the INSERT trigger.

Table locking during load operations
In most cases, the load utility uses table level locking to restrict access to tables.
The level of locking depends on the stage of the load operation and whether it was
specified to allow read access.

A load operation in ALLOW NO ACCESS mode uses a super exclusive lock (Z-lock) on
the table for the duration of the load.

Before a load operation in ALLOW READ ACCESS mode begins, the load utility waits
for all applications that began before the load operation to release their locks on
the target table. At the beginning of the load operation, the load utility acquires an
update lock (U-lock) on the table. It holds this lock until the data is being
committed. When the load utility acquires the U-lock on the table, it waits for all
applications that hold locks on the table before the start of the load operation to
release them, even if they have compatible locks. This is achieved by temporarily
upgrading the U-lock to a Z-lock which does not conflict with new table lock
requests on the target table as long as the requested locks are compatible with the
load operation's U-lock. When data is being committed, the load utility upgrades
the lock to a Z-lock, so there can be some delay in commit time while the load
utility waits for applications with conflicting locks to finish.

Note: The load operation can time out while it waits for the applications to release
their locks on the table before loading. However, the load operation does not time
out while waiting for the Z-lock needed to commit the data.

586 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Applications with conflicting locks
Use the LOCK WITH FORCE option of the LOAD command to force off applications
holding conflicting locks on a target table so that the load operation can proceed.
Before a load operation in ALLOW READ ACCESS mode can proceed, applications
holding the following locks are forced off:
v Table locks that conflict with a table update lock (for example, import or insert).
v All table locks that exist at the commit phase of the load operation.

Applications holding conflicting locks on the system catalog tables are not forced
off by the load utility. If an application is forced off the system by the load utility,
the application loses its database connection, and an error is returned (SQL1224N).

When you specify the COPY NO option for a load operation on a recoverable
database, all objects in the target table space are locked in share mode before the
table space is placed in the Backup Pending state. This occurs regardless of the
access mode. If you specify the LOCK WITH FORCE option, all applications holding
locks on objects in the table space that conflict with a share lock are forced off.

Table space states during and after load operations
The load utility uses table space states to preserve database consistency during a
load operation. These states work by controlling access to data or eliciting user
actions.

The load utility does not quiesce (put persistent locks on) the table spaces involved
in the load operation and uses table space states only for load operations for which
you specify the COPY NO parameter.

You can check table space states by using the LIST TABLESPACES command. Table
spaces can be in multiple states simultaneously. The states returned by LIST
TABLESPACES are as follows:

Normal

The Normal state is the initial state of a table space after it is created,
indicating that no (abnormal) states currently affect it.

Load in Progress

The Load in Progress state indicates that there is a load in progress on the
table space. This state prevents the backup of dependent tables during the
load. The table space state is distinct from the Load in Progress table state
(which is used in all load operations) because the load utility places table
spaces in the Load in Progress state only when you specify the COPY NO
parameter for a recoverable database. The table spaces remain in this state
for the duration of the load operation.

Backup Pending

If you perform a load operation for a recoverable database and specify the
COPY NO parameter, table spaces are placed in the Backup Pending table
space state after the first commit. You cannot update a table space in the
Backup Pending state. You can remove the table space from the Backup
Pending state only by backing up the table space. Even if you cancel the
load operation, the table space remains in the Backup Pending state
because the table space state is changed at the beginning of the load
operation and cannot be rolled back.

Restore Pending

Chapter 33. Load overview 587

If you perform a successful load operation with the COPY NO option, restore
the database, and then rollforward through that operation, the associated
table spaces are placed in the Restore Pending state. To remove the table
spaces from the Restore Pending state, you must perform a restore
operation.

Note: DB2 LOAD does not set the table space state to Load Pending or Delete
Pending.

Example of a table space state

If you load an input file (staffdata.del) into a table NEWSTAFF, as follows:
update db cfg for sample using logarchmeth1 logretain;
backup db sample;
connect to sample;
create table newstaff like staff;
load from staffdata.del of del insert into newstaff copy no;
connect reset;

and you open another session and issue the following commands,
connect to sample;
list tablespaces;
connect reset;

USERSPACE1 (the default table space for the sample database) is in the Load in
Progress state and, after the first commit, the Backup Pending state as well. After
the load operation finishes, the LIST TABLESPACES command reveals that
USERSPACE1 is now in the Backup Pending state:
Tablespace ID = 2
Name = USERSPACE1
Type = Database managed space
Contents = All permanent data. Large table space.
State = 0x0020

Detailed explanation:
Backup pending

Table states during and after load operations
The load utility uses table states to preserve database consistency during a load
operation. These states work by controlling access to data or eliciting user actions.

To determine the state of a table, issue the LOAD QUERY command, which also
checks the status of a load operation. Tables can be in a number of states
simultaneously. The states returned by LOAD QUERY are as follows:

Normal State
The Normal state is the initial state of a table after it is created, indicating
that no (abnormal) states currently affect the table.

Read Access Only
If you specify the ALLOW READ ACCESS option, the table is in the Read
Access Only state. The data in the table that existed before the invocation
of the load command is available in read-only mode during the load
operation. If you specify the ALLOW READ ACCESS option and the load
operation fails, the data that existed in the table before the load operation
continues to be available in read-only mode after the failure.

Load in Progress
The Load in Progress table state indicates that there is a load in progress
on the table. The load utility removes this transient state after the load is

588 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

successfully completed. However, if the load operation fails or is
interrupted, the table state will change to Load Pending.

Redistribute in Progress
The Redistribute in Progress table state indicates that there is a redistribute
in progress on the table. The redistribute utility removes this transient state
after it has successfully completed processing the table. However, if the
redistribute operation fails or is interrupted, the table state will change to
Redistribute Pending.

Load Pending
The Load Pending table state indicates that a load operation failed or was
interrupted. You can take one of the following steps to remove the Load
Pending state:
v Address the cause of the failure. For example, if the load utility ran out

of disk space, add containers to the table space. Then, restart the load
operation.

v Terminate the load operation.
v Run a load REPLACE operation against the same table on which the load

operation failed.
v Recover table spaces for the loading table by using the RESTORE DATABASE

command with the most recent table space or database backup, then
carry out further recovery actions.

Redistribute Pending
The Redistribute Pending table state indicates that a redistribute operation
failed or was interrupted. You can perform a REDISTRIBUTE CONTINUE or
REDISTRIBUTE ABORT operation to remove the Redistribute Pending state.

Not Load Restartable
In the Not Load Restartable state, a table is partially loaded and does not
allow a load restart operation. There are two situations in which a table is
placed in the Not Load Restartable state:
v If you perform a rollforward operation after a failed load operation that

you could not successfully restart or terminate
v If you perform a restore operation from an online backup that you took

while the table was in the Load in Progress or Load Pending state

The table is also in the Load Pending state. To remove the table from the
Not Load Restartable state, issue the LOAD TERMINATE or the LOAD REPLACE
command.

Set Integrity Pending
The Set Integrity Pending state indicates that the loaded table has
constraints which have not yet been verified. The load utility places a table
in this state when it begins a load operation on a table with constraints.
Use the SET INTEGRITY statement to take the table out of Set Integrity
Pending state.

Type-1 indexes
The Type-1 Indexes state indicates that the table currently uses type-1
indexes. Type-1 indexes are no longer supported since Version 9.7. You
should convert them to type-2 indexes before upgrading to Version 10.
Otherwise, the type-1 indexes are automatically rebuilt as type-2 indexes
the first time a table is accessed.

For details on how to convert type-1 indexes before upgrading databases,
see the “Converting type-1 indexes to type-2 indexes” topic.

Chapter 33. Load overview 589

Unavailable
Rolling forward through an unrecoverable load operation places a table in
the Unavailable state. In this state, the table is unavailable; you must drop
it or restore it from a backup.

Example of a table in multiple states

If you load an input file (staffdata.del) with a substantial amount of data into a
table NEWSTAFF, as follows:
connect to sample;
create table newstaff like staff;
load from staffdata.del of del insert into newstaff allow read access;
connect reset;

and you open another session and issue the following commands,
connect to sample;
load query table newstaff;
connect reset;

the LOAD QUERY command reveals that the NEWSTAFF table is in the Read Access
Only and Load in Progress table states:
Tablestate:
Load in Progress
Read Access Only

Load exception tables
A load exception table is a consolidated report of all of the rows that violated
unique index rules, range constraints, and security policies during a load
operation. You specify a load exception table by using the FOR EXCEPTION clause
of the LOAD command.

Restriction: An exception table can not contain an identity column or any other
type of generated column. If an identity column is present in the primary table, the
corresponding column in the exception table should only contain the column's
type, length, and nullability attributes. In addition, the exception table cannot be
partitioned or have a unique index. Also, you cannot specify an exception table if:
v the target table uses LBAC security and has at least one XML column.
v the target table is range partitioned and has at least one XML column.

The exception table used with the load utility is identical to the exception tables
used by the SET INTEGRITY statement. It is a user-created table that reflects the
definition of the table being loaded and includes some additional columns.

You can assign a load exception table to the table space where the table being
loaded resides or to another table space. In either case, assign the load exception
table and the table being loaded to the same database partition group, and ensure
that both tables use the same distribution key. Additionally, ensure that the
exception table and table being loaded have the same partition map id
(SYSIBM.SYSTABLES.PMAP_ID), which can potentially be different during the
redistribute operation (add/drop database partition operation).

When to use an exception table

Use an exception table when loading data that has a unique index and could have
duplicate records. If you do not specify an exception table and duplicate records

590 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

are found, the load operation continues, and only a warning message is issued
about the deleted duplicate records. The duplicate records are not logged.

After the load operation is completed, you can use information in the exception
table to correct data that is in error. You can then insert the corrected data into the
table.

Rows are appended to existing information in the exception table. Because there is
no checking done to ensure that the table is empty, new information is simply
added to the invalid rows from previous load operations. If you want only the
invalid rows from the current load operation, you can remove the existing rows
before invoking the utility. Alternatively, when you define a load operation, you
can specify that the exception table record the time when a violation is discovered
and the name of the constraint violated.

Because each deletion event is logged, the log could fill up during the delete phase
of the load if there are a large number of records that violate a uniqueness
condition.

Any rows rejected because of invalid data before the building of an index are not
inserted into the exception table.

Monitoring a load operation using the LIST UTILITIES command
You can use the LIST UTILITIES command to monitor the progress of load
operations on a database.

Procedure

To use the LIST UTILITIES command:
Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter:

list utilities show detail

Example

The following is an example of the output for monitoring the performance of a
load operation using the LIST UTILITIES command:
ID = 10
Type = LOAD
Database Name = TEST
Member Number = 1
Description = OFFLINE LOAD DEL AUTOMATIC INDEXING REPLACE
COPY NO BEER .TABLE1
Start Time = 08/16/2011 08:52:53.861841
State = Executing
Invocation Type = User
Progress Monitoring:

Phase Number = 1
Description = SETUP
Total Work = 0 bytes
Completed Work = 0 bytes
Start Time = 08/16/2011 08:52:53.861865

Phase Number [Current] = 2
Description = LOAD
Total Work = 49900 rows
Completed Work = 25313 rows
Start Time = 08/16/2011 08:52:54.277687

Chapter 33. Load overview 591

Phase Number = 3
Description = BUILD
Total Work = 2 indexes
Completed Work = 0 indexes
Start Time = Not Started

592 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 34. Ingest utility

The ingest utility (sometimes referred to as continuous data ingest, or CDI) is a
high-speed client-side DB2 utility that streams data from files and pipes into DB2
target tables. Because the ingest utility can move large amounts of real-time data
without locking the target table, you do not need to choose between the data
currency and availability.

The ingest utility ingests pre-processed data directly or from files output by ETL
tools or other means. It can run continually and thus it can process a continuous
data stream through pipes. The data is ingested at speeds that are high enough to
populate even large databases in partitioned database environments.

An INGEST command updates the target table with low latency in a single step. The
ingest utility uses row locking, so it has minimal interference with other user
activities on the same table.

With this utility, you can perform DML operations on a table using a SQL-like
interface without locking the target table. These ingest operations support the
following SQL statements: INSERT, UPDATE, MERGE, REPLACE, and DELETE.
The ingest utility also supports the use of SQL expressions to build individual
column values from more than one data field.

Other important features of the ingest utility include:
v Commit by time or number of rows. You can use the commit_count ingest

configuration parameter to have commit frequency determined by the number of
written rows or use the default commit_period ingest configuration parameter to
have commit frequency determined by a specified time.

v Support for copying rejected records to a file or table, or discarding them. You
can specify what the INGEST command does with rows rejected by the ingest
utility (using the DUMPFILE parameter) or by DB2 (using the EXCEPTION TABLE
parameter).

v Support for restart and recovery. By default, all INGEST commands are
restartable from the last commit point. In addition, the ingest utility attempts to
recover from certain errors if you have set the retry_count ingest configuration
parameter.

The INGEST command supports the following input data formats:
v Delimited text
v Positional text and binary
v Columns in various orders and formats

In addition to regular tables and nicknames, the INGEST command supports the
following table types:
v multidimensional clustering (MDC) and insert time clustering (ITC) tables
v range-partitioned tables
v range-clustered tables (RCT)
v materialized query tables (MQTs) that are defined as MAINTAINED BY USER,

including summary tables
v temporal tables

© Copyright IBM Corp. 2014 593

v updatable views (except typed views)

A single INGEST command goes through three major phases:

1. Transport
The transporters read from the data source and put records on the
formatter queues. For INSERT and MERGE operations, there is one
transporter thread for each input source (for example, one thread for each
input file). For UPDATE and DELETE operations, there is only one
transporter thread.

2. Format
The formatters parse each record, convert the data into the format that DB2
database systems require, and put each formatted record on one of the
flusher queues for that record's partition. The number of formatter threads
is specified by the num_formatters configuration parameter. The default is
(number of logical CPUs)/2.

3. Flush
The flushers issue the SQL statements to perform the operations on the
DB2 tables. The number of flushers for each partition is specified by the
num_flushers_per_partition configuration parameter. The default is max(
1, ((number of logical CPUs)/2)/(number of partitions)).

Deciding where to run the ingest utility
The ingest utility is included as a part of the DB2 client install. You can run it from
either the client or the server.

About this task

There are two choices for where to run the ingest utility:

On an existing server in the data warehouse environment
There are two choices for where to run ingest jobs within this type of
setup:
v On the DB2 coordinator partition (the database partition server to which

applications will connect and on which the coordinating agent is located)
v On an existing ETL (extract, transform, and load) server

On a new server
There are two choices for where to run ingest jobs within this type of
setup:
v On a server that is only running the ingest utility
v On a server that is also hosting an additional DB2 coordinator partition

that is dedicated to the ingest utility.

There are a number of factors that can influence where you decide to install the
ingest utility:
v Performance: Having the ingest utility installed on its own server has a

significant performance benefit, so this would be suitable for environments with
large data sets.

v Cost: Having the ingest utility installed on an existing server means that no
additional expenses are incurred as a result of using it.

v Ease of administration

594 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Ingest-related tasks
This section provides a high-level overview of the main setup and operational
tasks related to using the ingest utility.

Setting up ingest middleware

1. Decide where to run the ingest utility
You can run ingest jobs on an existing machine or from a stand-alone
machine. For more information, see “Deciding where to run the ingest
utility” on page 594

2. Install the ingest utility (part of the DB2 Data Server Runtime Client
and the DB2 Data Server Client).
If you decide to install the ingest utility on a new, stand-alone machine,
run the install for the DB2 client image. For more information, see
“Installing IBM data server clients (Linux, UNIX)” in Installing IBM
Data Server Clients

Developing a process to populate a table

1. (If required) Address code page issues
Depending on whether the same code page is used by the input data,
the DB2 client, and the DB2 server, there may be some user actions to
take before running an INGEST command. For more information, see
“Code page considerations for the ingest utility” on page 609.

2. Set up to handle the restart of failed INGEST commands
To make an ingest operation restartable, you need to create a restart log
table before issuing the INGEST command. For more information, see
“Creating the restart table” on page 596.

3. Write an INGEST command
Issue the INGEST command along with the mandatory parameters, like
the input source and data type, and various optional parameters. For a
detailed description of the command syntax and usage, as well as
examples, see “Ingesting data” on page 597 and “INGEST” in the
Command Reference.

4. Set up to process an ongoing stream of ingest jobs
If you want to easily call a pre-written INGEST command, create a script
for the command and call it when necessary. For more information, see
“Scenario: Processing a stream of files with the ingest utility” on page
612

Performing operational tasks

v (If required) Addressing a failed INGEST command
If an ingest job fails, you have the option of restarting or terminating the
command. For more information, see “Restarting a failed ingest
operation” on page 604 or “Terminating a failed ingest operation” on
page 606.

v Monitoring an INGEST command
For more information, see “Monitoring ingest operations” on page 613.

(Optional) Optimizing performance

v Review tunable configuration parameters for the INGEST command.
v Modify your INGEST command to meet high performance requirements.

For more information, see “Performance considerations for ingest
operations” on page 608.

Chapter 34. Ingest utility 595

Creating the restart table
By default, failed INGEST commands are restartable from the last commit point;
however you first need to create a restart table, which stores the information
needed to resume an INGEST command.

About this task

You have to create the restart table only once, and that table will be used by all
INGEST commands in the database.

The ingest utility will use this table to store information needed to resume an
incomplete INGEST command from the last commit point.

Note: The restart table does not contain copies of the input rows, only some
counters to indicate which rows have been committed.

Restrictions
v It is recommended that you place the restart table in the same tablespace as the

target tables that the ingest utility updates. If this is not possible, you must
ensure that the tablespace containing the restart table is at the same level as the
tablespace containing the target table. For example, if you restore or roll forward
one of the table spaces, you must restore or roll forward the other to the same
level. If the table spaces are at different levels and you run an INGEST command
with the RESTART CONTINUE option, the ingest utility could fail or ingest incorrect
data.

v If your disaster recovery strategy includes replicating the target tables of ingest
operations, you must also replicate the restart table so it is kept in sync with the
target tables.

Procedure

To create the restart table:
v If you are using a Version 10.1 server, call the SYSPROC.SYSINSTALLOBJECTS

stored procedure:
db2 "CALL SYSPROC.SYSINSTALLOBJECTS(’INGEST’, ’C’, tablespace-name, NULL)"

v If you are using a Version 9.5, Version 9.7, or Version 9.8 server, issue the
following SQL statements:
CREATE TABLE SYSTOOLS.INGESTRESTART (

JOBID VARCHAR(256) NOT NULL,
APPLICATIONID VARCHAR(256) NOT NULL,
FLUSHERID INT NOT NULL,
FLUSHERDISTID INT NOT NULL,
TRANSPORTERID INT NOT NULL,
BUFFERID BIGINT NOT NULL,
BYTEPOS BIGINT NOT NULL,
ROWSPROCESSED INT NOT NULL,

PRIMARY KEY (JOBID, FLUSHERID, TRANSPORTERID, FLUSHERDISTID))
IN <tablespace-name>
DISTRIBUTE BY (FLUSHERDISTID);

GRANT SELECT, INSERT, UPDATE, DELETE
ON TABLE SYSTOOLS.INGESTRESTART TO PUBLIC;

596 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Results

The restart table, SYSTOOLS.INGESTRESTART, should now be created in the
specified table space, and you can now run restartable INGEST commands.

Example

A DBA intends to run all INGEST commands as restartable, so the DBA needs to
first create a restart table:
1. The DBA connects to the database:

db2 CONNECT TO sample

2. The DBA calls the stored procedure:
db2 "CALL SYSPROC.SYSINSTALLOBJECTS(’INGEST’, ’C’, NULL, NULL)"

What to do next

Ensure that any user who will modify the restart table has the appropriate
authorization:
v If the INGEST command specifies RESTART NEW, the user must have SELECT,

INSERT, UPDATE, and DELETE privilege on the restart table.
v If the INGEST command specifies RESTART TERMINATE, the user must have SELECT

and DELETE privilege on the restart table.

Ingesting data
You can use the ingest utility to continuously pump data into DB2 tables using
SQL array inserts, updates, and deletes until sources are exhausted.

Before you begin

Before invoking the ingest utility, you must be connected to the database into
which the data will be imported.

By default, failed INGEST commands are restartable from the last commit point;
however you must first create a restart table, otherwise you receive an error
message notifying you that the command you issued is not restartable. The ingest
utility uses this table to store information needed to resume an incomplete INGEST
command from the last commit point. For more information about this, see
“Creating the restart table” on page 596.

About this task

For a list of the required privileges and authorities, see the INGEST command
authorization.

Restrictions

For a comprehensive list of restrictions for the ingest utility, see “Ingest utility
restrictions and limitations” on page 606.

Procedure

Issue the INGEST command specifying, at a minimum, a source, the format, and the
target table as in the following example:

Chapter 34. Ingest utility 597

INGEST FROM FILE my_file.txt
FORMAT DELIMITED
INSERT INTO my_table;

It is recommended that you also specify a string with the RESTART NEW parameter
on the INGEST command:
INGEST FROM FILE my_file.txt

FORMAT DELIMITED
RESTART NEW ’CDIjob001’
INSERT INTO my_table;

The string you specify can be up to 128 bytes. Because the string uniquely
identifies the INGEST command, it must be unique across all INGEST commands in
the current database that specified the RESTART NEW option and are not yet
complete.

Example

Basic ingest examples
The following example inserts data from a delimited text file:
INGEST FROM FILE my_file.txt

FORMAT DELIMITED
INSERT INTO my_table;

The following example inserts data from a delimited text file with fields
separated by a comma (the default). The fields in the file correspond to the
table columns.
INGEST FROM FILE my_file.txt

FORMAT DELIMITED
(

$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)

)
INSERT INTO my_table

VALUES($field1, $field2, $field3);

Delimiter override example
The following example inserts data like the previous example, but the
fields are separated by a vertical bar.
INGEST FROM FILE my_file.txt
FORMAT DELIMITED by ’|’
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)
)
INSERT INTO my_table
VALUES($field1, $field2, $field3);

Omitting the field definition and VALUES list example
In the following example, the table is defined as follows:
CREATE TABLE my_table (

c1 VARCHAR(32),
c2 INTEGER GENERATED BY DEFAULT AS IDENTITY,
c3 INTEGER GENERATED ALWAYS AS (c2 + 1),
);

The user issues the following INGEST command:

598 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

INGEST FROM FILE my_file.txt
FORMAT DELIMITED
INSERT INTO mytable;

v The default field definition list will be:
(

$C1 CHARACTER(32),
$C2 INTEGER EXTERNAL,
$C3 INTEGER EXTERNAL

)

v The default VALUES list on the INSERT statement is:
VALUES($C1, $C2, DEFAULT)

Note that the third value is DEFAULT because the column that
corresponds to field $C3 is defined as GENERATED ALWAYS. The
fourth value is omitted because it has no field.

Extra fields used to compute column values example
The following example is the same as the delimiter override example, but
only the first two fields correspond to the first two table columns
(PROD_ID and DESCRIPTION), whereas the value for the third table
column (TOTAL_PRICE) is computed from the remaining three fields
INGEST FROM FILE my_file.txt
FORMAT DELIMITED BY ’|’
(
$prod_ID CHAR(8),
$description CHAR(32),
$price DECIMAL(5,2) EXTERNAL,
$sales_tax DECIMAL(4,2) EXTERNAL,
$shipping DECIMAL(3,2) EXTERNAL
)
INSERT INTO my_table(prod_ID, description, total_price)
VALUES($prod_id, $description, $price + $sales_tax + $shipping);

Filler fields example
The following example inserts data from a delimited text file with fields
separated by a comma (the default). The fields in the file correspond to the
table columns except that there are extra fields between the fields for
columns 2 and 3 and columns 3 and 4.
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$field1 INTEGER,
$field2 CHAR(8),
$filler1 CHAR,
$field3 CHAR(32),
$filler2 CHAR,
$field4 DATE
)
INSERT INTO my_table VALUES($field1, $field2, $field3, $field4);

Format modifiers example
The following example inserts data from a delimited text file in code page
850. Date fields are in American format and char fields are enclosed in
equal signs.
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
INPUT CODEPAGE 850
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,

Chapter 34. Ingest utility 599

$field3 CHAR(32) ENCLOSED BY ’=’
)
INSERT INTO my_table
VALUES($field1, $field2, $field3);

Positional example
The following example inserts data from a file with fields in the specified
positions. The fields in the file correspond to the table columns.
INGEST FROM FILE my_file.txt

FORMAT POSITIONAL
(
$field1 POSITION(1:8) INTEGER EXTERNAL,
$field2 POSITION(10:19) DATE ’yyyy-mm-dd’,
$field3 POSITION(25:34) CHAR(10)
)
INSERT INTO my_table
VALUES($field1, $field2, $field3);

DEFAULTIF examples
This example is similar to the previous example, except if the second field
starts with a blank, the ingest utility inserts the default value:
INGEST FROM FILE my_file.txt
FORMAT POSITIONAL
(
$field1 POSITION(1:8) INTEGER EXTERNAL,
$field2 POSITION(10:19) DATE ’yyyy-mm-dd’ DEFAULTIF = ’ ’,

$field3 POSITION(25:34) CHAR(10)
)
INSERT INTO my_table
VALUES($field1, $field2, $field3);

This example is the same as the previous example, except that the default
indicator is in the column after the data columns:
INGEST FROM FILE my_file.txt
FORMAT POSITIONAL
(
$field1 POSITION(1:8) INTEGER EXTERNAL,
$field2 POSITION(10:19) DATE ’yyyy-mm-dd’ DEFAULTIF(35) = ’ ’,

$field3 POSITION(25:34) CHAR(10)
)
INSERT INTO my_table
VALUES($field1, $field2, $field3);

Multiple input sources example
This example inserts data from three delimited text files:
INGEST FROM FILE my_file.txt, my_file2.txt, my_file3.txt
FORMAT DELIMITED
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)
)
INSERT INTO my_table
VALUES($field1, $field2, $field3);

Pipe example
This example inserts data from a pipe:
INGEST FROM PIPE my_pipe
FORMAT DELIMITED
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,

600 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

$field3 CHAR(32)
)
INSERT INTO my_table
VALUES($field1, $field2, $field3);

Options example
This example inserts data from a delimited text file with fields separated
by a comma (the default). The fields in the file correspond to the table
columns. The command specifies that write rows rejected by DB2 (for
example, due to constraint violations) are to be written to table
EXCP_TABLE, rows rejected due to other errors are to be discarded, and
messages are to be written to file messages.txt.
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)
)
EXCEPTION TABLE excp_table

MESSAGES messages.txt
INSERT INTO my_table
VALUES($field1, $field2, $field3);

Restart example
This example issues an INGEST command (which is restartable, by default)
with a specified ingest job id:
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)
)
RESTART NEW ’ingestcommand001’
INSERT INTO my_table
VALUES($field1, $field2, $field3);

If the command terminates before completing, you can restart it with the
following command:
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)
)
RESTART CONTINUE ’ingestcommand001’
INSERT INTO my_table
VALUES($field1, $field2, $field3);

Restart terminate example
This example issues the same INGEST command as the previous "Restart
example":
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)
)
RESTART NEW ’ingestcommand001’
INSERT INTO my_table
VALUES($field1, $field2, $field3);

Chapter 34. Ingest utility 601

If the command terminates before completing and you do not plan to
restart it, you can clean up the restart records with the following
command.
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)
)
RESTART TERMINATE ’ingestcommand001’
INSERT INTO my_table
VALUES($field1, $field2, $field3);

After issuing this command, you can no longer restart the INGEST
command with the job id: "ingestcommand001", but you can reuse that
string on the RESTART NEW parameter of a new INGEST command.

Reordering columns example
This example inserts data from a delimited text file with fields separated
by a comma. The table has three columns and the fields in the input data
are in the reverse order of the table columns.
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)
)
INSERT INTO my_table
VALUES($field3, $field2, $field1);

Basic UPDATE, MERGE, and DELETE examples
The following examples update the table rows whose primary key matches
the corresponding fields in the input file.
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$key1 INTEGER EXTERNAL,
$key2 INTEGER EXTERNAL,
$data1 CHAR(8),
$data2 CHAR(32),
$data3 DECIMAL(5,2) EXTERNAL
)
UPDATE my_table
SET (data1, data2, data3) = ($data1, $data2, $data3)
WHERE (key1 = $key1) AND (key2 = $key2);

or
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$key1 INTEGER EXTERNAL,
$key2 INTEGER EXTERNAL,
$data1 CHAR(8),
$data2 CHAR(32),
$data3 DECIMAL(5,2) EXTERNAL
)
UPDATE my_table
SET data1 = $data1, data2 = $data2, data3 = $data3
WHERE (key1 = $key1) AND (key2 = $key2);

602 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

This example merges data from the input file into the target table. For
input rows whose primary key fields match a table row, it updates that
table row with the input row. For other input rows, it adds the row to the
table.
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$key1 INTEGER EXTERNAL,
$key2 INTEGER EXTERNAL,
$data1 CHAR(8),
$data2 CHAR(32),
$data3 DECIMAL(5,2) EXTERNAL
)
MERGE INTO my_table
ON (key1 = $key1) AND (key2 = $key2)
WHEN MATCHED THEN
UPDATE SET (data1, data2, data3) = ($data1, $data2, $data3)
WHEN NOT MATCHED THEN
INSERT VALUES($key1, $key2, $data1, $data2, $data3);

This example deletes table rows whose primary key matches the
corresponding primary key fields in the input file.
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$key1 INTEGER EXTERNAL,
$key2 INTEGER EXTERNAL
)
DELETE FROM my_table
WHERE (key1 = $key1) AND (key2 = $key2);

Complex SQL examples
Consider the following example in which there is a table with columns
KEY, DATA, and ACTION. The following command updates the DATA
column of table rows where the primary key column (KEY) matches the
corresponding field in the input file and the ACTION column is 'U':
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$key_fld INTEGER EXTERNAL,
$data_fld INTEGER EXTERNAL
)
UPDATE my_table
SET data = $data_fld
WHERE (key = $key_fld) AND (action = ’U’);

The following example is the same as the previous example except that if
the keys match and the ACTION column is 'D', then it deletes the row
from the table:
INGEST FROM FILE my_file.txt
FORMAT DELIMITED
(
$key_fld INTEGER EXTERNAL,
$data_fld INTEGER EXTERNAL
)
MERGE INTO my_table
ON (keyl = $key_fld)
WHEN MATCHED AND (action = ’U’) THEN
UPDATE SET data = $data_fld
WHEN MATCHED AND (action = ’D’) THEN
DELETE;

Chapter 34. Ingest utility 603

What to do next

If the INGEST command completes successfully, you can reuse the string specified
with the RESTART NEW parameter.

If the INGEST command fails and you want to restart it, you must specify the
RESTART CONTINUE option with the string you specified in the original command.

If you do not plan to restart the failed INGEST command and you want to clean up
the entries in the restart table, rerun the INGEST command, specifying the RESTART
TERMINATE option.

Restarting a failed ingest operation
If an INGEST command fails before completing and you want to restart it, reissue
the INGEST command with the RESTART CONTINUE option. This second INGEST
command starts from the last commit point and is also restartable.

Before you begin

The userid restarting the failed INGEST command must have SELECT, INSERT,
UPDATE, and DELETE privilege on the restart log table.

About this task

The INGEST utility considers a command to be complete when it reaches the end of
the file or pipe. Under any other conditions, the INGEST utility considers the
command incomplete. These can include:
v The INGEST command gets an I/O error while reading the input file or pipe.
v The INGEST command gets a critical system error from the DB2 database system.
v The INGEST command gets a DB2 database system error that is likely to prevent

any further SQL statements in the INGEST command from succeeding (for
example, if the table no longer exists).

v The INGEST command is killed or terminates abnormally.

Restrictions
v If the target table and the restart table are in different table spaces, the two table

spaces must be at the same level in terms of rollforward or restore operations.
v You cannot modify the contents of the restart table, other than restoring the

entire table to keep it in sync with the target table.
v The num_flushers_per_partition configuration parameter must be the same as

on the original command.
v If the input is from files or pipes, the number of input files or pipes must be the

same as on the original command.
v The input file or pipes must provide the same records and in the same order as

on the original command.
v The following INGEST command parameters must be the same as on the original

command:
– input type (file or pipe)
– the SQL statement
– the field definition list, including the number of fields and all field attributes

v The target table columns that the SQL command updates must have the same
definition as they had at the time of the original command.

604 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v In a partitioned database environment, you cannot have added or removed
database partitions.

v In a partitioned database environment, you cannot have redistributed data
across the partitions.

v If an INGEST command specifies the DUMPFILE (BADFILE) parameter, the dump file
is guaranteed to be complete only if the INGEST command completes normally in
a single run. If an INGEST command fails and the restarted command succeeds,
the combination of dump files from the two commands might be missing some
records or might contain duplicate records.

If the third, fourth, fifth, or ninth restriction is violated, the ingest utility issues an
error and ends the INGEST command. In the case of the other restrictions, the ingest
utility does not issue an error, but the restarted INGEST command might produce
different output rows than the original would have if it had completed.

Procedure

To restart a failed INGEST operation, do the following:
1. Use the available information to diagnose and correct the problem that caused

the failure
2. Reissue the INGEST command, specifying the RESTART CONTINUE option with the

appropriate job-id.

Results

Once the restarted INGEST command completes, you can reuse the job-id on a later
INGEST command.

Example

The following INGEST command failed:
INGEST FROM FILE my_file.txt

FORMAT DELIMITED
(

$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)

)
RESTART NEW ’ingestjob001’
INSERT INTO my_table

VALUES($field1, $field2, $field3);

The DBA corrects the problem that cause the failure and restarts the INGEST
command (which starts from the last commit point) with the following command:
INGEST FROM FILE my_file.txt

FORMAT DELIMITED
(

$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)

)
RESTART CONTINUE ’ingestjob001’
INSERT INTO my_table

VALUES($field1, $field2, $field3);

Chapter 34. Ingest utility 605

Terminating a failed ingest operation
If an INGEST command fails before completing and you do not want to restart it,
reissue the INGEST command with the RESTART TERMINATE option. This command
option cleans up the log records for the failed INGEST command.

Before you begin

The user ID terminating the failed INGEST command must have SELECT and
DELETE privilege on the restart log table.

Procedure

To terminate a failed INGEST operation, reissue the INGEST command. Specify the
RESTART TERMINATE parameter with the appropriate string.

Results

After the restarted INGEST command completes, you can reuse the RESTART NEW
string on a later INGEST command.

Example

The following INGEST command failed:
INGEST FROM FILE my_file.txt

FORMAT DELIMITED
(

$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)

)
RESTART NEW ’ingestjob001’
INSERT INTO my_table

VALUES($field1, $field2, $field3);

The DBA does not want to restart the INGEST command, so they terminate it with
the following command (which includes the RESTART TERMINATE parameter):
INGEST FROM FILE my_file.txt

FORMAT DELIMITED
(

$field1 INTEGER EXTERNAL,
$field2 DATE ’mm/dd/yyyy’,
$field3 CHAR(32)

)
RESTART TERMINATE ’ingestjob001’
INSERT INTO my_table

VALUES($field1, $field2, $field3);

Ingest utility restrictions and limitations
There are a number of restrictions that you should be aware of when using the
ingest utility.

Restartability

v If input data source type changed, the ingest utility might not be able to
detect the change and will produce different output rows than the
original failed command.

Table support

606 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The ingest utility supports operations against only DB2 for Linux, UNIX
and Windows tables.

v The ingest utility does not support operations on:
– created or declared global temporary tables
– typed tables
– typed views

Input types, formats, and column types

v The ingest utility does not support the following column types:
– large object types (LOB, BLOB, CLOB, DBCLOB)
– XML
– structured types
– columns with a user-defined data type based on any of the types

listed previously
v In addition, the ingest utility has the following restrictions on generated

columns:
– The ingest utility cannot assign a value to a column defined as

GENERATED ALWAYS. If the SQL statement on the INGEST command
is INSERT or UPDATE and the target table has a GENERATED
ALWAYS column, the insert or update operation fails (SQL0798N) and
the INGEST command ends unless you do one of the following:
- Omit the column from the list of columns to update.
- On the INSERT or UPDATE statement, specify DEFAULT as the

value assigned to the column.
– The ingest utility cannot assign a combination of default values and

specific values to a column defined as GENERATED BY DEFAULT AS
IDENTITY. If the SQL statement on the INGEST command is INSERT
or UPDATE and the target table has a GENERATED BY DEFAULT AS
IDENTITY column, the insert or update operation fails (SQL0407N)
and the INGEST command rejects the record unless you do one of the
following:
- Omit the column from the list of columns to update.
- On the INSERT or UPDATE statement, specify DEFAULT as the

value assigned to the column.
- Specify an expression that never evaluates to NULL as the value

assigned to the column. For example, if the expression is $field1,
then $field1 can never have a NULL value in the input records.

Restrictions related to using other DB2 features with the ingest utility

v Except for the CONNECT_MEMBER parameter, the SET CLIENT command (for
connection settings) does not affect how the ingest utility connects.

v The LIST HISTORY command does not display ingest operations.
v The SET UTIL_IMPACT_PRIORITY command does not affect the INGEST

command
v The util_impact_lim database manager configuration parameter does

not affect the INGEST command
v Except for CURRENT SCHEMA, CURRENT TEMPORAL

SYSTEM_TIME, and CURRENT TEMPORAL BUSINESS_TIME, the
ingest utility ignores the settings of most special registers that affect SQL
statement execution.

General ingest utility restrictions

Chapter 34. Ingest utility 607

v If you ingest into a view that has multiple base tables, any base tables
that are protected by a security policy must be protected by the same
security policy. (You can still have some base tables unprotected but
those that are protected must use the same security policy.)

Nickname support

v If the INGEST command specifies or defaults to the RESTART NEW
or RESTART CONTINUE option, and the target table is a nickname
or an updatable view that updates a nickname, ensure that the
DB2_TWO_PHASE_COMMIT server option is set to 'Y' for the
server definition that contains the nickname.

v You cannot use the SET SERVER OPTION to enable two-phase
commit before issuing the INGEST command because that
command affects only the CLP connection, whereas the INGEST
command establishes its own connection. You must set the
server option in the server definition in the catalog.

v You cannot use the DB2_TWO_PHASE_COMMIT server option
with the database partitioning feature, which means that the
combination of partitioned database environment mode, a
restartable ingest command, and ingesting into a nickname is not
supported.

v The performance benefit of the utility is reduced when used on
nicknames.

Performance considerations for ingest operations
Use the following set of guidelines to help performance tune your ingest jobs.

Field type and column type
Define fields to be the same type as their corresponding column types.
When the types are different, the ingest utility or DB2 must convert the
input data to the column type.

Materialized query tables (MQTs)
If you ingest data into a table that is a base table of an MQT defined as
REFRESH IMMEDIATE, performance can degrade significantly due to the
time required to update the MQT.

Row size
For tables with a small row size, increase the setting of the commit_count
ingest configuration parameter; for tables with a large row size, reduce the
setting of the commit_count ingest configuration parameter.

Other workloads
If you are executing the ingest utility with another workload, increase the
setting of the locklist database configuration parameter and reduce the
setting of the commit_count ingest configuration parameter

608 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Code page considerations for the ingest utility
When the ingest utility processes input data, there are three code pages involved:
the application (client) code page, the input data code page, and the database code
page.

Code page How specified Default

Application (client) code
page, which is used in the
CLP command file

Determined from the current
locale

Determined from the current
locale

Input data code page INPUT CODEPAGE on the
INGEST command

Application code page

Database code page Specified on the CREATE
DATABASE command

1208 (UTF-8 encoding of
Unicode)

If the input data code page differs from the application code page, the ingest
utility temporarily overrides the application code page with the input data code
page so that DB2 converts the data directly from the input data code page to the
database code page. Under some conditions, the ingest utility cannot override the
application code page. In this case, the ingest utility converts character data that is
not defined as FOR BIT DATA to the application code page before passing it to
DB2. In all cases, if the column is not defined as FOR BIT DATA, DB2 converts the
data to the database code page.

CLP command file code page
Except for hex constants, the ingest utility assumes that the text of the
INGEST command is in the application code page. Whenever the ingest
utility needs to compare strings specified on the INGEST command (for
example, when comparing the DEFAULTIF character to a character in the
input data), the ingest utility performs any necessary code page conversion
to ensure the compared strings are in the same code page. Neither the
ingest utility nor DB2 do any conversion of hex constants.

Input data code page
If both a field and the table column that it is assigned to are defined as
FOR BIT DATA, then neither the ingest utility nor DB2 does any code page
conversion. For example, suppose that the INGEST command assigns field
$c1 to column C1 and both are defined as CHAR FOR BIT DATA. If the
input field contains X'E9', then DB2 sets column C1 to X'E9', regardless of
the input data code page or database code page.

It is strongly recommended that if a column definition omits FOR BIT
DATA, then its corresponding field definition also omit FOR BIT DATA.
Likewise, if a column definition specifies FOR BIT DATA, its corresponding
field should also specify FOR BIT DATA. Otherwise, the value assigned to
the column is unpredictable because it depends on whether the ingest
utility can override the application code page.

The following example illustrates this situation:
v The input data code page is 819.
v The application code page is 850.
v The database code page is 1208 (UTF-8).
v The input data is "é" ("e" with an acute accent), which is X'E9' in code

page 819, X'82' in code page 850, and X'C3A9' in UTF-8.

Chapter 34. Ingest utility 609

The following table shows what data ends up on the server depending on
whether the field and/or column are defined as FOR BIT DATA and
whether the ingest utility can override the application code page:

Table 108. Possible outcomes if the field and column definitions are defined as FOR BIT
DATA

Field
definition

Column
definition

Input data
(code page
819)

Data after
the ingest
utility
converts it to
application
code page
850

Data on the
server if the
ingest utility
can override
the
application
code page

Data on the
server if the
ingest utility
cannot
override the
application
code page

CHAR CHAR X'E9' X'82' X'C3A9' X'C3A9'

CHAR FOR
BIT DATA

CHAR FOR
BIT DATA

X'E9' X'E9' X'E9' X'E9'

CHAR FOR
BIT DATA

CHAR X'E9' X'E9' X'C3A9' X'C39A' ("Ú")

CHAR CHAR FOR
BIT DATA

X'E9' X'82' X'E9' X'82'

The data in the fourth column is what the ingest utility sends to DB2 when
it can override the application code page. The data in the fourth column is
what the ingest utility sends when it cannot override the application code
page. Note that when the FOR BIT DATA attribute of the field and column
definitions are different, the results can vary as shown in the preceding
table.

Code page errors
In cases where the input code page, application code page, or database
code page differ, either the ingest utility or DB2 or both will perform code
page conversion. If DB2 does not support the code page conversion in any
of the following cases, the ingest utility issues an error and the command
ends.

Conversion is
required when...

In this case,
conversion from... To... Is done by...

The INGEST command
contains strings or
SQL identifiers that
need to be converted
to the input data
code page.

Application code
page

Input data code page Ingest utility

The utility can
override the
application code page
to be the input data
code page.

Input code page Database code page DB2

The utility cannot
override the
application code
page.

Input code page Application code
page

Ingest utility

The utility cannot
override the
application code
page.

Application code
page

Database code page DB2

610 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Ingest operations in a partitioned database environment
You can use the ingest utility to move data into a partitioned database
environment.

INGEST commands running on a partitioned database use one or more flushers for
each partition, as specified by the num_flushers_per_partition configuration
parameter. The default is as follows:
max(1, ((number of logical CPUs)/2)/(number of partitions))

You can also set this parameter to 0, meaning one flusher for all partitions.

Each flusher connects directly to the partition to which it will send data. In order
for the connection to succeed, all the DB2 server partitions must use the same port
number to receive client connections.

If the target table is a type that has a distribution key, the ingest utility determines
the partition that each record belongs to as follows:
1. Determine whether every distribution key has exactly one corresponding field

or constant value. This will be true if:
v For an INSERT statement, the column list contains every distribution key and

for each distribution key, the corresponding item in the VALUES list is a field
name or a constant.

v For an UPDATE or DELETE statement, the WHERE predicate is of the form
(dist-key-col1 = value1) AND (dist-key-col2 = value2) AND ...
(dist-key-coln = valuen) [AND any-other-conditions]

where dist-keycol1 to dist-key-coln are all the distribution keys and each value
is a field name or a constant.

v For a MERGE statement, the search condition is of the form shown
previously for UPDATE and DELETE.

2. If every distribution key has exactly one corresponding field or constant value,
the ingest utility uses the distribution key to determine the partition number
and then routes the record to one of that partition's flushers.

Note: In the following cases, the ingest utility does not determine the record's
partition. If there is more than 1 flusher, the ingest utility routes the record to a
flusher chosen at random:
v The target table is a type that has no distribution key.
v The column list (INSERT) or predicate (UPDATE, MERGE, DELETE) does

not specify all distribution keys. In the following example, key columns 2-8
are missing:
UPDATE my_table SET data = $data

WHERE (key1 = $key1) AND (key9 = $key9);

v A distribution key corresponds to more than one field or value, as in the
following example:
UPDATE my_table SET data = $data

WHERE key1 = $key11 OR key1 = $key12;

v A distribution key corresponds to an expression, as in the following example
INGEST FROM FILE ...

INSERT INTO my_table(dist_key, col1, col2)
VALUES($field1 + $field2, $col1, $col2);

v A distribution key column has type DB2SECURITYLABEL.

Chapter 34. Ingest utility 611

v A field that corresponds to a distribution key has a numeric type, but the
distribution key column type is a different numeric type or has a different
precision or scale.

Sample ingest utility scripts
You can use the ingest utility sample script to automate writing a new INGEST
command each time there are new files to process.

The sample script ingest_files.sh is a shell script that automatically checks for
new files and generates an INGEST command to process the files. The script
performs the following tasks, in order:
1. Check the directory to see if there are new files to process. If there are no files,

the script exits.

Note: The script assumes that the specified directory only contains files for the
table that you want to populate.

2. Obtain the names of the new files and then generate a separate INGEST
command for each file

3. Run the INGEST command and handle the return code
4. Move the processed files to a success directory or a failed directory.

The script is provided in the samples/admin_scripts directory under your
installation directory.

Modifying the script for your environment

You can use the ingest_files.sh script as a basis for your own script. The
important modifications that you have to make to it are:
v Replace the sample values (namely, the database name, table name) with you

own values
v Replace the sample INGEST command with your own command
v Create the directories specified in the script

The script processes files that contain data to populate a single table. To populate
multiple tables, you can either replicate the mechanism for each table that you
want to populate or generalize the mechanism to handle multiple tables.

Sample scenario

A sample scenario has been included in the documentation to show you how you
can adapt the sample script to your data warehouse to automate the generation of
new INGEST commands.

Scenario: Processing a stream of files with the ingest utility
The following scenario shows how you can configure your data warehouse to
automatically ingest an ongoing stream of data files.

The problem: In some data warehouses, files arrive in an ongoing stream
throughout the day and need to be processed as they arrive. This means that each
time a new file arrives, another INGEST command needs to be run specifying the
new file to process.

612 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The solution: You can write a script that automatically checks for new files,
generates a new INGEST command, and runs that command. The ingest_files.sh
is a sample of such a script. You also need to create a crontab entry in order to
specify how frequently the shell script is supposed to run.

Before the user implements this mechanism (that is, the script and the chrontab
entry) for processing the stream of files, the user needs to have met the following
prerequisites and dependencies:
v The target table has been created in the target database
v The ingest utility is ready to use (that is, it is installed and set up on a client

machine)
v An INGEST command has been specified and verified by running it manually

with a test file
v The objects, such as the exception table, referenced in the INGEST command have

been created
v A crontab file has been created on the system on which the ingest utility is

running
v The user has a process for creating the input files and moving them into the

source directory that the script uses
1. The user creates a new script, using ingest_files.sh as a template by doing

the following:
a. Replace the following sample input values to reflect the user's values:

v INPUT_FILES_DIRECTORY
v DATABASE_NAME
v SCHEMA_NAME
v TABLE_NAME
v SCRIPT_PATH

b. Replace the sample INGEST command
c. Save the script as populate_table1_script

2. The user adds an entry to the crontab file to specify how frequently the script
is to run. Because the user wants the script to run once a minute, 24 hours a
day, every day of the year, the user adds the following line:
1 * * * * $HOME/bin/populate_table1_script

3. The user tests the script by creating new input files and adding them to the
source directory.

Monitoring ingest operations
You can use the INGEST LIST or INGEST GET STATS commands to monitor the
progress of INGEST commands.

Before you begin

To issue the INGEST LIST and INGEST GET STATS commands, you need a separate
CLP session but they must be run on the same machine that the INGEST command
is running on.

Procedure

There are a number of ways to monitor an ingest operation:

Chapter 34. Ingest utility 613

v To get basic information about all currently running INGEST commands, use the
INGEST LIST command.

v To get more detailed information about a specific INGEST command or all
currently running INGEST commands, use the INGEST GET STATS command.

v You can also query the following monitor elements by using an interface such as
the MON_GET_CONNECTION table function:
– client_acctng

– client_applname

– appl_name

– client_userid

– client_wrkstnname

Example

The following shows an example of what output to expect from an INGEST LIST
command:
INGEST LIST

Ingest job ID = DB21000:20101116.123456.234567:34567:45678
Ingest temp job ID = 1
Database Name = MYDB
Input type = FILE
Target table = MY_SCHEMA.MY_TABLE
Start Time = 04/10/2010 11:54:45.773215
Running Time = 01:02:03
Number of records processed = 30,000

The following shows an example of what output to expect from an INGEST GET
STATS command:
INGEST GET STATS FOR 4

Ingest job ID = DB21000:20101116.123456.234567:34567:4567
Database = MYDB
Target table = MY_SCHEMA.MY_TABLE1

Records/sec Flushes/sec Records/sec Flushes/sec
since start since start since last since last Total records
---------------- ----------------- --------------- ---------------- -------------
54321 65432 76543 87654 98765

The following shows an example of using the MON_GET_CONNECTION table
function to get the number of rows modified and the number of commits:
SELECT client_acctng AS "Job ID",

SUM(rows_modified) AS "Total rows modified",
SUM(total_app_commits) AS "Total commits"

FROM TABLE(MON_GET_CONNECTION(NULL, NULL))
WHERE application_name = ’DB2_INGEST’
GROUP BY client_acctng
ORDER BY 1

Job ID Total rows modified Total commits
-- ------------------- -------------
DB21000:20101116.123456.234567:34567:45678 92 52
DB21000:20101116.987654.234567:34567:45678 172 132

2 record(s) selected.

614 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 35. Import utility

The import utility populates a table, typed table, or view with data using an SQL
INSERT statement. If the table or view receiving the imported data already
contains data, the input data can either replace or be appended to the existing
data.

Like export, import is a relatively simple data movement utility. It can be activated
by issuing CLP commands, by calling the ADMIN_CMD stored procedure, or by
calling its API, db2Import, through a user application.

There are a number of data formats that import supports, as well as features that
can be used with import:
v Import supports IXF, ASC, and DEL data formats.
v Import can be used with file type modifiers to customize the import operation.
v Import can be used to move hierarchical data and typed tables.
v Import logs all activity, updates indexes, verifies constraints, and fires triggers.
v Import allows you to specify the names of the columns within the table or view

into which the data is to be inserted.
v Import can be used with DB2 Connect.

Import modes

Import has five modes which determine the method in which the data is imported.
The first three, INSERT, INSERT_UPDATE, and REPLACE are used when the target tables
already exist. All three support IXF, ASC, and DEL data formats. However, only
INSERT and INSERT_UPDATE can be used with nicknames.

Table 109. Overview of INSERT, INSERT_UPDATE, and REPLACE import modes

Mode Best practice usage

INSERT Inserts input data into target table without
changing existing data

INSERT_UPDATE Updates rows with matching primary key
values with values of input rows
Where there's no matching row, inserts
imported row into the table

REPLACE Deletes all existing data and inserts
imported data, while keeping table and
index definitions

The other two modes, REPLACE_CREATE and CREATE, are used when the target tables
do not exist. They can only be used with input files in the PC/IXF format, which
contains a structured description of the table that is to be created. Imports cannot
be performed in these modes if the object table has any dependents other than
itself.

Note: Import's CREATE and REPLACE_CREATE modes are being deprecated. Use the
db2look utility instead.

© Copyright IBM Corp. 2014 615

Table 110. Overview of REPLACE_CREATE and CREATE import modes

Mode Best practice usage

REPLACE_CREATE Deletes all existing data and inserts
imported data, while keeping table and
index definitions
Creates target table and index if they don't
exist

CREATE Creates target table and index
Can specify the name of the table space
where the new table is created

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
importing data. Task assistants can guide you through the process of setting
options, reviewing the automatically generated commands to perform the task, and
running these commands. For more details, see Administering databases with task
assistants.

How import works

The number of steps and the amount of time required for an import depend on the
amount of data being moved and the options that you specify. An import
operation follows these steps:
1. Locking tables

Import acquires either an exclusive (X) lock or a nonexclusive (IX) lock on
existing target tables, depending on whether you allow concurrent access to the
table.

2. Locating and retrieving data
Import uses the FROM clause to locate the input data. If your command
indicates that XML or LOB data is present, import will locate this data.

3. Inserting data
Import either replaces existing data or adds new rows of data to the table.

4. Checking constraints and firing triggers
As the data is written, import ensures that each inserted row complies with the
constraints defined on the target table. Information about rejected rows is
written to the messages file. Import also fires existing triggers.

5. Committing the operation
Import saves the changes made and releases the locks on the target table. You
can also specify that periodic take place during the import.

The following items are mandatory for a basic import operation:
v The path and the name of the input file
v The name or alias of the target table or view
v The format of the data in the input file
v The method by which the data is to be imported
v The traverse order, when importing hierarchical data
v The subtable list, when importing typed tables

Additional options

There are a number of options that allow you to customize an import
operation. You can specify file type modifiers in the MODIFIED BY clause
to change the format of the data, tell the import utility what to do with the
data, and to improve performance.

616 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

The import utility, by default, does not perform commits until the end of a
successful import, except in the case of some ALLOW WRITE ACCESS imports.
This improves the speed of an import, but for the sake of concurrency,
restartability, and active log space considerations, it might be preferable to
specify that commits take place during the import. One way of doing so is
to set the COMMITCOUNT parameter to "automatic," which instructs import to
internally determine when it should perform a commit. Alternatively, you
can set COMMITCOUNT to a specific number, which instructs import to
perform a commit once that specified number of records has been
imported.

There are a few ways to improve import's performance. As the import
utility is an embedded SQL application and does SQL fetches internally,
optimizations that apply to SQL operations apply to import as well. You
can use the compound file type modifier to perform a specified number of
rows to insert at a time, rather than the default row-by-row insertion. If
you anticipate that a large number of warnings will be generated (and,
therefore, slow down the operation) during the import, you can also
specify the norowwarnings file type modifier to suppress warnings about
rejected rows.

Messages file

During an import, standard ASCII text message files are written to contain
the error, warning, and informational messages associated with that
operation. If the utility is invoked through the application programming
interface (API) db2Import, you must specify the name of these files in
advance with the MESSAGES parameter, otherwise it is optional. The
messages file is a convenient way of monitoring the progress of an import,
as you can access is while the import is in progress. In the event of a failed
import operation, message files can be used to determine a restarting point
by indicating the last row that was successfully imported.

Note: If the volume of output messages generated by an import operation
against a remote database exceeds 60 KB, the utility will keep the first 30
KB and the last 30 KB.

Privileges and authorities required to use import
Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects.

Users can access only those objects for which they have the appropriate
authorization; that is, the required privilege or authority.

With DATAACCESS authority, you can perform any type of import operation. The
following table lists the other authorities on each participating table, view or
nickname that enable you to perform the corresponding type of import.

Table 111. Authorities required to perform import operations

Mode Required authority

INSERT CONTROL or
INSERT and SELECT

INSERT_UPDATE CONTROL or
INSERT, SELECT, UPDATE, and DELETE

Chapter 35. Overview 617

Table 111. Authorities required to perform import operations (continued)

Mode Required authority

REPLACE CONTROL or
INSERT, SELECT, and DELETE

REPLACE_CREATE When the target table exists: CONTROL or
INSERT, SELECT, and DELETE
When the target table doesn't exist: CREATETAB (on the
database), USE (on the table space), and
when the schema does not exist: IMPLICIT_SCHEMA (on
the database), or
when the schema exists: CREATEIN (on the schema)

CREATE CREATETAB (on the database), USE (on the table space),
and
when the schema does not exist: IMPLICIT_SCHEMA (on
the database), or
when the schema exists: CREATEIN (on the schema)

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are
deprecated and might be removed in a future release.
As well, to use the REPLACE or REPLACE_CREATE option on a table, the session
authorization ID must have the authority to drop the table.

If you want to import to a hierarchy, the required authority also depends on the
mode. For existing hierarchies, CONTROL privilege on every subtable in the
hierarchy is sufficient for a REPLACE operation. For hierarchies that don't exist,
CONTROL privilege on every subtable in the hierarchy, along with CREATETAB
and USE, is sufficient for a REPLACE_CREATE operation.

In addition, there a few considerations for importing into tables with label-based
access control (LBAC) security labels defined on them. To import data into a table
that has protected columns, the session authorization ID must have LBAC
credentials that allow write access to all protected columns in the table. To import
data into a table that has protected rows, the session authorization ID must have
been granted a security label for write access that is part of the security policy
protecting the table.

Importing data
The import utility inserts data from an external file with a supported file format
into a table, hierarchy, view, or nickname.

The load utility is a faster alternative, but the load utility does not support loading
data at the hierarchy level.

Before you begin

Before invoking the import utility, you must be connected to (or be able to
implicitly connect to) the database into which you want to import the data. If
implicit connect is enabled, a connection to the default database is established.

Utility access to DB2 for Linux, UNIX, or Windows database servers from DB2 for
Linux, UNIX, or Windows clients must be a direct connection through the engine.
Utility access cannot be through a DB2 Connect gateway or loop back
environment.

618 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Since the utility issues a COMMIT or a ROLLBACK statement, complete all
transactions and release all locks by issuing a COMMIT statement or a ROLLBACK
operation before invoking import.

Note: The CREATE and REPLACE_CREATE parameters of the IMPORT command are
deprecated and might be removed in a future release.

Restrictions

The following restrictions apply to the import utility:
v If the existing table is a parent table containing a primary key that is referenced

by a foreign key in a dependent table, its data cannot be replaced, only
appended to.

v You cannot perform an import replace operation into an underlying table of a
materialized query table defined in refresh immediate mode.

v You cannot import data into a system table, a summary table, or a table with a
structured type column.

v You cannot import data into declared temporary tables.
v Views cannot be created through the import utility.
v Referential constraints and foreign key definitions are not preserved when

creating tables from PC/IXF files. (Primary key definitions are preserved if the
data was previously exported by using SELECT *.)

v Because the import utility generates its own SQL statements, the maximum
statement size of 2 MB might, in some cases, be exceeded.

v You cannot re-create a partitioned table or a multidimensional clustered table
(MDC) by using the CREATE or REPLACE_CREATE import parameters.

v You cannot re-create tables containing XML columns.
v You cannot import encrypted data.
v The import replace operation does not honor the Not Logged Initially clause.

The REPLACE parameter for the IMPORT command does not honor the NOT
LOGGED INITIALLY (NLI) clause for the CREATE TABLE statement clause or
the ACTIVATE NOT LOGGED INITIALLY clause for the ALTER TABLE
statement. If an import with the REPLACE action is performed within the same
transaction as a CREATE TABLE or ALTER TABLE statement where the NLI
clause is invoked, the import does not honor the NLI clause. In this scenario, all
inserts are logged.
Workaround 1: Delete the contents of the table by using the DELETE statement,
then invoke the import with INSERT statement.
Workaround 2: Drop the table and re-create it, then invoke the import with
INSERT statement.

The following limitation applies to the import utility: If the volume of output
messages generated by an import operation against a remote database exceeds 60
KB, the utility keeps the first 30 KB and the last 30 KB.

Procedure

To invoke the import utility:
v Issue an IMPORT command in the command line processor (CLP).
v Call the db2Import application programming interface (API) from a client

application.
v Open the task assistant in IBM Data Studio for the IMPORT command.

Chapter 35. Overview 619

Example

A simple import operation requires you to specify only an input file, a file format,
an import mode, and a target table (or the name of the table that is to be created).

For example, to import data from the CLP, enter the IMPORT command:
db2 import from filename of fileformat import_mode into table

where filename is the name of the input file that contains the data you want to
import, fileformat is the file format, import_mode is the mode, and table is the name
of the table that you want to insert the data into.

However, you might also want to specify a messages file to which warning and
error messages are written. To do that, add the MESSAGES parameter and a message
file name. For example:
db2 import from filename of fileformat messages messagefile import_mode into table

Import sessions - CLP examples
Example 1

The following example shows how to import information frommyfile.ixf to the
STAFF table:

db2 import from myfile.ixf of ixf messages msg.txt insert into staff

SQL3150N The H record in the PC/IXF file has product "DB2 01.00", date
"19970220", and time "140848".

SQL3153N The T record in the PC/IXF file has name "myfile",
qualifier " ", and source " ".

SQL3109N The utility is beginning to load data from file "myfile".

SQL3110N The utility has completed processing. "58" rows were read from the
input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "58".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "58" rows were processed from the input file. "58" rows were
successfully inserted into the table. "0" rows were rejected.

Example 2

The following example shows how to import into a table that has identity
columns:

TABLE1 has 4 columns:
v C1 VARCHAR(30)
v C2 INT GENERATED BY DEFAULT AS IDENTITY
v C3 DECIMAL(7,2)
v C4 CHAR(1)

TABLE2 is the same as TABLE1, except that C2 is a GENERATED ALWAYS
identity column.

Data records in DATAFILE1 (DEL format):

620 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

"Liszt"
"Hummel",,187.43, H
"Grieg",100, 66.34, G
"Satie",101, 818.23, I

Data records in DATAFILE2 (DEL format):
"Liszt", 74.49, A
"Hummel", 0.01, H
"Grieg", 66.34, G
"Satie", 818.23, I

The following command generates identity values for rows 1 and 2, since no
identity values are supplied in DATAFILE1 for those rows. Rows 3 and 4, however,
are assigned the user-supplied identity values of 100 and 101, respectively.

db2 import from datafile1.del of del replace into table1

To import DATAFILE1 into TABLE1 so that identity values are generated for all
rows, issue one of the following commands:

db2 import from datafile1.del of del method P(1, 3, 4)
replace into table1 (c1, c3, c4)

db2 import from datafile1.del of del modified by identityignore
replace into table1

To import DATAFILE2 into TABLE1 so that identity values are generated for each
row, issue one of the following commands:

db2 import from datafile2.del of del replace into table1 (c1, c3, c4)
db2 import from datafile2.del of del modified by identitymissing

replace into table1

If DATAFILE1 is imported into TABLE2 without using any of the identity-related
file type modifiers, rows 1 and 2 will be inserted, but rows 3 and 4 will be rejected,
because they supply their own non-NULL values, and the identity column is
GENERATED ALWAYS.

Example 3

The following example shows how to import into a table that has null indicators:

TABLE1 has 5 columns:
v COL1 VARCHAR 20 NOT NULL WITH DEFAULT
v COL2 SMALLINT
v COL3 CHAR 4
v COL4 CHAR 2 NOT NULL WITH DEFAULT
v COL5 CHAR 2 NOT NULL

ASCFILE1 has 6 elements:
v ELE1 positions 01 to 20
v ELE2 positions 21 to 22
v ELE5 positions 23 to 23
v ELE3 positions 24 to 27
v ELE4 positions 28 to 31
v ELE6 positions 32 to 32
v ELE6 positions 33 to 40

Chapter 35. Overview 621

Data Records:
1...5....10...15...20...25...30...35...40
Test data 1 XXN 123abcdN
Test data 2 and 3 QQY wxyzN
Test data 4,5 and 6 WWN6789 Y

The following command imports records from ASCFILE1 into TABLE1:
db2 import from ascfile1 of asc
method L (1 20, 21 22, 24 27, 28 31)
null indicators (0, 0, 23, 32)
insert into table1 (col1, col5, col2, col3)

Note:

1. Because COL4 is not provided in the input file, it will be inserted into TABLE1
with its default value (it is defined NOT NULL WITH DEFAULT).

2. Positions 23 and 32 are used to indicate whether COL2 and COL3 of TABLE1
will be loaded NULL for a given row. If there is a Y in the column's null
indicator position for a given record, the column will be NULL. If there is an N,
the data values in the column's data positions of the input record (as defined in
L(........)) are used as the source of column data for the row. In this example,
neither column in row 1 is NULL; COL2 in row 2 is NULL; and COL3 in row 3
is NULL.

3. In this example, the NULL INDICATORS for COL1 and COL5 are specified as
0 (zero), indicating that the data is not nullable.

4. The NULL INDICATOR for a given column can be anywhere in the input
record, but the position must be specified, and the Y or N values must be
supplied.

Typed table import considerations
The import utility can be used to move data both from and into typed tables while
preserving the data's preexisting hierarchy. If desired, import can also be used to
create the table hierarchy and the type hierarchy.

The movement of data from one hierarchical structure of typed tables to another is
done through a specific traverse order and the creation of an intermediate flat file
during an export operation. In turn, the import utility controls the size and the
placement of the hierarchy being moved, using the CREATE, INTO table-name, UNDER,
and AS ROOT TABLE parameters. As well, import determines what is placed in the
target database. For example, it can specify an attributes list at the end of each
subtable name to restrict the attributes that are moved to the target database. If no
attributes list is used, all of the columns in each subtable are moved.

Table re-creation

The type of import you are able to perform depends on the file format of
the input file. When working with ASC or DEL data, the target table or
hierarchy must exist before the data can be imported. However, data from
a PC/IXF file can be imported even if the table or hierarchy does not
already exist if you specify an import CREATE operation. It must be noted
that if the CREATE option is specified, import cannot alter subtable
definitions.

Traverse order

The traverse order contained in the input file enables the hierarchies in the
data to be maintained. Therefore, the same traverse order must be used
when invoking the export utility and the import utility.

622 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

For the PC/IXF file format, one need only specify the target subtable
name, and use the default traverse order stored in the file.

When using options other than CREATE with typed tables, the traverse order
list enables one to specify the traverse order. This user-specified traverse
order must match the one used during the export operation. The import
utility guarantees the accurate movement of data to the target database
given the following:
v An identical definition of subtables in both the source and the target

databases
v An identical hierarchical relationship among the subtables in both the

source and target databases
v An identical traverse order

Although you determine the starting point and the path down the
hierarchy when defining the traverse order, each branch must be traversed
to the end before the next branch in the hierarchy can be started. The
import utility looks for violations of this condition within the specified
traverse order.

Examples

Examples in this section are based on the following hierarchical structure with four
valid traverse orders:
v Person, Employee, Manager, Architect, Student
v Person, Student, Employee, Manager, Architect
v Person, Employee, Architect, Manager, Student
v Person, Student, Employee, Architect, Manager

Example 1
To re-create an entire hierarchy (contained in the data file entire_hierarchy.ixf
created by a prior export operation) using import, you would enter the following
commands:

Person

Person_t

(Oid, Name, Age)

Employee

Employee_t

(SerialNum, Salary, REF

(Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

8

5

4 7

6

3 2

1

Figure 50. An example of a hierarchy

Chapter 35. Overview 623

DB2 CONNECT TO Target_db
DB2 IMPORT FROM entire_hierarchy.ixf OF IXF CREATE INTO

HIERARCHY STARTING Person AS ROOT TABLE

Each type in the hierarchy is created if it does not exist. If these types already
exist, they must have the same definition in the target database as in the source
database. An SQL error (SQL20013N) is returned if they are not the same. Since a
new hierarchy is being created, none of the subtables defined in the data file being
moved to the target database (Target_db) can exist. Each of the tables in the source
database hierarchy is created. Data from the source database is imported into the
correct subtables of the target database.

Example 2
To re-create the entire hierarchy of the source database and import it to the target
database, while only keeping selected data, you would enter the following
commands:

DB2 CONNECT TO Target_db
DB2 IMPORT FROM entire_hierarchy.del OF DEL INSERT INTO (Person,

Employee(Salary), Architect) IN HIERARCHY (Person, Employee,
Manager, Architect, Student)

The target tables PERSON, EMPLOYEE, and ARCHITECT must all exist. Data is
imported into the PERSON, EMPLOYEE, and ARCHITECT subtables. That is, the
following will be imported:
v All columns in PERSON into PERSON
v All columns in PERSON plus SALARY in EMPLOYEE into EMPLOYEE
v All columns in PERSON plus SALARY in EMPLOYEE, plus all columns in

ARCHITECT into ARCHITECT

Columns SerialNum and REF(Employee_t) are not imported into EMPLOYEE or its
subtables (that is, ARCHITECT, which is the only subtable having data imported
into it).

Note: Because ARCHITECT is a subtable of EMPLOYEE, and the only import
column specified for EMPLOYEE is SALARY, SALARY is also the only
Employee-specific column imported into ARCHITECT. That is, neither SerialNum
nor REF(Employee_t) columns are imported into either EMPLOYEE or
ARCHITECT rows.
Data for the MANAGER and the STUDENT tables is not imported.

Example 3
This example shows how to export from a regular table, and import as a single
subtable in a hierarchy. The EXPORT command operates on regular (non-typed)
tables, so there is no Type_id column in the data file. The file type modifier
no_type_id is used to indicate this, so that the import utility does not expect the
first column to be the Type_id column.

DB2 CONNECT TO Source_db
DB2 EXPORT TO Student_sub_table.del OF DEL SELECT * FROM

Regular_Student
DB2 CONNECT TO Target_db
DB2 IMPORT FROM Student_sub_table.del OF DEL METHOD P(1,2,3,5,4)

MODIFIED BY NO_TYPE_ID INSERT INTO HIERARCHY (Student)

In this example, the target table STUDENT must exist. Since STUDENT is a
subtable, the modifier no_type_id is used to indicate that there is no Type_id in the
first column. However, you must ensure that there is an existing Object_id column,
in addition to all of the other attributes that exist in the STUDENT table. Object-id

624 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

is expected to be the first column in each row imported into the STUDENT table.
The METHOD clause reverses the order of the last two attributes.

LBAC-protected data import considerations
For a successful import operation into a table with protected rows, you must have
LBAC (label-based access control) credentials. You must also provide a valid
security label, or a security label that can be converted to a valid label, for the
security policy currently associated with the target table.

If you do not have valid LBAC credentials, the import fails and an error
(SQLSTATE 42512) is returned. In cases where the input data does not contain a
security label or that security label is not in its internal binary format, you can use
several file type modifiers to allow your import to proceed.

When you import data into a table with protected rows, the target table has one
column with a data type of DB2SECURITYLABEL. If the input row of data does
not contain a value for that column, that row is rejected unless the usedefaults file
type modifier is specified in the import command, in which case the security label
you hold for write access from the security policy protecting the table is used. If
you do not hold a security label for write access, the row is rejected and processing
continues on to the next row.

When you import data into a table that has protected rows and the input data does
include a value for the column with a data type of DB2SECURITYLABEL, the
same rules are followed as when you insert data into that table. If the security
label protecting the row being imported (the one in that row of the data file) is one
that you are able to write to, then that security label is used to protect the row. (In
other words, it is written to the column that has a data type of
DB2SECURITYLABEL.) If you are not able to write to a row protected by that
security label, what happens depends on how the security policy protecting the
source table was created:
v If the CREATE SECURITY POLICY statement that created the policy included

the option RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL, the insert fails and
an error is returned.

v If the CREATE SECURITY POLICY statement did not include the option or if it
instead included the OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option, the
security label in the data file for that row is ignored and the security label you
hold for write access is used to protect that row. No error or warning is issued
in this case. If you do not hold a security label for write access, the row is
rejected and processing continues on to the next row.

Delimiter considerations

When importing data into a column with a data type of
DB2SECURITYLABEL, the value in the data file is assumed by default to
be the actual bytes that make up the internal representation of that security
label. However, some raw data might contain newline characters which
could be misinterpreted by the IMPORT command as delimiting the row. If
you have this problem, use the delprioritychar file type modifier to
ensure that the character delimiter takes precedence over the row delimiter.
When you use delprioritychar, any record or column delimiters that are
contained within character delimiters are not recognized as being
delimiters. Using the delprioritychar file type modifier is safe to do even
if none of the values contain a newline character, but it does slow the
import down slightly.

Chapter 35. Overview 625

If the data being imported is in ASC format, you might want to take an
extra step in order to prevent any trailing white space from being included
in the imported security labels and security label names. ASCII format uses
column positions as delimiters, so this might occur when importing into
variable-length fields. Use the striptblanks file type modifier to truncate
any trailing blank spaces.

Nonstandard security label values

You can also import data files in which the values for the security labels
are strings containing the values of the components in the security label,
for example, S:(ALPHA,BETA). To do so you must use the file type
modifier seclabelchar. When you use seclabelchar, a value for a column
with a data type of DB2SECURITYLABEL is assumed to be a string
constant containing the security label in the string format for security
labels. If a string is not in the proper format, the row is not inserted and a
warning (SQLSTATE 01H53) is returned. If the string does not represent a
valid security label that is part of the security policy protecting the table,
the row is not inserted and a warning (SQLSTATE 01H53) is returned.

You can also import a data file in which the values of the security label
column are security label names. To import this sort of file you must use
the file type modifier seclabelname. When you use seclabelname, all values
for columns with a data type of DB2SECURITYLABEL are assumed to be
string constants containing the names of existing security labels. If no
security label exists with the indicated name for the security policy
protecting the table, the row is not inserted and a warning (SQLSTATE
01H53) is returned.

Examples

For all examples, the input data file myfile.del is in DEL format. All are importing
data into a table named REPS, which was created with this statement:
create table reps (row_label db2securitylabel,
id integer,
name char(30))
security policy data_access_policy

For this example, the input file is assumed to contain security labels in the default
format:
db2 import from myfile.del of del modified by delprioritychar insert into reps

For this example, the input file is assumed to contain security labels in the security
label string format:
db2 import from myfile.del of del modified by seclabelchar insert into reps

For this example, the input file is assumed to contain security labels names for the
security label column:
db2 import from myfile.del of del modified by seclabelname insert into reps

Identity column import considerations
The import utility can be used to import data into a table containing an identity
column whether or not the input data has identity column values.

If no identity-related file type modifiers are used, the utility works according to the
following rules:

626 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v If the identity column is GENERATED ALWAYS, an identity value is generated
for a table row whenever the corresponding row in the input file is missing a
value for the identity column, or a NULL value is explicitly given. If a
non-NULL value is specified for the identity column, the row is rejected
(SQL3550W).

v If the identity column is GENERATED BY DEFAULT, the import utility makes
use of user-supplied values, if they are provided; if the data is missing or
explicitly NULL, a value is generated.

The import utility does not perform any extra validation of user-supplied identity
values beyond what is normally done for values of the identity column's data type
(that is, SMALLINT, INT, BIGINT, or DECIMAL). Duplicate values will not be
reported. In addition, the compound=x modifier cannot be used when importing
data into a table with an identity column.

There are two ways you can simplify the import of data into tables that contain an
identity column: the identitymissing and the identityignore file type modifiers.

Importing data without an identity column
The identitymissing modifier makes importing a table with an identity column
more convenient if the input data file does not contain any values (not even
NULLS) for the identity column. For example, consider a table defined with the
following SQL statement:

create table table1 (c1 char(30),
c2 int generated by default as identity,
c3 real,
c4 char(1))

A user might want to import data from a file (import.del) into TABLE1, and this
data might have been exported from a table that does not have an identity column.
The following is an example of such a file:

Robert, 45.2, J
Mike, 76.9, K
Leo, 23.4, I

One way to import this file would be to explicitly list the columns to be imported
through the IMPORT command as follows:

db2 import from import.del of del replace into table1 (c1, c3, c4)

For a table with many columns, however, this syntax might be cumbersome and
prone to error. An alternate method of importing the file is to use the
identitymissing file type modifier as follows:

db2 import from import.del of del modified by identitymissing
replace into table1

Importing data with an identity column
The identityignore modifier is in some ways the opposite of the identitymissing
modifier: it indicates to the import utility that even though the input data file
contains data for the identity column, the data should be ignored, and an identity
value should be generated for each row. For example, a user might want to import
the following data from a file (import.del) into TABLE1, as defined previously:

Robert, 1, 45.2, J
Mike, 2, 76.9, K
Leo, 3, 23.4, I

Chapter 35. Overview 627

If the user-supplied values of 1, 2, and 3 are not to be used for the identity
column, the user could issue the following IMPORT command:

db2 import from import.del of del method P(1, 3, 4)
replace into table1 (c1, c3, c4)

Again, this approach might be cumbersome and prone to error if the table has
many columns. The identityignore modifier simplifies the syntax as follows:

db2 import from import.del of del modified by identityignore
replace into table1

When a table with an identity column is exported to an IXF file, the
REPLACE_CREATE and the CREATE options of the IMPORT command can be used to
re-create the table, including its identity column properties. If such an IXF file is
created from a table containing an identity column of type GENERATED ALWAYS,
the only way that the data file can be successfully imported is to specify the
identityignore modifier. Otherwise, all rows will be rejected (SQL3550W).

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are
deprecated and might be removed in a future release.

Generated column import considerations
The import utility can be used to import data into a table containing (nonidentity)
generated columns whether or not the input data has generated column values.

If no generated column-related file type modifiers are used, the import utility
works according to the following rules:
v A value is generated for a generated column whenever the corresponding row in

the input file is missing a value for the column, or a NULL value is explicitly
given. If a non-NULL value is supplied for a generated column, the row is
rejected (SQL3550W).

v If the server generates a NULL value for a generated column that is not nullable,
the row of data to which this field belongs is rejected (SQL0407N). This could
happen, for example, if a non-nullable generated column were defined as the
sum of two table columns that have NULL values supplied to them in the input
file.

There are two ways you can simplify the import of data into tables that contain a
generated column: the generatedmissing and the generatedignore file type
modifiers.

Importing data without generated columns
The generatedmissing modifier makes importing data into a table with generated
columns more convenient if the input data file does not contain any values (not
even NULLS) for all generated columns present in the table. For example, consider
a table defined with the following SQL statement:

create table table1 (c1 int,
c2 int,
g1 int generated always as (c1 + c2),
g2 int generated always as (2 * c1),
c3 char(1))

A user might want to import data from a file (load.del) into TABLE1, and this
data might have been exported from a table that does not have any generated
columns. The following is an example of such a file:

628 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

1, 5, J
2, 6, K
3, 7, I

One way to import this file would be to explicitly list the columns to be imported
through the IMPORT command as follows:

db2 import from import.del of del replace into table1 (c1, c2, c3)

For a table with many columns, however, this syntax might be cumbersome and
prone to error. An alternate method of importing the file is to use the
generatedmissing file type modifier as follows:

db2 import from import.del of del modified by generatedmissing
replace into table1

Importing data with generated columns
The generatedignore modifier is in some ways the opposite of the
generatedmissing modifier: it indicates to the import utility that even though the
input data file contains data for all generated columns, the data should be ignored,
and values should be generated for each row. For example, a user might want to
import the following data from a file (import.del) into TABLE1, as defined
previously:

1, 5, 10, 15, J
2, 6, 11, 16, K
3, 7, 12, 17, I

The user-supplied, non-NULL values of 10, 11, and 12 (for g1), and 15, 16, and 17
(for g2) result in the row being rejected (SQL3550W). To avoid this, the user could
issue the following IMPORT command:

db2 import from import.del of del method P(1, 2, 5)
replace into table1 (c1, c2, c3)

Again, this approach might be cumbersome and prone to error if the table has
many columns. The generatedignore modifier simplifies the syntax as follows:

db2 import from import.del of del modified by generatedignore
replace into table1

For an INSERT_UPDATE, if the generated column is also a primary key and the
generatedignore modifier is specified, the IMPORT command honors the
generatedignore modifier. The IMPORT command does not substitute the
user-supplied value for this column in the WHERE clause of the UPDATE
statement.

LOB import considerations
Since the import utility restricts the size of a single column value to 32 KB, extra
considerations need to be taken when importing LOBs.

The import utility, by default, treats data in the input file as data to load into the
column. However, when large object (LOB) data is stored in the main input data
file, the size of the data is limited to 32 KB. Therefore, to prevent loss of data, LOB
data should be stored separate from the main datafile and the lobsinfile file type
modifier should be specified when importing LOBs.

The LOBS FROM clause implicitly activates lobsinfile. The LOBS FROM clause
conveys to the import utility the list of paths to search for the LOB files while
importing the data. If LOBS FROM option is not specified, the LOB files to import
are assumed to reside in the same path as the input relational data file.

Chapter 35. Overview 629

Indicating where LOB data is stored

The LOB Location Specifier (LLS) can be used to store multiple LOBs in a single
file when importing the LOB information. The export utility generates and stores it
in the export output file when lobsinfile is specified, and it indicates where LOB
data can be found. When data with the modified by lobsinfile option specified is
being imported, the database will expect an LLS for each of the corresponding
LOB columns. If something other than an LLS is encountered for a LOB column,
the database will treat it as a LOB file and will load the entire file as the LOB.

For an import in CREATE mode, you can specify that the LOB data be created and
stored in a separate table space by using the LONG IN clause.

The following example shows how you would import an DEL file which has its
LOBs stored in separate files:
IMPORT FROM inputfile.del OF DEL
LOBS FROM /tmp/data
MODIFIED BY lobsinfile
INSERT INTO newtable

User-defined distinct types import considerations
The import utility casts user-defined distinct types (UDTs) to similar base data
types automatically. This saves you from having to explicitly cast UDTs to the base
data types. Casting allows for comparisons between UDTs and the base data types
in SQL.

Client/server environments and import
When you import a file to a remote database, a stored procedure can be called to
perform the import on the server.

A stored procedure cannot be called when:
v The application and database code pages are different.
v The file being imported is a multiple-part PC/IXF file.
v The method used for importing the data is either column name or relative

column position.
v The target column list provided is longer than 4 KB.
v The LOBS FROM clause or the lobsinfile modifier is specified.
v The NULL INDICATORS clause is specified for ASC files.

When import uses a stored procedure, messages are created in the message file
using the default language installed on the server. The messages are in the
language of the application if the language at the client and the server are the
same.

The import utility creates two temporary files in the tmp subdirectory of the sqllib
directory (or the directory indicated by the DB2INSTPROF registry variable, if
specified). One file is for data, and the other file is for messages generated by the
import utility.

If you receive an error about writing or opening data on the server, ensure that:
v The directory exists.
v There is sufficient disk space for the files.
v The instance owner has write permission in the directory.

630 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table locking modes supported by the import utility
The import utility supports two table locking modes: offline, or ALLOW NO
ACCESS, mode; and online, or ALLOW WRITE ACCESS mode.

ALLOW NO ACCESS mode prevents concurrent applications from accessing table data.
ALLOW WRITE ACCESS mode allows concurrent applications both read and write
access to the import target table. If no mode is explicitly specified, import runs in
the default mode, ALLOW NO ACCESS. As well, the import utility is, by default,
bound to the database with isolation level RS (read stability).

Offline import (ALLOW NO ACCESS)

In ALLOW NO ACCESS mode, import acquires an exclusive (X) lock on the target table
is before inserting any rows. Holding a lock on a table has two implications:
v First, if there are other applications holding a table lock or row locks on the

import target table, the import utility waits for those applications to commit or
roll back their changes.

v Second, while import is running, any other application requesting locks waits for
the import operation to complete.

Note: You can specify a locktimeout value, which prevents applications (including
the import utility) from waiting indefinitely for a lock.
By requesting an exclusive lock at the beginning of the operation, import prevents
deadlocks from occurring as a result of other applications working and holding
row locks on the same target table.

Online import (ALLOW WRITE ACCESS)

In ALLOW WRITE ACCESS mode, the import utility acquires a nonexclusive (IX) lock
on the target table. Holding this lock on the table has the following implications:
v If there are other applications holding an incompatible table lock, the import

utility does not start inserting data until all of these applications commit or roll
back their changes.

v While import is running, any other application requesting an incompatible table
lock waits until the import commits or rolls back the current transaction. Note
that import's table lock does not persist across a transaction boundary. As a
result, online import has to request and potentially wait for a table lock after
every commit.

v If there are other applications holding an incompatible row lock, the import
utility stops inserting data until all of these applications commit or roll back
their changes.

v While import is running, any other application requesting an incompatible row
lock waits until the import operation commits or rolls back the current
transaction.

To preserve the online properties, and to reduce the chance of a deadlock, an ALLOW
WRITE ACCESS import periodically commits the current transaction and releases all
row locks before escalating to an exclusive table lock. If you have not explicitly set
a commit frequency, import performs commits as if COMMITCOUNT AUTOMATIC has
been specified. No commits are performed if COMMITCOUNT is set to 0.

ALLOW WRITE ACCESS mode is not compatible with the following:
v Imports in REPLACE, CREATE, or REPLACE_CREATE mode

Chapter 35. Overview 631

v Imports with buffered inserts
v Imports into a target view
v Imports into a hierarchy table
v Imports into a table with its lock granularity is set at the table level (set by using

the LOCKSIZE parameter of the ALTER TABLE statement)

Importing XML data
The import utility can be used to import XML data into an XML table column
using either the table name or a nickname for a DB2 for Linux, UNIX, and
Windows source data object.

When importing data into an XML table column, you can use the XML FROM
option to specify the paths of the input XML data file or files. For example, for an
XML file "/home/user/xmlpath/xmldocs.001.xml" that had previously been
exported, the following command could be used to import the data back into the
table.

IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath INSERT INTO USER.T1

Validating inserted documents against schemas

The XMLVALIDATE option allows XML documents to be validated against XML
schemas as they are imported. In the following example, incoming XML
documents are validated against schema information that was saved when the
XML documents were exported:

IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath XMLVALIDATE
USING XDS INSERT INTO USER.T1

Specifying parse options

You can use the XMLPARSE option to specify whether whitespace in the imported
XML documents is preserved or stripped. In the following example, all imported
XML documents are validated against XML schema information that was saved
when the XML documents were exported, and these documents are parsed with
whitespace preserved.

IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath XMLPARSE PRESERVE
WHITESPACE XMLVALIDATE USING XDS INSERT INTO USER.T1

632 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 36. Export utility

The export utility extracts data using an SQL select or an XQuery statement, and
places that information into a file. You can use the output file to move data for a
future import or load operation or to make the data accessible for analysis.

The export utility is a relatively simple, yet flexible data movement utility. You can
activate it by issuing the EXPORT command in the CLP, by calling the ADMIN_CMD
stored procedure, or by calling the db2Export API through a user application.

The following items are mandatory for a basic export operation:
v The path and name of the operating system file in which you want to store the

exported data
v The format of the data in the input file

Export supports IXF and DEL data formats for the output files.
v A specification of the data that is to be exported

For the majority of export operations, you need to provide a SELECT statement
that specifies the data to be retrieved for export. When exporting typed tables,
you don't need to issue the SELECT statement explicitly; you only need to
specify the subtable traverse order within the hierarchy

You can use the export utility with DB2 Connect if you need to move data in IXF
format.

Additional options

There are a number of parameters that allow you to customize an export
operation. File type modifiers offer many options such as allowing you to
change the format of the data, date and time stamps, or code page, or have
certain data types written to separate files. Using the METHOD parameters,
you can specify different column names to be used for the exported data.

You can export from tables that include one or more columns with an XML
data type. Use the XMLFILE, XML TO, and XMLSAVESCHEMA parameters to
specify details about how those exported documents are stored.

There are a few ways to improve the export utility's performance. As the
export utility is an embedded SQL application and does SQL fetches
internally, optimizations that apply to SQL operations apply to the export
utility as well. Consider taking advantage of large buffer pools, indexing,
and sort heaps. In addition, try to minimize device contention on the
output files by placing them away from the containers and log devices.

The messages file
The export utility writes error, warning, and informational messages to
standard ASCII text message files. For all interfaces except the CLP, you
must specify the name of these files in advance with the MESSAGES
parameter. If you are using the CLP and do not specify a messages file, the
export utility writes the messages to standard output.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for exporting
data. Task assistants can guide you through the process of setting options,
reviewing the automatically generated commands to perform the task, and running
these commands. For more details, see Administering databases with task
assistants.

© Copyright IBM Corp. 2014 633

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Privileges and authorities required to use the export utility
Privileges enable you to create, update, delete, or access database resources.
Authority levels provide a method of mapping privileges to higher-level database
manager maintenance and utility operations.

Together, privileges and authorities control access to the database manager and its
database objects. You can access only those objects for which you have the
appropriate authorization: that is, the required privilege or authority.

You must have DATAACCESS authority or the CONTROL or SELECT privilege for
each table or view participating in the export operation.

When you are exporting LBAC-protected data, the session authorization ID must
be allowed to read the rows or columns that you are trying to export. Protected
rows that the session authorization ID is not authorized to read are not exported. If
the SELECT statement includes any protected columns that the session
authorization ID is not allowed to read, the export utility fails, and an error
(SQLSTATE 42512) is returned.

Exporting data
Use the export utility to export data from a database to a file. The file can have
one of several external file formats. You can specify the data to be exported by
supplying an SQL SELECT statement or by providing hierarchical information for
typed tables.

Before you begin

You need DATAACCESS authority, the CONTROL privilege, or the SELECT
privilege on each participating table or view to export data from a database

Before running the export utility, you must be connected (or be able to implicitly
connect) to the database from which you want to export the data. If implicit
connect is enabled, a connection to the default database is established. Utility
access to Linux, UNIX, or Windows database servers from Linux, UNIX, or
Windows clients must be through a direct connection through the engine and not
through a DB2 Connect gateway or loop back environment.

Because the utility issues a COMMIT statement, complete all transactions and
release all locks by issuing a COMMIT or a ROLLBACK statement before running
the export utility. There is no requirement for applications accessing the table and
using separate connections to disconnect.

You cannot export tables with structured type columns.

Procedure

To run the export utility:
v Specify the EXPORT command in the command line processor (CLP).
v Call the db2Export application programming interface (API).
v Open the task assistant in IBM Data Studio for the EXPORT command.

634 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example

A simple export operation requires you to specify only a target file, a file format,
and a source file for the SELECT statement.

For example:
db2 export to filename of ixf select * from table

where filename is the name of the output file that you want to create and export,
ixf is the file format, and table is the name of the table that contains the data you
want to copy.

However, you might also want to specify a messages file to which warning and
error messages are written. To do that, add the MESSAGES parameter and a message
file name (in this case, msg.txt). For example:
db2 export to filename of ixf messages msgs.txt select * from table

Export sessions - CLP examples
Example 1
The following example shows how to export information from the STAFF table in
the SAMPLE database (to which the user must be connected) to myfile.ixf, with
the output in IXF format. If the database connection is not through DB2 Connect,
the index definitions (if any) will be stored in the output file; otherwise, only the
data will be stored:

db2 export to myfile.ixf of ixf messages msgs.txt select * from staff

Example 2
The following example shows how to export the information about employees in
Department 20 from the STAFF table in the SAMPLE database (to which the user
must be connected) to awards.ixf, with the output in IXF format:

db2 export to awards.ixf of ixf messages msgs.txt select * from staff
where dept = 20

Example 3
The following example shows how to export LOBs to a DEL file:

db2 export to myfile.del of del lobs to mylobs/
lobfile lobs1, lobs2 modified by lobsinfile
select * from emp_photo

Example 4
The following example shows how to export LOBs to a DEL file, specifying a
second directory for files that might not fit into the first directory:

db2 export to myfile.del of del
lobs to /db2exp1/, /db2exp2/ modified by lobsinfile
select * from emp_photo

Example 5
The following example shows how to export data to a DEL file, using a single
quotation mark as the string delimiter, a semicolon as the column delimiter, and a
comma as the decimal point. The same convention should be used when importing
data back into the database:

db2 export to myfile.del of del
modified by chardel’’ coldel; decpt,
select * from staff

Chapter 36. Overview 635

LBAC-protected data export considerations
When you export data that is protected by label-based access control (LBAC), the
data that is exported is limited to the data that your LBAC credentials allow you to
read.

If your LBAC credentials do not allow you to read a row, that row is not exported,
but no error is returned. If your LBAC credentials do not allow you to read a
column, the export utility fails, and an error (SQLSTATE 42512) is returned.

A value from a column with a data type of DB2SECURITYLABEL is exported as
raw data enclosed in character delimiters. If a character delimiter is included in the
original data, it is doubled. No other changes are made to the bytes that make up
the exported value. This means that a data file that contains DB2SECURITYLABEL
data can contain newlines, formfeeds, or other non-printable ASCII characters.

If you want the values of columns with a data type of DB2SECURITYLABEL to be
exported in a human-readable form, you can use the SECLABEL_TO_CHAR scalar
function in the SELECT statement to convert the values to the security label string
format.

Examples

In the following examples, output is in DEL format and is written to the file
myfile.del. The data is exported from a table named REPS, which was created
with the following statement:
create table reps (row_label db2securitylabel,
id integer,
name char(30))
security policy data_access_policy

This example exports the values of the row_label column in the default format:
db2 export to myfile.del of del select * from reps

The data file is not very readable in most text editors because the values for the
row_label column are likely to contain several ASCII control characters.

The following example exports the values of the row_label column in the security
label string format:
db2 export to myfile.del of del select SECLABEL_TO_CHAR
(row_label,’DATA_ACCESS_POLICY’), id, name from reps

Here is an excerpt of the data file created by the previous example. Notice that the
format of the security label is readable:
...
"Secret:():Epsilon 37", 2005, "Susan Liu"
"Secret:():(Epsilon 37,Megaphone,Cloverleaf)", 2006, "Johnny Cogent"
"Secret:():(Megaphone,Cloverleaf)", 2007, "Ron Imron"
...

Table export considerations
A typical export operation involves the outputting of selected data that is inserted
or loaded into existing tables. However, it is also possible to export an entire table
for subsequent re-creation using the import utility.

636 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To export a table, you must specify the PC/IXF file format. You can then re-create
your saved table (including its indexes) using the import utility in CREATE mode.
However, some information is not saved to the exported IXF file if any of the
following conditions exist:
v The index column names contain hexadecimal values of 0x2B or 0x2D.
v The table contains XML columns.
v The table is multidimensional clustered (MDC).
v The table contains a table partitioning key.
v The index name is longer than 128 bytes due to code page conversion.
v The table is protected.
v The EXPORT command contains action strings other than SELECT * FROM

tablename

v You specify the METHOD N parameter for the export utility.

For a list of table attributes that are lost, see "Table import considerations." If any
information is not saved, warning SQL27984W is returned when the table is
re-created.

Note: Import's CREATE mode is being deprecated. Use the db2look utility to capture
and re-create your tables.

Index information
If the column names specified in the index contain either - or + characters,
the index information is not collected, and warning SQL27984W is
returned. The export utility completes its processing, and the data exported
is unaffected. However, the index information is not saved in the IXF file.
As a result, you must create the indexes separately using the db2look
utility.

Space limitations
The export operation fails if the data that you are exporting exceeds the
space available on the file system on which the exported file is created. In
this case, you should limit the amount of data selected by specifying
conditions on the WHERE clause so that the exported file fits on the target
file system. You can run the export utility multiple times to export all of
the data.

Tables with other file formats
If you do not export using the IXF file format, the output files do not
contain descriptions of the target table, but they contain the record data. To
re-create a table and its data, create the target table, then use the load or
import utility to populate the table. You can use the db2look utility to
capture the original table definitions and to generate the corresponding
data definition language (DDL).

Typed table export considerations
You can use the DB2 export utility can be used to move data out of typed tables
for a later import. Export moves data from one hierarchical structure of typed
tables to another by following a specific order and creating an intermediate flat
file.

When working with typed tables, the export utility controls what is placed in the
output file; specify only the target table name and, optionally, the WHERE clause.

Chapter 36. Overview 637

You can express subselect statements only by specifying the target table name and
the WHERE clause. You cannot specify a fullselect or select-statement when
exporting a hierarchy.

Preservation of hierarchies using traverse order

Typed tables can be in a hierarchy. There are several ways you can move
data across hierarchies:
v Movement from one hierarchy to an identical hierarchy
v Movement from one hierarchy to a subsection of a larger hierarchy
v Movement from a subsection of a large hierarchy to a separate hierarchy

Identification of types in a hierarchy is database dependent, meaning that
in different databases, the same type has a different identifier. Therefore,
when moving data between these databases, a mapping of the same types
must be done to ensure that the data is moved correctly.

The mapping used for typed tables is known as the traverse order, the order
of proceeding top-to-bottom, left-to-right through all of the supertables and
subtables in the hierarchy. Before each typed row is written out during an
export operation, an identifier is translated into an index value. This index
value can be any number from one to the number of relevant types in the
hierarchy. Index values are generated by numbering each type when
moving through the hierarchy in a specific order-the traverse order. Figure
1 shows a hierarchy with four valid traverse orders:
v Person, Employee, Manager, Architect, Student
v Person, Student, Employee, Manager, Architect
v Person, Employee, Architect, Manager, Student
v Person, Student, Employee, Architect, Manager

The traverse order is important when moving data between table
hierarchies because it determines where the data is moved in relation to
other data. There are two types of traverse order: default and user specified.

Default traverse order

Person

Person_t

(Oid, Name, Age)

Employee

Employee_t

(SerialNum, Salary, REF

(Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

8

5

4 7

6

3 2

1

Figure 51. An example of a hierarchy

638 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

With the default traverse order, all relevant types refer to all reachable
types in the hierarchy from a given starting point in the hierarchy. The
default order includes all tables in the hierarchy, and each table is ordered
by the scheme used in the OUTER order predicate. For instance, the
default traverse order of Figure 1, indicated by the dotted line, would be
Person, Student, Employee, Manager, Architect.

The default traverse order behaves differently when used with different file
formats. Exporting data to the PC/IXF file format creates a record of all
relevant types, their definitions, and relevant tables. The export utility also
completes the mapping of an index value to each table. When working
with the PC/IXF file format, you should use the default traverse order.

With the ASC or DEL file format, the order in which the typed rows and
the typed tables are created could be different, even though the source and
target hierarchies might be structurally identical. This results in time
differences that the default traverse order identifies when proceeding
through the hierarchies. The creation time of each type determines the
order used to move through the hierarchy at both the source and the target
when using the default traverse order. Ensure that the creation order of
each type in both the source and the target hierarchies is identical and that
there is structural identity between the source and the target. If these
conditions cannot be met, select a user-specified traverse order.

User-specified traverse order

With the user-specified traverse order, you define (in a traverse order list)
the relevant types to be used. This order outlines how to traverse the
hierarchy and what sub-tables to export, whereas with the default traverse
order, all tables in the hierarchy are exported.

Although you determine the starting point and the path down the
hierarchy when defining the traverse order, remember that the subtables
must be traversed in pre-order fashion. Each branch in the hierarchy must
be traversed to the bottom before a new branch can be started. The export
utility looks for violations of this condition within the specified traverse
order. One method of ensuring that the condition is met is to proceed from
the top of the hierarchy (or the root table), down the hierarchy (subtables)
to the bottom subtable, then back up to its supertable, down to the next
"right-most" subtable, then back up to next higher supertable, down to its
subtables, and so on.

If you want to control the traverse order through the hierarchies, ensure
that the same traverse order is used for both the export and the import
utilities.

Example 1

The following examples are based on the hierarchical structure in Figure 1. To
export the entire hierarchy, enter the following commands:

DB2 CONNECT TO Source_db
DB2 EXPORT TO entire_hierarchy.ixf OF IXF HIERARCHY STARTING Person

Note that setting the parameter HIERARCHY STARTING to Person indicates that the
default traverse order starting from the table PERSON.

Chapter 36. Overview 639

Example 2

To export the entire hierarchy, but only the data for those people over the age of
20, you would enter the following commands:
DB2 CONNECT TO Source_db

DB2 EXPORT TO entire_hierarchy.del OF DEL HIERARCHY (Person,
Employee, Manager, Architect, Student) WHERE Age>=20

Note that setting the parameter HIERARCHY to Person, Employee, Manager,
Architect, Student indicates a user-specified traverse order.

Identity column export considerations
You can use the export utility to export data from a table containing an identity
column. However, the identity column limits your choice of output file format.

If the SELECT statement that you specify for the export operation is of the form
SELECT * FROM tablename and you do not use the METHOD option, exporting
identity column properties to IXF files is supported. You can then use the
REPLACE_CREATE and the CREATE options of the IMPORT command to re-create the
table, including its identity column properties. If you create the exported IXF file
from a table containing an identity column of type GENERATED ALWAYS, the
only way that you can successfully import the data file is to specify the
identityignore file type modifier during the import operation. Otherwise, all rows
are rejected (SQL3550W is issued).

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are
deprecated and might be removed in a future release.

LOB export considerations
When exporting tables with large object (LOB) columns, the default action is to
export a maximum of 32 KB per LOB value and to place it in the same file as the
rest of the column data. If you are exporting LOB values that exceed 32 KB, you
should have the LOB data written to a separate file to avoid truncation.

To specify that LOB should be written to its own file, use the lobsinfile file type
modifier. This modifier instructs the export utility to place the LOB data in the
directories specified by the LOBS TO clause. Using LOBS TO or LOBFILE implicitly
activates the lobsinfile file type modifier. By default, LOB values are written to
the same path to which the exported relational data is written. If one or more
paths are specified with the LOBS TO option, the export utility cycles between the
paths to write each successful LOB value to the appropriate LOB file. You can also
specify names for the output LOB files using the LOBFILE option. If the LOBFILE
option is specified, the format of lobfilename is lobfilespec.xxx.lob, where
lobfilespec is the value specified for the LOBFILE option, and xxx is a sequence
number for LOB files produced by the export utility. Otherwise, lobfilename is of
the format: exportfilename.xxx.lob, where exportfilename is the name of the
exported output file specified for the EXPORT command, and xxx is a sequence
number for LOB files produced by the export utility.

By default, LOBs are written to a single file, but you can also specify that the
individual LOBs are to be stored in separate files. The export utility generates a
LOB Location Specifier (LLS) to enable the storage of multiple LOBs in one file.
The LLS, which is written to the export output file, is a string that indicates where
the LOB data is stored within the file. The format of the LLS is
lobfilename.ext.nnn.mmm/, where lobfilename.ext is the name of the file that

640 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

contains the LOB, nnn is the offset of the LOB within the file (measured in bytes),
and mmm is the length of the LOB (measured in bytes). For example, an LLS of
db2exp.001.123.456/ indicates that the LOB is located in the file db2exp.001,
begins at an offset of 123 bytes into the file, and is 456 bytes long. If the indicated
size in the LLS is 0, the LOB is considered to have a length of 0. If the length is -1,
the LOB is considered to be NULL and the offset and file name are ignored.

If you don't want individual LOB data concatenated to the same file, use the
lobsinsepfiles file type modifier to write each LOB to a separate file.

Note: The IXF file format does not store the LOB options of the column, such as
whether or not the LOB column is logged. This means that the import utility
cannot re-create a table containing a LOB column that is defined to be 1 GB or
larger.

Example 1
The following example shows how to export LOBs (where the exported LOB files
have the specified base name lobs1) to a DEL file:

db2 export to myfile.del of del lobs to mylobs/
lobfile lobs1 modified by lobsinfile
select * from emp_photo

Example 2
The following example shows how to export LOBs to a DEL file, where each LOB
value is written to a separate file and lobfiles are written to two directories:
db2 export to myfile.del of del
lobs to /db2exp1/, /db2exp2/ modified by lobsinfile
select * from emp_photo

Exporting XML data
When exporting XML data, the resulting QDM (XQuery Data Model) instances are
written to a file or files separate from the main data file containing exported
relational data. This is true even if neither the XMLFILE nor the XML TO option is
specified.

By default, exported QDM instances are all concatenated to the same XML file. You
can use the XMLINSEPFILES file type modifier to specify that each QDM instance be
written to a separate file.

The XML data, however, is represented in the main data file with an XML data
specifier (XDS). The XDS is a string represented as an XML tag named "XDS",
which has attributes that describe information about the actual XML data in the
column; such information includes the name of the file that contains the actual
XML data, and the offset and length of the XML data within that file.

The destination paths and base names of the exported XML files can be specified
with the XML TO and XMLFILE options. If the XML TO or XMLFILE option is
specified, the format of the exported XML file names, stored in the FIL attribute of
the XDS, is xmlfilespec.xxx.xml, where xmlfilespec is the value specified for the
XMLFILE option, and xxx is a sequence number for xml files produced by the
export utility. Otherwise, the format of the exported XML file names is:
exportfilename.xxx.xml, where exportfilename is the name of the exported output
file specified for the EXPORT command, and xxx is a sequence number for xml
files produced by the export utility.

Chapter 36. Overview 641

By default, exported XML files are written to the path of the exported data file.
The default base name for exported XML files is the name of the exported data file,
with an appending 3-digit sequence number, and the .xml extension.

Examples

For the following examples, imagine a table USER.T1 containing four columns and
two rows:

C1 INTEGER
C2 XML
C3 VARCHAR(10)
C4 XML

Table 112. USER.T1

C1 C2 C3 C4

2 <?xml version="1.0"
encoding="UTF-8" ?><note
time="12:00:00"><to>You</
to><from> Me</
from><heading>note1</heading>
<body>Hello World!</body></
note>

'char1' <?xml version="1.0"
encoding="UTF-8" ?><note
time="13:00:00"><to>Him</
to><from> Her</
from><heading>note2</heading><
body>Hello World!</body></note>

4 NULL 'char2' ?xml version="1.0" encoding="UTF-8"
?><note time="14:00:00">to>Us</
to><from> Them</
from><heading>note3</heading>
<body>Hello World!</body></note>

Example 1

The following command exports the contents of USER.T1 in Delimited ASCII
(DEL) format to the file "/mypath/t1export.del". Because the XML TO and
XMLFILE options are not specified, the XML documents contained in columns C2
and C4 are written to the same path as the main exported file "/mypath". The base
name for these files is "t1export.del.xml". The XMLSAVESCHEMA option indicates
that XML schema information is saved during the export procedure.

EXPORT TO /mypath/t1export.del OF DEL XMLSAVESCHEMA SELECT * FROM USER.T1

The exported file "/mypath/t1export.del" contains:
2,"<XDS FIL=’t1export.del.001.xml’ OFF=’0’ LEN=’144’ />","char1",
"<XDS FIL=’t1export.del.001.xml’ OFF=’144’ LEN=’145’ />"
4,,"char2","<XDS FIL=’t1export.del.001.xml’ OFF=’289’
LEN=’145’ SCH=’S1.SCHEMA_A’ />"

The exported XML file "/mypath/t1export.del.001.xml" contains:
<?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

<from>Me</from><heading>note1</heading><body>Hello World!</body>
</note><?xml version="1.0" encoding="UTF-8" ?><note time="13:00:00"><to>Him
</to><from>Her</from><heading>note2</heading><body>Hello World!
</body></note><?xml version="1.0" encoding="UTF-8" ?><note time="14:00:00">
<to>Us</to><from>Them</from>heading>note3</heading><body>
Hello World!</body></note>

Example 2

The following command exports the contents of USER.T1 in DEL format to the file
"t1export.del". XML documents contained in columns C2 and C4 are written to the

642 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

path "/home/user/xmlpath". The XML files are named with the base name
"xmldocs", with multiple exported XML documents written to the same XML file.
The XMLSAVESCHEMA option indicates that XML schema information is saved
during the export procedure.

EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath
XMLFILE xmldocs XMLSAVESCHEMA SELECT * FROM USER.T1

The exported DEL file "/home/user/t1export.del" contains:
2,"<XDS FIL=’xmldocs.001.xml’ OFF=’0’ LEN=’144’ />","char1",
"<XDS FIL=’xmldocs.001.xml’ OFF=’144’ LEN=’145’ />"
4,,"char2","<XDS FIL=’xmldocs.001.xml’ OFF=’289’
LEN=’145’ SCH=’S1.SCHEMA_A’ />"

The exported XML file "/home/user/xmlpath/xmldocs.001.xml" contains:
<?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

<from>Me</from><heading>note1</heading><body>Hello World!</body>
</note><?xml version="1.0" encoding="UTF-8" ?><note time="13:00:00">
<to>Him</to><from>Her</from><heading>note2</heading><body>
Hello World!</body></note><?xml version="1.0" encoding="UTF-8" ?>
<note time="14:00:00"><to>Us</to><from>Them</from><heading>
note3</heading><body>Hello World!</body></note>

Example 3

The following command is similar to Example 2, except that each exported XML
document is written to a separate XML file.

EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath
XMLFILE xmldocs MODIFIED BY XMLINSEPFILES XMLSAVESCHEMA
SELECT * FROM USER.T1

The exported file "/mypath/t1export.del" contains:
2,"<XDS FIL=’xmldocs.001.xml’ />","char1","XDS FIL=’xmldocs.002.xml’ />"
4,,"char2","<XDS FIL=’xmldocs.004.xml’ SCH=’S1.SCHEMA_A’ />"

The exported XML file "/home/user/xmlpath/xmldocs.001.xml" contains:
<?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

<from>Me</from><heading>note1</heading><body>Hello World!</body>
</note>

The exported XML file "/home/user/xmlpath/xmldocs.002.xml" contains:
?xml version="1.0" encoding="UTF-8" ?>note time="13:00:00">to>Him/to>

from>Her/from>heading>note2/heading>body>Hello World!/body>
/note>

The exported XML file "/home/user/xmlpath/xmldocs.004.xml" contains:
<?xml version="1.0" encoding="UTF-8" ?><note time="14:00:00"><to>Us</to>

<from>Them</from><heading>note3</heading><body>Hello World!</body>
</note>

Example 4

The following command writes the result of an XQuery to an XML file.
EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath
XMLFILE xmldocs MODIFIED BY XMLNODECLARATION select
xmlquery(’$m/note/from/text()’ passing by ref c4 as "m" returning sequence)

from USER.T1

The exported DEL file "/mypath/t1export.del" contains:

Chapter 36. Overview 643

"<XDS FIL=’xmldocs.001.xml’ OFF=’0’ LEN=’3’ />"
"<XDS FIL=’xmldocs.001.xml’ OFF=’3’ LEN=’4’ />"

The exported XML file "/home/user/xmlpath/xmldocs.001.xml" contains:
HerThem

Note: The result of this particular XQuery does not produce well-formed XML
documents. Therefore, the file exported in this example, could not be directly
imported into an XML column.

644 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 37. Comparison between the ingest, import, and load
utilities

The following tables summarize some of the key similarities and differences
between the ingest, import, and load utilities.

Table 113. Supported table types

Table type Ingest Load Import

Detached table not supported not supported not supported

Global temporary table not supported not supported not supported

Multidimensional
clustering (MDC) or insert
time clustering (ITC) table

supported supported supported

Materialized query table
(MQT) that is maintained
by user

supported supported supported

Nickname supported not supported supported

Range-clustered table
(RCT)

supported not supported supported

Range-partitioned table supported supported supported

Summary table supported supported supported

Temporal table supported supported supported

Typed table not supported not supported supported

Untyped (regular) table supported supported supported

Updatable view (except
typed view)

supported not supported supported

Table 114. Supported data types

Table type Ingest Load Import

Numeric: SMALLINT,
INTEGER, BIGINT,
DECIMAL, REAL,
DOUBLE, DECFLOAT

supported supported supported

Character: CHAR,
VARCHAR, NCHAR,
NVARCHAR, plus
corresponding FOR BIT
DATA types

supported supported supported

Graphic: GRAPHIC,
VARGRAPHIC

supported supported supported

Long types: LONG
VARCHAR, LONG
VARGRAPHIC

supported supported supported

Date/time: DATE, TIME,
TIMESTAMP, including
TIMESTAMP(p)

supported supported supported

DB2SECURITYLABEL supported supported supported

© Copyright IBM Corp. 2014 645

Table 114. Supported data types (continued)

Table type Ingest Load Import

LOBs from files: BLOB,
CLOB, DBCLOB, NCLOB

not supported supported supported

Inline LOBs not supported supported supported

XML from files not supported supported supported

Inline XML not supported supported supported

Distinct type supported (if based
on a supported
built-in data type)

supported supported

Structured type not supported not supported supported

Reference type supported supported supported

Table 115. Supported input sources

Input type Ingest
Restartable?

Load
Restartable?

Import
Restartable?

Cursor not supported
n/a

supported
yes

not supported
n/a

Device not supported
n/a

supported
yes

not supported
n/a

File supported
yes

supported
yes

supported
yes

Pipe supported
yes

supported
yes

not supported
n/a

Table 116. Supported input formats

Table type Ingest Load Import

ASC (including binary) supported supported supported

DB2 z/OS UNLOAD
format

not supported not supported not supported

DEL supported supported supported

IXF not supported supported supported

There are a number of other important differences that distinguish the ingest utility
from the load and import utility:
v The ingest utility allows the input records to contain extra fields between the

fields that correspond to columns.
v The ingest utility supports update, delete, and merge.
v The ingest utility supports constructing column values from expressions

containing field values.
v The ingest utility allows other applications to update the target table while

ingest is running.

646 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 38. Additional DB2 resources for data movement

The db2move command and the ADMIN_COPY_SCHEMA procedure facilitate the
movement of large numbers of tables or entire schemas between table spaces or
databases. You can also use the db2move command to re-create entire databases.
The ADMIN_MOVE_TABLE stored procedure moves the data in an active table
into a new table object with the same name, while the data remains online and
available for access.

Copying schemas
The db2move utility and the ADMIN_COPY_SCHEMA procedure allow you to
quickly make copies of a database schema. Once a model schema is established,
you can use it as a template for creating new versions.

Procedure
v Use the ADMIN_COPY_SCHEMA procedure to copy a single schema within the

same database.
v Use the db2move utility with the -co COPY action to copy a single schema or

multiple schemas from a source database to a target database. Most database
objects from the source schema are copied to the target database under the new
schema.

Troubleshooting tips

Both the ADMIN_COPY_SCHEMA procedure and the db2move utility invoke the
LOAD command. While the load is processing, the table spaces wherein the database
target objects reside are put into backup pending state.

ADMIN_COPY_SCHEMA procedure
Using this procedure with the COPYNO option places the table spaces
wherein the target object resides into backup pending state, as described in
the previous note. To get the table space out of the set integrity pending
state, this procedure issues a SET INTEGRITY statement. In situations
where a target table object has referential constraints defined, the target
table is also placed in the set integrity pending state. Because the table
spaces are already in backup pending state, the attempt by the
ADMIN_COPY_SCHEMA procedure to issue a SET INTEGRITY statement
fails.

To resolve this situation, issue a BACKUP DATABASE command to get the
affected table spaces out of backup pending state. Next, look at the
Statement_text column of the error table generated by this procedure to
find a list of tables in the set integrity pending state. Then issue the SET
INTEGRITY statement for each of the tables listed to take each table out of
the set integrity pending state.

db2move utility
This utility attempts to copy all allowable schema objects except for the
following types:
v table hierarchy
v staging tables (not supported by the load utility in multiple partition

database environments)

© Copyright IBM Corp. 2014 647

v jars (Java routine archives)
v nicknames
v packages
v view hierarchies
v object privileges (All new objects are created with default authorizations)
v statistics (New objects do not contain statistics information)
v index extensions (user-defined structured type related)
v user-defined structured types and their transform functions

Unsupported type errors
If an object of one of the unsupported types is detected in the source
schema, an entry is logged to an error file. The error file indicates that an
unsupported object type is detected. The COPY operation still succeeds;
the logged entry is meant to inform you of objects not copied by this
operation.

Objects not coupled with schemas
Objects that are not coupled with a schema, such as table spaces and event
monitors, are not operated on during a copy schema operation. You should
create them on the target database before the copy schema operation is
invoked.

Replicated tables
When copying a replicated table, the new copy of the table is not enabled
for replication. The table is recreated as a regular table.

Different instances
The source database must be cataloged if it does not reside in the same
instance as the target database.

SCHEMA_MAP option
When using the SCHEMA_MAP option to specify a different schema name
on the target database, the copy schema operation will perform only
minimal parsing of the object definition statements to replace the original
schema name with the new schema name. For example, any instances of
the original schema that appear inside the contents of an SQL procedure
are not replaced with the new schema name. Thus the copy schema
operation might fail to recreate these objects. Other examples might
include staging table, result table, materialized query table. You can use the
DDL in the error file to manually recreate these failed objects after the copy
operation completes.

Interdependencies between objects
The copy schema operation attempts to recreate objects in an order that
satisfies the interdependencies between these objects. For example, if a
table T1 contains a column that references a user-defined function U1, then
it will recreate U1 before recreating T1. However, dependency information
for procedures is not readily available in the catalogs, so when re-creating
procedures, the copy schema operation will first attempt to re-create all
procedures, then try to re-create those that failed again (on the assumption
that if they depended on a procedure that was successfully created during
the previous attempt, then during a subsequent attempt they will be
re-created successfully). The operation will continually try to recreate these
failed procedures as long as it is able to successfully recreate one or more
during a subsequent attempt. During every attempt at recreating a
procedure, an error (and DDL) is logged into the error file. You might see
many entries in the error file for the same procedures, but these procedures

648 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

might have even been successfully recreated during a subsequent attempt.
You should query the SYSCAT.PROCEDURES table upon completion of the
copy schema operation to determine if these procedures listed in the error
file were successfully recreated.

For more information, see the ADMIN_COPY_SCHEMA procedure and the
db2move utility.

Example of schema copy using the ADMIN_COPY_SCHEMA
procedure

Use the ADMIN_COPY SCHEMA procedure as shown in the following example, to
copy a single schema within the same database.

DB2 "SELECT SUBSTR(OBJECT_SCHEMA,1, 8)
AS OBJECT_SCHEMA, SUBSTR(OBJECT_NAME,1, 15)
AS OBJECT_NAME, SQLCODE, SQLSTATE, ERROR_TIMESTAMP, SUBSTR(DIAGTEXT,1, 80)
AS DIAGTEXT, SUBSTR(STATEMENT,1, 80)
AS STATEMENT FROM COPYERRSCH.COPYERRTAB"

CALL SYSPROC.ADMIN_COPY_SCHEMA(’SOURCE_SCHEMA’, ’TARGET_SCHEMA’,
’COPY’, NULL, ’SOURCETS1 , SOURCETS2’, ’TARGETTS1, TARGETTS2,
SYS_ANY’, ’ERRORSCHEMA’, ’ERRORNAME’)

The output from this SELECT statement is shown in the following example:
OBJECT_SCHEMA OBJECT_NAME SQLCODE SQLSTATE ERROR_TIMESTAMP
------------- --------------- ----------- -------- --------------------------
SALES EXPLAIN_STREAM -290 55039 2006-03-18-03.22.34.810346

DIAGTEXT
--
[IBM][CLI Driver][DB2/LINUXX8664] SQL0290N Table space access is not allowed.

STATEMENT
--
set integrity for "SALES "."ADVISE_INDEX" , "SALES"."ADVISE_MQT" , "SALES"."

1 record(s) selected.

Examples of schema copy by using the db2move utility
Use the db2move utility with the -co COPY action to copy one or more schemas from
a source database to a target database. After a model schema is established, you
can use it as a template for creating new versions.

Example 1: Using the -c COPY options
The following example of the db2move -co COPY options copies the schema
BAR and renames it FOO from the sample database to the target database:

db2move sample COPY -sn BAR -co target_db target schema_map
"((BAR,FOO))" -u userid -p password

The new (target) schema objects are created by using the same object
names as the objects in the source schema, but with the target schema
qualifier. It is possible to create copies of tables with or without the data
from the source table. The source and target databases can be on different
systems.

Example 2: Specifying table space name mappings during the COPY operation
The following example shows how to specify specific table space name
mappings to be used instead of the table spaces from the source system
during a db2move COPY operation. You can specify the SYS_ANY keyword
to indicate that the target table space must be chosen by using the default

Chapter 38. Additional DB2 resources for data movement 649

table space selection algorithm. In this case, the db2move utility chooses any
available table space to be used as the target:

db2move sample COPY -sn BAR -co target_db target schema_map
"((BAR,FOO))" tablespace_map "(SYS_ANY)" -u userid -p password

The SYS_ANY keyword can be used for all table spaces, or you can specify
specific mappings for some table spaces, and the default table space
selection algorithm for the remaining:

db2move sample COPY -sn BAR -co target_db target schema_map "
((BAR,FOO))" tablespace_map "((TS1, TS2),(TS3, TS4), SYS_ANY)"
-u userid -p password

This indicates that table space TS1 is mapped to TS2, TS3 is mapped to
TS4, but the remaining table spaces use a default table space selection
algorithm.

Example 3: Changing the object owners after the COPY operation
You can change the owner of each new object created in the target schema
after a successful COPY. The default owner of the target objects is the
connect user. If this option is specified, ownership is transferred to a new
owner as demonstrated:

db2move sample COPY -sn BAR -co target_db target schema_map
"((BAR,FOO))" tablespace_map "(SYS_ANY)" owner jrichards
-u userid -p password

The new owner of the target objects is jrichards.

The db2move utility must be started on the target system if source and
target schemas are found on different systems. For copying schemas from
one database to another, this action requires a list of schema names to be
copied from a source database, separated by commas, and a target
database name.

To copy a schema, issue db2move from an operating system command
prompt as follows:

db2move dbname COPY -co COPY-options
-u userid -p password

Moving tables online by using the ADMIN_MOVE_TABLE procedure
Using the ADMIN_MOVE_TABLE procedure, you can move tables by using an
online or offline move. Use an online table move instead of an offline table move if
you value availability more than cost, space, move performance, and transaction
overhead.

Before you begin

Ensure there is sufficient disk space to accommodate the copies of the table and
index, the staging table, and the additional log entries.

About this task

You can move a table online by calling the stored procedure once or multiple
times, one call for each operation performed by the procedure. Using multiple calls
provides you with additional options, such as cancelling the move or controlling
when the target table is taken offline to be updated.

650 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

When you call the SYSPROC.ADMIN_MOVE_TABLE procedure, a shadow copy of
the source table is created. During the copy phase, changes to the source table
(updates, insertions, or deletions) are captured using triggers and placed in a
staging table. After the copy phase is completed, the changes captured in the
staging table are replayed to the shadow copy. Following that, the stored
procedure briefly takes the source table offline and assigns the source table name
and index names to the shadow copy and its indexes. The shadow table is then
brought online, replacing the source table. By default, the source table is dropped,
but you can use the KEEP option to retain it under a different name.

Avoid performing online moves for tables without indexes, particularly unique
indexes. Performing a online move for a table without a unique index might result
in deadlocks and complex or expensive replay.

Procedure

To move a table online:
1. Call the ADMIN_MOVE_TABLE procedure in one of the following ways:

v Call the ADMIN_MOVE_TABLE procedure once, specifying at least the
schema name of the source table, the source table name, and an operation
type of MOVE. For example, use the following syntax to move the data to an
existing table within the same table space:
CALL SYSPROC.ADMIN_MOVE_TABLE (
’schema name’,
’source table’,
’’,
’’,
’’,
’’,
’’,
’’,
’’,
’’,
’MOVE’)

v Call the ADMIN_MOVE_TABLE procedure multiple times, once for each
operation, specifying at least the schema name of the source table, the source
table name, and an operation name. For example, use the following syntax to
move the data to a new table within the same table space:
CALL SYSPROC.ADMIN_MOVE_TABLE (
’schema name’,
’source table’,
’’,
’’,
’’,
’’,
’’,
’’,
’’,
’’,
’operation name’)

where operation name is one of the following values: INIT, COPY, REPLAY,
VERIFY, or SWAP. You must call the procedure based on this order of
operations, for example, you must specify INIT as the operation name in the
first call.

Note: The VERIFY operation is costly; perform this operation only if you
require it for your table move.

Chapter 38. Additional DB2 resources for data movement 651

2. If the online move fails, rerun it:
a. Fix the problem that caused the table move to fail.
b. Determine the stage that was in progress when the table move failed by

querying the SYSTOOLS.ADMIN_MOVE_TABLE protocol table for the
status.

c. Call the stored procedure again, specifying the applicable option:
v If the status of the procedure is INIT, use the INIT option.
v If the status of the procedure is COPY, use the COPY option.
v If the status of the procedure is REPLAY, use the REPLAY or SWAP

option.
v If the status of the procedure is CLEANUP, use the CLEANUP option.

If the status of an online table move is not COMPLETED or CLEANUP, you
can cancel the move by specifying the CANCEL option for the stored
procedure.

Examples

Example 1: Move the T1 table from schema SVALENTI, to the ACCOUNTING table
space without taking T1 offline. Specify the DATA, INDEX, and LONG table spaces
to move the table into a new table space.
CALL SYSPROC.ADMIN_MOVE_TABLE(
’SVALENTI’,
’T1’,
’ACCOUNTING’,
’ACCOUNTING’,
’ACCOUNTING’,
’’,
’’,
’’,
’’,
’’,
’MOVE’)

Example 2: Move the T1 table from schema EBABANI to the ACCOUNTING table
space without taking T1 offline, and keep a copy of the original table after the
move. Use the COPY_USE_LOAD and LOAD_MSGPATH options to set the load
message file path. Specify the DATA, INDEX, and LONG table spaces to move the
table into a new table space. The original table will maintain a name similar to
'EBABANI'.'T1AAAAVxo'.
CALL SYSPROC.ADMIN_MOVE_TABLE(
’EBABANI’,
’T1’,
’ACCOUNTING’,
’ACCOUNTING’,
’ACCOUNTING’,
’’,
’’,
’’,
’’,
’KEEP, COPY_USE_LOAD,LOAD_MSGPATH "/home/ebabani"’,
’MOVE’)

Example 3: Move the T1 table within the same table space. Change the C1 column
within T1, which uses the deprecated datatype LONG VARCHAR to use a
compatible data type.

652 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

CALL SYSPROC.ADMIN_MOVE_TABLE(
’SVALENTI’,
’T1’,
’’,
’’,
’’,
’’,
’’,
’’,
’C1 VARCHAR(1000), C2 INT(5), C3 CHAR(5), C4 CLOB’,
’’,
’MOVE’)

Note: You cannot change the column name during this operation.

Example 4: You have the T1 table created by the following statement:
CREATE TABLE T1(C1 BIGINT,C2 BIGINT,C3 CHAR(20),C4 DEC(10,2),C5 TIMESTAMP,C6 BIGINT
GENERATED ALWAYS AS (C1+c2),C7 GRAPHIC(10),C8 VARGRAPHIC(20),C9 XML

Move the table within the same table space and drop columns C5 and C6:
CALL SYSPROC.ADMIN_MOVE_TABLE(
’SVALENTI’,
’T1’,
’’,
’’,
’’,
’’,
’’,
’’,
’c1 BIGINT,c2 BIGINT ,c3 CHAR(20),c4 DEC(10,2),c7 GRAPHIC(10),c8 VARGRAPHIC(20),c9 XML’,
’’,
’MOVE’)

Example 5: You have a range partitioned table with two ranges defined in
tablespaces TS1 and TS2. Move the table to tablespace TS3, but leave the first range
in TS1.
CREATE TABLE "EBABANI "."T1" (
"I1" INTEGER ,
"I2" INTEGER)
DISTRIBUTE BY HASH("I1")
PARTITION BY RANGE("I1")
(PART "PART0" STARTING(0) ENDING(100) IN "TS1",
PART "PART1" STARTING(101) ENDING(MAXVALUE) IN "TS2");

Move the T1 table from schema EBABANI to the TS3 table space. Specify the
partition definitions.
DB2 "CALL SYSPROC.ADMIN_MOVE_TABLE
(’EBABANI’,
’T1’,
’TS3’,
’TS3’,
’TS3’,
’’,
’’,
’(I1) (STARTING 0 ENDING 100 IN TS1 INDEX IN TS1 LONG IN TS1,
STARTING 101 ENDING MAXVALUE IN TS3 INDEX IN TS3 LONG IN TS3)’,
’’,
’’,
’MOVE’)"

Chapter 38. Additional DB2 resources for data movement 653

Mimicking databases using db2look
There are many times when it is advantageous to be able to create a database that
is similar in structure to another database. For example, rather than testing out
new applications or recovery plans on a production system, it makes more sense to
create a test system that is similar in structure and data, and to then do the tests
against it instead.

This way, the production system will not be affected by the adverse performance
impact of the tests or by the accidental destruction of data by an errant application.
Also, when you are investigating a problem (such as invalid results, performance
issues, and so on), it might be easier to debug the problem on a test system that is
identical to the production system.

You can use the db2look tool to extract the required DDL statements needed to
reproduce the database objects of one database in another database. The tool can
also generate the required SQL statements needed to replicate the statistics from
the one database to the other, as well as the statements needed to replicate the
database configuration, database manager configuration, and registry variables.
This is important because the new database might not contain the exact same set of
data as the original database but you might still want the same access plans chosen
for the two systems. The db2look command should only be issued on databases
running on DB2 Servers of Version 9.5 and higher levels.

The db2look tool is described in detail in the DB2 Command Reference but you can
view the list of options by executing the tool without any parameters. A more
detailed usage can be displayed using the -h option.

Using db2look to mimic the tables in a database

To extract the DDL for the tables in the database, use the -e option. For example,
create a copy of the SAMPLE database called SAMPLE2 such that all of the objects
in the first database are created in the new database:
C:\>db2 create database sample2
DB20000I The CREATE DATABASE command completed successfully.
C:\>db2look -d sample -e > sample.ddl
-- USER is:
-- Creating DDL for table(s)
-- Binding package automatically ...
-- Bind is successful
-- Binding package automatically ...
-- Bind is successful

Note: If you want the DDL for the user-defined spaces, database partition groups
and buffer pools to be produced as well, add the-l flag after -e in the preceding
command. The default database partition groups, buffer pools, and table spaces
will not be extracted. This is because they already exist in every database by
default. If you want to mimic these, you must alter them yourself manually.

Bring up the file sample.ddl in a text editor. Since you want to run the DDL in this
file against the new database, you must change the CONNECT TO SAMPLE
statement to CONNECT TO SAMPLE2. If you used the -l option, you might need
to alter the path associated with the table space commands, such that they point to
appropriate paths as well. While you are at it, take a look at the rest of the
contents of the file. You should see CREATE TABLE, ALTER TABLE, and CREATE
INDEX statements for all of the user tables in the sample database:

654 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

...
--
-- DDL Statements for table "DB2"."ORG"
--

CREATE TABLE "DB2"."ORG" (
"DEPTNUMB" SMALLINT NOT NULL ,
"DEPTNAME" VARCHAR(14) ,
"MANAGER" SMALLINT ,
"DIVISION" VARCHAR(10) ,
"LOCATION" VARCHAR(13))
IN "USERSPACE1" ;

...

Once you have changed the connect statement, run the statements, as follows:
C:\>db2 -tvf sample.ddl > sample2.out

Take a look at the sample2.out output file -- everything should have been executed
successfully. If errors have occurred, the error messages should state what the
problem is. Fix those problems and run the statements again.

As you can see in the output, DDL for all of the user tables are exported. This is
the default behavior but there are other options available to be more specific about
the tables included. For example, to only include the STAFF and ORG tables, use
the -t option:
C:\>db2look -d sample -e -t staff org > staff_org.ddl

To only include tables with the schema DB2, use the -z option:
C:\>db2look -d sample -e -z db2 > db2.ddl

Mimicking statistics for tables

If the intent of the test database is to do performance testing or to debug a
performance problem, it is essential that access plans generated for both databases
are identical. The optimizer generates access plans based on statistics, configuration
parameters, registry variables, and environment variables. If these things are
identical between the two systems then it is very likely that the access plans will
be the same.

If both databases have the exact same data loaded into them and the same options
of RUNSTATS is performed on both, the statistics should be identical. However, if
the databases contain different data or if only a subset of data is being used in the
test database then the statistics will likely be very different. In such a case, you can
use db2look to gather the statistics from the production database and place them
into the test database. This is done by creating UPDATE statements against the
SYSSTAT set of updatable catalog tables as well as RUNSTATS commands against
all of the tables.

The option for creating the statistic statements is -m. Going back to the
SAMPLE/SAMPLE2 example, gather the statistics from SAMPLE and add them
into SAMPLE2:
C:\>db2look -d sample -m > stats.dml
-- USER is:
-- Running db2look in mimic mode

As before, the output file must be edited such that the CONNECT TO SAMPLE
statement is changed to CONNECT TO SAMPLE2. Again, take a look at the rest of
the file to see what some of the RUNSTATS and UPDATE statements contain:

Chapter 38. Additional DB2 resources for data movement 655

...
-- Mimic table ORG
RUNSTATS ON TABLE "DB2"."ORG" ;

UPDATE SYSSTAT.INDEXES
SET NLEAF=-1,

NLEVELS=-1,
FIRSTKEYCARD=-1,
FIRST2KEYCARD=-1,
FIRST3KEYCARD=-1,
FIRST4KEYCARD=-1,
FULLKEYCARD=-1,
CLUSTERFACTOR=-1,
CLUSTERRATIO=-1,
SEQUENTIAL_PAGES=-1,
PAGE_FETCH_PAIRS=’’,
DENSITY=-1,
AVERAGE_SEQUENCE_GAP=-1,
AVERAGE_SEQUENCE_FETCH_GAP=-1,
AVERAGE_SEQUENCE_PAGES=-1,
AVERAGE_SEQUENCE_FETCH_PAGES=-1,
AVERAGE_RANDOM_PAGES=-1,
AVERAGE_RANDOM_FETCH_PAGES=-1,
NUMRIDS=-1,
NUMRIDS_DELETED=-1,
NUM_EMPTY_LEAFS=-1

WHERE TABNAME = ’ORG’ AND TABSCHEMA = ’DB2 ’;
...

As with the -e option that extracts the DDL, the -t and -z options can be used to
specify a set of tables.

Extracting configuration parameters and environment variables

The optimizer chooses plans based on statistics, configuration parameters, registry
variables, and environment variables. As with the statistics, db2look can be used to
generate the necessary configuration update and set statements. This is done using
the -f option. For example:
c:\>db2look -d sample -f>config.txt
-- USER is: DB2INST1
-- Binding package automatically ...
-- Bind is successful
-- Binding package automatically ...
-- Bind is successful

The config.txt contains output similar to the following example:
-- This CLP file was created using DB2LOOK Version 9.1
-- Timestamp: 2/16/2006 7:15:17 PM
-- Database Name: SAMPLE
-- Database Manager Version: DB2/NT Version 9.1.0
-- Database Codepage: 1252
-- Database Collating Sequence is: UNIQUE

CONNECT TO SAMPLE;

--
-- Database and Database Manager configuration parameters
--

UPDATE DBM CFG USING cpuspeed 2.991513e-007;
UPDATE DBM CFG USING intra_parallel NO;
UPDATE DBM CFG USING comm_bandwidth 100.000000;
UPDATE DBM CFG USING federated NO;

656 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

...

-- Environment Variables settings

COMMIT WORK;

CONNECT RESET;

Note: Only those parameters and variables that affect DB2 compiler will be
included. If a registry variable that affects the compiler is set to its default value, it
will not show up under "Environment Variables settings".

Converting non-Unicode databases to Unicode
There are some cases where you might need to convert an existing non-Unicode
database to a Unicode database.

Before you begin

You must have enough free disk space to export the data from the non-Unicode
database. Also, if you are not reusing the existing table spaces, you need enough
free disk space to create new table spaces for the data.

Procedure

To convert an existing non-Unicode database to a Unicode database:
1. Export your data using the db2move command:

cd export-dir
db2move sample export

where export-dir is the directory to which you want to export your data and
SAMPLE is the existing database name.

2. Generate a DDL script for your existing database using the db2look command:
db2look -d sample -e -o unidb.ddl -l -x -f

where SAMPLE is the existing database name and unidb.ddl is the file name
for the generated DDL script. The -l option generates DDL for user-defined
table spaces, database partition groups, and buffer pools, the -x option
generates authorization DDL, and the -f option generates an update command
for database configuration parameters.

3. Create the Unicode database:
CREATE DATABASE UNIDB COLLATE USING SYSTEM_codepage_territory

where UNIDB is the name of the Unicode database and
SYSTEM_codepage_territory is a language-aware collation based on the weight
table used for collating your non-Unicode data. This ensures that the data in
the new Unicode database is sorted in the same order.

4. Edit the unidb.ddl script:
a. Change all occurrences of the database name to the new Unicode database

name:
CONNECT TO UNIDB

Chapter 38. Additional DB2 resources for data movement 657

b. Increase the column lengths for character columns in your tables. When
characters are converted to Unicode, there might be an expansion in the
number of bytes. It is recommended that you increase the length of the
character columns to compensate for this expansion.

c. To keep the existing database, you must also change the file name
specification for table spaces in the unidb.ddl file. Otherwise, you can drop
the existing database and use the same table space files:

DROP DATABASE SAMPLE

5. Recreate your database structure by running the DDL script that you edited:
db2 -tvf unidb.ddl

6. Import your data into the new Unicode database using the db2move command:
cd export-dir
db2move unidb import

where export-dir is the directory where you exported your data and UNIDB is
the Unicode database name.

Creating database duplicates
Creating production database duplicates in a test environment allows you to test
upgrading your databases before you upgrade them in your production
environment.

Before you begin

Ensure that you have SYSCTRL or SYSADM authority.

About this task

This procedure uses DDL scripts to create database duplicates. If you have enough
resources, you can also create database duplicates by restoring a database backup
to create a new database. See “Restoring to a new database” in Data Recovery and
High Availability Guide and Reference for details.

Procedure

To create a database duplicate for testing database upgrade:
1. Log on as the instance owner on the production database server and use the

db2look command to generate DDL scripts with all the existing objects in your
databases. The following command shows how to generate the sample.ddl
script for the SAMPLE database:
db2look -d sample -a -e -m -l -x -f -o sample.ddl

Edit the generated DDL scripts and change:
v The database name in the CONNECT statements
v The path of the user table space containers or data and reduce the sizes to a

minimum size since to re-create a database with no data or just a data subset

You can use your own DDL scripts to create test databases in the test instance
instead of generating DDL scripts.

2. Log on as the instance owner in the test database server and create your
database duplicates. The following example shows how to create a database
duplicate of the SAMPLE database using the sample.ddl script:

658 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

db2 CREATE DATABASE NSAMPLE
db2 -tvsf sample.ddl
db2 UPDATE DBM CONFIGURATION USING diaglevel 4

All significant upgrade events are logged in the db2diag log files when the
diaglevel database manager configuration parameter is set to 3 (default value)
or higher. A value of 4 captures additional information that can be helpful in
problem determination.

3. Adjust the size of the system catalog table space, temporary table space, and
log space in your test databases if required.

4. Export data subsets of your production databases and import these data
subsets into your test databases. For details, see “Exporting Data” and
“Importing Data” in Data Movement Utilities Guide and Reference. You only need
a data subset if you are going to test your applications in your testing
environment.

5. Verify that your database duplicates were created successfully by connecting to
the them and issue a small query.

Chapter 38. Additional DB2 resources for data movement 659

660 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 39. Data organization

Over time, data in your tables can become fragmented, increasing the size of tables
and indexes as records become distributed over more and more data pages. This
can increase the number of pages that need to be read during query execution.
Reorganization of tables and indexes compacts your data, reclaiming wasted space
and improving data access.

Procedure

The steps to perform an index or table reorganization are as follows:
1. Determine whether you need to reorganize any tables or indexes.
2. Choose a reorganization method.
3. Perform the reorganization of identified objects.
4. Optional: Monitor the progress of reorganization.
5. Determine whether or not the reorganization was successful. For offline table

reorganization and any index reorganization, the operation is synchronous, and
the outcome is apparent upon completion of the operation. For online table
reorganization, the operation is asynchronous, and details are available from
the history file.

6. Collect statistics on reorganized objects.
7. Rebind applications that access reorganized objects.

Table reorganization
After many changes to table data, logically sequential data might reside on
nonsequential data pages, so that the database manager might need to perform
additional read operations to access data. Also, if many rows have been deleted,
additional read operations are also required. In this case, you might consider
reorganizing the table to match the index and to reclaim space.

You can also reorganize the system catalog tables.

Because reorganizing a table usually takes more time than updating statistics, you
could execute the RUNSTATS command to refresh the current statistics for your data,
and then rebind your applications. If refreshed statistics do not improve
performance, reorganization might help.

The following factors can indicate a need for table reorganization:
v There has been a high volume of insert, update, and delete activity against

tables that are accessed by queries.
v There have been significant changes in the performance of queries that use an

index with a high cluster ratio.
v Executing the RUNSTATS command to refresh table statistics does not improve

performance.
v Output from the REORGCHK command indicates a need for table reorganization.

Note: With DB2 V9.7 Fix Pack 1 and later releases, higher data availability for a
data partitioned table with only partitioned indexes (except system-generated XML
path indexes) is achieved by reorganizing data for a specific data partition.

© Copyright IBM Corp. 2014 661

Partition-level reorganization performs a table reorganization on a specified data
partition while the remaining data partitions of the table remain accessible. The
output from the REORGCHK command for a partitioned table contains statistics and
recommendations for performing partition-level reorganizations.

REORG TABLE commands and REORG INDEXES ALL commands can be issued on a data
partitioned table to concurrently reorganize different data partitions or partitioned
indexes on a partition. When concurrently reorganizing data partitions or the
partitioned indexes on a partition, users can access the unaffected partitions but
cannot access the affected partitions. All the following criteria must be met to issue
REORG commands that operate concurrently on the same table:
v Each REORG command must specify a different partition with the ON DATA

PARTITION clause.
v Each REORG command must use the ALLOW NO ACCESS mode to restrict

access to the data partitions.
v The partitioned table must have only partitioned indexes if issuing REORG TABLE

commands. No nonpartitioned indexes (except system-generated XML path
indexes) can be defined on the table.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
reorganizing tables. Task assistants can guide you through the process of setting
options, reviewing the automatically generated commands to perform the task, and
running these commands. For more details, see Administering databases with task
assistants.

Choosing a table reorganization method
There are two approaches to table reorganization: classic reorganization (offline) and
inplace reorganization (online).

Offline reorganization is the default behavior. To specify an online reorganization
operation, use the INPLACE option on the REORG TABLE command.

An alternative approach to inplace reorganization, using online table move stored
procedures, is also available. See “Moving tables online by using the
ADMIN_MOVE_TABLE procedure”.

Each approach has its advantages and drawbacks, which are summarized in the
following sections. When choosing a reorganization method, consider which
approach offers advantages that align with your priorities. For example, if
recoverability in case of failure is more important than performance, online
reorganization might be preferable.

Advantages of offline reorganization

This approach offers:
v The fastest table reorganization operations, especially if large object (LOB) or

long field data is not included
v Perfectly clustered tables and indexes upon completion
v Indexes that are automatically rebuilt after a table has been reorganized; there is

no separate step for rebuilding indexes
v The use of a temporary table space for building a shadow copy; this reduces the

space requirements for the table space that contains the target table or index
v The use of an index other than the clustering index to re-cluster the data

662 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Disadvantages of offline reorganization

This approach is characterized by:
v Limited table access; read access only during the sort and build phase of a reorg

operation
v A large space requirement for the shadow copy of the table that is being

reorganized
v Less control over the reorg process; an offline reorg operation cannot be paused

and restarted

Advantages of online reorganization

This approach offers:
v Full table access, except during the truncation phase of a reorg operation
v More control over the reorg process, which runs asynchronously in the

background, and which can be paused, resumed, or stopped; for example, you
can pause an in-progress reorg operation if a large number of update or delete
operations are running against the table

v A recoverable process in the event of a failure
v A reduced requirement for working storage, because a table is processed

incrementally
v Immediate benefits of reorganization, even before a reorg operation completes

Disadvantages of online reorganization

This approach is characterized by:
v Imperfect data or index clustering, depending on the type of transactions that

access the table during a reorg operation
v Poorer performance than an offline reorg operation
v Potentially high logging requirements, depending on the number of rows being

moved, the number of indexes that are defined on the table, and the size of
those indexes

v A potential need for subsequent index reorganization, because indexes are
maintained, not rebuilt

v Incomplete space reclamation, because online reorganization cannot move
internal records.

Table 117. Comparison of online and offline reorganization

Characteristic Offline reorganization Online reorganization

Performance Fast Slow

Clustering factor of data at
completion

Good Not perfectly clustered

Concurrency (access to the
table)

Ranges from no access to
read-only

Ranges from read-only to full
access

Data storage space
requirement

Significant Not significant

Logging storage space
requirement

Not significant Could be significant

User control (ability to
pause, restart process)

Less control More control

Chapter 39. Data organization 663

Table 117. Comparison of online and offline reorganization (continued)

Characteristic Offline reorganization Online reorganization

Recoverability Not recoverable Recoverable

Index rebuilding Done Not done

Supported for all types of
tables

Yes No

Ability to specify an index
other than the clustering
index

Yes No

Use of a temporary table
space

Yes No

Table 118. Table types that are supported for online and offline reorganization

Table type
Offline reorganization
supported

Online reorganization
supported

Multidimensional clustering
tables (MDC)

Yes1 No

Insert time clustering tables (ITC) Yes1 No

Range-clustered tables (RCT) No2 No

Append mode tables Yes No3

Tables with long field or large
object (LOB) data

Yes4 Yes5

System catalog tables:

v

SYSIBM.SYSCODEPROPERTIES

v SYSIBM.SYSDATATYPES

v SYSIBM.SYSNODEGROUPS

v SYSIBM.SYSROUTINES

v SYSIBM.SYSSEQUENCES

v SYSIBM.SYSTABLES

v SYSIBM.SYSVARIABLES

Yes No

Notes:

1. Because clustering is automatically maintained through MDC block indexes,
reorganization of an MDC table involves space reclamation only. No indexes can be
specified. Similarly, for ITC tables, you cannot specify a reorganization using a
clustering index.

2. The range area of an RCT always remains clustered.

3. Online reorganization can be performed after append mode is disabled.

4. Reorganizing long field or large object (LOB) data can take a significant amount of
time, and does not improve query performance; it should only be done for space
reclamation.

5. Online table reorganization does not reorganize the LONG/LOB data, but reorganizes
the other columns.

664 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Monitoring the progress of table reorganization

Information about the progress of a current table reorg operation is written to the
history file. The history file contains a record for each reorganization event. To
view this file, execute the LIST HISTORY command against the database that
contains the table being reorganized.

You can also use table snapshots to monitor the progress of table reorg operations.
Table reorganization monitoring data is recorded, regardless of the setting for the
database system monitor table switch.

If an error occurs, an SQLCA message is written to the history file. In the case of
an inplace table reorg operation, the status is recorded as PAUSED.

Classic (offline) table reorganization
Classic table reorganization uses a shadow copy approach, building a full copy of
the table that is being reorganized.

There are four phases in a classic or offline table reorganization operation:
1. SORT - During this phase, if an index was specified on the REORG TABLE

command, or a clustering index was defined on the table, the rows of the table
are first sorted according to that index. If the INDEXSCAN option is specified,
an index scan is used to sort the table; otherwise, a table scan sort is used. This
phase applies only to a clustering table reorg operation. Space reclaiming reorg
operations begin at the build phase.

2. BUILD - During this phase, a reorganized copy of the entire table is built,
either in its table space or in a temporary table space that was specified on the
REORG TABLE command.

3. REPLACE - During this phase, the original table object is replaced by a copy
from the temporary table space, or a pointer is created to the newly built object
within the table space of the table that is being reorganized.

4. RECREATE ALL INDEXES - During this phase, all indexes that were defined
on the table are recreated.

You can monitor the progress of the table reorg operation and identify the current
phase using the snapshot monitor or snapshot administrative views.

The locking conditions are more restrictive in offline mode than in online mode.
Read access to the table is available while the copy is being built. However,
exclusive access to the table is required when the original table is being replaced
by the reorganized copy, or when indexes are being rebuilt.

An IX table space lock is required during the entire table reorg process. During the
build phase, a U lock is acquired and held on the table. A U lock allows the lock
owner to update the data in the table. Although no other application can update
the data, read access is permitted. The U lock is upgraded to a Z lock after the
replace phase starts. During this phase, no other applications can access the data.
This lock is held until the table reorg operation completes.

A number of files are created by the offline reorganization process. These files are
stored in your database directory. Their names are prefixed with the table space
and object IDs; for example, 0030002.ROR is the state file for a table reorg operation
whose table space ID is 3 and table ID is 2.

Chapter 39. Data organization 665

The following list shows the temporary files that are created in a system managed
space (SMS) table space during an offline table reorg operation:
v .DTR - Data shadow copy file
v .LFR - Long field file
v .LAR - Long field allocation file
v .RLB - LOB data file
v .RBA - LOB allocation file
v .BMR - Block object file for multidimensional clustering (MDC) and insert time

clustering (ITC) tables

The following temporary file is created during an index reorg operation:
v .IN1 - Shadow copy file

The following list shows the temporary files that are created in the system
temporary table space during the sort phase:
v .TDA - Data file
v .TIX - Index file
v .TLF - Long field file
v .TLA - Long field allocation file
v .TLB - LOB file
v .TBA - LOB allocation file
v .TBM - Block object file

The files that are associated with the reorganization process should not be
manually removed from your system.

Reorganizing tables offline
Reorganizing tables offline is the fastest way to defragment your tables.
Reorganization reduces the amount of space that is required for a table and
improves data access and query performance.

Before you begin

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,
or CONTROL privilege on the table that is to be reorganized. You must also have a
database connection to reorganize a table.

About this task

After you have identified the tables that require reorganization, you can run the
reorg utility against those tables and, optionally, against any indexes that are
defined on those tables.

Procedure
1. To reorganize a table using the REORG TABLE command, simply specify the name

of the table. For example:
reorg table employee

You can reorganize a table using a specific temporary table space. For example:
reorg table employee use mytemp

666 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You can reorganize a table and have the rows reordered according to a specific
index. For example:

reorg table employee index myindex

2. To reorganize a table using an SQL CALL statement, specify the REORG TABLE
command with the ADMIN_CMD procedure. For example:

call sysproc.admin_cmd (’reorg table employee’)

3. To reorganize a table using the administrative application programming
interface, call the db2Reorg API.

What to do next

After reorganizing a table, collect statistics on that table so that the optimizer has
the most accurate data for evaluating query access plans.

Inplace (online) table reorganization
Inplace table reorganization enables you to reorganize a table while you have full
access to its data. The cost of this uninterrupted access to the data is a slower table
reorg operation.

Restriction: Inplace (online) reorganization is not supported in DB2 pureScale
environments. Any attempts to perform an inplace reorganization in DB2 pureScale
environments will fail with SQL1419N.

During an inplace or online table reorg operation, portions of a table are
reorganized sequentially. Data is not copied to a temporary table space; instead,
rows are moved within the existing table object to reestablish clustering, reclaim
free space, and eliminate overflow rows.

There are four main phases in an online table reorg operation:
1. SELECT n pages

During this phase, the database manager selects a range of n pages, where n is
the size of an extent with a minimum of 32 sequential pages for reorg
processing.

2. Vacate the range
The reorg utility moves all rows within this range to free pages in the table.
Each row that is moved leaves behind a reorg table pointer (RP) record that
contains the record ID (RID) of the row's new location. The row is placed on a
free page in the table as a reorg table overflow (RO) record that contains the
data. After the utility has finished moving a set of rows, it waits until all
applications that are accessing data in the table are finished. These “old
scanners” use old RIDs when accessing the table data. Any table access that
starts during this waiting period (a “new scanner”) uses new RIDs to access the
data. After all of the old scanners have completed, the reorg utility cleans up
the moved rows, deleting RP records and converting RO records into regular
records.

3. Fill the range
After all rows in a specific range have been vacated, they are written back in a
reorganized format, sorted according to any indexes that were used, and
obeying any PCTFREE restrictions that were defined. When all of the pages in
the range have been rewritten, the next n sequential pages in the table are
selected, and the process is repeated.

4. Truncate the table

Chapter 39. Data organization 667

By default, when all pages in the table have been reorganized, the table is
truncated to reclaim space. If the NOTRUNCATE option has been specified, the
reorganized table is not truncated.

Files created during an online table reorg operation

During an online table reorg operation, an .OLR state file is created for each
database partition. This binary file has a name whose format is xxxxyyyy.OLR,
where xxxx is the table space ID and yyyy is the object ID in hexadecimal format.
This file contains the following information that is required to resume an online
reorg operation from the paused state:
v The type of reorg operation
v The life log sequence number (LSN) of the table being reorganized
v The next range to be vacated
v Whether the reorg operation is clustering the data or just reclaiming space
v The ID of the index that is being used to cluster the data

A checksum is performed on the .OLR file. If the file becomes corrupted, causing
checksum errors, or if the table LSN does not match the life LSN, a new reorg
operation is initiated, and a new state file is created.

If the .OLR state file is deleted, the reorg process cannot resume, SQL2219N is
returned, and a new reorg operation must be initiated.

The files that are associated with the reorganization process should not be
manually removed from your system.

Locking and concurrency considerations for online table
reorganization
One of the most important aspects of online table reorganization-because it is so
crucial to application concurrency-is how locking is controlled.

An online table reorg operation can hold the following locks:
v To ensure write access to table spaces, an IX lock is acquired on the table spaces

that are affected by the reorg operation.
v A table lock is acquired and held during the entire reorg operation. The level of

locking is dependent on the access mode that is in effect during reorganization:
– If ALLOW WRITE ACCESS was specified, an IS table lock is acquired.
– If ALLOW READ ACCESS was specified, an S table lock is acquired.

v An S lock on the table is requested during the truncation phase. Until the S lock
is acquired, rows can be inserted by concurrent transactions. These inserted rows
might not be seen by the reorg utility, and could prevent the table from being
truncated. After the S table lock is acquired, rows that prevent the table from
being truncated are moved to compact the table. After the table is compacted, it
is truncated, but only after all transactions that are accessing the table at the
time the truncation point is determined have completed.

v A row lock might be acquired, depending on the type of table lock:
– If an S lock is held on the table, there is no need for individual row-level S

locks, and further locking is unnecessary.
– If an IS lock is held on the table, an NS row lock is acquired before the row is

moved, and then released after the move is complete.
v Certain internal locks might also be acquired during an online table reorg

operation.

668 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Locking has an impact on the performance of both online table reorg operations
and concurrent user applications. You can use lock snapshot data to help you to
understand the locking activity that occurs during online table reorganizations.

Reorganizing tables online
An online or inplace table reorganization allows users to access a table while it is
being reorganized.

Before you begin

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,
or CONTROL privilege on the table that is to be reorganized. You must also have a
database connection to reorganize a table.

About this task

After you have identified the tables that require reorganization, you can run the
reorg utility against those tables and, optionally, against any indexes that are
defined on those tables.

Procedure
v To reorganize a table online using the REORG TABLE command, specify the name

of the table and the INPLACE parameter. For example:
reorg table employee inplace

v To reorganize a table online using an SQL CALL statement, specify the REORG
TABLE command with the ADMIN_CMD procedure. For example:

call sysproc.admin_cmd (’reorg table employee inplace’)

v To reorganize a table online using the administrative application programming
interface, call the db2Reorg API.

What to do next

After reorganizing a table, collect statistics on that table so that the optimizer has
the most accurate data for evaluating query access plans.

Pausing and restarting an online table reorganization
An online table reorganization that is in progress can be paused and restarted by
the user.

Before you begin

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,
or CONTROL privilege on the table whose online reorganization is to be paused or
restarted. You must also have a database connection to pause or restart an online
table reorganization.

Procedure
1. To pause an online table reorganization using the REORG TABLE command,

specify the name of the table, the INPLACE parameter, and the PAUSE parameter.
For example:

reorg table employee inplace pause

2. To restart a paused online table reorganization, specify the RESUME parameter.
For example:

reorg table employee inplace resume

Chapter 39. Data organization 669

When an online table reorg operation is paused, you cannot begin a new
reorganization of that table. You must either resume or stop the paused
operation before beginning a new reorganization process.
Following a RESUME request, the reorganization process respects whatever
truncation option is specified on the current RESUME request. For example, if the
NOTRUNCATE parameter is not specified on the current RESUME request, a
NOTRUNCATE parameter specified on the original REORG TABLE command, or with
any previous RESUME requests, is ignored.
A table reorg operation cannot resume after a restore and rollforward operation.

Monitoring a table reorganization
You can use the GET SNAPSHOT command, the SNAPTAB_REORG administrative
view, or the SNAP_GET_TAB_REORG table function to obtain information about
the status of your table reorganization operations.

Procedure
v To access information about reorganization operations using SQL, use the

SNAPTAB_REORG administrative view. For example, the following query
returns details about table reorganization operations on all database partitions
for the currently connected database. If no tables have been reorganized, no
rows are returned.

select
substr(tabname, 1, 15) as tab_name,
substr(tabschema, 1, 15) as tab_schema,
reorg_phase,
substr(reorg_type, 1, 20) as reorg_type,
reorg_status,
reorg_completion,
dbpartitionnum

from sysibmadm.snaptab_reorg
order by dbpartitionnum

v To access information about reorganization operations using the snapshot
monitor, use the GET SNAPSHOT FOR TABLES command and examine the values of
the table reorganization monitor elements.

Results

Because offline table reorg operations are synchronous, errors are returned to the
caller of the utility (an application or the command line processor). And because
online table reorg operations are asynchronous, error messages in this case are not
returned to the CLP. To view SQL error messages that are returned during an
online table reorg operation, use the LIST HISTORY REORG command.

An online table reorg operation runs in the background as the db2Reorg process.
This process continues running even if the calling application terminates its
database connection.

Index reorganization
As tables are updated, index performance can degrade.

The degradation can occur in the following ways:
v Leaf pages become fragmented. When leaf pages are fragmented, I/O costs

increase because more leaf pages must be read to fetch table pages.

670 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The physical index page order no longer matches the sequence of keys on those
pages, resulting in low density indexes. When leaf pages have a low density,
sequential prefetching is inefficient and the number of I/O waits increases.
However, if smart index prefetching is enabled, the query optimizer switches to
readahead prefetching if low density indexes exist. This helps reduce the
negative impact that low density indexes have on performance.

v The index develops too many levels. In this case, the index should be
reorganized.

Index reorganization requires:
v SYSADM, SYSMAINT, SYSCTRL, DBADM, or SQLADM authority, or

CONTROL privilege on the table and its indexes
v When the REBUILD option with the ALLOW READ or WRITE ACCESS options are

chosen, an amount of free space in the table space where the indexes are stored
is required. This space must be equal to the current size of the indexes. Consider
placing indexes in a large table space when you issue the CREATE TABLE
statement.

v Additional log space. The index reorg utility logs its activities.

If you specify the MINPCTUSED option on the CREATE INDEX statement, the
database server automatically merges index leaf pages if a key is deleted and the
free space becomes less than the specified value. This process is called online index
defragmentation.

To restore index clustering, free up space, and reduce leaf levels, you can use one
of the following methods:
v Drop and recreate the index.
v Use the REORG TABLE command with options that allow you to reorganize the

table and rebuild its indexes offline.
v Use the REORG INDEXES command with the REBUILD option to reorganize indexes

online or offline. You might choose online reorganization in a production
environment, because it allows users to read from or write to the table while its
indexes are being rebuilt.

If your primary objective is to free up space, consider using the CLEANUP and
RECLAIM EXTENTS options of the REORG command. See the related links for more
details.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
reorganizing indexes. Task assistants can guide you through the process of setting
options, reviewing the automatically generated commands to perform the task, and
running these commands. For more details, see Administering databases with task
assistants.

With DB2 V9.7 Fix Pack 1 and later releases, using the REORG INDEXES ALL
command on a data partitioned table and specifying a partition with the ON DATA
PARTITION clause reorganizes the partitioned indexes for single data partition.
During index reorganization, the unaffected partitions remain read and write
accessible access is restricted only to the affected partition.

REORG TABLE commands and REORG INDEXES ALL commands can be issued on a data
partitioned table to concurrently reorganize different data partitions or partitioned
indexes on a partition. When concurrently reorganizing data partitions or the

Chapter 39. Data organization 671

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

partitioned indexes on a partition, users can access the unaffected partitions. All
the following criteria must be met to issue REORG commands that operate
concurrently on the same table:
v Each REORG command must specify a different partition with the ON DATA

PARTITION clause.
v Each REORG command must use the ALLOW NO ACCESS mode to restrict

access to the data partitions.
v The partitioned table must have only partitioned indexes if issuing REORG TABLE

commands. No nonpartitioned indexes (except system-generated XML path
indexes) can be defined on the table.

Note: The output from the REORGCHK command contains statistics and
recommendations for reorganizing indexes. For a partitioned table, the output
contains statistics and recommendations for reorganizing partitioned and
nonpartitioned indexes. Alternatively, if the objective is to reclaim space, the
RECLAIMABLE_SPACE output of the ADMIN_GET_INDEX_INFO function shows how much
space is reclaimable. Use the REORG INDEXES command with the RECLAIM EXTENTS
option to free this reclaimable space.

Online index reorganization

When you use the REORG INDEXES command with the ALLOW READ/WRITE ACCESS and
REBUILD options, a shadow copy of the index object is built while the original index
object remains available as read or write access to the table continues. If write
access is allowed, then during reorganization, any changes to the underlying table
that would affect the indexes are logged. The reorg operation processes these
logged changes while rebuilding the indexes.

Changes to the underlying table that would affect the indexes are also written to
an internal memory buffer, if such space is available for use. The internal buffer is
a designated memory area that is allocated on demand from the utility heap. The
use of a memory buffer enables the index reorg utility to process the changes by
reading directly from memory first, and then reading through the logs, if necessary,
but at a much later time. The allocated memory is freed after the reorg operation
completes.

Extra storage space is required in the index tablespace to hold the shadow copy of
the index. Once the shadow copy of the index is built and all logs affecting the
shadow copy have been processed, then a super-exclusive lock is taken on the
table and the original index is discarded. The space that was occupied by the
original copy of the index object is free to be reused by any object in the same
tablespace, however it is not automatically returned to the filesystem.

Online index reorganization in ALLOW WRITE ACCESS mode (with or without
the CLEANUP option) is not supported for spatial indexes or multidimensional
clustering (MDC) and insert time clustering (ITC) tables.

Restriction: Online reorganization with the REBUILD option is not supported in
DB2 pureScale environments. Any attempts to perform an online reorganization
with the REBUILD option in DB2 pureScale environments will fail with SQL1419N.

672 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Locking and concurrency considerations for online index
reorganization

In this topic, online index reorganization applies to an index reorganization that is
run with the ALLOW READ ACCESS or ALLOW WRITE ACCESS parameters.

These options allow you to access the table while its indexes are being reorganized.
During online index reorganization with the REBUILD option, new indexes are built
as additional copies while the original indexes remain intact. Concurrent
transactions use the original indexes while the new indexes are created. At the end
of the reorganization operation, the original indexes are replaced by the new
indexes. Transactions that are committed in the meantime are reflected in the new
indexes after the replacement of the original indexes. If the reorganization
operation fails and the transaction is rolled back, the original indexes remain intact.
During online index reorganization with the CLEANUP and RECLAIM EXTENTS options,
space is reclaimed and made available for use for all objects in the table space.

An online index reorganization operation can hold the following locks:
v To ensure access to table spaces, an IX-lock is acquired on the table spaces

affected by the reorganization operation. This includes table spaces that hold the
table, as well as partition, and index objects.

v To prevent the affected table from being altered during reorganization, an X alter
table lock is acquired.

v A table lock is acquired and held throughout the reorganization operation. The
type of lock depends on the table type, access mode, and reorganization option:
– For nonpartitioned tables:

- If ALLOW READ ACCESS is specified, a U-lock is acquired on the table.
- If ALLOW WRITE ACCESS is specified, an IN-lock is acquired on the table.
- If CLEANUP is specified, an S-lock is acquired on the table for READ access,

and IX-lock for WRITE access.
– For partitioned tables, reorganization with ALLOW READ ACCESS or ALLOW WRITE

ACCESS is supported at partition level only:
- If ALLOW READ ACCESS is specified, a U-lock is acquired on the partition.
- If ALLOW WRITE ACCESS is specified, an IS-lock is acquired on the partition.
- If CLEANUP is specified, an S-lock is acquired on the partition for READ

access, and an IX-lock for WRITE access.
- An IS-lock is acquired on the table regardless of which access mode or

option is specified.
v An exclusive Z-lock on the table or partition is requested at the end of index

reorganization. If a partitioned table contains nonpartitioned indexes, then the
Z-lock is acquired on the table as well as the partition. This lock suspends table
and partition access to allow for the replacement of the original indexes by the
new indexes. This lock is held until transactions that are committed during
reorganization are reflected in the new indexes.

v The IS table lock and NS row lock are acquired on the system catalog table
SYSIBM.SYSTABLES.

v For a partition level reorganization, IS table lock and NS row lock are also
acquired on the system catalog table SYSIBM.SYSDATAPARTITIONS.

v Certain internal locks might also be acquired during an online index
reorganization operation.

v Online index reorganization might have impact on concurrency if the
reorganization operation fails. For example, the reorganization might fail due to

Chapter 39. Data organization 673

insufficient memory, lack of disk space, or a lock timeout. The reorganization
transaction performs certain updates before ending. To perform updates,
reorganization must wait on existing transaction to be committed. This delay
might block other transactions in the process. Starting in DB2 Version 9.7 Fix
Pack 1, reorganization requests a special drain lock on the index object.
Reorganization operations wait for existing transactions to finish; however, new
requests to access the index object are allowed.

Monitoring an index reorganization operation

About this task

You can use the db2pd command to monitor the progress of reorganization
operations on a database.

Procedure

Issue the db2pd command with the -reorgs index parameter:
db2pd -reorgs index

Results

The following is an example of output obtained using the db2pd command with
the-reorgs index parameter, which reports the index reorganization progress for a
range-partitioned table with two partitions.

Note: The first output reports the Index Reorg Stats of the non-partitioned indexes.
The following outputs report the Index Reorg Stats of the partitioned indexes on
each partition; the index reorganization statistics of only one partition is reported
in each output.
Index Reorg Stats:
Retrieval Time: 02/08/2010 23:04:21
TbspaceID: -6 TableID: -32768
Schema: TEST1 TableName: BIGRPT
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:03:55 End Time: 02/08/2010 23:04:04
Total Duration: 00:00:08
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 750000

Retrieval Time: 02/08/2010 23:04:21
TbspaceID: 2 TableID: 5
Schema: TEST1 TableName: BIGRPT
PartitionID: 0 MaxPartition: 2
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:04:04 End Time: 02/08/2010 23:04:08
Total Duration: 00:00:04
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 375000

674 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Retrieval Time: 02/08/2010 23:04:21
TbspaceID: 2 TableID: 6
Schema: TEST1 TableName: BIGRPT
PartitionID: 1 MaxPartition: 2
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:04:08 End Time: 02/08/2010 23:04:12
Total Duration: 00:00:04
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 375000

Determining when to reorganize tables and indexes
After many changes to table data, logically sequential data might be on
nonsequential physical data pages, especially if many update operations created
overflow records. When the data is organized in this way, the database manager
must perform additional read operations to access required data. Additional read
operations are also required if many rows are deleted.

About this task

Table reorganization defragments data, eliminating wasted space. It also reorders
the rows to incorporate overflow records, improving data access and, ultimately,
query performance. You can specify that the data can be reordered according to a
particular index, so that queries can access the data with a minimal number of
read operations.

Many changes to table data can cause index performance to degrade. Index leaf
pages can become fragmented or badly clustered, and the index could develop
more levels than necessary for optimal performance. All of these issues cause more
I/Os and can degrade performance.

Any one of the following factors indicate that you might reorganize a table or
index:
v A high volume of insert, update, and delete activity against a table since the

table was last reorganized
v Significant changes in the performance of queries that use an index with a high

cluster ratio
v Executing the RUNSTATS command to refresh statistical information does not

improve performance
v Output from the REORGCHK command suggests that performance can be improved

by reorganizing a table or its indexes
In some cases, the reorgchk utility might recommend table reorganization, even
after a table reorg operation is performed. You should analyze reorgchk utility
recommendations and assess the potential benefits against the costs of
performing a reorganization.

v If reclaiming space is your primary concern, the REORG command with the
CLEANUP and RECLAIM EXTENTS options can be used.
The RECLAIMABLE_SPACE output of the ADMIN_GET_INDEX_INFO and
ADMIN_GET_TAB_INFO functions show how much space, in kilobytes, is available
for reclaim. If you issue the REORG command with the CLEANUP option before
running the ADMIN_GET_INDEX_INFO and ADMIN_GET_TAB_INFO functions, the

Chapter 39. Data organization 675

output of the functions shows the maximum space available for reclamation. Use
this information to determine when a REORG with RECLAIM EXTENTS would help
reduce the size of your tables and indexes.

The REORGCHK command returns statistical information about data organization and
can advise you about whether particular tables or indexes need to be reorganized.
When space reclaim is your only concern, the RECLAIMABLE_SPACE output of the
ADMIN_GET_INDEX_INFO and ADMIN_GET_TAB_INFO functions outline how much space
is available for reclaim. However, running specific queries against the SYSSTAT
views at regular intervals or at specific times can build a history that helps you
identify trends that have potentially significant performance implications.

To determine whether there is a need to reorganize your tables or indexes, query
the SYSSTAT views and monitor the following statistics:
v Overflow of rows

Query the OVERFLOW column in the SYSSTAT.TABLES view to monitor the
overflow value. The value represents the number of rows that do not fit on their
original pages. Row data can overflow when variable length columns cause the
record length to expand to the point that a row no longer fits into its assigned
location on the data page. Length changes can also occur if a column is added to
the table. In this case, a pointer is kept at the original location in the row and
the actual value is stored in another location that is indicated by the pointer.
This can impact performance because the database manager must follow the
pointer to find the contents of the column. This two-step process increases the
processing time and might also increase the number of I/Os that are required.
Reorganizing the table data will eliminate any row overflows.

v Fetch statistics
Query the following columns in the SYSSTAT.INDEXES catalog view to
determine the effectiveness of the prefetchers when the table is accessed in index
order. These statistics characterize the average performance of the prefetchers
against the underlying table.
– The AVERAGE_SEQUENCE_FETCH_PAGES column stores the average

number of pages that can be accessed in sequence. Pages that can be accessed
in sequence are eligible for prefetching. A small number indicates that the
prefetchers are not as effective as they could be, because they cannot read in
the full number of pages that is specified by the PREFETCHSIZE value for
the table space. A large number indicates that the prefetchers are performing
effectively. For a clustered index and table, this number should approach the
value of NPAGES, the number of pages that contain rows.

– The AVERAGE_RANDOM_FETCH_PAGES column stores the average
number of random table pages that are fetched between sequential page
accesses when fetching table rows using an index. The prefetchers ignore
small numbers of random pages when most pages are in sequence, and
continue to prefetch to the configured prefetch size. As the table becomes
more disorganized, the number of random fetch pages increases.
Disorganization is usually caused by insertions that occur out of sequence,
either at the end of the table or in overflow pages, and query performance is
impacted when an index is used to access a range of values.

– The AVERAGE_SEQUENCE_FETCH_GAP column stores the average gap
between table page sequences when fetching table rows using an index.
Detected through a scan of index leaf pages, each gap represents the average
number of table pages that must be randomly fetched between sequences of
table pages. This occurs when many pages are accessed randomly, which

676 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

interrupts the prefetchers. A large number indicates that the table is
disorganized or poorly clustered to the index.

v Number of index leaf pages containing record identifiers (RIDs) that are marked
deleted but not yet removed
RIDs are not usually physically deleted when they are marked deleted. This
means that useful space might be occupied by these logically deleted RIDs. To
retrieve the number of leaf pages on which every RID is marked deleted, query
the NUM_EMPTY_LEAFS column of the SYSSTAT.INDEXES view. For leaf pages
on which not all RIDs are marked deleted, the total number of logically deleted
RIDs is stored in the NUMRIDS_DELETED column.
Use this information to estimate how much space might be reclaimed by
invoking the REORG INDEXES command with the CLEANUP ALL option. To
reclaim only the space in pages on which all RIDs are marked deleted, invoke
the REORG INDEXES command with the CLEANUP PAGES option.

v Cluster-ratio and cluster-factor statistics for indexes
In general, only one of the indexes for a table can have a high degree of
clustering. A cluster-ratio statistic is stored in the CLUSTERRATIO column of the
SYSCAT.INDEXES catalog view. This value, between 0 and 100, represents the
degree of data clustering in the index. If you collect detailed index statistics, a
finer cluster-factor statistic between 0 and 1 is stored in the CLUSTERFACTOR
column instead, and the value of CLUSTERRATIO is -1. Only one of these two
clustering statistics can be recorded in the SYSCAT.INDEXES catalog view. To
compare CLUSTERFACTOR values with CLUSTERRATIO values, multiply the
CLUSTERFACTOR value by 100 to obtain a percentage value.
Index scans that are not index-only access might perform better with higher
density of indexes. A low density leads to more I/O for this type of scan,
because a data page is less likely to remain in the buffer pool until it is accessed
again. Increasing the buffer size might improve the performance of low density
indexes. Also, if smart index prefetching is enabled, it can also improve the
performance of low density indexes which reduces the need to perform the
REORG command on indexes. Smart index prefetching achieves this by switching
from sequential detection prefetching to read ahead prefetching whenever low
density indexes exist.
If table data was initially clustered on a certain index, and the clustering
statistics indicate that the data is now poorly clustered on that same index, you
might want to reorganize the table to re-cluster the data. Also, if smart data
prefetching is enabled, it can improve the performance of poorly clustered data
which reduces the need to perform the REORG command on tables. Smart data
prefetching achieves this by switching from sequential detection prefetching to
read ahead prefetching whenever badly clustered data pages exist.

v Number of leaf pages
Query the NLEAF column in the SYSCAT.INDEXES view to determine the
number of leaf pages that are occupied by an index. This number tells you how
many index page I/Os are needed for a complete scan of the index.
Ideally, an index should occupy as little space as possible to reduce the number
of I/Os that are required for an index scan. Random update activity can cause
page splits that increase the size of an index. During a table REORG operation,
each index can be rebuilt with the least amount of space.
By default, ten percent of free space is left on each index page when an index is
built. To increase the free space amount, specify the PCTFREE option when you
create the index. The specified PCTFREE value is used whenever you reorganize

Chapter 39. Data organization 677

the index. A free space value that is greater than ten percent might reduce the
frequency of index reorganization, because the extra space can accommodate
additional index insertions.

v Number of empty data pages
To calculate the number of empty pages in a table, query the FPAGES and
NPAGES columns in the SYSCAT.TABLES view and then subtract the NPAGES
value (the number of pages that contain rows) from the FPAGES value (the total
number of pages in use). Empty pages can occur when entire ranges of rows are
deleted.
As the number of empty pages increases, so does the need for table
reorganization. Reorganizing a table reclaims empty pages and reduces the
amount of space that a table uses. In addition, because empty pages are read
into the buffer pool during a table scan, reclaiming unused pages can improve
scan performance.
If the total number of in-use pages (FPAGES) in a table is less than or equal to
(NPARTITIONS * 1 extent size), table reorganization is not recommended.
NPARTITIONS represents the number of data partitions if the table is a
partitioned table; otherwise, its value is 1. In a partitioned database
environment, table reorganization is not recommended if FPAGES <= (the
number of database partitions in a database partition group of the table) *
(NPARTITIONS * 1 extent size).

Before reorganizing tables or indexes, consider the trade-off between the cost of
increasingly degraded query performance and the cost of table or index
reorganization, which includes processing time, elapsed time, and reduced
concurrency.

Costs of table and index reorganization
Performing a table reorganization or an index reorganization with the REBUILD
option incurs a certain amount of overhead that must be considered when deciding
whether to reorganize an object.

The costs of reorganizing tables and reorganizing indexes with the REBUILD option
include:
v Processing time of the executing utility
v Reduced concurrency (because of locking) while running the reorg utility.
v Extra storage requirements.

– Offline table reorganization requires more storage space to hold a shadow
copy of the table.

– Online or inplace table reorganization requires more log space.
– Offline index reorganization requires less log space and does not involve a

shadow copy.
– Online index reorganization requires more log space and more storage space

to hold a shadow copy of the index.

In some cases, a reorganized table might be larger than the original table. A table
might grow after reorganization in the following situations:
v In a clustering reorg table operation in which an index is used to determine the

order of the rows, more space might be required if the table records are of a
variable length, because some pages in the reorganized table might contain
fewer rows than in the original table.

678 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The amount of free space left on each page (represented by the PCTFREE value)
might have increased since the last reorganization.

Space requirements for an offline table reorganization

Because offline reorganization uses a shadow copy approach, you need enough
additional storage to accommodate another copy of the table. The shadow copy is
built either in the table space in which the original table resides or in a
user-specified temporary table space.

Additional temporary table space storage might be required for sort processing if a
table scan sort is used. The additional space required might be as large as the size
of the table being reorganized. If the clustering index is of system managed space
(SMS) type or unique database managed space (DMS) type, the recreation of this
index does not require a sort. Instead, this index is rebuilt by scanning the newly
reorganized data. Any other indexes that are recreated will require a sort,
potentially involving temporary space up to the size of the table being reorganized.

Offline table reorg operations generate few control log records, and therefore
consume a relatively small amount of log space. If the reorg utility does not use an
index, only table data log records are created. If an index is specified, or if there is
a clustering index on the table, record IDs (RIDs) are logged in the order in which
they are placed into the new version of the table. Each RID log record holds a
maximum of 8000 RIDs, with each RID consuming 4 bytes. This can contribute to
log space problems during an offline table reorg operation. Note that RIDs are only
logged if the database is recoverable.

Log space requirements for an online table reorganization

The log space that is required for an online table reorg operation is typically larger
than what is required for an offline table reorg. The amount of space that is
required is determined by the number of rows being reorganized, the number of
indexes, the size of the index keys, and how poorly organized the table is at the
outset. It is a good idea to establish a typical benchmark for log space consumption
associated with your tables.

Every row in a table is likely moved twice during an online table reorg operation.
For each index, each table row must update the index key to reflect the new
location, and after all accesses to the old location have completed, the index key is
updated again to remove references to the old RID. When the row is moved back,
updates to the index key are performed again. All of this activity is logged to make
online table reorganization fully recoverable. There is a minimum of two data log
records (each including the row data) and four index log records (each including
the key data) for each row (assuming one index). Clustering indexes, in particular,
are prone to filling up the index pages, causing index splits and merges which
must also be logged.

Because the online table reorg utility issues frequent internal COMMIT statements,
it usually does not hold a large number of active logs. An exception can occur
during the truncation phase, when the utility requests an S table lock. If the utility
cannot acquire the lock, it waits, and other transactions might quickly fill up the
logs in the meantime.

Chapter 39. Data organization 679

Reducing the need to reorganize tables and indexes
You can use different strategies to reduce the need for (and the costs associated
with) table and index reorganization.

Reducing the need to reorganize tables

To reduce the need for table reorganization:
v Use multi-partition tables.
v Create multidimensional clustering (MDC) tables. For MDC tables, clustering is

maintained on the columns that you specify with the ORGANIZE BY
DIMENSIONS clause of the CREATE TABLE statement. However, the reorgchk
utility might still recommend reorganization of an MDC table if it determines
that there are too many unused blocks or that blocks should be compacted.

v Create insert time clustering (ITC) tables. For ITC tables, if you have a cyclical
access pattern, for example you delete all data that was inserted at similar times,
you can release that space back to the system. In such cases, you can reduce the
need for a table reorganization with the REORG RECLAIM EXTENTS command
that frees space.

v Enable the APPEND mode on your tables. If the index key values for new rows
are always new high key values, for example, the clustering attribute of the table
will attempt to place them at the end of the table. In this case, enabling the
APPEND mode might be a better choice than using a clustering index.

To further reduce the need for table reorganization, perform these tasks after you
create a table:
v Alter the table to specify the percentage of each page that is to be left as free

space during a load or a table reorganization operation (PCTFREE)
v Create a clustering index, specifying the PCTFREE option
v Sort the data before loading it into the table

After you have performed these tasks, the clustering index and the PCTFREE
setting on the table help to preserve the original sorted order. If there is enough
space on the table pages, new data can be inserted on the correct pages to maintain
the clustering characteristics of the index. However, as more data is inserted and
the table pages become full, records are appended to the end of the table, which
gradually becomes unclustered.

If you perform a table reorg operation or a sort and load operation after you create
a clustering index, the index attempts to maintain the order of the data, which
improves the CLUSTERRATIO or CLUSTERFACTOR statistics that are collected by
the runstats utility.

Note: If readahead prefetching is enabled it helps reduce the need to reorganize
tables even if formula F4 of the REORGCHK command states otherwise.

Reducing the need to rebuild indexes

To reduce the need to rebuild indexes with index reorganization:
v Create indexes specifying the PCTFREE or the LEVEL2 PCTFREE option.
v Create indexes with the MINPCTUSED option. Alternatively, consider using the

CLEANUP ALL option of the REORG INDEXES command to merge leaf pages.

680 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Use the RECLAIM EXTENTS option of the REORG INDEXES command to
release space back to the table space in an online fashion. This operation
provides space reclaim without the need for a full rebuild of the indexes.

Note: If readahead prefetching is enabled it helps reduce the need to rebuild
indexes with index reorganization, even if formula F4 of the REORGCHK command
states otherwise.

Enabling automatic table and index reorganization
Use automatic table and index reorganization to eliminate the worry of when and
how to reorganize your data.

About this task

Having well-organized table and index data is critical to efficient data access and
optimal workload performance. After many database operations, such as insert,
update, and delete, logically sequential table data might be found on nonsequential
data pages. When logically sequential table data is found on nonsequential data
pages, additional read operations are required by the database manager to access
data. Additional read operations are also required when accessing data in a table
from which a significant number of rows are deleted. You can enable the database
manager to reorganize system both catalog tables and user tables.

Procedure

To enable your database for automatic reorganization:
1. Set the auto_maint, auto_tbl_maint, and auto_reorg database configuration

parameters to ON. You can set the parameters to ON with these commands:
v db2 update db cfg for <db_name> using auto_maint on

v db2 update db cfg for <db_name> using auto_tbl_maint on

v db2 update db cfg for <db_name> using auto_reorg on

Replace <db_name> with the name of the database on which you want to
enable automatic maintenance and reorganization.

2. Connect to the database, <db_name>.
3. Specify a reorganization policy. A reorganization policy is a defined set of rules

or guidelines that dictate when automated table and index maintenance takes
place. You can set this policy in one of two ways:
a. Call the AUTOMAINT_SET_POLICY procedure.
b. Call the AUTOMAINT_SET_POLICYFILE procedure.

The reorganization policy is either an input argument or file both of which are
in an XML format. For more information about both of these procedures, see
“Automatic table and index maintenance” on page 51.

Enabling automatic index reorganization in volatile tables
You can enable automatic reorganization to perform index reorganization in
volatile tables.

About this task

If you enable automatic index reorganization in volatile tables, automatic reorg
checks at every refresh interval whether the indexes on volatile tables require

Chapter 39. Data organization 681

reorganization and schedules the necessary operation using the REORG command.

Procedure

To enable automatic index reorganization in volatile tables, perform the following
steps:
1. Set the DB2_WORKLOAD registry variable to SAP. The following example shows

how to set this variable using the db2set command:
db2set DB2_WORKLOAD=SAP

Restart the database so that this setting takes effect.
2. Set the auto_reorg database configuration parameter to ON. The following

example shows how to set this database configuration parameter using the DB2
CLP command line interface:
UPDATE DB CFG FOR SAMPLE USING auto_reorg ON

Ensure that the auto_maint and auto_tbl_maint database configuration
parameters are also set to ON. By the default, auto_maint and auto_tbl_maint
are set to ON.

3. Set the numInxPseudoEmptyPagesForVolatileTables attribute in the
AUTO_REORG policy by calling the AUTOMAINT_SET_POLICY or
AUTOMAINT_SET_POLICYFILE procedure. This attribute indicates the
minimum number of empty index pages with pseudo deleted keys required to
perform the index reorganization. The following example shows how to set this
attribute:
CALL SYSPROC.AUTOMAINT_SET_POLICY

(’AUTO_REORG’,
BLOB(’ <?xml version="1.0" encoding="UTF-8"?>

<DB2AutoReorgPolicy
xmlns="http://www.ibm.com/xmlns/prod/db2/autonomic/config" >

<ReorgOptions dictionaryOption="Keep" indexReorgMode="Online"
useSystemTempTableSpace="false"

numInxPseudoEmptyPagesForVolatileTables="20" />

<ReorgTableScope maxOfflineReorgTableSize="0">
<FilterClause>TABSCHEMA NOT LIKE ’SYS%’</FilterClause>
</ReorgTableScope>
</DB2AutoReorgPolicy>’)

)

You can monitor the values for the PSEUDO_EMPTY_PAGES,
EMPTY_PAGES_DELETED, and EMPTY_PAGES_REUSED column by querying
the MON_GET_INDEX table function to help you determine an appropriate
value for the numInxPseudoEmptyPagesForVolatileTables attribute.

682 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 40. Catalog statistics

When the query compiler optimizes query plans, its decisions are heavily
influenced by statistical information about the size of the database tables, indexes,
and statistical views. This information is stored in system catalog tables.

The optimizer also uses information about the distribution of data in specific
columns of tables, indexes, and statistical views if these columns are used to select
rows or to join tables. The optimizer uses this information to estimate the costs of
alternative access plans for each query.

Statistical information about the cluster ratio of indexes, the number of leaf pages
in indexes, the number of table rows that overflow their original pages, and the
number of filled and empty pages in a table can also be collected. You can use this
information to decide when to reorganize tables or indexes.

Table statistics in a partitioned database environment are collected only for that
portion of the table that resides on the database partition on which the utility is
running, or for the first database partition in the database partition group that
contains the table. Information about statistical views is collected for all database
partitions.

Statistics that are updated by the runstats utility

Catalog statistics are collected by the runstats utility, which can be started by
issuing the RUNSTATS command, calling the ADMIN_CMD procedure, or calling the
db2Runstats API. Updates can be initiated either manually or automatically.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for collecting
catalog statistics. Task assistants can guide you through the process of setting
options, reviewing the automatically generated commands to perform the task, and
running these commands. For more details, see Administering databases with task
assistants.

Statistics about declared temporary tables are not stored in the system catalog, but
are stored in memory structures that represent the catalog information for declared
temporary tables. It is possible (and in some cases, it might be useful) to perform
runstats on a declared temporary table.

The runstats utility collects the following information about tables and indexes:
v The number of pages that contain rows
v The number of pages that are in use
v The number of rows in the table (the cardinality)
v The number of rows that overflow
v For multidimensional clustering (MDC) and insert time clustering (ITC) tables,

the number of blocks that contain data
v For partitioned tables, the degree of data clustering within a single data partition
v Data distribution statistics, which are used by the optimizer to estimate efficient

access plans for tables and statistical views whose data is not evenly distributed
and whose columns have a significant number of duplicate values

© Copyright IBM Corp. 2014 683

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

v Detailed index statistics, which are used by the optimizer to determine how
efficient it is to access table data through an index

v Subelement statistics for LIKE predicates, especially those that search for
patterns within strings (for example, LIKE %disk%), are also used by the
optimizer

The runstats utility collects the following statistics for each data partition in a table.
These statistics are only used for determining whether a partition needs to be
reorganized:
v The number of pages that contain rows
v The number of pages that are in use
v The number of rows in the table (the cardinality)
v The number of rows that overflow
v For MDC and ITC tables, the number of blocks that contain data

Distribution statistics are not collected:
v When the num_freqvalues and num_quantiles database configuration parameters

are set to 0
v When the distribution of data is known, such as when each data value is unique
v When the column contains a LONG, LOB, or structured data type
v For row types in sub-tables (the table-level statistics NPAGES, FPAGES, and

OVERFLOW are not collected)
v If quantile distributions are requested, but there is only one non-null value in

the column
v For extended indexes or declared temporary tables

The runstats utility collects the following information about each column in a table
or statistical view, and the first column in an index key:
v The cardinality of the column
v The average length of the column (the average space, in bytes, that is required

when the column is stored in database memory or in a temporary table)
v The second highest value in the column
v The second lowest value in the column
v The number of null values in the column

For columns that contain large object (LOB) or LONG data types, the runstats
utility collects only the average length of the column and the number of null
values in the column. The average length of the column represents the length of
the data descriptor, except when LOB data is located inline on the data page. The
average amount of space that is required to store the column on disk might be
different than the value of this statistic.

The runstats utility collects the following information about each XML column:
v The number of NULL XML documents
v The number of non-NULL XML documents
v The number of distinct paths
v The sum of the node count for each distinct path
v The sum of the document count for each distinct path
v The k pairs of (path, node count) with the largest node count
v The k pairs of (path, document count) with the largest document count

684 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The k triples of (path, value, node count) with the largest node count
v The k triples of (path, value, document count) with the largest document count
v For each distinct path that leads to a text or attribute value:

– The number of distinct values that this path can take
– The highest value
– The lowest value
– The number of text or attribute nodes
– The number of documents that contain the text or attribute nodes

Each row in an XML column stores an XML document. The node count for a path
or path-value pair refers to the number of nodes that are reachable by that path or
path-value pair. The document count for a path or path-value pair refers to the
number of documents that contain that path or path-value pair.

For DB2 V9.7 Fix Pack 1 and later releases, the following apply to the collection of
distribution statistics on an XML column:
v Distribution statistics are collected for each index over XML data specified on an

XML column.
v The runstats utility must collect both distribution statistics and table statistics to

collect distribution statistics for an index over XML data. Table statistics must be
gathered in order for distribution statistics to be collected since XML distribution
statistics are stored with table statistics.
Collecting only index statistics, or collecting index statistics during index
creation, will not collect distribution statistics for an index over XML data.
As the default, the runstats utility collects a maximum of 250 quantiles for
distribution statistics for each index over XML data. The maximum number of
quantiles for a column can be specified when executing the runstats utility.

v Distribution statistics are collected for indexes over XML data of type
VARCHAR, DOUBLE, TIMESTAMP, and DATE. XML distribution statistics are
not collected for indexes over XML data of type VARCHAR HASHED.

v XML distribution statistics are collected when automatic table runstats
operations are performed.

v XML distribution statistics are not created when loading data with the
STATISTICS option.

v XML distribution statistics are not collected for partitioned indexes over XML
data defined on a partitioned table.

The runstats utility collects the following information about column groups:
v A timestamp-based name for the column group
v The cardinality of the column group

The runstats utility collects the following information about indexes:
v The number of index entries (the index cardinality)
v The number of leaf pages
v The number of index levels
v The degree of clustering of the table data to the index
v The degree of clustering of the index keys with regard to data partitions
v The ratio of leaf pages located on disk in index key order to the number of

pages in the range of pages occupied by the index
v The number of distinct values in the first column of the index

Chapter 40. Catalog statistics 685

v The number of distinct values in the first two, three, and four columns of the
index

v The number of distinct values in all columns of the index
v The number of leaf pages located on disk in index key order, with few or no

large gaps between them
v The average leaf key size, without include columns
v The average leaf key size, with include columns
v The number of pages on which all record identifiers (RIDs) are marked deleted
v The number of RIDs that are marked deleted on pages where not all RIDs are

marked deleted

If you request detailed index statistics, additional information about the degree of
clustering of the table data to the index, and the page fetch estimates for different
buffer sizes, is collected.

For a partitioned index, these statistics are representative of a single index
partition, with the exception of the distinct values in the first column of the index;
the first two, three, and four columns of the index; and in all columns of the index.
Per-index partition statistics are also collected for the purpose of determining
whether an index partition needs to be reorganized.

Statistics collection invalidates cached dynamic statements that reference tables for
which statistics have been collected. This is done so that cached dynamic
statements can be re-optimized with the latest statistics.

Catalog statistics tables
Statistical information about the size of database tables, indexes, and statistical
views is stored in system catalog tables.

Catalog statistics views
The database manager creates and maintains catalog views that are defined on top
of the base system catalog tables. A set of updatable catalog views are created
under the SYSSTAT schema. These updatable views contain statistical information
that is used by the optimizer. The values in some columns in these views can be
changed to test performance. Before any statistics are changed, it is recommended
that you issue the RUNSTATS command so that all the statistics reflect the current
state. Applications should use the SYSSTAT views rather than the base catalog
tables.

Guidelines for collecting and updating statistics
The RUNSTATS utility collects statistics on tables, indexes, and statistical views to
provide the optimizer with accurate information for access plan selection.

Use the RUNSTATS utility to collect statistics in the following situations:
v After data is loaded into a table and appropriate indexes are created
v After creating an index on a table
v After a table is reorganized with the REORG utility
v After a table and its indexes are significantly modified through update, insert, or

delete operations
v Before binding application programs whose performance is critical

686 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v When you want to compare current and previous statistics
v When the prefetch value has changed
v After executing the REDISTRIBUTE DATABASE PARTITION GROUP command
v When you have XML columns. When RUNSTATS is used to collect statistics for

XML columns only, existing statistics for non-XML columns that were collected
during a load operation or a previous RUNSTATS operation are retained. If
statistics on some XML columns were collected previously, those statistics are
either replaced or dropped if the current RUNSTATS operation does not include
those columns.

To improve RUNSTATS performance and save disk space used to store statistics,
consider specifying only those columns for which data distribution statistics should
be collected.

You should rebind application programs after executing RUNSTATS. The query
optimizer might choose different access plans if new statistics are available.

If a full set of statistics cannot be collected at one time, use the RUNSTATS utility on
subsets of the objects. If inconsistencies occur as a result of ongoing activity against
those objects, a warning message (SQL0437W, reason code 6) is returned during
query optimization. If this occurs, use RUNSTATS again to update the distribution
statistics.

To ensure that index statistics are synchronized with the corresponding table,
collect both table and index statistics at the same time. If a table was modified
extensively since the last time that statistics were gathered, updating only the
index statistics for that table leaves the two sets of statistics out of synchronization
with each other.

Using the RUNSTATS utility on a production system might negatively affect
workload performance. The utility now supports a throttling option that can be
used to limit the performance impact of RUNSTATS execution during high levels of
database activity.

When you collect statistics for a table in a partitioned database environment,
RUNSTATS operates only on the database partition from which the utility is
executed. The results from this database partition are extrapolated to the other
database partitions. If this database partition does not contain a required portion of
the table, the request is sent to the first database partition in the database partition
group that contains the required data.

Statistics for a statistical view are collected on all database partitions containing
base tables that are referenced by the view.

Consider the following tips to improve the efficiency of RUNSTATS and the
usefulness of the statistics:
v Collect statistics only for columns that are used to join tables or for columns that

are referenced in the WHERE, GROUP BY, or similar clauses of queries. If the
columns are indexed, you can specify these columns with the ONLY ON KEY
COLUMNS clause on the RUNSTATS command.

v Customize the values of the num_freqvalues and num_quantiles database
configuration parameters for specific tables and columns.

v When you create an index for a populated table, use the COLLECT STATISTICS
clause to create statistics as the index is created.

Chapter 40. Catalog statistics 687

v When significant numbers of table rows are added or removed, or if data in
columns for which you collect statistics is updated, use RUNSTATS again to update
the statistics.

v Because RUNSTATS collects statistics on only a single database partition, the
statistics are less accurate if the data is not distributed consistently across all
database partitions. If you suspect that there is skewed data distribution,
consider redistributing the data across database partitions by using the
REDISTRIBUTE DATABASE PARTITION GROUP command before using the RUNSTATS
utility.

v For DB2 V9.7 Fix Pack 1 and later releases, distribution statistics can be collected
on an XML column. Distribution statistics are collected for each index over XML
data specified on the XML column. By default, a maximum of 250 quantiles are
used for distribution statistics for each index over XML data.
When collecting distribution statistics on an XML column, you can change
maximum number of quantiles. You can lower the maximum number of
quantiles to reduce the space requirements for XML distribution statistics based
on your particular data size, or you can increase the maximum number of
quantiles if 250 quantiles are not sufficient to capture the distribution statistics of
the data set for an index over XML data.

Detailed index statistics
A RUNSTATS operation for indexes with the DETAILED parameter collects statistical
information that allows the optimizer to estimate how many data page fetches are
required, depending on the buffer pool size. This additional information helps the
optimizer to better estimate the cost of accessing a table through an index.

Detailed statistics provide concise information about the number of physical I/Os
that are required to access the data pages of a table if a complete index scan is
performed under different buffer pool sizes. As the RUNSTATS utility scans the pages
of an index, it models the different buffer sizes, and estimates how often a page
fault occurs. For example, if only one buffer page is available, each new page that
is referenced by the index results in a page fault. In the worst case, each row might
reference a different page, resulting in at most the same number of I/Os as the
number of rows in the indexed table. At the other extreme, when the buffer is big
enough to hold the entire table (subject to the maximum buffer size), all table
pages are read at once. As a result, the number of physical I/Os is a monotonic,
nonincreasing function of the buffer size.

The statistical information also provides finer estimates of the degree of clustering
of the table rows to the index order. The less clustering, the more I/Os are required
to access table rows through the index. The optimizer considers both the buffer
size and the degree of clustering when it estimates the cost of accessing a table
through an index.

Collect detailed index statistics when:
v Queries reference columns that are not included in the index
v The table has multiple non-clustered indexes with varying degrees of clustering
v The degree of clustering among the key values is nonuniform
v Index values are updated in a nonuniform manner

It is difficult to identify these conditions without previous knowledge or without
forcing an index scan under varying buffer sizes and then monitoring the resulting
physical I/Os. Perhaps the least expensive way to determine whether any of these

688 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

conditions exist is to collect and examine the detailed statistics for an index, and to
retain them if the resulting PAGE_FETCH_PAIRS are nonlinear.

When you collect detailed index statistics, the RUNSTATS operation takes longer to
complete and requires more memory and processing time. The DETAILED option
(equivalent to the SAMPLED DETAILED parameter), for example, requires 2 MB of the
statistics heap. Allocate an additional 488 4-KB pages to the stat_heap_sz database
configuration parameter setting for this memory requirement. If the heap is too
small, the RUNSTATS utility returns an error before it attempts to collect statistics.

CLUSTERFACTOR and PAGE_FETCH_PAIRS are not collected unless the table is
of sufficient size (greater than about 25 pages). In this case, CLUSTERFACTOR will
be a value between 0 and 1, and CLUSTERRATIO is -1 (not collected). If the table
is relatively small, only CLUSTERRATIO, with a value between 0 and 100, is
collected by the RUNSTATS utility; CLUSTERFACTOR and PAGE_FETCH_PAIRS are
not collected. If the DETAILED clause is not specified, only CLUSTERRATIO is
collected.

Distribution statistics
You can collect two kinds of data distribution statistics: frequent-value statistics
and quantile statistics.
v Frequent-value statistics provide information about a column and the data value

with the highest number of duplicates, the value with the second highest
number of duplicates, and so on, to the level that is specified by the value of the
num_freqvalues database configuration parameter. To disable the collection of
frequent-value statistics, set num_freqvalues to 0. You can also use the
NUM_FREQVALUES clause on the RUNSTATS command for a specific table, statistical
view, or column.

v Quantile statistics provide information about how data values are distributed in
relation to other values. Called K-quantiles, these statistics represent the value V
at or below which at least K values lie. You can compute a K-quantile by sorting
the values in ascending order. The K-quantile value is the value in the Kth
position from the low end of the range.
To specify the number of “sections” (quantiles) into which the column data
values should be grouped, set the num_quantiles database configuration
parameter to a value between 2 and 32 767. The default value is 20, which
ensures a maximum optimizer estimation error of plus or minus 2.5% for any
equality, less-than, or greater-than predicate, and a maximum error of plus or
minus 5% for any BETWEEN predicate. To disable the collection of quantile
statistics, set num_quantiles to 0 or 1.
You can set num_quantiles for a specific table, statistical view, or column.

Note: The RUNSTATS utility consumes more processing resources and memory
(specified by the stat_heap_sz database configuration parameter) if larger
num_freqvalues and num_quantiles values are used.

When to collect distribution statistics

To decide whether distribution statistics for a table or statistical view would be
helpful, first determine:
v Whether the queries in an application use host variables.

Chapter 40. Catalog statistics 689

Distribution statistics are most useful for dynamic and static queries that do not
use host variables. The optimizer makes limited use of distribution statistics
when assessing queries that contain host variables.

v Whether the data in columns is uniformly distributed.
Create distribution statistics if at least one column in the table has a highly
“nonuniform” distribution of data, and the column appears frequently in
equality or range predicates; that is, in clauses such as the following:

where c1 = key;
where c1 in (key1, key2, key3);
where (c1 = key1) or (c1 = key2) or (c1 = key3);
where c1 <= key;
where c1 between key1 and key2;

Two types of nonuniform data distribution can occur, and possibly together.
v Data might be highly clustered instead of being evenly spread out between the

highest and lowest data value. Consider the following column, in which the data
is clustered in the range (5,10):

0.0
5.1
6.3
7.1
8.2
8.4
8.5
9.1
93.6
100.0

Quantile statistics help the optimizer to deal with this kind of data distribution.
Queries can help you to determine whether column data is not uniformly
distributed. For example:

select c1, count(*) as occurrences
from t1

group by c1
order by occurrences desc

v Duplicate data values might often occur. Consider a column in which the data is
distributed with the following frequencies:

Table 119. Frequency of data values in a column

Data Value Frequency

20 5

30 10

40 10

50 25

60 25

70 20

80 5

Both frequent-value and quantile statistics help the optimizer to deal with
numerous duplicate values.

When to collect index statistics only

You might consider collecting statistics that are based only on index data in the
following situations:

690 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v A new index was created since the RUNSTATS utility was run, and you do not
want to collect statistics again on the table data.

v There were many changes to the data that affect the first column of an index.

What level of statistical precision to specify

Use the num_quantiles and num_freqvalues database configuration parameters to
specify the precision with which distribution statistics are stored. You can also
specify the precision with corresponding RUNSTATS command options when you
collect statistics for a table or for columns. The higher you set these values, the
greater the precision that the RUNSTATS utility uses when it creates and updates
distribution statistics. However, greater precision requires more resources, both
during the RUNSTATS operation itself, and for storing more data in the catalog
tables.

For most databases, specify between 10 and 100 as the value of the num_freqvalues
database configuration parameter. Ideally, frequent-value statistics should be
created in such a way that the frequencies of the remaining values are either
approximately equal to one another or negligible when compared to the
frequencies of the most frequent values. The database manager might collect fewer
than this number, because these statistics are collected only for data values that
occur more than once. If you need to collect only quantile statistics, set the value of
num_freqvalues to zero.

To specify the number of quantiles, set the num_quantiles database configuration
parameter to a value between 20 and 50.
v First determine the maximum acceptable error when estimating the number of

rows for any range query, as a percentage P.
v The number of quantiles should be approximately 100/P for BETWEEN

predicates, and 50/P for any other type of range predicate (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4% for
BETWEEN predicates and 2% for “>” predicates. In general, specify at least 10
quantiles. More than 50 quantiles should be necessary only for extremely
nonuniform data. If you need only frequent-value statistics, set num_quantiles to 0.
If you set this parameter to 1, because the entire range of values fits within one
quantile, no quantile statistics are collected.

Optimizer use of distribution statistics
The optimizer uses distribution statistics for better estimates of the cost of different
query access plans.

Unless it has additional information about the distribution of values between the
low and high values, the optimizer assumes that data values are evenly
distributed. If data values differ widely from each other, are clustered in some
parts of the range, or contain many duplicate values, the optimizer will choose a
less than optimal access plan.

Consider the following example: To select the least expensive access plan, the
optimizer needs to estimate the number of rows with a column value that satisfies
an equality or range predicate. The more accurate the estimate, the greater the
likelihood that the optimizer will choose the optimal access plan. For the following
query:

Chapter 40. Catalog statistics 691

select c1, c2
from table1
where c1 = ’NEW YORK’
and c2 <= 10

Assume that there is an index on both columns C1 and C2. One possible access
plan is to use the index on C1 to retrieve all rows with C1 = ’NEW YORK’, and then
to check whether C2 <= 10 for each retrieved row. An alternate plan is to use the
index on C2 to retrieve all rows with C2 <= 10, and then to check whether C1 =
’NEW YORK’ for each retrieved row. Because the primary cost of executing a query is
usually the cost of retrieving the rows, the best plan is the one that requires the
fewest retrievals. Choosing this plan means estimating the number of rows that
satisfy each predicate.

When distribution statistics are not available, but the runstats utility has been used
on a table or a statistical view, the only information that is available to the
optimizer is the second-highest data value (HIGH2KEY), the second-lowest data
value (LOW2KEY), the number of distinct values (COLCARD), and the number of
rows (CARD) in a column. The number of rows that satisfy an equality or range
predicate is estimated under the assumption that the data values in the column
have equal frequencies and that the data values are evenly distributed between
LOW2KEY and HIGH2KEY. Specifically, the number of rows that satisfy an
equality predicate (C1 = KEY) is estimated as CARD/COLCARD, and the number
of rows that satisfy a range predicate (C1 BETWEEN KEY1 AND KEY2) can be estimated
with the following formula:

KEY2 - KEY1
------------------ x CARD
HIGH2KEY - LOW2KEY

These estimates are accurate only when the true distribution of data values within
a column is reasonably uniform. When distribution statistics are unavailable, and
either the frequency of data values varies widely, or the data values are very
unevenly distributed, the estimates can be off by orders of magnitude, and the
optimizer might choose a suboptimal access plan.

When distribution statistics are available, the probability of such errors can be
greatly reduced by using frequent-value statistics to estimate the number of rows
that satisfy an equality predicate, and by using both frequent-value statistics and
quantile statistics to estimate the number of rows that satisfy a range predicate.

Enabling automatic statistics collection
Having accurate and complete database statistics is critical to efficient data access
and optimal workload performance. Use the automatic statistics collection feature
of the automated table maintenance functionality to update and maintain relevant
database statistics.

About this task

You can enhance this functionality in environments where a single database
partition operates on a single processor by collecting query data and generating
statistics profiles that help the DB2 server to automatically collect the exact set of
statistics that is required by your workload. This option is not available in
partitioned database environments, certain federated database environments, or
environments in which intrapartition parallelism is enabled.

692 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To enable automatic statistics collection, you must first configure your database by
setting the auto_maint and the auto_tbl_maint database configuration parameters
to ON.

Procedure

After setting the auto_maint and the auto_tbl_maint database configuration
parameters to ON, you have the following options:
v To enable background statistics collection, set the auto_runstats database

configuration parameter to ON.
v To enable background statistics collection for statistical views, set both the

auto_stats_views and auto_runstats database configuration parameters to ON.
v To enable background statistics collection to use sampling automatically for large

tables and statistical views, also set the auto_sampling database configuration
parameter to ON. Use this setting in addition to auto_runstats (tables only) or to
auto_runstats and auto_stats_views (tables and statistical views).

v To enable real-time statistics collection, set both auto_stmt_stats and
auto_runstats database configuration parameters to ON.

Collecting statistics using a statistics profile
The RUNSTATS utility provides the option to register and use a statistics profile,
which specifies the type of statistics that are to be collected for a particular table;
for example, table statistics, index statistics, or distribution statistics. This feature
simplifies statistics collection by enabling you to store RUNSTATS options for
convenient future use.

To register a profile and collect statistics at the same time, issue the RUNSTATS
command with the SET PROFILE parameter. To register a profile only, issue the
RUNSTATS command with the SET PROFILE ONLY parameter. To collect statistics using
a profile that was already registered, issue the RUNSTATS command with the USE
PROFILE parameter.

To see what options are currently specified in the statistics profile for a particular
table, query the SYSCAT.TABLES catalog view. For example:
SELECT STATISTICS_PROFILE FROM SYSCAT.TABLES WHERE TABNAME = ’EMPLOYEE’

Automatic statistics profiling

Statistics profiles can also be generated automatically with the DB2 automatic
statistics profiling feature. When this feature is enabled, information about
database activity is collected and stored in the query feedback warehouse. A
statistics profile is then generated based on this data. Enabling this feature can
alleviate the uncertainty about which statistics are relevant to a particular
workload.

Important: Automatic statistics profiling is deprecated in Version 10.1 and might
be removed in a future release. For more information, see “Automatic statistics
profiling is deprecated” in What's New for DB2 Version 10.1.

Automatic statistics profiling can be used with automatic statistics collection, which
schedules statistics maintenance operations based on information contained in the
automatically generated statistics profile.

Chapter 40. Catalog statistics 693

To enable automatic statistics profiling, ensure that automatic table maintenance
was already enabled by setting the appropriate database configuration parameters.
For more information, see “auto_maint - Automatic maintenance configuration
parameter”. The auto_stats_prof configuration parameter activates the collection
of query feedback data, and the auto_prof_upd configuration parameter activates
the generation of a statistics profile for use by automatic statistics collection.

Automatic statistics profile generation is not supported in partitioned database
environments, in certain federated database environments, in DB2 pureScale
environments, or when intra-partition parallelism is enabled. Automatic statistics
profile generation cannot be enabled if the section_actuals database configuration
parameter is enabled (SQLCODE -5153).

Automatic statistics profiling is best suited to systems running large complex
queries that have many predicates, use large joins, or specify extensive grouping. It
is less suited to systems with primarily transactional workloads.

In a development environment, where the performance overhead of runtime
monitoring can easily be tolerated, set the auto_stats_prof and
auto_prof_updconfiguration parameters to ON. When a test system uses realistic
data and queries, appropriate statistics profiles can be transferred to the production
system, where queries can benefit without incurring additional monitoring
overhead.

In a production environment, if performance problems with a particular set of
queries (problems that can be attributed to faulty statistics) are detected, you can
set theauto_stats_prof configuration parameter to ON and execute the target
workload for a period of time. Automatic statistics profiling analyzes the query
feedback and create recommendations in the
SYSTOOLS.OPT_FEEDBACK_RANKING tables. You can inspect these
recommendations and refine the statistics profiles manually, as appropriate. To
have the DB2 server automatically update the statistics profiles based on these
recommendations, enable auto_prof_upd when you enable auto_stats_prof.

Creating the query feedback warehouse

The query feedback warehouse, which is required for automatic statistics profiling,
consists of five tables in the SYSTOOLS schema. These tables store information
about the predicates that are encountered during query execution, as well as
recommendations for statistics collection. The five tables are:
v OPT_FEEDBACK_PREDICATE
v OPT_FEEDBACK_PREDICATE_COLUMN
v OPT_FEEDBACK_QUERY
v OPT_FEEDBACK_RANKING
v OPT_FEEDBACK_RANKING_COLUMN

Use the SYSINSTALLOBJECTS procedure to create the query feedback warehouse.
For more information about this procedure, which is used to create or drop objects
in the SYSTOOLS schema, see “SYSINSTALLOBJECTS”.

Storage used by automatic statistics collection and profiling
The automatic statistics collection and reorganization features store working data
in tables that are part of your database. These tables are created in the
SYSTOOLSPACE table space.

694 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

SYSTOOLSPACE is created automatically with default options when the database
is activated. Storage requirements for these tables are proportional to the number
of tables in the database and can be estimated at approximately 1 KB per table. If
this is a significant size for your database, you might want to drop and then
recreate the table space yourself, allocating storage appropriately. Although the
automatic maintenance and health monitoring tables in the table space are
automatically recreated, any history that was captured in those tables is lost when
you drop the table space.

Automatic statistics collection activity logging
The statistics log is a record of all of the statistics collection activities (both manual
and automatic) that occurred against a specific database. The default name of the
statistics log is db2optstats.number.log. It is stored in the $diagpath/events
directory. The statistics log is a rotating log. Log behavior is controlled by the
DB2_OPTSTATS_LOG registry variable. The statistics log can be viewed directly or
it can be queried by using the SYSPROC.PD_GET_DIAG_HIST table function.

Improving query performance for large statistics logs
If the statistics log files are large, you can improve query performance by copying
the log records into a table, creating indexes, and then gathering statistics.

Procedure
1. Create a table with appropriate columns for the log records.

create table db2user.stats_log (
pid bigint,
tid bigint,
timestamp timestamp,
dbname varchar(128),
retcode integer,
eventtype varchar(24),
objtype varchar(30),
objschema varchar(20),
objname varchar(30),
event1_type varchar(20),
event1 timestamp,
event2_type varchar(20),
event2 varchar(40),
event3_type varchar(20),
event3 varchar(40),
eventstate varchar(20))

2. Declare a cursor for a query against SYSPROC.PD_GET_DIAG_HIST.
declare c1 cursor for

select pid, tid, timestamp, dbname, retcode, eventtype,
substr(objtype, 1, 30) as objtype,
substr(objname_qualifier, 1, 20) as objschema,
substr(objname, 1, 30) as objname,
substr(first_eventqualifiertype, 1, 20),
substr(first_eventqualifier, 1, 26),
substr(second_eventqualifiertype, 1, 20),
substr(second_eventqualifier, 1, 40),
substr(third_eventqualifiertype, 1, 20),
substr(third_eventqualifier, 1, 40),
substr(eventstate, 1, 20)

from table (sysproc.pd_get_diag_hist
(’optstats’, ’EX’, ’NONE’,

current_timestamp - 1 year, cast(null as timestamp))) as sl

3. Load the statistics log records into the table.
load from c1 of cursor replace into db2user.stats_log

Chapter 40. Catalog statistics 695

4. Create indexes and then gather statistics on the table.
create index sl_ix1 on db2user.stats_log(eventtype, event1);
create index sl_ix2 on db2user.stats_log(objtype, event1);
create index sl_ix3 on db2user.stats_log(objname);

runstats on table db2user.stats_log
with distribution and sampled detailed indexes all;

Collecting catalog statistics
Use the RUNSTATS utility to collect catalog statistics on tables, indexes, and statistical
views. The query optimizer uses this information to choose the best access plans
for queries.

About this task

For privileges and authorities that are required to use this utility, see the
description of the RUNSTATS command.

Procedure

To collect catalog statistics:
1. Connect to the database that contains the tables, indexes, or statistical views for

which you want to collect statistical information.
2. Collect statistics for queries that run against the tables, indexes, or statistical

views by using one of the following methods:
v From the DB2 command line, execute the RUNSTATS command with

appropriate options. These options enable you to tailor the statistics that are
collected for queries that run against the tables, indexes, or statistical views.

v From IBM Data Studio, open the task assistant for the RUNSTATS command.
3. When the runstats operation completes, issue a COMMIT statement to release

locks.
4. Rebind any packages that access the tables, indexes, or statistical views for

which you have updated statistical information.

Results

Note:

1. The RUNSTATS command does not support the use of nicknames. If queries
access a federated database, use RUNSTATS to update statistics for tables in all
databases, then drop and recreate the nicknames that access remote tables to
make the new statistics available to the optimizer.

2. When you collect statistics for a table in a partitioned database environment,
RUNSTATS only operates on the database partition from which the utility is
executed. The results from this database partition are extrapolated to the other
database partitions. If this database partition does not contain a required
portion of the table, the request is sent to the first database partition in the
database partition group that contains the required data.
Statistics for a statistical view are collected on all database partitions containing
base tables that are referenced by the view.

3. For DB2 V9.7 Fix Pack 1 and later releases, the following apply to the collection
of distribution statistics on a column of type XML:
v Distribution statistics are collected for each index over XML data specified on

an XML column.

696 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The RUNSTATS command must collect both distribution statistics and table
statistics to collect distribution statistics for an index over XML data.

v As the default, the RUNSTATS command collects a maximum of 250 quantiles
for distribution statistics for each index over XML data. The maximum
number of quantiles for a column can be specified when executing the
RUNSTATS command.

v Distribution statistics are collected on indexes over XML data of type
VARCHAR, DOUBLE, TIMESTAMP, and DATE. XML distribution statistics
are not collected on indexes over XML data of type VARCHAR HASHED.

v Distribution statistics are not collected on partitioned indexes over XML data
defined on a partitioned table.

Collecting statistics on a sample of the data
Table statistics are used by the query optimizer to select the best access plan for a
query, so it is important that statistics remain current. With the ever-increasing size
of databases, efficient statistics collection becomes more challenging.

An effective approach is to collect statistics on a random sample of table and index
data. For I/O-bound or processor-bound systems, the performance benefits can be
enormous.

The DB2 product enables you to efficiently sample data for statistics collection,
potentially improving the performance of the RUNSTATS utility by orders of
magnitude, while maintaining a high degree of accuracy.

Two methods of sampling are available: row-level sampling and page-level
sampling. For a description of these sampling methods, see “Data sampling in
queries”.

Performance of page-level sampling is excellent, because only one I/O operation is
required for each selected page. With row-level sampling, I/O costs are not
reduced, because every table page is retrieved in a full table or index scan.
However, row-level sampling provides significant performance improvements,
even if the amount of I/O is not reduced, because collecting statistics is
processor-intensive.

Row-level table sampling provides a better sample than page-level table sampling
in situations where the data values are highly clustered. Compared to page-level
table sampling, the row-level table sample set will likely be a better reflection of
the data, because it will include P percent of the rows from each data page. With
page-level table sampling, all the rows of P percent of the pages will be in the
sample set. If the rows are distributed randomly over the table, the accuracy of
row-sampled statistics will be similar to the accuracy of page-sampled statistics.

Each table sample is randomly generated across repeated invocations of the
RUNSTATS command, unless the REPEATABLE parameter is used, in which case the
previous table sample is regenerated. This option can be useful in cases where
consistent statistics are required for tables whose data remains constant.

REPEATABLE does not apply to the index sampling (INDEXSAMPLE) - there is no
similar functionality.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for collecting
statistics. Task assistants can guide you through the process of setting options,

Chapter 40. Catalog statistics 697

reviewing the automatically generated commands to perform the task, and running
these commands. For more details, see Administering databases with task
assistants.

Collecting index statistics
Collect index statistics to help the optimizer decide whether a specific index should
be used to resolve a query.

About this task

The following example is based on a database named SALES that contains a
CUSTOMERS table with indexes CUSTIDX1 and CUSTIDX2.

For privileges and authorities that are required to use the RUNSTATS utility, see the
description of the RUNSTATS command.

Procedure

To collect detailed statistics for an index:
1. Connect to the SALES database.
2. Execute one of the following commands from the DB2 command line,

depending on your requirements:
v To collect detailed statistics on both CUSTIDX1 and CUSTIDX2:

runstats on table sales.customers and detailed indexes all

v To collect detailed statistics on both indexes, but with sampling instead of
detailed calculations on each index entry:

runstats on table sales.customers and sampled detailed indexes all

The SAMPLED DETAILED parameter requires 2 MB of the statistics heap.
Allocate an additional 488 4-KB pages to the stat_heap_sz database
configuration parameter setting for this memory requirement. If the heap is
too small, the RUNSTATS utility returns an error before it attempts to collect
statistics.

v To collect detailed statistics on sampled indexes, as well as distribution
statistics for the table so that index and table statistics are consistent:

runstats on table sales.customers
with distribution on key columns

and sampled detailed indexes all

Collecting distribution statistics for specific columns
For efficient RUNSTATS operations and subsequent query-plan analysis, collect
distribution statistics on only those columns that queries reference in WHERE,
GROUP BY, and similar clauses. You can also collect cardinality statistics on
combined groups of columns. The optimizer uses such information to detect
column correlation when it estimates selectivity for queries that reference the
columns in a group.

About this task

The following example is based on a database named SALES that contains a
CUSTOMERS table with indexes CUSTIDX1 and CUSTIDX2.

698 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

For privileges and authorities that are required to use the RUNSTATS utility, see the
description of the RUNSTATS command.

When you collect statistics for a table in a partitioned database environment,
RUNSTATS operates only on the database partition from which the utility is
executed. The results from this database partition are extrapolated to the other
database partitions. If this database partition does not contain a required portion of
the table, the request is sent to the first database partition in the database partition
group that contains the required data.

Procedure

To collect statistics on specific columns:
1. Connect to the SALES database.
2. Execute one of the following commands from the DB2 command line,

depending on your requirements:
v To collect distribution statistics on columns ZIP and YTDTOTAL:

runstats on table sales.customers
with distribution on columns (zip, ytdtotal)

v To collect distribution statistics on the same columns, but with different
distribution options:

runstats on table sales.customers
with distribution on columns (

zip, ytdtotal num_freqvalues 50 num_quantiles 75)

v To collect distribution statistics on the columns that are indexed in
CUSTIDX1 and CUSTIDX2:

runstats on table sales.customer
on key columns

v To collect statistics for columns ZIP and YTDTOTAL and a column group
that includes REGION and TERRITORY:

runstats on table sales.customers
on columns (zip, (region, territory), ytdtotal)

v Suppose that statistics for non-XML columns were collected previously using
the LOAD command with the STATISTICS parameter. To collect statistics for the
XML column MISCINFO:

runstats on table sales.customers
on columns (miscinfo)

v To collect statistics for the non-XML columns only:
runstats on table sales.customers

excluding xml columns

The EXCLUDING XML COLUMNS clause takes precedence over all other clauses
that specify XML columns.

v For DB2 V9.7 Fix Pack 1 and later releases, the following command collects
distribution statistics using a maximum of 50 quantiles for the XML column
MISCINFO. A default of 20 quantiles is used for all other columns in the
table:
runstats on table sales.customers

with distribution on columns (miscinfo num_quantiles 50)
default num_quantiles 20

Note: The following are required for distribution statistics to be collected on
the XML column MISCINFO:
– Both table and distribution statistics must be collected.

Chapter 40. Catalog statistics 699

– An index over XML data must be defined on the column, and the data
type specified for the index must be VARCHAR, DOUBLE, TIMESTAMP,
or DATE.

Monitoring the progress of RUNSTATS operations
You can use the LIST UTILITIES command or the db2pd command to monitor the
progress of RUNSTATS operations on a database.

Procedure

Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter:
list utilities show detail

or issue the db2pd command and specify the -runstats parameter:
db2pd -runstats

Results

The following is an example of the output for monitoring the performance of a
RUNSTATS operation using the LIST UTILITIES command:
ID = 7
Type = RUNSTATS
Database Name = SAMPLE
Partition Number = 0
Description = YIWEIANG.EMPLOYEE
Start Time = 08/04/2011 12:39:35.155398
State = Executing
Invocation Type = User
Throttling:

Priority = Unthrottled

The following is an example of the output for monitoring the performance of a
RUNSTATS operation using the db2pd command:
db2pd -runstats

Table Runstats Information:

Retrieval Time: 08/13/2009 20:38:20
TbspaceID: 2 TableID: 4
Schema: SCHEMA TableName: TABLE
Status: Completed Access: Allow write
Sampling: No Sampling Rate: -
Start Time: 08/13/2009 20:38:16 End Time: 08/13/2009 20:38:17
Total Duration: 00:00:01
Cur Count: 0 Max Count: 0

Index Runstats Information:

Retrieval Time: 08/13/2009 20:38:20
TbspaceID: 2 TableID: 4
Schema: SCHEMA TableName: TABLE
Status: Completed Access: Allow write
Start Time: 08/13/2009 20:38:17 End Time: 08/13/2009 20:38:18
Total Duration: 00:00:01
Prev Index Duration [1]: 00:00:01
Prev Index Duration [2]: -
Prev Index Duration [3]: -
Cur Index Start: 08/13/2009 20:38:18
Cur Index: 2 Max Index: 2 Index ID: 2
Cur Count: 0 Max Count: 0

700 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Minimizing RUNSTATS impact
There are several approaches available to improve RUNSTATS performance.

To minimize the performance impact of this utility:
v Limit the columns for which statistics are collected by using the COLUMNS

clause. Many columns are never referenced by predicates in the query workload,
so they do not require statistics.

v Limit the columns for which distribution statistics are collected if the data tends
to be uniformly distributed. Collecting distribution statistics requires more CPU
and memory than collecting basic column statistics. However, determining
whether the values for a column are uniformly distributed requires either having
existing statistics or querying the data. This approach also assumes that the data
remains uniformly distributed as the table is modified.

v Limit the number of pages and rows processed by using page- or row-level table
sampling (by specifying the TABLESAMPLE SYSTEM or TABLESAMPLE BERNOULLI
clause) and by using page- or row-level index sampling (by specifying
INDEXSAMPLE SYSTEM or INDEXSAMPLE BERNOULLI clause). Start with a 10%
page-level sample, by specifying TABLESAMPLE SYSTEM(10) and INDEXSAMPLE
SYSTEM(10). Check the accuracy of the statistics and whether system
performance has degraded due to changes in access plan. If it has degraded, try
a 10% row-level sample instead, by specifying TABLESAMPLE BERNOULLI(10).
Likewise, experiment with the INDEXSAMPLE parameter to get the right rate for
index sampling. If the accuracy of the statistics is insufficient, increase the
sampling amount. When using RUNSTATS page- or row-level sampling, use the
same sampling rate for tables that are joined. This is important to ensure that the
join column statistics have the same level of accuracy.

v Collect index statistics during index creation by specifying the COLLECT
STATISTICS option on the CREATE INDEX statement. This approach is faster
than performing a separate RUNSTATS operation after the index is created. It also
ensures that the new index has statistics generated immediately after creation, to
allow the optimizer to accurately estimate the cost of using the index.

v Collect statistics when executing the LOAD command with the REPLACE option.
This approach is faster than performing a separate RUNSTATS operation after the
load operation completes. It also ensures that the table has the most current
statistics immediately after the data is loaded, to allow the optimizer to
accurately estimate the cost of using the table.

In a partitioned database environment, the RUNSTATS utility collects statistics from a
single database partition. If the RUNSTATS command is issued on a database
partition on which the table resides, statistics are collected there. If not, statistics
are collected on the first database partition in the database partition group for the
table. For consistent statistics, ensure that statistics for joined tables are collected
from the same database partition.

Recompiling a query after configuration changes
To observe the effect of configuration changes that affect query optimization, it
might be necessary to cause the query optimizer to recompile the statements that
are cached.

Procedure

You can cause the query optimizer to recompile a statement by performing any of
the following actions:

Chapter 40. Catalog statistics 701

v Invalidating the cached dynamic statements for specific tables using the
RUNSTATS command:
RUNSTATS ON TABLE <tableschema>.<tablename>

WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL

Note: This will refresh the table statistics and subsequent query compilations
will use the new statistics as well as the new configuration settings.

v Removing all cached dynamic SQL statements currently in the package cache:
FLUSH PACKAGE CACHE DYNAMIC

Avoiding manual updates to the catalog statistics
The DB2 data server supports manually updating catalog statistics by issuing
UPDATE statements against views in the SYSSTAT schema.

This feature can be useful when mimicking a production database on a test system
in order to examine query access plans. The db2look utility is very helpful for
capturing the DDL and UPDATE statements against views in the SYSSTAT schema
for playback on another system.

Avoid influencing the query optimizer by manually providing incorrect statistics to
force a particular query access plan. Although this practice might result in
improved performance for some queries, it can result in performance degradation
for others. Consider other tuning options (such as using optimization guidelines
and profiles) before resorting to this approach. If this approach does become
necessary, be sure to record the original statistics in case they need to be restored.

702 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 41. Binding embedded SQL packages to a database

Binding is the process of creating a package from a bind file and storing it in a
database.

Application, bind file, and package relationships

Database applications use packages for some of the same reasons that applications
are compiled: improved performance and compactness. By precompiling an SQL
statement, the statement is compiled into the package when the application is built,
instead of at run time. Each statement is parsed, and a more efficiently interpreted
operand string is stored in the package. At run time, the code generated by the
precompiler calls run-time services database manager APIs with any variable
information required for input or output data, and the information stored in the
package is executed.

The advantages of precompilation apply only to static SQL statements. SQL
statements that are executed dynamically (using PREPARE and EXECUTE or
EXECUTE IMMEDIATE) are not precompiled; therefore, they must go through the
entire set of processing steps at run time.

With the DB2 bind file description (db2bfd) utility, you can easily display the
contents of a bind file to examine and verify the SQL statements within it. You can
also display the precompile options used to create the bind file using the DB2 bind
file description (db2bfd) utility. This can be useful in problem determination related
to the bind file for your application.

You can set the STATICASDYNAMIC string on the GENERIC parameter of the BIND
command to "yes" to instruct the DB2 database manager to store all statements in
the catalogs and mark them as incremental bind. At run time, when the package is
first loaded, the database manager uses the current session environment (rather
than the package) to set up the section entries and other entities (text is populated
and the package cache is accessed). Thereafter, the statements in the bound file
behave the same as they would if you were using dynamic SQL. For example,
sections will be implicitly recompiled for Database Definition Language
invalidations, special register updates, and so on. The DB2 database manager
provides this feature to facilitate the migration of embedded SQL C applications
from other database systems.

Effect of DYNAMICRULES bind option on dynamic SQL
The PRECOMPILE command and BIND command parameter DYNAMICRULES determines
which rules apply to dynamic SQL at run time.

In particular, the DYNAMICRULES parameter determines what values apply at run
time for the following dynamic SQL attributes:
v The authorization ID that is used during authorization checking.
v The qualifier that is used for qualification of unqualified objects.
v Whether the package can be used to dynamically prepare the following

statements: GRANT, REVOKE, ALTER, CREATE, DROP, COMMENT ON,
RENAME, SET INTEGRITY, and SET EVENT MONITOR STATE statements.

© Copyright IBM Corp. 2014 703

In addition to the DYNAMICRULES value, the runtime environment of a package
controls how dynamic SQL statements behave at run time. The two possible
runtime environments are:
v The package runs as part of a stand-alone program
v The package runs within a routine context

The combination of the DYNAMICRULES value and the runtime environment
determine the values for the dynamic SQL attributes. That set of attribute values is
called the dynamic SQL statement behavior. The four behaviors are:

Run behavior
DB2 for Linux, UNIX, and Windows uses the authorization ID of the user
(the ID that initially connected to the DB2 database) executing the package
as the value to be used for authorization checking of dynamic SQL
statements and for the initial value used for implicit qualification of
unqualified object references within dynamic SQL statements.

Bind behavior
At run time, DB2 for Linux, UNIX, and Windows uses all the rules that
apply to static SQL for authorization and qualification. That is, take the
authorization ID of the package owner as the value to be used for
authorization checking of dynamic SQL statements and the package default
qualifier for implicit qualification of unqualified object references within
dynamic SQL statements.

Define behavior
Define behavior applies only if the dynamic SQL statement is in a package
that is run within a routine context, and the package was bound with
DYNAMICRULES DEFINEBIND or DYNAMICRULES DEFINERUN. DB2 for Linux,
UNIX, and Windows uses the authorization ID of the routine definer (not
the routine's package binder) as the value to be used for authorization
checking of dynamic SQL statements and for implicit qualification of
unqualified object references within dynamic SQL statements within that
routine.

Invoke behavior
Invoke behavior applies only if the dynamic SQL statement is in a package
that is run within a routine context, and the package was bound with
DYNAMICRULES INVOKEBIND or DYNAMICRULES INVOKERUN. DB2 for Linux,
UNIX, and Windows uses the current statement authorization ID in effect
when the routine is invoked as the value to be used for authorization
checking of dynamic SQL and for implicit qualification of unqualified
object references within dynamic SQL statements within that routine. This
is summarized by the following table:

Invoking Environment ID Used

Any static SQL Implicit or explicit value of the OWNER of the
package the SQL invoking the routine came
from.

Used in definition of view or trigger Definer of the view or trigger.

Dynamic SQL from a run behavior package ID used to make the initial connection to the
DB2 database.

Dynamic SQL from a define behavior
package

Definer of the routine that uses the package
that the SQL invoking the routine came
from.

704 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Invoking Environment ID Used

Dynamic SQL from an invoke behavior
package

Current authorization ID invoking the
routine.

The following table shows the combination of the DYNAMICRULES value and the
runtime environment that yields each dynamic SQL behavior.

Table 120. How DYNAMICRULES and the Runtime Environment Determine Dynamic SQL Statement Behavior

DYNAMICRULES Value Behavior of Dynamic SQL
Statements in a Standalone Program
Environment

Behavior of Dynamic SQL Statements in
a Routine Environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

The following table shows the dynamic SQL attribute values for each type of
dynamic SQL behavior.

Table 121. Definitions of Dynamic SQL Statement Behaviors

Dynamic SQL
Attribute

Setting for Dynamic
SQL Attributes:
Bind Behavior

Setting for Dynamic
SQL Attributes: Run
Behavior

Setting for Dynamic
SQL Attributes:
Define Behavior

Setting for Dynamic SQL
Attributes: Invoke
Behavior

Authorization ID The implicit or
explicit value of the
BIND OWNER command
parameter

ID of User Executing
Package

Routine definer (not
the routine's package
owner)

Current statement
authorization ID when
routine is invoked.

Default qualifier
for unqualified
objects

The implicit or
explicit value of the
BIND QUALIFIER
command parameter

CURRENT
SCHEMA Special
Register

Routine definer (not
the routine's package
owner)

Current statement
authorization ID when
routine is invoked.

Can execute
GRANT,
REVOKE, ALTER,
CREATE, DROP,
COMMENT ON,
RENAME, SET
INTEGRITY, and
SET EVENT
MONITOR STATE

No Yes No No

Bind considerations
If your application uses a code page that differs from the database code page, you
must ensure that the code page used by the application is compatible with the
database code page during the bind process.

If your application issues calls to any of the database manager utility APIs, such as
IMPORT or EXPORT, you must bind the supplied utility bind files to the database.

Chapter 41. Binding embedded SQL packages to a database with the BIND command 705

You can use bind options to control certain operations that occur during binding,
as in the following examples:
v The QUERYOPT bind parameter takes advantage of a specific optimization class

when binding.
v The EXPLSNAP bind parameter stores Explain Snapshot information for eligible

SQL statements in the Explain tables.
v The FUNCPATH bind parameter properly resolves user-defined distinct types and

user-defined functions in static SQL.

If the bind process starts but never returns, it might be that other applications
connected to the database hold locks that you require. In this case, ensure that no
applications are connected to the database. If they are, disconnect all applications
on the server and the bind process will continue.

If your application will access a server using DB2 Connect, you can use the BIND
command parameters available for that server.

Bind files are not compatible with earlier versions of DB2 for Linux, UNIX, and
Windows. In mixed-level environments, DB2 for Linux, UNIX, and Windows can
only use the functions available to the lowest level of the database environment.
For example, if a version 8 client connects to a version 7.2 server, the client will
only be able to use version 7.2 functions. As bind files express the functionality of
the database, they are subject to the mixed-level restriction.

If you need to rebind higher-level bind files on lower-level systems, you can:
v Use a lower level IBM data server client to connect to the higher-level server

and create bind files which can be shipped and bound to the lower-level DB2 for
Linux, UNIX, and Windows environment.

v Use a higher-level IBM data server client in the lower-level production
environment to bind the higher-level bind files that were created in the test
environment. The higher-level client passes only the options that apply to the
lower-level server.

Performance improvements when using REOPT option of the BIND
command

The bind option REOPT can significantly improve the embedded SQL application
performance.

Effects of REOPT on static SQL

The bind option REOPT can make static SQL statements containing host variables,
global variables, or special registers behave like incremental-bind statements. This
means that these statements get compiled at the time of EXECUTE or OPEN
instead of at bind time. During this compilation, the access plan is chosen, based
on the real values of these variables.

With REOPT ONCE, the access plan is cached after the first OPEN or EXECUTE
request and is used for subsequent execution of this statement. With REOPT ALWAYS,
the access plan is regenerated for every OPEN and EXECUTE request, and the
current set of host variable, parameter marker, global variable, and special register
values is used to create this plan.

706 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Effects of REOPT on dynamic SQL

When you specify the option REOPT ALWAYS, the database manager postpones
preparing any statement containing host variables, parameter markers, global
variables, or special registers until it encounters an OPEN or EXECUTE statement;
that is, when the values for these variables become known. At this time, the access
plan is generated using these values. Subsequent OPEN or EXECUTE requests for
the same statement will recompile the statement, reoptimize the query plan using
the current set of values for the variables, and execute the newly generated query
plan. When REOPT ALWAYS is specified, statement concentrator is disabled.

The option REOPT ONCE has a similar effect, with the exception that the plan is only
optimized once using the values of the host variables, parameter markers, global
variables, and special registers. This plan is cached and will be used by subsequent
requests.

Binding applications with the BIND command
Binding is the process that creates the package the database manager needs to
access the database when the application is executed.

By default the PRECOMPILE command creates a package. Binding is done implicitly
at precompile time unless the BINDFILE command parameter is specified. The
PACKAGE command parameter allows you to specify a package name for the
package created at precompile time.

A typical example of using the BIND command follows. To bind a bind file named
filename.bnd to the database, you can issue the following command:

BIND filename.bnd

One package is created for each separately precompiled source code module. If an
application has five source files, of which three require precompilation, three
packages or bind files are created. By default, each package is given a name that is
the same as the name of the source module from which the .bnd file originated,
but truncated to 8 characters. To explicitly specify a different package name, you
must use the PACKAGE USING parameter on the PREP command. The version of a
package is given by the VERSION precompile parameter and defaults to the empty
string. If the name and schema of this newly created package is the same as a
package that currently exists in the target database, but the version identifier
differs, a new package is created and the previous package still remains. However
if a package exists that matches the name, schema and the version of the package
being bound, then that package is dropped and replaced with the new package
being bound (specifying ACTION ADD on the bind would prevent that and an error
(SQL0719) would be returned instead).

Rebinding existing packages with the REBIND command
Rebinding is the process of recreating a package for an application program that
was previously bound. You must rebind packages if they were marked invalid or
inoperative or if the database statistics changed since the last binding.

In some situations, however, you might want to rebind packages that are valid. For
example, you might want to take advantage of a newly created index, or use
updated statistics after executing the RUNSTATS command.

Chapter 41. Binding embedded SQL packages to a database with the BIND command 707

Packages can be dependent on certain types of database objects such as tables,
views, aliases, indexes, triggers, referential constraints, and table check constraints.
If a package is dependent on a database object (such as a table, view, trigger, and
so on), and that object is dropped, the package is placed into an invalid state. If the
object that is dropped is a UDF, the package is placed into an inoperative state.

When the package is marked inoperative, the next use of a statement in this
package causes an implicit rebind of the package using non-conservative binding
semantics in order to be able to resolve to SQL objects considering the latest
changes in the database schema that caused that package to become inoperative.

For static DML in packages, the packages can rebind implicitly, or by explicitly
issuing the REBIND command (or corresponding API), or the BIND command (or
corresponding API). The implicit rebind is performed with conservative binding
semantics if the package is marked invalid, but uses non-conservative binding
semantics when the package is marked inoperative.

You must use the BIND command to rebind a package for a program which was
modified to include more, fewer, or changed SQL statements. You must also use
the BIND command if you need to change any bind options from the values with
which the package was originally bound. The REBIND command provides the
option to resolve with conservative binding semantics (RESOLVE CONSERVATIVE) or
to resolve by considering new routines, data types, or global variables (RESOLVE
ANY, which is the default option). The RESOLVE CONSERVATIVE option can be used
only if the package was not marked inoperative by the database manager
(SQLSTATE 51028). You should use REBIND whenever your situation does not
specifically require the use of BIND, as the performance of REBIND is significantly
better than that of BIND.

When multiple versions of the same package name coexist in the catalog, only one
version can be rebound at a time.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
rebinding packages. Task assistants can guide you through the process of setting
options, reviewing the automatically generated commands to perform the task, and
running these commands. For more details, see Administering databases with task
assistants.

Binding utilities to the database
When a database is created, the database manager attempts to bind the utilities in
db2ubind.lst and in db2cli.lst to the database. These files are stored in the bnd
subdirectory of your sqllib directory.

About this task

Binding a utility creates a package, which is an object that includes all the
information needed to process specific SQL and XQuery statements from a single
source file.

Note: If you want to use these utilities from a client, you must bind them
explicitly. You must be in the directory where these files reside to create the
packages in the sample database. The bind files are found in the bnd subdirectory
of the sqllib directory. You must also bind the db2schema.bnd file when you create
or upgrade the database from a client. See “DB2 CLI bind files and package
names” for details.

708 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Procedure

To bind or rebind the utilities to a database, from the command line, invoke the
following commands:

connect to sample
bind @db2ubind.lst

where sample is the name of the database.

Binding applications and utilities (DB2 Connect server)
Application programs developed using embedded SQL must be bound to each
database with which they will operate. For information about the binding
requirements for the IBM data server package, see the topic about DB2 CLI bind
files and package names.

Binding should be performed once per application, for each database. During the
bind process, database access plans are stored for each SQL statement that will be
executed. These access plans are supplied by application developers and are
contained in bind files which are created during precompilation. Binding is a
process of processing these bind files by an IBM mainframe database server.

Because several of the utilities supplied with DB2 Connect are developed using
embedded SQL, they must be bound to an IBM mainframe database server before
they can be used with that system. If you do not use the DB2 Connect utilities and
interfaces, you do not have to bind them to each of your IBM mainframe database
servers. The lists of bind files required by these utilities are contained in the
following files:
v ddcsmvs.lst for System z
v ddcsvse.lst for VSE
v ddcsvm.lst for VM
v ddcs400.lst for IBM Power Systems™

Binding one of these lists of files to a database will bind each individual utility to
that database.

If a DB2 Connect server product is installed, the DB2 Connect utilities must be
bound to each IBM mainframe database server before they can be used with that
system. Assuming the clients are at the same fix pack level, you need to bind the
utilities only once, regardless of the number of client platforms involved.

For example, if you have 10 Windows clients, and 10 AIX clients connecting to DB2
for z/OS via DB2 Connect Enterprise Edition on a Windows server, perform one of
the following steps:
v Bind ddcsmvs.lst from one of the Windows clients.
v Bind ddcsmvs.lst from one of the AIX clients.
v Bind ddcsmvs.lst from the DB2 Connect server.

This example assumes that:
v All the clients are at the same service level. If they are not then, in addition, you

might need to bind from each client of a particular service level
v The server is at the same service level as the clients. If it is not, then you need to

bind from the server as well.

Chapter 41. Binding embedded SQL packages to a database with the BIND command 709

In addition to DB2 Connect utilities, any other applications that use embedded
SQL must also be bound to each database that you want them to work with. An
application that is not bound will usually produce an SQL0805N error message
when executed. You might want to create an additional bind list file for all of your
applications that need to be bound.

For each IBM mainframe database server that you are binding to, perform the
following steps:
1. Make sure that you have sufficient authority for your IBM mainframe database

server management system:

System z
The authorizations required are:
v SYSADM or
v SYSCTRL or
v BINDADD and CREATE IN COLLECTION NULLID

Note: The BINDADD and the CREATE IN COLLECTION NULLID
privileges provide sufficient authority only when the packages do not
already exist. For example, if you are creating them for the first time.

If the packages already exist, and you are binding them again, then the
authority required to complete the task(s) depends on who did the
original bind.

A) If you did the original bind and you are doing the bind again, then
having any of the previously listed authorities will allow you to
complete the bind.

B) If your original bind was done by someone else and you are doing
the second bind, then you will require either the SYSADM or the
SYSCTRL authorities to complete the bind. Having just the BINDADD
and the CREATE IN COLLECTION NULLID authorities will not allow
you to complete the bind. It is still possible to create a package if you
do not have either SYSADM or SYSCTRL privileges. In this situation
you would need the BIND privilege on each of the existing packages
that you intend to replace.

VSE or VM
The authorization required is DBA authority. If you want to use the
GRANT option on the bind command (to avoid granting access to each
DB2 Connect package individually), the NULLID user ID must have
the authority to grant authority to other users on the following tables:
v system.syscatalog
v system.syscolumns
v system.sysindexes
v system.systabauth
v system.syskeycols
v system.syssynonyms
v system.syskeys
v system.syscolauth
v system.sysuserauth

On the VSE or VM system, you can issue:

710 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

grant select on table to nullid with grant option

IBM Power Systems
*CHANGE authority or higher on the NULLID collection.

2. Issue commands similar to the following commands:
db2 connect to DBALIAS user USERID using PASSWORD
db2 bind path@ddcsmvs.lst blocking all

sqlerror continue messages ddcsmvs.msg grant public
db2 connect reset

Where DBALIAS, USERID, and PASSWORD apply to the IBM mainframe
database server, ddcsmvs.lst is the bind list file for z/OS, and path represents
the location of the bind list file.
For example drive:\sqllib\bnd\ applies to all Windows operating systems,
and INSTHOME/sqllib/bnd/ applies to all Linux and UNIX operating systems,
where drive represents the logical drive where DB2 Connect was installed and
INSTHOME represents the home directory of the DB2 Connect instance.
You can use the grant option of the bind command to grant EXECUTE privilege
to PUBLIC or to a specified user name or group ID. If you do not use the grant
option of the bind command, you must GRANT EXECUTE (RUN) individually.
To find out the package names for the bind files, enter the following command:
ddcspkgn @bindfile.lst

For example:
ddcspkgn @ddcsmvs.lst

might yield the following output:

Bind File Package Name
------------------------------ ------------------------------
f:\sqllib\bnd\db2ajgrt.bnd SQLAB6D3

To determine these values for DB2 Connect execute the ddcspkgn utility, for
example:

ddcspkgn @ddcsmvs.lst

Optionally, this utility can be used to determine the package name of
individual bind files, for example:

ddcspkgn bindfile.bnd

Note:

a. Using the bind option sqlerror continue is required; however, this option
is automatically specified for you when you bind applications using the
DB2 tools or the Command Line Processor (CLP). Specifying this option
turns bind errors into warnings, so that binding a file containing errors can
still result in the creation of a package. In turn, this allows one bind file to
be used against multiple servers even when a particular server
implementation might flag the SQL syntax of another to be invalid. For this
reason, binding any of the list files ddcsxxx.lst against any particular IBM
mainframe database server should be expected to produce some warnings.

b. If you are connecting to a DB2 database through DB2 Connect, use the bind
list db2ubind.lst and do not specify sqlerror continue, which is only valid
when connecting to a IBM mainframe database server. Also, to connect to a
DB2 database, it is recommended that you use the DB2 clients provided
with DB2 and not DB2 Connect.

3. Use similar statements to bind each application or list of applications.

Chapter 41. Binding embedded SQL packages to a database with the BIND command 711

4. If you have remote clients from a previous release of DB2, you might need to
bind the utilities on these clients to DB2 Connect.

712 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 42. Design Advisor

The DB2 Design Advisor is a tool that can help you significantly improve your
workload performance. The task of selecting which indexes, materialized query
tables (MQTs), clustering dimensions, or database partitions to create for a complex
workload can be daunting. The Design Advisor identifies all of the objects that are
needed to improve the performance of your workload.

Given a set of SQL statements in a workload, the Design Advisor generates
recommendations for:
v New indexes
v New clustering indexes
v New MQTs
v Conversion to multidimensional clustering (MDC) tables
v The redistribution of tables

The Design Advisor can implement some or all of these recommendations
immediately, or you can schedule them to run at a later time.

Use the db2advis command to launch the Design Advisor utility.

The Design Advisor can help simplify the following tasks:

Planning for and setting up a new database
While designing your database, use the Design Advisor to generate design
alternatives in a test environment for indexing, MQTs, MDC tables, or
database partitioning.

In partitioned database environments, you can use the Design Advisor to:
v Determine an appropriate database partitioning strategy before loading

data into a database
v Assist in upgrading from a single-partition database to a multi-partition

database
v Assist in migrating from another database product to a multi-partition

DB2 database

Workload performance tuning
After your database is set up, you can use the Design Advisor to:
v Improve the performance of a particular statement or workload
v Improve general database performance, using the performance of a

sample workload as a gauge
v Improve the performance of the most frequently executed queries, as

identified, for example, by the IBM InfoSphere Optim Performance
Manager

v Determine how to optimize the performance of a new query
v Respond to Data Studio Health Monitor recommendations regarding

shared memory utility or sort heap problems with a sort-intensive
workload

v Find objects that are not used in a workload

IBM InfoSphere Optim Query Workload Tuner provides tools for improving the
performance of single SQL statements and the performance of groups of SQL

© Copyright IBM Corp. 2014 713

statements, which are called query workloads. For more information about this
product, see the product overview page at http://www.ibm.com/software/data/
optim/query-workload-tuner-db2-luw/index.html. In Version 3.1.1 or later, you can
also use the Workload Design Advisor to perform many operations that were
available in the DB2 Design Advisor wizard. For more information see the
documentation for the Workload Design Advisor at http://
publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/
com.ibm.datatools.qrytune.workloadtunedb2luw.doc/topics/genrecsdsgn.html.

Design Advisor output

Design Advisor output is written to standard output by default, and saved in the
ADVISE_* tables:
v The ADVISE_INSTANCE table is updated with one new row each time that the

Design Advisor runs:
– The START_TIME and END_TIME fields show the start and stop times for

the utility.
– The STATUS field contains a value of COMPLETED if the utility ended

successfully.
– The MODE field indicates whether the -m parameter was used on the

db2advis command.
– The COMPRESSION field indicates the type of compression that was used.

v The USE_TABLE column in the ADVISE_TABLE table contains a value of Y if
MQT, MDC table, or database partitioning strategy recommendations were
made.
MQT recommendations can be found in the ADVISE_MQT table; MDC
recommendations can be found in the ADVISE_TABLE table; and database
partitioning strategy recommendations can be found in the ADVISE_PARTITION
table. The RUN_ID column in these tables contains a value that corresponds to
the START_TIME value of a row in the ADVISE_INSTANCE table, linking it to
the same Design Advisor run.
When MQT, MDC, or database partitioning recommendations are provided, the
relevant ALTER TABLE stored procedure call is placed in the
ALTER_COMMAND column of the ADVISE_TABLE table. The ALTER TABLE
stored procedure call might not succeed due to restrictions on the table for the
ALTOBJ stored procedure.

v The USE_INDEX column in the ADVISE_INDEX table contains a value of Y
(index recommended or evaluated) or R (an existing clustering RID index was
recommended to be unclustered) if index recommendations were made.

v The COLSTATS column in the ADVISE_MQT table contains column statistics for
an MQT. These statistics are contained within an XML structure as follows:
<?xml version=\"1.0\" encoding=\"USASCII\"?>
<colstats>

<column>
<name>COLNAME1</name>
<colcard>1000</colcard>
<high2key>999</high2key>
<low2key>2</low2key>

</column>
....

<column>
<name>COLNAME100</name>
<colcard>55000</colcard>

714 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://www.ibm.com/software/data/optim/query-workload-tuner-db2-luw/index.html
http://www.ibm.com/software/data/optim/query-workload-tuner-db2-luw/index.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.qrytune.workloadtunedb2luw.doc/topics/genrecsdsgn.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.qrytune.workloadtunedb2luw.doc/topics/genrecsdsgn.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.qrytune.workloadtunedb2luw.doc/topics/genrecsdsgn.html

<high2key>49999</high2key>
<low2key>100</low2key>

</column>
</colstats>

You can save Design Advisor recommendations to a file using the -o parameter on
the db2advis command. The saved Design Advisor output consists of the following
elements:
v CREATE statements associated with any new indexes, MQTs, MDC tables, or

database partitioning strategies
v REFRESH statements for MQTs
v RUNSTATS commands for new objects

An example of this output is as follows:
--<?xml version="1.0"?>
--<design-advisor>
--<mqt>
--<identifier>
--<name>MQT612152202220000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--<statementlist>3</statementlist>
--<benefit>1013562.481682</benefit>
--<overhead>1468328.200000</overhead>
--<diskspace>0.004906</diskspace>
--</mqt>
.....
--<index>
--<identifier>
--<name>IDX612152221400000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--<table><identifier>
--<name>PART</name>
--<schema>SAMP </schema>
--</identifier></table>
--<statementlist>22</statementlist>
--<benefit>820160.000000</benefit>
--<overhead>0.000000</overhead>
--<diskspace>9.063500</diskspace>
--</index>
.....
--<statement>
--<statementnum>11</statementnum>
--<statementtext>
--
-- select
-- c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice,
-- sum(l_quantity) from samp.customer, samp.orders,
-- samp.lineitem where o_orderkey in(select
-- l_orderkey from samp.lineitem group by l_orderkey
-- having sum(l_quantity) > 300) and c_custkey
-- = o_custkey and o_orderkey = l_orderkey group by
-- c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice
-- order by o_totalprice desc, o_orderdate fetch first
-- 100 rows only
--</statementtext>
--<objects>
--<identifier>
--<name>MQT612152202490000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--<identifier>
--<name>ORDERS</name>

Chapter 42. The Design Advisor 715

--<schema>SAMP </schema>
--</identifier>
--<identifier>
--<name>CUSTOMER</name>
--<schema>SAMP </schema>
--</identifier>
--<identifier>
--<name>IDX612152235020000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--<identifier>
--<name>IDX612152235030000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--<identifier>
--<name>IDX612152211360000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--</objects>
--<benefit>2091459.000000</benefit>
--<frequency>1</frequency>
--</statement>

This XML structure can contain more than one column. The column cardinality
(that is, the number of values in each column) is included and, optionally, the
HIGH2KEY and LOW2KEY values.

The base table on which an index is defined is also included. Ranking of indexes
and MQTs can be done using the benefit value. You can also rank indexes using
(benefit - overhead) and MQTs using (benefit - 0.5 * overhead).

Following the list of indexes and MQTs is the list of statements in the workload,
including the SQL text, the statement number for the statement, the estimated
performance improvement (benefit) from the recommendations, and the list of
tables, indexes, and MQTs that were used by the statement. The original spacing in
the SQL text is preserved in this output example, but the SQL text is normally split
into 80 character commented lines for increased readability.

Existing indexes or MQTs are included in the output if they are being used to
execute a workload.

MDC and database partitioning recommendations are not explicitly shown in this
XML output example.

After some minor modifications, you can run this output file as a CLP script to
create the recommended objects. The modifications that you might want to
perform include:
v Combining all of the RUNSTATS commands into a single RUNSTATS invocation

against the new or modified objects
v Providing more usable object names in place of system-generated IDs
v Removing or commenting out any data definition language (DDL) for objects

that you do not want to implement immediately

Defining a workload for the Design Advisor
When the Design Advisor analyzes a specific workload, it considers factors such as
the type of statements that are included in the workload, the frequency with which
a particular statement occurs, and characteristics of your database to generate
recommendations that minimize the total cost of running the workload.

716 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

About this task

A workload is a set of SQL statements that the database manager must process
during a period of time. The Design Advisor can be run against:
v A single SQL statement that you enter inline with the db2advis command
v A set of dynamic SQL statements that were captured in a DB2 snapshot
v A set of SQL statements that are contained in a workload file

You can create a workload file or modify a previously existing workload file. You
can import statements into the file from several sources, including:
v A delimited text file
v An event monitor table
v Explained statements in the EXPLAIN_STATEMENT table
v Recent SQL statements that were captured with a DB2 snapshot
v Workload manager activity tables
v Workload manager event monitor tables by using the -wlm option from the

command line

After you import the SQL statements into a workload file, you can add, change,
modify, or remove statements and modify their frequency.

Procedure
v To run the Design Advisor against dynamic SQL statements:

1. Reset the database monitor with the following command:
db2 reset monitor for database database-name

2. Wait for an appropriate amount of time to allow for the execution of
dynamic SQL statements against the database.

3. Invoke the db2advis command using the -g parameter. If you want to save
the dynamic SQL statements in the ADVISE_WORKLOAD table for later
reference, use the -p parameter as well.

v To run the Design Advisor against a set of SQL statements in a workload file:
1. Create a workload file manually, separating each SQL statement with a

semicolon, or import SQL statements from one or more of the sources listed
previously.

2. Set the frequency of the statements in the workload. Every statement in a
workload file is assigned a frequency of 1 by default. The frequency of an
SQL statement represents the number of times that the statement occurs
within a workload relative to the number of times that other statements
occur. For example, a particular SELECT statement might occur 100 times in
a workload, whereas another SELECT statement occurs 10 times. To
represent the relative frequency of these two statements, you can assign the
first SELECT statement a frequency of 10; the second SELECT statement has
a frequency of 1. You can manually change the frequency or weight of a
particular statement in the workload by inserting the following line after the
statement: - - # SET FREQUENCY n, where n is the frequency value that you
want to assign to the statement.

3. Invoke the db2advis command using the -i parameter followed by the name
of the workload file.

v To run the Design Advisor against a workload that is contained in the
ADVISE_WORKLOAD table, invoke the db2advis command using the -w
parameter followed by the name of the workload.

Chapter 42. The Design Advisor 717

Design Advisor limitations and restrictions
There are certain limitations and restrictions associated with Design Advisor
recommendations about indexes, materialized query tables (MQTs),
multidimensional clustering (MDC) tables, and database partitioning.

Restrictions on index recommendations
v Indexes that are recommended for MQTs are designed to improve workload

performance, not MQT refresh performance.
v A clustering RID index is recommended only for MDC tables. The Design

Advisor will include clustering RID indexes as an option rather than create an
MDC structure for the table.

v The Version 9.7 Design Advisor does not recommend partitioned indexes on a
partitioned table. All indexes are recommended with an explicit NOT
PARTITIONED clause.

Restrictions on MQT recommendations
v The Design Advisor will not recommend incremental MQTs. If you want to

create incremental MQTs, you can convert REFRESH IMMEDIATE MQTs into
incremental MQTs with your choice of staging tables.

v Indexes that are recommended for MQTs are designed to improve workload
performance, not MQT refresh performance.

v If update, insert, or delete operations are not included in the workload, the
performance impact of updating a recommended REFRESH IMMEDIATE MQT
is not considered.

v It is recommended that REFRESH IMMEDIATE MQTs have unique indexes
created on the implied unique key, which is composed of the columns in the
GROUP BY clause of the MQT query definition.

Restrictions on MDC recommendations
v An existing table must be populated with sufficient data before the Design

Advisor considers MDC for the table. A minimum of twenty to thirty megabytes
of data is recommended. Tables that are smaller than 12 extents are excluded
from consideration.

v MDC recommendations for new MQTs will not be considered unless the
sampling option, -r, is used with the db2advis command.

v The Design Advisor does not make MDC recommendations for typed,
temporary, or federated tables.

v Sufficient storage space (approximately 1% of the table data for large tables)
must be available for the sampling data that is used during the execution of the
db2advis command.

v Tables that have not had statistics collected are excluded from consideration.
v The Design Advisor does not make recommendations for multicolumn

dimensions.

Restrictions on database partitioning recommendations

The Design Advisor can recommend database partitioning only for DB2 Enterprise
Server Edition.

718 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Additional restrictions

Temporary simulation catalog tables are created when the Design Advisor runs. An
incomplete run can result in some of these tables not being dropped. In this
situation, you can use the Design Advisor to drop these tables by restarting the
utility. To remove the simulation catalog tables, specify both the -f option and the
-n option (for -n, specifying the same user name that was used for the incomplete
execution). If you do not specify the -f option, the Design Advisor will only
generate the DROP statements that are required to remove the tables; it will not
actually remove them.

Note: As of Version 9.5, the -f option is the default. This means that if you run
db2advis with the MQT selection, the database manager automatically drops all
local simulation catalog tables using the same user ID as the schema name.

You should create a separate table space on the catalog database partition for
storing these simulated catalog tables, and set the DROPPED TABLE RECOVERY
option on the CREATE or ALTER TABLESPACE statement to OFF. This enables
easier cleanup and faster Design Advisor execution.

Chapter 42. The Design Advisor 719

720 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 6. High availability

The availability of a database solution is a measure of how successful user
applications are at performing their required database tasks.

If user applications cannot connect to the database, or if their transactions fail
because of errors or time out because of load on the system, the database solution
is not very available. If user applications are successfully connecting to the
database and performing their work, the database solution is highly available.

Designing a highly available database solution, or increasing the availability of an
existing solution requires an understanding of the needs of the applications
accessing the database. To get the greatest benefit from the expense of additional
storage space, faster processors, or more software licenses, focus on making your
database solution as available as required to the most important applications for
your business at the time when those applications need it most.

Unplanned outages

Unexpected system failures that could affect the availability of your
database solution to users include: power interruption; network outage;
hardware failure; operating system or other software errors; and complete
system failure in the event of a disaster. If such a failure occurs at a time
when users expect to be able to do work with the database, a highly
available database solution must do the following:
v Shield user applications from the failure, so the user applications are not

aware of the failure. For example, DB2 Data Server can reroute database
client connections to alternate database servers if a database server fails.

v Respond to the failure to contain its effect. For example, if a failure
occurs on one machine in a cluster, the cluster manager can remove that
machine from the cluster so that no further transactions are routed to be
processed on the failed machine.

v Recover from the failure to return the system to normal operations. For
example, if standby database takes over database operations for a failed
primary database, the failed database might restart, recover, and take
over once again as the primary database.

These three tasks must be accomplished with a minimum effect on the
availability of the solution to user applications.

Planned outage

In a highly available database solution, the impact of maintenance
activities on the availability of the database to user applications must be
minimized as well.

For example, if the database solution serves a traditional store front that is
open for business between the hours of 9am to 5pm, then maintenance
activities can occur offline, outside of those business hours without
affecting the availability of the database for user applications. If the
database solution serves an online banking business that is expected to be
available for customers to access through the Internet 24 hours per day,
then maintenance activities must be run online, or scheduled for off-peak
activity periods to have minimal impact on the availability of the database
to the customers.

© Copyright IBM Corp. 2014 721

When you are making business decisions and design choices about the availability
of your database solution, you must weigh the following two factors:
v The cost to your business of the database being unavailable to customers
v The cost of implementing a certain degree of availability

For example, consider an Internet-based business that makes a certain amount of
revenue, X, every hour the database solution is serving customers. A high
availability strategy that saves 10 hours of downtime per year will earn the
business 10X extra revenue per year. If the cost of implementing this high
availability strategy is less than the expected extra revenue, it would be worth
implementing.

722 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 43. Data recovery

Data recovery is the rebuilding of a database or table space after a problem such as
media or storage failure, power interruption, or application failure. If you back up
your database, or individual table spaces, you can rebuild them if they become
damaged or corrupted in some way.

There are four types of recovery:
v Crash recovery protects a database from being left in an inconsistent, or

unusable, state when transactions (also called units of work) are interrupted
unexpectedly.

v Disaster recovery consist of the process to restore a database in the event of a
fire, earthquake, vandalism, or other catastrophic events.

v Version recovery is the restoration of a previous version of the database, using
an image that was created during a backup operation.

v Rollforward recovery can be used to reapply changes that were made by
transactions that were committed after a backup was made.

The DB2 database manager starts crash recovery automatically to attempt to
recover a database after a power interruption. You can use version recovery or
rollforward recovery to recover a damaged database.

Crash recovery
Transactions (or units of work) against a database can be interrupted unexpectedly.
If a failure occurs before all of the changes that are part of the unit of work are
completed, committed, and written to disk, the database is left in an inconsistent
and unusable state.

Crash recovery is the process by which the database is moved back to a consistent
and usable state. This is done by rolling back incomplete transactions and
completing committed transactions that were still in memory when the crash
occurred (Figure 52 on page 724). When a database is in a consistent and usable
state, it has attained what is known as a point of consistency.

© Copyright IBM Corp. 2014 723

If you are using the IBM DB2 pureScale Feature, there are two specific types of
crash recovery to be aware of: member crash recovery and group crash recovery.
Member crash recovery is the process of recovering a portion of a database using a
single member's log stream after a member failure. Member crash recovery, which
is usually initiated automatically as a part of a member restart, is an online
operation-meaning that other members can still access the database. Multiple
members can be undergoing member crash recovery at the same time. Group crash
recovery is the process of recovering a database using multiple members' log
streams after a failure that causes no viable cluster caching facility to remain in the
cluster. Group crash recovery is also usually initiated automatically (as a part of a
group restart) and the database is inaccessible while it is in progress, as with DB2
crash recovery operations outside of a DB2 pureScale environment.

If the database or the database manager fails, the database can be left in an
inconsistent state. The contents of the database might include changes made by
transactions that were incomplete at the time of failure. The database might also be
missing changes that were made by transactions that completed before the failure
but which were not yet flushed to disk. A crash recovery operation must be
performed in order to roll back the partially completed transactions and to write to
disk the changes of completed transactions that were previously made only in
memory.

Conditions that can necessitate a crash recovery include:
v A power failure on the machine, causing the database manager and the database

partitions on it to go down
v A hardware failure such as memory, disk, CPU, or network failure.
v A serious operating system error that causes the DB2 instance to end abnormally

If you want crash recovery to be performed automatically by the database
manager, enable the automatic restart (autorestart) database configuration
parameter by setting it to ON. (This is the default value.) If you do not want
automatic restart behavior, set the autorestart database configuration parameter to
OFF. As a result, you must issue the RESTART DATABASE command when a database
failure occurs. If the database I/O was suspended before the crash occurred, you
must specify the WRITE RESUME option of the RESTART DATABASE command in order
for the crash recovery to continue. The administration notification log records
when the database restart operation begins.

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 52. Rolling back units of work (crash recovery)

724 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If crash recovery occurs on a database that is enabled for rollforward recovery (that
is, the logarchmeth1 configuration parameter is not set to OFF), and an error occurs
during crash recovery that is attributable to an individual table space, that table
space is taken offline, and cannot be accessed until it is repaired. Crash recovery
continues on other table spaces. At the completion of crash recovery, the other
table spaces in the database are accessible, and connections to the database can be
established. However, if the table space that is taken offline is the table space that
contains the system catalogs, it must be repaired before any connections are
permitted. This behavior does not apply to DB2 pureScale environments. If an
error occurs during member crash recovery or group crash recovery, the crash
recovery operation fails.

Recovering damaged table spaces
A damaged table space has one or more containers that cannot be accessed. This is
often caused by media problems that are either permanent (for example, a bad
disk), or temporary (for example, an offline disk, or an unmounted file system).

If the damaged table space is the system catalog table space, the database cannot
be restarted. If the container problems cannot be fixed leaving the original data
intact, the only available options are:
v To restore the database
v To restore the catalog table space.

Note:

1. Table space restore is only valid for recoverable databases, because the
database must be rolled forward.

2. If you restore the catalog table space, you must perform a rollforward
operation to the end of logs.

If the damaged table space is not the system catalog table space, DB2 for Linux,
UNIX, and Windows attempts to make as much of the database available as
possible.

If the damaged table space is the only temporary table space, you should create a
new temporary table space as soon as a connection to the database can be made.
Once created, the new temporary table space can be used, and normal database
operations requiring a temporary table space can resume. You can, if you want,
drop the offline temporary table space. There are special considerations for table
reorganization using a system temporary table space:
v If the database or the database manager configuration parameter indexrec is set

to RESTART, all invalid indexes must be rebuilt during database activation; this
includes indexes from a reorganization that crashed during the build phase.

v If there are incomplete reorganization requests in a damaged temporary table
space, you might have to set the indexrec configuration parameter to ACCESS to
avoid restart failures.

Recovering from transaction failures in a partitioned database
environment

If a transaction failure occurs in a partitioned database environment, database
recovery is usually necessary on both the failed database partition server and any
other database partition server that was participating in the transaction.

There are two types of database recovery:

Chapter 43. Data recovery 725

v Crash recovery occurs on the failed database partition server after the failure
condition is corrected.

v Database partition failure recovery on the other (still active) database partition
servers occurs immediately after the failure has been detected.

In a partitioned database environment, the database partition server on which a
transaction is submitted is the coordinator partition, and the first agent that
processes the transaction is the coordinator agent. The coordinator agent is
responsible for distributing work to other database partition servers, and it keeps
track of which ones are involved in the transaction. When the application issues a
COMMIT statement for a transaction, the coordinator agent commits the
transaction by using the two-phase commit protocol. During the first phase, the
coordinator partition distributes a PREPARE request to all the other database
partition servers that are participating in the transaction. These servers then
respond with one of the following:

READ-ONLY
No data change occurred at this server

YES Data change occurred at this server

NO Because of an error, the server is not prepared to commit

If one of the servers responds with a NO, the transaction is rolled back. Otherwise,
the coordinator partition begins the second phase.

During the second phase, the coordinator partition writes a COMMIT log record,
then distributes a COMMIT request to all the servers that responded with a YES.
After all the other database partition servers have committed, they send an
acknowledgement of the COMMIT to the coordinator partition. The transaction is
complete when the coordinator agent has received all COMMIT acknowledgments
from all the participating servers. At this point, the coordinator agent writes a
FORGET log record.

Transaction failure recovery on an active database partition
server

If any database partition server detects that another server is down, all work that
is associated with the failed database partition server is stopped:
v If the still active database partition server is the coordinator partition for an

application, and the application was running on the failed database partition
server (and not ready to COMMIT), the coordinator agent is interrupted to do
failure recovery. If the coordinator agent is in the second phase of COMMIT
processing, SQL0279N is returned to the application, which in turn loses its
database connection. Otherwise, the coordinator agent distributes a ROLLBACK
request to all other servers participating in the transaction, and SQL1229N is
returned to the application.

v If the failed database partition server was the coordinator partition for the
application, then agents that are still working for the application on the active
servers are interrupted to do failure recovery. The transaction is rolled back
locally on each database partition where the transaction is not in prepared state.
On those database partitions where the transaction is in prepared state, the
transaction becomes in doubt. The coordinator database partition is not aware
that the transaction is in doubt on some database partitions because the
coordinator database partition is not available.

726 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v If the application connected to the failed database partition server (before it
failed), but neither the local database partition server nor the failed database
partition server is the coordinator partition, agents working for this application
are interrupted. The coordinator partition will either send a ROLLBACK or a
DISCONNECT message to the other database partition servers. The transaction
will only be in doubt on database partition servers that are still active if the
coordinator partition returns SQL0279.

Any process (such as an agent or deadlock detector) that attempts to send a
request to the failed server is informed that it cannot send the request.

Transaction failure recovery on the failed database partition
server

If the transaction failure causes the database manager to end abnormally, you can
issue the db2start command with the RESTART option to restart the database
manager once the database partition has been restarted. If you cannot restart the
database partition, you can issue db2start to restart the database manager on a
different database partition.

If the database manager ends abnormally, database partitions on the server can be
left in an inconsistent state. To make them usable, crash recovery can be triggered
on a database partition server:
v Explicitly, through the RESTART DATABASE command
v Implicitly, through a CONNECT request when the autorestart database

configuration parameter has been set to ON

Crash recovery reapplies the log records in the active log files to ensure that the
effects of all complete transactions are in the database. After the changes have been
reapplied, all uncommitted transactions are rolled back locally, except for indoubt
transactions. There are two types of indoubt transaction in a partitioned database
environment:
v On a database partition server that is not the coordinator partition, a transaction

is in doubt if it is prepared but not yet committed.
v On the coordinator partition, a transaction is in doubt if it is committed but not

yet logged as complete (that is, the FORGET record is not yet written). This
situation occurs when the coordinator agent has not received all the COMMIT
acknowledgments from all the servers that worked for the application.

Crash recovery attempts to resolve all the indoubt transactions by doing one of the
following. The action that is taken depends on whether the database partition
server was the coordinator partition for an application:
v If the server that restarted is not the coordinator partition for the application, it

sends a query message to the coordinator agent to discover the outcome of the
transaction.

v If the server that restarted is the coordinator partition for the application, it
sends a message to all the other agents (subordinate agents) that the coordinator
agent is still waiting for COMMIT acknowledgments.

It is possible that crash recovery might not be able to resolve all the indoubt
transactions. For example, some of the database partition servers might not be
available. If the coordinator partition completes crash recovery before other
database partitions involved in the transaction, crash recovery will not be able to
resolve the indoubt transaction. This is expected because crash recovery is

Chapter 43. Data recovery 727

performed by each database partition independently. In this situation, the SQL
warning message SQL1061W is returned. Because indoubt transactions hold
resources, such as locks and active log space, it is possible to get to a point where
no changes can be made to the database because the active log space is being held
up by indoubt transactions. For this reason, you should determine whether
indoubt transactions remain after crash recovery, and recover all database partition
servers that are required to resolve the indoubt transactions as quickly as possible.

Note: In a partitioned database server environment, the RESTART database
command is run on a per-node basis. In order to ensure that the database is
restarted on all nodes, use the following recommended command:
db2_all "db2 restart database <database_name>"

If one or more servers that are required to resolve an indoubt transaction cannot be
recovered in time, and access is required to database partitions on other servers,
you can manually resolve the indoubt transaction by making an heuristic decision.
You can use the LIST INDOUBT TRANSACTIONS command to query, commit, and roll
back the indoubt transaction on the server.

Note: The LIST INDOUBT TRANSACTIONS command is also used in a distributed
transaction environment. To distinguish between the two types of indoubt
transactions, the originator field in the output that is returned by the LIST INDOUBT
TRANSACTIONS command displays one of the following:
v DB2 Enterprise Server Edition, which indicates that the transaction originated in

a partitioned database environment.
v XA, which indicates that the transaction originated in a distributed environment.

Identifying the failed database partition server

When a database partition server fails, the application will typically receive one of
the following SQLCODEs. The method for detecting which database manager
failed depends on the SQLCODE received:

SQL0279N
This SQLCODE is received when a database partition server involved in a
transaction is terminated during COMMIT processing.

SQL1224N
This SQLCODE is received when the database partition server that failed is
the coordinator partition for the transaction.

SQL1229N
This SQLCODE is received when the database partition server that failed is
not the coordinator partition for the transaction.

Determining which database partition server failed is a two-step process.
1. Find the partition server that detected the failure by examining the SQLCA.

The SQLCA associated with SQLCODE SQL1229N contains the node number of
the server that detected the error in the sixth array position of the sqlerrd field.
(The node number that is written for the server corresponds to the node
number in the db2nodes.cfg file.)

2. Examine the administration notification log on the server found in step one for
the node number of the failed server.

Note: If multiple logical nodes are being used on a processor, the failure of one
logical node can cause other logical nodes on the same processor to fail.

728 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Disaster recovery
The term disaster recovery is used to describe the activities that need to be done to
restore the database in the event of a fire, earthquake, vandalism, or other
catastrophic events.

A plan for disaster recovery can include one or more of the following:
v A site to be used in the event of an emergency
v A different machine on which to recover the database
v Offsite storage of either database backups, table space backups, or both, as well

as archived logs.

If your plan for disaster recovery is to restore the entire database on another
machine, it is recommended that you have at least one full database backup and
all the archived logs for the database. Although it is possible to rebuild a database
if you have a full table space backup of each table space in the database, this
method might involve numerous backup images and be more time-consuming
than recovery using a full database backup.

You can choose to keep a standby database up to date by applying the logs to it as
they are archived. Or, you can choose to keep the database or table space backups
and log archives in the standby site, and perform restore and rollforward
operations only after a disaster has occurred. (In the latter case, recent backup
images are preferable.) In a disaster situation, however, it is generally not possible
to recover all of the transactions up to the time of the disaster.

The usefulness of a table space backup for disaster recovery depends on the scope
of the failure. Typically, disaster recovery is less complicated and time-consuming
if you restore the entire database; therefore, a full database backup should be kept
at a standby site. If the disaster is a damaged disk, a table space backup of each
table space on that disk can be used to recover. If you have lost access to a
container because of a disk failure (or for any other reason), you can restore the
container to a different location.

Another way you can protect your data from partial or complete site failures is to
implement the DB2 high availability disaster recovery (HADR) feature. Once it is
set up, HADR protects against data loss by replicating data changes from a source
database, called the primary, to a target database, called the standby.

You can also protect your data from partial or complete site failures using
replication. Replication allows you to copy data on a regular basis to multiple
remote databases. DB2 database provides a number of replication tools that allow
you to specify what data should be copied, which database tables the data should
be copied to, and how often the updates should be copied.

Storage mirroring, such as Peer-to-Peer Remote Copy (PPRC), can also be used to
protect your data. PPRC provides a synchronous copy of a volume or disk to
protect against disasters.

DB2 database products provide you with several options when planning for
disaster recovery. Based on your business needs, you might decide to use table
space or full database backups as a safeguard against data loss, or you might
decide that your environment is better suited to a solution like HADR. Whatever
your choice, you should test your recovery procedures in a test environment before
implementing them in your production environment.

Chapter 43. Data recovery 729

Version recovery
Version recovery is the restoration of a previous version of the database, using an
image that was created during a backup operation.

You use this recovery method with non-recoverable databases (that is, databases
for which you do not have archived logs). You can also use this method with
recoverable databases by using the WITHOUT ROLLING FORWARD option on the RESTORE
DATABASE command.

A database restore operation will restore the entire database using a backup image
created earlier. A database backup allows you to restore a database to a state
identical to the one at the time that the backup was made. However, every unit of
work from the time of the backup to the time of the failure is lost (see Figure 53).

Using the version recovery method, you must schedule and perform full backups
of the database on a regular basis.

In a partitioned database environment, the database is located across many
database partition servers (or nodes). You must restore all database partitions, and
the backup images that you use for the restore database operation must all have
been taken at the same time. (Each database partition is backed up and restored
separately.) A backup of each database partition taken at the same time is known
as a version backup.

Rollforward recovery
Use rollforward recover on a database or table space to recover to its state at a
particular point in time, or to its state immediately before the failure.

To use the rollforward recovery method, you must have taken a backup of the
database and archived the logs (by setting the logarchmeth1 and logarchmeth2
configuration parameters to a value other than OFF). Restoring the database and
specifying the WITHOUT ROLLING FORWARD parameter is equivalent to using the
version recovery method. The database is restored to a state identical to the one at
the time that the offline backup image was made. If you restore the database and

CREATE
database

BACKUP
database

BACKUP
database

image

TIME

create

RESTORE
database

Units of work

Figure 53. Version Recovery

730 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

do not specify the WITHOUT ROLLING FORWARD parameter for the restore database
operation, the database will be in rollforward pending state at the end of the
restore operation. This allows rollforward recovery to take place.

Note: The WITHOUT ROLLING FORWARD parameter cannot be used if:
v You are restoring from an online backup image
v You are issuing a table space-level restore

During a recovery, archived log files are retrieved from the archive. If your
archived log files are compressed, the files are automatically uncompressed and
used. The archived log files are also automatically uncompressed when they are
encountered in the active log path or overflow log path, if you manually copied
the files there.

The two types of rollforward recovery to consider are:
v Database rollforward recovery. In this type of rollforward recovery, transactions

recorded in database logs are applied following the database restore operation
(see Figure 54). The database logs record all changes made to the database. This
method completes the recovery of the database to its state at a particular point
in time, or to its state immediately before the failure (that is, to the end of the
active logs).
In a partitioned database environment, the database is located across many
database partitions, and the ROLLFORWARD DATABASE command must be issued on
the database partition where the catalog tables for the database resides (catalog
partition). If you are performing point-in-time rollforward recovery, all database
partitions must be rolled forward to ensure that all database partitions are at the
same level. If you need to restore a single database partition, you can perform
rollforward recovery to the end of the logs to bring it up to the same level as the
other database partitions in the database. Only recovery to the end of the logs
can be used if one database partition is being rolled forward. Point-in-time
recovery applies to all database partitions.

v Table space rollforward recovery. If the database is enabled for forward recovery, it
is also possible to back up, restore, and roll table spaces forward (see Figure 55
on page 732). To perform a table space restore and rollforward operation, you
need a backup image of either the entire database (that is, all of the table
spaces), or one or more individual table spaces. You also need the log records
that affect the table spaces that are to be recovered. You can roll forward through
the logs to one of two points:

CREATE
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

ROLLFORWARD

changes in logs
Units of workUnits of work

update update

n archived logs
1 active log

n archived logs
1 active log

Figure 54. Database Rollforward Recovery. There can be more than one active log in the
case of a long-running transaction.

Chapter 43. Data recovery 731

– The end of the logs; or,
– A particular point in time (called point-in-time recovery).

Table space rollforward recovery can be used in the following two situations:
v After a table space restore operation, the table space is always in rollforward

pending state, and it must be rolled forward. Invoke the ROLLFORWARD DATABASE
command to apply the logs against the table spaces to either a point in time, or
the end of the logs.

v If one or more table spaces are in rollforward pending state after crash recovery,
first correct the table space problem. In some cases, correcting the table space
problem does not involve a restore database operation. For example, a power
loss could leave the table space in rollforward pending state. A restore database
operation is not required in this case. Once the problem with the table space is
corrected, you can use the ROLLFORWARD DATABASE command to apply the logs
against the table spaces to the end of the logs. If the problem is corrected before
crash recovery, crash recovery might be sufficient to take the database to a
consistent, usable state.

Note: If the table space in error contains the system catalog tables, you will not
be able to start the database. You must restore the SYSCATSPACE table space,
then perform rollforward recovery to the end of the logs.

In a partitioned database environment, if you are rolling a table space forward to a
point in time, you do not have to supply the list of database partitions on which the
table space resides. The DB2 database manager submits the rollforward request to
all database partitions. This means the table space must be restored on all database
partitions on which the table space resides.

In a partitioned database environment, if you are rolling a table space forward to
the end of the logs, you must supply the list of database partitions if you do not
want to roll the table space forward on all database partitions. If you want to roll
all table spaces (on all database partitions) that are in rollforward pending state
forward to the end of the logs, you do not have to supply the list of database
partitions. By default, the database rollforward request is sent to all database
partitions.

BACKUP
table space(s)

RESTORE
table space(s)

n archived logs
1 active log

n archived logs
1 active log

update update

Units of work Units of workall changes to
end of logs

ROLLFORWARD

Time

Media
error

Figure 55. Table Space Rollforward Recovery. There can be more than one active log in the
case of a long-running transaction.

732 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table space rollforward operations behave differently in a DB2 pureScale
environment. For more information, see “Log stream merging and log file
management in a DB2 pureScale environment” on page 743 and “Log sequence
numbers in DB2 pureScale environments” on page 747.

If you are rolling a table space forward that contains any piece of a partitioned
table and you are rolling it forward to a point in time, you must also roll all of the
other table spaces in which that table resides forward to the same point in time.
However, you can roll a single table space containing a piece of a partitioned table
forward to the end of logs.

If a partitioned table has any attached, detached, or dropped data partitions, then
point-in-time rollforward must also include all table spaces for these data
partitions. To determine if a partitioned table has any attached, detached, or
dropped data partitions, query the SYSDATAPARTITIONS catalog table.

Storage group modifications during rollforward recovery

Whether storage group path modifications are redone during a rollforward
operation depends on whether you redirected the storage group during the restore
process. If you did not redefine a storage group during the database restore
operation, log records affecting the storage group or its paths are replayed during
rollforward recovery. Storage path updates, storage group rename operations, and
table space storage group association updates that are described in the log records
are applied during the rollforward operation. If a rollforward operation is
attempting to replay a log record related to adding storage paths or creating a
storage group and a storage path cannot be found, error SQL1051N is returned.

If you redefined storage paths during the restore operation, the rollforward
operation does not redo any changes to storage paths or media attributes of
storage groups whose paths you redirected. However, changes to the data tag or
name of storage groups are redone. Also, log records for other operations,
including DROP STOGROUP operations, are replayed. It is assumed that any
explicitly specified storage group paths have been set to their desired final paths.

If a rebalance operation is encountered in the log, table space rebalance operations
are initiated during rollforward recovery. The rebalance operations might not be
completed while the rollforward operation is in progress. In that case, the
rebalance processing is suspended at the completion of the rollforward operation
and is restarted the next time that you activate the database.

During a rollforward operation, if a CREATE STOGROUP statement is encountered
in the log, the storage group is created on the paths that you specified when you
issued the CREATE STOGROUP statement.

Chapter 43. Data recovery 733

734 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 44. Developing a backup and recovery strategy

A database can become unusable because of hardware or software failure, or both.
You might, at one time or another, encounter storage problems, power
interruptions, or application failures, and each failure scenario requires a different
recovery action.

Protect your data against the possibility of loss by having a well rehearsed
recovery strategy in place.

Some of the questions that you should answer when developing your recovery
strategy are:
v Will the database be recoverable?
v How much time can be spent recovering the database?
v How much time will pass between backup operations?
v How much storage space can be allocated for backup copies and archived logs?
v Will table space level backups be sufficient, or will full database backups be

necessary?
v Should I configure a standby system, either manually or through high

availability disaster recovery (HADR)?

A database recovery strategy should ensure that all information is available when
it is required for database recovery. It should include a regular schedule for taking
database backups and, in the case of partitioned database environments, include
backups when the system is scaled (when database partition servers or nodes are
added or dropped). Your overall strategy should also include procedures for
recovering command scripts, applications, user-defined functions (UDFs), stored
procedure code in operating system libraries, and load copies.

Different recovery methods are discussed in the sections that follow, and you will
discover which recovery method is best suited to your business environment.

The concept of a database backup is the same as any other data backup: taking a
copy of the data and then storing it on a different medium in case of failure or
damage to the original. The simplest case of a backup involves shutting down the
database to ensure that no further transactions occur, and then simply backing it
up. You can then recreate the database if it becomes damaged or corrupted in some
way.

The recreation of the database is called recovery. Version recovery is the restoration of
a previous version of the database, using an image that was created during a
backup operation. Rollforward recovery is the reapplication of transactions recorded
in the database log files after a database or a table space backup image has been
restored.

Crash recovery is the automatic recovery of the database if a failure occurs before all
of the changes that are part of one or more units of work (transactions) are
completed and committed. This is done by rolling back incomplete transactions
and completing committed transactions that were still in memory when the crash
occurred.

© Copyright IBM Corp. 2014 735

Recovery log files and the recovery history file are created automatically when a
database is created (Figure 56). These log files are important if you need to recover
data that is lost or damaged.

Each database includes recovery logs, which are used to recover from application or
system errors. In combination with the database backups, they are used to recover
the consistency of the database right up to the point in time when the error
occurred.

The recovery history file contains a summary of the backup information that can be
used to determine recovery options, if all or part of the database must be
recovered to a given point in time. It is used to track recovery-related events such
as backup and restore operations, among others. This file is located in the database
directory.

The table space change history file, which is also located in the database directory,
contains information that can be used to determine which log files are required for
the recovery of a particular table space.

You cannot directly modify the recovery history file or the table space change
history file; however, you can delete entries from the files using the PRUNE HISTORY
command. You can also use the rec_his_retentn database configuration parameter
to specify the number of days that these history files will be retained.

Data that is easily re-created can be stored in a non-recoverable database. This
includes data from an outside source that is used for read-only applications, and
tables that are not often updated, for which the small amount of logging does not
justify the added complexity of managing log files and rolling forward after a
restore operation. If both the logarchmeth1 and logarchmeth2 database
configuration parameters are set toOFF then the database is Non-recoverable. This
means that the only logs that are kept are those required for crash recovery. These
logs are known as active logs, and they contain current transaction data. Version
recovery using offline backups is the primary means of recovery for a
non-recoverable database. (An offline backup means that no other application can
use the database when the backup operation is in progress.) Such a database can

Equivalent
physical object

Database

Table space
change history file

Recovery
history file

Recovery
log files

System

Instance

Database
object or concept

Figure 56. Database recovery files

736 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

only be restored offline. It is restored to the state it was in when the backup image
was taken and rollforward recovery is not supported.

Data that cannot be easily recreated should be stored in a recoverable database.
This includes data whose source is destroyed after the data is loaded, data that is
manually entered into tables, and data that is modified by application programs or
users after it is loaded into the database. Recoverable databases have the
logarchmeth1 or logarchmeth2 database configuration parameters set to a value
other than OFF. Active logs are still available for crash recovery, but you also have
the archived logs, which contain committed transaction data. Such a database can
only be restored offline. It is restored to the state it was in when the backup image
was taken. However, with rollforward recovery, you can roll the database forward
(that is, past the time when the backup image was taken) by using the active and
archived logs to either a specific point in time, or to the end of the active logs.

Recoverable database backup operations can be performed either offline or online
(online meaning that other applications can connect to the database during the
backup operation). Online table space restore and rollforward operations are
supported only if the database is recoverable. If the database is non-recoverable,
database restore and rollforward operations must be performed offline. During an
online backup operation, rollforward recovery ensures that all table changes are
captured and reapplied if that backup is restored.

If you have a recoverable database, you can back up, restore, and roll individual
table spaces forward, rather than the entire database. When you back up a table
space online, it is still available for use, and simultaneous updates are recorded in
the logs. When you perform an online restore or rollforward operation on a table
space, the table space itself is not available for use until the operation completes,
but users are not prevented from accessing tables in other table spaces.

Automated backup operations

Since it can be time-consuming to determine whether and when to run
maintenance activities such as backup operations, you can use automatic
maintenance. With automatic maintenance, you specify your maintenance
objectives, including when automatic maintenance can run. DB2 then uses these
objectives to determine if the maintenance activities need to be done and then runs
only the required maintenance activities during the next available maintenance
window (a user-defined time period for the running of automatic maintenance
activities).

Note: You can still perform manual backup operations when automatic
maintenance is configured. DB2 will only perform automatic backup operations if
they are required.

Deciding how often to back up
Your recovery plan should allow for regularly scheduled backup operations,
because backing up a database requires time and system resources. Your plan
might include a combination of full database backups and incremental backup
operations. Also, the frequency and types of backups you make affect your
database recovery time.

Take full database backups regularly, even if you archive the logs to allow for
rollforward recovery. To recover a database, you can use either a full database
backup image that contains all of the table space backup images, or you can

Chapter 44. Developing a backup and recovery strategy 737

rebuild the database by using selected table space images. Table space backup
images are also useful for recovering from an isolated disk failure or an application
error. In partitioned database environments, you need to restore only the table
spaces that reside on database partitions that failed. You do not need to restore all
of the table spaces or all of the database partitions.

Although full database backups are no longer required for database recovery
because you can rebuild a database from table space images, it is still good practice
to occasionally take a full backup of your database.

You should also consider not overwriting backup images and logs, saving at least
two full database backup images and their associated logs as an extra precaution.

If the amount of time needed to apply archived logs when recovering and rolling
an active database forward is a major concern, consider the cost of backing up the
database more frequently. More frequent backups reduce the number of archived
logs you need to apply when rolling forward.

Online and offline backup considerations

You can initiate a backup operation while the database is either online or offline. If
it is online, other applications or processes can connect to the database, as well as
read and modify data while the backup operation is running. If the backup
operation is running offline, other applications cannot connect to the database.

To reduce the amount of time that the database is not available, consider using
online backup operations. Online backup operations are supported only if
rollforward recovery is enabled. If rollforward recovery is enabled and you have a
complete set of recovery logs, you can restore the database, should the need arise.
You can use an online backup image for recovery only if you have the logs that
span the time during which the backup operation was running.

Offline backup operations are faster than online backup operations, since there is
no contention for the data files.

Selective table space backup considerations

You can use the backup utility to back up only selected table spaces. If you use
DMS table spaces, you can store different types of data in their own table spaces to
reduce the time required for backup operations. You can keep table data in one
table space, long field and LOB data in another table space, and indexes in yet
another table space. If you separate your data into different table spaces and a disk
failure occurs, the disk failure is likely to affect only one of the table spaces.
Restoring or rolling forward one of these table spaces takes less time than it would
take to restore a single table space that contains all of the data.

You can also save time by taking backups of different table spaces at different
times, as long as the changes to them are not the same. So, if long field or LOB
data is not changed as frequently as the other data, you can back up these table
spaces less frequently. If long field and LOB data are not required for recovery, you
can also consider not backing up the table space that contains that data. If the LOB
data can be reproduced from a separate source, choose the NOT LOGGED option
when creating or altering a table to include LOB columns.

If you keep your long field data, LOB data, and indexes in separate table spaces,
but do not back them up together, consider the following point: If you back up a

738 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

table space that does not contain all of the table data, you cannot perform
point-in-time rollforward recovery on that table space. All the table spaces that
contain any type of data for a table must be rolled forward simultaneously to the
same point in time.

Table reorganization considerations

If you reorganize a table, you should back up the affected table spaces after the
operation completes. If you have to restore the table spaces, you will not have to
roll forward through the data reorganization.

Table space modification status considerations

You can also make more informed decisions about whether to back up a table
space by checking its modification status. The db2pd -tablespaces trackmodstate
command and the tbsp_trackmode_state monitor element displays the status of
the table space with respect to the last or next backup. You can use this
information to determine whether the table space was modified or if the table
space needs to be backed up.

Database recovery time considerations

The time required to recover a database is made up of two parts:
v The time required to complete the restoration of the backup.
v If the database is enabled for forward recovery, the time required to apply the

logs during the rollforward operation

When formulating a recovery plan, take these recovery costs and their impact on
your business operations into account. Testing your overall recovery plan assists
you in determining whether the time required to recover the database is
reasonable, given your business requirements. Following each test, you might want
to increase the frequency with which you take a backup. If rollforward recovery is
part of your strategy, this increased backup frequency reduces the number of logs
that are archived between backups and, as a result, reduces the time required to
roll the database forward after a restore operation.

Storage considerations for recovery
When deciding which recovery method to use, consider the storage space required.
Backup and archived log file compression can help reduce the storage cost in your
database environment.

The version recovery method requires space to hold the backup copy of the
database and the restored database. The roll-forward recovery method requires
space to hold the backup copy of the database or table spaces, the restored
database, and the archived database logs.

If a table contains long field or large object (LOB) columns, you might consider
placing this data into a separate table space. This action affects your storage space
considerations, as well as affect your plan for recovery. With a separate table space
for long field and LOB data, and knowing the time required to back up long field
and LOB data, you might decide to use a recovery plan that only occasionally
saves a backup of this table space. You can also choose, when creating or altering a
table to include LOB columns, not to log changes to those columns. This action
reduces the size of the required log space and the corresponding archived log file
space.

Chapter 44. Developing a backup and recovery strategy 739

To prevent media failure from destroying a database and your ability to restore it,
keep the database backup, the database logs, and the database itself on different
devices. For this reason, it is highly recommended that you use the newlogpath
configuration parameter to put database logs on a separate device once the
database is created.

The database logs can use up a large amount of storage. If you plan to use the
roll-forward recovery method, you must decide how to manage and compress the
archived logs. Your choices are:
v Specify an archived log file method using the LOGARCHMETH1 or

LOGARCHMETH2 configuration parameters.
v Enable archived log file compression with the LOGARCHCOMPR1 and

LOGARCHCOMPR2 configuration parameters.
v Manually copy the logs to a storage device or directory other than the database

log path directory after they are no longer in the active set of logs.
v Use a user exit program to copy these logs to another storage device in your

environment.

Backup compression
In addition to the storage savings you can achieve through row compression in
your active database, you can also use backup compression to reduce the size of
your database backups.

Whereas row compression works on a table-by-table basis, when you use
compression for your backups, all of the data in the backup image is compressed,
including catalog tables, index objects, LOB objects, auxiliary database files and
database meta-data.

You can use backup compression with tables that use row compression. Keep in
mind, however, that backup compression requires additional CPU resources and
extra time. It may be sufficient to use table compression alone to achieve a
reduction in your backup storage requirements. If you are using row compression,
consider using backup compression only if storage optimization is of higher
priority than the extra time it takes to perform the backup.

Tip: Consider using backup compression only on table spaces that do not contain
compressed data if the following conditions apply:
v Data and index objects are separate from LOB and long field data, and
v You use row and index compression on the majority of your data tables and

indexes, respectively

To use compression for your backups, use the COMPRESS option on the BACKUP
DATABASE command.

Archived log file compression
As of DB2 V10.1, you can compress archived log files. This capability, in addition
to data and index compression, along with backup compression, reduces the
amount of disk space required for your database environment.

Archived log files are the third major space consumer for roll-forward recoverable
databases. Archived log files contain a significant amount of data and these
archives can grow quickly. If modified data is already in compressed tables,

740 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

logging is reduced by virtue of including compressed record images in log records.
Compression of archived log files further increases storage savings, even in these
environments.

To use compression for your archived log files, you can use the UPDATE DB CFG
command to set the logarchcompr1 and logarchcompr2 configuration parameters to
ON.

Restrictions
v Archived log file compression does not take effect under the following

conditions.
– The corresponding archived log file method is not set to DISK, TSM, or VENDOR.

When the corresponding archived log file method is set as described, the log
files are physically moved out of the active log path, or the mirror log path.

– Whenever archived log file compression is enabled, but the corresponding log
archiving method is set to OFF, LOGRETAIN or USEREXIT, archived log file
compression has no effect. Any update to the logarchmeth1 and logarchmeth2
or the logarchcompr1 and logarchcompr2 database configuration parameters
which results in such a scenario returns a warning, SQL1663W.

Note: When the database is activated, SQL1663W is not returned when
setting or changing archived log file compression database configuration
parameters. Instead, SQL1363W is returned, which is a higher priority
message. If the database is not activated, the SQL1663W warning message is
returned.

v Manual archiving and retrieval with db2adutl.
– The db2adutl utility does not perform compression or decompression during

UPLOAD or EXTRACT operations. Movement of compressed log files to and from
the archive location is fully supported by db2adutl.

– If logs are uploaded to Tivoli Storage Manager with db2adutl, and you want
to compress archived log files, archived log file compression must be enabled
when the logs are archived to the disk location, before db2adutl picks them
up. If compressed logs are retrieved manually with db2adutl, they are
extracted on first access.

v Archived log file compression is not supported when raw devices are used for
database logging.
– Archived log file compression is not supported when either the logpath or

the newlogpath database configuration parameters point to a raw device. Any
database configuration update that results in archived log file compression
being enabled while logpath or newlogpath database configuration parameters
point to raw devices fails, SQL1665N.

v When enabling archived log file compression using the logarchcompr1 and
logarchcompr2 database configuration parameters, logs already stored in a
backup image are not affected.

Backup and restore operations between different operating systems
and hardware platforms

DB2 database systems support some backup and restore operations between
different operating systems and hardware platforms.

The supported platforms for DB2 backup and restore operations can be grouped
into one of three families:

Chapter 44. Developing a backup and recovery strategy 741

v Big-endian Linux and UNIX
v Little-endian Linux and UNIX
v Windows

A database backup from one platform family can only be restored on any system
within the same platform family. For Windows operating systems, you can restore
a database that was created on DB2 Version 9.7 on a DB2 Version 10.1 database
system. For Linux and UNIX operating systems, as long as the endianness (big
endian or little endian) of the backup and restore platforms is the same, you can
restore backups that were produced on down level versions.

The following table shows each of the Linux and UNIX platforms DB2 supports
and indicates whether the platforms are big endian or little endian:

Table 122. Endianness of supported Linux and UNIX operating systems DB2 supports

Platform Endianness

AIX big endian

HP on IA64 big endian

Solaris x64 little endian

Solaris SPARC big endian

Linux on zSeries big endian

Linux on pSeries big endian

Linux on IA-64 little endian

Linux on AMD64 and Intel EM64T little endian

32-bit Linux on x86 little endian

The target system must have the same (or later) version of the DB2 database
product as the source system. You cannot restore a backup that was created on one
version of the database product to a system that is running an earlier version of
the database product. For example, you can restore a DB2 Version 9.7 on a DB2
Version 10.1 database system, but you cannot restore a DB2 Version 10.1 backup on
a DB2 Version 9.7 database system.

Note: You can restore a database from a backup image that was taken on a 32-bit
level into a 64-bit level, but not vice versa. The DB2 backup and restore utilities
should be used to back up and restore your databases. Moving a file set from one
machine to another is not recommended as this can compromise the integrity of
the database.

In situations where certain backup and restore combinations are not allowed, you
can move tables between DB2 databases using other methods:
v The db2move command
v The export command followed by the import or the load command

Note: Database configuration parameters are set to their defaults if the values in
the backup are outside of the allowable range for the environment in which the
database is being restored.

742 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Log stream merging and log file management in a DB2 pureScale
environment

In a DB2 pureScale environment, each member maintains its own set of transaction
log files (that is, a log stream) on the shared disk, each set in a separate log path.
The log files for a member contain a history of all data changes that occurred on
that member.

Multiple applications, each accessing a different member simultaneously, might
generate dependent transactions during run time. A dependency between two
transactions can occur if, for example, both transactions change the same row. To
effectively interpret the log records, the DB2 data server must examine the records
from all log streams and order the records so that they reflect the order of the
updates that occurred at run time. This ordering is known as a log stream merge
operation. Several operation types in a DB2 pureScale environment require log
stream merges; these include (among others) group crash recovery, database
roll-forward operations, and table space roll-forward operations.

Logging configuration parameters in a DB2 pureScale
environment

Table 123 shows which logging-related database configuration parameters are
global in scope and which parameters are dynamically updatable.

Table 123. Logging-related database configuration parameters

Parameter Global? Dynamically updatable?

archretrydelay Yes Yes

blk_log_dsk_ful No Yes

failarchpath Yes Yes

logarchcompr1 Yes Yes

logarchcompr2 Yes Yes

logarchmeth1 Yes Yes

logarchmeth2 Yes Yes

logarchopt1 Yes Yes

logarchopt2 Yes Yes

logbufsz No Yes

logfilsiz Yes No

logprimary Yes No

logsecond Yes Yes

max_log No Yes

mirrorlogpath 1 Yes No

newlogpath 1 Yes No

num_log_span No Yes

numarchretry Yes Yes

overflowlogpath Yes Yes

softmax Yes No

vendoropt Yes Yes

Chapter 44. Developing a backup and recovery strategy 743

Table 123. Logging-related database configuration parameters (continued)

Parameter Global? Dynamically updatable?
1 The first member that connects to or activates the database processes the changes to this
log path parameter. The DB2 database manager verifies that the path exists and that it has
both read and write access to that path. It also creates member-specific subdirectories for
the log files. If any one of these operations fails, the DB2 database manager rejects the
specified path and brings the database online using the old path. If the database manager
accepts the specified path, the new value is propagated to each member. If a member fails
while trying to switch to the new path, subsequent attempts to activate the database or to
connect to it fails, and SQL5099N is returned. All members must use the same log path.

Retrieving logs for a log stream merge operation in a DB2
pureScale environment

A subdirectory is created in the path for retrieved log files. The subdirectory has
the following format: log_path/LOGSTREAMxxxx, where log_path represents the log
path, overflow log path, or mirror log path, and xxxx is a 4-digit log stream
identifier. (The log stream identifier is not necessarily equivalent to the associated
member ID.) Within this subdirectory, if a member requires log retrieval, the DB2
database manager creates another level of subdirectories for retrieved logs from
each member. For example, if you specify an overflow log path of
/home/dbuser/overflow/ on a 3-member system, and an application on member 0
must retrieve logs that are owned by other members, the path for member 0 is
/home/dbuser/overflow/NODE0000/LOGSTREAM0000, and subdirectories under this
path contain retrieved logs that are owned by other members, as shown in the
following example:
Member 0 retrieves its own logs here:

/home/dbuser/overflow/NODE0000/LOGSTREAM0000/LOGSTREAM0000
Member 0 retrieves logs that belong to member 1 here:

/home/dbuser/overflow/NODE0000/LOGSTREAM0000/LOGSTREAM0001
Member 0 retrieves logs that belong to member 2 here:

/home/dbuser/overflow/NODE0000/LOGSTREAM0000/LOGSTREAM0002

Note: Do not manually insert log files in to these retrieve subdirectories. If you
want to manually retrieve log files, use the overflow log path instead.

When reading archived log files that are owned by other members, a member
might need to retrieve log files in to its own log path or overflow log path. In this
case, the log stream merge operation creates a db2logmgr engine dispatchable unit
(EDU) for each log stream, as needed.

As mentioned earlier, there are three paths that can be used to store log files that
are owned by other members, as shown in the following list:
1. If you set the overflowlogpath database configuration parameter, the overflow

log path is used.

Tip: You can use ROLLFORWARD DATABASE and RECOVER DATABASE command
options to specify an alternative overflow log path; the values of these options
override the database configuration for purposes of the single recovery
operation.

2. The primary log path
3. If you set the mirrorlogpath database configuration parameter, the mirror log

path is used.

744 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If the DB2 database manager is unable to store a log file in the first path, it
attempts to use the next path in the list. If none of these paths is available, the
utility that invoked the log stream merge operation returns an error that is specific
to that utility.

Output from the GET DATABASE CONFIGURATION command in a DB2 pureScale
environment identifies each log path followed by the name of the member. For
example, if the mirror log path was set to /home/dbuser/mirrorpath/, for member
2, the output displays /home/dbuser/mirrorpath/NODE0000/LOGSTREAM0002.

If you must manually retrieve log files that are owned by other members, ensure
that the database manager can access the log files by using the same directory
structure that is automatically created. For example, to make logs from member 2
available in the overflow log path of member 1, place the logs in the
/home/dbuser/overflow/NODE0000/LOGSTREAM0001/LOGSTREAM0002 directory.

Retrieved log files are automatically deleted when they are no longer needed.
Subdirectories that were created during a log stream merge operation are retained
for future use.

Detection of missing logs during a log stream merge operation

If you accidentally deleted, moved, or archived and lost a log file that is required
for a recovery operation, you can roll-forward recover the database to the last
consistent point before the missing log file.

If, during a log stream merge operation, the DB2 database manager determines
that there is a missing log file in one of the log streams, an error is returned. The
roll-forward utility returns SQL1273N; the db2ReadLog API returns SQL2657N.

Figure 57 shows an example of how two members could write log records to the
log files in their active log stream. Each log file is represented by a box.

Consider a scenario where only log file 4 from log stream 1 is missing, a
roll-forward operation to time A succeeds while roll-forward operations to time B,
time C, or to the END OF LOGS fail. The ROLLFORWARD command returns
SQL1273N because log file 4 is not available. Furthermore, since the log records in
files 2 and 3 on log stream 0 were written during the same time period as the
beginning of log file 4 on log stream 1, the roll-forward operation cannot process
log files 2 and 3 until log file 4 from log stream 1 is available. The result is that the
roll-forward operation stops at time A, and any subsequent roll-forward operations
cannot proceed beyond time A until log 4 from stream 1 becomes available.

1 2 3

1 2 3 4

4 5

5

Log Stream 0

Log Stream 1

A B C

Time

Figure 57. Log files in a DB2 pureScale environment

Chapter 44. Developing a backup and recovery strategy 745

Consider another scenario where only log file 4 from log stream 0 is missing
during a roll-forward operation. If you issue a ROLLFORWARD command with the END
OF LOGS option (or anytime after time B), the operation will stop at time B and will
return SQL1273N because log file 4 on stream 0 is missing. A roll-forward
operation can replay log records from files 2 and 3 on log stream 0 and some logs
from file 4 on stream 1 up to time B. The roll-forward operation must stop at time
B even though additional logs from stream 1 are available because the log merge
process requires that all the logs from all the streams be available.

If you can find the missing log file, make it available and reissue the ROLLFORWARD
DATABASE command. If you cannot find the missing log file, issue the ROLLFORWARD
DATABASE...STOP command to complete the roll-forward operation at the last
consistent point just before the missing log file.

Although missing log detection ensures that database corruption does not occur as
a result of missing log files, the presence of missing log files prevents some
transactions from being replayed and, as a result, data loss could occur if the
missing log files are not located.

Required resources

Log stream merge operations require additional EDUs. During database activation,
one db2lfr EDU is created on each member. When a log read operation that
requires a log stream merge is initiated, one db2shred EDU and one db2lfr EDU is
created for each log stream. Although each db2lfr-db2shred group allocates its
own set of log page and log record buffers, this is not a significant amount of
additional memory or system resources; approximately 400 KB is allocated for each
member that is involved in the log stream merge.

During a log stream merge operation, a member retrieves log files that are owned
by other members into its overflow log path, primary log path, or mirror log path.
In a DB2 pureScale environment, ensure that there is adequate free disk space in
the retrieval path before starting a roll-forward operation. This allows the
operation to retrieve the larger number of files from the archive, as required in a
DB2 pureScale environment, without affecting performance. Use the following
rule-of-thumb to calculate how much space you need to retrieve the active log files
for all members: (logprimary + logsecond) * number of members.

Examples
v Update the newlogpath global database configuration parameter:

db2 update db cfg for db mydb using newlogpath /home/dbuser/logdir

v Update the max_log per-member database configuration parameter on a single
member:
db2 update db cfg for db mydb member 1 using max_log 5

v Update the primary log path:
db2 connect to mydb
db2 update db cfg for mydb using newlogpath /home/dbuser/newlogpath
db2 get db cfg for mydb
...
Changed path to log files (NEWLOGPATH) = /home/dbuser/newlogpath/NODE0000/LOGSTREAM0000/
Path to log files = /home/dbuser/dbuser/NODE0000/LOGSTREAM0000/
...

The change does not take effect because the member is still active.

746 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

db2 terminate
db2 deactivate db mydb
db2 connect to mydb
db2 get db cfg for mydb
...
Changed path to log files (NEWLOGPATH) =
Path to log files = /home/dbuser/newlogpath/NODE0000/LOGSTREAM0000/
...

Each member uses the /home/dbuser/newlogpath/NODE0000/LOGSTREAMxxxx log
path, where xxxx is the log stream ID of the log stream that uses the path.

v Set a new primary log path while restoring a backup image:
db2 restore db mydb newlogpath ’/home/dbuser/newlogpath’ without prompting

Log sequence numbers in DB2 pureScale environments
DB2 databases use the log sequence number (LSN), a 64-bit identifier, to determine
the order of the operations that generated the log records.

The LSN is an ever-increasing value. Each member writes to its own set of log files
(a log stream), and the LSN within a single log stream is a unique number.

Because LSNs are generated independently on each member and there are multiple
log streams, it is possible to have duplicate LSN values across different log
streams. A log record identifier (LRI) is used to identify log records across log
streams; each log record in any log stream in the database is assigned a unique
LRI. Use the db2pd command to determine which LRI is being processed by a
recovery operation.

Including log files with a backup image
When performing an online backup operation, you can specify that the log files
required to restore and recover a database are included in the backup image.

This means that if you need to ship backup images to a disaster recovery site, you
do not have to send the log files separately or package them together yourself.
Further, you do not have to decide which log files are required to guarantee the
consistency of an online backup. This provides some protection against the
deletion of log files required for successful recovery.

To use this feature, specify the INCLUDE LOGS option of the BACKUP DATABASE
command. When you specify this option, the backup utility truncates the currently
active log file and copies the necessary set of log extents into the backup image.

To restore the log files from a backup image, use the LOGTARGET option of the
RESTORE DATABASE command and specify a fully qualified path that exists on the
DB2 server. The restore database utility then writes the log files from the image to
the target path. If a log file with the same name exists in the target path, the
restore operation fails and an error is returned. If the LOGTARGET option is not
specified, no log files are restored from the backup image.

If the LOGTARGET option is specified and the backup image does not include any log
files, an error is returned before an attempt is made to restore any table space data.
The restore operation also fails if an invalid or read-only path is specified. During
a database or table space restore where the LOGTARGET option is specified, if one or
more log files cannot be extracted, the restore operation fails and an error is
returned.

Chapter 44. Developing a backup and recovery strategy 747

You can also choose to restore only the log files saved in the backup image. To do
this, specify the LOGS option with the LOGTARGET option of the RESTORE DATABASE
command. If the restore operation encounters any problems when restoring log
files in this mode, the restore operation fails and an error is returned.

During an automatic incremental restore operation, only the logs included in the
target image of the restore operation are retrieved from the backup image. Any
logs that are included in intermediate images referenced during the incremental
restore process are not extracted from those backup images. During a manual
incremental restore, if you specify a log target directory when restoring a backup
image that includes log files, the log files in that backup image are restored.

If you roll a database forward that was restored from an online backup image that
includes log files, you might encounter error SQL1268N, which indicates
roll-forward recovery stopped due to an error received when retrieving a log. This
error is generated when the target system to which you are attempting to restore
the backup image does not have access to the facility used by the source system to
archive its transaction logs.

If you specify the INCLUDE LOGS option of the BACKUP DATABASE command when
you back up a database, then perform a restore operation and a roll-forward
operation that use that back up image, DB2 still searches for additional transaction
logs when rolling the database forward, even though the backup image includes
logs. It is standard rollforward behavior to continue to search for additional
transaction logs until no more logs are found. It is possible to have more than 1
log file with the same timestamp. Consequently, DB2 does not stop as soon as it
finds the first timestamp that matches the point-in-time to which you are rolling
forward the database as there might be other log files that also have that
timestamp. Instead, DB2 continues to look at the transaction log until it finds a
timestamp greater than the point-in-time specified.

When no additional logs can be found, the rollforward operation ends successfully.
However, if there is an error while searching for additional transaction log files,
error SQL1268N is returned. Error SQL1268N can occur because during the initial
restore, certain database configuration parameters were reset or overwritten. Three
of these database configuration parameters are the TSM parameters, tsm_nodename,
tsm_owner, and tsm_password. They are all reset to NULL. To rollforward to the end
of logs, you need to reset these database configuration parameters to correspond to
the source system before the rollforward operation. Alternatively, you can specify
the NORETRIEVE option when you issue the ROLLFORWARD DATABASE command. This
prevents the DB2 database system from trying to obtain potentially missing
transaction logs elsewhere.

Note:

1. This feature is not supported for offline backups.
2. When logs are included in an online backup image, the resulting image cannot

be restored on releases of DB2 database before Version 8.2.

Incremental backup and recovery
As the size of databases, and particularly warehouses, continues to expand into the
terabyte and petabyte range, the time and hardware resources required to back up
and recover these databases is also growing substantially.

748 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Full database and table space backups are not always the best approach when
dealing with large databases, because the storage requirements for multiple copies
of such databases are enormous.

Consider the following issues:
v When a small percentage of the data in a warehouse changes, it should not be

necessary to back up the entire database.
v Appending table spaces to existing databases and then taking only table space

backups is risky, because there is no guarantee that nothing outside of the
backed up table spaces has changed between table space backups.

To address these issues, DB2 provides incremental backup and recovery.

An incremental backup is a backup image that contains only pages that have been
updated since the previous backup was taken. In addition to updated data and
index pages, each incremental backup image also contains all of the initial database
metadata (such as database configuration, table space definitions, database history,
and so on) that is normally stored in full backup images.

Note:

1. If a table space contains long field or large object data and an incremental
backup is taken, all of the long field or large object data will be copied into the
backup image if any of the pages in that table space have been modified since
the previous backup.

2. If you take an incremental backup of a table space that contains a dirty page
(that is, a page that contains data that has been changed but has not yet been
written to disk) then all large object data is backed up. Normal data is backed
up only if it has changed.

3. Data redistribution might create table spaces for all new database partitions if
the ADD DBPARTITIONNUMS parameter on the REDISTRIBUTE DATABASE PARTITION
GROUP command is specified; this can affect incremental backup operations.

Two types of incremental backup are supported:
v Incremental. An incremental backup image is a copy of all database data that has

changed since the most recent, successful, full backup operation. This is also
known as a cumulative backup image, because a series of incremental backups
taken over time will each have the contents of the previous incremental backup
image. The predecessor of an incremental backup image is always the most
recent successful full backup of the same object.

v Delta. A delta, or incremental delta, backup image is a copy of all database data
that has changed since the last successful backup (full, incremental, or delta) of
the table space in question. This is also known as a differential, or
noncumulative, backup image. The predecessor of a delta backup image is the
most recent successful backup containing a copy of each of the table spaces in
the delta backup image.

The key difference between incremental and delta backup images is their behavior
when successive backups are taken of an object that is continually changing over
time. Each successive incremental image contains the entire contents of the
previous incremental image, plus any data that has changed, or is new, since the
previous full backup was produced. Delta backup images contain only the pages
that have changed since the previous image of any type was produced.

Chapter 44. Developing a backup and recovery strategy 749

Combinations of database and table space incremental backups are permitted, in
both online and offline modes of operation. Be careful when planning your backup
strategy, because combining database and table space incremental backups implies
that the predecessor of a database backup (or a table space backup of multiple
table spaces) is not necessarily a single image, but could be a unique set of
previous database and table space backups taken at different times.

To restore the database or the table space to a consistent state, the recovery process
must begin with a consistent image of the entire object (database or table space) to
be restored, and must then apply each of the appropriate incremental backup
images in the order described in the following list.

To enable the tracking of database updates, DB2 supports a new database
configuration parameter, trackmod, which can have one of two accepted values:
v NO. Incremental backup is not permitted with this configuration. Database page

updates are not tracked or recorded in any way. This is the default value.
v YES. Incremental backup is permitted with this configuration. When update

tracking is enabled, the change becomes effective at the first successful
connection to the database. Before an incremental backup can be taken on a
particular table space, a full backup of that table space is necessary.

For SMS and DMS table spaces, the granularity of this tracking is at the table space
level. In table space level tracking, a flag for each table space indicates whether or
not there are pages in that table space that need to be backed up. If no pages in a
table space need to be backed up, the backup operation can skip that table space
altogether.

Although minimal, the tracking of updates to the database can have an impact on
the runtime performance of transactions that update or insert data.

Restoring from incremental backup images
A restore operation from incremental backup images consists of four steps.

About this task
1. Identifying the incremental target image.

Determine the final image to be restored, and request an incremental restore
operation from the DB2 restore utility. This image is known as the target image
of the incremental restore, because it is the last image to be restored. The
incremental target image is specified using the TAKEN AT parameter in the
RESTORE DATABASE command.

2. Restoring the most recent full database or table space image to establish a
baseline against which each of the subsequent incremental backup images can
be applied.

3. Restoring each of the required full or table space incremental backup images, in
the order in which they were produced, on top of the baseline image restored
in Step 2.

4. Repeating Step 3 until the target image from Step 1 is read a second time. The
target image is accessed twice during a complete incremental restore operation.
During the first access, only initial data is read from the image; none of the
user data is read. The complete image is read and processed only during the
second access.
The target image of the incremental restore operation must be accessed twice to
ensure that the database is initially configured with the correct history, database

750 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

configuration, and table space definitions for the database that is created during
the restore operation. In cases where a table space was dropped since the initial
full database backup image was taken, the table space data for that image is
read from the backup images but ignored during incremental restore
processing.

There are two ways to restore incremental backup images: automatic and manual:
v For an automatic incremental restore, the RESTORE DATABASE command is issued

only once specifying the target image to be used. DB2 for Linux, UNIX, and
Windows then uses the database history to determine the remaining required
backup images and restores them.

v For a manual incremental restore, the RESTORE DATABASE command must be
issued once for each backup image that needs to be restored (as outlined in the
steps listed previously).

Procedure
v To restore a set of incremental backup images using automatic incremental

restore, issue the RESTORE DATABASE command specifying time stamp of the last
image you want to restore with the TAKEN AT parameter, as follows:

db2 restore db sample incremental automatic taken at timestamp

This results in the restore utility performing each of the steps described at the
beginning of this section automatically. During the initial phase of processing,
the backup image with the specified time stamp (specified in the form
yyyymmddhhmmss) is read, and the restore utility verifies that the database, its
history, and the table space definitions exist and are valid.
During the second phase of processing, the database history is queried to build a
chain of backup images required to perform the requested restore operation. If,
for some reason this is not possible, and DB2 for Linux, UNIX, and Windows is
unable to build a complete chain of required images, the restore operation
terminates, and an error message is returned. In this case, an automatic
incremental restore is not possible, and you must issue the RESTORE DATABASE
command with the INCREMENTAL ABORT parameter. This will clean up any
remaining resources so that you can proceed with a manual incremental restore.

Note: It is highly recommended that you not use the WITH FORCE OPTION of the
PRUNE HISTORY command. The default operation of this command prevents you
from deleting history entries that might be required for recovery from the most
recent, full database backup image, but with the WITH FORCE OPTION, it is
possible to delete entries that are required for an automatic restore operation.
During the third phase of processing, DB2 for Linux, UNIX, and Windows
restores each of the remaining backup images in the generated chain. If an error
occurs during this phase, you must issue the RESTORE DATABASE command with
the INCREMENTAL ABORT option to clean up any remaining resources. You must
then determine whether the error can be resolved before you reissue the RESTORE
DATABASE command or attempt the manual incremental restore again.

v To restore a set of incremental backup images, using manual incremental restore,
issue RESTORE DATABASE commands specifying time stamp of each image you
want to restore with the TAKEN AT parameter, as follows:
1.

db2 restore database dbname incremental taken at timestamp

where timestamp points to the last incremental backup image (the target image)
to be restored.

Chapter 44. Developing a backup and recovery strategy 751

2.
db2 restore database dbname incremental taken at timestamp1

where timestamp1 points to the initial full database (or table space) image.
3.

db2 restore database dbname incremental taken at timestampX

where timestampX points to each incremental backup image in creation
sequence.

4.

Repeat Step 3, restoring each incremental backup image up to and including
image timestamp.

If you are performing a database restore operation, and table space backup
images have been produced, the table space images must be restored in the
chronological order of their backup time stamps.
The db2ckrst utility can be used to query the database history and generate a
list of backup image time stamps needed for an incremental restore. A simplified
restore syntax for a manual incremental restore is also generated. It is
recommended that you keep a complete record of backups, and use this utility
only as a guide.

Limitations to automatic incremental restore
The automatic incremental restore is useful when you need to restore your
database. However, you should consider the limitations of automatic incremental
restore when you are deciding how you will recover your database to prevent
unnecessary issues.

The following limitations affect automatic incremental restore:
1. If a table space name has been changed since the backup operation you want to

restore from, and you use the new name when you issue a table space level
restore operation, the required chain of backup images from the database
history will not be generated correctly and an error will occur (SQL2571N).
Example:
db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 rename tablespace from userspace1 to t1
db2 restore db sample tablespace (’t1’) incremental automatic taken
at <ts2>

SQL2571N Automatic incremental restore is unable to proceed.
Reason code: "3".

Suggested workaround: Use manual incremental restore.
2. If you drop a database, the database history will be deleted. If you restore the

dropped database, the database history will be restored to its state at the time
of the restored backup and all history entries after that time will be lost. If you
then attempt to perform an automatic incremental restore that would need to
use any of these lost history entries, the RESTORE utility will attempt to restore
an incorrect chain of backups and will return an "out of sequence" error
(SQL2572N).
Example:
db2 backup db sample —> <ts1>
db2 backup db sample incremental —> <ts2>
db2 backup db sample incremental delta —> <ts3>
db2 backup db sample incremental delta —> <ts4>

752 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

db2 drop db sample
db2 restore db sample incremental automatic taken at <ts2>
db2 restore db sample incremental automatic taken at <ts4>

Suggested workarounds:
v Use manual incremental restore.
v Restore the history file first from image <ts4> before issuing an automatic

incremental restore.
3. If you restore a backup image from one database into another database and

then do an incremental (delta) backup, you can no longer use automatic
incremental restore to restore this backup image.
Example:
db2 create db a
db2 create db b

db2 update db cfg for a using trackmod on

db2 backup db a —> ts1
db2 restore db a taken at ts1 into b

db2 backup db b incremental —> ts2

db2 restore db b incremental automatic taken at ts2

SQL2542N No match for a database image file was found based on the source
database alias "B" and timestamp "ts1" provided.

Suggested workaround:
v Use manual incremental restore as follows:

db2 restore db b incremental taken at ts2
db2 restore db a incremental taken at ts1 into b
db2 restore db b incremental taken at ts2

v After the manual restore operation into database B, issue a full database
backup to start a new incremental chain

Chapter 44. Developing a backup and recovery strategy 753

754 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 45. BACKUP DATABASE command

Use the BACKUP DATABASE command to create a backup of your DB2 database
and related stored data and to prevent data loss in the event of a database service
outage.

The simplest form of the DB2 BACKUP DATABASE command requires only that you
specify the alias name of the database that you want to back up. For example:
db2 backup db sample

In IBM Data Studio Version 3.1 or later, you can use the task assistant for backing
up databases. Task assistants can guide you through the process of setting options,
reviewing the automatically generated commands to perform the task, and running
these commands. For more details, see Administering databases with task
assistants.

If the command completes successfully, you will have acquired a new backup
image that is located in the path or the directory from which the command was
issued. It is located in this directory because the command in this example does
not explicitly specify a target location for the backup image. Backup images created
by DB2 Version 9.5 and later are generated with file mode 600, meaning that on
UNIX only the instance owner has read and write privileges and on Windows only
members of the DB2ADMNS (and Administrators) group have access to the
backup images.

Note: If the DB2 client and server are not located on the same system, DB2
database systems will determine which directory is the current working directory
on the client machine and use that as the backup target directory on the server. For
this reason, it is recommended that you specify a target directory for the backup
image.

Backup images are created at the target location specified when you invoke the
backup utility. This location can be:
v A directory (for backups to disk or diskette)
v A device (for backups to tape)
v A Tivoli Storage Manager (TSM) server
v Another vendor's server

The recovery history file is updated automatically with summary information
whenever you invoke a database backup operation. This file is created in the same
directory as the database configuration file.

If you want to delete old backup images that are no longer required, you can
remove the files if the backups are stored as files. If you subsequently run a LIST
HISTORY command with the BACKUP option, information about the deleted backup
images will also be returned. You must use the PRUNE command to remove those
entries from the recovery history file.

If your recovery objects were saved using Tivoli Storage Manager (TSM), you can
use the db2adutl utility to query, extract, verify, and delete the recovery objects. On

© Copyright IBM Corp. 2014 755

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

Linux and UNIX, this utility is located in the sqllib/adsm directory, and on
Windows operating systems, it is located in sqllib\bin. For snapshots, use the
db2acsutil utility located in sqllib/bin.

On all operating systems, file names for backup images created on disk consist of a
concatenation of several elements, separated by periods:
DB_alias.Type.Inst_name.DBPARTnnn.timestamp.Seq_num

For example:
STAFF.0.DB201.DBPART000.19950922120112.001

Database alias
A 1- to 8-character database alias name that was specified when the
backup utility was invoked.

Type Type of backup operation, where: 0 represents a full database-level backup,
3 represents a table space-level backup, and 4 represents a backup image
generated by the LOAD COPY TO command.

Instance name
A 1- to 8-character name of the current instance that is taken from the
DB2INSTANCE environment variable.

Database partition number
In single partition database environments, this is always DBPART000. In
partitioned database environments, it is DBPARTxxx, where xxx is the
number assigned to the database partition in the db2nodes.cfg file.

Time stamp
A 14-character representation of the date and time at which the backup
operation was performed. The time stamp is in the form yyyymmddhhnnss,
where:
v yyyy represents the year (1995 to 9999)
v mm represents the month (01 to 12)
v dd represents the day of the month (01 to 31)
v hh represents the hour (00 to 23)
v nn represents the minutes (00 to 59)
v ss represents the seconds (00 to 59)

Sequence number
A 3-digit number used as a file extension.

When a backup image is written to tape:
v File names are not created, but the information described previously is stored in

the backup header for verification purposes.
v A tape device must be available through the standard operating system

interface. In a large partitioned database environment, however, it might not be
practical to have a tape device dedicated to each database partition server. You
can connect the tape devices to one or more TSM servers, so that access to these
tape devices is provided to each database partition server.

v In a partitioned database environment, you can also use products that provide
virtual tape device functions, such as REELlibrarian 4.2 or CLIO/S. You can use
these products to access the tape device connected to other nodes (database
partition servers) through a pseudo tape device. Access to the remote tape
device is provided transparently, and the pseudo tape device can be accessed
through the standard operating system interface.

756 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You cannot back up a database that is not in a normal or backup-pending state. A
table space that is in a normal or backup-pending state can be backed up. If the
table space is not in a normal or backup-pending state, a backup may or may not
be permitted.

Concurrent backup operations on the same table space are not permitted. Once a
backup operation has been initiated on a table space, any subsequent attempts will
fail (SQL2048N).

If a database or a table space is in a partially restored state because a system crash
occurred during the restore operation, you must successfully restore the database
or the table space before you can back it up.

A backup operation will fail if a list of the table spaces to be backed up contains
the name of a temporary table space.

The backup utility provides concurrency control for multiple processes that are
making backup copies of different databases. This concurrency control keeps the
backup target devices open until all the backup operations have ended. If an error
occurs during a backup operation, and an open container cannot be closed, other
backup operations targeting the same drive might receive access errors. To correct
such access errors, you must terminate the backup operation that caused the error
and disconnect from the target device. If you are using the backup utility for
concurrent backup operations to tape, ensure that the processes do not target the
same tape.

Displaying backup information

You can use db2ckbkp to display information about existing backup images. This
utility allows you to:
v Test the integrity of a backup image and determine whether or not it can be

restored.
v Display information that is stored in the backup header.
v Display information about the objects and the log file header in the backup

image.

Privileges, authorities, and authorization required to use backup
You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the backup
utility.

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects.

Users can access only those objects for which they have the appropriate
authorization; that is, the required privilege or authority.

Backing up data
Use the BACKUP DATABASE command to take a copy of the database data and store it
on a different medium. This backup data can then be used in the case of a failure
or damage to the original data.

Chapter 45. Backup 757

You can back up an entire database, database partition, or only selected table
spaces.

Before you begin

You do not need to be connected to the database that is to be backed up: the
backup database utility automatically establishes a connection to the specified
database, and this connection is terminated at the completion of the backup
operation. If you are connected to a database that is to be backed up, you will be
disconnected when the BACKUP DATABASE command is issued and the backup
operation will proceed.

The database can be local or remote. The backup image remains on the database
server, unless you are using a storage management product such as Tivoli Storage
Manager (TSM) or DB2 Advanced Copy Services (ACS).

If you are performing an offline backup and if you have activated the database by
using the ACTIVATE DATABASE command, you must deactivate the database before
you run the offline backup. If there are active connections to the database, in order
to deactivate the database successfully, a user with SYSADM authority must
connect to the database, and issue the following commands:
CONNECT TO database-alias
QUIESCE DATABASE IMMEDIATE FORCE CONNECTIONS;
UNQUIESCE DATABASE;
TERMINATE;
DEACTIVATE DATABASE database-alias

In a partitioned database environment, you can use the BACKUP DATABASE command
to back up database partitions individually, use the ON DBPARTITIONNUM command
parameter to back up several of the database partitions at once, or use the ALL
DBPARTITIONNUMS parameter to back up all of the database partitions
simultaneously. You can use the LIST DBPARTITIONNUMS command to identify the
database partitions that have user tables on them that you might want to back up.

Unless you are using a single system view (SSV) backup, if you are performing an
offline backup in a partitioned database environment, you should back up the
catalog partition separately from all other database partitions. For example, you
can back up the catalog partition first, then back up the other database partitions.
This action is necessary because the backup operation might require an exclusive
database connection on the catalog partition, during which the other database
partitions cannot connect. If you are performing an online backup, all database
partitions (including the catalog partition) can be backed up simultaneously or in
any order.

On a distributed request system, backup operations apply to the distributed
request database and the metadata stored in the database catalog (wrappers,
servers, nicknames, and so on). Data source objects (tables and views) are not
backed up, unless they are stored in the distributed request database

If a database was created with a previous release of the database manager, and the
database has not been upgraded, you must upgrade the database before you can
back it up.

Restrictions

The following restrictions apply to the backup utility:

758 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v A table space backup operation and a table space restore operation cannot be
run at the same time, even if different table spaces are involved.

v If you want to be able to do rollforward recovery in a partitioned database
environment, you must regularly back up the database on the list of nodes. You
must also have at least one backup image of the rest of the nodes in the system
(even those nodes that do not contain user data for that database). Two
situations require the backed-up image of a database partition at a database
partition server that does not contain user data for the database:
– You added a database partition server to the database system after taking the

last backup, and you need to do forward recovery on this database partition
server.

– Point-in-time recovery is used, which requires that all database partitions in
the system are in rollforward pending state.

v Online backup operations for DMS table spaces are incompatible with the
following operations:
– load
– reorganization (online and offline)
– drop table space
– table truncation
– index creation
– not logged initially (used with the CREATE TABLE and ALTER TABLE

statements)
v If you attempt to perform an offline backup of a database that is currently

active, you will receive an error. Before you run an offline backup, you can make
sure that the database is not active by issuing the DEACTIVATE DATABASE
command.

Procedure

To invoke the backup utility:
v Issue the BACKUP DATABASE command in the command line processor (CLP).
v Run the ADMIN_CMD procedure with the BACKUP DATABASE parameter.
v Use the db2Backup application programming interface (API).
v Open the task assistant in IBM Data Studio for the BACKUP DATABASE command.

Example

Following is an example of the BACKUP DATABASE command issued through the
CLP:
db2 backup database sample to c:\DB2Backups

What to do next

If you performed an offline backup, after the backup completes, you must
reactivate the database:
ACTIVATE DATABASE sample

Performing a snapshot backup
A snapshot backup operation uses the fast copying technology of a storage device
to perform the data copying portion of the backup.

Chapter 45. Backup 759

Before you begin

To perform snapshot backup and restore operations, you need a DB2 ACS API
driver for your storage device. For a list of supported storage hardware for the
integrated driver, refer to this tech note.

Before you can perform a snapshot backup, you must enable DB2 Advanced Copy
Services (ACS).

Restrictions

You cannot recover individual table spaces by using snapshot backups.

If you use integrated snapshot backups, you cannot perform a redirected restore. A
FlashCopy® restore reverts the complete set of volume groups containing all
database paths to a prior point in time.

Procedure

To perform a snapshot backup, use one of the following approaches:
v Issue the BACKUP DATABASE command with the USE SNAPSHOT parameter, as shown

in the following example:
db2 backup db sample use snapshot

v Call the ADMIN_CMD procedure with BACKUP DB and USE SNAPSHOT parameters,
as shown in the following example:
CALL SYSPROC.ADMIN_CMD

(’backup db sample use snapshot’)

v Issue the db2Backup API with the SQLU_SNAPSHOT_MEDIA media type, as shown in
the following example:
int sampleBackupFunction(char dbAlias[],

char user[],
char pswd[],
char workingPath[])

{
db2MediaListStruct mediaListStruct = { 0 };

mediaListStruct.locations = &workingPath;
mediaListStruct.numLocations = 1;
mediaListStruct.locationType = SQLU_SNAPSHOT_MEDIA;

db2BackupStruct backupStruct = { 0 };

backupStruct.piDBAlias = dbAlias;
backupStruct.piUsername = user;
backupStruct.piPassword = pswd;
backupStruct.piVendorOptions = NULL;
backupStruct.piMediaList = &mediaListStruct;

db2Backup(db2Version950, &backupStruct, &sqlca);

return 0;
}

760 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://www-01.ibm.com/support/docview.wss?uid=swg21455924

Using a split mirror as a backup image
Use the following procedure to create a split mirror of a database in a different
location on the same system for use as a backup image outside of a DB2 pureScale
environment. This procedure can be used instead of performing backup database
operations on the database.

Procedure

To use a split mirror as a backup image:
1. Connect to the primary database by using the following command:

db2 connect to db_name

2. Suspend the I/O write operations on the primary database by using the
following command:
db2 set write suspend for database

While the database is in suspended state, you should not be running other
utilities or tools. You should be only making a copy of the database. You can
optionally flush all buffer pools before you issue SET WRITE SUSPEND to
minimize the recovery window. This can be achieved by using the FLUSH
BUFFERPOOLS ALL statement.

3. Create one or multiple split mirrors from the primary database by using the
appropriate operating system-level and storage-level commands.

Note:

v Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container directories
that exist outside the database directory. To gather this information, refer to
the DBPATHS administrative view, which shows all the files and directories
of the database that need to be split.

v If you specified EXCLUDE LOGS with the SET WRITE command, do not include
the log files in the copy.

4. Resume the I/O write operations on the primary database by using the
following command:
db2 set write resume for database

Assuming that a failure would occur on the system, perform the following
steps to restore the database by using the split-mirror database as the backup:
a. Stop the database instance by using the following command:

db2stop

b. Copy the split-off data by using operating system-level commands.

Important: Do not copy the split-off log files, because the original logs are
needed for rollforward recovery.

c. Start the database instance by using the following command:
db2start

d. Initialize the primary database:
db2inidb database_alias as mirror

where database_alias represents the database alias.
e. Roll forward the database to the end of the logs, or to a point-in-time, and

stop.

Chapter 45. Backup 761

Using a split mirror as a backup image in a DB2 pureScale
environment

Use the following procedure to create a split mirror of a database in a different
location on the same system for use as a backup image in a DB2 pureScale
environment. This procedure can be used instead of performing backup database
operations on the database.

Procedure

To use a split mirror as a backup image:
1. Connect to the primary database by using the following command:

db2 connect to db_name

2. Configure the General Parallel File System (GPFS) on the secondary cluster by
extracting and importing the settings from the primary cluster. On the primary
cluster, run the following GPFS command:
mmfsctl filesystem syncFSconfig -n remotenodefile

where remotenodefile is the list of hosts in the secondary cluster.
3. Suspend the I/O write operations on the primary database by using the

following command:
db2 set write suspend for database

While the database is in suspended state, you should not be running other
utilities or tools. You should be only making a copy of the database. You can
optionally flush all buffer pools before you issue SET WRITE SUSPEND to
minimize the recovery window. This can be achieved by using the FLUSH
BUFFERPOOLS ALL statement.

4. Determine which file systems must be suspended and copied by using the
following command:
db2cluster -cfs -list -filesystem

5. Suspend each GPFS file system that contains container data or log data by
using the following command:
/usr/lpp/mmfs/bin/mmfsctl filesystem suspend-write

where filesystem represents a file system that contains data or log data.

Note: While the GPFS file systems are suspended, write operations are blocked.
You should only be performing the split mirror operations during this period to
minimize the amount of time that operations are blocked.

6. Create one or multiple split mirrors from the primary database by using the
appropriate operating system-level and storage-level commands.

Note:

v Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container directories
that exist outside the database directory. To gather this information, refer to
the DBPATHS administrative view, which shows all the files and directories
of the database that need to be split.

v If you specified EXCLUDE LOGS with the SET WRITE command, do not include
the log files in the copy.

7. Resume the GPFS file systems that were suspended by using the following
command for each suspended file system:
/usr/lpp/mmfs/bin/mmfsctl filesystem resume

762 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

where filesystem represents a suspended file system that contains data or log
data.

8. Resume the I/O write operations on the primary database by using the
following command:
db2 set write resume for database

Assuming that a situation requires you to restore the database by using the
split mirror as the backup image, perform the following steps:
a. Stop the primary database instance by using the following command:

db2stop

b. List the cluster manager domain by using the following command:
db2cluster -cm -list -domain

c. Stop the cluster manager on each host in the cluster by using the following
command:
db2cluster -cm -stop -host host -force

Note: The last host which you shut down must be the host from which you
are issuing this command.

d. Stop the GPFS cluster on the primary database instance by using the
following command:
db2cluster -cfs -stop -all

e. Copy the split-off data off the primary database by using appropriate
operating system-level commands.

Important: Do not copy the split-off log files, because the original logs are
needed for rollforward recovery.

f. Start the GPFS cluster on the primary database instance by using the
following command:
db2cluster -cfs -start -all

g. Start the cluster manager by using the following command:
db2cluster -cm -start -domain domain

h. Start the database instance by using the following command:
db2start

i. Initialize the primary database by using the following command:
db2inidb database_alias as mirror

j. Roll forward the primary database to the end of the logs, or to a
point-in-time, and stop.

Backing up to tape
When you back up your database or table space, you must correctly set your block
size and your buffer size. This is particularly true if you are using a variable block
size (on AIX, for example, if the block size has been set to zero).

There is a restriction on the number of fixed block sizes that can be used when
backing up. This restriction exists because DB2 database systems write out the
backup image header as a 4-KB block. The only fixed block sizes DB2 database
systems support are 512, 1024, 2048, and 4096 bytes. If you are using a fixed block
size, you can specify any backup buffer size. However, you might find that your
backup operation will not complete successfully if the fixed block size is not one of
the sizes that DB2 database systems support.

Chapter 45. Backup 763

If your database is large, using a fixed block size means that your backup
operations might take more time than expected to complete. To improve
performance, you can use a variable block size.

Note: When using a variable block size, ensure that you have well tested
procedures in place that enable you to recover successfully, including explicitly
specified buffer sizes for the BACKUP and RESTORE commands, with backup images
that are created using a variable block size.

When using a variable block size, you must specify a backup buffer size that is less
than or equal to the maximum limit for the tape devices that you are using. For
optimal performance, the buffer size must be equal to the maximum block size
limit of the device being used.

Before a tape device can be used on a Windows operating system, the following
command must be issued:
db2 initialize tape on device using blksize

Where:

device is a valid tape device name. The default on Windows operating systems is
\\.\TAPE0.

blksize is the blocking factor for the tape. It must be a factor or multiple of 4096.
The default value is the default block size for the device.

Restoring from a backup image with variable block size might return an error. If
this happens, you might need to rewrite the image using an appropriate block size.
Following is an example on AIX:

tctl -b 0 -Bn -f /dev/rmt0 read > backup_filename.file
dd if=backup_filename.file of=/dev/rmt0 obs=4096 conv=sync

The backup image is dumped to a file called backup_filename.file. The dd
command dumps the image back onto tape, using a block size of 4096.

There is a problem with this approach if the image is too large to dump to a file.
One possible solution is to use the dd command to dump the image from one tape
device to another. This will work as long as the image does not span more than
one tape. When using two tape devices, the dd command is:

dd if=/dev/rmt1 of=/dev/rmt0 obs=4096

If using two tape devices is not possible, you might be able to dump the image to
a raw device using the dd command, and then to dump the image from the raw
device to tape. The problem with this approach is that the dd command must keep
track of the number of blocks dumped to the raw device. This number must be
specified when the image is moved back to tape. If the dd command is used to
dump the image from the raw device to tape, the command dumps the entire
contents of the raw device to tape. The dd utility cannot determine how much of
the raw device is used to hold the image.

When using the backup utility, you will need to know the maximum block size
limit for your tape devices. Here are some examples:

764 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Device Attachment Block Size Limit DB2 Buffer Size
Limit (in 4-KB
pages)

8 mm scsi 131,072 32

3420 s370 65,536 16

3480 s370 61 440 15

3490 s370 61 440 15

3490E s370 65,536 16

7332 (4 mm)1 scsi 262,144 64

3490e scsi 262,144 64

35902 scsi 2,097,152 512

3570 (magstar MP) 262,144 64

Note:

1. The 7332 does not implement a block size limit. 256 KB is simply a suggested
value. Block size limit is imposed by the parent adapter.

2. While the 3590 does support a 2-MB block size, you could experiment with
lower values (like 256 KB), provided the performance is adequate for your
needs.

3. For information about your device limit, check your device documentation or
consult with the device vendor.

Verifying the compatibility of your tape device

On UNIX, Linux, and AIX operating systems only, to determine whether your tape
device is supported for backing up your DB2 databases, perform the following
procedure:

As the database manager instance owner, run the operating system command dd to
read from or write to your tape device. If the dd command succeeds, then you can
back up your DB2 databases using your tape device.

Backing up to named pipes
Support is now available for database backup to (and database restore from) local
named pipes on UNIX operating systems.

Before you begin

Both the writer and the reader of the named pipe must be on the same machine.
The pipe must exist on a local file system. Because the named pipe is treated as a
local device, there is no need to specify that the target is a named pipe.

Procedure
1. Create a named pipe. The following is an AIX example:

mkfifo /u/dmcinnis/mypipe

2. If this backup image is going to be used by the restore utility, the restore
operation must be invoked before the backup operation, so that it does not miss
any data:

db2 restore db sample from /u/dmcinnis/mypipe into mynewdb

3. Use this pipe as the target for a database backup operation:

Chapter 45. Backup 765

db2 backup db sample to /u/dmcinnis/mypipe

Backing up partitioned databases
Backing up a database in a partitioned database environment can pose difficulties
such as tracking the success of the backup of each database partition, managing
the multiple log files and backup images, and ensuring the log files and backup
images for all the database partitions span the minimum recovery time that is
required to restore the database.

Using a single system view (SSV) backup is the easiest way to back up a
partitioned database.

About this task

There are four ways to back up a database in a partitioned database environment:
v Back up each database partition one at a time by using the BACKUP DATABASE

command, the BACKUP DATABASE command with the ADMIN_CMD procedure, or
the db2Backup API.

v Use the db2_all command with the BACKUP DATABASE command to first back up
the catalog partition and then to back up a specified list of database partitions.

v Run a single system view (SSV) backup to back up some or all of the database
partitions simultaneously, including the catalog partition.

v Use a task assistant in IBM Data Studio to guide you through the process of
backing up the database.

Backing up each database partition one at a time is time-consuming and
error-prone. Backing up all the partitions by using the db2_all command is easier
than backing up each database partition individually because you generally only
must make one command call. However, when you use db2_all to back up a
partitioned database, you sometimes still must make multiple calls to db2_all
because the database partition that contains the catalog cannot be backed up
simultaneously with non-catalog database partitions. Whether you back up each
database partition one at a time or use db2_all, managing backup images that
were created using either of these methods is difficult because the time stamp for
each database partition's backup image is different, and coordinating the minimum
recovery time across the database partitions' backup images is difficult as well.

For the previously mentioned reasons, the recommended way to back up a
database in a partitioned database environment is to use an SSV backup because
you can decide to back up all database partitions simultaneously, including the
catalog partition, and get the same time stamp for each database partition backup.
Alternatively, you can split your backup, specifying some database partitions for
which you get the same time stamp, and later take additional backups on the other
database partitions to complete the database backup. The catalog partition can be
backed up at any time with any other database partitions.

Note: For restore operations, you still must restore the catalog partition before you
restore some or all of the other database partitions.

Procedure

To back up some or all of the database partitions of a partitioned database
simultaneously by using an SSV backup:
1. Optional: Allow the database to remain online, or take the database offline.

766 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You can back up a partitioned database while the database is online or offline.
If the database is online, the backup utility acquires shared connections to the
other database partitions, so user applications are able to connect to database
partitions while they are being backed up.

2. On the database partition that contains the database catalog, perform the
backup with appropriate parameters for partitioned databases, using one of the
following methods:
v Run the BACKUP DATABASE command with the ON DBPARTITIONNUMS parameter.
v Run the BACKUP DATABASE command with the ON DBPARTITIONNUMS parameter

by using the ADMIN_CMD procedure.
v Call the db2Backup API with the iAllNodeFlag parameter.
v Open the task assistant for the BACKUP DATABASE command in IBM Data

Studio.
3. Optional: Include the log files that are required for recovery with the backup

images.
By default, log files are included with backup images if you are performing an
SSV backup (that is, if you specify the ON DBPARTITIONNUM parameter). If you do
not want log files to be included with the backup images, use the EXCLUDE LOGS
command parameter when you run the backup. Log files are excluded from the
backup image by default for non-SSV backups.
For more information, see “Including log files with a backup image” on page
747.

4. Optional: Delete previous backup images. The method that you use to delete
old backup images depends on how you store the backup images. For example,
if you store the backup images to disk, you can delete the files; if you store the
backup images using Tivoli Storage Manager, you can use the db2adutl utility
to delete the backup images. If you are using DB2 Advanced Copy Services
(ACS), you can use the db2acsutil to delete snapshot backup objects.

Backup and restore operations in a DB2 pureScale environment
In a DB2 pureScale environment, issuing a single BACKUP DATABASE or RESTORE
DATABASE command on any member initiates a backup or restore operation on
behalf of all members.

Because a DB2 pureScale environment can have only one database partition, a
backup operation has only one set of data to process and produces only one
backup image for the entire group. In the case of the other members, only the
database metadata and transaction logs must be processed, and those are included
in the single backup image.

A backup image includes data from the specified table spaces and any required
metadata and configuration information for all currently defined members. You do
not have to perform additional backup operations on any other member in the
DB2 pureScale instance. Moreover, you require only a single RESTORE DATABASE
command to restore the database and the member-specific metadata for all
members. You do not have to perform additional restore operations on any other
member to restore the cluster. The time stamps of consecutive backup images are
unique, increasing values, regardless of which member produced them.

All members must be consistent before an offline backup operation can be
attempted. Only one offline backup operation can run at one time, because the
backup utility acquires super-exclusive access to the database across all members.

Chapter 45. Backup 767

Although concurrent online backup operations are supported, different backup
operations cannot copy the same table spaces simultaneously, and must wait their
turn.

All of the reading of data and metadata from the database and all of the writing to
a backup image takes place on a single member. Interactions between the backup
or restore operation and other members are limited to copying or updating
database metadata (such as table space definitions, the log file header, and the
database configuration).

Note: Before taking a backup, you need to ensure that the log archiving path is set
to a shared directory so that all the members are able to access the logs for
subsequent rollforward operations. If the archive path is not accessible from the
member on which the rollforward is being executed, SQL1273N is returned. The
following command is an example of how to set the log path to the shared
directory:
db2 update db cfg using logarchmeth1

DISK:/db2fs/gpfs1/svtdbm5/svtdbm5/ArchiveLOGS

(where gpfs1 is the shared directory for the members and ArchiveLOGS is the actual
directory that archives the logs.

Online backup operations can proceed successfully if another member is offline,
goes offline, or comes back online while the operation is executing (Table 124).
Although database restore operations are not affected by the state of other
members, backup operations might have to wait for a short duration while
member crash recovery is completed on an offline and inconsistent member.

Table 124. Effect of the state of other members in a DB2 pureScale instance on database
backup and restore operations

Operation

State of other members

Offline and consistent Offline and inconsistent

Online backup The backup operation
succeeds. The other member
cannot become active while
the backup utility is
accessing the log file header
(LFH) near the beginning of
the backup operation or
while the backup utility is
accessing the log stream near
the end of the backup
operation.

The backup operation
succeeds, but it must wait
for member crash recovery to
be completed and for the
other member to become
either active or consistent.
The other member cannot
become active while the
backup utility is accessing
the LFH near the beginning
of the backup operation or
while the backup utility is
accessing the log stream near
the end of the backup
operation.

Restore The restore operation is
completed normally.

The restore operation is
completed normally.

Image and archive naming

File names for backup images that you create on disk consist of a concatenation of
several elements, separated by periods:

DB_alias.Type.Inst_name.DBPARTnnn.Timestamp.Seq_num

768 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

DB_alias
The database alias name that you specified when you invoked the backup
utility.

Type The type of backup operation, where 0 represents a full database backup, 3
represents a table space backup, and 4 represents a backup image
generated by the LOAD command with the COPY NO option.

Inst_name
The name of the current instance, which is the value of the DB2INSTANCE
environment variable.

nnn The database partition number. In a DB2 pureScale environment, the
number is always 000.

Timestamp
A 14-character representation of the date and time when you performed
the backup operation. The time stamp is in the form yyyymmddhhnnss,
where:
v yyyy represents the year.
v mm represents the month (01 to 12).
v dd represents the day of the month (01 to 31).
v hh represents the hour (00 to 23).
v nn represents the minutes (00 to 59).
v ss represents the seconds (00 to 59).

Seq_num
A 3-digit number used as a file extension.

For example:
SAMPLE.0.krodger.DBPART000.200802241234.001

Online backup with INCLUDE LOGS

An online backup operation with the INCLUDE LOGS option (the default) produces a
backup image that includes the range of log files required to restore and roll the
database forward to its minimum recovery time. If this backup image is then used
to restore to a new database (perhaps during disaster recovery), and only the logs
from the backup image are available during a subsequent roll-forward operation, a
ROLLFORWARD DATABASE command with the TO END OF LOGS parameter often returns
an error message about a missing log file (SQL1273N). This is expected in some
situations, because the database manager might have detected that additional logs
were written after the backup operation, but that those logs are not available for
the current roll-forward operation. It might also be the case that one or more of the
logs that are necessary to roll the database forward to a consistent point in time are
missing. In either case, verify that the end point of the roll-forward operation is
acceptable and then issue a ROLLFORWARD DATABASE with the AND STOP parameter. If
the roll-forward operation has reached its minimum recovery time despite the
missing log file, the ROLLFORWARD DATABASE with the AND STOP parameter should
complete successfully; otherwise, it returns SQL1276N (the roll-forward operation
did not reach its minimum recovery time using this backup image).

Disaster recovery and high availability through log shipping in a
DB2 pureScale environment

Log shipping is the process of copying whole log files to a standby machine, either
from an archive device, or through a user exit program running against the

Chapter 45. Backup 769

primary database. You can choose to keep a standby database up-to-date by
applying the logs to it as they are archived, or you can keep the database or table
space backup images and log archives on the standby site, and perform restore and
roll-forward operations only after a disaster has occurred. In either case, the
roll-forward operation on the standby site might detect that one or more log files
are missing and return SQL1273N. Verify that the roll-forward operation reached
an acceptable time stamp, or take appropriate action to correct the problem.

If, during a log stream merge operation, the DB2 database manager determines
that there is a missing log file in one of the log streams, an error is returned. The
roll-forward utility returns SQL1273N; the db2ReadLog API returns SQL2657N. If
you choose to keep a standby database up-to-date by applying logs to it as they
are archived, roll-forward operations might frequently detect that some logs are
missing.

Figure 58 shows an example of how two members could write log records to the
log files in their active log stream. Each log file is represented by a box. Consider a
scenario where both a primary and standby site have been set up for high
availability. A ROLLFORWARD DATABASE command with the END OF LOGS option is
attempted on the standby site at time points A, B and C. For any particular point
in time, any log files that have been closed before that time have been archived
and are accessible on the standby. Otherwise, the log file is still active on the
primary and is not available to the standby yet (as shown for log file 4 on log
stream 1 at time B).

At time A, the ROLLFORWARD DATABASE command will complete successfully as log
file 1 from log stream 0 was closed and archived at the same time as log file 3
from log stream 1. At time B however, the ROLLFORWARD DATABASE command will
return v. This happens because at the time that the command is issued on the
standby site, the standby site has access to log files 2 and 3 from log stream 0, but
not to log file 4 from log stream 1 because the log file is still open and active on
the primary site. Furthermore, since the log records in files 2 and 3 on log stream 0
were written during the same time period as the beginning of log file 4 on log
stream 1, the roll-forward operation cannot process log files 2 and 3 until log file 4
from log stream 1 is made available. At time C, when log file 4 is finally closed
and archived on log stream 1, a ROLLFORWARD DATABASE command will complete
successfully. It is possible to force the truncation and archiving of files across all
the log streams using the ARCHIVE LOG command, or by deactivating the database
across all members. In the case of the ARCHIVE LOG command, the current log file
on each log stream is truncated independently and there is no guarantee that it
will happen at the exact same point in time across all members. Therefore, even if

1 2 3

1 2 3 4

4 5

5

Log Stream 0

Log Stream 1

A B C

Time

Figure 58. Log files in a DB2 pureScale environment

770 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

the ARCHIVE LOG command is issued, it is still possible to get an SQL1273N error
when executing the ROLLFORWARD DATABASE command.

While missing log conditions are common and expected when using log shipping
in a DB2 pureScale environment, in most cases, each roll-forward operation on the
standby will make additional progress over the last ROLLFORWARD DATABASE
command (even when SQL1273N is returned) and therefore the error itself should
often be expected. It is possible, however, for the primary site to have trouble
archiving a file for one log stream while successfully archiving logs for the other
log streams. This could be the result of a temporary problem accessing the archive
storage for one log stream. Such problems can cause the log merge and replay on
the standby to be held up, increasing the number of transactions that could be lost
in the event of a disaster. To ensure that your standby system is up-to-date, issue a
ROLLFORWARD DATABASE command with the QUERY STATUS parameter after each
roll-forward operation that returns SQL1273N and verify that progress is being
made over time. If a roll-forward operation on the standby is not making progress
over an extended period of time, determine why the log file reported as missing is
not available on the standby system and correct the problem. The ARCHIVE LOG
command can be used to truncate the log files that are currently being updated on
each member, making them eligible for archiving and subsequent replay on the
standby system.

In the event of a disaster (for example, fire, earthquake, vandalism, or other
catastrophic events) your plan for recovery might be to execute a roll-forward
operation through all remaining logs, or a restore and roll-forward operation
through all available logs. As mentioned previously, the roll-forward operation
might detect that one or more log file is missing, because log files were written on
the primary but not yet archived at the time of the disaster (SQL1273N). It is also
possible that a log that was archived cannot be found by the roll-forward utility
for some unexpected reason; this can also cause the roll-forward utility to return
SQL1273N. It is important to validate the end point of a roll-forward operation by
using the ROLLFORWARD DATABASE command with the QUERY STATUS parameter, and
to decide whether or not the missing log condition is expected. If the missing log
condition is expected, or the end point is acceptable, you can issue a ROLLFORWARD
DATABASE command with the STOP parameter to complete the roll-forward recovery
process.

Restrictions

Backup and restore operations between an environment where the DB2 pureScale
Feature is installed and an environment where the DB2 pureScale Feature is not
installed are not supported.

After a change in topology that involves adding or dropping a member, you
cannot perform roll-forward recovery operations through the point where the
topology change occurred. If you add or drop a member, the database is placed in
backup pending state, and you must perform a full database backup operation
before a connection to the database can be made. To recover, restore this backup
image and roll forward to the end of the logs. If you must restore a backup image
from before the topology change, you will only be able to roll forward to the point
at which the topology change occurred. This can be accomplished by issuing a
ROLLFORWARD DATABASE command with the TO END OF LOGS parameter (which
returns SQL1546N) followed by a ROLLFORWARD DATABASE command with the STOP
parameter. This operation will not recover any transactions that changed the
database after the topology change.

Chapter 45. Backup 771

In a DB2 pureScale environment, the ON ALL DBPARTITIONNUMS parameter and the
ON DBPARTITION (0) parameter of the BACKUP DATABASE command are valid. If you
specify a database partition number other than 0, however, an error (SQL0270N) is
returned because no other database partitions exist.

The following restriction applies to this release:
v A database, which resides outside of a DB2 pureScale environment, can be

migrated to a DB2 pureScale environment. You cannot use database restore
operations to migrate such database to a DB2 pureScale environment.

v Delta and incremental backup operations are not supported.
v In Version 10 GA and Fix Pack 1, snapshot backup operations using DB2

Advanced Copy Services (ACS) are not supported. In Version 10 Fix Pack 2, this
restriction is removed.

Examples
v Back up a 4-member database named SAMPLE from any member:

BACKUP DB SAMPLE

v Restore a 1-member database named SAMPLE:
RESTORE DB SAMPLE

v Use the RECOVER DATABASE command to restore and roll forward a database
named SAMPLE from any member:
RECOVER DB SAMPLE TO END OF LOGS

If the database does not exist, use the RESTORE DATABASE and ROLLFORWARD
DATABASE commands instead of the RECOVER DATABASE command because an
existing database with a complete database history is required for the successful
completion of the RECOVER DATABASE command.

Enabling automatic backup
A database can become unusable due to a wide variety of hardware or software
failures. Ensuring that you have a recent, full backup of your database is an
integral part of planning and implementing a disaster recovery strategy for your
system.

Use automatic database backup as part of your disaster recovery strategy to enable
DB2 to back up your database both properly and regularly.

About this task

You can configure automatic backup using the command line interface, or the
AUTOMAINT_SET_POLICY system stored procedure. You also need to enable the
health indicator db.db_backup_req, which by default is enabled. Note that only an
active database is considered for the evaluation.

Procedure
v To configure automatic backup using the command line interface, set each of the

following database configuration parameters to ON:
– AUTO_MAINT

– AUTO_DB_BACKUP

v To configure automatic backup usingIBM Data Studio, right-click the database
and select the task assistant to configure automatic backup.

772 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v To configure automatic backup using the AUTOMAINT_SET_POLICY system
stored procedure:
1. Create configuration XML input specifying details like backup media,

whether the backup should be online or offline, and frequency of the backup.
You can copy the contents of the sample file called
DB2DefaultAutoBackupPolicy.xml in the SQLLIB/samples/automaintcfg
directory and modify the XML to satisfy your configuration requirements.

2. Optional: Create an XML input file containing your configuration XML input.
3. Call AUTOMAINT_SET_POLICY with the following parameters:

– maintenance type: AutoBackup
– configuration XML input: either a BLOB containing your configuration

XML input text; or the name of the file containing your configuration
XML input.

See the topic “Configuring an automated maintenance policy using
SYSPROC.AUTOMAINT_SET_POLICY or
SYSPROC.AUTOMAINT_SET_POLICYFILE” for more information about
using the AUTOMAINT_SET_POLICY system stored procedure.

Configuring an automated maintenance policy using
SYSPROC.AUTOMAINT_SET_POLICY or
SYSPROC.AUTOMAINT_SET_POLICYFILE

You can use the system stored procedures AUTOMAINT_SET_POLICY and
AUTOMAINT_SET_POLICYFILE to configure the automated maintenance policy
for a database.

Procedure

To configure the automated maintenance policy for a database, perform the
following steps:
1. Connect to the database
2. Call AUTOMAINT_SET_POLICY or AUTOMAINT_SET_POLICYFILE

v The parameters required for AUTOMAINT_SET_POLICY are:
a. Maintenance type, specifying the type of automated maintenance activity

to configure.
b. Pointer to a BLOB that specifies the automated maintenance policy in

XML format.
v The parameters required for AUTOMAINT_SET_POLICYFILE are:

a. Maintenance type, specifying the type of automated maintenance activity
to configure.

b. The name of an XML file that specifies the automated maintenance policy.

Valid maintenance type values are:
v AUTO_BACKUP - automatic backup
v AUTO_REORG - automatic table and index reorganization
v AUTO_RUNSTATS - automatic table RUNSTATS operations
v MAINTENANCE_WINDOW - maintenance window

Chapter 45. Backup 773

What to do next

You can use the system stored procedures AUTOMAINT_GET_POLICY and
AUTOMAINT_GET_POLICYFILE to retrieve the automated maintenance policy
configured for a database.

Monitoring backup operations
You can use the LIST UTILITIES command to monitor the progress of backup
operations on a database.

Procedure

Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter:
list utilities show detail

Results

For backup operations, an initial estimate of the number of bytes to be processed
will be specified. As the backup operation progresses the number of bytes to be
processed will be updated. The bytes shown does not correspond to the size of the
image and should not be used as an estimate for backup image size. The actual
image might be much smaller depending on whether it is an incremental or
compressed backup.

Example

The following is an example of the output for monitoring the performance of an
offline database backup operation:
ID = 3
Type = BACKUP
Database Name = SAMPLE
Partition Number = 0
Description = offline db
Start Time = 08/04/2011 12:16:23.248367
State = Executing
Invocation Type = User
Throttling:

Priority = Unthrottled
Progress Monitoring:

Extimated Percentage Complete = 31
Total Work = 123147277 bytes
Completed Work = 37857269 bytes
Start Time = 08/04/2011 12:16:23.248377

Optimizing backup performance
When you perform a backup operation, the DB2 database manager automatically
chooses an optimal value for the number of buffers, the buffer size, and the
parallelism settings. The values are based on the amount of utility heap memory
available, the number of processors available, and the database configuration.

Therefore, depending on the amount of storage available on your system, consider
allocating more memory by increasing the util_heap_sz configuration parameter.

The objective is to minimize the time it takes to complete a backup operation.
Unless you explicitly enter a value for the following BACKUP DATABASE command
parameters, the DB2 database manager selects one for them:

774 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v WITH num-buffers BUFFERS

v PARALLELISM n

v BUFFER buffer-size

If the number of buffers and the buffer size are not specified, resulting in the DB2
database manager setting the values, it should have minimal effect on large
databases. However, for small databases, it can cause a large percentage increase in
backup image size. Even if the last data buffer written to disk contains little data,
the full buffer is written to the image anyway. In a small database, this means that
a considerable percentage of the image size might be empty.

You can also choose to do any of the following to reduce the amount of time
required to complete a backup operation:
v Specify table space backup.

You can back up (and subsequently recover) part of a database by using the
TABLESPACE option on the BACKUP DATABASE command. This facilitates the
management of table data, indexes, and long field or large object (LOB) data in
separate table spaces.

v Increase the value of the PARALLELISM parameter on the BACKUP DATABASE
command so that it reflects the number of table spaces being backed up.
The PARALLELISM parameter defines the number of processes or threads that are
started to read data from the database and to compress data during a
compressed backup operation. Each process or thread is assigned to a specific
table space, so there is no benefit to specifying a value for the PARALLELISM
parameter that is larger than the number of table spaces being backed up. When
it finishes backing up this table space, it requests another. Note, however, that
each process or thread requires both memory and CPU overhead.

v Increase the backup buffer size.
The ideal backup buffer size is a multiple of the table space extent size plus one
page. If you have multiple table spaces with different extent sizes, specify a
value that is a common multiple of the extent sizes plus one page.

v Increase the number of buffers.
Use at least twice as many buffers as backup targets (or sessions) to ensure that
the backup target devices do not have to wait for data.

v Use multiple target devices.

Compatibility of online backup and other utilities
Some utilities can be run at the same time as an online backup, but others cannot.

The following utilities are compatible with online backup:
v EXPORT

v INSPECT

The following SQL statements and utilities are compatible with online backup only
under certain circumstances:
v CREATE INDEX

In SMS mode, online index create and online backup do not run concurrently
due to the ALTER TABLE lock. Online index create acquires it in exclusive mode
while online backup acquires it in share.
In DMS mode, online index create and online backup can run concurrently in
most cases. There is a possibility if you have a large number of tables in the

Chapter 45. Backup 775

same tablespace as the one in which you are creating the index, that the online
index create will internally acquire an online backup lock that will conflict with
any concurrent online backup.

v REORG INDEX with the ONLINE option
As with online index create, in SMS mode, online index reorganization do not
run concurrently with online backup due to the ALTER TABLE lock. Online
index reorganization acquires it in exclusive mode while online backup acquires
it in share. In addition, an online index reorganization operation, quiesces the
table before the switch phase and acquires a Z lock, which prevents an online
backup. However, the ALTER TABLE lock should prevent an online backup
from running concurrently before the Z table lock is acquired.
In DMS mode, online index reorganization and online backup can run
concurrently.
In addition, online index reorganization quiesces the table before the switch
phase and gets a Z lock, which prevents an online backup.

v IMPORT

The import utility is compatible with online backup except when the IMPORT
command is issued with the REPLACE parameter, in which case, import gets a Z
lock on the table and prevents an online backup from running concurrently.

v TRUNCATE TABLE
The TRUNCATE statement is not compatible with online backup because it gets
a Z lock on the table and prevents an online backup from running concurrently.

v ALLOW READ ACCESS LOAD

ALLOW READ ACCESS load operations are not compatible with online backup when
the LOAD command is issued with the COPY NO parameter. In this mode the
utilities both modify the table space state, causing one of the utilities to report
an error.
ALLOW READ ACCESS load operations are compatible with online backup when the
LOAD command is issued with the COPY YES option, although there might still be
some compatibility issues. In SMS mode, the utilities can execute concurrently,
but they will hold incompatible table lock modes and consequently might be
subject to table lock waits. In DMS mode, the utilities both hold incompatible
"Internal-B" (OLB) lock modes and might be subject to waits on that lock. If the
utilities execute on the same table space concurrently, the load utility might be
forced to wait for the backup utility to complete processing of the table space
before the load utility can proceed.

v REORG TABLE with the ONLINE option
The cleanup phase of online table reorganization cannot start while an online
backup is running. You can pause the table reorganization, if required, to allow
the online backup to finish before resuming the online table reorganization.
You can start an online backup of a DMS table space when a table within the
same table space is being reorganized online. There might be lock waits
associated with the reorganization operation during the truncate phase.
You cannot start an online backup of an SMS table space when a table within
the same table space is being reorganized online. Both operations require an
exclusive lock.

v DDLs that require a Z lock (such as ALTER TABLE, DROP TABLE, and DROP
INDEX)
Online DMS table space backup is compatible with DDLs that require a Z lock.
Online SMS table space backup must wait for the Z lock to be released.

v Storage group DDLs

776 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

If you are modifying the database storage groups by issuing one of the
following statements, you should take care to coordinate this operation with
your online backup schedule:
– CREATE STOGROUP
– ALTER STOGROUP
– DROP STOGROUP
– RENAME STOGROUP
– ALTER DATABASE

If there is an online backup in progress, the storage group DDL waits behind
that operation until it can obtain the appropriate lock, which can potentially take
a long time. Similarly, an online backup waits behind any in-progress storage
group DDL, until that DDL is committed or rolled back.

v RUNSTATS with the ALLOW WRITE or ALLOW READ option
The RUNSTATS command is compatible with online backup except when the
system catalog table space is an SMS table space. If the system catalog resides in
an SMS table space, then the RUNSTATS command and the online backup hold
incompatible table locks on the table causing lock waits.

v ALTER TABLESPACE
Operations that enable or disable autoresize, or alter autoresize containers, are
not permitted during an online backup of a table space.

v ALTER TABLESPACE with the REBALANCE option
When online backup and rebalancer are running concurrently, online backup
pauses the rebalancer and does not wait for it to complete.

The following utilities are not compatible with online backup:
v REORG TABLE

v RESTORE DATABASE

v ROLLFORWARD DATABASE

v LOAD with the ALLOW NO ACCESS option
v SET WRITE

v BACKUP DATABASE with the ONLINE option
This applies to database-level online backups and table-space-level online
backups (if they involve the same table space or table spaces).

Chapter 45. Backup 777

778 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 46. RECOVER DATABASE command

Use the RECOVER DATABASE command to perform the necessary restore and
rollforward operations to recover a database to a specified time, which is based on
information that is found in the recovery history file.

When you use this utility, you specify that the database be recovered to a
point-in-time or to the end of the log files. The utility will then select the best
suitable backup image and perform the recovery operations.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for
recovering databases. Task assistants can guide you through the process of setting
options, reviewing the automatically generated commands to perform the task, and
running these commands. For more details, see Administering databases with task
assistants.

The recover utility does not support the following RESTORE DATABASE command
options:
v TABLESPACE tablespace-name. Table space restore operations are not supported.
v INCREMENTAL. Incremental restore operations are not supported.
v OPEN num-sessions SESSIONS. You cannot indicate the number of I/O sessions that

are to be used with TSM or another vendor product.
v BUFFER buffer-size. You cannot set the size of the buffer used for the restore

operation.
v DLREPORT filename. You cannot specify a file name for reporting files that become

unlinked.
v WITHOUT ROLLING FORWARD. You cannot specify that the database is not to be

placed in rollforward pending state after a successful restore operation.
v PARALLELISM n. You cannot indicate the degree of parallelism for the restore

operation.
v WITHOUT PROMPTING. You cannot specify that a restore operation is to run

unattended

In addition, the recover utility does not allow you to specify any of the REBUILD
options. However, the recovery utility will automatically use the appropriate
REBUILD option if it cannot locate any database backup images based on the
information in the recovery history file.

For the RECOVER DATABASE command, you cannot use the TABLESPACE option or the
INCREMENTAL option from the RESTORE DATABASE command.

For the RECOVER DATABASE command, restore option is automated. Same applies
for the REBUILD option in the RESTORE command.

Privileges, authorities, and authorization required to use recover
You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the recover
utility.

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager

© Copyright IBM Corp. 2014 779

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

maintenance and utility operations. Together, these act to control access to the
database manager and its database objects.

Users can access only those objects for which they have the appropriate
authorization; that is, the required privilege or authority.

Recovering data
The RECOVER DATABASE command recovers a database and all storage groups to a
specified time, by using information found in the recovery history file.

Before you begin

If you issue the RECOVER DATABASE command following an incomplete recover
operation that ended during the rollforward phase, the recover utility attempts to
continue the previous recover operation, without redoing the restore phase. If you
want to force the recover utility to redo the restore phase, issue the RECOVER
DATABASE command with the RESTART option to force the recover utility to ignore
any prior recover operation that failed to complete. If you are using the application
programming interface (API), specify the caller action DB2RECOVER_RESTART for the
iRecoverAction field to force the recover utility to redo the restore phase.

If the RECOVER DATABASE command is interrupted during the restore phase, it
cannot be continued. You must reissue the RECOVER DATABASE command.

You should not be connected to the database that is to be recovered: the recover
database utility automatically establishes a connection to the specified database,
and this connection is terminated at the completion of the recover operation.

About this task

The database can be local or remote.

Note: In a partitioned database environment, the recover utility must be invoked
from the catalog partition of the database.

Procedure

To invoke the recover utility, use the:
v RECOVER DATABASE command, or
v db2Recover application programming interface (API).

Example

The following example shows how to use the RECOVER DATABASE command through
the CLP:

db2 recover db sample

Optimizing recovery performance
There are strategies that you can use to improve DB2 performance during database
recovery and decrease the time that is required to recover from a DB2 service
outage.

The following should be considered when thinking about recovery performance:

780 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v You can improve performance for databases that are frequently updated by
placing the logs on a separate device. In the case of an online transaction
processing (OLTP) environment, often more I/O is needed to write data to the
logs than to store a row of data. Placing the logs on a separate device will
minimize the disk arm movement that is required to move between a log and
the database files.
You should also consider what other files are on the disk. For example, moving
the logs to the disk used for system paging in a system that has insufficient real
memory will defeat your tuning efforts.
DB2 database products automatically attempt to minimize the time it takes to
complete a backup or restore operation by choosing an optimal value for the
number of buffers, the buffer size and the parallelism settings. The values are
based on the amount of utility heap memory available, the number of processors
available and the database configuration.

v To reduce the amount of time required to complete a restore operation, use
multiple source devices.

v If a table contains large amounts of long field and LOB data, restoring it could
be very time consuming. If the database is enabled for rollforward recovery, the
RESTORE command provides the capability to restore selected table spaces. If the
long field and LOB data is critical to your business, restoring these table spaces
should be considered against the time required to complete the backup task for
these table spaces. By storing long field and LOB data in separate table spaces,
the time required to complete the restore operation can be reduced by choosing
not to restore the table spaces containing the long field and LOB data. If the
LOB data can be reproduced from a separate source, choose the NOT LOGGED
option when creating or altering a table to include LOB columns. If you choose
not to restore the table spaces that contain long field and LOB data, but you
need to restore the table spaces that contain the table, you must roll forward to
the end of the logs so that all table spaces that contain table data are consistent.

Note: If you back up a table space that contains table data without the
associated long or LOB fields, you cannot perform point-in-time rollforward
recovery on that table space. All the table spaces for a table must be rolled
forward simultaneously to the same point in time.

v The following apply for both backup and restore operations:
– Multiple devices should be used.
– Do not overload the I/O device controller bandwidth.

v DB2 database products use multiple agents to perform both crash recovery and
database rollforward recovery. You can expect better performance during these
operations, particularly on symmetric multi-processor (SMP) machines; using
multiple agents during database recovery takes advantage of the extra CPUs that
are available on SMP machines.
The agent type introduced by parallel recovery is db2agnsc. DB2 database
managers choose the number of agents to be used for database recovery based
on the number of CPUs on the machine.
DB2 database managers distribute log records to these agents so that they can be
reapplied concurrently, where appropriate. For example, the processing of log
records associated with insert, delete, update, add key, and delete key operations
can be parallelized in this way. Because the log records are parallelized at the
page level (log records on the same data page are processed by the same agent),
performance is enhanced, even if all the work was done on one table.

v When you perform a recover operation, DB2 database managers will
automatically choose an optimal value for the number of buffers, the buffer size

Chapter 46. Recover 781

and the parallelism settings. The values will be based on the amount of utility
heap memory available, the number of processors available and the database
configuration. Therefore, depending on the amount of storage available on your
system, you should consider allocating more memory by increasing the
util_heap_sz configuration parameter.

782 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 47. RESTORE DATABASE command

Use the RESTORE DATABASE command to restore the DB2 database to a previous
state. A backup image of the database must exist before you can use this
command.

The simplest form of the DB2 RESTORE DATABASE command requires only that you
specify the alias name of the database that you want to restore. For example:
db2 restore db sample

In this example, because the SAMPLE database exists and will be replaced when
the RESTORE DATABASE command is issued, the following message is returned:
SQL2539W Warning! Restoring to an existing database that is the same as
the backup image database. The database files will be deleted.
Do you want to continue ? (y/n)

If you specify y, the restore operation should complete successfully.

A database restore operation requires an exclusive connection: that is, no
applications can be running against the database when the operation starts, and
the restore utility prevents other applications from accessing the database until the
restore operation completes successfully. A table space restore operation, however,
can be done online.

A table space is not usable until the restore operation (possibly followed by
rollforward recovery) completes successfully.

If you have tables that span more than one table space, you should back up and
restore the set of table spaces together.

When doing a partial or subset restore operation, you can use either a table
space-level backup image, or a full database-level backup image and choose one or
more table spaces from that image. All the log files associated with these table
spaces from the time that the backup image was created must exist.

You can restore a database from a backup image taken on a 32-bit level into a
64-bit level, but not vice versa.

If you are restoring backups from 32-bit level environments to 64-bit level
environments, review your database configuration parameters to ensure that they
are optimized for the 64-bit instance environment. For example, the statement
heap's default value is lower in 32-bit environments than in 64-bit environments.

The DB2 backup and restore utilities should be used to backup and restore your
databases. Moving a fileset from one machine to another is not recommended as
this may compromise the integrity of the database.

Under certain conditions, you can use transportable sets with the RESTORE
DATABASE command to move databases. .

In IBM Data Studio Version 3.1 or later, you can use the task assistant for restoring
database backups. Task assistants can guide you through the process of setting

© Copyright IBM Corp. 2014 783

options, reviewing the automatically generated commands to perform the task, and
running these commands. For more details, see Administering databases with task
assistants.

Privileges, authorities, and authorization required to use restore
You must have SYSADM, SYSCTRL, or SYSMAINT authority to restore to an
existing database from a full database backup. To restore to a new database, you
must have SYSADM or SYSCTRL authority.

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects.

Users can access only those objects for which they have the appropriate
authorization; that is, the required privilege or authority.

Implications for restoring databases
The RESTORE DATABASE command is used to restore a database from a backup
image.

During a restore operation it is possible to choose the location of the database path,
and it is also possible to redefine the storage paths that are associated with the
storage groups. The database path and the storage paths are set by using a
combination of TO, ON, and DBPATH ON with the RESTORE DATABASE command, or
using the SET STOGROUP PATHS command.

For example, here are some valid RESTORE commands:
RESTORE DATABASE TEST1
RESTORE DATABASE TEST2 TO X:
RESTORE DATABASE TEST3 DBPATH ON D:
RESTORE DATABASE TEST3 ON /path1, /path2, /path3
RESTORE DATABASE TEST4 ON E:\newpath1, F:\newpath2 DBPATH ON D:

As it does in the case of the CREATE DATABASE command, the database manager
extracts the following two pieces of information that pertain to storage locations:
v The database path (which is where the database manager stores various control

files for the database)
– If TO or DBPATH ON is specified, this indicates the database path.
– If ON is used but DBPATH ON is not specified with it, the first path listed with ON

is used as the database path (in addition to it being a storage path).
– If none of TO, ON, or DBPATH ON is specified, the dftdbpath database manager

configuration parameter determines the database path.

Note: If a database with the same name exists on disk, the database path is
ignored, and the database is placed into the same location as the existing
database.

v The storage paths of each storage group (where the database manager creates
automatic storage table space containers)
– If ON is specified, all of the paths listed are considered storage paths, and

these paths are used instead of the ones stored within the backup image. If
the database contains multiple storage groups, every defined storage group
uses the new storage group paths.

784 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

– If the SET STOGROUP PATHS command is used, the storage paths provided are
used for the specified storage group instead of the ones stored within the
backup image.

– If ON is not specified and the SET STOGROUP PATHS command is not used, no
change is made to the storage paths (the storage paths stored within the
backup image are maintained).

To make this concept clearer, the same five RESTORE command examples presented
previously are shown in the following table with their corresponding storage
paths:

Table 125. Restore implications regarding database and storage paths

RESTORE DATABASE command

No database with the same name exists on
disk Database with the same name exists on disk

Database path Storage paths Database path Storage paths

RESTORE DATABASE TEST1 dftdbpath Uses storage paths of
the existing database

Uses database path of
existing database

Uses storage paths
defined in the backup
image

RESTORE DATABASE TEST2 TO X: X: Uses storage paths of
the existing database

Uses database path of
existing database

Uses storage paths
defined in the backup
image

RESTORE DATABASE TEST3
DBPATH ON /db2/databases

/db2/databases Uses storage paths of
the existing database

Uses database path of
existing database

Uses storage paths
defined in the backup
image

RESTORE DATABASE TEST4
ON /path1, /path2, /path3

/path1 All storage groups use
/path1, /path2, /path3
for their storage paths

Uses database path of
existing database

All storage groups use
/path1, /path2,
/path3for their storage
paths

RESTORE DATABASE TEST5
ON E:\newpath1, F:\newpath2
DBPATH ON D:

D: All storage groups use
E:\newpath1,
F:\newpath2 for their
storage paths

Uses database path of
existing database

All storage groups use
E:\newpath1,
F:\newpath2 for their
storage paths

For those cases where storage paths have been redefined as part of the restore
operation, the table spaces that are defined to use automatic storage are
automatically redirected to the new paths. However, you cannot explicitly redirect
containers associated with automatic storage table spaces using the SET TABLESPACE
CONTAINERS command; this action is not permitted.

Use the -s option of the db2ckbkp command to show whether storage groups exist
for a database within a backup image. The storage groups and their storage paths
are displayed.

For multi-partition databases, the RESTORE DATABASE command has a few extra
implications:
1. The database must use the same set of storage paths on all database partitions.
2. Issuing a RESTORE command with new storage paths can be done only on the

catalog database partition, which sets the state of the database to
RESTORE_PENDING on all non-catalog database partitions.

Chapter 47. Restore 785

Table 126. Restore implications for multi-partition databases

RESTORE DATABASE
command

Issued on
database

partition #

No database with the same name exists
on disk

Database with the same name exists on
disk (includes skeleton databases)

Result on other
database partitions Storage paths

Result on other
database partitions Storage paths

RESTORE DATABASE
TEST1

Catalog database
partition

A skeleton database
is created using the
storage paths from
the backup image on
the catalog database
partition. All other
database partitions
are placed in a
RESTORE_
PENDING state.

Uses storage paths
defined in the
backup image

Nothing. Storage
paths have not
changed so nothing
happens to other
database partitions

Uses storage paths
defined in the
backup image

Non-catalog
database
partition

SQL2542N or
SQL2551N is
returned. If no
database exists, the
catalog database
partition must be
restored first.

N/A Nothing. Storage
paths have not
changed so nothing
happens to other
database partitions

Uses storage paths
defined in the
backup image

RESTORE DATABASE
TEST2 ON /path1,
/path2, /path3

Catalog database
partition

A skeleton database
is created using the
storage paths
specified in the
RESTORE command.
All other database
partitions are place in
a RESTORE_
PENDING state.

All storage groups
use /path1, /path2,
/path3 for their
storage paths

All storage groups
use /path1, /path2,
/path3 for their
storage paths

Non-catalog
database
partition

SQL1174N is
returned. If no
database exists, the
catalog database
partition must be
restored first. Storage
paths cannot be
specified on the
RESTORE of a
non-catalog database
partition.

N/A SQL1172N is
returned. New
storage paths cannot
be specified on the
RESTORE of a
non-catalog database
partition.

N/A

Using restore
Use the RESTORE DATABASE command to recover a database or table space after a
problem such as media or storage failure, or application failure. If you have backed
up your database, or individual table spaces, you can recreate them if they have
become damaged or corrupted in some way.

Before you begin

When restoring to an existing database, you should not be connected to the
database that is to be restored: the restore utility automatically establishes a
connection to the specified database, and this connection is terminated at the
completion of the restore operation. When restoring to a new database, an instance
attachment is required to create the database. When restoring to a new remote
database, you must first attach to the instance where the new database will reside.
Then, create the new database, specifying the code page and the territory of the

786 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

server. Restore will overwrite the code page of the destination database with the
codepage of the backup image.

About this task

The database can be local or remote.

The following restrictions apply to the restore utility:
v You can only use the restore utility if the database has been previously backed

up using the DB2 backup utility.
v If users other than the instance owner (on UNIX), or members of the

DB2ADMNS or Administrators group (on Windows) attempt to restore a backup
image, they will get an error (SQL2061N). If other users need access to the
backup image, the file permissions need to be changed after the backup is
generated.

v A database restore operation cannot be started while the rollforward process is
running.

v If you do not specify the TRANSPORT option, then you can restore a table space
into an existing database only if the table space currently exists, and if it is the
same table space. In this situation, “same” means that the table space was not
dropped and then recreated between the backup and the restore operation. The
database on disk and in the backup image must be the same.

v You cannot issue a table space-level restore of a table space-level backup to a
new database.

v You cannot perform an online table space-level restore operation involving the
system catalog tables.

v You cannot restore a backup taken in a single database partition environment
into an existing partitioned database environment. Instead you must restore the
backup to a single database partition environment and then add database
partitions as required.

v When restoring a backup image with one code page into a system with a
different codepage, the system code page will be overwritten by the code page
of the backup image.

v You cannot use the RESTORE DATABASE command to convert nonautomatic storage
enabled table spaces to automatic storage enabled table space.

v The following restrictions apply when the TRANSPORT option is specified:
– If the backup image can be restored by a restore operation, and is supported

for upgrades, then it can be transported.
– If an online backup is used, then both source and target data servers must be

running the same DB2 version.
– The RESTORE DATABASE command must be issued against the target database.

If the remote client is of the same platform as the server, then schema
transport can be executed locally on the server or through remote instance
attachment. If a target database is a remote database cataloged in the instance
where transport runs locally, then schema transport against that remote target
database is not supported.

– You can only transport tables spaces and schemas into an existing database.
The transport operation will not create a new database. To restore a database
into a new database, you can use the RESTORE DATABASE command without
specifying the TRANSPORT option.

Chapter 47. Restore 787

– If the schemas in the source database are protected by any DB2 security
settings or authorizations, then the transported schemas in the target database
will retain these same settings or authorizations.

– Transport is not supported for partitioned database environments.
– If any of the tables within the schema contains an XML column, the transport

fails.
– The TRANSPORT option is incompatible with the REBUILD option.
– The TRANSPORT option is not supported for restore from a snapshot backup

image.
– The target database must be enabled for database recovery.
– The staging database is created for transport. It cannot be used for other

operations.
– The database configuration parameters on the staging table and the target

table need to be the same, or the transport operation fails with an
incompatibility error.

– The auto_reval configuration parameter must be set to deferred_force on the
target database to transport objects listed as invalid. Otherwise, the transport
fails.

– If an online backup image is used, and the active logs are not included, then
the transport operation fails.

– If an online backup is used, then the backup image must have been created
with the INCLUDE LOGS option

– If the backup image is from a previous release, it must be a full offline
database level backup image.

– If an error occurs on either the staging or target database, the entire restore
operation must be reissued. All failures that occur are logged in the db2diag
log file on the target server and should be reviewed before reissuing the
RESTORE command.

– If the transport client fails, then the staging database might not be properly
cleaned up. In this case, you need to drop the staging database. Before
re-issuing the RESTORE command, drop all staging databases to prevent
containers of staging database from blocking subsequent transport.

– Concurrent transport running against the same target database is not
supported.

– Generating a redirected restore script is not supported with table space
transport.

v You can restore a table space if the storage group has been updated. The target
storage group during the table space restore is the storage group the table space
is currently associated with when RESTORE is executed.

v You cannot perform a point-in-time recovery to an earlier storage group
association.

Procedure

To invoke the restore utility:
v Issue the RESTORE DATABASE command.
v Call the db2Restore application programming interface (API).
v Open the task assistant in IBM Data Studio for the RESTORE DATABASE command.

788 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example

Following is an example of the RESTORE DATABASE command issued through the
CLP:
db2 restore db sample from D:\DB2Backups taken at 20010320122644

Restoring from a snapshot backup image
Restoring from a snapshot backup uses the fast copying technology of a storage
device to perform the data copying portion of the restore.

Before you begin

To perform snapshot backup and restore operations, you need a DB2 ACS API
driver for your storage device. For a list of supported storage hardware for the
integrated driver, refer to this tech note.

You must perform a snapshot backup before you can restore from a snapshot
backup. See: “Performing a snapshot backup” on page 759.

Procedure

You can restore from a snapshot backup using the RESTORE DATABASE command
with the USE SNAPSHOT parameter, or the db2Restore API with the
SQLU_SNAPSHOT_MEDIA media type:
v

RESTORE DATABASE command:
db2 restore db sample use snapshot

v

db2Restore API:
int sampleRestoreFunction(char dbAlias[],

char restoredDbAlias[],
char user[],
char pswd[],
char workingPath[])

{
db2MediaListStruct mediaListStruct = { 0 };

rmediaListStruct.locations = &workingPath;
rmediaListStruct.numLocations = 1;
rmediaListStruct.locationType = SQLU_SNAPSHOT_MEDIA;

db2RestoreStruct restoreStruct = { 0 };

restoreStruct.piSourceDBAlias = dbAlias;
restoreStruct.piTargetDBAlias = restoredDbAlias;
restoreStruct.piMediaList = &mediaListStruct;
restoreStruct.piUsername = user;
restoreStruct.piPassword = pswd;
restoreStruct.iCallerAction = DB2RESTORE_STORDEF_NOINTERRUPT;

struct sqlca sqlca = { 0 };

db2Restore(db2Version900, &restoreStruct, &sqlca);

return 0;
}

Chapter 47. Restore 789

http://www-01.ibm.com/support/docview.wss?uid=swg21455924

Restoring to an existing database
For a database-level restore, the backup image can differ from the existing database
in its alias name, its database name, or its database seed. A database seed is a
unique identifier for a database that does not change during the life of the
database.

The database manager assigns the seed when you create the database. DB2 always
uses the seed from the backup image.You can restore a table space into an existing
database only if the table space exists and if the table spaces are the same,
meaning that you did not drop the table space and then re-create it between the
backup and the restore operations. The database on disk and in the backup image
must be the same.You cannot modify the currently defined storage groups or
explicitly create new storage groups when restoring a table space.

When restoring to an existing database, the restore utility performs the following
actions:
v Deletes table, index, and long field data from the existing database and replaces

it with data from the backup image.
v Replaces table entries for each table space that you are restoring.
v Retains the recovery history file unless it is damaged or has no entries. If the

recovery history file is damaged or contains no entries, the database manager
copies the file from the backup image. If you want to replace the recovery
history file, you can issue the RESTORE DATABASE command with the REPLACE
HISTORY FILE parameter.

v Retains the authentication type for the existing database.
v Retains the database directories for the existing database. The directories define

where the database is located and how it is cataloged.
v Compares the database seeds. If the seeds are different, the utility performs the

following actions:
– Deletes the logs that are associated with the existing database.
– Copies the database configuration file from the backup image.
– If you specify the NEWLOGPATH parameter, the utility sets the NEWLOGPATH

parameter for the RESTORE DATABASE command to the value of the logpath
database configuration parameter. If you do not specify the NEWLOGPATH
parameter, the utility performs the following actions:
- Validates the log path.
- If the database cannot use the log path, the utility changes the database

configuration to use the default log path.

If the database seeds are the same, the utility performs the following actions:
– Deletes all log files if the image is for a non-recoverable database.
– Deletes empty log files if the image is for a recoverable database. Non-empty

log files are not affected.
– Retains the current database configuration file.
– If you specify the NEWLOGPATH parameter, the utility sets the NEWLOGPATH

parameter for the RESTORE DATABASE command to the value of the logpath
database configuration parameter. If you do not specify the NEWLOGPATH
parameter, the utility performs the following actions:
- Copies the current log path to the database configuration file.
- Validates the log path.

790 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

- If the database cannot use the log path, the utility changes the database
configuration to use the default log path.

Restoring to a new database
You can create a new database and then restore a full database backup image to it.
If you do not create a new database, the restore utility creates one.

When restoring to a new database, the restore utility:
v Creates a new database, using the database alias name that was specified

through the target database alias parameter. (If a target database alias was not
specified, the restore utility creates the database with an alias that is the same as
that specified through the source database alias parameter.)

v Restores the database configuration file from the backup image.
v Sets NEWLOGPATH to the value of the logpath database configuration parameter if

NEWLOGPATH was specified on the RESTORE DATABASE command. Validates the log
path: If the path cannot be used by the database, changes the database
configuration to use the default log path.

v Restores the authentication type from the backup image.
v Restores the comments from the database directories in the backup image.
v Restores the recovery history file for the database.
v Overwrites the code page of the database with the codepage of the backup

image.

Using incremental restore in a test and production
environment

Once a production database is enabled for incremental backup and recovery, you
can use an incremental or delta backup image to create or refresh a test database.

You can do this by using either manual or automatic incremental restore.

To restore the backup image from the production database to the test database, use
the INTO target-database-alias option on the RESTORE DATABASE command. For
example, in a production database with the following backup images:

backup db prod
Backup successful. The timestamp for this backup image is : ts1

backup db prod incremental
Backup successful. The timestamp for this backup image is : ts2

an example of a manual incremental restore would be:
restore db prod incremental taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

restore db prod incremental taken at ts1 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

restore db prod incremental taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

If the database TEST already exists, the restore operation overwrites any data that
is already there. If the database TEST does not exist, the restore utility creates it
and then populates it with the data from the backup images.

Chapter 47. Restore 791

Since automatic incremental restore operations are dependent on the database
history, the restore steps change slightly based on whether the test database exists.
To perform an automatic incremental restore to the database TEST, its history must
contain the backup image history for database PROD. The database history for the
backup image replaces any database history that already exists for database TEST
if either of the following are true:
v The database TEST does not exist when the RESTORE DATABASE command is

issued.
v The database TEST exists when the RESTORE DATABASE command is issued, and

the database TEST history contains no records.

The following example shows an automatic incremental restore to database TEST
which does not exist:

restore db prod incremental automatic taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

The restore utility creates the TEST database and populates it.

If the database TEST does exist and the database history is not empty, you must
drop the database before the automatic incremental restore operation as follows:

drop db test
DB20000I The DROP DATABASE command completed successfully.

restore db prod incremental automatic taken at ts2 into test without
prompting
DB20000I The RESTORE DATABASE command completed successfully.

If you do not want to drop the database, you can issue the PRUNE HISTORY
command with a timestamp far into the future and the WITH FORCE OPTION
parameter before issuing the RESTORE DATABASE command:

connect to test
Database Connection Information

Database server = server_id
SQL authorization ID = id
Local database alias = TEST

prune history 9999 with force option
DB20000I The PRUNE command completed successfully.

connect reset
DB20000I The SQL command completed successfully.
restore db prod incremental automatic taken at ts2 into test without
prompting
SQL2540W Restore is successful, however a warning "2539" was
encountered during Database Restore while processing in No
Interrupt mode.

In this case, the RESTORE DATABASE command acts in the same manner as when the
database TEST did not exist.

If the database TEST does exist and the database history is empty, you do not have
to drop the database TEST before the automatic incremental restore operation:

restore db prod incremental automatic taken at ts2 into test without
prompting
SQL2540W Restore is successful, however a warning "2539" was
encountered during Database Restore while processing in No
Interrupt mode.

792 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You can continue taking incremental or delta backups of the test database without
first taking a full database backup. However, if you ever need to restore one of the
incremental or delta images you have to perform a manual incremental restore.
This requirement is because automatic incremental restore operations require that
each of the backup images restored during an automatic incremental restore are
created from the same database alias.

If you make a full database backup of the test database after you complete the
restore operation using the production backup image, you can take incremental or
delta backups and can restore them using either manual or automatic mode.

Performing a redirected restore operation
A database restore operation uses a database backup image to recreate a database.

Use a redirected restore operation in any of the following situations:
v If you want to restore a backup image to a target machine that is different from

the source machine
v If you want to restore your table space containers into a different physical

location
v If your restore operation failed because one or more containers are inaccessible
v If you want to redefine the paths of a defined storage group

Restrictions:
You cannot use a redirected restore to move data from one operating
system to another.

You cannot create or drop a storage group during the restore process.

You cannot modify storage group paths during a table space restore
process even if you are restoring all table spaces that are associated with
the storage group.

The process for performing a redirected restore by using an incremental backup
image is similar to the process of performing a redirected restore by using a
non-incremental backup image. Use one of the following approaches:
v Issue the RESTORE DATABASE command with the REDIRECT parameter, and specify

the backup image to use for the incremental restore of the database.
v Generate a redirected restore script from a backup image, and then modify the

script as required.

Using the RESTORE DATABASE command approach is a two-step database restore
process with an intervening step for defining a table space container or storage
group path. To perform a redirected restore:
1. Issue the RESTORE DATABASE command with the REDIRECT parameter.
2. Take one of the following steps:

v Define table space containers by issuing the SET TABLESPACE CONTAINERS
command.

v Define storage group paths for the database to be restored by issuing the SET
STOGROUP PATHS command.

3. Issue the RESTORE DATABASE command again, this time specifying the CONTINUE
parameter.

After you issue the RESTORE CONTINUE command, the new path takes effect as the
table space container path for all associated table spaces. If you issue a LIST

Chapter 47. Restore 793

TABLESPACE CONTAINERS command or a GET SNAPSHOT FOR TABLESPACES command
after the SET STOGROUP PATHS command and before the RESTORE CONTINUE
command, the output for the table space container paths does not reflect the new
paths that you specified by using the SET STOGROUP PATHS command.

During a redirected restore operation, directory and file containers are
automatically created if they do not exist. The database manager does not
automatically create device containers.

DB2 database products provide SQL statements for adding, changing, or removing
table space containers non-automatic-storage DMS table spaces, and storage group
paths of automatic storage table spaces. A redirected restore is the only way to
modify a non-automatic-storage SMS table space container configuration.

You can redefine table space containers or modify storage group paths by issuing
the RESTORE DATABASE command with the REDIRECT parameter.

Table space container redirection provides considerable flexibility for managing
table space containers. You can alter the storage group configuration of a database
before restoring any data pages from the backup image, similar to the way that
you can redirect table space container paths. If you renamed a storage group since
you produced the backup image, the storage group name that is specified by the
SET STOGROUP PATHS command refers to the storage group name from the backup
image, not the more recent name.

Performing a redirected restore operation in a partitioned
database environment

In a partitioned database environment, during a redirected database restore, you
can redirect the storage group paths to new storage group paths only from the
catalog database partition. For all other database partitions you must have their
storage group paths synchronized with those of the catalog partition.

Modifying any storage group paths on the catalog partition places all non-catalog
partitions into a RESTORE_PENDING state. If you redirect storage group paths,
you must restore the catalog partition before any other database partition. After
you restore the catalog database partition, you can restore the non-catalog database
partitions in parallel, without any storage group path redirection. The non-catalog
database partitions automatically acquire the new storage group paths that you
specified for the catalog database partition. New storage group paths are also
automatically acquired when the storage group paths are implicitly changed
during a database restore when you are restoring a different database (one with a
different name, instance, or seed).

If you modified the storage group paths since taking the last backup, you can still
use that backup image (with different storage group paths) for a restore on any
database partition. This restore is not considered a redirected restore. Restoring
from that backup image temporarily causes the database partition to use the
storage group paths that you defined at the time that you created the backup.
Perform a rollforward recovery to reapply the storage group path modifications
and resynchronize all of the database partitions.

Examples

Example 1

794 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

You can perform a table space container redirected restore on database
SAMPLE by using the SET TABLESPACE CONTAINERS command to define
table space containers:

db2 restore db sample redirect without prompting
SQL1277W A redirected restore operation is being performed.
During a table space restore, only table spaces being restored can
have their paths reconfigured. During a database restore, storage
group storage paths and DMS table space containers can be reconfigured.

DB20000I The RESTORE DATABASE command completed successfully.

db2 set tablespace containers for 2 using (path ’userspace1.0’, path
’userspace1.1’)
DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

db2 restore db sample continue
DB20000I The RESTORE DATABASE command completed successfully.

Example 2

You can redefine the paths of the defined storage group by using the SET
STOGROUP PATHS command:

RESTORE DB SAMPLE REDIRECT

SET STOGROUP PATHS FOR sg_hot ON ’/ssd/fs1’, ’/ssd/fs2’
SET STOGROUP PATHS FOR sg_cold ON ’/hdd/path1’, ’/hdd/path2’

RESTORE DB SAMPLE CONTINUE

Example 3

Following is a typical non-incremental redirected restore scenario for a
database whose alias is MYDB:
1. Issue a RESTORE DATABASE command with the REDIRECT option.

db2 restore db mydb replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table
space whose containers you want to redefine. For example, in a
Windows environment:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones
specified in this step, issue the LIST TABLESPACE CONTAINERS
command for every table space whose container locations are being
redefined.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

This is the final step of the redirected restore operation.
4. If step 3 fails, or if the restore operation has been aborted, the

redirected restore can be restarted, beginning at step 1.

Note:

1. After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the
redirected restore can be restarted, beginning at step 1.

Example 4

Chapter 47. Restore 795

Following is a typical manual incremental redirected restore scenario for a
database whose alias is MYDB and has the following backup images:

backup db mydb
Backup successful. The timestamp for this backup image is : <ts1>

backup db mydb incremental
Backup successful. The timestamp for this backup image is : <ts2>

1. Issue a RESTORE DATABASE command with the INCREMENTAL and
REDIRECT options.

db2 restore db mydb incremental taken at <ts2> replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table
space whose containers must be redefined. For example, in a Windows
environment:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones
specified in this step, issue the LIST TABLESPACE CONTAINERS
command.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

4. The remaining incremental restore commands can now be issued as
follows:

db2 restore db mydb incremental taken at <ts1>
db2 restore db mydb incremental taken at <ts2>

This is the final step of the redirected restore operation.

Note:

1. After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. After successful completion of step 3, and before issuing all the
required commands in step 4, the restore operation can be aborted by
issuing:

db2 restore db mydb incremental abort

3. If step 3 fails, or if the restore operation has been aborted, the
redirected restore can be restarted, beginning at step 1.

4. If either restore command fails in step 4, the failing command can be
reissued to continue the restore process.

Example 5

Following is a typical automatic incremental redirected restore scenario for
the same database:
1. Issue a RESTORE DATABASE command with the INCREMENTAL

AUTOMATIC and REDIRECT options.
db2 restore db mydb incremental automatic taken at <ts2>

replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table
space whose containers must be redefined. For example, in a Windows
environment:

db2 set tablespace containers for 5 using
(file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

796 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

To verify that the containers of the restored database are the ones
specified in this step, issue the LIST TABLESPACE CONTAINERS
command.

3. After successful completion of steps 1 and 2, issue:
db2 restore db mydb continue

This is the final step of the redirected restore operation.

Note:

1. After successful completion of step 1, and before completing step 3, the
restore operation can be aborted by issuing:

db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the
redirected restore can be restarted, beginning at step 1 after issuing:

db2 restore db mydb incremental abort

Redefine table space containers by restoring a database using
an automatically generated script

When you restore a database, the restore utility assumes that the physical container
layout will be identical to that of the database when it was backed up.

If you need to change the location or size of any of the physical containers, you
must issue the RESTORE DATABASE command with the REDIRECT option. Using this
option requires that you specify the locations of physical containers stored in the
backup image and provide the complete set of containers for each non-automatic
table space that will be altered. You can capture the container information at the
time of the backup, but this can be cumbersome.

To make it easier to perform a redirected restore, the restore utility allows you to
generate a redirected restore script from an existing backup image by issuing the
RESTORE DATABASE command with the REDIRECT parameter and the GENERATE SCRIPT
parameter. The restore utility examines the backup image, extracts container
information from the backup image, and generates a CLP script that includes all of
the detailed container information. You can then modify any of the paths or
container sizes in the script, then run the CLP script to recreate the database with
the new set of containers. The script you generate can be used to restore a
database even if you only have a backup image and you do not know the layout
of the containers. The script is created on the client. Using the script as your basis,
you can decide where the restored database will require space for log files and
containers and you can change the log file and container paths accordingly.

The generated script consists of four sections:

Initialization
The first section sets command options and specifies the database
partitions on which the command will run. The following is an example of
the first section:

UPDATE COMMAND OPTIONS USING S ON Z ON SAMPLE_NODE0000.out V ON;
SET CLIENT ATTACH_DBPARTITIONNUM 0;
SET CLIENT CONNECT_DBPARTITIONNUM 0;

where
v S ON specifies that execution of the command should stop if a command

error occurs

Chapter 47. Restore 797

v Z ON SAMPLE_NODE0000.out specifies that output should be directed to a
file named dbalias_NODEdbpartitionnum.out

v V ON specifies that the current command should be printed to standard
output.
When running the script on a partitioned database environment, it is
important to specify the database partition on which the script
commands will run.

RESTORE DATABASE command with the REDIRECT parameter
The second section starts the RESTORE DATABASE command and uses the
REDIRECT parameter. This section can use all of the RESTORE DATABASE
command parameters, except any parameters that cannot be used with the
REDIRECT parameter. The following is an example of the second section:

RESTORE DATABASE SAMPLE
-- USER ’username’
-- USING ’password’
FROM ’/home/jseifert/backups’
TAKEN AT 20050906194027
-- DBPATH ON ’target-directory’
INTO SAMPLE
-- NEWLOGPATH ’/home/jseifert/jseifert/NODE0000/SQL00001/LOGSTREAM0000/’
-- WITH num-buff BUFFERS
-- BUFFER buffer-size
-- REPLACE HISTORY FILE
-- REPLACE EXISTING
REDIRECT
-- PARALLELISM n
-- WITHOUT ROLLING FORWARD
-- WITHOUT PROMPTING
;

Table space definitions
This section contains table space definitions for each table space in the
backup image or specified on the command line. There is a section for each
table space, consisting of a comment block that contains information about
the name, type and size of the table space. The information is provided in
the same format as a table space snapshot. You can use the information
provided to determine the required size for the table space. In cases where
you are viewing output of a table space created using automatic storage,
you will not see a SET TABLESPACE CONTAINERS clause. The following
is an example of the table space definition section:

-- ***
-- ** Tablespace name = SYSCATSPACE
-- ** Tablespace ID = 0
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 5572
-- ***
SET TABLESPACE CONTAINERS FOR 0
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

PATH ’SQLT0000.0’
);
-- ***
-- ** Tablespace name = TEMPSPACE1
-- ** Tablespace ID = 1
-- ** Tablespace Type = System managed space
-- ** Tablespace Content Type = System Temporary data
-- ** Tablespace Page size (bytes) = 4096

798 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Total number of pages = 0
-- ***
SET TABLESPACE CONTAINERS FOR 1
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

PATH ’SQLT0001.0’
);
-- ***
-- ** Tablespace name = DMS
-- ** Tablespace ID = 2
-- ** Tablespace Type = Database managed space
-- ** Tablespace Content Type = Any data
-- ** Tablespace Page size (bytes) = 4096
-- ** Tablespace Extent size (pages) = 32
-- ** Using automatic storage = No
-- ** Auto-resize enabled = No
-- ** Total number of pages = 2000
-- ** Number of usable pages = 1960
-- ** High water mark (pages) = 96
-- ***
SET TABLESPACE CONTAINERS FOR 2
-- IGNORE ROLLFORWARD CONTAINER OPERATIONS
USING (

FILE ’/tmp/dms1’ 1000
, FILE ’/tmp/dms2’ 1000
);

RESTORE DATABASE command with the CONTINUE parameter
The final section issues the RESTORE DATABASE command with the CONTINUE
parameter, to complete the redirected restore. The following is an example
of the final section:

RESTORE DATABASE SAMPLE CONTINUE;

Performing a redirected restore using an automatically
generated script

When you perform a redirected restore operation, you must specify the locations of
physical containers that are stored in the backup image and provide the complete
set of containers for each table space that you are altering.

Before you begin

You can perform a redirected restore only if the database was previously backed
up using the DB2 backup utility.

About this task
v If the database exists, you must be able to connect to it in order to generate the

script. Therefore, if the database requires an upgrade or crash recovery, this must
be done before you attempt to generate a redirected restore script.

v If you are working in a partitioned database environment, and the target
database does not exist, you cannot run the command to generate the redirected
restore script concurrently on all database partitions. Instead, the command to
generate the redirected restore script must be run one database partition at a
time, starting from the catalog partition.
Alternatively, you can first create a dummy database with the same name as
your target database. After the dummy database is created, you can then
generate the redirected restore script concurrently on all database partitions.

Chapter 47. Restore 799

v Even if you specify the REPLACE EXISTING parameter when you issue the RESTORE
DATABASE command to generate the script, the REPLACE EXISTING parameter is
commented out in the script.

v For security reasons, your password does not appear in the generated script. You
need to enter the password manually.

v The restore script includes the storage group associations for every table space
that you restore.

Procedure

To perform a redirected restore using a script:
1. Use the restore utility to generate a redirected restore script. The restore utility

can be invoked through the command line processor (CLP) or the db2Restore
application programming interface (API). The following is an example of the
RESTORE DATABASE command with the REDIRECT parameter and the GENERATE
SCRIPT parameter:

db2 restore db test from /home/jseifert/backups taken at 20050304090733
redirect generate script test_node0000.clp

This creates a redirected restore script on the client called test_node0000.clp.
2. Open the redirected restore script in a text editor to make any modifications

that are required. You can modify:
v Restore options
v Automatic storage paths
v Container layout and paths

3. Run the modified redirected restore script. For example:
db2 -tvf test_node0000.clp

Cloning a production database using different storage group
paths

You might have to clone a production database onto a test database that uses a
different machine. The test machine and production server are likely to have
different storage group paths. The test system might not have paths backed by the
newest and fastest storage disks.

About this task

Suppose you have a production database proddb, where some data is in storage
group sg_hot, which has paths on an SSD device. You want to restore the data into
the less expensive and lower-performance test database testdb. The test system
does not have the SSD device, but the other paths are equivalent. Performing a
redirected restore can change the paths for sg_hot on the test system without
changing the other storage groups.

Procedure

To restore data from a production database to a test database:
1. Back up the production database. Issue the following command:

BACKUP DATABASE production_db TO /backup

where production_db is the production database.
2. Set up a redirected restore to the test database. Issue the following command:

800 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

RESTORE DATABASE testdb REDIRECT

where testdb is the test database.
3. Modify the storage paths for sg_hot because no hot storage is available on the

test database. Issue the following command:
SET STOGROUP PATHS FOR sg_hot ON ’/hdd/path1’, ’/hdd/path2’

where sg_hot is the sg_hot storage group.
4. Proceed with the test database restore. Issue the following command:

RESTORE DATABASE testdb CONTINUE

5. Update the storage group name to correspond with the new paths. Use the
following commands:
CONNECT TO testdb
RENAME STOGROUP sg_hot TO sg_cold

Database rebuild
Rebuilding a database is the process of restoring a database or a subset of its table
spaces using a set of restore operations. The functionality provided with database
rebuild makes DB2 database products more robust and versatile, and provides you
with a more complete recovery solution.

The ability to rebuild a database from table space backup images means that you
no longer have to take as many full database backups. As databases grow in size,
opportunities for taking a full database backup are becoming limited. With table
space backup as an alternative, you no longer need to take full database backups
as frequently. Instead, you can take more frequent table space backups and plan to
use them, along with log files, in case of a disaster.

In a recovery situation, if you need to bring a subset of table spaces online faster
than others, you can use rebuild to accomplish this. The ability to bring only a
subset of table spaces online is especially useful in a test and production
environment.

Rebuilding a database involves a series of potentially many restore operations. A
rebuild operation can use a database image, or table space images, or both. It can
use full backups, or incremental backups, or both. The initial restore operation
restores the target image, which defines the structure of the database that can be
restored (such as the table space set, the storage groups and the database
configuration). For recoverable databases, rebuilding allows you to build a
database that is connectable and that contains the subset of table spaces that you
need to have online, while keeping table spaces that can be recovered at a later
time offline.

The method you use to rebuild your database depends on whether it is recoverable
or non-recoverable.
v If the database is recoverable, use one of the following methods:

– Using a full or incremental database or table space backup image as your
target, rebuild your database by restoring SYSCATSPACE and any other table
spaces from the target image only using the REBUILD option. You can then roll
your database forward to a point in time.

– Using a full or incremental database or table space backup image as your
target, rebuild your database by specifying the set of table spaces defined in
the database at the time of the target image to be restored using the REBUILD

Chapter 47. Restore 801

option. SYSCATSPACE must be part of this set. This operation will restore
those table spaces specified that are defined in the target image and then use
the recovery history file to find and restore any other required backup images
for the remaining table spaces not in the target image automatically. Once the
restores are complete, roll your database forward to a point in time.

v If the database is non-recoverable:
– Using a full or incremental database backup image as your target, rebuild

your database by restoring SYSCATSPACE and any other table spaces from
the target image using the appropriate REBUILD syntax. When the restore
completes you can connect to the database.

Specifying the target image

To perform a rebuild of a database, you start by issuing the RESTORE command,
specifying the most recent backup image that you use as the target of the restore
operation. This image is known as the target image of the rebuild operation,
because it defines the structure of the database to be restored, including the table
spaces that can be restored, the database configuration, and the log sequence. The
rebuild target image is specified using the TAKEN AT parameter in the RESTORE
DATABASE command. The target image can be any type of backup (full, table space,
incremental, online or offline). The table spaces defined in the database at the time
the target image was created will be the table spaces available to rebuild the
database.

You must specify the table spaces you want restored using one of the following
methods:
v Specify that you want all table spaces defined in the database to be restored and

provide an exception list if there are table spaces you want to exclude
v Specify that you want all table spaces that have user data in the target image to

be restored and provide an exception list if there are table spaces you want to
exclude

v Specify the list of table spaces defined in the database that you want to restore

Once you know the table spaces you want the rebuilt database to contain, issue the
RESTORE command with the appropriate REBUILD option and specify the target
image to be used.

Rebuild phase

After you issue the RESTORE command with the appropriate REBUILD option and the
target image has been successfully restored, the database is considered to be in the
rebuild phase. After the target image is restored, any additional table space restores
that occur will restore data into existing table spaces, as defined in the rebuilt
database. These table spaces will then be rolled forward with the database at the
completion of the rebuild operation.

If you issue the RESTORE command with the appropriate REBUILD option and the
database does not exist, a new database is created based on the attributes in the
target image. If the database does exist, you will receive a warning message
notifying you that the rebuild phase is starting. You will be asked if you want to
continue the rebuild operation or not.

The rebuild operation restores all initial metadata from the target image. This
includes all data that belongs to the database and does not belong to the table
space data or the log files. Examples of initial metadata are:

802 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Table spaces definitions
v The history file, which is a database file that records administrative operations

The rebuild operation also restores the database configuration. The target image
sets the log chain that determines what images can be used for the remaining
restores during the rebuild phase. Only images on the same log chain can be used.

If a database already exists on disk and you want the history file to come from the
target image, then you should specify the REPLACE HISTORY FILE option. The
history file on disk at this time is used by the automatic logic to find the remaining
images needed to rebuild the database.

Once the target image is restored:
v if the database is recoverable, the database is put into rollforward pending state

and all table spaces that you restore are also put into rollforward pending state.
Any table spaces defined in the database but not restored are put in restore
pending state.

v If the database is not recoverable, then the database and the table spaces
restored will go into normal state. Any table spaces not restored are put in drop
pending state, as they can no longer be recovered. For this type of database, the
rebuild phase is complete.

For recoverable databases, the rebuild phase ends when the first ROLLFORWARD
DATABASE command is issued and the rollforward utility begins processing log
records. If a rollforward operation fails after starting to process log records and a
restore operation is issued next, the restore is not considered to be part of the
rebuild phase. Such restores should be considered as normal table space restores
that are not part of the rebuild phase.

Automatic processing

After the target image is restored, the restore utility determines if there are
remaining table spaces that need to be restored. If there are, they are restored using
the same connection that was used for running the RESTORE DATABASE command
with the REBUILD option. The utility uses the history file on disk to find the most
recent backup images taken prior to the target image that contains each of the
remaining table spaces that needs to be restored. The restore utility uses the
backup image location data stored in the history file to restore each of these
images automatically. These subsequent restores, which are table space level
restores, can be performed only offline. If the image selected does not belong on
the current log chain, an error is returned. Each table space that is restored from
that image is placed in rollforward pending state.

The restore utility tries to restore all required table spaces automatically. In some
cases, it will not be able to restore some table spaces due to problems with the
history file, or an error will occur restoring one of the required images. In such a
case, you can either finish the rebuild manually or correct the problem and reissue
the rebuild.

If automatic rebuilding cannot complete successfully, the restore utility writes to
the diagnostics log (db2diag log file) any information it gathered for the remaining
restore steps. You can use this information to complete the rebuild manually.

If a database is being rebuilt, only containers belonging to table spaces that are
part of the rebuild process will be acquired.

Chapter 47. Restore 803

If any containers need to be redefined through redirected restore, you will need to
set the new path and size of the new container for the remaining restores and the
subsequent rollforward operation.

If the data for a table space restored from one of these remaining images cannot fit
into the new container definitions, the table space is put into restore pending state
and a warning message is returned at the end of the restore. You can find
additional information about the problem in the diagnostic log.

Completing the rebuild phase

Once all the intended table spaces have been restored you have two options based
on the configuration of the database. If the database is nonrecoverable, the
database will be connectable and any table spaces restored will be online. Any
table spaces that are in drop pending state can no longer be recovered and should
be dropped if future backups will be performed on the database.

If the database is recoverable, you can issue the rollforward command to bring the
table spaces that were restored online. If SYSCATSPACE has not been restored, the
rollforward will fail and this table space will have to be restored before the
rollforward operation can begin. This means that during the rebuild phase,
SYSCATSPACE must be restored.

Note: In a partitioned database environment, SYSCATSPACE does not exist on
non-catalog partitions so it cannot be rebuilt there. However, on the catalog
partition, SYSCATSPACE must be one of the table spaces that is rebuilt, or the
rollforward operation will not succeed.

Rolling the database forward brings the database out of rollforward pending state
and rolls any table spaces in rollforward pending state forward. The rollforward
utility will not operate on any table space in restore pending state.

The stop time for the rollforward operation must be a time that is later than the
end time of the most recent backup image restored during the rebuild phase. An
error will occur if any other time is given. If the rollforward operation is not able
to reach the backup time of the oldest image that was restored, the rollforward
utility will not be able to bring the database up to a consistent point, and the
rollforward fails.

You must have all log files for the time frame between the earliest and most recent
backup images available for the rollforward utility to use. The logs required are
those logs which follow the log chain from the earliest backup image to the target
backup image, as defined by the truncation array in the target image, otherwise
the rollforward operation will fail. If any backup images more recent than the
target image were restored during the rebuild phase, then the additional logs from
the target image to the most recent backup image restored are required. If the logs
are not made available, the rollforward operation will put those table spaces that
were not reached by the logs into restore pending state. You can issue the LIST
HISTORY command to show the restore rebuild entry with the log range that will be
required by roll forward.

The correct log files must be available. If you rely on the rollforward utility to
retrieve the logs, you must ensure that the DB2 Log Manager is configured to
indicate the location from which log files can be retrieved. If the log path or
archive path has changed, you need to use the OVERFLOW LOG PATH option of the
ROLLFORWARD DATABASE command.

804 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Use the AND STOP option of the ROLLFORWARD DATABASE command to make the
database available when the rollforward command successfully completes. At this
point, the database is no longer in rollforward pending state. If the rollforward
operation begins, but an error occurs before it successfully completes, the
rollforward operation stops at the point of the failure and an error is returned. The
database remains in rollforward pending state. You must take steps to correct the
problem (for example, fix the log file) and then issue another rollforward operation
to continue processing.

If the error cannot be fixed, you will be able to bring the database up at the point
of the failure by issuing the ROLLFORWARD STOP command. Any log data beyond that
point in the logs will no longer be available once the STOP option is used. The
database comes up at that point and any table spaces that have been recovered are
online. Table spaces that have not yet been recovered are in restore pending state.
The database is in the normal state.

You will have to decide what is the best way to recover the remaining table spaces
in restore pending state. This could be by doing a new restore and roll forward of
a table space or by reissuing the whole rebuild operation again. This will depend
on the type of problems encountered. In the situation where SYSCATSPACE is one
of the table spaces in restore pending state, the database will not be connectable.

Database rebuild and table space containers
During a database rebuild, only those table spaces that are part of the rebuild
process have their containers acquired. The containers belonging to each table
space are acquired at the time the table space user data is restored out of an image.

When the target image is restored, each table space known to the database at the
time of the backup has its definitions restored. This means the database created by
the rebuild has knowledge of the same table spaces it did at backup time. For
those table spaces that should also have their user data restored from the target
image, their containers are also be acquired at this time.

Any remaining table spaces that are restored through intermediate table space
restores have their containers acquired at the time the image that contains the table
space data is restored.

Rebuild with redirected restore

In the case of redirected restore, all table space containers must be defined during
the restore of the target image. If you specify the REDIRECT option, control is given
back to you to redefine your table space containers. If you have redefined table
space containers using the SET TABLESPACE CONTAINERS command then those new
containers are acquired at that time. Any table space containers that you have not
redefined are acquired as normal, at the time the table space user data is restored
out of an image.

If the data for a table space that is restored cannot fit into the new container
definitions, the table space is put into restore-pending state and a warning
(SQL2563W) is returned to you at the end of the restore. There will also be a
message in the DB2 diagnostics log detailing the problem.

Chapter 47. Restore 805

Database rebuild and temporary table spaces
Temporary table spaces are stored differently than other database components in a
backup image. Because they are stored differently, temporary table spaces are
rebuilt differently during a database restoration.

In general, a DB2 backup image is made up of the following components:
v Initial database metadata, such as the table space definitions, database

configuration file, and history file.
v Data for non-temporary table spaces specified to the BACKUP utility
v Final database metadata such as the log file header
v Log files (if the INCLUDE LOGS option was specified)

In every backup image, whether it is a database or table space backup, a full or
incremental (delta) backup, these core components can always be found.

A database backup image will contain all of the previously listed components, as
well as data for every table space defined in the database at the time of the
backup.

A table space backup image will always include the database metadata listed
previously, but it will only contain data for those table spaces that are specified to
the backup utility.

Temporary table spaces are treated differently than nontemporary table spaces.
Temporary table space data is never backed up, but their existence is important to
the framework of the database. Although temporary table space data is never
backed up, the temporary table spaces are considered part of the database, so they
are specially marked in the metadata that is stored with a backup image. This
makes it look like they are in the backup image. In addition, the table space
definitions hold information about the existence of any temporary table spaces.

Although no backup image ever contains data for a temporary table space, during
a database rebuild operation when the target image is restored (regardless the type
of image), temporary table spaces are also restored, only in the sense that their
containers are acquired and allocated. The acquisition and allocation of containers
is done automatically as part of the rebuild processing. As a result, when
rebuilding a database, you cannot exclude temporary table spaces.

Choosing a target image for database rebuild
The rebuild target image should be the most recent backup image that you want to
use as the starting point of your restore operation.

This image is known as the target image of the rebuild operation, because it
defines the structure of the database to be restored, including the table spaces that
can be restored, the database configuration, and the log sequence.It can be any
type of backup (full, table space, incremental, online or offline).

The target image sets the log sequence (or log chain) that determines what images
can be used for the remaining restores during the rebuild phase. Only images on
the same log chain can be used.

The following examples illustrate how to choose the image you should use as the
target image for a rebuild operation.

806 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Suppose there is a database called SAMPLE that has the following table spaces in
it:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)
v USERSP2 (user data table space)
v USERSP3 (user data table space)

Figure 59 on page 808 shows that the following database-level backups and table
space-level backups that have been taken, in chronological order:
1. Full database backup DB1
2. Full table space backup TS1
3. Full table space backup TS2
4. Full table space backup TS3
5. Database restore and roll forward to a point between TS1 and TS2
6. Full table space backup TS4
7. Full table space backup TS5

Chapter 47. Restore 807

Example 1

The following example demonstrates the CLP commands you need to issue to
rebuild database SAMPLE to the current point of time. First you need to choose
the table spaces you want to rebuild. Since your goal is to rebuild the database to
the current point of time you need to select the most recent backup image as your
target image. The most recent backup image is image TS5, which is on log chain 2:

db2 restore db sample rebuild with all tablespaces in database taken at
TS5 without prompting

db2 rollforward db sample to end of logs
db2 rollforward db sample stop

This restores backup images TS5, TS4, TS1 and DB1 automatically, then rolls the
database forward to the end of log chain 2.

Note: All logs belonging to log chain 2 must be accessible for the rollforward
operations to complete.

Figure 59. Database and table space-level backups of database SAMPLE

808 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example 2

This second example demonstrates the CLP commands you need to issue to
rebuild database SAMPLE to the end of log chain 1. The target image you select
should be the most recent backup image on log chain 1, which is TS3:

db2 restore db sample rebuild with all tablespaces in database
taken at TS3 without prompting

db2 rollforward db sample to end of logs
db2 rollforward db sample stop

This restores backup images TS3, TS2, TS1, and DB1 automatically, then rolls the
database forward to the end of log chain 1.

Note:

v All logs belonging to log chain 1 must be accessible for the rollforward
operations to complete.

v This command may fail because a log file is retrieved from a higher log chain
(the rollforward utility always attempts to get log files from the highest log
chain), you need to do the following steps:
1. Extract the log files manually to the overflow log path.
2. Run the ROLLFORWARD command. Include the parameters -OVERFLOW LOG PATH,

to specify the location of the extracted log files, and -NORETRIEVE, to disable
the retrieval of archived logs.

Choosing the wrong target image for rebuild

Suppose there is a database called SAMPLE2 that has the following table spaces in
it:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)
v USERSP2 (user data table space)

Figure 60 on page 810 shows the backup log chain for SAMPLE2, which consists of
the following backups:
1. BK1 is a full database backup, which includes all table spaces
2. BK2 is a full table space backup of USERSP1
3. BK3 is a full table space backup of USERSP2

Chapter 47. Restore 809

The following example demonstrates the CLP command you need to issue to
rebuild the database from BK3 using table spaces SYSCATSPACE and USERSP2:

db2 restore db sample2 rebuild with tablespace (SYSCATSPACE,
USERSP2) taken at BK3 without prompting

Now suppose that after this restore completes, you decide that you also want to
restore USERSP1, so you issue the following command:

db2 restore db sample2 tablespace (USERSP1) taken at BK2

This restore fails and provides a message that says BK2 is from the wrong log
chain (SQL2154N). As you can see in Figure 60, the only image that can be used to
restore USERSP1 is BK1. Therefore, you need to type the following command:

db2 restore db sample2 tablespace (USERSP1) taken at BK1

This succeeds so that database can be rolled forward accordingly.

Rebuilding selected table spaces
Rebuilding a database allows you to build a database that contains a subset of the
table spaces that make up the original database.

About this task

Rebuilding only a subset of table spaces within a database can be useful in the
following situations:
v In a test and development environment in which you want to work on only a

subset of table spaces.
v In a recovery situation in which you need to bring table spaces that are more

critical online faster than others, you can first restore a subset of table spaces
then restore other table spaces at a later time.

To rebuild a database that contains a subset of the table spaces that make up the
original database, consider the following example.

In this example, there is a database named SAMPLE that has the following table
spaces:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)

Figure 60. Backup log chain for database SAMPLE2

810 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v USERSP2 (user data table space)
v USERSP3 (user data table space)

Figure 61 shows that the following backups have been taken:
v BK1 is a backup of SYSCATSPACE and USERSP1
v BK2 is a backup of USERSP2 and USERSP3
v BK3 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and
ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild just
SYSCATSPACE and USERSP1 to end of logs:
db2 restore db mydb rebuild with all tablespaces in image

taken at BK1 without prompting
db2 rollforward db mydb to end of logs
db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP1
are in NORMAL state. USERSP2 and USERSP3 are in restore-pending state. You
can still restore USERSP2 and USERSP3 at a later time.

Rebuild and incremental backup images
You can rebuild a database using incremental images.

By default, the restore utility tries to use automatic incremental restore for all
incremental images. This means that if you do not use the INCREMENTAL option of
the RESTORE DATABASE command, but the target image is an incremental backup
image, the restore utility will issue the rebuild operation using automatic
incremental restore. If the target image is not an incremental image, but another
required image is an incremental image then the restore utility will make sure
those incremental images are restored using automatic incremental restore. The
restore utility will behave in the same way whether you specify the INCREMENTAL
option with the AUTOMATIC option or not.

Figure 61. Backup images available for database SAMPLE

Chapter 47. Restore 811

If you specify the INCREMENTAL option but not the AUTOMATIC option, you will need
to perform the entire rebuild process manually. The restore utility will just restore
the initial metadata from the target image, as it would in a regular manual
incremental restore. You will then need to complete the restore of the target image
using the required incremental restore chain. Then you will need to restore the
remaining images to rebuild the database.

It is recommended that you use automatic incremental restore to rebuild your
database. Only in the event of a restore failure, should you attempt to rebuild a
database using manual methods.

Rebuilding partitioned databases
To rebuild a partitioned database, rebuild each database partition separately. For
each database partition, beginning with the catalog partition, first restore all the
table spaces that you require. Any table spaces that are not restored are placed in
restore pending state.

Once all the database partitions are restored, you then issue the ROLLFORWARD
DATABASE command on the catalog partition to roll all of the database partitions
forward.

About this task

Note: If, at a later date, you need to restore any table spaces that were not
originally included in the rebuild phase, you need to make sure that when you
subsequently roll the table space forward that the rollforward utility keeps all the
data across the database partitions synchronized. If a table space is missed during
the original restore and rollforward operation, it might not be detected until there
is an attempt to access the data and a data access error occurs. You will then need
to restore and roll the missing table space forward to get it back in sync with the
rest of the partitions.

To rebuild a partitioned database using table space level backup images, consider
the following example.

In this example, there is a recoverable database called SAMPLE with three
database partitions:
v Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and

USERSP2, and is the catalog partition
v Database partition 2 contains table spaces USERSP1 and USERSP3
v Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x
on partition y:
v BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2
v BK12 is a backup of USERSP2 and USERSP3
v BK13 is a backup of USERSP1, USERSP2 and USERSP3
v BK21 is a backup of USERSP1
v BK22 is a backup of USERSP1
v BK23 is a backup of USERSP1
v BK31 is a backup of USERSP2
v BK33 is a backup of USERSP2

812 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v BK42 is a backup of USERSP3
v BK43 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and
ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild the entire
database to the end of logs.

Procedure
1. On database partition 1, issue a RESTORE DATABASE command with the REBUILD

option:
db2 restore db sample rebuild with all tablespaces in database

taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the REBUILD
option:

db2 restore db sample rebuild with tablespaces in database
taken at BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the REBUILD
option:

db2 restore db sample rebuild with all tablespaces in database
taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with the TO
END OF LOGS option:

db2 rollforward db sample to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db sample stop

What to do next

At this point the database is connectable on all database partitions and all table
spaces are in NORMAL state.

Restrictions for database rebuild
You can use the REBUILD option to complete a set of restore commands, but it has
restrictions that you need to be aware of.

The following list is a summary of database rebuild restrictions:
v One of the table spaces you rebuild must be SYSCATSPACE on the catalog

partition.
v You must either issue commands using the command line processor (CLP) or

use the corresponding application programming interfaces (APIs) to perform a
rebuild operation.

v The REBUILD option cannot be used against a pre-Version 9.1 target image unless
the image is that of an offline database backup. If the target image is an offline
database backup, then only the table spaces in this image can be used for the
rebuild. The database needs to be migrated after the rebuild operation
successfully completes. Attempts to rebuild using any other type of pre-Version
9.1 target image result in an error.

v The REBUILD option cannot be issued against a target image from a different
operating system than the one being restored on unless the target image is a full
database backup. If the target image is a full database backup, then only the
table spaces in this image can be used for the rebuild. Attempts to rebuild using
any other type of target image from a different operating system than the one
being restored on result in an error.

Chapter 47. Restore 813

v The TRANSPORT option is incompatible with the REBUILD option.

Rebuild sessions - CLP examples
This topic provides a number of examples of rebuild operations.

Scenario 1

In the following examples, there is a recoverable database called MYDB with the
following table spaces in it:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)
v USERSP2 (user data table space)
v USERSP3 (user data table space)

The following backups have been taken:
v BK1 is a backup of SYSCATSPACE and USERSP1
v BK2 is a backup of USERSP2 and USERSP3
v BK3 is a backup of USERSP3

Example 1

The following rebuilds the entire database to the most recent point in time:
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Example 2

The following rebuilds just SYSCATSPACE and USERSP2 to a point in time
(where end of BK3 is less recent than the point in time, which is less recent
than end of logs):
1. Issue a RESTORE DATABASE command with the REBUILD option and

specify the table spaces you want to include.
db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)

taken at BK2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO PIT option (this
assumes all logs have been saved and are accessible):

db2 rollforward db mydb to PIT

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and
USERSP2 are in NORMAL state. USERSP1 and USERSP3 are in
RESTORE_PENDING state.

To restore USERSP1 and USERSP3 at a later time, using normal table space
restores (without the REBUILD option):

814 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

1. Issue the RESTORE DATABASE command without the REBUILD option and
specify the table space you want to restore. First restore USERSPI:

db2 restore db mydb tablespace (USERSP1) taken at BK1 without prompting

2. Then restore USERSP3:
db2 restore db mydb tablespace taken at BK3 without prompting

3. Issue a ROLLFORWARD DATABASE command with the END OF LOGS option
and specify the table spaces to be restored (this assumes all logs have
been saved and are accessible):

db2 rollforward db mydb to end of logs tablespace (USERSP1, USERSP3)

The rollforward will replay all logs up to the PIT and then stop for
these two table spaces since no work has been done on them since the
first rollforward.

4. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

Example 3

The following rebuilds just SYSCATSPACE and USERSP1 to end of logs:
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in image
taken at BK1 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and
USERSP1 are in NORMAL state. USERSP2 and USERSP3 are in
RESTORE_PENDING state.

Example 4

In the following example, the backups BK1 and BK2 are no longer in the
same location as stated in the history file, but this is not known when the
rebuild is issued.
1. Issue a RESTORE DATABASE command with the REBUILD option, specifying

that you want to rebuild the entire database to the most recent point in
time:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK3 without prompting

At this point, the target image is restored successfully, but an error is
returned from the restore utility stating it could not find a required
image.

2. You must now complete the rebuild manually. Since the database is in
the rebuild phase this can be done as follows:
a. Issue a RESTORE DATABASE command and specify the location of the

BK1 backup image:
db2 restore db mydb tablespace taken at BK1 from location

without prompting

b. Issue a RESTORE DATABASE command and specify the location of the
BK2 backup image:

db2 restore db mydb tablespace (USERSP2) taken at BK2 from
location without prompting

Chapter 47. Restore 815

c. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

d. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Example 5

In this example, table space USERSP3 contains independent data that is
needed for generating a specific report, but you do not want the report
generation to interfere with the original database. In order to gain access to
the data but not affect the original database, you can use REBUILD to
generate a new database with just this table space and SYSCATSPACE.
SYSCATSPACE is also required so that the database will be connectable
after the restore and roll forward operations.

To build a new database with the most recent data in SYSCATSPACE and
USERSP3:
1. Issue a RESTORE DATABASE command with the REBUILD option, and

specify that table spaces SYSCATSPACE and USERSP3 are to be
restored to a new database, NEWDB:

db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP3)
taken at BK3 into newdb without prompting

2. Issue a ROLLFORWARD DATABASE command on NEWDB with the TO END
OF LOGS option (this assumes all logs have been saved and are
accessible):

db2 rollforward db newdb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db newdb stop

At this point the new database is connectable and only SYSCATSPACE and
USERSP3 are in NORMAL state. USERSP1 and USERSP2 are in
RESTORE_PENDING state.

Note: If container paths are an issue between the current database and the
new database (for example, if the containers for the original database need
to be altered because the file system does not exist or if the containers are
already in use by the original database) then you will need to perform a
redirected restore. This example assumes the default autostorage database
paths are used for the table spaces.

Scenario 2

In the following example, there is a recoverable database called MYDB that has
SYSCATSPACE and one thousand user table spaces named Txxxx, where xxxx
stands for the table space number (for example, T0001). There is one full database
backup image (BK1)

Example 6

The following restores all table spaces except T0999 and T1000:
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in image except
tablespace (T0999, T1000) taken at BK1 without prompting

816 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database will be connectable and all table spaces except
T0999 and T1000 will be in NORMAL state. T0999 and T1000 will be in
RESTORE_PENDING state.

Scenario 3

The examples in this scenario demonstrate how to rebuild a recoverable database
using incremental backups. In the following examples, there is a database called
MYDB with the following table spaces in it:
v SYSCATSPACE (system catalogs)
v USERSP1 (data table space)
v USERSP2 (user data table space)
v USERSP3 (user data table space)

The following backups have been taken:
v FULL1 is a full backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3
v DELTA1 is a delta backup of SYSCATSPACE and USERSP1
v INCR1 is an incremental backup of USERSP2 and USERSP3
v DELTA2 is a delta backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3
v DELTA3 is a delta backup of USERSP2
v FULL2 is a full backup of USERSP1

Example 7

The following rebuilds just SYSCATSPACE and USERSP2 to the most
recent point in time using incremental automatic restore.
1. Issue a RESTORE DATABASE command with the REBUILD option. The

INCREMENTAL AUTO option is optional. The restore utility will detect what
the granularity of the image is and use automatic incremental restore if
it is required.

db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)
incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and
USERSP2 are in NORMAL state. USERSP1 and USERSP3 are in
RESTORE_PENDING state.

Example 8

The following rebuilds the entire database to the most recent point in time
using incremental automatic restore.

Chapter 47. Restore 817

1. Issue a RESTORE DATABASE command with the REBUILD option. The
INCREMENTAL AUTO option is optional. The restore utility will detect what
the granularity of the image is and use automatic incremental restore if
it is required.

db2 restore db mydb rebuild with all tablespaces in database
incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Example 9

The following rebuilds the entire database, except for USERSP3, to the
most recent point in time.
1. Issue a RESTORE DATABASE command with the REBUILD option. Although

the target image is a non-incremental image, the restore utility will
detect that the required rebuild chain includes incremental images and
it will automatically restore those images incrementally.

db2 restore db mydb rebuild with all tablespaces in database except
tablespace (USERSP3) taken at FULL2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

Scenario 4

The examples in this scenario demonstrate how to rebuild a recoverable database
using backup images that contain log files. In the following examples, there is a
database called MYDB with the following table spaces in it:
v SYSCATSPACE (system catalogs)
v USERSP1 (user data table space)
v USERSP2 (user data table space)

Example 10

The following rebuilds the database with just SYSCATSPACE and
USERSP2 to the most recent point in time. There is a full online database
backup image (BK1), which includes log files.
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)
taken at BK1 logtarget /logs without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs after the end of BK1 have been saved and
are accessible):

db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

818 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

At this point the database is connectable and only SYSCATSPACE and
USERSP2 are in NORMAL state. USERSP1 is in RESTORE_PENDING state.

Example 11

The following rebuilds the database to the most recent point in time. There
are two full online table space backup images that include log files:
v BK1 is a backup of SYSCATSPACE, using log files 10-45
v BK2 is a backup of USERSP1 and USERSP2, using log files 64-80
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK2 logtarget /logs without prompting

The rollforward operation will start at log file 10, which it will always
find in the overflow log path if not in the primary log file path. The log
range 46-63, since they are not contained in any backup image, will
need to be made available for roll forward.

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option, using the overflow log path for log files 64-80:

db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Scenario 5

In the following examples, there is a recoverable database called MYDB with the
following table spaces in it:
v SYSCATSPACE (0), SMS system catalog (relative container)
v USERSP1 (1) DMS user data table space (absolute container /usersp2)
v USERSP2 (2) DMS user data table space (absolute container /usersp3)

The following backups have been taken:
v BK1 is a backup of SYSCATSPACE
v BK2 is a backup of USERSP1 and USERSP2
v BK3 is a backup of USERSP2

Example 12

The following rebuilds the entire database to the most recent point in time
using redirected restore.
1. Issue a RESTORE DATABASE command with the REBUILD option:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK3 redirect without prompting

2. Issue a SET TABLESPACE CONTAINERS command for each table space
whose containers you want to redefine. For example:

db2 set tablespace containers for 3 using (file ’/newusersp1’ 10000)

3.
db2 set tablespace containers for 4 using (file ’/newusersp2’ 15000)

4. Issue a RESTORE DATABASE command with the CONTINUE option:
db2 restore db mydb continue

Chapter 47. Restore 819

5. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS
option (this assumes all logs have been saved and are accessible):

db2 rollforward db mydb to end of logs

6. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in
NORMAL state.

Scenario 6

In the following examples, there is a database called MYDB with three database
partitions:
v Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and

USERSP2, and is the catalog partition
v Database partition 2 contains table spaces USERSP1 and USERSP3
v Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x
on partition y:
v BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2
v BK12 is a backup of USERSP2 and USERSP3
v BK13 is a backup of USERSP1, USERSP2 and USERSP3
v BK21 is a backup of USERSP1
v BK22 is a backup of USERSP1
v BK23 is a backup of USERSP1
v BK31 is a backup of USERSP2
v BK33 is a backup of USERSP2
v BK42 is a backup of USERSP3
v BK43 is a backup of USERSP3

Example 13

The following rebuilds the entire database to the end of logs.
1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:
db2 restore db mydb rebuild with all tablespaces in database

taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the
REBUILD option:

db2 restore db mydb rebuild with tablespaces in database taken at
BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the
REBUILD option:

db2 restore db mydb rebuild with all tablespaces in database
taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with
the TO END OF LOGS option (assumes all logs have been saved and are
accessible on all database partitions):

db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

820 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

At this point the database is connectable on all database partitions and all
table spaces are in NORMAL state.

Example 14

The following rebuilds SYSCATSPACE, USERSP1 and USERSP2 to the
most recent point in time.
1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:
db2 restore db mydb rebuild with all tablespaces in database

taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the
REBUILD option:

db2 restore db mydb rebuild with all tablespaces in image taken at
BK22 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the
REBUILD option:

db2 restore db mydb rebuild with all tablespaces in image taken at
BK33 without prompting

Note: this command omitted USERSP1, which is needed to complete
the rebuild operation.

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with
the TO END OF LOGS option:

db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db mydb stop

The rollforward succeeds and the database is connectable on all
database partitions. All table spaces are in NORMAL state, except
USERSP3, which is in RESTORE PENDING state on all database
partitions on which it exists, and USERSP1, which is in RESTORE
PENDING state on database partition 3.
When an attempt is made to access data in USERSP1 on database
partition 3, a data access error will occur. To fix this, USERSP1 will
need to be recovered:
a. On database partitions 3, issue a RESTORE DATABASE command,

specifying a backup image that contains USERSP1:
db2 restore db mydb tablespace taken at BK23 without prompting

b. On the catalog partition, issue a ROLLFORWARD DATABASE command
with the TO END OF LOGS option and the AND STOP option:

db2 rollforward db mydb to end of logs on dbpartitionnum (3) and stop

At this point USERSP1 on database partition 3 can have its data accessed
since it is in NORMAL state.

Scenario 7

In the following examples, there is a nonrecoverable database called MYDB with the
following table spaces:
v SYSCATSPACE (0), SMS system catalog
v USERSP1 (1) DMS user data table space
v USERSP2 (2) DMS user data table space

Chapter 47. Restore 821

There is just one backup of the database, BK1:

Example 15

The following demonstrates using rebuild on a nonrecoverable database.

Rebuild the database using only SYSCATSPACE and USERSP1:
db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP1)

taken at BK1 without prompting

Following the restore, the database is connectable. If you issue the LIST
TABLESPACES command or the MON_GET_TABLESPACE table function,
you see that the SYSCATSPACE and USERSP1 are in NORMAL state,
while USERSP2 is in DELETE_PENDING/OFFLINE state. You can now
work with the two table spaces that are in NORMAL state.

If you want to do a database backup, you will first need to drop USERSP2
using the DROP TABLESPACE statement, otherwise, the backup will fail.

To restore USERSP2 at a later time, you need to reissue a database restore
from BK1.

Database schema transporting
Transporting a database schema involves taking a backup image of a database and
restoring the database schema to a different, existing database.

When you transport a database schema, the database objects in the transported
schema are re-created to reference the new database, and the data is restored to the
new database.

A database schema must be transported in its entirety. If a table space contains
both the schema you want to transport, as well as another schema, you must
transport all data objects from both schemas. These sets of schemas that have no
references to other database schemas are called transportable sets. The data in the
table spaces and logical objects in the schemas in a transportable set reference only
table spaces and schemas in the transportable set. For example, tables have table
dependencies only on other tables in the transportable set.

The following diagram illustrates a database with several table spaces and
schemas. In the diagram, the table spaces that are referenced by the schemas are
above the schemas. Some schemas reference multiple table spaces and some table
spaces are referenced by multiple schemas.

822 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The following combinations of table spaces and schemas are valid transportable
sets:
v tablespace1 with schema1 and schema2
v tablespace2 and tablespace3 with schema3
v tablespace4, tablespace5, and tablespace6, with schema4 and schema5
v A combination of valid transportable sets also constitutes a valid transportable

set:
– tablespace1, tablespace2, and tablespace3, with schema1, schema2, and

schema3

The set tablespace4 and tablespace5 with schema4 is not a valid transportable set
because there are references between tablespace5 and schema5 and between
schema5 and tablespace6. The set requires tablespace6 with schema5 to be a valid
transportable set.

You can transport database schemas by using the RESTORE command with the
TRANSPORT parameter.

When you transport database schemas, a temporary database is created and named
as a part of the transport operation. This transport staging database is used to extract
logical objects from the backup image so that they can be re-created on the target
database. If logs are included in the backup image, they are also used to bring the
staging database to a point of transactional consistency. The ownership of the
transported table spaces is then transferred to the target database.

Considerations about the database objects re-created when
transporting database schemas

Review the following information related to the re-creation of database objects
when you are transporting database schemas:

Table 127. Transport considerations for specific database objects

Database object Consideration when transporting schemas

SQL routines (not
external routines
using SQL)

A new copy of the SQL routine is created in the target database.
For SQL stored procedures, additional catalog space is consumed
because an additional copy of the stored procedure byte code is
created in the new database.

Index table Index table Index tableIndex table Index table

tablespace1 tablespace2 tablespace4tablespace3 tablespace5

schema1 schema3 schema4

schema2

Index table

tablespace6

schema5

Not a valid transport set

Figure 62. Sets of table spaces and schemas

Chapter 47. Restore 823

Table 127. Transport considerations for specific database objects (continued)

Database object Consideration when transporting schemas

External routines A new catalog entry is created for each routine. This catalog entry
references the same binary file as the original source routine. The
RESTORE command does not copy the external routine binary file
from the source system.

Source tables in states
causing access
problems

For tables that are not in normal state at the time the backup image
was generated, such as tables in check pending state or load
pending state, the data from those tables might not be accessible in
the target database. To avoid having this inaccessible data, you can
move the tables to normal state in the source database before
schema transport.

Tables containing the
data capture attribute

Source tables with data capture enabled are transported to the
target database with the data capture attribute and continue to log
interdatabase data replication information. However, replicated
tables do not extract information from this table. You have the
option of registering the new target table to act as a replication
source after the RESTORE command completes.

Tables using
label-based access
control (LBAC)

When transporting data that is protected by LBAC, the transport
operation re-creates the LBAC objects on the target database. If
LBAC objects of the same name exist on the target database, the
transport operation fails. To ensure that restricted data access is not
compromised, the transport operation does not use existing LBAC
objects on the target database.

Temporary table
spaces

If there are any system temporary table spaces that are defined
with the source backup image and the transport operation excludes
them from the table space list, these system temporary table spaces
are still created in the staging database but not the final target
database. As a result, you must issue the SET TABLESPACE
CONTAINERS command for these system temporary table spaces in
order to provide valid containers to complete the restore operation,
just as you would for any table spaces that are specified within the
table space list.

When you transport table spaces, a log record with a special format is created on
the target database. This format cannot be read by previous DB2 versions. If you
transport table spaces and then downgrade to a version earlier than DB2 Version
9.7 Fix Pack 2, then you cannot recover the target database that contains the table
spaces that were transported. To ensure that the target database is compatible with
earlier DB2 versions, you can roll forward the target database to a point in time
before the transport operation.

Important: If database rollforward detects a table space schema transport log
record, the corresponding transported table space is taken offline and moved into
drop pending state. This is because database does not have complete logs of
transported table spaces to rebuild transported table spaces and their contents. You
can take a full backup of the target database after transport completes, so
subsequent rollforward does not pass the point of schema transport in the log
stream.

Transportable objects
When you transport data from a backup image to a target database, there are two
main results. The physical and logical objects in the table spaces that you are

824 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

restoring are re-created in the target database, and the table space definitions and
containers are added to the target database.

The following logical objects are re-created:
v Tables, created global temporary tables, and materialized query tables
v Normal and statistical views
v The following types of generated columns:

– Expression
– Identity
– Row change timestamp
– Row change token

v User-defined functions and generated functions
v Functions and procedures except for external routine executables
v User-defined types
v The following types of constraints:

– Check
– Foreign key
– Functional dependency
– Primary
– Unique

v Indexes
v Triggers
v Sequences
v Object authorizations, privileges, security, access control, and audit configuration
v Table statistics, profiles, and hints
v Packages

The following components of a schema are not created on the target database:
v Aliases
v Created global variables
v External routine executable files
v Functional mappings and templates
v Hierarchy tables
v Index extensions
v Jobs
v Methods
v Nicknames
v OLE DB external functions
v Range-partitioned tables
v Servers
v Sourced procedures
v Structured types
v System catalogs
v Typed tables and typed views
v Usage lists
v Wrappers

Chapter 47. Restore 825

Transport examples
You can use the RESTORE DATABASE command with the TRANSPORT option to copy a
set of table spaces and SQL schemas from one database to another database.

The following examples use a database named ORIGINALDB as source of the
backup image and the target database TARGETDB.

The following illustration shows the ORIGINALDB table spaces and schemas:

The originalDB database contains the following valid transportable sets:
v mydata1; schema1 + schema2
v mydata2 + myindex; schema3
v multidata1 + multiindex1 + multiuser2; schema4 + schema5
v A combination of valid transportable sets also constitutes a valid transportable

set:
– mydata1 + mydata2 + myindex; schema1 + schema + schema3

The following illustration shows the TARGETDB table spaces and schemas:

If the sources and target databases contain any schemas with the same schema
name, or any table spaces of the table space name, then you cannot transport that
schema or table space to the target database. Issuing a transport operation that
contains a schema or a table space that has the same name as a schema or a table
space on the target database will cause the transport operation to fail. For example,

Index table Index table Index table Index table Index table Index table Index table

Tablespace ID 0 Tablespace ID 1 Tablespace ID 2 Tablespace ID 3 Tablespace ID 4 Tablespace ID 5 Tablespace ID 6

syscatspace mydata1 mydata2 myindex multidata1 multiindex1 multiuser2
/mydb/syscats /mydb/data1 /mydb/data2 /mydb/indexes /mydb/multidata1 /mydb/multiindex /mydb/multiuser2

sysibm schema1 schema3 schema4

schema2 schema5

Figure 63. ORIGINALDB database

Index table Index table Index table Index table Index table Index table

Tablespace ID 0 Tablespace ID 1 Tablespace ID 2 Tablespace ID 3 Tablespace ID 4 Tablespace ID 5

syscatspace 4kpagesize 8kdata 8kindex multiuser2 16kindex
/db2DB/syscats /db2DB/4kdata /db2DB/8kdata /db2DB/8kindex /db2DB/16kdata /db2DB/16kindex

sysibm schema6 schema7 schema3

Figure 64. TARGETDB database

826 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

even though the following grouping is a valid transportable set, it cannot be
directly transported to the target database:
v mydata2 + myindex; schema3 (schema3 exists in both the source and target

databases)

If there exists a single online backup image for ORIGINALDB that contains all of
the table spaces in the database, then this will be the source for the transport. This
also applies to table space level backup images.

You can redirect the container paths for the table spaces being transported. This is
especially important if database relative paths were used.

Examples

Example 1: Successfully transport the schemas schema1 and schema2 in the
mydata1 table space into TARGETDB.
db2 restore db originaldb tablespace (mydata1) schema(schema1,schema2)

from <Media_Target_clause> taken at <date-time>
transport into targetdb redirect

db2 list tablespaces
db2 set tablespace containers for <tablespace ID for mydata1>

using (path ’/db2DB/data1’)

db2 restore db originaldb continue

The resulting TARGETDB will contain the mydata1 table space and schema1 and
schema2.

Example 2: Transport the schema schema3 in the mydata2 and myindex table
spaces into TARGETDB. You cannot transport a schema that already exists on the
target database.
db2 restore db originaldb tablespace (mydata2,myindex) schema(schema3)

transport into targetdb

The transport operation will fail because the schema schema3 already exists on the
target database. TARGETDB will remain unchanged. SQLCODE=SQL2590N rc=3.

Example 3: Transport the schemas schema4 and schema5 in the multidata1,
multiindex1, and multiuser2 table spaces into TARGETDB. You cannot transport a
table space that already exists on the target database.
db2 restore db originaldb tablespace (multidata1,multiindex1,multiuser2)

schema(schema4,schema5) transport into targetdb

Index table Index table Index table Index table Index table Index table Index table

Tablespace ID 0 Tablespace ID 1 Tablespace ID 2 Tablespace ID 3 Tablespace ID 4 Tablespace ID 5 Tablespace ID 6

syscatspace 4kpagesize 8kdata 8kindex 16kdata multiuser2 mydata1
/db2DB/syscats / /db2DB 4kdata / /db2DB 8kdata / /db2DB 8kindex / /db2DB 16kdata / /db2DB 16kindex / /db2DB data1

sysibm schema6 schema7 schema3

schema2

schema1

Figure 65. TARGETDB database after transport

Chapter 47. Restore 827

The transport operation will fail and TARGETDB will remain unchanged because
table space multiuser2 already exists on the target database. SQLCODE=SQL2590N
rc=3.

Example 4: Transport the myindex table space into TARGETDB. You cannot
transport partial schemas.
db2 restore db originaldb tablespace (myindex) schema(schema3)

transport into targetdb

The list of table spaces and schemas being transported is not a valid transportable
set. The transport operation will fail and TARGETDB will remain unchanged.
SQLCODE=SQL2590N rc=1.

Example 5: Restore the syscatspace table space into TARGETDB. You cannot
transport system catalogs.
db2 restore db originaldb tablespace (syscatspace) schema(sysibm)

transport into targetdb

The transport operation will fail because the system catalogs can not be
transported. SQLCODE=SQL2590N rc=4. You can transport user defined table
spaces or restore the system catalogs with the RESTORE DATABASE command
without specifying the transport option.

Example 6: You cannot restore into a target database that does not exist on the
system.
db2 restore db originaldb tablespace (mydata1) schema(schema1,schema2)

transport into notexists

The transport operation will fail. Table spaces cannot be transported to a target
database that does not exist.

Troubleshooting: transporting schemas
If an error occurs on either the staging or target database, you must redo the entire
restore operation. All failures that occur are logged in the db2diag log file on the
target server. Review the db2diag log before reissuing the RESTORE command.

Dealing with errors

Errors occurring during restore are handled in various ways depending on the
type of object being copied and the phase of transport. There might be
circumstances, such as a power failure, in which not everything is cleaned up.

The transport operation consists of the following phases:
v Staging database creation
v Physical table space container restoration
v Rollforward processing
v Schema validation
v Transfer of ownership of the table space containers
v Schema re-creation in target database
v Dropping the staging database (if the STAGE IN parameter is not specified)

If any errors are logged at the end of the schema re-creation phase, about
transporting physical objects, then the restore operation fails and an error is
returned. All object creation on the target database is rolled back, and all internally

828 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

created tables are cleaned up on the staging database. The rollback occurs at the
end of the re-create phase, to allow all possible errors to be recorded into the
db2diag log file. You can investigate all errors returned before reissuing the
command.

The staging database is dropped automatically after success or failure. However, it
is not dropped in the event of failure if the STAGE IN parameter is specified. The
staging database must be dropped before the staging database name can be reused.

Monitoring the progress of restore operations
You can use the LIST UTILITIES command to monitor restore operations on a
database.

Procedure

Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter
LIST UTILITIES SHOW DETAIL

Results

For restore operations, an initial estimate is not given. Instead, UNKNOWN is specified.
As each buffer is read from the image, the actual number of bytes read is updated.
For automatic incremental restore operations where multiple images might be
restored, the progress is tracked by using phases. Each phase represents an image
to be restored from the incremental chain. Initially, only one phase is indicated.
After the first image is restored, the total number of phases will be indicated. As
each image is restored the number of phases completed is updated, as is the
number of bytes processed.

Example

The following is an example of the output for monitoring the performance of a
restore operation:
ID = 6
Type = RESTORE
Database Name = SAMPLE
Partition Number = 0
Description = db
Start Time = 08/04/2011 12:24:47.494191
State = Executing
Invocation Type = User
Progress Monitoring:

Completed Work = 4096 bytes
Start Time = 08/04/2011 12:24:47.494197

Optimizing restore performance
When you perform a restore operation, DB2 database products will automatically
choose an optimal value for the number of buffers, the buffersize and the
parallelism settings. The values will be based on the amount of utility heap
memory available, the number of processors available and the database
configuration.

Therefore, depending on the amount of storage available on your system, you
should consider allocating more memory by increasing the util_heap_sz
configuration parameter. The objective is to minimize the time it takes to complete

Chapter 47. Restore 829

a restore operation. Unless you explicitly enter a value for the following RESTORE
DATABASE command parameters, DB2 database products will select one for them:
v WITH num-buffers BUFFERS

v PARALLELISM n

v BUFFER buffer-size

For restore operations, a multiple of the buffer size used by the backup operation
will always be used. You can specify a buffer size when you issue the RESTORE
DATABASE command but you need to make sure that it is a multiple of the backup
buffer size.

You can also choose to do any of the following to reduce the amount of time
required to complete a restore operation:
v Increase the restore buffer size.

The restore buffer size must be a positive integer multiple of the backup buffer
size specified during the backup operation. If an incorrect buffer size is
specified, the buffers allocated will be the smallest acceptable size.

v Increase the number of buffers.
The value you specify must be a multiple of the buffersize that was used for the
backup, otherwise it will be rounded down to the closest multiple of the backup
buffersize.

v Increase the value of the PARALLELISM parameter.
This will increase the number of buffer manipulators (BM) that will be used to
write to the database during the restore operation.

v Increase the utility heap size
This will increase the memory that can be used simultaneously by the other
utilities.

830 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 48. ROLLFORWARD DATABASE command

Use the ROLLFORWARD DATABASE command to recover transactions that were
logged after the last backup command. Database logging must be enabled for these
commands to be effective.

The simplest form of the ROLLFORWARD DATABASE command requires only that you
specify the alias name of the database that you want to rollforward recover, as in
the following example:

db2 ROLLFORWARD DB sample

In IBM Data Studio Version 3.1 or later, you can use the task assistant for rolling
forward databases. Task assistants can guide you through the process of setting
options, reviewing the automatically generated commands to perform the task, and
running these commands. For more details, see Administering databases with task
assistants.

The following is one approach you can use to perform rollforward recovery:
1. Invoke the rollforward utility without the STOP option.
2. Invoke the rollforward utility with the QUERY STATUS option

If you specify recovery to the end of the logs, the QUERY STATUS option can
indicate that one or more log files are missing, if the returned point in time is
earlier than you expect.
If you specify point-in-time recovery, the QUERY STATUS option helps you to
ensure that the rollforward operation completes at the correct point.

3. Invoke the rollforward utility with the STOP option. After the operation stops, it
is not possible to roll additional changes forward.

An alternate approach you can use to perform rollforward recovery is the
following:
1. Invoke the rollforward utility with the AND STOP option.
2. The need to take further steps depends on the outcome of the rollforward

operation:
v If it is successful, the rollforward is complete and the database is connectable

and usable. At this point, it is not possible to roll additional changes forward.
v If any errors were returned, take whatever action is required to fix the

problem. For example, if there is a missing log file: find the log file, or if
there are retrieve errors: ensure that log archiving is working. Then reissue
the rollforward utility with the AND STOP option.

A database must be restored successfully (using the restore utility) before it can be
rolled forward, but a table space does not. A table space can be temporarily put in
rollforward pending state, but not require a restore operation to undo it (following
a power interruption, for example).

When the rollforward utility is invoked:
v If the database is in rollforward pending state, the database is rolled forward.

Any table spaces that were restored from backup images that were taken after
the database backup image, and are currently in rollforward pending state are
also rolled forward. Any table spaces that were taken prior to the database level

© Copyright IBM Corp. 2014 831

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

backup and restored after the database level backup was restored remain in
rollforward pending state. You must issue a subsequent table space level
rollforward to recover them.

v If the database is not in rollforward pending state, but table spaces in the
database are in rollforward pending state:
– If you specify a list of table spaces, only those table spaces are rolled forward.
– If you do not specify a list of table spaces, all table spaces that are in

rollforward pending state are rolled forward.

A database rollforward operation runs offline. The database is not available for use
until the rollforward operation completes successfully, and the operation cannot
complete unless the STOP option was specified when the utility was invoked.

A table space rollforward operation can run offline. The database is not available
for use until the rollforward operation completes successfully. This occurs if the
end of the logs is reached, or if the STOP option was specified when the utility was
invoked.

You can perform an online rollforward operation on table spaces, as long as
SYSCATSPACE is not included. When you perform an online rollforward operation
on a table space, the table space is not available for use, but the other table spaces
in the database are available.

When you first create a database, it is enabled for circular logging only. This means
that logs are reused, rather than being saved or archived. With circular logging,
rollforward recovery is not possible: only crash recovery or version recovery can be
done. Archived logs document changes to a database that occur after a backup was
taken. You enable log archiving (and rollforward recovery) by setting the
logarchmeth1 database configuration parameter to a value other than its default of
OFF. When you set logarchmeth1 to a value other than OFF, the database is placed
in backup pending state, and you must take an offline backup of the database
before it can be used again.

Note: Entries are made in the recovery history file for each log file that is used in
a rollforward operation.
In this example, the command returns:

In a partitioned database environment and a DB2 pureScale environment, this
status information is returned for each database partition or member:
db2 rollforward db mydb to end of logs

Rollforward Status

Input database alias = mydb
Number of members have returned status = 3

Member ID Rollforward Next log Log files processed Last committed transaction
status to be read

--------- ------------ ------------ ------------------------- --------------------------
0 DB working S0000001.LOG S0000000.LOG-S0000000.LOG 2009-05-06-15.28.11.000000 UTC
1 DB working S0000010.LOG S0000000.LOG-S0000009.LOG 2009-05-06-15.28.20.000000 UTC
2 DB working S0000005.LOG S0000000.LOG-S0000004.LOG 2009-05-06-15.27.33.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

Authorization required for rollforward
You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the
rollforward utility.

832 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects.

Users can access only those objects for which they have the appropriate
authorization; that is, the required privilege or authority.

Using rollforward
Use the ROLLFORWARD DATABASE command to apply transactions that were recorded
in the database log files to a restored database backup image or table space backup
image.

Before you begin

You should not be connected to the database that is to be rollforward recovered.
The rollforward utility automatically establishes a connection to the specified
database, and this connection is terminated at the completion of the rollforward
operation.

About this task

Do not restore table spaces without canceling a rollforward operation that is in
progress. Otherwise, you might have a table space set in which some table spaces
are in rollforward in progress state, and some table spaces are in rollforward
pending state. A rollforward operation that is in progress only operates on the
tables spaces that are in rollforward in progress state.

The database can be local or remote.

The following restrictions apply to the rollforward utility:
v You can invoke only one rollforward operation at a time. If there are many table

spaces to recover, you can specify all of them in the same operation.
v If you have renamed a table space following the most recent backup operation,

ensure that you use the new name when rolling the table space forward. The
previous table space name is not recognized.

v You cannot cancel a rollforward operation that is running. You can only cancel a
rollforward operation that has completed, but for which the STOP parameter has
not been specified, or a rollforward operation that has failed before completing.

v You cannot continue a table space rollforward operation to a point in time,
specifying a time stamp that is less than the previous one. If a point in time is
not specified, the previous one is used. You can issue a rollforward operation
that ends at a specified point in time by just specifying STOP, but this is only
allowed if the table spaces involved were all restored from the same offline
backup image. In this case, no log processing is required. If you start another
rollforward operation with a different table space list before the in-progress
rollforward operation is either completed or cancelled, an error message
(SQL4908) is returned. Invoke the LIST TABLESPACES command on all database
partitions (or use the MON_GET_TABLESPACE table function) to determine
which table spaces are currently being rolled forward (rollforward in progress
state), and which table spaces are ready to be rolled forward (rollforward
pending state). You have three options:
– Finish the in-progress rollforward operation on all table spaces.

Chapter 48. Rollforward 833

– Finish the in-progress rollforward operation on a subset of table spaces. (This
might not be possible if the rollforward operation is to continue to a specific
point in time, which requires the participation of all database partitions.)

– Cancel the in-progress rollforward operation.
v In a partitioned database environment, the rollforward utility must be invoked

from the catalog partition of the database.
v Point in time rollforward of a table space was introduced in DB2 Version 9.1

clients. You should upgrade to Version 10.1 any clients in order to roll a table
space forward to a point in time.

v You cannot roll forward logs from a previous release version.

Procedure

To invoke the rollforward utility, use the:
v ROLLFORWARD DATABASE command, or
v db2Rollforward application programming interface (API).
v Open the task assistant inIBM Data Studio for the ROLLFORWARD DATABASE

command.

Example

The following is an example of the ROLLFORWARD DATABASE command issued
through the CLP:
db2 rollforward db sample to end of logs and stop

Rollforward sessions - CLP examples
You can issue rollforward commands from the Command Line Prompt. Before
issuing a rollforward command, you might find it helpful to review some sample
sessions.

Example 1

The ROLLFORWARD DATABASE command permits specification of multiple
operations at once, each being separated with the keyword AND. For example, to
roll forward to the end of logs, and complete, the separate commands are:

db2 rollforward db sample to end of logs
db2 rollforward db sample complete

can be combined as follows:
db2 rollforward db sample to end of logs and complete

Although the two are equivalent, it is recommended that such operations be done
in two steps. It is important to verify that the rollforward operation has progressed
as expected before you stop it, so that you do not miss any logs.

If the rollforward command encounters an error, the rollforward operation will not
complete. The error will be returned, and you will then be able to fix the error and
reissue the command. If, however, you are unable to fix the error, you can force the
rollforward to complete by issuing the following:

db2 rollforward db sample complete

This command brings the database online at the point in the logs before the failure.

834 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example 2

Roll the database forward to the end of the logs (two table spaces have been
restored):

db2 rollforward db sample to end of logs
db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND COMPLETE is
needed for table space rollforward recovery to the end of the logs. Table space
names are not required. If not specified, all table spaces requiring rollforward
recovery will be included. If only a subset of these table spaces is to be rolled
forward, their names must be specified.

Example 3

After three table spaces have been restored, roll one forward to the end of the logs,
and the other two to a point in time, both to be done online:

db2 rollforward db sample to end of logs tablespace(TBS1) online
db2 rollforward db sample to 1998-04-03-14.21.56 and stop

tablespace(TBS2, TBS3) online

Note that two rollforward operations cannot be run concurrently. The second
command can only be invoked after the first rollforward operation completes
successfully.

Example 4

After restoring the database, roll forward to a point in time, using OVERFLOW
LOG PATH to specify the directory where the user exit saves archived logs:

db2 rollforward db sample to 1998-04-03-14.21.56 and stop
overflow log path (/logs)

Example 5

In the following example, there is a database called sample. The database is backed
up and the recovery logs are included in the backup image; the database is
restored; and the database is rolled forward to the end of backup timestamp.

Back up the database, including the recovery logs in the backup image:
db2 backup db sample online include logs

Restore the database using that backup image:
db2 restore db sample

Roll forward the database to the end of backup timestamp:
db2 rollforward db sample to end of backup

Example 6 (partitioned database environments)

There are three database partitions: 0, 1, and 2. Table space TBS1 is defined on all
database partitions, and table space TBS2 is defined on database partitions 0 and 2.
After restoring the database on database partition 1, and TBS1 on database
partitions 0 and 2, roll the database forward on database partition 1:

db2 rollforward db sample to end of logs and stop

Chapter 48. Rollforward 835

This returns warning SQL1271 (“Database is recovered but one or more table
spaces are offline on database partitions 0 and 2.”).

db2 rollforward db sample to end of logs

This rolls TBS1 forward on database partitions 0 and 2. The clause
TABLESPACE(TBS1) is optional in this case.

Example 7 (partitioned database environments)

In the following example, there is a partitioned database called sample. All the
database partitions are backed up with a single system view backup; the database
is restored on all database partitions; and the database is rolled forward to the end
of backup timestamp.

Perform a single system view (SSV) backup:
db2 backup db sample on all nodes online include logs

Restore the database on all database partitions:
db2_all "db2 restore db sample taken at 1998-04-03-14.21.56"

Roll forward the database to the end of backup timestamp:
db2 rollforward db sample to end of backup on all nodes

Example 8 (partitioned database environments)

In the following example, there is a partitioned database called sample. All the
database partitions are backed up with one command using db2_all; the database
is restored on all database partitions; and the database is rolled forward to the end
of backup timestamp.

Back up all the database partitions with one command using db2_all:
db2_all "db2 backup db sample include logs to //dir/"

Restore the database on all database partitions:
db2_all "db2 restore db sample from //dir/"

Roll forward the database to the end of backup timestamp:
db2 rollforward db sample to end of backup on all nodes

Example 9 (partitioned database environments)

After restoring table space TBS1 on database partitions 0 and 2 only, roll TBS1
forward on database partitions 0 and 2:

db2 rollforward db sample to end of logs

Database partition 1 is ignored.
db2 rollforward db sample to end of logs tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition
1. Reports SQL4906N.

db2 rollforward db sample to end of logs on
dbpartitionnums (0, 2) tablespace(TBS1)

This completes successfully.

836 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

db2 rollforward db sample to 1998-04-03-14.21.56 and stop
tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition
1; all pieces must be rolled forward together.

Note: With table space rollforward to a point in time, the dbpartitionnum clause
is not accepted. The rollforward operation must take place on all the database
partitions on which the table space resides.

After restoring TBS1 on database partition 1:
db2 rollforward db sample to 1998-04-03-14.21.56 and stop

tablespace(TBS1)

This completes successfully.

Example 10 (partitioned database environments)

After restoring a table space on all database partitions, roll forward to PIT2, but do
not specify AND STOP. The rollforward operation is still in progress. Cancel and roll
forward to PIT1:

db2 rollforward db sample to pit2 tablespace(TBS1)
db2 rollforward db sample cancel tablespace(TBS1)

** restore TBS1 on all dbpartitionnums **

db2 rollforward db sample to pit1 tablespace(TBS1)
db2 rollforward db sample stop tablespace(TBS1)

Example 11 (partitioned database environments)

Rollforward recover a table space that resides on eight database partitions (3 to 10)
listed in the db2nodes.cfg file:

db2 rollforward database dwtest to end of logs tablespace (tssprodt)

This operation to the end of logs (not point in time) completes successfully. The
database partitions on which the table space resides do not have to be specified.
The utility defaults to the db2nodes.cfg file.

Example 12 (partitioned database environments)

Rollforward recover six small table spaces that reside on a single database partition
database partition group (on database partition 6):

db2 rollforward database dwtest to end of logs on dbpartitionnum (6)
tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

Example 13 (Partitioned tables - Rollforward to end of log on all
data partitions)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index
in tbsp0. Later on, a user adds data partitions to the table in tbsp4, and attaches
data partitions from the table in tbsp5. All table spaces can be rolled forward to
END OF LOGS.

db2 rollforward db PBARDB to END OF LOGS and stop
tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

Chapter 48. Rollforward 837

This completes successfully.

Example 14 (Partitioned tables - Rollforward to end of logs on
one table space)

A partitioned table is created initially using table spaces tbsp1, tbsp2, tbsp3 with an
index in tbsp0. Later on, a user adds data partitions to the table in tbsp4, and
attaches data partitions from the table in tbsp5. Table space tbsp4 becomes corrupt
and requires a restore and rollforward to end of logs.

db2 rollforward db PBARDB to END OF LOGS and stop tablespace(tbsp4)

This completes successfully.

Example 15 (Partitioned tables - Rollforward to PIT of all data
partitions including those added, attached, detached or with
indexes)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index
in tbsp0. Later on, a user adds data partitions to the table in tbsp4, attaches data
partitions from the table in tbsp5, and detaches data partitions from tbsp1. The
user performs a rollforward to PIT with all the table spaces used by the partitioned
table including those table spaces specified in the INDEX IN clause.

db2 rollforward db PBARDB to 2005-08-05-05.58.53 and stop
tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

This completes successfully.

Example 16 (Partitioned tables - Rollforward to PIT on a subset
of the table spaces)

A partitioned table is created using three table spaces (tbsp1, tbsp2, tbsp3). Later,
the user detaches all data partitions from tbsp3. The rollforward to PIT is only
permitted on tbsp1 and tbsp2.

db2 rollforward db PBARDB to 2005-08-05-06.02.42 and stop
tablespace(tbsp1, tbsp2)

This completes successfully.

Rolling forward changes in a table space
If the database is enabled for rollforward recovery, you have the option of backing
up, restoring, and rolling forward table spaces instead of the entire database.

You can roll forward changes to a table space independently of other table spaces
in your database, or you can roll forward changes to all table spaces at the same
time.

Implementing a recovery strategy for individual table spaces can save time because
it takes less time to recover a portion of the database than it does to recover the
entire database. For example, if a disk is bad, and it contains only one table space,
you can restore that table space and roll it forward without having to recover the
entire database, and without impacting user access to the rest of the database,
unless the damaged table space contains the system catalog tables; in this situation,
you cannot connect to the database. (You can restore the system catalog table space
independently if a table space-level backup image containing the system catalog

838 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

table space is available.) Table space-level backups also allow you to back up
critical parts of the database more frequently than other parts, and requires less
time than backing up the entire database.

After a table space is restored, it is always in rollforward pending state. To make
the table space usable, you must perform rollforward recovery on it. In most cases,
you have the option of rolling forward to the end of the logs, or rolling forward to
a point in time. You cannot, however, roll table spaces containing system catalog
tables forward to a point in time. These table spaces must be rolled forward to the
end of the logs to ensure that all table spaces in the database remain consistent.

Ensure that the DB2_COLLECT_TS_REC_INFO registry variable is set to ON (the default)
if you want to skip the log files known not to contain any log records affecting the
table space. This registry variable must be set before the log files are created and
used so that the information required for skipping log files is collected. If
DB2_COLLECT_TS_REC_INFO is set to OFF, all log files are processed even if they do
not contain log records that affect that table space when that table space is rolled
forward.

The table space change history file (DB2TSCHG.HIS), which is located in the database
directory, tracks which logs to process for each table space. You can view the
contents of this file with the db2logsForRfwd utility, and delete entries from it with
the PRUNE HISTORY command. During a database restore operation, the
DB2TSCHG.HIS file is restored from the backup image and then brought up to date
during the database rollforward operation. If no information is available for a log
file, it is treated as though it is required for the recovery of every table space.

Because information for each log file is flushed to disk after the log becomes
inactive, this information can be lost as a result of a crash. To prevent this loss
from occurring, if a recovery operation begins in the middle of a log file, the entire
log is treated as though it contains modifications to every table space in the
system. All active logs are processed and the information for them is rebuilt. If
information for older or archived log files is lost in a crash situation and no
information for them exists in the data file, they are treated as though they contain
modifications for every table space during the table space recovery operation.

Before you roll a table space forward, use the MON_GET_TABLESPACE table
function to determine the minimum recovery time, which is the earliest point in time
to which the table space can be rolled forward. The minimum recovery time is
updated when data definition language (DDL) statements are run against the table
space, or against tables in the table space. The table space must be rolled forward
to at least the minimum recovery time so that it becomes synchronized with the
information in the system catalog tables. If you are recovering more than one table
space, the table spaces must be rolled forward to at least the highest minimum
recovery time of all the table spaces that are being recovered. You cannot roll
forward a table space to a time that is earlier than the backup timestamp. In a
partitioned database environment, you must roll forward the table spaces to at
least the highest minimum recovery time of all the table spaces on all database
partitions.

If you are rolling table spaces forward to a point in time, and a table is contained
in multiple table spaces, all of these table spaces must be rolled forward
simultaneously. If, for example, the table data is contained in one table space, and
the index for the table is contained in another table space, you must roll both table
spaces forward simultaneously to the same point in time.

Chapter 48. Rollforward 839

If the data and the long objects in a table are in separate table spaces, and the long
object data was reorganized, the table spaces for both the data and the long objects
must be restored and rolled forward together. Take a backup of the affected table
spaces after the table is reorganized.

If you want to roll forward a table space to a point in time, and a table in the table
space is either:
v an underlying table for a materialized query or staging table that is in another

table space
v a materialized query or staging table for a table in another table space

then roll both table spaces forward to the same point in time. If you do not, the
materialized query or staging table is placed in set integrity pending state at the
end of the rollforward operation. The materialized query table needs to be fully
refreshed, and the staging table is marked as incomplete.

If you want to roll forward a table space to a point in time, and a table in the table
space participates in a referential integrity relationship with another table that is
contained in another table space, roll forward both table spaces simultaneously to
the same point in time. If you do not roll forward both table spaces, the child table
in the referential integrity relationship is placed in set integrity pending state at the
end of the rollforward operation. When the child table is later checked for
constraint violations, a check on the entire table is required. If any of the following
tables exist, they are also placed in set integrity pending state with the child table:
v any descendant materialized query tables for the child table
v any descendant staging tables for the child table
v any descendant foreign key tables of the child table

These tables require full integrity processing to bring them out of the set integrity
pending state. If you roll forward both table spaces simultaneously, the constraint
remains active at the end of the point-in-time rollforward operation.

Ensure that a point-in-time table space rollforward operation does not cause a
transaction to be rolled back in some table spaces, and committed in others. This
inconsistency can happen in the following cases:
v A point-in-time rollforward operation is performed on a subset of the table

spaces that were updated by a transaction, and that point in time precedes the
time at which the transaction was committed.

v Any table that is contained in the table space being rolled forward to a point in
time has an associated trigger, or is updated by a trigger that affects table spaces
other than the one that is being rolled forward.

The solution is to find a suitable point in time that prevents this from happening.

You can issue the QUIESCE TABLESPACES FOR TABLE command to create a
transaction-consistent point in time for rolling table spaces forward. The quiesce
request (in share, intent to update, or exclusive mode) waits (through locking) for
all running transactions against those table spaces to complete, and blocks new
requests. When the quiesce request is granted, the table spaces are in a consistent
state. To determine a suitable time to stop the rollforward operation, you can look
in the recovery history file to find quiesce points, and check whether they occur
after the minimum recovery time.

After a table space point-in-time rollforward operation completes, the table space is
put in backup pending state. You must take a backup of the table space because all
updates made to it between the point in time to which you rolled forward and the

840 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

current time were removed. You can no longer roll forward the table space to the
current time from a previous database- or table space-level backup image. The
following example shows why the table space-level backup image is required, and
how it is used. (To make the table space available, you can either back up the
entire database, the table space that is in backup pending state, or a set of table
spaces that includes the table space that is in backup pending state.)

In the preceding example, the database is backed up at time T1. Then, at time T3,
table space TABSP1 is rolled forward to a specific point in time (T2), The table
space is backed up after time T3. Because the table space is in backup pending
state, this backup operation is mandatory. The timestamp of the table space backup
image is after time T3, but the table space is at time T2. Log records from between
T2 and T3 are not applied to TABSP1. At time T4, the database is restored, using
the backup image that was created at T1, and rolled forward to the end of the logs.
Table space TABSP1 is put in restore pending state at time T3, because the
database manager assumes that operations were performed on TABSP1 between T3
and T4 without the log changes between T2 and T3 being applied to the table
space. If these log changes were in fact applied as part of the rollforward operation
against the database, this assumption would be incorrect. The table space-level
backup that must be taken after the table space is rolled forward to a point in time
allows you to roll forward that table space past a previous point-in-time
rollforward operation (T3 in the example).

Assuming that you want to recover table space TABSP1 to T4, you would restore
the table space from a backup image that was taken after T3 (either the required
backup, or a later one), then roll forward TABSP1 to the end of the logs.

In the preceding example, the most efficient way of restoring the database to time
T4 would be to perform the required steps in the following order:
1. Restore the database.
2. Restore the table space.
3. Roll forward the database.

Because you restore the table space before you roll forward the database, resources
are not used to apply log records to the table space when the database is rolled
forward.

If you cannot find the TABSP1 backup image that follows time T3, or you want to
restore TABSP1 to T3 (or earlier), you can do one of the following actions:
v Roll forward the table space to T3. You do not need to restore the table space

again because it was restored from the database backup image.

Database Time of rollforward of Restore
backup table space TABSP1 to database.

T2. Back up TABSP1. Roll forward
to end of logs.

T1 T2 T3 T4
| | | |
| | | |
|---

| Logs are not
applied to TABSP1
between T2 and T3
when it is rolled
forward to T2.

Figure 66. Table space backup requirement

Chapter 48. Rollforward 841

v Restore the table space again by restoring the database backup that was taken at
time T1, and then roll forward the table space to a time that precedes time T3.

v Drop the table space.

In a partitioned database environment:
v You must simultaneously roll forward all parts of a table space to the same point

in time at the same time. This ensures that the table space is consistent across
database partitions.

v If some database partitions are in rollforward pending state, and on other
database partitions, some table spaces are in rollforward pending state (but the
database partitions are not), you must first roll forward the database partitions,
and then roll forward the table spaces.

v If you intend to roll forward a table space to the end of the logs, you do not
have to restore it at each database partition; you must restore it at the database
partitions that require recovery. If you intend to roll forward a table space to a
point in time, however, you must restore it at each database partition.

In a database with partitioned tables:
v If you are rolling a table space that contains any piece of a partitioned table

forward to a point in time, you must also roll forward all of the other table
spaces in which that table resides to the same point in time. However, rolling
forward a single table space containing a piece of a partitioned table to the end
of logs is allowed. If a partitioned table has any attached, detached, or dropped
data partitions, then a point-in-time rollforward operation must also include all
table spaces for these data partitions. In order to determine if a partitioned table
has any attached, detached, or dropped data partitions, query the
SYSCAT.DATAPARTITIONS catalog view.

Database rollforward operations in a DB2 pureScale environment
In a DB2 pureScale environment, each member has its own log stream; however,
log streams from all members are required for successful execution of the
ROLLFORWARD DATABASE command.

During a database rollforward operation, log records from all of the log streams
are merged and replayed to make the database consistent. The point in time that
you specify on the ROLLFORWARD DATABASE command is relative to the merged log
stream. To restore the database to a consistent state, the specified time must be
later than the minimum recovery time (MRT). The MRT is the earliest time during a
rollforward operation when objects that are listed in the database catalog match the
objects that physically exist on disk. For example, if you are restoring from an
image that was created during an online backup operation, the specified point in
time for the rollforward operation must be later than the time at which the online
backup operation completed. This will ensure database consistency.

The specified point in time for the subsequent database rollforward operation must
be greater than or equal to the MRT in the merged log stream; otherwise, the
rollforward operation fails (SQL1276N), and the timestamp of the MRT is returned
with the error message. Alternatively, you can use the END OF BACKUP option to
automatically roll forward to the MRT.

It is recommended that the member clocks be synchronized; however, it might not
be possible to synchronize them at all times. This can result in log records having
the same time stamp, and merged log streams with log records that appear to be
out of time stamp order. In a DB2 pureScale environment, a point-in-time database

842 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

rollforward operation stops when it encounters the first log record whose time
stamp is greater than the specified time stamp from any log stream, and it has
processed the log record that corresponds to the MRT for the database.

An incomplete or interrupted rollforward operation leaves the database in
rollforward pending state. In this case, issue another ROLLFORWARD DATABASE
command. In a DB2 pureScale environment, subsequent ROLLFORWARD DATABASE
commands can be run on the same or on a different member.

In a DB2 pureScale environment, if you want to perform a database restore
operation into a new database using an online database backup image, the correct
approach depends on whether all of the log files are available, or only log files
from the backup image are available.
v If pre-existing log files or archived log files can be accessed, the following

rollforward operation is appropriate:
db2 rollforward db dbname to end of logs and stop

Note: Before taking a backup, you need to ensure that the log archiving path is
set to a shared directory so that all the members are able to access the logs for
subsequent rollforward operations. If the archive path is not accessible from the
member on which the rollforward is being executed, SQL1273N is returned. The
following command is an example of how to set the log path to the shared
directory:
db2 update db cfg using logarchmeth1

DISK:/db2fs/gpfs1/svtdbm5/svtdbm5/ArchiveLOGS

(where gpfs1 is the shared directory for the members and ArchiveLOGS is the
actual directory that archives the logs.

v If the only log files that can be accessed come from the backup image, the
following rollforward operation is appropriate:

db2 rollforward db dbname to end of backup and stop

This command replays all required log records to achieve the consistent database
state that was in effect when the backup operation ended. You can also use this
command if pre-existing log files or archived log files can be accessed, but it will
stop at the point at which the backup operation ended; it will not use any extra
logs that were generated after the backup operation ended.
A ROLLFORWARD DATABASE command specifying the END OF LOGS option in this
case would return SQL1273N. A subsequent ROLLFORWARD DATABASE command
with the STOP option is successful, and the database will be available, if the
missing log files are not needed. However, if the missing log files are needed
(and it is not safe to stop), the rollforward operation will again return
SQL1273N.

Example

Suppose that there are two members, M1 and M2. M2's clock is ahead of M1's
clock by five seconds. M2's log stream contains the following log records:

A1 at 2010-04-03-14.21.56
A2 at 2010-04-03-14.21.56
B at 2010-04-03-14.21.58
C at 2010-04-03-14.22.01

M1's log stream contains the following log records:

Chapter 48. Rollforward 843

D at 2010-04-03-14.21.55
E at 2010-04-03-14.21.56
F at 2010-04-03-14.21.57

The minimum recovery time (MRT) for the database on M2 is at time
2010-04-03-14.21.55. Because M1's clock is five seconds slow, log records D, E, and
F appear later in the merged log stream:
MRT: 2010-04-03-14.21.55 (M2)
A1: 2010-04-03-14.21.56 (M2)
A2: 2010-04-03-14.21.56 (M2)
B: 2010-04-03-14.21.58 (M2)
D: 2010-04-03-14.21.55 (M1) --> corresponding time on M2 is 14.22.00
C: 2010-04-03-14.22.01 (M2)
E: 2010-04-03-14.21.56 (M1) --> corresponding time on M2 is 14.22.01
F: 2010-04-03-14.21.57 (M1) --> corresponding time on M2 is 14.22.02

The alphabetic characters (A1, A2, B, and so on) represent the order in which the
corresponding log records were actually written at run time (across members).
Note that log records A1 and A2 from member M2 have the same time stamp; this
can happen when the DB2 data server tries to optimize performance by including
the commit log record from multiple transactions when data is written from the
log buffer to a log file.

The following command returns SQL1276N (Database "test" cannot be brought out
of rollforward pending state until rollforward has passed a point in time greater
than or equal to "2010-04-03-14.21.55"):
db2 rollforward db test to 2010-04-03-14.21.54

But the following command rolls forward the database up to and including log
record A2:
db2 rollforward db test to 2010-04-03-14.21.56

Because log records A1 and A2 both have a time stamp that is less than or equal to
the time that was specified in the command, both are replayed. Log record B,
whose time stamp (2010-04-03-14.21.58) is greater than the specified value
(2010-04-03-14.21.56), stops the rollforward operation and is not replayed. Log
record D is not replayed either, even though its time stamp is less than the
specified value, because log record B's higher value (2010-04-03-14.21.58) was
encountered first. The following command rolls forward the database up to and
including log record D:
db2 rollforward db test to 2010-04-03-14.21.58

Log record C, whose time stamp (2010-04-03-14.22.01) is greater than the specified
value (2010-04-03-14.21.58), stops the rollforward operation and is not replayed.
Log record E is not replayed either, even though its time stamp is less than the
specified value.

Monitoring a rollforward operation
You can use the db2pd or the LIST UTILITIES command to monitor the progress of
rollforward operations on a database.

Procedure
v Issue the LIST UTILITIES command and specify the SHOW DETAIL parameter

LIST UTILITIES SHOW DETAIL

v Issue the db2pd command and specify the -recovery parameter:

844 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

db2pd -recovery

Results

For rollforward recovery, there are two phases of progress monitoring: FORWARD
and BACKWARD. During the FORWARD phase, log files are read and the log
records are applied to the database. For rollforward recovery, when this phase
begins UNKNOWN is specified for the total work estimate. The amount of work
processed in bytes is updated as the process continues.

During the BACKWARD phase, any uncommitted changes applied during the
FORWARD phase are rolled back. An estimate for the amount of log data to be
processed, in bytes, is provided. The amount of work processed, in bytes, is
updated as the process continues.

Example

The following is an example of the output for monitoring the performance of a
rollforward operation using the db2pd command:
Recovery:
Recovery Status 0x00000401
Current Log S0000005.LOG
Current LSN 0000001F07BC
Current LSO 000002551BEA
Job Type ROLLFORWARD RECOVERY
Job ID 7
Job Start Time (1107380474) Wed Feb 2 16:41:14 2005
Job Description Database Rollforward Recovery
Invoker Type User
Total Phases 2
Current Phase 1

Progress:
Address PhaseNum Description StartTime CompletedWork TotalWork
0x0000000200667160 1 Forward Wed Feb 2 16:41:14 2005 2268098 bytes Unknown
0x0000000200667258 2 Backward NotStarted 0 bytes Unknown

The following is an example of the output for monitoring the performance of a
database rollforward operation using the LIST UTILITIES command with the SHOW
DETAIL option:
ID = 7
Type = ROLLFORWARD RECOVERY
Database Name = TESTDB
Member Number = 0
Description = Database Rollforward Recovery
Start Time = 01/11/2012 16:56:53.770404
State = Executing
Invocation Type = User
Progress Monitoring:

Estimated Percentage Complete = 50
Phase Number = 1

Description = Forward
Total Work = 928236 bytes
Completed Work = 928236 bytes
Start Time = 01/11/2012 16:56:53.770492

Phase Number [Current] = 2
Description = Backward
Total Work = 928236 bytes
Completed Work = 0 bytes
Start Time = 01/11/2012 16:56:56.886036

Chapter 48. Rollforward 845

The following is an example of the output for monitoring the performance of a
table space rollforward operation using the LIST UTILITIES command with the
SHOW DETAIL option:
ID = 17
Type = ROLLFORWARD RECOVERY
Database Name = TESTDB
Member Number = 0
Description = Offline Tablespace Rollforward Recovery: 3
Start Time = 01/11/2012 17:04:27.269171
State = Executing
Invocation Type = User
Progress Monitoring:

Estimated Percentage Complete = 63
Phase Number = 1

Description = Forward
Total Work = 142
Completed Work = 90
Start Time = 01/11/2012 17:04:27.269283

Phase Number [Current] = 2
Description = Backward
Total Work = 0
Completed Work = 0
Start Time = Not Started

846 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 49. High availability disaster recovery (HADR)

The high availability disaster recovery (HADR) feature provides a high availability
solution for both partial and complete site failures. HADR protects against data
loss by replicating data changes from a source database, called the primary database,
to one or more target databases, called the standby databases.

A partial site failure can be caused by a hardware, network, or software (DB2
database system or operating system) failure. Without HADR, a partial site failure
requires restarting the database management system (DBMS) server that contains
the database. The length of time that it takes to restart the database and the server
where it is located is unpredictable. It can take several minutes before the database
is brought back to a consistent state and made available. With HADR, a standby
database can take over in seconds. Further, you can redirect the clients that used
the original primary database to the new primary database by using automatic
client reroute or retry logic in the application.

A complete site failure can occur when a disaster, such as a fire, causes the entire
site to be destroyed. However, because HADR uses TCP/IP for communication
between the primary and standby databases, they can be situated in different
locations. For example, the primary database might be located at your head office
in one city, and a standby database might be located at your sales office in another
city. If a disaster occurs at the primary site, data availability is maintained by
having the remote standby database take over as the primary database with full
DB2 functionality. After a takeover operation occurs, you can bring the original
primary database back up and return it to its primary database status; this is
known as failback. You can initiate a failback if you can make the old primary
database consistent with the new primary database. After you reintegrate the old
primary database into the HADR setup as a standby database, you can switch the
roles of the databases to enable the original primary database to once again be the
primary database.

With HADR, you base the level of protection from potential loss of data on your
configuration and topology choices. Some of the key choices that you must make
are as follows:

What level of synchronization will you use?

Standby databases are synchronized with the primary database through log
data that is generated on the primary and shipped to the standbys. The
standbys constantly roll forward through the logs. You can choose from
four different synchronization modes. In order of most to least protection,
these are SYNC, NEARSYNC, ASYNC, and SUPERASYNC. For more
information, see “High Availability Disaster Recovery (HADR)
synchronization mode” on page 849.

Will you use a peer window?
The peer window feature specifies that the primary and standby databases
are to behave as though they are still in peer state for a configured amount
of time if the primary loses the HADR connection in peer state. If primary
fails in peer or this "disconnected peer" state, the failover to standby will
have zero data loss. This feature provides the greatest protection. For more
information, see “Setting the hadr_timeout and hadr_peer_window
database configuration parameters” on page 911.

© Copyright IBM Corp. 2014 847

How many standbys will you deploy?
With HADR, you can use either single standby mode or multiple standby
mode. With multiple standbys, you can achieve both your high availability
and disaster recovery objectives with a single technology. For more
information, see “HADR multiple standby databases” on page 853.

There are a number of ways that you can use your HADR standby or standbys
beyond their HA or DR purpose:

Reads on standby
You can use the reads on standby feature to direct read-only workload to
one or more standby databases without affecting the HA or DR
responsibility of the standby. This feature can help reduce the workload on
the primary without affecting the main responsibility of the standby. For
more information on this topic, see “HADR reads on standby feature” on
page 876.

Unless you have reads on standby enabled, applications can access the
current primary database only. If you have reads on standby enabled,
read-only applications can be redirected to the standby. Applications
connecting to the standby database do not affect the availability of the
standby in the case of a failover.

Delayed replay
You can use delayed replay to specify that a standby database is to remain
at an earlier point in time than the primary, in terms of log replay. If data
is lost or corrupted on the primary, you can recovery this data on the time
delayed standby. For more information, see “HADR delayed replay” on
page 881.

Rolling updates and upgrades
Using an HADR setup, you can make various types of upgrades and DB2
fix pack updates to your databases without an outage. If you are using
multiple standby mode enabled, you can perform an upgrade while at the
same time keeping the protection provided by HADR. For more
information, see “Performing rolling updates in a DB2 High Availability
Disaster Recovery (HADR) environment” on page 884.

HADR might be your best option if most or all data in your database requires
protection or if you perform DDL operations that must be automatically replicated
on a standby database. However, HADR is only one of several replication solutions
that are offered in the DB2 product family. The InfoSphere Federation Server
software and the DB2 database system include SQL replication and Q replication
solutions that you can also use, in some configurations, to provide high
availability. These solutions maintain logically consistent copies of database tables
at multiple locations. In addition, they provide flexibility and complex functionality
such as support for column and row filtering, data transformation, and updates to
any copy of a table. You can also use these solutions in partitioned database
environments.

In IBM Data Studio Version 3.1 or later, you can use the task assistant for setting
up HADR. Task assistants can guide you through the process of setting options,
reviewing the automatically generated commands to perform the task, and running
these commands. For more details, see Administering databases with task
assistants.

848 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

High Availability Disaster Recovery (HADR) synchronization mode
The HADR synchronization mode determines the degree of protection your DB2
High Availability Disaster Recovery (HADR) database solution has against
transaction loss. The synchronization mode determines when the primary database
server considers a transaction complete, based on the state of the logging on the
standby database.

The more strict the synchronization mode configuration parameter value, the more
protection your database solution has against transaction data loss, but the slower
your transaction processing performance. You must balance the need for protection
against transaction loss with the need for performance.

Figure 67 shows the DB2 HADR synchronization modes that are available and also
when transactions are considered committed based on the synchronization mode
chosen:

In multiple standby mode, the setting for hadr_syncmode does not need to be the
same on the primary and standby databases. Whatever setting for hadr_syncmode is
specified on a standby is considered its configured synchronization mode; this setting
only has relevance if the standby becomes a primary. Instead, the standby is
assigned an effective synchronization mode. For any auxiliary standby, the effective
synchronization mode is always SUPERASYNC. For the principal standby, the
effective synchronization mode is the primary's setting for hadr_syncmode. A
standby's effective synchronization mode is the value that is displayed by any
monitoring interface.

Use the hadr_syncmode database configuration parameter to set the synchronization
mode. The following values are valid:

SYNC (synchronous)
This mode provides the greatest protection against transaction loss, and
using it results in the longest transaction response time among the four
modes.

In this mode, log writes are considered successful only when logs have
been written to log files on the primary database and when the primary
database has received acknowledgement from the standby database that

HADR
receive buffer

Standby database

Log file

HADR
send buffer

Primary database

Near synchronousAsynchronous

Super asynchronous

Commit request

Synchronous

Log shipping

log writer

Log file Applications

- Commit
succeeded

Figure 67. Synchronization modes for high availability and disaster recovery (HADR)

Chapter 49. High availability disaster recovery (HADR) 849

the logs have also been written to log files on the standby database. The
log data is guaranteed to be stored at both sites.

If the standby database crashes before it can replay the log records, the
next time it starts it can retrieve and replay them from its local log files. If
the primary database fails, a failover to the standby database guarantees
that any transaction that has been committed on the primary database has
also been committed on the standby database. After the failover operation,
when the client reconnects to the new primary database, there can be
transactions committed on the new primary database that were never
reported as committed to the application on the original primary. This
occurs when the primary database fails before it processes an
acknowledgement message from the standby database. Client applications
should consider querying the database to determine whether any such
transactions exist.

If the primary database loses its connection to the standby database, what
happens next depends on the configuration of the hadr_peer_window
database configuration parameter. If hadr_peer_window is set to a non-zero
time value, then upon losing connection with the standby database the
primary database will move into disconnected peer state and continue to
wait for acknowledgement from the standby database before committing
transactions. If the hadr_peer_window database configuration parameter is
set to zero, the primary and standby databases are no longer considered to
be in peer state and transactions will not be held back waiting for
acknowledgement from the standby database. If the failover operation is
performed when the databases are not in peer or disconnected peer state,
there is no guarantee that all of the transactions committed on the primary
database will appear on the standby database.

If the primary database fails when the databases are in peer or
disconnected peer state, it can rejoin the HADR pair as a standby database
after a failover operation. Because a transaction is not considered to be
committed until the primary database receives acknowledgement from the
standby database that the logs have also been written to log files on the
standby database, the log sequence on the primary will be the same as the
log sequence on the standby database. The original primary database (now
a standby database) just needs to catch up by replaying the new log
records generated on the new primary database since the failover
operation.

If the primary database is not in peer state when it fails, its log sequence
might be different from the log sequence on the standby database. If a
failover operation has to be performed, the log sequence on the primary
and standby databases might be different because the standby database
starts its own log sequence after the failover. Because some operations
cannot be undone (for example, dropping a table), it is not possible to
revert the primary database to the point in time when the new log
sequence was created. If the log sequences are different and you issue the
START HADR command with the AS STANDBY parameter on the original
primary, you will receive a message that the command was successful.
However, this message is issued before reintegration is attempted. If
reintegration fails, pair validation messages will be issued to the
administration log and the diagnostics log on both the primary and the
standby. The reintegrated standby will remain the standby, but the primary
will reject the standby during pair validation causing the standby database
to shut down. If the original primary database successfully rejoins the
HADR pair, you can achieve failback of the database by issuing the

850 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

TAKEOVER HADR command without specifying the BY FORCE parameter. If the
original primary database cannot rejoin the HADR pair, you can reinitialize
it as a standby database by restoring a backup image of the new primary
database.

NEARSYNC (near synchronous)
While this mode has a shorter transaction response time than synchronous
mode, it also provides slightly less protection against transaction loss.

In this mode, log writes are considered successful only when the log
records have been written to the log files on the primary database and
when the primary database has received acknowledgement from the
standby system that the logs have also been written to main memory on
the standby system. Loss of data occurs only if both sites fail
simultaneously and if the target site has not transferred to nonvolatile
storage all of the log data that it has received.

If the standby database crashes before it can copy the log records from
memory to disk, the log records will be lost on the standby database.
Usually, the standby database can get the missing log records from the
primary database when the standby database restarts. However, if a failure
on the primary database or the network makes retrieval impossible and a
failover is required, the log records will never appear on the standby
database, and transactions associated with these log records will never
appear on the standby database.

If transactions are lost, the new primary database is not identical to the
original primary database after a failover operation. Client applications
should consider resubmitting these transactions to bring the application
state up to date.

If the primary database fails when the primary and standby databases are
in peer state, it is possible that the original primary database cannot to
rejoin the HADR pair as a standby database without being reinitialized
using a full restore operation. If the failover involves lost log records
(because both the primary and standby databases have failed), the log
sequences on the primary and standby databases will be different and
attempts to restart the original primary database as a standby database
without first performing a restore operation will fail. If the original
primary database successfully rejoins the HADR pair, you can achieve
failback of the database by issuing the TAKEOVER HADR command without
specifying the BY FORCE parameter. If the original primary database cannot
rejoin the HADR pair, you can reinitialize it as a standby database by
restoring a backup image of the new primary database.

ASYNC (asynchronous)
Compared with the SYNC and NEARSYNC modes, the ASYNC mode results in
shorter transaction response times but might cause greater transaction
losses if the primary database fails

In ASYNC mode, log writes are considered successful only when the log
records have been written to the log files on the primary database and
have been delivered to the TCP layer of the primary system's host
machine. Because the primary system does not wait for acknowledgement
from the standby system, transactions might be considered committed
when they are still on their way to the standby database.

A failure on the primary database host machine, on the network, or on the
standby database can cause log records in transit to be lost. If the primary
database is available, the missing log records can be resent to the standby

Chapter 49. High availability disaster recovery (HADR) 851

database when the pair reestablishes a connection. However, if a failover
operation is required while there are missing log records, those log records
will never reach the standby database, causing the associated transactions
to be lost in the failover.

If transactions are lost, the new primary database is not exactly the same as
the original primary database after a failover operation. Client applications
should consider resubmitting these transactions to bring the application
state up to date.

If the primary database fails when the primary and standby databases are
in peer state, it is possible that the original primary database will not be
able to rejoin the HADR pair as a standby database without being
reinitialized using a full restore operation. If the failover involves lost log
records, the log sequences on the primary and standby databases will be
different, and attempts to restart the original primary database as a
standby database will fail. Because there is a greater possibility of log
records being lost if a failover occurs in asynchronous mode, there is also a
greater possibility that the primary database will not be able to rejoin the
HADR pair. If the original primary database successfully rejoins the HADR
pair, you can achieve failback of the database by issuing the TAKEOVER HADR
command without specifying the BY FORCE parameters. If the original
primary database cannot rejoin the HADR pair, you can reinitialize it as a
standby database by restoring a backup image of the new primary
database.

SUPERASYNC (super asynchronous)
This mode has the shortest transaction response time but has also the
highest probability of transaction losses if the primary system fails. This
mode is useful when you do not want transactions to be blocked or
experience elongated response times due to network interruptions or
congestion.

In this mode, the HADR pair can never be in peer state or disconnected
peer state. The log writes are considered successful as soon as the log
records have been written to the log files on the primary database. Because
the primary database does not wait for acknowledgement from the standby
database, transactions are considered committed irrespective of the state of
the replication of that transaction.

A failure on the primary database host machine, on the network, or on the
standby database can cause log records in transit to be lost. If the primary
database is available, the missing log records can be resent to the standby
database when the pair reestablishes a connection. However, if a failover
operation is required while there are missing log records, those log records
will never reach the standby database, causing the associated transactions
to be lost in the failover.

If transactions are lost, the new primary database is not exactly the same as
the original primary database after a failover operation. Client applications
should consider resubmitting these transactions to bring the application
state up to date.

Since the transaction commit operations on the primary database are not
affected by the relative slowness of the HADR network or the standby
HADR server, the log gap between the primary database and the standby
database might continue to increase. It is important to monitor the log gap
as it is an indirect measure of the potential number of transactions that
might be lost should a true disaster occur on the primary system. In

852 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

disaster recovery scenarios, any transactions committed during the log gap
would not be available to the standby database. Therefore, monitor the log
gap by using the hadr_log_gap monitor element; if it occurs that the log
gap is not acceptable, investigate the network interruptions or the relative
speed of the standby database node and take corrective measures to reduce
the log gap.

If the primary database fails, it is possible that the original primary
database will not be able to rejoin the HADR pair as a standby database
without being reinitialized using a full restore operation. If the failover
involves lost log records, the log sequences on the primary and standby
databases will be different, and attempts to restart the original primary
database as a standby database will fail. Because there is a greater
probability of log records being lost if a failover occurs in super
asynchronous mode, there is also a greater probability that the primary
database will not be able to rejoin the HADR pair. If the original primary
database successfully rejoins the HADR pair, you can achieve failback of
the database by issuing the TAKEOVER HADR command without specifying
the BY FORCE parameter. If the original primary database cannot rejoin the
HADR pair, you can reinitialize it as a standby database by restoring a
backup image of the new primary database.

HADR multiple standby databases
The high availability disaster recover (HADR) feature supports multiple standby
databases. Using multiple standbys, you can have your data in more than two
sites, which provides improved data protection with a single technology.

When you deploy the HADR feature in multiple standby mode, you can have up
to three standby databases in your setup. You designate one of these databases as
the principal HADR standby database; any other standby database is an auxiliary
HADR standby database. Both types of HADR standbys are synchronized with the
HADR primary database through a direct TCP/IP connection, both types support
reads on standby, and you can configure both types for time-delayed log replay. In
addition, you can issue a forced or non-forced takeover on any standby. There are
a couple of important distinctions between the principal and auxiliary standbys,
however:
v IBM Tivoli System Automation for Multiplatforms (SA MP) automated failover is

supported only for the principal standby. You must issue a takeover manually
on one of the auxiliary standbys to make one of them the primary. Before
issuing a manual takeover, you should disable SA MP.

v All of the HADR sync modes are supported on the principal standby, but the
auxiliary standbys can only be in SUPERASYNC mode.

There are a number of benefits to using a multiple HADR standby setup. Instead
of employing the HADR feature to achieve your high availability objectives and
another technology to achieve your disaster recovery objectives, you can use
HADR for both. You can deploy your principal standby in the same location as the
primary. If there is an outage on the primary, the principal standby can take over
the primary role within your recovery time objectives. You can also deploy
auxiliary standbys in a distant location, which provides protection against a
widespread disaster that affects both the primary and the principal standby. The
distance, and the potential for network delays between the primary and the
auxiliaries, has no effect on activity on the primary because the auxiliaries use
SUPERASYNC mode. If a disaster affects the primary and principal standby, you
can issue a takeover on either of the auxiliaries. You can configure the other

Chapter 49. High availability disaster recovery (HADR) 853

auxiliary standby database to become the new principal standby using the
hadr_target_list database configuration parameter. However, an auxiliary
standby can take over as the primary even if that auxiliary does not have an
available standby. For example, if there is an outage on the primary and principal
standby, one auxiliary can take over as the primary even if it does not have a
corresponding standby. However, if you stop that database after it becomes the
new primary, it cannot start again as an HADR primary unless its principal
standby is started.

Restrictions for multiple standby databases
There are a number of restrictions that you should be aware of if you are planning
to deploy the HADR feature in multiple standby mode.

The restrictions are as follows:
v You can have a maximum of three standby databases: one principal standby and

up to two auxiliary standbys.
v Only the principal standby supports all the HADR synchronization modes; all

auxiliary standbys will be in SUPERASYNC mode.
v IBM Tivoli System Automation for Multiplatforms (SA MP) support applies only

between the primary HADR database and its principal standby.
v The hadr_target_list database configuration parameter must be set on all the

databases in the multiple standby setup. Each standby must include the primary
in its hadr_target_list setting.

Initializing HADR in multiple standby mode
Initializing an HADR system in multiple standby mode is similar to single standby
mode. The main difference is that you must enable multiple standby mode by
setting the hadr_target_list database configuration parameter on all the databases
in your setup.

About this task

This task covers how to initialize HADR in multiple standby mode. If you want to
convert a single standby setup to a multiple standby setup, see “Enabling multiple
standby mode on a preexisting HADR setup” on page 856.

Multiple standby mode requires the hadr_target_list configuration parameter to
be set on all participating databases. This parameter lists the standbys in the
scenario when the database becomes a primary. It is required even on a standby.
Mutual inclusion is required (that is, if A has B in its target list, B must have A in
its target list). This ensures that after a takeover from any standby, the new
primary can always keep the old primary as its standby. The first standby that you
specify in the target list is designated as the principal HADR standby database.
Additional standbys are auxiliary HADR standby databases. The target list need not
always include all participants. As well, there is no requirement for symmetry or
reciprocity if there is more than one standby; even if you designate that database A
has database B as its principal standby, database B does not have to designate A as
its principal standby. Each standby specified in the target list of database A, must
also have database A in its target list. Working out the target list for each database
is an important step.

As a special case, multiple standby mode can be configured with only one standby.
For example, you can configure two databases as primary and standby in multiple
standby mode. The behavior is not same as single standby setup because multiple

854 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

standby behavior such as automated configuration will be in effect and because
standby targets can be added or removed dynamically.

Tip: You can perform steps 2 to 4 in a single update on each database.

Procedure

To initialize HADR in multiple standby mode:
1. Create your standby database or databases by using either a restored backup or

split mirror. For instructions on how to do this, see “Initializing a standby
database” on page 897 or step 2 of “Initializing high availability disaster
recovery (HADR)” on page 894.
a. On the primary, issue the following command:

BACKUP DB dbname

b. If the database already exists on a standby instance, drop it first for a clean
start. Files from the existing database can interfere with HADR operation.
For example, left over log files can lead the standby onto a log chain not
compatible with the primary. Issue the following command to drop the
database:
DROP DB dbname

c. On each standby instance, issue the following command :
RESTORE DB dbname

2. On each of the databases, set the hadr_local_host, hadr_local_svc,
hadr_local_svc, and hadr_syncmode configuration parameters:
UPDATE DB CFG FOR dbname USING
HADR_LOCAL_HOST hostname
HADR_LOCAL_SVC servicename
HADR_SYNCMODE syncmode

3. Set the hadr_target_list configuration parameter on all of the standbys and
the primary:
UPDATE DB CFG FOR dbname USING
HADR_TARGET_LIST principalhostname:principalservicename|
auxhostname1:auxservicename1|auxhostname2:auxservicename2

4. Optional: On all the databases, set the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters.
This step is not required because these values are automatically set if you do
not set them and are automatically reset if you set them incorrectly. However,
explicitly setting them to the correct values makes correct values available
immediately. These values are helpful for the IBM Tivoli System Automation
for Multiplatforms (SA MP) software, which might require the
hadr_remote_inst value to construct the resource name.
v On the primary, set the parameters to the corresponding values on the

principal standby by issuing the following command:
UPDATE DB CFG FOR dbname USING

HADR_REMOTE_HOST principalhostname
HADR_REMOTE_SVC principalservicename
HADR_REMOTE_INST principalinstname

v On each standby, set the parameters to the corresponding values on the
primary by issuing the following command:
UPDATE DB CFG FOR dbname USING

HADR_REMOTE_HOST primaryhostname
HADR_REMOTE_SVC primaryservicename
HADR_REMOTE_INST primaryinstname

5. Connect to each standby instance.

Chapter 49. High availability disaster recovery (HADR) 855

6. On the standby instance, issue the START HADR command with the AS STANDBY
parameter:
START HADR ON DB dbname AS STANDBY

7. Connect to the primary instance.
8. On the primary instance, issue the START HADR command with the AS PRIMARY

parameter:
START HADR ON DB dbname AS PRIMARY

Results

The standby databases start in local catchup state, in which locally available log
files are read and replayed. After all local logs have been replayed, the databases
enter remote catchup pending state. After the primary starts, the standbys enter
remote catchup state, in which log pages are received from the primary and
replayed. After all of the log files that are on the disk of the primary database have
been replayed on the standbys, what happens depends on the type of what
happens next depends on the type of synchronization mode. A principal standby
in SUPERASYNC and any auxiliary standby will stay in remote catchup mode. A
principal standby with a SYNC, NEARSYNC, or ASYNC mode will enter peer
mode.

Enabling multiple standby mode on a preexisting HADR setup
Initializing an HADR system in multiple standby mode is similar to s single
standby mode. The main difference is that you must enable multiple standby mode
by setting the hadr_target_list database configuration parameter on all the
databases in your setup.

Before you begin
v Determine the host name or host IP address (to be used for the hadr_local_host

setting), service name or port number (to be used for the hadr_local_svc setting)
of all participating databases.

v Determine the target list for each database.
v Determine the synchronization mode and peer window for each database's

principal standby in the event that the database becomes the primary.
v Determine the setting for the hadr_timeout configuration parameter; this

parameter must have the same setting on all databases.
v Determine if there is sufficient network bandwidth between the primary and

each standby. Upgrade if necessary.
v Determine if the primary network interface can support outgoing data flow of

the additional standbys. Upgrade if needed.

About this task

Multiple standby mode requires the hadr_target_list configuration parameter to
be set on all participating databases. This parameter lists the standbys in the
scenario when the database becomes a primary. It is required even on a standby.
Mutual inclusion is required (that is, if A has B in its target list, B must have A in
its target list). This ensures that after a takeover from any standby, the new
primary can always keep the old primary as its standby. The first standby that you
specify in the target list is designated as the principal HADR standby database.
Additional standbys are auxiliary HADR standby databases. The target list need not
always include all participants. As well, there is no requirement for symmetry or
reciprocity if there is more than one standby; even if you designate that database A

856 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

has database B as its principal standby, database B does not have to designate A as
its principal standby. Each standby specified in the target list of database A, must
also have database A in its target list. Working out the target list for each database
is an important step.

As a special case, multiple standby mode can be configured with only one standby.
For example, you can configure two databases as primary and standby in multiple
standby mode. The behavior is not same as single standby setup because multiple
standby behavior such as automated configuration will be in effect and because
standby targets can be added or removed dynamically.

In this task, you first create and configure the new standbys only. By keeping the
original configuration until the final steps, you can keep your primary-standby
pair functioning for as long as possible. If you change the original standby's
configuration too early, you can break the old HADR pair if the standby is
deactivated and reactivated unintentionally to pick up the new configuration.

Procedure

To enable HADR in multiple standby mode:
1. Create any additional standby databases using either a restored backup or split

mirror. For instructions on how to do this, see “Initializing a standby database”
on page 897 or step 2 of “Initializing high availability disaster recovery
(HADR)” on page 894.
v On the primary:

DB2 BACKUP DB dbname

v On the standbys:
DB2 RESTORE DB dbname

2. Configure each of the new standby databases as follows:
a. Set the hadr_local_host and hadr_local_svc to the TCP address used by

the HADR connection.
b. Set the hadr_remote_host, hadr_remote_svc, hadr_remote_inst configuration

parameters to point to the primary database.
c. Set the hadr_timeout configuration, with the same setting on all of the

databases.
d. Set the hadr_target_list configuration parameter, as previously planned.
e. Set the hadr_syncmode and hadr_peer_window configuration parameters for

the principal standby in case this database becomes the primary.
f. Set any other HADR-specific parameters such as hadr_spool_limit or

hadr_replay_delay, depending on your desired setup.
3. Reconfigure the original standby by following the same instructions as in Step

2.
4. Reconfigure the primary as follows:

a. Set the hadr_local_host and hadr_local_svc to the TCP address used by
the HADR connection. You might need to make an update if you are using
a new network interface card (NIC) to support higher network bandwidth
to accommodate more standbys.

b. Set the hadr_remote_host, hadr_remote_svc, hadr_remote_inst configuration
parameters to point to the principal standby database.

c. Set the hadr_timeout configuration, with the same setting as on all of the
standby databases.

d. Set the hadr_target_list configuration parameter, as previously planned.

Chapter 49. High availability disaster recovery (HADR) 857

e. Set the hadr_syncmode and hadr_peer_window configuration parameters,
which the principal standby will use.

f. Set any other HADR-specific parameters such as hadr_spool_limit or
hadr_replay_delay, depending on your desired setup.

5. Stop HADR on the primary.
STOP HADR ON DB dbname

If a primary (in single standby mode) is still running when a new HADR
standby is started, the standby is found incompatible and shut down when it
attempts to connect to the primary.

6. Deactivate and then reactivate the original standby to pick up the new
configuration.

7. Connect to each new standby instance and issue the START HADR command with
the AS STANDBY option.
START HADR ON DB dbname AS STANDBY

8. Stop HADR on the primary.
START HADR ON DB dbname AS PRIMARY

Results

All of the standbys should connect to the primary within seconds. You can monitor
their status using the db2pd command with the -hadr option or the
MON_GET_HADR table function.

Modifications to a multiple standby database setup
After your multiple HADR standby setup is up and running, you might want to
make additional changes, such as adding or removing auxiliary standby databases
or changing the principal standby database designation. You can make these kinds
of modifications without causing an outage on your primary database.

Adding auxiliary standbys

There are a few reasons why you might want to add an auxiliary standby:
v To deploy an additional standby for processing read-only workloads
v To deploy an additional standby for time-delayed replay
v To deploy an additional standby for disaster recovery purposes
v To add a standby that was a part of a previously active HADR deployment but

was orphaned because the hadr_target_list configuration parameter for the new
primary does not specify that standby

You can add an auxiliary standby only if your HADR deployment is in multiple
standby mode. That is, thehadr_target_list configuration parameter must already
be set to at least one standby.

To add an auxiliary standby to your HADR deployment, update the target list of
the primary with the host and port information from the standby. This information
corresponds to the settings for the hadr_local_host and hadr_local_svc
parameters on the standby. You must also add the host and port information for
the primary to the target list of the new standby.

Tip: Although it is not required, a best practice is to also add the host and port
information for the new standby to the target lists of the other standbys in the
deployment. You should also specify the host and port information for those

858 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

standbys in the target list of the new standby. If you do not make these additional
updates and one of the other standbys takes over as the new primary, the new
standby is rejected as a standby target and is shut down.

Removing auxiliary standbys

The only standbys that you can remove dynamically are auxiliary standbys. If you
dynamically remove an auxiliary standby from your multiple standby deployment,
there is no effect on normal HADR operations on the primary and the principal
standby. To remove an auxiliary standby, issue the STOP HADR command on the
standby; afterward, you can remove it from the target lists of the primary and any
other standby.

Changing the principal standby

You can change the principal standby only if you first stop HADR on the primary
database; this does not cause an outage, because you do not have to deactivate the
primary.

To change the principal standby, you must stop HADR on the primary database.
Then, update the target list of the primary database to list the new principal
standby first. If the new principal standby is not already a standby, add the
primary database's address to its target list, configure the other HADR parameters,
and activate the standby. If it is already a standby, no action is needed.

Tip: Although it is not required, it is a best practice to also add the host and port
information for the new principal standby to the target list of the other standby in
the deployment. You should also specify the host and port information for that
standby in the target list of the new principal standby. If you do not make these
additional updates and either one of the standbys takes over as the new primary,
the other standby is rejected as a standby target and is shut down.

Database configuration for multiple HADR standby databases
There are a number of considerations for database configuration in a multiple
HADR standby setup.

Automatic reconfiguration of HADR parameters

Reconfiguration after HADR starts

In multiple standby mode, the configuration parameters that identify the
primary database for the standbys and identify the principal standby for
the primary are automatically reset when HADR starts if you did not
correctly set them; however, an initial non-NULL value is required. This
behavior applies to the following configuration parameters:
v hadr_remote_host

v hadr_remote_inst

v hadr_remote_svc

Tip: Even though this automatic reconfiguration occurs, you should
always try to set the correct initial values because that reconfiguration
might not take effect until a connection is made between a standby and its
primary. In some HADR deployments, those initial values might be
needed. For example, if you are using the IBM Tivoli System Automation
for Multiplatforms software, the value for the hadr_remote_inst
configuration parameter is needed to construct a resource name.

Chapter 49. High availability disaster recovery (HADR) 859

Note: If the DB2_HADR_NO_IP_CHECK registry variable is set to ON, the
hadr_remote_host and hadr_remote_svc are not automatically updated.

Reconfiguration is predicated on the values of the hadr_target_list
configuration parameter being correct; if anything is wrong in a target list
entry, you must correct it manually.

On the primary, the reconfiguration occurs in the following manner:
v If the values for the hadr_remote_host and hadr_remote_svc

configuration parameters do not match the host:port pair that is the first
entry of the hadr_target_list configuration parameter (namely, the
principal standby), the hadr_remote_host and hadr_remote_svc
configuration parameters are updated with the values from the target
list.

v If the value for the hadr_remote_inst configuration parameter does not
match the instance name of the principal standby, the correct instance
name is copied to the hadr_remote_inst configuration parameter for the
primary after the principal standby connects to it.

On a standby database, the reconfiguration occurs in the following manner:
v When a standby starts, it attempts to connect to the database that you

specified for its hadr_remote_host, hadr_remote_inst, and
hadr_remote_svc configuration parameters.

v If the standby cannot connect to the primary, it waits for the primary to
connect to it.

v The primary attempts to connect to its standbys using addresses listed in
its hadr_target_list parameter. After the primary connects to a standby,
the hadr_remote_host, hadr_remote_inst, and hadr_remote_svc
configuration parameters for the standby are updated with the correct
values for the primary.

Reconfiguration during and after a takeover

In a non-forced takeover, the values for the hadr_remote_host,
hadr_remote_inst, and hadr_remote_svc configuration parameters on the
new primary are automatically updated to its principal standby, and these
parameters on the standbys listed in the new primary's hadr_target_list
are automatically updated to point to the new primary. Any database that
is not listed in the new primary's hadr_target_list is not updated. Those
databases continue to attempt to connect to the old primary and get
rejected because the old primary is now a standby. The old primary is
guaranteed to be in the new primary's target list because of the
requirement of mutual inclusion in the target list.

In a forced takeover, automatic update on the new primary and its
standbys (excluding the old primary) work the same way as non-forced
takeover. However, automatic update on the old primary does not happen
until it is shut down and restarted as a standby for reintegration.

Any database that is not online during the takeover will be automatically
reconfigured after it starts. Automatic reconfiguration might not take effect
immediately on startup, because it relies on the new primary to
periodically contact the standby. On startup, a standby might attempt to
connect to the old primary and follow the log stream of the old primary,
causing it to diverge from the new primary's log stream and, making that
standby unable to pair with the new primary. As a result, you must shut
down the old primary before takeover to avoid that kind of split brain
scenario.

860 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Lack of standby control of the synchronization mode and peer
window

In multiple standby mode, only the settings of the hadr_syncmode and
hadr_peer_window configuration parameters of the current primary are relevant.
The standby databases either have the settings for those parameters defined by the
primary, in the case of the principal standby, or by their role as an auxiliary
standby.

Synchronization mode

In multiple standby mode, the setting for the hadr_syncmode configuration
parameter do not have to be the same on the primary and standby
databases. Whatever setting you specify for the hadr_syncmode
configuration parameter on a standby is considered its configured
synchronization mode; this setting has relevance only if the standby becomes
a primary. The standby is assigned an effective synchronization mode. For any
auxiliary standby, the effective synchronization mode is always
SUPERASYNC. For the principal standby, the effective synchronization
mode is the setting for the hadr_syncmode configuration parameter for the
primary. For a standby, the monitoring interfaces display the effective
synchronization mode as the synchronization mode.

Peer window
In multiple standby mode, the setting for the hadr_peer_window
configuration parameter does not have to be the same on the primary and
standby databases. In fact, any setting for the hadr_peer_window
configuration parameter on the auxiliary standbys is ignored because peer
window functionality is incompatible with SUPERASYNC mode. The
principal standby uses the peer window setting of the primary, which is
applicable only if the value of the hadr_syncmode configuration parameter
for the standby is SYNC or NEARSYNC, just as with single standby mode.

Rolling upgrades in HADR multiple standby mode
As with HADR single standby mode, you can use a rolling upgrade. The crucial
difference is that with multiple standbys you can use this procedure while
maintaining HADR protection by keeping a primary and a standby active.

There is always a primary to provide database service and this primary always has
at least one standby providing HA and DR protection.

With multiple standbys, you should perform the update or upgrade on all of the
standbys before doing so on the primary. This is particularly important if you are
updating the fixpack level because HADR does not allow the primary to be at a
higher fixpack level than the standby.

The procedure is essentially the same as with single standby mode, except you
should perform the upgrade on one database at a time and starting with an
auxiliary standby. For example, consider the following HADR setup:
v host1 is the primary
v host2 is the principal standby
v host 3 is the auxiliary standby

For this setup, perform the rolling upgrade or update according to the following
sequence:

Chapter 49. High availability disaster recovery (HADR) 861

1. Deactivate host3, make the required changes, activate host3, and start HADR
on host3 (as a standby).

2. After host3 is caught up in log replay, deactivate host2, make the required
changes, activate host2, and start HADR on host2 (as a standby).

3. After host2 is caught up in log replay and in peer state with host1, issue a
takeover on host2.

4. Deactivate host1, make the required changes, activate host1, and start HADR
on host1 (as a standby).

5. After host1 is in peer state with host 2, issue a takeover on host1 so that it
becomes the primary again and host2 becomes the principal standby again.

High availability disaster recovery (HADR) monitoring in
multiple standby mode

HADR multiple standby mode supports the same monitoring interfaces as in
single standby mode; however, you should only use the db2pd command and the
MON_GET_HADR table function because other monitoring interfaces do not give
a complete view of all of the standbys.

The information returned by the monitoring interface depends on where it is
issued. Monitoring on a standby returns information about that standby and the
primary only; no information is provided about any other standbys. Monitoring on
the primary returns information about all of the standbys if you are using the
db2pd command or the MON_GET_HADR table function. Even standbys that are
not connected, but are configured in the primary's hadr_target_list configuration
parameter are displayed. Other interfaces like the GET SNAPSHOT FOR DATABASE
command report the primary and the principal standby only.

The db2pd command and the MON_GET_HADR table function return essentially
the same information, but the db2pd command does not require reads on standby
to be enabled (for reporting from a standby). As well, the db2pd command is
preferred during takeover because there could be a time window where neither the
primary nor the standby allows client connections.

db2pd command

In the following example, the DBA issues the db2pd command on a primary
database with three standbys. Three sets of data are returned, with each
representing a primary-standby log shipping channel. The HADR_ROLE field
represents the role of the database to which db2pd is issued, so it is listed as
PRIMARY in all sets. The HADR_STATE for the two auxiliary standbys (hostS2
and hostS3) is REMOTE_CATCHUP because they automatically run in
SUPERASYNC mode (which is also reflected in the db2pd output) regardless of
their configured setting for hadr_syncmode. The STANDBY_ID differentiates the
standbys. It is system generated and the ID-to-standby mapping can change from
query to query; however, the ID "1" is always assigned to the principal standby.

Note: Fields not relevant to current status might be omitted in the output. For
example, in the following output, information about the replay-only window (like
start time and transaction count) is not included because the replay-only window
is not active.
db2pd -db hadr_db -hadr

Database Member 0 -- Database hadr_db -- Active -- Up 0 days 00:23:17 --
Date 06/08/2011 13:57:23

862 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SYNC
STANDBY_ID = 1

LOG_STREAM_ID = 0
HADR_STATE = PEER

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = hostS1.ibm.com
STANDBY_INSTANCE = db2inst2
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 3
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SUPERASYNC
STANDBY_ID = 2

LOG_STREAM_ID = 0
HADR_STATE = REMOTE_CATCHUP

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = hostS2.ibm.com
STANDBY_INSTANCE = db2ins3t
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:35:51.724447 (1307565351)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 16
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

Chapter 49. High availability disaster recovery (HADR) 863

STANDBY_RECV_BUF_SIZE(pages) = 16
STANDBY_RECV_BUF_PERCENT = 0

STANDBY_SPOOL_LIMIT(pages) = 0
PEER_WINDOW(seconds) = 0

READS_ON_STANDBY_ENABLED = Y

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SUPERASYNC
STANDBY_ID = 3

LOG_STREAM_ID = 0
HADR_STATE = REMOTE_CATCHUP

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = hostS3.ibm.com
STANDBY_INSTANCE = db2inst3
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:46:51.561873 (1307566011)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 6
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = N

MON_GET_HADR table function

In the following example, the DBA calls the MON_GET_HADR table function on the
primary database with three standbys. Three rows are returned. Each row
represents a primary-standby log shipping channel. The HADR_ROLE column
represents the role of the database to which the query is issued. Therefore it is
PRIMARY on all rows. The HADR_STATE for the two auxiliary standbys (hostS2
and hostS3) is REMOTE_CATCHUP because they automatically run in
SUPERASYNC mode regardless of their configured setting for hadr_syncmode.
db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE, varchar(PRIMARY_MEMBER_HOST,20)
as PRIMARY_MEMBER_HOST, varchar(STANDBY_MEMBER_HOST,20)
as STANDBY_MEMBER_HOST from table (mon_get_hadr(NULL))"

HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST STANDBY_MEMBER_HOST
--------- ---------- -------------- ------------------- --------------------
PRIMARY 1 PEER hostP.ibm.com hostS1.ibm.com
PRIMARY 2 REMOTE_CATCHUP hostP.ibm.com hostS2.ibm.com
PRIMARY 3 REMOTE_CATCHUP hostP.ibm.com hostS3.ibm.com

3 record(s) selected.

864 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Takeover in HADR multiple standby mode
When an HADR standby database takes over as the primary database in a multiple
standby environment, there are a number of important differences from single
standby mode.

With HADR, there are two types of takeover: role switch and failover. Role switch,
sometimes called graceful takeover or non-forced takeover, can be performed only
when the primary is available and it switches the role of primary and standby.
Failover, or forced takeover, can be performed when the primary is not available. It
is commonly used in primary failure cases to make the standby the new primary.
The old primary remains in primary role in a forced takeover. Both types of
takeover are supported in multiple standby mode, and any of the standby
databases can take over as the primary. A crucial thing to remember, though, is
that if a standby is not included in the new primary's target list, it is considered to
be orphaned and cannot connect to the new primary.

In a takeover, DB2 automatically makes a number of configuration changes for you
so that the standbys listed in new primary's target list can connect to the new
primary. The hadr_remote_host, hadr_remote_svc, and hadr_remote_inst
configuration parameters are updated on the new primary and listed standbys in
the following way:
v On the new primary: They refer to the principal standby (the first database

listed in the new primary's target list).
v On the standbys: They refer to the new primary. When an old primary is

reintegrated to become standby, the START HADR AS STANDBY command first
converts it to a standby. Thus it can also be automatically redirected to the new
primary if it is listed in the target list of the new primary.

Note: Orphaned standbys are not automatically updated in this way. If you
want them to join as standbys, you need to ensure they are in the new primary's
target list and that they include the new primary in their target lists.

Role switch
Just as in single standby mode, role switch in multiple standby mode
guarantees no data is lost between the old primary and new primary.
Other standbys configured in the new primary's hadr_target_list
configuration parameter are automatically redirected to the new primary
and continue receiving logs. If you are issuing the TAKEOVER HADR
command on an auxiliary standby and you have IBM Tivoli System
Automation for Multiplatforms (SA MP) configured, you must ensure that
you disable SA MP before attempting the takeover. You cannot failback the
primary role to the auxiliary primary if SA MP is enabled.

Failover

Just as in single standby mode, if a failover results in any data loss in
multiple standby mode (meaning that the new primary does not have all
of the data of the old primary), the old and new primary's log streams
diverge and the old primary has to be reinitialized. For the other standbys,
if a standby received logs from the old primary beyond the diverge point,
it has to be reinitialized. Otherwise, it can connect to the new primary and
continue log shipping and replay. As a result, it is very important that you
check the log positions of all of the standbys and choose the standby with
the most data as the failover target. You can query this information using
the db2pd command or the MON_GET_HADR table function.

Chapter 49. High availability disaster recovery (HADR) 865

Note: Successful automatic reconfiguration of a standby's
hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration
parameters to point to the new primary does not mean the standby will be
accepted to pair with the new primary. It only allows the standby to make
a TCP connection to the primary. Upon connection, if DB2 determines that
the two databases have diverging log streams, the pairing request will be
rejected and the connection closed.

Scenario: Deploying an HADR multiple standby database
setup

This scenario describes the planning, configuring, and deploying of an HADR
setup for a bank called ExampleBANK. The setup has three standby databases: one
principal standby and two auxiliary standbys.

Background

Because banking is a 24x7 business, high availability is crucial to ExampleBANK's
technology strategy. In addition, ExampleBANK experienced a close call with a
hurricane hitting City A, where its head office is located, so the bank also requires
a disaster recovery strategy. High availability disaster recovery (HADR) offers a
solution that can help the bank achieve both of these goals with a single
technology: HADR multiple standby databases.

ExampleBANK considers the following requirements essential for its HADR
solution:

An aggressive recovery time objective
As a bank that offers 24-hour online service, ExampleBANK wants to
minimize the time that applications cannot connect to their database.

An aggressive recovery point objective
ExampleBANK cannot tolerate data loss, so the RPO should be as close to
0 as possible.

Near-zero planned downtime
ExampleBANK's database should be available as much as possible, even
through planned activities such as upgrades and maintenance.

Data protection through geographic dispersion
As part of its compliance standards, ExampleBANK wants the capability to
recover operations at a remote location.

Easy deployment and management
ExampleBANK's overburdened IT department wants a solution that is
relatively simple to configure and that has automation capabilities.

As the following scenarios illustrate, using the HADR feature in multiple standby
mode helps ExampleBANK meet all these requirements.

Planning for a multiple standby setup

ExampleBANK wants to have both high availability and disaster recovery
protection from its HADR setup, so the bank decides to use the maximum number
of standbys: three. To achieve the RTO, the bank must have a standby that is in
close synchronization with the primary (a standby that uses SYNC or NEARSYNC
mode) and is collocated with the primary. It makes the most sense to have this
standby be the principal standby because only that standby supports all

866 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

synchronization modes. Both the primary and the principal standby are located in
ExampleBANK's head office in City A and are connected by a LAN.

In addition, to protect the bank's data from being lost because of a disaster, the
ExampleBANK DBA chooses to set up two standbys in the bank's regional office in
City B. The regional office is connected to the head office in City A by a WAN. The
distance between the two cities will not affect the primary because the standbys
are auxiliary standbys, which automatically run in SUPERASYNC mode. The DBA
can provide additional justification for the costs of these additional databases by
setting up one of them to use the reads on standby feature and the other to use the
time-delayed replay feature. Also, these standbys can help maintain database
availability through a rolling update or maintenance scenario, preventing the loss
of HADR protection.

Configuring a multiple standby setup

The ExampleBANK DBA takes a backup of the intended primary database,
HADR_DB:
DB2 BACKUP DB hadr_db TO backup_dir

The DBA then restores the backup onto each of the intended standby hosts by
issuing the following command:
DB2 RESTORE DB hadr_db FROM backup_dir

Tip: For more information about options for creating a standby, see “Initializing a
standby database” on page 897.

For the initial setup, the ExampleBANK DBA decides that most of the default
configuration settings are sufficient. However, as in a regular HADR setup, the
following database configuration parameters must be explicitly set:
v hadr_local_host

v hadr_local_svc

v hadr_remote_host

v hadr_remote_inst

v hadr_remote_svc

To obtain the correct values for those configuration parameters, the DBA
determines the host name, port number, and instance name of the four databases
that will be in the HADR setup:

Table 128. Host name, port number, and instance name for databases

Intended role Host name Port number Instance name

Primary host1 10 dbinst1

Principal standby host2 40 dbinst2

Auxiliary standby host3 41 dbinst3

Auxiliary standby host4.ibm.com 42 dbinst4

On the primary, the settings for the hadr_remote_host, hadr_remote_inst, and
hadr_remote_svc configuration parameters correspond to the host name, instance
name, and port number of the principal standby. On the standbys, the values of
these configuration parameters correspond to the host name, port number, and
instance name of the primary. In addition, the DBA uses the host name and port
values to set the hadr_target_list configuration parameter on all the databases.
Also, although it is not required, the DBA adds the information about all the

Chapter 49. High availability disaster recovery (HADR) 867

standbys in the setup to the target list of each of the other standbys. For more
information about this topic, see “Database configuration for high availability
disaster recovery (HADR)” on page 903.

As mentioned earlier, the bank wants the closest possible synchronization between
the primary and principal standby, so the DBA sets the hadr_syncmode parameter
on the primary to SYNC. Although the principal standby will automatically have
its effective synchronization mode set to SYNC after it connects to the primary, the
DBA still sets the hadr_syncmode parameter to SYNC on the principal standby. The
reason is that if the principal standby switches role with the primary, the
synchronization mode for the new primary and principal standby pair will also be
SYNC.

The DBA decides to specify host2, which is in a different city from the auxiliary
standbys, as the principal standbys for the auxiliary standbys. If one of the
auxiliaries becomes the primary, SUPERASYNC would be a good synchronization
mode between the primary and the remotely located host2. Thus DBA sets the
hadr_syncmode parameter on the auxiliary standbys to SUPERASYNC, although the
auxiliary standbys will automatically have their effective synchronization modes
set to SUPERASYNC after they connect to the primary. For more information about
this topic, see “High Availability Disaster Recovery (HADR) synchronization
mode” on page 849.

Finally, the DBA has read about the new HADR delayed replay feature, which can
be used to intentionally keep a standby database at a point in time that is earlier
than the primary by delaying replay of logs. The DBA decides that enabling this
feature would improve ExampleBANK's data protection against errant transactions
on the primary. The DBA chooses host4, an auxiliary standby, for this feature, and
makes a note that this feature must be disabled before host4 can take over as the
primary database. For more information about this topic, see “HADR delayed
replay” on page 881.

The DBA issues the following commands to update the configuration parameters
on each of the databases:
v On host1 (the primary):

DB2 "UPDATE DB CFG FOR hadr_db USING
HADR_TARGET_LIST host2:40|host3:41|host4:42
HADR_REMOTE_HOST host2
HADR_REMOTE_SVC 40
HADR_LOCAL_HOST host1
HADR_LOCAL_SVC 10
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst2"

v On host2 (the principal standby):
DB2 "UPDATE DB CFG FOR hadr_db USING

HADR_TARGET_LIST host1:10|host3:41|host4:42
HADR_REMOTE_HOST host1
HADR_REMOTE_SVC 10
HADR_LOCAL_HOST host2
HADR_LOCAL_SVC 40
HADR_SYNCMODE sync
HADR_REMOTE_INST db2inst1"

v On host3 (an auxiliary standby):
DB2 "UPDATE DB CFG FOR hadr_db USING

HADR_TARGET_LIST host2:40|host1:10|host4:42
HADR_REMOTE_HOST host1
HADR_REMOTE_SVC 10

868 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

HADR_LOCAL_HOST host3
HADR_LOCAL_SVC 41
HADR_SYNCMODE superasync
HADR_REMOTE_INST db2inst1"

v On host4 (an auxiliary standby):
DB2 "UPDATE DB CFG FOR hadr_db USING

HADR_TARGET_LIST host2.:40|host1:10|host3:41
HADR_REMOTE_HOST host2
HADR_REMOTE_SVC 10
HADR_LOCAL_HOST host4
HADR_LOCAL_SVC 42
HADR_SYNCMODE superasync
HADR_REMOTE_INST db2inst1
HADR_REPLAY_DELAY 86400"

Finally, the ExampleBANK DBA wants to enable the HADR reads on standby
feature for the following reasons:
v To make online changes to some of the HADR configuration parameters on the

standbys
v To call the MON_GET_HADR table function on the standbys
v To divert some of the read-only workload from the primary

The DBA updates the registry variables on the standby databases by issuing the
following commands on each of host2, host3, and host4:
DB2SET DB2_HADR_ROS=ON
DB2SET DB2_STANDBY_ISO=UR

Starting the HADR databases

The DBA starts the standby databases first, by issuing the following command on
each of host2, host3, and host 4:
DB2 START HADR ON DB hadr_db AS STANDBY

Next, the DBA starts HADR on the primary database, on host1:
DB2 START HADR ON DB hadr_db AS PRIMARY

To verify that HADR is up and running, the DBA queries the status of the
databases from the primary on host1 by issuing the db2pd command, which returns
information about all of the standbys:
db2pd -db hadr_db -hadr

Database Member 0 -- Database hadr_db -- Active -- Up 0 days 00:23:17 --
Date 06/08/2011 13:57:23

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SYNC
STANDBY_ID = 1

LOG_STREAM_ID = 0
HADR_STATE = PEER

PRIMARY_MEMBER_HOST = host1
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = host2
STANDBY_INSTANCE = db2inst2
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 3

Chapter 49. High availability disaster recovery (HADR) 869

PEER_WAIT_LIMIT(seconds) = 0
LOG_HADR_WAIT_CUR(seconds) = 0.000

LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SUPERASYNC
STANDBY_ID = 2

LOG_STREAM_ID = 0
HADR_STATE = REMOTE_CATCHUP

PRIMARY_MEMBER_HOST = host1
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = host3
STANDBY_INSTANCE = db2inst3
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:35:51.724447 (1307565351)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 16
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = SUPERASYNC
STANDBY_ID = 3

LOG_STREAM_ID = 0
HADR_STATE = REMOTE_CATCHUP

PRIMARY_MEMBER_HOST = host1
PRIMARY_INSTANCE = db2inst1
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = host4

870 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

STANDBY_INSTANCE = db2inst4
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:46:51.561873 (1307566011)

HEARTBEAT_INTERVAL(seconds) = 30
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 6
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

Examples: Takeover in HADR multiple standby mode
This set of examples of takeovers (both forced and unforced) in HADR multiple
standby mode is based on a three-standby setup. The purpose of these examples is
to show how the multiple standby automatic reconfiguration works in a takeover
situation.
v “A principal standby takes over gracefully (role switch)” on page 872
v “An auxiliary standby takes over by force (failover)” on page 873
v “An auxiliary standby takes over by force (failover) in a SA MP environment”

on page 875

The initial setup for each of the examples is as follows:
v a primary database (host1)
v a principal standby (host2)
v two auxiliary standbys (host3 and host4)

All of the databases are called hadr_db. The primary and principal standby have
their synchronization mode set to SYNC and the standbys have theirs set to
SUPERASYNC.

The configuration for each database is shown in Table 129.

Table 129. Configuration values for each HADR database

Configuration
parameter Host1 Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host1 host1 host1

hadr_remote_svc 40 10 10 10

hadr_remote_inst dbinst2 dbinst1 dbinst1 dbinst1

Chapter 49. High availability disaster recovery (HADR) 871

Table 129. Configuration values for each HADR database (continued)

Configuration
parameter Host1 Host2 Host3 Host4

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode
(Refers to the
explicitly set
synchronization
mode, which is
used if the database
becomes a primary)

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode
(Refers to the
synchronization
mode that is used if
the database is
currently a standby)

n/a SYNC SUPERASYNC SUPERASYNC

A principal standby takes over gracefully (role switch)

The DBA performs a takeover on the principal standby by issuing the following
command on host2:
DB2 TAKEOVER HADR ON DB hadr_db

After the takeover is completed successfully, host2 becomes the new primary and
host1, which is the first entry in the hadr_target_list of host2 (as shown in
Table 129 on page 871), becomes its principal standby. Their sync mode is SYNC
mode because host2 is configured with an hadr_syncmode of SYNC. The auxiliary
standby targets, host3 and host4, have their hadr_remote_host and
hadr_remote_svc pointing at the old primary, host1, but are automatically
redirected to the new primary, host2. In this redirection, host3 and host4 update
(persistently) their hadr_remote_host, hadr_remote_svc, and hadr_remote_inst
configuration parameters. They reconnect to host2 as auxiliary standbys, and are
told by host2 to use an effective synchronization mode of SUPERASYNC
(regardless of what they have locally configured for hadr_syncmode). They do not
update their settings for hadr_syncmode persistently. The configuration for each
database is shown inTable 130.

Table 130. Configuration values for each HADR database after a role switch. Rows 3 to 5
in columns 4 and 5 have been bolded to show that they have been auto-reconfigured

Configuration
parameter Host1 Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host1 host2 host2

hadr_remote_svc 40 10 40 40

hadr_remote_inst dbinst2 dbinst1 dbinst2 dbinst2

hadr_local_host host1 host2 host3 host4

872 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 130. Configuration values for each HADR database after a role
switch (continued). Rows 3 to 5 in columns 4 and 5 have been bolded to show that they
have been auto-reconfigured

Configuration
parameter Host1 Host2 Host3 Host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

SYNC n/a SUPERASYNC SUPERASYNC

Note: A number of values are not updated for the following reasons
v Because host2 already has its hadr_remote_host and hadr_remote_svc

configuration parameters pointing at its principal standby, host1, these values
are not updated on host2.

v Because host1 already has its hadr_remote_host and hadr_remote_svc
configuration parameters pointing at the new primary, these values are not
updated on host1.

v Because host1's operational synchronization mode is SYNC and host3 and
host4's operational synchronization modes are SUPERASYNC, there is no change
for the effective synchronization mode.

An auxiliary standby takes over by force (failover)

A widespread power outage in City A results in the primary (host1) becoming
unavailable. Normally, the principal standby (host2) which is in SYNC mode
would be the best candidate for taking over and becoming the new primary, but
the power outage means that host2 is momentarily unavailable as well. The DBA
queries the two auxiliary standbys to determine which one has the most log data:
db2pd -hadr -db hadr_db | grep ’PRIMARY_LOG_FILE,PAGE,POS|STANDBY_LOG_FILE,PAGE,POS’

The DBA determines that host3 is the most up to date (although it is still a little
behind in log replay) and picks that host as the new primary:
DB2 TAKEOVER HADR ON DB hadr_db BY FORCE

After the takeover is completed successfully, host3 becomes the new primary.
Meanwhile, host2 becomes available again. host3 informs host2 and host4 that it is
now the primary. On host3, the values for hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst are reconfigured to point to host2, which is the principal standby
because it is the first entry in the hadr_target_list on host3. On host2, the
synchronization mode is reconfigured to SUPERASYNC because that is the setting
for hadr_syncmode on host3; in addition, the hadr_remote_host, hadr_remote_svc,
and hadr_remote_inst are updated (persistently). host4 is automatically redirected
to the new primary, host3. In this redirection, host4 updates (persistently) its
hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration
parameters. There is no automatic reconfiguration on host1 until it becomes
available again. The configuration for each database is shown inTable 131 on page
874.

Chapter 49. High availability disaster recovery (HADR) 873

Table 131. Configuration values for each HADR database after a failover. Rows 3 to 5 in
columns 3 to 5 have been bolded to show that they have been auto-reconfigured

Configuration
parameter

Host1
(unavailable) Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host3 host2 host3

hadr_remote_svc 40 41 40 41

hadr_remote_inst dbinst2 dbinst3 dbinst2 dbinst3

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

n/a SUPERASYNC n/a SUPERASYNC

After a short period of time, host1 becomes available. The DBA tries to start host1
as a standby, but because host1 has more logs than were propagated to host3,
host1 is rejected as part of the initial handshake with the new primary. The DBA
takes a backup of the new primary, restores it to host1, and starts HADR on that
host:
DB2 BACKUP DB hadr_db

DB2 RESTORE DB hadr_db

DB2 START HADR ON DB hadr_db AS STANDBY

As is shown inTable 132, host1 is reconfigured.

Table 132. Configuration values for a reintegrated standby. Various rows in column 2 have
been bolded to show that they have been auto-reconfigured

Configuration
parameter Host1 Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host3 host3 host2 host3

hadr_remote_svc 41 41 40 41

hadr_remote_inst dbinst3 dbinst3 dbinst2 dbinst3

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

SUPERASYNC SUPERASYNC n/a SUPERASYNC

If the DBA wants to make host1 the primary again, then all that is required is a
failback, which will restore the original configuration shown in Table 129 on page
871.

874 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

An auxiliary standby takes over by force (failover) in a SA MP
environment

This example is similar to the previous one, but HADR has been deployed with
IBM Tivoli System Automation for Multiplatforms (SA MP) to automate failover.

A power failure in City A results in the principal standby (host2) becoming
unavailable. Following that, there is an outage on the primary (host1). Normally,
SA MP, the cluster manager, would automatically fail over to the principal standby
(host2), but the power outage means that one of the auxiliary standbys needs to be
the takeover target. Failover cannot be automated to auxiliary standbys, so the
DBA must do it manually. However, before doing this, the DBA needs to ensure
that TSA is disabled so that if host1 or host2 become available, there is no
possibility for a split brain situation, in which more than one database is operating
independently as a primary. To do this, the DBA issues the following command on
host1 and host2 (whenever they become available):
db2haicu -disable

In addition, the DBA needs to keep host1 offline to eliminate the possibility that
the old primary will restart if a client connects to it.

The DBA queries the two auxiliary standbys to determine which one has the most
log data:
db2pd -hadr -db hadr_db | grep ’STANDBY_LOG_FILE,PAGE,POS’

The DBA determines that host3 is the most up to date and picks that host as the
new primary.

Then, the DBA issues the force takeover on host3:
DB2 TAKEOVER HADR ON DB hadr_db BY FORCE

After the takeover is completed successfully, host3 becomes the new primary.
Meanwhile, host2 becomes available again. host3 informs host2 and host4 that it is
now the primary. On host3, the values for hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst are reconfigured to point to host2, which is the principal standby
because it is the first entry in the hadr_target_list on host3. On host2, the
synchronization mode is reconfigured to SUPERASYNC because that is the setting
for hadr_syncmode on host3; in addition, the hadr_remote_host, hadr_remote_svc,
and hadr_remote_inst are updated (persistently). host4 is automatically redirected
to the new primary, host3. In this redirection, host4 updates (persistently) its
hadr_remote_host, hadr_remote_svc, and hadr_remote_inst configuration
parameters. There is no automatic reconfiguration on host1. The configuration for
each database is shown inTable 133.

Table 133. Configuration values for each HADR database after a failover. Rows 3 to 5 in
columns 3 to 5 have been bolded to show that they have been auto-reconfigured

Configuration
parameter

Host1
(unavailable) Host2 Host3 Host4

hadr_target_list host2:40|
host3:41|
host4:42

host1:10|
host3:41|
host4:42

host2:40|
host1:10|
host4:42

host2:40|
host1:10|
host3:41

hadr_remote_host host2 host3 host2 host3

hadr_remote_svc 40 41 40 41

hadr_remote_inst dbinst2 dbinst3 dbinst2 dbinst3

Chapter 49. High availability disaster recovery (HADR) 875

Table 133. Configuration values for each HADR database after a failover (continued). Rows
3 to 5 in columns 3 to 5 have been bolded to show that they have been auto-reconfigured

Configuration
parameter

Host1
(unavailable) Host2 Host3 Host4

hadr_local_host host1 host2 host3 host4

hadr_local_svc 10 40 41 42

Configured
hadr_syncmode

SYNC SYNC SUPERASYNC SUPERASYNC

Effective
hadr_syncmode

n/a SUPERASYNC n/a SUPERASYNC

HADR reads on standby feature
You can use the reads on standby capability to run read-only operations on the
standby database in your High Availability and Disaster Recovery (HADR)
solution. Read operations running on a standby do not affect the standby's main
role of replaying logs shipped from the primary database.

The reads on standby feature reduces the total cost of ownership of your HADR
setup. This expanded role of the standby database allows you to utilize the
standby in new ways, such as running some of the workload that would otherwise
be running on your primary database. This, in turn frees up the primary for
additional workloads.

Read and write clients continue to connect to the primary database; however read
clients can also connect to the read-enabled standby, or active standby, as long as it
is not in the local catchup state or the replay-only window. An active standby's
main role is still to replay logs shipped from the primary. As a result, the data on
the standby should be virtually identical to the data on the primary. In the event of
a failover, any user connections to the standby will be terminated while the
standby takes over as the new primary database.

All types of read queries, including scrollable and non-scrollable cursors, are
supported on the standby. Read capability is supported in all four HADR
synchronization modes (SYNC, NEARSYNC, ASYNC, and SUPERASYNC) and in
all HADR states except local catchup.

Enabling reads on standby
You can enable the reads on standby feature on your High Availability and
Disaster Recovery (HADR) standby database using the DB2_HADR_ROS registry
variable.

Before you begin

It is recommended that database configuration parameter logindexbuild be set to
ON. This will prevent a performance impact from query access plans avoiding any
invalid indexes.

It is also recommended that you use a virtual IP when you have reads on standby
enabled. Client reroute does not differentiate between writable databases (primary
and standard databases) and read-only databases (standby databases). Configuring
client reroute between the primary and standby might route applications to the
database on which they are not intended to be run.

876 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Procedure
1. Set the DB2_HADR_ROS registry variable to ON.
2. Set up and initialize the primary and standby databases for HADR. Refer to

“Initializing high availability disaster recovery (HADR)” on page 894.

Results

Your standby database is now considered an active standby, meaning that it will
accept read-only workloads.

What to do next

You can now utilize your standby database as you see fit, such as configuring
some of your read-only workload to run on it.

To enable your applications to maintain access to your standby database, follow
the steps described in the “Continuous access to Read on Standby databases using
Virtual IP addresses” white paper.

Data concurrency on the active standby database
Changes on the HADR primary database may not necessarily be reflected on the
HADR active standby database. Uncommitted changes on the primary may not
replicate to the standby until the primary flushes, or sends, its logs to disk.

Logs are only guaranteed to be flushed to disk-and, therefore sent to the
standby-after they have been committed. Log flushes can also be triggered by
undeterministic conditions such as a log buffer full situation. As a result, it is
possible for uncommitted changes on the primary to remain in the primary's log
buffer for a long time. Because the logger avoids flushing partial pages, this
situation may particularly affect small uncommitted changes on the primary.

If your workload running on the standby requires the data to be virtually identical
to the data on the primary, you should consider committing your transactions
more frequently.

Isolation level on the active standby database
The only isolation level that is supported on an active standby database (an HADR
standby database that is read enabled) is Uncommitted Read (UR). If the isolation
level requested by an application, statement, or sub-statement is higher than UR,
an error will be returned (SQL1773N Reason Code 1).

If you require an isolation level other than UR, consider using the HADR primary
instead of the standby for this application. If you simply want to avoid receiving
this message, set the DB2_STANDBY_ISO registry variable to UR. When
DB2_STANDBY_ISO is set to UR, the isolation level will be silently coerced to UR. This
setting takes precedence over all other isolation settings such as statement isolation
and package isolation.

Replay-only window on the active standby database
When an HADR active standby database is replaying DDL log records or
maintenance operations, the standby enters the replay-only window. When the
standby is in the replay-only window, existing connections to the standby are
terminated and new connections to the standby are blocked (SQL1776N).

Chapter 49. High availability disaster recovery (HADR) 877

https://www.ibm.com/support/docview.wss?uid=swg27020912
https://www.ibm.com/support/docview.wss?uid=swg27020912

New connections are allowed on the standby after the replay of all active DDL or
maintenance operations has completed.

The only user connections that can remain active on a standby in the replay-only
window are connections that are executing DEACTIVATE DATABASE or TAKEOVER
commands. When applications are forced off at the outset of the replay-only
window, an error is returned (SQL1224N). Depending on the number of readers
connected to the active standby, there may be a slight delay before the DDL log
records or maintenance operations are replayed on the standby.

There are a number of DDL statements and maintenance operations that, when run
on the HADR primary, will trigger a replay-only window on the standby. The
following lists are not exhaustive.

DDL statements

v CREATE, ALTER, or DROP TABLE (except DROP TABLE for DGTT)
v CREATE GLOBAL TEMP TABLE
v TRUNCATE TABLE
v RENAME TABLE
v RENAME TABLESPACE
v CREATE, DROP, or ALTER INDEX
v CREATE or DROP VIEW
v CREATE, ALTER, or DROP TABLESPACE
v CREATE, ALTER, or DROP BUFFER POOL
v CREATE, ALTER, or DROP FUNCTION
v CREATE, ALTER, or DROP PROCEDURE
v CREATE or DROP TRIGGER
v CREATE, ALTER, or DROP TYPE
v CREATE, ALTER, or DROP ALIAS
v CREATE or DROP SCHEMA
v CREATE, ALTER, or DROP METHOD
v CREATE, ALTER, or DROP MODULE
v CREATE, ALTER, or DROP NICKNAME
v CREATE, ALTER, or DROP SEQUENCE
v CREATE, ALTER, or DROP WRAPPER
v CREATE, ALTER, or DROP FUNCTION MAPPING
v CREATE or DROP INDEX EXTENSION
v CREATE or DROP INDEX FOR TEXT
v CREATE or DROP EVENT MONITOR
v CREATE, ALTER, or DROP SECURITY LABEL
v CREATE, ALTER, or DROP SECURITY LABEL COMPONENT
v CREATE, ALTER, or DROP SECURITY POLICY
v CREATE or DROP TRANSFORM
v CREATE, ALTER, or DROP TYPE MAPPING
v CREATE, ALTER, or DROP USER MAPPING
v CREATE or DROP VARIABLE
v CREATE, ALTER, or DROP WORKLOAD
v GRANT USAGE ON WORKLOAD

878 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v REVOKE USAGE ON WORKLOAD
v CREATE, ALTER, or DROP SERVICE CLASS
v CREATE, ALTER, or DROP WORK CLASS SET
v CREATE, ALTER, or DROP WORK ACTION SET
v CREATE, ALTER, or DROP THRESHOLD
v CREATE, ALTER, or DROP HISTOGRAM TEMPLATE
v AUDIT
v CREATE, ALTER, or DROP AUDIT POLICY
v CREATE or DROP ROLE
v CREATE, ALTER, or DROP TRUSTED CONTEXT
v REFRESH TABLE
v SET INTEGRITY

Maintenance operations

v Classic, or offline, reorg
v Inplace, or online, reorg
v Index reorg (indexes all, individual index)
v MDC and ITC reclaim reorg
v Load
v Bind or rebind
v db2rbind
v Runstats
v Table move
v Auto statistics
v Auto reorg
v Real Time Statistics

Other operation or actions

v Automatic Dictionary Creation for tables with COMPRESS YES attribute
v Asynchronous Index Cleanup on detached table partition
v Implicit rebind
v Implicit index rebuild
v Manual update of statistics.
v Deferred MDC rollout
v Asynchronous Index cleanup after MDC rollout
v Reuse of a deleted MDC or ITC block on insert into MDC or ITC table
v Asynchronous background processes updating catalog tables SYSJOBS and

SYSTASKS for inserting, updating, and deleting tasks

Monitoring the replay-only window

You can monitor the replay-only window using the db2pd command with the -hadr
option (on either the standby or the primary) or the MON_GET_HADR table
function (from the primary). The standby's status, including information about the
replay-only window, is sent to the primary on every heartbeat.

There are three pertinent elements to monitor:

Chapter 49. High availability disaster recovery (HADR) 879

v STANDBY_REPLAY_ONLY_WINDOW_ACTIVE, which indicates whether DDL
or maintenance-operation replay is in progress on the standby. Normally, the
value is N, but when the replay-only window is active, the value is Y.

v STANDBY_REPLAY_ONLY_WINDOW_START, which indicates the time at
which the current replay-only window (if there is one) became active.

v STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT, which indicates the
total number of existing uncommitted DDL or maintenance transactions
executed so far in the current replay-only window (if there is one).

To use the table function, issue something similar to the following query on the
primary:
select STANDBY_ID, STANDBY_REPLAY_ONLY_WINDOW_ACTIVE, STANDBY_REPLAY_ONLY_WINDOW_START,
STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT from table (mon_get_hadr(NULL))

Here is an example using the db2pd command on a standby that is currently in a
replay-only window:
db2pd -hadr db HADRDB

Database Member 0 -- Database HADRDB -- Active -- Up 0 days 00:23:17 -- Date 06/08/2011 13:57:23

HADR_ROLE = STANDBY
REPLAY_TYPE = PHYSICAL

HADR_SYNCMODE = NEARSYNC
STANDBY_ID = 1

LOG_STREAM_ID = 0
HADR_STATE = PEER

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst

PRIMARY_MEMBER = 0
STANDBY_MEMBER_HOST = hostS1.ibm.com

STANDBY_INSTANCE = db2inst
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)

HEARTBEAT_INTERVAL(seconds) = 25
HADR_TIMEOUT(seconds) = 120

TIME_SINCE_LAST_RECV(seconds) = 3
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

STANDBY_RECV_REPLAY_GAP(bytes) = 0
PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = Y
STANDBY_REPLAY_ONLY_WINDOW_START = 06/08/2011 13:50:23

STANDBY_REPLAY_ONLY_WINDOW_TRAN_COUNT = 5

880 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Recommendations for minimizing the impact of the replay-only window

Because replay operations on an HADR standby take priority over readers,
frequent read-only windows can be disruptive to readers connected to or
attempting to connect to the standby. To avoid or minimize this impact, consider
the following recommendations:
v Run DDL and maintenance operations during a scheduled maintenance window,

preferably at off-peak hours.
v Run DDL operations collectively rather than in multiple groups.
v Run REORG or RUNSTATS only on the required tables instead of all tables.
v Terminate applications on the active standby using the FORCE APPLICATION

command with the ALL option before running the DDL or maintenance
operations on the primary. Monitor the replay-only window to determine when
it is inactive, and redeploy the applications on the standby.

HADR delayed replay
HADR delayed replay helps prevent data loss due to errant transactions. To
implement HADR delayed replay, set the hadr_replay_delay database
configuration parameter on the HADR standby database.

Delayed replay intentionally keeps the standby database at a point in time that is
earlier than that of the primary database by delaying replay of logs on that
standby. If an errant transaction is executed on the primary, you have until the
configured time delay has elapsed to take action to prevent the errant transaction
from being replayed on the standby. To recover the lost data, you can either copy
this data back to the primary, or you can have the standby take over as the new
primary database.

Delayed replay works by comparing timestamps in the log stream, which is
generated on the primary, and the current time of the standby. As a result, it is
important to synchronize the clocks of the primary and standby databases.
Transaction commit is replayed on the standby according to the following
equation:
(current time on the standby - value of the hadr_replay_delay configuration parameter) >=
timestamp of the committed log record

You should set the hadr_replay_delay database configuration parameter to a large
enough value to allow time to detect and react to errant transactions on the
primary.

You can use this feature in either single standby mode or multiple standby mode.
In multiple standby mode, typically one or more standbys stays current with the
primary for high availability or disaster recovery purposes, and one standby is
configured with delayed replay for protection against errant transactions. If you
use this feature in single standby mode, you should not enable IBM Tivoli System
Automation for Multiplatforms because the takeover will fail.

There are several important restrictions for delayed replay:
v You can set the hadr_replay_delay configuration parameter only on a standby

database.

Chapter 49. High availability disaster recovery (HADR) 881

v A TAKEOVER command on a standby with replay delay enabled will fail. You
must first set the hadr_replay_delay configuration parameter to 0 and then
deactivate and reactivate the standby to pick up the new value, and then issue
the TAKEOVER command.

v The delayed replay feature is supported only in SUPERASYNC mode. Because
log replay is delayed, a lot of unreplayed log data might accumulate on the
standby, filling up receive buffer and spool (if configured). In other
synchronization modes, this would cause the primary to be blocked.
The objective of this feature is to protect against application error. If you want to
use this feature and ensure that there is no data loss in the event of a primary
failure, consider a multiple standby setup with a more synchronous setting on
the principal standby.

Recommendations

Delayed replay and disaster recovery
Consider using a small delay if you are using the standby database for
disaster recovery purposes and errant transaction protection.

Delayed replay and the HADR reads on standby feature
Consider using a small delay if you are using the standby database for
reads on standby purposes, so that reader sessions can see more up-to-date
data. Additionally, because reads on standby runs in “uncommitted read”
isolation level, it can see applied, but not yet committed changes that are
technically still delayed from replay. These uncommitted transactions can
be rolled back in errant transaction recovery procedure when you roll
forward the standby to the PIT that you want and then stop.

Delayed replay and log spooling
If you enable delayed replay, it is recommended that you also enable log
spooling by setting the hadr_spool_limit database configuration
parameter. Because of the intentional delay, the replay position can be far
behind the log receive position on the standby. Without spooling, log
receive can only go beyond replay by the amount of the receive buffer.
With spooling, the standby can receive many more logs beyond the replay
position, providing more protection against data loss in case of primary
failure. Note that in either case, because of the mandatory SUPERASYNC
mode, the primary won't be blocked by the delayed replay.

Recovering data by using HADR delayed replay
Using the HADR time-delayed replay feature, you can recover data that was lost
because of an errant transaction on the primary database by stopping HADR on a
standby before that transaction is replayed.

Before you begin

Delayed replay must have already been enabled for your standby database.

If log replay on the standby, indicated by STANDBY_REPLAY_LOG_TIME, has
passed the commit time for the errant transaction on the standby, you cannot
recover the data using the following procedure. You can determine the
STANDBY_REPLAY_LOG_TIME by using the db2pd command with the -hadr
parameter or the MON_GET_HADR table function.

882 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Restriction: A standby database for which you set the hadr_replay_delay
configuration parameter cannot take over as a primary; you must first disable
delayed replay on that standby.

Procedure

To recover from an errant transaction, perform the following steps on the standby
on which you enabled delayed replay:
1. Verify the timing:

a. Ensure that standby has not yet replayed the transaction. The
STANDBY_REPLAY_LOG_TIME value must not have reached the errant
transaction commit time.

b. Ensure that the standby has received the relevant logs. The
STANDBY_LOG_TIME value, which indicates logs received, must have
reached a PIT before the errant transaction commit time, but close to the
errant transaction commit time. This will be the rollforward PIT used in
step 3. If the standby has not yet received enough log files, you can wait
until more logs are shipped over, but you run the risk of the replay time
reaching the errant transaction time. For example, if the delay is 1 hour, you
should stop HADR no later than 50 minutes after the errant transaction
time (allowing a 10-minute safety margin), even if log shipping has yet not
reached the PIT that you want.
Alternatively, if a shared log archive is available and the logs are already
archived, then there is no need to wait. If the logs are not archived yet, the
logs can be archived using the ARCHIVE LOG command. Otherwise, the user
can manually copy complete log files from the primary to the time-delayed
standby (the overflow log path is preferred, otherwise, use the log path).
For these alternate methods, deactivate the standby first to avoid
interference with standby log shipping and replay.

You can determine these times by issuing db2pd -db dbname -hadr or by
enabling the reads on standby feature on the standby and then issuing the
following query, which uses the MON_GET_HADR table function:
DB2 "select HADR_ROLE, STANDBY_ID, STANDBY_LOG_TIME, STANDBY_REPLAY_LOG_TIME,
varchar(PRIMARY_MEMBER_HOST,20) as PRIMARY_MEMBER_HOST,
varchar(STANDBY_MEMBER_HOST,20) as STANDBY_MEMBER_HOST
from table (mon_get_hadr(NULL))"

2. Stop HADR on the standby database:
DB2 STOP HADR ON DATABASE dbname

3. Roll forward the standby to the PIT that you want and then stop:
DB2 ROLLFORWARD DB dbname to time-stamp and STOP

4. Use one of the following approaches:
v Restore the lost data on the primary:

a. Copy the affected data from the standby and send it back to the primary.
If the errant transaction dropped a table, you could export it on the
standby and import it to the primary. If the errant transaction deleted
rows from a table, you could export the table on the standby and use an
import replace operation on the primary.

b. Reinitialize the delayed-replay standby because its log stream has
diverged from the primary's. No action is needed on any other standbys
because they continue to follow the primary and any data repair on the
primary is also replicated to them.

Chapter 49. High availability disaster recovery (HADR) 883

c. Restore the database using a backup image taken on the primary. The
image can be one taken at any time.

d. Remove all log files in standby log path. This step is important. The
ROLLFORWARD... STOP command in step 3 made the database log stream
diverge from the primary. If the files are left alone, the newly restored
database would follow that log stream and also diverge from the primary.
Alternatively, you can drop the database before the restore for a clean
start, but then you will also lose the current configuration including
HADR configuration.

e. Issue the START HADR command with the AS STANDBY option on the
database. The database should then activate and connect to the primary.

v Have the standby with the intact data become the primary:
a. Shut down the old primary to avoid split brain
b. On the delayed-replay database, set the hadr_replay_delay configuration

parameter to 0. Reconfigure the other parameters like hadr_target_list if
needed. Then run START HADR command with the AS PRIMARY BY FORCE
options on the database to convert it to the new primary. Use the BY
FORCE option because there is no guarantee that the configured principal
standby (which could be the old primary) will be able to connect.

c. Redirect clients to the new primary.
d. The other standbys will be automatically redirected to the new primary.

However, if a standby received logs from the old primary beyond the
point where old and new primary diverge (the PIT used in step 3), it will
be rejected by the new primary. If this happens, reinitialize this standby
using the same procedure as reinitializing the old primary.

e. Reinitialize the old primary because its log stream has diverged from the
new primary's.

f. Restore database using a backup image taken on the new primary, or
taken on the old primary before the PIT used in step 3.

g. Remove all log files in the log path. If you do not do this, the newly
restored database will follow the old primary's log stream and diverge
from the new primary. Alternatively, you can drop the database before
the restore for a clean start, but then you also lose the current
configuration including HADR configuration.

h. Issue the START HADR command with the AS STANDBY option on the
database. The database should then activate and connect to the primary.

Performing rolling updates in a DB2 High Availability Disaster
Recovery (HADR) environment

Use this procedure in a high availability disaster recovery (HADR) environment
when you upgrade software or hardware, update your DB2 database product
software, or change database configuration parameters.

This procedure keeps database service available throughout the rolling update
process, with only a momentary service interruption when processing is switched
from one database to the other.With multiple standbys, you can provide continued
HA and DR protection throughout the rolling update process.

Before you begin

Review the system requirements for HADR. See “System requirements for DB2
high availability disaster recovery (HADR)” on page 887.

884 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The HADR pair should be in peer state before starting the rolling update.

Note: All DB2 fix pack updates, hardware upgrades, and software upgrades
should be implemented in a test environment before being applied to your
production system.

About this task

Use this procedure to perform a rolling update on your DB2 database system and
update the DB2 database product software from one modification level to another.
For example, applying a fix pack to a DB2 database product software. During
rolling updates, the modification level or fix pack level of the standby database can
be later than that of the primary database while testing the new level. However,
you should not keep this configuration for an extended period to reduce the risk of
using features that might be incompatible between the levels. The primary and
standby databases will not connect to each other if the modification level of the
DB2 database product software for the primary database is later than that of the
standby database.

A rolling update cannot be used to upgrade from an earlier version to a later
version of a DB2 database product software. For example, you cannot use this
procedure to upgrade a DB2 database product from Version 9.7 to Version 10.1.

You cannot use this procedure to update the DB2 HADR configuration parameters.
Updates to HADR configuration parameters should be made separately. Because
HADR requires the parameters on the primary and standby to be the same, this
might require both the primary and standby databases to be deactivated and
updated at the same time.

Procedure

To perform a rolling update in an HADR environment:
1. Update the standby database by issuing the following steps:

a. Use the DEACTIVATE DATABASE command to shut down the standby database.
b. If necessary, shut down the instance on the standby database.
c. Change one or more of the following: the software, the hardware, or the

DB2 configuration parameters.

Note: You cannot change any HADR configuration parameters when
performing a rolling update.

d. If necessary, restart the instance on the standby database.
e. Use the ACTIVATE DATABASE command to restart the standby database.
f. Ensure that HADR enters peer state. Use the MON_GET_HADR table

function (on the primary or a read-enabled standby) or the db2pd command
with the -hadr option to check this.

2. Switch the roles of the primary and standby databases:
a. Issue the TAKEOVER HADR command on the standby database.
b. Direct clients to the new primary database. This can be done using

automatic client reroute.

Note: Because the standby database takes over as the primary database, the
new primary database is now updated. If you are applying a DB2 fix pack,
the TAKEOVER HADR command changes the role of the original primary

Chapter 49. High availability disaster recovery (HADR) 885

database to standby database. However, the command does not let the new
standby database connect to the newly updated primary database. Because
the new standby database uses an older version of the DB2 database
system, it might not understand the new log records generated by the
updated primary database, and it will be shut down. In order for the new
standby database to reconnect with the new primary database (that is, for
the HADR pair to reform), the new standby database must also be updated.

3. Update the original primary database (which is now the standby database)
using the same procedure as in step 1 on page 885. When you have done this,
both databases are updated and connected to each other in HADR peer state.
The HADR system provides full database service and full high availability
protection.

4. Optional: To enable the HADR reads on standby feature during the rolling
update perform the following steps to ensure the consistency of the internal
DB2 packages on the standby database before read operations are introduced.
The binding of internal DB2 packages occurs at first connection time, and can
complete successfully only on the primary database.
a. Enable the HADR reads on standby feature on the standby database as

follows:
1) Set the DB2_HADR_ROS registry variable to ON on the standby database.
2) Use the DEACTIVATE DATABASE command to shut down the standby

database.
3) Restart the instance on the standby database.
4) Use the ACTIVATE DATABASE command to restart the standby database.
5) Ensure that HADR enters peer state. Use the MON_GET_HADR table

function (on the primary or a read-enabled standby) or the db2pd
command with the -hadr option to check this.

b. Switch the roles of the primary and standby database as follows:
1) Issue the TAKEOVER HADR command on the standby database.
2) Direct clients to the new primary database.

c. Repeat the same procedure in substep a to enable the HADR reads on
standby feature on the new standby database.

5. Optional: If did not perform step 4 and you want to return to your original
configuration, switch the roles of the primary and standby database as you did
in step 2 on page 885.

6. Optional: In an HADR environment, run db2updv10 only on the primary
database. After running the db2updv10 command, you might have to restart the
database for changes from db2updv10 command to take effect. To perform a
restart:
a. Restart the standby database by deactivating and reactivating it. The

standby database is restarted to prevent the disruption of primary database
service.
1) Run the following command on the standby database:

DEACTIVATE
db dbname

where dbname is the name of the standby database.
2) Run the following command on the standby database:

ACTIVATE
db dbname

where dbname is the name of the standby database.

886 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

b. Switch the roles of the primary and standby databases:
1) Run the following command on the standby database:

TAKEOVER
hadr on db dbname

where dbname is the name of the standby database.
2) Direct clients to the new primary database.

Note: The databases have switched roles. The primary database was
previously the standby database and the standby database was
previously the primary database.

c. Restart the standby database (formerly the primary database), using the
same method as in Step 1.

d. Switch the roles of the primary and standby databases to return the
database to their original roles. Switch the roles using the same method as
in step 2.

High availability disaster recovery (HADR) support
Consider system requirements and feature limitations when you design your high
availability database solution.

System requirements for DB2 high availability disaster
recovery (HADR)

To achieve optimal performance with high availability disaster recovery (HADR),
ensure that your system meets the following requirements for hardware, operating
systems, and for the DB2 database system.

Recommendation: For better performance, use the same hardware and software for
the system where the primary database resides and for the system where the
standby database resides. If the system where the standby database resides has
fewer resources than the system where the primary database resides, it is possible
that the standby database will be unable to keep up with the transaction load
generated by the primary database. This can cause the standby database to fall
behind or the performance of the primary database to degrade. In a failover
situation, the new primary database should have the resources to service the client
applications adequately.

If you enable reads on standby and use the standby database to run some of your
read-only workload, ensure that the standby has sufficient resources. An active
standby requires additional memory and temporary table space usage to support
transactions, sessions, and new threads as well as queries that involve sort and join
operations.

Hardware and operating system requirements

Recommendation: Use identical host computers for the HADR primary and
standby databases. That is, they should be from the same vendor and have the
same architecture.

The operating system on the primary and standby databases should be the same
version, including patches. When the rolling update procedure is used to upgrade
the operating system, the operating system versions can be different on the

Chapter 49. High availability disaster recovery (HADR) 887

primary and standby during the procedure. To minimize risks, plan ahead to have
the procedure completed in a short time and try it out first in a test environment

A TCP/IP interface must be available between the HADR host machines, and a
high-speed, high-capacity network is recommended.

DB2 database requirements

The versions of the database systems for the primary and standby databases must
be identical; for example, both must be either version 8 or version 9. During rolling
updates, the modification level (for example, the fix pack level) of the database
system for the standby database can be later than that of the primary database for
a short while to test the new level. However, you should not keep this
configuration for an extended period of time. The primary and standby databases
will not connect to each other if the modification level of the database system for
the primary database is later than that of the standby database. In order to use the
reads on standby feature, both the primary and the standby databases need to be
Version 9.7 Fix Pack 1.

The DB2 database software for both the primary and standby databases must have
the same bit size (32 or 64 bit). Table spaces and their containers must be identical
on the primary and standby databases. Properties that must be identical include
the table space type (DMS or SMS), table space size, container path, container size,
and container file type (raw device or file system). The amount of space allocated
for log files should also be the same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE
TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the
standby database. You must ensure that the devices involved are set up on both of
the databases before you issue the table space statement on the primary database.

The primary and standby databases do not require the same database path. If
relative container paths are used, the same relative path might map to different
absolute container paths on the primary and standby databases.

Storage groups are fully supported by HADR, including replication of the CREATE
STOGROUP, ALTER STOGROUP and DROP STOGROUP statements. Similar to
table space containers, the storage paths must exist on both primary and standby.

The primary and standby databases must have the same database name. This
means that they must be in different instances.

Redirected restore is not supported. That is, HADR does not support redirecting
table space containers. However, database directory and log directory changes are
supported. Table space containers created by relative paths will be restored to
paths relative to the new database directory.

Buffer pool requirements

Since buffer pool operations are also replayed on the standby database, it is
important that the primary and standby databases have the same amount of
memory. If you are using reads on standby, you will need to configure the buffer
pool on the primary so that the active standby can accommodate log replay and
read applications.

888 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Installation and storage requirements for high availability
disaster recovery (HADR)

To achieve optimal performance with high availability disaster recovery (HADR),
ensure that your system meets the following installation and storage requirements.

Installation requirements

For HADR, instance paths should be the same on the primary and the standby
databases. Using different instance paths can cause problems in some situations,
such as if an SQL stored procedure invokes a user-defined function (UDF) and the
path to the UDF object code is expected to be on the same directory for both the
primary and standby server.

Storage requirements

Storage groups are fully supported by HADR, including replication of the CREATE
STOGROUP, ALTER STOGROUP and DROP STOGROUP statements. Similar to
table space containers, the storage path must exist on both primary and standby.
Symbolic links can be used to create identical paths. The primary and standby
databases can be on the same computer. Even though their database storage starts
at the same path, they do not conflict because the actual directories used have
instance names embedded in them (since the primary and standby databases must
have the same database name, they must be in different instances). The storage
path is formulated as storage_path_name/inst_name/dbpart_name/db_name/
tbsp_name/container_name.

Table spaces and their containers must be identical on the primary and standby
databases. Properties that must be identical include: the table space type (DMS or
SMS), table space size, container path, container size, and container file type (raw
device or file system). Storage groups and their storage paths must be identical.
This includes the path names and the amount of space on each that is devoted to
each storage group. The amount of space allocated for log files should also be the
same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE
TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the
standby database. You must ensure that the devices involved are set up on both of
the databases before you issue the table space statement on the primary database.

If the table space setup is not identical on the primary and standby databases, log
replay on the standby database might encounter errors such as OUT OF SPACE or
TABLE SPACE CONTAINER NOT FOUND. Similarly, if the storage groups's
storage path setup is not identical on the primary and standby databases, log
records associated with the CREATE STOGROUP or ALTER STOGROUP are not be
replayed. As a result, the existing storage paths might prematurely run out of
space on the standby system and automatic storage table spaces are not be able to
increase in size. If any of these situations occurs, the affected table space is put in
rollforward pending state and is ignored in subsequent log replay. If a takeover
operation occurs, the table space is not available to applications.

If the problem is noticed on the standby system prior to a takeover then the
resolution is to re-establish the standby database while addressing the storage
issues. The steps to do this include:
v Deactivating the standby database.
v Dropping the standby database.

Chapter 49. High availability disaster recovery (HADR) 889

v Ensuring the necessary file systems exist with enough free space for the
subsequent restore and rollforward.

v Restoring the database at the standby system using a recent backup of the
primary database (or, reinitialize using split mirror or flash copy with the
db2inidb command). Storage group storage paths should not be redefined
during the restore. Also, table space containers should not be redirected as part
of the restore.

v Restarting HADR on the standby system.

However, if the problem is noticed with the standby database after a takeover has
occurred (or if a choice was made to not address the storage issues until this time)
then the resolution is based on the type of problem that was encountered.

If the database is enabled for automatic storage and space is not available on the
storage paths associated with the standby database then follow these steps:
1. Make space available on the storage paths by extending the file systems, or by

removing unnecessary non-DB2 files on them.
2. Perform a table space rollforward to the end of logs.

In the case where the addition or extension of containers as part of log replay
could not occur, if the necessary backup images and log file archives are available,
you might be able to recover the table space by first issuing the SET TABLESPACE
CONTAINERS statement with the IGNORE ROLLFORWARD CONTAINER
OPERATIONS option and then issuing the ROLLFORWARD command.

The primary and standby databases do not require the same database path. If
relative container paths are used, the same relative path might map to different
absolute container paths on the primary and standby databases. Consequently, if
the primary and standby databases are placed on the same computer, all table
space containers must be defined with relative paths so that they map to different
paths for primary and standby.

HADR and Network Address Translation (NAT) support
NAT, which is supported in an HADR environment, is usually used for firewall
and security because it hides the server's real address.

In an HADR setup, the local and remote host configurations on the primary and
standby nodes are cross-checked to ensure they are correct. In a NAT environment,
a host is known to itself by a particular IP address but is known to the other hosts
by a different IP address. This behavior causes the HADR host cross-check to fail
unless you set the DB2_HADR_NO_IP_CHECK registry variable to ON. Using this setting
causes the host cross-check to be bypassed, enabling the primary and standby to
connect in a NAT environment.

If you are not running in a NAT environment, use the default setting of OFF for the
DB2_HADR_NO_IP_CHECK registry variable. Disabling the cross-check weakens the
HADR validation of your configuration.

Considerations for HADR multiple standby mode

In a NAT environment with a multiple standby setup, each standby's settings for
hadr_local_host and hadr_local_svc must still be listed in the primary's
hadr_target_list or the primary does not accept the connection from that standby.

890 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Normally, in multiple standby mode, on start up, a standby checks that its settings
for hadr_remote_host and hadr_remote_svc are in its hadr_target_list, to ensure
that on role switch, the old primary can become a new standby. In NAT scenarios,
that check fails unless the DB2_HADR_NO_IP_CHECK registry variable to ON. Because
this check is bypassed, the standby waits until it connects to the primary to check
that the primary's hadr_local_host and hadr_local_svc are in the standby's
hadr_target_list. The check still ensures role switch can succeed on this pair.

Note: If the DB2_HADR_NO_IP_CHECK registry variable is set to ON, the
hadr_remote_host and hadr_remote_svc are not automatically updated.

In a multiple standby setup, DB2_HADR_NO_IP_CHECK should be set on all databases
that might be making a connection to another database across a NAT boundary. If
a database will never cross a NAT boundary to connect to another database (that
is, if no such link is configured), then you should not set this registry variable on
that database. When DB2_HADR_NO_IP_CHECK is set, it prevents a standby from
automatically discovering the new primary after a takeover has occurred, and you
have to manually reconfigure the standby to have it connect to the new primary.

Restrictions for High Availability Disaster Recovery (HADR)
To achieve optimal performance with High Availability Disaster Recovery (HADR),
consider HADR restrictions when designing your high availability DB2 database
solution.

The following list is a summary of High Availability Disaster Recovery (HADR)
restrictions:
v HADR is not supported in a partitioned database environment.
v HADR is not supported in DB2 pureScale environments.
v The primary and standby databases must have the same operating system

version and the same version of the DB2 database system, except for a short
time during a rolling upgrade.

v The DB2 database system software on the primary and standby databases must
be the same bit size (32 or 64 bit).

v Clients cannot connect to the standby database unless you have reads on
standby enabled. Reads on standby enables clients to connect to the active
standby database and issue read-only queries.

v If reads on standby is enabled, operations on the standby database that write a
log record are not permitted; only read clients can connect to the active standby
database.

v If reads on standby is enabled, write operations that would modify database
contents are not allowed on the standby database. Any asynchronous threads
such as real-time statistics collection, Auto Index rebuild and utilities that
attempt to modify database objects will not be supported. Real-time statistics
collection and Auto Index rebuild should not be running on the standby
database.

v Log files are only archived by the primary database.
v The self tuning memory manager (STMM) can be run only on the current

primary database. After the primary database is started or the standby database
is converted to a primary database by takeover, the STMM EDU may not start
until the first client connection comes in.

v Backup operations are not supported on the standby database.
v The SET WRITE command cannot be issued on the standby database

Chapter 49. High availability disaster recovery (HADR) 891

v Non-logged operations, such as changes to database configuration parameters
and to the recovery history file, as well as LOB table columns that have the NOT
LOGGED option, are not replicated to the standby database.

v Load operations with the COPY NO option specified are not supported.
v HADR does not support the use of raw I/O (direct disk access) for database log

files. If HADR is started via the START HADR command, or the database is
activated (restarted) with HADR configured, and raw logs are detected, the
associated command will fail.

v Federated server does not fully support HADR in federated two phase commit
(F2PC) scenarios. When a HADR database is configured as a federated database,
it only supports F2PC with type-1 inbound connections.

v HADR does not support infinite logging.
v The system clock of the HADR primary database must be synchronized with the

HADR standby database's system clock.

DB2 High availability disaster recovery (HADR) management
DB2 High availability disaster recovery (HADR) management involves configuring
and maintaining the status of your HADR system.

Managing HADR includes such tasks as:
v Cataloging an HADR database.
v “Initializing high availability disaster recovery (HADR)” on page 894
v Checking or altering database configuration parameters related to HADR.
v “Switching database roles in high availability disaster recovery (HADR)” on

page 921
v “Performing an HADR failover operation” on page 919
v “Monitoring high availability disaster recovery (HADR) environments” on page

923
v “Stopping DB2 High Availability Disaster Recovery (HADR)” on page 925

You can manage HADR using the following methods:
v Command line processor
v DB2 administrative API
v Task assistants for managing HADR in IBM Data Studio Version 3.1 or later.
Related information:

Administering databases with task assistants

DB2 High Availability Disaster Recovery (HADR) commands
The DB2 High Availability Disaster Recovery (HADR) feature provides complex
logging, failover, and recovery functionality for DB2 high availability database
solutions.

Despite the complexity of the functionality HADR provides, there are only a few
actions you need to directly command HADR to perform: starting HADR; stopping
HADR; and causing the standby database to take over as the primary database.

There are three high availability disaster recover (HADR) commands used to
manage HADR:
v START HADR

892 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.adm.doc/topics/chxutrundbadmcmds.html

v STOP HADR

v TAKEOVER HADR

To invoke these commands, use the command line processor or the administrative
API.

Issuing the START HADR command with either the AS PRIMARY or AS STANDBY option
changes the database role to the one specified if the database is not already in that
role. This command also activates the database, if it is not already activated.

The STOP HADR command changes an HADR database (either primary or standby)
into a standard database. Any database configuration parameters related to HADR
remain unchanged so that the database can easily be reactivated as an HADR
database.

The TAKEOVER HADR command, which you can issue on the standby database only,
changes the standby database to a primary database. When you do not specify the
BY FORCE option, the primary and standby databases switch roles. When you do
specify the BY FORCE option, the standby database unilaterally switches to become
the primary database. In this case, the standby database attempts to stop
transaction processing on the old primary database. However, there is no
guarantee that transaction processing will stop. Use the BY FORCE option to force a
takeover operation for failover conditions only. To whatever extent possible, ensure
that the current primary has definitely failed, or shut it down yourself, prior to
issuing the TAKEOVER HADR command with the BY FORCE option.

HADR database role switching

A database can be switched between primary and standard roles dynamically and
repeatedly. When the database is either online or offline, you can issue both the
START HADR command with the AS PRIMARY option and the STOP HADR command.

You can switch a database between standby and standard roles statically. You can
do so repeatedly only if the database remains in rollforward pending state. You can
issue the START HADR command with the AS STANDBY option to change a standard
database to standby while the database is offline and in rollforward pending state.
Use the STOP HADR command to change a standby database to a standard database
while the database is offline. The database remains in rollforward pending state
after you issue the STOP HADR command. Issuing a subsequent START HADR
command with the AS STANDBY option returns the database to standby. If you issue
the ROLLFORWARD DATABASE command with the STOP option after stopping HADR on
a standby database, you cannot bring it back to standby. Because the database is
out of rollforward pending state, you can use it as a standard database. This is
referred to as taking a snapshot of the standby database. After changing an
existing standby database into a standard database, consider creating a new
standby database for high availability purposes.

To switch the role of the primary and standby databases, perform a takeover
operation without using the BY FORCE option.

To change the standby to primary unilaterally (without changing the primary to
standby), use forced takeover. Subsequently, you might be able to reintegrate the
old primary as a new standby.

HADR role is persistent. Once an HADR role is established, it remains with the
database, even through repeated stopping and restarting of the DB2 instance or

Chapter 49. High availability disaster recovery (HADR) 893

deactivation and activation of the DB2 database.

Starting the standby is asynchronous

When you issue the START HADR command with the AS STANDBY option, the
command returns as soon as the relevant engine dispatchable units (EDUs) are
successfully started. The command does not wait for the standby to connect to the
primary database. In contrast, the primary database is not considered started until
it connects to a standby database (with the exception of when the START HADR
command is issued on the primary with the BY FORCE option). If the standby
database encounters an error, such as the connection being rejected by the primary
database, the START HADR command with the AS STANDBY option might have already
returned successfully. As a result, there is no user prompt to which HADR can
return an error indication. The HADR standby will write a message to the DB2
diagnostic log and shut itself down. You should monitor the status of the HADR
standby to ensure that it successfully connects with the HADR primary.

Replay errors, which are errors that the standby encounters while replaying log
records, can also bring down the standby database. These errors might occur, for
example, when there is not enough memory to create a buffer pool, or if the path
is not found while creating a table space. You should continuously monitor the
status of the standby database.

Do not run HADR commands from a client using a database alias
enabled for client reroute

When automatic client reroute is set up, the database server has a predefined
alternate server so that client applications can switch between working with either
the original database server or the alternative server with only minimal
interruption of the work. In such an environment, when a client connects to the
database via TCP, the actual connection can go to either the original database or to
the alternate database. HADR commands are implemented to identify the target
database through regular client connection logic. Consequently, if the target
database has an alternative database defined, it is difficult to determine the
database on which the command is actually operating. Although an SQL client
does not need to know which database it is connecting to, HADR commands must
be applied on a specific database. To accommodate this limitation, HADR
commands should be issued locally on the server machine so that client reroute is
bypassed (client reroute affects only TCP/IP connections).

HADR commands must be run on a server with a valid license

The START HADR, STOP HADR, and TAKEOVER HADR commands require that a valid
HADR license has been installed on the server where the command is executed. If
the license is not present, these commands will fail and return a command-specific
error code (SQL1767N, SQL1769N, or SQL1770N, respectively) along with a reason
code of 98. To correct the problem, either install a valid HADR license using
db2licm, or install a version of the server that contains a valid HADR license as
part of its distribution.

Initializing high availability disaster recovery (HADR)
Use this procedure to set up and initialize a DB2 high availability disaster recovery
(HADR) primary database and one standby database.

894 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

About this task

HADR can be initialized through the command line processor (CLP), or by calling
the db2HADRStart API.

Procedure

To use the CLP to initialize HADR on your system for the first time:
1. Determine the host name, host IP address, and the service name or port

number for each of the HADR databases.
If a host has multiple network interfaces, ensure that the HADR host name or
IP address maps to the intended one. You need to allocate separate HADR
ports in /etc/services for each protected database. These cannot be the same
as the ports allocated to the instance. The host name can only map to one IP
address.

Note: The instance names for the primary and standby databases do not have
to be the same.

2. Create the standby database by restoring a backup image or by initializing a
split mirror, based on the existing database that is to be the primary.
In the following example, the BACKUP DATABASE and RESTORE DATABASE
commands are used to initialize a standby database. In this case, an NFS
mounted file system is accessible at both sites.
Issue the following command at the primary database:
BACKUP DB dbname TO /nfs1/backups/db2/dbname

If the database already exists on the standby instance, drop it first for a clean
start. Files from the existing database can interfere with HADR operation. For
example, left over log files can lead the standby onto a log chain not
compatible with the primary. Issue the following command to drop the
database:
DROP DB dbname

Issue the following command at the standby database:
RESTORE DB dbname FROM /nfs1/backups/db2/dbname

The following example illustrates how to use the db2inidb utility to initialize
the standby database using a split mirror of the primary database. This
procedure is an alternative to the backup and restore procedure illustrated
previously.
Issue the following command at the standby database:
DB2INIDB dbname AS STANDBY

Note:

a. The database names for the primary and standby databases must be the
same.

b. Do not issue the ROLLFORWARD DATABASE command on the standby database
after the restore operation or split mirror initialization. The results of using
a rollforward operation might differ slightly from replaying the logs using
HADR on the standby database. If the databases are not identical, attempts
to start the standby will fail.

c. When creating the standby database using the RESTORE DATABASE command,
ensure that the standby remains in rollforward-pending or
rollforward-in-progress mode. This means that you cannot issue the
ROLLFORWARD DATABASE command with either the COMPLETE option or the STOP

Chapter 49. High availability disaster recovery (HADR) 895

option. An error will be returned if the START HADR command with the AS
STANDBY option is attempted on the database after rollforward is stopped.

d. The following RESTORE DATABASE command options should be avoided when
setting up the standby database: TABLESPACE, INTO, REDIRECT, and WITHOUT
ROLLING FORWARD.

e. When setting up the standby database using the db2inidb utility, do not use
the SNAPSHOT or MIRROR options. You can specify the RELOCATE USING option
to change one or more of the following configuration attributes: instance
name, log path, and database path. However, you must not change the
database name or the table space container paths.

3. On each of the databases, set the hadr_local_host, hadr_local_svc, and
hadr_syncmode configuration parameters:
"UPDATE DB CFG FOR dbname USING

HADR_LOCAL_HOST hostname
HADR_LOCAL_SVC servicename
HADR_SYNCMODE syncmode"

The configuration parameters in this step, step 4, and step 5 must be set after
the standby databases has been created. If they are set prior to creating the
standby database, the settings on the standby database will reflect what is set
on the primary database.

Note: This is a generic HADR setup; for more advanced configuration options
and settings, see the related links.

4. Optional: Set the hadr_target_list configuration parameter on the standby and
the primary:
UPDATE DB CFG FOR dbname USING

HADR_TARGET_LIST principalhostname:principalservicename3

This is an optional, but recommended, step if you are only using one standby
database. If you set the hadr_target_list parameter, you can add additional
standby database dynamically. You can also take advantage of the
autoconfiguration behavior and specify a different synchronization mode on the
standby.

5. On each of the databases, set the hadr_remote_host, hadr_remote_svc, and
hadr_remote_inst configuration parameters.
On the primary, set the parameters to the corresponding values on the standby
by issuing the following command:
"UPDATE DB CFG FOR dbname USING

HADR_REMOTE_HOST principalhostname
HADR_REMOTE_SVC principalservicename
HADR_REMOTE_INST principalinstname"

On the standby, set the parameters to the corresponding values on the primary
by issuing the following command:
"UPDATE DB CFG FOR dbname USING

HADR_REMOTE_HOST primaryhostname
HADR_REMOTE_SVC primaryservicename
HADR_REMOTE_INST primaryinstname"

If you have configured hadr_target_list, the values for these parameters are
automatically given the proper values if they were set incorrectly. However,
explicitly setting them to the correct values makes correct values available
immediately. These values are helpful for the IBM Tivoli System Automation

3.

896 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

for Multiplatforms (SA MP) software, which might require the
hadr_remote_host value to construct the resource name.

6. Connect to the standby instance and start HADR on the standby database, as in
the following example:

START HADR ON DB dbname AS STANDBY

Note: Usually, the standby database is started first. If you start the primary
database first, this startup procedure will fail if the standby database is not
started within the time period specified by the hadr_timeout database
configuration parameter.
After the standby starts, it enters local catchup state in which locally available
log files are read and replayed. After it has replayed all local logs, it enters
remote catchup pending state.

7. Connect to the primary instance and start HADR on the primary database, as
in the following example:

START HADR ON DB dbname AS PRIMARY

After the primary starts, the standby enters remote catchup state in which
receives log pages from the primary and replays them. After it has replayed all
log files that are on the disk of the primary database machine, both databases
enter peer state (unless you have chosen SUPERASYNC as the synchronization
mode).

Initializing a standby database
One strategy for making a database solution highly available is maintaining a
primary database to respond to user application requests, and a secondary or
standby database that can take over database operations for the primary database
if the primary database fails.

Initializing the standby database entails copying the primary database to the
standby database.

Procedure

There are several ways to initialize the standby database. For example:
v Use disk mirroring to copy the primary database, and use DB2 database

suspended I/O support to split the mirror to create the second database.
v Create a backup image of the primary database and recovery that image to the

standby database.
v Use SQL replication to capture data from the primary database and apply that

data to the standby database.

What to do next

After initializing the standby database, you must configure your database solution
to synchronize the primary database and standby database so the standby database
can take over for the primary database if the primary database fails.

Using a split mirror as a standby database
Use the following procedure to create a split mirror of a database for use as a
standby database outside of a DB2 pureScale environment.

Chapter 49. High availability disaster recovery (HADR) 897

If a failure occurs on the primary database and it becomes inaccessible, you can
use the standby database to take over for the primary database.

About this task

If the primary database was configured for log archiving, the standby database will
share the same log archiving configuration. If the log archiving destination is
accessible to the standby database, the standby database will automatically retrieve
log files from it during rollforward operations. However, once the database is
brought out of the rollforward pending state, the standby database will attempt to
archive log files to the same location used by the primary database. While the
standby database will initially use a different log chain from the primary database,
the primary database could eventually use the same log chain value as the standby
database. This could cause the primary database to archive log files on top of the
log files archived by the standby database, or vice versa , and can affect the
recoverability of both databases. You should change the log archiving destination
for the standby database to be different from that of the primary database to avoid
recoverability issues.

Procedure

To use a split mirror as a standby database:
1. Connect to the primary database using the following command:

db2 connect to db_name

2. Suspend the I/O write operations on the primary database using the
following command:

db2 set write suspend for database

Note: While the database is in suspended state, you should not be running
other utilities or tools. You should only be making a copy of the database. You
can optionally use the FLUSH BUFFERPOOLS ALL statement before issuing
SET WRITE SUSPEND to minimize the recovery time of the standby database.

3. Create one or multiple split mirrors from the primary database using
appropriate operating system-level and storage-level commands.

Note:

v Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container
directories that exist outside the database directory. To gather this
information, refer to the DBPATHS administrative view, which shows all the
files and directories of the database that need to be split.

v If you specified the EXCLUDE LOGS with the SET WRITE command, do not
include the log files in the copy.

4. Resume the I/O write operations on the primary database using the following
command:

db2 set write resume for database

5. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the
primary database. It must be located on a secondary system that has the same
directory structure and uses the same instance name as the primary database.
If the mirrored database must exist on the same system as the primary
database, you can use the db2relocatedb utility or the RELOCATE USING option
of the db2inidb command to accomplish this.

898 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

6. Start the database instance on the secondary system using the following
command:

db2start

7. Initialize the mirrored database on the secondary system by placing it in
rollforward pending state using the following command:

db2inidb <database_alias> as standby

If required, specify the RELOCATE USING option of the db2inidb command to
relocate the standby database:

db2inidb <database_alias> as standby relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate
the database.

Note: You can take a full database backup using the split mirror if you have
DMS table spaces (database managed space) or automatic storage table spaces.
Taking a backup using the split mirror reduces the overhead of taking a
backup on the production database. Such backups are considered to be online
backups and will contain in-flight transactions, but you cannot include log
files from the standby database. When such a backup is restored, you must
rollforward to at least the end of the backup before you can issue a
ROLLFORWARD command with the STOP option. Because the backup will not
contain any log files, the log files from the primary database that were in use
at the time the SET WRITE SUSPEND command was issued must be available or
the rollforward operation will not be able to reach the end of the backup.

8. Make the archived log files from the primary database available to the
standby database either by configuring the log archiving parameters on the
standby database or by shipping logs to the standby database.

9. Rollforward the database to the end of the logs or to a point-in-time.
10. Continue retrieving log files and rollforwarding the database through the logs

until you reach the end of the logs or the point-in-time required for the
standby database.

11. Bring the standby database online by issuing the ROLLFORWARD command with
the STOP option specified.

Note:

v The logs from the primary database cannot be applied to the mirrored
database after it has been taken out of rollforward pending state.

v If the primary database was configured for log archiving, the standby
database will share the same log archiving configuration. If the log
archiving destination is accessible to the standby database, the standby
database will automatically retrieve log files from it while rollforward is
being performed. However, once the database is brought out of rollforward
pending state, the standby database will attempt to archive log files to the
same location used by the primary database. Although the standby database
will initially use a different log chain from the primary database, there is
nothing to prevent the primary database from eventually using the same log
chain value as the standby database. This may cause the primary database
to archive log files on top of the log files archived by the standby database,
or vice versa. This could affect the recoverability of both databases. You
should change the log archiving destination for the standby database to be
different from that of the primary database to avoid these issues.

Chapter 49. High availability disaster recovery (HADR) 899

Using a split mirror as a standby database in a DB2 pureScale
environment

Use the following procedure to create a split mirror of a database for use as a
standby database in a DB2 pureScale environment. If a failure occurs on the
primary database and it becomes inaccessible, you can use the standby database to
take over for the primary database.

About this task

If the primary database was configured for log archiving, the standby database will
share the same log archiving configuration. If the log archiving destination is
accessible to the standby database, the standby database will automatically retrieve
log files from it during rollforward operations. However, once the database is
brought out of the rollforward pending state, the standby database will attempt to
archive log files to the same location used by the primary database. While the
standby database will initially use a different log chain from the primary database,
the primary database could eventually use the same log chain value as the standby
database. This could cause the primary database to archive log files on top of the
log files archived by the standby database, or vice versa , and can affect the
recoverability of both databases. You should change the log archiving destination
for the standby database to be different from that of the primary database to avoid
recoverability issues.

Procedure

To use a split mirror as a standby database:
1. Connect to the primary database using the following command:

db2 connect to <db_namd>

2. Configure the General Parallel File System (GPFS) on the secondary cluster by
extracting and importing the primary cluster's settings. On the primary
cluster, run the following GPFS command:
mmfsctl <filesystem> syncFSconfig -n <remotenodefile>

where <remotenodefile> is the list of hosts in the secondary cluster.
3. List the cluster manager domain using the following command:

db2cluster -cm -list -domain

4. Stop the cluster manager on each host in the cluster using the following
command:
db2cluster -cm -stop -host <host> -force

Note: The last host which you shut down must be the host from which you
are issuing this command.

5. Stop the GPFS cluster on the secondary system using the following command:
db2cluster -cfs -stop -all

6. Suspend the I/O write operations on the primary database using the
following command:
db2 set write suspend for database

Note: While the database is in suspended state, you should not be running
other utilities or tools. You should only be making a copy of the database. You
can optionally flush all buffer pools before issuing SET WRITE SUSPEND to
minimize the recovery window. This can be achieved using the FLUSH
BUFFERPOOLS ALL statement.

900 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

7. Determine which file systems must be suspended and copied using the
following command:
db2cluster -cfs -list -filesystem

8. Suspend each GPFS file system that contains data or log data using the
following command:
/usr/lpp/mmfs/bin/mmfsctl <filesystem> suspend

where <filesystem> represents a file system that contains data or log data.

Note: While the GPFS file systems are suspended, both read and write
operations are blocked. You should only be performing the split mirror
operations during this period to minimize the amount of time that read
operations are blocked.

9. Create one or multiple split mirrors from the primary database using
appropriate operating system-level and storage-level commands.

Note:

v Ensure that you copy the entire database directory, including the volume
directory. You must also copy the log directory and any container
directories that exist outside the database directory. To gather this
information, refer to the DBPATHS administrative view, which shows all the
files and directories of the database that need to be split.

v If you specified the EXCLUDE LOGS with the SET WRITE command, do not
include the log files in the copy.

10. Resume the GPFS file systems that were suspended using the following
command for each suspended file system:
/usr/lpp/mmfs/bin/mmfsctl <filesystem> resume

where filesystem represents a suspended file system that contains data or log
data.

11. Resume the I/O write operations on the primary database using the following
command:
db2 set write resume for database

12. Start the GPFS cluster on the secondary system using the following command:
db2cluster -cfs -start -all

13. Start the cluster manager using the following command
db2cluster -cm -start -domain <domain>

14. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the
primary database. It must be located on a secondary system that has the same
directory structure and uses the same instance name as the primary database.
If the mirrored database must exist on the same system as the primary
database, you can use the db2relocatedb utility or the RELOCATE USING option
of the db2inidb command to accomplish this.

15. Start the database instance on the secondary system using the following
command:
db2start

16. Initialize the database on the secondary system by placing it in rollforward
pending state:
db2inidb <database_alias> as standby

Chapter 49. High availability disaster recovery (HADR) 901

If required, specify the RELOCATE USING option of the db2inidb command to
relocate the database:
db2inidb database_alias as standby relocate using relocatedbcfg.txt

where relocatedbcfg.txt contains the information required to relocate the
database.

Note: You can take a full database backup using the split mirror if you have
DMS table spaces (database managed space) or automatic storage table spaces.
Taking a backup using the split mirror reduces the overhead of taking a
backup on the production database. Such backups are considered to be online
backups and will contain in-flight transactions, but you cannot include log
files from the standby database. When such a backup is restored, you must
rollforward to at least the end of the backup before you can issue a
ROLLFORWARD STOP command. Because the backup will not contain any log files,
the log files from the primary database that were in use at the time the SET
WRITE SUSPEND command was issued must be available or the rollforward
operation will not be able to reach the end of the backup.

17. Make the archived log files from the primary database available to the
standby database either by configuring the log archiving parameters on the
standby database or by shipping logs to the standby database.

18. Rollforward the database to the end of the logs or to a point-in-time.

Note: When executing rollforward operations, you might encounter SQL1273
errors. These errors are expected if some of the log files were not copied from
the primary system when the database was split or if one member generates
log files faster than other members. SQL1273 is generated in some cases when
the rollforward operation must stop to preserve data consistency because the
contents of the log files depends on the contents of unavailable log files from
other members. If the standby database is configured to retrieve log files
archived by the primary database, you can either wait for the primary system
to archive the necessary log file or you can use the ARCHIVE LOG command on
the primary system to force the log file to be archived. Otherwise, you must
ship the required log files to the standby database. After the necessary log file
is available on the standby database, the rollforward operation can read
further ahead in the logs, although SQL1273 might be encountered again if
some members are still generating log files faster than other members. For
more information, see the “Disaster recovery and high availability through log
shipping in a DB2 pureScale environment” section of the “Backup and restore
operations in a DB2 pureScale environment” Information Center topic.

19. Continue the rollforward operation through the logs until you reach the end
of the logs or the point-in-time required for the standby database, shipping
new log files to the standby database if required.

20. Bring the standby database online by issuing the ROLLFORWARD DATABASE
command with the STOP option specified.

Note:

v The logs from the primary database cannot be applied to the mirrored
database once it has been taken out of rollforward pending state.

v If the primary database was configured for log archiving, the standby
database will share the same log archiving configuration. If the log
archiving destination is accessible to the standby database, the standby
database will automatically retrieve log files from it while rollforward is
being performed. However, once the database is brought out of rollforward

902 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

pending state, the standby database will attempt to archive log files to the
same location used by the primary database. Although the standby database
will initially use a different log chain from the primary database, there is
nothing to prevent the primary database from eventually using the same
log chain value as the standby database. This may cause the primary
database to archive log files on top of the log files archived by the standby
database, or vice versa. This could affect the recoverability of both
databases. You should change the log archiving destination for the standby
database to be different from that of the primary database to avoid these
issues.

Database configuration for high availability disaster recovery (HADR)
You can use database configuration parameters to help achieve optimal
performance with DB2 HADR.

In most cases, you should use the same database configuration parameter settings
and database manager configuration parameter settings on the systems where the
primary and standby databases are located. If the settings for the configuration
parameters on the standby database are different from the settings on the primary,
the following problems might occur:
v Error messages might be returned for the standby database while the log files

that were shipped from the primary database are being replayed.
v After a takeover operation, the new primary database might be unable to handle

the workload, resulting in performance problems or in applications receiving
error messages that they did not receive when they were connected to the
original primary database.

Changes to the configuration parameters on the primary database are not
automatically propagated to the standby database. You must manually make
changes on the standby database. For dynamic configuration parameters, changes
take effect without the need to shut down and restart the database management
system (DBMS) or the database. For non-dynamic configuration parameters,
changes take effect after the standby database is restarted.

Following are sections on specific configuration topics for HADR:
v “Size of log files configuration parameter on the standby database”
v “Database configuration parameter autorestart” on page 904
v “Log receive buffer size on a standby database” on page 904
v “Load operations and HADR” on page 904
v “DB2_HADR_PEER_WAIT_LIMIT registry variable” on page 906
v “HADR configuration parameters” on page 907

Size of log files configuration parameter on the standby
database

One exception to the configuration parameter behavior that is described in the
previous paragraph is the behavior of the logfilsiz database configuration
parameter. Although the value of this parameter is not replicated to the standby
database, to guarantee identical log files on both databases, the setting for the
logfilsiz configuration parameter on the standby is ignored. Instead, the database
creates local log files whose sizes match the size of the log files on the primary
database.

Chapter 49. High availability disaster recovery (HADR) 903

After a takeover, the original standby (new primary) uses the logfilsiz parameter
value that you set on the original primary until you restart the database. At that
point, the new primary reverts to using the value that you set locally. In addition,
the current log file is truncated and any pre-created log files are resized on the
new primary.

If the databases keep switching roles as a result of a non-forced takeover and
neither database is deactivated, the log file size that is used is always the one from
the original primary database. However, if there is a deactivation and then a restart
on the original standby (new primary), the new primary uses the log file size that
you configured locally. This log file size continues to be used if the original
primary takes over again. Only after a deactivation and restart on the original
primary would the log file size revert to the settings on the original primary.

Database configuration parameter autorestart

The recommended configuration for the autorestart parameter on HADR systems
is ON. If the autorestart parameter is set to OFF, and the server fails, your response
depends on whether or not you want to restart or fail over to the standby:
v If you want to restart, run the RESTART DATABASE command manually. If the

restart fails, perform failover.
v If you want to fail over, perform the following steps:

1. Shut down the old primary to prevent a “split brain”. Do this by either
stopping the DB2 instance or powering off the host machine. If the server is
not accessible for administration, fence it off from clients by disabling the
client/server network.

Note: Deactivating the database is not sufficient because client connections
can bring it back online. If it failed in a consistent state, then even if the
autorestart parameter is set to OFF, this does not prevent client connections
from bringing it back online.

2. After shutting down old primary, issue the TAKEOVER HADR command with the
BY FORCE option on the standby.

Log receive buffer size on a standby database

By default, the log receive buffer size on a standby database is two times the value
that you specify for the logbufsz configuration parameter on the primary database.
This size might not be sufficient. For example, consider what might happen when
the HADR synchronization mode is set to ASYNC and the primary and standby
databases are in peer state. If the primary database is also experiencing a high
transaction load, the log receive buffer on the standby database might fill to
capacity, and the log shipping operation from the primary database might stall. To
manage these temporary peaks, you can make either of the following configuration
changes:
v Increase the size of the log receive buffer on the standby database by modifying

the value of the DB2_HADR_BUF_SIZE registry variable.
v Enable log spooling on a standby database by setting the hadr_spool_limit

configuration parameter.

Load operations and HADR

If you issue the LOAD command on the primary database with the COPY YES
parameter, the command executes on the primary database, and the data is

904 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

replicated to the standby database if the load copy can be accessed through the
path or device that is specified by the command. If load copy data cannot be
accessed from the standby database, the table space in which the table is stored is
marked invalid on the standby database. Any future log records that pertain to this
table space are skipped. To ensure that the load operation can access the load copy
on the standby database, use a shared location for the output file from the COPY
YES parameter. Alternatively, you can deactivate the standby database while
performing the load on the primary, place a copy of the output file in the standby
path, and then activate the standby database.

If you issue the LOAD command with the NONRECOVERABLE parameter on the primary
database, the command executes on the primary database, and the table on the
standby database is marked invalid. Any future log records that pertain to this
table are skipped. You can issue the LOAD command with the COPY YES and REPLACE
parameters to bring the table back, or you can drop the table to recover the space.

Note: You cannot bring a table back using the LOAD command with the COPY YES
and REPLACE options if the table has one of the following characteristics:
v The table was created with the NOT LOGGED INITIALLY attribute.
v The table is a multidimensional clustered (MDC) table.
v The table has compression dictionaries.
v The table has XML columns.

Because a load operation with the COPY NO parameter is not supported with
HADR, the operation is automatically converted to a load operation with the
NONRECOVERABLE parameter. To enable a load operation with the COPY NO parameter
to be converted to a load operation with the COPY YES parameter, set the
DB2_LOAD_COPY_NO_OVERRIDE registry variable on the primary database. This registry
variable is ignored on the standby database. Ensure that the device or directory
that you specify for the primary database can be accessed by the standby database
by using the same path, device, or load library.

If you are using the Tivoli Storage Manager (TSM) software to perform a load
operation with the COPY YES parameter, you might have to set the vendoropt
configuration parameter on the primary and standby databases. Depending on
how you configured TSM, the values on the primary and standby databases might
not be the same. Also, when using TSM to perform a load operation with the COPY
YES parameter, you must issue the db2adutl command with the GRANT parameter to
give the standby database read access to the files that are loaded.

If table data is replicated by a load operation with the COPY YES parameter, the
indexes are replicated as follows:
v If you specify the REBUILD indexing mode option with the LOAD command and

the LOG INDEX BUILD table attribute is set to ON (using the ALTER TABLE
statement), or if it is set to NULL and the logindexbuild database configuration
parameter is set to ON, the primary database includes the rebuilt index object
(that is, all of the indexes defined on the table) in the copy file to enable the
standby database to replicate the index object. If the index object on the standby
database is marked invalid before the load operation, it becomes usable again
after the load operation as a result of the index rebuild.

v If you specify the INCREMENTAL indexing mode option with the LOAD command
and the LOG INDEX BUILD table attribute is set to ON (using the ALTER TABLE
statement), or if it is set to NULL and the logindexbuild database configuration
parameter on the primary database is set to ON, the index object on the standby

Chapter 49. High availability disaster recovery (HADR) 905

database is updated only if it is not marked invalid before the load operation.
Otherwise, the index is marked invalid on the standby database.

DB2_HADR_PEER_WAIT_LIMIT registry variable

Restriction: In multiple standby mode, none of this section applies to the auxiliary
standbys because they are in SUPERASYNC synchronization mode, so they do not
ever enter peer state.

If you set the DB2_HADR_PEER_WAIT_LIMIT registry variable, the HADR primary
database breaks out of peer state if logging on the primary database has been
blocked for the specified number of seconds because of log replication to the
standby. When this limit is reached, the primary database breaks the connection to
the standby database. If you disable the peer window by setting the
hadr_peer_window configuration parameter to 0, the primary enters the
disconnected state, and logging resumes. If you enable the peer window, the
primary database enters disconnected peer state, in which logging continues to be
blocked. The primary leaves disconnected peer state upon reconnection or peer
window expiration. Logging resumes after the primary leaves disconnected peer
state.

Note: If you set DB2_HADR_PEER_WAIT_LIMIT, use a minimum value of 10 to avoid
triggering false alarms.

Honoring peer window transition when a database breaks out of peer state ensures
peer window semantics for safe takeover in all cases. If the primary fails during
the transition, normal peer window protection still applies: safe takeover from the
standby if it is still in disconnected peer state.

On the standby side, after disconnection, the database continues replaying already
received logs. After the received logs have been replayed, the standby reconnects
to the primary. After replaying the received logs, the standby reconnects to the
primary. Upon reconnection, normal state transition follows: first remote catchup
state, then peer state.

Relationship to hadr_timeout database configuration parameter

The hadr_timeout database configuration parameter does not break the
primary out of peer state if the primary keeps receiving heartbeat messages
from the standby while blocked. The hadr_timeout database configuration
parameter specifies a timeout value for the HADR network layer. An
HADR database breaks the connection to its partner database if it has not
received any message from its partner for the period that is specified by
the hadr_timeout configuration parameter. The timeout does not control
timeout for higher-layer operations such as log shipping and ack
(acknowledgement) signals. If log replay on the standby database is stuck
on a large operation such as load or reorganization, the HADR component
still sends heartbeat messages to the primary database on the normal
schedule. In such a scenario, the primary is blocked as long as the standby
replay is blocked unless you set the DB2_HADR_PEER_WAIT_LIMIT registry
variable.

The DB2_HADR_PEER_WAIT_LIMIT registry variable unblocks primary logging
regardless of connection status. Even if you do not set the
DB2_HADR_PEER_WAIT_LIMIT registry variable, the primary always breaks out
of peer state when a network error is detected or the connection is closed,
possibly as result of the hadr_timeout configuration parameter.

906 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

HADR configuration parameters

Some HADR configuration parameters are static, such as hadr_local_host and
hadr_remote_host . Static parameters are loaded on database startup, and changes
are ignored during run time. HADR parameters are also loaded when the START
HADR command completes. On the primary database, HADR can be started and
stopped dynamically, with the database remaining online. Thus, one way to refresh
the effective value of an HADR configuration parameter without shutting down
the database is to stop and restart HADR. In contrast, the STOP HADR brings down
the database on the standby, so the standby's parameters cannot be refreshed with
database online.

Host name parameters and service and port name parameters (single standby
mode) An HADR pair has five interrelated configuration parameters that you

should set:
v hadr_local_host

v hadr_remote_host

v hadr_local_svc

v hadr_remote_svc

v hadr_remote_inst

TCP connections are used for communication between the primary and
standby databases. The “local” parameters specify the local address and
the “remote” parameters specify the remote address. A primary database
listens on its local address for new connections. A standby database that is
not connected to a primary database retries connection to its remote
address.

The standby database also listens on its local address. In some scenarios,
another HADR database can contact the standby database on this address
and send it messages.

Unless the HADR_NO_IP_CHECK registry variable is set, HADR does the
following cross-checks of local and remote addresses on connection:
my local address = your remote address

and
my remote address = your local address

The check is done using the IP address and port number, rather than the
literal string in the configuration parameters. You need to set the
HADR_NO_IP_CHECK registry variable in NAT (Network Address Translation)
environment to bypass the check.

You can configure an HADR database to use either IPv4 or IPv6 to locate
its partner database. If the host server does not support IPv6, you must use
IPv4. If the server supports IPv6, whether the database uses IPv4 or IPv6
depends upon the format of the address that you specify for the
hadr_local_host and hadr_remote_host configuration parameters. The
database attempts to resolve the two parameters to the same IP format and
use IPv6 when possible. The following table shows how the IP mode is
determined for IPv6-enabled servers:

IP mode used for
hadr_local_host parameter

IP mode used for
hadr_remote_host parameter

IP mode used for HADR
communications

IPv4 address IPv4 address IPv4

Chapter 49. High availability disaster recovery (HADR) 907

IP mode used for
hadr_local_host parameter

IP mode used for
hadr_remote_host parameter

IP mode used for HADR
communications

IPv4 address IPv6 address Error

IPv4 address host name, maps to IPv4
only

IPv4

IPv4 address host name, maps to IPv6
only

Error

IPv4 address host name, maps to IPv4 and
v6

IPv4

IPv6 address IPv4 address Error

IPv6 address IPv6 address IPv6

IPv6 address host name, maps to IPv4
only

Error

IPv6 address host name, maps to IPv6
only

IPv6

IPv6 address host name, maps to IPv4 and
IPv6

IPv6

hostname, maps to IPv4 only IPv4 address IPv4

hostname, maps to IPv4 only IPv6 address Error

hostname, maps to IPv4 only hostname, maps to IPv4 only IPv4

hostname, maps to IPv4 only hostname, maps to IPv6 only Error

hostname, maps to IPv4 only hostname, maps to IPv4 and
IPv6

IPv4

hostname, maps to IPv6 only IPv4 address Error

hostname, maps to IPv6 only IPv6 address IPv6

hostname, maps to IPv6 only hostname, maps to IPv4 only Error

hostname, maps to IPv6 only hostname, maps to IPv6 only IPv6

hostname, maps to IPv6 only hostname, maps to IPv4 and
IPv6

IPv6

hostname, maps to IPv4 and
IPv6

IPv4 address IPv4

hostname, maps to IPv4 and
IPv6

IPv6 address IPv6

hostname, maps to IPv4 and
IPv6

hostname, maps to IPv4 only IPv4

hostname, maps to IPv4 and
IPv6

hostname, maps to IPv6 only IPv6

hostname, maps to IPv4 and
IPv6

hostname, maps to IPv4 and
IPv6

IPv6

The primary and standby databases can make HADR connections only if
they use the same IPv4 or IPv6 format. If one server is IPv6 enabled (but
also supports IPv4) and the other server supports IPv4 only, at least one of
the hhadr_local_host and hadr_remote_host parameters on the IPv6 server
must specify an IPv4 address to force database on this server to use IPv4.

You can set the HADR local service and remote service parameters
(hadr_local_svc and hadr_remote_svc) to either a port number or a service
name. The values that you specify must map to ports that are not being

908 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

used by any other service, including other DB2 components or other
HADR databases. In particular, you cannot set either parameter value to
the TCP/IP port that is used by the server to await communications from
remote clients (the value of the svcename database manager configuration
parameter) or the next port (the value of the svcename parameter + 1).

If the primary and standby databases are on different servers, they can use
the same port number or service name; otherwise, they must have different
values.

Host name, service or port name, and target list parameters (multiple standby
mode)

In multiple standby mode, you should still set the hadr_local_host,
hadr_local_svc, hadr_remote_host, hadr_remote_host, and
hadr_remote_inst configuration parameters. If you set those parameters
incorrectly, they are automatically updated after the primary connects to
the standbys by using the settings of the hadr_target_list configuration
parameter. This parameter specifies the host and port names of all the
standbys. The first standby that you specify in the target list is considered
to be the principal HADR standby database.

In multiple standby mode, you should still set the hadr_local_host,
hadr_local_svc, hadr_remote_host, hadr_remote_host, and
hadr_remote_inst configuration parameters. The hadr_local_host and
hadr_local_svc parameters have the same meaning as in single standby
mode. On the primary, sethadr_remote_host, hadr_remote_host, and
hadr_remote_inst to indicate its principal standby. A new parameter,
hadr_target_list is used to list all standbys, with the first entry being the
principal standby. On standby, set the “remote” parameters to indicate the
primary. In certain conditions, the “remote” parameters (on both the
primary and the standby) can be automatically updated. For more
information, see the “Automatic reconfiguration of HADR parameters”
section in “Database configuration for multiple HADR standby databases”
on page 859.

Synchronization mode

In single standby mode, the synchronization mode, which you specify with
the hadr_syncmode configuration parameter must be identical on the
primary and standby databases. The consistency of the value of this
configuration parameter is checked when an HADR pair establishes a
connection.

In multiple standby mode, the synchronization mode does not have to be
the same. All standbys have an effective synchronization mode that is
determined by the type of standby that they are. The principal standby
uses the synchronization mode of the primary, and the auxiliary standbys
use SUPERASYNC. All standbys have a configured synchronization mode,
which is the explicit setting for hadr_syncmode and is used if a standby
becomes the new primary.

For more detailed information, see “DB2 high availability disaster recovery
(HADR) synchronization mode”.

HADR timeout and peer window

The timeout period, which you specify with the hadr_timeout
configuration parameter, must be identical on the primary and standby
databases. The consistency of the values of these configuration parameters
is checked when an HADR pair establishes a connection.

Chapter 49. High availability disaster recovery (HADR) 909

With one exception, when the primary database starts, it waits for the
longer of the two following periods for a standby to connect:
v For a minimum of 30 seconds
v For the number of seconds that is specified by the hadr_timeout

database configuration parameter.

If the standby does not connect in the specified time, the startup fails. The
one exception to this behavior is when you issue the START HADR command
with the BY FORCE parameter. In this case, the primary database starts
without waiting for the standby database to connect to it.

In multiple standby mode, the primary only waits for the principal
standby to connect; a connection to an auxiliary standby is optional.

After an HADR pair establishes a connection, they exchange heartbeat
messages. The heartbeat interval is computed from factors like the
hadr_timeout and hadr_peer_window configuration parameters. It is
reported by the HEARTBEAT_INTERVAL field in MON_GET_HADR table
function. If one database does not receive any message from the other
database within the number of seconds that is specified by the
hadr_timeout configuration parameter, it initiates a disconnect. This
behavior means that at most, it takes the number of seconds that is
specified by the hadr_timeout configuration parameter for an HADR
database to detect the failure of either its partner database or the
intervening network. If you set the hadr_timeout configuration parameter
too low, you will receive false alarms and frequent disconnections.

If you have the hadr_peer_window configuration parameter set to a nonzero
value and the primary loses connection to the standby in peer state, the
primary database does not commit transactions until the connection with
the standby database is restored or the time value of the hadr_peer_window
configuration parameter elapses, whichever happens first.

For maximal availability, the default value for the hadr_peer_window
database configuration parameter is 0. When this parameter is set to 0, as
soon as the connection between the primary and the standby is closed, the
primary drops out of peer state to avoid blocking transactions. The
connection can close because the standby closed the connection, a network
error is detected, or timeout is reached. For increased data consistency, but
reduced availability, you can set the hadr_peer_window database
configuration parameter to a nonzero value.

For more information, see “Setting the hadr_timeout and hadr_peer_window
database configuration parameters”.

The following sample configuration is for the primary and standby databases:

Primary database:
HADR_LOCAL_HOST host1.ibm.com
HADR_LOCAL_SVC hadr_service
HADR_REMOTE_HOST host2.ibm.com
HADR_REMOTE_SVC hadr_service
HADR_REMOTE_INST dbinst2
HADR_TIMEOUT 120
HADR_SYNCMODE NEARSYNC
HADR_PEER_WINDOW 120

Standby database:

910 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

HADR_LOCAL_HOST host2.ibm.com
HADR_LOCAL_SVC hadr_service
HADR_REMOTE_HOST host1.ibm.com
HADR_REMOTE_SVC hadr_service
HADR_REMOTE_INST dbinst1
HADR_TIMEOUT 120
HADR_SYNCMODE NEARSYNC
HADR_PEER_WINDOW 120

Setting the hadr_timeout and hadr_peer_window database
configuration parameters

You can configure the hadr_timeout and hadr_peer_window database configuration
parameters for optimal response to a connection failure.

hadr_timeout database configuration parameter
If an HADR database does not receive any communication from its partner
database for longer than the length of time specified by the hadr_timeout
database configuration parameter, then the database concludes that the
connection with the partner database is lost. If the database is in peer state
when the connection is lost, then it moves into disconnected peer state if
the hadr_peer_window database configuration parameter is greater than
zero, or into remote catchup pending state if hadr_peer_window is not
greater than zero. The state change applies to both primary and standby
databases.

hadr_peer_window database configuration parameter
The hadr_peer_window configuration parameter does not replace the
hadr_timeout configuration parameter. The hadr_timeout configuration
parameter determines how long an HADR database waits before
considering its connection with the partner database as failed. The
hadr_peer_window configuration parameter determines whether the
database goes into disconnected peer state after the connection is lost, and
how long the database should remain in that state. HADR breaks the
connection as soon as a network error is detected during send, receive, or
poll on the TCP socket. HADR polls the socket every 100 milliseconds.
This allows it to respond quickly to network errors detected by the OS.
Only in the worst case does HADR wait until the timeout to break a bad
connection. In this case, a database application that is running at the time
of failure can be blocked for a period of time equal to the sum of the
hadr_timeout and hadr_peer_window database configuration parameters.

Setting the hadr_timeout and hadr_peer_window database configuration
parameters

It is desirable to keep the waiting time that a database application
experiences to a minimum. Setting the hadr_timeout and hadr_peer_window
configuration parameters to small values would reduce the time that a
database application must wait if a HADR standby databases loses its
connection with the primary database. However, there are two other details
that should be considered when choosing values to assign to the
hadr_timeout and hadr_peer_window configuration parameters:
v The hadr_timeout database configuration parameter should be set to a

value that is long enough to avoid false alarms on the HADR connection
caused by short, temporary network interruptions. For example, the
default value of hadr_timeout is 120 seconds, which is a reasonable
value on many networks.

v The hadr_peer_window database configuration parameter should be set to
a value that is long enough to allow the system to perform automated

Chapter 49. High availability disaster recovery (HADR) 911

failure responses. If the HA system, for example a cluster manager,
detects primary database failure before disconnected peer state ends, a
failover to the standby database takes place. Data is not lost in the
failover as all data from old primary is replicated to the new primary. If
hadr_peer_window is too short, HA system may not have enough time to
detect the failure and respond.

Note: In HADR multiple standby mode, the principal standby uses the
primary's setting for hadr_peer_window (the effective peer window). The
setting for hadr_peer_window on any auxiliary standby is meaningless
because that type of standby always runs in SUPERASYNC mode.

Log archiving configuration for DB2 high availability disaster
recovery (HADR)

To use log archiving with DB2 high availability disaster recovery (HADR),
configure both the primary database and the standby database for automatic log
retrieval capability from all log archive locations. For multiple standby systems,
configure archiving on primary and all standby databases.

Only the current primary database can perform log archiving. If the primary and
standby databases are set up with separate archiving locations, logs are archived
only to the primary database's archiving location. In the event of a takeover, the
standby database becomes the new primary database and any logs archived from
that point on are saved to the original standby database's archiving location. In
such a configuration, logs are archived to one location or the other, but not both;
with the exception that following a takeover, the new primary database might
archive a few logs that the original primary database had already archived. In a
multiple standby system, the archived log files can be scattered among all
databases' (primary and standbys) archive devices. A shared archive is preferred
because all files are stored in a single location.

Many operations need to retrieve archived log files. These operations include:
database roll forward, the HADR primary database retrieving log files to send to
the standby database in remote catch up, and replication programs (such as Q
Replication) reading logs. As a result, a shared archive for an HADR system is
preferred, otherwise, the needed files can be distributed on multiple archive
devices, and user intervention is needed to locate the needed files and copy them
to the requesting database. The recommended copy destination is an archive
device. If copying into an archive is not feasible, copy the logs into the overflow
log path. As a last resort, copy them into the log path (but you should be aware
that there is a risk of damaging the active log files). DB2 does not auto delete user
copied files in the overflow and active log path, so you should manually remove
the files when they are no longer needed by any HADR standby or any
application.

A specific scenario is a takeover in multiple standby mode. After the takeover, the
new primary might not have all log files needed by other standbys (because a
standby is at an older log position). If the primary cannot find a requested log file,
it notifies the standby, which closes the connection and then reconnects in a few
seconds to retry. The retry duration is limited to a few minutes. When retry time is
exhausted, the standby shuts down. In this case, you should copy the files to the
primary to ensure it has files from the first missing file to its current log file. After
the files are copied, restart the standby if needed.

912 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The standby database automatically manages log files in its log path. The standby
database does not delete a log file from its local log path until it has been notified
by the primary database that the primary database has archived it. This behavior
provides added protection against the loss of log files. If the primary database fails
and its log disk becomes corrupted before a particular log file is archived on the
primary database, the standby database does not delete that log file from its own
disk because it has not received notification that the primary database successfully
archived the log file. If the standby database then takes over as the new primary
database, it archives that log file before recycling it. If both the logarchmeth1 and
logarchmeth2 configuration parameters are in use, the standby database does not
recycle a log file until the primary database has archived it using both methods.

In addition to the benefits previously listed, a shared log archive device improves
the catchup process by allowing the standby database to directly retrieve older log
files from the archive in local catchup state, instead of retrieving those files
indirectly through the primary in remote catchup state. However, it is
recommended that you not use a serial archive device such as a tape drive for
HADR databases. With serial devices, you might experience performance
degradation on both the primary and standby databases because of mixed read
and write operations. The primary writes to the device when it archives log files
and the standby reads from the device to replay logs. This performance impact can
occur even if the device is not configured as shared.

Shared log archives on Tivoli Storage Manager

Using a shared log archive with IBM Tivoli Storage Manager (TSM) allows one or
more nodes to appear as a single node to the TSM server, which is especially
useful in an HADR environment where either machine can be the primary at any
one time.

To set up a shared log archive, you need to use proxy nodes which allow the TSM
client nodes to perform data protection operations against a centralized name
space on the TSM server. The target client node owns the data and agent nodes act
on behalf of the target nodes to manage the backup data. The proxy node target is
the node name defined on the TSM server to which backup versions of distributed
data are associated. The data is managed in a single namespace on the TSM server
as if it is entirely the data for this node. The proxy node target name can be a real
node (for example, one of the application hosts) or a virtual node name (that is,
with no corresponding physical node). To create a virtual proxy node name, use
the following commands on the TSM server:

Grant proxynode target=virtual-node-name agent=HADR-primary-name
Grant proxynode target=virtual-node-name agent=HADR-standby-name

Next, you need to set these database configuration parameters on the primary and
standby databases to the virtual-node-name:
v vendoropt

v logarchopt

In a multiple standby setup, you need to grade proxynode access to all machines
on the TSM server and configure the vendoropt and logarchopt configuration
parameters on all of the standbys.

Chapter 49. High availability disaster recovery (HADR) 913

HADR log spooling
The high availability disaster recovery (HADR) log spooling feature allows
transactions on primary to make progress without having to wait for the log replay
on the standby.

When this feature is enabled, log data sent by the primary is spooled, or written, to
disk on the standby, and that log data is later read by log replay.

Log spooling, which is enabled by setting the hadr_spool_limit database
configuration parameter, is an improvement to the HADR feature. When replay is
slow, it is possible that new transactions on the primary can be blocked because it
is not able to send log data to the standby system if there is no room in the buffer
to receive the data. The log spooling feature means that the standby is not limited
by the size of its buffer. When there is an increase in data received that cannot be
contained in the buffer, the log replay reads the data from disk. This allows the
system to better tolerate either a spike in transaction volume on the primary, or a
slow down of log replay (due to the replay of particular type of log records) on the
standby.

This feature could potentially lead to a larger gap between the log position of
received logs on the standby and the log replay position on the standby, which can
lead to longer takeover time. Use the db2pd command with the -hadr option or the
MON_GET_HADR table function to monitor this gap by comparing the
STANDBY_LOG_POS field, which shows receive position, and the
STANDBY_REPLAY_LOG_POS field. You should consider your spool limit setting
carefully because the old standby cannot start up as the new primary and receive
transactions until the replay of the spooled logs has finished.

Index logging and high availability disaster recovery (HADR)
You should consider setting the database configuration parameters logindexbuild
and indexrec for high availability disaster recovery (HADR) databases.

Using the logindexbuild database configuration parameter

Recommendation: For HADR databases, set the logindexbuild database
configuration parameter to ON to ensure that complete information is logged for
index creation, re-creation, and reorganization. Although this means that index
builds might take longer on the primary system and that more log space is
required, the indexes will be rebuilt on the standby system during HADR log
replay and will be available when a failover takes place. Otherwise, when
replaying an index build or rebuild event, the standby marks the index invalid,
because the log records do not contain enough information to populate the new
index. If index builds on the primary system are not logged and a failover occurs,
any invalid indexes that remain after the failover is complete have to be rebuilt
before they can be accessed. While the indexes are being re-created, they cannot be
accessed by any applications.

Note: If the LOG INDEX BUILD table attribute is set to its default value of NULL,
DB2 uses the value specified for the logindexbuild database configuration
parameter. If the LOG INDEX BUILD table attribute is set to ON or OFF, the value
specified for the logindexbuild database configuration parameter is ignored.

You might choose to set the LOG INDEX BUILD table attribute to OFF on one or
more tables for either of the following reasons:
v You do not have enough active log space to support logging of the index builds.

914 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v The index data is very large and the table is not accessed often; therefore, it is
acceptable for the indexes to be re-created at the end of the takeover operation.
In this case, set the indexrec configuration parameter to RESTART. Because the
table is not frequently accessed, this setting causes the system to re-create the
indexes at the end of the takeover operation instead of waiting for the first time
the table is accessed after the takeover operation.

If the LOG INDEX BUILD table attribute is set to OFF on one or more tables, any
index build operation on those tables might cause the indexes to be re-created any
time a takeover operation occurs. Similarly, if the LOG INDEX BUILD table
attribute is set to its default value of NULL, and the logindexbuild database
configuration parameter is set to OFF, any index build operation on a table might
cause the indexes on that table to be re-created any time a takeover operation
occurs. You can prevent the indexes from being re-created by taking one of the
following actions:
v After all invalid indexes are re-created on the new primary database, take a

backup of the database and apply it to the standby database. As a result of
doing this, the standby database does not have to apply the logs used for
re-creating invalid indexes on the primary database, which would mark those
indexes as rebuild required on the standby database.

v Set the LOG INDEX BUILD table attribute to ON, or set the LOG INDEX BUILD
table attribute to NULL and the logindexbuild configuration parameter to ON
on the standby database to ensure that the index re-creation will be logged.

Using the indexrec database configuration parameter

Recommendation: Set the indexrec database configuration parameter to RESTART
(the default) on both the primary and standby databases. This causes invalid
indexes to be rebuilt after a takeover operation is complete. If any index builds
have not been logged, this setting allows DB2 to check for invalid indexes and to
rebuild them. This process takes place in the background, and the database is
accessible after the takeover operation has completed successfully.

If a transaction accesses a table that has invalid indexes before the indexes have
been rebuilt by the background re-create index process, the invalid indexes are
rebuilt by the first transaction that accesses it.

High availability disaster recovery (HADR) performance
Configuring different aspects of your database system, including network
bandwidth, CPU power, and buffer size, can improve the performance of your DB2
high availability disaster recovery (HADR) databases.

The network is the key part of your HADR setup because network connectivity is
required to replicate database changes from the primary to the standby, keeping
the two databases in sync.

Recommendations for maximizing network performance:

v Ensure that network bandwidth is greater than the database log generation
rate.

v Consider network delays when you choose the HADR synchronization
mode. Network delays affect the primary only in SYNC and NEARSYNC
modes.
The slowdown in system performance as a result of using SYNC mode can
be significantly larger than that of the other synchronization modes. In
SYNC mode, the primary database sends log pages to the standby database

Chapter 49. High availability disaster recovery (HADR) 915

only after the log pages are successfully written to the primary database log
disk. To protect the integrity of the system, the primary database waits for
an acknowledgment from the standby before it notifies an application that a
transaction was prepared or committed. The standby database sends the
acknowledgment only after it writes the received log pages to the standby
database disk. The performance overhead equals the time that is needed for
writing the log pages on the standby database plus the time that is needed
for sending the messages back to the primary.
In NEARSYNC mode, the primary database writes and sends log pages in
parallel. The primary then waits for an acknowledgment from the standby.
The standby database acknowledges as soon as the log pages are received
into its memory. On a fast network, the overhead to the primary database is
minimal. The acknowledgment might have already arrived by the time the
primary database finishes local log write.
For ASYNC mode, the log write and send are also in parallel; however, in
this mode the primary database does not wait for an acknowledgment from
the standby. Therefore, network delay is not an issue. Performance overhead
is even smaller with ASYNC mode than with NEARSYNC mode.
For SUPERASYNC mode, transactions are never blocked or experience
elongated response times because of network interruptions or congestion.
New transactions can be processed as soon as previously submitted
transactions are written to the primary database. Therefore, network delay is
not an issue. The elapsed time for the completion of non-forced takeover
operations might be longer than in other modes because the log gap
between the primary and the standby databases might be relatively larger.

v Consider tuning the DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF registry
variables.
HADR log shipping workload, network bandwidth, and transmission delay
are important factors to consider when you are tuning the TCP socket buffer
sizes. Two registry variables, DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF
allow tuning of the TCP socket send and receive buffer size for HADR
connections only. These two variables have the value range of 1024 to
4294967295 and default to the socket buffer size of the operating system,
which varies depending on the operating system. It is strongly
recommended that you use a minimum value of 16384 (16 K) for your
DB2_HADR_SOSNDBUF and DB2_HADR_SORCVBUF settings. Some operating systems
automatically round or silently cap the user specified value.

You can use the HADR simulator (a command-line tool that generates a
simulated HADR workload) to measure network performance and to
experiment with various network tuning options. You can download the
simulator at https://www.ibm.com/developerworks/community/wikis/
home/wiki/DB2HADR/page/HADR%20simulator.

Network congestion

For each log write on the primary, the same log pages are also sent to the standby.
Each write operation is called a flush. The size of the flush is limited to the log
buffer size on the primary database (which is controlled by the database
configuration parameter logbufsz). The exact size of each flush is nondeterministic.
A larger log buffer does not necessarily lead to a larger flush size.

If the standby database is too slow replaying log pages, its log-receiving buffer
might fill up, thereby preventing the buffer from receiving more log pages. In
SYNC and NEARSYNC modes, if the primary database flushes its log buffer one

916 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

https://www.ibm.com/developerworks/community/wikis/home/wiki/DB2HADR/page/HADR%20simulator
https://www.ibm.com/developerworks/community/wikis/home/wiki/DB2HADR/page/HADR%20simulator

more time, the data is likely to be buffered in the network pipeline consisting of
the primary machine, the network, and the standby database. Because the standby
database does not have free buffer to receive the data, it cannot acknowledge, so
the primary database becomes blocked while it is waiting for the standby
database's acknowledgement.

In ASYNC mode, the primary database continues to send log pages until the
pipeline fills up and it cannot send additional log pages. This condition is called
congestion. Congestion is reported by the hadr_connect_status monitor element.
For SYNC and NEARSYNC modes, the pipeline can usually absorb a single flush
and congestion does not occur. However, the primary database remains blocked
waiting for an acknowledgment from the standby database on the flush operation.

Congestion can also occur if the standby database is replaying log records that take
a long time to replay, such as database or table reorganization log records.

In SUPERASYNC mode, since the transaction commit operations on the primary
database are not affected by the relative slowness of the HADR network or the
standby HADR server, the log gap between the primary database and the standby
database might continue to increase. It is important to monitor the log gap as it is
an indirect measure of the potential number of transactions that might be lost
should a true disaster occur on the primary system. In disaster recovery scenarios,
any transactions that are committed during the log gap would not be available to
the standby database. Therefore, monitor the log gap by using the hadr_log_gap
monitor element; if it occurs that the log gap is not acceptable, investigate the
network interruptions or the relative speed of the standby HADR server and take
corrective measures to reduce the log gap.

Recommendations for minimizing network congestion:

v The standby database should be powerful enough to replay the logged
operations of the database as fast as they are generated on the primary.
Identical primary and standby hardware is recommended.

v Consider tuning the size of the standby database log-receiving buffer by
using the DB2_HADR_BUF_SIZE registry variable.
A larger buffer can help to reduce congestion, although it might not remove
all of the causes of congestion. By default, the size of the standby database
log-receiving buffer is two times the size of the primary database log-writing
buffer. The database configuration parameter logbufsz specifies the size of
the primary database log-writing buffer.
You can determine if the standbys log-receiving buffer is inadequate by
using the db2pd command with the -hadr option or the MON_GET_HADR
table function. If the value for the STANDBY_RECV_BUF_PERCENT field, which
indicates the percentage of standby log receiving buffer that is being used, is
close to 100, increase the DB2_HADR_BUF_SIZE setting.

v Consider setting the DB2_HADR_PEER_WAIT_LIMIT registry variable, which
allows you to prevent primary database logging from blocking because of a
slow or blocked standby database.
When the DB2_HADR_PEER_WAIT_LIMIT registry variable is set, the HADR
primary database breaks out of the peer state if logging on the primary
database is blocked for the specified number of seconds because of log
replication to the standby. When this limit is reached, the primary database
breaks the connection to the standby database. If the peer window is
disabled, the primary enters disconnected state and logging resumes. If the
peer window is enabled, the primary database enters disconnected peer
state, in which logging continues to be blocked. The primary database leaves

Chapter 49. High availability disaster recovery (HADR) 917

disconnected peer state upon re-connection or peer window expiration.
Logging resumes after the primary database leaves disconnected peer state.

Note: If you set DB2_HADR_PEER_WAIT_LIMIT, use a minimum value of 10 to
avoid triggering false alarms.
Honoring peer window transition when breaking out of peer state ensures
peer window semantics for safe takeover in all cases. If the primary fails
during the transition, normal peer window protection still applies (safe
takeover from standby as long as it is still in disconnected-peer state).

v In most systems, the logging capability is not driven to its limit. Even in
SYNC mode, there might not be an observable slow down on the primary
database. For example, if the limit of logging is 40 MB per second with
HADR enabled, but the system was just running at 30 MB per second before
HADR is enabled, then you might not notice any difference in overall
system performance.

v To speed up the catchup process, you can use a shared log archive device.
However, if the shared device is a serial device such as a tape drive, you
might experience performance degradation on both the primary and standby
databases because of mixed read and write operations.

v If you are going to use the reads on standby feature, the standby must have
the resources to accommodate this additional work.

v If you are going to use the reads on standby feature, configure your buffer
pools on the primary, and that information is shipped to the standby
through logs.

v If you are going to use the reads on standby feature, Tune the pckcachesz,
catalogcache_sz, applheapsz, and sortheap configuration parameters on the
standby.

Cluster managers and high availability disaster recovery
(HADR)

You can implement DB2 High Availability Disaster Recovery (HADR) databases on
nodes of a cluster, and use a cluster manager to improve the availability of your
database solution.

You can have both the primary database and the standby database managed by the
same cluster manager, or you can have the primary database and the standby
database managed by different cluster managers.

Set up an HADR pair where the primary and standby databases
are serviced by the same cluster manager

This configuration is best suited to environments where the primary and standby
databases are located at the same site and where the fastest possible failover is
required. These environments would benefit from using HADR to maintain DBMS
availability, rather using crash recovery or another recovery method.

You can use the cluster manager to quickly detect a problem and to initiate a
takeover operation. Because HADR requires separate storage for the DBMS, the
cluster manager should be configured with separate volume control. This
configuration prevents the cluster manager from waiting for failover to occur on
the volume before using the DBMS on the standby system. You can use the
automatic client reroute feature to redirect client applications to the new primary
database.

918 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Set up an HADR pair where the primary and standby databases
are not serviced by the same cluster manager

This configuration is best suited to environments where the primary and standby
databases are located at different sites and where high availability is required for
disaster recovery in the event of a complete site failure. There are several ways you
can implement this configuration. When an HADR primary or standby database is
part of a cluster, there are two possible failover scenarios.
v If a partial site failure occurs and a node to which the DBMS can fail over

remains available, you can choose to perform a cluster failover. In this case, the
IP address and volume failover is performed using the cluster manager; HADR
is not affected.

v If a complete site failure occurs where the primary database is located, you can
use HADR to maintain DBMS availability by initiating a takeover operation. If a
complete site failure occurs where the standby database is located, you can
repair the site or move the standby database to another site.

Performing an HADR failover operation
When you want the current standby database to become the new primary database
because the current primary database is not available, you can perform a failover.

About this task

Warning:

This procedure might cause a loss of data. Review the following information before
performing this emergency procedure:
v Ensure that the primary database is no longer processing database transactions.

If the primary database is still running, but cannot communicate with the
standby database, executing a forced takeover operation (issuing the TAKEOVER
HADR command with the BY FORCE option) could result in two primary databases.
When there are two primary databases, each database will have different data,
and the two databases can no longer be automatically synchronized.
– Deactivate the primary database or stop its instance, if possible. (This might

not be possible if the primary system has hung, crashed, or is otherwise
inaccessible.) After a takeover operation is performed, if the failed database is
later restarted, it will not automatically assume the role of primary database.

v The likelihood and extent of transaction loss depends on your specific
configuration and circumstances:
– If the primary database fails while in peer state or disconnected peer state

and the synchronization mode is synchronous (SYNC), the standby database
will not lose transactions that were reported committed to an application
before the primary database failed.

– If the primary database fails while in peer state or disconnected peer state
and the synchronization mode is near synchronous (NEARSYNC), the
standby database can only lose transactions committed by the primary
database if both the primary and the standby databases fail at the same time.

– If the primary database fails while in peer state or disconnected peer state
and the synchronization mode is asynchronous (ASYNC), the standby
database can lose transactions committed by the primary database if the
standby database did not receive all of the log records for the transactions
before the takeover operation was performed. The standby database can also

Chapter 49. High availability disaster recovery (HADR) 919

lose transactions committed by the primary database if the standby database
crashes before it was able to write all the received logs to disk.

Note: Peer window is not allowed in ASYNC mode, therefore the primary
database will never enter disconnected peer state in that mode.

– If the primary database fails while in remote catchup state and the
synchronization mode is super asynchronous (SUPERASYNC), the standby
database can lose transactions committed by the primary database if the
standby database did not receive all of the log records for the transactions
before the takeover operation was performed. The standby database can also
lose transactions committed by the primary database if the standby database
crashes before it was able to write all the received logs to disk.

Note: Databases can never be in peer or disconnected peer state in
SUPERASYNC mode. Failover (forced takeover) is allowed in remote catchup
state only if the synchronization mode is SUPERASYNC.

– If the primary database fails while in remote catchup pending state,
transactions that have not been received and processed by the standby
database will be lost.

Note: Any log gap shown in the database snapshot will represent the gap at
the last time the primary and standby databases were communicating with
each other; the primary database might have processed a very large number
of transactions since that time.

v Ensure that any application that connects to the new primary (or that is rerouted
to the new primary by client reroute), is prepared to handle the following:
– There is data loss during failover. The new primary does not have all of the

transactions committed on the old primary. This can happen even when the
hadr_syncmode configuration parameter is set to SYNC. Because an HADR
standby applies logs sequentially, you can assume that if a transaction in an
SQL session is committed on the new primary, all previous transactions in the
same session have also been committed on the new primary. The commit
sequence of transactions across multiple sessions can be determined only with
detailed analysis of the log stream.

– It is possible that a transaction can be issued to the original primary,
committed on the original primary and replicated to the new primary
(original standby), but not be reported as committed because the original
primary crashed before it could report to the client that the transaction was
committed. Any application you write should be able to handle that
transactions issued to the original primary, but not reported as committed on
the original primary, are committed on the new primary (original standby).

– Some operations are not replicated, such as changes to database configuration
and to external UDF objects.

v The TAKEOVER HADR command can only be issued on the standby database.
v HADR does not interface with the DB2 fault monitor (db2fm) which can be used

to automatically restart a failed database. If the fault monitor is enabled, you
should be aware of possible fault monitor action on a presumably failed primary
database.

v A takeover operation can only take place if the primary and standby databases
are in peer state or the standby database is in remote catchup pending state. If
the standby database is in any other state, an error will be returned.

Note: You can make a standby database that is in local catchup state available
for normal use by converting it to a standard database. To do this, shut the

920 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

database down by issuing the DEACTIVATE DATABASE command, and then issue
the STOP HADR command. Once HADR has been stopped, you must complete a
rollforward operation on the former standby database before it can be used. A
database cannot rejoin an HADR pair after it has been converted from a standby
database to a standard database. To restart HADR on the two servers, follow the
procedure for initializing HADR.
If you have configured a peer window, shut down the primary before the
window expires to avoid potential transaction loss in any related failover.

In a failover scenario, a takeover operation can be performed through the
command line processor (CLP), or the db2HADRTakeover application
programming interface (API).

Procedure

The following procedure shows you how to initiate a failover on the primary or
standby database using the CLP:
1. Completely disable the failed primary database. When a database encounters

internal errors, normal shutdown commands might not completely shut it
down. You might need to use operating system commands to remove resources
such as processes, shared memory, or network connections.

2. Issue the TAKEOVER HADR command with the BY FORCE option on the standby
database. In the following example the failover takes place on database LEAFS:
TAKEOVER HADR ON DB LEAFS BY FORCE

The BY FORCE option is required because the primary is expected to be offline.
If the primary database is not completely disabled, the standby database will
still have a connection to the primary and will send a message to the primary
database asking it to shutdown. The standby database will still switch to the
role of primary database whether or not it receives confirmation from that the
primary database has been shutdown.

Switching database roles in high availability disaster recovery (HADR)
During high availability disaster recovery (HADR), use the TAKEOVER HADR
command to switch the roles of the primary and standby databases.

About this task
v The TAKEOVER HADR command can only be issued on the standby database. If the

primary database is not connected to the standby database when the command
is issued, the takeover operation will fail.

v The TAKEOVER HADR command can only be used to switch the roles of the
primary and standby databases if the databases are in peer state. If the standby
database is in any other state, an error message will be returned.

Procedure

To switch the HADR database roles:
v Use the CLP to initiate a takeover operation on the standby database, issue the

TAKEOVER HADR command without the BY FORCE option on the standby database.
In the following example, the takeover operation takes place on the standby
database LEAFS:
TAKEOVER HADR ON DB LEAFS

Chapter 49. High availability disaster recovery (HADR) 921

A log full error is slightly more likely to occur immediately following a takeover
operation. To limit the possibility of such an error, an asynchronous buffer pool
flush is automatically started at the end of each takeover. The likelihood of a log
full error decreases as the asynchronous buffer pool flush progresses.
Additionally, if your configuration provides a sufficient amount of active log
space, a log full error is even more unlikely. If a log full error does occur, the
current transaction is aborted and rolled back.

Note: Issuing the TAKEOVER HADR command without the BY FORCE option will
cause any applications currently connected to the HADR primary database to be
forced off. This action is designed to work in coordination with automatic client
reroute to assist in rerouting clients to the new HADR primary database after a
role switch. However, if the forcing off of applications from the primary would
be disruptive in your environment, you might want to implement your own
procedure to shut down such applications prior to performing a role switch, and
then restart them with the new HADR primary database as their target after the
role switch is completed.

v Call the db2HADRTakeover application programming interface (API) from an
application.

v Open the task assistant for the TAKEOVER HADR command in IBM Data Studio.

Reintegrating a database after a takeover operation
If you executed a takeover operation in a high availability disaster recovery
(HADR) environment because the primary database failed, you can bring the failed
database back online and use it as a standby database or return it to its status as
primary database.

Procedure

To reintegrate the failed primary database into the HADR pair as the new standby
database:
1. Repair the system where the original primary database resided. This could

involve repairing failed hardware or rebooting the crashed operating system.
2. Restart the failed primary database as a standby database. In the following

example, database LEAFS is started as a standby database:
START HADR ON DB LEAFS AS STANDBY

Note: Reintegration will fail if the two copies of the database have
incompatible log streams. In particular, HADR requires that the original
primary database did not apply any logged operation that was never reflected
on the original standby database before it took over as the new primary
database. If this did occur, you can restart the original primary database as a
standby database by restoring a backup image of the new primary database or
by initializing a split mirror.

Successful return of this command does not indicate that reintegration has
succeeded; it means only that the database has been started. Reintegration is
still in progress. If reintegration subsequently fails, the database will shut itself
down. You should monitor standby states using the GET SNAPSHOT FOR DATABASE
command or the db2pd tool to make sure that the standby database stays online
and proceeds with the normal state transition. If necessary, you can check the
administration notification log file and the db2diag log file to find out the
status of the database.

922 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

What to do next

After the original primary database has rejoined the HADR pair as the standby
database, you can choose to perform a failback operation to switch the roles of the
databases to enable the original primary database to be once again the primary
database. To perform this failback operation, issue the following command on the
standby database:
TAKEOVER HADR ON DB LEAFS

Note:

1. If the HADR databases are not in peer state or the pair is not connected, this
command will fail.

2. Open sessions on the primary database are forced closed and inflight
transactions are rolled back.

3. When switching the roles of the primary and standby databases, the BY FORCE
option of the TAKEOVER HADR command cannot be specified.

Monitoring high availability disaster recovery (HADR) environments
Monitoring is an integral part of setting up and maintaining your HADR setup.
The DB2 monitoring interfaces provide a detailed picture of the configuration and
health of your environment.

You can use a number of methods to monitor the status of your HADR databases.
There are two preferred ways of monitoring HADR:
v The db2pd command
v The MON_GET_HADR table function

You can also use the following methods, but starting in Version 10.1, they are
deprecated, and they might be removed in a future release:
v The GET SNAPSHOT FOR DATABASE command
v The db2GetSnapshot API
v The SNAPHADR administrative view
v The SNAP_GET_HADR table function
v Other snapshot administrative views and table functions

db2pd command

This command retrieves information from the DB2 memory sets. You can
issue this command from either a primary database or a standby database.
If you are using multiple standby mode and you issue this command from
a standby, it does not return any information about the other standbys. If
you issue this command from the primary, it returns information on all
standbys

To view information about high availability disaster recovery for database
HADRDB, you could issue the following command:

db2pd -db HADRDB -hadr

Assuming you issued that command from the primary, you would receive
something like the following sample output:
Database Member 0 -- Database HADRDB -- Active -- Up 0 days 00:23:17 --

Date 06/08/2011 13:57:23

HADR_ROLE = PRIMARY
REPLAY_TYPE = PHYSICAL

Chapter 49. High availability disaster recovery (HADR) 923

HADR_SYNCMODE = SYNC
STANDBY_ID = 1

LOG_STREAM_ID = 0
HADR_STATE = PEER

PRIMARY_MEMBER_HOST = hostP.ibm.com
PRIMARY_INSTANCE = db2inst
PRIMARY_MEMBER = 0

STANDBY_MEMBER_HOST = hostS1.ibm.com
STANDBY_INSTANCE = db2inst
STANDBY_MEMBER = 0

HADR_CONNECT_STATUS = CONNECTED
HADR_CONNECT_STATUS_TIME = 06/08/2011 13:38:10.199479 (1307565490)

HEARTBEAT_INTERVAL(seconds) = 25
HADR_TIMEOUT(seconds) = 100

TIME_SINCE_LAST_RECV(seconds) = 3
PEER_WAIT_LIMIT(seconds) = 0

LOG_HADR_WAIT_CUR(seconds) = 0.000
LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.006298
LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.516

LOG_HADR_WAIT_COUNT = 82
SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 50772
SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87616

PRIMARY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315

HADR_LOG_GAP(bytes) = 0
STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000009.LOG, 1, 49262315
STANDBY_RECV_REPLAY_GAP(bytes) = 0

PRIMARY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)

STANDBY_REPLAY_LOG_TIME = 06/08/2011 13:49:19.000000 (1307566159)
STANDBY_RECV_BUF_SIZE(pages) = 16

STANDBY_RECV_BUF_PERCENT = 0
STANDBY_SPOOL_LIMIT(pages) = 0

PEER_WINDOW(seconds) = 0
READS_ON_STANDBY_ENABLED = Y

STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

MON_GET_HADR table function

If you issue this query on the primary, it will return information on all
standbys. If you want to issue the MON_GET_HADR function against a
standby database, be aware of the following points:
v You must enable reads on standby on the standby.
v Even if your HADR setup is in multiple standby mode, the table

function does not return any information about any other standbys.

For example, you could issue the following query on the primary database:
db2 "select HADR_ROLE, STANDBY_ID, HADR_STATE,

varchar(PRIMARY_MEMBER_HOST,20) as PRIMARY_MEMBER_HOST,
varchar(STANDBY_MEMBER_HOST,20) as STANDBY_MEMBER_HOST

from table (mon_get_hadr(NULL))"

Sample output is as follows:
HADR_ROLE STANDBY_ID HADR_STATE PRIMARY_MEMBER_HOST STANDBY_MEMBER_HOST
--------- ---------- ---------- ------------------- -------------------
PRIMARY 1 PEER hostP.ibm.com hostS1.ibm.com

1 record(s) selected.

GET SNAPSHOT FOR DATABASE command

This command collects status information and formats the output. The
information that is returned is a snapshot of the database manager
operational status at the time that you issued the command. HADR
information is displayed in the output under the heading HADR status.

db2GetSnapshot API

924 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

This API collects database manager monitor information and writes it to a
user-allocated data buffer. The information that is returned is a snapshot of
the database manager operational status at the time that the API was
called.

SNAPHADR administrative view and SNAP_GET_HADR table function
This administrative view and this table function return information about
HADR from a database snapshot, in particular, the HADR logical data
group.

Other snapshot administrative views and table functions
You can use the following snapshot administrative views and table
functions, which are not HADR specific and return a wider set of
information, to query a subsection of the HADR information:
v ADMIN_GET_STORAGE_PATHS
v MON_GET_TRANSACTION_LOG
v SNAPDB
v SNAPDB_MEMORY_POOL
v SNAPDETAILLOG
v SNAP_GET_DB
v SNAP_GET_DB_MEMORY_POOL

Stopping DB2 High Availability Disaster Recovery (HADR)
If you are using the DB2 High Availability Disaster Recovery (HADR) feature,
stopping HADR operations to perform maintenance on the primary or standby
databases might be necessary. Stop HADR operations only on the database that
you are performing maintenance. To stop using HADR completely, stop HADR on
both databases.

About this task

Warning: If you want to stop the specified database but you still want it to
maintain its role as either an HADR primary or standby database, do not issue the
STOP HADR command. If you issue the STOP HADR command the database will
become a standard database and might require reinitialization in order to resume
operations as an HADR database. Instead, issue the DEACTIVATE DATABASE
command.

If you issue the STOP HADR command against a standard database, an error will be
returned.

Procedure

To stop HADR operations on the primary or standby database:
v From the CLP, issue the STOP HADR command on the database where you want to

stop HADR operations.
In the following example, HADR operations are stopped on database SOCKS:
STOP HADR ON DATABASE SOCKS

If you issue this command against an inactive primary database, the database
switches to a standard database and remains offline.
If you issue this command against an inactive standby database the database
switches to a standard database, is placed in rollforward pending state, and
remains offline.

Chapter 49. High availability disaster recovery (HADR) 925

If you issue this command on an active primary database, logs stop being
shipped to the standby database and all HADR engine dispatchable units
(EDUs) are shut down on the primary database. The database switches to a
standard database and remains online. Transaction processing can continue. You
can issue the START HADR command with the AS PRIMARY option to switch
the role of the database back to primary database.
If you issue this command on an active standby database, an error message is
returned, indicating that you must deactivate the standby database before
attempting to convert it to a standard database.

v From an application, call the db2HADRStop application programming interface
(API).

v From IBM Data Studio, open the task assistant for the STOP HADR command.

926 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 50. DB2 high availability instance configuration utility
(db2haicu)

DB2 high availability instance configuration utility (db2haicu) is a text-based utility
that you can use to configure and administer your highly available databases in a
clustered environment.

db2haicu collects information about your database instance, your cluster
environment, and your cluster manager by querying your system. You supply
more information through parameters to the db2haicu call, an input file, or at run
time by providing information at db2haicu prompts.

Syntax
db2haicu [-f XML-input-file-name]

[-disable]
[-delete [dbpartitionnum db-partition-list |

hadrdb database-name]]

Parameters

The parameters that you pass to the db2haicu command are case-sensitive, and
must be in lower case.

-f XML-input-file-name
You can use the -f parameter to specify your cluster domain details in an
XML input file, XML-input-file-name. For more information, see: “Running
db2haicu with an XML input file” on page 934.

-disable
A database manager instance is considered configured for high availability
after you use db2haicu to create a cluster domain for that instance. When a
database manager instance is configured for high availability, then
whenever you perform certain database manager administrative operations
that require related cluster configuration changes, the database manager
communicates those cluster configuration changes to the cluster manager.
When the database manager coordinates these cluster management tasks
with the cluster manager for you, you do not have to perform a separate
cluster manager operation for those administrative tasks. This integration
between the database manager and the cluster manager is a function of the
DB2 High Availability Feature.

You can use the -disable parameter to cause a database manager instance
to cease to be configured for high availability. If the database manager
instance is no longer configured for high availability, then the database
manager does not coordinate with the cluster manager if you perform any
database manager administrative operations that require related cluster
configuration changes.

To reconfigure a database manager instance for high availability, you can
run db2haicu again.

-delete
You can use the -delete parameter to delete resource groups for the
current database manager instance.

© Copyright IBM Corp. 2014 927

If you do not use either the dbpartitionnum parameter or the hadrdb
parameter, then db2haicu removes all the resource groups that are
associated with the current database manager instance.

dbpartitionnum db-partition-list
You can use the dbpartitionnum parameter to delete resource
groups that are associated with the database partitions listed in
db-partition-list. db-partition-list is a comma-separated list of
numbers that identify the database partitions.

hadrdb database-name
You can use the hadrdb parameter to delete resource groups that
are associated with the high availability disaster recovery (HADR)
database named database-name.

If there are no resource groups that are left in the cluster domain after
db2haicu removes the resource groups, then db2haicu will also remove the
cluster domain.

Running db2haicu with the -delete parameter causes the current database
manager instance to cease to be configured for high availability. If the
database manager instance is no longer configured for high availability,
then the database manager does not coordinate with the cluster manager if
you perform any database manager administrative operations that require
related cluster configuration changes.

To reconfigure a database manager instance for high availability, you can
run db2haicu again.

Startup mode
The first time that you run DB2 high availability instance configuration utility
(db2haicu) for a given database manager instance, db2haicu operates in startup
mode.

When you run db2haicu, db2haicu examines your database manager instance and
your system configuration, and searches for an existing cluster domain. A cluster
domain is a model that contains information about your cluster elements such
databases, mount points, and failover policies. You create a cluster domain using
DB2 high availability instance configuration utility (db2haicu).

When you run db2haicu for a given database manager instance, and there is no
cluster domain that is already created and configured for that instance, db2haicu
will immediately begin the process of creating and configuring a new cluster
domain. db2haicu creates a new cluster domain by prompting you for information
such as a name for the new cluster domain and the hostname of the current
machine.

If you create a cluster domain, but do not complete the task of configuring the
cluster domain, then the next time you run db2haicu, db2haicu will resume the
task of configuring the cluster domain.

After you create and configure a cluster domain for a database manager instance,
db2haicu will run in maintenance mode.

928 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Maintenance mode
When you run DB2 high availability instance configuration utility (db2haicu) and
there is already a cluster domain created for the current database manager
instance, db2haicu operates in maintenance mode.

When db2haicu is running in maintenance mode, db2haicu presents you with a list
of configuration and administration tasks that you can perform.

db2haicu maintenance tasks include adding cluster elements such as databases or
cluster nodes to the cluster domain, and removing elements from the cluster
domain. db2haicu maintenance tasks also include modifying the details of cluster
domain elements such as the failover policy for the database manager instance.

When you run db2haicu in maintenance mode, db2haicu presents you with a list of
operations you can perform on the cluster domain:
v Add or remove cluster nodes (machine identified by hostname)
v Add or remove a network interface (network interface card)
v Add or remove database partitions (partitioned database environment only)
v Add or remove a DB2 High Availability Disaster Recovery (HADR) database
v Add or remove a highly available database
v Add or remove a mount point
v Add or remove an IP address
v Add or remove a non-critical path
v Move database partitions and HADR databases for scheduled maintenance
v Change failover policy for the current instance
v Create a new quorum device for the cluster domain
v Destroy the cluster domain

Prerequisites
There is a set of tasks you must perform before using DB2 high availability
instance configuration utility (db2haicu).

General

Before a database manager instance owner can run db2haicu, a user with root
authority must run the preprpnode command.

preprpnode is part of the Reliable Scalable Cluster Technology (RSCT) fileset for
AIX and the RSCT package for Linux. preprpnode handles initializing the nodes for
intracluster communication. The preprpnode command is run as a part of setting
up the cluster. For more information about preprpnode, see:
v preprpnode Command (AIX)
v preprpnode command (Linux)

For more information about RSCT, see RSCT Administration Guide - What is
RSCT?

Also, a user with root authority must disable the iTCO_wdt and
iTCO_vendor_support modules.
v On SUSE, add the following lines to the /etc/modprobe.d/blacklist file:

Chapter 50. db2haicu tool 929

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds4/preprpnode.htm
https://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.v3r2.rsct700.doc/bl501m_preprpnode.htm
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.rsct.doc/rsct_aix5l53/bl5adm1110.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.rsct.doc/rsct_aix5l53/bl5adm1110.html

alias iTCO_wdt off
alias iTCO_vendor_support off

v On RHEL, add the following lines to the /etc/modprobe.conf file:
blacklist iTCO_wdt
blacklist iTCO_vendor_support

You can verify that the modules are disabled by using the lsmod command.

Before running db2haicu, a database manager instance owner must perform the
following tasks:
v Synchronize services files on all machines that will be added to the cluster.
v Run the db2profile script for the database manager instance that will be used to

create the cluster domain.
v Start the database manager using the db2start command.

DB2 High Availability Disaster Recovery (HADR)

If you will be using HADR functionality, perform the following tasks:
v Ensure all DB2 High Availability Disaster Recovery (HADR) databases are

started in their respective primary and standby database roles, and that all
HADR primary-standby database pairs are in peer state.

v Configure hadr_peer_window for all HADR databases to a value of at least 120
seconds.

v Disable DB2 fault monitor.

Partitioned database environment

If you have multiple database partitions to configure for high availability, perform
the following steps:
v Configure the DB2_NUM_FAILOVER_NODES registry variable on all machines that will

be added to the cluster domain.
v (Optional) Activate the database before running db2haicu.

Configuring a clustered environment
You can configure and administer your databases in a clustered environment using
DB2 high availability instance configuration utility (db2haicu). When you specify
database manager instance configuration details to db2haicu, db2haicu
communicates the required cluster configuration details to your cluster managing
software.

Before you begin
v There is a set of tasks you must perform before using DB2 high availability

instance configuration utility (db2haicu). For more information, see:
“Prerequisites” on page 929.

About this task

You can run db2haicu interactively, or using an XML input file:

Interactive mode
When you invoke DB2 high availability instance configuration utility
(db2haicu) by running the db2haicu command without specifying an XML
input file with the -f parameter, the utility runs in interactive mode. In

930 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

interactive mode, db2haicu displays information and queries you for
information in a text-based format. For more information, see: “Running
db2haicu interactively” on page 933

Batch mode with an XML input file
You can use the -f input-file-name parameter with the db2haicu
command to run DB2 high availability instance configuration utility
(db2haicu) with an XML input file specifying your configuration details.
Running db2haicu with an XML input file is useful when you must
perform configuration tasks multiple times, such as when you have
multiple database partitions to be configured for high availability. For more
information, see: “Running db2haicu with an XML input file” on page 934

For a detailed scenario that uses db2haicu with both methods to set up an HADR
pair, see “Automated Cluster Controlled HADR (High Availability Disaster
Recovery) Configuration Setup using the IBM DB2 High Availability Instance
Configuration Utility (db2haicu)”.

DB2 instances that are configured in Version 9.1 for high availability by using the
regdb2salin script are not supported on Versions 9.5 and later. Use the db2haicu
utility to configure these instances for high availability.

Restrictions

There are some restrictions for using the DB2 high availability instance
configuration utility (db2haicu).

Procedure

Perform the following steps for each database manager instance:
1. Create a new cluster domain.

When you run DB2 high availability instance configuration utility (db2haicu)
for the first time for a database manager instance, db2haicu creates a model of
your cluster, called a cluster domain.

2. Continue to refine the cluster domain configuration, and administer and
maintain the cluster domain
When you are modifying the cluster domain model of your clustered
environment using db2haicu, the database manager propagates the related
changes to your database manager instance and cluster configuration.

Restrictions for db2haicu
There are some restrictions for using the DB2 high availability instance
configuration utility (db2haicu).
v “Software and hardware”
v “Configuration tasks” on page 932
v “Usage notes” on page 932
v “Recommendations” on page 933

Software and hardware
v db2haicu does not support the configuration of mount resources which are

based off of Logical Volume Manager (LVM) on any platform other than AIX.

Chapter 50. db2haicu tool 931

http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf

Configuration tasks

You cannot perform the following tasks using db2haicu:
v You cannot configure automatic client reroute using db2haicu.
v When you upgrade from DB2 for Linux, UNIX, and Windows Version 10.1 to a

later version, you cannot use db2haicu to migrate your cluster configuration. To
migrate a cluster configuration, you must perform the following steps:
1. Delete the existing cluster domain (if one exists)
2. Upgrade the database server
3. Create a new cluster domain using db2haicu

Usage notes

db2haicu is not supported in a DB2 pureScale environment. Use the db2cluster
command instead to configure clustered environments.

Consider the following db2haicu usage notes when planning your cluster
configuration and administration activities:
v Even though db2haicu performs some administration tasks that normally require

root authority, db2haicu runs with the privileges of the database manager
instance owner. db2haicu initialization, which is performed by a root user,
enables db2haicu to carry out the required configuration changes despite having
only instance owner privileges.

v When you create a new cluster domain, db2haicu does not verify that the name
you specify for the new cluster domain is valid. For example, db2haicu does not
confirm that the name is a valid length, or contains valid characters, or that is
not the same name as an existing cluster domain.

v db2haicu does not verify or validate information that a user specifies and that is
passed to a cluster manager. Because db2haicu cannot be aware of all cluster
manager restrictions with respect to cluster object names, for example, db2haicu
passes text to the cluster manager without validating it for things like valid
characters, or length.

v If an error happens and db2haicu fails while you are creating and configuring a
new cluster domain, you must perform the following steps:
1. Remove the resource groups of the partially created cluster domain by

running db2haicu using the -delete parameter
2. Re-create the new cluster domain by calling db2haicu again.

v When you run db2haicu with the -delete parameter, db2haicu deletes the
resource groups that are associated with the current database manager instance
immediately, without confirming whether those resource groups are locked.

v To remove resource groups that are associated with the database manager
instances of a DB2 high availability disaster recovery (HADR) database pair,
perform the following steps:
1. Run db2haicu with the -delete parameter against the database manager

instance of the HADR standby database first.
2. Run db2haicu with the -delete parameter against the database manager

instance of the HADR primary database.
v To remove a virtual IP from an HADR resource group using db2haicu, you must

remove it from the instance on which it was created.
v The ASYNC and SUPERASYNC HADR synchronization modes are not

supported by db2haicu.

932 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v If a cluster operation you attempt to perform using db2haicu times out, db2haicu
does not return an error to you. When a cluster operation times out, you do not
know that the operation timed out unless you review diagnostic logs after you
make the db2haicu call; or unless a subsequent cluster action fails, and while
you are investigating that subsequent failure, you determine that the original
cluster operation timed out.

v If you attempt to change the failover policy for a given database instance to
active-passive, there is one condition under which that configuration operation
fails, but for which db2haicu does not return an error to you. If you specify a
machine that is currently offline to be the active machine, db2haicu does not
make that machine the active machine, but db2haicu does not return an error
that indicates that the change did not succeed.

v For a shared disk configuration, db2haicu does not support a nested mount
configuration because DB2 does not enforce the disk mount order.

v When you are adding network interface cards (NICs) to a network, you cannot
add NICs with different subnet masks to the same network using db2haicu. If
you want to add NICs with different subnet masks to the same network, use the
following SA MP command:
mkequ <name> IBM.NetworkInterface:<eth0>:<node0>,...,<ethN>:<nodeN>

v The enhanced capable option is not available for the Enhanced Concurrent
Logical Volume Manager.

Recommendations

The following is a list of recommendations for configuration your cluster, and your
database manager instances when you are using db2haicu.
v When you add new mount points for the cluster by adding entries to

/etc/fstab, use the noauto option to prevent the mount points from being
automatically mounted on more than one machine in the cluster. For example:
dev/vpatha1 /db/svtpdb/NODE0010 ext3 noauto 0 0

Running db2haicu interactively
When you invoke DB2 high availability instance configuration utility (db2haicu) by
running the db2haicu command without specifying an XML input file with the -f
parameter, the utility runs in interactive mode. In interactive mode, db2haicu
displays information and queries you for information in a text-based format.

Before you begin
v There is a set of tasks you must perform before using DB2 high availability

instance configuration utility (db2haicu). For more information, see:
“Prerequisites” on page 929.

About this task

When you run db2haicu in interactive mode, you see information and questions
presented to you in text format on your screen. You can enter the information
requested by db2haicu at a prompt at the bottom of your screen.

Procedure

To run db2haicu in interactive mode, call the db2haicu command without the -f
input-file-name.

Chapter 50. db2haicu tool 933

Running db2haicu with an XML input file
Use the db2haicu command with the -f input-file-name parameter to specify an
XML input file with your configuration details. Using an XML input file is useful
when you must perform configuration tasks multiple times, such as configuring
multiple database partitions for high availability.

Before you begin
v There is a set of tasks you must perform before using DB2 high availability

instance configuration utility (db2haicu). For more information, see:
“Prerequisites” on page 929.

About this task

There is a set of sample XML input files located in the samples subdirectory of the
sqllib directory that you can modify and use with db2haicu to configure your
clustered environment. For more information, see: “Sample XML input files” on
page 937

For a detailed scenario that uses db2haicu with a sample XML input file to set up
an HADR pair, see “Automated Cluster Controlled HADR (High Availability
Disaster Recovery) Configuration Setup using the IBM DB2 High Availability
Instance Configuration Utility (db2haicu)”.

Procedure
1. Create an XML input file. You will use the same XML file if you are configuring

database partitions or, in an HADR setup, both the primary and the standby.
2. Call db2haicu with the -f input-file-name. In an HADR setup,

a. Log on to the standby instance and issue the command.
b. After db2haicu exits, log on to the primary instance and issue the command.

Input file XML schema (DB2ClusterType)
The DB2 high availability instance configuration utility (db2haicu) input file XML
schema definition (XSD) defines the cluster domain objects that you can specify in
a db2haicu XML input file. This db2haicu XSD is located in the file called
db2ha.xsd in the sqllib/samples/ha/xml directory.

DB2ClusterType

The root element of the db2haicu XML schema definition (XSD) is DB2Cluster,
which is of type DB2ClusterType. A db2haicu XML input file must begin with a
DB2Cluster element.

“XML schema definition”
“Subelements” on page 935
“Attributes” on page 936
“Usage notes” on page 936

XML schema definition
<xs:complexType name=’DB2ClusterType’>

<xs:sequence>
<xs:element name=’DB2ClusterTemplate’

type=’DB2ClusterTemplateType’
minOccurs=’0’
maxOccurs=’unbounded’/>

934 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/data/dm-0908hadrdb2haicu/HADR_db2haicu.pdf

<xs:element name=’ClusterDomain’
type=’ClusterDomainType’
maxOccurs=’unbounded’/>

<xs:element name=’FailoverPolicy’
type=’FailoverPolicyType’
minOccurs=’0’/>

<xs:element name=’DB2PartitionSet’
type=’DB2PartitionSetType’
minOccurs=’0’
maxOccurs=’unbounded’/>

<xs:element name=’HADRDBSet’
type=’HADRDBType’
minOccurs=’0’
maxOccurs=’unbounded’/>

<xs:element name=’HADBSet’
type=’HADBType’
minOccurs=’0’
maxOccurs=’unbounded’/>

</xs:sequence>
<xs:attribute name=’clusterManagerName’ type=’xs:string’ use=’optional’/>

</xs:complexType>

Subelements

DB2ClusterTemplate

Type: DB2ClusterTemplateType

Usage notes:
Do not include a DB2ClusterTemplateType element in your
db2haicu XML input file. The DB2ClusterTemplateType element is
currently reserved for future use.

ClusterDomain

Type: ClusterDomainType

A ClusterDomainType element contains specifications about: the
machines or computers in the cluster domain (also called cluster
domain nodes); the network equivalencies (groups of networks that can
fail over for one another); and the quorum device (tie-breaking
mechanism).

Occurrence rules:
You must include one or more ClusterDomain element in your
DB2ClusterType element.

FailoverPolicy

Type: FailoverPolicyType

A FailoverPolicyType element specifies the failover policy that the
cluster manager should use with the cluster domain.

Occurrence rules:
You can include zero or one FailoverPolicy element in your
DB2ClusterType element.

DB2PartitionSet

Type: DB2PartitionSetType

A DB2PartitionSetType element contains information about
database partitions. The DB2PartitionSetType element is only
applicable in a partitioned database environment.

Chapter 50. db2haicu tool 935

Occurrence rules:
You can include zero or more DB2PartitionSet elements in your
DB2ClusterType element, according to the db2haicu db2haicu XML
schema definition.

HADRDBSet

Type: HADRDBType

A HADRDBType element contains a list of High Availability Disaster
Recovery (HADR) primary and standby database pairs.

Occurrence rules:
You can include zero or more HADRDBSet elements in your
DB2ClusterType element, according to the db2haicu db2haicu XML
schema definition.

Usage notes:

v You must not include HADRDBSet in a partitioned database
environment.

v If you include HADRDBSet, then you must specify a failover policy
of HADRFailover in the FailoverPolicy element.

HADBSet

Type: HADBType

A HADBType element contains a list of databases to include in the
cluster domain, and to make highly available.

Occurrence rules:
You can include zero or more HADBSet elements in your
DB2ClusterType element, according to the db2haicu db2haicu XML
schema definition.

Attributes

clusterManagerName (optional)
The clusterManagerName attribute specifies the cluster manager.

Valid values for this attribute are specified in the following table:

Table 134. Valid values for the clusterManager attribute

clusterManagerName value Cluster manager product

TSA IBM Tivoli System Automation for Multiplatforms (SA
MP)

Usage notes

In a single partition database environment, you will usually only create a single
cluster domain for each database manager instance.

One possible configuration for a multi-partition database environment is:
v Set the FailoverPolicy element to Mutual

v In the DB2Partition subelement of DB2PartitionSet, use the MutualPair element
to specify two cluster domain nodes that are in a single cluster domain

936 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Sample XML input files
There is a set of sample XML input files located in the samples subdirectory of the
sqllib directory that you can modify and use with db2haicu to configure your
clustered environment.

db2ha_sample_DPF_NPlusM.xml
The sample file db2ha_sample_DPF_NPlusM.xml is an example of an XML input file
that you pass to DB2 high availability instance configuration utility (db2haicu) to
specify a new cluster domain. db2ha_sample_DPF_NPlusM.xml is located in the
sqllib/samples/ha/xml directory.

Features

The db2ha_sample_DPF_NPlusM.xml sample demonstrates how to use db2haicu with
an XML input file to define a cluster domain with the following details:
v quorum device: network
v computers in the cluster (cluster domain nodes): four
v failover policy: N Plus M
v database partitions: two
v virtual (service) IP addresses: one
v shared mount points for failover: four

XML source
<!-- === -->
<!-- = Use the DB2 High Availability Instance Configuration Utility = -->
<!-- = (db2haicu) XML schema definition, db2ha.xsd, and specify = -->
<!-- = IBM Tivoli System Automation for Multiplatforms (SA MP) = -->
<!-- = Base Component as the cluster manager. = -->
<!-- === -->
<DB2Cluster xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="db2ha.xsd"
clusterManagerName="TSA"
version="1.0">

<!-- === -->
<!-- = Create a cluster domain named db2HAdomain. = -->
<!-- === -->
<ClusterDomain domainName="db2HAdomain">

<!-- === -->
<!-- = Specify a network quorum device (IP address: 19.126.4.5). = -->
<!-- = The IP must be pingable at all times by each of the cluster = -->
<!-- = domain nodes. = -->
<!-- === -->
<Quorum quorumDeviceProtocol="network" quorumDeviceName="19.126.4.5"/>

<!-- === -->
<!-- = Create a network named db2_public_network_0 with an IP = -->
<!-- = network protocol. = -->
<!-- = This network contains four computers: hasys01, hasys02, = -->
<!-- = hasys03, and hasys04. = -->
<!-- = Each computer has a network interface card called eth0. = -->
<!-- = The IP address of eth0 on hasys01 is 19.126.124.30 = -->
<!-- = The IP address of eth0 on hasys02 is 19.126.124.31 = -->
<!-- = The IP address of eth0 on hasys03 is 19.126.124.32 = -->
<!-- = The IP address of eth0 on hasys04 is 19.126.124.33 = -->
<!-- === -->
<PhysicalNetwork physicalNetworkName="db2_public_network_0"

physicalNetworkProtocol="ip">

Chapter 50. db2haicu tool 937

<Interface interfaceName="eth0" clusterNodeName="hasys01">
<IPAddress baseAddress="19.126.124.30"

subnetMask="255.255.255.0"
networkName="db2_public_network_0"/>

</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys02">
<IPAddress baseAddress="19.126.124.31"

subnetMask="255.255.255.0"
networkName="db2_public_network_0"/>

</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys03">
<IPAddress baseAddress="19.126.124.32"

subnetMask="255.255.255.0"
networkName="db2_public_network_0"/>

</Interface>

<Interface interfaceName="eth0" clusterNodeName="hasys04">
<IPAddress baseAddress="19.126.124.33"

subnetMask="255.255.255.0"
networkName="db2_public_network_0"/>

</Interface>

</PhysicalNetwork>

<!-- === -->
<!-- = Create a network named db2_private_network_0 with an IP = -->
<!-- = network protocol. = -->
<!-- = This network contains four computers: hasys01, hasys02, = -->
<!-- = hasys03, and hasys04 (same as db2_public_network_0.) = -->
<!-- = In addition to eth0, each computer has a network interface = -->
<!-- = card called eth1. = -->
<!-- = The IP address of eth1 on hasys01 is 192.168.23.101 = -->
<!-- = The IP address of eth1 on hasys02 is 192.168.23.102 = -->
<!-- = The IP address of eth1 on hasys03 is 192.168.23.103 = -->
<!-- = The IP address of eth1 on hasys04 is 192.168.23.104 = -->
<!-- === -->
<PhysicalNetwork physicalNetworkName="db2_private_network_0"

physicalNetworkProtocol="ip">

<Interface interfaceName="eth1" clusterNodeName="hasys01">
<IPAddress baseAddress="192.168.23.101"

subnetMask="255.255.255.0"
networkName="db2_private_network_0"/>

</Interface>

<Interface interfaceName="eth1" clusterNodeName="hasys02">
<IPAddress baseAddress="192.168.23.102"

subnetMask="255.255.255.0"
networkName="db2_private_network_0"/>

</Interface>

<Interface interfaceName="eth1" clusterNodeName="hasys03">
<IPAddress baseAddress="192.168.23.103"

subnetMask="255.255.255.0"
networkName="db2_private_network_0"/>

</Interface>

<Interface interfaceName="eth1" clusterNodeName="hasys04">
<IPAddress baseAddress="192.168.23.104"

subnetMask="255.255.255.0"
networkName="db2_private_network_0"/>

</Interface>

</PhysicalNetwork>

938 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

<!-- === -->
<!-- = List the computers (cluster nodes) in the cluster domain. = -->
<!-- === -->
<ClusterNode clusterNodeName="hasys01"/>
<ClusterNode clusterNodeName="hasys02"/>
<ClusterNode clusterNodeName="hasys03"/>
<ClusterNode clusterNodeName="hasys04"/>

</ClusterDomain>

<!-- === -->
<!-- = The failover policy specifies the order in which the cluster = -->
<!-- = domain nodes should fail over. = -->
<!-- === -->
<FailoverPolicy>

<NPlusM />
</FailoverPolicy>

<!-- === -->
<!-- = Specify all the details of the database partitions = -->
<!-- === -->
<DB2PartitionSet>

<DB2Partition dbpartitionnum="0" instanceName="db2inst1">
<VirtualIPAddress baseAddress="19.126.124.250"

subnetMask="255.255.255.0"
networkName="db2_public_network_0"/>

<Mount filesystemPath="/ha_dpf1/db2inst1/NODE0000"/>
<Mount filesystemPath="/hafs/NODE0000"/>
<NPlusMNode standbyNodeName="hasys03" />

</DB2Partition>

<DB2Partition dbpartitionnum="1" instanceName="db2inst1">
<Mount filesystemPath="/ha_dpf1/db2inst1/NODE0001"/>
<Mount filesystemPath="/hafs/NODE0001"/>
<NPlusMNode standbyNodeName="hasys04" />

</DB2Partition>

</DB2PartitionSet>

</DB2Cluster>

db2ha_sample_HADR.xml
The sample file db2ha_sample_DPF_HADR.xml is an example of an XML input file
that you pass to DB2 high availability instance configuration utility (db2haicu) to
specify a new cluster domain. db2ha_sample_HADR.xml is located in the
sqllib/samples/ha/xml directory.

Features

The db2ha_sample_HADR.xml sample demonstrates how to use db2haicu with an
XML input file to define a cluster domain with the following details:
v quorum device: network
v computers in the cluster (cluster domain nodes): two
v failover policy: HADR
v database partitions: one
v virtual (service) IP addresses: none
v shared mount points for failover: none

Chapter 50. db2haicu tool 939

XML source
<!-- === -->
<!-- = DB2 High Availability configuration schema = -->
<!-- = Schema describes the elements of DB2 High Availability = -->
<!-- = IBM Tivoli System Automation for Multiplatforms (SA MP) = -->
<!-- = that are used in the configuration of a HA cluster = -->
<!-- === -->
<DB2Cluster xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="db2ha.xsd" cluster ManagerName="TSA" version="1.0">

<!-- === -->
<!-- = ClusterDomain element = -->
<!-- = This element encapsulates the cluster configuration = -->
<!-- = specification = -->
<!-- = Creating cluster domain of name db2HAdomain = -->
<!-- = Creating an IP quorum device (IP 19.126.4.5) = -->
<!-- = The IP must be pingable at all times by each of the nodes in = -->
<!-- = the cluster domain = -->

<!-- === -->
<ClusterDomain domainName="db2HAdomain">
<Quorum quorumDeviceProtocol="network" quorumDeviceName="19.126.4.5"/>

<!-- === -->
<!-- = Physical network element = -->
<!-- = The physical network specifies the network type, protocol = -->
<!-- = IP address, subnet mask, and NIC name = -->
<!-- = Define two logical groupings of NICs = -->
<!-- = Define two logical groupings of NICs = -->

<!-- === -->
<PhysicalNetwork physicalNetworkName="db2_public_network_0"
physicalNetworkProtocol="ip">

<Interface interfaceName="eth0" clusterNodeName="hasys01">
<IPAddress baseAddress="19.126.52.139"

subnetMask="255.255.255.0" networkName="db2_public_network_0"/>
</Interface>
<Interface interfaceName="eth0" clusterNodeName="hasys02">
<IPAddress baseAddress="19.126.52.140"

subnetMask="255.255.255.0" networkName="db2_public_network_0"/>
</Interface>
</PhysicalNetwork>

<PhysicalNetwork physicalNetworkName="db2_private_network_0"
physicalNetworkProtocol="ip">

<Interface interfaceName="eth1" clusterNodeName="hasys01">
<IPAddress baseAddress="192.168.23.101"

subnetMask="255.255.255.0" networkName="db2_private_network_0"/>
</Interface>
<Interface interfaceName="eth1" clusterNodeName="hasys02">

<IPAddress baseAddress="192.168.23.102"
subnetMask="255.255.255.0" networkName="db2_private_network_0"/>

</Interface>
</PhysicalNetwork>

<!-- === -->
<!-- = ClusterNodeName element = -->
<!-- = The set of nodes in the cluster domain = -->
<!-- = Here the defined set of nodes in the domain is = -->
<!-- = hasys01, hasys02 = -->

<!-- === -->
<ClusterNode clusterNodeName="hasys01"/>
<ClusterNode clusterNodeName="hasys02"/>
</ClusterDomain>

<!-- === -->
<!-- = Failover policy element = -->
<!-- = The failover policy specifies the failover order of the = -->
<!-- = cluster nodes = -->

940 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

<!-- = In the current sample the failover policy is to restart = -->
<!-- = instance in place (LocalRestart) = -->

<!-- === -->
<FailoverPolicy>
<HADRFailover></HADRFailover>
</FailoverPolicy>

<!-- === -->
<!-- = DB2 Partition element = -->
<!-- = The DB2 partition type specifies a DB2 Instance Name, = -->
<!-- = partition number = -->

<!-- === -->
<DB2PartitionSet>
<DB2Partition dbpartitionnum="0" instanceName="db2inst1">
</DB2Partition>
</DB2PartitionSet>

<!-- === -->
<!-- = HADRDBSet = -->
<!-- = Set of HADR Databases for this instance = -->
<!-- = Specify the databaseName, the name of the local instance on = -->
<!-- = this machine controlling the HADR database, the name of the = -->
<!-- = remote instance in this HADR pair, the name of the local = -->
<!-- = hostname and the remote hostname for the remote instance = -->

<!-- === -->
<HADRDBSet>
<HADRDB databaseName="HADRDB" localInstance="db2inst1"
remoteInstance="db2inst1" localHost="hasys01" remoteHost="hasys02"/>

</HADRDBSet>
</DB2Cluster>

Chapter 50. db2haicu tool 941

942 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 7. Security

DB2 database products provide security features that you can use to protect your
sensitive data. With the growing number of both internal and external security
threats, it is important to separate the tasks of keeping data secure from the
management tasks of administering critical systems.

© Copyright IBM Corp. 2014 943

944 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 51. DB2 security model

Two modes of security control access to the DB2 database system data and
functions. Access to the DB2 database system is managed by facilities that reside
outside the DB2 database system (authentication), whereas access within the DB2
database system is managed by the database manager (authorization).

Authentication

Authentication is the process by which a system verifies a user's identity. User
authentication is completed by a security facility outside the DB2 database system,
through an authentication security plug-in module. A default authentication
security plug-in module that relies on operating-system-based authentication is
included when you install the DB2 database system. For your convenience, the
DB2 database manager also ships with authentication plug-in modules for
Kerberos and lightweight directory access protocol (LDAP). To provide even
greater flexibility in accommodating your specific authentication needs, you can
build your own authentication security plug-in module.

The authentication process produces a DB2 authorization ID. Group membership
information for the user is also acquired during authentication. Default acquisition
of group information relies on an operating-system based group-membership
plug-in module that is included when you install the DB2 database system. If you
prefer, you can acquire group membership information by using a specific
group-membership plug-in module, such as LDAP.

Authorization

After a user is authenticated, the database manager determines if that user is
allowed to access DB2 data or resources. Authorization is the process whereby the
DB2 database manager obtains information about the authenticated user, indicating
which database operations that user can perform, and which data objects that user
can access.

The different sources of permissions available to an authorization ID are as follows:
1. Primary permissions: those granted to the authorization ID directly.
2. Secondary permissions: those granted to the groups and roles in which the

authorization ID is a member.
3. Public permissions: those granted to PUBLIC.
4. Context-sensitive permissions: those granted to a trusted context role.

Authorization can be given to users in the following categories:
v System-level authorization

The system administrator (SYSADM), system control (SYSCTRL), system
maintenance (SYSMAINT), and system monitor (SYSMON) authorities provide
varying degrees of control over instance-level functions. Authorities provide a
way both to group privileges and to control maintenance and utility operations
for instances, databases, and database objects.

v Database-level authorization
The security administrator (SECADM), database administrator (DBADM), access
control (ACCESSCTRL), data access (DATAACCESS), SQL administrator

© Copyright IBM Corp. 2014 945

(SQLADM), workload management administrator (WLMADM), and explain
(EXPLAIN) authorities provide control within the database. Other database
authorities include LOAD (ability to load data into a table), and CONNECT
(ability to connect to a database).

v Object-level authorization
Object level authorization involves checking privileges when an operation is
performed on an object. For example, to select from a table a user must have
SELECT privilege on a table (as a minimum).

v Content-based authorization
Views provide a way to control which columns or rows of a table specific users
can read. Label-based access control (LBAC) determines which users have read
and write access to individual rows and individual columns.

You can use these features, in conjunction with the DB2 audit facility for
monitoring access, to define and manage the level of security your database
installation requires.

946 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 52. Authentication methods for your server

Access to an instance or a database first requires that the user be authenticated. The
authentication type for each instance determines how and where a user will be
verified.

The authentication type is stored in the configuration file at the server. It is initially
set when the instance is created. There is one authentication type per instance,
which covers access to that database server and all the databases under its control.

If you intend to access data sources from a federated database, you must consider
data source authentication processing and definitions for federated authentication
types.

Note: You can check the following website for certification information about the
cryptographic routines used by the DB2 database management system to perform
encryption of the user ID and password when using SERVER_ENCRYPT
authentication, and of the user ID, password, and user data when using
DATA_ENCRYPT authentication: http://www.ibm.com/security/standards/
st_evaluations.shtml.

Switching User on an Explicit Trusted Connection

For CLI/ODBC and XA CLI/ODBC applications, the authentication mechanism
used when processing a switch user request that requires authentication is the
same as the mechanism used to originally establish the trusted connection itself.
Therefore, any other negotiated security attributes (for example, encryption
algorithm, encryption keys, and plug-in names) used during the establishment of
the explicit trusted connection are assumed to be the same for any authentication
required for a switch user request on that trusted connection. Java applications
allow the authentication method to be changed on a switch user request (by use of
a datasource property).

Because a trusted context object can be defined such that switching user on a
trusted connection does not require authentication, in order to take full advantage
of the switch user on an explicit trusted connection feature, user-written security
plug-ins must be able to:
v Accept a user ID-only token
v Return a valid DB2 authorization ID for that user ID

Note: An explicit trusted connection cannot be established if the CLIENT type of
authentication is in effect.

Authentication types provided

The following authentication types are provided:

SERVER
Specifies that authentication occurs on the server through the security
mechanism in effect for that configuration, for example, through a security
plug-in module. The default security mechanism is that if a user ID and
password are specified during the connection or attachment attempt, they

© Copyright IBM Corp. 2014 947

http://www.ibm.com/security/standards/st_evaluations.shtml
http://www.ibm.com/security/standards/st_evaluations.shtml

are sent to the server and compared to the valid user ID and password
combinations at the server to determine if the user is permitted to access
the instance.

Note: The server code detects whether a connection is local or remote. For
local connections, when authentication is SERVER, a user ID and password
are not required for authentication to be successful.

SERVER_ENCRYPT
Specifies that the server accepts encrypted SERVER authentication schemes.
If the client authentication is not specified, the client is authenticated using
the method selected at the server. The user ID and password are encrypted
when they are sent over the network from the client to the server.

When the resulting authentication method negotiated between the client
and server is SERVER_ENCRYPT, you can choose to encrypt the user ID
and password using an AES (Advanced Encryption Standard) 256-bit
algorithm. To do this, set the alternate_auth_enc database manager
configuration parameter. This configuration parameter has three settings:
v NOT_SPECIFIED (default) means that the server accepts the encryption

algorithm that the client proposes, including an AES 256-bit algorithm.
v AES_CMP means that if the connecting client proposes DES but supports

AES encryption, the server renegotiates for AES encryption.
v AES_ONLY means that the server accepts only AES encryption. If the client

does not support AES encryption, the connection is rejected.

AES encryption can be used only when the authentication method
negotiated between the client and server is SERVER_ENCRYPT.

CLIENT
Specifies that authentication occurs on the database partition where the
application is invoked using operating system security. The user ID and
password specified during a connection or attachment attempt are
compared with the valid user ID and password combinations on the client
node to determine whether the user ID is permitted access to the instance.
No further authentication will take place on the database server. This is
sometimes called single signon.

If the user performs a local or client login, the user is known only to that
local client workstation.

If the remote instance has CLIENT authentication, two other parameters
determine the final authentication type: trust_allclnts and
trust_clntauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.

When the authentication type of CLIENT has been selected, an
additional option might be selected to protect against clients whose
operating environment has no inherent security.

To protect against unsecured clients, the administrator can select
Trusted Client Authentication by setting the trust_allclnts
parameter to NO. This implies that all trusted platforms can
authenticate the user on behalf of the server. Untrusted clients are
authenticated on the Server and must provide a user ID and

948 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

password. You use the trust_allclnts configuration parameter to
indicate whether you are trusting clients. The default for this
parameter is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet
have some of those clients as those who do not have a native safe
security system for authentication.

You might also want to complete authentication at the server even
for trusted clients. To indicate where to validate trusted clients, you
use the trust_clntauth configuration parameter. The default for
this parameter is CLIENT.

Note: For trusted clients only, if no user ID or password is
explicitly provided when attempting to CONNECT or ATTACH, then
validation of the user takes place at the client. The trust_clntauth
parameter is only used to determine where to validate the
information provided on the USER or USING clauses.

To protect against all clients, including JCC type 4 clients on z/OS
and System i but excluding native DB2 clients on z/OS, OS/390,
VM, VSE, and System i, set the trust_allclnts parameter to
DRDAONLY. Only these clients can be trusted to perform client-side
authentication. All other clients must provide a user ID and
password to be authenticated by the server.

The trust_clntauth parameter is used to determine where the
clients mentioned previously are authenticated: if trust_clntauth
is CLIENT, authentication takes place at the client. If trust_clntauth
is SERVER, authentication takes place at the client when no user ID
and password are provided and at the server when a user ID and
password are provided.

Table 135. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter Combinations.

trust_ allclnts trust_ clntauth

Untrusted
non-
DRDA
Client
Authen-
tication (no
user ID &
password)

Untrusted
non-
DRDA
Client
Authen-
tication
(with user
ID &
password)

Trusted
non-
DRDA
Client
Authen-
tication (no
user ID &
password)

Trusted
non-
DRDA
Client
Authen-
tication
(with user
ID &
password)

DRDA
Client
Authen-
tication (no
user ID &
password)

DRDA
Client
Authen-
tication
(with user
ID &
password)

YES CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT

YES SERVER CLIENT SERVER CLIENT SERVER CLIENT SERVER

NO CLIENT SERVER SERVER CLIENT CLIENT CLIENT CLIENT

NO SERVER SERVER SERVER CLIENT SERVER CLIENT SERVER

DRDAONLY CLIENT SERVER SERVER SERVER SERVER CLIENT CLIENT

DRDAONLY SERVER SERVER SERVER SERVER SERVER CLIENT SERVER

DATA_ENCRYPT
The server accepts encrypted SERVER authentication schemes and the
encryption of user data. The authentication works the same way as that
shown with SERVER_ENCRYPT. The user ID and password are encrypted
when they are sent over the network from the client to the server.

Chapter 52. Authentication methods for servers 949

The following user data are encrypted when using this authentication type:
v SQL and XQuery statements.
v SQL program variable data.
v Output data from the server processing of an SQL or XQuery statement

and including a description of the data.
v Some or all of the answer set data resulting from a query.
v Large object (LOB) data streaming.
v SQLDA descriptors.

DATA_ENCRYPT_CMP
The server accepts encrypted SERVER authentication schemes and the
encryption of user data. In addition, this authentication type allows
compatibility with down level products not supporting DATA_ENCRYPT
authentication type. These products are permitted to connect with the
SERVER_ENCRYPT authentication type and without encrypting user data.
Products supporting the new authentication type must use it. This
authentication type is only valid in the server's database manager
configuration file and is not valid when used on the CATALOG DATABASE
command.

KERBEROS
Used when both the DB2 client and server are on operating systems that
support the Kerberos security protocol. The Kerberos security protocol
performs authentication as a third party authentication service by using
conventional cryptography to create a shared secret key. This key becomes
a user's credential and is used to verify the identity of users during all
occasions when local or network services are requested. The key eliminates
the need to pass the user name and password across the network as clear
text. Using the Kerberos security protocol enables the use of a single
sign-on to a remote DB2 database server. The KERBEROS authentication
type is supported on various operating systems.

Kerberos authentication works as follows:
1. A user logging on to the client machine using a domain account

authenticates to the Kerberos key distribution center (KDC) at the
domain controller. The key distribution center issues a ticket-granting
ticket (TGT) to the client.

2. During the first phase of the connection the server sends the target
principal name, which is the service account name for the DB2 database
server service, to the client. Using the server's target principal name
and the target-granting ticket, the client requests a service ticket from
the ticket-granting service (TGS) which also resides at the domain
controller. If both the client's ticket-granting ticket and the server's
target principal name are valid, the TGS issues a service ticket to the
client. The principal name recorded in the database directory can be
specified as name/instance@REALM. (This is in addition to
DOMAIN\userID and userID@xxx.xxx.xxx.com formats accepted on
Windows.)

3. The client sends this service ticket to the server using the
communication channel (which can be, as an example, TCP/IP).

4. The server validates the client's server ticket. If the client's service ticket
is valid, then the authentication is completed.

950 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

It is possible to catalog the databases on the client machine and explicitly
specify the Kerberos authentication type with the server's target principal
name. In this way, the first phase of the connection can be bypassed.

If a user ID and a password are specified, the client will request the
ticket-granting ticket for that user account and use it for authentication.

KRB_SERVER_ENCRYPT
Specifies that the server accepts KERBEROS authentication or encrypted
SERVER authentication schemes. If the client authentication is KERBEROS,
the client is authenticated using the Kerberos security system. If the client
authentication is SERVER_ENCRYPT, the client is authenticated using a
user ID and encryption password. If the client authentication is not
specified, then the client will use Kerberos if available, otherwise it will use
password encryption. For other client authentication types, an
authentication error is returned. The authentication type of the client
cannot be specified as KRB_SERVER_ENCRYPT

Note: The Kerberos authentication types are supported on clients and
servers running on specific operating systems. For Windows operating
systems, both client and server machines must either belong to the same
Windows domain or belong to trusted domains. This authentication type
should be used when the server supports Kerberos and some, but not all,
of the client machines support Kerberos authentication.

GSSPLUGIN
Specifies that the server uses a GSS-API plug-in to perform authentication.
If the client authentication is not specified, the server returns a list of
server-supported plug-ins, including any Kerberos plug-in that is listed in
the srvcon_gssplugin_list database manager configuration parameter, to
the client. The client selects the first plug-in found in the client plug-in
directory from the list. If the client does not support any plug-in in the list,
the client is authenticated using the Kerberos authentication scheme (if it is
returned). If the client authentication is the GSSPLUGIN authentication
scheme, the client is authenticated using the first supported plug-in in the
list.

GSS_SERVER_ENCRYPT
Specifies that the server accepts plug-in authentication or encrypted server
authentication schemes. If client authentication occurs through a plug-in,
the client is authenticated using the first client-supported plug-in in the list
of server-supported plug-ins.

If the client authentication is not specified and an implicit connect is being
performed (that is, the client does not supply a user ID and password
when making the connection), the server returns a list of server-supported
plug-ins, the Kerberos authentication scheme (if one of the plug-ins in the
list is Kerberos-based), and the encrypted server authentication scheme.
The client is authenticated using the first supported plug-in found in the
client plug-in directory. If the client does not support any of the plug-ins
that are in the list, the client is authenticated using the Kerberos
authentication scheme. If the client does not support the Kerberos
authentication scheme, the client is authenticated using the encrypted
server authentication scheme, and the connection will fail because of a
missing password. A client supports the Kerberos authentication scheme if
a DB2 supplied Kerberos plug-in exists for the operating system, or a
Kerberos-based plug-in is specified for the srvcon_gssplugin_list database
manager configuration parameter.

Chapter 52. Authentication methods for servers 951

If the client authentication is not specified and an explicit connection is
being performed (that is, both the user ID and password are supplied), the
authentication type is equivalent to SERVER_ENCRYPT. In this case, the
choice of the encryption algorithm used to encrypt the user ID and
password depends on the setting of the alternate_auth_enc database
manager configuration parameter.

Note:

1. Do not inadvertently lock yourself out of your instance when you are changing
the authentication information, since access to the configuration file itself is
protected by information in the configuration file. The following database
manager configuration file parameters control access to the instance:
v authentication *
v sysadm_group *
v trust_allclnts

v trust_clntauth

v sysctrl_group

v sysmaint_group

* Indicates the two most important parameters.
There are some things that can be done to ensure this does not happen: If you
do accidentally lock yourself out of the DB2 database system, you have a
fail-safe option available on all platforms that will allow you to override the
usual DB2 database security checks to update the database manager
configuration file using a highly privileged local operating system security user.
This user always has the privilege to update the database manager
configuration file and thereby correct the problem. However, this security
bypass is restricted to a local update of the database manager configuration file.
You cannot use a fail-safe user remotely or for any other DB2 database
command. This special user is identified as follows:
v UNIX platforms: the instance owner
v Windows platform: someone belonging to the local “Administrators” group
v Other platforms: there is no local security on the other platforms, so all users

pass local security checks anyway

952 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 53. Authorization, privileges, and object ownership

Users (identified by an authorization ID) can successfully execute operations only
if they have the authority to perform the specified function. To create a table, a
user must be authorized to create tables; to alter a table, a user must be authorized
to alter the table; and so forth.

The database manager requires that each user be specifically authorized to use
each database function needed to perform a specific task. A user can acquire the
necessary authorization through a grant of that authorization to their user ID or
through membership in a role or a group that holds that authorization.

There are three forms of authorization, administrative authority, privileges, and LBAC
credentials. In addition, ownership of objects brings with it a degree of
authorization on the objects created. These forms of authorization are discussed in
the following section.

Administrative authority

The person or persons holding administrative authority are charged with the task
of controlling the database manager and are responsible for the safety and integrity
of the data.

System-level authorization

The system-level authorities provide varying degrees of control over
instance-level functions:
v SYSADM (system administrator) authority

The SYSADM (system administrator) authority provides control over all
the resources created and maintained by the database manager. The
system administrator possesses all the authorities of SYSCTRL,
SYSMAINT, and SYSMON authority. The user who has SYSADM
authority is responsible both for controlling the database manager, and
for ensuring the safety and integrity of the data.

v SYSCTRL authority
The SYSCTRL authority provides control over operations that affect
system resources. For example, a user with SYSCTRL authority can
create, update, start, stop, or drop a database. This user can also start or
stop an instance, but cannot access table data. Users with SYSCTRL
authority also have SYSMON authority.

v SYSMAINT authority
The SYSMAINT authority provides the authority required to perform
maintenance operations on all databases associated with an instance. A
user with SYSMAINT authority can update the database configuration,
backup a database or table space, restore an existing database, and
monitor a database. Like SYSCTRL, SYSMAINT does not provide access
to table data. Users with SYSMAINT authority also have SYSMON
authority.

v SYSMON (system monitor) authority
The SYSMON (system monitor) authority provides the authority
required to use the database system monitor.

Database-level authorization

© Copyright IBM Corp. 2014 953

The database level authorities provide control within the database:
v DBADM (database administrator)

The DBADM authority level provides administrative authority over a
single database. This database administrator possesses the privileges
required to create objects and issue database commands.
The DBADM authority can be granted only by a user with SECADM
authority. The DBADM authority cannot be granted to PUBLIC.

v SECADM (security administrator)
The SECADM authority level provides administrative authority for
security over a single database. The security administrator authority
possesses the ability to manage database security objects (database roles,
audit policies, trusted contexts, security label components, and security
labels) and grant and revoke all database privileges and authorities. A
user with SECADM authority can transfer the ownership of objects that
they do not own. They can also use the AUDIT statement to associate an
audit policy with a particular database or database object at the server.
The SECADM authority has no inherent privilege to access data stored
in tables. It can only be granted by a user with SECADM authority. The
SECADM authority cannot be granted to PUBLIC.

v SQLADM (SQL administrator)
The SQLADM authority level provides administrative authority to
monitor and tune SQL statements within a single database. It can be
granted by a user with ACCESSCTRL or SECADM authority.

v WLMADM (workload management administrator)
The WLMADM authority provides administrative authority to manage
workload management objects, such as service classes, work action sets,
work class sets, and workloads. It can be granted by a user with
ACCESSCTRL or SECADM authority.

v EXPLAIN (explain authority)
The EXPLAIN authority level provides administrative authority to
explain query plans without gaining access to data. It can only be
granted by a user with ACCESSCTRL or SECADM authority.

v ACCESSCTRL (access control authority)
The ACCESSCTRL authority level provides administrative authority to
issue the following GRANT (and REVOKE) statements.
– GRANT (Database Authorities)

ACCESSCTRL authority does not give the holder the ability to grant
ACCESSCTRL, DATAACCESS, DBADM, or SECADM authority. Only
a user who has SECADM authority can grant these authorities.

– GRANT (Global Variable Privileges)
– GRANT (Index Privileges)
– GRANT (Module Privileges)
– GRANT (Package Privileges)
– GRANT (Routine Privileges)
– GRANT (Schema Privileges)
– GRANT (Sequence Privileges)
– GRANT (Server Privileges)
– GRANT (Table, View, or Nickname Privileges)
– GRANT (Table Space Privileges)

954 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

– GRANT (Workload Privileges)
– GRANT (XSR Object Privileges)

ACCESSCTRL authority can only be granted by a user with SECADM
authority. The ACCESSCTRL authority cannot be granted to PUBLIC.

v DATAACCESS (data access authority)
The DATAACCESS authority level provides the following privileges and
authorities.
– LOAD authority
– SELECT, INSERT, UPDATE, DELETE privilege on tables, views,

nicknames, and materialized query tables
– EXECUTE privilege on packages
– EXECUTE privilege on modules
– EXECUTE privilege on routines

Except on the audit routines: AUDIT_ARCHIVE, AUDIT_LIST_LOGS,
AUDIT_DELIM_EXTRACT.

– READ privilege on all global variables and WRITE privilege on all
global variables except variables which are read-only

– USAGE privilege on all XSR objects
– USAGE privilege on all sequences

It can be granted only by a user who holds SECADM authority. The
DATAACCESS authority cannot be granted to PUBLIC.

v Database authorities (non-administrative)
To perform activities such as creating a table or a routine, or for loading
data into a table, specific database authorities are required. For example,
the LOAD database authority is required for use of the load utility to
load data into tables (a user must also have INSERT privilege on the
table).

Privileges

A privilege is a permission to perform an action or a task. Authorized users can
create objects, have access to objects they own, and can pass on privileges on their
own objects to other users by using the GRANT statement.

Privileges may be granted to individual users, to groups, or to PUBLIC. PUBLIC is
a special group that consists of all users, including future users. Users that are
members of a group will indirectly take advantage of the privileges granted to the
group, where groups are supported.

The CONTROL privilege: Possessing the CONTROL privilege on an object allows a
user to access that database object, and to grant and revoke privileges to or from
other users on that object.

Note: The CONTROL privilege only apples to tables, views, nicknames, indexes,
and packages.

If a different user requires the CONTROL privilege to that object, a user with
SECADM or ACCESSCTRL authority could grant the CONTROL privilege to that
object. The CONTROL privilege cannot be revoked from the object owner,
however, the object owner can be changed by using the TRANSFER OWNERSHIP
statement.

Chapter 53. Authorization, privileges, and object ownership 955

Individual privileges: Individual privileges can be granted to allow a user to carry
out specific tasks on specific objects. Users with the administrative authorities
ACCESSCTRL or SECADM, or with the CONTROL privilege, can grant and revoke
privileges to and from users.

Individual privileges and database authorities allow a specific function, but do not
include the right to grant the same privileges or authorities to other users. The
right to grant table, view, schema, package, routine, and sequence privileges to
others can be extended to other users through the WITH GRANT OPTION on the
GRANT statement. However, the WITH GRANT OPTION does not allow the
person granting the privilege to revoke the privilege once granted. You must have
SECADM authority, ACCESSCTRL authority, or the CONTROL privilege to revoke
the privilege.

Privileges on objects in a package or routine: When a user has the privilege to execute
a package or routine, they do not necessarily require specific privileges on the
objects used in the package or routine. If the package or routine contains static
SQL or XQuery statements, the privileges of the owner of the package are used for
those statements. If the package or routine contains dynamic SQL or XQuery
statements, the authorization ID used for privilege checking depends on the setting
of the DYNAMICRULES BIND option of the package issuing the dynamic query
statements, and whether those statements are issued when the package is being
used in the context of a routine (except on the audit routines: AUDIT_ARCHIVE,
AUDIT_LIST_LOGS, AUDIT_DELIM_EXTRACT).

A user or group can be authorized for any combination of individual privileges or
authorities. When a privilege is associated with an object, that object must exist.
For example, a user cannot be given the SELECT privilege on a table unless that
table has previously been created.

Note: Care must be taken when an authorization name representing a user or a
group is granted authorities and privileges and there is no user, or group created
with that name. At some later time, a user or a group can be created with that
name and automatically receive all of the authorities and privileges associated with
that authorization name.

The REVOKE statement is used to revoke previously granted privileges. The
revoking of a privilege from an authorization name revokes the privilege granted
by all authorization names.

Revoking a privilege from an authorization name does not revoke that same
privilege from any other authorization names that were granted the privilege by
that authorization name. For example, assume that CLAIRE grants SELECT WITH
GRANT OPTION to RICK, then RICK grants SELECT to BOBBY and CHRIS. If
CLAIRE revokes the SELECT privilege from RICK, BOBBY and CHRIS still retain
the SELECT privilege.

LBAC credentials

Label-based access control (LBAC) lets the security administrator decide exactly
who has write access and who has read access to individual rows and individual
columns. The security administrator configures the LBAC system by creating
security policies. A security policy describes the criteria used to decide who has
access to what data. Only one security policy can be used to protect any one table
but different tables can be protected by different security policies.

956 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

After creating a security policy, the security administrator creates database objects,
called security labels and exemptions that are part of that policy. A security label
describes a certain set of security criteria. An exemption allows a rule for
comparing security labels not to be enforced for the user who holds the exemption,
when they access data protected by that security policy.

Once created, a security label can be associated with individual columns and rows
in a table to protect the data held there. Data that is protected by a security label is
called protected data. A security administrator allows users access to protected
data by granting them security labels. When a user tries to access protected data,
that user's security label is compared to the security label protecting the data. The
protecting label blocks some security labels and does not block others.

Object ownership

When an object is created, one authorization ID is assigned ownership of the object.
Ownership means the user is authorized to reference the object in any applicable
SQL or XQuery statement.

When an object is created within a schema, the authorization ID of the statement
must have the required privilege to create objects in the implicitly or explicitly
specified schema. That is, the authorization name must either be the owner of the
schema, or possess the CREATEIN privilege on the schema.

Note: This requirement is not applicable when creating table spaces, buffer pools
or database partition groups. These objects are not created in schemas.

When an object is created, the authorization ID of the statement is the definer of
that object and by default becomes the owner of the object after it is created.

Note: One exception exists. If the AUTHORIZATION option is specified for the
CREATE SCHEMA statement, any other object that is created as part of the
CREATE SCHEMA operation is owned by the authorization ID specified by the
AUTHORIZATION option. Any objects that are created in the schema after the
initial CREATE SCHEMA operation, however, are owned by the authorization ID
associated with the specific CREATE statement.

For example, the statement CREATE SCHEMA SCOTTSTUFF AUTHORIZATION SCOTT
CREATE TABLE T1 (C1 INT) creates the schema SCOTTSTUFF and the table
SCOTTSTUFF.T1, which are both owned by SCOTT. Assume that the user BOBBY is
granted the CREATEIN privilege on the SCOTTSTUFF schema and creates an index
on the SCOTTSTUFF.T1 table. Because the index is created after the schema, BOBBY
owns the index on SCOTTSTUFF.T1.

Privileges are assigned to the object owner based on the type of object being
created:
v The CONTROL privilege is implicitly granted on newly created tables, indexes,

and packages. This privilege allows the object creator to access the database
object, and to grant and revoke privileges to or from other users on that object.
If a different user requires the CONTROL privilege to that object, a user with
ACCESSCTRL or SECADM authority must grant the CONTROL privilege to that
object. The CONTROL privilege cannot be revoked by the object owner.

v The CONTROL privilege is implicitly granted on newly created views if the
object owner has the CONTROL privilege on all the tables, views, and
nicknames referenced by the view definition.

Chapter 53. Authorization, privileges, and object ownership 957

v Other objects like triggers, routines, sequences, table spaces, and buffer pools do
not have a CONTROL privilege associated with them. The object owner does,
however, automatically receive each of the privileges associated with the object
and those privileges are with the WITH GRANT OPTION, where supported.
Therefore the object owner can provide these privileges to other users by using
the GRANT statement. For example, if USER1 creates a table space, USER1
automatically has the USEAUTH privilege with the WITH GRANT OPTION on
this table space and can grant the USEAUTH privilege to other users. In
addition, the object owner can alter, add a comment on, or drop the object.
These authorizations are implicit for the object owner and cannot be revoked.

Certain privileges on the object, such as altering a table, can be granted by the
owner, and can be revoked from the owner by a user who has ACCESSCTRL or
SECADM authority. Certain privileges on the object, such as commenting on a
table, cannot be granted by the owner and cannot be revoked from the owner. Use
the TRANSFER OWNERSHIP statement to move these privileges to another user.
When an object is created, the authorization ID of the statement is the definer of
that object and by default becomes the owner of the object after it is created.
However, when you use the BIND command to create a package and you specify
the OWNER authorization id option, the owner of objects created by the static SQL
statements in the package is the value of authorization id. In addition, if the
AUTHORIZATION clause is specified on a CREATE SCHEMA statement, the
authorization name specified after the AUTHORIZATION keyword is the owner of
the schema.

A security administrator or the object owner can use the TRANSFER OWNERSHIP
statement to change the ownership of a database object. An administrator can
therefore create an object on behalf of an authorization ID, by creating the object
using the authorization ID as the qualifier, and then using the TRANSFER
OWNERSHIP statement to transfer the ownership that the administrator has on the
object to the authorization ID.

958 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 54. Default privileges granted on creating a database

When you create a database, default database level authorities and default object
level privileges are granted to you within that database.

The authorities and privileges that you are granted are listed according to the
system catalog views where they are recorded:
1. SYSCAT.DBAUTH

v The database creator is granted the following authorities:
– ACCESSCTRL
– DATAACCESS
– DBADM
– SECADM

v In a non-restrictive database, the special group PUBLIC is granted the
following authorities:
– CREATETAB
– BINDADD
– CONNECT
– IMPLICIT_SCHEMA

2. SYSCAT.TABAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v SELECT on all SYSCAT and SYSIBM tables
v SELECT and UPDATE on all SYSSTAT tables
v SELECT on the following views in schema SYSIBMADM:

– ALL_*
– USER_*
– ROLE_*
– SESSION_*
– DICTIONARY
– TAB

3. SYSCAT.ROUTINEAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v EXECUTE with GRANT on all procedures in schema SQLJ
v EXECUTE with GRANT on all functions and procedures in schema SYSFUN
v EXECUTE with GRANT on all functions and procedures in schema

SYSPROC (except audit routines)
v EXECUTE on all table functions in schema SYSIBM
v EXECUTE on all other procedures in schema SYSIBM

4. SYSCAT.MODULEAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v EXECUTE on the following modules in schema SYSIBMADM:

– DBMS_DDL

© Copyright IBM Corp. 2014 959

– DBMS_JOB
– DBMS_LOB
– DBMS_OUTPUT
– DBMS_SQL
– DBMS_STANDARD
– DBMS_UTILITY

5. SYSCAT.PACKAGEAUTH
v The database creator is granted the following privileges:

– CONTROL on all packages created in the NULLID schema
– BIND with GRANT on all packages created in the NULLID schema
– EXECUTE with GRANT on all packages created in the NULLID schema

v In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
– BIND on all packages created in the NULLID schema
– EXECUTE on all packages created in the NULLID schema

6. SYSCAT.SCHEMAAUTH
In a non-restrictive database, the special group PUBLIC is granted the
following privileges:
v CREATEIN on schema SQLJ
v CREATEIN on schema NULLID

7. SYSCAT.TBSPACEAUTH
In a non-restrictive database, the special group PUBLIC is granted the USE
privilege on table space USERSPACE1.

8. SYSCAT.WORKLOADAUTH
In a non-restrictive database, the special group PUBLIC is granted the USAGE
privilege on SYSDEFAULTUSERWORKLOAD.

9. SYSCAT.VARIABLEAUTH
In a non-restrictive database, the special group PUBLIC is granted the READ
privilege on schema global variables in the SYSIBM schema, execpt for the
following variables:
v SYSIBM.CLIENT_ORIGUSERID
v SYSIBM.CLIENT_USRSECTOKEN

A non-restrictive database is a database created without the RESTRICTIVE option
on the CREATE DATABASE command.

960 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 55. Granting privileges

To grant privileges on most database objects, you must have ACCESSCTRL
authority, SECADM authority, or CONTROL privilege on that object; or, you must
hold the privilege WITH GRANT OPTION. Additionally, users with SYSADM or
SYSCTRL authority can grant table space privileges. You can grant privileges only
on existing objects.

About this task

To grant CONTROL privilege to someone else, you must have ACCESSCTRL or
SECADM authority. To grant ACCESSCTRL, DATAACCESS, DBADM or SECADM
authority, you must have SECADM authority.

The GRANT statement allows an authorized user to grant privileges. A privilege
can be granted to one or more authorization names in one statement; or to
PUBLIC, which makes the privileges available to all users. Note that an
authorization name can be either an individual user or a group.

On operating systems where users and groups exist with the same name, you
should specify whether you are granting the privilege to the user or group. Both
the GRANT and REVOKE statements support the keywords USER, GROUP, and
ROLE. If these optional keywords are not used, the database manager checks the
operating system security facility to determine whether the authorization name
identifies a user or a group; it also checks whether an authorization ID of type role
with the same name exists. If the database manager cannot determine whether the
authorization name refers to a user, a group, or a role, an error is returned. The
following example grants SELECT privileges on the EMPLOYEE table to the user
HERON:

GRANT SELECT
ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to the
group HERON:

GRANT SELECT
ON EMPLOYEE TO GROUP HERON

© Copyright IBM Corp. 2014 961

962 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 56. Revoking privileges

The REVOKE statement allows authorized users to revoke privileges previously
granted to other users.

About this task

To revoke privileges on database objects, you must have ACCESSCTRL authority,
SECADM authority, or CONTROL privilege on that object. Table space privileges
can also be revoked by users with SYSADM and SYSCTRL authority. Note that
holding a privilege WITH GRANT OPTION is not sufficient to revoke that
privilege. To revoke CONTROL privilege from another user, you must have
ACCESSCTRL, or SECADM authority. To revoke ACCESSCTRL, DATAACCESS,
DBADM or SECADM authority, you must have SECADM authority. Table space
privileges can be revoked only by a user who holds SYSADM, or SYSCTRL
authority. Privileges can only be revoked on existing objects.

Note: A user without ACCESSCTRL authority, SECADM authority, or CONTROL
privilege is not able to revoke a privilege that they granted through their use of the
WITH GRANT OPTION. Also, there is no cascade on the revoke to those who
have received privileges granted by the person being revoked.
If an explicitly granted table (or view) privilege is revoked from a user with
DBADM authority, privileges will not be revoked from other views defined on that
table. This is because the view privileges are available through the DBADM
authority and are not dependent on explicit privileges on the underlying tables.

If a privilege has been granted to a user, a group, or a role with the same name,
you must specify the GROUP, USER, or ROLE keyword when revoking the
privilege. The following example revokes the SELECT privilege on the EMPLOYEE
table from the user HERON:

REVOKE SELECT
ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table
from the group HERON:

REVOKE SELECT
ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all members
of that group. If an individual name has been directly granted a privilege, it will
keep it until that privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only
the privileges implicitly granted by the system are revoked. If a privilege on the
view was granted directly by another user, the privilege is still held.

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only
the privileges implicitly granted by the system are revoked. If a privilege on the
view was granted directly by another user, the privilege is still held.

© Copyright IBM Corp. 2014 963

You may have a situation where you want to GRANT a privilege to a group and
then REVOKE the privilege from just one member of the group. There are only a
couple of ways to do that without receiving the error message SQL0556N:
v You can remove the member from the group; or, create a new group with fewer

members and GRANT the privilege to the new group.
v You can REVOKE the privilege from the group and then GRANT it to individual

users (authorization IDs).

Note: When CONTROL privilege is revoked from a user on a table or a view, the
user continues to have the ability to grant privileges to others. When given
CONTROL privilege, the user also receives all other privileges WITH GRANT
OPTION. Once CONTROL is revoked, all of the other privileges remain WITH
GRANT OPTION until they are explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid, but can
be validated if rebound by a user with appropriate authority. Packages can also be
rebuilt if the privileges are subsequently granted again to the binder of the
application; running the application will trigger a successful implicit rebind. If
privileges are revoked from PUBLIC, all packages bound by users having only
been able to bind based on PUBLIC privileges are invalidated. If DBADM
authority is revoked from a user, all packages bound by that user are invalidated
including those associated with database utilities. Attempting to use a package that
has been marked invalid causes the system to attempt to rebind the package. If
this rebind attempt fails, an error occurs (SQLCODE -727). In this case, the
packages must be explicitly rebound by a user with:
v Authority to rebind the packages
v Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked.

If you define a trigger or SQL function based on one or more privileges and you
lose one or more of these privileges, the trigger or SQL function cannot be used.

964 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 57. Controlling access to data with views

A view provides a means of controlling access or extending privileges to a table.

Using a view allows the following kinds of control over access to a table:
v Access only to designated columns of the table.

For users and application programs that require access only to specific columns
of a table, an authorized user can create a view to limit the columns addressed
only to those required.

v Access only to a subset of the rows of the table.
By specifying a WHERE clause in the subquery of a view definition, an
authorized user can limit the rows addressed through a view.

v Access only to a subset of the rows or columns in data source tables or views. If
you are accessing data sources through nicknames, you can create local DB2
database views that reference nicknames. These views can reference nicknames
from one or many data sources.

Note: Because you can create a view that contains nickname references for more
than one data source, your users can access data in multiple data sources from
one view. These views are called multi-location views. Such views are useful when
joining information in columns of sensitive tables across a distributed
environment or when individual users lack the privileges needed at data sources
for specific objects.

To create a view, a user must have DATAACCESS authority, or CONTROL or
SELECT privilege for each table, view, or nickname referenced in the view
definition. The user must also be able to create an object in the schema specified
for the view. That is, DBADM authority, CREATEIN privilege for an existing
schema, or IMPLICIT_SCHEMA authority on the database if the schema does not
already exist.

If you are creating views that reference nicknames, you do not need additional
authority on the data source objects (tables and views) referenced by nicknames in
the view; however, users of the view must have SELECT authority or the
equivalent authorization level for the underlying data source objects when they
access the view.

If your users do not have the proper authority at the data source for underlying
objects (tables and views), you can:
1. Create a data source view over those columns in the data source table that are

OK for the user to access
2. Grant the SELECT privilege on this view to users
3. Create a nickname to reference the view

Users can then access the columns by issuing a SELECT statement that references
the new nickname.

The following scenario provides a more detailed example of how views can be
used to restrict access to information.

Many people might require access to information in the STAFF table, for different
reasons. For example:

© Copyright IBM Corp. 2014 965

v The personnel department needs to be able to update and look at the entire
table.
This requirement can be easily met by granting SELECT and UPDATE privileges
on the STAFF table to the group PERSONNL:

GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

v Individual department managers need to look at the salary information for their
employees.
This requirement can be met by creating a view for each department manager.
For example, the following view can be created for the manager of department
number 51:

CREATE VIEW EMP051 AS
SELECT NAME,SALARY,JOB FROM STAFF
WHERE DEPT=51

GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051 view
just like the STAFF table. When accessing the EMP051 view of the STAFF table,
this manager views the following information:

NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

v All users need to be able to locate other employees. This requirement can be met
by creating a view on the NAME column of the STAFF table and the
LOCATION column of the ORG table, and by joining the two tables on their
corresponding DEPT and DEPTNUMB columns:

CREATE VIEW EMPLOCS AS
SELECT NAME, LOCATION FROM STAFF, ORG
WHERE STAFF.DEPT=ORG.DEPTNUMB

GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following information:

NAME LOCATION

Molinare New York

Lu New York

Daniels New York

Jones New York

Hanes Boston

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

966 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

NAME LOCATION

O'Brien Atlanta

Quigley Atlanta

Naughton Atlanta

Abrahams Atlanta

Koonitz Chicago

Plotz Chicago

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

Chapter 57. Controlling access to data with views 967

968 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 58. Roles

Roles simplify the administration and management of privileges by offering an
equivalent capability as groups but without the same restrictions.

A role is a database object that groups together one or more privileges and can be
assigned to users, groups, PUBLIC, or other roles by using a GRANT statement, or
can be assigned to a trusted context by using a CREATE TRUSTED CONTEXT or
ALTER TRUSTED CONTEXT statement. A role can be specified for the
SESSION_USER ROLE connection attribute in a workload definition.

Roles provide several advantages that make it easier to manage privileges in a
database system:
v Security administrators can control access to their databases in a way that

mirrors the structure of their organizations (they can create roles in the database
that map directly to the job functions in their organizations).

v Users are granted membership in the roles that reflect their job responsibilities.
As their job responsibilities change, their membership in roles can be easily
granted and revoked.

v The assignment of privileges is simplified. Instead of granting the same set of
privileges to each individual user in a particular job function, the administrator
can grant this set of privileges to a role representing that job function and then
grant that role to each user in that job function.

v A role's privileges can be updated and all users who have been granted that role
receive the update; the administrator does not need to update the privileges for
every user on an individual basis.

v The privileges and authorities granted to roles are always used when you create
views, triggers, materialized query tables (MQTs), static SQL and SQL routines,
whereas privileges and authorities granted to groups (directly or indirectly) are
not used.
This is because the DB2 database system cannot determine when membership in
a group changes, as the group is managed by third-party software (for example,
the operating system or an LDAP directory). Because roles are managed inside
the database, the DB2 database system can determine when authorization
changes and act accordingly. Roles granted to groups are not considered, due to
the same reason groups are not considered.

v All the roles assigned to a user are enabled when that user establishes a
connection, so all privileges and authorities granted to roles are taken into
account when a user connects. Roles cannot be explicitly enabled or disabled.

v The security administrator can delegate management of a role to others.

All DB2 privileges and authorities that can be granted within a database can be
granted to a role. For example, a role can be granted any of the following
authorities and privileges:
v DBADM, SECADM, DATAACCESS, ACCESSCTRL, SQLADM, WLMADM,

LOAD, and IMPLICIT_SCHEMA database authorities
v CONNECT, CREATETAB, CREATE_NOT_FENCED, BINDADD,

CREATE_EXTERNAL_ROUTINE, or QUIESCE_CONNECT database authorities
v Any database object privilege (including CONTROL)

© Copyright IBM Corp. 2014 969

A user's roles are automatically enabled and considered for authorization when a
user connects to a database; you do not need to activate a role by using the SET
ROLE statement. For example, when you create a view, a materialized query table
(MQT), a trigger, a package, or an SQL routine, the privileges that you gain
through roles apply. However, privileges that you gain through roles granted to
groups of which you are a member do not apply.

A role does not have an owner. The security administrator can use the WITH
ADMIN OPTION clause of the GRANT statement to delegate management of the
role to another user, so that the other user can control the role membership.

Restrictions

There are a few restrictions in the use of roles:
v A role cannot own database objects.
v Permissions and roles granted to groups are not considered when you create the

following database objects:
– Packages containing static SQL
– Views
– Materialized query tables (MQT)
– Triggers
– SQL Routines

Only roles granted to the user creating the object or to PUBLIC, directly or
indirectly (such as through a role hierarchy), are considered when creating these
objects.

Roles compared to groups
Privileges and authorities granted to groups are not considered when creating
views, materialized query tables (MQTs), SQL routines, triggers, and packages
containing static SQL. Avoid this restriction by using roles instead of groups.

Roles allow users to create database objects using their privileges acquired through
roles, which are controlled by the DB2 database system. Groups and users are
controlled externally from the DB2 database system, for example, by an operating
system or an LDAP server.

Example of replacing the use of groups with roles

This example shows how you can replace groups by using roles.

Assume that there are three groups, DEVELOPER_G, TESTER_G and SALES_G.
The users BOB, ALICE, and TOM are members of these groups, as shown in the
following table:

Table 136. Example groups and users

Group Users belonging to this group

DEVELOPER_G BOB

TESTER_G ALICE, TOM

SALES_G ALICE, BOB

1. The security administrator creates the roles DEVELOPER, TESTER, and SALES
to be used instead of the groups.

970 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

CREATE ROLE DEVELOPER
CREATE ROLE TESTER
CREATE ROLE SALES

2. The security administrator grants membership in these roles to users (setting
the membership of users in groups was the responsibility of the system
administrator):
GRANT ROLE DEVELOPER TO USER BOB
GRANT ROLE TESTER TO USER ALICE, USER TOM
GRANT ROLE SALES TO USER BOB, USER ALICE

3. The database administrator can grant to the roles similar privileges or
authorities as were held by the groups, for example:
GRANT privilege ON object TO ROLE DEVELOPER

The database administrator can then revoke these privileges from the groups,
as well as ask the system administrator to remove the groups from the system.

Example of creating a trigger using privileges acquired through a
role

This example shows that user BOB can successfully create a trigger, TRG1, when
he holds the necessary privilege through the role DEVELOPER.
1. First, user ALICE creates the table, WORKITEM:

CREATE TABLE WORKITEM (x int)

2. Then, the privilege to alter ALICE's table is granted to role DEVELOPER by the
database administrator.
GRANT ALTER ON ALICE.WORKITEM TO ROLE DEVELOPER

3. User BOB successfully creates the trigger, TRG1, because he is a member of the
role, DEVELOPER.
CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM

FOR EACH STATEMENT MODE DB2SQL INSERT INTO ALICE.WORKITEM VALUES (1)

Chapter 58. Roles 971

972 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 59. Trusted contexts and trusted connections

A trusted context is a database object that defines a trust relationship for a
connection between the database and an external entity such as an application
server.

The trust relationship is based upon the following set of attributes:
v System authorization ID: Represents the user that establishes a database

connection
v IP address (or domain name): Represents the host from which a database

connection is established
v Data stream encryption: Represents the encryption setting (if any) for the data

communication between the database server and the database client

When a user establishes a database connection, the DB2 database system checks
whether the connection matches the definition of a trusted context object in the
database. When a match occurs, the database connection is said to be trusted.

A trusted connection cannot be established if the connection is to a local database
using inter-process communication (IPC).

A trusted connection allows the initiator of this trusted connection to acquire
additional capabilities that may not be available outside the scope of the trusted
connection. The additional capabilities vary depending on whether the trusted
connection is explicit or implicit.

The initiator of an explicit trusted connection has the ability to:
v Switch the current user ID on the connection to a different user ID with or

without authentication
v Acquire additional privileges via the role inheritance feature of trusted contexts

An implicit trusted connection is a trusted connection that is not explicitly
requested; the implicit trusted connection results from a normal connection request
rather than an explicit trusted connection request. No application code changes are
needed to obtain an implicit connection. Also, whether you obtain an implicit
trusted connection or not has no effect on the connect return code (when you
request an explicit trusted connection, the connect return code indicates whether
the request succeeds or not). The initiator of an implicit trusted connection can
only acquire additional privileges via the role inheritance feature of trusted
contexts; they cannot switch the user ID.

How using trusted contexts enhances security

The three-tiered application model extends the standard two-tiered client and
server model by placing a middle tier between the client application and the
database server. It has gained great popularity in recent years particularly with the
emergence of web-based technologies and the Java 2 Enterprise Edition (J2EE)
platform. An example of a software product that supports the three-tier application
model is IBM WebSphere® Application Server (WAS).

In a three-tiered application model, the middle tier is responsible for authenticating
the users running the client applications and for managing the interactions with
the database server. Traditionally, all the interactions with the database server

© Copyright IBM Corp. 2014 973

occur through a database connection established by the middle tier using a
combination of a user ID and a credential that identify that middle tier to the
database server. This means that the database server uses the database privileges
associated with the middle tier's user ID for all authorization checking and
auditing that must occur for any database access, including access performed by
the middle tier on behalf of a user.

While the three-tiered application model has many benefits, having all interactions
with the database server (for example, a user request) occur under the middle tier's
authorization ID raises several security concerns, which can be summarized as
follows:
v Loss of user identity

Some enterprises prefer to know the identity of the actual user accessing the
database for access control purposes.

v Diminished user accountability
Accountability through auditing is a basic principle in database security. Not
knowing the user's identity makes it difficult to distinguish the transactions
performed by the middle tier for its own purpose from those performed by the
middle tier on behalf of a user.

v Over granting of privileges to the middle tier's authorization ID
The middle tier's authorization ID must have all the privileges necessary to
execute all the requests from all the users. This has the security issue of enabling
users who do not need access to certain information to obtain access anyway.

v Weakened security
In addition to the privilege issue raised in the previous point, the current
approach requires that the authorization ID used by the middle tier to connect
must be granted privileges on all resources that might be accessed by user
requests. If that middle-tier authorization ID is ever compromised, then all those
resources will be exposed.

v "Spill over" between users of the same connection
Changes by a previous user can affect the current user.

Clearly, there is a need for a mechanism whereby the actual user's identity and
database privileges are used for database requests performed by the middle tier on
behalf of that user. The most straightforward approach of achieving this goal
would be for the middle-tier to establish a new connection using the user's ID and
password, and then direct the user's requests through that connection. Although
simple, this approach suffers from several drawbacks which include the following:
v Inapplicability for certain middle tiers. Many middle-tier servers do not have

the user authentication credentials needed to establish a connection.
v Performance overhead. There is an obvious performance overhead associated

with creating a new physical connection and re-authenticating the user at the
database server.

v Maintenance overhead. In situations where you are not using a centralized
security set up or are not using single sign-on, there is maintenance overhead in
having two user definitions (one on the middle tier and one at the server). This
requires changing passwords at different places.

The trusted contexts capability addresses this problem. The security administrator
can create a trusted context object in the database that defines a trust relationship
between the database and the middle-tier. The middle-tier can then establish an
explicit trusted connection to the database, which gives the middle tier the ability
to switch the current user ID on the connection to a different user ID, with or
without authentication. In addition to solving the end-user identity assertion

974 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

problem, trusted contexts offer another advantage. This is the ability to control
when a privilege is made available to a database user. The lack of control on when
privileges are available to a user can weaken overall security. For example,
privileges may be used for purposes other than they were originally intended. The
security administrator can assign one or more privileges to a role and assign that
role to a trusted context object. Only trusted database connections (explicit or
implicit) that match the definition of that trusted context can take advantage of the
privileges associated with that role.

Enhancing performance

When you use trusted connections, you can maximize performance because of the
following advantages:
v No new connection is established when the current user ID of the connection is

switched.
v If the trusted context definition does not require authentication of the user ID to

switch to, then the overhead associated with authenticating a new user at the
database server is not incurred.

Example of creating a trusted context

Suppose that the security administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1

BASED UPON CONNECTION USING SYSTEM AUTHID USER2
ATTRIBUTES (ADDRESS ’192.0.2.1’)
DEFAULT ROLE managerRole
ENABLE

If user user1 requests a trusted connection from IP address 192.0.2.1, the DB2
database system returns a warning (SQLSTATE 01679, SQLCODE +20360) to
indicate that a trusted connection could not be established, and that user user1
simply got a non-trusted connection. However, if user user2 requests a trusted
connection from IP address 192.0.2.1, the request is honored because the connection
attributes are satisfied by the trusted context CTX1. Now that use user2 has
established a trusted connection, he or she can now acquire all the privileges and
authorities associated with the trusted context role managerRole. These privileges
and authorities may not be available to user user2 outside the scope of this trusted
connection

Using trusted contexts and trusted connections
You can establish an explicit trusted connection by making a request within an
application when a connection to a DB2 database is established. The security
administrator must have previously defined a trusted context, using the CREATE
TRUSTED CONTEXT statement, with attributes matching those of the connection
you are establishing (see Step 1, later).

Before you begin

The API you use to request an explicit trusted connection when you establish a
connection depends on the type of application you are using (see the table in Step
2).

After you have established an explicit trusted connection, the application can
switch the user ID of the connection to a different user ID using the appropriate
API for the type of application (see the table in Step 3).

Chapter 59. Trusted contexts and trusted connections 975

Procedure
1. The security administrator defines a trusted context in the server by using the

CREATE TRUSTED CONTEXT statement. For example:
CREATE TRUSTED CONTEXT MYTCX

BASED UPON CONNECTION USING SYSTEM AUTHID NEWTON
ATTRIBUTES (ADDRESS ’192.0.2.1’)
WITH USE FOR PUBLIC WITHOUT AUTHENTICATION
ENABLE

2. To establish a trusted connection, use one of the following APIs in your
application:

Option Description

Application API

CLI/ODBC SQLConnect, SQLSetConnectAttr

XA CLI/ODBC Xa_open

JAVA getDB2TrustedPooledConnection,
getDB2TrustedXAConnection

3. To switch to a different user, with or without authentication, use one of the
following APIs in your application:

Option Description

Application API

CLI/ODBC SQLSetConnectAttr

XA CLI/ODBC SQLSetConnectAttr

JAVA getDB2Connection, reuseDB2Connection

.NET DB2Connection.ConnectionString keywords:
TrustedContextSystemUserID and
TrustedContextSystemPassword

The switching can be done either with or without authenticating the new user
ID, depending on the definition of the trusted context object associated with the
explicit trusted connection. For example, suppose that the security
administrator creates the following trusted context object:
CREATE TRUSTED CONTEXT CTX1
BASED UPON CONNECTION USING SYSTEM AUTHID USER1
ATTRIBUTES (ADDRESS ’192.0.2.1’)
WITH USE FOR USER2 WITH AUTHENTICATION,

USER3 WITHOUT AUTHENTICATION
ENABLE

Further, suppose that an explicit trusted connection is established. A request to
switch the user ID on the trusted connection to USER3 without providing
authentication information is allowed because USER3 is defined as a user of
trusted context CTX1 for whom authentication is not required. However, a
request to switch the user ID on the trusted connection to USER2 without
providing authentication information will fail because USER2 is defined as a
user of trusted context CTX1 for whom authentication information must be
provided.

976 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Example of establishing an explicit trusted connection and
switching the user

In the following example, a middle-tier server needs to issue some database
requests on behalf of an end-user, but does not have access to the end-user's
credentials to establish a database connection on behalf of that end-user.

You can create a trusted context object on the database server that allows the
middle-tier server to establish an explicit trusted connection to the database. After
establishing an explicit trusted connection, the middle-tier server can switch the
current user ID of the connection to a new user ID without the need to
authenticate the new user ID at the database server. The following CLI code
snippet demonstrates how to establish a trusted connection using the trusted
context, MYTCX, defined in Step 1, earlier, and how to switch the user on the
trusted connection without authentication.
int main(int argc, char *argv[])
{
SQLHANDLE henv; /* environment handle */
SQLHANDLE hdbc1; /* connection handle */
char origUserid[10] = "newton";
char password[10] = "test";
char switchUserid[10] = "zurbie";

char dbName[10] = "testdb";

// Allocate the handles
SQLAllocHandle(SQL_HANDLE_ENV, &henv);
SQLAllocHandle(SQL_HANDLE_DBC, &hdbc1);

// Set the trusted connection attribute
SQLSetConnectAttr(hdbc1, SQL_ATTR_USE_TRUSTED_CONTEXT,
SQL_TRUE, SQL_IS_INTEGER);

// Establish a trusted connection
SQLConnect(hdbc1, dbName, SQL_NTS, origUserid, SQL_NTS,
password, SQL_NTS);

//Perform some work under user ID "newton"
.

// Commit the work
SQLEndTran(SQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Switch the user ID on the trusted connection
SQLSetConnectAttr(hdbc1,
SQL_ATTR_TRUSTED_CONTEXT_USERID, switchUserid,
SQL_IS_POINTER
);

//Perform new work using user ID "zurbie"
.

//Commit the work
SQLEndTranSQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Disconnect from database
SQLDisconnect(hdbc1);

return 0;

} /* end of main */

Chapter 59. Trusted contexts and trusted connections 977

What to do next

When does the user ID actually get switched?
After the command to switch the user on the trusted connection is issued,
the switch user request is not performed until the next statement is sent to
the server. This is demonstrated by the following example where the list
applications command shows the original user ID until the next statement
is issued.
1. Establish an explicit trusted connection with USERID1.
2. Issue the switch user command, such as getDB2Connection for

USERID2.
3. Run db2 list applications. It still shows that USERID1 is connected.
4. Issue a statement on the trusted connection, such as

executeQuery("values current sqlid"), to perform the switch user
request at the server.

5. Run db2 list applications again. It now shows that USERID2 is
connected.

978 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 60. Row and column access control (RCAC)

DB2 V10.1 introduces row and column access control (RCAC), as an additional
layer of data security. Row and column access control is sometimes referred to as
fine-grained access control or FGAC. RCAC controls access to a table at the row
level, column level, or both. RCAC can be used to complement the table privileges
model.

To comply with various government regulations, you might implement procedures
and methods to ensure that information is adequately protected. Individuals in
your organization are permitted access to only the subset of data that is required to
perform their job tasks. For example, government regulations in your area might
state that a doctor is authorized to view the medical records of their own patients,
but not of other patients. The same regulations might also state that, unless a
patient gives their consent, a healthcare provider is not permitted access to patient
personal information, such as the patients home phone number.

You can use row and column access control to ensure that your users have access
to only the data that is required for their work. For example, a hospital system
running DB2 for Linux, UNIX, and Windows and RCAC can filter patient
information and data to include only that data which a particular doctor requires.
Other patients do not exist as far as the doctor is concerned. Similarly, when a
patient service representative queries the patient table at the same hospital, they
are able to view the patient name and telephone number columns, but the medical
history column is masked for them. If data is masked, a NULL, or an alternate
value is displayed, instead of the actual medical history.

Row and column access control, or RCAC, has the following advantages:
v No database user is inherently exempted from the row and column access

control rules.
Even higher level authorities such as users with DATAACCESS authority are not
exempt from these rules. Only users with security administrator (SECADM)
authority can manage row and column access controls within a database.
Therefore, you can use RCAC to prevent users with DATAACCESS authority
from freely accessing all data in a database.

v Table data is protected regardless of how a table is accessed via SQL.
Applications, improvised query tools, and report generation tools are all subject
to RCAC rules. The enforcement is data-centric.

v No application changes are required to take advantage of this additional layer of
data security.
That is, row and column level access controls are established and defined in a
way that is not apparent to existing applications. However, RCAC represents an
important shift in paradigm in the sense that it is no longer what is being asked
but rather who is asking what. Result sets for the same query change based on
the context in which the query was asked and there is no warning or error
returned. This behavior is the exact intent of the solution. It means that
application designers and DBAs must be conscious that queries do not see the
whole picture in terms of the data in the table, unless granted specific
permissions to do so.

© Copyright IBM Corp. 2014 979

Row and column access control (RCAC) rules
Row and column access control (RCAC) places access control at the table level
around the data itself. SQL rules created on rows and columns are the basis of the
implementation of this capability.

Row and column access control is an access control model in which a security
administrator manages privacy and security policies. RCAC permits all users to
access the same table, as opposed to alternative views of a table. RCAC does
however, restrict access to the table based upon individual user permissions or
rules as specified by a policy associated with the table. There are two sets of rules,
one set operates on rows, and the other on columns.
v Row permission

– A row permission is a database object that expresses a row access control rule
for a specific table.

– A row access control rule is an SQL search condition that describes what set
of rows a user has access to.

v Column mask
– A column mask is a database object that expresses a column access control

rule for a specific column in a table.
– A column access control rule is an SQL CASE expression that describes what

column values a user is permitted to see and under what conditions.

Scenario: ExampleHMO using row and column access control
This scenario presents ExampleHMO, a national organization with a large and
active list of patients, as a user of row and column access control. ExampleHMO
uses row and column access control to ensure that their database policies reflect
government regulatory requirements for privacy and security, as well as
management business objectives.

Organizations that handle patient health information and their personal
information, like ExampleHMO, must comply with government privacy and data
protection regulations, for example the Health Insurance Portability and
Accountability Act (HIPAA). These privacy and data protection regulations ensure
that any sensitive patient medical or personal information is shared, viewed, and
modified only by authorities who are privileged to do so. Any violation of the act
results in huge penalties including civil and criminal suits.

ExampleHMO must ensure that the data stored in their database systems is secure
and only privileged users have access to the data. According to typical privacy
regulations, certain patient information can be accessed and modified by only
privileged users.

Security policies
ExampleHMO implements a security strategy where data access to DB2 databases
are made available according to certain security policies.

The security policies conform to government privacy and data protection
regulations. The first column outlines the policies and the challenges faced by the
organization, the second column outlines the DB2 row and column access control
feature which addresses the challenge.

980 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Security challenge
Row and column access control feature
which addresses the security challenge

Limiting column access to only privileged
users.

For example, Jane, who is a drug researcher
at a partner company, is not permitted to
view sensitive patient medical information
or personal data like their insurance number.

Column masks can be used to filter or hide
sensitive data from Jane.

Limiting row access to only privileged users.
Dr. Lee is only permitted to view patient
information for his own patients, not all
patients in the ExampleHMO system.

Row permissions can be implemented to
control which user can view any particular
row.

Restricting data on a need-to-know basis. Row permissions can help with this
challenge as well by restricting table level
data at the user level.

Restricting other database objects like UDFs,
triggers, views on RCAC secured data.

Row and column access control protects data
at the data level. It is this data-centric nature
of the row and column access control
solution that enforces security policies on
even database objects like UDFs, triggers,
and views.

Database users and roles
In this scenario, a number of different people create, secure, and use ExampleHMO
data. These people have different user rights and database authorities.

ExampleHMO implemented their security strategy to classify the way data is
accessed from the database. Internal and external access to data is based on the
separation of duties to users who access the data and their data access privileges.
ExampleHMO created the following database roles to separate these duties:

PCP
For primary care physicians.

DRUG_RESEARCH
For researchers.

ACCOUNTING
For accountants.

MEMBERSHIP
For members who add patients for opt-in and opt-out.

PATIENT
For patients.

The following people create, secure, and use ExampleHMO data:

Alex
ExampleHMO Chief Security Administrator. He holds the SECADM authority.

Peter
ExampleHMO Database Administrator. He holds the DBADM authority.

Paul
ExampleHMO Database Developer. He has the privileges to create triggers and
user-defined functions.

Chapter 60. Row and column access control (RCAC) 981

Dr. Lee
ExampleHMO Physician. He belongs to the PCP role.

Jane
Drug researcher at Innovative Pharmaceutical Company, a ExampleHMO
partner. She belongs to the DRUG_RESEARCH role.

John
ExampleHMO Accounting Department. He belongs to the ACCOUNTING role.

Tom
ExampleHMO Membership Officer. He belongs to the MEMBERSHIP role.

Bob
ExampleHMO Patient. He belongs to the PATIENT role.

If you want to try any of the example SQL statements and commands presented in
this scenario, create these user IDs with their listed authorities.

The following example SQL statements assume that the users have been created on
the system. The SQL statements create each role and grant SELECT and INSERT
permissions to the various tables in the ExampleHMO database to the users:
--Creating roles and granting authority

CREATE ROLE PCP;

CREATE ROLE DRUG_RESEARCH;

CREATE ROLE ACCOUNTING;

CREATE ROLE MEMBERSHIP;

CREATE ROLE PATIENT;

GRANT ROLE PCP TO USER LEE;
GRANT ROLE DRUG_RESEARCH TO USER JANE;
GRANT ROLE ACCOUNTING TO USER JOHN;
GRANT ROLE MEMBERSHIP TO USER TOM;
GRANT ROLE PATIENT TO USER BOB;

Database tables
This scenario focuses on two tables in the ExampleHMO database: the PATIENT
table and the PATIENTCHOICE table.

The PATIENT table stores basic patient information and health information. This
scenario considers the following columns within the PATIENT table:

SSN
The patient's insurance number. A patient's insurance number is considered
personal information.

NAME
The patient's name. A patient's name is considered personal information.

ADDRESS
The patient's address. A patient's address is considered personal information.

USERID
The patient's database ID.

PHARMACY
The patient's medical information.

982 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

ACCT_BALANCE
The patient's billing information.

PCP_ID
The patient's primary care physician database ID

The PATIENTCHOICE table stores individual patient opt-in and opt-out
information which decides whether a patient wants to expose his health
information to outsiders for research purposes in this table. This scenario considers
the following columns within the PATIENTCHOICE table:

SSN
The patient's insurance number is used to match patients with their choices.

CHOICE
The name of a choice a patient can make.

VALUE
The decision made by the patients about the choice.

For example, the row 123-45-6789, drug_research, opt-in says that patient with SSN
123-45-6789 agrees to disclose their information for medical research purposes.

The following example SQL statements create the PATIENT, PATIENTCHOICE,
and ACCT_HISTORY tables. Authority is granted on the tables and data is
inserted:
--Patient table storing information regarding patient
CREATE TABLE PATIENT (
SSN CHAR(11),
USERID VARCHAR(18),
NAME VARCHAR(128),
ADDRESS VARCHAR(128),
PHARMACY VARCHAR(250),
ACCT_BALANCE DECIMAL(12,2) WITH DEFAULT,
PCP_ID VARCHAR(18)
);

--Patientchoice table which stores what patient opts
--to expose regarding his health information

CREATE TABLE PATIENTCHOICE (
SSN CHAR(11),
CHOICE VARCHAR(128),
VALUE VARCHAR(128)
);

--Log table to track account balance
CREATE TABLE ACCT_HISTORY(
SSN CHAR(11),
BEFORE_BALANCE DECIMAL(12,2),
AFTER_BALANCE DECIMAL(12,2),
WHEN DATE,
BY_WHO VARCHAR(20)
);

--Grant authority

GRANT SELECT, UPDATE ON TABLE PATIENT TO ROLE PCP;

GRANT SELECT ON TABLE PATIENT TO ROLE DRUG_RESEARCH;

GRANT SELECT, UPDATE ON TABLE PATIENT TO ROLE ACCOUNTING;

Chapter 60. Row and column access control (RCAC) 983

GRANT SELECT ON TABLE ACCT_HISTORY TO ROLE ACCOUNTING;

GRANT SELECT, UPDATE, INSERT ON TABLE PATIENT TO ROLE MEMBERSHIP;
GRANT INSERT ON TABLE PATIENTCHOICE TO ROLE MEMBERSHIP;

GRANT SELECT ON TABLE PATIENT TO ROLE PATIENT;

GRANT SELECT, ALTER ON TABLE PATIENT TO USER ALEX;

GRANT ALTER, SELECT ON TABLE PATIENT TO USER PAUL;
GRANT INSERT ON TABLE ACCT_HISTORY TO USER PAUL;

--Insert patient data

INSERT INTO PATIENT
VALUES(’123-55-1234’, ’MAX’, ’Max’, ’First Strt’, ’hypertension’, 89.70,’LEE’);

INSERT INTO PATIENTCHOICE
VALUES(’123-55-1234’, ’drug-research’, ’opt-out’);

INSERT INTO PATIENT
VALUES(’123-58-9812’, ’MIKE’, ’Mike’, ’Long Strt’, null, 8.30,’JAMES’);

INSERT INTO PATIENTCHOICE
VALUES(’123-58-9812’, ’drug-research’, ’opt-out’);

INSERT INTO PATIENT
VALUES(’123-11-9856’, ’SAM’, ’Sam’, ’Big Strt’, null, 0.00,’LEE’);

INSERT INTO PATIENTCHOICE
VALUES(’123-11-9856’, ’drug-research’, ’opt-in’);

INSERT INTO PATIENT
VALUES(’123-19-1454’, ’DUG’, ’Dug’, ’Good Strt’, null, 0.00,’JAMES’);

INSERT INTO PATIENTCHOICE
VALUES(’123-19-1454’, ’drug-research’, ’opt-in’);

Security administration
Security administration and the security administrator (SECADM) role play
important parts in securing patient and company data at ExampleHMO. At
ExampleHMO, management decided that different people hold database
administration authority and security administration authority.

The management team at ExampleHMO decides to create a role for administering
access to their data. The team also decides that even users with DATAACCESS
authority are not able to view protected health and personal data by default.

The management team selects Alex to be the sole security administrator for
ExampleHMO. From now on, Alex controls all data access authority. With this
authority, Alex defines security rules such as row permissions, column masks, and
whether functions and triggers are secure or not. These rules control which users
have access to any given data under his control.

After Peter, the database administrator, creates the required tables and sets up the
required roles, duties are separated. The database administration and security
administration duties are separated by making Alex the security administrator.

Peter connects to the database and grants Alex SECADM authority. Peter can grant
SECADM authority since he currently holds the DBADM, DATAACCESS, and
SECADM authorities.

984 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

-- To seperate duties of security administrator from system administrator,
-- the SECADMN Peter grants SECADM authority to user Alex.

GRANT SECADM ON DATABASE TO USER ALEX;

Alex, after receiving the SECADM authority, connects to the database and revokes
the security administrator privilege from Peter. The duties are now separated and
Alex becomes the sole authority to grant data access to others within and outside
ExampleHMO. The following SQL statement shows how Alex revoked SECADM
authority from Peter:
--revokes the SECADMIN authority for Peter

REVOKE SECADM ON DATABASE FROM USER PETER;

Row permissions
Alex, the security administrator, starts to restrict data access on the ExampleHMO
database by using row permissions, a part of row and column access control. Row
permissions filter the data returned to users by row.

Patients are permitted to view their own data. A physician is permitted to view the
data of all his patients, but not the data of patients who see other physicians. Users
belonging to the MEMBERSHIP, ACCOUNTING, or DRUG_RESEARCH roles can
access all patient information. Alex, the security administrator, is asked to
implement these permissions to restrict who can see any given row on a
need-to-know basis.

Row permissions restrict or filter rows based on the user who has logged on to the
database. At ExampleHMO, the row permissions create a horizontal data restriction
on the table named PATIENT.

Alex implements the following row permissions so that a user in each role is
restricted to view a result set that they are privileged to view:
CREATE PERMISSION ROW_ACCESS ON PATIENT

-- Accounting information:
-- ROLE PATIENT is allowed to access his or her own row
-- ROLE PCP is allowed to access his or her patients’ rows
-- ROLE MEMBERSHIP, ACCOUNTING, and DRUG_RESEARCH are
-- allowed to access all rows
--
FOR ROWS WHERE(VERIFY_ROLE_FOR_USER(SESSION_USER,’PATIENT’) = 1
AND
PATIENT.USERID = SESSION_USER) OR
(VERIFY_ROLE_FOR_USER(SESSION_USER,’PCP’) = 1
AND
PATIENT.PCP_ID = SESSION_USER) OR
(VERIFY_ROLE_FOR_USER(SESSION_USER,’MEMBERSHIP’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER, ’DRUG_RESEARCH’) = 1)
ENFORCED FOR ALL ACCESS
ENABLE;

Alex observes that even after creating a row permission, all data can still be
viewed by the other employees. A row permission is not applied until it is
activated on the table for which it was defined. Alex must now activate the
permission:
--Activate row access control to implement row permissions

ALTER TABLE PATIENT ACTIVATE ROW ACCESS CONTROL;

Chapter 60. Row and column access control (RCAC) 985

Column masks
Alex, the security administrator, further restricts data access on the ExampleHMO
database by using column masks, a part of row and column access control.
Column masks hide data returned to users by column unless they are permitted to
view the data.

Patient payment details must only be accessible to the users in the accounts
department. The account balance must not be seen by any other database users.
Alex is asked to prevent access by anyone other than users belonging to the
ACCOUNTING role.

Alex implements the following column mask so that a user in each role is
restricted to view a result set that they are privileged to view:
--Create a Column MASK ON ACCT_BALANCE column on the PATIENT table

CREATE MASK ACCT_BALANCE_MASK ON PATIENT FOR
--
-- Accounting information:
-- Role ACCOUNTING is allowed to access the full information
-- on column ACCT_BALANCE.
-- Other roles accessing this column will strictly view a
-- zero value.
--
COLUMN ACCT_BALANCE RETURN
CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1

THEN ACCT_BALANCE
ELSE 0.00
END
ENABLE;

Alex observes that even after creating a column mask, the data can still be viewed
by the other employees. A column mask is not applied until it is activated on the
table for which it was defined. Alex must now activate the mask:
--Activate column access control to implement column masks

ALTER TABLE PATIENT ACTIVATE COLUMN ACCESS CONTROL;

Alex is asked by management to hide the insurance number of the patients. Only a
patient, physician, accountant, or people in the MEMBERSHIP role can view the
SSN column.

Also, to protect the PHARMACY detail of a patient, the information in the
PHARMACY column must only be viewed by a drug researcher or a physician.
Drug researchers can see the data only if the patient has agreed to disclose the
information.

Alex implements the following column masks so that a user in each role is
restricted to view a result set that they are privileged to view:
CREATE MASK SSN_MASK ON PATIENT FOR
--
-- Personal contact information:
-- Roles PATIENT, PCP, MEMBERSHIP, and ACCOUNTING are allowed
-- to access the full information on columns SSN, USERID, NAME,
-- and ADDRESS. Other roles accessing these columns will
-- strictly view a masked value.

COLUMN SSN RETURN
CASE WHEN
VERIFY_ROLE_FOR_USER(SESSION_USER,’PATIENT’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’PCP’) = 1 OR

986 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

VERIFY_ROLE_FOR_USER(SESSION_USER,’MEMBERSHIP’) = 1 OR
VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1
THEN SSN
ELSE CHAR(’XXX-XX-’ || SUBSTR(SSN,8,4)) END

ENABLE;

CREATE MASK PHARMACY_MASK ON PATIENT FOR
--
-- Medical information:
-- Role PCP is allowed to access the full information on
-- column PHARMACY.
-- For the purposes of drug research, Role DRUG_RESEARCH can
-- conditionally see a patient’s medical information
-- provided that the patient has opted-in.
-- In all other cases, null values are rendered as column
-- values.
--
COLUMN PHARMACY RETURN

CASE WHEN
VERIFY_ROLE_FOR_USER(SESSION_USER,’PCP’) = 1 OR
(VERIFY_ROLE_FOR_USER(SESSION_USER,’DRUG_RESEARCH’)=1
AND
EXISTS (SELECT 1 FROM PATIENTCHOICE C

WHERE PATIENT.SSN = C.SSN AND C.CHOICE = ’drug-research’ AND C.VALUE = ’opt-in’))
THEN PHARMACY
ELSE NULL

END
ENABLE;

Alex observes that after creating these two column masks that the data is only
viewable to the intended users. The PATIENT table already had column access
control activated.

Inserting data
When a new patient is admitted for treatment in the hospital, the new patient
record must be added to the ExampleHMO database.

Bob is a new patient, and his records must be added to the ExampleHMO
database. A user with the required security authority must create the new record
for Bob. Tom, from the ExampleHMO membership department, with the
MEMBERSHIP role, enrolls Bob as a new member. After connecting to the
ExampleHMO database, Tom runs the following SQL statements to add Bob to the
ExampleHMO database:
INSERT INTO PATIENT

VALUES(’123-45-6789’, ’BOB’, ’Bob’, ’123 Some St.’, ’hypertension’, 9.00,’LEE’);
INSERT INTO PATIENTCHOICE

VALUES(’123-45-6789’, ’drug-research’, ’opt-in’);

Tom confirmed that Bob was added to the database by querying the same from the
PATIENT table in the ExampleHMO database:
Select * FROM PATIENT WHERE NAME = ’Bob’;

SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID

----------- --------- ------- ------------- ------------ ------------- ------
123-45-6789 BOB Bob 123 Some St. XXXXXXXXXXX 0.00 LEE

Updating data
While in the hospital, Bob gets his treatment changed. As a result his records in the
ExampleHMO database need updating.

Chapter 60. Row and column access control (RCAC) 987

Dr. Lee, who is Bob's physician, advises a treatment change and changes Bob's
medicine. Bob's record in the ExampleHMO systems must be updated. The row
permission rules set in the ExampleHMO database specify that anyone who cannot
view the data in a row cannot update the data in that row. Since Bob's PCPID
contains Dr. Lee's ID, and the row permission is set, Dr. Lee can both view, and
update Bob's record using the following example SQL statement:
UPDATE PATIENT SET PHARMACY = ’codeine’ WHERE NAME = ’Bob’;

Dr. Lee checks the update:
Select * FROM PATIENT WHERE NAME = ’Bob’;

SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID

----------- --------- ------- ------------ ----------- -------------- ------
123-45-6789 BOB Bob 123 Some St. codeine 0.00 LEE

Dug is a patient who is under the care of Dr. James, one of Dr. Lee's colleagues. Dr.
Lee attempts the same update on the record for Dug:
UPDATE PATIENT SET PHARMACY = ’codeine’ WHERE NAME = ’Dug’;
SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a query
is an empty table. SQLSTATE=02000

Since Dug's PCPID does not contain Dr. Lee's ID, and the row permission is set,
Dr. Lee cannot view, or update Dug's record.

Reading data
With row and column access control, people in different roles can have different
result sets from the same database queries. For example, Peter, the database
administrator with DATAACCESS authority, cannot see any data on the PATIENT
table.

Peter, Bob, Dr. Lee, Tom, Jane, and John each connect to the database and try the
following SQL query:
SELECT SSN, USERID, NAME, ADDRESS, PHARMACY, ACCT_BALANCE, PCP_ID FROM PATIENT;

Results of the query vary according to who runs the query. The row and column
access control rules created by Alex are applied on these queries.

Here is the result set Peter sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- --------- --------- ----------- ----------- ----------- -----------

0 record(s) selected.

Even though there is data in the table and Peter is the database administrator, he
lacks the authority to see all data.

Here is the result set Bob sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- --------- --------- ----------- ----------- ----------- ------
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 0.00 LEE

1 record(s) selected.

988 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Bob, being a patient, can only see his own data. Bob belongs to the PATIENT role.
The PHARMACY and ACC_BALANCE column data have been hidden from him.

Here is the result set Dr. Lee sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ------------------- ----------- ------
123-55-1234 MAX Max First Strt hypertension 0.00 LEE
123-11-9856 SAM Sam Big Strt High blood pressure 0.00 LEE
123-45-6789 BOB Bob 123 Some St.codeine 0.00 LEE

3 record(s) selected.

Dr. Lee can see only the data for patients under his care. Dr. Lee belongs to the
PCP role. The ACC_BALANCE column data is hidden from him.

Here is the result set Tom sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ----------- ----------- -----------
123-55-1234 MAX Max First Strt XXXXXXXXXXX 0.00 LEE
123-58-9812 MIKE Mike Long Strt XXXXXXXXXXX 0.00 JAMES
123-11-9856 SAM Sam Big Strt XXXXXXXXXXX 0.00 LEE
123-19-1454 DUG Dug Good Strt XXXXXXXXXXX 0.00 JAMES
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 0.00 LEE

5 record(s) selected.

Tom can see all members. Tom belongs to the membership role. He is not
privileged to see any data in the PHARMACY and ACC_BALANCE columns.

Here is the result set Jane sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ------------------- ----------- -------
XXX-XX-1234 MAX Max First Strt XXXXXXXXXXX 0.00 LEE
XXX-XX-9812 MIKE Mike Long Strt XXXXXXXXXXX 0.00 JAMES
XXX-XX-9856 SAM Sam Big Strt High blood pressure 0.00 LEE
XXX-XX-1454 DUG Dug Good Strt Influenza 0.00 JAMES
XXX-XX-6789 BOB Bob 123 Some St.codeine 0.00 LEE

5 record(s) selected.

Jane can see all members. She belongs to the DRUG_RESEARCH role. The SSN
and ACC_BALANCE column data are hidden from her. The PHARMACY data is
only available if the patients have opted-in to share their data with drug research
companies.

Here is the result set John sees:
SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ----------- ----------- --------
123-55-1234 MAX Max First Strt XXXXXXXXXXX 89.70 LEE
123-58-9812 MIKE Mike Long Strt XXXXXXXXXXX 8.30 JAMES
123-11-9856 SAM Sam Big Strt XXXXXXXXXXX 0.00 LEE
123-19-1454 DUG Dug Good Strt XXXXXXXXXXX 0.00 JAMES
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 9.00 LEE

5 record(s) selected.

Chapter 60. Row and column access control (RCAC) 989

John can see all members. He belongs to the ACCOUNTING role. The
PHARMACY column data is hidden from him.

Creating views
Views can be created on tables that have row and column access control defined.
Alex, the security administrator, is asked to create a view on the PATIENT table
that medical researchers can use.

Researchers, that have a partnership with ExampleHMO, can have access to
limited patient data if patients have opted-in to permit this access. Alex and the IT
team are asked to create a view to list only specific information related to research
of the patient. The report must contain the patient insurance number, name of the
patient and the disclosure option chosen by the patient.

The view created fetches the patient basic information and the health condition
disclosure option. This view ensures that patient information is protected and
fetched only with their permission for any other purpose.

Alex and the IT team implement the following view:
CREATE VIEW PATIENT_INFO_VIEW AS
SELECT P.SSN, P.NAME FROM PATIENT P, PATIENTCHOICE C
WHERE P.SSN = C.SSN AND

C.CHOICE = ’drug-research’ AND
C.VALUE = ’opt-in’;

After Alex and his team create the view, users can query the view. They see data
according to the row and column access control rules defined on the base tables on
which the view is created.

Alex sees the following result-set from the following query on the view:
SELECT SSN, NAME FROM PATIENT_INFO_VIEW;

SSN NAME
----------- ----------

0 record(s) selected.

Dr. Lee sees the following result-set from the following query on the view:
SELECT SSN, NAME FROM PATIENT_INFO_VIEW;

SSN NAME
----------- ----------
123-11-9856 Sam
123-45-6789 Bob

2 record(s) selected.

Bob sees the following result-set from the following query on the view:
SELECT SSN, NAME FROM PATIENT_INFO_VIEW;

SSN NAME
----------- ----------
123-45-6789 Bob

1 record(s) selected.

990 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Secure functions
Functions must be deemed secure before they can be called within row and
column access control definitions. Alex, the security administrator, discusses how
Paul, a database developer at ExampleHMO, can create a secure function for his
new accounting application.

After the privacy and security policy went into effect at ExampleHMO, Alex is
notified that the accounting department has developed a powerful accounting
application. ExampleHMOAccountingUDF is a SQL scalar user-defined function
(UDF) that is used in the column mask ACCT_BALANCE_MASK on the
PATIENT.ACCT_BALANCE table and row.

Only UDFs that are secure can be invoked within a column mask. Alex first
discusses the UDF with Paul, who wrote the UDF, to ensure the operation inside
the UDF is secure.

When Alex is satisfied that the function is secure, he grants a system privilege to
Paul so Paul can alter the UDF to be secure:
GRANT CREATE_SECURE_OBJECT ON DATABASE TO USER PAUL;

To create a secured UDF, or alter a UDF to be secured, a developer must be
granted CREATE_SECURE_OBJECT authority.

Paul creates the function:
CREATE FUNCTION EXAMPLEHMOACCOUNTINGUDF(X DECIMAL(12,2))

RETURNS DECIMAL(12,2)
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
NO EXTERNAL ACTION
RETURN X*(1.0 + RAND(X));

Paul alters the function so it is secured:
ALTER FUNCTION EXAMPLEHMOACCOUNTINGUDF SECURED;

Alex now drops and recreates the mask ACC_BALANCE_MASK so the new UDF
is used:
--Drop the mask to recreate

DROP MASK ACCT_BALANCE_MASK;

CREATE MASK EXAMPLEHMO.ACCT_BALANCE_MASK ONPATIENT FOR
--
-- Accounting information:
-- Role ACCOUNTING is allowed to invoke the secured UDF
-- ExampleHMOAccountingUDFL passing column ACCT_BALANCE as
-- the input argument
-- Other ROLEs accessing this column will strictly view a
-- zero value.
--
COLUMN ACCT_BALANCE RETURN
CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER,’ACCOUNTING’) = 1
THEN EXAMPLEHMOACCOUNTINGUDF(ACCT_BALANCE)
ELSE 0.00
END
ENABLE;

Chapter 60. Row and column access control (RCAC) 991

Dr. Lee, who has the PCP role, must call a drug analysis user-defined function.
DrugUDF returns patient drug information. In the past, Dr. Lee issues a SELECT
statement that calls DrugUDF and receives the result set quickly. After the
PATIENT table has been protected with row and column access control, the same
query takes more time to return a result set.

Dr. Lee consults with the ExampleHMO IT staff and Alex, the security
administrator, about this performance degradation. Alex tells Dr. Lee, if the UDF is
not secure, the query cannot be optimized as well and it takes longer to return a
result set.

Alex looks into the UDF with Dr. Lee and the owner, Paul, to ensure the operation
inside the UDF is secure. Alex asks Paul to alter the UDF to be secure as Paul still
has the CREATE_SECURE_OBJECT privilege granted by Alex:
--Function for ExampleHMO Pharmacy department

CREATE FUNCTION DRUGUDF(PHARMACY VARCHAR(5000))
RETURNS VARCHAR(5000)
NO EXTERNAL ACTION
BEGIN ATOMIC
IF PHARMACY IS NULL THEN

RETURN NULL;
ELSE

RETURN ’Normal’;
END IF;

END;

--Secure the UDF

ALTER FUNCTION DRUGUDF SECURED;

--Grant execute permissions to Dr.Lee

GRANT EXECUTE ON FUNCTION DRUGUDF TO USER LEE;

Dr. Lee can issue the query and the query can be optimized as expected:
--Querying after the function is secured

SELECT PHARMACY FROM PATIENT
WHERE DRUGUDF(PHARMACY) = ’Normal’ AND SSN = ’123-45-6789’;

PHARMACY

codeine

1 record(s) selected.

Secure triggers
Triggers defined on a table with row or column access control activated must be
secure. Alex, the security administrator, discusses how Paul, a database developer
at ExampleHMO, can create a secure trigger for his new accounting application.

Alex speaks to the accounting department and learns that an AFTER UPDATE
trigger is needed for the PATIENT table. This trigger monitors the history of the
ACCT_BALANCE column.

Alex explains to Paul, who has the necessary privileges to create the trigger, that
any trigger defined on a row and column access protected table must be marked
secure. Paul and Alex review the action of the new trigger and deem it to be
secure.

992 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

ExampleHMO_ACCT_BALANCE_TRIGGER monitors the ACCT_BALANCE
column in the PATIENT table. Every time that column is updated, the trigger is
fired, and inserts the current account balance details into the ACCT_HISTORY
table.

Paul creates the trigger:
CREATE TRIGGER HOSPITAL.NETHMO_ACCT_BALANCE_TRIGGER

AFTER UPDATE OF ACCT_BALANCE ON PATIENT
REFERENCING OLD AS O NEW AS N
FOR EACH ROW MODE DB2SQL SECURED
BEGIN ATOMIC
INSERT INTO ACCT_HISTORY
(SSN, BEFORE_BALANCE, AFTER_BALANCE, WHEN, BY_WHO)
VALUES(O.SSN, O.ACCT_BALANCE, N.ACCT_BALANCE,
CURRENT TIMESTAMP, SESSION_USER);

END;

John, from the accounting department, must update the account balance for the
patient Bob whose SSN is '123-45-6789'.

John looks at the data for Bob before running the update:
SELECT ACCT_BALANCE FROM PATIENT WHERE SSN = ’123-45-6789’;

ACCT_BALANCE

9.00

1 record(s) selected.

SELECT * FROM ACCT_HISTORY WHERE SSN = ’123-45-6789’;

SSN BEFORE_BALANCE AFTER_BALANCE WHEN BY_WHO
----------- -------------- -------------- ---------- --------------------

0 record(s) selected.

John then runs the update:
UPDATE PATIENT SET ACCT_BALANCE = ACCT_BALANCE * 0.9 WHERE SSN = ’123-45-6789’;

Since there is a trigger defined on the PATIENT table, the update fires the trigger.
Since the trigger is defined SECURED, the update completes successfully. John
looks at the data for Bob after running the update:
SELECT ACCT_BALANCE FROM PATIENT WHERE SSN = ’123-45-6789’;

ACCT_BALANCE

8.10

1 record(s) selected.

SELECT * FROM ACCT_HISTORY WHERE SSN = ’123-45-6789’;

SSN BEFORE_BALANCE AFTER_BALANCE WHEN BY_WHO
----------- -------------- -------------- ---------- --------------------
123-45-6789 9.00 8.10 2010-10-10 JOHN

1 record(s) selected.

Revoking authority
Alex, as security administrator, is responsible for controlling who can create secure
objects. When developers are done creating secure objects, Alex revokes their
authority on the database.

Chapter 60. Row and column access control (RCAC) 993

Paul, the database developer, is done with development activities. Alex
immediately revokes the create authority from Paul:
REVOKE CREATE_SECURE_OBJECT ON DATABASE FROM USER PAUL;

If Paul must create secure objects in the future, he must speak to Alex to have the
create authority granted again.

994 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 61. Label-based access control (LBAC)

Label-based access control (LBAC) greatly increases the control you have over who
can access your data. LBAC lets you decide exactly who has write access and who
has read access to individual rows and individual columns.

What LBAC does

The LBAC capability is very configurable and can be tailored to match your
particular security environment. All LBAC configuration is performed by a security
administrator, which is a user that has been granted the SECADM authority.

A security administrator configures the LBAC system by creating security label
components. A security label component is a database object that represents a
criterion you want to use to determine if a user should access a piece of data. For
example, the criterion can be whether the user is in a certain department, or
whether they are working on a certain project. A security policy describes the
criteria that will be used to decide who has access to what data. A security policy
contains one or more security label components. Only one security policy can be
used to protect any one table but different tables can be protected by different
security policies.

After creating a security policy, a security administrator creates objects, called
security labels that are part of that policy. Security labels contain security label
components. Exactly what makes up a security label is determined by the security
policy and can be configured to represent the criteria that your organization uses
to decide who should have access to particular data items. If you decide, for
example, that you want to look at a person's position in the company and what
projects they are part of to decide what data they should see, then you can
configure your security labels so that each label can include that information.
LBAC is flexible enough to let you set up anything from very complicated criteria,
to a very simple system where each label represents either a "high" or a "low" level
of trust.

Once created, a security label can be associated with individual columns and rows
in a table to protect the data held there. Data that is protected by a security label is
called protected data. A security administrator allows users access to protected data
by granting them security labels. When a user tries to access protected data, that
user's security label is compared to the security label protecting the data. The
protecting label will block some security labels and not block others.

A user, a role, or a group is allowed to hold security labels for multiple security
policies at once. For any given security policy, however, a use, a role, or a group
can hold at most one label for read access and one label for write access.

A security administrator can also grant exemptions to users. An exemption allows
you to access protected data that your security labels might otherwise prevent you
from accessing. Together your security labels and exemptions are called your LBAC
credentials.

If you try to access a protected column that your LBAC credentials do not allow
you to access then the access will fail and you will get an error message.

© Copyright IBM Corp. 2014 995

If you try to read protected rows that your LBAC credentials do not allow you to
read then DB2 acts as if those rows do not exist. Those rows cannot be selected as
part of any SQL statement that you run, including SELECT, UPDATE, or DELETE.
Even the aggregate functions ignore rows that your LBAC credentials do not allow
you to read. The COUNT(*) function, for example, will return a count only of the
rows that you have read access to.

Views and LBAC

You can define a view on a protected table the same way you can define one on a
non-protected table. When such a view is accessed the LBAC protection on the
underlying table is enforced. The LBAC credentials used are those of the session
authorization ID. Two users accessing the same view might see different rows
depending on their LBAC credentials.

Referential integrity constraints and LBAC

The following rules explain how LBAC rules are enforced in the presence of
referential integrity constraints:
v Rule 1: The LBAC read access rules are NOT applied for internally generated

scans of child tables. This is to avoid having orphan children.
v Rule 2: The LBAC read access rules are NOT applied for internally generated

scans of parent tables
v Rule 3: The LBAC write rules are applied when a CASCADE operation is

performed on child tables. For example, If a user deletes a parent, but cannot
delete any of the children because of an LBAC write rule violation, then the
delete should be rolled-back and an error raised.

Storage overhead when using LBAC

When you use LBAC to protect a table at the row level, the additional storage cost
is the cost of the row security label column. This cost depends on the type of
security label chosen. For example, if you create a security policy with two
components to protect a table, a security label from that security policy will occupy
16 bytes (8 bytes for each component). Because the row security label column is
treated as a not nullable VARCHAR column, the total cost in this case would be 20
bytes per row. In general, the total cost per row is (N*8 + 4) bytes where N is the
number of components in the security policy protecting the table.

When you use LBAC to protect a table at the column level, the column security
label is meta-data (that is, it is stored together with the column's meta-data in the
SYSCOLUMNS catalog table). This meta-data is simply the ID of the security label
protecting the column. The user table does not incur any storage overhead in this
case.

What LBAC does not do
v LBAC will never allow access to data that is forbidden by discretionary access

control.

Example: If you do not have permission to read from a table then you will not
be allowed to read data from that table--even the rows and columns to which
LBAC would otherwise allow you access.

v Your LBAC credentials only limit your access to protected data. They have no
effect on your access to unprotected data.

996 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v LBAC credentials are not checked when you drop a table or a database, even if
the table or database contains protected data.

v LBAC credentials are not checked when you back up your data. If you can run a
backup on a table, which rows are backed up is not limited in any way by the
LBAC protection on the data. Also, data on the backup media is not protected
by LBAC. Only data in the database is protected.

v LBAC cannot be used to protect any of the following types of tables:
– A staging table
– A table that a staging table depends on
– A typed table

v LBAC protection cannot be applied to a nickname.

LBAC tutorial

A tutorial leading you through the basics of using LBAC is available online at
http://www.ibm.com/developerworks/data and is called DB2 Label-Based Access
Control, a practical guide.

LBAC security policies
The security administrator uses a security policy to define criteria that determine
who has write access and who has read access to individual rows and individual
columns of tables.

A security policy includes this information:
v What security label components are used in the security labels that are part of

the policy
v What rules are used when comparing those security label components
v Which of certain optional behaviors are used when accessing data protected by

the policy
v What additional security labels and exemptions are to be considered when

enforcing access to data protected by the security policy. For example, the option
to consider or not to consider security labels granted to roles and groups is
controlled through the security policy.

Every protected table must have one and only one security policy associated with
it. Rows and columns in that table can only be protected with security labels that
are part of that security policy and all access of protected data follows the rules of
that policy. You can have multiple security policies in a single database but you
cannot have more than one security policy protecting any given table.

Creating a security policy

You must be a security administrator to create a security policy. You create a
security policy with the SQL statement CREATE SECURITY POLICY. The security
label components listed in a security policy must be created before the CREATE
SECURITY POLICY statement is executed. The order in which the components are
listed when a security policy is created does not indicate any sort of precedence or
other relationship among the components but it is important to know the order
when creating security labels with built-in functions like SECLABEL.

From the security policy you have created, you can create security labels to protect
your data.

Chapter 61. Label-Based Access Control (LBAC) 997

http://www.ibm.com/developerworks/data
http://www.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html
http://www.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html

Altering a security policy

A security administrator can use the ALTER SECURITY POLICY statement to
modify a security policy.

Dropping a security policy

You must be a security administrator to drop a security policy. You drop a security
policy using the SQL statement DROP.

You cannot drop a security policy if it is associated with (added to) any table.

LBAC security label components
A security label component is a database object that is part of label-based access
control (LBAC). You use security label components to model your organization's
security structure.

A security label component can represent any criteria that you might use to decide
if a user should have access to a given piece of data. Typical examples of such
criteria include:
v How well trusted the user is
v What department the user is in
v Whether the user is involved in a particular project

Example: If you want the department that a user is in to affect which data they
can access, you could create a component named dept and define elements for that
component that name the various departments in your company. You would then
include the component dept in your security policy.

An element of a security label component is one particular "setting" that is allowed
for that component.

Example: A security label component that represents a level of trust might have
the four elements: Top Secret, Secret, Classified, and Unclassified.

Creating a security label component

You must be a security administrator to create a security label component. You
create security label components with the SQL statement CREATE SECURITY
LABEL COMPONENT.

When you create a security label component you must provide:
v A name for the component
v What type of component it is (ARRAY, TREE, or SET)
v A complete list of allowed elements
v For types ARRAY and TREE you must describe how each element fits into the

structure of the component

After creating your security label components, you can create a security policy
based on these components. From this security policy, you can create security
labels to protect your data.

998 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Types of components

There are three types of security label components:
v TREE: Each element represents a node in a tree structure
v ARRAY: Each element represents a point on a linear scale
v SET: Each element represents one member of a set

The types are used to model the different ways in which elements can relate to
each other. For example, if you are creating a component to describe one or more
departments in a company you would probably want to use a component type of
TREE because most business structures are in the form of a tree. If you are creating
a component to represent the level of trust that a person has, you would probably
use a component of type ARRAY because for any two levels of trust, one will
always be higher than the other.

The details of each type, including detailed descriptions of the relationships that
the elements can have with each other, are described in their own section.

Altering security label components

The security administrator can use the ALTER SECURITY LABEL COMPONENT
statement to modify a security label component.

Dropping a security label component

You must be a security administrator to drop a security label component. You drop
a security label component with the SQL statement DROP.

LBAC security labels
In label-based access control (LBAC) a security label is a database object that
describes a certain set of security criteria. Security labels are applied to data in
order to protect the data. They are granted to users to allow them to access
protected data.

When a user tries to access protected data, their security label is compared to the
security label that is protecting the data. The protecting security label will block
some security labels and not block others. If a user's security label is blocked then
the user cannot access the data.

Every security label is part of exactly one security policy and includes one value
for each component in that security policy. A value in the context of a security label
component is a list of zero or more of the elements allowed by that component.
Values for ARRAY type components can contain zero or one element, values for
other types can have zero or more elements. A value that does not include any
elements is called an empty value.

Example: If a TREE type component has the three elements Human Resources,
Sales, and Shipping then these are some of the valid values for that component:
v Human Resources (or any of the elements by itself)
v Human Resources, Shipping (or any other combination of the elements as long

as no element is included more than once)
v An empty value

Chapter 61. Label-Based Access Control (LBAC) 999

Whether a particular security label will block another is determined by the values
of each component in the labels and the LBAC rule set that is specified in the
security policy of the table. The details of how the comparison is made are given
in the topic that discusses how LBAC security labels are compared.

When security labels are converted to a text string they use the format described in
the topic that discusses the format for security label values.

Creating security labels

You must be a security administrator to create a security label. You create a
security label with the SQL statement CREATE SECURITY LABEL. When you
create a security label you provide:
v A name for the label
v The security policy that the label is part of
v Values for one or more of the components included in the security policy

Any components for which a value is not specified is assumed to have an empty
value. A security label must have at least one non-empty value.

Altering security labels

Security labels cannot be altered. The only way to change a security label is to
drop it and re-create it. However, the components of a security label can be
modified by a security administrator (using the ALTER SECURITY LABEL
COMPONENT statement).

Dropping security labels

You must be a security administrator to drop a security label. You drop a security
label with the SQL statement DROP. You cannot drop a security label that is being
used to protect data anywhere in the database or that is currently held by one or
more users.

Granting security labels

You must be a security administrator to grant a security label to a user, a group, or
a role. You grant a security label with the SQL statement GRANT SECURITY
LABEL. When you grant a security label you can grant it for read access, for write
access, or for both read and write access. A user, a group, or a role cannot hold
more than one security label from the same security policy for the same type of
access.

Revoking security labels

You must be a security administrator to revoke a security label from a user, group,
or role. To revoke a security label, use the SQL statement REVOKE SECURITY
LABEL.

Data types compatible with security labels

Security labels have a data type of SYSPROC.DB2SECURITYLABEL. Data
conversion is supported between SYSPROC.DB2SECURITYLABEL and
VARCHAR(128) FOR BIT DATA.

1000 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Determining the security labels held by users

You can use the following query to determine the security labels that are held by
users:
SELECT A.grantee, B.secpolicyname, c.seclabelname
FROM syscat.securitylabelaccess A, syscat.securitypolicies B, syscat.securitylabels C
WHERE A.seclabelid = C.seclabelid and B.secpolicyid = C.secpolicyid

Format for security label values
Sometimes the values in a security label are represented in the form of a character
string, for example when using the built-in function SECLABEL.

When the values in a security label are represented as a string, they are in the
following format:
v The values of the components are listed from left to right in the same order that

the components are listed in the CREATE SECURITY POLICY statement for the
security policy

v An element is represented by the name of that element
v Elements for different components are separated by a colon (:)
v If more than one element are given for the same component the elements are

enclosed in parentheses (()) and are separated by a comma (,)
v Empty values are represented by a set of empty parentheses (())

Example: A security label is part of a security policy that has these three
components in this order: Level, Department, and Projects. The security label has
these values:

Table 137. Example values for a security label

Component Values

Level Secret

Department Empty value

Projects v Epsilon 37

v Megaphone

v Cloverleaf

This security label values look like this as a string:
’Secret:():(Epsilon 37,Megaphone,Cloverleaf)’

How LBAC security labels are compared
When you try to access data protected by label-based access control (LBAC), your
LBAC credentials are compared to one or more security labels to see if the access is
blocked. Your LBAC credentials are any security labels you hold plus any
exemptions that you hold.

There are only two types of comparison that can be made. Your LBAC credentials
can be compared to a single security label for read access or your LBAC credentials
compared to a single security label for write access. Updating and deleting are
treated as being a read followed by a write. When an operation requires multiple
comparisons to be made, each is made separately.

Chapter 61. Label-Based Access Control (LBAC) 1001

Which of your security labels is used

Even though you might hold multiple security labels only one is compared to the
protecting security label. The label used is the one that meets these criteria:
v It is part of the security policy that is protecting the table being accessed.
v It was granted for the type of access (read or write).

If you do not have a security label that meets these criteria then a default security
label is assumed that has empty values for all components.

How the comparison is made

Security labels are compared component by component. If a security label does not
have a value for one of the components then an empty value is assumed. As each
component is examined, the appropriate rules of the LBAC rule set are used to
decide if the elements in your value for that component should be blocked by the
elements in the value for the same component in the protecting label. If any of
your values are blocked then your LBAC credentials are blocked by the protecting
security label.

The LBAC rule set used in the comparison is designated in the security policy. To
find out what the rules are and when each one is used, see the description of that
rule set.

How exemptions affect comparisons

If you hold an exemption for the rule that is being used to compare two values
then that comparison is not done and the protecting value is assumed not to block
the value in your security label.

Example: The LBAC rule set is DB2LBACRULES and the security policy has two
components. One component is of type ARRAY and the other is of type TREE. The
user has been granted an exemption on the rule DB2LBACREADTREE, which is
the rule used for read access when comparing values of components of type TREE.
If the user attempts to read protected data then whatever value the user has for the
TREE component, even if it is an empty value, will not block access because that
rule is not used. Whether the user can read the data depends entirely on the values
of the ARRAY component of the labels.

LBAC rule sets
An LBAC rule set is a predefined set of rules that are used when comparing
security labels. When the values of a two security labels are being compared, one
or more of the rules in the rule set will be used to determine if one value blocks
another.

Each LBAC rule set is identified by a unique name. When you create a security
policy you must specify the LBAC rule set that will be used with that policy. Any
comparison of security labels that are part of that policy will use that LBAC rule
set.

Each rule in a rule set is also identified by a unique name. You use the name of a
rule when you are granting an exemption on that rule.

1002 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

How many rules are in a set and when each rule is used can vary from rule set to
rule set.

There is currently only one supported LBAC rule set. The name of that rule set is
DB2LBACRULES.

LBAC rule set: DB2LBACRULES
The DB2LBACRULES LBAC rule set provides a traditional set of rules for
comparing the values of security label components. It protects from both write-up
and write-down.

What are write-up and write down?

Write-up and write-down apply only to components of type ARRAY and only to
write access. Write up occurs when the value protecting data that you are writing
to is higher than your value. Write-down is when the value protecting the data is
lower than yours. By default neither write-up nor write-down is allowed, meaning
that you can only write data that is protected by the same value that you have.

When comparing two values for the same component, which rules are used
depends on the type of the component (ARRAY, SET, or TREE) and what type of
access is being attempted (read, or write). This table lists the rules, tells when each
is used, and describes how the rule determines if access is blocked.

Table 138. Summary of the DB2LBACRULES rules

Rule name

Used to
compare
values of
this type of
component

Used for
this type of
access

Access is blocked when this
condition is met

DB2LBACREADARRAY ARRAY Read The user's value is lower than the
protecting value.

DB2LBACREADSET SET Read There are one or more protecting
values that the user does not hold.

DB2LBACREADTREE TREE Read None of the user's values is equal to
or an ancestor of one of the
protecting values.

DB2LBACWRITEARRAY ARRAY Write The user's value is higher than the
protecting value or lower than the
protecting value.1

DB2LBACWRITESET SET Write There are one or more protecting
values that the user does not hold.

DB2LBACWRITETREE TREE Write None of the user's values is equal to
or an ancestor of one of the
protecting values.

Note:

1. The DB2LBACWRITEARRAY rule can be thought of as being two different
rules combined. One prevents writing to data that is higher than your level
(write-up) and the other prevents writing to data that is lower than your level
(write-down). When granting an exemption to this rule you can exempt the
user from either of these rules or from both.

Chapter 61. Label-Based Access Control (LBAC) 1003

How the rules handle empty values

All rules treat empty values the same way. An empty value blocks no other values
and is blocked by any non-empty value.

DB2LBACREADSET and DB2LBACWRITESET examples

These examples are valid for a user trying to read or trying to write protected data.
They assume that the values are for a component of type SET that has these
elements: one two three four

Table 139. Examples of applying the DB2LBACREADSET and DB2LBACWRITESET rules.

User's value Protecting value Access blocked?

'one' 'one' Not blocked. The values are the same.

'(one,two,three)' 'one' Not blocked. The user's value contains
the element 'one'.

'(one,two)' '(one,two,four)' Blocked. The element 'four' is in the
protecting value but not in the user's
value.

'()' 'one' Blocked. An empty value is blocked
by any non-empty value.

'one' '()' Not blocked. No value is blocked by
an empty value.

'()' '()' Not blocked. No value is blocked by
an empty value.

DB2LBACREADTREE and DB2LBACWRITETREE

These examples are valid for both read access and write access. They assume that
the values are for a component of type TREE that was defined in this way:
CREATE SECURITY LABEL COMPONENT mycomp
TREE (

’Corporate’ ROOT,
’Publishing’ UNDER ’Corporate’,
’Software’ UNDER ’Corporate’,
’Development’ UNDER ’Software’,
’Sales’ UNDER ’Software’,
’Support’ UNDER ’Software’
’Business Sales’ UNDER ’Sales’
’Home Sales’ UNDER ’Sales’

)

This means the elements are in this arrangement:

1004 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 140. Examples of applying the DB2LBACREADTREE and DB2LBACWRITETREE
rules.

User's value Protecting value Access blocked?

'(Support,Sales)' 'Development' Blocked. The element
'Development' is not one of the
user's values and neither
'Support' nor 'Sales' is an
ancestor of 'Development'.

'(Development,Software)' '(Business Sales,Publishing)' Not blocked. The element
'Software' is an ancestor of
'Business Sales'.

'(Publishing,Sales)' '(Publishing,Support)' Not blocked. The element
'Publishing' is in both sets of
values.

'Corporate' 'Development' Not blocked. The root value is
an ancestor of all other values.

'()' 'Sales' Blocked. An empty value is
blocked by any non-empty
value.

'Home Sales' '()' Not blocked. No value is
blocked by an empty value.

'()' '()' Not blocked. No value is
blocked by an empty value.

DB2LBACREADARRAY examples

These examples are for read access only. They assume that the values are for a
component of type ARRAY that includes these elements in this arrangement:

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Chapter 61. Label-Based Access Control (LBAC) 1005

Table 141. Examples of applying the DB2LBACREADARRAY rule.

User's value Protecting value Read access blocked?

'Secret' 'Employee' Not blocked. The element 'Secret' is higher
than the element 'Employee'.

'Secret' 'Secret' Not blocked. The values are the same.

'Secret' 'Top Secret' Blocked. The element 'Top Secret' is higher
than the element 'Secret'.

'()' 'Public' Blocked. An empty value is blocked by any
non-empty value.

'Public' '()' Not blocked. No value is blocked by an
empty value.

'()' '()' Not blocked. No value is blocked by an
empty value.

DB2LBACWRITEARRAY examples

These examples are for write access only. They assume that the values are for a
component of type ARRAY that includes these elements in this arrangement:

Secret

Employee

Top Secret

Public

Highest

Lowest

Secret

Employee

Top Secret

Public

Highest

Lowest

1006 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 142. Examples of applying the DB2LBACWRITEARRAY rule.

User's value Protecting value Write access blocked?

'Secret' 'Employee' Blocked. The element 'Employee' is lower
than the element 'Secret'.

'Secret' 'Secret' Not blocked. The values are the same.

'Secret' 'Top Secret' Blocked. The element 'Top Secret' is higher
than the element 'Secret'.

'()' 'Public' Blocked. An empty value is blocked by any
non-empty value.

'Public' '()' Not blocked. No value is blocked by an
empty value.

'()' '()' Not blocked. No value is blocked by an
empty value.

LBAC rule exemptions
When you hold an LBAC rule exemption on a particular rule of a particular
security policy, that rule is not enforced when you try to access data protected by
that security policy.

An exemption has no effect when comparing security labels of any security policy
other than the one for which it was granted.

Example:

There are two tables: T1 and T2. T1 is protected by security policy P1 and T2 is
protected by security policy P2. Both security policies have one component. The
component of each is of type ARRAY. T1 and T2 each contain only one row of
data. The security label that you hold for read access under security policy P1 does
not allow you access to the row in T1. The security label that you hold for read
access under security policy P2 does not allow you read access to the row in T2.

Now you are granted an exemption on DB2LBACREADARRAY under P1. You can
now read the row from T1 but not the row from T2 because T2 is protected by a
different security policy and you do not hold an exemption to the
DB2LBACREADARRAY rule in that policy.

You can hold multiple exemptions. If you hold an exemption to every rule used by
a security policy then you will have complete access to all data protected by that
security policy.

Granting LBAC rule exemptions

You must be a security administrator to grant an LBAC rule exemption. To grant
an LBAC rule exemption, use the SQL statement GRANT EXEMPTION ON RULE.

When you grant an LBAC rule exemption you provide this information:
v The rule or rules that the exemption is for
v The security policy that the exemption is for
v The user, group, or role to which you are granting the exemption

Chapter 61. Label-Based Access Control (LBAC) 1007

Important: LBAC rule exemptions provide very powerful access. Do not grant
them without careful consideration.

Revoking LBAC rule exemptions

You must be a security administrator to revoke an LBAC rule exemption. To
revoke an LBAC rule exemption, use the SQL statement REVOKE EXEMPTION
ON RULE.

Determining the rule exemptions held by users

You can use the following query to determine the rule exemptions that are held by
users:
SELECT A.grantee, A.accessrulename, B.secpolicyname
FROM syscat.securitypolicyexemptions A, syscat.securitypolicies B
WHERE A.secpolicyid = B.secpolicyid

Built-in functions for managing LBAC security labels
The built-in functions SECLABEL, SECLABEL_BY_NAME, and
SECLABEL_TO_CHAR are provided for managing label-based access control
(LBAC) security labels.

Each is described briefly here and in detail in the SQL Reference

SECLABEL

This built-in function is used to build a security label by specifying a security
policy and values for each of the components in the label. The returned value has
a data type of DB2SECURITYLABEL and is a security label that is part of the
indicated security policy and has the indicated values for the components. It is not
necessary that a security label with the indicated values already exists.

Example: Table T1 has two columns, the first has a data type of
DB2SECURITYLABEL and the second has a data type of INTEGER. T1 is protected
by security policy P1, which has three security label components: level,
departments, and groups. If UNCLASSIFIED is an element of the component level,
ALPHA and SIGMA are both elements of the component departments, and G2 is
an element of the component groups then a security label could be inserted like
this:
INSERT INTO T1 VALUES

(SECLABEL(’P1’, ’UNCLASSIFIED:(ALPHA,SIGMA):G2’), 22)

SECLABEL_BY_NAME

This built-in function accepts the name of a security policy and the name of a
security label that is part of that security policy. It then returns the indicated
security label as a DB2SECURITYLABEL. You must use this function when
inserting an existing security label into a column that has a data type of
DB2SECURITYLABEL.

Example: Table T1 has two columns, the first has a data type of
DB2SECURITYLABEL and the second has a data type of INTEGER. The security
label named L1 is part of security policy P1. This SQL inserts the security label:
INSERT INTO T1 VALUES (SECLABEL_BY_NAME(’P1’, ’L1’), 22)

1008 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

This SQL statement does not work:
INSERT INTO T1 VALUES (P1.L1, 22) // Syntax Error!

SECLABEL_TO_CHAR

This built-in function returns a string representation of the values that make up a
security label.

Example: Column C1 in table T1 has a data type of DB2SECURITYLABEL. T1 is
protected by security policy P1, which has three security label components: level,
departments, and groups. There is one row in T1 and the value in column C1 that
has these elements for each of the components:

Component Elements

level SECRET

departments DELTA and SIGMA

groups G3

A user that has LBAC credentials that allow reading the row executes this SQL
statement:
SELECT SECLABEL_TO_CHAR(’P1’, C1) AS C1 FROM T1

The output looks like this:
C1

’SECRET:(DELTA,SIGMA):G3’

Protection of data using LBAC
Label-based access control (LBAC) can be used to protect rows of data, columns of
data, or both. Data in a table can only be protected by security labels that are part
of the security policy protecting the table. Data protection, including adding a
security policy, can be done when creating the table or later by altering the table.

You can add a security policy to a table and protect data in that table as part of the
same CREATE TABLE or ALTER TABLE statement.

As a general rule you are not allowed to protect data in such a way that your
current LBAC credentials do not allow you to write to that data.

Adding a security policy to a table

You can add a security policy to a table when you create the table by using the
SECURITY POLICY clause of the CREATE TABLE statement. You can add a
security policy to an existing table by using the ADD SECURITY POLICY clause of
the ALTER TABLE statement. You do not need to have SECADM authority or have
LBAC credentials to add a security policy to a table.

Security policies cannot be added to types of tables that cannot be protected by
LBAC. See the overview of LBAC for a list of table types that cannot be protected
by LBAC.

No more than one security policy can be added to any table.

Chapter 61. Label-Based Access Control (LBAC) 1009

Protecting rows

You can allow protected rows in a new table by including a column with a data
type of DB2SECURITYLABEL when you create the table. The CREATE TABLE
statement must also add a security policy to the table. You do not need to have
SECADM authority or have any LBAC credentials to create such a table.

You can allow protected rows in an existing table by adding a column that has a
data type of DB2SECURITYLABEL. To add such a column, either the table must
already be protected by a security policy or the ALTER TABLE statement that adds
the column must also add a security policy to the table. When the column is
added, the security label you hold for write access is used to protect all existing
rows. If you do not hold a security label for write access that is part of the security
policy protecting the table then you cannot add a column that has a data type of
DB2SECURITYLABEL.

After a table has a column of type DB2SECURITYLABEL you protect each new
row of data by storing a security label in that column. The details of how this
works are described in the topics about inserting and updating LBAC protected
data. You must have LBAC credentials to insert rows into a table that has a column
of type DB2SECURITYLABEL.

A column that has a data type of DB2SECURITYLABEL cannot be dropped and
cannot be changed to any other data type.

Protecting columns

You can protect a column when you create the table by using the SECURED WITH
column option of the CREATE TABLE statement. You can add protection to an
existing column by using the SECURED WITH option in an ALTER TABLE
statement.

To protect a column with a particular security label you must have LBAC
credentials that allow you to write to data protected by that security label. You do
not have to have SECADM authority.

Columns can only be protected by security labels that are part of the security
policy protecting the table. You cannot protect columns in a table that has no
security policy. You are allowed to protect a table with a security policy and
protect one or more columns in the same statement.

You can protect any number of the columns in a table but a column can be
protected by no more than one security label.

Reading LBAC protected data
When you try to read data protected by label-based access control (LBAC), your
LBAC credentials for reading are compared to the security label that is protecting
the data. If the protecting label does not block your credentials you are allowed to
read the data.

In the case of a protected column the protecting security label is defined in the
schema of the table. The protecting security label for that column is the same for
every row in the table. In the case of a protected row the protecting security label
is stored in the row in a column of type DB2SECURITYLABEL. It can be different
for every row in the table.

1010 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The details of how your LBAC credentials are compared to a security label are
given in the topic about how LBAC security labels are compared.

Reading protected columns

When you try to read from a protected column your LBAC credentials are
compared with the security label protecting the column. Based on this comparison
access will either be blocked or allowed. If access is blocked then an error is
returned and the statement fails. Otherwise, the statement proceeds as usual.

Trying to read a column that your LBAC credentials do not allow you to read,
causes the entire statement to fail.

Example:

Table T1 has two protected columns. The column C1 is protected by the security
label L1. The column C2 is protected by the security label L2.

Assume that user Jyoti has LBAC credentials for reading that allow access to
security label L1 but not to L2. If Jyoti issues the following SQL statement, the
statement will fail:
SELECT * FROM T1

The statement fails because column C2 is included in the SELECT clause as part of
the wildcard (*).

If Jyoti issues the following SQL statement it will succeed:
SELECT C1 FROM T1

The only protected column in the SELECT clause is C1, and Jyoti's LBAC
credentials allow her to read that column.

Reading protected rows

If you do not have LBAC credentials that allow you to read a row it is as if that
row does not exist for you.

When you read protected rows, only those rows to which your LBAC credentials
allow read access are returned. This is true even if the column of type
DB2SECURITYLABEL is not part of the SELECT clause.

Depending on their LBAC credentials, different users might see different rows in a
table that has protected rows. For example, two users executing the statement
SELECT COUNT(*) FROM T1 may get different results if T1 has protected rows and
the users have different LBAC credentials.

Your LBAC credentials affect not only SELECT statements but also other SQL
statements like UPDATE, and DELETE. If you do not have LBAC credentials that
allow you to read a row, you cannot affect that row.

Example:

Table T1 has these rows and columns. The column ROWSECURITYLABEL has a
data type of DB2SECURITYLABEL.

Chapter 61. Label-Based Access Control (LBAC) 1011

Table 143. Example values in table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Bird 55 L2

Assume that user Dan has LBAC credentials that allow him to read data that is
protected by security label L1 but not data protected by L2 or L3.

Dan issues the following SQL statement:
SELECT * FROM T1

The SELECT statement returns only the row for Miller. No error messages or
warning are returned.

Dan's view of table T1 is this:

Table 144. Example values in view of table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Miller 77 L1

The rows for Rjaibi, Fielding, and Bird are not returned because read access is
blocked by their security labels. Dan cannot delete or update these rows. They will
also not be included in any aggregate functions. For Dan it is as if those rows do
not exist.

Dan issues this SQL statement:
SELECT COUNT(*) FROM T1

The statement returns a value of 1 because only the row for Miller can be read by
the user Dan.

Reading protected rows that contain protected columns

Column access is checked before row access. If your LBAC credentials for read
access are blocked by the security label protecting one of the columns you are
selecting then the entire statement fails. If not, the statement continues and only
the rows protected by security labels to which your LBAC credentials allow read
access are returned.

Example

The column LASTNAME of table T1 is protected with the security label L1. The
column DEPTNO is protected with security label L2. The column
ROWSECURITYLABEL has a data type of DB2SECURITYLABEL. T1, including the
data, looks like this:

1012 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 145. Example values in table T1

LASTNAME
Protected by L1

DEPTNO
Protected by L2 ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Assume that user Sakari has LBAC credentials that allow reading data protected
by security label L1 but not L2 or L3.

Sakari issues this SQL statement:
SELECT * FROM T1

The statement fails because the SELECT clause uses the wildcard (*) which
includes the column DEPTNO. The column DEPTNO is protected by security label
L2, which Sakari's LBAC credentials do not allow her to read.

Sakari next issues this SQL statement:
SELECT LASTNAME, ROWSECURITYLABEL FROM T1

The select clause does not include any columns that Sakari is not able to read so
the statement continues. Only one row is returned, however, because each of the
other rows is protected by security label L2 or L3.

Table 146. Example output from query on table T1

LASTNAME ROWSECURITYLABEL

Miller L1

Inserting LBAC protected data
When you try to insert data into a protected column, or to insert a new row into a
table with protected rows, your LBAC credentials determine how that INSERT
statement is handled.

Inserting to protected columns

When you try to insert data into a protected column your LBAC credentials for
writing are compared with the security label protecting that column. Based on this
comparison access will either be blocked or allowed.

The details of how two security labels are compared are given in the topic about
how LBAC security labels are compared.

If access is allowed, the statement proceeds as usual. If access is blocked, then the
insert fails and an error is returned.

If you are inserting a row but do not provide a value for a protected column then
a default value is inserted if one is available. This happens even if your LBAC
credentials do not allow write access to that column. A default is available in the
following cases:
v The column was declared with the WITH DEFAULT option

Chapter 61. Label-Based Access Control (LBAC) 1013

v The column is a generated column
v The column has a default value that is given through a BEFORE trigger
v The column has a data type of DB2SECURITYLABEL, in which case security

label that you hold for write access is the default value

Inserting to protected rows

When you insert a new row into a table with protected rows, you do not have to
provide a value for the column that is of type DB2SECURITYLABEL. If you do not
provide a value for that column, the column is automatically populated with the
security label you have been granted for write access. If you have not been granted
a security label for write access, an error is returned and the insert fails.

By using built-in functions like SECLABEL, you can explicitly provide a security
label to be inserted in a column of type DB2SECURITYLABEL. The provided
security label is only used, however, if your LBAC credentials would allow you to
write to data that is protected with the security label you are trying to insert.

If you provide a security label that you would not be able to write, then what
happens depends on the security policy that is protecting the table. If the security
policy has the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option,
then the insert fails and an error is returned. If the security policy does not have
the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option or if it
instead has the OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option,
then the security label you provide is ignored and if you hold a security label for
write access, it is used instead. If you do not hold a security label for write access,
an error is returned.

Examples

Table T1 is protected by a security policy named P1 that was created without the
RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option. Table T1 has
two columns but no rows. The columns are LASTNAME and LABEL. The column
LABEL has a data type of DB2SECURITYLABEL.

User Joe holds a security label L2 for write access. Assume that the security label
L2 allows him to write to data protected by security label L2 but not to data
protected by security labels L1 or L3.

Joe issues the following SQL statement:
INSERT INTO T1 (LASTNAME, DEPTNO) VALUES (’Rjaibi’, 11)

Because no security label was included in the INSERT statement, Joe's security
label for write access is inserted into the LABEL row.

Table T1 now looks like this:

Table 147. Values in the example table T1 after first INSERT statement

LASTNAME LABEL

Rjaibi L2

Joe issues the following SQL statement, in which he explicitly provides the security
label to be inserted into the column LABEL:
INSERT INTO T1 VALUES (’Miller’, SECLABEL_BY_NAME(’P1’, ’L1’))

1014 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The SECLABEL_BY_NAME function in the statement returns a security label that
is part of security policy P1 and is named L1. Joe is not allowed to write to data
that is protected with L1 so he is not allowed to insert L1 into the column LABEL.

Because the security policy protecting T1 was created without the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option the security label that Joe holds
for writing is inserted instead. No error or message is returned.

The table now looks like this:

Table 148. Values in example table T1 after second INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

If the security policy protecting the table had been created with the RESTRICT
NOT AUTHORIZED WRITE SECURITY LABEL option then the insert would have
failed and an error would have been returned.

Next Joe is granted an exemption to one of the LBAC rules. Assume that his new
LBAC credentials allow him to write to data that is protected with security labels
L1 and L2. The security label granted to Joe for write access does not change, it is
still L2.

Joe issues the following SQL statement:
INSERT INTO T1 VALUES (’Bird’, SECLABEL_BY_NAME(’P1’, ’L1’))

Because of his new LBAC credentials Joe is able to write to data that is protected
by the security label L1. The insertion of L1 is therefore allowed. The table now
looks like this:

Table 149. Values in example table T1 after third INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

Bird L1

Updating LBAC protected data
Your LBAC credentials must allow you write access to data before you can update
it. In the case of updating a protected row, your LBAC credentials must also allow
read access to the row.

Updating protected columns

When you try to update data in a protected column, your LBAC credentials are
compared to the security label protecting the column. The comparison made is for
write access. If write access is blocked then an error is returned and the statement
fails, otherwise the update continues.

The details of how your LBAC credentials are compared to a security label are
given in the topic about how LBAC security labels are compared.

Chapter 61. Label-Based Access Control (LBAC) 1015

Example:

Assume there is a table T1 in which column DEPTNO is protected by a security
label L2 and column PAYSCALE is protected by a security label L3. T1, including
its data, looks like this:

Table 150. Table T1

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 11 7

3 Bird 11 9

User Lhakpa has no LBAC credentials. He issues this SQL statement:
UPDATE T1 SET EMPNO = 4

WHERE LASTNAME = "Bird"

This statement executes without error because it does not update any protected
columns. T1 now looks like this:

Table 151. Table T1 After Update

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 11 7

4 Bird 11 9

Lhakpa next issues this SQL statement:
UPDATE T1 SET DEPTNO = 55

WHERE LASTNAME = "Miller"

This statement fails and an error is returned because DEPTNO is protected and
Lhakpa has no LBAC credentials.

Assume Lhakpa is granted LBAC credentials and that allow the access
summarized in the following table. The details of what those credentials are and
what elements are in the security labels are not important for this example.

Security label protecting the data Can read? Can Write?

L2 No Yes

L3 No No

Lhakpa issues this SQL statement again:
UPDATE T1 SET DEPTNO = 55

WHERE LASTNAME = "Miller"

1016 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

This time the statement executes without error because Lhakpa's LBAC credentials
allow him to write to data protected by the security label that is protecting the
column DEPTNO. It does not matter that he is not able to read from that same
column. The data in T1 now looks like this:

Table 152. Table T1 After Second Update

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 55 7

4 Bird 11 9

Next Lhakpa issues this SQL statement:
UPDATE T1 SET DEPTNO = 55, PAYSCALE = 4

WHERE LASTNAME = "Bird"

The column PAYSCALE is protected by the security label L3 and Lhakpa's LBAC
credentials do not allow him to write to it. Because Lhakpa is unable to write to
the column, the update fails and no data is changed.

Updating protected rows

If your LBAC credentials do not allow you to read a row, then it is as if that row
does not exist for you so there is no way for you to update that row. For rows that
you are able to read, you must also be able to write to the row in order to update
it.

When you try to update a row, your LBAC credentials for writing are compared to
the security label protecting the row. If write access is blocked, the update fails and
an error is returned. If write access is not blocked, then the update continues.

The update that is performed is done the same way as an update to a
non-protected row except for the treatment of the column that has a data type of
DB2SECURITYLABEL. If you do not explicitly set the value of that column, it is
automatically set to the security label that you hold for write access. If you do not
have a security label for write access, an error is returned and the statement fails.

If the update explicitly sets the column that has a data type of
DB2SECURITYLABEL, then your LBAC credentials are checked again. If the
update you are trying to perform would create a row that your current LBAC
credentials would not allow you to write to, then what happens depends on the
security policy that is protecting the table. If the security policy has the RESTRICT
NOT AUTHORIZED WRITE SECURITY LABEL option, then the update fails and
an error is returned. If the security policy does not have the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option or if it instead has the
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option, then the
security label you provide is ignored and if you hold a security label for write
access, it is used instead. If you do not hold a security label for write access, an
error is returned.

Example:

Chapter 61. Label-Based Access Control (LBAC) 1017

Assume that table T1 is protected by a security policy named P1 and has a column
named LABEL that has a data type of DB2SECURITYLABEL.

T1, including its data, looks like this:

Table 153. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

2 Miller 11 L2

3 Bird 11 L3

Assume that user Jenni has LBAC credentials that allow her to read and write data
protected by the security labels L0 and L1 but not data protected by any other
security labels. The security label she holds for both read and write is L0. The
details of her full credentials and of what elements are in the labels are not
important for this example.

Jenni issues this SQL statement:
SELECT * FROM T1

Jenni sees only one row in the table:

Table 154. Jenni's SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

The rows protected by labels L2 and L3 are not included in the result set because
Jenni's LBAC credentials do not allow her to read those rows. For Jenni it is as if
those rows do not exist.

Jenni issues these SQL statements:
UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11;
SELECT * FROM T1;

The result set returned by the query looks like this:

Table 155. Jenni's UPDATE & SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

The actual data in the table looks like this:

Table 156. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

2 Miller 11 L2

3 Bird 11 L3

The statement executed without error but affected only the first row. The second
and third rows are not readable by Jenni so they are not selected for update by the
statement even though they meet the condition in the WHERE clause.

1018 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Notice that the value of the LABEL column in the updated row has changed even
though that column was not explicitly set in the UPDATE statement. The column
was set to the security label that Jenni held for writing.

Now Jenni is granted LBAC credentials that allow her to read data protected by
any security label. Her LBAC credentials for writing do not change. She is still
only able to write to data protected by L0 and L1.

Jenni again issues this SQL statement:
UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11

This time the update fails because of the second and third rows. Jenni is able to
read those rows, so they are selected for update by the statement. She is not,
however, able to write to them because they are protected by security labels L2
and L3. The update does not occur and an error is returned.

Jenni now issues this SQL statement:
UPDATE T1
SET DEPTNO = 55, LABEL = SECLABEL_BY_NAME(’P1’, ’L2’)
WHERE LASTNAME = "Rjaibi"

The SECLABEL_BY_NAME function in the statement returns the security label
named L2. Jenni is trying to explicitly set the security label protecting the first row.
Jenni's LBAC credentials allow her to read the first row, so it is selected for update.
Her LBAC credentials allow her to write to rows protected by the security label L0
so she is allowed to update the row. Her LBAC credentials would not, however,
allow her to write to a row protected by the security label L2, so she is not allowed
to set the column LABEL to that value. The statement fails and an error is
returned. No columns in the row are updated.

Jenni now issues this SQL statement:
UPDATE T1 SET LABEL = SECLABEL_BY_NAME(’P1’, ’L1’) WHERE LASTNAME = "Rjaibi"

The statement succeeds because she would be able to write to a row protected by
the security label L1.

T1 now looks like this:

Table 157. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L1

2 Miller 11 L2

3 Bird 11 L3

Updating protected rows that contain protected columns

If you try to update protected columns in a table with protected rows then your
LBAC credentials must allow writing to of all of the protected columns affected by
the update, otherwise the update fails and an error is returned. This is as described
in section about updating protected columns, earlier. If you are allowed to update
all of the protected columns affected by the update you will still only be able to
update rows that your LBAC credentials allow you to both read from and write to.
This is as described in the section about updating protected rows, earlier. The

Chapter 61. Label-Based Access Control (LBAC) 1019

handling of a column with a data type of DB2SECURITYLABEL is the same
whether the update affects protected columns or not.

If the column that has a data type of DB2SECURITYLABEL is itself a protected
column then your LBAC credentials must allow you to write to that column or you
cannot update any of the rows in the table.

Deleting or dropping LBAC protected data
Your ability to delete data in tables protected by LBAC depend on your LBAC
credentials.

Deleting protected rows

If your LBAC credentials do not allow you to read a row, it is as if that row does
not exist for you so there is no way for you to delete it. To delete a row that you
are able to read, your LBAC credentials must also allow you to write to the row.
To delete any row in a table that has protected columns you must have LBAC
credentials that allow you to write to all protected columns in the table.

When you try to delete a row, your LBAC credentials for writing are compared to
the security label protecting the row. If the protecting security label blocks write
access by your LBAC credentials, the DELETE statement fails, an error is returned,
and no rows are deleted.

Example

Protected table T1 has these rows:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Assume that user Pat has LBAC credentials such that her access is as
summarized in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of her LBAC credentials and of the security labels are
unimportant for this example.

Pat issues the following SQL statement:
SELECT * FROM T1 WHERE DEPTNO != 999

The statement executes and returns this result set:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

1020 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

LASTNAME DEPTNO LABEL

Bird 55 L2

The last row of T1 is not included in the results because Pat does not have
read access to that row. It is as if that row does not exist for Pat.

Pat issues this SQL statement:
DELETE FROM T1 WHERE DEPTNO != 999

Pat does not have write access to the first or third row, both of which are
protected by L2. So even though she can read the rows she cannot delete
them. The DELETE statement fails and no rows are deleted.

Pat issues this SQL statement:
DELETE FROM T1 WHERE DEPTNO = 77;

This statement succeeds because Pat is able to write to the row with Miller
in the LASTNAME column. That is the only row selected by the statement.
The row with Fielding in the LASTNAME column is not selected because
Pat's LBAC credentials do not allow her to read that row. That row is
never considered for the delete so no error occurs.

The actual rows of the table now look like this:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

Deleting rows that have protected columns

To delete any row in a table that has protected columns you must have LBAC
credentials that allow you to write to all protected columns in the table. If there is
any row in the table that your LBAC credentials do not allow you to write to then
the delete will fail and an error will be returned.

If the table has both protected columns and protected rows then to delete a
particular row you must have LBAC credentials that allow you to write to every
protected column in the table and also to read from and write to the row that you
want to delete.

Example

In protected table T1, the column DEPTNO is protected by the security
label L2. T1 contains these rows:

LASTNAME
DEPTNO
Protected by L2 LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Chapter 61. Label-Based Access Control (LBAC) 1021

Assume that user Benny has LBAC credentials that allow him the access
summarized in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of his LBAC credentials and of the security labels are
unimportant for this example.

Benny issues the following SQL statement:
DELETE FROM T1 WHERE DEPTNO = 77

The statement fails because Benny does not have write access to the
column DEPTNO.

Now Benny's LBAC credentials are changed so that he has access as
summarized in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes Yes

L3 Yes No

Benny issues this SQL statement again:
DELETE FROM T1 WHERE DEPTNO = 77

This time Benny has write access to the column DEPTNO so the delete
continues. The delete statement selects only the row that has a value of
Miller in the LASTNAME column. The row that has a value of Fielding in
the LASTNAME column is not selected because Benny's LBAC credentials
do not allow him to read that row. Because the row is not selected for
deletion by the statement it does not matter that Benny is unable to write
to the row.

The one row selected is protected by the security label L1. Benny's LBAC
credentials allow him to write to data protected by L1 so the delete is
successful.

The actual rows in table T1 now look like this:

LASTNAME
DEPTNO
Protected by L2 LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

Dropping protected data

You cannot drop a column that is protected by a security label unless your LBAC
credentials allow you to write to that column.

1022 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

A column with a data type of DB2SECURITYLABEL cannot be dropped from a
table. To remove it you must first drop the security policy from the table. When
you drop the security policy the table is no longer protected with LBAC and the
data type of the column is automatically changed from DB2SECURITYLABEL to
VARCHAR(128) FOR BIT DATA. The column can then be dropped.

Your LBAC credentials do not prevent you from dropping entire tables or
databases that contain protected data. If you would normally have permission to
drop a table or a database you do not need any LBAC credentials to do so, even if
the database contains protected data.

Removing LBAC protection from data
You must have SECADM authority to remove the security policy from a table. To
remove the security policy from a table you use the DROP SECURITY POLICY
clause of the ALTER TABLE statement. This also automatically removes protection
from all rows and all columns of the table.

Removing protection from rows

In a table that has protected rows every row must be protected by a security label.
There is no way to remove LBAC protection from individual rows.

A column of type DB2SECURITYLABEL cannot be altered or removed except by
removing the security policy from the table.

Removing protection from columns

Protection of a column can be removed using the DROP COLUMN SECURITY
clause of the SQL statement ALTER TABLE. To remove the protection from a
column you must have LBAC credentials that allow you to read from and write to
that column in addition to the normal privileges and authorities needed to alter a
table.

Chapter 61. Label-Based Access Control (LBAC) 1023

1024 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Chapter 62. DB2 audit facility

To manage access to your sensitive data, you can use a variety of authentication
and access control mechanisms to establish rules and controls for acceptable data
access. But to protect against and discover unknown or unacceptable behaviors
you can monitor data access by using the DB2 audit facility.

Successful monitoring of unwanted data access and subsequent analysis can lead
to improvements in the control of data access and the ultimate prevention of
malicious or careless unauthorized access to data. The monitoring of application
and individual user access, including system administration actions, can provide a
historical record of activity on your database systems.

The DB2 audit facility generates, and allows you to maintain, an audit trail for a
series of predefined database events. The records generated from this facility are
kept in an audit log file. The analysis of these records can reveal usage patterns
that would identify system misuse. Once identified, actions can be taken to reduce
or eliminate such system misuse.

The audit facility provides the ability to audit at both the instance and the
individual database level, independently recording all instance and database level
activities with separate logs for each. The system administrator (who holds
SYSADM authority) can use the db2audit tool to configure audit at the instance
level as well as to control when such audit information is collected. The system
administrator can use the db2audit tool to archive both instance and database
audit logs as well as to extract audit data from archived logs of either type.

The security administrator (who holds SECADM authority within a database) can
use audit policies in conjunction with the SQL statement, AUDIT, to configure and
control the audit requirements for an individual database. The security
administrator can use the following audit routines to perform the specified tasks:
v The SYSPROC.AUDIT_ARCHIVE stored procedure archives audit logs.
v The SYSPROC.AUDIT_LIST_LOGS table function allows you to locate logs of

interest.
v The SYSPROC.AUDIT_DELIM_EXTRACT stored procedure extracts data into

delimited files for analysis.

The security administrator can grant EXECUTE privilege on these routines to
another user, therefore enabling the security administrator to delegate these tasks,
if required.

When working in a partitioned database environment, many of the auditable
events occur at the database partition at which the user is connected (the
coordinator partition) or at the catalog partition (if they are not the same database
partition). The implication of this is that audit records can be generated by more
than one database partition. Part of each audit record contains information
identifying the coordinator partition and originating partition (the partition where
audit record originated).

At the instance level, the audit facility must be stopped and started explicitly by
use of the db2audit start and db2audit stop commands. When you start
instance-level auditing, the audit facility uses existing audit configuration
information. Since the audit facility is independent of the DB2 database server, it

© Copyright IBM Corp. 2014 1025

will remain active even if the instance is stopped. In fact, when the instance is
stopped, an audit record may be generated in the audit log. To start auditing at the
database level, first you need to create an audit policy, then you associate this
audit policy with the objects you want to monitor, such as, authorization IDs,
database authorities, trusted contexts or particular tables.

Categories of audit records

There are different categories of audit records that may be generated. In the
following description of the categories of events available for auditing, you should
notice that following the name of each category is a one-word keyword used to
identify the category type. The categories of events available for auditing are:
v Audit (AUDIT). Generates records when audit settings are changed or when the

audit log is accessed.
v Authorization Checking (CHECKING). Generates records during authorization

checking of attempts to access or manipulate DB2 database objects or functions.
v Object Maintenance (OBJMAINT). Generates records when creating or dropping

data objects, and when altering certain objects.
v Security Maintenance (SECMAINT). Generates records when:

– Granting or revoking object privileges or database authorities
– Granting or revoking security labels or exemptions
– Altering the group authorization, role authorization, or override or restrict

attributes of an LBAC security policy
– Granting or revoking the SETSESSIONUSER privilege
– Modifying any of the SYSADM_GROUP, SYSCTRL_GROUP,

SYSMAINT_GROUP, or SYSMON_GROUP configuration parameters.
v System Administration (SYSADMIN). Generates records when operations

requiring SYSADM, SYSMAINT, or SYSCTRL authority are performed.
v User Validation (VALIDATE). Generates records when authenticating users or

retrieving system security information.
v Operation Context (CONTEXT). Generates records to show the operation context

when a database operation is performed. This category allows for better
interpretation of the audit log file. When used with the log's event correlator
field, a group of events can be associated back to a single database operation.
For example, a query statement for dynamic queries, a package identifier for
static queries, or an indicator of the type of operation being performed, such as
CONNECT, can provide needed context when analyzing audit results.

Note: The SQL or XQuery statement providing the operation context might be
very long and is completely shown within the CONTEXT record. This can make
the CONTEXT record very large.

v Execute (EXECUTE). Generates records during the execution of SQL statements.

For any of the categories listed previously, you can audit failures, successes, or
both.

Any operations on the database server may generate several records. The actual
number of records generated in the audit log depends on the number of categories
of events to be recorded as specified by the audit facility configuration. It also
depends on whether successes, failures, or both, are audited. For this reason, it is
important to be selective of the events to audit.

1026 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Audit policies
The security administrator can use audit policies to configure the audit facility to
gather information only about the data and objects that are needed.

The security administrator can create audit policies to control what is audited
within an individual database. The following objects can have an audit policy
associated with them:
v The whole database

All auditable events that occur within the database are audited according to the
audit policy.

v Tables
All data manipulation language (DML) and XQUERY access to the table
(untyped), MQT (materialized query table), or nickname is audited. Only
EXECUTE category audit events with or without data are generated when the
table is accessed even if the policy indicates that other categories should be
audited.

v Trusted contexts
All auditable events that happen within a trusted connection defined by the
particular trusted context are audited according to the audit policy.

v Authorization IDs representing users, groups, or roles
All auditable events that are initiated by the specified user are audited according
to the audit policy.
All auditable events that are initiated by users that are a member of the group
or role are audited according to the audit policy. Indirect role membership, such
as through other roles or groups, is also included.
You can capture similar data by using the Work Load Management event
monitors by defining a work load for a group and capturing the activity details.
You should be aware that the mapping to workloads can involve attributes in
addition to just the authorization ID, which can cause you to not achieve the
wanted granularity in auditing, or if those other attributes are modified,
connections may map to different (possibly unmonitored) workloads. The
auditing solution provides a guarantee that a user, group or role will be audited.

v Authorities (SYSADM, SECADM, DBADM, SQLADM, WLMADM,
ACCESSCTRL, DATAACCESS, SYSCTRL, SYSMAINT, SYSMON)
All auditable events that are initiated by a user that holds the specified
authority, even if that authority is unnecessary for the event, are audited
according to the audit policy.

The security administrator can create multiple audit policies. For example, your
company might want a policy for auditing sensitive data and a policy for auditing
the activity of users holding DBADM authority. If multiple audit policies are in
effect for a statement, all events required to be audited by each of the audit
policies are audited (but audited only once). For example, if the database's audit
policy requires auditing successful EXECUTE events for a particular table and the
user's audit policy requires auditing failures of EXECUTE events for that same
table, both successful and failed attempts at accessing that table are audited.

For a specific object, there can only be one audit policy in effect. For example, you
cannot have multiple audit policies associated with the same table at the same
time.

Chapter 62. Introduction to the DB2 audit facility 1027

An audit policy cannot be associated with a view or a typed table. Views that
access a table that has an associated audit policy are audited according to the
underlying table's policy.

The audit policy that applies to a table does not automatically apply to a MQT
based on that table. If you associate an audit policy with a table, associate the
same policy with any MQT based on that table.

Auditing performed during a transaction is done based on the audit policies and
their associations at the start of the transaction. For example, if the security
administrator associates an audit policy with a user and that user is in a
transaction at the time, the audit policy does not affect any remaining statements
performed within that transaction. Also, changes to an audit policy do not take
effect until they are committed. If the security administrator issues an ALTER
AUDIT POLICY statement, it does not take effect until the statement is committed.

The security administrator uses the CREATE AUDIT POLICY statement to create
an audit policy, and the ALTER AUDIT POLICY statement to modify an audit
policy. These statements can specify:
v The status values for events to be audited: None, Success, Failure, or Both.

Only auditable events that match the specified status value are audited.
v The server behavior when errors occur during auditing.

The security administrator uses the AUDIT statement to associate an audit policy
with the current database or with a database object, at the current server. Any time
the object is in use, it is audited according to this audit policy.

To delete an audit policy, the security administrator uses the DROP statement. You
cannot drop an audit policy if it is associated with any object. Use the AUDIT
REMOVE statement to remove any remaining association with an object. To add
metadata to an audit policy, the security administrator uses the COMMENT
statement.

Events generated before a full connection has been established

For some events generated during connect and a switch user operation, the only
audit policy information available is the policy that is associated with the database.
These events are shown in the following table:

Table 158. Connection events

Event
Audit
category Comment

CONNECT CONTEXT

CONNECT_RESET CONTEXT

AUTHENTICATION VALIDATE This includes authentication during both
connect and switch user within a trusted
connection.

CHECKING_FUNC CHECKING The access attempted is SWITCH_USER.

These events are audited based only on the audit policy associated with the
database and not with audit policies associated with any other object such as a
user, their groups, or authorities. For the CONNECT and AUTHENTICATION
events that occur during connect, the instance-level audit settings are used until

1028 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

the database is activated. The database is activated either during the first
connection or when the ACTIVATE DATABASE command is issued.

Effect of switching user

If a user is switched within a trusted connection, no remnants of the original user
are left behind. In this case, the audit policies associated with the original user are
no longer considered, and the applicable audit policies are re-evaluated according
to the new user. Any audit policy associated with the trusted connection is still in
effect.

If a SET SESSION USER statement is used, only the session authorization ID is
switched. The audit policy of the authorization ID of the original user (the system
authorization ID) remains in effect and the audit policy of the new user is used as
well. If multiple SET SESSION USER statements are issued within a session, only
the audit policies associated with the original user (the system authorization ID)
and the current user (the session authorization ID) are considered.

Data definition language restrictions

The following data definition language (DDL) statements are called AUDIT
exclusive SQL statements:
v AUDIT
v CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY
v DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context

being dropped is associated with an audit policy

AUDIT exclusive SQL statements have some restrictions in their use:
v Each statement must be followed by a COMMIT or ROLLBACK.
v These statements cannot be issued within a global transaction, for example an

XA transaction.

Only one uncommitted AUDIT exclusive DDL statement is allowed at a time
across all partitions. If an uncommitted AUDIT exclusive DDL statement is
executing, subsequent AUDIT exclusive DDL statements wait until the current
AUDIT exclusive DDL statement commits or rolls back.

Note: Changes are written to the catalog, but do not take effect until COMMIT,
even for the connection that issues the statement.

Example of auditing any access to a specific table

Consider a company where the EMPLOYEE table contains extremely sensitive
information and the company wants to audit any and all SQL access to the data in
that table. The EXECUTE category can be used to track all access to a table; it
audits the SQL statement, and optionally the input data value provided at
execution time for that statement.

There are two steps to track activity on the table. First, the security administrator
creates an audit policy that specifies the EXECUTE category, and then the security
administrator associates that policy with the table:

Chapter 62. Introduction to the DB2 audit facility 1029

CREATE AUDIT POLICY SENSITIVEDATAPOLICY
CATEGORIES EXECUTE STATUS BOTH ERROR TYPE AUDIT

COMMIT

AUDIT TABLE EMPLOYEE USING POLICY SENSITIVEDATAPOLICY
COMMIT

Example of auditing any actions by SYSADM or DBADM

In order to complete their security compliance certification, a company must show
that any and all activities within the database by those people holding system
administration (SYSADM) or database administrative (DBADM) authority can be
monitored.

To capture all actions within the database, both the EXECUTE and SYSADMIN
categories should be audited. The security administrator creates an audit policy
that audits these two categories. The security administrator can use the AUDIT
statement to associate this audit policy with the SYSADM and DBADM authorities.
Any user that holds either SYSADM or DBADM authority will then have any
auditable events logged. The following example shows how to create such an audit
policy and associate it with the SYSADM and DBADM authorities:
CREATE AUDIT POLICY ADMINSPOLICY CATEGORIES EXECUTE STATUS BOTH,

SYSADMIN STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT SYSADM, DBADM USING POLICY ADMINSPOLICY
COMMIT

Example of auditing any access by a specific role

A company has allowed its web applications access to their corporate database.
The exact individuals using the web applications are unknown. Only the role that
is used is known and that role is used to manage the database authorizations. The
company wants to monitor the actions of anyone who is a member of that role in
order to examine the requests they are submitting to the database and to ensure
that they only access the database through the web applications.

The EXECUTE category contains the necessary level of auditing to track the
activity of the users for this situation. The first step is to create the appropriate
audit policy and associate it with the roles that are used by the web applications
(in this example, the roles are TELLER and CLERK):
CREATE AUDIT POLICY WEBAPPPOLICY CATEGORIES EXECUTE WITH DATA

STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT ROLE TELLER, ROLE CLERK USING POLICY WEBAPPPOLICY
COMMIT

Example of enabling auditing for a database

A company wants to determine who is making DDL changes (example: ALTER
TABLE) on the database named SAMPLE.
CONNECT TO SAMPLE

CREATE AUDIT POLICY ALTPOLICY CATEGORIES AUDIT STATUS BOTH,
OBJMAINT STATUS BOTH, CHECKING STATUS BOTH,
EXECUTE STATUS BOTH, ERROR TYPE NORMAL

AUDIT DATABASE USING POLICY ALTPOLICY

1030 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Storage and analysis of audit logs
Archiving the audit log moves the active audit log to an archive directory while
the server begins writing to a new, active audit log. Later, you can extract data
from the archived log into delimited files and then load data from these files into
DB2 database tables for analysis.

Configuring the location of the audit logs allows you to place the audit logs on a
large, high-speed disk, with the option of having separate disks for each member
in a multiple member environment, such as a DB2 pureScale environment or a
partitioned database environment. In a multiple member environment, the path for
the active audit log can be a directory that is unique to each member. Having a
unique directory for each member helps to avoid file contention, because each
member is writing to a different disk.

The default path for the audit logs on Windows operating systems is
instance\security\auditdata and on Linux and UNIX operating systems is
instance/security/auditdata. If you do not want to use the default location, you
can choose different directories (you can create new directories on your system to
use as alternative locations, if they do not already exist). To set the path for the
active audit log location and the archived audit log location, use the db2audit
configure command with the datapath and archivepath parameters, as shown in
this example:
db2audit configure datapath /auditlog archivepath /auditarchive

The audit log storage locations you set using db2audit apply to all databases in the
instance.

Note: If there are multiple instances on the server, then each instance should each
have separate data and archive paths.

The path for active audit logs (datapath) in a multiple member
environment

In a multiple member environment, the same active audit log location (set by the
datapath parameter) must be used on each member. There are two ways to
accomplish this:
1. Use database member expressions when you specify the datapath parameter.

Using database member expressions allows the member number to be included
in the path of the audit log files and results in a different path on each database
member.

2. Use a shared drive that is the same on all members.

You can use database member expressions anywhere within the value you specify
for the datapath parameter. For example, on a three member system, where the
database member number is 10, the following command:
db2audit configure datapath ’/pathForNode $N’

uses the following paths:
v /pathForMember10

v /pathForMember20

v /pathForMember30

Chapter 62. Introduction to the DB2 audit facility 1031

Note: You cannot use database member expressions to specify the archive log file
path (archivepath parameter).

Archiving active audit logs

The system administrator can use the db2audit tool to archive both instance and
database audit logs as well as to extract audit data from archived logs of either
type.

The security administrator, or a user to whom the security administrator has
granted EXECUTE privilege on the audit routines, can archive the active audit log
by running the SYSPROC.AUDIT_ARCHIVE stored procedure. To extract data
from the log and load it into delimited files, they can use the
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure.

These are the steps to archive and extract the audit logs using the audit routines:
1. Schedule an application to perform regular archives of the active audit log

using the stored procedure SYSPROC.AUDIT_ARCHIVE.
2. Determine which archived log files are of interest. Use the

SYSPROC.AUDIT_LIST_LOGS table function to list all of the archived audit
logs.

3. Pass the file name as a parameter to the SYSPROC.AUDIT_DELIM_EXTRACT
stored procedure to extract data from the log and load it into delimited files.

4. Load the audit data into DB2 database tables for analysis.

The archived log files do not need to be immediately loaded into tables for
analysis; they can be saved for future analysis. For example, they may only need to
be looked at when a corporate audit is taking place.

If a problem occurs during archive, such as running out of disk space in the
archive path, or the archive path does not exist, the archive process fails and an
interim log file with the file extension .bk is generated in the audit log data path,
for example, db2audit.instance.log.0.20070508172043640941.bk. After the
problem is resolved (by allocating sufficient disk space in the archive path, or by
creating the archive path) you must move this interim log to the archive path.
Then, you can treat it in the same way as a successfully archived log.

Archiving active audit logs in a multiple member environment

In a multiple member environment, if the archive command is issued while the
instance is running, the archive process automatically runs on every member. The
same timestamp is used in the archived log file name on all members. For
example, on a three member system, where the database member number is 10, the
following command:
db2audit archive to /auditarchive

creates the following files:
v /auditarchive/db2audit.log.10.timestamp

v /auditarchive/db2audit.log.20.timestamp

v /auditarchive/db2audit.log.30.timestamp

If the archive command is issued while the instance is not running, you can control
on which member the archive is run by one of the following methods:

1032 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

v Use the node option with the db2audit command to perform the archive for the
current member only.

v Use the db2_all command to run the archive on all members.
For example:
db2_all db2audit archive node to /auditarchive

This sets the DB2NODE environment variable to indicate on which members the
command is invoked.

Alternatively, you can issue an individual archive command on each member
separately. For example:
v On member 10:

db2audit archive node 10 to /auditarchive

v On member 20:
db2audit archive node 20 to /auditarchive

v On member 30:
db2audit archive node 30 to /auditarchive

Note: When the instance is not running, the timestamps in the archived audit log
file names are not the same on each member.

Note: It is recommended that the archive path is shared across all members, but it
is not required.

Note: The AUDIT_DELIM_EXTRACT stored procedure and AUDIT_LIST_LOGS
table function can only access the archived log files that are visible from the
current (coordinator) member.

Example of archiving a log and extracting data to a table

To ensure their audit data is captured and stored for future use, a company needs
to create a new audit log every six hours and archive the current audit log to a
WORM drive. The company schedules the following call to the
SYSPROC.AUDIT_ARCHIVE stored procedure to be issued every six hours by the
security administrator, or by a user to whom the security administrator has
granted EXECUTE privilege on the AUDIT_ARCHIVE stored procedure. The path
to the archived log is the default archive path, /auditarchive, and the archive runs
on all members:
CALL SYSPROC.AUDIT_ARCHIVE(’/auditarchive’, -2)

As part of their security procedures, the company has identified and defined a
number of suspicious behaviors or disallowed activities that it needs to watch for
in the audit data. They want to extract all the data from the one or more audit
logs, place it in a relational table, and then use SQL queries to look for these
activities. The company has decided on appropriate categories to audit and has
associated the necessary audit policies with the database or other database objects.

For example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure to extract the archived audit logs for all categories from all members
that were created with a timestamp in April 2006, using the default delimiter:
CALL SYSPROC.AUDIT_DELIM_EXTRACT(

’’, ’’, ’/auditarchive’, ’db2audit.%.200604%’, ’’)

Chapter 62. Introduction to the DB2 audit facility 1033

In another example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored
procedure to extract the archived audit records with success events from the
EXECUTE category and failure events from the CHECKING category, from a file
with the timestamp they are interested in:
CALL SYSPROC.AUDIT_DELIM_EXTRACT(’’, ’’, ’/auditarchive’,

’db2audit.%.20060419034937’, ’category
execute status success, checking status failure);

The EXECUTE category for auditing SQL statements
Use the EXECUTE category to accurately track the SQL statements that are issued
by a user. In Version 9.5 and earlier releases, you had to use the CONTEXT
category to find this information.

As part of a comprehensive security policy, a company can require the ability to
retroactively go back a set number of years and analyze the effects of any
particular request against certain tables in their database. To do this, a company
must institute a policy of archiving their weekly backups and associated log files
such that they can reconstitute the database for any chosen moment in time. Also
required, is sufficient database audit information captured about every request
made against the database to allow, at any future time, the replay and analysis of
any request against the relevant, restored database. This requirement can cover
both static and dynamic SQL statements.

This EXECUTE category captures the SQL statement text as well as the compilation
environment and other values that are needed to replay the statement at a later
date. For example, replaying the statement can show you exactly which rows a
SELECT statement returned. In order to re-run a statement, the database tables
must first be restored to their state when the statement was issued.

When you audit using the EXECUTE category, the statement text for both static
and dynamic SQL is recorded, as are input parameter markers and host variables.
You can configure the EXECUTE category to be audited with or without input
values.

Note: Global variables are not audited.

The auditing of EXECUTE events takes place at the completion of the event (for
SELECT statements this is on cursor close). The status that the event completed
with is also stored. Because EXECUTE events are audited at completion,
long-running queries do not immediately appear in the audit log.

Note: The preparation of a statement is not considered part of the execution. Most
authorization checks are performed at prepare time (for example, SELECT
privilege). This means that statements that fail during prepare due to authorization
errors do not generate EXECUTE events.

Statement Value Index, Statement Value Type and Statement Value Data fields may
be repeated for a given execute record. For the report format generated by the
extraction, each record lists multiple values. For the delimited file format, multiple
rows are used. The first row has an event type of STATEMENT and no values.
Following rows have an event type of DATA, with one row for each data value
associated with the SQL statement. You can use the event correlator and
application ID fields to link STATEMENT and DATA rows together. The columns
Statement Text, Statement Isolation Level, and Compilation Environment
Description are not present in the DATA events.

1034 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The statement text and input data values that are audited are converted into the
database code page when they are stored on disk (all audited fields are stored in
the database code page). No error is returned if the code page of the input data is
not compatible with the database code page; the unconverted data will be logged
instead. Because each database has it's own audit log, databases having different
code pages does not cause a problem.

ROLLBACK and COMMIT are audited when executed by the application, and also
when issued implicitly as part of another command, such as BIND.

After an EXECUTE event has been audited due to access to an audited table, all
statements that affect which other statements are executed within a unit of work,
are audited. These statements are COMMIT, ROLLBACK, ROLLBACK TO
SAVEPOINT and SAVEPOINT.

Savepoint ID field

You can use the Savepoint ID field to track which statements were affected by a
ROLLBACK TO SAVEPOINT statement. An ordinary DML statement (such as
SELECT, INSERT, and so on) has the current savepoint ID audited. However, for
the ROLLBACK TO SAVEPOINT statement, the savepoint ID that is rolled back to
will be audited instead. Therefore, every statement with a savepoint ID greater
than or equal to that ID will be rolled back, as demonstrated by the following
example. The table shows the sequence of statements run; all events with a
Savepoint ID greater than or equal to 2 will be rolled back. Only the value of 3
(from the first INSERT statement) is inserted into the table T1.

Table 159. Sequence of statements to demonstrate effect of ROLLBACK TO SAVEPOINT
statement

Statement Savepoint ID

INSERT INTO T1 VALUES (3) 1

SAVEPOINT A 2

INSERT INTO T1 VALUES (5) 2

SAVEPOINT B 3

INSERT INTO T1 VALUES (6) 3

ROLLBACK TO SAVEPOINT A 2

COMMIT

WITH DATA option

Not all input values are audited when you specify the WITH DATA option. LOB,
LONG, XML and structured type parameters appear as NULL.

Date, time, and timestamp fields are recorded in ISO format.

If WITH DATA is specified in one policy, but WITHOUT DATA is specified in
another policy associated with objects involved in the execution of the SQL
statement, then WITH DATA takes precedence and data is audited for that
particular statement. For example, if the audit policy associated with a user
specifies WITHOUT DATA, but the policy associated with a table specifies WITH
DATA, when that user accesses that table, the input data used for the statement is
audited.

Chapter 62. Introduction to the DB2 audit facility 1035

You are not able to determine which rows were modified on a positioned-update
or positioned-delete statement. Only the execution of the underlying SELECT
statement is logged, not the individual FETCH. It is not possible from the
EXECUTE record to determine which row the cursor is on when the statement is
issued. When replaying the statement at a later time, it is only possible to issue the
SELECT statement to see what range of rows may have been affected.

Example of replaying past activities

Consider in this example that as part of their comprehensive security policy, a
company requires that they retain the ability to retroactively go back up to seven
years to analyze the effects of any particular request against certain tables in their
database. To do this, they institute a policy of archiving their weekly backups and
associated log files such that they can reconstitute the database for any chosen
moment in time. They require that the database audit capture sufficient
information about every request made against the database to allow the replay and
analysis of any request against the relevant, restored database. This requirement
covers both static and dynamic SQL statements.

This example shows the audit policy that must be in place at the time the SQL
statement is issued, and the steps to archive the audit logs and later to extract and
analyze them.
1. Create an audit policy that audits the EXECUTE category and apply this policy

to the database:
CREATE AUDIT POLICY STATEMENTS CATEGORIES EXECUTE WITH DATA

STATUS BOTH ERROR TYPE AUDIT
COMMIT

AUDIT DATABASE USING POLICY STATEMENTS
COMMIT

2. Regularly archive the audit log to create an archive copy.
The following statement should be run by the security administrator, or a user
to whom they grant EXECUTE privilege for the SYSPROC.AUDIT_ARCHIVE
stored procedure, on a regular basis, for example, once a week or once a day,
depending on the amount of data logged. These archived files can be kept for
whatever period is required. The AUDIT_ARCHIVE procedure is called with
two input parameters: the path to the archive directory and -2, to indicate that
the archive should be run on all members:
CALL SYSPROC.AUDIT_ARCHIVE(’/auditarchive’, -2)

3. The security administrator, or a user to whom they grant EXECUTE privilege
for the SYSPROC.AUDIT_LIST_LOGS table function, uses AUDIT_LIST_LOGS
to examine all of the available audit logs from April 2006, to determine which
logs may contain the necessary data:
SELECT FILE FROM TABLE(SYSPROC.AUDIT_LIST_LOGS(’/auditarchive’))

AS T WHERE FILE LIKE ’db2audit.dbname.log.0.200604%’
FILE

...
db2audit.dbname.log.0.20060418235612
db2audit.dbname.log.0.20060419234937
db2audit.dbname.log.0.20060420235128

4. From this output, the security administrator observes that the necessary logs
should be in one file: db2audit.dbname.log.20060419234937. The timestamp
shows this file was archived at the end of the day for the day the auditors
want to see.

1036 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

The security administrator, or a user to whom they grant EXECUTE privilege
for the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, uses this
filename as input to AUDIT_DELIM_EXTRACT to extract the audit data into
delimited files. The audit data in these files can be loaded into DB2 database
tables, where it can be analyzed to find the particular statement the auditors
are interested in. Even though the auditors are only interested in a single SQL
statement, multiple statements from the unit of work may need to be examined
in case they have any impact on the statement of interest.

5. In order to replay the statement, the security administrator must take the
following actions:
v Determine the exact statement to be issued from the audit record.
v Determine the user who issued the statement from the audit record.
v Re-create the exact permissions of the user at the time they issued the

statement, including any LBAC protection.
v Reproduce the compilation environment, by using the compilation

environment column in the audit record in combination with the SET
COMPILATION ENVIRONMENT statement.

v Restore the database to its exact state at the time the statement was issued.

To avoid disturbing the production system, any restore of the database and
replay of the statement should be done on a second database system. The
security administrator, running as the user who issued the statement, can
reissue the statement as found in the statement text with any input variables
that are provided in the statement value data elements.

Chapter 62. Introduction to the DB2 audit facility 1037

1038 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Part 8. Appendixes

© Copyright IBM Corp. 2014 1039

1040 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Appendix A. Overview of the DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command-line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2
technical issue that the documentation does not resolve, contact your local IBM
service center for assistance.

DB2 technical library in hardcopy or PDF format
The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 10.1 manuals in PDF format can be
downloaded from www.ibm.com/support/docview.wss?rs=71&uid=swg27009474.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2014 1041

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474#manuals

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 160. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-3864-00 Yes April, 2012

Administrative Routines
and Views

SC27-3865-01 No January, 2013

Call Level Interface
Guide and Reference
Volume 1

SC27-3866-01 Yes January, 2013

Call Level Interface
Guide and Reference
Volume 2

SC27-3867-01 Yes January, 2013

Command Reference SC27-3868-01 Yes January, 2013

Database Administration
Concepts and
Configuration Reference

SC27-3871-01 Yes January, 2013

Data Movement Utilities
Guide and Reference

SC27-3869-01 Yes January, 2013

Database Monitoring
Guide and Reference

SC27-3887-01 Yes January, 2013

Data Recovery and High
Availability Guide and
Reference

SC27-3870-01 Yes January, 2013

Database Security Guide SC27-3872-01 Yes January, 2013

DB2 Workload
Management Guide and
Reference

SC27-3891-01 Yes January, 2013

Developing ADO.NET
and OLE DB
Applications

SC27-3873-01 Yes January, 2013

Developing Embedded
SQL Applications

SC27-3874-01 Yes January, 2013

Developing Java
Applications

SC27-3875-01 Yes January, 2013

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-3876-00 No April, 2012

Developing RDF
Applications for IBM
Data Servers

SC27-4462-00 Yes January, 2013

Developing User-defined
Routines (SQL and
External)

SC27-3877-01 Yes January, 2013

Getting Started with
Database Application
Development

GI13-2046-01 Yes January, 2013

1042 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Table 160. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2047-00 Yes April, 2012

Globalization Guide SC27-3878-00 Yes April, 2012

Installing DB2 Servers GC27-3884-01 Yes January, 2013

Installing IBM Data
Server Clients

GC27-3883-00 No April, 2012

Message Reference
Volume 1

SC27-3879-01 No January, 2013

Message Reference
Volume 2

SC27-3880-01 No January, 2013

Net Search Extender
Administration and
User's Guide

SC27-3895-01 No January, 2013

Partitioning and
Clustering Guide

SC27-3882-01 Yes January, 2013

Preparation Guide for
DB2 10.1 Fundamentals
Exam 610

SC27-4540-00 No January, 2013

Preparation Guide for
DB2 10.1 DBA for
Linux, UNIX, and
Windows Exam 611

SC27-4541-01 No January, 2013

pureXML Guide SC27-3892-01 Yes January, 2013

Spatial Extender User's
Guide and Reference

SC27-3894-00 No April, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-3896-01 Yes January, 2013

SQL Reference Volume 1 SC27-3885-01 Yes January, 2013

SQL Reference Volume 2 SC27-3886-01 Yes January, 2013

Text Search Guide SC27-3888-01 Yes January, 2013

Troubleshooting and
Tuning Database
Performance

SC27-3889-01 Yes January, 2013

Upgrading to DB2
Version 10.1

SC27-3881-01 Yes January, 2013

What's New for DB2
Version 10.1

SC27-3890-01 Yes January, 2013

XQuery Reference SC27-3893-01 No January, 2013

Table 161. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Personal Edition

SC27-3861-00 Yes April, 2012

Appendix A. Overview of the DB2 technical information 1043

Table 161. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Servers

SC27-3862-01 Yes January, 2013

DB2 Connect User's
Guide

SC27-3863-01 Yes January, 2013

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
Documentation for other versions of DB2 products is found in separate information
centers on ibm.com®.

About this task

For DB2 Version 10.1 topics, the DB2 Information Center URL is
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1.

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

1044 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Before you begin

A DB2 Version 10.1 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates update existing Information Center features and languages.

One benefit of automatic updates is that the Information Center is unavailable
for a shorter time compared to during a manual update. In addition, automatic
updates can be set to run as part of other batch jobs that run periodically.

v Manual updates can be used to update existing Information Center features and
languages. Automatic updates reduce the downtime during the update process,
however you must use the manual process when you want to add features or
languages. For example, a local Information Center was originally installed with
both English and French languages, and now you want to also install the
German language; a manual update will install German, as well as, update the
existing Information Center features and languages. However, a manual update
requires you to manually stop, update, and restart the Information Center. The
Information Center is unavailable during the entire update process. In the
automatic update process the Information Center incurs an outage to restart the
Information Center after the update only.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V10.1
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 10.1 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Appendix A. Overview of the DB2 technical information 1045

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system by using a machine that is connected to the internet
and has the DB2 Information Center installed. If many users on your network
will be installing the documentation updates, you can reduce the time required
for individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv10 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.

1046 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

b. Navigate to the path where the Information Center is installed. By
default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 10.1 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
/opt/ibm/db2ic/V10.1 directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check that the selections you want to install,
then click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the doc\bin directory within the installation
directory, and run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the doc/bin directory within the installation directory,
and run the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv10 start

Results

The updated DB2 Information Center displays the new and updated topics.

Appendix A. Overview of the DB2 technical information 1047

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 database products.
Lessons provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center, which contains:
v Information about how to isolate and identify problems with DB2

diagnostic tools and utilities.
v Solutions to some of the most common problem.
v Advice to help solve other problems you might encounter with your

DB2 database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

1048 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

http://publib.boulder.ibm.com/infocenter/db2luw/10r1/
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Appendix A. Overview of the DB2 technical information 1049

http://www.ibm.com/legal/copytrade.shtml

1050 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2014 1051

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

1052 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 1053

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

1054 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Index

Special characters
_DETAILS table functions 420

A
access control

authentication 947
column-specific 995
fine-grained row and column

see RCAC 979
label-based access control 995
row-specific 995
tables 965
views 965

access plan diagrams
description 72
example 72
setting preferences 73

access plans
diagramming 70
information capture by explain facility 483
REFRESH TABLE statement 503
SET INTEGRITY statement 503

activities
data collection

procedure 479
activities monitor elements

interfaces that return XML documents 420
activity event monitors

monitor data returned in XML documents 420
WLM 467

adaptive compression
details 221
dictionaries 228

ADC (automatic dictionary creation)
details 229

ADMIN_COPY_SCHEMA procedure
example 649
overview 545

administration notification log
database restart operations 724
first occurrence data capture (FODC) 510

AFTER triggers
details 347

agents
configuration 48

AIX
backups 741
restores 741

aliases
creating 197

ALTER DATABASE statement
compatibility with online backups 775

ALTER EVENT MONITOR statement
example 455

ALTER STOGROUP statement
compatibility with online backups 775

ALTER TABLE statement
enabling compression 226
SET DATA TYPE option 238

ALTER triggers
details 346

alternate_auth_enc configuration parameter
encrypting using AES 256–bit algorithm 947

application development
sequences 368

application-period temporal tables
creating 273
deleting data 280
inserting data 275
overview 272
querying 281
setting application time 283
special register 283
updating data 276

applications
binding 709
performance

comparison of sequences and identity columns 370
sequences 369

archivepath parameter 1031
archiving

audit log files 1031
log files

compression 740
ASYNC synchronization mode 849
asynchronous index cleanup 60
ATTACH command

attaching to instances 13
audit facility

actions 1025
authorities 1025
events 1025
EXECUTE events 1034
overview 1025
policies 1027
privileges 1025
troubleshooting 521

audit logs
archiving 1031
location 1031

authentication
methods 947
overview 945
types

CLIENT 947
DATA_ENCRYPT 947
DATA_ENCRYPT_CMP 947
GSS_SERVER_ENCRYPT 947
GSSPLUGIN 947
KERBEROS 947
KRB_SERVER_ENCRYPT 947
SERVER 947
SERVER_ENCRYPT 947

authorities
audit policy 1027
binding 709
LOAD 553
overview 953

authorization IDs
security model overview 945

© Copyright IBM Corp. 2014 1055

authorization IDs (continued)
trusted client 947

auto_reval database configuration parameter
CREATE with errors support 198

AUTOCONFIGURE command
sample output 58

automatic backups
enabling 772

automatic client reroute
high availability disaster recovery (HADR) 892

automatic dictionary creation (ADC)
details 229

automatic features 33
automatic incremental restore

limitations 752
automatic maintenance

AUTOMAINT_SET_POLICY procedure 773
AUTOMAINT_SET_POLICYFILE procedure 773
backups 50, 735, 772
configuring 773
index reorganization in volatile tables 681
overview 34
windows 35

automatic memory tuning 42
automatic reorganization

details 51
enabling 681

automatic restart
crash recovery 724

automatic revalidation
details 196

automatic statistics collection
details 33
enabling 692
storage 695

automatic statistics profiling
storage 695

automatic storage databases
converting nonautomatic storage database 114
use by default 49

automatic storage table spaces
adding storage 154
altering 154
container names 131
converting 133
details 129
dropping 154
dropping storage paths 180
overview 33, 49
reducing size 155

autorestart database configuration parameter
high availability disaster recovery (HADR) 903

B
BACKUP DATABASE command

backing up data 758
DB2 pureScale environments 767

backup images 747, 755
backup utility

authorities required 757
displaying information 755
monitoring progress 774
overview 755
performance 774
privileges required 757
restrictions 758

backup utility (continued)
troubleshooting 755

backups
automatic 50, 735
compression 740
databases

automatic 50, 735, 772
displaying information 755
frequency 737
incremental 749
named pipes 765
offline 737
online 737
operating system restrictions 741
partitioned databases 766
storage considerations 739
tape 763
user exit program 739

base tables
comparison with other table types 201

BEFORE DELETE triggers
overview 346

BEFORE triggers
comparison with check constraints 302
details 347
overview 346

bidirectional indexes 320
BIND command

package re-creation
re-creating 707

bind files
backward compatibility 705

bind list
DB2 Connect 709

bind options
overview 705, 707

BINDADD authority
DB2 Connect 709

binding
applications 709
authority 709
bind file description utility (db2bfd) 703
configuration parameters 21, 22
database utilities 708
DYNAMICRULES bind option 703
embedded SQL packages 705
overview 707
packages

DB2 Connect 709
rebinding invalid packages 963
utilities

DB2 Connect 709
bitemporal tables

creating 286
deleting data 293
inserting data 288
overview 285
querying 295
replication 266
rollforward 266
updating data 289

blank data type 209
block-structured devices 148
buffer pools

creating 120
designing 118
dropping 123

1056 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

buffer pools (continued)
memory

protection 119
modifying 122
overview 117

C
catalog statistics

avoiding manual updates 702
collecting

distribution statistics on specific columns 698
guidelines 686
index statistics 698
procedure 696

detailed index data 688
distribution statistics 689
overview 683

catalog views
overview 382

cataloging
databases 95
host databases 95
Named Pipes 91
TCP/IP nodes 88, 93

CDI
overview 593

chains
job manager 66

character serial devices 148
check constraints

BEFORE triggers comparison 302
designing 301
overview 299

classic row compression
details 220
dictionaries 228

classic table reorganization 665
CLI

binding to a database 708
CLIENT authentication type

details 947
client-to-server communications

connections
configuring 75
testing using CLP 96

clients
server combinations 79
server connections

configuring using CLP 91
clone databases

creating
using different storage group paths 800

clustered indexes
overview 320
see also clustering indexes 320

clustering indexes
designing 330

clusters
managing

high availability disaster recovery (HADR) 918
code pages

binding 705
columns

altering 241
constraints

overview 208

columns (continued)
definitions 241
distribution statistics 698
hidden 206
LBAC protection

adding 1009
removing 1023

LBAC-protected
dropping 1020
exporting 634, 636
importing 625
inserting 1013
loading 558
reading 1010
updating 1015

ordering 210
renaming 243

command line processor (CLP)
binding utilities to database 708
cataloging

databases 95
nodes 93

commands
changes 545

configuring
client-to-server connections 91
TCP/IP 92

examples
database rebuild sessions 814
redirected restore sessions 793
rollforward sessions 834

commands
catalog database 95
catalog npipe 91
catalog tcpip 93
db2dart

INSPECT command comparison 540
overview 539

db2iupgrade
upgrading instances 16
upgrading pureScale instances 18

db2look
creating similar databases 654

db2ls
listing DB2 products and features 522

db2pd
examples 524

db2pdcfg
overview 511

EXPLAIN.DDL 487
INSPECT

db2dart command comparison 540
modifications summary 545

commit_count configuration parameter
performance tuning 608

communication protocols
DB2 instance 89
overview 81

compilers
capturing information using explain facility 483

compression
adaptive 221
backup 740
classic row 220
default system values 219
estimating storage savings 223

Index 1057

compression (continued)
index

details 336
NULL values 219
overview 49
row

adaptive 221
classic 220
overview 219

table
column values 219
overview 218

tables
changing 227
creating 224
disabling 227
enabling 226

temporary tables 220, 221
value 219

compression dictionaries
adaptive compression 221
automated creation 229
classic row compression 220
creating 33
forcing creation 231
KEEPDICTIONARY parameter 231
multiple 232
overview 228
rebuilding 231
RESETDICTIONARY parameter 231
size reporting 232

configuration
agent and process model 48
client-to-server connections

command line processor (CLP) 91
databases

HADR 911
file system caching 142
high availability 903
LDAP

user for applications 102
memory 46
TCP/IP

client 92
Configuration Advisor

defining the scope of configuration parameters 57
details 33, 57
sample output 58

configuration files
db2dsdriver.cfg 105
details 21

configuration parameters
auto_reval 196
autorestart 724
Configuration Advisor for defining scope 57
configuring DB2 database manager 22
database

changing values 21
details 21
hadr_peer_window

setting 911
hadr_timeout

setting 911
recompiling query after configuration changes 701

connections
failures

parameter setting 911

constraints
BEFORE triggers comparison 302
check 301
checking

after load operations 583
creating

overview 312
definitions

viewing 316
designing 301
details 299
dropping 316
informational 303, 310
modifying 312
NOT NULL 300
primary key

details 301
effects on index reuse 316

referential 303
table 301
types 299
unique 303, 320
unique key

details 300
effects on index reuse 316

constructs
multiple query blocks 73

conversion
code page

ingest utility 609
crash recovery

details 724
CREATE DATABASE command

example 111
CREATE GLOBAL TEMPORARY TABLE statement

creating created temporary tables 234
CREATE IN COLLECTION NULLID authority 709
CREATE STOGROUP statement

compatibility with online backups 775
created temporary tables

comparison between table types 235
CURRENT EXPLAIN MODE special register

explain data 488
CURRENT EXPLAIN SNAPSHOT special register

explain data 488
CURRENT SCHEMA special register

identifying schema names 193
CURSOR file type

data movement 565

D
data

accessing
optimization 34

compacting 661
compressing 232
exporting 634
importing 618
ingesting

partitioned database environment 611
inserting

LBAC-protected 1013
XML 401

label-based access control (LBAC)
adding protection 1009
exporting 634

1058 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

data (continued)
label-based access control (LBAC) (continued)

inserting 1013
loading 552
overview 1009
reading 1010
unprotecting 1023
updating 1015

organization
table partitioning 233

recovering
overview 723

security
overview 945

data defragmentation
overview 34

data management tools
Data Studio 65

data movement
export utility 633
import utility 615
load utility 549
tools 545

data recovery
log replay delay 881

data storage
multi-temperature 175
storage groups 175

data types
columns 203
default values 209
setting

ALTER TABLE statement 238
XML

overview 399
database analysis and reporting tool command

overview 539
database engine processes 539
database manager

binding utilities 708
database manager configuration file

updating for TCP/IP 88
database objects

CREATE with errors support 198
monitoring

object usage 414
objects that a statement affects 417
statements that affect a table 415
usage lists 391

overview 107
recovery history file 735
recovery log file 735
REPLACE option 198
roles 969
statement dependencies when modifying 315
table space change history file 735
unlimited REORG-recommended operations 238
usage 414
usage statistics 417

database partition servers
failed 725

database_memory database configuration parameter
self-tuning 36

database-managed space (DMS)
page sizes 145
table sizes 145

database-managed space (DMS) (continued)
table spaces

automatic storage 133
creating 148
sizes 145

databases
accessing

default authorities 959
default privileges 959

aliases
creating 197

automatic storage
converting to 114
overview 49

backups
automated 33, 34, 772
strategy 735

cataloging
command line processor (CLP) 95

configuring
high availability disaster recovery (HADR) 911

connections
high availability disaster recovery (HADR) 911

designing
overview 109

distributed 109
duplicating to test DB2 server upgrade 658
label-based access control (LBAC) 995
monitoring

interfaces 411
overview 409

nonrecoverable 735
package dependencies 315
partitioned 109
rebuilding

examples 814
incremental backup images 811
overview 801
partitioned databases 812
restrictions 813
table space containers 805
target image selection 806

recovering
strategy 735

restoring 784
rollforward recovery

overview 730
temporary table spaces 806
transporting schemas

examples 826
overview 822
transportable objects 825
troubleshooting 828

datapath parameter 1031
DATE data type

default value 209
DB2 administration server (DAS)

enabling discovery 85
DB2 Governor

troubleshooting 521
DB2 high availability instance configuration utility

see db2haicu utility 927
DB2 Information Center

updating 1045, 1046
versions 1044

DB2 products
listing 522

Index 1059

DB2 pureScale environments
backups 767
database rollforward 842
log file management 743
log record identifiers (LRIs) 747
log sequence numbers (LSNs) 747
log stream merges 743
log streams 743
restoring 767

DB2 servers
overview 1
upgrading

instances 16
pureScale instances 18

DB2 system commands
modifications summary 545

DB2 workload management
activities

data collection 479
event monitors

overview 467
metrics 477
monitoring

data 473
event monitors 467
overview 461
real-time 461
system behavior at different levels (example) 464
work 461

stored procedures
WLM_CANCEL_ACTIVITY 475
WLM_CAPTURE_ACTIVITY_IN_PROGRESS 475
WLM_COLLECT_STATS 475
WLM_SET_CLIENT_INFO 475

table functions
operational information 461
understanding what is running on data server

(example) 462
using with snapshot monitor table functions 476

thresholds
violation monitoring 478

DB2_PEER_WAIT_LIMIT registry variable
high availability disaster recovery (HADR) 903

db2audit.log file 1025
db2Backup API

backing up data 758
db2bfd command

overview 703
db2dart command

INSPECT command comparison 540
troubleshooting overview 539

db2diag logs
details 505
first occurrence data capture (FODC) information 510
interpreting

informational record 509
overview 506

db2dsdcfgfill command
copying database directory information 105

db2dsdriver.cfg file
copying information into file 105
details 105

db2expln command
output description 503

db2fodc command
collecting diagnostic information 511

db2haicu utility
clustered environment 930
details 927
input file samples

db2ha_sample_DPF_NPlusM.xml 937
db2ha_sample_HADR.xml 939

input file XML schema
details 934

maintenance mode 929
prerequisites 929
restrictions 931
running

interactive mode 933
XML input file 934, 937

startup mode 928
db2icrt command

creating instances 8
db2idrop command

dropping instances 19
db2inidb command

creating split mirror 761, 762
DB2INSTPROF registry variable

location 21
db2iupdt command

updating instance configuration
Linux 10
UNIX 10
Windows 10

db2iupgrade command
upgrading instances 16
upgrading pureScale instances 18

DB2LBACRULES LBAC rule set 1003
DB2LDAP_CLIENT_PROVIDER registry variable

IBM LDAP client 83
db2ldcfg command

configuring LDAP user 102
db2look command

creating databases 654
db2ls command

listing installed products and features 522
db2move command

overview 545
schema copying examples 649

db2nodes.cfg file
overview 6

db2pd command
troubleshooting examples 524

db2pdcfg command
collecting diagnostic information 511

db2Recover API
recovering data 780

db2relocatedb command
overview 545

db2Restore API
recovering data 786

db2Rollforward API
applying transactions to restored backup image 833

DB2SECURITYLABEL data type
exporting 636
importing 625
loading 558
providing explicit values 1008
viewing as string 1008

db2set command
setting registry and environment variables 27

db2val command
validating DB2 copy 542

1060 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

ddcs400.lst file 709
ddcsmvs.lst file 709
ddcsvm.lst file 709
ddcsvse.lst file 709
DDL

details 109
statements

details 109
supported by automatic revalidation 196
supported by soft invalidation 195

DECLARE GLOBAL TEMPORARY TABLE statement
declaring temporary tables 233

declared temporary tables
comparison to other table types 235

deep compression
See adaptive compression 221
See classic row compression 220

default privileges 959
default storage groups

overview 178
deferred index cleanup

monitoring 62
deletable views

details 385
delete rule

details 303
delprioritychar file type modifier

LBAC-protected data import 625
LBAC-protected data load 558

dependent rows
overview 303

dependent tables
overview 303

descendent row
overview 303

descendent table
overview 303

design
tables 203

Design Advisor
defining workloads 717
details 713
restrictions 718

DETACH command
detaching from instances 13

DETAILS.XML
monitor table functions 420

diaglevel configuration parameter
updating 510

diagnostic information
first occurrence data capture (FODC)

configuring 513
details 511
files 510

dictionaries
compression 228

directories
instance 6

disaster recovery
high availability disaster recovery (HADR)

overview 847
requirements 889

overview 729
discovery feature

enabling 85
hiding databases 86
hiding server instances 86

distinct types
user-defined 209

distribution keys
loading data 573

distribution statistics
details 689
query optimization 691

documentation
overview 1041
PDF files 1041
printed 1041
terms and conditions of use 1048

DROP STOGROUP statement
compatibility with online backups 775

dynamic SQL
DYNAMICRULES effects 703

DYNAMICRULES precompile/bind option
effects on dynamic SQL 703

E
embedded SQL applications

access plans 706
performance

BIND command REOPT option 706
environment variables

profile registry 25
setting

Linux 29
partitioned database environment 31
process 27
UNIX 29
Windows 29

event monitors
accessing data

regular tables 451
activities

collecting data 479
changing 455
creating

event monitors that write to tables 445
overview 444

enabling data collection 448
events captured 435
logical data groups

changing 455
output

pruning 453
output options

details 442
overview 434
tables

pruning 453
threshold violations

monitoring 478
troubleshooting 521
types 467
unformatted event tables

methods for accessing data 452
routines for extracting data 452

usage
methods for accessing event monitor data 450
overview 440

write-to-table 440
events

captured by event monitors 435

Index 1061

EVMON_FORMAT_UE_TO_TABLES procedure
PRUNE_UE_TABLE option 453

ExampleHMO RCAC scenario
column masks 986
data queries 988
data updates 988
database tables 982
database users and roles 981
inserting data 987
introduction 980
revoke authority 994
row permissions 985
secure functions 991
secure triggers 992
security administration 984
security policy 980
view creation 990

examples
connecting to a remote database 96

exception tables
load utility 590

EXECUTE category
overview 1034

explain facility
analyzing information 500
capturing information

general guidelines 488
section actuals 495
section explain 491

creating snapshots 488
db2exfmt command 501
db2expln command 501
explain instances 485
EXPLAIN statement 492
explain tables 485
guidelines for using information 499
information organization 485
output

section actuals 497
overview 483, 501, 502
section explain 492
tuning SQL statements 484

explain snapshots
binding 705

explain tables
creating 487
organization 485

explicit trusted connections
establishing 975
user ID switching 975

explsnap option 491
export utility

authorities required 634
identity columns 640
LOBs 640
online backup compatibility 775
options 633
overview 545, 633
performance 633
prerequisites 634
privileges required 634
restrictions 634
table re-creation 637

exports
data

examples 635
export utility overview 633

exports (continued)
data (continued)

LBAC-protected 636
procedure 634
XML 641

profiles 97
expressions

NEXT VALUE 367
PREVIOUS VALUE 367

extents
sizes in table spaces 144

F
failback operations 922
failover

performing 919
FCM

monitoring 419
FGAC

see RCAC 979
file event monitors

formatting output from command line 454
file formats

CURSOR 565
file systems

caching for table spaces 142
fine-grained access control

see RCAC 979
first occurrence data capture

see FODC 510
first-fit order 214
FODC

data generation 521
details 510
subdirectories 516

foreign keys
details 303
overview 299
utility implications 314

frequent-value distribution statistics 689

G
generated columns

defining 205
examples 205
import utility 628
load utility 562
modifying 240

generatedignore file type modifier
importing columns 628

generatedmissing file type modifier
importing columns 628

global-level profile registry 25
GRANT statement

example 961
overview 961

groups
roles comparison 970

H
HADR

active standby database
isolation level 877

1062 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

HADR (continued)
active standby database (continued)

replay-only window 878
cluster managers 918
commands 892
configuring 903
converting to multiple standby mode 856
data concurrency 877
databases

initializing 895
failback 922
failover

multiple standbys 865
performing 919

initializing
multiple standbys 854
single standby 895

load operations 903
log archiving 912
log flushes 877
managing 892
monitoring

methods 923
multiple standby mode 862

multiple standby mode
enabling 856

multiple standbys 853
overview 847
performance 915
primary reintegration 922
reads on standby

replay-only window 878
requirements 887, 889
restrictions 891
rolling updates 861, 884
rolling upgrades

multiple standby mode 861
setting up

multiple standbys 854
single standby 895

standby databases
initializing 897

stopping 925
switching database roles 921
synchronization modes

ASYNC 849
effective 849, 859
NEARSYNC 849
operational 849, 859
SUPERASYNC 849
SYNC 849

takeover
multiple standbys 865

HADR multiple standbys
adding auxiliary standbys 858
changing the principal standby 858
configuring 866
enabling 854
example 866
modifying your setup 858
monitoring 862
NAT support 890
overview 853
restrictions 854
setting up 866
takeover

examples 871

HADR reads on standby
enabling 876
overview 876

HADR standby
log spooling 914

hadr_peer_window database configuration parameter
automatic reconfiguration 859
high availability disaster recovery (HADR) 903
setting parameter 911

hadr_remote_host configuration parameter
automatic reconfiguration 859

hadr_remote_inst configuration parameter
automatic reconfiguration 859

hadr_remote_svc configuration parameter
automatic reconfiguration 859

hadr_replay_delay database configuration parameter
HADR delayed replay 881

hadr_spool_limit database configuration parameter 914
hadr_syncmode configuration parameter

automatic reconfiguration 859
hadr_syncmode database configuration parameter

high availability disaster recovery (HADR) 903
hadr_timeout configuration parameter

setting parameter 911
hadr_timeout database configuration parameter

high availability disaster recovery (HADR) 903
hard invalidation of database objects 195
health monitor

details 33
heaps

configuring 46
help

SQL statements 1044
hidden columns

overview 206
high availability

configuring
NAT 890

designing 721
outages

overview 721
high availability disaster recovery

see HADR 847
High Availability Disaster Recovery

see HADR 847
high water marks

lowering
automatic storage table spaces 136, 155
DMS table spaces 136

overview 134
historical compression dictionary

overview 232
history

job manager 66
HP-UX

backups 741
restores 741

I
I/O

table space design 146
IBM data server clients

cataloging
Named Pipes nodes 91
TCP/IP nodes 93

Index 1063

IBM data server clients (continued)
installing

Windows 105
IBM data server driver configuration file

See db2dsdriver.cfg file 105
IBM Data Server Driver Package

configuration file 105
IBM Data Studio

overview 65
identity columns

defining on new tables 208
example 208
exporting data 640
import utility 626
load utility 560
modifying 240
sequence comparison 370, 372

identityignore file type modifier
IMPORT command 626

identitymissing file type modifier
IMPORT command 626

images
backing up 755

IMPLICIT_SCHEMA (implicit schema) authority
details 189

import utility
ALLOW NO ACCESS locking mode 631
ALLOW WRITE ACCESS locking mode 631
authorities required 617
client/server environments 630
generated columns 628
identity columns 626
ingest utility comparison 645
load utility comparison 645
LOBs 629
overview 545, 615
prerequisites 618
privileges required 617
remote databases 630
restrictions 618
table locking 631
user-defined distinct types (UDTs) 630

imports
data 618, 625
LBAC protection 617
overview 615
profiles 97
XML data 632

incremental backups
details 749
images for rebuilding databases 811

incremental recovery
overview 749

incremental restores
overview 791
restoring from incremental backup images 750

index compression
details 336
restrictions 336

index over XML data
overview 403

index reorganization
automatic 681
costs 678
overview 661, 670
reducing need 680
volatile tables 681

indexes
asynchronous cleanup 60, 62
bidirectional 320
catalog statistics 698
clustered 320
creating

nonpartitioned for partitioned tables 339
nonpartitioned tables 338
partitioned for partitioned tables 340

deferred cleanup 62
Design Advisor 332, 713
designing 330, 332
details 319
dropping 343
explain information to analyze use 500
improving performance 320
logging for high availability disaster recovery

(HADR) 914
modifying 342
non-clustered 320
non-unique 320
nonpartitioned 323
partitioned

overview 325
partitioned tables

nonpartitioned indexes 323, 339
overview 322
partitioned indexes 325

rebuilding 343
renaming 342
reusing 316
space requirements 332
statistics

detailed 688
unique 320

informational constraints
designing 310
details 303, 310
overview 299

INGEST command
restart table 596
restarting 604
sample scripts 612
terminating 606

ingest utility
import utility comparison 645
ingesting data 597
limitations 606
load utility comparison 645
monitoring 613
overview 545, 593
partitioned database environments 611
performance tuning 608
processing new files

scenario 612
restart table 596
restarting 604
restrictions 606
running 594
task overview 595

inline storage
LOBs

details 216
XML data 216

inplace table reorganization 667
insert rule 303

1064 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

insert time clustering (ITC) tables
comparison with other table types 201
loading 568

insertable views
overview 386

INSPECT command
db2dart comparison 540

installation
listing DB2 database products 522

instance directories 6
instance node-level profile registry 25
instance profile registry 25
instance-level profile registry

overview 25
setting variables in partitioned database environment 31

instances
auto-starting 11
communication protocols 89
configuring

TCP/IP communications 87
creating

additional 8
current

identifying 30
default 3, 5
designing 4
modifying 9
multiple

Linux 7
UNIX 7
Windows 7

overview 3
profile registry 25
removing 19
running concurrently 13
starting

Linux 12
UNIX 12
Windows 12

stopping
Linux 14
UNIX 14
Windows 15

updating configurations
Linux 10
UNIX 10
Windows 10

upgrading 16
INSTEAD OF triggers

details 348
overview 346

integrity checking 583
invalidation

hard 195
soft 195

J
job manager

chains 66
create jobs 66, 68
history 66
manage jobs 66
notifications 66
schedules 66

job type
DB2 CLP scripts 65

job type (continued)
SSH 65

Executable/shell scripts 65
ssh 65

SQL-only scripts 65
jobs

job manager 66
job type 65

joins
explain information 500

K
Kerberos authentication protocol

server 947
keys

foreign
details 303

parent 303
Known Discovery service

details 85
KRB_SERVER_ENCRYPT authentication type 947

L
label-based access control

See LBAC 995
large objects (LOBs)

exporting 640
importing 629
storage

inline 216
LBAC

credentials 995
dropping columns 1020
exporting data 634, 636
importing data 617, 625
inserting data 1013
loading data 552, 558
overview 953, 995
protected tables 995
reading data 1010
removing protection 1023
rule exemptions

details 1007
effect on security label comparisons 1001

rule sets
comparing security labels 1001
DB2LBACRULES 1003
overview 1002

security administrators 995
security labels

comparisons 1001
compatible data types 999
components 998
creating 999
details 999
dropping 999
granting 999
overview 995
revoking 999
string format 1001

security policies
adding to a table 1009
details 997
overview 995

Index 1065

LBAC (continued)
updating data 1015

LDAP
cataloging node entries 99
configurations 83
creating user 101
deregistering

databases 103
servers 103

directory support 99
registering

databases 101
DB2 servers 99

registry variables 102
user creation 101

Linux
backup and restore operations between different operating

systems and hardware platforms 741
listing DB2 database products 522

LOAD authority
details 553

LOAD command
partitioned database environments 575

load utility
authorities 552
build phase 549
database recovery 549
delete phase 549
exception tables 590
generated columns 562
identity columns 560
import utility comparison 645
index copy phase 549
ingest utility comparison 645
load phase 549
overview 545, 549
prerequisites 553
privileges 552
referential integrity features

overview 583
table space states 587
table states 588

required information 549
restrictions 553
table locking 586
table space states 587
table states 588
XML data 572

loads
database partitions 573
examples

overview 555
partitioned database environments 580

insert time clustering (ITC) tables 568
LBAC-protected data 558
monitoring progress 591
multidimensional clustering (MDC) tables 568
partitioned tables 569
using CURSOR file type 565

lobsinfile file type modifier
exporting 640

lobsinsepfiles file type modifier 640
locks

import utility 631
monitoring 419
table level 586

log record identifiers (LRIs)
DB2 pureScale environments 747

log sequence numbers (LSNs)
DB2 pureScale environments 747

log spooling
HADR configuration 914

log stream merges
overview 743

log streams
overview 743

logarchmeth1 configuration parameter
high availability disaster recovery (HADR) 912

logarchmeth2 configuration parameter
high availability disaster recovery (HADR) 912

logfilsiz database configuration parameter
high availability disaster recovery (HADR) 903

logical data groups
event monitors

changing 455
logs

archived
compression 740

audit 1025
DB2 pureScale environments 743
including in backup image 747
indexes 914
log archiving 912
space requirements

recovery 739
statistics 695
user exit programs 739

LRIs (log record identifiers)
DB2 pureScale environments 747

LSNs (log sequence numbers)
DB2 pureScale environments 747

M
maintenance

automatic 34
windows 35

materialized query tables
See MQTs 201

maxappls configuration parameter
effect on memory use 37

maxcoordagents configuration parameter 37
MDC tables

comparison to other table types 201
deferred index cleanup 62
loading 568

media failures
logs 739

memory
allocating

overview 37
usage lists 392

configuring
details 46

monitoring
overview 419

partitioned database environments 45
self-tuning 36, 40

messages
export utility 633
import utility 615
load utility 549

1066 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

metrics
DB2 workload management objects 477
returned by event monitors 420

MON_GET_REBALANCE_STATUS table function
monitoring progress 164

monitoring
backups 774
capturing section explain information 491
data

workload management 473
database events

event monitors 434
databases 409
extent movement status

table functions 419
fast communication manager (FCM)

table functions 419
high availability disaster recovery (HADR)

multiple standby mode 862
overview 923

historical trends 467
index reorganizations 674
interfaces 411
loads 591
locks

table functions 419
monitor data returned in XML documents 420
object usage

objects that a statement affects 417
overview 414
statements that affect a table 415
usage lists 391

overview 461
real-time 461
rebalance operations 164
reports generated by MONREPORT module 456
restores 829, 844
RUNSTATS operations 700
snapshot access

snapshot table functions in SQL queries 430
SYSMON authority 425

snapshot capture methods
SNAP_WRITE_FILE stored procedure 428
snapshot administrative views 426
snapshot table functions 426
snapshot table functions in SQL queries 430

table functions 411
usage lists 391

MONREPORT module
reports

details 456
MQTs

altering properties 242
dependent immediate 567
overview 201
refreshing data 243, 567
Set Integrity Pending state 567

multi-temperature storage
overview 175

multiple DB2 copies
running instances concurrently 13

multiple instances
Linux 7
UNIX 7
Windows 7

multiple query blocks 73

N
named pipes

backing up 765
Named Pipes

supported protocol 81
naming conventions

schema name restrictions 193
NEARSYNC synchronization mode 849
nested views

definitions 385
NEXT VALUE expression

sequences 367
using identity columns 372

Nodes
setting preferences 73

non-clustered indexes 320
non-identity generated columns 628
non-Unicode databases

converting to Unicode 657
non-unique indexes 320
nonidentity generated columns 562
nonpartitioned indexes

creating for partitioned tables 339
overview 322, 323

nonpartitioned tables
creating indexes 338

nonrecoverable databases
backup and recovery strategy 735
load options 549

NOT NULL constraints
overview 300
types 299

notices 1051
notifications

job manager 66
NULL

data type 209
NULLID 709
numdb database manager configuration parameter

effect on memory use 37

O
objects

monitoring
object usage 414
objects that a statement affects 417
statements that affect a table 415
usage lists 391

ownership 953
usage 414

offline backups
compatibility with online backups 775

offline index reorganization
space requirements 678

offline loads
compatibility with online backups 775

offline maintenance 35
offline table reorganization

advantages 662
disadvantages 662
locking conditions 665
performing 666
phases 665
space requirements 678
temporary files created during 665

Index 1067

online backups
compatibility with other utilities 775

online index creation
compatibility with online backups 775

online index reorganization
compatibility with online backups 775
concurrency 673
locking 673
log space requirements 678

online inspect
compatibility with online backups 775

online loads
compatibility with online backups 775

online maintenance 35
online table reorganization

advantages 662
compatibility with online backups 775
concurrency 668
details 667
disadvantages 662
locking 668
log space requirements 678
pausing 669
performing 669
restarting 669

optimization
backup performance 774
reorganizing tables and indexes 661
restore performance 830

overflow records
performance effect 675

ownership
database objects 953

P
package cache event monitor

monitor data returned in XML documents 420
packages

creating
BIND command and existing bind file 707

host database servers 709
inoperative 315, 708
invalid state 708
privileges

revoking (overview) 963
System i database servers 709

pages
sizes

table spaces 145
tables 145, 213

parallelism
recovery 780

parent keys
overview 303

parent rows
overview 303

parent tables
overview 303

partitioned databases
backing up 766
loading data

overview 573
restrictions 575

rebuilding databases 812
self-tuning memory 43, 45
table spaces 148

partitioned databases (continued)
transactions

failure recovery 725
partitioned indexes

creating 340
overview 322, 325

partitioned tables
comparison with other table types 201
loading 569
nonpartitioned indexes

creating 339
overview 323

partitioned indexes
creating 340
overview 325

system-period temporal tables 270
paths

adding 179
performance

analyzing changes 484
evaluating 484
explain information 499
high availability disaster recovery (HADR) 915
identifying statements that affect tables 415
improving with indexes 320
recovery 780
runstats

improving 701
sequences 368
SQL query

using object statistics 417
periods

BUSINESS_TIME 273
SYSTEM_TIME 250

permissions
column-specific protection 995
row-specific protection 995

pipe event monitors
formatting output from command line 454

points of consistency
database 724

PREVIOUS VALUE expression
identity columns 372
overview 367

primary database connections
disconnect 911

primary database reintegration after takeover 922
primary keys

details 301
index reuse 316
overview 299

privileges
backup utility 757
export utility 634
GRANT statement 961
granting

roles 970
hierarchy 953
import utility 617
individual 953
load utility 552
overview 953
ownership 953
packages

implicit 953
restore utility 784

1068 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

privileges (continued)
revoking

overview 963
roles 969
rollforward utility 833

problem determination
information available 1048
tutorials 1048

process model
configuration simplification 48

profile registries
authorization requirements 26
instanceglobalinstance nodeuser 25
locations 26

profiles
exporting 97
importing 97
statistics 693

pruning event monitor data 453
pureScale instances

upgrading 18
pureXML

overview 395

Q
quantile distribution statistics 689
query optimization

distribution statistics 691
querying XML data

methods
comparison 402
overview 402

queryopt precompile/bind option
code page considerations 705

R
range-clustered tables

comparison with other table types 201
raw devices

creating table spaces 148
RCAC

ExampleHMO
see ExampleHMO RCAC scenario 980

overview 979
rules 980
scenario

see ExampleHMO RCAC scenario 980
system-period temporal tables 271

read-only views
using 387

rebalancing
compatibility with online backups 775
rebalance utility

monitoring progress 164
REBIND PACKAGE command

rebinding 708
rebinding

details 708
REBIND PACKAGE command 708

rebuilding compression dictionaries 231
reclaimable storage

automatic storage table spaces 155
compressed tables 220, 221
details 136

records
audit 1025

RECOVER DATABASE command
authorities required 779
privileges required 779
recovering data 780

recoverable databases
details 735
load options 549

recovery
crash 724
damaged table spaces 725
databases

overview 779
rebuilding 801

incremental 749
inoperative views 389
operating system restrictions 741
parallel 780
performance 780
point-in-time 730
roll-forward 730
storage considerations 739
strategy overview 735
time required 737
to end of logs 730
two-phase commit protocol 725
version 730

redefining table space containers
redirected restore operations

using script 797
redirected restores

overview 793
using generated script 799
using script 797

referential constraints
details 303

referential integrity
constraints 303
delete rule 303
insert rule 303
update rule 303

registry variables
DB2_HADR_PEER_WAIT_LIMIT 915
DB2_HADR_SORCVBUF 915
DB2_HADR_SOSNDBUF 915
profile authorization requirements 26
profile locations 26
profile registry 25
setting

partitioned database environment 31
procedure 27

regular tables
comparison with other table types 201

REMOTEFETCH media type 565
RENAME STOGROUP statement

compatibility with online backups 775
renaming storage groups 182

REORG TABLE command
compression dictionary maintenance options 231
performing offline 666

reorg utility
monitoring progress 674

REORG-recommended operations
single transaction 238

Index 1069

reorganization
automatic

details 51
indexes in volatile tables 681

binding utilities to databases 708
error handling 670
indexes

automatic 681
costs 678
determining need 675
online (locking and concurrency)index reclaim 673
overview 670
procedure 661

methods 662
monitoring 670
reducing need 680
tables

automatic 681
compatibility with online backups 775
costs 678
determining need 675
necessity 661
offline (compared with online) 662
offline (details) 665
online (details) 667
online (locking and concurrency) 668
online (pausing and restarting) 669
online (procedure) 669
procedure 661

replay delay
HADR configuration 881
HADR standby 881, 882

replication
compression dictionaries for source tables 232

response files
exporting configuration profile 97
importing configuration profile 97

RESTART DATABASE command
crash recovery 724

restart table
creating 596

RESTORE DATABASE command
DB2 pureScale environments 767
restoring data 786

restore utility
authorities required 784
compatibility with online backups 775
examples 793
GENERATE SCRIPT option 545
monitoring progress 829, 844
overview 783
performance 783, 830
privileges required 784
redefining table space containers 793
REDIRECT option 545
redirected restores

overview 793
restoring to existing database 790
restoring to new database 791
restrictions 786

restoring
automatic incremental

limitations 752
from snapshot backup 789
incremental 749, 750, 791
rollforward recovery 730
to existing database 790

restoring (continued)
to new database 791
transporting database schemas

examples 826
overview 822
transportable objects 825
troubleshooting 828

result tables
comparison with other table types 201

retrieving data
XML

overview 402
revalidation

soft 195
REVOKE statement

example 963
overview 963

roles
details 969
versus groups 970

ROLLFORWARD DATABASE command
applying transactions to restored backup image 833
DB2 pureScale environment 842

rollforward recovery
databases 730
minimum recovery time 838
table spaces 730, 838

rollforward utility
authorities required 833
compatibility with online backups 775
examples 834
overview 831
privileges required 833
restrictions 833

rolling updates
performing

HADR environments 884
multiple standby mode 861

rolling upgrades
performing

multiple standby mode 861
rollout deletion

deferred cleanup 62
row and column access control

see RCAC 979
row compression

estimating storage savings 223
overview 219
rebuilding compression dictionaries 231
See classic row compression 220
update logs 210

rows
deleting

LBAC-protected data 1020
dependent 303
descendent 303
exporting LBAC-protected data 634, 636
importing to LBAC-protected 625
inserting

LBAC-protected data 1013
loading data into LBAC-protected rows 558
parent 303
protecting with LBAC 1009
reading when using LBAC 1010
removing LBAC protection 1023
self-referencing 303

1070 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

rows (continued)
updating

LBAC-protected data 1015
rule sets (LBAC)

details 1002
exemptions 1007

RUNSTATS command
automatic statistics collection 52
sampling statistics 697

runstats utility
monitoring progress 700

RUNSTATS utility
automatic statistics collection 692
compatibility with online backups 775
improving performance 701
statistics collected 683

S
Savepoint ID field 1034
scenario

create jobs 68
scenarios

access plans 503
adding storage paths 157
moving a table space to a new storage group 186
rebalancing

after adding and dropping storage paths 162
after adding storage paths 157
after dropping storage paths 160
overview 157

removing storage paths 157
schedules

job manager 66
schemas

copying 647
creating 194
designing 190
details 189, 193
dropping 194
names

restrictions 193
naming rules

recommendations 193
restrictions 193

troubleshooting tips 647
scope

adding to reference type columns 241
scripts

troubleshooting 539
SEARCH discovery

discovery parameter of Known Discovery 85
SECLABEL scalar function

overview 1008
SECLABEL_BY_NAME scalar function

overview 1008
SECLABEL_TO_CHAR scalar function

overview 1008
seclabelchar file type modifier

data importing 625
data loading 558

seclabelname file type modifier
data importing 625
data loading 558

section actuals
explain facility output 497

security
CLIENT level 947
column-specific 995
data 945
enhancements summary 945
establishing explicit trusted connections 975
label-based access control (LBAC) 995
row and column access controlfine-grained access control

see RCACsee RCAC 979
row-specific 995
trusted contexts 973

security labels (LBAC)
compatible data types 999
components 998
policies

details 997
string format 1001
use 999

seed databases
restoring

existing databases 790
new databases 791

self-referencing rows 303
self-referencing tables 303
self-tuning memory

details 36
disabling 41
enabling 40
monitoring 42
overview 33, 40
partitioned database environments 43, 45

self-tuning memory manager
see self-tuning memory 40

sequence
modification 373

sequence expressions
SQL 372

sequences
application performance 369
comparison with identity columns 370, 372
creating 371
designing 367
dropping 375
examples 375
generating 367, 372
managing behavior 368
recovering databases that use 371
using 372
values 376
viewing 374

SERVER authentication type
overview 947

SERVER_ENCRYPT authentication type
overview 947

servers
client combinations 79
client connections 91

service subclasses
monitoring data 473

service superclasses
monitoring data 473

services file
updating for TCP/IP communications 88

SET DATA TYPE support 238
set integrity pending state

enforcement of referential constraints 303

Index 1071

SET WRITE command
compatibility with online backups 775

site failures
high availability disaster recovery (HADR) 847

snapshot backups
performing 760
restoring from 789

snapshot monitoring
capturing snapshots

to file 428
using SQL with file access 430

making snapshot data available for all users 428
methods

SNAP_WRITE_FILE stored procedure 428
SQL with direct access 426

overview 425
SQL table functions 431
supplementing table functions 476

soft invalidation
overview 195

Solaris operating systems
backups 741
restores 741

split mirrors
backup images

DB2 pureScale environment 762
procedure 761

overview 545
standby databases 898

DB2 pureScale environment 900
SQL Procedural Language (SQL PL)

statements
supported in trigger-actions 356

SQL statements
changes 545
diagramming access plans 70
explain tool 502
help

displaying 1044
inoperative 315
tuning

explain facility 484
SQLDBCON database configuration file

configuring the DB2 database manager 22
overview 21

SQLDBCONF database configuration file
configuring the DB2 database manager 22
overview 21

ssh
DB2 CLP scripts 65
Executable/shell scripts 65

SSL
support 81

START HADR command
starting HADR 892

Statement Value Data field 1034
Statement Value Index field 1034
Statement Value Type field 1034
statistics

catalog
avoid manual updates 702
details 683

collection
automatic 50, 52, 692
based on sample table data 697
guidelines 686

event monitor 467

statistics (continued)
profiling

automatic 50
overview 34

statistics event monitor
monitor data returned in XML documents 420

statistics profile 693
STMM

see self-tuning memory 40
STOP HADR command

overview 892
stopping

high availability disaster recovery (HADR) 925
storage

automatic
adding 154
converting to 114
overview 49
table spaces 129, 133

compression
classic row 220
indexes 336
reclaiming storage freed 220, 221
row 221
table 218

estimating savings offered by compression 223
media failures 739
pureXML 395
reclaimable

details 136
reclaiming storage in automatic storage table

spaces 155
removing from automatic storage table spaces 180
requirements

backup and recovery 739
storage groups

altering 179
attributes 184
creating 178
default 178
dropping 183
overview 175
paths

replacing 182
replacing paths 182
scenarios

associating a table space 185
moving a table space 186

storage paths 182
adding 179
monitoring 181
scenarios

adding 157
rebalancing table spaces after adding 157
rebalancing table spaces after adding and

dropping 162
rebalancing table spaces after dropping 160
removing 157

stored procedures
WLM_CANCEL_ACTIVITY 475
WLM_CAPTURE_ACTIVITY_IN_PROGRESS 475
WLM_COLLECT_STATS 475
WLM_SET_CLIENT_INFO 475

storing XML data
inserting

columns 401
overview 395

1072 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

storing XML data (continued)
updating 405

strings
data types

zero-length 209
striptblanks file type modifier

LBAC-protected data importing 625
LBAC-protected data loading 558

summary tables
comparison with other table types 201
import restriction 618

SUPERASYNC synchronization mode 849
switching

database roles 921, 922
user IDs 975

SYNC synchronization mode 849
synchronization

modes 849
SYSCAT.INDEXES view

viewing constraint definitions for table 316
SYSCATSPACE table spaces 153
SYSINSTALLOBJECTS procedure

creating a restart table 596
SYSMON (system monitor) authority

details 425
SYSPROC.AUDIT_ARCHIVE stored procedure 1031
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure 1031
system catalogs

views
overview 382

system requirements
high availability disaster recovery (HADR) 887

system-managed space (SMS)
page size 145
table spaces

creating 148
size 145

system-period temporal tables
creating 251
cursors 270
data access control 271
deleting data 259
dropping 265
history tables 248
import 266
inserting data 253
load 266
Online Table Move 266
overview 248
pruning history tables 248
querying 260
quiesce 266
replication 266
restrictions 271
rollforward 266
setting system time 263
special register 263
updating data 254

T
table compression

compression dictionaries 232
creating tables 224
enabling 226
overview 218
removing 227

table functions
example of using 462
monitor 411
monitoring

activities 413
data objects 413
extent movement 419
FCM (Fast Communications Manager) 419
locking 419
memory 419
miscellaneous 419
object usage 415
system information 412

monitoring at different levels
example 464

snapshot monitor 476
table partitions

data organization schemes 233
table space containers

redefining in redirected restore operation 793
table space states 164

load operations 587
table spaces

altering
automatic storage 154

associating with storage groups 185
attributes 184
automatic storage

converting to use 133
overview 129
reducing size 155

containers
file example 148
rebuilding databases 805

creating
procedure 148

designing 127
details 125
device container example 148
disk I/O considerations 146
dropping

procedure 173
dropping storage paths 180
extent sizes 144
initial 153
page sizes 145
partitioned database environments 148
rebalancing 180
rebuilding 801, 810
recovery 725
reducing size of automatic storage 155
restoring 730
roll-forward recovery 730
rollforward recovery 838
scenarios

moving to a new storage group 186
rebalancing (after adding and dropping storage

paths) 162
rebalancing (after adding storage paths) 157
rebalancing (after dropping storage paths) 160
rebalancing (overview) 157

states 164, 587
storage expansion 129
storage management 128
switching states 173
temporary

creating 152

Index 1073

table spaces (continued)
types

overview 128
without file system caching 142

table states
load operations 588

tables
access control 965
adaptive compression 221
adding columns 240
append mode 201
audit policy 1027
base 201, 235
check constraints

overview 301
types 303

classic row compression 220
compression

column value 219
NULLS 219

created temporary 235
creating

overview 233
XML columns 399

data type definitions 209
declared temporary 235
decompressing 227
default columns 209
dependent 303
descendent 303
designing 203
dropping 244
dropping columns 240
generated columns 205
identity columns 208
insert time clustering (ITC) 201
inserting into LBAC-protected 1013
LBAC effect on reading 1010
locking 586
materialized query

overview 201
modifying DEFAULT clause column definitions 240
moving online

ADMIN_MOVE_TABLE procedure 650
multidimensional clustering (MDC) 201
offline reorganization

details 665
online reorganization

details 667
pausing and restarting 669

overview 201, 661
page sizes 145, 213
parent 303
partitioned

nonpartitioned indexes 339
overview 201
partitioned indexes 325

privileges 963
protecting with LBAC 995, 1009
range-clustered 201
refreshing 243
regular

overview 201
removing LBAC protection 1023
renaming 243
reorganization

automatic 681

tables (continued)
reorganization (continued)

costs 678
determining need for 675
error handling 670
methods 662
monitoring 670
offline 666
online 669
overview 661
procedure 661
reducing the need for 680

result 201
revoking privileges 963
self-referencing 303
space requirements 211
summary 201
temporal 247

application-period temporal tables 272
bitemporal tables 285
creating application-period temporal tables 273
creating bitemporal tables 286
creating system-period temporal tables 251
deleting bitemporal tables 293
deleting from application-period temporal tables 280
deleting system-period temporal tables 259
dropping system-period temporal tables 265
inserting into application-period temporal tables 275
inserting into bitemporal tables 288
inserting into system-period temporal tables 253
querying application-period temporal tables 281
querying bitemporal tables 295
querying system-period temporal tables 260
setting application time 283
setting system time 263
system-period temporal tables 248, 266
tools 266
updating application-period temporal tables 276
updating bitemporal tables 289
updating system-period temporal tables 254
utilities 266

temporary
overview 201

user 214
viewing definitions 244

TAKEOVER HADR command
overview 892
performing failover operations 919
switching database roles 921

tape backups
procedure 763

target images
database rebuilds 806

TCP/IP
configuring

clients 92
DB2 instances 87

database manager configuration file 88
platforms supported 81
TCP/IPv6 support 81
updating services file 88

temporal tables
application-period temporal tables 272

BUSINESS_TIME period 273
BUSINESS_TIME WITHOUT OVERLAPS 273
creating 273
deleting data 280

1074 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

temporal tables (continued)
application-period temporal tables (continued)

inserting data 275
querying 281
setting application time 283
special register 283
updating data 276

bitemporal tables 285
creating 286
deleting data 293
inserting data 288
querying 295
updating data 289

overview 247
system-period temporal tables 248

ADMIN_COPY_SCHEMA procedure 266
creating 251
cursors 270
deleting data 259
dropping 265
history tables 248
import 266
inserting data 253
load 266
Online Table Move 266
partitioned 270
querying 260
quiesce 266
replication 266
restrictions 271
rollforward 266
schemas 269
security 271
setting system time 263
special register 263
SYSTEM_TIME period 250
updating data 254

Time Travel Query 247
tools 266
utilities 266

temporary table spaces
creating 152
database rebuilds 806

temporary tables
adaptive compression 221
classic row compression 220
comparison with other table types 201
user-defined 233, 234

TEMPSPACE1 table space 153
terms and conditions

publications 1048
test environments

upgrading DB2 servers
creating database duplicates 658

testing
client-to-server connections 96

threads
troubleshooting scripts 539

threshold violations event monitor 467
thresholds

monitoring violations 478
time

database recovery time 737
Time Travel Query

temporal tables 247
TIMESTAMP data type

default value 209

transactions
failures

recovery in partitioned database environment 725
reducing impact 724

transition tables
referencing old and new table result sets 358

transition variables
accessing old and new column values 357

transports
database schemas

examples 826
overview 822
transportable objects 825
troubleshooting 828

triggered-actions
coding 355
conditions 355
supported SQL PL statements 356

triggers
accessing old and new column values 357
activation time 352
AFTER

overview 347
specifying 352

BEFORE
overview 347
specifying 352

cascading 345
coding triggered-actions 355
comparison with check constraints 302
conditions 355
constraint interactions 308, 362
creating 360
designing 349
details 345
dropping 361
examples

defining actions 364
defining business rules 364
preventing operations on tables 365

granularity rules 351
INSTEAD OF

overview 348
specifying 352

interactions 308, 362
modifying 361
referencing old and new table result sets 358
triggering events 351
types 346

troubleshooting
db2diag log file entry interpretation 506
diagnostic data

automatic collection 511
configuring collection 513
manual collection 511

diagnostic logs 505
gathering information 524
online information 1048
problem re-creation 654
SQL 456
tutorials 1048

TRUNCATE
compatibility with online backups 775

trusted clients
CLIENT level security 947

trusted connections
establishing explicit trusted connections 975

Index 1075

trusted connections (continued)
overview 973

trusted contexts
audit policies 1027
overview 973

tuning
SQL with explain facility 484

tuning partition
determining 45

tutorials
list 1048
problem determination 1048
pureXML 1048
troubleshooting 1048

two-phase commit
partitioned database environments 725

typed tables
comparison with other table types 201
exporting 637
importing 622
moving data between 622, 637
re-creating 622
traverse order 622, 637

typed views
modifying 389
overview 381

U
UDFs

used with views 388
UDTs

distinct types
importing 630

unformatted event tables
methods for accessing data 452
overview 442
pruning 453
routines for extracting data 452

unique constraints
details 300, 303
overview 299

unique indexes 320
unique keys

details 303
effects on index reuse 316
generating using sequences 367

UNIQUERULE column 316
unit of work event monitor

monitor data returned in XML documents 420
UNIX

listing DB2 database products 522
updatable views

overview 387
update rule

referential integrity 303
updates

DB2 Information Center 1045, 1046
effects of LBAC on 1015
XML columns 405

upgrades
DB2 servers

duplicate databases for test environments 658
instances

procedure 16
pureScale instances

procedure 18

usage lists
detailsrestrictions 391
identifying statements 415
memory 392
validation 392

usedefaults file type modifier
LBAC-protected data imports 625
LBAC-protected data loads 558

user exit programs
backups 739
logs 739

user table page limits 214
user-defined temporary tables

creating 234
defining 233

user-level profile registry 25
users

profile registry 25
USERSPACE1 table space 153
utilities

binding 709
ddcspkgn 709

utility operations
constraint implications 314

utility throttling
details 60
overview 33

V
validation

DB2 copies 542
value compression 219
values

sequence 376
VARCHAR data type

table columns 241
version recovery of databases 730
views

access privileges examples 965
column access 965
creating 387
definition of nested views 385
deletable 385
designing 382
dropping 390
inoperative 389
insertable 386
modifying 389
overview 381
read-only 387
recovering inoperative 389
row access 965
table access control 965
updatable 387
user-defined functions 388
WITH CHECK OPTION examples 383

Visual Explain
appearance 73
constructs 70
diagramming access plans 70
explain data 73
nodes

appearance 73
purpose 70
running traces 70
setting preferences 73

1076 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

Visual Explain (continued)
special registers 70, 73
terminator 70
working directory 70

W
Windows

installing
IBM data server clients 105

WITH CHECK OPTION for views 383
WITH DATA option

details 1034
workloads

monitoring data 473
performance tuning

Design Advisor 713, 717
write-down

details 1003
write-up

details 1003

X
XML

monitor elements
overview 420

native XML data store 395
overview 395
relational model comparison 397
table creation 399

XML columns
adding 400
defining 399
inserting into 401
updating 405
XML data type 399

XML data
creating tables 399
exporting 641
importing 632
indexing 403
inserting

details 401
loading 572
model 397
movement 406
querying

methods 402
overview 402

updating
overview 405

XML data retrieval
overview 402

XML data store 395
XML data type

indexing 403
XML documents

adding to database
columns 401

monitor elements 420
XPATH statements

diagramming access plans 70
XQuery statements

comparison to SQL statements 402
explain tool for 502

XQuery statements (continued)
inoperative 315

Index 1077

1078 Preparation Guide for DB2 10.1 DBA for Linux, UNIX, and Windows Exam 611

����

Printed in USA

SC27-4541-01

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.1

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Pr
ep

ar
at

io
n

Gu
id

e
fo

rD
B2

10
.1

DB
A

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ex
am

61
1

�
�

�

	Contents
	About this book
	Who should use this book

	Part 1. DB2 Server management
	Chapter 1. Instances
	Designing instances
	Default instance
	Instance directory
	Multiple instances (Linux, UNIX)
	Multiple instances (Windows)

	Creating instances
	Modifying instances
	Updating the instance configuration (Linux, UNIX)
	Updating the instance configuration (Windows)

	Auto-starting instances
	Starting instances (Linux, UNIX)
	Starting instances (Windows)
	Attaching to and detaching from instances
	Working with instances on the same or different DB2 copies
	Stopping instances (Linux, UNIX)
	Stopping instances (Windows)
	Upgrading instances
	Upgrading DB2 Version 9.5 or DB2 Version 9.7 instances
	Upgrading DB2 Version 9.8 instances

	Dropping instances

	Chapter 2. Configuring intances
	Configuration parameters
	Configuring instances with database manager configuration parameters
	Environment variables and the profile registries
	Profile registry locations and authorization requirements

	Setting registry and environment variables
	Setting environment variables outside the profile registries on Linux and UNIX operating systems
	Setting environment variables outside the profile registries on Windows
	Identifying the current instance
	Setting variables at the instance level in a partitioned database environment

	Chapter 3. Autonomic computing
	Automatic features
	Automatic maintenance
	Maintenance windows

	Self-tuning memory
	Memory allocation
	Self-tuning memory configuration
	Enabling self-tuning memory
	Disabling self-tuning memory
	Determining which memory consumers are enabled for self tuning
	Self-tuning memory in partitioned database environments
	Using self-tuning memory in partitioned database environments

	Configuring memory and memory heaps
	Agent and process model configuration

	Automatic storage
	Databases use automatic storage by default

	Data compression
	Automatic database backup
	Automatic table and index maintenance
	Automatic statistics collection
	Configuration Advisor
	Tuning configuration parameters using the Configuration Advisor
	Example: Requesting configuration recommendations using the Configuration Advisor

	Utility throttling
	Asynchronous index cleanup
	Asynchronous index cleanup for MDC tables

	Chapter 4. IBM Data Studio
	Managing jobs in IBM Data Studio
	Creating and managing jobs
	Scenario: Creating and scheduling a job
	Importing tasks from DB2 Task Center

	Diagramming access plans with Visual Explain
	Diagrams of access plans
	Query blocks
	Setting preferences for Visual Explain

	Part 2. Client-to-server communications
	Chapter 5. Supported combinations of clients, drivers and server levels
	Chapter 6. Communication protocols supported
	Chapter 7. Supported LDAP client and server configurations
	Chapter 8. Discovery of administration servers, instances, and databases
	Discovering and hiding server instances and databases

	Chapter 9. Configuring DB2 server communications (TCP/IP)
	Updating the services file on the server for TCP/IP communications
	Updating the database manager configuration file on the server for TCP/IP communications
	Setting communication protocols for a DB2 instance

	Chapter 10. Configuring client-to-server connections
	Cataloging a Named Pipes node from a client using the CLP
	Updating hosts and services files for TCP/IP connections
	Cataloging a TCP/IP node from a client using the CLP
	Cataloging a database
	Testing the client-to-server connection using the CLP
	Exporting and importing a profile

	Chapter 11. Configuring LDAP connections
	Cataloging an LDAP node
	Registering DB2 servers
	Registering databases
	Creating LDAP users
	Configuring LDAP users for DB2 applications
	Setting DB2 registry variables at the user level in the LDAP environment
	Deregistering DB2 servers
	Deregistering the database from the LDAP directory

	Chapter 12. Configuring IBM Data Server Drivers
	Copying existing database directory information into the db2dsdriver configuration file

	Part 3. Physical design and business rules implementation
	Chapter 13. Databases
	Designing databases
	Creating databases
	Converting a nonautomatic storage database to use automatic storage

	Chapter 14. Buffer pools
	Designing buffer pools
	Buffer pool hit ratios
	Buffer pool memory protection (AIX running on POWER6)
	Creating buffer pools
	Modifying buffer pools
	Dropping buffer pools

	Chapter 15. Table spaces
	Table spaces for system, user and temporary data
	Types of table spaces
	Automatic storage table spaces
	How automatic storage table spaces manage storage expansion
	Container names in automatic storage table spaces
	Converting table spaces to use automatic storage

	The table space high water mark
	Reclaimable storage
	File system caching configurations
	Extent sizes in table spaces
	Page, table and table space size
	Disk I/O efficiency and table space design
	Table spaces in a partitioned database environment
	Creating table spaces
	Creating temporary table spaces
	Defining initial table spaces on database creation

	Altering automatic storage table spaces
	Reclaiming unused storage in automatic storage table spaces
	Scenarios: Adding and removing storage with automatic storage table spaces
	Scenario: Adding a storage path and rebalancing automatic storage table spaces
	Scenario: Dropping a storage path and rebalancing automatic storage table spaces
	Scenario: Adding and removing storage paths and rebalancing automatic storage table spaces

	Monitoring a table space rebalance operation
	Table space states
	Switching table spaces from offline to online
	Dropping table spaces

	Chapter 16. Storage groups
	Data management using multi-temperature storage
	Default storage groups
	Creating storage groups
	Altering storage groups
	Adding storage paths
	Dropping storage paths
	Monitoring storage paths
	Replacing the paths of a storage group

	Renaming storage groups
	Dropping storage groups
	Storage group and table space media attributes
	Associating a table space to a storage group
	Scenario: Moving a table space to a new storage group

	Chapter 17. Schemas
	Designing schemas
	Grouping objects by schema
	Schema name restrictions and recommendations

	Creating schemas
	Dropping schemas

	Chapter 18. Database objects
	Soft invalidation of database objects
	Automatic revalidation of database objects
	Creating database object aliases
	Creating and maintaining database objects

	Chapter 19. Tables
	Types of tables
	Designing tables
	Data types and table columns
	Generated columns
	Hidden columns
	Auto numbering and identifier columns
	Constraining column data with constraints, defaults, and null settings
	Default column and data type definitions
	Ordering columns to minimize update logging

	Space requirements for tables
	Table page sizes
	Space requirements for user table data
	Storing LOBs inline in table rows

	Table compression
	Value compression
	Row compression
	Classic row compression
	Adaptive compression
	Estimating storage savings offered by adaptive or classic row compression
	Creating a table that uses compression
	Enabling compression in an existing table
	Changing or disabling compression for a compressed table

	Compression dictionaries
	Table-level compression dictionary creation
	Impact of classic table reorganization on table-level compression dictionaries
	Multiple compression dictionaries for replication source tables

	Table partitioning and data organization schemes
	Creating tables
	Declaring temporary tables
	Creating and connecting to created temporary tables
	Distinctions between DB2 base tables and temporary tables

	Altering tables
	Adding and dropping columns
	Modifying DEFAULT clause column definitions
	Modifying the generated or identity property of a column
	Modifying column definitions

	Altering materialized query table properties
	Refreshing the data in a materialized query table

	Renaming tables and columns
	Viewing table definitions
	Dropping tables

	Chapter 20. Time Travel Query using temporal tables
	System-period temporal tables
	History tables
	SYSTEM_TIME period
	Creating a system-period temporal table
	Inserting data into a system-period temporal table
	Updating data in a system-period temporal table
	Deleting data from a system-period temporal table
	Querying system-period temporal data
	Setting the system time for a session
	Dropping a system-period temporal table
	Utilities and tools
	Schema changes
	Cursors and system-period temporal tables
	Table partitioning and system-period temporal tables
	Data access control for system-period temporal tables
	Restrictions for system-period temporal tables

	Application-period temporal tables
	BUSINESS_TIME period
	Creating an application-period temporal table
	Inserting data into an application-period temporal table
	Updating data in an application-period temporal table
	Deleting data from an application-period temporal table
	Querying application-period temporal data
	Setting the application time for a session

	Bitemporal tables
	Creating a bitemporal table
	Inserting data into a bitemporal table
	Updating data in a bitemporal table
	Deleting data from a bitemporal table
	Querying bitemporal data

	Chapter 21. Constraints
	Types of constraints
	NOT NULL constraints
	Unique constraints
	Primary key constraints
	(Table) Check constraints
	Designing check constraints
	Comparison of check constraints and BEFORE triggers

	Foreign key (referential) constraints
	Examples of interaction between triggers and referential constraints

	Informational constraints
	Designing informational constraints

	Creating and modifying constraints
	Table constraint implications for utility operations
	Statement dependencies when changing objects
	Reuse of indexes with unique or primary key constraints
	Viewing constraint definitions for a table
	Dropping constraints

	Chapter 22. Indexes
	Types of indexes
	Indexes on partitioned tables
	Nonpartitioned indexes on partitioned tables
	Partitioned indexes on partitioned tables

	Designing indexes
	Tools for designing indexes
	Space requirements for indexes
	Index compression

	Creating indexes
	Creating nonpartitioned indexes on partitioned tables
	Creating partitioned indexes

	Modifying indexes
	Renaming indexes
	Rebuilding indexes

	Dropping indexes

	Chapter 23. Triggers
	Types of triggers
	BEFORE triggers
	AFTER triggers
	INSTEAD OF triggers

	Designing triggers
	Specifying what makes a trigger fire (triggering statement or event)
	Specifying when a trigger fires (BEFORE, AFTER, and INSTEAD OF clauses)
	Defining conditions for when trigger-action will fire (WHEN clause)
	Supported SQL PL statements in triggers
	Accessing old and new column values in triggers using transition variables
	Referencing old and new table result sets using transition tables

	Creating triggers
	Modifying and dropping triggers
	Examples of triggers and trigger use
	Examples of interaction between triggers and referential constraints
	Examples of defining actions using triggers
	Example of defining business rules using triggers
	Example of preventing operations on tables using triggers

	Chapter 24. Sequences
	Designing sequences
	Managing sequence behavior
	Application performance and sequences
	Sequences compared to identity columns

	Creating sequences
	Generating sequential values
	Determining when to use identity columns or sequences

	Sequence Modification
	Viewing sequence definitions
	Dropping sequences
	Examples of how to code sequences
	Sequence reference

	Chapter 25. Views
	Designing views
	System catalog views
	Views with the check option
	Nested view definitions

	Deletable views
	Insertable views
	Updatable views
	Read-only views

	Creating views
	Creating views that use user-defined functions (UDFs)

	Modifying typed views
	Recovering inoperative views
	Dropping views

	Chapter 26. Usage lists
	Usage list memory considerations and validation dependencies

	Chapter 27. pureXML
	Comparison of the XML model and the relational model
	XML data type
	Creation of tables with XML columns
	Addition of XML columns to existing tables
	Inserting XML columns
	Querying XML data
	Comparison of methods for querying XML data

	Indexing XML data
	Updating XML data
	XML data movement
	pureXML tutorial

	Part 4. Monitoring DB2 Activity
	Chapter 28. Database monitoring
	Monitoring DB2 Activity with table functions
	Monitoring system information using table functions
	Monitoring activities using table functions
	Monitoring data objects using table functions
	Object usage
	Identifying the statements that affect a table
	Identifying how a statement affects database objects

	Monitoring locking using table functions
	Monitoring system memory using table functions
	Other monitoring table functions
	Interfaces that return monitor data in XML documents

	Snapshot monitor
	Access to system monitor data: SYSMON authority
	Capturing database system snapshots by using snapshot administrative views and table functions
	Capturing database system snapshot information to a file using the SNAP_WRITE_FILE stored procedure
	Accessing database system snapshots using snapshot table functions in SQL queries (with file access)
	Snapshot monitor SQL Administrative Views

	Event monitors
	Types of events for which event monitors capture data
	Event monitors that write to tables
	Working with event monitors
	Output options for event monitors
	Creating event monitors
	Creating event monitors that write to tables
	Logical data groups and event monitor output tables
	Enabling event monitor data collection
	Methods for accessing event monitor information
	Accessing event monitor data in regular tables
	Methods for accessing information in unformatted event tables
	Routines for extracting data from unformatted event tables
	Pruning data from UE tables
	Formatting file or pipe event monitor output from a command line

	Altering an event monitor

	Reports generated using the MONREPORT module

	Chapter 29. Monitoring DB2 workload management environments
	Real-time monitoring with table functions
	Example: Using DB2 workload management table functions
	Example: Monitoring current system behavior at different levels

	Historical monitoring with WLM event monitors
	DB2 workload management monitoring data
	DB2 workload management stored procedures
	Workload management table functions and snapshot monitor integration
	Monitoring metrics for DB2 workload management
	Monitoring threshold violations
	Collecting data for individual activities

	Chapter 30. Explain facility
	Tuning SQL statements using the explain facility
	Explain tables and the organization of explain information
	Creating the explain tables
	Guidelines for capturing explain information
	Creating explain snapshots for dynamic SQL or XQuery statements
	Creating explain snapshots for static SQL or XQuery statements

	Guidelines for capturing section explain information
	Differences between section explain and EXPLAIN statement output
	Capturing and accessing section actuals
	Analysis of section actuals information in explain output

	Guidelines for using explain information
	Guidelines for analyzing explain information
	Tools for collecting and analyzing explain information
	SQL and XQuery explain tool
	Description of db2expln output

	Using access plans to self-diagnose performance problems with REFRESH TABLE and SET INTEGRITY statements

	Chapter 31. Problem-determination tools
	DB2 diagnostic (db2diag) log files
	Interpretation of diagnostic log file entries
	Interpreting the informational record of the db2diag log files
	Setting the error capture level of the diagnostic log files

	First occurrence data capture information
	Collecting diagnosis information based on common outage problems
	First occurrence data capture configuration
	Data collected as part of FODC
	Automatic FODC data generation
	Monitor and audit facilities using First Occurrence Data Capture (FODC)

	db2ls command
	Listing DB2 database products installed on your system (Linux and UNIX)

	db2mtrk command
	Buffer pools memory allocation
	Example 1
	Example 2

	db2pd command
	Troubleshooting scripts

	db2dart command
	Comparison of INSPECT and db2dart

	db2val command
	Validating your DB2 copy

	Part 5. DB2 commands for database administration
	Chapter 32. Data movement options
	Chapter 33. Load utility
	Privileges and authorities required to use load
	LOAD authority

	Loading data
	Load sessions - CLP examples
	LBAC-protected data load considerations
	Identity column load considerations
	Generated column load considerations
	Moving data using the CURSOR file type
	Refreshing dependent immediate materialized query tables
	MDC and ITC load considerations
	Partitioned tables load considerations

	Loading XML data
	Load in partitioned database environments
	Loading data in a partitioned database environment
	Load sessions in a partitioned database environment - CLP examples

	Load features for maintaining referential integrity
	Checking for integrity violations following a load operation
	Table locking during load operations
	Table space states during and after load operations
	Table states during and after load operations
	Load exception tables

	Monitoring a load operation using the LIST UTILITIES command

	Chapter 34. Ingest utility
	Deciding where to run the ingest utility
	Ingest-related tasks
	Creating the restart table
	Ingesting data
	Restarting a failed ingest operation
	Terminating a failed ingest operation

	Ingest utility restrictions and limitations
	Performance considerations for ingest operations
	Code page considerations for the ingest utility
	Ingest operations in a partitioned database environment
	Sample ingest utility scripts
	Scenario: Processing a stream of files with the ingest utility

	Monitoring ingest operations

	Chapter 35. Import utility
	Privileges and authorities required to use import
	Importing data
	Import sessions - CLP examples
	Typed table import considerations
	LBAC-protected data import considerations
	Identity column import considerations
	Generated column import considerations
	LOB import considerations
	User-defined distinct types import considerations
	Client/server environments and import
	Table locking modes supported by the import utility

	Importing XML data

	Chapter 36. Export utility
	Privileges and authorities required to use the export utility
	Exporting data
	Export sessions - CLP examples
	LBAC-protected data export considerations
	Table export considerations
	Typed table export considerations
	Identity column export considerations
	LOB export considerations

	Exporting XML data

	Chapter 37. Comparison between the ingest, import, and load utilities
	Chapter 38. Additional DB2 resources for data movement
	Copying schemas
	Example of schema copy using the ADMIN_COPY_SCHEMA procedure
	Examples of schema copy by using the db2move utility

	Moving tables online by using the ADMIN_MOVE_TABLE procedure
	Mimicking databases using db2look
	Converting non-Unicode databases to Unicode
	Creating database duplicates

	Chapter 39. Data organization
	Table reorganization
	Choosing a table reorganization method
	Classic (offline) table reorganization
	Reorganizing tables offline
	Inplace (online) table reorganization
	Locking and concurrency considerations for online table reorganization

	Reorganizing tables online
	Pausing and restarting an online table reorganization

	Monitoring a table reorganization

	Index reorganization
	Locking and concurrency considerations for online index reorganization
	Monitoring an index reorganization operation

	Determining when to reorganize tables and indexes
	Costs of table and index reorganization
	Reducing the need to reorganize tables and indexes
	Enabling automatic table and index reorganization
	Enabling automatic index reorganization in volatile tables

	Chapter 40. Catalog statistics
	Catalog statistics tables
	Catalog statistics views
	Guidelines for collecting and updating statistics
	Detailed index statistics
	Distribution statistics
	Optimizer use of distribution statistics

	Enabling automatic statistics collection
	Collecting statistics using a statistics profile
	Storage used by automatic statistics collection and profiling
	Automatic statistics collection activity logging
	Improving query performance for large statistics logs

	Collecting catalog statistics
	Collecting statistics on a sample of the data
	Collecting index statistics
	Collecting distribution statistics for specific columns
	Monitoring the progress of RUNSTATS operations
	Minimizing RUNSTATS impact
	Recompiling a query after configuration changes
	Avoiding manual updates to the catalog statistics

	Chapter 41. Binding embedded SQL packages to a database
	Effect of DYNAMICRULES bind option on dynamic SQL
	Bind considerations
	Performance improvements when using REOPT option of the BIND command
	Binding applications with the BIND command
	Rebinding existing packages with the REBIND command
	Binding utilities to the database
	Binding applications and utilities (DB2 Connect server)

	Chapter 42. Design Advisor
	Defining a workload for the Design Advisor
	Design Advisor limitations and restrictions

	Part 6. High availability
	Chapter 43. Data recovery
	Crash recovery
	Recovering damaged table spaces
	Recovering from transaction failures in a partitioned database environment

	Disaster recovery
	Version recovery
	Rollforward recovery

	Chapter 44. Developing a backup and recovery strategy
	Deciding how often to back up
	Storage considerations for recovery
	Backup compression
	Archived log file compression
	Backup and restore operations between different operating systems and hardware platforms
	Log stream merging and log file management in a DB2 pureScale environment
	Log sequence numbers in DB2 pureScale environments
	Including log files with a backup image
	Incremental backup and recovery
	Restoring from incremental backup images
	Limitations to automatic incremental restore

	Chapter 45. BACKUP DATABASE command
	Privileges, authorities, and authorization required to use backup
	Backing up data
	Performing a snapshot backup
	Using a split mirror as a backup image
	Using a split mirror as a backup image in a DB2 pureScale environment
	Backing up to tape
	Backing up to named pipes

	Backing up partitioned databases
	Backup and restore operations in a DB2 pureScale environment
	Enabling automatic backup
	Configuring an automated maintenance policy using SYSPROC.AUTOMAINT_SET_POLICY or SYSPROC.AUTOMAINT_SET_POLICYFILE

	Monitoring backup operations
	Optimizing backup performance
	Compatibility of online backup and other utilities

	Chapter 46. RECOVER DATABASE command
	Privileges, authorities, and authorization required to use recover
	Recovering data
	Optimizing recovery performance

	Chapter 47. RESTORE DATABASE command
	Privileges, authorities, and authorization required to use restore
	Implications for restoring databases
	Using restore
	Restoring from a snapshot backup image
	Restoring to an existing database
	Restoring to a new database
	Using incremental restore in a test and production environment

	Performing a redirected restore operation
	Redefine table space containers by restoring a database using an automatically generated script
	Performing a redirected restore using an automatically generated script
	Cloning a production database using different storage group paths

	Database rebuild
	Database rebuild and table space containers
	Database rebuild and temporary table spaces
	Choosing a target image for database rebuild
	Rebuilding selected table spaces
	Rebuild and incremental backup images
	Rebuilding partitioned databases
	Restrictions for database rebuild
	Rebuild sessions - CLP examples

	Database schema transporting
	Transportable objects
	Transport examples
	Troubleshooting: transporting schemas

	Monitoring the progress of restore operations
	Optimizing restore performance

	Chapter 48. ROLLFORWARD DATABASE command
	Authorization required for rollforward
	Using rollforward
	Rollforward sessions - CLP examples
	Rolling forward changes in a table space

	Database rollforward operations in a DB2 pureScale environment
	Monitoring a rollforward operation

	Chapter 49. High availability disaster recovery (HADR)
	High Availability Disaster Recovery (HADR) synchronization mode
	HADR multiple standby databases
	Restrictions for multiple standby databases
	Initializing HADR in multiple standby mode
	Enabling multiple standby mode on a preexisting HADR setup
	Modifications to a multiple standby database setup
	Database configuration for multiple HADR standby databases
	Rolling upgrades in HADR multiple standby mode
	High availability disaster recovery (HADR) monitoring in multiple standby mode
	Takeover in HADR multiple standby mode
	Scenario: Deploying an HADR multiple standby database setup
	Examples: Takeover in HADR multiple standby mode

	HADR reads on standby feature
	Enabling reads on standby
	Data concurrency on the active standby database
	Isolation level on the active standby database
	Replay-only window on the active standby database

	HADR delayed replay
	Recovering data by using HADR delayed replay

	Performing rolling updates in a DB2 High Availability Disaster Recovery (HADR) environment
	High availability disaster recovery (HADR) support
	System requirements for DB2 high availability disaster recovery (HADR)
	Installation and storage requirements for high availability disaster recovery (HADR)
	HADR and Network Address Translation (NAT) support
	Restrictions for High Availability Disaster Recovery (HADR)

	DB2 High availability disaster recovery (HADR) management
	DB2 High Availability Disaster Recovery (HADR) commands

	Initializing high availability disaster recovery (HADR)
	Initializing a standby database
	Using a split mirror as a standby database
	Using a split mirror as a standby database in a DB2 pureScale environment

	Database configuration for high availability disaster recovery (HADR)
	Setting the hadr_timeout and hadr_peer_window database configuration parameters
	Log archiving configuration for DB2 high availability disaster recovery (HADR)
	HADR log spooling
	Index logging and high availability disaster recovery (HADR)
	High availability disaster recovery (HADR) performance
	Cluster managers and high availability disaster recovery (HADR)

	Performing an HADR failover operation
	Switching database roles in high availability disaster recovery (HADR)
	Reintegrating a database after a takeover operation
	Monitoring high availability disaster recovery (HADR) environments
	Stopping DB2 High Availability Disaster Recovery (HADR)

	Chapter 50. DB2 high availability instance configuration utility (db2haicu)
	Startup mode
	Maintenance mode
	Prerequisites
	Configuring a clustered environment
	Restrictions for db2haicu
	Running db2haicu interactively
	Running db2haicu with an XML input file
	Input file XML schema (DB2ClusterType)
	Sample XML input files
	db2ha_sample_DPF_NPlusM.xml
	db2ha_sample_HADR.xml

	Part 7. Security
	Chapter 51. DB2 security model
	Chapter 52. Authentication methods for your server
	Chapter 53. Authorization, privileges, and object ownership
	Chapter 54. Default privileges granted on creating a database
	Chapter 55. Granting privileges
	Chapter 56. Revoking privileges
	Chapter 57. Controlling access to data with views
	Chapter 58. Roles
	Roles compared to groups

	Chapter 59. Trusted contexts and trusted connections
	Using trusted contexts and trusted connections

	Chapter 60. Row and column access control (RCAC)
	Row and column access control (RCAC) rules
	Scenario: ExampleHMO using row and column access control
	Security policies
	Database users and roles
	Database tables
	Security administration
	Row permissions
	Column masks
	Inserting data
	Updating data
	Reading data
	Creating views
	Secure functions
	Secure triggers
	Revoking authority

	Chapter 61. Label-based access control (LBAC)
	LBAC security policies
	LBAC security label components
	LBAC security labels
	Format for security label values
	How LBAC security labels are compared
	LBAC rule sets
	LBAC rule set: DB2LBACRULES
	LBAC rule exemptions
	Built-in functions for managing LBAC security labels
	Protection of data using LBAC
	Reading LBAC protected data
	Inserting LBAC protected data
	Updating LBAC protected data
	Deleting or dropping LBAC protected data
	Removing LBAC protection from data

	Chapter 62. DB2 audit facility
	Audit policies
	Storage and analysis of audit logs
	The EXECUTE category for auditing SQL statements

	Part 8. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and conditions

	Appendix B. Notices
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

