
IBM DB2 10.1
for Linux, UNIX, and Windows

Partitioning and Clustering Guide

SC27-3882-00

���

IBM DB2 10.1
for Linux, UNIX, and Windows

Partitioning and Clustering Guide

SC27-3882-00

���

Note
Before using this information and the product it supports, read the general information under Appendix E, “Notices,” on
page 447.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/

order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/
planetwide/

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Contents

About this book vii
Who should use this book vii
How this book is structured. vii
Highlighting conventions xi

Part 1. Planning and design
considerations 1

Chapter 1. Partitioned databases and
tables. 3
Setting up partitioned database environments . . . 3

Database partitioning across multiple database
partitions 4
Partitioned database authentication considerations 5
Database partition groups 5
Distribution maps 8
Distribution keys 9
Table collocation. 10
Partition compatibility 10

Partitioned tables 11
Table partitioning 12
Data partitions and ranges 14
Data organization schemes 14
Data organization schemes in DB2 and Informix
databases 19
Table partitioning keys 24
Load considerations for partitioned tables . . . 26
Replicated materialized query tables 29
Table spaces in database partition groups . . . 29
Table partitioning and multidimensional
clustering tables 30
Table partitioning in a DB2 pureScale
environment 34

Chapter 2. Range-clustered tables . . . 35
Restrictions on range-clustered tables 36

Chapter 3. Multi-dimensional clustered
(MDC) tables 37
Multidimensional clustering tables. 37
Comparison of regular and MDC tables 37
Choosing MDC table dimensions 39
Considerations when creating MDC or ITC tables . 46

Load considerations for MDC and ITC tables . . 51
Logging considerations for MDC and ITC tables 52
Block index considerations for MDC and ITC
tables 53

Block indexes for MDC tables 53
Scenario: Multidimensional clustered (MDC) tables 56
Block indexes and query performance for MDC
tables 59
Maintaining clustering automatically during INSERT
operations 62
Block maps for MDC and ITC tables 64

Deleting from MDC and ITC tables 66
Updates to MDC and ITC tables 66
Multidimensional and insert time clustering extent
management 66
Table partitioning and multidimensional clustering
tables 67

Chapter 4. Parallel database systems 73
Parallelism 73
Partitioned database environments 77
Database partition and processor environments . . 78

Part 2. Installation considerations 87

Chapter 5. Installation prerequisites . . 89
Installing DB2 database servers using the DB2 Setup
wizard (Windows) 89

Preparing the environment for a partitioned DB2
server (Windows) 91
Fast communications manager (Windows) . . . 93

An overview of installing DB2 database servers
(Linux and UNIX) 93

DB2 installation methods 94
Installing DB2 servers using the DB2 Setup
wizard (Linux and UNIX) 97

Chapter 6. Before you install 101
Additional partitioned database environment
preinstallation tasks (Linux and UNIX) 101

Updating environment settings for a partitioned
DB2 installation (AIX) 101
Setting up a working collective to distribute
commands to multiple AIX nodes 103
Verifying that NFS is running (Linux and UNIX) 104
Verifying port range availability on participating
computers (Linux and UNIX) 105
Creating a file system for a partitioned database
system (Linux) 106
Creating a DB2 home file system for a
partitioned database system (AIX) 107
Required users for a DB2 pureScale Feature
installation (Linux) 109
Creating required users for a DB2 server
installation in a partitioned database
environment (AIX). 111

Chapter 7. Installing your DB2 server
product 113
Setting up a partitioned database environment . . 113
Installing database partition servers on
participating computers using a response file
(Windows) 115

© Copyright IBM Corp. 2012 iii

Installing database partition servers on
participating computers using a response file
(Linux and UNIX) 116

Chapter 8. After you install 119
Verifying the installation. 119

Verifying a partitioned database environment
installation (Windows) 119
Verifying a partitioned database server
installation (Linux and UNIX) 120

Part 3. Implementation and
maintenance 121

Chapter 9. Before creating a database 123
Setting up partitioned database environments . . 123
Creating node configuration files 124

Format of the DB2 node configuration file . . . 126
Specifying the list of machines in a partitioned
database environment 132
Eliminating duplicate entries from a list of
machines in a partitioned database environment. 133
Updating the node configuration file (Linux and
UNIX) 133
Setting up multiple logical partitions 135
Configuring multiple logical partitions 135

Enabling inter-partition query parallelism 136
Enabling intra-partition parallelism for queries . . 137
Management of data server capacity. 138
Fast communications manager. 139

Fast communications manager (Windows) . . . 139
Fast communications manager (Linux and
UNIX) 139
Enabling communication between database
partitions using FCM communications 140
Enabling communications between database
partition servers (Linux and UNIX) 141

Chapter 10. Creating and managing
partitioned database environments . . 145
Managing database partitions 145

Adding database partitions in partitioned
database environments 145
Adding an online database partition. 146
Restrictions when working online to add a
database partition 147
Adding a database partition offline (Windows) 147
Adding a database partition offline (Linux and
UNIX) 149
Error recovery when adding database partitions 151
Dropping database partitions 152
Listing database partition servers in an instance
(Windows) 152
Adding database partition servers to an instance
(Windows) 153
Changing database partitions (Windows) . . . 154
Adding containers to SMS table spaces on
database partitions 156

Dropping a database partition from an instance
(Windows) 156

Scenario: Redistributing data in new database
partitions 157
Issuing commands in partitioned database
environments 160
rah and db2_all commands overview 161

Specifying the rah and db2_all commands. . . 161
Running commands in parallel (Linux, UNIX) 162
Extension of the rah command to use tree logic
(AIX and Solaris) 163
rah and db2_all commands 163
rah and db2_all command prefix sequences . . 164
Controlling the rah command 166
Specifying which . files run with rah (Linux and
UNIX) 168
Determining problems with rah (Linux, UNIX) 168
Monitoring rah processes (Linux, UNIX) . . . 170
Setting the default environment profile for rah
on Windows. 171

Chapter 11. Creating tables and other
related table objects 173
Tables in partitioned database environments . . . 173
Large object behavior in partitioned tables. . . . 174
Creating partitioned tables 175

Defining ranges on partitioned tables 176
Placement of the data, index and long data of a
data partition 179
Migrating existing tables and views to
partitioned tables 180
Converting existing indexes to partitioned
indexes 182

Partitioned materialized query table (MQT)
behavior 184
Creating range-clustered tables 187

Guidelines for using range-clustered tables . . 187
Scenarios: Range-clustered tables 187

Considerations when creating MDC or ITC tables 189

Chapter 12. Altering a database . . . 195
Altering an instance 195

Changing the database configuration across
multiple database partitions 195

Altering a database 195

Chapter 13. Altering tables and other
related table objects 197
Altering partitioned tables 197
Guidelines and restrictions on altering partitioned
tables 198
Special considerations for XML indexes when
altering a table to ADD, ATTACH, or DETACH a
partition 200
Attaching data partitions 201
Guidelines for attaching data partitions to
partitioned tables 206
Conditions for matching a source table index with
a target table partitioned index during ATTACH
PARTITION 210

iv Partitioning and Clustering Guide

Detaching data partitions 211
Attributes of detached data partitions 215
Data partition detach phases 217
Asynchronous partition detach for data partitioned
tables 218
Adding data partitions to partitioned tables . . . 220
Dropping data partitions 222
Scenario: Rotating data in a partitioned table . . . 224
Scenarios: Rolling in and rolling out partitioned
table data 225

Chapter 14. Load 229
Parallelism and loading 229
MDC and ITC considerations 229
Load considerations for partitioned tables 230

Chapter 15. Loading data in a
partitioned database environment . . 235
Load overview–partitioned database environments 235
Loading data in a partitioned database
environment–hints and tips. 237
Loading data in a partitioned database
environment. 238
Monitoring a load operation in a partitioned
database environment using the LOAD QUERY
command 243
Resuming, restarting, or terminating load
operations in a partitioned database environment . 245
Load configuration options for partitioned
database environments 246
Load sessions in a partitioned database
environment - CLP examples 251
Migration and version compatibility 254

Chapter 16. Migration of partitioned
database environments 255
Migrating partitioned databases 255

Chapter 17. Using snapshot and event
monitors 257
Using snapshot monitor data to monitor the
reorganization of a partitioned table 257
Global snapshots on partitioned database systems 265
Creating an event monitor for partitioned
databases, or for databases in a DB2 pureScale
environment. 265

Chapter 18. Developing a good
backup and recovery strategy 267
Crash recovery 267
Recovering from transaction failures in a
partitioned database environment 268
Recovering from the failure of a database partition
server 271
Rebuilding partitioned databases 272
Recovering data using db2adutl 273
Synchronizing clocks in a partitioned database
environment. 286

Chapter 19. Troubleshooting 289
Troubleshooting partitioned database environments 289

Issuing commands in partitioned database
environments 289

Part 4. Performance issues 291

Chapter 20. Performance issues in
database design 293
Performance enhancing features 293

Table partitioning and multidimensional
clustering tables 293
Optimization strategies for partitioned tables 298
Optimization strategies for MDC tables. . . . 303

Chapter 21. Indexes 307
Indexes in partitioned tables 307

Index behavior on partitioned tables. 307
Clustering of nonpartitioned indexes on
partitioned tables 312

Chapter 22. Design advisor 317
Using the Design Advisor to convert from a
single-partition to a multi-partition database . . . 317

Chapter 23. Managing concurrency 319
Lock modes for MDC and ITC tables and RID
index scans 319
Lock modes for MDC block index scans 323
Locking behavior on partitioned tables 327

Chapter 24. Agent management . . . 329
Agents in a partitioned database 329

Chapter 25. Optimizing access plans 331
Index access and cluster ratios. 331

Table and index management for MDC and ITC
tables 331

Optimization strategies for intra-partition
parallelism 333
Joins 335

Database partition group impact on query
optimization. 336
Join strategies for partitioned databases . . . 337
Join methods for partitioned databases 338
Replicated materialized query tables in
partitioned database environments 344

Creating additional indexes on table columns in a
partitioned database environment 346

What's Next 349

Chapter 26. Data redistribution 351
Comparison of logged, recoverable redistribution
and minimally logged, not roll-forward recoverable
redistribution 351
Prerequisites for data redistribution 354
Restrictions on data redistribution 355
Determining if data redistribution is needed . . . 356

Contents v

Redistributing data across database partitions by
using the REDISTRIBUTE DATABASE PARTITION
GROUP command. 357
Redistributing data in a database partition group 359
Log space requirements for data redistribution . . 359
Redistribution event log files 360
Redistributing database partition groups using the
STEPWISE_REDISTRIBUTE_DBPG procedure . . 361

Chapter 27. Configuring self-tuning
memory 365
Self-tuning memory in partitioned database
environments 365
Using self-tuning memory in partitioned database
environments 367

Chapter 28. DB2 configuration
parameters and variables 369
Configuring databases across multiple partitions 369
Partitioned database environment variables . . . 370
Partitioned database environment configuration
parameters 372

Communications 372
Parallel processing. 376

Part 5. Administrative APIs,
commands, SQL statements . . . 379

Chapter 29. Administrative APIs . . . 381
sqleaddn - Add a database partition to the
partitioned database environment 381
sqlecran - Create a database on a database partition
server 383
sqledpan - Drop a database on a database partition
server 384
sqledrpn - Check whether a database partition
server can be dropped 385
sqlugrpn - Get the database partition server
number for a row 387

Chapter 30. Commands 391
REDISTRIBUTE DATABASE PARTITION GROUP 391
db2nchg - Change database partition server
configuration 398
db2ncrt - Add database partition server to an
instance 399
db2ndrop - Drop database partition server from an
instance 401

Chapter 31. SQL language elements 403
Data types 403

Database partition-compatible data types . . . 403
Special registers 404

CURRENT MEMBER 404

Chapter 32. SQL functions. 407
DATAPARTITIONNUM 407

DBPARTITIONNUM 408

Chapter 33. SQL statements 411
ALTER DATABASE PARTITION GROUP 411
CREATE DATABASE PARTITION GROUP . . . 414

Chapter 34. Supported administrative
SQL routines and views 417
ADMIN_CMD stored procedure and associated
administrative SQL routines 417

GET STMM TUNING command using the
ADMIN_CMD procedure 417
UPDATE STMM TUNING command using the
ADMIN_CMD procedure 418

Configuration administrative SQL routines and
views 419

DB_PARTITIONS 419
Stepwise redistribute administrative SQL routines 421

STEPWISE_REDISTRIBUTE_DBPG procedure -
Redistribute part of database partition group . . 421

Part 6. Appendixes 423

Appendix A. Install as non-root user 425
Installing DB2 database servers as a non-root user 425

Appendix B. Using backup 427
Backing up data 427

Appendix C. Partitioned database
environment catalog views 431
SYSCAT.BUFFERPOOLDBPARTITIONS 431
SYSCAT.DATAPARTITIONEXPRESSION 431
SYSCAT.DATAPARTITIONS 431
SYSCAT.DBPARTITIONGROUPDEF 434
SYSCAT.DBPARTITIONGROUPS 434
SYSCAT.PARTITIONMAPS 435

Appendix D. Overview of the DB2
technical information 437
DB2 technical library in hardcopy or PDF format 437
Displaying SQL state help from the command line
processor 440
Accessing different versions of the DB2
Information Center 440
Updating the DB2 Information Center installed on
your computer or intranet server 440
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 442
DB2 tutorials 443
DB2 troubleshooting information 444
Terms and conditions. 444

Appendix E. Notices 447

Index 451

vi Partitioning and Clustering Guide

About this book

The functionality of the DB2® relational database management system is
significantly impacted by the partitioning and clustering features which allow
administrators and system operators to effectively enhance performance of the
database and to distribute many of the database objects across hardware resources.
Quicker data retrieval and the ability to distribute objects across ever-growing
hardware resources, to take advantage of parallelism and storage capacity,
ultimately results in greater productivity. This book contains an organized
collection of topics from the DB2 database library resulting in a single source of
comprehensive information solely focused on the planning, design,
implementation, use, and maintenance of database partitions, table partitions, table
clusters, table range-clusters, multi-dimensional clustering tables, and parallelism.

Who should use this book
This book is intended primarily for database administrators, system administrators,
security administrators, and system operators who need to design, implement, or
maintain partitioned or clustered databases to be accessed by local and remote
clients. It can also be used by application developers and other users who require
both a comprehensive information source and an understanding of the
administration and operation of the DB2 relational database management system
as it pertains to the partitioning, clustering, and parallelism features. For those
contemplating a future implementation of any or all of the major features
discussed here, this book will serve as an excellent informational resource.

How this book is structured
This collection of topics from the DB2 library provides a single source of
comprehensive information that is solely focused on the DB2 partitioning,
clustering, and parallelism features. This book, for reasons of convenience and
efficiency, is divided into six major parts, the first five of which represent the main
administrative themes that are of concern to administrators, system operators, and
application developers. A topic, contained within a major part in this book, can be
mapped to a theme that represents the content of another book in the DB2 library,
allowing for easy cross-referencing to more general information as it relates to a
host of other DB2 features and objects. For example, after reading a topic in Part 4,
Chapter 20 about how optimization strategies for multi-dimensional clustered
tables exhibit improved performance, you may wish to examine other general
performance enhancements on regular tables that can be configured by consulting
the Tuning Database Performance book to which that particular example topic maps.
In Table 1 below, you'll find this book's major parts mapped to other books that
can be consulted for additional information about other DB2 objects and features
along a similar theme.

Table 1. The mapping of this book's Parts to other books in the DB2 library

Parts in the Partitioning and
Clustering Guide Mapping to Books in the DB2 library

Part 1. Planning and design
considerations

Database Administration Concepts and Configuration
Reference

Database Security Guide

© Copyright IBM Corp. 2012 vii

Table 1. The mapping of this book's Parts to other books in the DB2 library (continued)

Parts in the Partitioning and
Clustering Guide Mapping to Books in the DB2 library

Part 2. Installation considerations Database Administration Concepts and Configuration
Reference

Installing DB2 Servers

Part 3. Implementation and
maintenance

Data Movement Utilities Guide and Reference

Data Recovery and High Availability Guide and
Reference

Database Administration Concepts and Configuration
Reference

Upgrading to DB2 Version 10.1

Database Monitoring Guide and Reference

Visual Explain Tutorial

XQuery Reference

Part 4. Performance issues Database Administration Concepts and Configuration
Reference

Troubleshooting and Tuning Database Performance

Visual Explain Tutorial

Part 5. Administrative APIs,
commands, SQL statements

Administrative API Reference

Administrative Routines and Views

Command Reference

Developing ADO.NET and OLE DB Applications

Developing Embedded SQL Applications

Developing Java Applications

Developing Perl, PHP, Python, and Ruby on Rails
Applications

Developing User-defined Routines (SQL and External)

Getting Started with Database Application Development

SQL Reference Volume 1

SQL Reference Volume 2

Part 6. Appendixes Data Recovery and High Availability Guide and
Reference

Installing DB2 Servers

SQL Reference Volume 1

The major subject areas discussed in the chapters of this book are as follows:

Part 1. Planning and design considerations
All of the following chapters contain conceptual information relevant to the

viii Partitioning and Clustering Guide

planning and design of databases/tables that will either be partitioned,
clustered, or used in parallel database systems.
v Chapter 1, “Partitioned databases and tables,” introduces relevant

concepts concerning the features and benefits of partitioning databases
and tables.

v Chapter 2, “Range-clustered tables,” provides general conceptual
information about the features and advantages to using range-clustered
tables.

v Chapter 3, “Multi-dimensional clustered (MDC) tables,” describes the
use of multi-dimensional clustering as an elegant method for clustering
data in tables.

v Chapter 4, “Parallel database systems,” describes how parallelism can be
exploited to dramatically enhance performance.

Part 2. Installation considerations
The following chapters provide information about the preinstallation and
installation tasks that are necessary in preparation for database
partitioning.
v Chapter 5, “Installation prerequisites,” describes the prerequisites and

restrictions concerned with preparing a DB2 server that will be involved
in a partitioned database environment.

v Chapter 6, “Before you install,” discusses additional preinstallation tasks
and considerations in the case of UNIX and Linux operating systems.

v Chapter 7, “Installing your DB2 server product,” describes how to install
database partition servers and set up a partitioned database
environment.

v Chapter 8, “After you install,” describes how to verify the installation on
Windows, UNIX and Linux operating systems.

Part 3. Implementation and maintenance
Once the planning, designing, and installation steps are complete, the
following chapters discuss how to implement and maintain the features
and/or objects for which preparations were made earlier.
v Chapter 9, “Before creating a database,” describes what should be

considered before creating a database, such as enabling parallelism,
creating partitioned database environments, creating and configuring
database partitions, and establishing communications between database
partitions.

v Chapter 10, “Creating and managing partitioned database
environments,” describes how to create and manage database partitions
and partition groups.

v Chapter 11, “Creating tables and other related table objects,” presents
information on how to create and set up partitioned tables,
range-clustered tables, and MDC tables.

v Chapter 12, “Altering a database,” describes how to alter an instance
and/or a database.

v Chapter 13, “Altering tables and other related table objects,” provides
information on how to modify partitioned tables.

v Chapter 14, “Load,” discusses load considerations in cases of parallelism,
multi-dimensional clustering, and partitioned tables.

v Chapter 15, “Loading data in a partitioned database environment,”
describes how to start, resume, restart or terminate data load operations
in partitioned database environments.

About this book ix

v Chapter 16, “Migration of partitioned database environments,” briefly
gives an overview about migrating partitioned databases and a reference
for more detailed information.

v Chapter 17, “Using snapshot and event monitors,” gives relevant
information about using snapshot monitor results to monitor table
reorganization or to assess the global status of a partitioned database
system, in addition to describing how to use the CREATE EVENT
MONITOR statement.

v Chapter 18, “Developing a good backup and recovery strategy,”
describes the concepts behind crash recovery in a partitioned database
environment which will help to develop backup and recovery strategies
before a failure occurs.

v Chapter 19, “Troubleshooting,” gives a brief overview of troubleshooting
and useful information about how to issue commands useful in
troubleshooting, such as db2trc, across all computers in the instance, or
on all database partition servers.

Part 4. Performance issues
The following chapters contain pertinent information that will allow you to
enhance the performance of your partitioned and/or clustered
environment.
v Chapter 20, “Performance issues in database design,” describes

performance enhancing features of table partitioning and
multi-dimensional clustering, including optimization strategies for both.

v Chapter 21, “Indexes,” presents conceptual information that is helpful in
understanding indexes on partitioned tables.

v Chapter 22, “Design advisor,” describes how to use the design advisor to
obtain information about migrating from a single-partition to a
multi-partition database, as well as recommendations about distributing
your data and creating new indexes, materialized query tables, and
multi-dimensional clustering tables.

v Chapter 23, “Managing concurrency,” provides information about lock
modes.

v Chapter 24, “Agent management,” describes how to optimize database
agents that are used to service application requests.

v Chapter 25, “Optimizing access plans,” describes how to improve an
access plan, how the optimizer uses information from various scans to
optimize data access strategies, and includes information about join
strategies, all to improve performance in partitioned database
environments, clustered tables, and/or systems using parallelism.

v Chapter 26, “Data redistribution,” helps you to determine if data
redistribution should be done, and, if so, it describes how to redistribute
data across database partitions.

v Chapter 27, “Configuring self-tuning memory,” discusses the use of the
self-tuning memory feature in a partitioned database environment and
provides configuration recommendations.

v Chapter 28, “DB2 configuration parameters and variables,” presents
information about how to set database configuration parameters and
environmental variables across multiple partitions, and lists the
parameters and variables related to partitioned database environments
and the parallelism feature.

x Partitioning and Clustering Guide

Part 5. Administrative APIs, commands, SQL statements
The following chapters collectively consolidate information about
administrative APIs, commands, and SQL elements that is pertinent to
partitioned database environments.
v Chapter 29, “Administrative APIs,” provides information about the APIs

pertinent only to partitioned database environments.
v Chapter 30, “Commands,” provides information about the commands

pertinent only to partitioned database environments.
v Chapter 31, “SQL language elements,” presents database

partition-compatible data types and special registers.
v Chapter 32, “SQL functions,” describes SQL functions pertinent only to

partitioned database environments.
v Chapter 33, “SQL statements,” describes SQL statements pertinent only

to partitioned database environments.
v Chapter 34, “Supported administrative SQL routines and views,”

describes SQL routines and views pertinent only to partitioned database
environments.

Part 6. Appendixes

v Appendix A, “Install as non-root user,” describes installing the DB2
database product as a non-root user on UNIX and Linux operating
systems.

v Appendix B, “Using backup,” describes how to use the BACKUP DATABASE
command.

v Appendix C, “Partitioned database environment catalog views,” lists the
catalog views particular to a partitioned database environment.

Highlighting conventions
The following highlighting conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are
predefined by the system.

Italics Indicates one of the following:

v Names or values (variables) that must be supplied by the user

v General emphasis

v The introduction of a new term

v A reference to another source of information

Monospace Indicates one of the following:

v Files and directories

v Information that you are instructed to type at a command prompt or in a
window

v Examples of specific data values

v Examples of text similar to what might be displayed by the system

v Examples of system messages

v Samples of programming code

About this book xi

xii Partitioning and Clustering Guide

Part 1. Planning and design considerations

© Copyright IBM Corp. 2012 1

2 Partitioning and Clustering Guide

Chapter 1. Partitioned databases and tables

Setting up partitioned database environments
The decision to create a multi-partition database must be made before you create
your database. As part of the database design decisions you make, you will have
to determine if you should take advantage of the performance improvements
database partitioning can offer.

About this task

In a partitioned database environment, you still use the CREATE DATABASE command
or the sqlecrea() function to create a database. Whichever method is used, the
request can be made through any of the partitions listed in the db2nodes.cfg file.
The db2nodes.cfg file is the database partition server configuration file.

Except on the Windows operating system environment, any editor can be used to
view and update the contents of the database partition server configuration file
(db2nodes.cfg). On the Windows operating system environment, use db2ncrt and
db2nchg commands to create and change the database partition server
configuration file

Before creating a multi-partition database, you must select which database partition
will be the catalog partition for the database. You can then create the database
directly from that database partition, or from a remote client that is attached to
that database partition. The database partition to which you attach and execute the
CREATE DATABASE command becomes the catalog partition for that particular
database.

The catalog partition is the database partition on which all system catalog tables
are stored. All access to system tables must go through this database partition. All
federated database objects (for example, wrappers, servers, and nicknames) are
stored in the system catalog tables at this database partition.

If possible, you should create each database in a separate instance. If this is not
possible (that is, you must create more than one database per instance), you should
spread the catalog partitions among the available database partitions. Doing this
reduces contention for catalog information at a single database partition.

Note: You should regularly do a backup of the catalog partition and avoid putting
user data on it (whenever possible), because other data increases the time required
for the backup.

When you create a database, it is automatically created across all the database
partitions defined in the db2nodes.cfg file.

When the first database in the system is created, a system database directory is
formed. It is appended with information about any other databases that you create.
When working on UNIX, the system database directory is sqldbdir and is located
in the sqllib directory under your home directory, or under the directory where
DB2 database was installed. When working on UNIX, this directory must reside on
a shared file system, (for example, NFS on UNIX platforms) because there is only
one system database directory for all the database partitions that make up the

© Copyright IBM Corp. 2012 3

partitioned database environment. When working on Windows, the system
database directory is located in the instance directory.

Also resident in the sqldbdir directory is the system intention file. It is called
sqldbins, and ensures that the database partitions remain synchronized. The file
must also reside on a shared file system since there is only one directory across all
database partitions. The file is shared by all the database partitions making up the
database.

Configuration parameters have to be modified to take advantage of database
partitioning. Use the GET DATABASE CONFIGURATION and the GET DATABASE MANAGER
CONFIGURATION commands to find out the values of individual entries in a specific
database, or in the database manager configuration file. To modify individual
entries in a specific database, or in the database manager configuration file, use the
UPDATE DATABASE CONFIGURATION and the UPDATE DATABASE MANAGER CONFIGURATION
commands respectively.

The database manager configuration parameters affecting a partitioned database
environment include conn_elapse, fcm_num_buffers, fcm_num_channels,
max_connretries, max_coordagents, max_time_diff, num_poolagents, and
start_stop_time.

Database partitioning across multiple database partitions
The database manager allows great flexibility in spreading data across multiple
database partitions of a partitioned database.

Users can choose how to distribute their data by declaring distribution keys, and
can determine which and how many database partitions their table data can be
spread across by selecting the database partition group and table space in which
the data is to be stored.

In addition, a distribution map (which is updatable) specifies the mapping of
distribution key values to database partitions. This makes it possible for flexible
workload parallelization across a partitioned database for large tables, while
allowing smaller tables to be stored on one or a small number of database
partitions if the application designer so chooses. Each local database partition can
have local indexes on the data it stores to provide high performance local data
access.

In a partitioned database, the distribution key is used to distribute table data
across a set of database partitions. Index data is also partitioned with its
corresponding tables, and stored locally at each database partition.

Before database partitions can be used to store data, they must be defined to the
database manager. Database partitions are defined in a file called db2nodes.cfg.

The distribution key for a table in a table space on a partitioned database partition
group is specified in the CREATE TABLE statement or the ALTER TABLE
statement. If not specified, a distribution key for a table is created by default from
the first column of the primary key. If no primary key is defined, the default
distribution key is the first column defined in that table that has a data type other
than a long or a LOB data type. Tables in partitioned databases must have at least
one column that is neither a long nor a LOB data type. A table in a table space that
is in a single partition database partition group will have a distribution key only if
it is explicitly specified.

4 Partitioning and Clustering Guide

Rows are placed in a database partition as follows:
1. A hashing algorithm (database partitioning function) is applied to all of the

columns of the distribution key, which results in the generation of a
distribution map index value.

2. The database partition number at that index value in the distribution map
identifies the database partition in which the row is to be stored.

The database manager supports partial declustering, which means that a table can be
distributed across a subset of database partitions in the system (that is, a database
partition group). Tables do not have to be distributed across all of the database
partitions in the system.

The database manager has the capability of recognizing when data being accessed
for a join or a subquery is located at the same database partition in the same
database partition group. This is known as table collocation. Rows in collocated
tables with the same distribution key values are located on the same database
partition. The database manager can choose to perform join or subquery processing
at the database partition in which the data is stored. This can have significant
performance advantages.

Collocated tables must:
v Be in the same database partition group, one that is not being redistributed.

(During redistribution, tables in the database partition group might be using
different distribution maps – they are not collocated.)

v Have distribution keys with the same number of columns.
v Have the corresponding columns of the distribution key be database

partition-compatible.
v Be in a single partition database partition group defined on the same database

partition.

Partitioned database authentication considerations
In a partitioned database, each partition of the database must have the same set of
users and groups defined. If the definitions are not the same, the user may be
authorized to do different things on different partitions.

Consistency across all partitions is recommended.

Database partition groups
A database partition group is a named set of one or more database partitions that
belong to a database.

A database partition group that contains more than one database partition is
known as a multiple partition database partition group. Multiple partition database
partition groups can only be defined with database partitions that belong to the
same instance.

Figure 1 on page 6 shows an example of a database with five database partitions.
v Database partition group 1 contains all but one of the database partitions.
v Database partition group 2 contains one database partition.
v Database partition group 3 contains two database partitions.
v The database partition in Group 2 is shared (and overlaps) with Group 1.
v A single database partition in Group 3 is shared (and overlaps) with Group 1.

Chapter 1. Partitioned databases and tables 5

When a database is created, all database partitions that are specified in the database
partition configuration file named db2nodes.cfg are created as well. Other database
partitions can be added or removed with the ADD DBPARTITIONNUM or DROP
DBPARTITIONNUM VERIFY command, respectively. Data is divided across all of the
database partitions in a database partition group.

When a database partition group is created, a distribution map is associated with the
group. The distribution map, along with a distribution key and a hashing algorithm
are used by the database manager to determine which database partition in the
database partition group will store a given row of data.

Default database partition groups

Three database partition groups are defined automatically at database creation
time:
v IBMCATGROUP for the SYSCATSPACE table space, holding system catalog

tables
v IBMTEMPGROUP for the TEMPSPACE1 table space, holding temporary tables

created during database processing
v IBMDEFAULTGROUP for the USERSPACE1 table space, holding user tables and

indexes. A user temporary table space for a declared temporary table or a
created temporary table can be created in IBMDEFAULTGROUP or any
user-created database partition group, but not in IBMTEMPGROUP.

Table spaces in database partition groups

When a table space is associated with a multiple partition database partition group
(during execution of the CREATE TABLESPACE statement), all of the tables within
that table space are partitioned across each database partition in the database
partition group. A table space that is associated with a particular database partition
group cannot later be associated with another database partition group.

Database

Database
partition

Database
partition

Database
partition group 2

Database
partition group 3

Database
partition group 1

Database
partition

Database
partition

Database
partition

Figure 1. Database partition groups in a database

6 Partitioning and Clustering Guide

Creating a database partition group

Create a database partition group by using the CREATE DATABASE PARTITION
GROUP statement. This statement specifies the set of database partitions on which
the table space containers and table data are to reside. This statement also
performs the following actions:
v It creates a distribution map for the database partition group.
v It generates a distribution map ID.
v It inserts records into the following catalog views:

– SYSCAT.DBPARTITIONGROUPDEF
– SYSCAT.DBPARTITIONGROUPS
– SYSCAT.PARTITIONMAPS

Altering a database partition group

Use the ALTER DATABASE PARTITION GROUP statement to add database
partitions to (or drop them from) a database partition group. After adding or
dropping database partitions, use the REDISTRIBUTE DATABASE PARTITION GROUP
command to redistribute the data across the set of database partitions in the
database partition group.

Database partition group design considerations

Place small tables in single-partition database partition groups, except when you
want to take advantage of collocation with a larger table. Collocation is the
placement of rows from different tables that contain related data in the same
database partition. Collocated tables help the database manager to use more
efficient join strategies. Such tables can exist in a single-partition database partition
group. Tables are considered to be collocated if they are in a multiple partition
database partition group, have the same number of columns in the distribution
key, and if the data types of corresponding columns are compatible. Rows in
collocated tables with the same distribution key value are placed on the same
database partition. Tables can be in separate table spaces in the same database
partition group, and still be considered collocated.

Avoid extending medium-sized tables across too many database partitions. For
example, a 100-MB table might perform better on a 16-partition database partition
group than on a 32-partition database partition group.

You can use database partition groups to separate online transaction processing
(OLTP) tables from decision support (DSS) tables. This will help to ensure that the
performance of OLTP transactions is not adversely affected.

If you are using a multiple partition database partition group, consider the
following points:
v In a multiple partition database partition group, you can only create a unique

index if the index is a superset of the distribution key.
v Each database partition must be assigned a unique number, because the same

database partition might be found in one or more database partition groups.
v To ensure fast recovery of a database partition containing system catalog tables,

avoid placing user tables on the same database partition. Place user tables in
database partition groups that do not include the database partition in the
IBMCATGROUP database partition group.

Chapter 1. Partitioned databases and tables 7

Distribution maps
In a partitioned database environment, the database manager must know where to
find the data that it needs. The database manager uses a map, called a distribution
map, to find the data.

A distribution map is an internally generated array containing either 32 768 entries
for multiple-partition database partition groups, or a single entry for
single-partition database partition groups. For a single-partition database partition
group, the distribution map has only one entry containing the number of the
database partition where all the rows of a database table are stored. For
multiple-partition database partition groups, the numbers of the database partition
group are specified in a way such that each database partition is used one after the
other to ensure an even distribution across the entire map. Just as a city map is
organized into sections using a grid, the database manager uses a distribution key to
determine the location (the database partition) where the data is stored.

For example, assume that you have a database on four database partitions
(numbered 0–3). The distribution map for the IBMDEFAULTGROUP database
partition group of this database is:

0 1 2 3 0 1 2 ...

If a database partition group had been created in the database using database
partitions 1 and 2, the distribution map for that database partition group is:

1 2 1 2 1 2 1 ...

If the distribution key for a table to be loaded into the database is an integer with
possible values between 1 and 500 000, the distribution key is hashed to a number
between 0 and 32 767. That number is used as an index into the distribution map
to select the database partition for that row.

Figure 2 shows how the row with the distribution key value (c1, c2, c3) is mapped
to number 2, which, in turn, references database partition n5.

A distribution map is a flexible way of controlling where data is stored in a
multi-partition database. If you must change the data distribution across the
database partitions in your database, you can use the data redistribution utility.
This utility allows you to rebalance or introduce skew into the data distribution.

n0 n2 n5 n0 n6

1 2 3 40 32767

Row: (... c1, c2, c3, ...)

Partition number

Distribution map

Distribution key

Figure 2. Data distribution using a distribution map

8 Partitioning and Clustering Guide

You can use the db2GetDistMap API to obtain a copy of a distribution map that
you can view. If you continue to use the sqlugtpi API to obtain the distribution
information, this API might return error message SQL2768N, because it can only
retrieve distribution maps containing 4096 entries.

Distribution keys
A distribution key is a column (or group of columns) that is used to determine the
database partition in which a particular row of data is stored.

A distribution key is defined on a table using the CREATE TABLE statement. If a
distribution key is not defined for a table in a table space that is divided across
more than one database partition in a database partition group, one is created by
default from the first column of the primary key.

If no primary key is specified, the default distribution key is the first non-long
field column defined on that table. (Long includes all long data types and all large
object (LOB) data types). If you are creating a table in a table space associated with
a single-partition database partition group, and you want to have a distribution
key, you must define the distribution key explicitly. One is not created by default.

If no columns satisfy the requirement for a default distribution key, the table is
created without one. Tables without a distribution key are only allowed in
single-partition database partition groups. You can add or drop distribution keys
later, using the ALTER TABLE statement. Altering the distribution key can only be
done to a table whose table space is associated with a single-partition database
partition group.

Choosing a good distribution key is important. Take into consideration:
v How tables are to be accessed
v The nature of the query workload
v The join strategies employed by the database system

If collocation is not a major consideration, a good distribution key for a table is one
that spreads the data evenly across all database partitions in the database partition
group. The distribution key for each table in a table space that is associated with a
database partition group determines if the tables are collocated. Tables are
considered collocated when:
v The tables are placed in table spaces that are in the same database partition

group
v The distribution keys in each table have the same number of columns
v The data types of the corresponding columns are partition-compatible.

These characteristics ensure that rows of collocated tables with the same
distribution key values are located on the same database partition.

An inappropriate distribution key can cause uneven data distribution. Do not
choose columns with unevenly distributed data or columns with a small number
of distinct values for the distribution key. The number of distinct values must be
great enough to ensure an even distribution of rows across all database partitions
in the database partition group. The cost of applying the distribution algorithm is
proportional to the size of the distribution key. The distribution key cannot be
more than 16 columns, but fewer columns result in better performance. Do not
include unnecessary columns in the distribution key.

Chapter 1. Partitioned databases and tables 9

Consider the following points when defining a distribution key:
v Creation of a multiple-partition table that contains only BLOB, CLOB, DBCLOB,

LONG VARCHAR, LONG VARGRAPHIC, XML, or structured data types is not
supported.

v The distribution key definition cannot be altered.
v Include the most frequently joined columns in the distribution key.
v Include columns that often participate in a GROUP BY clause in the distribution

key.
v Any unique key or primary key must contain all of the distribution key

columns.
v In an online transaction processing (OLTP) environment, ensure that all columns

in the distribution key participate in a transaction through equality predicates.
For example, assume that you have an employee number column, EMP_NO,
that is often used in transactions such as:

UPDATE emp_table SET ... WHERE
emp_no = host-variable

In this case, the EMP_NO column makes a good single column distribution key
for EMP_TABLE.

Database partitioning is the method by which the placement of each row in the table
is determined. The method works as follows:
1. A hashing algorithm is applied to the value of the distribution key, and

generates a number between zero (0) and 32 767.
2. The distribution map is created when a database partition group is created.

Each of the numbers is sequentially repeated in a round-robin fashion to fill the
distribution map.

3. The number is used as an index into the distribution map. The number at that
location in the distribution map is the number of the database partition where
the row is stored.

Table collocation
If two or more tables frequently contribute data in response to certain queries, you
will want related data from these tables to be physically located as close together
as possible. In a partitioned database environment, this process is known as table
collocation.

Tables are collocated when they are stored in the same database partition group,
and when their distribution keys are compatible. Placing both tables in the same
database partition group ensures a common distribution map. The tables might be
in different table spaces, but the table spaces must be associated with the same
database partition group. The data types of the corresponding columns in each
distribution key must be partition-compatible.

When more than one table is accessed for a join or a subquery, the database
manager determines whether the data to be joined is located at the same database
partition. When this happens, the join or subquery is performed at the database
partition where the data is stored, instead of having to move data between
database partitions. This ability has significant performance advantages.

Partition compatibility
The base data types of corresponding columns of distribution keys are compared
and can be declared partition-compatible. Partition-compatible data types have the

10 Partitioning and Clustering Guide

property that two variables, one of each type, with the same value, are mapped to
the same number by the same partitioning algorithm.

Partition-compatibility has the following characteristics:
v A base data type is compatible with another of the same base data type.
v Internal formats are used for DATE, TIME, and TIMESTAMP data types. They

are not compatible with each other, and none are compatible with character or
graphic data types.

v Partition compatibility is not affected by the nullability of a column.
v Partition-compatibility is affected by collation. Locale-sensitive UCA-based

collations require an exact match in collation, except that the strength (S)
attribute of the collation is ignored. All other collations are considered equivalent
for the purposes of determining partition compatibility.

v Character columns defined with FOR BIT DATA are only compatible with
character columns without FOR BIT DATA when a collation other than a
locale-sensitive UCA-based collation is used.

v NULL values of compatible data types are treated identically; those of
non-compatible data types might not be.

v Base data types of a user-defined type are used to analyze partition-
compatibility.

v Decimals of the same value in the distribution key are treated identically, even if
their scale and precision differ.

v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC) are ignored by the hashing algorithm.

v BIGINT, SMALLINT, and INTEGER are compatible data types.
v When a locale-sensitive UCA-based collation is used, CHAR, VARCHAR,

GRAPHIC, and VARGRAPHIC are compatible data types. When another
collation is used, CHAR and VARCHAR of different lengths are compatible
types and GRAPHIC and VARGRAPHIC are compatible types, but CHAR and
VARCHAR are not compatible types with GRAPHIC and VARGRAPHIC.

v Partition-compatibility does not apply to LONG VARCHAR, LONG
VARGRAPHIC, CLOB, DBCLOB, and BLOB data types, because they are not
supported as distribution keys.

Partitioned tables
Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table.

A data partition or range is part of a table, containing a subset of rows of a table,
and stored separately from other sets of rows. Data from a given table is
partitioned into multiple data partitions or ranges based on the specifications
provided in the PARTITION BY clause of the CREATE TABLE statement. These
data partitions or ranges can be in different table spaces, in the same table space,
or a combination of both. If a table is created using the PARTITION BY clause, the
table is partitioned.

All of the table spaces specified must have the same page size, extent size, storage
mechanism (DMS or SMS), and type (REGULAR or LARGE), and all of the table
spaces must be in the same database partition group.

Chapter 1. Partitioned databases and tables 11

A partitioned table simplifies the rolling in and rolling out of table data and a
partitioned table can contain vastly more data than an ordinary table. You can
create a partitioned table with a maximum of 32,767 data partitions. Data partitions
can be added to, attached to, and detached from a partitioned table, and you can
store multiple data partition ranges from a table in one table space.

Indexes on a partitioned table can be partitioned or nonpartitioned. Both
nonpartitioned and partitioned indexes can exist together on a single partitioned
table.

Restrictions

Partitioned hierarchical or temporary tables, range-clustered tables, and partitioned
views are not supported for use in partitioned tables.

Table partitioning
Table partitioning is a data organization scheme in which table data is divided
across multiple storage objects called data partitions or ranges according to values in
one or more table columns. Each data partition is stored separately. These storage
objects can be in different table spaces, in the same table space, or a combination of
both.

Storage objects behave much like individual tables, making it easy to accomplish
fast roll-in by incorporating an existing table into a partitioned table using the
ALTER TABLE ... ATTACH statement. Likewise, easy roll-out is accomplished with
the ALTER TABLE ... DETACH statement. Query processing can also take
advantage of the separation of the data to avoid scanning irrelevant data, resulting
in better query performance for many data warehouse style queries.

Table data is partitioned as specified in the PARTITION BY clause of the CREATE
TABLE statement. The columns used in this definition are referred to as the table
partitioning key columns.

This organization scheme can be used in isolation or in combination with other
organization schemes. By combining the DISTRIBUTE BY and PARTITION BY
clauses of the CREATE TABLE statement, data can be spread across database
partitions spanning multiple table spaces. The organization schemes include:
v DISTRIBUTE BY HASH
v PARTITION BY RANGE
v ORGANIZE BY DIMENSIONS

Table partitioning is available with the DB2 Version 9.1 Enterprise Server Edition
for Linux, UNIX, and Windows, and later.

Benefits of table partitioning

If any of the following circumstances apply to you and your organization, consider
the numerous benefits of table partitioning:
v You have a data warehouse that would benefit from easier roll-in and roll-out of

table data.
v You have a data warehouse that includes large tables.
v You are considering a migration to a Version 9.1 database from a previous

release or a competitive database product.

12 Partitioning and Clustering Guide

v You want to use hierarchical storage management (HSM) solutions more
effectively.

Table partitioning offers easy roll-in and roll-out of table data, easier
administration, flexible index placement, and better query processing.

Efficient roll-in and roll-out
Table partitioning allows for the efficient roll-in and roll-out of table data.
You can achieve this efficiency by using the ATTACH PARTITION and
DETACH PARTITION clauses of the ALTER TABLE statement. Rolling in
partitioned table data allows a new range to be easily incorporated into a
partitioned table as an additional data partition. By rolling out partitioned
table data, you can easily separate ranges of data from a partitioned table
for subsequent purging or archiving.

With DB2 Version 9.7 Fix Pack 1 and later releases, when detaching a data
partition from a partitioned table by using the ALTER TABLE statement
with the DETACH PARTITION clause, the source partitioned table remains
accessible to dynamic queries that run under the RS, CS, or UR isolation
level. Similarly, with DB2 V10.1 and later releases, when attaching a data
partition to a partitioned table by using the ALTER TABLE statement with
the ATTACH PARTITION clause, the target partitioned table remains
accessible to dynamic queries that run under the RS, CS, or UR isolation
level.

Easier administration of large tables
Table level administration is more flexible because you can perform
administrative tasks on individual data partitions. These tasks include:
detaching and reattaching of a data partition, backing up and restoring
individual data partitions, and reorganizing individual indexes. Time
consuming maintenance operations can be shortened by breaking them
down into a series of smaller operations. For example, backup operations
can work data partition by data partition when the data partitions are
placed in separate table spaces. Thus, it is possible to back up one data
partition of a partitioned table at a time.

Flexible index placement
Indexes can now be placed in different table spaces, allowing for more
granular control of index placement. Some benefits of this design include:
v Improved performance when dropping indexes and during online index

creation.
v The ability to use different values for any of the table space

characteristics between each index on the table (for example, different
page sizes for each index might be appropriate to ensure better space
utilization).

v Reduced I/O contention that provides more efficient concurrent access
to the index data for the table.

v When individual indexes are dropped, space immediately becomes
available to the system without the need for index reorganization.

v If you choose to perform index reorganization, an individual index can
be reorganized.

Both DMS and SMS table spaces support the use of indexes in a different
location than the table.

Improved performance for business intelligence style queries
Query processing is enhanced to automatically eliminate data partitions

Chapter 1. Partitioned databases and tables 13

based on predicates of the query. This query processing is known as data
partition elimination, and can benefit many decision support queries.

The following example creates a table named CUSTOMER, where rows with
l_shipdate >= '01/01/2006' and l_shipdate <= '03/31/2006' are stored in table
space TS1, rows with l_shipdate >= '04/01/2006' and l_shipdate <= '06/30/2006'
are stored in table space TS2, and so on.
CREATE TABLE customer (l_shipdate DATE, l_name CHAR(30))
IN ts1, ts2, ts3, ts4, ts5
PARTITION BY RANGE(l_shipdate) (STARTING FROM (’01/01/2006’)
ENDING AT (’12/31/2006’) EVERY (3 MONTHS))

Data partitions and ranges
Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table. The ranges specified for
each data partition can be generated automatically or manually when creating a
table.

Data partitions are referred to in various ways throughout the DB2 library. The
following list represents the most common references:
v DATAPARTITIONNAME is the permanent name assigned to a data partition for

a given table at create time. This column value is stored in the
SYSCAT.DATAPARTITIONS catalog view. This name is not preserved on an
attach or detach operation.

v DATAPARTITIONID is the permanent identifier assigned to a data partition for
a given table at create time. It is used to uniquely identify a particular data
partition in a given table. This identifier is not preserved on an attach or detach
operation. This value is system-generated and might appear in output from
various utilities.

v SEQNO indicates the order of a particular data partition range with regards to
other data partition ranges in the table, with detached data partitions sorting
after all visible and attached data partitions.

Data organization schemes
With the introduction of table partitioning, a DB2 database offers a three-level data
organization scheme. There are three clauses of the CREATE TABLE statement that
include an algorithm to indicate how the data is to be organized.

The following three clauses demonstrate the levels of data organization that can be
used together in any combination:
v DISTRIBUTE BY to spread data evenly across database partitions (to enable

intraquery parallelism and to balance the load across each database partition)
(database partitioning)

v PARTITION BY to group rows with similar values of a single dimension in the
same data partition (table partitioning)

v ORGANIZE BY to group rows with similar values on multiple dimensions in the
same table extent (multidimensional clustering) or to group rows according to
the time of the insert operation (insert time clustering table).

This syntax allows consistency between the clauses and allows for future
algorithms of data organization. Each of these clauses can be used in isolation or in
combination with one another. By combining the DISTRIBUTE BY and PARTITION
BY clauses of the CREATE TABLE statement data can be spread across database

14 Partitioning and Clustering Guide

partitions spanning multiple table spaces. This approach allows for similar
behavior to the Informix® Dynamic Server and Informix Extended Parallel Server
hybrid.

In a single table, you can combined the clauses used in each data organization
scheme to create more sophisticated partitioning schemes. For example, partitioned
database environments are not only compatible, but also complementary to table
partitioning.

Figure 3. Demonstrating the table partitioning organization scheme where a table
representing monthly sales data is partitioned into multiple data partitions. The table also
spans two table spaces (ts1 and ts2).

Chapter 1. Partitioned databases and tables 15

The salient distinction between multidimensional clustering (MDC) and table
partitioning is multi-dimension versus single dimension. MDC is suitable to cubes
(that is, tables with multiple dimensions), and table partitioning works well if there
is a single dimension which is central to the database design, such as a DATE
column. MDC and table partitioning are complementary when both of these
conditions are met. This is demonstrated in Figure 5 on page 17.

Figure 4. Demonstrating the complementary organization schemes of database partitioning
and table partitioning. A table representing monthly sales data is partitioned into multiple data
partitions, spanning two table spaces (ts1 and ts2) that are distributed across multiple
database partitions (dbpart1, dbpart2, dbpart3) of a database partition group (dbgroup1).

16 Partitioning and Clustering Guide

There is another data organization scheme which cannot be used with any of the
schemes that were listed previously. This scheme is ORGANIZE BY KEY
SEQUENCE. It is used to insert each record into a row that was reserved for that
record at the time of table creation (Range-clustered table).

Data organization terminology

Database partitioning
A data organization scheme in which table data is divided across multiple
database partitions based on the hash values in one or more distribution
key columns of the table, and based on the use of a distribution map of the
database partitions. Data from a given table is distributed based on the
specifications provided in the DISTRIBUTE BY HASH clause of the
CREATE TABLE statement.

Figure 5. A representation of the database partitioning, table partitioning and multidimensional
organization schemes where data from table SALES is not only distributed across multiple
database partitions, partitioned across table spaces ts1 and ts2, but also groups rows with
similar values on both the date and region dimensions.

Chapter 1. Partitioned databases and tables 17

Database partition
A portion of a database on a database partition server consisting of its own
user data, indexes, configuration file, and transaction logs. Database
partitions can be logical or physical.

Table partitioning
A data organization scheme in which table data is divided across multiple
data partitions according to values in one or more partitioning columns of
the table. Data from a given table is partitioned into multiple storage
objects based on the specifications provided in the PARTITION BY clause
of the CREATE TABLE statement. These storage objects can be in different
table spaces.

Data partition
A set of table rows, stored separately from other sets of rows, grouped by
the specifications provided in the PARTITION BY RANGE clause of the
CREATE TABLE statement.

Multidimensional clustering (MDC)
A table whose data is physically organized into blocks along one or more
dimensions, or clustering keys, specified in the ORGANIZE BY
DIMENSIONS clause.

Insert time clustering (ITC)
A table whose data is physically clustered based on row insert time,
specified by the ORGANIZE BY INSERT TIME clause.

Benefits of each data organization scheme

Understanding the benefits of each data organization scheme can help you to
determine the best approach when planning, designing, or reassessing your
database system requirements. Table 2 provides a high-level view of common
customer requirements and shows how the various data organization schemes can
help you to meet those requirements.

Table 2. Using table partitioning with the Database Partitioning Feature

Issue Recommended scheme Explanation

Data roll-out Table partitioning Uses detach to roll out large
amounts of data with
minimal disruption

Parallel query execution
(query performance)

Database Partitioning Feature Provides query parallelism
for improved query
performance

Data partition elimination
(query performance)

Table partitioning Provides data partition
elimination for improved
query performance

Maximization of query
performance

Both Maximum query performance
when used together: query
parallelism and data partition
elimination are
complementary

Heavy administrator
workload

Database Partitioning Feature Execute many tasks for each
database partition

18 Partitioning and Clustering Guide

Table 3. Using table partitioning with MDC tables

Issue Recommended scheme Explanation

Data availability during
roll-out

Table partitioning Use the DETACH
PARTITION clause to roll out
large amounts of data with
minimal disruption.

Query performance Both MDC is best for querying
multiple dimensions. Table
partitioning helps through
data partition elimination.

Minimal reorganization MDC MDC maintains clustering,
which reduces the need to
reorganize.

Note: Table partitioning is now recommended over UNION ALL views.

Data organization schemes in DB2 and Informix databases
Table partitioning is a data organization scheme in which table data is divided
across multiple storage objects called data partitions or ranges according to values
in one or more table columns. Each data partition is stored separately. These
storage objects can be in different table spaces, in the same table space, or a
combination of both.

Table data is partitioned as specified in the PARTITION BY clause of the CREATE
TABLE statement. The columns used in this definition are referred to as the table
partitioning key columns. DB2 table partitioning maps to the data fragmentation
approach to data organization offered by Informix Dynamic Server and Informix
Extended Parallel Server.

The Informix approach

Informix supports several data organization schemes, which are called
fragmentation in the Informix products. One of the more commonly used types of
fragmentation is FRAGMENT BY EXPRESSION. This type of fragmentation works
much like a CASE statement, where there is an expression associated with each
fragment of the table. These expressions are checked in order to determine where
to place a row.

An Informix and DB2 database system comparison

DB2 database provides a rich set of complementary features that map directly to
the Informix data organization schemes, making it relatively easy for customers to
convert from the Informix syntax to the DB2 syntax. The DB2 database manager
handles complicated Informix schemes using a combination of generated columns
and the PARTITION BY RANGE clause of the CREATE TABLE statement. Table 4
compares data organizations schemes used in Informix and DB2 database products.

Table 4. A mapping of all Informix and DB2 data organization schemes

Data organization scheme Informix syntax DB2 Version 9.1 syntax

v Informix: expression-based

v DB2: table partitioning

FRAGMENT BY
EXPRESSION

PARTITION BY RANGE

Chapter 1. Partitioned databases and tables 19

Table 4. A mapping of all Informix and DB2 data organization schemes (continued)

Data organization scheme Informix syntax DB2 Version 9.1 syntax

v Informix: round-robin

v DB2: default

FRAGMENT BY ROUND
ROBIN

No syntax: DB2 database
manager automatically
spreads data among
containers

v Informix: range
distribution

v DB2: table partitioning

FRAGMENT BY RANGE PARTITION BY RANGE

v Informix: system
defined-hash

v DB2: database partitioning

FRAGMENT BY HASH DISTRIBUTE BY HASH

v Informix: HYBRID

v DB2: database partitioning
with table partitioning

FRAGMENT BY HYBRID DISTRIBUTE BY HASH,
PARTITION BY RANGE

v Informix: n/a

v DB2: Multidimensional
clustering

n/a ORGANIZE BY DIMENSION

Examples

The following examples provide details on how to accomplish DB2 database
equivalent outcomes for any Informix fragment by expression scheme.

Example 1: The following basic create table statement shows Informix fragmentation
and the equivalent table partitioning syntax for a DB2 database system:

Informix syntax:
CREATE TABLE demo(a INT) FRAGMENT BY EXPRESSION
a = 1 IN db1,
a = 2 IN db2,
a = 3 IN db3;

DB2 syntax:
CREATE TABLE demo(a INT) PARTITION BY RANGE(a)
(STARTING(1) IN db1,
STARTING(2) IN db2,
STARTING(3) ENDING(3) IN db3);

Informix XPS supports a two-level fragmentation scheme known as hybrid where
data is spread across co-servers with one expression and within the co-server with
a second expression. This allows all co-servers to be active on a query (that is,
there is data on all co-servers) as well as allowing the query to take advantage of
data partition elimination.

The DB2 database system achieves the equivalent organization scheme to the
Informix hybrid using a combination of the DISTRIBUTE BY and PARTITION BY
clauses of the CREATE TABLE statement.

Example 2:The following example shows the syntax for the combined clauses:

Informix syntax

20 Partitioning and Clustering Guide

CREATE TABLE demo(a INT, b INT) FRAGMENT BY HYBRID HASH(a)
EXPRESSION b = 1 IN dbsl1,

b = 2 IN dbsl2;

DB2 syntax
CREATE TABLE demo(a INT, b INT) IN dbsl1, dbsl2
DISTRIBUTE BY HASH(a),
PARTITION BY RANGE(b) (STARTING 1 ENDING 2 EVERY 1);

In addition, you can use multidimensional clustering to gain an extra level of data
organization:

CREATE TABLE demo(a INT, b INT, c INT) IN dbsl1, dbsl2
DISTRIBUTE BY HASH(a),
PARTITION BY RANGE(b) (STARTING 1 ENDING 2 EVERY 1)
ORGANIZE BY DIMENSIONS(c);

Thus, all rows with the same value of column a are in the same database partition.
All rows with the same value of column b are in the same table space. For a given
value of a and b, all rows with the same value c are clustered together on disk.
This approach is ideal for OLAP-type drill-down operations, because only one or
several extents (blocks)in a single table space on a single database partition must
be scanned to satisfy this type of query.

Table partitioning applied to common application problems

The following sections discuss how to apply the various features of DB2 table
partitioning to common application problems. In each section, particular attention
is given to best practices for mapping various Informix fragmentation schemes into
equivalent DB2 table partitioning schemes.

Considerations for creating simple data partition ranges

One of the most common applications of table partitioning is to partition a large
fact table based on a date key. If you need to create uniformly sized ranges of
dates, consider using the automatically generated form of the CREATE TABLE
syntax.

Examples

Example 1: The following example shows the automatically generated form of the
syntax:
CREATE TABLE orders
(
l_orderkey DECIMAL(10,0) NOT NULL,
l_partkey INTEGER,
l_suppkey INTEGER,
l_linenumber INTEGER,
l_quantity DECIMAL(12,2),
l_extendedprice DECIMAL(12,2),
l_discount DECIMAL(12,2),
l_tax DECIMAL(12,2),
l_returnflag CHAR(1),
l_linestatus CHAR(1),
l_shipdate DATE,
l_commitdate DATE,
l_receiptdate DATE,
l_shipinstruct CHAR(25),
l_shipmode CHAR(10),

Chapter 1. Partitioned databases and tables 21

l_comment VARCHAR(44))
PARTITION BY RANGE(l_shipdate)
(STARTING ’1/1/1992’ ENDING ’12/31/1993’ EVERY 1 MONTH);

This creates 24 ranges, one for each month in 1992-1993. Attempting to insert a row
with l_shipdate outside of that range results in an error.

Example 2: Compare the preceding example to the following Informix syntax:
create table orders
(
l_orderkey decimal(10,0) not null,
l_partkey integer,
l_suppkey integer,
l_linenumber integer,
l_quantity decimal(12,2),
l_extendedprice decimal(12,2),
l_discount decimal(12,2),
l_tax decimal(12,2),
l_returnflag char(1),
l_linestatus char(1),
l_shipdate date,
l_commitdate date,
l_receiptdate date,
l_shipinstruct char(25),
l_shipmode char(10),
l_comment varchar(44)
) fragment by expression
l_shipdate < ’1992-02-01’ in ldbs1,
l_shipdate >= ’1992-02-01’ and l_shipdate < ’1992-03-01’ in ldbs2,
l_shipdate >= ’1992-03-01’ and l_shipdate < ’1992-04-01’ in ldbs3,
l_shipdate >= ’1992-04-01’ and l_shipdate < ’1992-05-01’ in ldbs4,
l_shipdate >= ’1992-05-01’ and l_shipdate < ’1992-06-01’ in ldbs5,
l_shipdate >= ’1992-06-01’ and l_shipdate < ’1992-07-01’ in ldbs6,
l_shipdate >= ’1992-07-01’ and l_shipdate < ’1992-08-01’ in ldbs7,
l_shipdate >= ’1992-08-01’ and l_shipdate < ’1992-09-01’ in ldbs8,
l_shipdate >= ’1992-09-01’ and l_shipdate < ’1992-10-01’ in ldbs9,
l_shipdate >= ’1992-10-01’ and l_shipdate < ’1992-11-01’ in ldbs10,
l_shipdate >= ’1992-11-01’ and l_shipdate < ’1992-12-01’ in ldbs11,
l_shipdate >= ’1992-12-01’ and l_shipdate < ’1993-01-01’ in ldbs12,
l_shipdate >= ’1993-01-01’ and l_shipdate < ’1993-02-01’ in ldbs13,
l_shipdate >= ’1993-02-01’ and l_shipdate < ’1993-03-01’ in ldbs14,
l_shipdate >= ’1993-03-01’ and l_shipdate < ’1993-04-01’ in ldbs15,
l_shipdate >= ’1993-04-01’ and l_shipdate < ’1993-05-01’ in ldbs16,
l_shipdate >= ’1993-05-01’ and l_shipdate < ’1993-06-01’ in ldbs17,
l_shipdate >= ’1993-06-01’ and l_shipdate < ’1993-07-01’ in ldbs18,
l_shipdate >= ’1993-07-01’ and l_shipdate < ’1993-08-01’ in ldbs19,
l_shipdate >= ’1993-08-01’ and l_shipdate < ’1993-09-01’ in ldbs20,
l_shipdate >= ’1993-09-01’ and l_shipdate < ’1993-10-01’ in ldbs21,
l_shipdate >= ’1993-10-01’ and l_shipdate < ’1993-11-01’ in ldbs22,
l_shipdate >= ’1993-11-01’ and l_shipdate < ’1993-12-01’ in ldbs23,
l_shipdate >= ’1993-12-01’ and l_shipdate < ’1994-01-01’ in ldbs24,
l_shipdate >= ’1994-01-01’ in ldbs25;

Notice that the Informix syntax provides an open ended range at the top and
bottom to catch dates that are not in the expected range. The DB2 syntax can be
modified to match the Informix syntax by adding ranges that make use of
MINVALUE and MAXVALUE.

Example 3: The following example modifies Example 1 to mirror the Informix
syntax::
CREATE TABLE orders
(
l_orderkey DECIMAL(10,0) NOT NULL,
l_partkey INTEGER,

22 Partitioning and Clustering Guide

l_suppkey INTEGER,
l_linenumber INTEGER,
l_quantity DECIMAL(12,2),
l_extendedprice DECIMAL(12,2),
l_discount DECIMAL(12,2),
l_tax DECIMAL(12,2),
l_returnflag CHAR(1),
l_linestatus CHAR(1),
l_shipdate DATE,
l_commitdate DATE,
l_receiptdate DATE,
l_shipinstruct CHAR(25),
l_shipmode CHAR(10),
l_comment VARCHAR(44)
) PARTITION BY RANGE(l_shipdate)
(STARTING MINVALUE,
STARTING ’1/1/1992’ ENDING ’12/31/1993’ EVERY 1 MONTH,
ENDING MAXVALUE);

This technique allows any date to be inserted into the table.

Partition by expression using generated columns

Although DB2 database does not directly support partitioning by expression,
partitioning on a generated column is supported, making it possible to achieve the
same result.

Consider the following usage guidelines before deciding whether to use this
approach:
v The generated column is a real column that occupies physical disk space. Tables

that make use of a generated column can be slightly larger.
v Altering the generated column expression for the column on which a partitioned

table is partitioned is not supported. Attempting to do so will result in the
message SQL0190. Adding a new data partition to a table that uses generated
columns in the manner described in the next section generally requires you to
alter the expression that defines the generated column. Altering the expression
that defines a generated column is not currently supported.

v There are limitations on when you can apply data partition elimination when a
table uses generated columns.

Examples

Example 1: The following uses the Informix syntax, where it is appropriate to use
generated columns. In this example, the column to be partitioned on holds
Canadian provinces and territories. Because the list of provinces is unlikely to
change, the generated column expression is unlikely to change.
CREATE TABLE customer (
cust_id INT,
cust_prov CHAR(2))
FRAGMENT BY EXPRESSION
cust_prov = "AB" IN dbspace_ab
cust_prov = "BC" IN dbspace_bc
cust_prov = "MB" IN dbspace_mb
...
cust_prov = "YT" IN dbspace_yt
REMAINDER IN dbspace_remainder;

Example 2: In this example, the DB2 table is partitioned using a generated column:

Chapter 1. Partitioned databases and tables 23

CREATE TABLE customer (
cust_id INT,
cust_prov CHAR(2),
cust_prov_gen GENERATED ALWAYS AS (CASE
WHEN cust_prov = ’AB’ THEN 1
WHEN cust_prov = ’BC’ THEN 2
WHEN cust_prov = ’MB’ THEN 3
...
WHEN cust_prov = ’YT’ THEN 13
ELSE 14 END))
IN tbspace_ab, tbspace_bc, tbspace_mb, tbspace_remainder
PARTITION BY RANGE (cust_prov_gen)
(STARTING 1 ENDING 14 EVERY 1);

Here the expressions within the case statement match the corresponding
expressions in the FRAGMENT BY EXPRESSION clause. The case statement maps
each original expression to a number, which is stored in the generated column
(cust_prov_gen in this example). This column is a real column stored on disk, so
the table could occupy slightly more space than would be necessary if DB2
supported partition by expression directly. This example uses the short form of the
syntax. Therefore, the table spaces in which to place the data partitions must be
listed in the IN clause of the CREATE TABLE statement. Using the long form of
the syntax requires a separate IN clause for each data partition.

Note: This technique can be applied to any FRAGMENT BY EXPRESSION clause.

Table partitioning keys
A table partitioning key is an ordered set of one or more columns in a table. The
values in the table partitioning key columns are used to determine in which data
partition each table row belongs.

To define the table partitioning key on a table use the CREATE TABLE statement
with the PARTITION BY clause.

Choosing an effective table partitioning key column is essential to taking full
advantage of the benefits of table partitioning. The following guidelines can help
you to choose the most effective table partitioning key columns for your
partitioned table.
v Define range granularity to match data roll-out. It is most common to use week,

month, or quarter.
v Define ranges to match the data roll-in size. It is most common to partition data

on a date or time column.
v Partition on a column that provides advantages in partition elimination.

Supported data types

Table 5 shows the data types (including synonyms) that are supported for use as a
table partitioning key column:

Table 5. Supported data types

Data type column 1 Data type column 2

SMALLINT INTEGER

INT BIGINT

FLOAT REAL

DOUBLE DECIMAL

24 Partitioning and Clustering Guide

Table 5. Supported data types (continued)

Data type column 1 Data type column 2

DEC DECFLOAT

NUMERIC NUM

CHARACTER CHAR

VARCHAR DATE

TIME GRAPHIC

VARGRAPHIC CHARACTER VARYING

TIMESTAMP CHAR VARYING

CHARACTER FOR BIT DATA CHAR FOR BIT DATA

VARCHAR FOR BIT DATA CHARACTER VARYING FOR BIT DATA

CHAR VARYING FOR BIT DATA User defined types (distinct)

Unsupported data types

The following data types can occur in a partitioned table, but are not supported for
use as a table partitioning key column:
v User defined types (structured)
v LONG VARCHAR
v LONG VARCHAR FOR BIT DATA
v BLOB
v BINARY LARGE OBJECT
v CLOB
v CHARACTER LARGE OBJECT
v DBCLOB
v LONG VARGRAPHIC
v REF
v Varying length string for C
v Varying length string for Pascal
v XML

If you choose to automatically generate data partitions using the EVERY clause of
the CREATE TABLE statement, only one column can be used as the table
partitioning key. If you choose to manually generate data partitions by specifying
each range in the PARTITION BY clause of the CREATE TABLE statement,
multiple columns can be used as the table partitioning key, as shown in the
following example:
CREATE TABLE sales (year INT, month INT)

PARTITION BY RANGE(year, month)
(STARTING FROM (2001, 1) ENDING (2001,3) IN tbsp1,
ENDING (2001,6) IN tbsp2, ENDING (2001,9)
IN tbsp3, ENDING (2001,12) IN tbsp4,
ENDING (2002,3) IN tbsp5, ENDING (2002,6)
IN tbsp6, ENDING (2002,9) IN tbsp7,
ENDING (2002,12) IN tbsp8)

This results in eight data partitions, one for each quarter in year 2001 and 2002.

Note:

Chapter 1. Partitioned databases and tables 25

1. When multiple columns are used as the table partitioning key, they are treated
as a composite key (which are similar to composite keys in an index), in the
sense that trailing columns are dependent on the leading columns. Each
starting or ending value (all of the columns, together) must be specified in 512
characters or less. This limit corresponds to the size of the LOWVALUE and
HIGHVALUE columns of the SYSCAT.DATAPARTITIONS catalog view. A
starting or ending value specified with more than 512 characters will result in
error SQL0636N, reason code 9.

2. Table partitioning is multicolumn not multidimension. In table partitioning, all
columns used are part of a single dimension.

Generated columns

Generated columns can be used as table partitioning keys. This example creates a
table with twelve data partitions, one for each month. All rows for January of any
year will be placed in the first data partition, rows for February in the second, and
so on.

Example 1
CREATE TABLE monthly_sales (sales_date date,
sales_month int GENERATED ALWAYS AS (month(sales_date)))

PARTITION BY RANGE (sales_month)
(STARTING FROM 1 ENDING AT 12 EVERY 1);

Note:

1. You cannot alter or drop the expression of a generated column that is used in
the table partitioning key. Adding a generated column expression on a column
that is used in the table partitioning key is not permitted. Attempting to add,
drop or alter a generated column expression for a column used in the table
partitioning key results in error (SQL0270N rc=52).

2. Data partition elimination will not be used for range predicates if the generated
column is not monotonic, or the optimizer can not detect that it is monotonic.
In the presence of non-monotonic expressions, data partition elimination can
only take place for equality or IN predicates. For a detailed discussion and
examples of monotonicity see “Considerations when creating MDC or ITC
tables” on page 46.

Load considerations for partitioned tables
All of the existing load features are supported when the target table is partitioned
with the exception of the following general restrictions:
v Consistency points are not supported when the number of partitioning agents is

greater than one.
v Loading data into a subset of data partitions while the remaining data partitions

remain fully online is not supported.
v The exception table used by a load operation cannot be partitioned.
v An exception table cannot be specified if the target table contains an XML

column.
v A unique index cannot be rebuilt when the load utility is running in insert mode

or restart mode, and the load target table has any detached dependents.
v Similar to loading MDC tables, exact ordering of input data records is not

preserved when loading partitioned tables. Ordering is only maintained within
the cell or data partition.

26 Partitioning and Clustering Guide

v Load operations utilizing multiple formatters on each database partition only
preserve approximate ordering of input records. Running a single formatter on
each database partition, groups the input records by cell or table partitioning
key. To run a single formatter on each database partition, explicitly request
CPU_PARALLELISM of 1.

General load behavior

The load utility inserts data records into the correct data partition. There is
no requirement to use an external utility, such as a splitter, to partition the
input data before loading.

The load utility does not access any detached or attached data partitions.
Data is inserted into visible data partitions only. Visible data partitions are
neither attached nor detached. In addition, a load replace operation does
not truncate detached or attached data partitions. Since the load utility
acquires locks on the catalog system tables, the load utility waits for any
uncommitted ALTER TABLE transactions. Such transactions acquire an
exclusive lock on the relevant rows in the catalog tables, and the exclusive
lock must terminate before the load operation can proceed. This means that
there can be no uncommitted ALTER TABLE ...ATTACH, DETACH, or
ADD PARTITION transactions while load operation is running. Any input
source records destined for an attached or detached data partition are
rejected, and can be retrieved from the exception table if one is specified.
An informational message is written to the message file to indicate some of
the target table data partitions were in an attached or detached state. Locks
on the relevant catalog table rows corresponding to the target table prevent
users from changing the partitioning of the target table by issuing any
ALTER TABLE ...ATTACH, DETACH, or ADD PARTITION operations
while the load utility is running.

Handling of invalid rows

When the load utility encounters a record that does not belong to any of
the visible data partitions the record is rejected and the load utility
continues processing. The number of records rejected because of the range
constraint violation is not explicitly displayed, but is included in the
overall number of rejected records. Rejecting a record because of the range
violation does not increase the number of row warnings. A single message
(SQL0327N) is written to the load utility message file indicating that range
violations are found, but no per-record messages are logged. In addition to
all columns of the target table, the exception table includes columns
describing the type of violation that had occurred for a particular row.
Rows containing invalid data, including data that cannot be partitioned,
are written to the dump file.

Because exception table inserts are expensive, you can control which
constraint violations are inserted into the exception table. For instance, the
default behavior of the load utility is to insert rows that were rejected
because of a range constraint or unique constraint violation, but were
otherwise valid, into the exception table. You can turn off this behavior by
specifying, respectively, NORANGEEXC or NOUNIQUEEXC with the FOR
EXCEPTION clause. If you specify that these constraint violations should
not be inserted into the exception table, or you do not specify an exception
table, information about rows violating the range constraint or unique
constraint is lost.

History file

Chapter 1. Partitioned databases and tables 27

If the target table is partitioned, the corresponding history file entry does
not include a list of the table spaces spanned by the target table. A
different operation granularity identifier ('R' instead of 'T') indicates that a
load operation ran against a partitioned table.

Terminating a load operation

Terminating a load replace completely truncates all visible data partitions,
terminating a load insert truncates all visible data partitions to their
lengths before the load. Indexes are invalidated during a termination of an
ALLOW READ ACCESS load operation that failed in the load copy phase.
Indexes are also invalidated when terminating an ALLOW NO ACCESS
load operation that touched the index (It is invalidated because the
indexing mode is rebuild, or a key was inserted during incremental
maintenance leaving the index in an inconsistent state). Loading data into
multiple targets does not have any effect on load recovery operations
except for the inability to restart the load operation from a consistency
point taken during the load phase In this case, the SAVECOUNT load option is
ignored if the target table is partitioned. This behavior is consistent with
loading data into a MDC target table.

Generated columns

If a generated column is in any of the partitioning, dimension, or
distribution keys, the generatedoverride file type modifier is ignored and
the load utility generates values as if the generatedignore file type
modifier is specified. Loading an incorrect generated column value in this
case can place the record in the wrong physical location, such as the wrong
data partition, MDC block or database partition. For example, once a
record is on a wrong data partition, set integrity has to move it to a
different physical location, which cannot be accomplished during online set
integrity operations.

Data availability

The current ALLOW READ ACCESS load algorithm extends to partitioned
tables. An ALLOW READ ACCESS load operation allows concurrent
readers to access the whole table, including both loading and non-loading
data partitions.

Data partition states

After a successful load, visible data partitions might change to either or
both Set Integrity Pending or Read Access Only table state, under certain
conditions. Data partitions might be placed in these states if there are
constraints on the table which the load operation cannot maintain. Such
constraints might include check constraints and detached materialized
query tables. A failed load operation leaves all visible data partitions in the
Load Pending table state.

Error isolation

Error isolation at the data partition level is not supported. Isolating the
errors means continuing a load on data partitions that did not run into an
error and stopping on data partitions that did run into an error. Errors can
be isolated between different database partitions, but the load utility
cannot commit transactions on a subset of visible data partitions and roll
back the remaining visible data partitions.

Other considerations

28 Partitioning and Clustering Guide

v Incremental indexing is not supported if any of the indexes are marked
invalid. An index is considered invalid if it requires a rebuild or if
detached dependents require validation with the SET INTEGRITY
statement.

v Loading into tables partitioned using any combination of partitioned by
range, distributed by hash, or organized by dimension algorithms is also
supported.

v For log records which include the list of object and table space IDs
affected by the load, the size of these log records (LOAD START and
COMMIT (PENDING LIST)) could grow considerably and hence reduce
the amount of active log space available to other applications.

v When a table is both partitioned and distributed, a partitioned database
load might not affect all database partitions. Only the objects on the
output database partitions are changed.

v During a load operation, memory consumption for partitioned tables
increases with the number of tables. Note, that the total increase is not
linear as only a small percentage of the overall memory requirement is
proportional to the number of data partitions.

Replicated materialized query tables
A materialized query table is defined by a query that also determines the data in the
table. Materialized query tables can be used to improve the performance of
queries. If the database manager determines that a portion of a query can be
resolved by using a materialized query table, the query might be rewritten to use
the materialized query table.

In a partitioned database environment, you can replicate materialized query tables
and use them to improve query performance. A replicated materialized query table is
based on a table that might have been created in a single-partition database
partition group, but that you want replicated across all of the database partitions in
another database partition group. To create the replicated materialized query table,
use the CREATE TABLE statement with the REPLICATED option.

By using replicated materialized query tables, you can obtain collocation between
tables that are not typically collocated. Replicated materialized query tables are
particularly useful for joins in which you have a large fact table and small
dimension tables. To minimize the extra storage required and the effect of having
to update every replica, tables that are to be replicated should be small and
updated infrequently.

Note: You should also consider replicating larger tables that are updated
infrequently: the onetime cost of replication is offset by the performance benefits
that can be obtained through collocation.

By specifying a suitable predicate in the subselect clause that is used to define the
replicated table, you can replicate selected columns, selected rows, or both.

DELETE or UPDATE statements that contain non-deterministic operations are not
supported with replicated materialized query tables.

Table spaces in database partition groups
By placing a table space in a multiple-partition database partition group, all of the
tables within the table space are divided or partitioned across each database
partition in the database partition group.

Chapter 1. Partitioned databases and tables 29

The table space is created into a database partition group. Once in a database
partition group, the table space must remain there; it cannot be changed to another
database partition group. The CREATE TABLESPACE statement is used to
associate a table space with a database partition group.

Table partitioning and multidimensional clustering tables
In a table that is both multidimensional clustered and data partitioned, columns
can be used both in the table partitioning range-partition-spec and in the
multidimensional clustering (MDC) key. A table that is both multidimensional
clustered and partitioned can achieve a finer granularity of data partition and
block elimination than could be achieved by either functionality alone.

There are also many applications where it is useful to specify different columns for
the MDC key than those on which the table is partitioned. It should be noted that
table partitioning is multicolumn, while MDC is multi-dimension.

Characteristics of a mainstream DB2 data warehouse

The following recommendations were focused on typical, mainstream warehouses
that were new for DB2 V9.1. The following characteristics are assumed:
v The database runs on multiple machines or multiple AIX® logical partitions.
v Partitioned database environments are used (tables are created using the

DISTRIBUTE BY HASH clause).
v There are four to fifty data partitions.
v The table for which MDC and table partitioning is being considered is a major

fact table.
v The table has 100,000,000 to 100,000,000,000 rows.
v New data is loaded at various time frames: nightly, weekly, monthly.
v Daily ingest volume is 10 thousand to 10 million records.
v Data volumes vary: The biggest month is 5X the size of the smallest month.

Likewise, the biggest dimensions (product line, region) have a 5X size range.
v 1 to 5 years of detailed data is retained.
v Expired data is rolled out monthly or quarterly.
v Tables use a wide range of query types. However, the workload is mostly

analytical queries with the following characteristics, relative to OLTP workloads:
– larger results sets with up to 2 million rows
– most or all queries are hitting views, not base tables

v SQL clauses selecting data by ranges (BETWEEN clause), items in lists, and so
on.

Characteristics of a mainstream DB2 V9.1 data warehouse fact
table

A typical warehouse fact table, might use the following design:
v Create data partitions on the Month column.
v Define a data partition for each period you roll-out, for example, 1 month, 3

months.
v Create MDC dimensions on Day and on 1 to 4 additional dimensions. Typical

dimensions are: product line and region.
v All data partitions and MDC clusters are spread across all database partitions.

30 Partitioning and Clustering Guide

MDC and table partitioning provide overlapping sets of benefits. The following
table lists potential needs in your organization and identifies a recommended
organization scheme based on the characteristics identified previously.

Table 6. Using table partitioning with MDC tables

Issue Recommended scheme Recommendation

Data availability during
roll-out

Table partitioning Use the DETACH
PARTITION clause to roll out
large amounts of data with
minimal disruption.

Query performance Table partitioning and MDC MDC is best for querying
multiple dimensions. Table
partitioning helps through
data partition elimination.

Minimal reorganization MDC MDC maintains clustering,
which reduces the need to
reorganize.

Rollout a month or more of
data during a traditional
offline window

Table partitioning Data partitioning addresses
this need fully. MDC adds
nothing and would be less
suitable on its own.

Rollout a month or more of
data during a micro-offline
window (less than 1 minute)

Table partitioning Data partitioning addresses
this need fully. MDC adds
nothing and would be less
suitable on its own.

Rollout a month or more of
data while keeping the table
fully available for business
users submitting queries
without any loss of service.

MDC MDC only addresses this
need somewhat. Table
partitioning would not be
suitable due to the short
period the table goes offline.

Load data daily (either
ALLOW READ ACCESS or
ALLOW NO ACCESS)

Table partitioning and MDC MDC provides most of the
benefit here. Table
partitioning provides
incremental benefits.

Load data "continually"
(ALLOW READ ACCESS)

Table partitioning and MDC MDC provides most of the
benefit here. Table
partitioning provides
incremental benefits.

Query execution
performance for "traditional
BI" queries

Table partitioning and MDC MDC is especially good for
querying cubes/multiple
dimensions. Table
partitioning helps via
partition elimination.

Minimize reorganization
pain, by avoiding the need
for reorganization or
reducing the pain associated
with performing the task

MDC MDC maintains clustering
which reduces the need to
reorg. If MDC is used, data
partitioning does not provide
incremental benefits.
However if MDC is not
used, table partitioning helps
reduce the need for reorg by
maintaining some course
grain clustering at the
partition level.

Chapter 1. Partitioned databases and tables 31

Example 1:

Consider a table with key columns YearAndMonth and Province. A reasonable
approach to planning this table might be to partition by date with 2 months per
data partition. In addition, you might also organize by Province, so that all rows
for a particular province within any two month date range are clustered together,
as shown in Figure 6.
CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)
(STARTING 9901 ENDING 9904 EVERY 2)
ORGANIZE BY (Province);

Example 2:

Finer granularity can be achieved by adding YearAndMonth to the ORGANIZE BY
clause, as shown in Figure 7 on page 33.

Figure 6. A table partitioned by YearAndMonth and organized by Province

32 Partitioning and Clustering Guide

CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)
(STARTING 9901 ENDING 9904 EVERY 2)
ORGANIZE BY (YearAndMonth, Province);

In cases where the partitioning is such that there is only a single value in each
range, nothing is gained by including the table partitioning column in the MDC
key.

Considerations
v Compared to a basic table, both MDC tables and partitioned tables require more

storage. These storage needs are additive but are considered reasonable given
the benefits.

v If you choose not to combine table partitioning and MDC functionality in your
partitioned database environment, table partitioning is best in cases where you
can confidently predict the data distribution, which is generally the case for the
types of systems discussed here. Otherwise, MDC should be considered.

Figure 7. A table partitioned by YearAndMonth and organized by Province and YearAndMonth

Chapter 1. Partitioned databases and tables 33

v For a data-partitioned MDC table created with DB2 Version 9.7 Fix Pack 1 or
later releases, the MDC block indexes on the table are partitioned. For a
data-partitioned MDC table created with DB2 V9.7 or earlier releases, the MDC
block indexes on the table are nonpartitioned.

Table partitioning in a DB2 pureScale environment
You can use table partitioning in DB2 pureScale® to divide large table objects
between multiple partitions for better performance.

You can use table partitioning in DB2 pureScale tables; this includes tables that use
the PARTITION BY RANGE clause. In addition, the commands associated with
table partitioning can be used in a DB2 pureScale environment.

This means, for example, that all of the following operations are supported:
v The roll-in and roll-out partition operations available through the ALTER TABLE

statement
v The PARTITIONED and NOT PARTITIONED clauses for the CREATE INDEX

statement
v For partitioned indexes, the ON DATA PARTITION clause of the REORG TABLE

and REORG INDEXES ALL statements

In addition, the MON_GET_PAGE_ACCESS_INFO table function has been updated
to work with range partitioned tables. All existing monitoring functions that
operate against ranged partitioned tables will work for DB2 pureScale tables.

If you are already using the DB2 pureScale Feature, you can use table partitioning
to help resolve page contention issues. By spreading contention out over a larger
range, you can reduce data page contention; similarly, you can reduce contention
with index pages by using partitioned indexes.

Note: From a DB2 pureScale performance perspective, the amount of memory
used depends on the number of table partitions and the number of indexes. The
memory resource used for the partitioning on the member comes from the dbheap
configuration parameter. On the CF, the memory resource is defined by the
cf_sca_sz configuration parameter.

34 Partitioning and Clustering Guide

Chapter 2. Range-clustered tables

A range-clustered table (RCT) has a table layout scheme in which each record in
the table has a predetermined record ID (RID). The RID is an internal identifier
that is used to locate a record in the table.

An algorithm is used to associate a record key value with the location of a specific
table row. This approach provides exceptionally fast access to specific table rows.
The algorithm does not use hashing, because hashing does not preserve key-value
order. Preserving this order eliminates the need to reorganize the table data over
time.

Each record key value in the table must be:
v Unique
v Not null
v An integer (SMALLINT, INTEGER, or BIGINT)
v Monotonically increasing
v Within a predetermined set of ranges based on each column in the key. (If

necessary, use the ALLOW OVERFLOW option on the CREATE TABLE
statement to allow rows with key values that are outside of the defined range of
values.)

In addition to direct access to specific table rows, there are other advantages to
using range-clustered tables.
v Less maintenance is required. A secondary structure, such as a B+ tree index,

which would need to be updated after every insert, update, or delete operation,
does not exist.

v Less logging is required for RCTs, when compared to similarly-sized regular
tables with B+ tree indexes.

v Less buffer pool memory is required. There is no additional memory required to
store a secondary structure, such as a B+ tree index.

Space for an RCT is pre-allocated and reserved for use by the table even when
records do not yet exist. Consequently, range-clustered tables have no need for free
space control records (FSCR). At table creation time, there are no records in the
table; however, the entire range of pages is pre-allocated. Preallocation is based on
the record size and the maximum number of records to be stored. If a
variable-length field (such as VARCHAR) is defined, the maximum length of the
field is used, and the overall record size is of fixed length. This can result in less
than optimal use of space. If key values are sparse, the unused space has a
negative impact on range scan performance. Range scans must visit all possible
rows within a range, even rows that do not yet contain data.

If a schema modification on a range-clustered table is required, the table must be
recreated with a new schema name and then populated with the data from the old
table. For example, if a table's ranges need to be altered, create a table with new
ranges and populate it with data from the old table.

If an RCT allows overflow records, and a new record has a key value that falls
outside of the defined range of values, the record is placed in an overflow area,
which is dynamically allocated. As more records are added to this overflow area,

© Copyright IBM Corp. 2012 35

operations against the table that involve the overflow area require more processing
time. The larger the overflow area, the more time is required to access it. If this
becomes a problem, consider reducing the size of the overflow area by exporting
the data to a new RCT with wider ranges.

Restrictions on range-clustered tables
There are contexts in which range-clustered tables cannot be used, and there are
certain utilities that cannot operate on range-clustered tables.

The following restrictions apply to range-clustered tables:
v Range-clustered tables cannot be specified in a DB2 pureScale environment

(SQLSTATE 42997).
v Partitioned tables cannot be range-clustered tables.
v Declared temporary tables and created temporary tables cannot be

range-clustered tables.
v Automatic summary tables (AST) cannot be range-clustered tables.
v The load utility is not supported. Data can be inserted into a range-clustered

table through the import utility or through a parallel insert application.
v The REORG utility is not supported. Range-clustered tables that are defined with

the DISALLOW OVERFLOW option do not need to be reorganized.
Range-clustered tables that are defined with the ALLOW OVERFLOW option
cannot have the data in this overflow region reorganized.

v The DISALLOW OVERFLOW clause on the CREATE TABLE statement cannot
be specified if the table is a range-clustered materialized query table.

v The design advisor will not recommend range-clustered tables.
v Multidimensional clustering and clustering indexes are incompatible with

range-clustered tables.
v Value and default compression are not supported.
v Reverse scans on range-clustered tables are not supported.
v The REPLACE parameter on the IMPORT command is not supported.
v The WITH EMPTY TABLE option on the ALTER TABLE...ACTIVATE NOT

LOGGED INITIALLY statement is not supported.

36 Partitioning and Clustering Guide

Chapter 3. Multi-dimensional clustered (MDC) tables

Multidimensional clustering tables
Multidimensional clustering (MDC) provides an elegant method for clustering data
in tables along multiple dimensions in a flexible, continuous, and automatic way.
MDC can significantly improve query performance.

In addition, MDC can significantly reduce the overhead of data maintenance, such
as reorganization and index maintenance operations during insert, update, and
delete operations. MDC is primarily intended for data warehousing and large
database environments, but it can also be used in online transaction processing
(OLTP) environments.

Comparison of regular and MDC tables
Regular tables have indexes that are record-based. Any clustering of the indexes is
restricted to a single dimension. Prior to Version 8, the database manager
supported only single-dimensional clustering of data, through clustering indexes.
Using a clustering index, the database manager attempts to maintain the physical
order of data on pages in the key order of the index when records are inserted and
updated in the table.

Clustering indexes greatly improve the performance of range queries that have
predicates containing the key (or keys) of the clustering index. Performance is
improved with a good clustering index because only a portion of the table needs to
be accessed, and more efficient prefetching can be performed.

Data clustering using a clustering index has some drawbacks, however. First,
because space is filled up on data pages over time, clustering is not guaranteed.
An insert operation will attempt to add a record to a page nearby to those having
the same or similar clustering key values, but if no space can be found in the ideal
location, it will be inserted elsewhere in the table. Therefore, periodic table
reorganizations may be necessary to re-cluster the table and to set up pages with
additional free space to accommodate future clustered insert requests.

Second, only one index can be designated as the “clustering” index, and all other
indexes will be unclustered, because the data can only be physically clustered
along one dimension. This limitation is related to the fact that the clustering index
is record-based, as all indexes have been prior to Version 8.1.

Third, because record-based indexes contain a pointer for every single record in the
table, they can be very large in size.

© Copyright IBM Corp. 2012 37

The table in Figure 8 has two record-based indexes defined on it:
v A clustering index on “Region”
v Another index on “Year”

The “Region” index is a clustering index which means that as keys are scanned in
the index, the corresponding records should be found for the most part on the
same or neighboring pages in the table. In contrast, the “Year” index is unclustered
which means that as keys are scanned in that index, the corresponding records will
likely be found on random pages throughout the table. Scans on the clustering
index will exhibit better I/O performance and will benefit more from sequential
prefetching, the more clustered the data is to that index.

MDC introduces indexes that are block-based. “Block indexes” point to blocks or
groups of records instead of to individual records. By physically organizing data in
an MDC table into blocks according to clustering values, and then accessing these
blocks using block indexes, MDC is able not only to address all of the drawbacks
of clustering indexes, but to provide significant additional performance benefits.

First, MDC enables a table to be physically clustered on more than one key, or
dimension, simultaneously. With MDC, the benefits of single-dimensional
clustering are therefore extended to multiple dimensions, or clustering keys. Query
performance is improved where there is clustering of one or more specified
dimensions of a table. Not only will these queries access only those pages having
records with the correct dimension values, these qualifying pages will be grouped
into blocks, or extents.

Second, although a table with a clustering index can become unclustered over
time, in most cases an MDC table is able to maintain and guarantee its clustering
over all dimensions automatically and continuously. This eliminates the need to
frequently reorganize MDC tables to restore the physical order of the data. While
record order within blocks is always maintained, the physical ordering of blocks
(that is, from one block to another, in a block index scan) is not maintained on
inserts (or even on the initial load, in some cases).

Table

Clustering index

Clustering
indexRegion

Unclustered
index

Year

Figure 8. A regular table with a clustering index

38 Partitioning and Clustering Guide

Third, in MDC the clustering indexes are block-based. These indexes are drastically
smaller than regular record-based indexes, so take up much less disk space and are
faster to scan.

Choosing MDC table dimensions
After you have decided to work with multidimensional clustering tables, the
dimensions that you choose will depend not only on the type of queries that will
use the tables and benefit from block-level clustering, but even more importantly
on the amount and distribution of your actual data.

Queries that will benefit from MDC

The first consideration when choosing clustering dimensions for your table is the
determination of which queries will benefit from clustering at a block level.
Typically, there will be several candidates when choosing dimensions based on the
queries that make up the work to be done on the data. The ranking of these
candidates is important. Columns that are involved in equality or range predicate
queries, and especially columns with low cardinalities, show the greatest benefit
from clustering dimensions. Consider creating dimensions for foreign keys in an
MDC fact table involved in star joins with dimension tables. Keep in mind the
performance benefits of automatic and continuous clustering on more than one
dimension, and of clustering at the extent or block level.

There are many queries that can take advantage of multidimensional clustering.
Examples of such queries follow. In some of these examples, assume that there is
an MDC table t1 with dimensions c1, c2, and c3. In the other examples, assume
that there is an MDC table mdctable with dimensions color and nation.

Example 1:
SELECT FROM t1 WHERE c3 < 5000

This query involves a range predicate on a single dimension, so it can be internally
rewritten to access the table using the dimension block index on c3. The index is
scanned for block identifiers (BIDs) of keys having values less than 5000, and a
mini-relational scan is applied to the resulting set of blocks to retrieve the actual
records.

Example 2:
SELECT FROM t1 WHERE c2 IN (1,2037)

This query involves an IN predicate on a single dimension, and can trigger block
index based scans. This query can be internally rewritten to access the table using
the dimension block index on c2. The index is scanned for BIDs of keys having
values of 1 and 2037, and a mini-relational scan is applied to the resulting set of
blocks to retrieve the actual records.

Example 3:
SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ AND NATION=’USA’

Chapter 3. Multi-dimensional clustered (MDC) tables 39

To carry out this query request, the following is done (and is shown in Figure 9):
v A dimension block index lookup is done: one for the Blue slice and another for

the USA slice.
v A block logical AND operation is carried out to determine the intersection of the

two slices. That is, the logical AND operation determines only those blocks that
are found in both slices.

v A mini-relation scan of the resulting blocks in the table is carried out.

Example 4:
SELECT ... FROM t1

WHERE c2 > 100 AND c1 = ’16/03/1999’ AND c3 > 1000 AND c3 < 5000

This query involves range predicates on c2 and c3 and an equality predicate on c1,
along with a logical AND operation. This can be internally rewritten to access the
table on each of the dimension block indexes:
v A scan of the c2 block index is done to find BIDs of keys having values greater

than 100

Key from the dimension block index on Colour

Key from the dimension block index on Nation

Resulting block ID (BID) list of blocks to scan

Blue

USA

4,0

12,0

12,0

12,0

76,0

48,0

92,0

52,0 76,0

76,0

100,0

100,0

100,0 112,0

216,0

216,0 276,0

216,0

(AND)

Figure 9. A query request that uses a logical AND operation with two block indexes

40 Partitioning and Clustering Guide

v A scan of the c3 block index is done to find BIDs of keys having values between
1000 and 5000

v A scan of the c1 block index is done to find BIDs of keys having the value
'16/03/1999'.

A logical AND operation is then done on the resulting BIDs from each block scan,
to find their intersection, and a mini-relational scan is applied to the resulting set
of blocks to find the actual records.

Example 5:
SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ OR NATION=’USA’

To carry out this query request, the following is done:
v A dimension block index lookup is done: one for each slice.
v A logical OR operation is done to find the union of the two slices.
v A mini-relation scan of the resulting blocks in the table is carried out.

Example 6:
SELECT FROM t1 WHERE c1 < 5000 OR c2 IN (1,2,3)

This query involves a range predicate on the c1 dimension, an IN predicate on the
c2 dimension, and a logical OR operation. This can be internally rewritten to access
the table on the dimension block indexes c1 and c2. A scan of the c1 dimension
block index is done to find values less than 5000 and another scan of the c2
dimension block index is done to find values 1, 2, and 3. A logical OR operation is
done on the resulting BIDs from each block index scan, then a mini-relational scan
is applied to the resulting set of blocks to find the actual records.

Example 7:
SELECT FROM t1 WHERE c1 = 15 AND c4 < 12

This query involves an equality predicate on the c1 dimension and another range
predicate on a column that is not a dimension, along with a logical AND
operation. This can be internally rewritten to access the dimension block index on
c1, to get the list of blocks from the slice of the table having value 15 for c1. If
there is a RID index on c4, an index scan can be done to retrieve the RIDs of
records having c4 less than 12, and then the resulting list of blocks undergoes a
logical AND operation with this list of records. This intersection eliminates RIDs
not found in the blocks having c1 of 15, and only those listed RIDs found in the
blocks that qualify are retrieved from the table.

If there is no RID index on c4, then the block index can be scanned for the list of
qualifying blocks, and during the mini-relational scan of each block, the predicate
c4 < 12 can be applied to each record found.

Example 8:

Given a scenario where there are dimensions for color, year, nation and a row ID
(RID) index on the part number, the following query is possible.
SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ AND PARTNO < 1000

Chapter 3. Multi-dimensional clustered (MDC) tables 41

To carry out this query request, the following is done (and is shown in Figure 10):
v A dimension block index lookup and a RID index lookup are done.
v A logical AND operation is used with the blocks and RIDs to determine the

intersection of the slice and those rows meeting the predicate condition.
v The result is only those RIDs that also belong to the qualifying blocks.

Example 9:
SELECT * FROM MDCTABLE WHERE COLOR=’BLUE’ OR PARTNO < 1000

Key from the dimension block index on Colour

Row IDs (RID) from RID index on Partno

Resulting row IDs to fetch

Blue

6,4

4,0

8,12

6,4

12,0

50,1

50,1

48,0

77,3

52,0 76,0

107,0

77,3

100,0

115,0

216,0

219,5

219,5

276,9

(AND)

Figure 10. A query request that uses a logical AND operation on a block index and a row ID
(RID) index

42 Partitioning and Clustering Guide

To carry out this query request, the following is done (and is shown in Figure 11):
v A dimension block index lookup and a RID index lookup are done.
v A logical OR operation is used with the blocks and RIDs to determine the union

of the slice and those rows meeting the predicate condition.
v The result is all of the rows in the qualifying blocks, plus additional RIDs that

fall outside the qualifying blocks that meet the predicate condition. A
mini-relational scan of each of the blocks is performed to retrieve their records,
and the additional records outside these blocks are retrieved individually.

Example 10:
SELECT ... FROM t1 WHERE c1 < 5 OR c4 = 100

This query involves a range predicate on dimension c1, an equality predicate on a
non-dimension column c4, and a logical OR operation. If there is a RID index on

Key from the dimension block index on Colour

Row IDs (RID) from RID index on Partno

Resulting blocks and RIDs to fetch

Blue

6,4

4,0

4,0

8,12

12,0

8,12

12,0

50,1

48,0

107,0

48,0

77,3

52,0

52,0 76,0

107,0

76,0

115,0

100,0

115,0

100,0

216,0

219,5

216.0

276,9

276,9

,

(OR)

Figure 11. How block index and row ID using a logical OR operation works

Chapter 3. Multi-dimensional clustered (MDC) tables 43

the c4 column, this might be internally rewritten to do a logical OR operation
using the dimension block index on c1 and the RID index on c4. If there is no
index on c4, a table scan might be chosen instead, because all records must be
checked. The logical OR operation uses a block index scan on c1 for values less
than 4, and a RID index scan on c4 for values of 100. A mini-relational scan is
performed on each block that qualifies, because all records within those blocks will
qualify, and any additional RIDs for records outside of those blocks are retrieved
as well.

Example 11:
SELECT FROM t1,d1,d2,d3

WHERE t1.c1 = d1.c1 and d1.region = ’NY’
AND t2.c2 = d2.c3 and d2.year=’1994’
AND t3.c3 = d3.c3 and d3.product=’basketball’

This query involves a star join. In this example, t1 is the fact table and it has
foreign keys c1, c2, and c3, corresponding to the primary keys of d1, d2, and d3,
the dimension tables. The dimension tables do not need to be MDC tables. Region,
year, and product are columns of the dimension tables that can be indexed using
regular or block indexes (if the dimension tables are MDC tables). When accessing
the fact table on c1, c2, and c3 values, block index scans of the dimension block
indexes on these columns can be done, followed by a logical AND operation using
the resulting BIDs. When there is a list of blocks, a mini-relational scan can be
done on each block to get the records.

Density of cells

The choices made for the appropriate dimensions and for the extent size are of
critical importance to MDC design. These factors determine the table's expected
cell density. They are important because an extent is allocated for every existing
cell, regardless of the number of records in the cell. The right choices will take
advantage of block-based indexing and multidimensional clustering, resulting in
performance gains. The goal is to have densely-filled blocks to get the most benefit
from multidimensional clustering, and to get optimal space utilization.

Thus, a very important consideration when designing a multidimensional table is
the expected density of cells in the table, based on present and anticipated data.
You can choose a set of dimensions, based on query performance, that cause the
potential number of cells in the table to be very large, based on the number of
possible values for each of the dimensions. The number of possible cells in the
table is equal to the Cartesian product of the cardinalities of each of the
dimensions. For example, if you cluster the table on dimensions Day, Region and
Product and the data covers 5 years, you might have 1821 days * 12 regions * 5
products = 109 260 different possible cells in the table. Any cell that contains only
a few records still requires an entire block of pages to store its records. If the block
size is large, this table might end up being much larger than it needs to be.

There are several design factors that can contribute to optimal cell density:
v Varying the number of dimensions.
v Varying the granularity of one or more dimensions.
v Varying the block (extent) size and page size of the table space.

Carry out the following steps to achieve the best design possible:
1. Identify candidate dimensions.

44 Partitioning and Clustering Guide

Determine which queries will benefit from block-level clustering. Examine the
potential workload for columns which have some or all of the following
characteristics:
v Range and equality of any IN-list predicates
v Roll-in or roll-out of data
v Group-by and order-by clauses
v Join clauses (especially in star schema environments).

2. Estimate the number of cells.
Identify how many potential cells are possible in a table organized along a set
of candidate dimensions. Determine the number of unique combinations of the
dimension values that occur in the data. If the table exists, an exact number can
be determined for the current data by selecting the number of distinct values in
each of the columns that will be dimensions for the table. Alternatively, an
approximation can be determined if you only have the statistics for a table, by
multiplying the column cardinalities for the dimension candidates.

Note: If your table is in a partitioned database environment, and the
distribution key is not related to any of the dimensions considered, determine
an average amount of data per cell by taking all of the data and dividing by
the number of database partitions.

3. Estimate the space occupancy or density.
On average, consider that each cell has one partially-filled block where only a
few rows are stored. There will be more partially-filled blocks as the number of
rows per cell becomes smaller. Also, note that on average (assuming little or no
data skew), the number of records per cell can be found by dividing the
number of records in the table by the number of cells. However, if your table is
in a partitioned database environment, consider how many records there are
per cell on each database partition, because blocks are allocated for data on a
database partition basis. When estimating the space occupancy and density in a
partitioned database environment, consider the average number of records per
cell on each database partition, not across the entire table.
There are several ways to improve the density:
v Reduce the block size so that partially-filled blocks take up less space.

Reduce the size of each block by making the extent size appropriately small.
Each cell that has a partially-filled block, or that contains only one block with
few records on it, wastes less space. The trade-off, however, is that for those
cells having many records, more blocks are needed to contain them. This
increases the number of block identifiers (BIDs) for these cells in the block
indexes, making these indexes larger and potentially resulting in more inserts
and deletes to these indexes as blocks are more quickly emptied and filled. It
also results in more small groupings of clustered data in the table for these
more populated cell values, versus a smaller number of larger groupings of
clustered data.

v Reduce the number of cells by reducing the number of dimensions, or by
increasing the granularity of the cells with a generated column.
You can roll up one or more dimensions to a coarser granularity to give it a
lower cardinality. For example, you can continue to cluster the data in the
previous example on Region and Product, but replace the dimension of Day
with a dimension of YearAndMonth. This gives cardinalities of 60 (12 months
times 5 years), 12, and 5 for YearAndMonth, Region, and Product, with a
possible number of cells of 3600. Each cell then holds a greater range of
values and is less likely to contain only a few records.

Chapter 3. Multi-dimensional clustered (MDC) tables 45

Take into account predicates commonly used on the columns involved, such
as whether many are on Month of Date, or Quarter, or Day. This affects the
desirability of changing the granularity of the dimension. If, for example,
most predicates are on particular days and you have clustered the table on
Month, DB2 Database for Linux, UNIX, and Windows can use the block
index on YearAndMonth to quickly narrow down which months contain the
required days and access only those associated blocks. When scanning the
blocks, however, the Day predicate must be applied to determine which days
qualify. However, if you cluster on Day (and Day has high cardinality), the
block index on Day can be used to determine which blocks to scan, and the
Day predicate only has to be reapplied to the first record of each cell that
qualifies. In this case, it might be better to consider rolling up one of the
other dimensions to increase the density of cells, as in rolling up the Region
column, which contains 12 different values, to Regions West, North, South
and East, using a user-defined function.

Considerations when creating MDC or ITC tables
There are many factors to consider when creating MDC or ITC tables. Decisions on
how to create, place, and use your MDC or ITC tables can be influenced by your
current database environment (for example, whether you have a partitioned
database or not), and by your choice of dimensions.

Moving data from existing tables to MDC tables

To improve query performance and reduce the requirements of data maintenance
operations in a data warehouse or large database environment, you can move data
from regular tables into multidimensional clustering (MDC) tables. To move data
from an existing table to an MDC table:
1. export your data,
2. drop the original table (optional),
3. create a multidimensional clustering (MDC) table (using the CREATE TABLE

statement with the ORGANIZE BY DIMENSIONS clause),
4. load the MDC table with your data.

An ALTER TABLE procedure called SYSPROC.ALTOBJ can be used to carry out
the translation of data from an existing table to an MDC table. The procedure is
called from the DB2 Design Advisor. The time required to translate the data
between the tables can be significant and depends on the size of the table and the
amount of data that needs to be translated.

The ALTOBJ procedure runs the following steps when altering a table:
1. drop all dependent objects of the table,
2. rename the table,
3. create the table with the new definition,
4. recreate all dependent objects of the table,
5. transform existing data in the table into the data required in the new table.

That is, the selecting of data from the old table and loading that data into the
new one where column functions can be used to transform from an old data
type to a new data type.

46 Partitioning and Clustering Guide

Moving data from existing tables to ITC tables

To reduce the requirements of data maintenance operations, you can move data
from regular tables into insert time clustering (ITC) tables. To move data from an
existing table to an ITC table use the online table move stored procedure.

The ExampleBank scenario shows how data from an existing table is moved into
an ITC table. The scenario also shows how convenient reclaiming space is when
using ITC tables. For more information, see the Related concepts links.

MDC Advisor feature on the DB2 Design Advisor

The DB2 Design Advisor (db2advis) has an MDC feature. This feature recommends
clustering dimensions for use in an MDC table, including coarsifications on base
columns in order to improve workload performance. The term coarsification refers
to a mathematical expression to reduce the cardinality (the number of distinct
values) of a clustering dimension. A common example is coarsification by date,
week of the date, month of the date, or quarter of the year.

A requirement to use the MDC feature of the DB2 Design Advisor is the existence
of at least several extents of data within the database. The DB2 Design Advisor
uses the data to model data density and cardinality.

If the database does not have data in the tables, the DB2 Design Advisor does not
recommend MDC, even if the database contains empty tables but has a mocked up
set of statistics to imply a populated database.

The recommendation includes identifying potential generated columns that define
coarsification of dimensions. The recommendation does not include possible block
sizes. The extent size of the table space is used when making recommendations for
MDC tables. The assumption is that the recommended MDC table is created in the
same table space as the existing table, and therefore has the same extent size. The
recommendations for MDC dimensions change depending on the extent size of the
table space, because the extent size affects the number of records that can fit into a
block or cell. The extent size directly affects the density of the cells.

Only single-column dimensions, and not composite-column dimensions, are
considered, although single or multiple dimensions might be recommended for the
table. The MDC feature recommends coarsifications for most supported data types
with the goal of reducing the cardinality of cells in the resulting MDC solution.
The data type exceptions include: CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC data types. All supported data types are cast to INTEGER and are
coarsified through a generated expression.

The goal of the MDC feature of the DB2 Design Advisor is to select MDC solutions
that result in improved performance. A secondary goal is to keep the storage
expansion of the database constrained to a modest level. A statistical method is
used to determine the maximum storage expansion on each table.

The analysis operation within the advisor includes not only the benefits of block
index access but also the effect of MDC on insert, update, and delete operations
against dimensions of the table. These actions on the table have the potential to
cause records to be moved between cells. The analysis operation also models the
potential performance effect of any table expansion resulting from the organization
of data along particular MDC dimensions.

Chapter 3. Multi-dimensional clustered (MDC) tables 47

The MDC feature is run by using the -m <advise type> flag on the db2advis
utility. The “C” advise type is used to indicate multidimensional clustering tables.
The advise types are: “I” for index, “M” for materialized query tables, “C” for
MDC, and “P” for partitioned database environment. The advise types can be used
in combination with each other.

Note: The DB2 Design Advisor does not explore tables that are less than 12 extents
in size.

The advisor analyzes both MQTs and regular base tables when coming up with
recommendations.

The output from the MDC feature includes:
v Generated column expressions for each table for coarsified dimensions that

appear in the MDC solution.
v An ORGANIZE BY clause recommended for each table.

The recommendations are reported both to stdout and to the ADVISE tables that
are part of the explain facility.

MDC tables and partitioned database environments

Multidimensional clustering can be used in a partitioned database environment. In
fact, MDC can complement a partitioned database environment. A partitioned
database environment is used to distribute data from a table across multiple
physical or logical database partitions to:
v take advantage of multiple machines to increase processing requests in parallel,
v increase the physical size of the table beyond the limits of a single database

partition,
v improve the scalability of the database.

The reason for distributing a table is independent of whether the table is an MDC
table or a regular table. For example, the rules for the selection of columns to make
up the distribution key are the same. The distribution key for an MDC table can
involve any column, whether those columns make up part of a dimension of the
table or not.

If the distribution key is identical to a dimension from the table, then each
database partition contains a different portion of the table. For instance, if our
example MDC table is distributed by color across two database partitions, then the
Color column is used to divide the data. As a result, the Red and Blue slices might
be found on one database partition and the Yellow slice on the other. If the
distribution key is not identical to the dimensions from the table, then each
database partition has a subset of data from each slice. When choosing dimensions
and estimating cell occupancy, note that on average the total amount of data per
cell is determined by taking all of the data and dividing by the number of
database partitions.

MDC tables with multiple dimensions

If you know that certain predicates are heavily used in queries, you can cluster the
table on the columns involved. You can do this by using the ORGANIZE BY
DIMENSIONS clause.

Example 1:

48 Partitioning and Clustering Guide

CREATE TABLE T1 (c1 DATE, c2 INT, c3 INT, c4 DOUBLE)
ORGANIZE BY DIMENSIONS (c1, c3, c4)

The table in Example 1 is clustered on the values within three columns forming a
logical cube (that is, having three dimensions). The table can now be logically
sliced up during query processing on one or more of these dimensions such that
only the blocks in the appropriate slices or cells are processed by the relational
operators involved. The size of a block (the number of pages) is the extent size of
the table.

MDC tables with dimensions based on more than one column

Each dimension can be made up of one or more columns. As an example, you can
create a table that is clustered on a dimension containing two columns.

Example 2:
CREATE TABLE T1 (c1 DATE, c2 INT, c3 INT, c4 DOUBLE)

ORGANIZE BY DIMENSIONS (c1, (c3, c4))

In Example 2, the table is clustered on two dimensions, c1 and (c3,c4). Thus, in
query processing, the table can be logically sliced up on either the c1 dimension, or
on the composite (c3, c4) dimension. The table has the same number of blocks as
the table in Example 1, but one less dimension block index. In Example 1, there are
three dimension block indexes, one for each of the columns c1, c3, and c4. In
Example 2, there are two dimension block indexes, one on the column c1 and the
other on the columns c3 and c4. The main difference between the two approaches
is that, in Example 1, queries involving c4 can use the dimension block index on c4
to quickly and directly access blocks of relevant data. In Example 2, c4 is a second
key part in a dimension block index, so queries involving c4 involve more
processing. However, in Example 2 there is one less block index to maintain and
store.

The DB2 Design Advisor does not make recommendations for dimensions
containing more than one column.

MDC tables with column expressions as dimensions

Column expressions can also be used for clustering dimensions. The ability to
cluster on column expressions is useful for rolling up dimensions to a coarser
granularity, such as rolling up an address to a geographic location or region, or
rolling up a date to a week, month, or year. To implement the rolling up of
dimensions in this way, you can use generated columns. This type of column
definition allows the creation of columns using expressions that can represent
dimensions. In Example 3, the statement creates a table clustered on one base
column and two column expressions.

Example 3:
CREATE TABLE T1(c1 DATE, c2 INT, c3 INT, c4 DOUBLE,

c5 DOUBLE GENERATED ALWAYS AS (c3 + c4),
c6 INT GENERATED ALWAYS AS (MONTH(C1)))

ORGANIZE BY DIMENSIONS (c2, c5, c6)

In Example 3, column c5 is an expression based on columns c3 and c4, and column
c6 rolls up column c1 to a coarser granularity in time. The statement clusters the
table based on the values in columns c2, c5, and c6.

Chapter 3. Multi-dimensional clustered (MDC) tables 49

Range queries on generated column dimensions

Range queries on a generated column dimension require monotonic column
functions. Expressions must be monotonic to derive range predicates for
dimensions on generated columns. If you create a dimension on a generated
column, queries on the base column are able to take advantage of the block index
on the generated column to improve performance, with one exception. For range
queries on the base column (date, for example) to use a range scan on the
dimension block index, the expression used to generate the column in the CREATE
TABLE statement must be monotonic. Although a column expression can include
any valid expression (including user-defined functions (UDFs)), if the expression is
non-monotonic, only equality or IN predicates are able to use the block index to
satisfy the query when these predicates are on the base column.

As an example, assume that you create an MDC table with dimensions on the
generated column month, where month = INTEGER (date)/100. For queries on the
dimension (month), block index scans can be done. For queries on the base column
(date), block index scans can also be done to narrow down which blocks to scan,
and then apply the predicates on date to the rows in those blocks only.

The compiler generates additional predicates to be used in the block index scan.
For example, with the query:

SELECT * FROM MDCTABLE WHERE DATE > "1999-03-03" AND DATE < "2000-01-15"

the compiler generates the additional predicates: “month >= 199903” and “month
<= 200001” which can be used as predicates for a dimension block index scan.
When scanning the resulting blocks, the original predicates are applied to the rows
in the blocks.

A non-monotonic expression allows equality predicates to be applied to that
dimension. A good example of a non-monotonic function is MONTH() as seen in
the definition of column c6 in Example 3. If the c1 column is a date, timestamp, or
valid string representation of a date or timestamp, then the function returns an
integer value in the range of 1 to 12. Even though the output of the function is
deterministic, it actually produces output similar to a step function (that is, a cyclic
pattern):
MONTH(date(’01/05/1999’)) = 1
MONTH(date(’02/08/1999’)) = 2
MONTH(date(’03/24/1999’)) = 3
MONTH(date(’04/30/1999’)) = 4
...
MONTH(date(’12/09/1999’)) = 12
MONTH(date(’01/18/2000’)) = 1
MONTH(date(’02/24/2000’)) = 2
...

Although date in this example is continually increasing, MONTH(date) is not.
More specifically, it is not guaranteed that whenever date1 is larger than date2,
MONTH(date1) is greater than or equal to MONTH(date2). It is this condition that
is required for monotonicity. This non-monotonicity is allowed, but it limits the
dimension in that a range predicate on the base column cannot generate a range
predicate on the dimension. However, a range predicate on the expression is fine,
for example, where month(c1) between 4 and 6. This can use the index on the
dimension in the typical way, with a starting key of 4 and a stop key of 6.

To make this function monotonic, include the year as the high-order part of the
month. There is an extension to the INTEGER built-in function to help in defining

50 Partitioning and Clustering Guide

a monotonic expression on date. INTEGER(date) returns an integer representation
of the date, which then can be divided to find an integer representation of the year
and month. For example, INTEGER(date(’2000/05/24’)) returns 20000524, and
therefore INTEGER(date(’2000/05/24’))/100 = 200005. The function
INTEGER(date)/100 is monotonic.

Similarly, the built-in functions DECIMAL and BIGINT also have extensions so that
you can derive monotonic functions. DECIMAL(timestamp) returns a decimal
representation of a timestamp, and this can be used in monotonic expressions to
derive increasing values for month, day, hour, minute, and so on. BIGINT(date)
returns a big integer representation of the date, similar to INTEGER(date).

The database manager determines the monotonicity of an expression, where
possible, when creating the generated column for the table, or when creating a
dimension from an expression in the dimensions clause. Certain functions can be
recognized as monotonicity-preserving, such as DATENUM(), DAYS(), YEAR().
Also, various mathematical expressions such as division, multiplication, or addition
of a column and a constant are monotonicity-preserving. Where DB2 determines
that an expression is not monotonicity-preserving, or if it cannot determine this,
the dimension supports only the use of equality predicates on its base column.

Load considerations for MDC and ITC tables
If you roll data in to your data warehouse on a regular basis, you can use
multidimensional clustering (MDC) tables to your advantage. In MDC tables, load
first reuses previously emptied blocks in the table before extending the table and
adding new blocks for the remaining data.

After you delete a set of data, for example, all the data for a month, you can use
the load utility to roll in the next month of data and it can reuse the blocks that
were emptied after the (committed) deletion. You can also choose to use the MDC
rollout feature with deferred cleanup. After the rollout, which is also a deletion, is
committed, the blocks are not free and cannot yet be reused. A background process
is invoked to maintain the record ID (RID) based indexes. When the maintenance
is complete, the blocks are freed and can be reused. For insert time clustering (ITC)
tables, blocks that are not in use are reused where possible before the table is
extended. This includes blocks that were reclaimed. Rollout is not supported on
ITC tables.

When loading data into MDC tables, the input data can be either sorted or
unsorted. If unsorted, and the table has more than one dimension, consider doing
the following:
v Increase the util_heap_sz configuration parameter.

To improve the performance of the load utility when loading MDC tables,
increase the util_heap_sz database configuration parameter value. The mdc-load
algorithm performs better when more memory is available to the utility. This
reduces disk I/O during the clustering of data that is performed during the load
phase. If the LOAD command is being used to load several MDC tables
concurrently, util_heap_sz must be increased accordingly.

v Increase the value given with the DATA BUFFER clause of the LOAD command.
Increasing this value affects a single load request. The utility heap size must be
large enough to accommodate the possibility of multiple concurrent load
requests. Beginning in version 9.5, the value of the DATA BUFFER parameter of the
LOAD command can temporarily exceed util_heap_sz if more memory is
available in the system.

Chapter 3. Multi-dimensional clustered (MDC) tables 51

v Ensure the page size used for the buffer pool is the same as the largest page size
for the temporary table space.
During the load phase, extra logging for the maintenance of the block map is
performed. There are approximately two extra log records per extent allocated.
To ensure good performance, the logbufsz database configuration parameter
must be set to a value that takes this into account.

The following restrictions apply when loading data into MDC or ITC tables:
v The SAVECOUNT parameter in the LOAD command is not supported.
v The totalfreespace file type modifier is not supported since these tables

manage their own free space.
v The anyorder file type modifier is required for MDC or ITC tables. If a load is

executed into an MDC or ITC table without the anyorder modifier, it is explicitly
enabled by the utility.

When using the LOAD command with an MDC or ITC table, violations of unique
constraints are handled as follows:
v If the table included a unique key before the load operation and duplicate

records are loaded into the table, the original record remains and the new
records are deleted during the delete phase.

v If the table did not include a unique key prior to the load operation and both a
unique key and duplicate records are loaded into the table, only one of the
records with the unique key is loaded and the others are deleted during the
delete phase.

Note: There is no explicit technique for determining which record is loaded and
which is deleted.

Load begins at a block boundary, so it is best used for data belonging to new cells,
for the initial populating of a table, and for loading additional data into ITC tables.

MDC and ITC load operations always have a build phase since all MDC and ITC
tables have block indexes.

Logging considerations for MDC and ITC tables
Index maintenance and logging is reduced when dimensions and therefore block
indexes are used, as compared to cases where RID indexes are used.

The database manager removes the BID from the block indexes only when the last
record in an entire block is deleted. This index operation is also logged at this time.
Similarly, the database manager inserts a BID into the block index only when a
record is inserted into a new block. That record must be the first record of a logical
cell or an insert to a logical cell of blocks that are currently full. This index
operation is also logged at this time.

Because blocks can be 2 - 256 pages of records, this block index maintenance and
logging is relatively small. Inserts and deletes to the table and to RID indexes are
still logged. For roll out deletions, the deleted records are not logged. Instead, the
pages that contain the records are made to look empty by reformatting parts of the
pages. The changes to the reformatted parts are logged, but the records themselves
are not logged.

52 Partitioning and Clustering Guide

Block index considerations for MDC and ITC tables
When you define dimensions for an MDC table, dimension block indexes are
created. In addition, a composite block index might also be created when multiple
dimensions are defined. If you have defined only one dimension for your MDC
table, or if your table is insert time clustering (ITC), only one block index is
created, which serves both as the dimension block index and as the composite
block index. For a data-partitioned MDC or ITC table, the MDC or ITC block index
on the table is partitioned.

Similarly, if you create an MDC table that has dimensions on column A, and on
(column A, column B), a dimension block index on column A and a dimension
block index on column A, column B is created. Because a composite block index is
a block index of all the dimensions in the table, the dimension block index on
column A, column B also serves as the composite block index.

For an MDC table, the composite block index is also used in query processing to
access data in the table having specific dimension values. The order of key parts in
the composite block index might affect its use or applicability for query processing.
The order of its key parts is determined by the order of columns found in the
entire ORGANIZE BY DIMENSIONS clause used when creating the MDC table.
For example, if a table is created with the statement

CREATE TABLE t1 (c1 int, c2 int, c3 int, c4 int)
ORGANIZE BY DIMENSIONS (c1, c4, (c3,c1), c2)

then the composite block index is created on columns (c4, c3, c1, c2). Although c1
is specified twice in the dimensions clause, it is used only once as a key part for
the composite block index, and in the order in which it is first found. The order of
key parts in the composite block index makes no difference for insert processing,
but might do so for query processing. Therefore, if it is more desirable to have the
composite block index with column order (c1, c2, c3, c4), then the table is created
with the statement

CREATE TABLE t1 (c1 int, c2 int, c3 int, c4 int)
ORGANIZE BY DIMENSIONS (c1, c2, (c3,c1), c4)

Block indexes for MDC tables
This topic shows how records are organized in MDC tables using block indexes.

The MDC table shown in Figure 12 on page 54 is physically organized such that
records having the same “Region” and “Year” values are grouped together into
separate blocks, or extents. An extent is a set of contiguous pages on disk, so these
groups of records are clustered on physically contiguous data pages. Each table
page belongs to exactly one block, and all blocks are of equal size (that is, an equal
number of pages). The size of a block is equal to the extent size of the table space,
so that block boundaries line up with extent boundaries. In this case, two block
indexes are created, one for the “Region” dimension, and another for the “Year”
dimension. These block indexes contain pointers only to the blocks in the table. A
scan of the “Region” block index for all records having “Region” equal to “East”
will find two blocks that qualify. All records, and only those records, having
“Region” equal to “East” will be found in these two blocks, and will be clustered
on those two sets of contiguous pages or extents. At the same time, and completely
independently, a scan of the “Year” index for records between 1999 and 2000 will
find three blocks that qualify. A data scan of each of these three blocks will return
all records and only those records that are between 1999 and 2000, and will find

Chapter 3. Multi-dimensional clustered (MDC) tables 53

these records clustered on the sequential pages within each of the blocks.

In addition to these clustering improvements, MDC tables provide the following
benefits:
v Probes and scans of block indexes are much faster due to their incredibly small

size in relation to record-based indexes
v Block indexes and the corresponding organization of data allows for fine-grained

“database partition elimination”, or selective table access
v Queries that utilize the block indexes benefit from the reduced index size,

optimized prefetching of blocks, and guaranteed clustering of the corresponding
data

v Reduced locking and predicate evaluation is possible for some queries
v Block indexes have much less overhead associated with them for logging and

maintenance because they only need to be updated when adding the first record
to a block, or removing the last record from a block

v Data rolled in can reuse the contiguous space left by data previously rolled out.

Note: An MDC table defined with even just a single dimension can benefit from
these MDC attributes, and can be a viable alternative to a regular table with a
clustering index. This decision should be based on many factors, including the
queries that make up the workload, and the nature and distribution of the data in
the table. Refer to “Choosing MDC table dimensions” on page 39 and
“Considerations when creating MDC or ITC tables” on page 46.

When you create a table, you can specify one or more keys as dimensions along
which to cluster the data. Each of these MDC dimensions can consist of one or
more columns similar to regular index keys. A dimension block index will be
automatically created for each of the dimensions specified, and it will be used by
the optimizer to quickly and efficiently access data along each dimension. A
composite block index will also automatically be created, containing all columns
across all dimensions, and will be used to maintain the clustering of data over
insert and update activity. A composite block index will only be created if a single
dimension does not already contain all the dimension key columns. The composite

Multidimensional clustering index

East

97

East

99

North

98

South

99

West

00

Year
Block

Block
indexRegion

Figure 12. A multidimensional clustering table

54 Partitioning and Clustering Guide

block index may also be selected by the optimizer to efficiently access data that
satisfies values from a subset, or from all, of the column dimensions.

Note: The usefulness of this index during query processing depends on the order
of its key parts. The key part order is determined by the order of the columns
encountered by the parser when parsing the dimensions specified in the
ORGANIZE BY clause of the CREATE TABLE statement. Refer to “Block index
considerations for MDC and ITC tables” on page 53 for more information.

Block indexes are structurally the same as regular indexes, except that they point
to blocks instead of records. Block indexes are smaller than regular indexes by a
factor of the block size multiplied by the average number of records on a page.
The number of pages in a block is equal to the extent size of the table space, which
can range from 2 to 256 pages. The page size can be 4 KB, 8 KB, 16 KB, or 32 KB.

As seen in Figure 13, in a block index there is a single index entry for each block
compared to a single entry for each row. As a result, a block index provides a
significant reduction in disk usage and significantly faster data access.

In an MDC table, every unique combination of dimension values form a logical
cell, which may be physically made up of one or more blocks of pages. The logical
cell will only have enough blocks associated with it to store the records having the
dimension values of that logical cell. If there are no records in the table having the
dimension values of a particular logical cell, no blocks will be allocated for that
logical cell. The set of blocks that contain data having a particular dimension key
value is called a slice.

An MDC table can be partitioned. The block index on a partitioned MDC table can
be either nonpartitioned or partitioned:
v For a partitioned MDC table created with DB2 Version 9.7 Fix Pack 1 or later

releases, the block indexes on the table are partitioned.
v For a partitioned MDC table created with DB2 V9.7 or earlier releases, the block

indexes on the table are nonpartitioned.

…

Row index Block index

Figure 13. How row indexes differ from block indexes

Chapter 3. Multi-dimensional clustered (MDC) tables 55

Nonpartitioned block index are supported after upgrading the database to DB2
V9.7 Fix Pack 1 or later releases.

Scenario: Multidimensional clustered (MDC) tables
As a scenario of how to work with an MDC table, we will imagine an MDC table
called “Sales” that records sales data for a national retailer. The table is clustered
along the dimensions “YearAndMonth” and “Region”. Records in the table are
stored in blocks, which contain enough consecutive pages on disk to fill an extent.

In Figure 14 on page 57, a block is represented by a rectangle, and is numbered
according to the logical order of allocated extents in the table. The grid in the
diagram represents the logical database partitioning of these blocks, and each
square represents a logical cell. A column or row in the grid represents a slice for a
particular dimension. For example, all records containing the value 'South-central'
in the “Region” column are found in the blocks contained in the slice defined by
the 'South-central' column in the grid. In fact, each block in this slice also only
contains records having 'South-central' in the “Region” field. Thus, a block is
contained in this slice or column of the grid if and only if it contains records
having 'South-central' in the “Region” field.

56 Partitioning and Clustering Guide

To determine which blocks comprise a slice, or equivalently, which blocks contain
all records having a particular dimension key value, a dimension block index is
automatically created for each dimension when the table is created.

In Figure 15 on page 58, a dimension block index is created on the
“YearAndMonth” dimension, and another on the “Region” dimension. Each
dimension block index is structured in the same manner as a traditional RID index,
except that at the leaf level the keys point to a block identifier (BID) instead of a
record identifier (RID). A RID identifies the location of a record in the table by a
physical page number and a slot number — the slot on the page where the record
is found. A BID represents a block by the physical page number of the first page of
that extent, and a dummy slot (0). Because all pages in the block are physically
consecutive starting from that one, and we know the size of the block, all records
in the block can be found using this BID.

A slice, or the set of blocks containing pages with all records having a particular
key value in a dimension, will be represented in the associated dimension block
index by a BID list for that key value.

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

1

5

3 16 204

2

34 4524

30

12

14 31

50 54

56

18

32 33

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

9

39

19

41

42

Figure 14. Multidimensional table with dimensions of 'Region' and 'YearAndMonth' that is
called Sales

Chapter 3. Multi-dimensional clustered (MDC) tables 57

Figure 16 shows how a key from the dimension block index on “Region” would
appear. The key is made up of a key value, namely 'South-central', and a list of
BIDs. Each BID contains a block location. In Figure 16, the block numbers listed are
the same that are found in the 'South-central' slice found in the grid for the Sales
table (see Figure 14 on page 57).

Similarly, to find the list of blocks containing all records having '9902' for the
“YearAndMonth” dimension, look up this value in the “YearAndMonth”
dimension block index, shown in Figure 17 on page 59.

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th

9901

9903

9904

9902

Northwest NortheastSouthwest South-central

1

5

3 16 204

2

34 4524

30

12

14 31

50 54

56

18

32 33

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

9

39

19

41

42

Dimension block
index on Region

Dimension
block index on
YearAndMonth

Figure 15. Sales table with dimensions of 'Region' and 'YearAndMonth' showing dimension
block indexes

South-central 9 16 18 19 22 24 25 30 36 39 41 42

Key value BID list

Block ID (BID)

Figure 16. Key from the dimension block index on 'Region'

58 Partitioning and Clustering Guide

Block indexes and query performance for MDC tables
Scans on any of the block indexes of an MDC table provide clustered data access,
because each block identifier (BID) corresponds to a set of sequential pages in the
table that is guaranteed to contain data having the specified dimension value.
Moreover, dimensions or slices can be accessed independently from each other
through their block indexes without compromising the cluster factor of any other
dimension or slice. This provides the multidimensionality of multidimensional
clustering.

Queries that take advantage of block index access can benefit from a number of
factors that improve performance.
v Because block indexes are so much smaller than regular indexes, a block index

scan is very efficient.
v Prefetching of data pages does not rely on sequential detection when block

indexes are used. The DB2 database manager looks ahead in the index,
prefetching blocks of data into memory using big-block I/O, and ensuring that
the scan does not incur I/O costs when data pages are accessed in the table.

v The data in the table is clustered on sequential pages, optimizing I/O and
localizing the result set to a selected portion of the table.

v If a block-based buffer pool is used, and the block size is equal to the extent
size, MDC blocks are prefetched from sequential pages on disk into sequential
pages in memory, further increasing the positive effect of clustering on
performance.

v The records from each block are retrieved using a mini-relational scan of its data
pages, which is often faster than scanning data through RID-based retrieval.

Queries can use block indexes to narrow down a portion of the table having a
particular dimension value or range of values. This provides a fine-grained form of
“database partition elimination”, that is, block elimination. This can translate into
better concurrency for the table, because other queries, loads, inserts, updates and
deletes may access other blocks in the table without interacting with this query's
data set.

If the Sales table is clustered on three dimensions, the individual dimension block
indexes can also be used to find the set of blocks containing records which satisfy
a query on a subset of all of the dimensions of the table. If the table has
dimensions of “YearAndMonth”, “Region” and “Product”, this can be thought of
as a logical cube, as illustrated in Figure 18 on page 60.

9902 2 5 7 8 14 15 17 18 31 32 33 43

Key value BID list

Block ID (BID)

Figure 17. Key from the dimension block index on 'YearAndMonth'

Chapter 3. Multi-dimensional clustered (MDC) tables 59

Four block indexes will be created for the MDC table shown in Figure 18: one for
each of the individual dimensions, “YearAndMonth”, “Region”, and “Product”;
and another with all of these dimension columns as its key. To retrieve all records
having a “Product” equal to “ProductA” and “Region” equal to “Northeast”, the
database manager would first search for the ProductA key from the “Product”
dimension block index. (See Figure 19.) The database manager then determines the
blocks containing all records having “Region” equal to “Northeast”, by looking up
the “Northeast” key in the “Region” dimension block index. (See Figure 20.)

Pro
duct

A
Pro

duct
B

1

5

3 16 204

2

34 4524

9

30

39

12

14 31

50 54

56

18

32 33

42

36

11

6

7

10

13

22 26

15

38 5125

8 17

44 53

43

19

41

= block 1

Legend

1

Region

Ye
ar

A
n

d
M

o
n

th
9901

9903

9904

9902

Northwest NortheastSouthwest South-central

28

37

27

23

46

40

35

47

Pro
duct

Figure 18. Multidimensional table with dimensions of 'Region', 'YearAndMonth', and 'Product'

Product A 1 2 3 11 20 22 24 2625 30 56.

Figure 19. Key from dimension block index on 'Product'

Northeast 11 20 23 26 27 28 35 37 40 45 46 47 51 5453 56

Figure 20. Key from dimension block index on 'Region'

60 Partitioning and Clustering Guide

Block index scans can be combined through the use of the logical AND and logical
OR operators and the resulting list of blocks to scan also provides clustered data
access.

Using the previous example, in order to find the set of blocks containing all
records having both dimension values, you have to find the intersection of the two
slices. This is done by using the logical AND operation on the BID lists from the
two block index keys. The common BID values are 11, 20, 26, 45, 54, 51, 53, and 56.

The following example illustrates how to use the logical OR operation with block
indexes to satisfy a query having predicates that involve two dimensions. Figure 21
assumes an MDC table where the two dimensions are “Colour” and “Nation”. The
goal is to retrieve all those records in the MDC table that meet the conditions of
having “Colour” of “blue” or having a “Nation” name “USA”.

This diagram shows how the result of two separate block index scans are
combined to determine the range of values that meet the predicate restrictions.
(The numbers indicate record identifiers (RIDs), slot fields.)

Key from the dimension block index on Colour

Key from the dimension block index on Nation

Resulting block ID (BID) list of blocks to scan

Blue

USA

4,0

4,0

12,0

12,0

12,0

48,0

48,0

92,0

52,0

52,0

76,0

92,076,0

76,0

100,0

100,0 112,0 216,0 276,0

100,0 112,0

216,0

216,0 276,0

(OR)

Figure 21. How the logical OR operation can be used with block indexes

Chapter 3. Multi-dimensional clustered (MDC) tables 61

Based on the predicates from the SELECT statement, two separate dimension block
index scans are done; one for the blue slice, and another for the USA slice. A
logical OR operation is done in memory in order to find the union of the two
slices, and determine the combined set of blocks found in both slices (including the
removal of duplicate blocks).

Once the database manager has list of blocks to scan, the database manager can do
a mini-relational scan of each block. Prefetching of the blocks can be done, and will
involve just one I/O per block, as each block is stored as an extent on disk and can
be read into the buffer pool as a unit. If predicates need to be applied to the data,
dimension predicates need only be applied to one record in the block, because all
records in the block are guaranteed to have the same dimension key values. If
other predicates are present, the database manager only needs to check these on
the remaining records in the block.

MDC tables also support regular RID-based indexes. Both RID and block indexes
can be combined using a logical AND operation, or a logical OR operation, with
the index. Block indexes provide the optimizer with additional access plans to
choose from, and do not prevent the use of traditional access plans (RID scans,
joins, table scans, and others). Block index plans will be costed by the optimizer
along with all other possible access plans for a particular query, and the most
inexpensive plan will be chosen.

The DB2 Design Advisor can help to recommend RID-based indexes on MDC
tables, or to recommend MDC dimensions for a table.

Maintaining clustering automatically during INSERT operations
Automatic maintenance of data clustering in an MDC table is ensured using the
composite block index. It is used to dynamically manage and maintain the physical
clustering of data along the dimensions of the table over the course of INSERT
operations.

A key is found in this composite block index only for each of those logical cells of
the table that contain records. This block index is therefore used during an INSERT
to quickly and efficiently determine if a logical cell exists in the table, and only if
so, determine exactly which blocks contain records having that cell's particular set
of dimension values.

When an insert occurs:
v The composite block index is probed for the logical cell corresponding to the

dimension values of the record to be inserted.
v If the key of the logical cell is found in the index, its list of block ID (BIDs) gives

the complete list of blocks in the table having the dimension values of the
logical cell. (See Figure 22 on page 63.) This limits the numbers of extents of the
table to search for space to insert the record.

v If the key of the logical cell is not found in the index; or, if the extents
containing these values are full, a new block is assigned to the logical cell. If
possible, the reuse of an empty block in the table occurs first before extending
the table by another new extent of pages (a new block).

62 Partitioning and Clustering Guide

Data records having particular dimension values are guaranteed to be found in a
set of blocks that contain only and all the records having those values. Blocks are
made up of consecutive pages on disk. As a result, access to these records is
sequential, providing clustering. This clustering is automatically maintained over
time by ensuring that records are only inserted into blocks from cells with the
record's dimension values. When existing blocks in a logical cell are full, an empty
block is reused or a new block is allocated and added to the set of blocks for that
logical cell. When a block is emptied of data records, the block ID (BID) is
removed from the block indexes. This disassociates the block from any logical cell
values so that it can be reused by another logical cell in the future. Thus, cells and
their associated block index entries are dynamically added and removed from the
table as needed to accommodate only the data that exists in the table. The
composite block index is used to manage this, because it maps logical cell values
to the blocks containing records having those values.

Because clustering is automatically maintained in this way, reorganization of an
MDC table is never needed to re-cluster data. However, reorganization can still be
used to reclaim space. For example, if cells have many sparse blocks where data
could fit on fewer blocks, or if the table has many pointer-overflow pairs, a
reorganization of the table would compact records belonging to each logical cell
into the minimum number of blocks needed, as well as remove pointer-overflow
pairs.

The following example illustrates how the composite block index can be used for
query processing. If you want to find all records in the table in Figure 22 having
“Region” of 'Northwest' and “YearAndMonth” of '9903', the database manager
would look up the key value 9903, Northwest in the composite block index, as
shown in Figure 23 on page 64. The key is made up a key value, namely '9903,
Northwest', and a list of BIDs. You can see that the only BIDs listed are 3 and 10,
and indeed there are only two blocks in the Sales table containing records having
these two particular values.

…

9902,
Northwest

9902,
Southwest

9902,
South-central

9901,
South-central

9901,
Northeast

9903,
Northwest

1 5 329

39

12 14 31 18

32 33

42 11

6 7 1015

8 17 43

19

41

= block 1

Legend

1

9901,
Northwest

Composite block index on YearAndMonth, Region

Figure 22. Composite block index on 'YearAndMonth', 'Region'

Chapter 3. Multi-dimensional clustered (MDC) tables 63

To illustrate the use of the composite block index during insert, take the example
of inserting another record with dimension values 9903 and Northwest. The
database manager would look up this key value in the composite block index and
find BIDs for blocks 3 and 10. These blocks contain all records and the only records
having these dimension key values. If there is space available, the database
manager inserts the new record into one of these blocks. If there is no space on
any pages in these blocks, the database manager allocates a new block for the
table, or uses a previously emptied block in the table. Note that, in this example,
block 48 is currently not in use by the table. The database manager inserts the
record into the block and associates this block to the current logical cell by adding
the BID of the block to the composite block index and to each dimension block
index. See Figure 24 for an illustration of the keys of the dimension block indexes
after the addition of Block 48.

Block maps for MDC and ITC tables
For MDC tables, when a block is emptied, it is disassociated from its current
logical cell values by removing its BID from the block indexes. The block can then
be reused by another logical cell. For ITC tables, all blocks are associated with a
single cell. Freeing a block within a cell means it can be reused by a subsequent
insert. This reuse reduces the need to extend the table with new blocks.

When a new block is needed, previously emptied blocks need to be found quickly
without having to search the table for them.

The block map is a structure used to facilitate locating empty blocks in the MDC
or ITC table. The block map is stored as a separate object:
v In SMS, as a separate .BKM file
v In DMS, as a new object descriptor in the object table.

The block map is an array containing an entry for each block of the table. Each
entry comprises a set of status bits for a block.

9903, Northwest 3 10

Key value BID list

Block ID (BID)

Figure 23. Key from composite block index on 'YearAndMonth', 'Region'

Northwest

9903

9903, Northwest

1

3

3

3

4

5 6 7 8 10

10

10 48

16 20 22 26 30 36 48

1312 14 32 48

Figure 24. Keys from the dimension block indexes after addition of Block 48

64 Partitioning and Clustering Guide

In Figure 25, the left side shows the block map array with different entries for each
block in the table. The right side shows how each extent of the table is being used:
some are free, most are in use, and records are only found in blocks marked in use
in the block map. For simplicity, only one of the two dimension block indexes is
shown in the diagram.

Note:

1. There are pointers in the block index only to blocks which are marked IN USE
in the block map.

2. The first block is reserved. This block contains system records for the table.

Free blocks are found easily for use in a cell, by scanning the block map for FREE
blocks, that is, blocks without any bits set.

Table scans also use the block map to access only extents currently containing data.
Any extents not in use do not need to be included in the table scan at all. To
illustrate, a table scan in this example (Figure 25) would start from the third extent
(extent 2) in the table, skipping the first reserved extent and the subsequent empty
extent, scan blocks 2, 3 and 4 in the table, skip the next extent (not touching the
data pages of that extent), and then continue scanning from there.

Reserved Free — no status
bits set

In use — data
assigned to a cell

Legend

Extents in the table
Block
map

00 X

X

11 F

F

22 U

33 U

44 U

U

55 F

66 U

……

North,
1996

North, 1997

South, 1999

East, 1996

Year

Figure 25. How a block map works

Chapter 3. Multi-dimensional clustered (MDC) tables 65

Deleting from MDC and ITC tables
When a record is deleted in an MDC or ITC table, if it is not the last record in the
block, the database manager merely deletes the record and removes its RID from
any record-based indexes defined on the table.

When a delete removes the last record in a block, the database manager frees the
block. The block is freed by changing the IN_USE status bit and removing the BID
of the block from all block indexes. If there are record-based indexes as well, the
RID is removed from them.

Note: Therefore, block index entries are removed once per entire block and only if
the block is emptied, instead of once per deleted row in a record-based index.

Updates to MDC and ITC tables
In an MDC table, updates of non-dimension values are done in place just as they
are done with regular tables. If the update of a record in an MDC or ITC table
causes the record to grow in length and it no longer fits on the page, another page
with sufficient space is found.

The search for this new page begins within the same block. If there is no space in
that block, the algorithm to insert a new record is used to find a page in the logical
cell with enough space. There is no need to update the block indexes, unless no
space is found in the cell and a new block needs to be added to the cell.

For an ITC table, if there is insufficient room in the block to place the updated row,
the row is moved to a new block. This move causes the row to no longer be
clustered with rows that were inserted at a similar time.

Considerations for MDC tables only

Updates of dimension values are treated as a delete of the current record followed
by an insert of the changed record, because the record is changing the logical cell
to which it belongs. If the deletion of the current record causes a block to be
emptied, the block index needs to be updated. Similarly, if the insert of the new
record requires it to be inserted into a new block, the block index needs to be
updated.

MDC tables are treated like any existing table; that is, triggers, referential integrity,
views, and materialized query tables can all be defined upon them.

Considerations for MDC and ITC tables

Block indexes need be only updated when inserting the first record into a block or
when deleting the last record from a block. Index resources and requirements
associated with block indexes for maintenance and logging is therefore much less
than regular indexes. For every block index that would have otherwise been a
regular index, the maintenance and logging resources and requirement is greatly
reduced.

Multidimensional and insert time clustering extent management
Freeing data extents from within the multidimensional (MDC) or insert time
clustering (ITC) table is done through the reorganization of the table.

66 Partitioning and Clustering Guide

Within an MDC and ITC table, a block map tracks all the data extents belonging to
a table and indicates which blocks and extents have data on them and which do
not. Blocks with data are marked as being “in use”. Whenever deletions on MDC
or ITC tables, or rollouts on MDC tables happen, block entries with the block map
are no longer marked “in use” but rather are freed for reuse by the table.

However, these blocks and extents cannot be used by other objects within the table
space. You can release these free data extents from the table through the
reorganization of the table. You can use the REORG TABLE command with the
RECLAIM EXTENTS parameter so the table is available and online to your users while
space is reclaimed. The freeing of extents from the MDC or ITC table is only
supported for tables in DMS table spaces.

The REORG TABLE command uses the RECLAIM EXTENTS parameter to free extents
from exclusive use by the MDC or ITC table and makes the space available for use
by other database objects within the table space.

The option also allows for your control of concurrent access to the MDC or ITC
table while the extents are being freed. Write access is the default, read access and
no access are also choices to control concurrent access.

If the MDC or ITC table is also range or database partitioned, by default the
freeing of extents occurs on all data or database partitions. You can run the
command to free extents only on a specific partition by specifying a partition name
(for data partitions) or a partition number (for database partitions).

Both the REORG TABLE command and the db2Reorg API can be used to free extents.

Automatic support is available to make the freeing of extents part of your
automatic maintenance activities for the database. To enable a reorganization to
free extents in an MDC or ITC table, the auto_maint, auto_tbl_maint, and
auto_reorg database configuration parameters must all have a value of ON. The
configuring of these database configuration parameters can be carried out using
the command line. On a DB2 instance where the database partitioning feature is
enabled, the configuring of the parameters must be issued on the catalog partition.

A maintenance policy controls when an automatic reorganization of an MDC or
ITC table takes place to free unused extents. The DB2 system stored procedures
AUTOMAINT_SET_POLICY and AUTOMAINT_SET_POLICYFILE are used to set
this maintenance policy. XML is used to store the automated maintenance policy.

Table partitioning and multidimensional clustering tables
In a table that is both multidimensional clustered and data partitioned, columns
can be used both in the table partitioning range-partition-spec and in the
multidimensional clustering (MDC) key. A table that is both multidimensional
clustered and partitioned can achieve a finer granularity of data partition and
block elimination than could be achieved by either functionality alone.

There are also many applications where it is useful to specify different columns for
the MDC key than those on which the table is partitioned. It should be noted that
table partitioning is multicolumn, while MDC is multi-dimension.

Chapter 3. Multi-dimensional clustered (MDC) tables 67

Characteristics of a mainstream DB2 data warehouse

The following recommendations were focused on typical, mainstream warehouses
that were new for DB2 V9.1. The following characteristics are assumed:
v The database runs on multiple machines or multiple AIX logical partitions.
v Partitioned database environments are used (tables are created using the

DISTRIBUTE BY HASH clause).
v There are four to fifty data partitions.
v The table for which MDC and table partitioning is being considered is a major

fact table.
v The table has 100,000,000 to 100,000,000,000 rows.
v New data is loaded at various time frames: nightly, weekly, monthly.
v Daily ingest volume is 10 thousand to 10 million records.
v Data volumes vary: The biggest month is 5X the size of the smallest month.

Likewise, the biggest dimensions (product line, region) have a 5X size range.
v 1 to 5 years of detailed data is retained.
v Expired data is rolled out monthly or quarterly.
v Tables use a wide range of query types. However, the workload is mostly

analytical queries with the following characteristics, relative to OLTP workloads:
– larger results sets with up to 2 million rows
– most or all queries are hitting views, not base tables

v SQL clauses selecting data by ranges (BETWEEN clause), items in lists, and so
on.

Characteristics of a mainstream DB2 V9.1 data warehouse fact
table

A typical warehouse fact table, might use the following design:
v Create data partitions on the Month column.
v Define a data partition for each period you roll-out, for example, 1 month, 3

months.
v Create MDC dimensions on Day and on 1 to 4 additional dimensions. Typical

dimensions are: product line and region.
v All data partitions and MDC clusters are spread across all database partitions.

MDC and table partitioning provide overlapping sets of benefits. The following
table lists potential needs in your organization and identifies a recommended
organization scheme based on the characteristics identified previously.

Table 7. Using table partitioning with MDC tables

Issue Recommended scheme Recommendation

Data availability during
roll-out

Table partitioning Use the DETACH
PARTITION clause to roll out
large amounts of data with
minimal disruption.

Query performance Table partitioning and MDC MDC is best for querying
multiple dimensions. Table
partitioning helps through
data partition elimination.

68 Partitioning and Clustering Guide

Table 7. Using table partitioning with MDC tables (continued)

Issue Recommended scheme Recommendation

Minimal reorganization MDC MDC maintains clustering,
which reduces the need to
reorganize.

Rollout a month or more of
data during a traditional
offline window

Table partitioning Data partitioning addresses
this need fully. MDC adds
nothing and would be less
suitable on its own.

Rollout a month or more of
data during a micro-offline
window (less than 1 minute)

Table partitioning Data partitioning addresses
this need fully. MDC adds
nothing and would be less
suitable on its own.

Rollout a month or more of
data while keeping the table
fully available for business
users submitting queries
without any loss of service.

MDC MDC only addresses this
need somewhat. Table
partitioning would not be
suitable due to the short
period the table goes offline.

Load data daily (either
ALLOW READ ACCESS or
ALLOW NO ACCESS)

Table partitioning and MDC MDC provides most of the
benefit here. Table
partitioning provides
incremental benefits.

Load data "continually"
(ALLOW READ ACCESS)

Table partitioning and MDC MDC provides most of the
benefit here. Table
partitioning provides
incremental benefits.

Query execution
performance for "traditional
BI" queries

Table partitioning and MDC MDC is especially good for
querying cubes/multiple
dimensions. Table
partitioning helps via
partition elimination.

Minimize reorganization
pain, by avoiding the need
for reorganization or
reducing the pain associated
with performing the task

MDC MDC maintains clustering
which reduces the need to
reorg. If MDC is used, data
partitioning does not provide
incremental benefits.
However if MDC is not
used, table partitioning helps
reduce the need for reorg by
maintaining some course
grain clustering at the
partition level.

Example 1:

Consider a table with key columns YearAndMonth and Province. A reasonable
approach to planning this table might be to partition by date with 2 months per
data partition. In addition, you might also organize by Province, so that all rows
for a particular province within any two month date range are clustered together,
as shown in Figure 6 on page 32.
CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)
(STARTING 9901 ENDING 9904 EVERY 2)
ORGANIZE BY (Province);

Chapter 3. Multi-dimensional clustered (MDC) tables 69

Example 2:

Finer granularity can be achieved by adding YearAndMonth to the ORGANIZE BY
clause, as shown in Figure 7 on page 33.
CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)
(STARTING 9901 ENDING 9904 EVERY 2)
ORGANIZE BY (YearAndMonth, Province);

Figure 26. A table partitioned by YearAndMonth and organized by Province

70 Partitioning and Clustering Guide

In cases where the partitioning is such that there is only a single value in each
range, nothing is gained by including the table partitioning column in the MDC
key.

Considerations
v Compared to a basic table, both MDC tables and partitioned tables require more

storage. These storage needs are additive but are considered reasonable given
the benefits.

v If you choose not to combine table partitioning and MDC functionality in your
partitioned database environment, table partitioning is best in cases where you
can confidently predict the data distribution, which is generally the case for the
types of systems discussed here. Otherwise, MDC should be considered.

v For a data-partitioned MDC table created with DB2 Version 9.7 Fix Pack 1 or
later releases, the MDC block indexes on the table are partitioned. For a
data-partitioned MDC table created with DB2 V9.7 or earlier releases, the MDC
block indexes on the table are nonpartitioned.

Figure 27. A table partitioned by YearAndMonth and organized by Province and
YearAndMonth

Chapter 3. Multi-dimensional clustered (MDC) tables 71

72 Partitioning and Clustering Guide

Chapter 4. Parallel database systems

Parallelism
Components of a task, such as a database query, can be run in parallel to
dramatically enhance performance. The nature of the task, the database
configuration, and the hardware environment, all determine how the DB2 database
product will perform a task in parallel.

These factors are interrelated. Consider them all when you work on the physical
and logical design of a database. The following types of parallelism are supported
by the DB2 database system:
v I/O
v Query
v Utility

Input/output parallelism

When there are multiple containers for a table space, the database manager can use
parallel I/O. Parallel I/O refers to the process of writing to, or reading from, two or
more I/O devices simultaneously; it can result in significant improvements in
throughput.

Query parallelism

There are two types of query parallelism: interquery parallelism and intraquery
parallelism.

Interquery parallelism refers to the ability of the database to accept queries from
multiple applications at the same time. Each query runs independently of the
others, but the database manager runs all of them at the same time. DB2 database
products have always supported this type of parallelism.

Intraquery parallelism refers to the simultaneous processing of parts of a single
query, using either intrapartition parallelism, interpartition parallelism, or both.

Intrapartition parallelism

Intrapartition parallelism refers to the ability to break up a query into multiple parts.
Some DB2 utilities also perform this type of parallelism.

Intrapartition parallelism subdivides what is typically considered to be a single
database operation such as index creation, database loading, or SQL queries into
multiple parts, many or all of which can be run in parallel within a single database
partition.

Figure 28 on page 74 shows a query that is broken into three pieces that can be run
in parallel, with the results returned more quickly than if the query were run in
serial fashion. The pieces are copies of each other. To use intrapartition parallelism,
you must configure the database appropriately. You can choose the degree of
parallelism or let the system do it for you. The degree of parallelism represents the

© Copyright IBM Corp. 2012 73

number of pieces of a query running in parallel.

Interpartition parallelism

Interpartition parallelism refers to the ability to break up a query into multiple parts
across multiple partitions of a partitioned database, on one machine or multiple
machines. The query is run in parallel. Some DB2 utilities also perform this type of
parallelism.

Interpartition parallelism subdivides what is typically considered a single database
operation such as index creation, database loading, or SQL queries into multiple
parts, many or all of which can be run in parallel across multiple partitions of a
partitioned database on one machine or on multiple machines.

Figure 29 on page 75 shows a query that is broken into three pieces that can be run
in parallel, with the results returned more quickly than if the query were run in
serial fashion on a single database partition.

The degree of parallelism is largely determined by the number of database
partitions you create and how you define your database partition groups.

SELECT... FROM...

Database partition

Data

Query

Figure 28. Intrapartition parallelism

74 Partitioning and Clustering Guide

Simultaneous intrapartition and interpartition parallelism

You can use intrapartition parallelism and interpartition parallelism at the same
time. This combination provides two dimensions of parallelism, resulting in an
even more dramatic increase in the speed at which queries are processed.

Database
partition

Database
partition

Database
partition

Data DataData

SELECT... FROM...

Query

Figure 29. Interpartition parallelism

Chapter 4. Parallel database systems 75

Utility parallelism

DB2 utilities can take advantage of intrapartition parallelism. They can also take
advantage of interpartition parallelism; where multiple database partitions exist,
the utilities run in each of the database partitions in parallel.

The load utility can take advantage of intrapartition parallelism and I/O
parallelism. Loading data is a CPU-intensive task. The load utility takes advantage
of multiple processors for tasks such as parsing and formatting data. It can also
use parallel I/O servers to write the data to containers in parallel.

In a partitioned database environment, the LOAD command takes advantage of
intrapartition, interpartition, and I/O parallelism by parallel invocations at each
database partition where the table resides.

During index creation, the scanning and subsequent sorting of the data occurs in
parallel. The DB2 system exploits both I/O parallelism and intrapartition
parallelism when creating an index. This helps to speed up index creation when a
CREATE INDEX statement is issued, during restart (if an index is marked invalid),
and during the reorganization of data.

Backing up and restoring data are heavily I/O-bound tasks. The DB2 system
exploits both I/O parallelism and intrapartition parallelism when performing
backup and restore operations. Backup exploits I/O parallelism by reading from
multiple table space containers in parallel, and asynchronously writing to multiple
backup media in parallel.

Database
partition

Database
partition

DataData

SELECT... FROM...SELECT... FROM...

SELECT... FROM...SELECT... FROM...

Query

Figure 30. Simultaneous interpartition and intrapartition parallelism

76 Partitioning and Clustering Guide

Partitioned database environments
A partitioned database environment is a database installation that supports the
distribution of data across database partitions.
v A database partition is a part of a database that consists of its own data, indexes,

configuration files, and transaction logs. A partitioned database environment is a
database installation that supports the distribution of data across database
partitions.

v A single-partition database is a database having only one database partition. All
data in the database is stored in that single database partition. In this case,
database partition groups, although present, provide no additional capability.

v A multi-partition database is a database with two or more database partitions.
Tables can be located in one or more database partitions. When a table is in a
database partition group consisting of multiple database partitions, some of its
rows are stored in one database partition, and other rows are stored in other
database partitions.

Usually, a single database partition exists on each physical machine, and the
processors on each system are used by the database manager at each database
partition to manage its part of the total data in the database.

Because data is distributed across database partitions, you can use the power of
multiple processors on multiple physical machines to satisfy requests for
information. Data retrieval and update requests are decomposed automatically into
sub-requests, and executed in parallel among the applicable database partitions.
The fact that databases are split across database partitions is transparent to users
issuing SQL statements.

User interaction occurs through one database partition, known as the coordinator
partition for that user. The coordinator partition runs on the same database
partition as the application, or in the case of a remote application, the database
partition to which that application is connected. Any database partition can be
used as a coordinator partition.

The database manager allows you to store data across several database partitions
in the database. This means that the data is physically stored across more than one
database partition, and yet can be accessed as though it were located in the same
place. Applications and users accessing data in a multi-partition database are
unaware of the physical location of the data.

Although the data is physically split, it is used and managed as a logical whole.
Users can choose how to distribute their data by declaring distribution keys. Users
can also determine across which and over how many database partitions their data
is distributed by selecting the table space and the associated database partition
group in which the data is to be stored. Suggestions for distribution and
replication can be done using the DB2 Design Advisor. In addition, an updatable
distribution map is used with a hashing algorithm to specify the mapping of
distribution key values to database partitions, which determines the placement and
retrieval of each row of data. As a result, you can spread the workload across a
multi-partition database for large tables, and store smaller tables on one or more
database partitions. Each database partition has local indexes on the data it stores,
resulting in increased performance for local data access.

Chapter 4. Parallel database systems 77

Note: You are not restricted to having all tables divided across all database
partitions in the database. The database manager supports partial declustering,
which means that you can divide tables and their table spaces across a subset of
database partitions in the system.

An alternative to consider when you want tables to be positioned on each database
partition, is to use materialized query tables and then replicate those tables. You
can create a materialized query table containing the information that you need,
and then replicate it to each database partition.

A non-root installation of a DB2 database product does not support database
partitioning. Do not manually update the db2nodes.cfg file. A manual update
returns an error (SQL6031N).

Database partition and processor environments
Capacity refers to the number of users and applications able to access the database.
This is in large part determined by memory, agents, locks, I/O, and storage
management. Scalability refers to the ability of a database to grow and continue to
exhibit the same operating characteristics and response times.

This section provides an overview of the following hardware environments:
v Single database partition on a single processor (uniprocessor)
v Single database partition with multiple processors (SMP)
v Multiple database partition configurations

– Database partitions with one processor (MPP)
– Database partitions with multiple processors (cluster of SMPs)
– Logical database partitions

Capacity and scalability are discussed for each environment.

Single database partition on a single processor

This environment is made up of memory and disk, but contains only a single CPU
(see Figure 31 on page 79). The database in this environment serves the needs of a
department or small office, where the data and system resources (including a
single processor or CPU) are managed by a single database manager.

78 Partitioning and Clustering Guide

Capacity and scalability

In this environment you can add more disks. Having one or more I/O servers for
each disk allows for more than one I/O operation to take place at the same time.

A single-processor system is restricted by the amount of disk space the processor
can handle. As workload increases, a single CPU might not be able to process user
requests any faster, regardless of other components, such as memory or disk, that
you might add. If you have reached maximum capacity or scalability, you can
consider moving to a single database partition system with multiple processors.

Single database partition with multiple processors

This environment is typically made up of several equally powerful processors
within the same machine (see Figure 32 on page 80), and is called a symmetric
multiprocessor (SMP) system. Resources, such as disk space and memory, are
shared.

With multiple processors available, different database operations can be completed
more quickly. DB2 database systems can also divide the work of a single query
among available processors to improve processing speed. Other database
operations, such as loading data, backing up and restoring table spaces, and
creating indexes on existing data, can take advantage of multiple processors.

Database partition

Memory

CPU

Uniprocessor
environment

Disks

Figure 31. Single database partition on a single processor

Chapter 4. Parallel database systems 79

Capacity and scalability

You can increase the I/O capacity of the database partition associated with your
processor by increasing the number of disks. You can establish I/O servers to
specifically deal with I/O requests. Having one or more I/O servers for each disk
allows for more than one I/O operation to take place at the same time.

If you have reached maximum capacity or scalability, you can consider moving to
a system with multiple database partitions.

Multiple database partition configurations

You can divide a database into multiple database partitions, each on its own
machine. Multiple machines with multiple database partitions can be grouped
together. This section describes the following database partition configurations:
v Database partitions on systems with one processor
v Database partitions on systems with multiple processors
v Logical database partitions

Database partitions with one processor

In this environment, there are many database partitions. Each database partition
resides on its own machine, and has its own processor, memory, and disks
(Figure 33 on page 81). All the machines are connected by a communications
facility. This environment is referred to by many different names, including: cluster,
cluster of uniprocessors, massively parallel processing (MPP) environment, and
shared-nothing configuration. The latter name accurately reflects the arrangement
of resources in this environment. Unlike an SMP environment, an MPP
environment has no shared memory or disks. The MPP environment removes the
limitations introduced through the sharing of memory and disks.

Symmetric multiprocessor
(SMP) environment

Disks

Database partition

Memory

CPU

CPU

CPU

CPU

Figure 32. Single partition database symmetric multiprocessor environment

80 Partitioning and Clustering Guide

A partitioned database environment allows a database to remain a logical whole,
despite being physically divided across more than one database partition. The fact
that data is distributed remains transparent to most users. Work can be divided
among the database managers; each database manager in each database partition
works against its own part of the database.

Capacity and scalability

In this environment you can add more database partitions to your configuration.
On some platforms the maximum number is 512 database partitions. However,
there might be practical limits on managing a high number of machines and
instances.

If you have reached maximum capacity or scalability, you can consider moving to
a system where each database partition has multiple processors.

Database partitions with multiple processors

An alternative to a configuration in which each database partition has a single
processor, is a configuration in which each database partition has multiple
processors. This is known as an SMP cluster (Figure 34 on page 82).

This configuration combines the advantages of SMP and MPP parallelism. This
means that a query can be performed in a single database partition across multiple
processors. It also means that a query can be performed in parallel across multiple
database partitions.

Disks DisksDisks

Uniprocessor
environment

Uniprocessor
environment

Uniprocessor
environment

. . .

Communications
facility

Memory MemoryMemory

CPU CPUCPU

Database partition Database partitionDatabase partition

Figure 33. Massively parallel processing (MPP) environment

Chapter 4. Parallel database systems 81

Capacity and scalability

In this environment you can add more database partitions, and you can add more
processors to existing database partitions.

Logical database partitions

A logical database partition differs from a physical partition in that it is not given
control of an entire machine. Although the machine has shared resources, database
partitions do not share the resources. Processors are shared but disks and memory
are not.

Logical database partitions provide scalability. Multiple database managers running
on multiple logical partitions can make fuller use of available resources than a
single database manager can. Figure 35 on page 83 illustrates the fact that you can
gain more scalability on an SMP machine by adding more database partitions; this
is particularly true for machines with many processors. By distributing the
database, you can administer and recover each database partition separately.

CPU

CPU

CPU

CPU

Memory

CPU

CPU

CPU

CPU

Memory

Communications
facility

SMP environment SMP environment

Disks Disks

Database partition Database partition

Figure 34. Several symmetric multiprocessor (SMP) environments in a cluster

82 Partitioning and Clustering Guide

Figure 36 on page 84 illustrates that you can multiply the configuration shown in
Figure 35 to increase processing power.

Disks Disks

Big SMP environment

Database
partition 1

Database
partition 2

Memory Memory

CPU CPU

CPU CPU

Communications
facility

Figure 35. Partitioned database with symmetric multiprocessor environment

Chapter 4. Parallel database systems 83

Note: The ability to have two or more database partitions coexist on the same
machine (regardless of the number of processors) allows greater flexibility in
designing high availability configurations and failover strategies. Upon machine
failure, a database partition can be automatically moved and restarted on a second
machine that already contains another database partition of the same database.

Summary of parallelism best suited to each hardware
environment

The following table summarizes the types of parallelism best suited to take
advantage of the various hardware environments.

Table 8. Types of Possible Parallelism in Each Hardware Environment

Hardware Environment I/O Parallelism Intra-Query Parallelism

Intra-Partition
Parallelism

Inter-Partition
Parallelism

Single Database Partition, Single
Processor

Yes No 1 No

Single Database Partition, Multiple
Processors (SMP)

Yes Yes No

Multiple Database Partitions, One
Processor (MPP)

Yes No 1 Yes

Communications
facility

Disks DisksDisks Disks

Big SMP
environment

Big SMP
environment

Database
partition 1

Database
partition 1

Database
partition 2

Database
partition 2

Memory MemoryMemory Memory

CPU CPUCPU CPU

CPU CPUCPU CPU

Communications
facility

Communications
facility

Figure 36. Partitioned database with symmetric multiprocessor environments clustered
together

84 Partitioning and Clustering Guide

Table 8. Types of Possible Parallelism in Each Hardware Environment (continued)

Hardware Environment I/O Parallelism Intra-Query Parallelism

Intra-Partition
Parallelism

Inter-Partition
Parallelism

Multiple Database Partitions,
Multiple Processors (cluster of
SMPs)

Yes Yes Yes

Logical Database Partitions Yes Yes Yes
1 There can be an advantage to setting the degree of parallelism (using one of the
configuration parameters) to some value greater than one, even on a single processor
system, especially if your queries are not fully using the CPU (for example, if they are I/O
bound).

Chapter 4. Parallel database systems 85

86 Partitioning and Clustering Guide

Part 2. Installation considerations

© Copyright IBM Corp. 2012 87

88 Partitioning and Clustering Guide

Chapter 5. Installation prerequisites

Installing DB2 database servers using the DB2 Setup wizard
(Windows)

This task describes how to start the DB2 Setup wizard on Windows. Use the DB2
Setup wizard to define your installation and install your DB2 database product on
your system.

Before you begin

Before you start the DB2 Setup wizard:
v If you are planning on setting up a partitioned database environment, refer to

"Setting up a partitioned database environment".
v Ensure that your system meets installation, memory, and disk requirements.
v If you are planning to use LDAP to register the DB2 server in Windows

operating systems Active Directory, extend the directory schema before you
install, otherwise you must manually register the node and catalog the
databases. For more information, see the “Extending the Active Directory
Schema for LDAP directory services (Windows)” topic.

v You must have a local Administrator user account with the recommended user
rights to perform the installation. In DB2 database servers where LocalSystem
can be used as the DAS and DB2 instance user and you are not using the
database partitioning feature, a non-administrator user with elevated privileges
can perform the installation.

Note: If a non-Administrator user account is going to do the product
installation, then the VS2010 runtime library must be installed before attempting
to install a DB2 database product. The VS2010 runtime library is needed on the
operating system before the DB2 database product can be installed. The VS2010
runtime library is available from the Microsoft runtime library download
website. There are two choices: choose vcredist_x86.exe for 32-bit systems or
vcredist_x64.exe for 64-bit systems.

v Although not mandatory, it is recommended that you close all programs so that
the installation program can update any files on the computer without requiring
a reboot.

v Installing DB2 products from a virtual drive or an unmapped network drive
(such as \\hostname\sharename in Windows Explorer) is not supported. Before
attempting to install DB2 products, you must map the network drive to a
Windows drive letter (for example, Z:).

Restrictions
v You cannot have more than one instance of the DB2 Setup wizard running in

any user account.
v The DB2 copy name and the instance name cannot start with a numeric

value.The DB2 copy name is limited to 64 English characters consisting of the
characters A-Z, a-z and 0-9.

v The DB2 copy name and the instance name must be unique among all DB2
copies.

© Copyright IBM Corp. 2012 89

v The use of XML features is restricted to a database that has only one database
partition.

v No other DB2 database product can be installed in the same path if one of the
following is already installed:
– IBM® Data Server Runtime Client
– IBM Data Server Driver Package
– DB2 Information Center

v The DB2 Setup wizard fields do not accept non-English characters.
v If you enable extended security on Windows Vista or Windows 2008, or higher,

users must belong to the DB2ADMNS or DB2USERS group to run local DB2
commands and applications because of an extra security feature (User Access
Control) that limits the privileges that local administrators have by default. If
users do not belong to one of these groups, they will not have read access to
local DB2 configuration or application data.

Procedure

To start the DB2 Setup wizard:
1. Log on to the system with the local Administrator account that you have

defined for the DB2 installation.
2. If you have the DB2 database product DVD, insert it into the drive. If enabled,

the autorun feature automatically starts the DB2 Setup Launchpad. If the
autorun does not work, use Windows Explorer to browse the DB2 database
product DVD and double-click the setup icon to start the DB2 Setup
Launchpad.

3. If you downloaded the DB2 database product from Passport Advantage®, run
the executable file to extract the DB2 database product installation files. Use
Windows Explorer to browse the DB2 installation files and double-click the
setup icon to start the DB2 Setup Launchpad.

4. From the DB2 Setup launchpad, you can view installation prerequisites and the
release notes, or you can proceed directly to the installation. You might want to
review the installation prerequisites and release notes for late-breaking
information.

5. Click Install a Product and the Install a Product window displays the products
available for installation.
If you have no existing DB2 database products installed on your computer,
launch the installation by clicking Install New. Proceed through the installation
following the DB2 Setup wizard prompts.
If you have at least one existing DB2 database product installed on your
computer, you can:
v Click Install New to create a new DB2 copy.
v Click Work with Existing to update an existing DB2 copy, to add function to

an existing DB2 copy, upgrade an existing DB2 Version 9.5 and Version 9.7
copy, or to install an add-on product.

6. The DB2 Setup wizard determines the system language, and launch the setup
program for that language. Online help is available to guide you through the
remaining steps. To invoke the online help, click Help or press F1. You can
click Cancel at any time to end the installation.

7. Sample panels when using the DB2 setup wizard lead you to the installation
process. See the related links.

90 Partitioning and Clustering Guide

Results

Your DB2 database product is installed, by default, in the Program_Files\IBM\
sqllib directory, where Program_Files represents the location of the Program Files
directory.

If you are installing on a system where this directory is already being used, the
DB2 database product installation path has _xx added to it, where xx are digits,
starting at 01 and increasing depending on how many DB2 copies you have
installed.

You can also specify your own DB2 database product installation path.

What to do next
v Verify your installation.
v Perform the necessary post-installation tasks.

For information about errors encountered during installation, review the
installation log file located in the My Documents\DB2LOG\ directory. The log file uses
the following format: DB2-ProductAbrrev-DateTime.log, for example, DB2-ESE-Tue
Apr 04 17_04_45 2012.log.

If this is a new DB2 product installation on Vista 64−bit, and you use a 32−bit OLE
DB provider, you must manually register the IBMDADB2 DLL. To register this
DLL, run the following command:
c:\windows\SysWOW64\regsvr32 /s c:\Program_Files\IBM\SQLLIB\bin\ibmdadb2.dll

where Program_Files represents the location of the Program Files directory.

If you want your DB2 database product to have access to DB2 documentation
either on your local computer or on another computer on your network, then you
must install the DB2 Information Center. The DB2 Information Center contains
documentation for the DB2 database system and DB2 related products. By default,
DB2 information is accessed from the web if the DB2 Information Center is not
locally installed.

IBM Data Studio can be installed by running the the DB2 Setup wizard

DB2 Express® Edition and DB2 Workgroup Server Edition memory limits
If you are installing DB2 Express Edition, the maximum allowed memory
for the instance is 4 GB.

If you are installing DB2 Workgroup Server Edition, the maximum allowed
memory for the instance is 64 GB.

The amount of memory allocated to the instance is determined by the
INSTANCE_MEMORY database manager configuration parameter.

Important notes when upgrading from Versions 9.5 or 9.7:

v The self tuning memory manager does not increase your overall
instance memory limit beyond the license limits.

Preparing the environment for a partitioned DB2 server
(Windows)

This topic describes the steps required to prepare your Windows environment for a
partitioned installation of the DB2 database product.

Chapter 5. Installation prerequisites 91

Before you begin

Each participating computer must have the same operating system.

Procedure

To prepare your Windows environment for installation:
1. Ensure that the primary computer and participating computers belong to the

same Windows domain. Check the domain to which the computer belongs by
using the System Properties dialog, accessible through the Control Panel.

2. Ensure that time and date settings on the primary computer and participating
computers are consistent. To be considered consistent, the difference in GMT
time between all computers must be no greater than one hour.
System date and time can be modified using the Date/Time Properties dialog,
accessible through the Control Panel. You can use the max_time_diff
configuration parameter to change this restriction. The default is max_time_diff
= 60, which allows a difference of less than 60 minutes.

3. Ensure that each computer object that participates in the partitioned database
environment has the "Trust computer for delegation" privilege flagged. You can
verify that the "Trust computer for delegation" check box on the General tab of
each computer's account Properties dialog box in the Active Directory Users
and Computers console is checked.

4. Ensure that all participating computers can communicate with each other using
TCP/IP:
a. On one participating computer, enter the hostname command, which will

return the hostname of the computer.
b. On another participating computer, enter the following command:

ping hostname

where hostname represents the hostname of the primary computer. If the test
is successful, you will receive output similar to the following:
Pinging ServerA.ibm.com [9.21.27.230] with 32 bytes of data:

Reply from 9.21.27.230: bytes=32 time<10ms TTL=128
Reply from 9.21.27.230: bytes=32 time<10ms TTL=128
Reply from 9.21.27.230: bytes=32 time<10ms TTL=128

Repeat these steps until you are sure that all participating computers can
communicate with each other using TCP/IP. Each computer must have a
static IP address.
If you are planning to use multiple network adapters, you can specify
which adapter to use to communicate between database partition servers.
Use thedb2nchg command to specify the netname field in the db2nodes.cfg
file after the installation is complete.

5. During the installation you will be asked to provide a DB2 Administration
Server user account. This is a local or domain user account that will be used by
the DB2 Administration Server (DAS). The DAS is an administration service
used to support the GUI tools and assist with administration tasks. You can
define a user now or have the DB2 Setup wizard create one for you. If you
want to create a new domain user using the DB2 Setup wizard, the account
used to perform the installation must have authority to create domain users.

6. On the primary computer, where you will install the instance-owning partition,
you must have a domain user account that belongs to the local Administrators
group. You will log on as this user when you install DB2 database products.

92 Partitioning and Clustering Guide

You must add the same user account to the local Administrators group on each
participating computer. This user must have the Act as part of the operating
system user right.

7. Ensure that all computers in the instance have the database directory on the
same local drive letter. You can check this condition by running the GET
DATABASE CONFIGURATION command and verifying the value of the dftdbpath
DBM configuration parameter.

8. During the installation you will be asked to provide a domain user account to
be associated with the DB2 instance. Every DB2 instance has one user assigned.
The DB2 database system logs on with this user name when the instance is
started. You can define a user now, or you can have the DB2 Setup wizard
create a new domain user for you.
When adding a new node to a partitioned environment the DB2 copy name
must be the same on all computers.
If you want to create a new domain user using the DB2 Setup wizard, the
account used to perform the installation must have authority to create domain
users. The instance user domain account must belong to the local Administrators
group on all the participating computers and will be granted the following user
rights:
v Act as part of the operating system
v Create token object
v Lock pages in memory
v Log on as a service
v Increase quotas
v Replace a process level token
If extended security was selected, the account must also be a member of the
DB2ADMNS group. The DB2ADMNS group already has these privileges so the
privileges are already explicitly added to the account.

Fast communications manager (Windows)

In multiple member environments, each member has a pair of FCM daemons to
support communication between members that is related to agent requests. One
daemon is for sending communications, and the other is for receiving. These
daemons and supporting infrastructure are activated when an instance is started.
FCM communication is also used for agents working within the same member; this
type of communication is also known as intra-member communication.

You can specify the number of FCM message buffers by using the fcm_num_buffers
database manager configuration parameter. You can specify the number of FCM
channels by using the fcm_num_channels database manager configuration
parameter. By default, the fcm_num_buffers and fcm_num_channels database
manager configuration parameters are set to AUTOMATIC. If the setting is AUTOMATIC,
which is the recommended setting, the FCM monitors resource usage and adjusts
resources to accommodate workload demand.

An overview of installing DB2 database servers (Linux and UNIX)
This topic outlines the steps for installing your DB2 server product on AIX,
HP-UX, Linux, and Solaris.

Chapter 5. Installation prerequisites 93

Procedure

To install your DB2 server product:
1. Review your DB2 product prerequisites.
2. Review DB2 upgrade information if applicable.
3. Modify kernel parameters on HP-UX, Linux, and Solaris. On all platforms,

except for Linux on x86_32, you must install a 64-bit kernel before proceeding
with the installation, otherwise the installation will fail.

4. Prepare the installation media:

Product DVD
If the DB2 product DVD does not automount, mount your DB2 product
DVD.

Installation image
If you downloaded an installation image, untar the file.

5. Install your DB2 product using one of the available methods:
v The DB2 Setup wizard
v A silent installation using a response file
v Payload file deployment
For DB2 servers, you can use the DB2 Setup wizard to perform installation and
configuration tasks, such as:
v Selecting DB2 installation type (typical, compact, or custom).
v Selecting DB2 product installation location.
v Install the languages that you can specify later as the default language for

the product interface and messages.
v Install or upgrade the IBM Tivoli® System Automation for Multiplatforms

(Linux and AIX).
v Setting up a DB2 instance.
v Setting up the DB2 Administration Server (including DAS user setup).
v Setting up the DB2 Text Search server.
v Setting up Administration contact and health monitor notification.
v Setting up and configuring your instance setup and configuration (including

instance user setup).
v Setting up Informix data source support.
v Preparing the DB2 tools catalog.
v Specify the DB2 Information Center port.
v Creating response files.

6. If you installed a DB2 server using a method other than the DB2 Setup wizard,
post-installation configuration steps are required.

DB2 installation methods
There are multiple methods for installing DB2 database products. Each installation
method is suited for specific circumstances.

The following table shows the installation methods that are available by operating
system.

94 Partitioning and Clustering Guide

Table 9. Installation method by operating system.

Installation method Windows Linux or UNIX

DB2 Setup wizard Yes Yes

Response file installation Yes Yes

db2_install command No Yes

Payload file deployment No Yes

Important: The command db2_install is deprecated and might be removed in a
future release. Use the db2setup command or the response file installation method
instead.

The following list describes DB2 installation methods.

DB2 Setup wizard
The DB2 Setup wizard is a GUI installer available on Linux, UNIX, and
Windows operating systems. The DB2 Setup wizard provides an
easy-to-use interface for installing DB2 database products and for
performing initial setup and configuration tasks.

The DB2 Setup wizard can also create DB2 instances and response files that
can be used to duplicate this installation on other machines.

Note: For non-root installations on Linux and UNIX operating systems,
only one DB2 instance can exist. The DB2 Setup wizard automatically
creates the non-root instance.

On Linux and UNIX operating systems, an X server is required to display
the DB2 Setup wizard.

Response file installation
A response file is a text file that contains setup and configuration values.
The file is read by the DB2 Setup program and the installation is
performed according to the values that have been specified.

A response file installation is also referred to as a silent installation.

Another advantage to response files is that they provide access to
parameters that cannot be set by using the DB2 Setup wizard.

On Linux and UNIX operating systems, if you embed the DB2 installation
image in your own application, it is possible for your application to receive
installation progress information and prompts from the installer in
computer-readable form. This behavior is controlled by the INTERACTIVE
response file keyword.

There are a number of ways to create a response file:

Using the response file generator
You can use the response file generator to create a response file
that replicates an existing installation. For example, you might
install an IBM data server client, fully configure the client, then
generate a response file to replicate the installation and
configuration of the client to other computers.

Using the DB2 Setup wizard
The DB2 Setup wizard can create a response file based on the
selections you make as you proceed through the DB2 Setup
wizard. Your selections are recorded in a response file that you can

Chapter 5. Installation prerequisites 95

save to a location on your system. If you select a partitioned
database installation, two response files are generated, one for the
instance-owning computer and one for participating computers.

One benefit of this installation method is that you can create a
response file without performing an installation. This feature can
be useful to capture the options required to install the DB2
database product. The response file can be used at a later time to
install the DB2 database product according to the exact options you
specified.

You can export a client or server profile with the db2cfexp
command to save your client or server configuration. Import the
profile by using the db2cfimp command. A client or server profile
exported with the db2cfexp command can also be imported during
a response file installation by using the CLIENT_IMPORT_PROFILE
keyword.

You should export the client or server profile after performing the
installation and cataloging any data sources.

Customizing the sample response files that are provided for each DB2
database product

An alternative to using the response file generator or the DB2
Setup wizard to create a response file is to manually modify a
sample response file. Sample response files are provided on the
DB2 database product DVD. The sample response files provide
details about all the valid keywords for each product.

db2_install command (Linux and UNIX operating systems only)
The db2_install command installs all components for the DB2 database
product you specify with the English interface support. You can select
additional languages to support with the -L parameter. You cannot select
or clear components.

Although the db2_install command installs all components for the DB2
database product you specify, it does not perform user and group creation,
instance creation, or configuration. This method of installation might be
preferred in cases where configuration is to be done after installation. To
configure your DB2 database product while installing it, consider using the
DB2 Setup wizard.

On Linux and UNIX operating systems, if you embed the DB2 installation
image in your own application, it is possible for your application to receive
installation progress information and prompts from the installer in
computer-readable form.

This installation method requires manual configuration after the product
files are deployed.

Remember: The command db2_install is deprecated and might be
removed in a future release.

Payload file deployment (Linux and UNIX only)
This method is an advanced installation method that is not recommended
for most users. It requires the user to physically install payload files. A
payload file is a compressed tarball that contains all of the files and
metadata for an installable component.

This installation method requires manual configuration after the product
files are deployed.

96 Partitioning and Clustering Guide

Note: DB2 database product installations are no longer operating system packages
on Linux and UNIX. As a result, you can no longer use operating system
commands for installation. Any existing scripts that you use to interface and query
with DB2 database product installations must change.

Installing DB2 servers using the DB2 Setup wizard (Linux and
UNIX)

This task describes how to start the DB2 Setup wizard on Linux and UNIX
operating systems. The DB2 Setup wizard is used to define your installation
preferences and to install your DB2 database product on your system.

Before you begin

Before you start the DB2 Setup wizard:
v If you are planning on setting up a partitioned database environment, refer to

“Setting up a partitioned database environment” in Installing DB2 Servers

v Ensure that your system meets installation, memory, and disk requirements.
v Ensure you have a supported browser installed.
v You can install a DB2 database server using either root or non-root authority. For

more information about non-root installation, see “Non-root installation
overview (Linux and UNIX)” in Installing DB2 Servers.

v The DB2 database product image must be available. You can obtain a DB2
installation image either by purchasing a physical DB2 database product DVD,
or by downloading an installation image from Passport Advantage.

v If you are installing a non-English version of a DB2 database product, you must
have the appropriate National Language Packages.

v The DB2 Setup wizard is a graphical installer. You must have X windows
software capable of rendering a graphical user interface for the DB2 Setup
wizard to run on your machine. Ensure that the X windows server is running.
Ensure that you have properly exported your display. For example, export
DISPLAY=9.26.163.144:0.

v If you are using security software in your environment, you must manually
create required DB2 users before you start the DB2 Setup wizard.

Restrictions
v You cannot have more than one instance of the DB2 Setup wizard running in

any user account.
v The use of XML features is restricted to a database that is defined with the code

set UTF-8 and has only one database partition.
v The DB2 Setup wizard fields do not accept non-English characters.
v For HP-UX 11i V2 on Itanium based HP Integrity Series Systems, users created

with Setup Wizard for DB2 instance owner, fenced user, or DAS cannot be
accessed with the password specified on DB2 Setup Wizard. After the setup
wizard is finished, you need to reset the password of those users. This does not
affect the instance or DAS creation with the setup wizard, therefore, you do not
need to re-create the instance or DAS.

Procedure

To start the DB2 Setup wizard:

Chapter 5. Installation prerequisites 97

1. If you have a physical DB2 database product DVD, change to the directory
where the DB2 database product DVD is mounted by entering the following
command:

cd /dvdrom

where /dvdrom represents the mount point of the DB2 database product DVD.
2. If you downloaded the DB2 database product image, you must extract and

untar the product file.
a. Extract the product file:

gzip -d product.tar.gz

where product is the name of the product that you downloaded.
b. Untar the product file:

On Linux operating systems
tar -xvf product.tar

On AIX, HP-UX, and Solaris operating systems
gnutar -xvf product.tar

where product is the name of the product that you downloaded.
c. Change directory:

cd ./product

where product is the name of the product that you downloaded.

Note: If you downloaded a National Language Package, untar it into the same
directory. This will create the subdirectories (for example ./nlpack) in the same
directory, and allows the installer to automatically find the installation images
without prompting.

3. Enter the ./db2setup command from the directory where the database product
image resides to start the DB2 Setup wizard.

4. The IBM DB2 Setup Launchpad opens. From this window, you can view
installation prerequisites and the release notes, or you can proceed directly to
the installation. You can also review the installation prerequisites and release
notes for late-breaking information.

5. Click Install a Product and the Install a Product window will display the
products available for installation.
Launch the installation by clicking Install New. Proceed through the
installation following the DB2 Setup wizard's prompts.

6. Sample panels when using the DB2 setup wizard will lead you to the
installation process. See the related links.
After you have initiated the installation, proceed through the DB2 Setup wizard
installation panels and make your selections. Installation help is available to
guide you through the remaining steps. To invoke the installation help, click
Help or press F1. You can click Cancel at any time to end the installation.

Results

For non-root installations, DB2 database products are always installed in the
$HOME/sqllib directory, where $HOME represents the non-root user's home
directory.

98 Partitioning and Clustering Guide

For root installations, DB2 database products are installed, by default, in one of the
following directories:

AIX, HP-UX, and Solaris
/opt/IBM/db2/V10.1

Linux /opt/ibm/db2/V10.1

If you are installing on a system where this directory is already being used, the
DB2 database product installation path will have _xx added to it, where _xx are
digits, starting at 01 and increasing depending on how many DB2 copies you have
installed.

You can also specify your own DB2 database product installation path.

DB2 installation paths have the following rules:
v Can include lowercase letters (a–z), uppercase letters (A–Z), and the underscore

character (_)
v Cannot exceed 128 characters
v Cannot contain spaces
v Cannot contain non-English characters

The installation log files are:
v The DB2 setup log file. This file captures all DB2 installation information

including errors.
– For root installations, the DB2 setup log file name is db2setup.log.
– For non-root installations, the DB2 setup log file name is

db2setup_username.log, where username is the non-root user ID under which
the installation was performed.

v The DB2 error log file. This file captures any error output that is returned by
Java (for example, exceptions and trap information).
– For root installations, the DB2 error log file name is db2setup.err.
– For non-root installations, the DB2 error log file name is

db2setup_username.err, where username is the non-root user ID under which
the installation was performed.

By default, these log files are located in the /tmp directory. You can specify the
location of the log files.

There is no longer a db2setup.his file. Instead, the DB2 installer saves a copy of
the DB2 setup log file in the DB2_DIR/install/logs/ directory, and renames it
db2install.history. If the name already exists, then the DB2 installer renames it
db2install.history.xxxx, where xxxx is 0000-9999, depending on the number of
installations you have on that machine.

Each installation copy has a separate list of history files. If an installation copy is
removed, the history files under this install path will be removed as well. This
copying action is done near the end of the installation and if the program is
stopped or aborted before completion, then the history file will not be created.

What to do next
v Verify your installation.
v Perform the necessary post-installation tasks.

Chapter 5. Installation prerequisites 99

IBM Data Studio can be installed by running the the DB2 Setup wizard

National Language Packs can also be installed by running the ./db2setup
command from the directory where the National Language Pack resides, after a
DB2 database product has been installed.

On Linux x86, if you want your DB2 database product to have access to DB2
documentation either on your local computer or on another computer on your
network, then you must install the DB2 Information Center. The DB2 Information
Center contains documentation for the DB2 database system and DB2 related
products.

DB2 Express Edition and DB2 Workgroup Server Edition memory limits
If you are installing DB2 Express Edition, the maximum allowed memory
for the instance is 4 GB.

If you are installing DB2 Workgroup Server Edition, the maximum allowed
memory for the instance is 64 GB.

The amount of memory allocated to the instance is determined by the
INSTANCE_MEMORY database manager configuration parameter.

Important notes when upgrading from Versions 9.5 or 9.7:

v If the memory configuration for your Versions 9.5 or 9.7 DB2
database product exceeds the allowed limit, the DB2 database
product might not start after upgrading to the current version.

v The self tuning memory manager will not increase your overall
instance memory limit beyond the license limits.

Fast communications manager (Linux and UNIX)
The fast communications manager (FCM) provides communications support for
partitioned database environments.

In multiple member environments, each member has a pair of FCM daemons to
support communication between members that is related to agent requests. One
daemon is for sending communications, and the other is for receiving. These
daemons and supporting infrastructure are activated when an instance is started.
FCM communication is also used for agents working within the same member; this
type of communication is also known as intra-member communication.

The FCM daemon collects information about communication activities. You can
obtain information about FCM communications by using the database system
monitor. If communications fail between members or if they re-establish
communications, the FCM daemons update monitor elements with this
information. The FCM daemons also trigger the appropriate action for this event.
An example of an appropriate action is the rollback of an affected transaction. You
can use the database system monitor to help you set the FCM configuration
parameters.

You can specify the number of FCM message buffers by using the fcm_num_buffers
database manager configuration parameter. You can specify the number of FCM
channels by using the fcm_num_channels database manager configuration
parameter. By default, the fcm_num_buffers and fcm_num_channels database
manager configuration parameters are set to AUTOMATIC. If the setting is AUTOMATIC,
which is the recommended setting, the FCM monitors resource usage and adjusts
resources to accommodate workload demand.

100 Partitioning and Clustering Guide

Chapter 6. Before you install

Additional partitioned database environment preinstallation tasks
(Linux and UNIX)

Updating environment settings for a partitioned DB2
installation (AIX)

This task describes the environment settings that you need to update on each
computer that will participate in your partitioned database system.

Procedure

To update AIX environment settings:
1. Log on to the computer as a user with root user authority.
2. Set the AIX maxuproc (maximum number of processes per user) device attribute

to 4096 by entering the following command:
chdev -l sys0 -a maxuproc=’4096’

Note: A bosboot/reboot may be required to switch to the 64-bit kernel if a
different image is being run.

3. Set the TCP/IP network parameters on all the workstations that are
participating in your partitioned database system to the following values. These
values are the minimum values for these parameters. If any of the
network-related parameters are already set to a higher value, do not change it.

thewall = 65536
sb_max = 1310720
rfc1323 = 1
tcp_sendspace = 221184
tcp_recvspace = 221184
udp_sendspace = 65536
udp_recvspace = 65536
ipqmaxlen = 250
somaxconn = 1024

To list the current settings of all network-related parameters, enter the
following command:

no -a | more

To set a parameter, enter the follow command:
no -o parameter_name=value

where:
v parameter_name represents the parameter you want to set.
v value represents the value that you want to set for this parameter.
For example, to set the tcp_sendspace parameter to 221184, enter the following
command:

no -o tcp_sendspace=221184

4. If you are using a high speed interconnect, you must set the spoolsize and
rpoolsize for css0 to the following values:

© Copyright IBM Corp. 2012 101

spoolsize 16777216
rpoolsize 16777216

To list the current settings of these parameters, enter the following command:
lsattr -l css0 -E

To set these parameters, enter the following commands:
/usr/lpp/ssp/css/chgcss -l css0 -a spoolsize=16777216
/usr/lpp/ssp/css/chgcss -l css0 -a rpoolsize=16777216

If you are not using the /tftpboot/tuning.cst file to tune your system, you
can use the DB2DIR/misc/rc.local.sample sample script file, where DB2DIR is
path where the DB2 database product has been installed, to update the
network-related parameters after installation. To update the network-related
parameters using the sample script file after installation, perform the following
steps:
a. Copy this script file to the /etc directory and make it executable by root by

entering the following commands:
cp /usr/opt/db2_09_01/misc/rc.local.sample /etc/rc.local
chown root:sys /etc/rc.local
chmod 744 /etc/rc.local

b. Review the /etc/rc.local file and update it if necessary.
c. Add an entry to the /etc/inittab file so that the /etc/rc.local script is

executed whenever the machine is rebooted. You can use the mkitab
command to add an entry to the /etc/inittab file. To add this entry, enter
the following command:

mkitab "rclocal:2:wait:/etc/rc.local > /dev/console 2>&1"

d. Ensure that /etc/rc.nfs entry is included in the /etc/inittab file by
entering the following command:

lsitab rcnfs

e. Update the network parameters without rebooting your system by entering
the following command:

/etc/rc.local

5. Ensure that you have enough paging space for a partitioned installation of DB2
Enterprise Server Edition to run. If you do not have sufficient paging space, the
operating system will kill the process that is using the most virtual memory
(this is likely to be one of the DB2 processes). To check for available paging
space, enter the following command:

lsps -a

This command will return output similar to the following:
Page Space Physical Volume Volume Group Size %Used Active Auto Type
paging00 hdisk1 rootvg 60MB 19 yes yes lv
hd6 hdisk0 rootvg 60MB 21 yes yes lv
hd6 hdisk2 rootvg 64MB 21 yes yes lv

The paging space available should be equal to twice the amount of physical
memory installed on your computer.

6. If you are creating a small to intermediate size partitioned database system, the
number of network file system daemons (NFSDs) on the instance-owning
computer should be close to:

of biod on a computer × # of computers in the instance

102 Partitioning and Clustering Guide

Ideally, you should run 10 biod processes on every computer. According to the
preceding formula, on a four computer system with 10 biod processes, you use
40 NFSDs.
If you are installing a larger system, you can have up to 120 NFSDs on the
computer.
For additional information about NFS, refer to your NFS documentation.

Setting up a working collective to distribute commands to
multiple AIX nodes

In a partitioned database environment on AIX, you can set up a working collective
to distribute commands to the set of System p® SP workstations that participate in
your partitioned database system. Commands can be distributed to the
workstations by the dsh command.

Before you begin

This can be useful when installing or administrating a partitioned database system
on AIX, to enable you to quickly execute the same commands on all the computers
in your environment with less opportunity for error.

You must know the host name of each computer that you want to include in the
working collective.

You must be logged on to the Control workstation as a user with root user
authority.

You must have a file that lists the host names for all of the workstations that will
participate in your partitioned database system.

Procedure

To set up the working collective to distribute commands to a list of workstations:
1. Create a file called nodelist.txt that will list the host names for all of the

workstations that will participate in the working collective.
For example, assume that you wanted to create a working collective with two
workstations called workstation1 and workstation2. The contents of
nodelist.txt would be:
workstation1
workstation2

2. Update the working collective environment variable. To update this list, enter
the following command:
export DSH_NODE_LIST=path/nodelist.txt

where path is the location where nodelist.txt was created, and nodelist.txt is
the name of the file that you created that lists the workstations in the working
collective.

3. Verify that the names in the working collective are indeed the workstations that
you want, by entering the following command:
dsh -q

You will receive output similar to the following:

Chapter 6. Before you install 103

Working collective file /nodelist.txt:
workstation1
workstation2
Fanout: 64

Verifying that NFS is running (Linux and UNIX)
Before setting up a database partitioned environment, you should verify that
Network File System (NFS) is running on each computer that will participate in
your partitioned database system.

Before you begin

NFS must be running on each computer.

Procedure

To verify that NFS is running on each computer:
v AIX operating systems:

Type the following command on each computer:
lssrc -g nfs

The Status field for NFS processes should indicate active. After you have
verified that NFS is running on each system, you should check for the specific
NFS processes required by DB2 database products. The required processes are:

rpc.lockd
rpc.statd

v HP-UX and Solaris operating systems:
Type the following command on each computer:

showmount -e hostname

Enter the showmount command without the hostname parameter to check the local
system. If NFS is not active you will receive a message similar to the following:

showmount: ServerA: RPC: Program not registered

After you have verified that NFS is running on each system, you should check
for the specific NFS processes required by DB2 database products:

rpc.lockd
rpc.statd

You can use the following commands to check for these processes:
ps -ef | grep rpc.lockd
ps -ef | grep rpc.statd

v Linux operating systems:
Type the following command on each computer:

showmount -e hostname

Enter the showmount command without the hostname parameter to check the local
system.
If NFS is not active you will receive a message similar to the following:

showmount: ServerA: RPC: Program not registered

104 Partitioning and Clustering Guide

After you have verified that NFS is running on each system, you should check
for the specific NFS processes required by DB2 database products. The required
process is rpc.statd.
You can use the ps -ef | grep rpc.statd commands to check for this process.

If these processes are not running, consult your operating system documentation.

Verifying port range availability on participating computers
(Linux and UNIX)

This task describes the steps required to verify port range availability on
participating computers. The port range is used by the Fast Communications
Manager (FCM). FCM is a feature of DB2 that handles communications between
database partition servers.

Before you begin

Verifying the port range availability on participating computers should be done
after you install the instance-owning database partition server and before you
install any participating database partition servers.

When you install the instance-owning database partition server on the primary
computer, DB2 reserves a port range according to the specified number of logical
database partition servers participating in partitioned database environment. The
default range is four ports. For each server that participates in the partitioned
database environment, you must manually configure the /etc/services file for the
FCM ports. The range of the FCM ports depends on how many logical partitions
you want to use on the participating computer. A minimum of two entries are
required, DB2_instance and DB2_instance_END. Other requirements for the FCM
ports specified on participating computers are:
v The starting port number must match the starting port number of the primary

computer
v Subsequent ports must be sequentially numbered
v Specified port numbers must be free

To make changes to the services file, you require root user authority.

Procedure

To verify the port range availability on participating computers:
1. Open the services file located in the /etc/services directory.
2. Locate the ports reserved for the DB2 Fast Communications Manager (FCM).

The entries should appear similar to the following example:
DB2_db2inst1 60000/tcp
DB2_db2inst1_1 60001/tcp
DB2_db2inst1_2 60002/tcp
DB2_db2inst1_END 60003/tcp

DB2 reserves the first four available ports after 60000.
3. On each participating computer, open the services file and verify that the

ports reserved for DB2 FCM in the services file of the primary computer are
not being used.

4. In the event that the required ports are in use on a participating computer,
identify an available port range for all computers and update each service file,
including the services file on the primary computer.

Chapter 6. Before you install 105

What to do next

After you install the instance-owning database partition server on the primary
computer, you must install your DB2 database product on the participating
database partition servers. You can use the response file generated for the
partitioning servers (default name is db2ese_addpart.rsp), you need to manually
configure the /etc/services files for the FCM ports. The range of the FCM ports
depend on how many logical partitions you want to use on the current machine.
The minimum entries are for DB2_ and DB2__END two entries with consecutive free
port numbers. The FCM port numbers used on each participating machines must
have the same starting port number, and subsequent ports must be sequentially
numbered.

Creating a file system for a partitioned database system
(Linux)

As part of setting up your partitioned database system on Linux operating
systems, you need to create a DB2 home file system. Then you must NFS export
the home file system and mount it from each computer participating in the
partitioned database system.

About this task

You must have a file system that is available to all machines that will participate in
your partitioned database system. This file system will be used as the instance
home directory.

For configurations that use more than one machine for a single database instance,
NFS (Network File System) is used to share this file system. Typically, one machine
in a cluster is used to export the file system using NFS, and the remaining
machines in the cluster mount the NFS file system from this machine. The machine
that exports the file system has the file system mounted locally.

For more command information, see your Linux distribution documentation.

Procedure

To create, NFS export, and NFS mount the DB2 home file system, perform the
following steps:
1. On one machine, select a disk partition or create one using fdisk.
2. Using a utility like mkfs, create a file system on this partition. The file system

should be large enough to contain the necessary DB2 program files as well as
enough space for your database needs.

3. Locally mount the file system you have just created and add an entry to the
/etc/fstab file so that this file system is mounted each time the system is
rebooted. For example:
/dev/hda1 /db2home ext3 defaults 1 2

4. To automatically export an NFS file system on Linux at boot time, add an entry
to the /etc/exports file. Be sure to include all of the host names participating
in the cluster as well as all of the names that a machine might be known as.
Also, ensure that each machine in the cluster has root authority on the exported
file system by using the "root" option.
The /etc/exports file is an ASCII file which contains the following type of
information:
/db2home machine1_name(rw) machine2_name(rw)

106 Partitioning and Clustering Guide

To export the NFS directory, run
/usr/sbin/exportfs -r

5. On each of the remaining machines in the cluster, add an entry to the
/etc/fstab file to NFS mount the file system automatically at boot time. As in
the following example, when you specify the mount point options, ensure that
the file system is mounted at boot time, is read-write, is mounted hard,
includes the bg (background) option, and that setuid programs can be run
properly.
fusion-en:/db2home /db2home nfs rw,timeo=7,

hard,intr,bg,suid,lock

where fusion-en represents the machine name.
6. NFS mount the exported file system on each of the remaining machines in the

cluster. Enter the following command:
mount /db2home

If the mount command fails, use the showmount command to check the status of
the NFS server. For example:
showmount -e fusion-en

where fusion-en represents the machine name.
This showmount command should list the file systems which are exported from
the machine named fusion-en. If this command fails, the NFS server may not
have been started. Run the following command as root on the NFS server to
start the server manually:
/etc/rc.d/init.d/nfs restart

Assuming the present run level is 3, you can have this command run
automatically at boot time by renaming K20nfs to S20nfs under the following
directory: /etc/rc.d/rc3.d.

Results

By performing these steps, you have completed the following tasks:
1. On a single computer in the partitioned database environment, you have

created a file system to be used as the instance and home directory.
2. If you have a configuration that uses more than one machine for a single

database instance, you have exported this file system using NFS.
3. You have mounted the exported file system on each participating computer.

Creating a DB2 home file system for a partitioned database
system (AIX)

As part of setting up your partitioned database system, you need to create a DB2
home file system. Then you must NFS export the home file system and mount it
from each computer participating in the partitioned database system.

Before you begin

It is recommended that you create a home file system that is as large as the content
on the DB2 database product DVD. You can use the following command to check
the size, KB:

du -sk DVD_mounting_point

Chapter 6. Before you install 107

A DB2 instance will require at least 200 MB of space. If you do not have enough
free space, you can mount the DB2 database product DVD from each participating
computer as an alternative to copying the contents to disk.

You must have:
v root authority to create a file system
v Created a volume group where your file system is to be physically located.

Procedure

To create, NFS export, and NFS mount the DB2 home file system, perform the
following steps:
1. Create the DB2 home file system.

Log on to the primary computer (ServerA) in your partitioned database system
as a user with root authority and create a home file system for your
partitioned database system called /db2home.
a. Enter the smit jfs command.
b. Click on the Add a Journaled File System icon.
c. Click on the Add a Standard Journaled File System icon.
d. Select an existing volume group from the Volume Group Name list where

you want this file system to physically reside.
e. Set the SIZE of file system (SIZE of file system (in 512–byte blocks)

(Num.) field). This sizing is enumerated in 512-byte blocks, so if you only
need to create a file system for the instance home directory, you can use 180
000, which is about 90 MB. If you need to copy the product DVD image
over to run the installation, you can create it with a value of 2 000 000,
which is about 1 GB.

f. Enter the mount point for this file system in the MOUNT POINT field. In
this example, the mount point is /db2home.

g. Set the Mount AUTOMATICALLY at system restart field to yes.
The remaining fields can be left to the default settings.

h. Click OK.
2. Export the DB2 home file system.

NFS export the /db2home file system so that it is available to all of the
computers that will participate in your partitioned database system.
a. Enter the smit nfs command.
b. Click on the Network File System (NFS) icon.
c. Click on the Add a Directory to Exports List icon.
d. Enter the path name and directory to export (for example, /db2home) in the

PATHNAME of directory to export field.
e. Enter the name of each workstation that will participate in your partitioned

database system in the HOSTS allowed root access field. Use a comma (,)
as the delimiter between each name. For example, ServerA, ServerB,
ServerC. If you are using a high speed interconnect, it is recommended that
you specify the high speed interconnect names for each workstation in this
field as well. The remaining fields can be left to the default settings.

f. Click OK.
3. Log out.
4. Mount the DB2 home file system from each participating computer.

108 Partitioning and Clustering Guide

Log on to each participating computer (ServerB, ServerC, ServerD) and NFS
mount the file system that you exported by performing the following steps:
a. Enter the smit nfs command.
b. Click on the Network File System (NFS) icon.
c. Click on the Add a File System for Mounting icon.
d. Enter the path name of the mount point in the PATHNAME of the mount

point (Path) field.
The path name of the mount point is where you should create the DB2
home directory. For this example, use/db2home.

e. Enter the path name of the remote directory in the PATHNAME of the
remote directory field.
For this example, you should enter the same value that you entered in the
PATHNAME of the mount point (Path) field.

f. Enter the hostname of the machine where you exported the file system in the
HOST where the remote directory resides field.
This value is the hostname of the machine where the file system that you are
mounting was created.
To improve performance, you may want to NFS mount the file system that
you created over a high speed interconnect. If you want to mount this file
system using a high speed interconnect, you must enter its name in the
HOST where remote directory resides field.
You should be aware that if the high speed interconnect ever becomes
unavailable for some reason, every workstation that participates in your
partitioned database system will lose access to the DB2 home directory.

g. Set the MOUNT now, add entry to /etc/filesystems or both? field to both.
h. Set the /etc/filesystems entry will mount the directory on system

RESTART field to yes.
i. Set the MODE for this NFS file system field to read-write.
j. Set the Mount file system soft or hard field to hard.

A soft mount means that the computer will not try for an infinite period of
time to remotely mount the directory. A hard mount means that your
machine will infinitely try to mount the directory. This could cause problems
in the event of a system crash. It is recommended that you set this field to
hard.
The remaining fields can be left to the default settings.

k. Ensure that this file system is mounted with the Allow execution of SUID
and sgid programs in this file system? field set to Yes. This is the default
setting.

l. Click OK.
m. Log out.

Required users for a DB2 pureScale Feature installation
(Linux)

Two users and groups are required to operate a DB2 databases environment on
Linux operating systems.

Before you begin
v You must have root user authority to create users and groups.
v If you manage users and groups with security software, additional steps might

be required when defining DB2 users and groups.

Chapter 6. Before you install 109

About this task

You need two users to create the DB2 pureScale instance:
v One user for the instance owner
v One user for the fenced user

You should use two different users with two different groups. Each of the two
users should have the same UID, GID, group name, and the home directory on all
the hosts. Ensure that if any of the users to be used exist on any of the hosts, they
much have matching properties. It is not necessary to create these required users
before you start the installation. You can create these users as you proceed through
the panels of the DB2 Setup wizard or specify them in your response file. If
existing users are used, they have to exist on all the hosts and meet the listed
requirements.

The user and group names used in the following instructions are the defaults, and
are documented in the following table. You can specify your own user and group
names as long as they adhere to your system naming rules and DB2 naming rules.

Table 10. Default users and groups

Required user User name Group name

Instance owner db2sdin1 db2iadm1

Fenced user db2sdfe1 db2fadm1

The user and group names used in the following instructions are documented in
the following table. You can specify your own user and group names if they
adhere to your system naming rules and DB2 naming rules.

If you are planning to use the DB2 Setup wizard to install your DB2 database
product, the DB2 Setup wizard will create these users for you.

Restrictions

The user names you create must conform to both your operating system's naming
rules, and those of the DB2 database system.

The same user name that you will create on different hosts must have the same
HOME directory. However, the user names must not already exist on any host. If
existing user names are used, the user names must exist on all hosts with the same
user ID (uid), group ID (gid), group name, and HOME directory.

Procedure

To create these users, perform the following steps:
1. Log on to a host.
2. Create a group for the instance owner (for example, db2iadm1) and a group that

will run UDFs or stored procedures (for example, db2fadm1) by entering the
following commands:

groupadd -g 999 db2iadm1
groupadd -g 998 db2fadm1

Ensure that the specific numbers you are using do not currently exist on any of
the machines.

110 Partitioning and Clustering Guide

3. Create a user that belongs to each group that you created in the previous step
using the following commands. The home directory for each user will be the
DB2 home directory that you previously created and shared (db2home).

useradd -u 1004 -g db2iadm1 -m -d /db2home/db2inst1 db2inst1
useradd -u 1003 -g db2fadm1 -m -d /db2home/db2fenc1 db2fenc1

4. Set an initial password for each user that you created by entering the following
commands:

passwd db2inst1 passwd db2fenc1

5. Log out.
6. Log on to the primary computer as each user that you created (db2inst1 and

db2fenc1). You might be prompted to change each user's password because this
is the first time that these users have logged onto the system.

7. Log out.
8. Create the exact same user and group accounts on each computer that will

participate in your database environment.

Creating required users for a DB2 server installation in a
partitioned database environment (AIX)

Three users and groups are required to operate DB2 databases in partitioned
database environments on AIX operating systems.

Before you begin
v You must have root user authority to create users and groups.
v If you manage users and groups with security software, additional steps might

be required when defining DB2 users and groups.

About this task

The user and group names used in the following instructions are documented in
the following table. You can specify your own user and group names if they
adhere to your system naming rules and DB2 naming rules.

If you are planning to use the DB2 Setup wizard to install your DB2 database
product, the DB2 Setup wizard will create these users for you.

Table 11. Required users and groups

Required user User name Group name

Instance owner db2inst1 db2iadm1

Fenced user db2fenc1 db2fadm1

DB2 administration server
user

dasusr1 dasadm1

If the DB2 administration server user is an existing user, this user must exist on all
the participating computers before the installation. If you use the DB2 Setup
wizard to create a new user for the DB2 administration server on the
instance-owning computer, then the new user is also created (if necessary) during
the response file installations on the participating computers. If the user already
exists on the participating computers, the user must have the same primary group.

Restrictions

Chapter 6. Before you install 111

The user names you create must conform to both your operating system's naming
rules, and those of the DB2 database system.

Procedure

To create all three of these users, perform the following steps:
1. Log on to the primary computer.
2. Create a group for the instance owner (for example, db2iadm1), the group that

will run UDFs or stored procedures (for example, db2fadm1), and the group that
will own the DB2 administration server (for example, dasadm1) by entering the
following commands:

mkgroup id=999 db2iadm1
mkgroup id=998 db2fadm1
mkgroup id=997 dasadm1

3. Create a user that belongs to each group that you created in the previous step
using the following commands. The home directory for each user will be the
DB2 home directory that you previously created and shared (db2home).
mkuser id=1004 pgrp=db2iadm1 groups=db2iadm1 home=/db2home/db2inst1

core=-1 data=491519 stack=32767 rss=-1 fsize=-1 db2inst1
mkuser id=1003 pgrp=db2fadm1 groups=db2fadm1 home=/db2home/db2fenc1

db2fenc1
mkuser id=1002 pgrp=dasadm1 groups=dasadm1 home=/home/dasusr1

dasusr1

4. Set an initial password for each user that you created by entering the following
commands:

passwd db2inst1
passwd db2fenc1
passwd dasusr1

5. Log out.
6. Log on to the primary computer as each user that you created (db2inst1,

db2fenc1, and dasusr1). You might be prompted to change each user's
password because this is the first time that these users have logged onto the
system.

7. Log out.
8. Create the exact same user and group accounts on each computer that will

participate in your partitioned database environment.

112 Partitioning and Clustering Guide

Chapter 7. Installing your DB2 server product

Setting up a partitioned database environment
This topic describes how to set up a partitioned database environment. You will
use the DB2 Setup wizard to install your instance-owning database server and to
create the response files that will in turn be used to create your participating
database servers.

Before you begin

Note: A partitioned database environment is not supported in non-root
installations.
v Ensure that you have the InfoSphere® Warehouse Activation CD license key that

will need to be copied over to all participating computers.
v The same number of consecutive ports must be free on each computer that is to

participate in the partitioned database environment. For example, if the
partitioned database environment will be comprised of four computers, then
each of the four computers must have the same four consecutive ports free.
During instance creation, a number of ports equal to the number of logical
partitions on the current server will be reserved in the /etc/services on Linux
and UNIX and in the %SystemRoot%\system32\drivers\etc\services on
Windows. These ports will be used by the Fast Communication Manager. The
reserved ports will be in the following format:

DB2_InstanceName
DB2_InstanceName_1
DB2_InstanceName_2
DB2_InstanceName_END

The only mandatory entries are the beginning (DB2_InstanceName) and ending
(DB2_InstanceName_END) ports. The other entries are reserved in the services
file so that other applications do not use these ports

v To support multiple participating DB2 database servers, the computer on which
you want to install DB2 must belong to an accessible domain. However, you can
add local partitions to this computer even though the computer doesn't belong
to a domain.

v On Linux and UNIX systems, a remote shell utility is required for partitioned
database systems. DB2 database systems support the following remote shell
utilities:
– rsh
– ssh

By default, DB2 database systems use rsh when executing commands on remote
DB2 nodes, for example, when starting a remote DB2 database partition. To use
the DB2 default, the rsh-server package must be installed. For more information,
see “Security considerations when installing and using the DB2 database
manager” in Database Security Guide.
If you choose to use the rsh remote shell utility, inetd (or xinetd) must be
installed and running as well. If you choose to use the ssh remote shell utility,
you need to set the DB2RSHCMD registry variable immediately after the DB2
installation is complete. If this registry variable is not set, rsh is used.

© Copyright IBM Corp. 2012 113

v On Linux and UNIX operating systems, ensure the hosts file under the etc
directory does not contain an entry for “127.0.0.2” if that IP address maps to the
fully qualified hostname of the machine.

About this task

A database partition is part of a database that consists of its own data, indexes,
configuration files, and transaction logs. A partitioned database is a database with
two or more partitions.

Procedure

To set up a partitioned database environment:
1. Install your instance-owning database server using the DB2 Setup wizard. For

detailed instructions, see the appropriate “Installing DB2 servers” topic for your
platform.
v On the Select installation, response files creation, or both window, ensure

that you select the Save my installation settings in a response files option.
After the installation has completed, two files will be copied to the directory
specified in the DB2 Setup wizard: PROD_ESE.rsp and PROD_ESE_addpart.rsp.
The PROD_ESE.rsp file is the response file for instance-owning database
servers. The PROD_ESE_addpart.rsp file is the response file for participating
database servers.

v On the Set up partitioning options for the DB2 instance window, ensure
that you select Multiple partition instance, and enter the maximum number
of logical partitions.

2. Make the DB2 install image available to all participating computers in the
partitioned database environment.

3. Distribute the participating database servers response file
(PROD_ESE_addpart.rsp).

4. Install a DB2 database server on each of the participating computers using the
db2setup command on Linux and UNIX, or the setup command on Windows:

Linux and UNIX
Go to the directory where the DB2 database product code is available
and run:
./db2setup -r /responsefile_directory/response_file_name

Windows
setup -u x:\responsefile_directory\response_file_name

For example, here is the command using the PROD_ESE_addpart.rsp as the
response file:

Linux and UNIX
Go to the directory where the DB2 database product code is available
and run:
./db2setup -r /db2home/PROD_ESE_addpart.rsp

where /db2home is the directory where you have copied the response
file.

Windows
setup -u c:\resp_files\PROD_ESE_addpart.rsp

114 Partitioning and Clustering Guide

where c:\resp_files\ is the directory where you have copied the
response file.

5. (Linux and UNIX only) Configure the db2nodes.cfg file. The DB2 installation
only reserves the maximum number of logical partitions you want to use for
the current computer, but does not configure the db2nodes.cfg file. If you do
not configure the db2nodes.cfg file, the instance is still a single partitioned
instance.

6. Update the services file on the participating servers to define the
corresponding FCM port for the DB2 instance. The services file is in the
following location:
v /etc/services on Linux and UNIX
v %SystemRoot%\system32\drivers\etc\services on Windows

7. For partitioned database environments on Windows 2000 or later, start the DB2
Remote Command Service security feature to protect your data and resources.
To be fully secure, start either the computer (if the service is running under the
context of the LocalSystem account) or a user for delegation (if the service is
being run under the logon context of a user).
To start the DB2 Remote Command Service security feature:
a. Open the Active Directory Users and Computers window on the domain

controller, click Start and select Programs > Administrative tools > Active
Directory Users and Computers

b. In the right window panel, right-click the computer or user to start, select
Properties

c. Click the General tab and select the Trust computer for delegation check
box. For user setting, click the Account tab and select the Account is trusted
for delegation check box in the Account option group. Ensure that the
Account is sensitive and cannot be delegated box has not been checked.

d. Click OK to start the computer or user for delegation.
Repeat these steps for each computer or user that needs to be started. You must
restart your computer for the security change to take effect.

Installing database partition servers on participating computers using
a response file (Windows)

In this task you will use the response file you created using the DB2 Setup wizard
to install database partition servers on participating computers.

Before you begin
v You have installed a DB2 copy on the primary computer using the DB2 Setup

wizard.
v You have created a response file for installing on participating computers and

copied it onto the participating computer.
v You must have administrative authority on participating computers.

Procedure

To install additional database partition servers using a response file:
1. Log to the computer that will participate in the partitioned database

environment with the local Administrator account that you have defined for the
DB2 installation.

Chapter 7. Installing your DB2 server product 115

2. Change to the directory containing the DB2 database product DVD. For
example:

cd c:\db2dvd

where db2dvd represents the name of the directory containing the DB2 database
product DVD.

3. From a command prompt, enter the setup command as follows:
setup -u responsefile_directory\response_file_name

In the following example, the response file, Addpart.file can be found in the
c:\responsefile directory. The command for this example, would be:
setup -u c:\reponsefile\Addpart.file

4. Check the messages in the log file when the installation finishes. You can find
the log file in the My Documents\DB2LOG\ directory. You should see output
similar to the following at the end of the log file:
=== Logging stopped: 5/9/2007 10:41:32 ===
MSI (c) (C0:A8) [10:41:32:984]: Product: DB2
Enterprise Server Edition - DB2COPY1 -- Installation
operation completed successfully.

5. When you install the instance-owning database partition server on the primary
computer, the DB2 database product reserves a port range according to the
specified number of logical database partition servers participating in
partitioned database environment. The default range is four ports. For each
server that participates in the partitioned database environment, you must
manually configure the /etc/services file for the FCM ports. The range of the
FCM ports depends on how many logical partitions you want to use on the
participating computer. A minimum of two entries are required, DB2_instance
and DB2_instance_END. Other requirements for the FCM ports specified on
participating computers are:
v The starting port number must match the starting port number of the

primary computer.
v Subsequent ports must be sequentially numbered.
v Specified port numbers must be free.

Results

You must log onto each participating computer and repeat these steps.

What to do next

If you want your DB2 database product to have access to DB2 documentation
either on your local computer or on another computer on your network, then you
must install the DB2 Information Center. The DB2 Information Center contains
documentation for the DB2 database system and DB2 related products.

Installing database partition servers on participating computers using
a response file (Linux and UNIX)

In this task you will use the response file you created using the DB2 Setup wizard
to install database partition servers on participating computers.

116 Partitioning and Clustering Guide

Before you begin
v You have installed DB2 database product on the primary computer using the

DB2 Setup wizard and have created a response file for installing on participating
computers.

v You must have root user authority on participating computers.

Procedure

To install additional database partition servers using a response file:
1. As root, log on to a computer that will participate in the partitioned database

environment.
2. Change to the directory where you copied the contents of the DB2 database

product DVD. For example:
cd /db2home/db2dvd

3. Enter the db2setup command as follows:
./db2setup -r /responsefile_directory/response_file_name

In this example, the response file, AddPartitionResponse.file, was saved to the
/db2home directory. The command for this situation would be:
./db2setup -r /db2home/AddPartitionResponse.file

4. Check the messages in the log file when the installation finishes.

Results

You must log onto each participating computer and perform a response file
installation.

What to do next

If you want your DB2 database product to have access to DB2 database
documentation either on your local computer or on another computer on your
network, then you must install the DB2 Information Center. The DB2 Information
Center contains documentation for the DB2 database system and DB2 database
related products.

Chapter 7. Installing your DB2 server product 117

118 Partitioning and Clustering Guide

Chapter 8. After you install

Verifying the installation

Verifying a partitioned database environment installation
(Windows)

To verify that your DB2 database server installation was successful, you will create
a sample database and run SQL commands to retrieve sample data and to verify
that the data has been distributed to all participating database partition servers.

Before you begin

You have completed all of the installation steps.

Procedure

To create the SAMPLE database:
1. Log on to the primary computer (ServerA) as user with SYSADM authority.
2. Enter the db2sampl command to create the SAMPLE database.

This command can take a few minutes to process. When the command prompt
returns, the process is complete.
The SAMPLE database is automatically cataloged with the database alias SAMPLE
when it is created.

3. Start the database manager by entering the db2start command.
4. Enter the following DB2 commands from a DB2 command window to connect

to the SAMPLE database, retrieve a list of all the employees that work in
department 20:

db2 connect to sample
db2 "select * from staff where dept = 20"

5. To verify that data has been distributed across database partition servers, enter
the following commands from a DB2 command window:

db2 "select distinct dbpartitionnum(empno) from employee"

The output will list the database partitions used by the employee table. The
specific output will depend on the number of database partitions in the
database and the number of database partitions in the database partition group
that is used by the table space where the employee table was created.

What to do next

After you have verified the installation, you can remove the SAMPLE database to
free up disk space. However, it is useful to keep the sample database, if you plan
to make use of the sample applications.

Enter the db2 drop database sample command to drop the SAMPLE database.

© Copyright IBM Corp. 2012 119

Verifying a partitioned database server installation (Linux and
UNIX)

Use the db2val tool to verify the core functions of a DB2 copy by validating
installation files, instances, database creation, connections to that database, and the
state of partitioned database environments.

For details, see “Validating your DB2 copy”. The state of a partitioned database
environment is only verified if there are at least 2 nodes. In addition, to verify that
your DB2 database server installation was successful, you will create a sample
database and run SQL commands to retrieve sample data and to verify that the
data has been distributed to all participating database partition servers.

Before you begin

Before following these steps, make sure you have completed all of the installation
steps.

Procedure

To create the SAMPLE database:
1. Log on to the primary computer (ServerA) as the instance-owning user. For this

example, db2inst1 is the instance-owning user.
2. Enter the db2sampl command to create the SAMPLE database. By default, the

sample database will be created in the instance-owner's home directory. In our
example /db2home/db2inst1/ is the instance owner's home directory. The
instance owner's home directory is the default database path.
This command can take a few minutes to process. There is no completion
message; when the command prompt returns, the process is complete.
The SAMPLE database is automatically cataloged with the database alias SAMPLE
when it is created.

3. Start the database manager by entering the db2start command.
4. Enter the following DB2 commands from a DB2 command window to connect

to the SAMPLE database, retrieve a list of all the employees that work in
department 20:

db2 connect to sample
db2 "select * from staff where dept = 20"

5. To verify that data has been distributed across database partition servers, enter
the following commands from a DB2 command window:
db2 "select distinct dbpartitionnum(empno) from employee"

The output will list the database partitions used by the employee table. The
specific output will depend on:
v The number of database partitions in the database
v The number of database partitions in the database partition group that is

used by the table space where the employee table was created

What to do next

After you have verified the installation, you can remove the SAMPLE database to
free up disk space. Enter the db2 drop database sample command to drop the
SAMPLE database.

120 Partitioning and Clustering Guide

Part 3. Implementation and maintenance

© Copyright IBM Corp. 2012 121

122 Partitioning and Clustering Guide

Chapter 9. Before creating a database

Setting up partitioned database environments
The decision to create a multi-partition database must be made before you create
your database. As part of the database design decisions you make, you will have
to determine if you should take advantage of the performance improvements
database partitioning can offer.

About this task

In a partitioned database environment, you still use the CREATE DATABASE command
or the sqlecrea() function to create a database. Whichever method is used, the
request can be made through any of the partitions listed in the db2nodes.cfg file.
The db2nodes.cfg file is the database partition server configuration file.

Except on the Windows operating system environment, any editor can be used to
view and update the contents of the database partition server configuration file
(db2nodes.cfg). On the Windows operating system environment, use db2ncrt and
db2nchg commands to create and change the database partition server
configuration file

Before creating a multi-partition database, you must select which database partition
will be the catalog partition for the database. You can then create the database
directly from that database partition, or from a remote client that is attached to
that database partition. The database partition to which you attach and execute the
CREATE DATABASE command becomes the catalog partition for that particular
database.

The catalog partition is the database partition on which all system catalog tables
are stored. All access to system tables must go through this database partition. All
federated database objects (for example, wrappers, servers, and nicknames) are
stored in the system catalog tables at this database partition.

If possible, you should create each database in a separate instance. If this is not
possible (that is, you must create more than one database per instance), you should
spread the catalog partitions among the available database partitions. Doing this
reduces contention for catalog information at a single database partition.

Note: You should regularly do a backup of the catalog partition and avoid putting
user data on it (whenever possible), because other data increases the time required
for the backup.

When you create a database, it is automatically created across all the database
partitions defined in the db2nodes.cfg file.

When the first database in the system is created, a system database directory is
formed. It is appended with information about any other databases that you create.
When working on UNIX, the system database directory is sqldbdir and is located
in the sqllib directory under your home directory, or under the directory where
DB2 database was installed. When working on UNIX, this directory must reside on
a shared file system, (for example, NFS on UNIX platforms) because there is only
one system database directory for all the database partitions that make up the

© Copyright IBM Corp. 2012 123

partitioned database environment. When working on Windows, the system
database directory is located in the instance directory.

Also resident in the sqldbdir directory is the system intention file. It is called
sqldbins, and ensures that the database partitions remain synchronized. The file
must also reside on a shared file system since there is only one directory across all
database partitions. The file is shared by all the database partitions making up the
database.

Configuration parameters have to be modified to take advantage of database
partitioning. Use the GET DATABASE CONFIGURATION and the GET DATABASE MANAGER
CONFIGURATION commands to find out the values of individual entries in a specific
database, or in the database manager configuration file. To modify individual
entries in a specific database, or in the database manager configuration file, use the
UPDATE DATABASE CONFIGURATION and the UPDATE DATABASE MANAGER CONFIGURATION
commands respectively.

The database manager configuration parameters affecting a partitioned database
environment include conn_elapse, fcm_num_buffers, fcm_num_channels,
max_connretries, max_coordagents, max_time_diff, num_poolagents, and
start_stop_time.

Creating node configuration files
If your database is to operate in a partitioned database environment, you must
create a node configuration file called db2nodes.cfg.

About this task

To enable database partitioning, the db2nodes.cfg file must be located in the
sqllib subdirectory of the home directory for the instance before you start the
database manager. This file contains configuration information for all database
partitions in an instance, and is shared by all database partitions for that instance.

Windows considerations

If you are using DB2 Enterprise Server Edition on Windows, the node
configuration file is created for you when you create the instance. You should not
attempt to create or modify the node configuration file manually. You can use the
db2ncrt command to add a database partition server to an instance. You can use
the db2ndrop command to drop a database partition server from an instance. You
can use the db2nchg command to modify a database partition server configuration
including moving the database partition server from one computer to another;
changing the TCP/IP host name; or, selecting a different logical port or network
name.

Note: You should not create files or directories under the sqllib subdirectory
other than those created by the database manager to prevent the loss of data if an
instance is deleted. There are two exceptions. If your system supports stored
procedures, put the stored procedure applications in the function subdirectory
under the sqllib subdirectory. The other exception is when user-defined functions
(UDFs) have been created. UDF executables are allowed in the same directory.

The file contains one line for each database partition that belongs to an instance.
Each line has the following format:
dbpartitionnum hostname [logical-port [netname]]

124 Partitioning and Clustering Guide

Tokens are delimited by blanks. The variables are:

dbpartitionnum
The database partition number, which can be from 0 to 999, uniquely
defines a database partition. Database partition numbers must be in
ascending sequence. You can have gaps in the sequence.

Once a database partition number is assigned, it cannot be changed.
(Otherwise the information in the distribution map, which specifies how
data is distributed, would be compromised.)

If you drop a database partition, its database partition number can be used
again for any new database partition that you add.

The database partition number is used to generate a database partition
name in the database directory. It has the format:
NODE nnnn

The nnnn is the database partition number, which is left-padded with
zeros. This database partition number is also used by the CREATE DATABASE
and DROP DATABASE commands.

hostname
The host name of the IP address for inter-partition communications. Use
the fully-qualified name for the host name. The /etc/hosts file also should
use the fully-qualified name. If the fully-qualified name is not used in the
db2nodes.cfg file and in the /etc/hosts file, you might receive error
message SQL30082N RC=3.

(There is an exception when netname is specified. In this situation,
netname is used for most communications, with host name being used
only for db2start, db2stop, and db2_all.)

logical-port
This parameter is optional, and specifies the logical port number for the
database partition. This number is used with the database manager
instance name to identify a TCP/IP service name entry in the etc/services
file.

The combination of the IP address and the logical port is used as a
well-known address, and must be unique among all applications to
support communications connections between database partitions.

For each host name, one logical-port must be either 0 (zero) or blank (which
defaults to 0). The database partition associated with this logical-port is the
default node on the host to which clients connect. You can override this
behaviour with the DB2NODE environment variable in db2profile script, or
with the sqlesetc() API.

netname
This parameter is optional, and is used to support a host that has more
than one active TCP/IP interface, each with its own host name.

The following example shows a possible node configuration file for a system on
which SP2EN1 has multiple TCP/IP interfaces, two logical partitions, and uses
SP2SW1 as the DB2 database interface. It also shows the database partition
numbers starting at 1 (rather than at 0), and a gap in the dbpartitionnum sequence:

Chapter 9. Before creating a database 125

Table 12. Database partition number example table.

dbpartitionnum hostname logical-port netname

1 SP2EN1.mach1.xxx.com 0 SP2SW1

2 SP2EN1.mach1.xxx.com 1 SP2SW1

4 SP2EN2.mach1.xxx.com 0

5 SP2EN3.mach1.xxx.com

You can update the db2nodes.cfg file using an editor of your choice. (The
exception is: an editor should not be used on Windows.) You must be careful,
however, to protect the integrity of the information in the file, as database
partitioning requires that the node configuration file is locked when you issue
START DBM and unlocked after STOP DBM ends the database manager. The START DBM
command can update the file, if necessary, when the file is locked. For example,
you can issue START DBM with the RESTART option or the ADD DBPARTITIONNUM
option.

Note: If the STOP DBM command is not successful and does not unlock the node
configuration file, issue STOP DBM FORCE to unlock it.

Format of the DB2 node configuration file
The db2nodes.cfg file is used to define the database partition servers that
participate in a DB2 instance. The db2nodes.cfg file is also used to specify the IP
address or host name of a high-speed interconnect, if you want to use a high-speed
interconnect for database partition server communication.

The format of the db2nodes.cfg file on Linux and UNIX operating systems is as
follows:
dbpartitionnum hostname logicalport netname resourcesetname

dbpartitionnum, hostname, logicalport, netname, and resourcesetname are defined in the
following section.

The format of the db2nodes.cfg file on Windows operating systems is as follows:
dbpartitionnum hostname computername logicalport netname resourcesetname

On Windows operating systems, these entries to the db2nodes.cfg are added by
the db2ncrt or START DBM ADD DBPARTITIONNUM commands. The entries can
also be modified by the db2nchg command. You should not add these lines directly
or edit this file.

dbpartitionnum
A unique number, between 0 and 999, that identifies a database partition
server in a partitioned database system.

To scale your partitioned database system, you add an entry for each
database partition server to the db2nodes.cfg file. The dbpartitionnum value
that you select for additional database partition servers must be in
ascending order, however, gaps can exist in this sequence. You can choose
to put a gap between the dbpartitionnum values if you plan to add logical
partition servers and want to keep the nodes logically grouped in this file.

This entry is required.

126 Partitioning and Clustering Guide

hostname
The TCP/IP host name of the database partition server for use by the
FCM. This entry is required. Canonical hostname is strongly recommended.

If host names are supplied in the db2nodes.cfg file, instead of IP addresses,
the database manager will dynamically try to resolve the host names.
Resolution can be either local or through lookup at registered Domain
Name Servers (DNS), as determined by the OS settings on the machine.

Starting with DB2 Version 9.1, both TCP/IPv4 and TCP/IPv6 protocols are
supported. The method to resolve host names has changed.

While the method used in pre-Version 9.1 releases resolves the string as
defined in the db2nodes.cfg file, the method in Version 9.1 or later tries to
resolve the Fully Qualified Domain Names (FQDN) when short names are
defined in the db2nodes.cfg file. Specifying short configured for fully
qualified host names, this may lead to unnecessary delays in processes that
resolve host names.

To avoid any delays in DB2 commands that require host name resolution,
use any of the following work arounds:
1. If short names are specified in the db2nodes.cfg files and the operating

system host name file, specify the short name and the fully qualified
domain name for host name in the operating system host files.

2. To use only IPv4 addresses when you know that the DB2 server listens
on an IPv4 port, issue the following command:
db2 catalog tcpip4

node db2tcp2 remote 192.0.32.67
server db2inst1 with "Look up IPv4 address from 192.0.32.67"

3. To use only IPv6 addresses when you know that the DB2 server listens
on an IPv6 port, issue the following command:
db2 catalog tcpip6

node db2tcp3 1080:0:0:0:8:800:200C:417A
server 50000
with "Look up IPv6 address from 1080:0:0:0:8:800:200C:417A"

logicalport
Specifies the logical port number for the database partition server. This
field is used to specify a particular database partition server on a
workstation that is running logical database partition servers.

DB2 reserves a port range (for example, 60000 - 60003) in the
/etc/services file for inter-partition communications at the time of
installation. This logicalport field in db2nodes.cfg specifies which port in
that range you want to assign to a particular logical partition server.

If there is no entry for this field, the default is 0. However, if you add an
entry for the netname field, you must enter a number for the logicalport
field.

If you are using logical database partitions, the logicalport value you specify
must start at 0 and continue in ascending order (for example, 0,1,2).

Furthermore, if you specify a logicalport entry for one database partition
server, you must specify a logicalport for each database partition server
listed in your db2nodes.cfg file.

This field is optional only if you are not using logical database partitions or
a high speed interconnect.

Chapter 9. Before creating a database 127

netname
Specifies the host name or the IP address of the high speed interconnect for
FCM communication.

If an entry is specified for this field, all communication between database
partition servers (except for communications as a result of the db2start,
db2stop, and db2_all commands) is handled through the high speed
interconnect.

This parameter is required only if you are using a high speed interconnect
for database partition communications.

resourcesetname
The resourcesetname defines the operating system resource that the node
should be started in. The resourcesetname is for process affinity support,
used for Multiple Logical Nodes (MLNs). This support is provided with a
string type field formerly known as quadname.

This parameter is only supported on AIX, HP-UX, and Solaris Operating
System.

On AIX, this concept is known as "resource sets" and on Solaris Operating
System it is called "projects". Refer to your operating systems
documentation for more information about resource management.

On HP-UX, the resourcesetname parameter is the name of a PRM group.
Refer to "HP-UX Process Resource Manager. User Guide. (B8733-90007)"
documentation from HP for more information.

On Windows operating systems, process affinity for a logical node can be
defined through the DB2PROCESSORS registry variable.

On Linux operating systems, the resourcesetname column defines a number
that corresponds to a Non-Uniform Memory Access (NUMA) node on the
system. The system utility numactl must be available as well as a 2.6
Kernel with NUMA policy support.

The netname parameter must be specified if the resourcesetname parameter is
used.

Example configurations

Use the following example configurations to determine the appropriate
configuration for your environment.

One computer, four database partitions servers
If you are not using a clustered environment and want to have four
database partition servers on one physical workstation called ServerA,
update the db2nodes.cfg file as follows:

0 ServerA 0
1 ServerA 1
2 ServerA 2
3 ServerA 3

Two computers, one database partition server per computer
If you want your partitioned database system to contain two physical
workstations, called ServerA and ServerB, update the db2nodes.cfg file as
follows:

0 ServerA 0
1 ServerB 0

128 Partitioning and Clustering Guide

Two computers, three database partition server on one computer
If you want your partitioned database system to contain two physical
workstations, called ServerA and ServerB, and ServerA is running 3
database partition servers, update the db2nodes.cfg file as follows:

4 ServerA 0
6 ServerA 1
8 ServerA 2
9 ServerB 0

Two computers, three database partition servers with high speed switches
If you want your partitioned database system to contain two computers,
called ServerA and ServerB (with ServerB running two database partition
servers), and use a high speed interconnect called switch1 and switch2,
update the db2nodes.cfg file as follows:

0 ServerA 0 switch1
1 ServerB 0 switch2
2 ServerB 1 switch2

Examples using resourcesetname

These restrictions apply to the following examples:
v This example shows the usage of resourcesetname when there is no high speed

interconnect in the configuration.
v The netname is the fourth column and a hostname also can be specified on that

column where there is no switch name and you want to use resourcesetname. The
fifth parameter is resourcesetname if it is defined. The resource group specification
can only show as the fifth column in the db2nodes.cfg file. This means that for
you to specify a resource group, you must also enter a fourth column. The
fourth column is intended for a high speed switch.

v If you do not have a high speed switch or you do not want to use it, you must
then enter the hostname (same as the second column). In other words, the DB2
database management system does not support column gaps (or interchanging
them) in the db2nodes.cfg files. This restriction already applies to the first three
columns, and now it applies to all five columns.

AIX example

Here is an example of how to set up the resource set for AIX operating systems.

In this example, there is one physical node with 32 processors and 8 logical
database partitions (MLNs). This example shows how to provide process affinity to
each MLN.
1. Define resource sets in /etc/rset:

DB2/MLN1:
owner = db2inst1
group = system
perm = rwr-r-
resources = sys/cpu.00000,sys/cpu.00001,sys/cpu.00002,sys/cpu.00003

DB2/MLN2:
owner = db2inst1
group = system
perm = rwr-r-
resources = sys/cpu.00004,sys/cpu.00005,sys/cpu.00006,sys/cpu.00007

DB2/MLN3:
owner = db2inst1
group = system

Chapter 9. Before creating a database 129

perm = rwr-r-
resources = sys/cpu.00008,sys/cpu.00009,sys/cpu.00010,sys/cpu.00011

DB2/MLN4:
owner = db2inst1
group = system
perm = rwr-r-
resources = sys/cpu.00012,sys/cpu.00013,sys/cpu.00014,sys/cpu.00015

DB2/MLN5:
owner = db2inst1
group = system
perm = rwr-r-
resources = sys/cpu.00016,sys/cpu.00017,sys/cpu.00018,sys/cpu.00019

DB2/MLN6:
owner = db2inst1
group = system
perm = rwr-r-
resources = sys/cpu.00020,sys/cpu.00021,sys/cpu.00022,sys/cpu.00023

DB2/MLN7:
owner = db2inst1
group = system
perm = rwr-r-
resources = sys/cpu.00024,sys/cpu.00025,sys/cpu.00026,sys/cpu.00027

DB2/MLN8:
owner = db2inst1
group = system
perm = rwr-r-
resources = sys/cpu.00028,sys/cpu.00029,sys/cpu.00030,sys/cpu.00031

2. Enable memory affinity by typing the following command:
vmo -p -o memory_affinity=1

3. Give instance permissions to use resource sets:
chuser capabilities=

CAP_BYPASS_RAC_VMM,CAP_PROPAGATE,CAP_NUMA_ATTACH db2inst1

4. Add the resource set name as the fifth column in db2nodes.cfg:
1 regatta 0 regatta DB2/MLN1
2 regatta 1 regatta DB2/MLN2
3 regatta 2 regatta DB2/MLN3
4 regatta 3 regatta DB2/MLN4
5 regatta 4 regatta DB2/MLN5
6 regatta 5 regatta DB2/MLN6
7 regatta 6 regatta DB2/MLN7
8 regatta 7 regatta DB2/MLN8

HP-UX example

This example shows how to use PRM groups for CPU shares on a machine with 4
CPUs and 4 MLNs and 24% of CPU share per MLN, leaving 4% for other
applications. The DB2 instance name is db2inst1.
1. Edit GROUP section of /etc/prmconf:

OTHERS:1:4::
db2prm1:50:24::
db2prm2:51:24::
db2prm3:52:24::
db2prm4:53:24::

2. Add instance owner entry to /etc/prmconf:
db2inst1::::OTHERS,db2prm1,db2prm2,db2prm3,db2prm4

3. Initialize groups and enable CPU manager by entering the following command:

130 Partitioning and Clustering Guide

prmconfig -i
prmconfig -e CPU

4. Add PRM group names as a fifth column to db2nodes.cfg:
1 voyager 0 voyager db2prm1
2 voyager 1 voyager db2prm2
3 voyager 2 voyager db2prm3
4 voyager 3 voyager db2prm4

PRM configuration (steps 1-3) may be done using interactive GUI tool xprm.

Linux example

On Linux operating systems, the resourcesetname column defines a number that
corresponds to a Non-Uniform Memory Access (NUMA) node on the system. The
numactl system utility must be available in addition to a 2.6 kernel with NUMA
policy support. Refer to the man page for numactl for more information about
NUMA support on Linux operating systems.

This example shows how to set up a four node NUMA computer with each logical
node associated with a NUMA node.
1. Ensure that NUMA capabilities exist on your system.
2. Issue the following command:

$ numactl --hardware

Output similar to the following displays:
available: 4 nodes (0-3)
node 0 size: 1901 MB
node 0 free: 1457 MB
node 1 size: 1910 MB
node 1 free: 1841 MB
node 2 size: 1910 MB
node 2 free: 1851 MB
node 3 size: 1905 MB
node 3 free: 1796 MB

3. In this example, there are four NUMA nodes on the system. Edit the
db2nodes.cfg file as follows to associate each MLN with a NUMA node on the
system:
0 hostname 0 hostname 0
1 hostname 1 hostname 1
2 hostname 2 hostname 2
3 hostname 3 hostname 3

Solaris example

Here is an example of how to set up the project for Solaris Version 9.

In this example, there is 1 physical node with 8 processors: one CPU will be used
for the default project, three (3) CPUs will used by the Application Server, and four
(4) CPUs for DB2. The instance name is db2inst1.
1. Create a resource pool configuration file using an editor. For this example, the

file will be called pool.db2. Here's the content:
create system hostname
create pset pset_default (uint pset.min = 1)
create pset db0_pset (uint pset.min = 1; uint pset.max = 1)
create pset db1_pset (uint pset.min = 1; uint pset.max = 1)
create pset db2_pset (uint pset.min = 1; uint pset.max = 1)
create pset db3_pset (uint pset.min = 1; uint pset.max = 1)
create pset appsrv_pset (uint pset.min = 3; uint pset.max = 3)

Chapter 9. Before creating a database 131

create pool pool_default (string pool.scheduler="TS";
boolean pool.default = true)

create pool db0_pool (string pool.scheduler="TS")
create pool db1_pool (string pool.scheduler="TS")
create pool db2_pool (string pool.scheduler="TS")
create pool db3_pool (string pool.scheduler="TS")
create pool appsrv_pool (string pool.scheduler="TS")
associate pool pool_default (pset pset_default)
associate pool db0_pool (pset db0_pset)
associate pool db1_pool (pset db1_pset)
associate pool db2_pool (pset db2_pset)
associate pool db3_pool (pset db3_pset)
associate pool appsrv_pool (pset appsrv_pset)

2. Edit the /etc/project file to add the DB2 projects and appsrv project as
follows:

system:0::::
user.root:1::::
noproject:2::::
default:3::::
group.staff:10::::
appsrv:4000:App Serv project:root::project.pool=appsrv_pool
db2proj0:5000:DB2 Node 0 project:db2inst1,root::project.pool=db0_pool
db2proj1:5001:DB2 Node 1 project:db2inst1,root::project.pool=db1_pool
db2proj2:5002:DB2 Node 2 project:db2inst1,root::project.pool=db2_pool
db2proj3:5003:DB2 Node 3 project:db2inst1,root::project.pool=db3_pool

3. Create the resource pool: # poolcfg -f pool.db2.
4. Activate the resource pool: # pooladm -c

5. Add the project name as the fifth column in db2nodes.cfg file:
0 hostname 0 hostname db2proj0
1 hostname 1 hostname db2proj1
2 hostname 2 hostname db2proj2
3 hostname 3 hostname db2proj3

Specifying the list of machines in a partitioned database
environment

By default, the list of computers is taken from the database partition configuration
file, db2nodes.cfg.

About this task

Note: On Windows, to avoid introducing inconsistencies into the database
partition configuration file, do not edit it manually. To obtain the list of computers
in the instance, use the db2nlist command.

Procedure

To override the list of computers in db2nodes.cfg:
v Specify a path name to the file that contains the list of computers by exporting

(on Linux and UNIX operating systems) or setting (on Windows) the
environment variable RAHOSTFILE.

v Specify the list explicitly, as a string of names separated by spaces, by exporting
(on Linux and UNIX operating systems) or setting (on Windows) the
environment variable RAHOSTLIST.

Note: If both of these environment variables are specified, RAHOSTLIST takes
precedence.

132 Partitioning and Clustering Guide

Eliminating duplicate entries from a list of machines in a
partitioned database environment

If you are running multiple logical database partition servers on one computer,
your db2nodes.cfg file contains multiple entries for that computer.

About this task

In this situation, the rah command needs to know whether you want the command
to be executed only once on each computer or once for each logical database
partition listed in the db2nodes.cfg file. Use the rah command to specify
computers. Use the db2_all command to specify logical database partitions.

Note: On Linux and UNIX operating systems, if you specify computers, rah
normally eliminates duplicates from the computer list, with the following
exception: if you specify logical database partitions, db2_all prepends the
following assignment to your command:
export DB2NODE=nnn (for Korn shell syntax)

where nnn is the database partition number taken from the corresponding line in
the db2nodes.cfg file, so that the command is routed to the desired database
partition server.

When specifying logical database partitions, you can restrict the list to include all
logical database partitions except one, or specify only one using the <<-nnn< and
<<+nnn< prefix sequences. You might want to do this if you want to run a
command to catalog the database partition first, and when that has completed, run
the same command at all other database partition servers, possibly in parallel. This
is usually required when running the RESTART DATABASE command. You need to
know the database partition number of the catalog partition to do this.

If you execute RESTART DATABASE using the rah command, duplicate entries are
eliminated from the list of computers. However if you specify the ” prefix, then
duplicates are not eliminated, because it is assumed that use of the ” prefix implies
sending to each database partition server, rather than to each computer.

Updating the node configuration file (Linux and UNIX)
This task provides steps for updating the db2nodes.cfg file to include entries for
participating computers.

Before you begin
v The DB2 database product must be installed on all participating computers.
v A DB2 instance must exist on the primary computer.
v You must be a user with SYSADM authority.
v Review the configuration examples and file format information provided in the

Format of the DB2 node configuration file topic if either of the following conditions
apply:
– You plan to use a high speed switch for communication between database

partition servers
– Your partitioned configuration will have multiple logical partitions

Chapter 9. Before creating a database 133

About this task

The node configuration file (db2nodes.cfg), located in the instance owner's home
directory, contains configuration information that tells the DB2 database system
which servers participate in an instance of the partitioned database environment. A
db2nodes.cfg file exists for each instance in a partitioned database environment.

The db2nodes.cfg file must contain one entry for each server participating in the
instance. When you create an instance, the db2nodes.cfg file is automatically
created and an entry for the instance-owning server is added.

For example, when you created the DB2 instance using the DB2 Setup wizard, on
the instance-owning server ServerA, the db2nodes.cfg file is updated as follows:

0 ServerA 0

Restrictions

The hostnames used in the steps of the Procedure section must be fully qualified
hostnames.

Procedure

To update the db2nodes.cfg file:
1. Log on as the instance owner. For example, db2inst1 is the instance owner in

these steps.
2. Ensure that the DB2 instance is stopped by entering:

INSTHOME/sqllib/adm/db2stop

where INSTHOME is the home directory of the instance owner (the
db2nodes.cfg file is locked when the instance is running and can only be edited
when the instance is stopped).
For example, if your instance home directory is /db2home/db2inst1, enter the
following command:

/db2home/db2inst1/sqllib/adm/db2stop

3. Add an entry to the .rhosts file for each DB2 instance. Update the file by
adding the following:

hostname db2instance

where hostname is the TCP/IP host name of the database server and db2instance
is the name of the instance you use to access the database server.

4. Add an entry to the db2nodes.cfg file of each participating server. When you
first view the db2nodes.cfg file, it should contain an entry similar to the
following:

0 ServerA 0

This entry includes the database partition server number (node number), the
TCP/IP host name of the server where the database partition server resides,
and a logical port number for the database partition server.
For example, if you are installing a partitioned configuration with four
computers and a database partition server on each computer, the updated
db2nodes.cfg should appear similar to the following:

0 ServerA 0
1 ServerB 0
2 ServerC 0
3 ServerD 0

134 Partitioning and Clustering Guide

5. When you have finished updating the db2nodes.cfg file, enter the
INSTHOME/sqllib/adm/db2start command, where INSTHOME is the home
directory of the instance owner. For example, if your instance home directory is
/db2home/db2inst1, enter the following command:

/db2home/db2inst1/sqllib/adm/db2start

6. Log out.

Setting up multiple logical partitions
There are several situations in which it is advantageous to have several database
partition servers running on the same computer.

This means that the configuration can contain more database partitions than
computers. In these cases, the computer is said to be running multiple logical
partitions if they participate in the same instance. If they participate in different
instances, this computer is not hosting multiple logical partitions.

With multiple logical partition support, you can choose from three types of
configurations:
v A standard configuration, where each computer has only one database partition

server
v A multiple logical partition configuration, where a computer has more than one

database partition server
v A configuration where several logical partitions run on each of several

computers

Configurations that use multiple logical partitions are useful when the system runs
queries on a computer that has symmetric multiprocessor (SMP) architecture. The
ability to configure multiple logical partitions on a computer is also useful if a
computer fails. If a computer fails (causing the database partition server or servers
on it to fail), you can restart the database partition server (or servers) on another
computer using the START DBM DBPARTITIONNUM command. This ensures that user
data remains available.

Another benefit is that multiple logical partitions can use SMP hardware
configurations. In addition, because database partitions are smaller, you can obtain
better performance when performing such tasks as backing up and restoring
database partitions and table spaces, and creating indexes.

Configuring multiple logical partitions
There are two methods of configuring multiple logical partitions.

About this task
v Configure the logical partitions (database partitions) in the db2nodes.cfg file.

You can then start all the logical and remote partitions with the db2start
command or its associated API.

Note: For Windows, you must use db2ncrt to add a database partition if there
is no database in the system; or, db2start addnode command if there is one or
more databases. Within Windows, the db2nodes.cfg file should never be
manually edited.

v Restart a logical partition on another processor on which other logical partitions
are already running. This allows you to override the hostname and port number
specified for the logical partition in db2nodes.cfg.

Chapter 9. Before creating a database 135

To configure a logical database partition in db2nodes.cfg, you must make an entry
in the file to allocate a logical port number for the database partition. Following is
the syntax you should use:

nodenumber hostname logical-port netname

For the IBM DB2 pureScale Feature, ensure there is a member with "nodenumber
0".

Note: For Windows, you must use db2ncrt to add a database partition if there is
no database in the system; or, db2start addnode command if there is one or more
databases. Within Windows, the db2nodes.cfg file should never be manually
edited.

The format for the db2nodes.cfg file on Windows is different when compared to
the same file on UNIX. On Windows, the column format is:

nodenumber hostname computername logical_port netname

Use the fully-qualified name for the hostname. The /etc/hosts file also should use
the fully-qualified name. If the fully-qualified name is not used in the
db2nodes.cfg file and in the/etc/hosts file, you might receive error message
SQL30082N RC=3.

You must ensure that you define enough ports in the services file of the etc
directory for FCM communications.

Enabling inter-partition query parallelism
Inter-partition parallelism occurs automatically based on the number of database
partitions and the distribution of data across these database partitions.

About this task

You must modify configuration parameters to take advantage of parallelism within
a database partition or within a non-partitioned database. For example,
intra-partition parallelism can be used to take advantage of the multiple processors
on a symmetric multi-processor (SMP) machine.

Procedure
v To enable parallelism when loading data:

The load utility automatically makes use of parallelism, or you can use the
following parameters on the LOAD command:
– CPU_PARALLELISM

– DISK_PARALLELISM

In a partitioned database environment, inter-partition parallelism for data
loading occurs automatically when the target table is defined on multiple
database partitions. Inter-partition parallelism for data loading can be
overridden by specifying OUTPUT_DBPARTNUMS. The load utility also intelligently
enables database partitioning parallelism depending on the size of the target
database partitions. MAX_NUM_PART_AGENTS can be used to control the maximum
degree of parallelism selected by the load utility. Database partitioning
parallelism can be overridden by specifying PARTITIONING_DBPARTNUMS when
ANYORDER is also specified.

v To enable parallelism when creating an index:
– The table must be large enough to benefit from parallelism

136 Partitioning and Clustering Guide

– Multiple processors must be enabled on an SMP computer.
v To enable I/O parallelism when backing up a database or table space:

– Use more than one target media.
– Configure table spaces for parallel I/O by defining multiple containers, or use

a single container with multiple disks, and the appropriate use of the
DB2_PARALLEL_IO registry variable. If you want to take advantage of parallel
I/O, you must consider the implications of what must be done before you
define any containers. This cannot be done whenever you see a need; it must
be planned for before you reach the point where you need to backup your
database or table space.

– Use the PARALLELISM parameter on the BACKUP command to specify the degree
of parallelism.

– Use the WITH num-buffers BUFFERS parameter on the BACKUP command to
ensure that enough buffers are available to accommodate the degree of
parallelism. The number of buffers should equal the number of target media
you have plus the degree of parallelism selected plus a few extra.
Also, use a backup buffer size that is:
- As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.
- At least as large as the largest (extent size * number of containers) product

of the table spaces being backed up.
v To enable I/O parallelism when restoring a database or table space:

– Use more than one source media.
– Configure table spaces for parallel I/O. You must decide to use this option

before you define your containers. This cannot be done whenever you see a
need; it must be planned for before you reach the point where you need to
restore your database or table space.

– Use the PARALLELISM parameter on the RESTORE command to specify the
degree of parallelism.

– Use the WITH num-buffers BUFFERS parameter on the RESTORE command to
ensure that enough buffers are available to accommodate the degree of
parallelism. The number of buffers should equal the number of target media
you have plus the degree of parallelism selected plus a few extra.
Also, use a restore buffer size that is:
- As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.
- At least as large as the largest (extent size * number of containers) product

of the table spaces being restored.
- The same as, or an even multiple of, the backup buffer size.

Enabling intra-partition parallelism for queries
In order for intra-partition query parallelism to occur, you must modify one or
more database configuration parameters, database manager configuration
parameters, precompile or bind options, or a special register.

About this task

You can use the GET DATABASE CONFIGURATION or the GET DATABASE MANAGER
CONFIGURATION command to find the values of individual entries in a specific

Chapter 9. Before creating a database 137

database or instance configuration file. To modify one or more of these entries, use
the UPDATE DATABASE CONFIGURATION or the UPDATE DATABASE MANAGER
CONFIGURATION command.

intra_parallel
Database manager configuration parameter that specifies whether the
database manager can use intra-partition parallelism. The default is not to
use intra-partition parallelism.

max_querydegree
Database manager configuration parameter that specifies the maximum
degree of intra-partition parallelism that is used for any SQL statement
running on this instance. An SQL statement does not use more than the
number given by this parameter when running parallel operations within a
database partition. The intra_parallel configuration parameter must also
be set to YES for the value in max_querydegree to be used. The default
value for this configuration parameter is -1. This value means that the
system uses the degree of parallelism determined by the optimizer;
otherwise, the user-specified value is used.

dft_degree
Database configuration parameter that provides the default for the DEGREE
bind option and the CURRENT DEGREE special register. The default value
is 1. A value of ANY means that the system uses the degree of parallelism
determined by the optimizer.

DEGREE Precompile or bind option for static SQL.

CURRENT DEGREE
Special register for dynamic SQL.

Management of data server capacity
If data server capacity does not meet your present or future needs, you can expand
its capacity by adding disk space and creating additional containers, or by adding
memory. If these simple strategies do not add the capacity you need, also consider
adding processors or physical partitions.

When you scale your system by changing the environment, be aware of the impact
that such a change can have on your database procedures such as loading data, or
backing up and restoring databases.

Adding processors

If a single-partition database configuration with a single processor is used to its
maximum capacity, you might either add processors or add logical partitions. The
advantage of adding processors is greater processing power. In a single-partition
database configuration with multiple processors (SMP), processors share memory
and storage system resources. All of the processors are in one system, so
communication between systems and coordination of tasks between systems does
not factor into the workload. Utilities such as load, back up, and restore can take
advantage of the additional processors.

Note: Some operating systems, such as the Solaris operating system, can
dynamically turn processors on- and offline.

138 Partitioning and Clustering Guide

If you add processors, review and modify some database configuration parameters
that determine the number of processors used. The following database
configuration parameters determine the number of processors used and might
need to be updated:
v Default degree (dft_degree)
v Maximum degree of parallelism (max_querydegree)
v Enable intrapartition parallelism (intra_parallel)

You should also evaluate parameters that determine how applications perform
parallel processing.

In an environment where TCP/IP is used for communication, review the value for
the DB2TCPCONNMGRS registry variable.

Adding additional computers

If you have an existing partitioned database environment, you can increase
processing power and data-storage capacity by adding additional computers
(either single-processor or multiple-processor) and storage resource to the
environment. The memory and storage resources are not shared among computers.
This choice provides the advantage of balancing data and user access across
storage and computers.

After adding the new computers and storage, you would use the START DATABASE
MANAGER command to add new database partition servers to the new computers. A
new database partition is created and configured for each database in the instance
on each new database partition server that you add. In most situations, you do not
need to restart the instance after adding the new database partition servers.

Fast communications manager

Fast communications manager (Windows)

In multiple member environments, each member has a pair of FCM daemons to
support communication between members that is related to agent requests. One
daemon is for sending communications, and the other is for receiving. These
daemons and supporting infrastructure are activated when an instance is started.
FCM communication is also used for agents working within the same member; this
type of communication is also known as intra-member communication.

You can specify the number of FCM message buffers by using the fcm_num_buffers
database manager configuration parameter. You can specify the number of FCM
channels by using the fcm_num_channels database manager configuration
parameter. By default, the fcm_num_buffers and fcm_num_channels database
manager configuration parameters are set to AUTOMATIC. If the setting is AUTOMATIC,
which is the recommended setting, the FCM monitors resource usage and adjusts
resources to accommodate workload demand.

Fast communications manager (Linux and UNIX)
The fast communications manager (FCM) provides communications support for
partitioned database environments.

In multiple member environments, each member has a pair of FCM daemons to
support communication between members that is related to agent requests. One

Chapter 9. Before creating a database 139

daemon is for sending communications, and the other is for receiving. These
daemons and supporting infrastructure are activated when an instance is started.
FCM communication is also used for agents working within the same member; this
type of communication is also known as intra-member communication.

The FCM daemon collects information about communication activities. You can
obtain information about FCM communications by using the database system
monitor. If communications fail between members or if they re-establish
communications, the FCM daemons update monitor elements with this
information. The FCM daemons also trigger the appropriate action for this event.
An example of an appropriate action is the rollback of an affected transaction. You
can use the database system monitor to help you set the FCM configuration
parameters.

You can specify the number of FCM message buffers by using the fcm_num_buffers
database manager configuration parameter. You can specify the number of FCM
channels by using the fcm_num_channels database manager configuration
parameter. By default, the fcm_num_buffers and fcm_num_channels database
manager configuration parameters are set to AUTOMATIC. If the setting is AUTOMATIC,
which is the recommended setting, the FCM monitors resource usage and adjusts
resources to accommodate workload demand.

Enabling communication between database partitions using
FCM communications

In a partitioned database environment, most communication between database
partitions is handled by the fast communications manager (FCM).

To enable the FCM at a database partition and allow communication with other
database partitions, you must create a service entry in the database partition's
services file of the etc directory as shown later in this section. The FCM uses the
specified port to communicate. If you have defined multiple database partitions on
the same host, you must define a range of ports, as shown later in this section.

Before attempting to manually configure memory for the fast communications
manager (FCM), it is recommended that you start with the automatic setting,
which is also the default setting, for the number of FCM Buffers (fcm_num_buffers)
and for the number of FCM Channels (fcm_num_channels). Use the system monitor
data for FCM activity to determine if this setting is appropriate.

Windows Considerations
The TCP/IP port range is automatically added to the services file by:
v The install program when it creates the instance or adds a new database

partition
v The db2icrt utility when it creates a new instance
v The db2ncrt utility when it adds the first database partition on the

computer

The syntax of a service entry is as follows:
DB2_instance port/tcp #comment

DB2_instance
The value for instance is the name of the database manager instance. All
characters in the name must be lowercase. Assuming an instance name of
DB2PUSER, you specify DB2_db2puser.

140 Partitioning and Clustering Guide

port/tcp
The TCP/IP port that you want to reserve for the database partition.

#comment
Any comment that you want to associate with the entry. The comment
must be preceded by a pound sign (#).

If the services file of the etc directory is shared, you must ensure that the number
of ports allocated in the file is either greater than or equal to the largest number of
multiple database partitions in the instance. When allocating ports, also ensure that
you account for any processor that can be used as a backup.

If the services file of the etc directory is not shared, the same considerations
apply, with one additional consideration: you must ensure that the entries defined
for the DB2 database instance are the same in all services files of the etc directory
(though other entries that do not apply to your partitioned database environment
do not have to be the same).

If you have multiple database partitions on the same host in an instance, you must
define more than one port for the FCM to use. To do this, include two lines in the
services file of the etc directory to indicate the range of ports that you are
allocating. The first line specifies the first port, and the second line indicates the
end of the block of ports. In the following example, five ports are allocated for the
SALES instance. This means no processor in the instance has more than five
database partitions. For example:

DB2_sales 9000/tcp
DB2_sales_END 9004/tcp

Note: You must specify END in uppercase only. You must also ensure that you
include both underscore (_) characters.

Enabling communications between database partition servers
(Linux and UNIX)

This task describes how to enable communication between the database partition
servers that participate in your partitioned database system. Communication
between database partition servers is handled by the Fast Communications
Manager (FCM). To enable FCM, a port or port range must be reserved in the
/etc/services file on each computer in your partitioned database system.

Before you begin

You must have a user ID with root user authority.

You must perform this task on all computers that participate in the instance.

About this task

The number of ports to reserve for FCM is equal to the maximum number of
database partitions hosted, or potentially hosted, by any computer in the instance.

In the following example, the db2nodes.cfg file contains these entries:
0 server1 0
1 server1 1
2 server2 0
3 server2 1
4 server2 2

Chapter 9. Before creating a database 141

5 server3 0
6 server3 1
7 server3 2
8 server3 3

Assume that the FCM ports are numbered starting at 60000. In this situation:
v server1 uses two ports (60000, 60001) for its two database partitions
v server2 uses three ports (60000, 60001, 60002) for its three database partitions
v server3 uses four ports (60000, 60001, 60002, 60003) for its four database

partitions

All computers must reserve 60000, 60001, 60002, and 60003, since this is the largest
port range required by any computer in the instance.

If you use a high availability solution such as Tivoli System Automation or IBM
PowerHA® SystemMirror for AIX to fail over database partitions from one
computer to another, you must account for potential port requirements. For
example, if a computer normally hosts four database partitions, but another
computer's two database partitions could potentially fail over to it, six ports must
be planned for that computer.

When you create an instance, a port range is reserved on the primary computer.
The primary computer is also known as the instance-owning computer. However,
if the port range originally added to the /etc/services file is not sufficient for
your needs, you will need to extend the range of reserved ports by manually
adding additional entries.

Procedure

To enable communications between servers in a partitioned database environment
using /etc/services:
1. Log on to the primary computer (instance owning computer) as a user with

root authority.
2. Create an instance.
3. View the default port range that has been reserved in the /etc/services file. In

addition to the base configuration, the FCM ports should appear similar to the
following:

db2c_db2inst1 50000/tcp
#Add FCM port information
DB2_db2inst1 60000/tcp
DB2_db2inst1_1 60001/tcp
DB2_db2inst1_2 60002/tcp
DB2_db2inst1_END 60003/tcp

By default, the first port (50000) is reserved for connection requests, and the
first available four ports above 60000 are reserved for FCM communication.
One port is for the instance-owning database partition server and three ports
are for logical database partition servers that you might choose to add to the
computer after installation is complete.
The port range must include a start and an END entry. Intermediate entries are
optional. Explicitly including intermediate values can be useful for preventing
other applications from using these ports, but these entries are not verified by
the database manager.
DB2 port entries use the following format:

DB2_instance_name_suffix port_number/tcp # comment

142 Partitioning and Clustering Guide

where:
v instance_name is the name of the partitioned instance.
v suffix is not used for the first FCM port. Intermediate entries are those

between the lowest and highest port. If you include the intermediate entries
between the first and ending FCM port, the suffix consists of an integer that
you increment by one for each additional port. For example, the second port
is numbered 1, and third is numbered 2, and so on to ensure uniqueness.
The word END must be used as the suffix for the last entry.

v port_number is the port number that you reserve for database partition server
communications.

v comment is an optional comment describing an entry.
4. Ensure that there are sufficient ports reserved for FCM communication. If the

range of reserved ports is insufficient, add new entries to the file.
5. Log on as a root user to each computer participating in the instance and add

identical entries to the /etc/services file.

Chapter 9. Before creating a database 143

144 Partitioning and Clustering Guide

Chapter 10. Creating and managing partitioned database
environments

Managing database partitions
You can start or stop partitions, drop partitions, or trace partitions.

Before you begin

To work with database partitions, you need authority to attach to an instance.
Anyone with SECADM or ACCESSCTRL authority can grant you the authority to
access a specific instance.

Procedure
v To start or to stop a specific database partition, use the START DATABASE MANAGER

command or the STOP DATABASE MANAGER command with the DBPARTITIONNUM
parameter.

v To drop a specific database partition from the db2nodes.cfg configuration file,
use the STOP DATABASE MANAGER command with the DROP DBPARTITIONNUM
parameter. Before using the DROP DBPARTITIONNUM parameter, run the DROP
DBPARTITIONNUM VERIFY command to ensure that there is no user data on this
database partition.

v To trace the activity on a database partition, use the options specified by IBM
Support.

Attention: Use the trace utility only when directed to do so by IBM Support or
by a technical support representative.
The trace utility records and formats information about DB2 Database for Linux,
UNIX, and Windows operations. For more details, see the “db2trc - Trace
command” topic.

Adding database partitions in partitioned database
environments

You can add database partitions to the partitioned database system either when it
is running, or when it is stopped. Because adding a new server can be time
consuming, you might want to do it when the database manager is already
running.

Use the ADD DBPARTITIONNUM command to add a database partition to a system.
This command can be invoked in the following ways:
v As an option on the START DBM command
v With the ADD DBPARTITIONNUM command
v With the sqleaddn API
v With the sqlepstart API

If your system is stopped, use the START DBM command. If it is running, you can
use any of the other choices.

When you use the ADD DBPARTITIONNUM command to add a new database partition
to the system, all existing databases in the instance are expanded to the new

© Copyright IBM Corp. 2012 145

database partition. You can also specify which containers to use for temporary
table spaces for the databases. The containers can be:
v The same as those defined for the catalog partition for each database. (This is

the default.)
v The same as those defined for another database partition.
v Not created at all. You must use the ALTER TABLESPACE statement to add

temporary table space containers to each database before the database can be
used.

Note: Any uncataloged database is not recognized when adding a new database
partition. The uncataloged database will not be present on the new database
partition. An attempt to connect to the database on the new database partition
returns the error message SQL1013N.

You cannot use a database on the new database partition to contain data until one
or more database partition groups are altered to include the new database
partition.

You cannot change from a single-partition database to a multi-partition database
by adding a database partition to your system. This is because the redistribution of
data across database partitions requires a distribution key on each affected table.
The distribution keys are automatically generated when a table is created in a
multi-partition database. In a single-partition database, distribution keys can be
explicitly created with the CREATE TABLE or ALTER TABLE SQL statements.

Note: If no databases are defined in the system and you are running Enterprise
Server Edition on a UNIX operating system, edit the db2nodes.cfg file to add a
new database partition definition; do not use any of the procedures described, as
they apply only when a database exists.

Windows Considerations: If you are using Enterprise Server Edition on a
Windows operating system and have no databases in the instance, use the db2ncrt
command to scale the database system. If, however, you already have databases,
use the START DBM ADD DBPARTITIONNUM command to ensure that a database
partition is created for each existing database when you scale the system. On
Windows operating systems, do not manually edit the database partition
configuration file (db2nodes.cfg), because this can introduce inconsistencies to the
file.

Adding an online database partition
You can add new database partitions that are online to a partitioned database
environment while it is running and while applications are connected to databases.

Procedure

To add an online database partition to a running database manager using the
command line:
1. On any existing database partition, run the START DBM command.

On all platforms, specify the new database partition values for DBPARTITIONNUM,
ADD DBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters. On the Windows
platform, you also specify the COMPUTER, USER, and PASSWORD parameters.
You can also specify the source for any temporary table space container
definitions that must be created with the databases. If you do not provide table

146 Partitioning and Clustering Guide

space information, temporary table space container definitions are retrieved
from the catalog partition for each database.
For example, to add three new database partitions to an existing database, issue
the following commands:
START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAME5
PORT PORT5;

2. Optional: Alter the database partition group to incorporate the new database
partition. This action can also be an option when redistributing the data to the
new database partition.

3. Optional: Redistribute data to the new database partition. This action is not
really optional if you want to take advantage of the new database partitions.
You can also include the alter database partition group option as part of the
redistribution operation. Otherwise, altering the database partition group to
incorporate the new database partitions must be done as a separate action
before redistributing the data to the new database partition.

4. Optional: Back up all databases on the new database partition. Although
optional, this would be helpful to have for the new database partition and for
the other database partitions particularly if you redistributed the data across
both the old and the new database partitions.

Restrictions when working online to add a database partition
The status of the new database partition following its addition to the instance
depends on the status of the original database partition. Applications may or may
not be aware of the new database partition following its addition to the instance if
the application uses WITH HOLD cursors.

When adding a new database partition to a single-partition database instance:
v If the original database partition is up when the database partition is added,

then the new database partition is down when the add database partition
operation completes.

v If the original database partition is down when the database partition is added,
then the new database partition is up when the add database partition operation
completes.

Applications using WITH HOLD cursors that are started before the add database
partition operation runs are not aware of the new database partition when the add
database partition operation completes. If the WITH HOLD cursors are closed
before the add database partition operation runs, then applications are aware of
the new database partition when the add database partition operation completes

Adding a database partition offline (Windows)
You can add new database partitions to a partitioned database system while it is
stopped. The newly added database partition becomes available to all databases
when the database manager is started again.

Before you begin
v You must install the new server before you can create a database partition on it.
v Set the default value of the DB2_FORCE_OFFLINE_ADD_PARTITION registry variable

to TRUE to enforce that any added database partitions is offline.

Chapter 10. Creating and managing partitioned database environments 147

Procedure

To add a database partition to a stopped partitioned database server using the
command line:
1. Issue STOP DBM to stop all the database partitions.
2. Run the ADD DBPARTITIONNUM command on the new server.

A database partition is created locally for every database that already exists in
the system. The database parameters for the new database partitions are set to
the default value, and each database partition remains empty until you move
data to it. Update the database configuration parameter values to match those
on the other database partitions.

3. Run the START DBM command to start the database system. Note that the
database partition configuration file has already been updated by the database
manager to include the new server during the installation of the new server.

4. Update the configuration file on the new database partition as follows:
a. On any existing database partitions, run the START DBM command.

Specify the new database partition values for DBPARTITIONNUM, ADD
DBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters as well as the
COMPUTER, USER, and PASSWORD parameters.
You can also specify the source for any temporary table space container
definitions that need to be created with the databases. If you do not provide
table space information, temporary table space container definitions are
retrieved from the catalog partition for each database.
For example, to add three new database partitions to an existing database,
issue the following commands:
START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAME5
PORT PORT5;

When the START DBM command is complete, the new server is stopped.
b. Stop the database manager by running the STOP DBM command.

When you stop all the database partitions in the system, the node
configuration file is updated to include the new database partitions. The
node configuration file is not updated with the new server information until
STOP DBM is executed. This ensures that the ADD DBPARTITIONNUM command,
which is called when you specify the ADD DBPARTITIONNUM parameter to the
START DBM command, runs on the correct database partitions. When the
utility ends, the new server partitions are stopped.

5. Start the database manager by running the START DBM command.
The newly added database partitions are now started with the rest of the
system.
When all the database partitions in the system are running, you can run
system-wide activities, such as creating or dropping a database.

Note: You might have to issue the START DBM command twice for all database
partition servers to access the new db2nodes.cfg file.

6. Optional: Alter the database partition group to incorporate the new database
partition. This action could also be an option when redistributing the data to
the new database partition.

148 Partitioning and Clustering Guide

7. Optional: Redistribute data to the new database partition. This action is not
really optional if you want to take advantage of the new database partition.
You can also include the alter database partition group option as part of the
redistribution operation. Otherwise, altering the database partition group to
incorporate the new database partition must be done as a separate action before
redistributing the data to the new database partition.

8. Optional: Back up all databases on the new database partition. Although
optional, this would be helpful to have for the new database partition and for
the other database partitions particularly if you have redistributed the data
across both the old and the new database partitions.

Adding a database partition offline (Linux and UNIX)
You can add new database partitions that are offline to a partitioned database
system. The newly added database partition becomes available to all databases
when the database manager is started again.

Before you begin
v Install the new server if it does not exist before you can create a database

partition on it.
v Make the executables accessible using shared filesystem mounts or local copies.
v Synchronize operating system files with those on existing processors.
v Ensure that the sqllib directory is accessible as a shared file system.
v Ensure that the relevant operating system parameters (such as the maximum

number of processes) are set to the appropriate values.
v Register the host name with the name server or in the hosts file in the /etc

directory on all database partitions. The host name for the computer must be
registered in .rhosts to run remote commands using rsh or rah.

v Set the default value of the DB2_FORCE_OFFLINE_ADD_PARTITION registry variable
to TRUE to enforce that the added database partitions is offline.

Procedure
v To add a database partition to a stopped partitioned database server using the

command line:
1. Issue STOP DBM to stop all the database partitions.
2. Run the ADD DBPARTITIONNUM command on the new server.

A database partition is created locally for every database that exists in the
system. The database parameters for the new database partitions are set to
the default value, and each database partition remains empty until you move
data to it. Update the database configuration parameter values to match
those on the other database partitions.

3. Run the START DBM command to start the database system. Note that the
database partition configuration file (db2nodes.cfg) has already been updated
by the database manager to include the new server during the installation of
the new server.

4. Update the configuration file on the new database partition as follows:
a. On any existing database partition, run the START DBM command.

Specify the new database partition values for DBPARTITIONNUM, ADD
DBPARTITIONNUM, HOSTNAME, PORT, and NETNAME parameters as well as the
COMPUTER, USER, and PASSWORD parameters.
You can also specify the source for any temporary table space container
definitions that must be created with the databases. If you do not provide

Chapter 10. Creating and managing partitioned database environments 149

table space information, temporary table space container definitions are
retrieved from the catalog partition for each database.
For example, to add three new database partitions to an existing
database, issue the following commands:
START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4;

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAME5
PORT PORT5;

When the START DBM command is complete, the new server is stopped.
b. Stop the entire database manager by running the STOP DBM command.

When you stop all the database partitions in the system, the node
configuration file is updated to include the new database partitions. The
node configuration file is not updated with the new server information
until STOP DBM is executed. This ensures that the ADD DBPARTITIONNUM
command, which is called when you specify the ADD DBPARTITIONNUM
parameter to the START DBM command, runs on the correct database
partition. When the utility ends, the new server partitions are stopped.

5. Start the database manager by running the START DBM command.
The newly added database partition is now started with the rest of the
system.
When all the database partitions in the system are running, you can run
system-wide activities, such as creating or dropping a database.

Note: You might have to issue the START DBM command twice for all
database partition servers to access the new db2nodes.cfg file.

6. Optional: Alter the database partition group to incorporate the new database
partition. This action might also be an option when redistributing the data to
the new database partition.

7. Optional: Redistribute data to the new database partition. This action is not
really optional if you want to take advantage of the new database partition.
You can also include the alter database partition group option as part of the
redistribution operation. Otherwise, altering the database partition group to
incorporate the new database partition must be done as a separate action
before redistributing the data to the new database partition.

8. Optional: Back up all databases on the new database partition. Although
optional, this would be helpful to have for the new database partition and
for the other database partitions particularly if you redistributed the data
across both the old and the new database partitions.

v You can also update the configuration file manually, as follows:
1. Edit the db2nodes.cfg file and add the new database partition to it.
2. Issue the following command to start the new database partition: START DBM

DBPARTITIONNUM partitionnum

Specify the number you are assigning to the new database partition as the
value of partitionnum.

3. If the new server is to be a logical partition (that is, it is not database
partition 0), use db2set command to update the DBPARTITIONNUM registry
variable. Specify the number of the database partition you are adding.

4. Run the ADD DBPARTITIONNUM command on the new database partition.
This command creates a database partition locally for every database that
exists in the system. The database parameters for the new database partitions

150 Partitioning and Clustering Guide

are set to the default value, and each database partition remains empty until
you move data to it. Update the database configuration parameter values to
match those on the other database partitions.

5. When the ADD DBPARTITIONNUM command completes, issue the START DBM
command to start the other database partitions in the system.
Do not perform any system-wide activities, such as creating or dropping a
database, until all database partitions are successfully started.

Error recovery when adding database partitions
Adding database partitions does not fail as a result of nonexistent buffer pools,
because the database manager creates system buffer pools to provide default
automatic support for all buffer pool page sizes.

However, if one of these system buffer pools is used, performance might be
seriously affected, because these buffer pools are very small. If a system buffer
pool is used, a message is written to the administration notification log. System
buffer pools are used in database partition addition scenarios in the following
circumstances:
v You add database partitions to a partitioned database environment that has one

or more system temporary table spaces with a page size that is different from
the default of 4 KB. When a database partition is created, only the
IBMDEFAULTDP buffer pool exists, and this buffer pool has a page size of 4 KB.
Consider the following examples:
1. You use the START DBM command to add a database partition to the current

multi-partition database:
START DBM DBPARTITIONNUM 2 ADD DBPARTITIONNUM HOSTNAME newhost PORT 2

2. You use the ADD DBPARTITIONNUM command after you manually update the
db2nodes.cfg file with the new database partition description.

One way to prevent these problems is to specify the WITHOUT TABLESPACES
clause on the ADD DBPARTITIONNUM or the START DBM commands. After doing this,
use the CREATE BUFFERPOOL statement to create the buffer pools using the
appropriate SIZE and PAGESIZE values, and associate the system temporary
table spaces to the buffer pool using the ALTER TABLESPACE statement.

v You add database partitions to an existing database partition group that has one
or more table spaces with a page size that is different from the default page size,
which is 4 KB. This occurs because the non-default page-size buffer pools
created on the new database partition have not been activated for the table
spaces.

Note: In previous versions, this command used the NODEGROUP keyword
instead of the DATABASE PARTITION GROUP keywords.
Consider the following example:
– You use the ALTER DATABASE PARTITION GROUP statement to add a

database partition to a database partition group, as follows:
START DBM
CONNECT TO mpp1
ALTER DATABASE PARTITION GROUP ng1 ADD DBPARTITIONNUM (2)

One way to prevent this problem is to create buffer pools for each page size
and then to reconnect to the database before issuing the following ALTER
DATABASE PARTITION GROUP statement:

START DBM
CONNECT TO mpp1
CREATE BUFFERPOOL bp1 SIZE 1000 PAGESIZE 8192

Chapter 10. Creating and managing partitioned database environments 151

CONNECT RESET
CONNECT TO mpp1
ALTER DATABASE PARTITION GROUP ng1 ADD DBPARTITIONNUM (2)

Note: If the database partition group has table spaces with the default page size,
message SQL1759W is returned.

Dropping database partitions
You can drop a database partition that is not being used by any database and free
the computer for other uses.

Before you begin

Verify that the database partition is not in use by issuing the DROP DBPARTITIONNUM
VERIFY command or the sqledrpn API.
v If you receive message SQL6034W (Database partition not used in any database),

you can drop the database partition.
v If you receive message SQL6035W (Database partition in use by database), use

the REDISTRIBUTE DATABASE PARTITION GROUP command to redistribute the data
from the database partition that you are dropping to other database partitions
from the database alias.

Also ensure that all transactions for which this database partition was the
coordinator have all committed or rolled back successfully. This might require
doing crash recovery on other servers. For example, if you drop the coordinator
partition, and another database partition participating in a transaction crashed
before the coordinator partition was dropped, the crashed database partition will
not be able to query the coordinator partition for the outcome of any indoubt
transactions.

Procedure

To drop a database partition using the command line:

Issue the STOP DBM command with the DROP DBPARTITIONNUM parameter to drop the
database partition.
After the command completes successfully, the system is stopped. Then start the
database manager with the START DBM command.

Listing database partition servers in an instance (Windows)
On Windows, use the db2nlist command to obtain a list of database partition
servers that participate in an instance.

About this task

The command is used as follows:
db2nlist

When using this command as shown, the default instance is the current instance
(set by the DB2INSTANCE environment variable). To specify a particular instance, you
can specify the instance using:

db2nlist /i:instName

where instName is the particular instance name you want.

152 Partitioning and Clustering Guide

You can also optionally request the status of each database partition server by
using:

db2nlist /s

The status of each database partition server might be one of: starting, running,
stopping, or stopped.

Adding database partition servers to an instance (Windows)
On Windows, use the db2ncrt command to add a database partition server to an
instance.

About this task

Note: Do not use the db2ncrt command if the instance already contains databases.
Instead, use the START DBM ADD DBPARTITIONNUM command. This ensures that the
database is correctly added to the new database partition server. DO NOT EDIT
the db2nodes.cfg file, since changing the file might cause inconsistencies in the
partitioned database environment.

The command has the following required parameters:
db2ncrt /n:partition_number

/u:username,password
/p:logical_port

/n:partition_number
The unique database partition number to identify the database partition
server. The number can be from 1 to 999 in ascending sequence.

/u:username,password
The logon account name and password of the DB2 service.

/p:logical_port
The logical port number used for the database partition server if the logical
port is not zero (0). If not specified, the logical port number assigned is 0.

The logical port parameter is only optional when you create the first database
partition on a computer. If you create a logical database partition, you must specify
this parameter and select a logical port number that is not in use. There are several
restrictions:
v On every computer there must be a database partition server with a logical port

0.
v The port number cannot exceed the port range reserved for FCM

communications in the services file in %SystemRoot%\system32\drivers\etc
directory. For example, if you reserve a range of four ports for the current
instance, then the maximum port number would be 3 (ports 1, 2, and 3; port 0 is
for the default logical database partition). The port range is defined when
db2icrt is used with the /r:base_port, end_port parameter.

There are also several optional parameters:

/g:network_name
Specifies the network name for the database partition server. If you do not
specify this parameter, DB2 uses the first IP address it detects on your
system.

Chapter 10. Creating and managing partitioned database environments 153

Use this parameter if you have multiple IP addresses on a computer and
you want to specify a specific IP address for the database partition server.
You can enter the network_name parameter using the network name or IP
address.

/h:host_name
The TCP/IP host name that is used by FCM for internal communications if
the host name is not the local host name. This parameter is required if you
add the database partition server on a remote computer.

/i:instance_name
The instance name; the default is the current instance.

/m:computer_name
The computer name of the Windows workstation on which the database
partition resides; the default name is the computer name of the local
computer.

/o:instance_owning_computer
The computer name of the computer that is the instance-owning computer;
the default is the local computer. This parameter is required when the
db2ncrt command is invoked on any computer that is not the
instance-owning computer.

For example, if you want to add a new database partition server to the instance
TESTMPP (so that you are running multiple logical database partitions) on the
instance-owning computer MYMACHIN, and you want this new database
partition to be known as database partition 2 using logical port 1, enter:

db2ncrt /n:2 /p:1 /u:my_id,my_pword /i:TESTMPP
/M:TEST /o:MYMACHIN

Changing database partitions (Windows)
On Windows, use the db2nchg command to change database partitions.

About this task
v Move the database partition from one computer to another.
v Change the TCP/IP host name of the computer.

If you are planning to use multiple network adapters, you must use this
command to specify the TCP/IP address for the "netname" field in the
db2nodes.cfg file.

v Use a different logical port number.
v Use a different name for the database partition server.

The command has the following required parameter:
db2nchg /n:node_number

The parameter /n: is the number of the database partition server that you want to
change. This parameter is required.

Optional parameters include:

/i:instance_name
Specifies the instance that this database partition server participates in. If you
do not specify this parameter, the default is the current instance.

154 Partitioning and Clustering Guide

/u:username,password
Changes the logon account name and password for the DB2 database service.
If you do not specify this parameter, the logon account and password remain
the same.

/p:logical_port
Changes the logical port for the database partition server. This parameter must
be specified if you move the database partition server to a different computer.
If you do not specify this parameter, the logical port number remains
unchanged.

/h:host_name
Changes the TCP/IP host name used by FCM for internal communications. If
you do not specify this parameter, the host name is unchanged.

/m:computer_name
Moves the database partition server to another computer. The database
partition server can be moved only if there are no existing databases in the
instance.

/g:network_name
Changes the network name for the database partition server.

Use this parameter if you have multiple IP addresses on a computer and you
want to use a specific IP address for the database partition server. You can
enter the network_name using the network name or the IP address.

For example, to change the logical port assigned to database partition 2, which
participates in the instance TESTMPP, to use the logical port 3, enter the following
command:

db2nchg /n:2 /i:TESTMPP /p:3

The DB2 database manager provides the capability of accessing DB2 database
system registry variables at the instance level on a remote computer. Currently,
DB2 database system registry variables are stored in three different levels:
computer or global level, instance level, and database partition level. The registry
variables stored at the instance level (including the database partition level) can be
redirected to another computer by using DB2REMOTEPREG. When DB2REMOTEPREG is
set, the DB2 database manager accesses the DB2 database system registry variables
from the computer pointed to by DB2REMOTEPREG. The db2set command would
appear as:

db2set DB2REMOTEPREG=remote_workstation

where remote_workstation is the remote workstation name.

Note:

v Care must be taken in setting this option since all DB2 database instance profiles
and instance listings will be located on the specified remote computer name.

v If your environment includes users from domains, ensure that the logon account
associated with the DB2 instance service is a domain account. This ensures that
the DB2 instance has the appropriate privileges to enumerate groups at the
domain level.

This feature might be used in combination with setting DBINSTPROF to point to a
remote LAN drive on the same computer that contains the registry.

Chapter 10. Creating and managing partitioned database environments 155

Adding containers to SMS table spaces on database partitions
You can add a container to an SMS table space only on a database partition that
currently has no containers.

Procedure

To add a container to an SMS table space using the command line, enter the
following:

ALTER TABLESPACE name
ADD (’path’)
ON DBPARTITIONNUM (database_partition_number)

The database partition specified by number, and every partition in the range of
database partitions, must exist in the database partition group on which the table
space is defined. A database_partition_number might only appear explicitly or within
a range in exactly one db-partitions-clause for the statement.

Example

The following example shows how to add a new container to database partition
number 3 of the database partition group used by table space “plans” on a UNIX
operating system:

ALTER TABLESPACE plans
ADD (’/dev/rhdisk0’)
ON DBPARTITIONNUM (3)

Dropping a database partition from an instance (Windows)
On Windows, use the db2ndrop command to drop a database partition server from
an instance that has no databases. If you drop a database partition server, its
database partition number can be reused for a new database partition server.

About this task

Exercise caution when you drop database partition servers from an instance. If you
drop the instance-owning database partition server zero (0) from the instance, the
instance becomes unusable. If you want to drop the instance, use the db2idrop
command.

Note: Do not use the db2ndrop command if the instance contains databases.
Instead, use the STOP DBM DROP DBPARTITIONNUM command. This ensures that the
database is correctly removed from the database partition. DO NOT EDIT the
db2nodes.cfg file, since changing the file might cause inconsistencies in the
partitioned database environment.

If you want to drop a database partition that is assigned the logical port 0 from a
computer that is running multiple logical database partitions, you must drop all
the other database partitions assigned to the other logical ports before you can
drop the database partition assigned to logical port 0. Each database partition
server must have a database partition assigned to logical port 0.

The command has the following parameters:
db2ndrop /n:dbpartitionnum /i:instance_name

/n:dbpartitionnum
The unique database partition number (dbpartitionnum) to identify the
database partition server. This is a required parameter. The number can be

156 Partitioning and Clustering Guide

from zero (0) to 999 in ascending sequence. Recall that database partition
zero (0) represents the instance-owning computer.

/i:instance_name
The instance name (instance_name). This is an optional parameter. If not
given, the default is the current instance (set by the DB2INSTANCE registry
variable).

Scenario: Redistributing data in new database partitions
This scenario shows how to add new database partitions to a database and
redistribute data between the database partitions. The REDISTRIBUTE DATABASE
PARTITION GROUP command is demonstrated as part of showing how to redistribute
data on different table sets within a database partition group.

About this task

Scenario:
A database DBPG1 has two database partitions, specified as (0, 1) and a
database partition group definition (0, 1).

The following table spaces are defined on database partition group
DBPG_1:
v Table space TS1 - this table space has two tables, T1 and T2
v Table space TS2 - this table space has three tables defined, T3, T4, and

T5

Starting in Version 9.7, you can add database partitions while the database
is running and while applications are connected to it. However, the
operation can be performed offline in this scenario by changing the default
value of the DB2_FORCE_OFFLINE_ADD_PARTITION registry variable to TRUE.

Procedure

To redistribute data between the database partitions in DBPG1:
1. Identify objects that must be disabled or removed before the redistribution.

a. Replicate MQTs: This type of MQT is not supported as part of the
redistribution operation. They must be dropped before running the
redistribution and recreated afterward.
SELECT tabschema, tabname

FROM syscat.tables
WHERE partition_mode = ’R’

b. Write-to-table event monitors: Disable any automatically activated
write-to-table event monitors that have a table that resides in the database
partition group to be redistributed.
SELECT distinct evmonname

FROM syscat.eventtables E
JOIN syscat.tables T on T.tabname = E.tabname

AND T.tabschema = E.tabschema
JOIN syscat.tablespaces S on S.tbspace = T.tbspace

AND S.ngname = ’DBPG_1’

c. Explain tables: It is recommended to create the explain tables in a single
partition database partition group. If they are defined in a database
partition group that requires redistribution, however, and the data
generated to date does not need to be maintained, consider dropping
them. The explain tables can be redefined once the redistribution is
complete.

Chapter 10. Creating and managing partitioned database environments 157

d. Table access mode and state: Ensure that all tables in the database partition
groups to be redistributed are in full access mode and normal table states.
SELECT DISTINCT TRIM(T.OWNER) || \’.\’ || TRIM(T.TABNAME)

AS NAME, T.ACCESS_MODE, A.LOAD_STATUS
FROM SYSCAT.TABLES T, SYSCAT.DBPARTITIONGROUPS
N, SYSIBMADM.ADMINTABINFO A
WHERE T.PMAP_ID = N.PMAP_ID
AND A.TABSCHEMA = T.OWNER
AND A.TABNAME = T.TABNAME
AND N.DBPGNAME = ’DBPG_1’
AND (T.ACCESS_MODE <> ’F’ OR A.LOAD_STATUS IS NOT NULL)

e. Statistics profiles: If a statistics profile is defined for the table, table
statistics can be updated as part of the redistribution process. Having the
redistribution utility update the statistics for the table reduces I/O, as all
the data is scanned for the redistribution and no additional scan of the
data is needed for RUNSTATS.
RUNSTATS on table schema.table

USE PROFILE runstats_profile
SET PROFILE ONLY

2. Review the database configuration. The util_heap_sz is critical to the data
movement processing between database partitions – allocate as much memory
as possible to util_heap_sz for the duration of the redistribution. Sufficient
sortheap is required, if index rebuild is done as part of the redistribution.
Increase util_heap_sz and sortheap as necessary to improve redistribution
performance.

3. Retrieve the database configuration settings to be used for the new database
partitions. When adding database partitions, a default database configuration
is used. As a result, it is important to update the database configuration on
the new database partitions before the REDISTRIBUTE DATABASE PARTITION
GROUP command is issued. This sequence of events ensures that the
configuration is balanced.
SELECT name,

CASE WHEN deferred_value_flags = ’AUTOMATIC’
THEN deferred_value_flags
ELSE substr(deferred_value,1,20)
END

AS deferred_value
FROM sysibmadm.dbcfg
WHERE dbpartitionnum = existing-node

AND deferred_value != ’’
AND name NOT IN (’hadr_local_host’,’hadr_local_svc’,’hadr_peer_window’,

’hadr_remote_host’,’hadr_remote_inst’,’hadr_remote_svc’,
’hadr_syncmode’,’hadr_timeout’,’backup_pending’,’codepage’,
’codeset’,’collate_info’,’country’,’database_consistent’,
’database_level’,’hadr_db_role’,’log_retain_status’,
’loghead’,’logpath’,’multipage_alloc’,’numsegs’,’pagesize’,
’release’,’restore_pending’,’restrict_access’,
’rollfwd_pending’,’territory’,’user_exit_status’,
’number_compat’,’varchar2_compat’,’database_memory’)

4. Back up the database (or the table spaces in the pertinent database partition
group), before starting the redistribution process. This action ensures a recent
recovery point.

5. Add three new database partitions to the database. Issue the following
commands:
START DBM DBPARTITIONNUM 3 ADD DBPARTITIONNUM HOSTNAME HOSTNAME3
PORT PORT3 WITHOUT TABLESPACES;

START DBM DBPARTITIONNUM 4 ADD DBPARTITIONNUM HOSTNAME HOSTNAME4
PORT PORT4 WITHOUT TABLESPACES;

158 Partitioning and Clustering Guide

START DBM DBPARTITIONNUM 5 ADD DBPARTITIONNUM HOSTNAME HOSTNAME5
PORT PORT5 WITHOUT TABLESPACES;

If the DB2_FORCE_OFFLINE_ADD_PARTITION is set to TRUE, new database
partitions are not visible to the instance until it has been shut down and
restarted. For example:
STOP DBM;
START DBM;

6. Define system temporary table space containers on the newly defined
database partitions.
ALTER TABLESPACE tablespace_name

ADD container_information
ON dbpartitionnums (3 to 5)

7. Add the new database partitions to the database partition groups. The
following command changes the DBPG_1 definition from (0, 1) to (0, 1, 3, 4,
5):
ALTER DATABASE PARTITION GROUP DBPG_1

ADD dbpartitionnums (3 to 5)
WITHOUT TABLESPACES

8. Define permanent data table space containers on the newly defined database
partitions.
ALTER TABLESPACE tablespace_name

ADD container_information
ON dbpartitionnums (3 to 5)

9. Apply the database configuration settings to the new database partitions (or
issue a single UPDATE DB CFG command against all database partitions).

10. Capture the definition of and then drop any replicated MQTs existing in the
database partition groups to be redistributed.
db2look -d DBPG1 -e -z

schema -t replicated_MQT_table_names
-o repMQTs.clp

11. Disable any write-to-table event monitors that exist in the database partition
groups to be redistributed.
SET EVENT MONITOR monitor_name STATE 0

12. Run the redistribution utility to redistribute uniformly across all database
partitions.
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
UNIFORM STOP AT 2006-03-10-07.00.00.000000;

Let us presume that the command ran successfully for tables T1, T2 and T3,
and then stopped due to the specification of the STOP AT option.
To abort the data redistribution for the database partition group and to revert
the changes made to tables T1, T2, and T3, issue the following command:
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1
NOT ROLLFORWARD RECOVERABLE ABORT;

You might abort the data redistribution when an error or an interruption
occurs and you do not want to continue the redistribute operation. For this
scenario, presume that this command was run successfully and that tables T1
and T2 were reverted to their original state.
To redistribute T5 and T4 only with 5000 4K pages as DATA BUFFER:
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
UNIFORM TABLE (T5, T4) ONLY DATA BUFFER 5000;

If the command ran successfully, the data in tables T4 and T5 have been
redistributed successfully.

Chapter 10. Creating and managing partitioned database environments 159

To complete the redistribution of data on table T1, T2, and T3 in a specified
order, issue:
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1 NOT ROLLFORWARD RECOVERABLE
CONTINUE TABLE (T1) FIRST;

Specifying TABLE (T1) FIRST forces the database manager to process table T1
first so that it can return to being online (read-only) before other tables. All
other tables are processed in an order determined by the database manager.

Note:

v The ADD DBPARTITIONNUM parameter can be specified in the REDISTRIBUTE
DATABASE PARTITION GROUP command as an alternative to performing the
ALTER DATABASE PARTITION GROUP and ALTER TABLESPACE
statements in steps 7 on page 159 and 8 on page 159. When a database
partition is added by using this command parameter, containers for table
spaces are based on the containers of the corresponding table space on the
lowest numbered existing partition in the database partition group.

v The REDISTRIBUTE DATABASE PARTITION GROUP command in this example is
not roll-forward recoverable.

v After the REDISTRIBUTE DATABASE PARTITION GROUP command finishes, all
the table spaces it accessed will be left in the BACKUP PENDING state.
Such table spaces must be backed up before the tables they contain are
accessible for write operations.

For more information, refer to the “REDISTRIBUTE DATABASE PARTITION
GROUP command”.
Consider also specifying a table list as input to the REDISTRIBUTE DATABASE
PARTITION GROUP command to enforce the order that the tables are processed.
The redistribution utility will move the data (compressed and compacted).
Optionally, indexes will be rebuilt and statistics updated if statistics profiles
are defined. Therefore instead of previous command, the following script can
be run:
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1

NOT ROLLFORWARD RECOVERABLE uniform
TABLE (t1, t2,...) FIRST;

Issuing commands in partitioned database environments
In a partitioned database environment, you might want to issue commands to be
run on computers in the instance, or on database partition servers. You can do so
using the rah command or the db2_all command. The rah command allows you to
issue commands that you want to run at computers in the instance.

If you want the commands to run at database partition servers in the instance, you
run the db2_all command. This section provides an overview of these commands.
The information that follows applies to partitioned database environments only.

On Windows, to run the rah command or the db2_all command, you must be
logged on with a user account that is a member of the Administrators group.

On Linux and UNIX operating systems, your login shell can be a Korn shell or any
other shell; however, there are differences in the way the different shells handle
commands containing special characters.

Also, on Linux and UNIX operating systems, rah uses the remote shell program
specified by the DB2RSHCMD registry variable. You can select between the two remote

160 Partitioning and Clustering Guide

shell programs: ssh (for additional security), or rsh (or remsh for HP-UX). If
DB2RSHCMD is not set, rsh (or remsh for HP-UX) is used. The ssh remote shell
program is used to prevent the transmission of passwords in clear text in UNIX
operating system environments.

If a command runs on one database partition server and you want it to run on all
of them, use db2_all. The exception is the db2trc command, which runs on all the
logical database partition servers on a computer. If you want to run db2trc on all
logical database partition servers on all computers, use rah.

Note: The db2_all command does not support commands that require interactive
user input.

rah and db2_all commands overview
You can run the commands sequentially at one database partition server after
another, or you can run the commands in parallel.

On Linux and UNIX operating systems, if you run the commands in parallel, you
can either choose to have the output sent to a buffer and collected for display (the
default behavior) or the output can be displayed at the computer where the
command is issued. On Windows, if you run the commands in parallel, the output
is displayed at the computer where the command is issued.

To use the rah command, type:
rah command

To use the db2_all command, type:
db2_all command

To obtain help about rah syntax, type:
rah "?"

The command can be almost anything that you can type at an interactive prompt,
including, for example, multiple commands to be run in sequence. On Linux and
UNIX operating systems, you separate multiple commands using a semicolon (;).
On Windows, you separate multiple commands using an ampersand (&). Do not
use the separator character following the last command.

The following example shows how to use the db2_all command to change the
database configuration on all database partitions that are specified in the database
partition configuration file. Because the ; character is placed inside double
quotation marks, the request runs concurrently.

db2_all ";DB2 UPDATE DB CFG FOR sample USING LOGFILSIZ 100"

Note: The db2_all command does not support commands that require interactive
user input.

Specifying the rah and db2_all commands
You can specify rah command from the command line as the parameter, or in
response to the prompt if you do not specify any parameter.

Use the prompt method if the command contains the following special characters:
| & ; < > () { } [] unsubstituted $

Chapter 10. Creating and managing partitioned database environments 161

If you specify the command as the parameter on the command line, you must
enclose it in double quotation marks if it contains any of the special characters just
listed.

Note: On Linux and UNIX operating systems, the command is added to your
command history just as if you typed it at the prompt.

All special characters in the command can be entered normally (without being
enclosed in quotation marks, except for \). If you require a \ in your command,
you must type two backslashes (\\).

Note: On Linux and UNIX operating systems, if you are not using a Korn shell, all
special characters in the command can be entered normally (without being
enclosed in quotation marks, except for ", \, unsubstituted $, and the single
quotation mark (')). If you require one of these characters in your command, you
must precede them by three backslashes (\\\). For example, if you require a \ in
your command, you must type four backslashes (\\\\).

If you require a double quotation mark (") in your command, you must precede it
by three backslashes, for example, \\\".

Note:

1. On Linux and UNIX operating systems, you cannot include a single quotation
mark (') in your command unless your command shell provides some way of
entering a single quotation mark inside a singly quoted string.

2. On Windows, you cannot include a single quotation mark (') in your command
unless your command window provides some way of entering a single
quotation mark inside a singly quoted string.

When you run any korn-shell shell-script that contains logic to read from stdin in
the background, explicitly redirect stdin to a source where the process can read
without getting stopped on the terminal (SIGTTIN message). To redirect stdin, you
can run a script with the following form:

shell_script </dev/null &

if there is no input to be supplied.

In a similar way, always specify </dev/null when running db2_all in the
background. For example:

db2_all ";run_this_command" </dev/null &

By doing this you can redirect stdin and avoid getting stopped on the terminal.

An alternative to this method, when you are not concerned about output from the
remote command, is to use the “daemonize” option in the db2_all prefix:

db2_all ";daemonize_this_command" &

Running commands in parallel (Linux, UNIX)
By default, the command is run sequentially at each computer, but you can specify
to run the commands in parallel using background rshells by prefixing the
command with certain prefix sequences. If the rshell is run in the background, then
each command puts the output in a buffer file at its remote computer.

162 Partitioning and Clustering Guide

Note: The information in this section applies to Linux and UNIX operating
systems only.

This process retrieves the output in two pieces:
1. After the remote command completes.
2. After the rshell terminates, which might be later if some processes are still

running.

The name of the buffer file is /tmp/$USER/rahout by default, but it can be specified
by the environment variables $RAHBUFDIR or $RAHBUFNAME.

When you specify that you want the commands to be run concurrently, by default,
this script prefixes an additional command to the command sent to all hosts to
check that $RAHBUFDIR and $RAHBUFNAME are usable for the buffer file. It creates
$RAHBUFDIR. To suppress this, export an environment variable RAHCHECKBUF=no. You
can do this to save time if you know that the directory exists and is usable.

Before using rah to run a command concurrently at multiple computers:
v Ensure that a directory /tmp/$USER exists for your user ID at each computer. To

create a directory if one does not exist, run:
rah ")mkdir /tmp/$USER"

v Add the following line to your .kshrc (for Korn shell syntax) or .profile, and
also type it into your current session:

export RAHCHECKBUF=no

v Ensure that each computer ID at which you run the remote command has an
entry in its .rhosts file for the ID which runs rah; and the ID which runs rah
has an entry in its .rhosts file for each computer ID at which you run the
remote command.

Extension of the rah command to use tree logic (AIX and
Solaris)

To enhance performance, rah has been extended to use tree_logic on large systems.
That is, rah will check how many database partitions the list contains, and if that
number exceeds a threshold value, it constructs a subset of the list and sends a
recursive invocation of itself to those database partitions.

At those database partitions, the recursively invoked rah follows the same logic
until the list is small enough to follow the standard logic (now the "leaf-of-tree"
logic) of sending the command to all database partitions on the list. The threshold
can be specified by the RAHTREETHRESH environment variable, or defaults to 15.

In the case of a multiple-logical-database partitions-per-physical-database partition
system, db2_all will favor sending the recursive invocation to distinct physical
database partitions, which will then rsh to other logical database partitions on the
same physical database partition, thus also reducing inter-physical-database
partition traffic. (This point applies only to db2_all, not rah, because rah always
sends only to distinct physical database partitions.)

rah and db2_all commands
This topic includes descriptions of the rah and db2_all commands.

Command
Description

Chapter 10. Creating and managing partitioned database environments 163

rah Runs the command on all computers.

db2_all
Runs a non-interactive command on all database partition servers that you
specify. db2_all does not support commands that require interactive user
input.

db2_kill
Abruptly stops all processes being run on multiple database partition
servers and cleans up all resources on all database partition servers. This
command renders your databases inconsistent. Do not issue this command
except under direction from IBM Software Support or as directed to
recover from a sustained trap.

db2_call_stack
On Linux and UNIX operating systems, causes all processes running on all
database partition servers to write call traceback to the syslog.

On Linux and UNIX operating systems, these commands execute rah with
certain implicit settings such as:
v Run in parallel at all computers
v Buffer command output in /tmp/$USER/db2_kill, /tmp/$USER/

db2_call_stack respectively.

The command db2_call_stack is not available on Windows. Use the db2pd
-stack command instead.

rah and db2_all command prefix sequences
A prefix sequence is one or more special characters.

Type one or more prefix sequences immediately preceding the characters of the
command without any intervening blanks. If you want to specify more than one
sequence, you can type them in any order, but characters within any
multicharacter sequence must be typed in order. If you type any prefix sequences,
you must enclose the entire command, including the prefix sequences in double
quotation marks, as in the following examples:
v On Linux and UNIX operating systems:

rah "};ps -F pid,ppid,etime,args -u $USER"
db2_all "};ps -F pid,ppid,etime,args -u $USER"

v On Windows operating systems:
rah "||db2 get db cfg for sample"
db2_all "||db2 get db cfg for sample"

The prefix sequences are:

Sequence
Purpose

| Runs the commands in sequence in the background.

|& Runs the commands in sequence in the background and terminates the
command after all remote commands have completed, even if some
processes are still running. This might be later if, for example, child
processes (on Linux and UNIX operating systems) or background processes
(on Windows operating systems) are still running. In this case, the
command starts a separate background process to retrieve any remote
output generated after command termination and writes it back to the
originating computer.

164 Partitioning and Clustering Guide

Note: On Linux and UNIX operating systems, specifying & degrades
performance, because more rsh commands are required.

|| Runs the commands in parallel in the background.

||& Runs the commands in parallel in the background and terminates the
command after all remote commands have completed as described
previously for the |& case.

Note: On Linux and UNIX operating systems, specifying & degrades
performance, because more rsh commands are required.

; Same as ||&. This is an alternative shorter form.

Note: On Linux and UNIX operating systems, specifying ; degrades
performance relative to ||, because more rsh commands are required.

] Prepends dot-execution of user's profile before executing command.

Note: Available on Linux and UNIX operating systems only.

} Prepends dot-execution of file named in $RAHENV (probably .kshrc) before
executing command.

Note: Available on Linux and UNIX operating systems only.

]} Prepends dot-execution of user's profile followed by execution of file
named in $RAHENV (probably .kshrc) before executing command.

Note: Available on Linux and UNIX operating systems only.

) Suppresses execution of user's profile and of file named in $RAHENV.

Note: Available on Linux and UNIX operating systems only.

' Echoes the command invocation to the computer.

< Sends to all the computers except this one.

<<-nnn<

Sends to all-but-database partition server nnn (all database partition servers
in db2nodes.cfg except for database partition number nnn, see the first
paragraph following the last prefix sequence in this table).

nnn is the corresponding 1-, 2-, or 3-digit database partition number to the
nodenum value in the db2nodes.cfg file.

<<-nnn< is only applicable to db2_all.

<<+nnn<

Sends to only database partition server nnn (the database partition server
in db2nodes.cfg whose database partition number is nnn, see the first
paragraph following the last prefix sequence in this table).

nnn is the corresponding 1-, 2-, or 3-digit database partition number to the
nodenum value in the db2nodes.cfg file.

<<+nnn< is only applicable to db2_all.

(blank character)
Runs the remote command in the background with stdin, stdout, and
stderr all closed. This option is valid only when running the command in
the background, that is, only in a prefix sequence which also includes \ or

Chapter 10. Creating and managing partitioned database environments 165

;. It allows the command to complete much sooner (as soon as the remote
command has been initiated). If you specify this prefix sequence on the rah
command line, then either enclose the command in single quotation marks,
or enclose the command in double quotation marks, and precede the prefix
character by \ . For example,

rah ’; mydaemon’

or
rah ";\ mydaemon"

When run as a background process, the rah command never waits for any
output to be returned.

> Substitutes occurrences of > with the computer name.

" Substitutes occurrences of () by the computer index, and substitutes
occurrences of ## by the database partition number.
v The computer index is a number that associated with a computer in the

database system. If you are not running multiple logical partitions, the
computer index for a computer corresponds to the database partition
number for that computer in the database partition configuration file. To
obtain the computer index for a computer in a multiple logical partition
database environment, do not count duplicate entries for those
computers that run multiple logical partitions. For example, if MACH1
is running two logical partitions and MACH2 is also running two logical
partitions, the database partition number for MACH3 is 5 in the
database partition configuration file. The computer index for MACH3,
however, would be 3.
– On Windows operating systems, do not edit the database partition

configuration file. To obtain the computer index, use the db2nlist
command.

v When " is specified, duplicates are not eliminated from the list of
computers.

Usage notes
v Prefix sequences are considered to be part of the command. If you specify a

prefix sequence as part of a command, you must enclose the entire command,
including the prefix sequences, in double quotation marks.

Controlling the rah command
This topic lists the environment variables to control the rah command.

Table 13. Environment variables that control the rah command

Name Meaning Default

$RAHBUFDIR
Note: Available on
Linux and UNIX
operating systems
only.

Directory for buffer /tmp/$USER

$RAHBUFNAME
Note: Available on
Linux and UNIX
operating systems
only.

File name for buffer rahout

166 Partitioning and Clustering Guide

Table 13. Environment variables that control the rah command (continued)

Name Meaning Default

$RAHOSTFILE (on Linux
and UNIX operating
systems); RAHOSTFILE
(on Windows
operating systems)

File containing list of hosts db2nodes.cfg

$RAHOSTLIST (on Linux
and UNIX operating
systems); RAHOSTLIST
(on Windows
operating systems)

List of hosts as a string extracted from $RAHOSTFILE

$RAHCHECKBUF
Note: Available on
Linux and UNIX
operating systems
only.

If set to "no", bypass checks not set

$RAHSLEEPTIME (on
Linux and UNIX
operating systems);
RAHSLEEPTIME (on
Windows operating
systems)

Time in seconds this script waits for initial
output from commands run in parallel.

86400 seconds for db2_kill, 200 seconds for
all others

$RAHWAITTIME (on
Linux and UNIX
operating systems);
RAHWAITTIME (on
Windows operating
systems)

On Windows operating systems, interval in
seconds between successive checks that
remote jobs are still running.

On Linux and UNIX operating systems,
interval in seconds between successive checks
that remote jobs are still running and rah:
waiting for pid> ... messages.

On all operating systems, specify any
positive integer. Prefix value with a leading
zero to suppress messages, for example,
export RAHWAITTIME=045.

It is not necessary to specify a low value as
rah does not rely on these checks to detect
job completion.

45 seconds

$RAHENV
Note: Available on
Linux and UNIX
operating systems
only.

Specifies file name to be executed if
$RAHDOTFILES=E or K or PE or B

$ENV

$RAHUSER (on Linux
and UNIX operating
systems); RAHUSER (on
Windows operating
systems)

On Linux and UNIX operating systems, user
ID under which the remote command is to be
run.

On Windows operating systems, the logon
account associated with the DB2 Remote
Command Service

$USER

Note: On Linux and UNIX operating systems, the value of $RAHENV where rah is
run is used, not the value (if any) set by the remote shell.

Chapter 10. Creating and managing partitioned database environments 167

Specifying which . files run with rah (Linux and UNIX)
This topics lists the . files that are run if no prefix sequence is specified.

Note: The information in this section applies to Linux and UNIX operating
systems only.

P .profile

E File named in $RAHENV (probably .kshrc)

K Same as E

PE .profile followed by file named in $RAHENV (probably .kshrc)

B Same as PE

N None (or Neither)

Note: If your login shell is not a Korn shell, any dot files you specify to be
executed are executed in a Korn shell process, and so must conform to Korn shell
syntax. So, for example, if your login shell is a C shell, to have your .cshrc
environment set up for commands executed by rah, you should either create a
Korn shell INSTHOME/.profile equivalent to your .cshrc and specify in your
INSTHOME/.cshrc:
setenv RAHDOTFILES P

or you should create a Korn shell INSTHOME/.kshrc equivalent to your .cshrc and
specify in your INSTHOME/.cshrc:
setenv RAHDOTFILES E
setenv RAHENV INSTHOME/.kshrc

Also, it is your .cshrc must not write to stdout if there is no tty (as when invoked
by rsh). You can ensure this by enclosing any lines which write to stdout by, for
example,

if { tty -s } then echo "executed .cshrc";
endif

Determining problems with rah (Linux, UNIX)
This topic gives suggestions on how to handle some problems that you might
encounter when you are running rah.

Note: The information in this section applies to Linux and UNIX operating
systems only.
1. rah hangs (or takes a very long time)

This problem might be caused because:
v rah has determined that it needs to buffer output, and you did not export

RAHCHECKBUF=no. Therefore, before running your command, rah sends a
command to all computers to check the existence of the buffer directory, and
to create it if it does not exist.

v One or more of the computers where you are sending your command is not
responding. The rsh command will eventually time out but the time-out
interval is quite long, usually about 60 seconds.

2. You have received messages such as:
v Login incorrect
v Permission denied

168 Partitioning and Clustering Guide

Either one of the computers does not have the ID running rah correctly defined
in its /etc/hosts file, or the ID running rah does not have one of the
computers correctly defined in its .rhosts file. If the DB2RSHCMD registry variable
has been configured to use ssh, then the ssh clients and servers on each
computer might not be configured correctly.

Note: You might need to have greater security regarding the transmission of
passwords in clear text between database partitions. This will depend on the
remote shell program you are using. rah uses the remote shell program
specified by the DB2RSHCMD registry variable. You can select between the two
remote shell programs: ssh (for additional security), or rsh (or remsh for
HP-UX). If this registry variable is not set, rsh (or remsh for HP-UX) is used.

3. When running commands in parallel using background remote shells, although
the commands run and complete within the expected elapsed time at the
computers, rah takes a long time to detect this and put up the shell prompt.
The ID running rah does not have one of the computers correctly defined in its
.rhosts file, or if the DB2RSHCMD registry variable has been configured to use
ssh, then the ssh clients and servers on each computer might not be configured
correctly.

4. Although rah runs fine when run from the shell command line, if you run rah
remotely using rsh, for example,

rsh somewher -l $USER db2_kill

rah never completes.
This is normal. rah starts background monitoring processes, which continue to
run after it has exited. Those processes normally persist until all processes
associated with the command you ran have themselves terminated. In the case
of db2_kill, this means termination of all database managers. You can
terminate the monitoring processes by finding the process whose command is
rahwaitfor and kill process_id>. Do not specify a signal number. Instead, use
the default (15).

5. The output from rah is not displayed correctly, or rah incorrectly reports that
$RAHBUFNAME does not exist, when multiple commands of rah were issued under
the same $RAHUSER.
This is because multiple concurrent executions of rah are trying to use the same
buffer file (for example, $RAHBUFDIR or $RAHBUFNAME) for buffering the outputs.
To prevent this problem, use a different $RAHBUFNAME for each concurrent rah
command, for example in the following ksh:

export RAHBUFNAME=rahout
rah ";$command_1" &
export RAHBUFNAME=rah2out
rah ";$command_2" &

or use a method that makes the shell choose a unique name automatically such
as:

RAHBUFNAME=rahout.$$ db2_all "....."

Whatever method you use, you must ensure that you clean up the buffer files
at some point if disk space is limited. rah does not erase a buffer file at the end
of execution, although it will erase and then re-use an existing file the next time
you specify the same buffer file.

6. You entered
rah ’"print from ()’

and received the message:

Chapter 10. Creating and managing partitioned database environments 169

ksh: syntax error at line 1 : (’ unexpected

Prerequisites for the substitution of () and ## are:
v Use db2_all, not rah.
v Ensure a RAHOSTFILE is used either by exporting RAHOSTFILE or by defaulting

to your /sqllib/db2nodes.cfg file. Without these prerequisites, rah leaves the
() and ## as is. You receive an error because the command print from () is
not valid.

For a performance tip when running commands in parallel, use | rather than
|&, and use || rather than ||& or ; unless you truly need the function
provided by &. Specifying & requires more remote shell commands and
therefore degrades performance.

Monitoring rah processes (Linux, UNIX)
While any remote commands are still running or buffered output is still being
accumulated, processes started by rah monitor activity to write messages to the
terminal indicating which commands have not been run, and retrieve the buffered
output.

About this task

Note: The information in this section applies to Linux and UNIX operating
systems only.

The informative messages are written at an interval controlled by the environment
variable RAHWAITTIME. Refer to the help information for details on how to specify
this. All informative messages can be suppressed by exporting RAHWAITTIME=0.

The primary monitoring process is a command whose command name (as shown
by the ps command) is rahwaitfor. The first informative message tells you the pid
(process id) of this process. All other monitoring processes appear as ksh
commands running the rah script (or the name of the symbolic link). If you want,
you can stop all monitoring processes by the command:

kill pid

where pid is the process ID of the primary monitoring process. Do not specify a
signal number. Leave the default of 15. This does not affect the remote commands
at all, but prevents the automatic display of buffered output. Note that there might
be two or more different sets of monitoring processes executing at different times
during the life of a single execution of rah. However, if at any time you stop the
current set, then no more are started.

If your regular login shell is not a Korn shell (for example /bin/ksh), you can use
rah, but there are some slightly different rules on how to enter commands
containing the following special characters:

" unsubstituted $ ’

For more information, type rah "?". Also, in a Linux or UNIX operating system, if
the login shell at the ID which executes the remote commands is not a Korn shell,
then the login shell at the ID which executes rah must also not be a Korn shell.
(rah decides whether the shell of the remote ID is a Korn shell based on the local
ID). The shell must not perform any substitution or special processing on a string
enclosed in single quotation marks. It must leave it exactly as is.

170 Partitioning and Clustering Guide

Setting the default environment profile for rah on Windows
To set the default environment profile for the rah command, use a file called
db2rah.env, which should be created in the instance directory.

About this task

Note: The information in this section applies to Windows only.

The file should have the following format:
; This is a comment line
DB2INSTANCE=instancename
DB2DBDFT=database
; End of file

You can specify all the environment variables that you need to initialize the
environment for rah.

Chapter 10. Creating and managing partitioned database environments 171

172 Partitioning and Clustering Guide

Chapter 11. Creating tables and other related table objects

Tables in partitioned database environments
There are performance advantages to creating a table across several database
partitions in a partitioned database environment. The work associated with the
retrieval of data can be divided among the database partitions.

Before you begin

Before creating a table that will be physically divided or distributed, you need to
consider the following:
v Table spaces can span more than one database partition. The number of database

partitions they span depends on the number of database partitions in a database
partition group.

v Tables can be collocated by being placed in the same table space or by being
placed in another table space that, together with the first table space, is
associated with the same database partition group.

About this task

Creating a table that will be a part of several database partitions is specified when
you are creating the table. There is an additional option when creating a table in a
partitioned database environment: the distribution key. A distribution key is a key
that is part of the definition of a table. It determines the database partition on
which each row of data is stored.

If you do not specify the distribution key explicitly, the following defaults are
used. Ensure that the default distribution key is appropriate.

v If a primary key is specified in the CREATE TABLE statement, the first column
of the primary key is used as the distribution key.

v For a multiple partition database partition group, if there is no primary key, the
first column that is not a long field is used.

v If no columns satisfy the requirements for a default distribution key, the table is
created without one (this is allowed only in single-partition database partition
groups).

You must be careful to select an appropriate distribution key because it cannot be
changed later. Furthermore, any unique indexes (and therefore unique or primary
keys) must be defined as a superset of the distribution key. That is, if a distribution
key is defined, unique keys and primary keys must include all of the same
columns as the distribution key (they might have more columns).

The size of a database partition of a table is the smaller amount of a specific limit
associated with the type of table space and page size used, and the amount of disk
space available. For example, assuming a large DMS table space with a 4 KB page
size, the size of a table is the smaller amount of 8 TB multiplied by the number of
database partitions and the amount of available disk space. See the related links for
the complete list of database manager page size limits.

To create a table in a partitioned database environment using the command line,
enter:

© Copyright IBM Corp. 2012 173

CREATE TABLE name>
(<column_name> <data_type> <null_attribute>)
IN <tagle_space_name>
INDEX IN <index_space_name>
LONG IN <long_space_name>
DISTRIBUTE BY HASH (<column_name>)

Following is an example:
CREATE TABLE MIXREC (MIX_CNTL INTEGER NOT NULL,

MIX_DESC CHAR(20) NOT NULL,
MIX_CHR CHAR(9) NOT NULL,
MIX_INT INTEGER NOT NULL,
MIX_INTS SMALLINT NOT NULL,
MIX_DEC DECIMAL NOT NULL,
MIX_FLT FLOAT NOT NULL,
MIX_DATE DATE NOT NULL,
MIX_TIME TIME NOT NULL,
MIX_TMSTMP TIMESTAMP NOT NULL)
IN MIXTS12
DISTRIBUTE BY HASH (MIX_INT)

In the preceding example, the table space is MIXTS12 and the distribution key is
MIX_INT. If the distribution key is not specified explicitly, it is MIX_CNTL. (If no
primary key is specified and no distribution key is defined, the distribution key is
the first non-long column in the list.)

A row of a table, and all information about that row, always resides on the same
database partition.

Large object behavior in partitioned tables
A partitioned table uses a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table. Data from a given table
is partitioned into multiple storage objects based on the specifications provided in
the PARTITION BY clause of the CREATE TABLE statement. These storage objects
can be in different table spaces, in the same table space, or a combination of both.

A large object for a partitioned table is, by default, stored in the same table space
as its corresponding data object. This applies to partitioned tables that use only one
table space or use multiple table spaces. When a partitioned table's data is stored
in multiple table spaces, the large object data is also stored in multiple table
spaces.

Use the LONG IN clause of the CREATE TABLE statement to override this default
behavior. You can specify a list of table spaces for the table where long data is to
be stored. If you choose to override the default behavior, the table space specified
in the LONG IN clause must be a large table space. If you specify that long data
be stored in a separate table space for one or more data partitions, you must do so
for all the data partitions of the table. That is, you cannot have long data stored
remotely for some data partitions and stored locally for others. Whether you are
using the default behavior or the LONG IN clause to override the default behavior,
a long object is created to correspond to each data partition. All the table spaces
used to store long data objects corresponding to each data partition must have the
same: pagesize, extentsize, storage mechanism (DMS or AMS), and type (regular or
large). Remote large table spaces must be of type LARGE and cannot be SMS.

174 Partitioning and Clustering Guide

For example, the following CREATE TABLE statement creates objects for the CLOB
data for each data partition in the same table space as the data:
CREATE TABLE document(id INT, contents CLOB)
PARTITION BY RANGE(id)
(STARTING FROM 1 ENDING AT 100 IN tbsp1,
STARTING FROM 101 ENDING AT 200 IN tbsp2,
STARTING FROM 201 ENDING AT 300 IN tbsp3,
STARTING FROM 301 ENDING AT 400 IN tbsp4);

You can use LONG IN to place the CLOB data in one or more large table spaces,
distinct from those the data is in.
CREATE TABLE document(id INT, contents CLOB)
PARTITION BY RANGE(id)
(STARTING FROM 1 ENDING AT 100 IN tbsp1 LONG IN large1,
STARTING FROM 101 ENDING AT 200 IN tbsp2 LONG IN large1,
STARTING FROM 201 ENDING AT 300 IN tbsp3 LONG IN large2,
STARTING FROM 301 ENDING AT 400 IN tbsp4 LONG IN large2);

Note: Only a single LONG IN clause is allowed at the table level and for each
data partition.

Creating partitioned tables
Partitioned tables use a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table. Data from a given table
is partitioned into multiple storage objects based on the specifications provided in
the PARTITION BY clause of the CREATE TABLE statement. These storage objects
can be in different table spaces, in the same table space, or a combination of both.

Before you begin

To create a table, the privileges held by the authorization ID of the statement must
include at least one of the following authorities or privileges:
v CREATETAB authority on the database and USE privilege on all the table spaces

used by the table, as well as one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema
v DBADM authority

About this task

You can create a partitioned table by using the CREATE TABLE statement.

Procedure

To create a partitioned table from the command line, issue the CREATE TABLE
statement:
CREATE TABLE NAME (column_name data_type null_attribute) IN
table_space_list PARTITION BY RANGE (column_expression)
STARTING FROM constant ENDING constant EVERY constant

Chapter 11. Creating tables and other related table objects 175

For example, the following statement creates a table where rows with a ≥ 1 and a ≤
20 are in PART0 (the first data partition), rows with 21 ≤ a ≤ 40 are in PART1 (the
second data partition), up to 81 ≤ a ≤ 100 are in PART4 (the last data partition).
CREATE TABLE foo(a INT)
PARTITION BY RANGE (a) (STARTING FROM (1)
ENDING AT (100) EVERY (20))

Defining ranges on partitioned tables
You can specify a range for each data partition when you create a partitioned table.
A partitioned table uses a data organization scheme in which table data is divided
across multiple data partitions according to the values of the table partitioning key
columns of the table.

About this task

Data from a given table is partitioned into multiple storage objects based on the
specifications provided in the PARTITION BY clause of the CREATE TABLE
statement. A range is specified by the STARTING FROM and ENDING AT values
of the PARTITION BY clause.

To completely define the range for each data partition, you must specify sufficient
boundaries. The following is a list of guidelines to consider when defining ranges
on a partitioned table:
v The STARTING clause specifies a low boundary for the data partition range.

This clause is mandatory for the lowest data partition range (although you can
define the boundary as MINVALUE). The lowest data partition range is the data
partition with the lowest specified bound.

v The ENDING (or VALUES) clause specifies a high boundary for the data
partition range. This clause is mandatory for the highest data partition range
(although you can define the boundary as MAXVALUE). The highest data
partition range is the data partition with the highest specified bound.

v If you do not specify an ENDING clause for a data partition, then the next
greater data partition must specify a STARTING clause. Likewise, if you do not
specify a STARTING clause, then the previous data partition must specify an
ENDING clause.

v MINVALUE specifies a value that is smaller than any possible value for the
column type being used. MINVALUE and INCLUSIVE or EXCLUSIVE cannot be
specified together.

v MAXVALUE specifies a value that is larger than any possible value for the
column type being used. MAXVALUE and INCLUSIVE or EXCLUSIVE cannot
be specified together.

v INCLUSIVE indicates that all values equal to the specified value are to be
included in the data partition containing this boundary.

v EXCLUSIVE indicates that all values equal to the specified value are NOT to be
included in the data partition containing this boundary.

v The NULL clause of the CREATE TABLE statement specifies whether null values
are to be sorted high or low when considering data partition placement. By
default, null values are sorted high. Null values in the table partitioning key
columns are treated as positive infinity, and are placed in a range ending at
MAXVALUE. If no such data partition is defined, null values are considered to
be out-of-range values. Use the NOT NULL constraint if you want to exclude
null values from table partitioning key columns. LAST specifies that null values
are to appear last in a sorted list of values. FIRST specifies that null values are to
appear first in a sorted list of values.

176 Partitioning and Clustering Guide

v When using the long form of the syntax, each data partition must have at least
one bound specified.

Tip: Before you begin defining data partitions on a table it is important to
understand how tables benefit from table partitioning and what factors influence
the columns you choose as partitioning columns.

The ranges specified for each data partition can be generated automatically or
manually.

Automatically generated

Automatic generation is a simple method of creating many data partitions quickly
and easily. This method is appropriate for equal sized ranges based on dates or
numbers.

Examples 1 and 2 demonstrate how to use the CREATE TABLE statement to define
and generate automatically the ranges specified for each data partition.

Example 1:

Issue a create table statement with the following ranges defined:
CREATE TABLE lineitem (

l_orderkey DECIMAL(10,0) NOT NULL,
l_quantity DECIMAL(12,2),
l_shipdate DATE,
l_year_month INT GENERATED ALWAYS AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate)))

PARTITION BY RANGE(l_shipdate)
(STARTING (’1/1/1992’) ENDING (’12/31/1992’) EVERY 1 MONTH);

This statement results in 12 data partitions each with 1 key value (l_shipdate) >=
('1/1/1992'), (l_shipdate) < ('3/1/1992'), (l_shipdate) < ('4/1/1992'), (l_shipdate) <
('5/1/1992'), ..., (l_shipdate) < ('12/1/1992'), (l_shipdate) < ('12/31/1992').

The starting value of the first data partition is inclusive because the overall starting
bound ('1/1/1992') is inclusive (default). Similarly, the ending bound of the last
data partition is inclusive because the overall ending bound ('12/31/1992') is
inclusive (default). The remaining STARTING values are inclusive and the
remaining ENDING values are all exclusive. Each data partition holds n key values
where n is given by the EVERY clause. Use the formula (start + every) to find the
end of the range for each data partition. The last data partition might have fewer
key values if the EVERY value does not divide evenly into the START and END
range.

Example 2:

Issue a create table statement with the following ranges defined:
CREATE TABLE t(a INT, b INT)
PARTITION BY RANGE(b) (STARTING FROM (1)
EXCLUSIVE ENDING AT (1000) EVERY (100))

This statement results in 10 data partitions each with 100 key values (1 < b <= 101,
101 < b <= 201, ..., 901 < b <= 1000).

The starting value of the first data partition (b > 1 and b <= 101) is exclusive
because the overall starting bound (1) is exclusive. Similarly the ending bound of
the last data partition (b > 901 b <= 1000) is inclusive because the overall ending

Chapter 11. Creating tables and other related table objects 177

bound (1000) is inclusive. The remaining STARTING values are all exclusive and
the remaining ENDING values are all inclusive. Each data partition holds n key
values where n is given by the EVERY clause. Finally, if both the starting and
ending bound of the overall clause are exclusive, the starting value of the first data
partition is exclusive because the overall starting bound (1) is exclusive. Similarly
the ending bound of the last data partition is exclusive because the overall ending
bound (1000) is exclusive. The remaining STARTING values are all exclusive and
the ENDING values are all inclusive. Each data partition (except the last) holds n
key values where n is given by the EVERY clause.

Manually generated

Manual generation creates a new data partition for each range listed in the
PARTITION BY clause. This form of the syntax allows for greater flexibility when
defining ranges thereby increasing your data and LOB placement options.
Examples 3 and 4 demonstrate how to use the CREATE TABLE statement to define
and generate manually the ranges specified for a data partition.

Example 3:

This statement partitions on two date columns both of which are generated. Notice
the use of the automatically generated form of the CREATE TABLE syntax and that
only one end of each range is specified. The other end is implied from the adjacent
data partition and the use of the INCLUSIVE option:
CREATE TABLE sales(invoice_date date, inv_month int NOT NULL
GENERATED ALWAYS AS (month(invoice_date)), inv_year INT NOT
NULL GENERATED ALWAYS AS (year(invoice_date)),
item_id int NOT NULL,
cust_id int NOT NULL) PARTITION BY RANGE (inv_year,
inv_month)
(PART Q1_02 STARTING (2002,1) ENDING (2002, 3) INCLUSIVE,
PART Q2_02 ENDING (2002, 6) INCLUSIVE,
PART Q3_02 ENDING (2002, 9) INCLUSIVE,
PART Q4_02 ENDING (2002,12) INCLUSIVE,
PART CURRENT ENDING (MAXVALUE, MAXVALUE));

Gaps in the ranges are permitted. The CREATE TABLE syntax supports gaps by
allowing you to specify a STARTING value for a range that does not line up
against the ENDING value of the previous data partition.

Example 4:

Creates a table with a gap between values 101 and 200.
CREATE TABLE foo(a INT)
PARTITION BY RANGE(a)

(STARTING FROM (1) ENDING AT (100),
STARTING FROM (201) ENDING AT (300))

Use of the ALTER TABLE statement, which allows data partitions to be added or
removed, can also cause gaps in the ranges.

When you insert a row into a partitioned table, it is automatically placed into the
proper data partition based on its key value and the range it falls within. If it falls
outside of any ranges defined for the table, the insert fails and the following error
is returned to the application:
SQL0327N The row cannot be inserted into table <tablename>
because it is outside the bounds of the defined data partition ranges.

SQLSTATE=22525

178 Partitioning and Clustering Guide

Restrictions

v Table level restrictions:
– Tables created using the automatically generated form of the syntax

(containing the EVERY clause) are constrained to use a numeric or date time
type in the table partitioning key.

v Statement level restrictions:
– MINVALUE and MAXVALUE are not supported in the automatically

generated form of the syntax.
– Ranges are ascending.
– Only one column can be specified in the automatically generated form of the

syntax.
– The increment in the EVERY clause must be greater than zero.
– The ENDING value must be greater than or equal to the STARTING value.

Placement of the data, index and long data of a data partition
By its very nature, creating a partitioned table allows you to place the various
parts of the table and the associated table objects in specific table spaces.

When creating a table you can specify in which table space the entire table data
and associated table objects will be placed. Or, you can place the table's index, long
or large data, or table partitions in specific table spaces. All of the table spaces
must be in the same database partition group.

The CREATE TABLE statement has the following clauses which demonstrate this
ability to place the table data and associated table objects within specific table
spaces:
CREATE TABLE table_name IN table_space_name1

INDEX IN table_space_name2
LONG IN table_space_name3
PARTITIONED BY ...

PARTITION partition_name | boundary specification | IN table_space_name4
INDEX IN table_space_name5
LONG IN table_space_name6

Each of the partitions of the partitioned table can be placed in different table
spaces.

You can also specify the table space for a user-created nonpartitioned index on a
partitioned table using the CREATE INDEX ... IN table_space_name1 statement,
which can be different from the index table space specified in the CREATE TABLE
... INDEX IN table_space_name2 statement. The IN clause of the CREATE INDEX
statement is used for partitioned tables only. If the INDEX IN clause is not
specified on the CREATE TABLE or CREATE INDEX statements, the index is
placed in the same table space as the first visible or attached partition of the table.

System generated nonpartitioned indexes, such as XML column paths indexes, are
placed in the table space specified in the INDEX IN clause of the CREATE TABLE
statement.

On a partitioned table with XML data, the XML region index is always partitioned
in the same way as the table data. The table space of the partitioned indexes is
defined at the partition level

Chapter 11. Creating tables and other related table objects 179

XML data resides in the table spaces used by the long data for a table. XML data
placement on a partitioned table follows the long data placement rules.

The table space for long data can be specified explicitly by you or determined by
the database manager implicitly. For a partitioned table, the table level LONG IN
clause can be used together with the partition level LONG IN clause. If both are
specified, the partition level LONG IN clause takes precedence over any table level
LONG IN clauses.

Migrating existing tables and views to partitioned tables
You can migrate a nonpartitioned table or a UNION ALL view to an empty
partitioned table.

Before you begin

Attaching a data partition is not allowed if SYSCAT.COLUMNS.IMPLICITVALUE
for a specific column is a nonnull value for both the source column and the target
column, and the values do not match. In this case, you must drop the source table
and then recreate it.

A column can have a nonnull value in the SYSCAT.COLUMNS IMPLICITVALUE
field if any one of the following conditions is met:
v The IMPLICITVALUE field is propagated from a source table during an attach

operation.
v The IMPLICITVALUE field is inherited from a source table during a detach

operation.
v The IMPLICITVALUE field is set during migration from V8 to V9, where it is

determined to be an added column, or might be an added column. An added
column is a column that is created as the result of an ALTER TABLE...ADD
COLUMN statement.

Always create the source and target tables involved in an attach operation with the
same columns defined. In particular, never use the ALTER TABLE statement to add
columns to the target table of an attach operation.

For advice on avoiding a mismatch when working with partitioned tables, see
“Guidelines for attaching data partitions to partitioned tables” on page 206.

About this task

When migrating regular tables, unload the source table by using the EXPORT
command or high performance unload. Create a new, empty partitioned table, and
use the LOAD command to populate that partitioned table. To move the data from
the old table directly into the partitioned table without any intermediate steps, use
the LOAD FROM CURSOR command (see Step 1.

You can convert nonpartitioned data in a UNION ALL view to a partitioned table
(see Step 2). UNION ALL views are used to manage large tables and achieve easy
roll-in and roll-out of table data while providing the performance advantages of
branch elimination. Using the ALTER TABLE...ATTACH PARTITION statement,
you can achieve conversion with no movement of data in the base table.
Nonpartitioned indexes and dependent views or materialized query tables (MQTs)
must be recreated after the conversion. The recommended strategy to convert
UNION ALL views to partitioned tables is to create a partitioned table with a
single dummy data partition, then attach all of the tables of the union all view. Be

180 Partitioning and Clustering Guide

sure to drop the dummy data partition early in the process to avoid problems with
overlapping ranges.

Procedure
1. Migrate a regular table to a partitioned table. Use the LOAD FROM CURSOR

command to avoid any intermediate steps. The following example shows how
to migrate table T1 to the SALES_DP table.
a. Create and populate a regular table T1.

CREATE TABLE t1 (c1 int, c2 int);
INSERT INTO t1 VALUES (0,1), (4, 2), (6, 3);

b. Create an empty partitioned table.
CREATE TABLE sales_dp (c1 int, c2 int)

PARTITION BY RANGE (c1)
(STARTING FROM 0 ENDING AT 10 EVERY 2);

c. Use the LOAD FROM CURSOR command to pull the data from an SQL query
directly into the new partitioned table.

SELECT * FROM t1;
DECLARE c1 CURSOR FOR SELECT * FROM t1;
LOAD FROM c1 of CURSOR INSERT INTO sales_dp;SELECT * FROM sales_dp;

2. Convert nonpartitioned data in a UNION ALL view to a partitioned table. The
following example shows how to convert the UNION ALL view named
ALL_SALES to the SALES_DP table.
a. Create the UNION ALL view.

CREATE VIEW all_sales AS
(
SELECT * FROM sales_0198
WHERE sales_date BETWEEN ’01-01-1998’ AND ’01-31-1998’
UNION ALL
SELECT * FROM sales_0298
WHERE sales_date BETWEEN ’02-01-1998’ AND ’02-28-1998’
UNION ALL
...
UNION ALL
SELECT * FROM sales_1200
WHERE sales_date BETWEEN ’12-01-2000’ AND ’12-31-2000’
);

b. Create a partitioned table with a single dummy partition. Choose the range
so that it does not overlap with the first data partition to be attached.
CREATE TABLE sales_dp (
sales_date DATE NOT NULL,
prod_id INTEGER,
city_id INTEGER,
channel_id INTEGER,
revenue DECIMAL(20,2))
PARTITION BY RANGE (sales_date)
(PART dummy STARTING FROM ’01-01-1900’ ENDING AT ’01-01-1900’);

c. Attach the first table.
ALTER TABLE sales_dp ATTACH PARTITION

STARTING FROM ’01-01-1998’ ENDING AT ’01-31-1998’
FROM sales_0198;

d. Drop the dummy partition.
ALTER TABLE sales_dp DETACH PARTITION dummy

INTO dummy;
DROP TABLE dummy;

e. Attach the remaining partitions.

Chapter 11. Creating tables and other related table objects 181

ALTER TABLE sales_dp ATTACH PARTITION
STARTING FROM ’02-01-1998’ ENDING AT ’02-28-1998’
FROM sales_0298;

...
ALTER TABLE sales_dp ATTACH PARTITION

STARTING FROM ’12-01-2000’ ENDING AT ’12-31-2000’
FROM sales_1200;

f. Issue the SET INTEGRITY statement to make data in the newly attached
partition accessible to queries.
SET INTEGRITY FOR sales_dp IMMEDIATE CHECKED
FOR EXCEPTION IN sales_dp USE sales_ex;

Tip: If data integrity checking, including range validation and other
constraints checking, can be done through application logic that is
independent of the data server before an attach operation, newly attached
data can be made available for use much sooner. You can optimize the data
roll-in process by using the SET INTEGRITY...ALL IMMEDIATE
UNCHECKED statement to skip range and constraints violation checking. In
this case, the table is brought out of SET INTEGRITY pending state, and the
new data is available for applications to use immediately, as long as there
are no nonpartitioned user indexes on the target table.

g. Create indexes, as appropriate.

Converting existing indexes to partitioned indexes
System-created and user-created indexes might need to be migrated from
nonpartitioned to partitioned. User-created indexes can be converted while
maintaining availability to the table and indexes for most of the migration.
System-created indexes used to enforce primary key constraints or unique
constraints will not be able to have the constraints maintained while the
conversion is done.

Before you begin

Indexes created in an earlier release of the product might be nonpartitioned. This
could include both indexes created by you, or system-created indexes created by
the database manager. Examples of system-created indexes are indexes to enforce
unique and primary constraints and the block indexes of an MDC table.

About this task

Indexes created by you can be converted from nonpartitioned to partitioned while
having continuous availability to the data using the index. You can create a
partitioned index with the same keys as the corresponding nonpartitioned index.
While the partitioning index is created, you can still use the current indexes and
the table where the index is being created. Once the partitioned index is created,
you can drop the corresponding nonpartitioned index and rename the new
partitioned index if desired.

Results

The following examples demonstrate how to convert existing nonpartitioned
indexes into partitioned indexes.

182 Partitioning and Clustering Guide

Example

Here is an example of converting a nonpartitioned index created by you to one
that is a partitioned index:
UPDATE COMMAND OPTIONS USING C OFF;
CREATE INDEX data_part ON sales(sale_date) PARTITIONED;
DROP INDEX dateidx;
RENAME INDEX data_part TO dateidx;
COMMIT;

Here is an example of converting a nonpartitioned index created by the database
manager to one that is a partitioned index. In this case, there will be a period of
time between the dropping of the original constraint, and the creation of the new
constraint.
ALTER TABLE employees DROP CONSTRAINT emp_uniq;
ALTER TABLE employees ADD CONSTRAINT emp_uniq UNIQUE (employee_id);

MDC tables created using DB2 Version 9.7 and earlier releases have nonpartitioned
block indexes. To take advantage of partitioned table data availability features such
as data roll in and roll out and partition level reorganization of table data and
indexes, the data in the multidimensional clustering (MDC) table created using
DB2 V9.7 and earlier releases must be moved to a partitioned MDC table with
partitioned block indexes created using DB2 V9.7 Fix Pack 1 or a later release.

Online move of a partitioned MDC table to use partitioned block indexes

You can move data from a MDC table with nonpartitioned block indexes to an
MDC table with partitioned block indexes using an online table move.

In the following example, company1.parts table has region and color as the MDC
key columns; and the corresponding block indexes are nonpartitioned.
CALL SYSPROC.ADMIN_MOVE_TABLE(
’COMPANY1’, --Table schema
’PARTS’, --Table name
’ ’, --null; No change to columns definition
’ ’, --null; No additional options
’MOVE’); --Move the table in one step

Offline move of a partitioned MDC table to use partitioned block indexes

To minimize data movement, you can move data from a MDC table with
nonpartitioned block indexes to an MDC table with partitioned block indexes
when the table is offline. The process uses the following steps:
1. Create a new, single-partition MDC table with the same definition as the table

to be converted. When specifying the range for the partition, use a range
outside the ranges of the partitioned MDC table to be converted.
The block indexes of new, single-partition MDC table are partitioned. The
partition created when specifying the range is detached in a later step.

2. Detach each partition of the MDC table. Each partition becomes a stand-alone
MDC table.
When a partition is detached, the partition data is attached to a new, target
table without moving the data in the partition.

Note: The last partition of the MDC table cannot be detached. It is a
single-partition MDC table with nonpartitioned block indexes.

Chapter 11. Creating tables and other related table objects 183

3. For each stand-alone table created by detaching the MDC table partitions, and
the single-partition MDC table with nonpartitioned block indexes, attach the
table to the new partitioned MDC table created in Step 1.
When the table is attached, the table data is attached to the new partitioned
MDC table without moving the data, and the block indexes are created as
partitioned block indexes.

4. After attaching the first stand-alone MDC table, you can detach the empty
partition created when you created the new MDC table.

5. Issue SET INTEGRITY statement on the new partitioned MDC table.

What to do next

Partitioned materialized query table (MQT) behavior
All types of materialized query tables (MQTs) are supported with partitioned
tables. When working with partitioned MQTs, there are a number of guidelines
that can help you to administer attached and detached data partitions most
effectively.

The following guidelines and restrictions apply when working with partitioned
MQTs or partitioned tables with detached dependent tables:
v If you issue an ALTER TABLE ... DETACH PARTITION statement, the DETACH

operation creates the target table for the detached partition data. If there are any
dependent tables that need to be incrementally maintained with respect to the
detached data partition (these dependent tables are referred to as detached
dependent tables), the SET INTEGRITY statement is required to be run on the
detached dependent tables to incrementally maintain the tables. With DB2 V9.7
Fix Pack 1 or later releases, after the SET INTEGRITY statement is run on all
detached dependent tables, the asynchronous partition detach task makes the
data partition into a stand-alone target table. Until the asynchronous partition
detach operation completes, the target table is unavailable. The target table will
be marked 'L' in the TYPE column of the SYSCAT.TABLES catalog view. This is
referred to as a detached table. This prevents the target table from being read,
modified or dropped until the SET INTEGRITY statement is run to incrementally
maintain the detached dependent tables. After the SET INTEGRITY statement is
run on all detached dependent tables, the data partition is logically detached
from the source table and the asynchronous partition detach operation detaches
data partition from the source table into the target table. Until the asynchronous
partition detach operation completes, the target table is unavailable.

v To detect that a detached table is not yet accessible, query the
SYSCAT.TABDETACHEDDEP catalog view. If any inaccessible detached tables
are detected, run the SET INTEGRITY statement with the IMMEDIATE
CHECKED option on all the detached dependent tables to transition the
detached table to a regular accessible table. If you try to access a detached table
before all its detached dependents are maintained, error code SQL20285N is
returned.

v The DATAPARTITIONNUM function cannot be used in an materialized query
table (MQT) definition. Attempting to create an MQT using this function returns
an error (SQLCODE SQL20058N, SQLSTATE 428EC).

v When creating a nonpartitioned index on a table with detached data partitions
with STATUS 'D' in SYSCAT.DATAPARTITIONS, the index does not include the
data in the detached data partitions unless the detached data partition has a

184 Partitioning and Clustering Guide

dependent materialized query table (MQT) that needs to be incrementally
refreshed with respect to it. In this case, the index includes the data for this
detached data partition.

v Altering a table with attached data partitions to an MQT is not allowed.
v Partitioned staging tables are not supported.
v Attaching to an MQT is not directly supported. See Example 1 for details.

Example 1: Converting a partitioned MQT to an ordinary table

Although the ATTACH operation is not directly supported on partitioned MQTs,
you can achieve the same effect by converting a partitioned MQT to an ordinary
table, performing the desired roll-in and roll-out of table data, and then converting
the table back into an MQT. The following CREATE TABLE and ALTER TABLE
statements demonstrate the effect:
CREATE TABLE lineitem (

l_orderkey DECIMAL(10,0) NOT NULL,
l_quantity DECIMAL(12,2),
l_shipdate DATE,
l_year_month INT GENERATED ALWAYS AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate)))

PARTITION BY RANGE(l_shipdate)
(STARTING (’1/1/1992’) ENDING (’12/31/1993’) EVERY 1 MONTH);

CREATE TABLE lineitem_ex (
l_orderkey DECIMAL(10,0) NOT NULL,
l_quantity DECIMAL(12,2),
l_shipdate DATE,
l_year_month INT,
ts TIMESTAMP,
msg CLOB(32K));

CREATE TABLE quan_by_month (
q_year_month, q_count) AS

(SELECT l_year_month AS q_year_month, COUNT(*) AS q_count
FROM lineitem
GROUP BY l_year_month)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
PARTITION BY RANGE(q_year_month)
(STARTING (199201) ENDING (199212) EVERY (1),
STARTING (199301) ENDING (199312) EVERY (1));

CREATE TABLE quan_by_month_ex(
q_year_month INT,
q_count INT NOT NULL,
ts TIMESTAMP,
msg CLOB(32K));

SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED;
CREATE INDEX qbmx ON quan_by_month(q_year_month);

ALTER TABLE quan_by_month DROP MATERIALIZED QUERY;
ALTER TABLE lineitem DETACH PARTITION part0 INTO li_reuse;
ALTER TABLE quan_by_month DETACH PARTITION part0 INTO qm_reuse;

SET INTEGRITY FOR li_reuse OFF;
ALTER TABLE li_reuse ALTER l_year_month SET GENERATED ALWAYS
AS (YEAR(l_shipdate)*100 + MONTH(l_shipdate));

LOAD FROM part_mqt_rotate.del OF DEL MODIFIED BY GENERATEDIGNORE
MESSAGES load.msg REPLACE INTO li_reuse;

DECLARE load_cursor CURSOR FOR
SELECT l_year_month, COUNT(*)

FROM li_reuse
GROUP BY l_year_month;

LOAD FROM load_cursor OF CURSOR MESSAGES load.msg

Chapter 11. Creating tables and other related table objects 185

REPLACE INTO qm_reuse;

ALTER TABLE lineitem ATTACH PARTITION STARTING ’1/1/1994’
ENDING ’1/31/1994’ FROM li_reuse;

SET INTEGRITY FOR lineitem ALLOW WRITE ACCESS IMMEDIATE CHECKED
FOR EXCEPTION IN lineitem USE lineitem_ex;

ALTER TABLE quan_by_month ATTACH PARTITION STARTING 199401
ENDING 199401 FROM qm_reuse;

SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED
FOR EXCEPTION IN quan_by_month USE quan_by_month_ex;

ALTER TABLE quan_by_month ADD MATERIALIZED QUERY
(SELECT l_year_month AS q_year_month, COUNT(*) AS q_count

FROM lineitem
GROUP BY l_year_month)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

SET INTEGRITY FOR QUAN_BY_MONTH ALL IMMEDIATE UNCHECKED;

Use the SET INTEGRITY statement with the IMMEDIATE CHECKED option to
check the attached data partition for integrity violations. This step is required
before changing the table back to an MQT. The SET INTEGRITY statement with
the IMMEDIATE UNCHECKED option is used to bypass the required full refresh
of the MQT. The index on the MQT is necessary to achieve optimal performance.
The use of exception tables with the SET INTEGRITY statement is recommended,
where appropriate.

Typically, you create a partitioned MQT on a large fact table that is also
partitioned. If you do roll out or roll in table data on the large fact table, you must
adjust the partitioned MQT manually, as demonstrated in Example 2.

Example 2: Adjusting a partitioned MQT manually

Alter the MQT (quan_by_month) to convert it to an ordinary partitioned table:
ALTER TABLE quan_by_month DROP MATERIALIZED QUERY;

Detach the data to be rolled out from the fact table (lineitem) and the MQT and
re-load the staging table li_reuse with the new data to be rolled in:
ALTER TABLE lineitem DETACH PARTITION part0 INTO li_reuse;

LOAD FROM part_mqt_rotate.del OF DEL MESSAGES load.msg REPLACE INTO li_reuse;

ALTER TABLE quan_by_month DETACH PARTITION part0 INTO qm_reuse;

Prune qm_reuse before doing the insert. This deletes the detached data before
inserting the subselect data. This is accomplished with a load replace into the MQT
where the data file of the load is the content of the subselect.
db2 load from datafile.del of del replace into qm_reuse

You can refresh the table manually using INSERT INTO ... (SELECT ...) This is only
necessary on the new data, so the statement should be issued before attaching:
INSERT INTO qm_reuse

(SELECT COUNT(*) AS q_count, l_year_month AS q_year_month
FROM li_reuse

GROUP BY l_year_month);

Now you can roll in the new data for the fact table:

186 Partitioning and Clustering Guide

ALTER TABLE lineitem ATTACH PARTITION STARTING ’1/1/1994’
ENDING ’1/31/1994’ FROM TABLE li_reuse;
SET INTEGRITY FOR lineitem ALLOW WRITE ACCESS IMMEDIATE CHECKED FOR
EXCEPTION IN li_reuse USE li_reuse_ex;

Next, roll in the data for the MQT:
ALTER TABLE quan_by_month ATTACH PARTITION STARTING 199401
ENDING 199401 FROM TABLE qm_reuse;
SET INTEGRITY FOR quan_by_month IMMEDIATE CHECKED;

After attaching the data partition, the new data must be verified to ensure that it is
in range.
ALTER TABLE quan_by_month ADD MATERIALIZED QUERY

(SELECT COUNT(*) AS q_count, l_year_month AS q_year_month
FROM lineitem

GROUP BY l_year_month)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

SET INTEGRITY FOR QUAN_BY_MONTH ALL IMMEDIATE UNCHECKED;

The data is not accessible until it has been validated by the SET INTEGRITY
statement. Although the REFRESH TABLE operation is supported, this scenario
demonstrates the manual maintenance of a partitioned MQT through the ATTACH
PARTITION and DETACH PARTITION operations. The data is marked as
validated by the user through the IMMEDIATE UNCHECKED clause of the SET
INTEGRITY statement.

Creating range-clustered tables

Guidelines for using range-clustered tables
This topic lists some guidelines to follow when working with range-clustered
tables (RCT).
v Because the process of creating a range-clustered table pre-allocates the required

disk space, that space must be available.
v When defining the range of key values, the minimum value is optional; if it is

not specified, the default is 1. A negative minimum value must be specified
explicitly. For example:
ORGANIZE BY KEY SEQUENCE (f1 STARTING FROM -100 ENDING AT -10)

v You cannot create a regular index on the same key values that are used to define
the range-clustered table.

v ALTER TABLE statement options that affect the physical structure of the table
are not allowed.

Scenarios: Range-clustered tables
Range-clustered tables can have single-column or multiple-column keys, and can
allow or disallow rows with key values that are outside of the defined range of
values. This section contains scenarios that illustrate how such tables can be
created.

Scenario 1: Creating a range-clustered table (overflow allowed)

The following example shows a range-clustered table that can be used to retrieve
information about a specific student. Each student record contains the following
information:
v School ID

Chapter 11. Creating tables and other related table objects 187

v Program ID
v Student number
v Student ID
v Student first name
v Student last name
v Student grade point average (GPA)
CREATE TABLE students (
school_id INT NOT NULL,
program_id INT NOT NULL,
student_num INT NOT NULL,
student_id INT NOT NULL,
first_name CHAR(30),
last_name CHAR(30),
gpa FLOAT
)
ORGANIZE BY KEY SEQUENCE
(student_id STARTING FROM 1 ENDING AT 1000000)
ALLOW OVERFLOW

;

In this example, the STUDENT_ID column, which serves as the table key, is used
to add, update, or delete student records.

The size of each record is based on the sum of the column lengths. In this example,
each record is 97 bytes long (10-byte header + 4 + 4 + 4 + 4 + 30 + 30 + 8 + 3 bytes
for nullable columns). With a 4-KB (or 4096-byte) page size, after accounting for
overhead, there are 4038 bytes (enough for 41 records) available per page. A total
of 24391 such pages is needed to accommodate 1 million student records.
Assuming four pages for table overhead and three pages for extent mapping, 24384
4-KB pages would be pre-allocated when this table is created. (The extent mapping
assumes a single three-page container for the table.)

Scenario 2: Creating a range-clustered table (overflow not
allowed)

In the following example, a school board administers 200 schools, each having 20
classrooms with a capacity of 35 students per classroom. This school board can
accommodate a maximum of 140,000 students.
CREATE TABLE students (
school_id INT NOT NULL,
class_id INT NOT NULL,
student_num INT NOT NULL,
student_id INT NOT NULL,
first_name CHAR(30),
last_name CHAR(30),
gpa FLOAT
)
ORGANIZE BY KEY SEQUENCE
(school_id STARTING FROM 1 ENDING AT 200,
class_id STARTING FROM 1 ENDING AT 20,
student_num STARTING FROM 1 ENDING AT 35)
DISALLOW OVERFLOW

;

In this example, the SCHOOL_ID, CLASS_ID, and STUDENT_NUM columns
together serve as the table key, which is used to add, update, or delete student
records.

188 Partitioning and Clustering Guide

Overflow is not allowed, because school board policy restricts the number of
students in each classroom, and there is a fixed number of schools and classrooms
being administered by this school board. Some smaller schools (schools with fewer
classrooms than the largest school) will have pre-allocated space in the table that
will likely never be used.

Considerations when creating MDC or ITC tables
There are many factors to consider when creating MDC or ITC tables. Decisions on
how to create, place, and use your MDC or ITC tables can be influenced by your
current database environment (for example, whether you have a partitioned
database or not), and by your choice of dimensions.

Moving data from existing tables to MDC tables

To improve query performance and reduce the requirements of data maintenance
operations in a data warehouse or large database environment, you can move data
from regular tables into multidimensional clustering (MDC) tables. To move data
from an existing table to an MDC table:
1. export your data,
2. drop the original table (optional),
3. create a multidimensional clustering (MDC) table (using the CREATE TABLE

statement with the ORGANIZE BY DIMENSIONS clause),
4. load the MDC table with your data.

An ALTER TABLE procedure called SYSPROC.ALTOBJ can be used to carry out
the translation of data from an existing table to an MDC table. The procedure is
called from the DB2 Design Advisor. The time required to translate the data
between the tables can be significant and depends on the size of the table and the
amount of data that needs to be translated.

The ALTOBJ procedure runs the following steps when altering a table:
1. drop all dependent objects of the table,
2. rename the table,
3. create the table with the new definition,
4. recreate all dependent objects of the table,
5. transform existing data in the table into the data required in the new table.

That is, the selecting of data from the old table and loading that data into the
new one where column functions can be used to transform from an old data
type to a new data type.

Moving data from existing tables to ITC tables

To reduce the requirements of data maintenance operations, you can move data
from regular tables into insert time clustering (ITC) tables. To move data from an
existing table to an ITC table use the online table move stored procedure.

The ExampleBank scenario shows how data from an existing table is moved into
an ITC table. The scenario also shows how convenient reclaiming space is when
using ITC tables. For more information, see the Related concepts links.

Chapter 11. Creating tables and other related table objects 189

MDC Advisor feature on the DB2 Design Advisor

The DB2 Design Advisor (db2advis) has an MDC feature. This feature recommends
clustering dimensions for use in an MDC table, including coarsifications on base
columns in order to improve workload performance. The term coarsification refers
to a mathematical expression to reduce the cardinality (the number of distinct
values) of a clustering dimension. A common example is coarsification by date,
week of the date, month of the date, or quarter of the year.

A requirement to use the MDC feature of the DB2 Design Advisor is the existence
of at least several extents of data within the database. The DB2 Design Advisor
uses the data to model data density and cardinality.

If the database does not have data in the tables, the DB2 Design Advisor does not
recommend MDC, even if the database contains empty tables but has a mocked up
set of statistics to imply a populated database.

The recommendation includes identifying potential generated columns that define
coarsification of dimensions. The recommendation does not include possible block
sizes. The extent size of the table space is used when making recommendations for
MDC tables. The assumption is that the recommended MDC table is created in the
same table space as the existing table, and therefore has the same extent size. The
recommendations for MDC dimensions change depending on the extent size of the
table space, because the extent size affects the number of records that can fit into a
block or cell. The extent size directly affects the density of the cells.

Only single-column dimensions, and not composite-column dimensions, are
considered, although single or multiple dimensions might be recommended for the
table. The MDC feature recommends coarsifications for most supported data types
with the goal of reducing the cardinality of cells in the resulting MDC solution.
The data type exceptions include: CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC data types. All supported data types are cast to INTEGER and are
coarsified through a generated expression.

The goal of the MDC feature of the DB2 Design Advisor is to select MDC solutions
that result in improved performance. A secondary goal is to keep the storage
expansion of the database constrained to a modest level. A statistical method is
used to determine the maximum storage expansion on each table.

The analysis operation within the advisor includes not only the benefits of block
index access but also the effect of MDC on insert, update, and delete operations
against dimensions of the table. These actions on the table have the potential to
cause records to be moved between cells. The analysis operation also models the
potential performance effect of any table expansion resulting from the organization
of data along particular MDC dimensions.

The MDC feature is run by using the -m <advise type> flag on the db2advis
utility. The “C” advise type is used to indicate multidimensional clustering tables.
The advise types are: “I” for index, “M” for materialized query tables, “C” for
MDC, and “P” for partitioned database environment. The advise types can be used
in combination with each other.

Note: The DB2 Design Advisor does not explore tables that are less than 12 extents
in size.

190 Partitioning and Clustering Guide

The advisor analyzes both MQTs and regular base tables when coming up with
recommendations.

The output from the MDC feature includes:
v Generated column expressions for each table for coarsified dimensions that

appear in the MDC solution.
v An ORGANIZE BY clause recommended for each table.

The recommendations are reported both to stdout and to the ADVISE tables that
are part of the explain facility.

MDC tables and partitioned database environments

Multidimensional clustering can be used in a partitioned database environment. In
fact, MDC can complement a partitioned database environment. A partitioned
database environment is used to distribute data from a table across multiple
physical or logical database partitions to:
v take advantage of multiple machines to increase processing requests in parallel,
v increase the physical size of the table beyond the limits of a single database

partition,
v improve the scalability of the database.

The reason for distributing a table is independent of whether the table is an MDC
table or a regular table. For example, the rules for the selection of columns to make
up the distribution key are the same. The distribution key for an MDC table can
involve any column, whether those columns make up part of a dimension of the
table or not.

If the distribution key is identical to a dimension from the table, then each
database partition contains a different portion of the table. For instance, if our
example MDC table is distributed by color across two database partitions, then the
Color column is used to divide the data. As a result, the Red and Blue slices might
be found on one database partition and the Yellow slice on the other. If the
distribution key is not identical to the dimensions from the table, then each
database partition has a subset of data from each slice. When choosing dimensions
and estimating cell occupancy, note that on average the total amount of data per
cell is determined by taking all of the data and dividing by the number of
database partitions.

MDC tables with multiple dimensions

If you know that certain predicates are heavily used in queries, you can cluster the
table on the columns involved. You can do this by using the ORGANIZE BY
DIMENSIONS clause.

Example 1:
CREATE TABLE T1 (c1 DATE, c2 INT, c3 INT, c4 DOUBLE)

ORGANIZE BY DIMENSIONS (c1, c3, c4)

The table in Example 1 is clustered on the values within three columns forming a
logical cube (that is, having three dimensions). The table can now be logically
sliced up during query processing on one or more of these dimensions such that
only the blocks in the appropriate slices or cells are processed by the relational
operators involved. The size of a block (the number of pages) is the extent size of
the table.

Chapter 11. Creating tables and other related table objects 191

MDC tables with dimensions based on more than one column

Each dimension can be made up of one or more columns. As an example, you can
create a table that is clustered on a dimension containing two columns.

Example 2:
CREATE TABLE T1 (c1 DATE, c2 INT, c3 INT, c4 DOUBLE)

ORGANIZE BY DIMENSIONS (c1, (c3, c4))

In Example 2, the table is clustered on two dimensions, c1 and (c3,c4). Thus, in
query processing, the table can be logically sliced up on either the c1 dimension, or
on the composite (c3, c4) dimension. The table has the same number of blocks as
the table in Example 1, but one less dimension block index. In Example 1, there are
three dimension block indexes, one for each of the columns c1, c3, and c4. In
Example 2, there are two dimension block indexes, one on the column c1 and the
other on the columns c3 and c4. The main difference between the two approaches
is that, in Example 1, queries involving c4 can use the dimension block index on c4
to quickly and directly access blocks of relevant data. In Example 2, c4 is a second
key part in a dimension block index, so queries involving c4 involve more
processing. However, in Example 2 there is one less block index to maintain and
store.

The DB2 Design Advisor does not make recommendations for dimensions
containing more than one column.

MDC tables with column expressions as dimensions

Column expressions can also be used for clustering dimensions. The ability to
cluster on column expressions is useful for rolling up dimensions to a coarser
granularity, such as rolling up an address to a geographic location or region, or
rolling up a date to a week, month, or year. To implement the rolling up of
dimensions in this way, you can use generated columns. This type of column
definition allows the creation of columns using expressions that can represent
dimensions. In Example 3, the statement creates a table clustered on one base
column and two column expressions.

Example 3:
CREATE TABLE T1(c1 DATE, c2 INT, c3 INT, c4 DOUBLE,

c5 DOUBLE GENERATED ALWAYS AS (c3 + c4),
c6 INT GENERATED ALWAYS AS (MONTH(C1)))

ORGANIZE BY DIMENSIONS (c2, c5, c6)

In Example 3, column c5 is an expression based on columns c3 and c4, and column
c6 rolls up column c1 to a coarser granularity in time. The statement clusters the
table based on the values in columns c2, c5, and c6.

Range queries on generated column dimensions

Range queries on a generated column dimension require monotonic column
functions. Expressions must be monotonic to derive range predicates for
dimensions on generated columns. If you create a dimension on a generated
column, queries on the base column are able to take advantage of the block index
on the generated column to improve performance, with one exception. For range
queries on the base column (date, for example) to use a range scan on the
dimension block index, the expression used to generate the column in the CREATE
TABLE statement must be monotonic. Although a column expression can include

192 Partitioning and Clustering Guide

any valid expression (including user-defined functions (UDFs)), if the expression is
non-monotonic, only equality or IN predicates are able to use the block index to
satisfy the query when these predicates are on the base column.

As an example, assume that you create an MDC table with dimensions on the
generated column month, where month = INTEGER (date)/100. For queries on the
dimension (month), block index scans can be done. For queries on the base column
(date), block index scans can also be done to narrow down which blocks to scan,
and then apply the predicates on date to the rows in those blocks only.

The compiler generates additional predicates to be used in the block index scan.
For example, with the query:

SELECT * FROM MDCTABLE WHERE DATE > "1999-03-03" AND DATE < "2000-01-15"

the compiler generates the additional predicates: “month >= 199903” and “month
<= 200001” which can be used as predicates for a dimension block index scan.
When scanning the resulting blocks, the original predicates are applied to the rows
in the blocks.

A non-monotonic expression allows equality predicates to be applied to that
dimension. A good example of a non-monotonic function is MONTH() as seen in
the definition of column c6 in Example 3. If the c1 column is a date, timestamp, or
valid string representation of a date or timestamp, then the function returns an
integer value in the range of 1 to 12. Even though the output of the function is
deterministic, it actually produces output similar to a step function (that is, a cyclic
pattern):
MONTH(date(’01/05/1999’)) = 1
MONTH(date(’02/08/1999’)) = 2
MONTH(date(’03/24/1999’)) = 3
MONTH(date(’04/30/1999’)) = 4
...
MONTH(date(’12/09/1999’)) = 12
MONTH(date(’01/18/2000’)) = 1
MONTH(date(’02/24/2000’)) = 2
...

Although date in this example is continually increasing, MONTH(date) is not.
More specifically, it is not guaranteed that whenever date1 is larger than date2,
MONTH(date1) is greater than or equal to MONTH(date2). It is this condition that
is required for monotonicity. This non-monotonicity is allowed, but it limits the
dimension in that a range predicate on the base column cannot generate a range
predicate on the dimension. However, a range predicate on the expression is fine,
for example, where month(c1) between 4 and 6. This can use the index on the
dimension in the typical way, with a starting key of 4 and a stop key of 6.

To make this function monotonic, include the year as the high-order part of the
month. There is an extension to the INTEGER built-in function to help in defining
a monotonic expression on date. INTEGER(date) returns an integer representation
of the date, which then can be divided to find an integer representation of the year
and month. For example, INTEGER(date(’2000/05/24’)) returns 20000524, and
therefore INTEGER(date(’2000/05/24’))/100 = 200005. The function
INTEGER(date)/100 is monotonic.

Similarly, the built-in functions DECIMAL and BIGINT also have extensions so that
you can derive monotonic functions. DECIMAL(timestamp) returns a decimal
representation of a timestamp, and this can be used in monotonic expressions to

Chapter 11. Creating tables and other related table objects 193

derive increasing values for month, day, hour, minute, and so on. BIGINT(date)
returns a big integer representation of the date, similar to INTEGER(date).

The database manager determines the monotonicity of an expression, where
possible, when creating the generated column for the table, or when creating a
dimension from an expression in the dimensions clause. Certain functions can be
recognized as monotonicity-preserving, such as DATENUM(), DAYS(), YEAR().
Also, various mathematical expressions such as division, multiplication, or addition
of a column and a constant are monotonicity-preserving. Where DB2 determines
that an expression is not monotonicity-preserving, or if it cannot determine this,
the dimension supports only the use of equality predicates on its base column.

194 Partitioning and Clustering Guide

Chapter 12. Altering a database

Altering an instance

Changing the database configuration across multiple
database partitions

When you have a database that is distributed across more than one database
partition, the database configuration file should be the same on all database
partitions.

About this task

Consistency is required since the SQL compiler compiles distributed SQL
statements based on information in the database partition configuration file and
creates an access plan to satisfy the needs of the SQL statement. Maintaining
different configuration files on database partitions could lead to different access
plans, depending on which database partition the statement is prepared. Use
db2_all to maintain the configuration files across all database partitions.

Altering a database

© Copyright IBM Corp. 2012 195

196 Partitioning and Clustering Guide

Chapter 13. Altering tables and other related table objects

Altering partitioned tables
All relevant clauses of the ALTER TABLE statement are supported for a partitioned
table. In addition, the ALTER TABLE statement allows you to add new data
partitions, roll-in (attach) new data partitions, and roll-out (detach) existing data
partitions.

Before you begin

To alter a partitioned table to detach a data partition the user must have the
following authorities or privileges:
v The user performing the DETACH PARTITION operation must have the

authority necessary to ALTER, to SELECT from, and to DELETE from the source
table.

v The user must also have the authority necessary to create the target table.
Therefore, to alter a table to detach a data partition, the privilege held by the
authorization ID of the statement must include at least one of the following
authorities or privileges on the target table:
– DBADM authority
– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

To alter a partitioned table to attach a data partition, the privileges held by the
authorization ID of the statement must include at least one of the following
authorities or privileges on the source table:
v DATAACCESS authority or SELECT privilege on the source table and DBADM

authority or DROPIN privilege on the schema of the source table
v CONTROL privilege on the source table

To alter a partitioned table to add a data partition, the privileges held by the
authorization ID of the statement must have privileges to use the table space
where the new partition is added, and include at least one of the following
authorities or privileges on the source table:
v ALTER privilege
v CONTROL privilege
v DBADM
v ALTERIN privilege on the table schema

About this task
v Each ALTER TABLE statement issued with the PARTITION clause must be in a

separate SQL statement.
v No other ALTER operations are permitted in an SQL statement containing an

ALTER TABLE ... PARTITION operation. For example, you cannot attach a data
partition and add a column to the table in a single SQL statement.

© Copyright IBM Corp. 2012 197

v Multiple ALTER statements can be executed, followed by a single SET
INTEGRITY statement.

Procedure

To alter a partitioned table from the command line, issue the ALTER TABLE
statement.

Guidelines and restrictions on altering partitioned tables
This topic identifies the most common alter table actions and special considerations
in the presence of attached and detached data partitions.

The STATUS column of the SYSCAT.DATAPARTITIONS catalog view contains the
state information for the partitions of a table.
v If the STATUS is the empty string, the partition is visible and is in the normal

state.
v If the STATUS is 'A', the partition is newly attached and the SET INTEGRITY

statement must be issued to bring the attached partition into the normal state.
v If the STATUS is 'D', 'L', or 'I', the partition is being detached, but the detach

operation has not completed.
– For a partition in the 'D' state, the SET INTEGRITY statement must be issued

on all detached dependent tables in order to transition the partition to the
logically detached state.

– For a partition in the 'L' state, the partition is a logically detached partition
and the asynchronous partition detach task is completing the detach of the
partition for DB2 Version 9.7 Fix Pack 1 and later releases.

– For a partition in the 'I' state the asynchronous partition detach task has
completed and asynchronous index cleanup is updating nonpartitioned
indexes defined on the partition.

Adding or altering a constraint
Adding a check or a foreign key constraint is supported with attached and
detached data partitions. When a partitioned table has detached partitions
in state 'D' or 'L', adding a primary or unique constraint will return an
error if the system has to generate a new partitioned index to enforce the
constraint. For a partition in the 'L' state, the operation returns SQL20285N
(SQLSTATE 55057). For a partition in the 'D' state, the operation returns
SQL20054 (SQLSTATE 55019).

Adding a column
When adding a column to a table with attached data partitions, the column
is also added to the attached data partitions. When adding a column to a
table with detached data partitions in the 'I' state, the column is not added
to the detached data partitions because the detached data partitions are no
longer physically associated to the table.

For a detached partition in the 'L' or 'D' state, the operation fails and an
error is returned. For a partition in the 'L' state, the operation returns
SQL20285N (SQLSTATE 55057). For a partition in the 'D' state, the
operation returns SQL20296N (SQLSTATE 55057).

Altering a column
When altering a column in a table with attached data partitions, the
column will also be altered on the attached data partitions. When altering
a column in a table with detached data partitions, the column is not altered

198 Partitioning and Clustering Guide

on the detached data partitions, because the detached data partitions are
no longer physically associated to the table.

When dropping or renaming a column when a partition is detached in the
'L' or 'D' state the operation fails and an error is returned. For a partition
in the 'L' state, the operation returns SQL20285N (SQLSTATE 55057). For a
partition in the 'D' state, the operation returns SQL0270N (SQLSTATE
42997).

Adding a generated column
When adding a generated column to a partitioned table with attached or
detached data partitions, it must respect the rules for adding any other
types of columns.

Adding or modifying a nonpartitioned index
When creating, recreating, or reorganizing an index on a table with
attached data partitions, the index does not include the data in the
attached data partitions because the SET INTEGRITY statement maintains
all indexes for all attached data partitions. When creating, recreating or
reorganizing an index on a table with detached data partitions, the index
does not include the data in the detached data partitions, unless the
detached data partition has a detached dependent table or staging tables
that need to be incrementally refreshed with respect to the data partition,
the partition is in the 'D' state. In this case, the index includes the data for
this detached data partition.

Adding or modifying a partitioned index

When creating a partitioned index in the presence of attached data
partitions, an index partition for each attached data partition will be
created. The index entries for index partitions on attached data partitions
will not be visible until the SET INTEGRITY statement is run to bring the
attached data partitions online. Note that because create index includes the
attached data partitions, creation of a unique partitioned index may find
rows in the attached data partition which are duplicate key values and
thus fail the index creation. It is recommended that users do not attempt to
create partitioned indexes in the presence of attached partitions to avoid
this problem.

If the table has any detached dependent tables, creation of partitioned
indexes is not supported on partitioned tables with detached dependent
tables. Any attempt to create a partitioned index in this situation will result
in SQLSTATE 55019. When creating a partitioned index on a table that has
partitions in 'L' state, the operation returns SQL20285N (SQLSTATE 55057).

WITH EMPTY TABLE
You cannot empty a table with attached data partitions.

ADD MATERIALIZED QUERY AS
Altering a table with attached data partitions to an MQT is not allowed.

Altering additional table attributes that are stored in a data partition
The following table attributes are also stored in a data partition. Changes
to these attributes are reflected on the attached data partitions, but not on
the detached data partitions.
v DATA CAPTURE
v VALUE COMPRESSION
v APPEND
v COMPACT/LOGGED FOR LOB COLUMNS

Chapter 13. Altering tables and other related table objects 199

Creating and accessing data partitions within the same transaction
If a table has a nonpartitioned index, you cannot access a new data
partition in that table within the same transaction as the add or attach
operation that created the partition, if the transaction does not have the
table locked in exclusive mode (SQL0668N, reason code 11).

Special considerations for XML indexes when altering a table to ADD,
ATTACH, or DETACH a partition

Similar to a nonpartitioned relational index, a nonpartitioned index over an XML
column is an independent object that is shared among all data partitions of a
partitioned table. XML region indexes and column path indexes are affected when
you alter a table by adding, attaching, or detaching a partition. Indexes over XML
column paths are always nonpartitioned, and indexes over XML data are generated
as partitioned by default.

XML regions index

ADD PARTITION will create a new regions index partition for the new empty data
partition being added. A new entry for the regions index partition will be added to
the SYSINDEXPARTITIONS table. The table space for the partitioned index object
on the new partition will be determined by the INDEX IN <table space> in the
ADD PARTITION clause. If no INDEX IN <table space> is specified for the ADD
PARTITION clause, the table space for the partitioned index object will be the
same as the table space used by the corresponding data partition by default.

The system-generated XML regions index on a partitioned table is always
partitioned. A partitioned index uses an index organization scheme in which index
data is divided across multiple storage objects, called index partitions, according to
the table partitioning scheme of the table. Each index partition only refers to table
rows in the corresponding data partition.

For ATTACH, since the regions index on a partitioned table with XML column is
always partitioned, the region index on the source table can be kept as the new
regions index partition for the new table partition after completing the ATTACH
operation. Data and index objects do not move, therefore the catalog table entries
need to be updated. The catalog table entry for the regions index on the source
table will be removed on ATTACH and one regions index partition will be added
in the SYSINDEXPARTITIONS table. The pool ID and object ID will remain the
same as they were on the source table. The index ID (IID) will be modified to
match that of the regions index on the target.

After completing the DETACH operation, the regions index will be kept on the
detached table. The index partition entry associated to the partition being detached
will be removed from the SYSINDEXPARTITIONS table. One new regions index
entry will be added in the SYSINDEXES catalog table for the detached table, which
will have the same pool ID and object ID as the region index partition before the
DETACH.

Index over XML data

Starting in DB2 Version 9.7 Fix Pack 1, you can create an index over XML data on
a partitioned table as either partitioned or nonpartitioned. The default is a
partitioned index.

200 Partitioning and Clustering Guide

Partitioned and nonpartitioned indexes over XML data are treated like any other
relational indexes during ATTACH and DETACH operations.

Indexes on the source table will be dropped during the ATTACH operation. This
applies to both the logical and physical XML indexes. Their entries in the system
catalogs will be removed during the ATTACH operation.

Set integrity must be run after ATTACH, to maintain the nonpartitioned indexes
over XML data on the target table.

For DETACH, nonpartitioned indexes over XML columns on the source table are
not inherited by the target table.

XML column path indexes

Indexes over XML column paths are always nonpartitioned indexes. The XML
column path indexes on the source and target tables are maintained during roll-in
and rollout operations.

For ATTACH, the DB2 database manager will maintain the nonpartitioned XML
column path indexes on the target table (this is unlike other nonpartitioned
indexes, which are maintained during SET INTEGRITY after completing the
ATTACH operation). Afterwards, the XML column path indexes on the source
table will be dropped and their catalog entries will be removed because the
column path indexes on the target table are nonpartitioned.

For rollout, recall that the XML column path indexes are nonpartitioned, and
nonpartitioned indexes are not carried along to the standalone target table.
However, XML column path indexes (one for each column) must exist on a table
with XML columns before the table can be accessible to external user, therefore
XML column path indexes must be created on the target table before it can be
used. The time at which the column path indexes will be created depends on
whether there are any detached dependent tables during the DETACH operation. If
there are no detached dependent tables, then the paths indexes will be created
during the DETACH operation, otherwise they will be created by SET INTEGRITY
or MQT refresh to maintain the detach dependent objects.

After DETACH, the XML column path indexes created on the target table will
reside in the same index object along with all other indexes on that table.

Attaching data partitions
Table partitioning allows for the efficient roll-in and roll-out of table data. The
ALTER TABLE statement with the ATTACH PARTITION clause makes data roll-in
easier.

Before you begin

If data integrity checking, including range validation and other constraints
checking, can be done through application logic that is independent of the data
server before an attach operation, newly attached data can be made available for
use much sooner. You can optimize the data roll-in process by using the SET
INTEGRITY...ALL IMMEDIATE UNCHECKED statement to skip range and
constraints violation checking. In this case, the table is brought out of SET
INTEGRITY pending state, and the new data is available for applications to use
immediately, as long as all user indexes on the target table are partitioned indexes.

Chapter 13. Altering tables and other related table objects 201

If there are nonpartitioned indexes (except XML column path indexes) on the table
to maintain after an attach operation, the SET INTEGRITY...ALL IMMEDIATE
UNCHECKED statement behaves as though it were a SET
INTEGRITY...IMMEDIATE CHECKED statement. All integrity processing,
nonpartitioned index maintenance, and table state transitions are performed as
though a SET INTEGRITY...IMMEDIATE CHECKED statement was issued. This
behavior ensures that a roll-in script that uses SET INTEGRITY...ALL IMMEDIATE
UNCHECKED does not stop working if a nonpartitioned index is created for the
target table some time after the roll-in script is put into service.

To alter a table to attach a data partition, the privileges held by the authorization
ID of the statement must include at least one of the following authorities or
privileges on the source table:
v SELECT privilege on the table and DROPIN privilege on the schema of the table
v CONTROL privilege on the table
v DATAACCESS authority

About this task

Attaching data partitions takes an existing table (source table) and attaches it to the
target table as a new data partition. With DB2 V10.1 and later releases, when
attaching a data partition to a partitioned table by using the ALTER TABLE
statement with the ATTACH PARTITION clause, the target partitioned table
remains online, and dynamic queries against the table, running under the RS, CS,
or UR isolation level, continue to run.

Restrictions and usage guidelines

The following conditions must be met before you can attach a data partition:
v The target table to which you want to attach the new data partition must be an

existing partitioned table.
v The source table must be an existing nonpartitioned table or a partitioned table

with a single data partition and no attached data partitions or detached data
partitions. To attach multiple data partitions, you must issue multiple ATTACH
statements.

v The source table cannot be a typed table.
v The source table cannot be a range-clustered table.
v The source and target table definitions must match.
v The number, type, and ordering of source and target columns must match.
v Source and target table columns must match in terms of whether they contain

default values.
v Source and target table columns must match in terms of whether they allow null

values.
v Source and target table compression specifications, including the VALUE

COMPRESSION and COMPRESS SYSTEM DEFAULT clauses, must match.
v Source and target table specifications for the DATA CAPTURE, ACTIVATE NOT

LOGGED INITIALLY, and APPEND options must match.
v Attaching a data partition is allowed even when a target column is a generated

column and the corresponding source column is not a generated column. The
following statement generates the values for the generated column of the
attached rows:

202 Partitioning and Clustering Guide

SET INTEGRITY FOR table-name
ALLOW WRITE ACCESS
IMMEDIATE CHECKED FORCE GENERATED

The source table column that matches a generated column must match in type
and nullability; however, a default value is not required. The recommended
approach is to guarantee that the source table for the attach operation has the
correct generated value in the generated column. If you follow the
recommended approach, you are not required to use the FORCE GENERATED
option, and the following statements can be used.
SET INTEGRITY FOR table-name

GENERATED COLUMN
IMMEDIATE UNCHECKED

This statement indicates that checking of the generated column is to be
bypassed.
SET INTEGRITY FOR table-name

ALLOW WRITE ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN table-name USE table-name

This statement performs integrity checking of the attached data partition but
does not check the generated column.

v Attaching a data partition is allowed even when the target column is an identity
column and the source column is not an identity column. The statement SET
INTEGRITY IMMEDIATE CHECKED does not generate identity values for the
attached rows. The statement SET INTEGRITY FOR T GENERATE IDENTITY
ALLOW WRITE ACCESS IMMEDIATE CHECKED fills in the identity values for
the attached rows. The column that matches an identity column must match in
type and nullability. There is no requirement on the default values of this
column. The recommended approach is for you to fill in the correct identity
values at the staging table. Then after the ATTACH, there is no requirement to
use the GENERATE IDENTITY option because the identity values are already
guaranteed in the source table.

v For tables whose data is distributed across database partitions, the source table
must also be distributed, in the same database partition group using the same
distribution key and the same distribution map.

v The source table must be dropable (that is, it cannot have RESTRICT DROP set).
v If a data partition name is specified, it must not exist in the target table.
v If the target table is a multidimensional clustering (MDC) table, the source table

must also be an MDC table.
v Using a nonpartitioned table, the data table space for the source table must

match the data table spaces for the target table in type (that is, DMS or SMS),
page size, extent size, and database partition group. A warning is returned if the
prefetch size does not match. The index table space for the source table must
match the index table spaces used by the partitioned indexes for the target table
in type, database partition group, page size, and extent size. The large table
space for the source table must match the large table spaces for the target table
in type, database partition group, and page size. Using a partitioned table, the
data table space for the source table must match the data table spaces for the
target table in type, page size, extent size, and database partition group.

v When you issue the ALTER TABLE ATTACH statement to a partitioned table
with any structured, XML, or LOB columns, the INLINE LENGTH of any

Chapter 13. Altering tables and other related table objects 203

structured, XML, or LOB columns on the source table must match with the
INLINE LENGTH of the corresponding structured, XML, or LOB columns on the
target table.

v When you use the REQUIRE MATCHING INDEXES clause with the ATTACH
PARTITION clause, if there are any partitioned indexes on the target table that
do not have a match on the source table, SQL20307N is returned.

v Attaching a source table that does not have a matching index for each
partitioned unique index on the target table causes the attach operation to fail
with error SQL20307N, reason code 17.

v When a table has a deferred index cleanup operation in progress as the result of
an MDC rollout, since MDC rollout using the deferred index cleanup mechanism
is not supported for partitioned indexes, the attach operation is not allowed if
there are any RID indexes on the source table that are kept during the attach
operation, not rebuilt, and are pending asynchronous index cleanup of the
rolled-out blocks.

v Attaching a source table with an XML data format that is different from the
XML data format of the target table is not supported.

v If a table contains XML columns that use the Version 9.5 or earlier XML record
format, attaching the table to a partitioned table that contains XML columns that
use the Version 9.7 or later record format is not supported.
Before attaching the table, you must update the XML record format of the table
to match the record format of the target partitioned table. Either of the following
two methods updates the XML record format of a table:
– Perform an online table move on the table by using the

ADMIN_MOVE_TABLE procedure.
– Perform the following steps:

1. Use the EXPORT command to create a copy of the table data.
2. Use the TRUNCATE statement to delete all the rows from the table and

release the storage allocated to the table.
3. Use the LOAD command to add the data into the table.

After the XML record format of the table is updated, attach the table to the
target partitioned table.

v If a table has a nonpartitioned index, you cannot access a new data partition in
that table within the same transaction as the add or attach operation that created
the partition, if the transaction does not have the table locked in exclusive mode
(SQL0668N, reason code 11).

Before running the attach operation, create indexes on the source table that match
each of the partitioned indexes in the target table. Matching the partitioned indexes
makes the roll-in operation more efficient and less active log space is needed. If the
indexes on the source table are not properly prepared, the database manager is
required to maintain them for you. To ensure that your roll-in does not incur any
additional cost to maintain the partitioned indexes, you can specify REQUIRE
MATCHING INDEXES on the attach partition operation. Specifying REQUIRE
MATCHING INDEXES ensures that the attach operation fails if a source table does
not have indexes to match the partitioned indexes on the target. You can then take
the corrective action and reissue the attach operation.

In addition, drop any extra indexes on the source table before running the attach
operation. Extra indexes are those indexes on the source table that either do not

204 Partitioning and Clustering Guide

have a match on the target table, or that match nonpartitioned indexes on the
target table. Dropping extra indexes before running the attach operation makes it
run faster.

For example, assume that a partitioned table called ORDERS has 12 data partitions
(one for each month of the year). At the end of each month, a separate table called
NEWORDERS is attached to the partitioned ORDERS table.
1. Create partitioned indexes on the ORDERS table.

CREATE INDEX idx_delivery_date ON orders(delivery) PARTITIONED
CREATE INDEX idx_order_price ON orders(price) PARTITIONED

2. Prepare for the attach operation by creating the corresponding indexes on the
NEWORDERS table.
CREATE INDEX idx_delivery_date_for_attach ON neworders(delivery)
CREATE INDEX idx_order_price_for_attach ON neworders(price)

3. There are two steps to the attach operation:
a. ATTACH. The indexes on the NEWORDERS table that match the

partitioned indexes on the ORDERS table are kept.
ALTER TABLE orders ATTACH PARTITION part_jan2009

STARTING FROM (’01/01/2009’)
ENDING AT (’01/31/2009’) FROM TABLE neworders

The ORDERS table is automatically placed into the Set Integrity Pending
state. Both the idx_delivery_date_for_attach index and the
idx_order_price_for_attach index become part of the ORDERS table after the
completion of the attach operation. No data movement occurs during this
operation.

b. SET INTEGRITY. A range check is done on the newly attached partition.
Any constraints that exist are enforced. Upon completion, the newly
attached data becomes visible within the database.
SET INTEGRITY FOR orders IMMEDIATE CHECKED

When nonpartitioned indexes exist on the target table, the SET INTEGRITY
statement has to maintain the index along with other tasks, such as range
validation and constraints checking on the data from the newly attached partition.
Nonpartitioned index maintenance requires a large amount of active log space that
is proportional to the data volumes in the newly attached partition, the key size of
each nonpartitioned index, and the number of nonpartitioned indexes.

Each partitioned index on the new data partition is given an entry in the
SYSINDEXPARTITIONS catalog table using the table space identifier and object
identifier from the source table. The identifier information is taken from either the
SYSINDEXES table (if the table is nonpartitioned) or the SYSINDEXPARTITIONS
table (if the table is partitioned). The index identifier is taken from the partitioned
index of the matching target table.

When the source table is partitioned, those partitioned indexes on the source table
that match the partitioned indexes on the target table are kept as part of the attach
operation. Index partition entries in the SYSINDEXPARTITIONS table are updated
to show that they are index partitions on the new target table with new index
identifiers.

When attaching data partitions, some statistics for indexes as well as data are
carried over from the source table to the target table for the new partition.
Specifically, all fields in the SYSDATAPARTITIONS and SYSINDEXPARTITIONS
tables for the new partition on the target are populated from the source. When the

Chapter 13. Altering tables and other related table objects 205

source table is nonpartitioned, these statistics come from the SYSTABLES and
SYSINDEXES tables. When the source table is a single-partition partitioned table,
these statistics come from the SYSDATAPARTITIONS and SYSINDEXPARTITIONS
tables of the single source partition.

Note: Execute a runstats operation after the completion of an attach operation,
because the statistics that are carried over will not affect the aggregated statistics in
the SYSINDEXES and SYSTABLES tables.

Nonpartitioned index maintenance during SET INTEGRITY...ALL IMMEDIATE
UNCHECKED. When SET INTEGRITY...ALL IMMEDIATE UNCHECKED is issued
on a partitioned table to skip range checking for a newly attached partition, if
there are any nonpartitioned indexes (except the XML column path index) on the
table, SET INTEGRITY...ALL IMMEDIATE UNCHECKED performs as follows:
v If the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement references

one target table, the behavior is as though a SET INTEGRITY...ALLOW WRITE
ACCESS...IMMEDIATE CHECKED statement was issued instead. The SET
INTEGRITY...ALL IMMEDIATE UNCHECKED statement maintains all
nonpartitioned indexes (except XML column path indexes), performs all other
integrity processing, updates the constraints checking flag values in the
CONST_CHECKED column in the SYSCAT.TABLES catalog view, and returns
errors and stops immediately when constraints violations are detected.

v If the SET INTEGRITY...ALL IMMEDIATE UNCHECKED statement references
more than one target table, an error is returned (SQL20209N with reason code
13).

Rebuild of invalid partitioned indexes during SET INTEGRITY. The SET
INTEGRITY statement can detect whether the partitioned index object for a newly
attached partition is invalid and performs a partitioned index rebuild if necessary.

Guidelines for attaching data partitions to partitioned tables
This topic provides guidelines for correcting various types of mismatches that can
occur when attempting to attach a data partition to a partitioned table when
issuing the ALTER TABLE ...ATTACH PARTITION statement. You can achieve
agreement between tables by modifying the source table to match the
characteristics of the target table, or by modifying the target table to match the
characteristics of the source table.

The source table is the existing table you want to attach to a target table. The
target table is the table to which you want to attach the new data partition.

One suggested approach to performing a successful attach is to use the exact
CREATE TABLE statement for the source table as you did for the target table, but
without the PARTITION BY clause. In cases where it is difficult to modify the
characteristics of either the source or target tables for compatibility, you can create
a new source table that is compatible with the target table. For details on creating a
new source, see “Creating tables like existing tables”.

To help you prevent a mismatch from occurring, see the restrictions and usage
guidelines section of “Attaching data partitions”. The section outlines conditions
that must be met before you can successfully attach a data partition. Failure to
meet the listed conditions returns error SQL20408N or SQL20307N.

206 Partitioning and Clustering Guide

The following sections describe the various types of mismatches that can occur and
provides the suggested steps to achieve agreement between tables:

The (value) compression clause (the COMPRESSION column of
SYSCAT.TABLES) does not match. (SQL20307N reason code 2)

To achieve value compression agreement, use one of the following statements:
ALTER TABLE... ACTIVATE VALUE COMPRESSION
or
ALTER TABLE... DEACTIVATE VALUE COMPRESSION

To achieve row compression agreement use one of the following statements:
ALTER TABLE... COMPRESS YES
or
ALTER TABLE... COMPRESS NO

The APPEND mode of the tables does not match. (SQL20307N reason code 3)

To achieve append mode agreement use one of the following statements:
ALTER TABLE ... APPEND ON
or
ALTER TABLE ... APPEND OFF

The code pages of the source and target table do not match. (SQL20307N reason
code 4)

Create a new source

The source table is a partitioned table with more than one data partition or with
attached or detached data partitions. (SQL20307N reason code 5)

Detach data partitions from the source table until there is a single visible data
partition using the statement:
ALTER TABLE ... DETACH PARTITION

Detached partitions remain detached until each of the following steps has been
completed:
1. Execute any necessary SET INTEGRITY statements to incrementally refresh

detached dependents.
2. In Version 9.7.1 and later, wait for the detach to complete asynchronously. To

expedite this process, ensure that all access to the table that started prior to the
detach operation either completes or is terminated.

3. If the source table has nonpartitioned indexes, wait for the asynchronous index
cleanup to complete. To expedite this process, one option might be to drop the
nonpartitioned indexes on the source table.

If you want to perform an attach operation immediately, one option might be to
create a new source table.

The source table is a system table, a view, a typed table, a table ORGANIZED
BY KEY SEQUENCE, a created temporary table, or a declared temporary table.
(SQL20307N reason code 6)

Create a new source.

The target and source table are the same. (SQL20307N reason code 7)

Chapter 13. Altering tables and other related table objects 207

You cannot attach a table to itself. Determine the correct table to use as the source
or target table.

The NOT LOGGED INITIALLY clause was specified for either the source table
or the target table, but not for both. (SQL20307N reason code 8)

Either make the table that is not logged initially be logged by issuing the COMMIT
statement, or make the table that is logged be not logged initially by entering the
statement:
ALTER TABLE ... ACTIVATE NOT LOGGED INITIALLY

The DATA CAPTURE CHANGES clause was specified for either the source
table or the target table, but not both. (SQL20307N reason code 9)

To enable data capture changes on the table that does not have data capture
changes turned on, run the following statement:
ALTER TABLE ... DATA CAPTURE CHANGES

To disable data capture changes on the table that does have data capture changes
turned on, run the statement:
ALTER TABLE ... DATA CAPTURE NONE

The distribution clauses of the tables do not match. The distribution key must
be the same for the source table and the target table. (SQL20307N reason code
10)

It is recommended that you create a new source table. You cannot change the
distribution key of a table spanning multiple database partitions. To change a
distribution key on tables in single-partition database, run the following
statements:
ALTER TABLE ... DROP DISTRIBUTION;

ALTER TABLE ... ADD DISTRIBUTION(key-specification)

An error is returned when there are missing indexes during an attach operation
(SQL20307N reason code 18)

The attach operation implicitly builds missing indexes on the source table
corresponding to the partitioned indexes on the target table. The implicit creation
of the missing indexes does take time to complete. You have an option to create
and error condition if the attach operation encounters any missing indexes. The
option is called ERROR ON MISSING INDEXES and is one of the attach operation
options. The error returned when this happens is SQL20307N, SQLSTATE 428GE,
reason code 18. Information on the nonmatching indexes is placed in the
administration log.

The attach operation drops indexes on the source table that do not match the
partitioned indexes on the target table. The identification and dropping of these
nonmatching indexes takes time to complete. You should drop these indexes before
attempting the attach operation.

An error is returned when the nonmatching indexes on the target table are
unique indexes, or the XML indexes are defined with the REJECT INVALID
VALUES clause, during an attach operation (SQL20307N reason code 17)

208 Partitioning and Clustering Guide

When there are partitioned indexes on the target table with no matching indexes
on the source table and the ERROR ON MISSING INDEXES is not used, then you
could expect the following results:
1. If the nonmatching indexes on the target table are unique indexes, or the XML

indexes are defined with the REJECT INVALID VALUES clause, then the attach
operation will fail and return the error message SQL20307N, SQLSTATE 428GE,
reason code 17.

2. If the nonmatching indexes on the target table do not meet the conditions in
the previous point, the index object on the source table is marked invalid
during the attach operation. The attach operation completes successfully, but
the index object on the new data partition is marked invalid. The SET
INTEGRITY operation is used to rebuild the index objects on the newly
attached partition. Typically this is the next operation you would perform
following the attaching of a data partition. The recreation of the indexes takes
time.

The administration log will have details about any mismatches between the
indexes on the source and target tables.

Only one of the tables has an ORGANIZE BY DIMENSIONS clause specified or
the organizing dimensions are different. (SQL20307N reason code 11)

Create a new source.

The data type of the columns (TYPENAME) does not match. (SQL20408N reason
code 1)

To correct a mismatch in data type, issue the statement:
ALTER TABLE ... ALTER COLUMN ... SET DATA TYPE...

The nullability of the columns (NULLS) does not match. (SQL20408N reason
code 2)

To alter the nullability of the column that does not match for one of the tables
issue one of the following statements:
ALTER TABLE... ALTER COLUMN... DROP NOT NULL
or
ALTER TABLE... ALTER COLUMN... SET NOT NULL

The implicit default value (SYSCAT.COLUMNS IMPLICITVALUE) of the
columns are incompatible. (SQL20408N reason code 3)

Create a new source table. Implicit defaults must match exactly if both the target
table column and source table column have implicit defaults (if IMPLICITVALUE
is not NULL).

If IMPLICITVALUE is not NULL for a column in the target table and
IMPLICITVALUE is not NULL for the corresponding column in the source table,
each column was added after the original CREATE TABLE statement for the table.
In this case, the value stored in IMPLICITVALUE must match for this column.

There is a situation, where through migration from a pre-V9.1 table or through
attach of a data partition from a pre-V9.1 table, that IMPLICITVALUE is not NULL
because the system did not know whether or not the column was added after the
original CREATE TABLE statement. If the database is not certain whether the
column is added or not, it is treated as added. An added column is a column

Chapter 13. Altering tables and other related table objects 209

created as the result of an ALTER TABLE ...ADD COLUMN statement. In this case,
the statement is not allowed because the value of the column could become
corrupted if the attach were allowed to proceed. You must copy the data from the
source table to a new table (with IMPLICITVALUE for this column NULL) and use
the new table as the source table for the attach operation.

The code page (COMPOSITE_CODEPAGE) of the columns does not match.
(SQL20408N reason code 4)

Create a new source table.

The system compression default clause (COMPRESS) does not match.
(SQL20408N reason code 5)

To alter the system compression of the column issue one of the following
statements to correct the mismatch:
ALTER TABLE ... ALTER COLUMN ... COMPRESS SYSTEM DEFAULT
or
ALTER TABLE ... ALTER COLUMN ... COMPRESS OFF

Conditions for matching a source table index with a target table
partitioned index during ATTACH PARTITION

All index key columns of the partitioned index on the target table must match with
the index key columns of the index on the source table. If all other properties of
the index are the same, then the index on the source table is considered a match to
the partitioned index on the target table. That is, the index on the source table can
be used as an index on the target table. The table here can be used to determine if
the indexes are considered a match or not.

The following table is only useful and applicable when the target index is
partitioned. The target index property is assumed by the source index in all cases
where they are considered a match.

Table 14. Determining whether the source index matches when the target index property is
different from the source index property.

Rule
number

Target index
property

Source index
property Does the source index match?

1. non-unique unique Yes, if the index is not an XML index.

2. unique non-unique No

3. column X is
descending

column X is
ascending

No

4. column X is
ascending

column X is
descending

No

5. partitioned nonpartitioned No. Note: this assumes the source table
is partitioned.

6. pctfree n1 pctfree n2 Yes

7. level2pctfree n1 level2pctfree n2 Yes

8. minpctused n1 minpctused n2 Yes

9. disallow reverse
scans

allow reverse
scans

Yes, the physical index structure is the
same irrespective of whether reverse
scans are allowed or not.

210 Partitioning and Clustering Guide

Table 14. Determining whether the source index matches when the target index property is
different from the source index property. (continued)

Rule
number

Target index
property

Source index
property Does the source index match?

10. allow reverse
scans

disallow reverse
scans

Yes, the same reason as (9).

11. pagesplit
[L|H|S]

pagesplit
[L|H|S]

Yes

12. sampled statistics detailed statistics Yes

13. detailed statistics sampled statistics Yes

14. not clustered CLUSTER Yes

15. CLUSTER not clustered Yes. The index will become a clustering
index but the data will not be clustered
according to this index until the data is
reorganized. You can use a partition
level reorganization after attaching to
cluster the data according to this index
partition.

16. ignore invalid reject invalid Yes

17. reject invalid ignore invalid No. The target index property of
rejecting invalid values needs to be
respected and the source table may
have rows that violate this index
constraint.

18. Index
compression
enabled

Index
compression not
enabled

Yes. Note: compression of the
underlying index data will not occur
until the index is rebuilt.

19. Index
compression not
enabled

Index
compression
enabled

Yes. Note: decompressing the index
data will not occur until the index is
rebuilt.

Note: With rule number 5, an ALTER TABLE ... ATTACH PARTITION statement
fails returning error message SQL20307N, SQLSTATE 428GE, if you attempt to
attach a multidimensional clustering (MDC) table created using DB2 Version 9.7 or
earlier releases (having nonpartitioned block indexes) to a new MDC partitioned
table created using DB2 Version 9.7 Fix Pack 1 or later releases (having partitioned
block indexes) and the ERROR ON MISSING INDEXES clause is used. Removing
the ERROR ON MISSING INDEXES clause allows the attachment to complete
because the database manager maintains the indexes during the attach operation. If
you received error message SQL20307N, SQLSTATE 428GE, you should consider
removing the ERROR ON MISSING INDEXES clause.

An alternative is to use the online table move procedure to convert an MDC
partitioned table that has nonpartitioned block indexes to a table that has
partitioned block indexes.

Detaching data partitions
Table partitioning allows for the efficient roll-in and roll-out of table data. This
efficiency is achieved by using the ATTACH PARTITION and DETACH
PARTITION clauses of the ALTER TABLE statement.

Chapter 13. Altering tables and other related table objects 211

Before you begin

To detach a data partition from a partitioned table you must have the following
authorities or privileges:
v The user performing the DETACH PARTITION operation must have the

authority necessary to ALTER, to SELECT from and to DELETE from the source
table.

v The user must also have the authority necessary to create the target table.
Therefore, to alter a table to detach a data partition, the privilege held by the
authorization ID of the statement must include at least one of the following
authorities or privileges on the target table:
– DBADM authority
– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

Note: When detaching a data partition, the authorization ID of the statement is
going to effectively perform a CREATE TABLE statement and therefore must have
the necessary privileges to perform that operation. The authorization ID of the
ALTER TABLE statement becomes the definer of the new table with CONTROL
authority, as if the user had issued the CREATE TABLE statement. No privileges
from the table being altered are transferred to the new table. Only the
authorization ID of the ALTER TABLE statement and users with DBADM or
DATAACCESS authority have access to the data immediately after the ALTER
TABLE...DETACH PARTITION statement.

About this task

Rolling-out partitioned table data allows you to easily separate ranges of data from
a partitioned table. Once a data partition is detached into a separate table, the table
can be handled in several ways. You can drop the separate table (whereby, the data
from the data partition is destroyed); archive it or otherwise use it as a separate
table; attach it to another partitioned table such as a history table; or you can
manipulate, cleanse, transform, and reattach to the original or some other
partitioned table.

With DB2 Version 9.7 Fix Pack 1 and later releases, when detaching a data partition
from a partitioned table by using the ALTER TABLE statement with the DETACH
PARTITION clause, the source partitioned table remains online. Queries running
against the table continue to run. The data partition being detached is converted
into a stand-alone table in the following two-phase process:
1. The ALTER TABLE...DETACH PARTITION operation logically detaches the

data partition from the partitioned table.
2. An asynchronous partition detach task converts the logically detached partition

into a stand-alone table.

If there are any dependent tables that need to be incrementally maintained with
respect to the detached data partition (these dependent tables are referred to as
detached dependent tables), the asynchronous partition detach task starts only
after the SET INTEGRITY statement is run on all detached dependent tables.

212 Partitioning and Clustering Guide

In absence of detached dependent tables, the asynchronous partition detach task
starts after the transaction issuing the ALTER TABLE...DETACH PARTITION
statement commits.

Restrictions

If the source table is an MDC table created by DB2 Version 9.7 or earlier releases,
block indexes are not partitioned. Access to the newly detached table is not
allowed in the same unit of work as the ALTER TABLE...DETACH PARTITION
operation. MDC tables do not support partitioned block indexes. In that case, block
indexes are created upon first access to the table after the ALTER
TABLE...DETACH PARTITION operation is committed. If the source table had any
other partitioned indexes before detach time then the index object for the target
table is marked invalid to allow for creation of the block indexes. As a result access
time is increased while the block indexes are created and any partitioned indexes
are recreated.

When the source table is an MDC created by DB2 V9.7 Fix Pack 1 or later releases,
the block indexes are partitioned, and partitioned indexes become indexes on the
target table of detach without the need to be recreated.

You must meet the following conditions before you can perform a DETACH
PARTITION operation:
v The table to be detached from (source table) must exist and be a partitioned

table.
v The data partition to be detached must exist in the source table.
v The source table must have more than one data partition. A partitioned table

must have at least one data partition. Only visible and attached data partitions
pertain in this context. An attached data partition is a data partition that is
attached but not yet validated by the SET INTEGRITY statement.

v The name of the table to be created by the DETACH PARTITION operation
(target table) must not exist.

v DETACH PARTITION is not allowed on a table that is the parent of an enforced
referential integrity (RI) relationship. If you have tables with an enforced RI
relationship and want to detach a data partition from the parent table, a
workaround is available. In the following example, all statements are run within
the same unit of work (UOW) to lock out concurrent updates:
// Change the RI constraint to informational:
ALTER TABLE child ALTER FOREIGN KEY fk NOT ENFORCED;

ALTER TABLE parent DETACH PARTITION p0 INTO TABLE pdet;

SET INTEGRITY FOR child OFF;

// Change the RI constraint back to enforced:
ALTER TABLE child ALTER FOREIGN KEY fk ENFORCED;

SET INTEGRITY FOR child ALL IMMEDIATE UNCHECKED;
// Assuming that the CHILD table does not have any dependencies on partition P0,
// and that no updates on the CHILD table are permitted until this UOW is complete,
// no RI violation is possible during this UOW.

COMMIT WORK;

v If there are any dependent tables that need to be incrementally maintained with
respect to the detached data partition (these dependent tables are referred to as
detached dependent tables), the SET INTEGRITY statement is required to be run
on the detached dependent tables to incrementally maintain the tables. With DB2

Chapter 13. Altering tables and other related table objects 213

V9.7 Fix Pack 1 or later releases, after the SET INTEGRITY statement is run on
all detached dependent tables, the asynchronous partition detach task makes the
data partition into a stand-alone target table. Until the asynchronous partition
detach operation completes, the target table is unavailable.

Procedure
1. To alter a partitioned table and to detach a data partition from the table, issue

the ALTER TABLE statement with the DETACH PARTITION clause.
2. Optional: If you wish to have the same constraints on the newly detached

stand-alone table, run the ALTER TABLE... ADD CONSTRAINT on the target
table after completing the detach operation.
If the index was partitioned on the source table, any indexes necessary to
satisfy the constraint already exist on the target table.

Results

The detached partition is renamed with a system-generated name (using the form
SQLyymmddhhmmssxxx) so that a subsequent attach can reuse the detached partition
name immediately.

Each of the index partitions defined on the source table for the data partition being
detached becomes an index on the target table. The index object is not physically
moved during the detach partition operation. However, the metadata for the index
partitions of the table partition being detached are removed from the catalog table
SYSINDEXPARTITIONS. New index entries are added in SYSINDEXES for the new
table as a result of the detach partition operation. The original index identifier (IID)
is kept and stays unique just as it was on the source table.

The index names for the surviving indexes on the target table are system-generated
(using the form SQLyymmddhhmmssxxx). The schema for these indexes is the same as
the schema of the target table except for any path indexes, regions indexes, and
MDC or ITC block indexes, which are in the SYSIBM schema. Other
system-generated indexes like those to enforce unique and primary key constraints
will have a schema of the target table because the indexes are carried over to the
detached table but the constraints are not. You can use the RENAME statement to
rename the indexes that are not in the SYSIBM schema.

The table level INDEX IN option specified when creating the source table is not
inherited by the target table. Rather, the partition level INDEX IN (if specified) or
the default index table space for the detach partition continues to be the index
table space for the target table.

When detaching data partitions, some statistics are carried over from the partition
being detached into the target table. Specifically, statistics from
SYSINDEXPARTITIONS for partitioned indexes will be carried over to the entries
SYSINDEXES for the newly detached table. Statistics from SYSDATAPARTITIONS
will be copied over to SYSTABLES for the newly detached table.

What to do next

Run RUNSTATS after the completion of the DETACH PARTITION operation on both
the new detached table and the source table, because many of the statistics will not
be carried over following the completion of the detach partition operation.

214 Partitioning and Clustering Guide

Attributes of detached data partitions
When you detach a data partition from a partitioned table using the DETACH
PARTITION clause of the ALTER TABLE statement, it becomes a stand-alone,
nonpartitioned target table. Many attributes of the new target table are inherited
from the source table. Any attributes not inherited from the source table are set as
if the user executing the DETACH operation is creating the target table.

The target table after DETACH will inherit all the partitioned indexes defined on
the source table. These indexes includes both system-generated indexes or
user-defined indexes. The index object is not physically moved during the detach
operation. The index partition metadata of the datapartition being detached is
removed from the SYSINDEXPARTITIONS catalog. New entries are added in
SYSINDEXES for the new table. The index identifier (IID) for any given partitioned
index from the source table will be the IID for the index on the target table (the IID
will remain unique with respect to the table, and unchanged during the detach).

The index name for the surviving indexes on the new table are system-generated
with the form: SQLyymmddhhmmssxxx. Path indexes, region indexes, and MDC
or ITC indexes are made part of the SYSIBM schema. All other indexes are made
part of the schema of the new table. System-generated indexes like those to enforce
unique and primary key constraints are made part of the schema of the new table
because the indexes are carried over to the new table. Constraints on the source
table will not be inherited by the target table after DETACH.

You can use the RENAME statement to rename the indexes not in the SYSIBM
schema at another time.

You can use the ALTER TABLE ... ADD CONSTRAINT statement on the new table
following the completion of the detach operation to enforce the same constraints
on the new table as on the source table.

The table space location specified by the table-level INDEX IN clause on the source
table is not inherited by the new target table. Rather, the table space location
specified by the partition-level INDEX IN clause, or the default index table space
for the new table, continues as the index table space location for the new table.

Attributes inherited by the target table

Attributes inherited by the target table include:
v The following column definitions:

– Column name
– Data type (includes length and precision for types that have length and

precision, such as CHAR and DECIMAL)
– NULLability
– Column default values
– INLINE LENGTH
– Code page (CODEPAGE column of SYSCAT.COLUMNS catalog view)
– Logging for LOBs (LOGGED column of SYSCAT.COLUMNS catalog view)
– Compaction for LOBs (COMPACT column of SYSCAT.COLUMNS catalog

view)
– Compression (COMPRESS column of SYSCAT.COLUMNS catalog view)

Chapter 13. Altering tables and other related table objects 215

– Type of hidden column (HIDDEN column of SYSCAT.COLUMNS catalog
view)

– Column order
v If the source table is a multidimensional clustering (MDC) or insert time

clustering (ITC) table, the target table is also an MDC or ITC table, defined with
the same dimension columns.

v Block index definitions. The indexes are rebuilt on first access to the newly
detached independent table after the DETACH operation is committed.

v The table space id and table object id are inherited from the data partition, not
from the source table. This is because no table data is moved during a DETACH
operation. In catalog terms, the TBSPACEID column of the
SYSCAT.DATAPARTITIONS catalog view from the source data partition becomes
the TBSPACEID column of the SYSCAT.TABLES catalog view. When translated
into a table space name, it is the TBSPACE column of SYSCAT.TABLES catalog
view in the target table. The PARTITIONOBJECTID column of the
SYSCAT.DATAPARTITIONS catalog view from the source data partition becomes
the TABLEID column of the SYSCAT.TABLES catalog view in the target table.

v The LONG_TBSPACEID column of the SYSCAT.DATAPARTITIONS catalog view
from the source data partition is translated into a table space name and becomes
the LONG_TBSPACE column of SYSCAT.TABLES of the target table.

v The INDEX_TBSPACEID column value in the SYSDATAPARTITIONS for the
source data partition (the partition level index table space) is translated into a
table space name and becomes the INDEX_TBSPACE value in SYSTABLES for
the target table. The index table space specified by table level INDEX IN <table
space> in the CREATE TABLE statement will not be inherited by the target table.

v Table space location
v ID of distribution map for a multi-partition database (PMAP_ID column of

SYSCAT.TABLES catalog view)
v Percent free (PCTFREE column of SYSCAT.TABLES catalog view)
v Append mode (APPEND_MODE column of SYSCAT.TABLES catalog view)
v Preferred lock granularity (LOCKSIZE column of SYSCAT.TABLES catalog view)
v Data Capture (DATA_CAPTURE column of SYSCAT.TABLES catalog view)
v VOLATILE (VOLATILE column of SYSCAT.TABLES catalog view)
v DROPRULE (DROPRULE column of SYSCAT.TABLES catalog view)
v Compression (COMPRESSION column of SYSCAT.TABLES catalog view)
v Maximum free space search (MAXFREESPACESEARCH column of

SYSCAT.TABLES catalog view)

Note: Partitioned hierarchical or temporary tables, range-clustered tables, and
partitioned views are not supported.

Attributes not inherited from the source table

Attributes not inherited from the source table include:
v The target table type is not inherited. The target table is always a regular table.
v Privileges and Authorities
v Schema
v Generated columns, identity columns, check constraints, referential constraints.

In the case where a source column is a generated column or an identity column,
the corresponding target column has no explicit default value, meaning it has a
default value of NULL.

216 Partitioning and Clustering Guide

v Table level index table space (INDEX_TBSPACE column of the SYSCAT.TABLES
catalog view). Indexes for the table resulting from the DETACH will be in the
same table space as the table.

v Triggers
v Primary key constraints and unique key constraints
v Statistics for nonpartitioned indexes will not be inherited.
v All other attributes not mentioned in the list of attributes explicitly inherited

from the source table.

Data partition detach phases
With DB2 Version 9.7 Fix Pack 1 and later releases, detaching a data partition from
a data partitioned table consists of two phases. The first phase logically detaches
the partition from the table, the second phase converts the data partition into a
stand-alone table.

The detach process is initiated when an ALTER TABLE...DETACH PARTITION
statement is issued:
1. The ALTER TABLE...DETACH PARTITION operation logically detaches the

data partition from the partitioned table.
2. An asynchronous partition detach task converts the logically detached partition

into the stand-alone table.

If there are any dependent tables that need to be incrementally maintained with
respect to the detached data partition (these dependent tables are referred to as
detached dependent tables), the asynchronous partition detach task starts only
after the SET INTEGRITY statement is run on all detached dependent tables.

In absence of detached dependent tables, the asynchronous partition detach task
starts after the transaction issuing the ALTER TABLE...DETACH PARTITION
statement commits.

DETACH operation

The ALTER TABLE...DETACH PARTITION operation performs in the following
manner:
v The DETACH operation does not wait for dynamic uncommitted read (UR)

isolation level queries before it proceeds, nor does it interrupt any currently
running dynamic UR queries. This behavior occurs even when the UR query is
accessing the partition being detached.

v If dynamic non-UR queries (read or write queries) did not lock the partition to
be detached, the DETACH operation can complete while dynamic non-UR
queries are running against the table.

v If dynamic non-UR queries locked the partition to be detached, the DETACH
operation waits for the lock to be released.

v Hard invalidation must occur on all static packages that are dependent on the
table before the DETACH operation can proceed.

v The following restrictions that apply to data definition language (DDL)
statements also apply to a DETACH operation because DETACH requires
catalogs to be updated:
– New queries cannot be compiled against the table.
– A bind or rebind cannot be performed on queries that run against the table.

Chapter 13. Altering tables and other related table objects 217

To minimize the impact of these restrictions, issue a COMMIT immediately after
a DETACH operation.

During the DETACH operation, the data partition name is changed to a
system-generated name of the form SQLyymmddhhmmssxxx, and in
SYSCAT.DATAPARTITIONS, the status of the partition is set to 'L' if there are no
detached dependent tables, or 'D' if there are detached dependent tables.

During the DETACH operation, an entry is created in SYSCAT.TABLES for the
target table. If there are detached dependent tables, the table TYPE is set to 'L'.
After SET INTEGRITY is run on all detached dependent tables, the TYPE is set to
'T', however, the target table continues to be unavailable. The asynchronous
partition detach task completes the detach and makes the target table available.

Soft invalidation of dynamic SQL during the DETACH operation allows dynamic
SQL queries that started before the ALTER TABLE...DETACH PARTITION
statement to continue running concurrently with the DETACH operation. The
ALTER TABLE...DETACH PARTITION statement acquires an IX lock on the
partitioned table and an X lock on the data partition being detached.

Asynchronous partition detach task

After the DETACH operation commits and any detached dependent tables are
refreshed, the asynchronous partition detach task converts the logically detached
partition into the stand-alone table.

The asynchronous partition detach task waits for the completion of all access on
the partitioned table that started before phase 1 of the detach operation. If the
partitioned table has nonpartitioned indexes, the asynchronous partition detach
task creates the asynchronous index cleanup task for deferred indexed cleanup.
After the access completes, the asynchronous partition detach task completes phase
2 of the detached operation, by converting the logically detached partition into a
stand-alone table.

The LIST UTILITIES command can be used to monitor the process of the
asynchronous partition detach task. The LIST UTILITIES command indicates
whether the asynchronous partition detach task is in one of the following states:
v Waiting for old access to the partitioned table to complete
v Finalizing the detach operation and making the target table available

Asynchronous partition detach for data partitioned tables
For DB2 Version 9.7 Fix Pack 1 and later releases, the asynchronous partition
detach task completes the detach of a data partition from a partitioned table that
was initiated by an ALTER TABLE...DETACH operation. The task is an
asynchronous background process (ABP) that is initiated after the partition
becomes a logically detached partition.

The asynchronous partition detach task accelerates the process of detaching a data
partition from a partitioned table. If the partitioned table has dependent
materialized query tables (MQTs), the task is not initiated until after a SET
INTEGRITY statement is executed on the MQTs.

218 Partitioning and Clustering Guide

By completing the detach of the data partition asynchronously, queries accessing
the partitioned table that started prior to issuing ALTER TABLE...DETACH
PARTITION statement continue while the partition is immediately detached.

If there are any dependent tables that need to be incrementally maintained with
respect to the detached data partition (these dependent tables are referred to as
detached dependent tables), the asynchronous partition detach task starts only
after the SET INTEGRITY statement is run on all detached dependent tables.

In the absence of detached dependents, the asynchronous partition detach task
starts after the transaction issuing the ALTER TABLE...DETACH PARTITION
statement commits.

The asynchronous partition detach task performs the following operations:
v Performs hard invalidation on cached statements on which the ALTER

TABLE...DETACH operation previously performed soft invalidation.
v Updates catalog entries for source partitioned table and target stand-alone table

and makes the target table available.
v For multidimensional clustering (MDC) tables with nonpartitioned block indexes

and no other partitioned indexes, creates an index object for target table. The
block indexes are created upon first access to the target table after the
asynchronous partition detach task commits.

v Creates the system path index on the target table for table containing XML
columns.

v Updates the minimum recovery time (MRT) of the table space containing the
detached partition.

v Creates asynchronous index cleanup AIC tasks for nonpartitioned indexes. The
AIC task performs index cleanup after asynchronous partition detach completes.

v Releases the data partition ID if nonpartitioned indexes do not exist on the table.

Asynchronous partition detach task impact on performance

An asynchronous partition detach task incurs minimal performance impact. The
task waits for all access to the detached partition to complete by performing a hard
invalidation on cached statements on which the ALTER TABLE...DETACH
operation previously performed soft invalidation. Then the task acquires the
required locks on the table and on the partition and continues the process to make
the detached partition a stand-alone table.

Monitoring the asynchronous partition detach task

The distribution daemon and asynchronous partition detach task agents are
internal system applications that appear in LIST APPLICATIONS command output
with the application names db2taskd and db2apd, respectively. To prevent
accidental disruption, system applications cannot be forced. The distribution
daemon remains online as long as the database is active. The tasks remain active
until detach completes. If the database is deactivated while detach is in progress,
the asynchronous partition detach task resumes when the database is reactivated.

The LIST UTILITIES command indicates whether the asynchronous partition detach
task is in one of the following states:
v Waiting for old access to the partitioned table to complete
v Finalizing the detach operation and making the target table available

Chapter 13. Altering tables and other related table objects 219

The following sample output for the LIST UTILITIES SHOW DETAIL command shows
asynchronous partition detach task activity in the WSDB database:
ID = 1
Type = ASYNCHRONOUS PARTITION DETACH
Database Name = WSDB
Partition Number = 0
Description = Finalize the detach for partition ’4’ of table ’USER1.ORDERS’.
Start Time = 07/15/2009 14:52:14.476131
State = Executing
Invocation Type = Automatic
Progress Monitoring:

Description = Waiting for old access to the partitioned table to complete.
Start Time = 07/15/2009 14:52:51.268119

In the output of the LIST UTILITIES command, the main description for the
asynchronous partition detach task identifies the data partition being detached and
the target table created by the detach operation. The progress monitoring
description provides information about the current state of the asynchronous
partition detach task.

Note: The asynchronous partition detach task is an asynchronous process. To
know when the target table of a detach operation is available, a stored procedure
can be created that queries the STATUS column of the SYSCAT.DATAPARTITIONS
catalog view and returns when the detach operation completes.

Asynchronous partition detach processing in a partitioned
database environment

One asynchronous partition detach task is created for each DETACH operation
independent of the number of database partitions in a partitioned database
environment. The task is created on the catalog database partition and distributes
work to the remaining database partitions, as needed.

Error handling for the asynchronous partition detach task

The asynchronous partition detach task is transaction based. All the changes made
by a task will be rolled back internally if it fails. Any errors during asynchronous
partition detach processing are logged in a db2diag log file. A failed task is retried
later by the system.

Adding data partitions to partitioned tables
You can use the ALTER TABLE statement to modify a partitioned table after the
table is created. Specifically, you can use the ADD PARTITION clause to add a new
data partition to an existing partitioned table.

About this task

Adding a data partition to a partitioned table is more appropriate than attaching a
data partition when data is added to the data partition over time, when data is
trickling in rather than rolling in from an external source, or when you are
inserting or loading data directly into a partitioned table. Specific examples include
daily loads of data into a data partition for January data or ongoing inserts of
individual rows.

To add the new data partition to a specific table space location, the IN clause is
added as an option on the ALTER TABLE ADD PARTITION statement.

220 Partitioning and Clustering Guide

To add the partitioned index of a new data partition to a specific table space
location separate from the table space location of the data partition, the partition
level INDEX IN clause is added as an option on the ALTER TABLE ADD
PARTITION statement. If the INDEX IN option is not specified, by default any
partitioned indexes on the new data partition reside in the same table space as the
data partition. If any partitioned indexes exist on the partitioned table, the ADD
PARTITION clause creates the corresponding empty index partitions for the new
partition. A new entry is inserted into the SYSCAT.INDEXPARTITIONS catalog
view for each partitioned index.

To add the LONG, LOB, or XML data of a new data partition to a specific table
space location that is separate from the table space location of the data partition,
the partition-level LONG IN clause is added as an option on the ALTER TABLE
ADD PARTITION statement.

With DB2 V10.1 and later releases, when adding a data partition to a partitioned
table by using the ALTER TABLE statement with the ADD PARTITION clause, the
target partitioned table remains online, and dynamic queries against the table,
running under the RS, CS, or UR isolation level, continue to run.

Restrictions and usage guidelines

v You cannot add a data partition to a nonpartitioned table. For details on
migrating an existing table to a partitioned table, see “Migrating existing tables
and views to partitioned tables” on page 180.

v The range of values for each new data partition are determined by the
STARTING and ENDING clauses.

v One or both of the STARTING and ENDING clauses must be supplied.
v The new range must not overlap with the range of an existing data partition.
v When adding a new data partition before the first existing data partition, the

STARTING clause must be specified. Use MINVALUE to make this range open
ended.

v Likewise, the ENDING clause must be specified if you want to add a new data
partition after the last existing data partition. Use MAXVALUE to make this
range open ended.

v If the STARTING clause is omitted, then the database manufactures a starting
bound just after the ending bound of the previous data partition. Likewise, if the
ENDING clause is omitted, the database creates an ending bound just before the
starting bound of the next data partition.

v The start-clause and end-clause syntax is the same as specified in the CREATE
TABLE statement.

v If the IN, INDEX IN, or LONG IN clauses are not specified for ADD
PARTITION, the table space in which to place the data partition is chosen by
using the same method as is used by the CREATE TABLE statement.

v Packages are invalidated during the ALTER TABLE...ADD PARTITION
operation.

v The newly added data partition is available once the ALTER TABLE statement is
committed.

v If a table has a nonpartitioned index, you cannot access a new data partition in
that table within the same transaction as the add or attach operation that created
the partition, if the transaction does not have the table locked in exclusive mode
(SQL0668N, reason code 11).

Chapter 13. Altering tables and other related table objects 221

Omitting the STARTING or ENDING bound for an ADD operation is also used to
fill a gap in range values. Here is an example of filling in a gap by using the ADD
operation where only the starting bound is specified:
CREATE TABLE hole (c1 int) PARTITION BY RANGE (c1)
(STARTING FROM 1 ENDING AT 10, STARTING FROM 20 ENDING AT 30);
DB20000I The SQL command completed successfully.

ALTER TABLE hole ADD PARTITION STARTING 15;
DB20000I The SQL command completed successfully.

SELECT SUBSTR(tabname, 1,12) tabname,
SUBSTR(datapartitionname, 1, 12) datapartitionname,
seqno, SUBSTR(lowvalue, 1, 4) lowvalue, SUBSTR(highvalue, 1, 4) highvalue
FROM SYSCAT.DATAPARTITIONS WHERE TABNAME=’HOLE’ ORDER BY seqno;

TABNAME DATAPARTITIONNAME SEQNO LOWVALUE HIGHVALUE
------------ ----------------- ----------- -------- ---------
HOLE PART0 0 1 10
HOLE PART2 1 15 20
HOLE PART1 2 20 30

3 record(s) selected.

Example 1: Add a data partition to an existing partitioned table that holds a range
of values 901 - 1000 inclusive. Assume that the SALES table holds nine ranges: 0 -
100, 101 - 200, and so on, up to the value of 900. The example adds a range at the
end of the table, indicated by the exclusion of the STARTING clause:
ALTER TABLE sales ADD PARTITION dp10
ENDING AT 1000 INCLUSIVE

To add the partitioned index of a new data partition to a specific table space
location separate from the table space location of the data partition, the partition
level INDEX IN clause is added as an option on the ALTER TABLE ADD
PARTITION statement. If no INDEX IN option is specified, by default any
partitioned indexes on the new data partition reside in the same table space as the
data partition. If any partitioned indexes exist on the partitioned table, ADD
PARTITION creates the corresponding empty index partitions for the new
partition. A new entry is inserted into the SYSCAT.INDEXPARTITIONS catalog
view for each partitioned index.

Example 2: Add a data partition to an existing partitioned table by separating out
long data and indexes from the rest of the data partition.
ALTER TABLE newbusiness ADD PARTITION IN tsnewdata
INDEX IN tsnewindex LONG IN tsnewlong

Dropping data partitions
To drop a data partition, you detach the partition, and drop the table created by
the detach operation. Use the ALTER TABLE statement with the DETACH
PARTITION clause to detach the partition and create a stand-alone table, and use
the DROP TABLE statement to drop the table.

Before you begin

To detach a data partition from a partitioned table the user must have the
following authorities or privileges:
v The user performing the DETACH operation must have the authority to ALTER,

to SELECT from and to DELETE from the source table.

222 Partitioning and Clustering Guide

v The user must also have the authority to CREATE the target table. Therefore, in
order to alter a table to detach a data partition, the privilege held by the
authorization ID of the statement must include at least one of the following on
the target able:
– DBADM authority
– CREATETAB authority on the database and USE privilege on the table spaces

used by the table as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema.

To drop a table the user must have the following authorities or privileges:
v You must either be the definer as recorded in the DEFINER column of

SYSCAT.TABLES, or have at least one of the following privileges:
– DBADM authority
– DROPIN privilege on the schema for the table
– CONTROL privilege on the table

Note: The implication of the detach data partition case is that the authorization ID
of the statement is going to effectively issue a CREATE TABLE statement and
therefore must have the necessary privileges to perform that operation. The table
space is the one where the data partition that is being detached already resides.
The authorization ID of the ALTER TABLE statement becomes the definer of the
new table with CONTROL authority, as if the user issued the CREATE TABLE
statement. No privileges from the table being altered are transferred to the new
table. Only the authorization ID of the ALTER TABLE statement and DBADM or
SYSADM have access to the data immediately after the ALTER TABLE...DETACH
PARTITION operation.

Procedure

To detach a data partition of a partitioned table, issue the ALTER TABLE statement
with the DETACH PARTITION clause.

Example

In the following example, the dec01 data partition is detached from table STOCK
and placed in table JUNK. After ensuring that the asynchronous partition detach
task made the target table JUNK available, you can drop the table JUNK,
effectively dropping the associated data partition.

ALTER TABLE stock DETACH PART dec01 INTO junk;
-- After the target table becomes available, issue the DROP TABLE statement
DROP TABLE junk;

What to do next

To make the ALTER TABLE...DETACH as fast as possible with DB2 Version 9.7 Fix
Pack 1 and later releases, the asynchronous partition detach task completes the
detach operation asynchronously. If there are detached dependent tables, the
asynchronous partition detach task does not start and the detached data partition
does not become a stand-alone table. In this case, the SET INTEGRITY statement
must be issued on all detached dependent tables. After SET INTEGRITY completes,
the asynchronous partition detach task starts and makes the target table accessible.

Chapter 13. Altering tables and other related table objects 223

When the target table is accessible it can be dropped.

Scenario: Rotating data in a partitioned table
Rotating data in DB2 databases refers to a method of reusing space in a data
partition by removing obsolete data from a table (a detach partition operation) and
then adding new data (an attach partition operation).

Before you begin

Alternatively, you can archive the detached partition and load the new data into a
different source table before an attach operation is performed. In the following
scenario, a detach operation precedes the other steps; it could as easily be the last
step, depending on your specific requirements.

To alter a table to detach a data partition, the authorization ID of the statement
must hold the following privileges and authorities:
v At least one of the following authorities on the target table of the detached

partition:
– CREATETAB authority on the database, and USE privilege on the table spaces

used by the table, as well as one of the following authorities or privileges:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the new table does not exist
- CREATEIN privilege on the schema, if the schema name of the new table

refers to an existing schema
– DBADM authority

v At least one of the following privileges and authorities on the source table:
– SELECT, ALTER, and DELETE privileges on the table
– CONTROL privilege on the table
– DATAACCESS authority

To alter a table to attach a data partition, the authorization ID of the statement
must include the following privileges and authorities:
v At least one of the following authorities or privileges on the source table:

– SELECT privilege on the table and DROPIN privilege on the schema of the
table

– CONTROL privilege on the table
– DATAACCESS authority

v A least one of the following authorities or privileges on the target table:
– ALTER and INSERT privileges on the table
– CONTROL privilege on the table
– DATAACCESS authority

Procedure

To rotate data in a partitioned table, issue the ALTER TABLE statement. The
following example shows how to update the STOCK table by removing the data
from December 2008 and replacing it with the latest data from December 2010.
1. Remove the old data from the STOCK table.

ALTER TABLE stock DETACH PARTITION dec08 INTO newtable;

224 Partitioning and Clustering Guide

2. Load the new data. Using the LOAD command with the REPLACE option
overwrites existing data.
LOAD FROM data_file OF DEL REPLACE INTO newtable

Note: If there are detached dependents, issue the SET INTEGRITY statement
on the detached dependents before loading the detached table. If SQL20285N is
returned, wait until the asynchronous partition detach task is complete before
issuing the SET INTEGRITY statement again.

3. If necessary, perform data cleansing activities, which can include the following
actions:
v Filling in missing values
v Deleting inconsistent and incomplete data
v Removing redundant data arriving from multiple sources
v Transforming data

– Normalization. Data from different sources that represents the same value
in different ways must be reconciled as part of rolling the data into the
warehouse.

– Aggregation. Raw data that is too detailed to store in the warehouse must
be aggregated before being rolled in.

4. Attach the data as a new range.
ALTER TABLE stock

ATTACH PARTITION dec10
STARTING ’12/01/2008’ ENDING ’12/31/2010’

FROM newtable;

5. Use the SET INTEGRITY statement to update indexes and other dependent
objects. Read and write access is permitted during execution of the SET
INTEGRITY statement.
SET INTEGRITY FOR stock

ALLOW WRITE ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN stock USE stock_ex;

Scenarios: Rolling in and rolling out partitioned table data
A common administrative operation in data warehouses is to periodically roll in
new data and roll out obsolete data. The following scenarios illustrate these tasks.

Scenario 1: Rolling out obsolete data by detaching a data
partition

The following example shows how to detach an unneeded data partition (DEC01)
from a partitioned table named STOCK. The detached data partition is used to
create a table named STOCK_DROP without any data movement.
ALTER TABLE stock DETACH PART dec01 INTO stock_drop;
COMMIT WORK;

To expedite the detach operation, index cleanup on the source table is done
automatically and in the background through an asynchronous index cleanup
process. If there are no detached dependent tables defined on the source table,
there is no need to issue a SET INTEGRITY statement to complete the detach
operation.

The new table can be dropped or attached to another table, or it can be truncated
and loaded with new data before being reattached to the source table. You can

Chapter 13. Altering tables and other related table objects 225

perform these operations immediately, even before asynchronous index cleanup
completes, unless the source table detached dependent tables.

To determine whether a detached table is accessible, query the
SYSCAT.TABDETACHEDDEP catalog view. If a detached table is found to be
inaccessible, issue the SET INTEGRITY statement with the IMMEDIATE
CHECKED option against all of the detached dependent tables. If you try to access
a detached table before all of its detached dependent tables are maintained, an
error (SQL20285N) is returned.

Scenario 2: Creating a new, empty range

The following example shows how to add an empty data partition (DEC02) to a
partitioned table named STOCK. The STARTING FROM and ENDING AT clauses
specify the range of values for the new data partition.
ALTER TABLE stock ADD PARTITION dec02
STARTING FROM ’12/01/2002’ ENDING AT ’12/31/2002’;

This ALTER TABLE...ADD PARTITION statement waits for the completion of
existing static or repeatable-read queries that run against the STOCK table, and
invalidates related packages. Such existing queries complete normally before the
add operation begins work on the STOCK table. Existing dynamic
non-repeatable-read queries against the STOCK table continue, and can run
concurrently with the add operation. After the ALTER TABLE...ADD PARTITION
statement begins work on the STOCK table, any new queries that access that table
must wait for the add operation to complete.

Load data into the table:
LOAD FROM data_file OF DEL
INSERT INTO stock
ALLOW READ ACCESS;

Issue a SET INTEGRITY statement to validate constraints and refresh dependent
materialized query tables (MQTs). Any rows that violate defined constraints are
moved to the exception table STOCK_EX.
SET INTEGRITY FOR stock
ALLOW READ ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN stock USE stock_ex;

COMMIT WORK;

Scenario 3: Rolling in new data by attaching a loaded data
partition

The following example shows how an attach operation can be used to facilitate
loading a new range of data into an existing partitioned table (the target table
named STOCK). Data is loaded into a new, empty table (DEC03), where it can be
checked and cleansed, if necessary, without impacting the target table. Data
cleansing activities include:
v Filling in missing values
v Deleting inconsistent and incomplete data
v Removing redundant data that arrived from multiple sources
v Transforming the data through normalization or aggregation:

– Normalization. Data from different sources that represents the same values in
different ways must be reconciled as part of the roll-in process.

226 Partitioning and Clustering Guide

– Aggregation. Raw data that is too detailed to store in a warehouse must be
aggregated during roll-in.

After the data is prepared in this way, the newly loaded data partition can be
attached to the target table.
CREATE TABLE dec03(...);
LOAD FROM data_file OF DEL REPLACE INTO dec03;
(data cleansing, if necessary)
ALTER TABLE stock ATTACH PARTITION dec03
STARTING FROM ’12/01/2003’ ENDING AT ’12/31/2003’
FROM dec03;

During an attach operation, one or both of the STARTING FROM and ENDING AT
clauses must be specified, and the lower bound (STARTING FROM clause) must be
less than or equal to the upper bound (ENDING AT clause). The newly attached
data partition must not overlap an existing data partition range in the target table.
If the high end of the highest existing range is defined as MAXVALUE, any
attempt to attach a new high range fails, because that new range would overlap
the existing high range. A similar restriction applies to low ranges that end at
MINVALUE. Moreover, you cannot add or attach a new data partition in the
middle, unless its new range falls within a gap in the existing ranges. If boundaries
are not specified by the user, they are determined when the table is created.

The ALTER TABLE...ATTACH PARTITION statement waits for the completion of
existing static or repeatable-read queries that run against the STOCK table, and
invalidates related packages. Such existing queries complete normally before the
attach operation begins work on the STOCK table. Existing dynamic
non-repeatable-read queries against the STOCK table continue, and can run
concurrently with the attach operation. After the ALTER TABLE...ATTACH
PARTITION statement begins work on the STOCK table, any new queries that
access that table must wait for the attach operation to complete.

The data in the attached data partition is not yet visible because it is not yet
validated by the SET INTEGRITY statement. The SET INTEGRITY statement is
necessary to verify that the newly attached data is within the defined range. It also
performs any necessary maintenance activities on indexes and other dependent
objects, such as MQTs. New data is not visible until the SET INTEGRITY statement
commits; however, if the SET INTEGRITY statement is running online, existing
data in the STOCK table is fully accessible for both read and write operations.

Tip: If data integrity checking, including range validation and other constraints
checking, can be done through application logic that is independent of the data
server before an attach operation, newly attached data can be made available for
use much sooner. You can optimize the data roll-in process by using the SET
INTEGRITY...ALL IMMEDIATE UNCHECKED statement to skip range and
constraints violation checking. In this case, the table is brought out of SET
INTEGRITY pending state, and the new data is available for applications to use
immediately, as long as there are no nonpartitioned user indexes on the target
table.

Note: You cannot execute data definition language (DDL) statements or utility
operations against the table while the SET INTEGRITY statement is running. These
operations include, but are not restricted to, the following statements and
commands:
v LOAD command
v REDISTRIBUTE DATABASE PARTITION GROUP command

Chapter 13. Altering tables and other related table objects 227

v REORG INDEXES/TABLE command
v ALTER TABLE statement

– ADD COLUMN
– ADD PARTITION
– ATTACH PARTITION
– DETACH PARTITION

v CREATE INDEX statement

The SET INTEGRITY statement validates the data in the newly attached data
partition:
SET INTEGRITY FOR stock
ALLOW WRITE ACCESS
IMMEDIATE CHECKED
FOR EXCEPTION IN stock USE stock_ex;

Committing the transaction makes the table available for use:
COMMIT WORK;

Any rows that are out of range, or that violate other constraints, are moved to the
exception table STOCK_EX. You can query this table, fix the rows, and insert them
into the STOCK table.

228 Partitioning and Clustering Guide

Chapter 14. Load

Parallelism and loading
The load utility takes advantage of a hardware configuration in which multiple
processors or multiple storage devices are used, such as in a symmetric
multiprocessor (SMP) environment.

There are several ways in which parallel processing of large amounts of data can
take place using the load utility. One way is through the use of multiple storage
devices, which allows for I/O parallelism during the load operation (see
Figure 37). Another way involves the use of multiple processors in an SMP
environment, which allows for intra-partition parallelism (see Figure 38). Both can
be used together to provide even faster loading of data.

MDC and ITC considerations
The following restrictions apply when loading data into multidimensional
clustering (MDC) and insert time clustering (ITC) tables:
v The SAVECOUNT option of the LOAD command is not supported.
v The totalfreespace file type modifier is not supported since these tables

manage their own free space.

Disk Disk Disk

I/O
Subagent

I/O
Subagent

I/O
Subagent

Figure 37. Taking Advantage of I/O Parallelism When Loading Data

parse,
convert fields,
build record,
insert into table

parse,
convert fields,
build record,
insert into table

Source data (DEL, ASC, IXF, CURSOR)

Database

parse,
convert fields,
build record,
insert into table

parse,
convert fields,
build record,
insert into table

Figure 38. Taking Advantage of Intra-partition Parallelism When Loading Data

© Copyright IBM Corp. 2012 229

v The anyorder file type modifier is required for MDC or ITC tables. If a load is
executed into an MDC or ITC table without the anyorder modifier, it will be
explicitly enabled by the utility.

When using the LOAD command with an MDC or ITC table, violations of unique
constraints are be handled as follows:
v If the table included a unique key before the load operation and duplicate

records are loaded into the table, the original record remains and the new
records are deleted during the delete phase.

v If the table did not include a unique key before the load operation and both a
unique key and duplicate records are loaded into the table, only one of the
records with the unique key is loaded and the others are deleted during the
delete phase.

Note: There is no explicit technique for determining which record is loaded and
which is deleted.

Performance Considerations

To improve the performance of the load utility when loading MDC tables with
more than one dimension, the util_heap_sz database configuration parameter value
should be increased. The mdc-load algorithm performs significantly better when
more memory is available to the utility. This reduces disk I/O during the
clustering of data that is performed during the load phase. Beginning in version
9.5, the value of the DATA BUFFER option of the LOAD command can temporarily
exceed util_heap_sz if more memory is available in the system. .

MDC or ITC load operations always have a build phase since all MDC and ITC
tables have block indexes.

During the load phase, extra logging for the maintenance of the block map is
performed. There are approximately two extra log records per extent allocated. To
ensure good performance, the logbufsz database configuration parameter should be
set to a value that takes this into account.

A system temporary table with an index is used to load data into MDC and ITC
tables. The size of the table is proportional to the number of distinct cells loaded.
The size of each row in the table is proportional to the size of the MDC dimension
key. ITC tables only have one cell and use a 2-byte dimension key. To minimize
disk I/O caused by the manipulation of this table during a load operation, ensure
that the buffer pool for the temporary table space is large enough.

Load considerations for partitioned tables
All of the existing load features are supported when the target table is partitioned
with the exception of the following general restrictions:
v Consistency points are not supported when the number of partitioning agents is

greater than one.
v Loading data into a subset of data partitions while the remaining data partitions

remain fully online is not supported.
v The exception table used by a load operation cannot be partitioned.
v An exception table cannot be specified if the target table contains an XML

column.

230 Partitioning and Clustering Guide

v A unique index cannot be rebuilt when the load utility is running in insert mode
or restart mode, and the load target table has any detached dependents.

v Similar to loading MDC tables, exact ordering of input data records is not
preserved when loading partitioned tables. Ordering is only maintained within
the cell or data partition.

v Load operations utilizing multiple formatters on each database partition only
preserve approximate ordering of input records. Running a single formatter on
each database partition, groups the input records by cell or table partitioning
key. To run a single formatter on each database partition, explicitly request
CPU_PARALLELISM of 1.

General load behavior

The load utility inserts data records into the correct data partition. There is
no requirement to use an external utility, such as a splitter, to partition the
input data before loading.

The load utility does not access any detached or attached data partitions.
Data is inserted into visible data partitions only. Visible data partitions are
neither attached nor detached. In addition, a load replace operation does
not truncate detached or attached data partitions. Since the load utility
acquires locks on the catalog system tables, the load utility waits for any
uncommitted ALTER TABLE transactions. Such transactions acquire an
exclusive lock on the relevant rows in the catalog tables, and the exclusive
lock must terminate before the load operation can proceed. This means that
there can be no uncommitted ALTER TABLE ...ATTACH, DETACH, or
ADD PARTITION transactions while load operation is running. Any input
source records destined for an attached or detached data partition are
rejected, and can be retrieved from the exception table if one is specified.
An informational message is written to the message file to indicate some of
the target table data partitions were in an attached or detached state. Locks
on the relevant catalog table rows corresponding to the target table prevent
users from changing the partitioning of the target table by issuing any
ALTER TABLE ...ATTACH, DETACH, or ADD PARTITION operations
while the load utility is running.

Handling of invalid rows

When the load utility encounters a record that does not belong to any of
the visible data partitions the record is rejected and the load utility
continues processing. The number of records rejected because of the range
constraint violation is not explicitly displayed, but is included in the
overall number of rejected records. Rejecting a record because of the range
violation does not increase the number of row warnings. A single message
(SQL0327N) is written to the load utility message file indicating that range
violations are found, but no per-record messages are logged. In addition to
all columns of the target table, the exception table includes columns
describing the type of violation that had occurred for a particular row.
Rows containing invalid data, including data that cannot be partitioned,
are written to the dump file.

Because exception table inserts are expensive, you can control which
constraint violations are inserted into the exception table. For instance, the
default behavior of the load utility is to insert rows that were rejected
because of a range constraint or unique constraint violation, but were
otherwise valid, into the exception table. You can turn off this behavior by
specifying, respectively, NORANGEEXC or NOUNIQUEEXC with the FOR
EXCEPTION clause. If you specify that these constraint violations should

Chapter 14. Load 231

not be inserted into the exception table, or you do not specify an exception
table, information about rows violating the range constraint or unique
constraint is lost.

History file

If the target table is partitioned, the corresponding history file entry does
not include a list of the table spaces spanned by the target table. A
different operation granularity identifier ('R' instead of 'T') indicates that a
load operation ran against a partitioned table.

Terminating a load operation

Terminating a load replace completely truncates all visible data partitions,
terminating a load insert truncates all visible data partitions to their
lengths before the load. Indexes are invalidated during a termination of an
ALLOW READ ACCESS load operation that failed in the load copy phase.
Indexes are also invalidated when terminating an ALLOW NO ACCESS
load operation that touched the index (It is invalidated because the
indexing mode is rebuild, or a key was inserted during incremental
maintenance leaving the index in an inconsistent state). Loading data into
multiple targets does not have any effect on load recovery operations
except for the inability to restart the load operation from a consistency
point taken during the load phase In this case, the SAVECOUNT load option is
ignored if the target table is partitioned. This behavior is consistent with
loading data into a MDC target table.

Generated columns

If a generated column is in any of the partitioning, dimension, or
distribution keys, the generatedoverride file type modifier is ignored and
the load utility generates values as if the generatedignore file type
modifier is specified. Loading an incorrect generated column value in this
case can place the record in the wrong physical location, such as the wrong
data partition, MDC block or database partition. For example, once a
record is on a wrong data partition, set integrity has to move it to a
different physical location, which cannot be accomplished during online set
integrity operations.

Data availability

The current ALLOW READ ACCESS load algorithm extends to partitioned
tables. An ALLOW READ ACCESS load operation allows concurrent
readers to access the whole table, including both loading and non-loading
data partitions.

Data partition states

After a successful load, visible data partitions might change to either or
both Set Integrity Pending or Read Access Only table state, under certain
conditions. Data partitions might be placed in these states if there are
constraints on the table which the load operation cannot maintain. Such
constraints might include check constraints and detached materialized
query tables. A failed load operation leaves all visible data partitions in the
Load Pending table state.

Error isolation

Error isolation at the data partition level is not supported. Isolating the
errors means continuing a load on data partitions that did not run into an
error and stopping on data partitions that did run into an error. Errors can
be isolated between different database partitions, but the load utility

232 Partitioning and Clustering Guide

cannot commit transactions on a subset of visible data partitions and roll
back the remaining visible data partitions.

Other considerations

v Incremental indexing is not supported if any of the indexes are marked
invalid. An index is considered invalid if it requires a rebuild or if
detached dependents require validation with the SET INTEGRITY
statement.

v Loading into tables partitioned using any combination of partitioned by
range, distributed by hash, or organized by dimension algorithms is also
supported.

v For log records which include the list of object and table space IDs
affected by the load, the size of these log records (LOAD START and
COMMIT (PENDING LIST)) could grow considerably and hence reduce
the amount of active log space available to other applications.

v When a table is both partitioned and distributed, a partitioned database
load might not affect all database partitions. Only the objects on the
output database partitions are changed.

v During a load operation, memory consumption for partitioned tables
increases with the number of tables. Note, that the total increase is not
linear as only a small percentage of the overall memory requirement is
proportional to the number of data partitions.

Chapter 14. Load 233

234 Partitioning and Clustering Guide

Chapter 15. Loading data in a partitioned database
environment

Load overview–partitioned database environments
In a multi-partition database, large amounts of data are located across many
database partitions. Distribution keys are used to determine on which database
partition each portion of the data resides. The data must be distributed before it can
be loaded at the correct database partition.

When loading tables in a multi-partition database, the load utility can:
v Distribute input data in parallel
v Load data simultaneously on corresponding database partitions
v Transfer data from one system to another system

Loading data into a multi-partition database takes place in two phases: the setup
phase, during which database partition resources such as table locks are acquired,
and the load phase, during which the data is loaded into the database partitions.
You can use the ISOLATE_PART_ERRS option of the LOAD command to select how
errors are handled during either of these phases, and how errors on one or more of
the database partitions affect the load operation on the database partitions that are
not experiencing errors.

When loading data into a multi-partition database you can use one of the
following modes:

PARTITION_AND_LOAD
Data is distributed (perhaps in parallel) and loaded simultaneously on the
corresponding database partitions.

PARTITION_ONLY
Data is distributed (perhaps in parallel) and the output is written to files in
a specified location on each loading database partition. Each file includes a
partition header that specifies how the data was distributed across the
database partitions, and that the file can be loaded into the database using
the LOAD_ONLY mode.

LOAD_ONLY
Data is assumed to be already distributed across the database partitions;
the distribution process is skipped, and the data is loaded simultaneously
on the corresponding database partitions.

LOAD_ONLY_VERIFY_PART
Data is assumed to be already distributed across the database partitions,
but the data file does not contain a partition header. The distribution
process is skipped, and the data is loaded simultaneously on the
corresponding database partitions. During the load operation, each row is
checked to verify that it is on the correct database partition. Rows
containing database partition violations are placed in a dump file if the
dumpfile file type modifier is specified. Otherwise, the rows are discarded.
If database partition violations exist on a particular loading database
partition, a single warning is written to the load message file for that
database partition.

© Copyright IBM Corp. 2012 235

ANALYZE
An optimal distribution map with even distribution across all database
partitions is generated.

Concepts and terminology

The following terminology is used when discussing the behavior and operation of
the load utility in a partitioned database environment with multiple database
partitions:
v The coordinator partition is the database partition to which the user connects in

order to perform the load operation. In the PARTITION_AND_LOAD,
PARTITION_ONLY, and ANALYZE modes, it is assumed that the data file
resides on this database partition unless the CLIENT option of the LOAD command
is specified. Specifying CLIENT indicates that the data to be loaded resides on a
remotely connected client.

v In the PARTITION_AND_LOAD, PARTITION_ONLY, and ANALYZE modes, the
pre-partitioning agent reads the user data and distributes it in round-robin fashion
to the partitioning agents which then distribute the data. This process is always
performed on the coordinator partition. A maximum of one partitioning agent is
allowed per database partition for any load operation.

v In the PARTITION_AND_LOAD, LOAD_ONLY, and
LOAD_ONLY_VERIFY_PART modes, load agents run on each output database
partition and coordinate the loading of data to that database partition.

v Load to file agents run on each output database partition during a
PARTITION_ONLY load operation. They receive data from partitioning agents
and write it to a file on their database partition.

v The SOURCEUSEREXIT option provides a facility through which the load utility can
execute a customized script or executable, referred to herein as the user exit.

Partitioning
agent

Partitioning
agent

Pre-partitioning
agent

Load agent

Load agent

Load agent

Figure 39. Partitioned Database Load Overview. The source data is read by the pre-partitioning agent, and
approximately half of the data is sent to each of two partitioning agents which distribute the data and send it to one of
three database partitions. The load agent at each database partition loads the data.

236 Partitioning and Clustering Guide

Loading data in a partitioned database environment–hints and tips
The following is some information to consider before loading a table in a
multi-partition database:
v Familiarize yourself with the load configuration options by using the utility with

small amounts of data.
v If the input data is already sorted, or in some chosen order, and you want to

maintain that order during the loading process, only one database partition
should be used for distributing. Parallel distribution cannot guarantee that the
data is loaded in the same order it was received. The load utility chooses a
single partitioning agent by default if the anyorder modifier is not specified on
the LOAD command.

v If large objects (LOBs) are being loaded from separate files (that is, if you are
using the lobsinfile modifier through the load utility), all directories containing
the LOB files must be read-accessible to all the database partitions where
loading is taking place. The LOAD lob-path parameter must be fully qualified
when working with LOBs.

v You can force a job running in a multi-partition database to continue even if the
load operation detects (at startup time) that some loading database partitions or
associated table spaces or tables are offline, by setting the ISOLATE_PART_ERRS
option to SETUP_ERRS_ONLY or SETUP_AND_LOAD_ERRS.

v Use the STATUS_INTERVAL load configuration option to monitor the progress of a
job running in a multi-partition database. The load operation produces messages
at specified intervals indicating how many megabytes of data have been read by
the pre-partitioning agent. These messages are dumped to the pre-partitioning
agent message file. To view the contents of this file during the load operation,
connect to the coordinator partition and issue a LOAD QUERY command against
the target table.

v Better performance can be expected if the database partitions participating in the
distribution process (as defined by the PARTITIONING_DBPARTNUMS option) are
different from the loading database partitions (as defined by the
OUTPUT_DBPARTNUMS option), since there is less contention for CPU cycles. When
loading data into a multi-partition database, invoke the load utility on a
database partition that is not participating in either the distributing or the
loading operation.

v Specifying the MESSAGES parameter in the LOAD command saves the messages
files from the pre-partitioning, partitioning, and load agents for reference at the
end of the load operation. To view the contents of these files during a load
operation, connect to the appropriate database partition and issue a LOAD QUERY
command against the target table.

v The load utility chooses only one output database partition on which to collect
statistics. The RUN_STAT_DBPARTNUM database configuration option can be used to
specify the database partition.

v Before loading data in a multi-partition database, run the Design Advisor to
determine the best partition for each table. For more information, see “The
Design Advisor” in Troubleshooting and Tuning Database Performance.

Troubleshooting

If the load utility is hanging, you can:
v Use the STATUS_INTERVAL parameter to monitor the progress of a multi-partition

database load operation. The status interval information is dumped to the
pre-partitioning agent message file on the coordinator partition.

Chapter 15. Loading data in a partitioned database environment 237

v Check the partitioning agent messages file to see the status of the partitioning
agent processes on each database partition. If the load is proceeding with no
errors, and the TRACE option has been set, there should be trace messages for a
number of records in these message files.

v Check the load messages file to see if there are any load error messages.

Note: You must specify the MESSAGES option of the LOAD command in order for
these files to exist.

v Interrupt the current load operation if you find errors suggesting that one of the
load processes encountered errors.

Loading data in a partitioned database environment
Using the load utility to load data into a partitioned database environment.

Before you begin

Before loading a table in a multi-partition database:
v Ensure that the svcename database manager configuration parameter and the

DB2COMM profile registry variable are set correctly. This step is important because
the load utility uses TCP/IP to transfer data from the pre-partitioning agent to
the partitioning agents, and from the partitioning agents to the loading database
partitions.

v Before invoking the load utility, you must be connected to (or be able to
implicitly connect to) the database into which you want to load the data.

v Since the load utility issues a COMMIT statement, complete all transactions and
release any locks by issuing either a COMMIT or a ROLLBACK statement before
beginning the load operation. If the PARTITION_AND_LOAD, PARTITION_ONLY, or
ANALYZE mode is being used, the data file that is being loaded must reside on
this database partition unless:
1. The CLIENT parameter has been specified, in which case the data must reside

on the client machine;
2. The input source type is CURSOR, in which case there is no input file.

v Run the Design Advisor to determine the best database partition for each table.
For more information, see “The Design Advisor” in Troubleshooting and Tuning
Database Performance.

Restrictions

The following restrictions apply when using the load utility to load data in a
multi-partition database:
v The location of the input files to the load operation cannot be a tape device.
v The ROWCOUNT parameter is not supported unless the ANALYZE mode is being

used.
v If the target table has an identity column that is needed for distributing and the

identityoverride file type modifier is not specified, or if you are using multiple
database partitions to distribute and then load the data, the use of a SAVECOUNT
greater than 0 on the LOAD command is not supported.

v If an identity column forms part of the distribution key, only the
PARTITION_AND_LOAD mode is supported.

v The LOAD_ONLY and LOAD_ONLY_VERIFY_PART modes cannot be used with the
CLIENT parameter of the LOAD command.

238 Partitioning and Clustering Guide

v The LOAD_ONLY_VERIFY_PART mode cannot be used with the CURSOR input source
type.

v The distribution error isolation modes LOAD_ERRS_ONLY and SETUP_AND_LOAD_ERRS
cannot be used with the ALLOW READ ACCESS and COPY YES parameters of the LOAD
command.

v Multiple load operations can load data into the same table concurrently if the
database partitions specified by theOUTPUT_DBPARTNUMS and
PARTITIONING_DBPARTNUMS options do not overlap. For example, if a table is
defined on database partitions 0 through 3, one load operation can load data
into database partitions 0 and 1 while a second load operation can load data into
database partitions 2 and 3. If the database partitions specified by the
PARTITIONING_DBPARTNUMS options do overlap, then load will automatically
choose a PARTITIONING_DBPARTNUMS parameter where no load partitioning
subagent is already executing on the table, or fail if none are available.
Starting with Version 9.7 Fix Pack 6, if the database partitions specified by the
PARTITIONING_DBPARTNUMS options do overlap, the load utility automatically tries
to pick up a PARTITIONING_DBPARTNUMS parameter from the database partitions
indicated by OUTPUT_DBPARTNUMS where no load partitioning subagent is already
executing on the table, or fail if none are available.
It is strongly recommended that if you are going to explicitly specify partitions
with the PARTITIONING_DBPARTNUMS option, you should use that option with all
concurrent LOAD commands, with each command specifying different partitions.
If you only specify PARTITIONING_DBPARTNUMS on some of the concurrent load
commands or if you specify overlapping partitions, the LOAD command will need
to pick alternate partitioning nodes for at least some of the concurrent loads, and
in rare cases the command might fail (SQL2038N).

v Only non-delimited ASCII (ASC) and Delimited ASCII (DEL) files can be
distributed across tables spanning multiple database partitions. PC/IXF files
cannot be distributed, however, you can load a PC/IXF file into a table that is
distributed over multiple database partitions by using the load operation in the
LOAD_ONLY_VERIFY_PART mode.

Example

The following examples illustrate how to use the LOAD command to initiate various
types of load operations. The database used in the following examples has five
database partitions: 0, 1, 2, 3 and 4. Each database partition has a local directory
/db2/data/. Two tables, TABLE1 and TABLE2, are defined on database partitions 0,
1, 3 and 4. When loading from a client, the user has access to a remote client that
is not one of the database partitions.

Distribute and load example

In this scenario, you are connected to a database partition that might or
might not be a database partition where TABLE1 is defined. The data file
load.del resides in the current working directory of this database partition.
To load the data from load.del into all of the database partitions where
TABLE1 is defined, issue the following command:
LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1

Note: In this example, default values are used for all of the configuration
parameters for partitioned database environments: The MODE parameter
defaults to PARTITION_AND_LOAD. The OUTPUT_DBPARTNUMS parameter defaults
to all database partitions on which TABLE1 is defined. The

Chapter 15. Loading data in a partitioned database environment 239

PARTITIONING_DBPARTNUMS defaults to the set of database partitions selected
according to the LOAD command rules for choosing database partitions
when none are specified.

To perform a load operation where data is distributed over database
partitions 3 and 4, issue the following command:
LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG PARTITIONING_DBPARTNUMS (3,4)

Distribute only example

In this scenario, you are connected to a database partition that might or
might not be a database partition where TABLE1 is defined. The data file
load.del resides in the current working directory of this database partition.
To distribute (but not load) load.del to all the database partitions on
which TABLE1 is defined, using database partitions 3 and 4 issue the
following command:
LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE PARTITION_ONLY
PART_FILE_LOCATION /db2/data
PARTITIONING_DBPARTNUMS (3,4)

This results in a file load.del.xxx being stored in the /db2/data directory
on each database partition, where xxx is a three-digit representation of the
database partition number.

Figure 40. Loading data into database partitions 3 and 4.. This diagram illustrates the behavior resulting when the
previous command is issued. Data is loaded into database partitions 3 and 4.

240 Partitioning and Clustering Guide

To distribute the load.del file to database partitions 1 and 3, using only
one partitioning agent running on database partition 0 (which is the
default for PARTITIONING_DBPARTNUMS), issue the following command:
LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE PARTITION_ONLY
PART_FILE_LOCATION /db2/data
OUTPUT_DBPARTNUMS (1,3)

Load only example

If you have already performed a load operation in the PARTITION_ONLY
mode and want to load the partitioned files in the /db2/data directory of
each loading database partition to all the database partitions on which
TABLE1 is defined, issue the following command:
LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY
PART_FILE_LOCATION /db2/data

Figure 41. Loading data into database partitions 1 and 3 using one partitioning agent.. This diagram illustrates the
behavior that results when the previous command is issued. Data is loaded into database partitions 1 and 3, using one
partitioning agent running on database partition 0.

Chapter 15. Loading data in a partitioned database environment 241

To load into database partition 4 only, issue the following command:
LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY
PART_FILE_LOCATION /db2/data
OUTPUT_DBPARTNUMS (4)

Loading pre-distributed files without distribution map headers

The LOAD command can be used to load data files without distribution
headers directly into several database partitions. If the data files exist in
the /db2/data directory on each database partition where TABLE1 is
defined and have the name load.del.xxx, where xxx is the database
partition number, the files can be loaded by issuing the following
command:
LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows
REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART
PART_FILE_LOCATION /db2/data

To load the data into database partition 1 only, issue the following
command:
LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows
REPLACE INTO TABLE1
PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART
PART_FILE_LOCATION /db2/data
OUTPUT_DBPARTNUMS (1)

Figure 42. Loading data into all database partitions where a specific table is defined.. This diagram illustrates the
behavior resulting when the previous command is issued. Distributed data is loaded to all database partitions where
TABLE1 is defined.

242 Partitioning and Clustering Guide

Note: Rows that do not belong on the database partition from which they
were loaded are rejected and put into the dump file, if one has been
specified.

Loading from a remote client to a multi-partition database

To load data into a multi-partition database from a file that is on a remote
client, you must specify the CLIENT parameter of the LOAD command. This
parameter indicates that the data file is not on a server partition. For
example:
LOAD CLIENT FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

Note: You cannot use the LOAD_ONLY or LOAD_ONLY_VERIFY_PART modes with
the CLIENT parameter.

Loading from a cursor

As in a single-partition database, you can load from a cursor into a
multi-partition database. In this example, for the PARTITION_ONLY and
LOAD_ONLY modes, the PART_FILE_LOCATION parameter must specify a fully
qualified file name. This name is the fully qualified base file name of the
distributed files that are created or loaded on each output database
partition. Multiple files can be created with the specified base name if there
are LOB columns in the target table.

To distribute all the rows in the answer set of the statement SELECT *
FROM TABLE1 to a file on each database partition named
/db2/data/select.out.xxx (where xxx is the database partition number),
for future loading into TABLE2, issue the following commands:
DECLARE C1 CURSOR FOR SELECT * FROM TABLE1

LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2
PARTITIONED DB CONFIG MODE PARTITION_ONLY
PART_FILE_LOCATION /db2/data/select.out

The data files produced by the previous operation can then be loaded by
issuing the following LOAD command:
LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2
PARTITIONED CB CONFIG MODE LOAD_ONLY
PART_FILE_LOCATION /db2/data/select.out

Monitoring a load operation in a partitioned database environment
using the LOAD QUERY command

During a load operation in a partitioned database environment, message files are
created by some of the load processes on the database partitions where they are
being executed.

The message files store all information, warning, and error messages produced
during the execution of the load operation. The load processes that produce
message files that can be viewed by the user are the load agent, pre-partitioning
agent, and partitioning agent. The content of the message file is only available after
the load operation is finished.

You can connect to individual database partitions during a load operation and
issue the LOAD QUERY command against the target table. When issued from the CLP,
this command displays the contents of all the message files that currently reside on
that database partition for the table that is specified in the LOAD QUERY command.

Chapter 15. Loading data in a partitioned database environment 243

For example, table TABLE1 is defined on database partitions 0 through 3 in
database WSDB. You are connected to database partition 0 and issue the following
LOAD command:

load from load.del of del replace into table1 partitioned db config
partitioning_dbpartnums (1)

This command initiates a load operation that includes load agents running on
database partitions 0, 1, 2, and 3; a partitioning agent running on database
partition 1; and a pre-partitioning agent running on database partition 0.

Database partition 0 contains one message file for the pre-partitioning agent and
one for the load agent on that database partition. To view the contents of these
files at the same time, start a new session and issue the following commands from
the CLP:

set client connect_node 0
connect to wsdb
load query table table1

Database partition 1 contains one file for the load agent and one for the
partitioning agent. To view the contents of these files, start a new session and issue
the following commands from the CLP:

set client connect_node 1
connect to wsdb
load query table table1

Note: The messages generated by the STATUS_INTERVAL load configuration option
appear in the pre-partitioning agent message file. To view these message during a
load operation, you must connect to the coordinator partition and issue the LOAD
QUERY command.

Saving the contents of message files

If a load operation is initiated through the db2Load API, the messages option
(piLocalMsgFileName) must be specified and the message files are brought from
the server to the client and stored for you to view.

For multi-partition database load operations initiated from the CLP, the message
files are not displayed to the console or retained. To save or view the contents of
these files after a multi-partition database load is complete, the MESSAGES option of
the LOAD command must be specified. If this option is used, once the load
operation is complete the message files on each database partition are transferred
to the client machine and stored in files using the base name indicated by the
MESSAGES option. For multi-partition database load operations, the name of the file
corresponding to the load process that produced it is listed in the following table:

Process Type File Name

Load Agent <message-file-name>.LOAD.<dbpartition-
number>

Partitioning Agent <message-file-name>.PART.<dbpartition-
number>

Pre-partitioning Agent <message-file-name>.PREP.<dbpartition-
number>

For example, if the MESSAGES option specifies /wsdb/messages/load, the load agent
message file for database partition 2 is /wsdb/messages/load.LOAD.002.

244 Partitioning and Clustering Guide

Note: It is strongly recommended that the MESSAGES option be used for
multi-partition database load operations initiated from the CLP.

Resuming, restarting, or terminating load operations in a partitioned
database environment

The steps you need to take following failed load operations in a partitioned
database environment depend on when the failure occurred.

The load process in a multi-partition database consists of two stages:
1. The setup stage, during which database partition-level resources such as table

locks on output database partitions are acquired
In general, if a failure occurs during the setup stage, restart and terminate
operations are not necessary. What you need to do depends on the error
isolation mode that was specified for the failed load operation.
If the load operation specified that setup stage errors were not to be isolated,
the entire load operation is canceled and the state of the table on each database
partition is rolled back to the state it was in before the load operation.
If the load operation specified that setup stage errors were to be isolated, the
load operation continues on the database partitions where the setup stage was
successful, but the table on each of the failing database partitions is rolled back
to the state it was in before the load operation. This means that a single load
operation can fail at different stages if some partitions fail during the setup
stage and others fail during the load stage

2. The load stage, during which data is formatted and loaded into tables on the
database partitions
If a load operation fails on at least one database partition during the load stage
of a multi-partition database load operation, a LOAD RESTART or LOAD TERMINATE
command must be issued. This is necessary because loading data in a
multi-partition database is done through a single transaction.
If you can fix the problems that caused the failed load to occur, choose a LOAD
RESTART. This saves time because if a load restart operation is initiated, the load
operation continues from where it left off on all database partitions.
If you want the table returned to the state it was in before the initial load
operation, choose a LOAD TERMINATE.

Determining when a load failed

The first thing you need to do if your load operation in a partitioned environment
fails is to determine on which partitions it failed and at what stage each of them
failed. This is done by looking at the partition summary. If the LOAD command was
issued from the CLP, the partition summary is displayed at the end of the load (see
following example). If the LOAD command was issued from the db2Load API, the
partition summary is contained in the poAgentInfoList field of the
db2PartLoadOut structure.

If there is an entry of "LOAD" for "Agent Type", for a given partition, then that
partition reached the load stage, otherwise a failure occurred during the setup
stage. A negative SQL Code indicates that it failed. In the following example, the
load failed on partition 1 during the load stage.

Agent Type Node SQL Code Result
__
LOAD 000 +00000000 Success.
__

Chapter 15. Loading data in a partitioned database environment 245

LOAD 001 -00000289 Error. May require RESTART.
__
LOAD 002 +00000000 Success.
__
LOAD 003 +00000000 Success.

.

.

.

Resuming, restarting, or terminating a failed load

Only loads with the ISOLATE_PART_ERRS option specifying SETUP_ERRS_ONLY or
SETUP_AND_LOAD_ERRS should fail during the setup stage. For loads that fail on at
least one output database partition fail during this stage, you can issue a LOAD
REPLACE or LOAD INSERT command. Use the OUTPUT_DBPARTNUMS option to specify
only those database partitions on which it failed.

For loads that fail on at least one output database partition during the load stage,
issue a LOAD RESTART or LOAD TERMINATE command.

For loads that fail on at least one output database partition during the setup stage
and at least one output database partition during the load stage, you need to
perform two load operations to resume the failed load–one for the setup stage
failures and one for the load stage failures, as previously described. To effectively
undo this type of failed load operation, issue a LOAD TERMINATE command.
However, after issuing the command, you must account for all partitions because
no changes were made to the table on the partitions that failed during the setup
stage, and all the changes are undone for the partitions that failed during the load
stage.

For example, TABLE1 is defined on database partitions 0 through 3 in database
WSDB. The following command is issued:
load from load.del of del insert into table1 partitioned db config
isolate_part_errs setup_and_load_errs

There is a failure on output database partition 1 during the setup stage. Since
setup stage errors are isolated, the load operation continues, but there is a failure
on partition 3 during the load stage. To resume the load operation, you would
issue the following commands:
load from load.del of del replace into table1 partitioned db config
output_dbpartnums (1)

load from load.del of del restart into table1 partitioned db config
isolate_part_errs setup_and_load_errs

Note: For load restart operations, the options specified in the LOAD RESTART
command are honored, so it is important that they are identical to the ones
specified in the original LOAD command.

Load configuration options for partitioned database environments
There are a number of configuration options that you can use to modify a load
operation in a partitioned database environment.

MODE X
Specifies the mode in which the load operation occurs when loading a
multi-partition database. PARTITION_AND_LOAD is the default. Valid values are:

246 Partitioning and Clustering Guide

v PARTITION_AND_LOAD. Data is distributed (perhaps in parallel) and loaded
simultaneously on the corresponding database partitions.

v PARTITION_ONLY. Data is distributed (perhaps in parallel) and the output is
written to files in a specified location on each loading database partition. For
file types other than CURSOR, the format of the output file name on each
database partition is filename.xxx, where filename is the input file name
specified in the LOAD command and xxx is the 3-digit database partition
number. For the CURSOR file type, the name of the output file on each
database partition is determined by the PART_FILE_LOCATION option. See the
PART_FILE_LOCATION option for details on how to specify the location of the
distribution file for each database partition.

Note:

1. This mode cannot be used for a CLI load operation.
2. If the table contains an identity column that is needed for distribution,

then this mode is not supported, unless the identityoverride file type
modifier is specified.

3. Distribution files generated for file type CURSOR are not compatible
between DB2 releases. This means that distribution files of file type
CURSOR that were generated in a previous release cannot be loaded using
the LOAD_ONLY mode. Similarly, distribution files of file type CURSOR that
were generated in the current release cannot be loaded in a future release
using the LOAD_ONLY mode.

v LOAD_ONLY. Data is assumed to be already distributed; the distribution
process is skipped, and the data is loaded simultaneously on the
corresponding database partitions. For file types other than CURSOR, the
format of the input file name for each database partition should be
filename.xxx, where filename is the name of the file specified in the LOAD
command and xxx is the 3-digit database partition number. For the CURSOR
file type, the name of the input file on each database partition is determined
by the PART_FILE_LOCATION option. See the PART_FILE_LOCATION option for
details on how to specify the location of the distribution file for each
database partition.

Note:

1. This mode cannot be used for a CLI load operation, or when the CLIENT
parameter of LOAD command is specified.

2. If the table contains an identity column that is needed for distribution,
then this mode is not supported, unless the identityoverride file type
modifier is specified.

v LOAD_ONLY_VERIFY_PART. Data is assumed to be already distributed, but the
data file does not contain a partition header. The distributing process is
skipped, and the data is loaded simultaneously on the corresponding
database partitions. During the load operation, each row is checked to verify
that it is on the correct database partition. Rows containing database
partition violations are placed in a dump file if the dumpfile file type
modifier is specified. Otherwise, the rows are discarded. If database partition
violations exist on a particular loading database partition, a single warning
is written to the load message file for that database partition. The format of
the input file name for each database partition should be filename.xxx,
where filename is the name of the file specified in the LOAD command and xxx
is the 3-digit database partition number. See the PART_FILE_LOCATION option
for details on how to specify the location of the distribution file for each
database partition.

Chapter 15. Loading data in a partitioned database environment 247

Note:

1. This mode cannot be used for a CLI load operation, or when the CLIENT
parameter of LOAD command is specified.

2. If the table contains an identity column that is needed for distribution,
then this mode is not supported, unless the identityoverride file type
modifier is specified.

v ANALYZE. An optimal distribution map with even distribution across all
database partitions is generated.

PART_FILE_LOCATION X
In the PARTITION_ONLY, LOAD_ONLY, and LOAD_ONLY_VERIFY_PART modes, this
parameter can be used to specify the location of the distributed files. This
location must exist on each database partition specified by the
OUTPUT_DBPARTNUMS option. If the location specified is a relative path name, the
path is appended to the current directory to create the location for the
distributed files.

For the CURSOR file type, this option must be specified, and the location must
refer to a fully qualified file name. This name is the fully qualified base file
name of the distributed files that are created on each output database partition
in the PARTITION_ONLY mode, or the location of the files to be read from for
each database partition in the LOAD_ONLY mode. When using the
PARTITION_ONLY mode, multiple files can be created with the specified base
name if the target table contains LOB columns.

For file types other than CURSOR, if this option is not specified, the current
directory is used for the distributed files.

OUTPUT_DBPARTNUMS X
X represents a list of database partition numbers. The database partition
numbers represent the database partitions on which the load operation is to be
performed. The database partition numbers must be a subset of the database
partitions on which the table is defined. All database partitions are selected by
default. The list must be enclosed in parentheses and the items in the list must
be separated by commas. Ranges are permitted (for example, (0, 2 to 10, 15)).

PARTITIONING_DBPARTNUMS X
X represents a list of database partition numbers that are used in the
distribution process. The list must be enclosed in parentheses and the items in
the list must be separated by commas. Ranges are permitted (for example, (0, 2
to 10, 15)). The database partitions specified for the distribution process can be
different from the database partitions being loaded. If
PARTITIONING_DBPARTNUMS is not specified, the load utility determines how
many database partitions are needed and which database partitions to use in
order to achieve optimal performance.

If the anyorder file type modifier is not specified in the LOAD command, only
one partitioning agent is used in the load session. Furthermore, if there is only
one database partition specified for the OUTPUT_DBPARTNUMS option, or the
coordinator partition of the load operation is not an element of
OUTPUT_DBPARTNUMS, the coordinator partition of the load operation is used in
the distribution process. Otherwise, the first database partition (not the
coordinator partition) in OUTPUT_DBPARTNUMS is used in the distribution process.

If the anyorder file type modifier is specified, the number of database
partitions used in the distribution process is determined as follows: (number of
partitions in OUTPUT_DBPARTNUMS/4 + 1).

248 Partitioning and Clustering Guide

MAX_NUM_PART_AGENTS X
Specifies the maximum numbers of partitioning agents to be used in a load
session. The default is 25.

ISOLATE_PART_ERRS X
Indicates how the load operation reacts to errors that occur on individual
database partitions. The default is LOAD_ERRS_ONLY, unless both the ALLOW READ
ACCESS and COPY YES parameters of the LOAD command are specified, in which
case the default is NO_ISOLATION. Valid values are:
v SETUP_ERRS_ONLY. Errors that occur on a database partition during setup,

such as problems accessing a database partition, or problems accessing a
table space or table on a database partition, cause the load operation to stop
on the failing database partitions but to continue on the remaining database
partitions. Errors that occur on a database partition while data is being
loaded cause the entire operation to fail.

v LOAD_ERRS_ONLY. Errors that occur on a database partition during setup cause
the entire load operation to fail. If an error occurs while data is being
loaded, the load operation will stop on the database partition where the
error occurred. The load operation continues on the remaining database
partitions until a failure occurs or until all the data is loaded. The newly
loaded data will not be visible until a load restart operation is performed
and completes successfully.

Note: This mode cannot be used when both the ALLOW READ ACCESS and the
COPY YES parameters of the LOAD command are specified.

v SETUP_AND_LOAD_ERRS. In this mode, database partition-level errors during
setup or loading data cause processing to stop only on the affected database
partitions. As with the LOAD_ERRS_ONLY mode, when partition errors do occur
while data is loaded, newly loaded data will not be visible until a load
restart operation is performed and completes successfully.

Note: This mode cannot be used when both the ALLOW READ ACCESS and the
COPY YES options of the LOAD command are specified.

v NO_ISOLATION. Any error during the load operation causes the load operation
to fail.

STATUS_INTERVAL X
X represents how often you are notified of the volume of data that has been
read. The unit of measurement is megabytes (MB). The default is 100 MB.
Valid values are whole numbers from 1 to 4000.

PORT_RANGE X
X represents the range of TCP ports used to create sockets for internal
communications. The default range is from 6000 to 6063. If defined at the time
of invocation, the value of the DB2ATLD_PORTS registry variable replaces the
value of the PORT_RANGE load configuration option. For the DB2ATLD_PORTS
registry variable, the range should be provided in the following format:

<lower-port-number:higher-port-number>

From the CLP, the format is:
(lower-port-number, higher-port-number)

CHECK_TRUNCATION
Specifies that the program should check for truncation of data records at
input/output. The default behavior is that data is not checked for truncation at
input/output.

Chapter 15. Loading data in a partitioned database environment 249

MAP_FILE_INPUT X
X specifies the input file name for the distribution map. This parameter must
be specified if the distribution map is customized, as it points to the file
containing the customized distribution map. A customized distribution map
can be created by using the db2gpmap program to extract the map from the
database system catalog table, or by using the ANALYZE mode of the LOAD
command to generate an optimal map. The map generated by using the
ANALYZE mode must be moved to each database partition in your database
before the load operation can proceed.

MAP_FILE_OUTPUT X
X represents the output filename for the distribution map. The output file is
created on the database partition issuing the LOAD command assuming that
database partition is participating in the database partition group where
partitioning is performed. If the LOAD command is invoked on a database
partition that is not participating in partitioning (as defined by
PARTITIONING_DBPARTNUMS), the output file is created at the first database
partition defined with the PARTITIONING_DBPARTNUMS parameter. Consider the
following partitioned database environment setup:

1 serv1 0
2 serv1 1
3 serv2 0
4 serv2 1
5 serv3 0

Running the following LOAD command on serv3, creates the distribution map
on serv1.
LOAD FROM file OF ASC METHOD L (...) INSERT INTO table CONFIG
MODE ANALYZE PARTITIONING_DBPARTNUMS(1,2,3,4)
MAP_FILE_OUTPUT ’/home/db2user/distribution.map’

This parameter should be used when the ANALYZE mode is specified. An
optimal distribution map with even distribution across all database partitions
is generated. If this parameter is not specified and the ANALYZE mode is
specified, the program exits with an error.

TRACE X
Specifies the number of records to trace when you require a review of a dump
of the data conversion process and the output of the hashing values. The
default is 0.

NEWLINE
Used when the input data file is an ASC file with each record delimited by a
new line character and the reclen file type modifier is specified in the LOAD
command. When this option is specified, each record is checked for a new line
character. The record length, as specified in the reclen file type modifier, is
also checked.

DISTFILE X
If this option is specified, the load utility generates a database partition
distribution file with the given name. The database partition distribution file
contains 32 768 integers: one for each entry in the distribution map for the
target table. Each integer in the file represents the number of rows in the input
files being loaded that hashed to the corresponding distribution map entry.
This information can help you identify skew in your data and also help you
decide whether a new distribution map should be generated for the table using
the ANALYZE mode of the utility. If this option is not specified, the default
behavior of the load utility is to not generate the distribution file.

250 Partitioning and Clustering Guide

Note: When this option is specified, a maximum of one partitioning agent is
used for the load operation. Even if you explicitly request multiple partitioning
agents, only one is used.

OMIT_HEADER
Specifies that a distribution map header should not be included in the
distribution file. If not specified, a header is generated.

RUN_STAT_DBPARTNUM X
If the STATISTICS USE PROFILE parameter is specified in the LOAD command,
statistics are collected only on one database partition. This parameter specifies
on which database partition to collect statistics. If the value is -1 or not
specified at all, statistics are collected on the first database partition in the
output database partition list.

Load sessions in a partitioned database environment - CLP examples
The following examples demonstrate loading data in a multi-partition database.

The database has four database partitions numbered 0 through 3. Database WSDB
is defined on all of the database partitions, and table TABLE1 resides in the default
database partition group which is also defined on all of the database partitions.

Example 1

To load data into TABLE1 from the user data file load.del which resides on
database partition 0, connect to database partition 0 and then issue the following
command:

load from load.del of del replace into table1

If the load operation is successful, the output will be as follows:
Agent Type Node SQL Code Result

LOAD 000 +00000000 Success.

LOAD 001 +00000000 Success.

LOAD 002 +00000000 Success.

LOAD 003 +00000000 Success.

PARTITION 001 +00000000 Success.

PRE_PARTITION 000 +00000000 Success.

RESULTS: 4 of 4 LOADs completed successfully.

Summary of Partitioning Agents:
Rows Read = 100000
Rows Rejected = 0
Rows Partitioned = 100000

Summary of LOAD Agents:
Number of rows read = 100000
Number of rows skipped = 0
Number of rows loaded = 100000
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 100000

Chapter 15. Loading data in a partitioned database environment 251

The output indicates that there was one load agent on each database partition and
each ran successfully. It also shows that there was one pre-partitioning agent
running on the coordinator partition and one partitioning agent running on
database partition 1. These processes completed successfully with a normal SQL
return code of 0. The statistical summary shows that the pre-partitioning agent
read 100,000 rows, the partitioning agent distributed 100,000 rows, and the sum of
all rows loaded by the load agents is 100,000.

Example 2

In the following example, data is loaded into TABLE1 in the PARTITION_ONLY mode.
The distributed output files is stored on each of the output database partitions in
the directory /db/data:

load from load.del of del replace into table1 partitioned db config mode
partition_only part_file_location /db/data

The output from the load command is as follows:
Agent Type Node SQL Code Result

LOAD_TO_FILE 000 +00000000 Success.

LOAD_TO_FILE 001 +00000000 Success.

LOAD_TO_FILE 002 +00000000 Success.

LOAD_TO_FILE 003 +00000000 Success.

PARTITION 001 +00000000 Success.

PRE_PARTITION 000 +00000000 Success.

Summary of Partitioning Agents:
Rows Read = 100000
Rows Rejected = 0
Rows Partitioned = 100000

The output indicates that there was a load-to-file agent running on each output
database partition, and these agents ran successfully. There was a pre-partitioning
agent on the coordinator partition, and a partitioning agent running on database
partition 1. The statistical summary indicates that 100,000 rows were successfully
read by the pre-partitioning agent and 100,000 rows were successfully distributed
by the partitioning agent. Since no rows were loaded into the table, no summary of
the number of rows loaded appears.

Example 3

To load the files that were generated during the PARTITION_ONLY load operation
shown previously, issue the following command:

load from load.del of del replace into table1 partitioned db config mode
load_only part_file_location /db/data

The output from the load command will be as follows:
Agent Type Node SQL Code Result

LOAD 000 +00000000 Success.

LOAD 001 +00000000 Success.

LOAD 002 +00000000 Success.

252 Partitioning and Clustering Guide

LOAD 003 +00000000 Success.

RESULTS: 4 of 4 LOADs completed successfully.

Summary of LOAD Agents:
Number of rows read = 100000
Number of rows skipped = 0
Number of rows loaded = 100000
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 100000

The output indicates that the load agents on each output database partition ran
successfully and that the sum of the number of rows loaded by all load agents is
100,000. No summary of rows distributed is indicated since distribution was not
performed.

Example 4

If the following LOAD command is issued:
load from load.del of del replace into table1

and one of the loading database partitions runs out of space in the table space
during the load operation, the following output might be returned:

SQL0289N Unable to allocate new pages in table space "DMS4KT".
SQLSTATE=57011

Agent Type Node SQL Code Result
__
LOAD 000 +00000000 Success.
__
LOAD 001 -00000289 Error. May require RESTART.
__
LOAD 002 +00000000 Success.
__
LOAD 003 +00000000 Success.
__
PARTITION 001 +00000000 Success.
__
PRE_PARTITION 000 +00000000 Success.
__
RESULTS: 3 of 4 LOADs completed successfully.
__

Summary of Partitioning Agents:
Rows Read = 0
Rows Rejected = 0
Rows Partitioned = 0

Summary of LOAD Agents:
Number of rows read = 0
Number of rows skipped = 0
Number of rows loaded = 0
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 0

The output indicates that the load operation returned error SQL0289. The database
partition summary indicates that database partition 1 ran out of space. If additional
space is added to the containers of the table space on database partition 1, the load
operation can be restarted as follows:

Chapter 15. Loading data in a partitioned database environment 253

load from load.del of del restart into table1

Migration and version compatibility
The DB2_PARTITIONEDLOAD_DEFAULT registry variable can be used to revert to
pre-DB2 Universal Database™ Version 8 load behavior in a multi-partition database.

Note: The DB2_PARTITIONEDLOAD_DEFAULT registry variable is deprecated and might
be removed in a later release.

Reverting to the pre-DB2 UDB Version 8 behavior of the LOAD command in a
multi-partition database, allows you to load a file with a valid distribution header
into a single database partition without specifying any extra partitioned database
configuration options. You can do this by setting the value of
DB2_PARTITIONEDLOAD_DEFAULT to NO. You might choose to use this option if you
want to avoid modifying existing scripts that issue the LOAD command against
single database partitions. For example, to load a distribution file into database
partition 3 of a table that resides in a database partition group with four database
partitions, issue the following command:

db2set DB2_PARTITIONEDLOAD_DEFAULT=NO

Then issue the following commands from the DB2 Command Line Processor:
CONNECT RESET

SET CLIENT CONNECT_NODE 3

CONNECT TO DB MYDB

LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

In a multi-partition database, when no multi-partition database load configuration
options are specified, the load operation takes place on all the database partitions
on which the table is defined. The input file does not require a distribution header,
and the MODE option defaults to PARTITION_AND_LOAD. To load a single database
partition, the OUTPUT_DBPARTNUMS option must be specified.

254 Partitioning and Clustering Guide

Chapter 16. Migration of partitioned database environments

Migrating partitioned databases
Migrating partitioned database environments requires that you install the latest
release of the database product on all database partition servers, migrate the
instances and then migrate the databases.

You can migrate database partition servers from the catalog database partition
server or any other database partition server. Should the migration process fail,
you can retry migration from the catalog database partition server or any other
database partition server again.

Since a migration of this sort is a significant undertaking, a description of the
migration procedure, its prerequisites and restrictions, is beyond the scope of this
book. A detailed description is provided in the topic “Migrating partitioned
database environments” in the Migration Guide, which, in addition, will refer you
to numerous other topics to review prior to performing the migration.

© Copyright IBM Corp. 2012 255

256 Partitioning and Clustering Guide

Chapter 17. Using snapshot and event monitors

Using snapshot monitor data to monitor the reorganization of a
partitioned table

The following information describes some of the most useful methods of
monitoring the global status of a table reorganization.

About this task

There is no separate data group indicating the overall table reorganization status
for a partitioned table. A partitioned table uses a data organization scheme in
which table data is divided across multiple storage objects, called data partitions or
ranges, according to values in one or more table partitioning key columns of the
table. However, you can deduce the global status of a table reorganization from the
values of elements in the individual data partition data group being reorganized.
The following information describes some of the most useful methods of
monitoring the global status of a table reorganization.

Determining the number of data partitions being reorganized
You can determine the total number of data partitions being reorganized
on a table by counting the number of monitor data blocks for table data
that have the same table name and schema name. This value indicates the
number of data partitions on which reorganization has started. Examples 1
and 2 indicate that three data partitions are being reorganized.

Identifying the data partition being reorganized
You can deduce the current data partition being reorganized from the
phase start time (reorg_phase_start). During the SORT/BUILD/REPLACE
phase, the monitor data corresponding to the data partition that is being
reorganized shows the most recent phase start time. During the
INDEX_RECREATE phase, the phase start time is the same for all the data
partitions. In Examples 1 and 2, the INDEX_RECREATE phase is indicated,
so the start time is the same for all the data partitions.

Identifying an index rebuild requirement
You can determine if an index rebuild is required by obtaining the value of
the maximum reorganize phase element (reorg_max_phase), corresponding
to any one of the data partitions being reorganized. If reorg_max_phase
has a value of 3 or 4, then an Index Rebuild is required. Examples 1 and 2
report a reorg_max_phase value of 3, indicating an index rebuild is
required.

Examples

The following sample output is from a three-node server that contains a table with
three data partitions:
CREATE TABLE sales (c1 INT, c2 INT, c3 INT)

PARTITION BY RANGE (c1)
(PART P1 STARTING FROM (1) ENDING AT (10) IN parttbs,
PART P2 STARTING FROM (11) ENDING AT (20) IN parttbs,
PART P3 STARTING FROM (21) ENDING AT (30) IN parttbs)

DISTRIBUTE BY (c2)

Statement executed:

© Copyright IBM Corp. 2012 257

REORG TABLE sales ALLOW NO ACCESS ON ALL DBPARTITIONNUMS

Example 1:
GET SNAPSHOT FOR TABLES ON DPARTDB GLOBAL

The output is modified to include table information for the relevant table
only.

Table Snapshot

First database connect timestamp = 06/28/2005 13:46:43.061690
Last reset timestamp = 06/28/2005 13:46:47.440046
Snapshot timestamp = 06/28/2005 13:46:50.964033
Database name = DPARTDB
Database path = /work/sales/NODE0000/SQL00001/
Input database alias = DPARTDB
Number of accessed tables = 5

Table List
Table Schema = NEWTON
Table Name = SALES
Table Type = User
Data Partition Id = 0
Data Object Pages = 3
Rows Read = 12
Rows Written = 1
Overflows = 0
Page Reorgs = 0
Table Reorg Information:

Node number = 0
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:49.816883
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.362918
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.821244

Table Reorg Information:
Node number = 1
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:49.822701
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.420741
Status = Completed
Current Counter = 0
Max Counter = 0

258 Partitioning and Clustering Guide

Completion = 0
End Time = 06/28/2005 13:46:50.899543

Table Reorg Information:
Node number = 2
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:49.814813
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.344277
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.803619

Table Schema = NEWTON
Table Name = SALES
Table Type = User
Data Partition Id = 1
Data Object Pages = 3
Rows Read = 8
Rows Written = 1
Overflows = 0
Page Reorgs = 0
Table Reorg Information:

Node number = 0
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:50.014617
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.362918
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.821244

Table Reorg Information:
Node number = 1
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3

Chapter 17. Using snapshot and event monitors 259

Start Time = 06/28/2005 13:46:50.026278
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.420741
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.899543

Table Reorg Information:
Node number = 2
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:50.006392
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.344277
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.803619

Table Schema = NEWTON
Table Name = SALES
Table Type = User
Data Partition Id = 2
Data Object Pages = 3
Rows Read = 4
Rows Written = 1
Overflows = 0
Page Reorgs = 0
Table Reorg Information:

Node number = 0
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:50.199971
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.362918
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.821244

Table Reorg Information:
Node number = 1
Reorg Type =

Reclaiming
Table Reorg

260 Partitioning and Clustering Guide

Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:50.223742
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.420741
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.899543

Table Reorg Information:
Node number = 2
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:50.179922
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.344277
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.803619

Example 2:

GET SNAPSHOT FOR TABLES ON DPARTDB AT DBPARTITIONNUM 2

The output is modified to include table information for the relevant table
only.

Table Snapshot

First database connect timestamp = 06/28/2005 13:46:43.617833
Last reset timestamp =
Snapshot timestamp = 06/28/2005 13:46:51.016787
Database name = DPARTDB
Database path = /work/sales/NODE0000/SQL00001/
Input database alias = DPARTDB
Number of accessed tables = 3

Table List
Table Schema = NEWTON
Table Name = SALES
Table Type = User
Data Partition Id = 0
Data Object Pages = 1
Rows Read = 0
Rows Written = 0
Overflows = 0
Page Reorgs = 0
Table Reorg Information:

Node number = 2
Reorg Type =

Chapter 17. Using snapshot and event monitors 261

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:49.814813
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.344277
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.803619

Table Schema = NEWTON
Table Name = SALES
Table Type = User
Data Partition Id = 1
Data Object Pages = 1
Rows Read = 0
Rows Written = 0
Overflows = 0
Page Reorgs = 0
Table Reorg Information:

Node number = 2
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:50.006392
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.344277
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.803619

Table Schema = NEWTON
Table Name = SALES
Table Type = User
Data Partition Id = 2
Data Object Pages = 1
Rows Read = 4
Rows Written = 1
Overflows = 0
Page Reorgs = 0
Table Reorg Information:

Node number = 2
Reorg Type =

Reclaiming
Table Reorg
Allow No Access
Recluster Via Table Scan
Reorg Data Only

262 Partitioning and Clustering Guide

Reorg Index = 0
Reorg Tablespace = 3

Long Temp space ID = 3
Start Time = 06/28/2005 13:46:50.179922
Reorg Phase = 3 - Index Recreate
Max Phase = 3
Phase Start Time = 06/28/2005 13:46:50.344277
Status = Completed
Current Counter = 0
Max Counter = 0
Completion = 0
End Time = 06/28/2005 13:46:50.803619

Example 3:

SELECT * FROM SYSIBMADM.SNAPLOCK WHERE tabname = ’SALES’;

The output is modified to include a subset of table information for the
relevant table only.
... TBSP_NAME TABNAME LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS ...

--------- ------- ------------------ ---------- -----------
... PARTTBS SALES ROW_LOCK X GRNT ...
... - SALES TABLE_LOCK IX GRNT ...
... PARTTBS SALES TABLE_PART_LOCK IX GRNT ...
... PARTTBS SALES ROW_LOCK X GRNT ...
... - SALES TABLE_LOCK IX GRNT ...
... PARTTBS SALES TABLE_PART_LOCK IX GRNT ...
... PARTTBS SALES ROW_LOCK X GRNT ...
... - SALES TABLE_LOCK IX GRNT ...
... PARTTBS SALES TABLE_PART_LOCK IX GRNT ...

9 record(s) selected.

Output from this query (continued).
... LOCK_ESCALATION LOCK_ATTRIBUTES DATA_PARTITION_ID DBPARTITIONNUM

--------------- --------------- ----------------- --------------
... 0 INSERT 2 2
... 0 NONE - 2
... 0 NONE 2 2
... 0 INSERT 0 0
... 0 NONE - 0
... 0 NONE 0 0
... 0 INSERT 1 1
... 0 NONE - 1
... 0 NONE 1 1

Example 4:

SELECT * FROM SYSIBMADM.SNAPTAB WHERE tabname = ’SALES’;

The output is modified to include a subset of table information for the
relevant table only.
... TABSCHEMA TABNAME TAB_FILE_ID TAB_TYPE DATA_OBJECT_PAGES ROWS_WRITTEN ...
... --------- ------- ----------- ---------- ----------------- ------------ ...
... NEWTON SALES 2 USER_TABLE 1 1 ...
... NEWTON SALES 4 USER_TABLE 1 1 ...
... NEWTON SALES 3 USER_TABLE 1 1 ...

3 record(s) selected.

Output from this query (continued).

Chapter 17. Using snapshot and event monitors 263

... OVERFLOW_ACCESSES PAGE_REORGS DBPARTITIONNUM TBSP_ID DATA_PARTITION_ID

... ----------------- ----------- -------------- ------- -----------------

... 0 0 0 3 0

... 0 0 2 3 2

... 0 0 1 3 1

Example 5:

SELECT * FROM SYSIBMADM.SNAPTAB_REORG WHERE tabname = ’SALES’;;

The output is modified to include a subset of table information for the
relevant table only.

REORG_PHASE REORG_MAX_PHASE REORG_TYPE ...
------------- --------------- --

INDEX_RECREATE 3 RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY ...
INDEX_RECREATE 3 RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY ...
INDEX_RECREATE 3 RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY ...
INDEX_RECREATE 3 RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY ...
INDEX_RECREATE 3 RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY ...
INDEX_RECREATE 3 RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY ...
INDEX_RECREATE 3 RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY ...
INDEX_RECREATE 3 RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY ...
INDEX_RECREATE 3 RECLAIM+OFFLINE+ALLOW_NONE+TABLESCAN+DATAONLY ...

9 record(s) selected.

Output from this query (continued).
... REORG_STATUS REORG_TBSPC_ID DBPARTITIONNUM DATA_PARTITION_ID

-------------------------- -------------- -----------------
... COMPLETED 3 2 0
... COMPLETED 3 2 1
... COMPLETED 3 2 2
... COMPLETED 3 1 0
... COMPLETED 3 1 1
... COMPLETED 3 1 2
... COMPLETED 3 0 0
... COMPLETED 3 0 1
... COMPLETED 3 0 2

Example 6:
The Table Reorg Information includes information about reclaiming extents
as part of a reorganization operation. The example that follows shows the
relevant output.
db2 -v "get snapshot for tables on wsdb"

Table Reorg Information:
Reorg Type =

Reclaim Extents
Allow Write Access

Reorg Index = 0
Reorg Tablespace = 0
Start Time = 10/22/2008 15:49:35.477532
Reorg Phase = 12 - Release
Max Phase = 3

Note: Any snapshot requests from a monitor version before
SQLM_DBMON_VERSION9_7 will not return any Reclaim Reorg status to
the requesting client.

264 Partitioning and Clustering Guide

Global snapshots on partitioned database systems
On a partitioned database system, you can use the snapshot monitor to take a
snapshot of the current partition, a specified partition, or all partitions. When
taking a global snapshot across all the partitions of a partitioned database, data is
aggregated before the results are returned.

Data is aggregated for the different element types as follows:
v Counters, Time, and Gauges

Contains the sum of all like values collected from each partition in the instance.
For example, GET SNAPSHOT FOR DATABASE XYZ ON TEST GLOBAL would
return the number of rows read (rows_read) from the database for all partitions
in the partitioned database instance.

v Watermarks

Returns the highest (for high water) or lowest (for low water) value found for
any partition in the partitioned database system. If the value returned is of
concern, then snapshots for individual partitions can be taken to determine if a
particular partition is over utilized, or if the problem is instance-wide.

v Timestamp

Set to the timestamp value for the partition where the snapshot monitor instance
agent is attached. Note that all timestamp values are under control of the
timestamp monitor switch.

v Information

Returns the most significant information for a partition that may be impeding
work. For example, for the element appl_status, if the status on one partition
was UOW Executing, and on another partition Lock Wait, Lock Wait would be
returned, since it is the state that's holding up execution of the application.

You can also reset counters, set monitor switches, and retrieve monitor switch
settings for individual partitions or all partitions in your partitioned database.

Note: When taking a global snapshot, if one or more partitions encounter an error,
then data is collected from the partitions where the snapshot was successful and a
warning (sqlcode 1629) is also returned. If a global get or update of monitor
switches, or a counter reset fails on one or more partitions, then those partitions
will not have their switches set, or data reset.

Creating an event monitor for partitioned databases, or for databases
in a DB2 pureScale environment

Generally speaking, event monitors on partitioned database systems, or in a DB2
pureScale environment work similarly to ones that run on single-member
databases. However, there are some differences to keep in mind when you create
an event monitor for these environments.

Procedure
v Specify the partition to be monitored.

CREATE EVENT MONITOR tabmon FOR TABLES
WRITE TO FILE ’/tmp/tabevents’
ON PARTITION 3

tabmon represents the name of the event monitor.
/tmp/tab events is the name of the directory path (on UNIX) where the event
monitor is to write the event files.

Chapter 17. Using snapshot and event monitors 265

3 represents the partition number to be monitored.
v Specify if the event monitor data is to be collected at a local or global scope. For

example, to collect event monitor reports from all partitions issue the following
statement:
CREATE EVENT MONITOR dlmon FOR DEADLOCKS

WRITE TO FILE ’/tmp/dlevents’
ON PARTITION 3 GLOBAL

Note: Only deadlock and deadlock with details event monitors can be defined
as GLOBAL.
All partitions report deadlock-related event records to partition 3.

v To collect event monitor reports from only the local partition issue the following
statement:
CREATE EVENT MONITOR dlmon FOR TABLES

WRITE TO FILE ’/tmp/dlevents’
ON PARTITION 3 LOCAL

This is the default behavior for file and pipe event monitors in partitioned
databases. The LOCAL and GLOBAL clauses are ignored for write-to-table event
monitors.

v It is possible to review the monitor partition and scope values for existing event
monitors. To do this query the SYSCAT.EVENTMONITORS table with the
following statement:
SELECT EVMONNAME, NODENUM, MONSCOPE FROM SYSCAT.EVENTMONITORS

Results

After an event monitor is created and activated, it records monitoring data as its
specified events occur.

266 Partitioning and Clustering Guide

Chapter 18. Developing a good backup and recovery strategy

Crash recovery
Transactions (or units of work) against a database can be interrupted unexpectedly.
If a failure occurs before all of the changes that are part of the unit of work are
completed, committed, and written to disk, the database is left in an inconsistent
and unusable state. Crash recovery is the process by which the database is moved
back to a consistent and usable state.

This is done by rolling back incomplete transactions and completing committed
transactions that were still in memory when the crash occurred (Figure 43). When a
database is in a consistent and usable state, it has attained what is known as a
point of consistency.

If you are using the IBM DB2 pureScale Feature, there are two specific types of
crash recovery to be aware of: member crash recovery and group crash recovery.
Member crash recovery is the process of recovering a portion of a database using a
single member's log stream after a member failure. Member crash recovery, which
is usually initiated automatically as a part of a member restart, is an online
operation–meaning that other members can still access the database. Multiple
members can be undergoing member crash recovery at the same time. Group crash
recovery is the process of recovering a database using multiple members' log
streams after a failure that causes no viable cluster caching facility to remain in the
cluster. Group crash recovery is also usually initiated automatically (as a part of a
group restart) and the database is inaccessible while it is in progress, as with DB2
crash recovery operations outside of a DB2 pureScale environment.

If the database or the database manager fails, the database can be left in an
inconsistent state. The contents of the database might include changes made by
transactions that were incomplete at the time of failure. The database might also be
missing changes that were made by transactions that completed before the failure
but which were not yet flushed to disk. A crash recovery operation must be

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 43. Rolling Back Units of Work (Crash Recovery)

© Copyright IBM Corp. 2012 267

performed in order to roll back the partially completed transactions and to write to
disk the changes of completed transactions that were previously made only in
memory.

Conditions that can necessitate a crash recovery include:
v A power failure on the machine, causing the database manager and the database

partitions on it to go down
v A hardware failure such as memory, disk, CPU, or network failure.
v A serious operating system error that causes DB2 to go down

If you want crash recovery to be performed automatically by the database
manager, enable the automatic restart (autorestart) database configuration
parameter by setting it to ON. (This is the default value.) If you do not want
automatic restart behavior, set the autorestart database configuration parameter to
OFF. As a result, you must issue the RESTART DATABASE command when a database
failure occurs. If the database I/O was suspended before the crash occurred, you
must specify the WRITE RESUME option of the RESTART DATABASE command in order
for the crash recovery to continue. The administration notification log records
when the database restart operation begins.

If crash recovery occurs on a database that is enabled for rollforward recovery (that
is, the logarchmeth1 configuration parameter is not set to OFF), and an error occurs
during crash recovery that is attributable to an individual table space, that table
space is taken offline, and cannot be accessed until it is repaired. Crash recovery
continues on other table spaces. At the completion of crash recovery, the other
table spaces in the database are accessible, and connections to the database can be
established. However, if the table space that is taken offline is the table space that
contains the system catalogs, it must be repaired before any connections are
permitted. This behavior does not apply to DB2 pureScale environments. If an
error occurs during member crash recovery or group crash recovery, the crash
recovery operation fails.

Recovering from transaction failures in a partitioned database
environment

If a transaction failure occurs in a partitioned database environment, database
recovery is usually necessary on both the failed database partition server and any
other database partition server that was participating in the transaction:
v Crash recovery occurs on the failed database partition server after the failure

condition is corrected.
v Database partition failure recovery on the other (still active) database partition

servers occurs immediately after the failure has been detected.

In a partitioned database environment, the database partition server on which a
transaction is submitted is the coordinator partition, and the first agent that
processes the transaction is the coordinator agent. The coordinator agent is
responsible for distributing work to other database partition servers, and it keeps
track of which ones are involved in the transaction. When the application issues a
COMMIT statement for a transaction, the coordinator agent commits the
transaction by using the two-phase commit protocol. During the first phase, the
coordinator partition distributes a PREPARE request to all the other database
partition servers that are participating in the transaction. These servers then
respond with one of the following:

268 Partitioning and Clustering Guide

READ-ONLY
No data change occurred at this server

YES Data change occurred at this server

NO Because of an error, the server is not prepared to commit

If one of the servers responds with a NO, the transaction is rolled back. Otherwise,
the coordinator partition begins the second phase.

During the second phase, the coordinator partition writes a COMMIT log record,
then distributes a COMMIT request to all the servers that responded with a YES.
After all the other database partition servers have committed, they send an
acknowledgement of the COMMIT to the coordinator partition. The transaction is
complete when the coordinator agent has received all COMMIT acknowledgments
from all the participating servers. At this point, the coordinator agent writes a
FORGET log record.

Transaction failure recovery on an active database partition
server

If any database partition server detects that another server is down, all work that
is associated with the failed database partition server is stopped:
v If the still active database partition server is the coordinator partition for an

application, and the application was running on the failed database partition
server (and not ready to COMMIT), the coordinator agent is interrupted to do
failure recovery. If the coordinator agent is in the second phase of COMMIT
processing, SQL0279N is returned to the application, which in turn loses its
database connection. Otherwise, the coordinator agent distributes a ROLLBACK
request to all other servers participating in the transaction, and SQL1229N is
returned to the application.

v If the failed database partition server was the coordinator partition for the
application, then agents that are still working for the application on the active
servers are interrupted to do failure recovery. The transaction is rolled back
locally on each database partition where the transaction is not in prepared state.
On those database partitions where the transaction is in prepared state, the
transaction becomes in doubt. The coordinator database partition is not aware
that the transaction is in doubt on some database partitions because the
coordinator database partition is not available.

v If the application connected to the failed database partition server (before it
failed), but neither the local database partition server nor the failed database
partition server is the coordinator partition, agents working for this application
are interrupted. The coordinator partition will either send a ROLLBACK or a
DISCONNECT message to the other database partition servers. The transaction
will only be in doubt on database partition servers that are still active if the
coordinator partition returns SQL0279.

Any process (such as an agent or deadlock detector) that attempts to send a
request to the failed server is informed that it cannot send the request.

Transaction failure recovery on the failed database partition
server

If the transaction failure causes the database manager to end abnormally, you can
issue the db2start command with the RESTART option to restart the database

Chapter 18. Developing a good backup and recovery strategy 269

manager once the database partition has been restarted. If you cannot restart the
database partition, you can issue db2start to restart the database manager on a
different database partition.

If the database manager ends abnormally, database partitions on the server can be
left in an inconsistent state. To make them usable, crash recovery can be triggered
on a database partition server:
v Explicitly, through the RESTART DATABASE command
v Implicitly, through a CONNECT request when the autorestart database

configuration parameter has been set to ON

Crash recovery reapplies the log records in the active log files to ensure that the
effects of all complete transactions are in the database. After the changes have been
reapplied, all uncommitted transactions are rolled back locally, except for indoubt
transactions. There are two types of indoubt transaction in a partitioned database
environment:
v On a database partition server that is not the coordinator partition, a transaction

is in doubt if it is prepared but not yet committed.
v On the coordinator partition, a transaction is in doubt if it is committed but not

yet logged as complete (that is, the FORGET record is not yet written). This
situation occurs when the coordinator agent has not received all the COMMIT
acknowledgments from all the servers that worked for the application.

Crash recovery attempts to resolve all the indoubt transactions by doing one of the
following. The action that is taken depends on whether the database partition
server was the coordinator partition for an application:
v If the server that restarted is not the coordinator partition for the application, it

sends a query message to the coordinator agent to discover the outcome of the
transaction.

v If the server that restarted is the coordinator partition for the application, it
sends a message to all the other agents (subordinate agents) that the coordinator
agent is still waiting for COMMIT acknowledgments.

It is possible that crash recovery might not be able to resolve all the indoubt
transactions. For example, some of the database partition servers might not be
available. If the coordinator partition completes crash recovery before other
database partitions involved in the transaction, crash recovery will not be able to
resolve the indoubt transaction. This is expected because crash recovery is
performed by each database partition independently. In this situation, the SQL
warning message SQL1061W is returned. Because indoubt transactions hold
resources, such as locks and active log space, it is possible to get to a point where
no changes can be made to the database because the active log space is being held
up by indoubt transactions. For this reason, you should determine whether
indoubt transactions remain after crash recovery, and recover all database partition
servers that are required to resolve the indoubt transactions as quickly as possible.

Note: In a partitioned database server environment, the RESTART database
command is run on a per-node basis. In order to ensure that the database is
restarted on all nodes, use the following recommended command:
db2_all "db2 restart database <database_name>"

If one or more servers that are required to resolve an indoubt transaction cannot be
recovered in time, and access is required to database partitions on other servers,
you can manually resolve the indoubt transaction by making an heuristic decision.

270 Partitioning and Clustering Guide

You can use the LIST INDOUBT TRANSACTIONS command to query, commit, and roll
back the indoubt transaction on the server.

Note: The LIST INDOUBT TRANSACTIONS command is also used in a distributed
transaction environment. To distinguish between the two types of indoubt
transactions, the originator field in the output that is returned by the LIST INDOUBT
TRANSACTIONS command displays one of the following:
v DB2 Enterprise Server Edition, which indicates that the transaction originated in

a partitioned database environment.
v XA, which indicates that the transaction originated in a distributed environment.

Identifying the failed database partition server

When a database partition server fails, the application will typically receive one of
the following SQLCODEs. The method for detecting which database manager
failed depends on the SQLCODE received:

SQL0279N
This SQLCODE is received when a database partition server involved in a
transaction is terminated during COMMIT processing.

SQL1224N
This SQLCODE is received when the database partition server that failed is
the coordinator partition for the transaction.

SQL1229N
This SQLCODE is received when the database partition server that failed is
not the coordinator partition for the transaction.

Determining which database partition server failed is a two-step process.
1. Find the partition server that detected the failure by examining the SQLCA.

The SQLCA associated with SQLCODE SQL1229N contains the node number of
the server that detected the error in the sixth array position of the sqlerrd field.
(The node number that is written for the server corresponds to the node
number in the db2nodes.cfg file.)

2. Examine the administration notification log on the server found in step one for
the node number of the failed server.

Note: If multiple logical nodes are being used on a processor, the failure of one
logical node can cause other logical nodes on the same processor to fail.

Recovering from the failure of a database partition server

Procedure

To recover from the failure of a database partition server, perform the following
steps.
1. Correct the problem that caused the failure.
2. Restart the database manager by issuing the db2start command from any

database partition server.
3. Restart the database by issuing the RESTART DATABASE command on the failed

database partition server or servers.

Chapter 18. Developing a good backup and recovery strategy 271

Rebuilding partitioned databases
To rebuild a partitioned database, rebuild each database partition separately. For
each database partition, beginning with the catalog partition, first restore all the
table spaces that you require. Any table spaces that are not restored are placed in
restore pending state. Once all the database partitions are restored, you then issue
the ROLLFORWARD DATABASE command on the catalog partition to roll all of the
database partitions forward.

About this task

Note: If, at a later date, you need to restore any table spaces that were not
originally included in the rebuild phase, you need to make sure that when you
subsequently roll the table space forward that the rollforward utility keeps all the
data across the database partitions synchronized. If a table space is missed during
the original restore and rollforward operation, it might not be detected until there
is an attempt to access the data and a data access error occurs. You will then need
to restore and roll the missing table space forward to get it back in sync with the
rest of the partitions.

To rebuild a partitioned database using table space level backup images, consider
the following example.

In this example, there is a recoverable database called SAMPLE with three
database partitions:
v Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and

USERSP2, and is the catalog partition
v Database partition 2 contains table spaces USERSP1 and USERSP3
v Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x
on partition y:
v BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2
v BK12 is a backup of USERSP2 and USERSP3
v BK13 is a backup of USERSP1, USERSP2 and USERSP3
v BK21 is a backup of USERSP1
v BK22 is a backup of USERSP1
v BK23 is a backup of USERSP1
v BK31 is a backup of USERSP2
v BK33 is a backup of USERSP2
v BK42 is a backup of USERSP3
v BK43 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and
ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild the entire
database to the end of logs.

Procedure
1. On database partition 1, issue a RESTORE DATABASE command with the REBUILD

option:
db2 restore db sample rebuild with all tablespaces in database

taken at BK31 without prompting

272 Partitioning and Clustering Guide

2. On database partition 2, issue a RESTORE DATABASE command with the REBUILD
option:

db2 restore db sample rebuild with tablespaces in database
taken at BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the REBUILD
option:

db2 restore db sample rebuild with all tablespaces in database
taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with the TO
END OF LOGS option:

db2 rollforward db sample to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:
db2 rollforward db sample stop

What to do next

At this point the database is connectable on all database partitions and all table
spaces are in NORMAL state.

Recovering data using db2adutl
You can perform cross-node recovery using the db2adutl command, logarchopt1
and vendoropt database configuration parameters. This recovery is demonstrated
in examples from a few different Tivoli Storage Manager (TSM) environments.

For the following examples, computer 1 is called bar and is running the AIX
operating system. The user on this machine is roecken. The database on bar is
called zample. Computer 2 is called dps. This computer is also running the AIX
operating system, and the user is regress9.

Example 1: TSM server manages passwords automatically
(PASSWORDACCESS option set to GENERATE)

This cross-node recovery example shows how to set up two computers so that you
can recover data from one computer to another when log archives and backups are
stored on a TSM server and where passwords are managed using the
PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline
backup of the database.
1. To enable the database for log archiving for the bar computer to the TSM

server, update the database configuration parameter logarchmeth1 for the
zample database using the following command:

bar:/home/roecken> db2 update db cfg for zample using LOGARCHMETH1 tsm

The following information is returned:
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

2. Disconnect all users and applications from the database using the following
command:

db2 force applications all

3. Verify that there are no applications connected to the database using the
following command:

db2 list applications

Chapter 18. Developing a good backup and recovery strategy 273

You should receive a message that says that no data was returned.

Note: In a partitioned database environment, you must perform this step on
all database partitions.

4. Create a backup of the database on the TSM server using the following
command:

db2 backup db zample use tsm

Information similar to the following is returned:
Backup successful. The timestamp for this backup imagge is : 20090216151025

Note: In a partitioned database environment, you must perform this step on
all database partitions. The order in which you perform this step on the
database partitions differs depending on whether you are performing an
online backup or an offline backup. For more information, see “Backing up
data” on page 427.

5. Connect to the zample database using the following command:
db2 connect to zample

6. Generate new transaction logs for the database by creating a table and loading
data into the TSM server using the following command:

bar:/home/roecken> db2 load from mr of del modified by noheader replace
into employee copy yes use tsm

where in this example, the table is called employee, and the data is being
loaded from a delimited ASCII file called mr. The COPY YES option is specified
to make a copy of the data that is loaded, and the USE TSM option specifies
that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for
roll-forward recovery; that is, the logarchmeth1 database configuration
parameter must be set to USEREXIT, LOGRETAIN, DISK, or TSM.
To indicate its progress, the load utility returns a series of messages:

SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
15:12:13.392633".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3110N The utility has completed processing. "1" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "1".

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
15:12:13.445718".

Number of rows read = 1
Number of rows skipped = 0
Number of rows loaded = 1
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 1

7. After the data has been loaded into the table, confirm that there is one backup
image, one load copy image, and one log file on the TSM server by running
the following query on the zample database:
bar:/home/roecken/sqllib/adsm> db2adutl query db zample

274 Partitioning and Clustering Guide

The following information is returned:
Retrieving FULL DATABASE BACKUP information.

1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

8. To enable cross-node recovery, you must give access to the objects associated
with the bar computer to another computer and account. In this example, give
access to the computer dps and the user regress9 using the following
command:

bar:/home/roecken/sqllib/adsm> db2adutl grant user regress9
on nodename dps for db zample

The following information is returned:
Successfully added permissions for regress9 to access ZAMPLE on node dps.

Note: You can confirm the results of the db2adutl grant operation by issuing
the following command to retrieve the current access list for the current node:

bar:/home/roecken/sqllib/adsm> db2adutl queryaccess

The following information is returned:
Node Username Database Name Type
--
DPS regress9 ZAMPLE A
--
Access Types: B - backup images L - logs A - both

9. In this example, computer 2, dps, is not yet set up for cross-node recovery of
the zample database. Verify that there is no data associated with this user and
computer on the TSM server using the following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample

The following information is returned:
--- Database directory is empty ---

Warning: There are no file spaces created by DB2 on the ADSM server
Warning: No DB2 backup images found in ADSM for any alias.

10. Query the TSM server for a list of objects for the zample database associated
with user roecken and computer bar using the following command:
dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename

bar owner roecken

The following information is returned:
--- Database directory is empty ---

Query for database ZAMPLE

Chapter 18. Developing a good backup and recovery strategy 275

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

This information matches the TSM information that was generated previously
and confirms that you can restore this image onto the dps computer.

11. Restore the zample database from the TSM server to the dps computer using
the following command:

dps:/home/regress9> db2 restore db zample use tsm options
"’-fromnode=bar -fromowner=roecken’" without prompting

The following information is returned:
DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter
would be omitted, and the database configuration parameter vendoropt would
be used. This configuration parameter overrides the OPTIONS parameter for a
backup or restore operation.

12. Perform a roll-forward operation to apply the transactions recorded in the
zample database log file when a new table was created and new data loaded.
In this example, the following attempt for the roll-forward operation will fail
because the roll-forward utility cannot find the log files because the user and
computer information is not specified:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The command returns the following error:
SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the
specified stop point (end-of-log or point-in-time) because of missing log
file(s) on node(s) "0".

Force the roll-forward utility to look for log files associated with another
computer using the proper logarchopt value. In this example, use the
following command to set the logarchopt1 database configuration parameter
and search for log files associated with user roecken and computer bar:

dps:/home/regress9> db2 update db cfg for zample using logarchopt1
"’-fromnode=bar -fromowner=roecken’"

13. Enable the roll-forward utility to use the backup and load copy images by
setting the vendoropt database configuration parameter using the following
command:

dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
"’-fromnode=bar -fromowner=roecken’"

276 Partitioning and Clustering Guide

14. You can finish the cross-node data recovery by applying the transactions
recorded in the zample database log file using the following command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:
Rollforward Status

Input database alias = zample
Number of members have returned status = 1

Member number Rollforward Next log to Log files processed Last committed transaction
status be read

------------- ----------- ----------- ------------------------- ------------------------------
0 not pending S0000000.LOG-S0000000.LOG 2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered
to the same point as the database on computerbar under user roecken.

Example 2: Passwords are user-managed (PASSWORDACCESS
option set to PROMPT)

This cross-node recovery example shows how to set up two computers so that you
can recover data from one computer to another when log archives and backups are
stored on a TSM server and where passwords are managed by the users. In these
environments, extra information is required, specifically the TSM nodename and
password of the computer where the objects were created.
1. Update the client dsm.sys file by adding the following line because computer

bar is the name of the source computer
NODENAME bar

Note: On Windows operating systems, this file is called the dsm.opt file. When
you update this file, you must reboot your system for the changes to take
effect.

2. Query the TSM server for the list of objects associated with user roecken and
computer bar using the following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename bar
owner roecken password *******

The following information is returned:
Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Chapter 18. Developing a good backup and recovery strategy 277

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

3. If the zample database does not exist on computer dps, perform the following
steps:
a. Create an empty zample database using the following command:

dps:/home/regress9> db2 create db zample

b. Update the database configuration parameter tsm_nodename using the
following command:

dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

c. Update the database configuration parameter tsm_password using the
following command:

dps:/home/regress9> db2 update db cfg for zample using
tsm_password ********

4. Attempt to restore the zample database using the following command:
dps:/home/regress9> db2 restore db zample use tsm options
"’-fromnode=bar -fromowner=roecken’" without prompting

The restore operation completes successfully, but a warning is issued:
SQL2540W Restore is successful, however a warning "2523" was
encountered during Database Restore while processing in No
Interrupt mode.

5. Perform a roll-forward operation using the following command:
dps:/home/regress9> db2 rollforward db zample to end of logs and stop

In this example, because the restore operation replaced the database
configuration file, the roll-forward utility cannot find the correct log files and
the following error message is returned:

SQL1268N Roll-forward recovery stopped due to error "-2112880618"
while retrieving log file "S0000000.LOG" for database "ZAMPLE" on node "0".

Reset the following TSM database configuration values to the correct values:
a. Set the tsm_nodename configuration parameter using the following

command:
dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

b. Set the tsm_password database configuration parameter using the following
command:

dps:/home/regress9> db2 update db cfg for zample using tsm_password *******

c. Set the logarchopt1 database configuration parameter so that the
roll-forward utility can find the correct log files using the following
command:

dps:/home/regress9> db2 update db cfg for zample using logarchopt1
"’-fromnode=bar -fromowner=roecken’"

d. Set the vendoropt database configuration parameter so that the load
recovery file can also be used during the roll-forward operation using the
following command:

dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
"’-fromnode=bar -fromowner=roecken’"

6. You can finish the cross-node recovery by performing the roll-forward
operation using the following command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:
Rollforward Status

Input database alias = zample
Number of members have returned status = 1

278 Partitioning and Clustering Guide

Member number Rollforward Next log to Log files processed Last committed transaction
status be read

------------- ----------- ----------- ------------------------- ------------------------------
0 not pending S0000000.LOG-S0000000.LOG 2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered to
the same point as the database on computerbar under user roecken

Example 3: TSM server is configured to use client proxy nodes

This cross-node recovery example shows how to set up two computers as proxy
nodes so that you can recover data from one computer to another when log
archives and backups are stored on a TSM server and where passwords are
managed using the PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline
backup of the database.

In this example, the computers bar and dps are registered under the proxy name of
clusternode. The computers are already setup as proxy nodes.
1. Register the computers bar and dps on the TSM server as proxy nodes using

the following commands:
REGISTER NODE clusternode mypassword
GRANT PROXYNODE TARGET=clusternode AGENT=bar,dps

2. To enable the database for log archiving to the TSM server, update the
database configuration parameter logarchmeth1 for the zample database using
the following command:

bar:/home/roecken> db2 update db cfg for zample using
LOGARCHMETH1 tsm logarchopt1 "’-asnodename=clusternode’"

The following information is returned:
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

3. Disconnect all users and applications from the database using the following
command:

db2 force applications all

4. Verify that there are no applications connected to the database using the
following command:

db2 list applications

You should receive a message that says that no data was returned.

Note: In a partitioned database environment, you must perform this step on
all database partitions.

5. Create a backup of the database on the TSM server using the following
command:

db2 backup db zample use tsm options "’-asnodename=clusternode’"

Information similar to the following is returned:
Backup successful. The timestamp for this backup image is : 20090216151025

Instead of specifying the -asnodename option on the BACKUP DATABASE
command, you can update the vendoropt database configuration parameter
instead.

Chapter 18. Developing a good backup and recovery strategy 279

Note: In a partitioned database environment, you must perform this step on
all database partitions. The order in which you perform this step on the
database partitions differs depending on whether you are performing an
online backup or an offline backup. For more information, see “Backing up
data” on page 427.

6. Connect to the zample database using the following command:
db2 connect to zample

7. Generate new transaction logs for the database by creating a table and loading
data into the TSM server using the following command:
bar:/home/roecken> db2 load from mr of del modified by noheader
replace into employee copy yes use tsmwhere

where in this example, the table is called employee, and the data is being
loaded from a delimited ASCII file called mr. The COPY YES option is specified
to make a copy of the data that is loaded, and the USE TSM option specifies
that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for
roll-forward recovery; that is, the logarchmeth1 database configuration
parameter must be set to USEREXIT, LOGRETAIN, DISK, or TSM.
To indicate its progress, the load utility returns a series of messages:

SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
15:12:13.392633".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3110N The utility has completed processing. "1" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "1".

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
15:12:13.445718".

Number of rows read = 1
Number of rows skipped = 0
Number of rows loaded = 1
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 1

8. After the data has been loaded into the table, confirm that there is one backup
image, one load copy image, and one log file on the TSM server by running
the following query on the zample database:

bar:/home/roecken/sqllib/adsm> db2adutl query db zample
options "-asnodename=clusternode"

The following information is returned:
Retrieving FULL DATABASE BACKUP information.

1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.

280 Partitioning and Clustering Guide

No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

9. In this example, computer 2, dps, is not yet set up for cross-node recovery of
the zample database. Verify that there is no data associated with this user and
computer using the following command:

dps:/home/regress9/sqllib/adsm> db2adutl query db zample

The following information is returned:
--- Database directory is empty ---

Warning: There are no file spaces created by DB2 on the ADSM server
Warning: No DB2 backup images found in ADSM for any alias.

10. Query the TSM server for a list of objects for the zample database associated
with the proxy node clusternode using the following command:
dps:/home/regress9/sqllib/adsm> db2adutl query db zample

options="-asnodename=clusternode"

The following information is returned:
--- Database directory is empty ---

Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.
Log file: S0000000.LOG, Chain Num: 0, Log stream: 0,
Taken at: 2009-02-16-15.10.38

This information matches the TSM information that was generated previously
and confirms that you can restore this image onto the dps computer.

11. Restore the zample database from the TSM server to the dps computer using
the following command:

dps:/home/regress9> db2 restore db zample use tsm options
"’-asnodename=clusternode’" without prompting

The following information is returned:

Chapter 18. Developing a good backup and recovery strategy 281

DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter
would be omitted, and the database configuration parameter vendoropt would
be used. This configuration parameter overrides the OPTIONS parameter for a
backup or restore operation.

12. Perform a roll-forward operation to apply the transactions recorded in the
zample database log file when a new table was created and new data loaded.
In this example, the following attempt for the roll-forward operation will fail
because the roll-forward utility cannot find the log files because the user and
computer information is not specified:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The command returns the following error:
SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the
specified stop point (end-of-log or point-in-time) because of missing log
file(s) on node(s) "0".

Force the roll-forward utility to look for log files on another computer using
the proper logarchopt value. In this example, use the following command to
set the logarchopt1 database configuration parameter and search for log files
associated with user roecken and computer bar:

dps:/home/regress9> db2 update db cfg for zample using logarchopt1
"’-asnodename=clusternode’"

13. Enable the roll-forward utility to use the backup and load copy images by
setting the vendoropt database configuration parameter using the following
command:

dps:/home/regress9> db2 update db cfg for zample using VENDOROPT
"’-asnodename=clusternode’"

14. You can finish the cross-node data recovery by applying the transactions
recorded in the zample database log file using the following command:

dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:
Rollforward Status

Input database alias = zample
Number of members have returned status = 1

Member number Rollforward Next log to Log files processed Last committed transaction
status be read

------------- ----------- ----------- ------------------------- ------------------------------
0 not pending S0000000.LOG-S0000000.LOG 2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on computer dps under user regress9 has been recovered
to the same point as the database on computer bar under user roecken.

Example 4: TSM server is configured to use client proxy nodes
in a DB2 pureScale environment

This example shows how to set up two members as proxy nodes so that you can
recover data from one member to the other when log archives and backups are
stored on a TSM server and where passwords are managed using the
PASSWORDACCESS=GENERATE option.

Note: After updating the database configuration, you might have to take an offline
backup of the database.

282 Partitioning and Clustering Guide

In this example, the members member1 and member2 are registered under the proxy
name of clusternode. In DB2 pureScale environments, you can perform backup or
data recovery operations from any member. In this example, data will be recovered
from member2

1. Register the members member1 and member2 on the TSM server as proxy nodes
using the following commands:
REGISTER NODE clusternode mypassword
GRANT PROXYNODE TARGET=clusternode AGENT=member1,member2

2. To enable the database for log archiving to the TSM server, update the
database configuration parameter logarchmeth1 for the zample database using
the following command:

member1:/home/roecken> db2 update db cfg for zample using
LOGARCHMETH1 tsm logarchopt1 "’-asnodename=clusternode’"

Note: In DB2 pureScale environments, you can set the global logarchmeth1
database configuration parameters once from any member.
The following information is returned:

DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

3. Disconnect all users and applications from the database using the following
command:

db2 force applications all

4. Verify that there are no applications connected to the database using the
following command:

db2 list applications global

You should receive a message that says that no data was returned.
5. Create a backup of the database on the TSM server using the following

command:
db2 backup db zample use tsm options ’-asnodename=clusternode’

Information similar to the following is returned:
Backup successful. The timestamp for this backup image is : 20090216151025

Instead of specifying the -asnodename option on the BACKUP DATABASE
command, you can update the vendoropt database configuration parameter
instead.

Note: In DB2 pureScale environments, you can run this command from any
member to back up all data for the database.

6. Connect to the zample database using the following command:
db2 connect to zample

7. Generate new transaction logs for the database by creating a table and loading
data into the TSM server using the following command:
member1:/home/roecken> db2 load from mr of del modified by noheader replace

into employee copy yes use tsmwhere

where in this example, the table is called employee, and the data is being
loaded from a delimited ASCII file called mr. The COPY YES option is specified
to make a copy of the data that is loaded, and the USE TSM option specifies
that the copy of the data is stored on the TSM server.

Note: You can specify the COPY YES option only if the database is enabled for
roll-forward recovery; that is, the logarchmeth1 database configuration
parameter must be set to USEREXIT, LOGRETAIN, DISK, or TSM.

Chapter 18. Developing a good backup and recovery strategy 283

To indicate its progress, the load utility returns a series of messages:
SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2009
15:12:13.392633".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3110N The utility has completed processing. "1" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "1".

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "02/16/2009
15:12:13.445718".

Number of rows read = 1
Number of rows skipped = 0
Number of rows loaded = 1
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 1

8. After the data has been loaded into the table, confirm that there is one backup
image, one load copy image, and one log file on the TSM server by running
the following query on the zample database:

member1:/home/roecken/sqllib/adsm> db2adutl query db zample
options "-asnodename=clusternode"

The following information is returned:
Retrieving FULL DATABASE BACKUP information.

1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.

Log file: S0000000.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.01.10

Log file: S0000000.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.01.11

Log file: S0000000.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.01.19

Log file: S0000001.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.02.49

Log file: S0000001.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.02.49

Log file: S0000001.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.02.49

Log file: S0000002.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.03.15

284 Partitioning and Clustering Guide

Log file: S0000002.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.03.15

Log file: S0000002.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.03.16

9. Query the TSM server for a list of objects for the zample database associated
with the proxy node clusternode using the following command:
member2:/home/regress9/sqllib/adsm> db2adutl query db zample

options="-asnodename=clusternode"

The following information is returned:
--- Database directory is empty ---

Query for database ZAMPLE

Retrieving FULL DATABASE BACKUP information.
1 Time: 20090216151025 Oldest log: S0000000.LOG Log stream: 0
Sessions: 1

Retrieving INCREMENTAL DATABASE BACKUP information.
No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

Retrieving DELTA DATABASE BACKUP information.
No DELTA DATABASE BACKUP images found for ZAMPLE

Retrieving TABLESPACE BACKUP information.
No TABLESPACE BACKUP images found for ZAMPLE

Retrieving INCREMENTAL TABLESPACE BACKUP information.
No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Retrieving DELTA TABLESPACE BACKUP information.
No DELTA TABLESPACE BACKUP images found for ZAMPLE

Retrieving LOAD COPY information.
1 Time: 20090216151213

Retrieving LOG ARCHIVE information.

Log file: S0000000.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.01.10

Log file: S0000000.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.01.11

Log file: S0000000.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.01.19

Log file: S0000001.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.02.49

Log file: S0000001.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.02.49

Log file: S0000001.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.02.49

Log file: S0000002.LOG, Chain Num: 1, Log stream: 1, Taken at: 2009-02-16-13.03.15

Log file: S0000002.LOG, Chain Num: 1, Log stream: 2, Taken at: 2009-02-16-13.03.15

Log file: S0000002.LOG, Chain Num: 1, Log stream: 0, Taken at: 2009-02-16-13.03.16

This information matches the TSM information that was generated previously
and confirms that you can restore this image onto the member2 member.

10. Restore the zample database on the TSM server from the member2 member
using the following command:

member2:/home/regress9> db2 restore db zample use tsm options
’-asnodename=clusternode’ without prompting

The following information is returned:
DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on member2, the OPTIONS
parameter would be omitted, and the database configuration parameter

Chapter 18. Developing a good backup and recovery strategy 285

vendoropt would be used. This configuration parameter overrides the OPTIONS
parameter for a backup or restore operation.

11. Enable the roll-forward utility to use the backup and load copy images by
setting the vendoropt database configuration parameter using the following
command:

member2:/home/regress9> db2 update db cfg for zample using VENDOROPT
"’-asnodename=clusternode’"

Note: In DB2 pureScale environments, you can set the global vendoropt
database configuration parameters once from any member.

12. You can finish the cross-member data recovery by applying the transactions
recorded in the zample database log file using the following command:

member2:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:
Rollforward Status

Input database alias = zample
Number of members have returned status = 3

Member number Rollforward Next log to Log files processed Last committed transaction
status be read

------------- ----------- ----------- ------------------------- ------------------------------
0 not pending S0000001.LOG-S0000012.LOG 2009-05-06-15.28.11.000000 UTC
1 not pending S0000001.LOG-S0000012.LOG 2009-05-06-15.28.11.000000 UTC
2 not pending S0000001.LOG-S0000012.LOG 2009-05-06-15.28.11.000000 UTC

DB20000I The ROLLFORWARD command completed successfully.

The database zample on member member2 under user regress9 has been
recovered to the same point as the database on member member1 under user
roecken.

Synchronizing clocks in a partitioned database environment
You should maintain relatively synchronized system clocks across the database
partition servers to ensure smooth database operations and unlimited forward
recoverability. Time differences among the database partition servers, plus any
potential operational and communications delays for a transaction should be less
than the value specified for the max_time_diff (maximum time difference among
nodes) database manager configuration parameter.

To ensure that the log record time stamps reflect the sequence of transactions in a
partitioned database environment, DB2 uses the system clock and the virtual
timestamp stored in the SQLOGCTL.LFH file on each machine as the basis for the
time stamps in the log records. If, however, the system clock is set ahead, the log
clock is automatically set ahead with it. Although the system clock can be set back,
the clock for the logs cannot, and remains at the same advanced time until the
system clock matches this time. The clocks are then in synchrony. The implication
of this is that a short term system clock error on a database node can have a long
lasting effect on the time stamps of database logs.

For example, assume that the system clock on database partition server A is
mistakenly set to November 7, 2005 when the year is 2003, and assume that the
mistake is corrected after an update transaction is committed in the database
partition at that database partition server. If the database is in continual use, and is
regularly updated over time, any point between November 7, 2003 and November
7, 2005 is virtually unreachable through rollforward recovery. When the COMMIT
on database partition server A completes, the time stamp in the database log is set
to 2005, and the log clock remains at November 7, 2005 until the system clock

286 Partitioning and Clustering Guide

matches this time. If you attempt to roll forward to a point in time within this time
frame, the operation will stop at the first time stamp that is beyond the specified
stop point, which is November 7, 2003.

Although DB2 cannot control updates to the system clock, the max_time_diff
database manager configuration parameter reduces the chances of this type of
problem occurring:
v The configurable values for this parameter range from 1 minute to 24 hours.
v When the first connection request is made to a non-catalog partition, the

database partition server sends its time to the catalog partition for the database.
The catalog partition then checks that the time on the database partition
requesting the connection, and its own time are within the range specified by
the max_time_diff parameter. If this range is exceeded, the connection is refused.

v An update transaction that involves more than two database partition servers in
the database must verify that the clocks on the participating database partition
servers are in synchrony before the update can be committed. If two or more
database partition servers have a time difference that exceeds the limit allowed
by max_time_diff, the transaction is rolled back to prevent the incorrect time from
being propagated to other database partition servers.

Chapter 18. Developing a good backup and recovery strategy 287

288 Partitioning and Clustering Guide

Chapter 19. Troubleshooting

Troubleshooting partitioned database environments

Issuing commands in partitioned database environments
In a partitioned database environment, you might want to issue commands to be
run on computers in the instance, or on database partition servers. You can do so
using the rah command or the db2_all command. The rah command allows you to
issue commands that you want to run at computers in the instance.

If you want the commands to run at database partition servers in the instance, you
run the db2_all command. This section provides an overview of these commands.
The information that follows applies to partitioned database environments only.

On Windows, to run the rah command or the db2_all command, you must be
logged on with a user account that is a member of the Administrators group.

On Linux and UNIX operating systems, your login shell can be a Korn shell or any
other shell; however, there are differences in the way the different shells handle
commands containing special characters.

Also, on Linux and UNIX operating systems, rah uses the remote shell program
specified by the DB2RSHCMD registry variable. You can select between the two remote
shell programs: ssh (for additional security), or rsh (or remsh for HP-UX). If
DB2RSHCMD is not set, rsh (or remsh for HP-UX) is used. The ssh remote shell
program is used to prevent the transmission of passwords in clear text in UNIX
operating system environments.

If a command runs on one database partition server and you want it to run on all
of them, use db2_all. The exception is the db2trc command, which runs on all the
logical database partition servers on a computer. If you want to run db2trc on all
logical database partition servers on all computers, use rah.

Note: The db2_all command does not support commands that require interactive
user input.

© Copyright IBM Corp. 2012 289

290 Partitioning and Clustering Guide

Part 4. Performance issues

© Copyright IBM Corp. 2012 291

292 Partitioning and Clustering Guide

Chapter 20. Performance issues in database design

Performance enhancing features

Table partitioning and multidimensional clustering tables
In a table that is both multidimensional clustered and data partitioned, columns
can be used both in the table partitioning range-partition-spec and in the
multidimensional clustering (MDC) key. A table that is both multidimensional
clustered and partitioned can achieve a finer granularity of data partition and
block elimination than could be achieved by either functionality alone.

There are also many applications where it is useful to specify different columns for
the MDC key than those on which the table is partitioned. It should be noted that
table partitioning is multicolumn, while MDC is multi-dimension.

Characteristics of a mainstream DB2 data warehouse

The following recommendations were focused on typical, mainstream warehouses
that were new for DB2 V9.1. The following characteristics are assumed:
v The database runs on multiple machines or multiple AIX logical partitions.
v Partitioned database environments are used (tables are created using the

DISTRIBUTE BY HASH clause).
v There are four to fifty data partitions.
v The table for which MDC and table partitioning is being considered is a major

fact table.
v The table has 100,000,000 to 100,000,000,000 rows.
v New data is loaded at various time frames: nightly, weekly, monthly.
v Daily ingest volume is 10 thousand to 10 million records.
v Data volumes vary: The biggest month is 5X the size of the smallest month.

Likewise, the biggest dimensions (product line, region) have a 5X size range.
v 1 to 5 years of detailed data is retained.
v Expired data is rolled out monthly or quarterly.
v Tables use a wide range of query types. However, the workload is mostly

analytical queries with the following characteristics, relative to OLTP workloads:
– larger results sets with up to 2 million rows
– most or all queries are hitting views, not base tables

v SQL clauses selecting data by ranges (BETWEEN clause), items in lists, and so
on.

Characteristics of a mainstream DB2 V9.1 data warehouse fact
table

A typical warehouse fact table, might use the following design:
v Create data partitions on the Month column.
v Define a data partition for each period you roll-out, for example, 1 month, 3

months.
v Create MDC dimensions on Day and on 1 to 4 additional dimensions. Typical

dimensions are: product line and region.

© Copyright IBM Corp. 2012 293

v All data partitions and MDC clusters are spread across all database partitions.

MDC and table partitioning provide overlapping sets of benefits. The following
table lists potential needs in your organization and identifies a recommended
organization scheme based on the characteristics identified previously.

Table 15. Using table partitioning with MDC tables

Issue Recommended scheme Recommendation

Data availability during
roll-out

Table partitioning Use the DETACH
PARTITION clause to roll out
large amounts of data with
minimal disruption.

Query performance Table partitioning and MDC MDC is best for querying
multiple dimensions. Table
partitioning helps through
data partition elimination.

Minimal reorganization MDC MDC maintains clustering,
which reduces the need to
reorganize.

Rollout a month or more of
data during a traditional
offline window

Table partitioning Data partitioning addresses
this need fully. MDC adds
nothing and would be less
suitable on its own.

Rollout a month or more of
data during a micro-offline
window (less than 1 minute)

Table partitioning Data partitioning addresses
this need fully. MDC adds
nothing and would be less
suitable on its own.

Rollout a month or more of
data while keeping the table
fully available for business
users submitting queries
without any loss of service.

MDC MDC only addresses this
need somewhat. Table
partitioning would not be
suitable due to the short
period the table goes offline.

Load data daily (either
ALLOW READ ACCESS or
ALLOW NO ACCESS)

Table partitioning and MDC MDC provides most of the
benefit here. Table
partitioning provides
incremental benefits.

Load data "continually"
(ALLOW READ ACCESS)

Table partitioning and MDC MDC provides most of the
benefit here. Table
partitioning provides
incremental benefits.

Query execution
performance for "traditional
BI" queries

Table partitioning and MDC MDC is especially good for
querying cubes/multiple
dimensions. Table
partitioning helps via
partition elimination.

294 Partitioning and Clustering Guide

Table 15. Using table partitioning with MDC tables (continued)

Issue Recommended scheme Recommendation

Minimize reorganization
pain, by avoiding the need
for reorganization or
reducing the pain associated
with performing the task

MDC MDC maintains clustering
which reduces the need to
reorg. If MDC is used, data
partitioning does not provide
incremental benefits.
However if MDC is not
used, table partitioning helps
reduce the need for reorg by
maintaining some course
grain clustering at the
partition level.

Example 1:

Consider a table with key columns YearAndMonth and Province. A reasonable
approach to planning this table might be to partition by date with 2 months per
data partition. In addition, you might also organize by Province, so that all rows
for a particular province within any two month date range are clustered together,
as shown in Figure 6 on page 32.
CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)
(STARTING 9901 ENDING 9904 EVERY 2)
ORGANIZE BY (Province);

Chapter 20. Performance issues in database design 295

Example 2:

Finer granularity can be achieved by adding YearAndMonth to the ORGANIZE BY
clause, as shown in Figure 7 on page 33.
CREATE TABLE orders (YearAndMonth INT, Province CHAR(2))
PARTITION BY RANGE (YearAndMonth)
(STARTING 9901 ENDING 9904 EVERY 2)
ORGANIZE BY (YearAndMonth, Province);

Figure 44. A table partitioned by YearAndMonth and organized by Province

296 Partitioning and Clustering Guide

In cases where the partitioning is such that there is only a single value in each
range, nothing is gained by including the table partitioning column in the MDC
key.

Considerations
v Compared to a basic table, both MDC tables and partitioned tables require more

storage. These storage needs are additive but are considered reasonable given
the benefits.

v If you choose not to combine table partitioning and MDC functionality in your
partitioned database environment, table partitioning is best in cases where you
can confidently predict the data distribution, which is generally the case for the
types of systems discussed here. Otherwise, MDC should be considered.

v For a data-partitioned MDC table created with DB2 Version 9.7 Fix Pack 1 or
later releases, the MDC block indexes on the table are partitioned. For a
data-partitioned MDC table created with DB2 V9.7 or earlier releases, the MDC
block indexes on the table are nonpartitioned.

Figure 45. A table partitioned by YearAndMonth and organized by Province and
YearAndMonth

Chapter 20. Performance issues in database design 297

Optimization strategies for partitioned tables
Data partition elimination refers to the database server's ability to determine, based
on query predicates, that only a subset of the data partitions in a table need to be
accessed to answer a query. Data partition elimination is particularly useful when
running decision support queries against a partitioned table.

A partitioned table uses a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table. Data from a table is
partitioned into multiple storage objects based on specifications provided in the
PARTITION BY clause of the CREATE TABLE statement. These storage objects can
be in different table spaces, in the same table space, or a combination of both.

The following example demonstrates the performance benefits of data partition
elimination.

create table custlist(
subsdate date, province char(2), accountid int)
partition by range(subsdate) (

starting from ’1/1/1990’ in ts1,
starting from ’1/1/1991’ in ts1,
starting from ’1/1/1992’ in ts1,
starting from ’1/1/1993’ in ts2,
starting from ’1/1/1994’ in ts2,
starting from ’1/1/1995’ in ts2,
starting from ’1/1/1996’ in ts3,
starting from ’1/1/1997’ in ts3,
starting from ’1/1/1998’ in ts3,
starting from ’1/1/1999’ in ts4,
starting from ’1/1/2000’ in ts4,
starting from ’1/1/2001’
ending ’12/31/2001’ in ts4)

Assume that you are only interested in customer information for the year 2000.
select * from custlist

where subsdate between ’1/1/2000’ and ’12/31/2000’

As Figure 46 on page 299 shows, the database server determines that only one data
partition in table space TS4 must be accessed to resolve this query.

298 Partitioning and Clustering Guide

Another example of data partition elimination is based on the following scheme:
create table multi (

sale_date date, region char(2))
partition by (sale_date) (

starting ’01/01/2005’
ending ’12/31/2005’
every 1 month)

create index sx on multi(sale_date)

create index rx on multi(region)

Assume that you issue the following query:
select * from multi

where sale_date between ’6/1/2005’
and ’7/31/2005’ and region = ’NW’

Without table partitioning, one likely plan is index ANDing. Index ANDing
performs the following tasks:
v Reads all relevant index entries from each index
v Saves both sets of row identifiers (RIDs)
v Matches RIDs to determine which occur in both indexes
v Uses the RIDs to fetch the rows

As Figure 47 on page 300 demonstrates, with table partitioning, the index is read to
find matches for both REGION and SALE_DATE, resulting in the fast retrieval of
matching rows.

Figure 46. The performance benefits of data partition elimination

Chapter 20. Performance issues in database design 299

DB2 Explain

You can also use the explain facility to determine the data partition elimination
plan that was chosen by the query optimizer. The “DP Elim Predicates”
information shows which data partitions are scanned to resolve the following
query:

select * from custlist
where subsdate between ’12/31/1999’ and ’1/1/2001’

Arguments:

DPESTFLG: (Number of data partitions accessed are Estimated)

FALSE
DPLSTPRT: (List of data partitions accessed)

9-11
DPNUMPRT: (Number of data partitions accessed)

3

DP Elim Predicates:

Range 1)

Stop Predicate: (Q1.A <= ’01/01/2001’)
Start Predicate: (’12/31/1999’ <= Q1.A)

Objects Used in Access Plan:

Schema: MRSRINI
Name: CUSTLIST
Type: Data Partitioned Table
Time of creation: 2005-11-30-14.21.33.857039
Last statistics update: 2005-11-30-14.21.34.339392
Number of columns: 3
Number of rows: 100000
Width of rows: 19
Number of buffer pool pages: 1200
Number of data partitions: 12
Distinct row values: No
Tablespace name: <VARIOUS>

Figure 47. Optimizer decision path for both table partitioning and index ANDing

300 Partitioning and Clustering Guide

Multi-column support

Data partition elimination works in cases where multiple columns are used as the
table partitioning key. For example:

create table sales (
year int, month int)
partition by range(year, month) (

starting from (2001,1)
ending at (2001,3) in ts1,
ending at (2001,6) in ts2,
ending at (2001,9) in ts3,
ending at (2001,12) in ts4,
ending at (2002,3) in ts5,
ending at (2002,6) in ts6,
ending at (2002,9) in ts7,
ending at (2002,12) in ts8)

select * from sales where year = 2001 and month < 8

The query optimizer deduces that only data partitions in TS1, TS2, and TS3 must
be accessed to resolve this query.

Note: In the case where multiple columns make up the table partitioning key, data
partition elimination is only possible when you have predicates on the leading
columns of the composite key, because the non-leading columns that are used for
the table partitioning key are not independent.

Multi-range support

It is possible to obtain data partition elimination with data partitions that have
multiple ranges (that is, those that are ORed together). Using the SALES table that
was created in the previous example, execute the following query:

select * from sales
where (year = 2001 and month <= 3)

or (year = 2002 and month >= 10)

The database server only accesses data for the first quarter of 2001 and the last
quarter of 2002.

Generated columns

You can use generated columns as table partitioning keys. For example:
create table sales (

a int, b int generated always as (a / 5))
in ts1,ts2,ts3,ts4,ts5,ts6,ts7,ts8,ts9,ts10
partition by range(b) (

starting from (0)
ending at (1000) every (50))

In this case, predicates on the generated column are used for data partition
elimination. In addition, when the expression that is used to generate the columns
is monotonic, the database server translates predicates on the source columns into
predicates on the generated columns, which enables data partition elimination on
the generated columns. For example:

select * from sales where a > 35

The database server generates an extra predicate on b (b > 7) from a (a > 35), thus
allowing data partition elimination.

Chapter 20. Performance issues in database design 301

Join predicates

Join predicates can also be used in data partition elimination, if the join predicate
is pushed down to the table access level. The join predicate is only pushed down
to the table access level on the inner join of a nested loop join (NLJN).

Consider the following tables:
create table t1 (a int, b int)

partition by range(a,b) (
starting from (1,1)
ending (1,10) in ts1,
ending (1,20) in ts2,
ending (2,10) in ts3,
ending (2,20) in ts4,
ending (3,10) in ts5,
ending (3,20) in ts6,
ending (4,10) in ts7,
ending (4,20) in ts8)

create table t2 (a int, b int)

The following two predicates will be used:
P1: T1.A = T2.A
P2: T1.B > 15

In this example, the exact data partitions that will be accessed at compile time
cannot be determined, due to unknown outer values of the join. In this case, as
well as cases where host variables or parameter markers are used, data partition
elimination occurs at run time when the necessary values are bound.

During run time, when T1 is the inner of an NLJN, data partition elimination
occurs dynamically, based on the predicates, for every outer value of T2.A. During
run time, the predicates T1.A = 3 and T1.B > 15 are applied for the outer value
T2.A = 3, which qualifies the data partitions in table space TS6 to be accessed.

Suppose that column A in tables T1 and T2 have the following values:

Outer table T2:
column A

Inner table T1:
column A

Inner table T1:
column B

Inner table T1: data
partition location

2 3 20 TS6
3 2 10 TS3
3 2 18 TS4

3 15 TS6
1 40 TS3

To perform a nested loop join (assuming a table scan for the inner table), the
database manager performs the following steps:
1. Reads the first row from T2. The value for A is 2.
2. Binds the T2.A value (which is 2) to the column T2.A in the join predicate T1.A

= T2.A. The predicate becomes T1.A = 2.
3. Applies data partition elimination using the predicates T1.A = 2 and T1.B > 15.

This qualifies data partitions in table space TS4.
4. After applying T1.A = 2 and T1.B > 15, scans the data partitions in table space

TS4 of table T1 until a row is found. The first qualifying row found is row 3 of
T1.

5. Joins the matching row.

302 Partitioning and Clustering Guide

6. Scans the data partitions in table space TS4 of table T1 until the next match
(T1.A = 2 and T1.B > 15) is found. No more rows are found.

7. Repeats steps 1 through 6 for the next row of T2 (replacing the value of A with
3) until all the rows of T2 have been processed.

Indexes over XML data

Starting in DB2 Version 9.7 Fix Pack 1, you can create an index over XML data on
a partitioned table as either partitioned or nonpartitioned. The default is a
partitioned index.

Partitioned and nonpartitioned XML indexes are maintained by the database
manager during table insert, update, and delete operations in the same way as any
other relational indexes on a partitioned table are maintained. Nonpartitioned
indexes over XML data on a partitioned table are used in the same way as indexes
over XML data on a nonpartitioned table to speed up query processing. Using the
query predicate, it is possible to determine that only a subset of the data partitions
in the partitioned table need to be accessed to answer the query.

Data partition elimination and indexes over XML columns can work together to
enhance query performance. Consider the following partitioned table:

create table employee (a int, b xml, c xml)
index in tbspx
partition by (a) (

starting 0 ending 10,
ending 20,
ending 30,
ending 40)

Now consider the following query:
select * from employee

where a > 21
and xmlexist(’$doc/Person/Name/First[.="Eric"]’

passing "EMPLOYEE"."B" as "doc")

The optimizer can immediately eliminate the first two partitions based on the
predicate a > 21. If the nonpartitioned index over XML data on column B is
chosen by the optimizer in the query plan, an index scan using the index over
XML data will be able to take advantage of the data partition elimination result
from the optimizer and only return results belonging to partitions that were not
eliminated by the relational data partition elimination predicates.

Optimization strategies for MDC tables
If you create multidimensional clustering (MDC) tables, the performance of many
queries might improve, because the optimizer can apply additional optimization
strategies. These strategies are primarily based on the improved efficiency of block
indexes, but the advantage of clustering on more than one dimension also permits
faster data retrieval.

MDC table optimization strategies can also exploit the performance advantages of
intra-partition parallelism and inter-partition parallelism. Consider the following
specific advantages of MDC tables:
v Dimension block index lookups can identify the required portions of the table

and quickly scan only the required blocks.
v Because block indexes are smaller than record identifier (RID) indexes, lookups

are faster.

Chapter 20. Performance issues in database design 303

v Index ANDing and ORing can be performed at the block level and combined
with RIDs.

v Data is guaranteed to be clustered on extents, which makes retrieval faster.
v Rows can be deleted faster when rollout can be used.

Consider the following simple example for an MDC table named SALES with
dimensions defined on the REGION and MONTH columns:

select * from sales
where month = ’March’ and region = ’SE’

For this query, the optimizer can perform a dimension block index lookup to find
blocks in which the month of March and the SE region occur. Then it can scan only
those blocks to quickly fetch the result set.

Rollout deletion

When conditions permit delete using rollout, this more efficient way to delete rows
from MDC tables is used. The required conditions are:
v The DELETE statement is a searched DELETE, not a positioned DELETE (the

statement does not use the WHERE CURRENT OF clause).
v There is no WHERE clause (all rows are to be deleted), or the only conditions in

the WHERE clause apply to dimensions.
v The table is not defined with the DATA CAPTURE CHANGES clause.
v The table is not the parent in a referential integrity relationship.
v The table does not have ON DELETE triggers defined.
v The table is not used in any MQTs that are refreshed immediately.
v A cascaded delete operation might qualify for rollout if its foreign key is a

subset of the table's dimension columns.
v The DELETE statement cannot appear in a SELECT statement executing against

the temporary table that identifies the set of affected rows prior to a triggering
SQL operation (specified by the OLD TABLE AS clause on the CREATE
TRIGGER statement).

During a rollout deletion, the deleted records are not logged. Instead, the pages
that contain the records are made to look empty by reformatting parts of the
pages. The changes to the reformatted parts are logged, but the records themselves
are not logged.

The default behavior, immediate cleanup rollout, is to clean up RID indexes at delete
time. This mode can also be specified by setting the DB2_MDC_ROLLOUT registry
variable to IMMEDIATE, or by specifying IMMEDIATE on the SET CURRENT
MDC ROLLOUT MODE statement. There is no change in the logging of index
updates, compared to a standard delete operation, so the performance
improvement depends on how many RID indexes there are. The fewer RID
indexes, the better the improvement, as a percentage of the total time and log
space.

An estimate of the amount of log space that is saved can be made with the
following formula:

S + 38*N - 50*P

where N is the number of records deleted, S is total size of the records deleted,
including overhead such as null indicators and VARCHAR lengths, and P is the

304 Partitioning and Clustering Guide

number of pages in the blocks that contain the deleted records. This figure is the
reduction in actual log data. The savings on active log space required is double
that value, due to the saving of space that was reserved for rollback.

Alternatively, you can have the RID indexes updated after the transaction commits,
using deferred cleanup rollout. This mode can also be specified by setting the
DB2_MDC_ROLLOUT registry variable to DEFER, or by specifying DEFERRED on the
SET CURRENT MDC ROLLOUT MODE statement. In a deferred rollout, RID
indexes are cleaned up asynchronously in the background after the delete commits.
This method of rollout can result in significantly faster deletion times for very
large deletes, or when a number of RID indexes exist on the table. The speed of the
overall cleanup operation is increased, because during a deferred index cleanup,
the indexes are cleaned up in parallel, whereas in an immediate index cleanup,
each row in the index is cleaned up one by one. Moreover, the transactional log
space requirement for the DELETE statement is significantly reduced, because the
asynchronous index cleanup logs the index updates by index page instead of by
index key.

Note: Deferred cleanup rollout requires additional memory resources, which are
taken from the database heap. If the database manager is unable to allocate the
memory structures it requires, the deferred cleanup rollout fails, and a message is
written to the administration notification log.

When to use a deferred cleanup rollout

If delete performance is the most important factor, and there are RID indexes
defined on the table, use deferred cleanup rollout. Note that prior to index
cleanup, index-based scans of the rolled-out blocks suffer a small performance
penalty, depending on the amount of rolled-out data. The following issues should
also be considered when deciding between immediate index cleanup and deferred
index cleanup:
v Size of the delete operation

Choose deferred cleanup rollout for very large deletions. In cases where
dimensional DELETE statements are frequently issued on many small MDC
tables, the overhead to asynchronously clean index objects might outweigh the
benefit of time saved during the delete operation.

v Number and type of indexes
If the table contains a number of RID indexes, which require row-level
processing, use deferred cleanup rollout.

v Block availability
If you want the block space freed by the delete operation to be available
immediately after the DELETE statement commits, use immediate cleanup
rollout.

v Log space
If log space is limited, use deferred cleanup rollout for large deletions.

v Memory constraints
Deferred cleanup rollout consumes additional database heap space on all tables
that have deferred cleanup pending.

To disable rollout behavior during deletions, set the DB2_MDC_ROLLOUT registry
variable to OFF or specify NONE on the SET CURRENT MDC ROLLOUT MODE
statement.

Chapter 20. Performance issues in database design 305

Note: In DB2 Version 9.7 and later releases, deferred cleanup rollout is not
supported on a data partitioned MDC table with partitioned RID indexes. Only the
NONE and IMMEDIATE modes are supported. The cleanup rollout type will be
IMMEDIATE if the DB2_MDC_ROLLOUT registry variable is set to DEFER, or if the
CURRENT MDC ROLLOUT MODE special register is set to DEFERRED to
override the DB2_MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the MDC table, deferred index cleanup
rollout is supported.

306 Partitioning and Clustering Guide

Chapter 21. Indexes

Indexes in partitioned tables

Index behavior on partitioned tables
Indexes on partitioned tables operate similarly to indexes on nonpartitioned tables.
However, indexes on partitioned tables are stored using a different storage model,
depending on whether the indexes are partitioned or nonpartitioned.

Although the indexes for a regular nonpartitioned table all reside in a shared index
object, a nonpartitioned index on a partitioned table is created in its own index
object in a single table space, even if the data partitions span multiple table spaces.
Both database managed space (DMS) and system managed space (SMS) table
spaces support the use of indexes in a different location than the table data. Each
nonpartitioned index can be placed in its own table space, including large table
spaces. Each index table space must use the same storage mechanism as the data
partitions, either DMS or SMS. Indexes in large table spaces can contain up to 229

pages. All of the table spaces must be in the same database partition group.

A partitioned index uses an index organization scheme in which index data is
divided across multiple index partitions, according to the partitioning scheme of the
table. Each index partition refers only to table rows in the corresponding data
partition. All index partitions for a specific data partition reside in the same index
object.

Starting in DB2 Version 9.7 Fix Pack 1, user-created indexes over XML data on
XML columns in partitioned tables can be either partitioned or nonpartitioned. The
default is partitioned. System-generated XML region indexes are always
partitioned, and system-generated column path indexes are always nonpartitioned.
In DB2 V9.7, indexes over XML data are nonpartitioned.

Benefits of a nonpartitioned index include:
v The ability to define different table space characteristics for each index (for

example, different page sizes might help to ensure better space utilization)
v Indexes can be reorganized independently of one another
v Improved performance of drop index operations
v Reduced I/O contention, which helps to provide more efficient concurrent access

to the index data
v When individual indexes are dropped, space becomes immediately available to

the system without the need for index reorganization

Benefits of a partitioned index include:
v Improved data roll-in and roll-out performance
v Less contention on index pages, because the index is partitioned
v An index B-tree structure for each index partition, which can result in the

following benefits:
– Improved insert, update, delete, and scan performance because the B-tree for

an index partition normally contains fewer levels than an index that
references all data in the table

© Copyright IBM Corp. 2012 307

– Improved scan performance and concurrency when partition elimination is in
effect. Although partition elimination can be used for both partitioned and
nonpartitioned index scans, it is more effective for partitioned index scans
because each index partition contains keys for only the corresponding data
partition. This configuration can result in having to scan fewer keys and
fewer index pages than a similar query over a nonpartitioned index.

Although a nonpartitioned index always preserves order on the index columns, a
partitioned index might lose some order across partitions in certain scenarios; for
example, if the partitioning columns do not match the index columns, and more
than one partition is to be accessed.

During online index creation, concurrent read and write access to the table is
permitted. After an online index is built, changes that were made to the table
during index creation are applied to the new index. Write access to the table is
blocked until index creation completes and the transaction commits. For
partitioned indexes, each data partition is quiesced to read-only access only while
changes that were made to that data partition (during the creation of the index
partition) are applied.

Partitioned index support becomes particularly beneficial when you are rolling
data in using the ALTER TABLE...ATTACH PARTITION statement. If
nonpartitioned indexes exist (not including the XML columns path index, if the
table has XML data), issue a SET INTEGRITY statement after partition attachment.
This statement is necessary for nonpartitioned index maintenance, range validation,
constraints checking, and materialized query table (MQT) maintenance.
Nonpartitioned index maintenance can be time-consuming and require large
amounts of log space. Use partitioned indexes to avoid this maintenance cost.

If there are nonpartitioned indexes (except XML columns path indexes) on the
table to maintain after an attach operation, the SET INTEGRITY...ALL IMMEDIATE
UNCHECKED statement behaves as though it were a SET
INTEGRITY...IMMEDIATE CHECKED statement. All integrity processing,
nonpartitioned index maintenance, and table state transitions are performed as
though a SET INTEGRITY...IMMEDIATE CHECKED statement was issued.

The Figure 48 on page 309 diagram shows two nonpartitioned indexes on a
partitioned table, with each index in a separate table space.

308 Partitioning and Clustering Guide

The Figure 49 on page 310 diagram shows a partitioned index on a partitioned
table that spans two database partitions and resides in a single table space.

Figure 48. Nonpartitioned indexes on a partitioned table

Chapter 21. Indexes 309

The Figure 50 on page 311 diagram shows a mix of partitioned and nonpartitioned
indexes on a partitioned table.

Figure 49. Nonpartitioned index on a table that is both distributed and partitioned

310 Partitioning and Clustering Guide

The nonpartitioned index X1 refers to rows in all of the data partitions. By
contrast, the partitioned indexes X2 and X3 refer only to rows in the data partition
with which they are associated. Table space TS3 also shows the index partitions
sharing the table space of the data partitions with which they are associated. This
configuration is the default for partitioned indexes.

You can override the default location for nonpartitioned and partitioned indexes,
although the way that you do this is different for each. With nonpartitioned
indexes, you can specify a table space when you create the index; for partitioned
indexes, you need to determine the table spaces in which the index partitions are
stored when you create the table.

Nonpartitioned indexes

To override the index location for nonpartitioned indexes, use the IN
clause on the CREATE INDEX statement to specify an alternative table
space location for the index. You can place different indexes in different

Part0

Table space (ts3)

Table space (ts4)

Table space (ts5)

Part1 Index (x3)

Index (x2)

Part2 Index (x3)

Index (x2)

Part3 Index (x3)

Index (x2)

Part4 Index (x3)

Index (x2)

Table space (ts2)

Index (x1)

Index (x3)

Index (x2)

t1

Table space (ts1)

Figure 50. Partitioned and nonpartitioned indexes on a partitioned table

Chapter 21. Indexes 311

table spaces, as required. If you create a partitioned table without
specifying where to place its nonpartitioned indexes, and you then create
an index by using a CREATE INDEX statement that does not specify a
table space, the index is created in the table space of the first attached or
visible data partition. Each of the following three possible cases is
evaluated in order, starting with case 1, to determine where the index is to
be created. This evaluation to determine table space placement for the
index stops when a matching case is found.

Case 1:
When an index table space is specified in the CREATE INDEX...IN
tbspace statement, use the specified table space for this index.

Case 2:
When an index table space is specified in the CREATE TABLE...
INDEX IN tbspace statement, use the specified
table space for this index.

Case 3:
When no table space is specified, choose the table space that is used
by the first attached or visible data partition.

Partitioned indexes
By default, index partitions are placed in the same table space as the data
partitions that they reference. To override this default behavior, you must
use the INDEX IN clause for each data partition that you define by using
the CREATE TABLE statement. In other words, if you plan to use
partitioned indexes for a partitioned table, you must anticipate where you
want the index partitions to be stored when you create the table. If you try
to use the INDEX IN clause when creating a partitioned index, you receive
an error message.

Example 1: Given partitioned table SALES (a int, b int, c int), create a unique index
A_IDX.

create unique index a_idx on sales (a)

Because the table SALES is partitioned, index a_idx is also created as a partitioned
index.

Example 2: Create index B_IDX.
create index b_idx on sales (b)

Example 3: To override the default location for the index partitions in a partitioned
index, use the INDEX IN clause for each partition that you define when creating
the partitioned table. In the example that follows, indexes for the table Z are
created in table space TS3.
create table z (a int, b int)

partition by range (a) (starting from (1)
ending at (100) index in ts3)

create index c_idx on z (a) partitioned

Clustering of nonpartitioned indexes on partitioned tables
Clustering indexes offer the same benefits for partitioned tables as they do for
regular tables. However, care must be taken with the table partitioning key
definitions when choosing a clustering index.

312 Partitioning and Clustering Guide

You can create a clustering index on a partitioned table using any clustering key.
The database server attempts to use the clustering index to cluster data locally
within each data partition. During a clustered insert operation, an index lookup is
performed to find a suitable record identifier (RID). This RID is used as a starting
point in the table when looking for space in which to insert the record. To achieve
optimal clustering with good performance, there should be a correlation between
the index columns and the table partitioning key columns. One way to ensure such
correlation is to prefix the index columns with the table partitioning key columns,
as shown in the following example:

partition by range (month, region)
create index...(month, region, department) cluster

Although the database server does not enforce this correlation, there is an
expectation that all keys in the index will be grouped together by partition IDs to
achieve good clustering. For example, suppose that a table is partitioned on
QUARTER and a clustering index is defined on DATE. There is a relationship
between QUARTER and DATE, and optimal clustering of the data with good
performance can be achieved because all keys of any data partition are grouped
together within the index. Figure 51 on page 314 shows that optimal scan
performance is achieved only when clustering correlates with the table partitioning
key.

Chapter 21. Indexes 313

Benefits of clustering include:
v Rows are in key order within each data partition.
v Clustering indexes improve the performance of scans that traverse the table in

key order, because the scanner fetches the first row of the first page, then each
row in that same page before moving on to the next page. This means that only
one page of the table needs to be in the buffer pool at any given time. In

Figure 51. The possible effects of a clustered index on a partitioned table.

314 Partitioning and Clustering Guide

contrast, if the table is not clustered, rows are likely fetched from different
pages. Unless the buffer pool can hold the entire table, most pages will likely be
fetched more than once, greatly slowing down the scan.

If the clustering key is not correlated with the table partitioning key, but the data is
locally clustered, you can still achieve the full benefit of the clustered index if there
is enough space in the buffer pool to hold one page of each data partition. This is
because each fetched row from a particular data partition is near the row that was
previously fetched from that same partition (see the second example in Figure 51
on page 314).

Chapter 21. Indexes 315

316 Partitioning and Clustering Guide

Chapter 22. Design advisor

Using the Design Advisor to convert from a single-partition to a
multi-partition database

You can use the Design Advisor to help you convert a single-partition database
into a multi-partition database.

About this task

In addition to making recommendations about new indexes, materialized query
tables (MQTs), and multidimensional clustering (MDC) tables, the Design Advisor
can provide you with recommendations for distributing data.

Procedure
1. Use the db2licm command to register the partitioned database environment

license key.
2. Create at least one table space in a multi-partition database partition group.

Note: The Design Advisor can only recommend data redistribution to existing
table spaces.

3. Run the Design Advisor with the partitioning option specified on the db2advis
command.

4. Modify the db2advis output file slightly before running the DDL statements
that were generated by the Design Advisor. Because database partitioning must
be set up before you can run the DDL script that the Design Advisor generates,
recommendations are commented out of the script that is returned. It is up to
you to transform your tables in accordance with the recommendations.

© Copyright IBM Corp. 2012 317

318 Partitioning and Clustering Guide

Chapter 23. Managing concurrency

Lock modes for MDC and ITC tables and RID index scans
The type of lock that a multidimensional clustering (MDC) or insert time clustering
(ITC) table obtains during a table or RID index scan depends on the isolation level
that is in effect and on the data access plan that is being used.

The following tables show the types of locks that are obtained for MDC and ITC
tables under each isolation level for different access plans. Each entry has three
parts: the table lock, the block lock, and the row lock. A hyphen indicates that a
particular lock granularity is not available.

Tables 9-14 show the types of locks that are obtained for RID index scans when the
reading of data pages is deferred. Under the UR isolation level, if there are
predicates on include columns in the index, the isolation level is upgraded to CS
and the locks are upgraded to an IS table lock, an IS block lock, or NS row locks.
v Table 1. Lock Modes for Table Scans with No Predicates
v Table 2. Lock Modes for Table Scans with Predicates on Dimension Columns

Only
v Table 3. Lock Modes for Table Scans with Other Predicates (sargs, resids)
v Table 4. Lock Modes for RID Index Scans with No Predicates
v Table 5. Lock Modes for RID Index Scans with a Single Qualifying Row
v Table 6. Lock Modes for RID Index Scans with Start and Stop Predicates Only
v Table 7. Lock Modes for RID Index Scans with Index Predicates Only
v Table 8. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with No Predicates
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with No Predicates
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Predicates (sargs, resids)
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Predicates (sargs, resids)
v Table 13. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Start and Stop Predicates Only
v Table 14. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Start and Stop Predicates Only

Note: Lock modes can be changed explicitly with the lock-request-clause of a
SELECT statement.

Table 16. Lock Modes for Table Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/U IX/X/- IX/I/-

© Copyright IBM Corp. 2012 319

Table 16. Lock Modes for Table Scans with No Predicates (continued)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 17. Lock Modes for Table Scans with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/X/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/U/- X/X/-

Table 18. Lock Modes for Table Scans with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 19. Lock Modes for RID Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

Table 20. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/U IX/IX/X X/X/X X/X/X

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

320 Partitioning and Clustering Guide

Table 21. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Table 22. Lock Modes for RID Index Scans with Index Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 23. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 24. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S X/-/-

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Chapter 23. Managing concurrency 321

Table 25. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Table 26. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/S

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 27. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 28. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/S IX/IX/X

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

322 Partitioning and Clustering Guide

Table 29. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IS/-/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Lock modes for MDC block index scans
The type of lock that a multidimensional clustering (MDC) table obtains during a
block index scan depends on the isolation level that is in effect and on the data
access plan that is being used.

The following tables show the types of locks that are obtained for MDC tables
under each isolation level for different access plans. Each entry has three parts: the
table lock, the block lock, and the row lock. A hyphen indicates that a particular
lock granularity is not available.

Tables 5-12 show the types of locks that are obtained for block index scans when
the reading of data pages is deferred.
v Table 1. Lock Modes for Index Scans with No Predicates
v Table 2. Lock Modes for Index Scans with Predicates on Dimension Columns

Only
v Table 3. Lock Modes for Index Scans with Start and Stop Predicates Only
v Table 4. Lock Modes for Index Scans with Predicates
v Table 5. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with No Predicates
v Table 6. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with No Predicates
v Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Predicates on Dimension Columns Only
v Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Predicates on Dimension Columns Only
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Start and Stop Predicates Only
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Start and Stop Predicates Only
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Other Predicates (sargs, resids)
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Other Predicates (sargs, resids)

Note: Lock modes can be changed explicitly with the lock-request-clause of a
SELECT statement.

Chapter 23. Managing concurrency 323

Table 30. Lock Modes for Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/--/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/- IX/IX/U IX/IX/X X/X/-- X/X/--

Table 31. Lock Modes for Index Scans with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 32. Lock Modes for Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/S IX/IX/S IX/IX/S

RS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

CS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/- IX/IX/-

Table 33. Lock Modes for Index Scans with Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

324 Partitioning and Clustering Guide

Table 34. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/S X/--/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

Table 35. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/-- IX/IX/U IX/IX/X X/X/-- X/X/--

Table 36. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/S/--

RS IS/IS/NS IX/--/-- IX/--/--

CS IS/IS/NS IX/--/-- IX/--/--

UR IN/IN/-- IX/--/-- IX/--/--

Table 37. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/S/-- IX/X/--

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

UR IN/IN/-- IX/IX/U IX/IX/X IX/U/-- IX/X/--

Chapter 23. Managing concurrency 325

Table 38. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/X/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

Table 39. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/X IX/X/--

RS IS/IS/NS IN/IN/-- IN/IN/--

CS IS/IS/NS IN/IN/-- IN/IN/--

UR IS/--/-- IN/IN/-- IN/IN/--

Table 40. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/IX/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

Table 41. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/-- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

326 Partitioning and Clustering Guide

Locking behavior on partitioned tables
In addition to an overall table lock, there is a lock for each data partition of a
partitioned table.

This allows for finer granularity and increased concurrency compared to a
nonpartitioned table. The data partition lock is identified in output from the db2pd
command, event monitors, administrative views, and table functions.

When a table is accessed, a table lock is obtained first, and then data partition
locks are obtained as required. Access methods and isolation levels might require
the locking of data partitions that are not represented in the result set. After these
data partition locks are acquired, they might be held as long as the table lock. For
example, a cursor stability (CS) scan over an index might keep the locks on
previously accessed data partitions to reduce the cost of reacquiring data partition
locks later.

Data partition locks also carry the cost of ensuring access to table spaces. For
nonpartitioned tables, table space access is handled by table locks. Data partition
locking occurs even if there is an exclusive or share lock at the table level.

Finer granularity allows one transaction to have exclusive access to a specific data
partition and to avoid row locking while other transactions are accessing other
data partitions. This can be the result of the plan that is chosen for a mass update,
or because of the escalation of locks to the data partition level. The table lock for
many access methods is normally an intent lock, even if the data partitions are
locked in share or exclusive mode. This allows for increased concurrency. However,
if non-intent locks are required at the data partition level, and the plan indicates
that all data partitions might be accessed, then a non-intent lock might be chosen
at the table level to prevent data partition deadlocks between concurrent
transactions.

LOCK TABLE statements

For partitioned tables, the only lock acquired by the LOCK TABLE statement is a
table-level lock. This prevents row locking by subsequent data manipulation
language (DML) statements, and avoids deadlocks at the row, block, or data
partition level. The IN EXCLUSIVE MODE option can be used to guarantee
exclusive access when updating indexes, which is useful in limiting the growth of
indexes during a large update.

Effect of the LOCKSIZE TABLE option on the ALTER TABLE
statement

The LOCKSIZE TABLE option ensures that a table is locked in share or exclusive
mode with no intent locks. For a partitioned table, this locking strategy is applied
to both the table lock and to data partition locks.

Row- and block-level lock escalation

Row- and block-level locks in partitioned tables can be escalated to the data
partition level. When this occurs, a table is more accessible to other transactions,
even if a data partition is escalated to share, exclusive, or super exclusive mode,
because other data partitions remain unaffected. The notification log entry for an
escalation includes the impacted data partition and the name of the table.

Chapter 23. Managing concurrency 327

Exclusive access to a nonpartitioned index cannot be ensured by lock escalation.
For exclusive access, one of the following conditions must be true:
v The statement must use an exclusive table-level lock
v An explicit LOCK TABLE IN EXCLUSIVE MODE statement must be issued
v The table must have the LOCKSIZE TABLE attribute

In the case of partitioned indexes, exclusive access to an index partition is ensured
by lock escalation of the data partition to an exclusive or super exclusive access
mode.

Interpreting lock information

The SNAPLOCK administrative view can help you to interpret lock information
that is returned for a partitioned table. The following SNAPLOCK administrative
view was captured during an offline index reorganization.

SELECT SUBSTR(TABNAME, 1, 15) TABNAME, TAB_FILE_ID, SUBSTR(TBSP_NAME, 1, 15) TBSP_NAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE,
LOCK_MODE, LOCK_ESCALATION FROM SYSIBMADM.SNAPLOCK where TABNAME like ’TP1’ and LOCK_OBJECT_TYPE like ’TABLE_%’
ORDER BY TABNAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE, TAB_FILE_ID, LOCK_MODE

TABNAME TAB_FILE_ID TBSP_NAME DATA_PARTITION_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_ESCALATION
--------------- -------------------- --------------- ----------------- ------------------ ---------- ---------------
TP1 32768 - -1 TABLE_LOCK Z 0
TP1 4 USERSPACE1 0 TABLE_PART_LOCK Z 0
TP1 5 USERSPACE1 1 TABLE_PART_LOCK Z 0
TP1 6 USERSPACE1 2 TABLE_PART_LOCK Z 0
TP1 7 USERSPACE1 3 TABLE_PART_LOCK Z 0
TP1 8 USERSPACE1 4 TABLE_PART_LOCK Z 0
TP1 9 USERSPACE1 5 TABLE_PART_LOCK Z 0
TP1 10 USERSPACE1 6 TABLE_PART_LOCK Z 0
TP1 11 USERSPACE1 7 TABLE_PART_LOCK Z 0
TP1 12 USERSPACE1 8 TABLE_PART_LOCK Z 0
TP1 13 USERSPACE1 9 TABLE_PART_LOCK Z 0
TP1 14 USERSPACE1 10 TABLE_PART_LOCK Z 0
TP1 15 USERSPACE1 11 TABLE_PART_LOCK Z 0
TP1 4 USERSPACE1 - TABLE_LOCK Z 0
TP1 5 USERSPACE1 - TABLE_LOCK Z 0
TP1 6 USERSPACE1 - TABLE_LOCK Z 0
TP1 7 USERSPACE1 - TABLE_LOCK Z 0
TP1 8 USERSPACE1 - TABLE_LOCK Z 0
TP1 9 USERSPACE1 - TABLE_LOCK Z 0
TP1 10 USERSPACE1 - TABLE_LOCK Z 0
TP1 11 USERSPACE1 - TABLE_LOCK Z 0
TP1 12 USERSPACE1 - TABLE_LOCK Z 0
TP1 13 USERSPACE1 - TABLE_LOCK Z 0
TP1 14 USERSPACE1 - TABLE_LOCK Z 0
TP1 15 USERSPACE1 - TABLE_LOCK Z 0
TP1 16 USERSPACE1 - TABLE_LOCK Z 0

26 record(s) selected.

In this example, a lock object of type TABLE_LOCK and a DATA_PARTITION_ID
of -1 are used to control access to and concurrency on the partitioned table TP1.
The lock objects of type TABLE_PART_LOCK are used to control most access to
and concurrency on each data partition.

There are additional lock objects of type TABLE_LOCK captured in this output
(TAB_FILE_ID 4 through 16) that do not have a value for DATA_PARTITION_ID.
A lock of this type, where an object with a TAB_FILE_ID and a TBSP_NAME
correspond to a data partition or index on the partitioned table, might be used to
control concurrency with the online backup utility.

328 Partitioning and Clustering Guide

Chapter 24. Agent management

Agents in a partitioned database
In a partitioned database environment, or an environment in which intra-partition
parallelism has been enabled, each database partition has its own pool of agents
from which subagents are drawn.

Because of this pool, subagents do not have to be created and destroyed each time
one is needed or has finished its work. The subagents can remain as associated
agents in the pool and can be used by the database manager for new requests from
the application with which they are associated or from new applications.

The impact on both performance and memory consumption within the system is
strongly related to how your agent pool is tuned. The database manager
configuration parameter for agent pool size (num_poolagents) affects the total
number of agents and subagents that can be kept associated with applications on a
database partition. If the pool size is too small and the pool is full, a subagent
disassociates itself from the application it is working on and terminates. Because
subagents must be constantly created and reassociated with applications,
performance suffers.

By default, num_poolagents is set to AUTOMATIC with a value of 100, and the
database manager automatically manages the number of idle agents to pool.

If the value of num_poolagents is manually set too low, one application could fill
the pool with associated subagents. Then, when another application requires a new
subagent and has no subagents in its agent pool, it will recycle inactive subagents
from the agent pools of other applications. This behavior ensures that resources are
fully utilized.

If the value of num_poolagents is manually set too high, associated subagents
might sit unused in the pool for long periods of time, using database manager
resources that are not available for other tasks.

When the connection concentrator is enabled, the value of num_poolagents does not
necessarily reflect the exact number of agents that might be idle in the pool at any
one time. Agents might be needed temporarily to handle higher workload activity.

In addition to database agents, other asynchronous database manager activities run
as their own process or thread, including:
v Database I/O servers or I/O prefetchers
v Database asynchronous page cleaners
v Database loggers
v Database deadlock detectors
v Communication and IPC listeners
v Table space container rebalancers

© Copyright IBM Corp. 2012 329

330 Partitioning and Clustering Guide

Chapter 25. Optimizing access plans

Index access and cluster ratios
When it chooses an access plan, the optimizer estimates the number of I/Os that
are required to fetch pages from disk to the buffer pool. This estimate includes a
prediction of buffer pool usage, because additional I/Os are not required to read
rows from a page that is already in the buffer pool.

For index scans, information from the system catalog helps the optimizer to
estimate the I/O cost of reading data pages into a buffer pool. It uses information
from the following columns in the SYSCAT.INDEXES view:
v CLUSTERRATIO information indicates the degree to which the table data is

clustered in relation to this index. The higher the number, the better the rows are
ordered in index key sequence. If table rows are in close to index-key sequence,
rows can be read from a data page while the page is in the buffer. If the value of
this column is -1, the optimizer uses PAGE_FETCH_PAIRS and
CLUSTERFACTOR information, if it is available.

v The PAGE_FETCH_PAIRS column contains pairs of numbers that model the
number of I/Os required to read the data pages into buffer pools of various
sizes, together with CLUSTERFACTOR information. Data is collected for these
columns only if you invoke the RUNSTATS command against the index, specifying
the DETAILED clause.

If index clustering statistics are not available, the optimizer uses default values,
which assume poor clustering of the data with respect to the index. The degree to
which the data is clustered can have a significant impact on performance, and you
should try to keep one of the indexes that are defined on the table close to 100
percent clustered. In general, only one index can be one hundred percent clustered,
except when the keys for an index represent a superset of the keys for the
clustering index, or when there is an actual correlation between the key columns of
the two indexes.

When you reorganize a table, you can specify an index that will be used to cluster
the rows and keep them clustered during insert processing. Because update and
insert operations can make a table less clustered in relation to the index, you might
need to periodically reorganize the table. To reduce the number of reorganizations
for a table that experiences frequent insert, update, or delete operations, specify the
PCTFREE clause on the ALTER TABLE statement.

Table and index management for MDC and ITC tables
Table and index organization for multidimensional (MDC) and insert time
clustering (ITC) tables is based on the same logical structures as standard table
organization.

Like standard tables, MDC and ITC tables are organized into pages that contain
rows of data divided into columns. The rows on each page are identified by record
IDs (RIDs). However, the pages for MDC and ITC tables are grouped into
extent-sized blocks. For example, Figure 52 on page 332, shows a table with an
extent size of four. The first four pages, numbered 0 through 3, represent the first
block in the table. The next four pages, numbered 4 through 7, represent the

© Copyright IBM Corp. 2012 331

second block in the table.

The first block contains special internal records, including the free space control
record (FSCR), that are used by the DB2 server to manage the table. In subsequent
blocks, the first page contains the FSCR. An FSCR maps the free space for new
records that exists on each page of the block. This available free space is used
when inserting records into the table.

As the name implies, MDC tables cluster data on more than one dimension. Each
dimension is determined by a column or set of columns that you specify in the
ORGANIZE BY DIMENSIONS clause of the CREATE TABLE statement. When you
create an MDC table, the following two indexes are created automatically:

Legend

user records

reservedX

U

F

in use

free

Logical view of block map
for first 3 blocks

Logical
index

view of
dimension block

reserved for system records

FSCR

A
C

K S

K

X

0

U

1

F

2 ...

BID

K
BID

252,0

C
BID

BID BID

BID

Logical
table view

Physical
table view

...

0 4020

4021

4022

4023

1

2

3

4 252

253

254

255

5

6

7

1488

1489

1490

1491

8

9

10

11

block 0

block 2

block 1

BID (block Id) = Page 252, slot 0
(first physical page of block, slot always 0)

Figure 52. Logical table, record, and index structure for MDC and ITC tables

332 Partitioning and Clustering Guide

v A dimension-block index, which contains pointers to each occupied block for a
single dimension

v A composite-block index, which contains all dimension key columns, and which
is used to maintain clustering during insert and update activity

The optimizer considers access plans that use dimension-block indexes when it
determines the most efficient access plan for a particular query. When queries have
predicates on dimension values, the optimizer can use the dimension-block index
to identify—and fetch from—the extents that contain these values. Because extents
are physically contiguous pages on disk, this minimizes I/O and leads to better
performance.

You can also create specific RID indexes if analysis of data access plans indicates
that such indexes would improve query performance.

As the name implies, ITC tables cluster data based on row insert time. The
differences between MDC and ITC tables are:
v block indexes are not used for any data access,
v only a single composite block index is created for the table, and that index

consists of a virtual dimension, and
v the index is never chosen by the optimizer for plans because the column it

contains cannot be referenced by any SQL statement.

MDC and ITC tables can have their empty blocks released to the tablespace.

Optimization strategies for intra-partition parallelism
The optimizer can choose an access plan to execute a query in parallel within a
single database partition if a degree of parallelism is specified when the SQL
statement is compiled.

At run time, multiple database agents called subagents are created to execute the
query. The number of subagents is less than or equal to the degree of parallelism
that was specified when the SQL statement was compiled.

To parallelize an access plan, the optimizer divides it into a portion that is run by
each subagent and a portion that is run by the coordinating agent. The subagents
pass data through table queues to the coordinating agent or to other subagents. In
a partitioned database environment, subagents can send or receive data through
table queues from subagents in other database partitions.

Intra-partition parallel scan strategies

Relational scans and index scans can be performed in parallel on the same table or
index. For parallel relational scans, the table is divided into ranges of pages or
rows, which are assigned to subagents. A subagent scans its assigned range and is
assigned another range when it has completed work on the current range.

For parallel index scans, the index is divided into ranges of records based on index
key values and the number of index entries for a key value. The parallel index
scan proceeds like a parallel table scan, with subagents being assigned a range of
records. A subagent is assigned a new range when it has completed work on the
current range.

Parallel table scans can be run against range partitioned tables, and similarly,
parallel index scans can be run against partitioned indexes. For a parallel scan,

Chapter 25. Optimizing access plans 333

partitioned indexes are divided into ranges of records, based on index key values
and the number of key entries for a key value. When a parallel scan begins,
subagents are assigned a range of records, and once the subagent completes a
range, it is assigned a new range. The index partitions are scanned sequentially
with subagents potentially scanning unreserved index partitions at any point in
time without waiting for each other. Only the subset of index partitions that is
relevant to the query based on data partition elimination analysis is scanned.

The optimizer determines the scan unit (either a page or a row) and the scan
granularity.

Parallel scans provide an even distribution of work among the subagents. The goal
of a parallel scan is to balance the load among the subagents and to keep them
equally busy. If the number of busy subagents equals the number of available
processors, and the disks are not overworked with I/O requests, the machine
resources are being used effectively.

Other access plan strategies might cause data imbalance as the query executes. The
optimizer chooses parallel strategies that maintain data balance among subagents.

Intra-partition parallel sort strategies

The optimizer can choose one of the following parallel sort strategies:
v Round-robin sort

This is also known as a redistribution sort. This method uses shared memory to
efficiently redistribute the data as evenly as possible to all subagents. It uses a
round-robin algorithm to provide the even distribution. It first creates an
individual sort for each subagent. During the insert phase, subagents insert into
each of the individual sorts in a round-robin fashion to achieve a more even
distribution of data.

v Partitioned sort
This is similar to the round-robin sort in that a sort is created for each subagent.
The subagents apply a hash function to the sort columns to determine into
which sort a row should be inserted. For example, if the inner and outer tables
of a merge join are a partitioned sort, a subagent can use merge join to join the
corresponding table portions and execute in parallel.

v Replicated sort
This sort is used if each subagent requires all of the sort output. One sort is
created and subagents are synchronized as rows are inserted into the sort. When
the sort is complete, each subagent reads the entire sort. If the number of rows is
small, this sort can be used to rebalance the data stream.

v Shared sort
This sort is the same as a replicated sort, except that subagents open a parallel
scan on the sorted result to distribute the data among the subagents in a way
that is similar to a round-robin sort.

Intra-partition parallel temporary tables

Subagents can cooperate to produce a temporary table by inserting rows into the
same table. This is called a shared temporary table. The subagents can open private
scans or parallel scans on the shared temporary table, depending on whether the
data stream is to be replicated or split.

334 Partitioning and Clustering Guide

Intra-partition parallel aggregation strategies

Aggregation operations can be performed by subagents in parallel. An aggregation
operation requires the data to be ordered on the grouping columns. If a subagent
can be guaranteed to receive all the rows for a set of grouping column values, it
can perform a complete aggregation. This can happen if the stream is already split
on the grouping columns because of a previous partitioned sort.

Otherwise, the subagent can perform a partial aggregation and use another
strategy to complete the aggregation. Some of these strategies are:
v Send the partially aggregated data to the coordinator agent through a merging

table queue. The coordinator agent completes the aggregation.
v Insert the partially aggregated data into a partitioned sort. The sort is split on

the grouping columns and guarantees that all rows for a set of grouping
columns are contained in one sort partition.

v If the stream needs to be replicated to balance processing, the partially
aggregated data can be inserted into a replicated sort. Each subagent completes
the aggregation using the replicated sort, and receives an identical copy of the
aggregation result.

Intra-partition parallel join strategies

Join operations can be performed by subagents in parallel. Parallel join strategies
are determined by the characteristics of the data stream.

A join can be parallelized by partitioning or by replicating the data stream on the
inner and outer tables of the join, or both. For example, a nested-loop join can be
parallelized if its outer stream is partitioned for a parallel scan and the inner
stream is again evaluated independently by each subagent. A merged join can be
parallelized if its inner and outer streams are value-partitioned for partitioned
sorts.

Data filtering and data skew can cause workloads between subagents to become
imbalanced while a query executes. The inefficiency of imbalanced workloads is
magnified by joins and other computationally expensive operations. The optimizer
looks for sources of imbalance in the query's access plan and applies a balancing
strategy, ensuring that work is evenly divided between the subagents. For an
unordered outer data stream, the optimizer balances the join using the REBAL
operator on the outer data stream. For an ordered data stream (where ordered data
is produced by an index access or a sort), the optimizer balances the data using a
shared sort. A shared sort will be not be used if the sort overflows into the
temporary tables, due to the high cost of a sort overflow.

Joins
A join is the process of combining data from two or more tables based on some
common domain of information. Rows from one table are paired with rows from
another table when information in the corresponding rows match on the basis of
the joining criterion (the join predicate).

For example, consider the following two tables:

TABLE1 TABLE2
PROJ PROJ_ID PROJ_ID NAME

A 1 1 Sam

Chapter 25. Optimizing access plans 335

TABLE1 TABLE2
PROJ PROJ_ID PROJ_ID NAME

B 2 3 Joe
C 3 4 Mary
D 4 1 Sue

2 Mike

To join TABLE1 and TABLE2, such that the PROJ_ID columns have the same
values, use the following SQL statement:

select proj, x.proj_id, name
from table1 x, table2 y
where x.proj_id = y.proj_id

In this case, the appropriate join predicate is: where x.proj_id = y.proj_id.

The query yields the following result set:

PROJ PROJ_ID NAME
A 1 Sam
A 1 Sue
B 2 Mike
C 3 Joe
D 4 Mary

Depending on the nature of any join predicates, as well as any costs determined on
the basis of table and index statistics, the optimizer chooses one of the following
join methods:
v Nested-loop join
v Merge join
v Hash join

When two tables are joined, one table is selected as the outer table and the other
table is regarded as the inner table of the join. The outer table is accessed first and
is scanned only once. Whether the inner table is scanned multiple times depends
on the type of join and the indexes that are available. Even if a query joins more
than two tables, the optimizer joins only two tables at a time. If necessary,
temporary tables are created to hold intermediate results.

You can provide explicit join operators, such as INNER or LEFT OUTER JOIN, to
determine how tables are used in the join. Before you alter a query in this way,
however, you should allow the optimizer to determine how to join the tables, and
then analyze query performance to decide whether to add join operators.

Database partition group impact on query optimization
In partitioned database environments, the optimizer recognizes and uses the
collocation of tables when it determines the best access plan for a query.

If tables are frequently involved in join queries, they should be divided among
database partitions in such a way that the rows from each table being joined are
located on the same database partition. During the join operation, the collocation
of data from both joined tables prevents the movement of data from one database
partition to another. Place both tables in the same database partition group to
ensure that the data is collocated.

336 Partitioning and Clustering Guide

Depending on the size of the table, spreading data over more database partitions
reduces the estimated time to execute a query. The number of tables, the size of the
tables, the location of the data in those tables, and the type of query (such as
whether a join is required) all affect the cost of the query.

Join strategies for partitioned databases
Join strategies for a partitioned database environment can be different than
strategies for a nonpartitioned database environment. Additional techniques can be
applied to standard join methods to improve performance.

Table collocation should be considered for tables that are frequently joined. In a
partitioned database environment, table collocation refers to a state that occurs when
two tables that have the same number of compatible partitioning keys are stored in
the same database partition group. When this happens, join processing can be
performed at the database partition where the data is stored, and only the result
set needs to be moved to the coordinator database partition.

Table queues

Descriptions of join techniques in a partitioned database environment use the
following terminology:
v Table queue (sometimes referred to as TQ) is a mechanism for transferring rows

between database partitions, or between processors in a single-partition
database.

v Directed table queue (sometimes referred to as DTQ) is a table queue in which
rows are hashed to one of the receiving database partitions.

v Broadcast table queue (sometimes referred to as BTQ) is a table queue in which
rows are sent to all of the receiving database partitions, but are not hashed.

A table queue is used to pass table data:
v From one database partition to another when using inter-partition parallelism
v Within a database partition when using intra-partition parallelism
v Within a database partition when using a single-partition database

Each table queue passes the data in a single direction. The compiler decides where
table queues are required, and includes them in the plan. When the plan is
executed, connections between the database partitions initiate the table queues. The
table queues close as processes end.

There are several types of table queues:
v Asynchronous table queues

These table queues are known as asynchronous, because they read rows in
advance of any fetch requests from an application. When a FETCH statement is
issued, the row is retrieved from the table queue.
Asynchronous table queues are used when you specify the FOR FETCH ONLY
clause on the SELECT statement. If you are only fetching rows, the
asynchronous table queue is faster.

v Synchronous table queues
These table queues are known as synchronous, because they read one row for
each FETCH statement that is issued by an application. At each database
partition, the cursor is positioned on the next row to be read from that database
partition.

Chapter 25. Optimizing access plans 337

Synchronous table queues are used when you do not specify the FOR FETCH
ONLY clause on the SELECT statement. In a partitioned database environment,
if you are updating rows, the database manager will use synchronous table
queues.

v Merging table queues
These table queues preserve order.

v Non-merging table queues
These table queues, also known as regular table queues, do not preserve order.

v Listener table queues (sometimes referred to as LTQ)
These table queues are used with correlated subqueries. Correlation values are
passed down to the subquery, and the results are passed back up to the parent
query block using this type of table queue.

Join methods for partitioned databases
Several join methods are available for partitioned database environments,
including: collocated joins, broadcast outer-table joins, directed outer-table joins,
directed inner-table and outer-table joins, broadcast inner-table joins, and directed
inner-table joins.

In the following diagrams, q1, q2, and q3 refer to table queues. The referenced
tables are divided across two database partitions, and the arrows indicate the
direction in which the table queues are sent. The coordinator database partition is
database partition 0.

If the join method chosen by the compiler is hash join, the filters created at each
remote database partition may be used to eliminate tuples before they are sent to
the database partition where the hash join is processed, thus improving
performance.

Collocated joins

A collocated join occurs locally on the database partition on which the data resides.
The database partition sends the data to the other database partitions after the join
is complete. For the optimizer to consider a collocated join, the joined tables must
be collocated, and all pairs of the corresponding distribution keys must participate
in the equality join predicates. Figure 53 on page 339 provides an example.

338 Partitioning and Clustering Guide

The LINEITEM and ORDERS tables are both partitioned on the ORDERKEY
column. The join is performed locally at each database partition. In this example,
the join predicate is assumed to be: orders.orderkey = lineitem.orderkey.

Replicated materialized query tables (MQTs) enhance the likelihood of collocated
joins.

Broadcast outer-table joins

Broadcast outer-table joins represent a parallel join strategy that can be used if
there are no equality join predicates between the joined tables. It can also be used
in other situations in which it proves to be the most cost-effective join method. For
example, a broadcast outer-table join might occur when there is one very large
table and one very small table, neither of which is split on the join predicate
columns. Instead of splitting both tables, it might be cheaper to broadcast the
smaller table to the larger table. Figure 54 on page 340 provides an example.

-

-

Scan
ORDERS
Apply
predicates

-

-

-
-

Scan
LINEITEM
Apply
predicates
Join
Insert into q1

-

-

-

-

-
-

Scan
ORDERS
Apply
predicates
Scan
LINEITEM
Apply
predicates
Join
Insert into q1

-
-
-

Read q1
Process
Return
RESULTS

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q1

q1

Figure 53. Collocated Join Example

Chapter 25. Optimizing access plans 339

The ORDERS table is sent to all database partitions that have the LINEITEM table.
Table queue q2 is broadcast to all database partitions of the inner table.

Directed outer-table joins

In the directed outer-table join strategy, each row of the outer table is sent to one
portion of the inner table, based on the splitting attributes of the inner table. The
join occurs on this database partition. Figure 55 on page 341 provides an example.

-

-

-

-

Scan
LINEITEM
Apply
predicates
Read q2

Insert q1
- Join

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-

-

-

Scan
LINEITEM
Apply
predicates
Read q2
Join
Insert q1

-
-

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q2 q2
q2

q1

q1

q2

Figure 54. Broadcast Outer-Table Join Example

340 Partitioning and Clustering Guide

Directed inner-table and outer-table joins

In the directed inner-table and outer-table join strategy, rows of both the outer and
inner tables are directed to a set of database partitions, based on the values of the
joining columns. The join occurs on these database partitions. Figure 56 on page
342 provides an example.

-

-

-

-

Scan

Apply
predicates
Read q2

Insert into q1

LINEITEM

Join-

-

-

-

-

Scan
ORDERS
Apply
predicates
Hash

Write q2
ORDERKEY

-

-

-

Scan
LINEITEM
Apply
predicates
Read q2
Join
Insert into q1

-
-

-

-

-

-

Scan
ORDERS
Apply
predicates
Hash
ORDERKEY
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q2 q2 q2

q1

q1

q2

The LINEITEM table is partitioned on the ORDERKEY column. The ORDERS table is
partitioned on a different column. The ORDERS table is hashed and sent to the correct
database partition of the LINEITEM table. In this example, the join predicate is assumed to
be: orders.orderkey = lineitem.orderkey.
Figure 55. Directed Outer-Table Join Example

Chapter 25. Optimizing access plans 341

Neither table is partitioned on the ORDERKEY column. Both tables are hashed and
sent to new database partitions, where they are joined. Both table queue q2 and q3
are directed. In this example, the join predicate is assumed to be: orders.orderkey
= lineitem.orderkey.

Broadcast inner-table joins

In the broadcast inner-table join strategy, the inner table is broadcast to all the
database partitions of the outer table. Figure 57 on page 343 provides an example.

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan

Apply
predicates
Hash

Write q3

LINEITEM

ORDERKEY

-

-

-

-

Scan

Apply
predicates
Hash

Write q2

ORDERS

ORDERKEY

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan
LINEITEM
Apply
predicates
Hash

Write q3
ORDERKEY

-

-

-

-

Scan
ORDERS
Apply
predicates
Hash

KEY
Write q2
ORDER

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q2

q3

q2

q3

q2

q3

q1

q1

q2

q3

Figure 56. Directed Inner-Table and Outer-Table Join Example

342 Partitioning and Clustering Guide

Directed inner-table joins

In the directed inner-table join strategy, each row of the inner table is sent to one
database partition of the outer table, based on the splitting attributes of the outer
table. The join occurs on this database partition. Figure 58 on page 344 provides an
example.

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

Scan
LINEITEM
Apply
predicates
Write q3

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

Scan
LINEITEM
Apply
predicates
Write q3

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q3 q3

q2

q3

q1

q1

q2

q3

The LINEITEM table is sent to all database partitions that have the ORDERS table. Table
queue q3 is broadcast to all database partitions of the outer table.
Figure 57. Broadcast Inner-Table Join Example

Chapter 25. Optimizing access plans 343

Replicated materialized query tables in partitioned database
environments

Replicated materialized query tables (MQTs) improve the performance of
frequently executed joins in a partitioned database environment by allowing the
database to manage precomputed values of the table data.

Note that a replicated MQT in this context pertains to intra-database replication.
Inter-database replication is concerned with subscriptions, control tables, and data
that is located in different databases and on different operating systems.

In the following example:
v The SALES table is in a multi-partition table space named

REGIONTABLESPACE, and is split on the REGION column.
v The EMPLOYEE and DEPARTMENT tables are in a single-partition database

partition group.

Create a replicated MQT based on information in the EMPLOYEE table.

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan

Apply
predicates
Hash

Write q3

LINEITEM

ORDERKEY

-

-

-

Scan

Apply
predicates
Write q2

ORDERS

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan
LINEITEM
Apply
predicates
Hash
ORDERKEY
Write q3

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q3 q3

q2

q3

q1

q1

q2

q3

The ORDERS table is partitioned on the ORDERKEY column. The LINEITEM table is
partitioned on a different column. The LINEITEM table is hashed and sent to the correct
database partition of the ORDERS table. In this example, the join predicate is assumed to be:
orders.orderkey = lineitem.orderkey.
Figure 58. Directed Inner-Table Join Example

344 Partitioning and Clustering Guide

create table r_employee as (
select empno, firstnme, midinit, lastname, workdept

from employee
)
data initially deferred refresh immediate
in regiontablespace
replicated

Update the content of the replicated MQT:
refresh table r_employee

After using the REFRESH statement, you should invoke the runstats utility against
the replicated table, as you would against any other table.

The following query calculates sales by employee, the total for the department, and
the grand total:

select d.mgrno, e.empno, sum(s.sales)
from department as d, employee as e, sales as s
where

s.sales_person = e.lastname and
e.workdept = d.deptno

group by rollup(d.mgrno, e.empno)
order by d.mgrno, e.empno

Instead of using the EMPLOYEE table, which resides on only one database
partition, the database manager uses R_EMPLOYEE, the MQT that is replicated on
each of the database partitions on which the SALES table is stored. The
performance enhancement occurs because the employee information does not have
to be moved across the network to each database partition when performing the
join.

Replicated materialized query tables in collocated joins

Replicated MQTs can also assist in the collocation of joins. For example, if a star
schema contains a large fact table that is spread across twenty database partitions,
the joins between the fact table and the dimension tables are most efficient if these
tables are collocated. If all of the tables are in the same database partition group, at
most one dimension table is partitioned correctly for a collocated join. The other
dimension tables cannot be used in a collocated join, because the join columns in
the fact table do not correspond to the distribution key for the fact table.

Consider a table named FACT (C1, C2, C3, ...), split on C1; a table named DIM1
(C1, dim1a, dim1b, ...), split on C1; a table named DIM2 (C2, dim2a, dim2b, ...),
split on C2; and so on. In this case, the join between FACT and DIM1 is perfect,
because the predicate dim1.c1 = fact.c1 is collocated. Both of these tables are split
on column C1.

However, the join involving DIM2 and the predicate dim2.c2 = fact.c2 cannot be
collocated, because FACT is split on column C1, not on column C2. In this case,
you could replicate DIM2 in the database partition group of the fact table so that
the join occurs locally on each database partition.

When you create a replicated MQT, the source table can be a single-partition table
or a multi-partition table in a database partition group. In most cases, the
replicated table is small and can be placed in a single-partition database partition
group. You can limit the data that is to be replicated by specifying only a subset of
the columns from the table, or by restricting the number of qualifying rows
through predicates.

Chapter 25. Optimizing access plans 345

A replicated MQT can also be created in a multi-partition database partition group,
so that copies of the source table are created on all of the database partitions. Joins
between a large fact table and the dimension tables are more likely to occur locally
in this environment, than if you broadcast the source table to all database
partitions.

Indexes on replicated tables are not created automatically. You can create indexes
that are different from those on the source table. However, to prevent constraints
violations that are not present in the source table, you cannot create unique
indexes or define constraints on replicated tables, even if the same constraints
occur on the source table.

Replicated tables can be referenced directly in a query, but you cannot use the
DBPARTITIONNUM scalar function with a replicated table to see the table data on
a particular database partition.

Use the DB2 explain facility to determine whether a replicated MQT was used by
the access plan for a query. Whether or not the access plan that is chosen by the
optimizer uses a replicated MQT depends on the data that is to be joined. A
replicated MQT might not be used if the optimizer determines that it would be
cheaper to broadcast the original source table to the other database partitions in
the database partition group.

Creating additional indexes on table columns in a partitioned database
environment

This example builds on the access plan described in Query 3 by creating an index
on the JOB column in the STAFF table, and adding DEPTNAME to the existing
index in the ORG table. (Adding a separate index could cause an additional
access.)

To view the access plan graph for this query (Query 4): in the Explained
Statements History window, double-click the entry identified as Query Number 4.
The Access Plan Graph window for this execution of the statement opens.

346 Partitioning and Clustering Guide

Answering the following questions will help you understand how to improve the
query.
1. What changes in this process plan as a result of creating additional indexes?

In the middle portion of the access plan graph, notice that for the ORG table,
the previous table scan has been changed to an index scan, IXSCAN (7).
Adding the DEPTNAME column to the index on the ORG table has allowed
the optimizer to refine the access involving the table scan.

Chapter 25. Optimizing access plans 347

In the bottom portion of the access plan graph, note that for the STAFF table
the previous index scan and fetch have been changed to an index scan only
IXSCAN (39). Creating the JOB index on the STAFF table has allowed the
optimizer to eliminate the extra access involving the fetch.

348 Partitioning and Clustering Guide

2. How effective is this access plan?
This access plan is more cost effective than the one from the previous example.
The cumulative cost has been reduced from approximately 753 timerons in
Query 3 to approximately 288 timerons in Query 4.

What's Next
Improving the performance of your own SQL or XQuery statements.

Refer to the DB2 Information Center to find detailed information on additional steps
that you can take to improve performance. You can then return to Visual Explain
to access the impact of your actions.

Chapter 25. Optimizing access plans 349

350 Partitioning and Clustering Guide

Chapter 26. Data redistribution

Data redistribution is a database administration operation that can be performed to
primarily move data within a partitioned database environment when partitions
are added or removed. The goal of this operation is typically to balance the usage
of storage space, improve database system performance, or satisfy other system
requirements.

Data redistribution can be performed by using one of the following interfaces:
v REDISTRIBUTE DATABASE PARTITION GROUP command
v ADMIN_CMD built-in procedure
v STEPWISE REDISTRIBUTE_DBPG built-in procedure
v sqludrdt API

Data redistribution within a partitioned database is done for one of the following
reasons:
v To rebalance data whenever a new database partition is added to the database

environment or an existing database partition is removed.
v To introduce user-specific data distribution across partitions.
v To secure sensitive data by isolating it within a particular partition.

Data redistribution is performed by connecting to a database at the catalog
database partition and beginning a data redistribution operation for a specific
partition group by using one of the supported interfaces. Data redistribution relies
on the existence of distribution key definitions for the tables within the partition
group. The distribution key value for a row of data within the table is used to
determine on which partition the row of data will be stored. A distribution key is
generated automatically when a table is created in a multi-partition database
partition group. A distribution key can also be explicitly defined by using the
CREATE TABLE or ALTER TABLE statements. By default during data
redistribution, for each table within a specified database partition group, table data
is divided and redistributed evenly among the database partitions. Other
distributions, such as a skewed distribution, can be achieved by specifying an
input distribution map which defines how the data is to be distributed.
Distribution maps can be generated during a data redistribution operation for
future use or can be created manually.

Comparison of logged, recoverable redistribution and minimally
logged, not roll-forward recoverable redistribution

When performing data redistribution by using either the REDISTRIBUTE DATABASE
PARTITION GROUP command or the ADMIN_CMD built-in procedure, you can
choose between two methods of data redistribution: logged, recoverable
redistribution and minimally logged, not roll-forward recoverable redistribution.
The latter method is specified by using the NOT ROLLFORWARD RECOVERABLE
command parameter.

Data redistribution in capacity growth scenarios, during load balancing, or during
performance tuning can require precious maintenance window time, a considerable

© Copyright IBM Corp. 2012 351

amount of planning time, as well as log space and extra container space that can
be expensive. Your choice of redistribution methods depends on whether you
prioritize recoverability or speed:
v When the logged, recoverable redistribution method is used, extensive logging

of all row movement is performed such that the database can be recovered in
the event of any interruptions, errors, or other business need.

v The not roll-forward recoverable redistribution method offers better performance
because data is moved in bulk and log records are no longer required for insert
and delete operations.

The latter method is particularly beneficial if, in the past, large active log space
and storage requirements forced you to break a single data redistribution operation
into multiple smaller redistribution tasks, which might have resulted in even more
time required to complete the end-to-end data redistribution operation.

The not roll-forward recoverable redistribution method is the best practice in most
situations because the data redistribution takes less time, is less error prone, and
consumes fewer system resources. As a result, the total cost of performing data
redistribution is reduced, which means frees up time and resources for other
business operations.

Minimally logged, not roll-forward recoverable redistribution

When the REDISTRIBUTE DATABASE PARTITION GROUP command is issued and the NOT
ROLLFORWARD RECOVERABLE parameter is specified, a minimal logging strategy is
used that minimizes the writing of log records for each moved row. This type of
logging is important for the usability of the redistribute operation since an
approach that fully logs all data movement could, for large systems, require an
impractical amount of active and permanent log space and would generally have
poorer performance characteristics.

There are also features and optional parameters that are only available when you
choose the not roll-forward recoverable redistribution method. For example, by
default this method of redistribution quiesces the database and performs a
precheck to ensure that prerequisites are met. You can also optionally specify to
rebuild indexes and collect table statistics as part of the redistribution operation.
The combination and automation of these otherwise manual tasks makes them less
error prone, faster, and more efficient, while providing you with more control over
the operations.

The not roll-forward recoverable redistribution method automatically reorganizes
the tables, which can free up disk space. This table reorganization comes at no
additional performance cost to the redistribute operation. For tables with clustering
indexes, the reorganization does not attempt to maintain clustering. If perfect
clustering is desired, it will be necessary to perform a REORG TABLE command on
tables with a clustering index after data redistribution completes. For
multi-dimensional-clustered (MDC) tables, the reorganization maintains the
clustering of the table and frees unused blocks for reuse; however the total size of
the table after redistribution appears unchanged.

Note: It is critical that you back up each affected table space or the entire database
when the redistribute operation is complete because rolling forward through this
type of redistribute operation results in all tables that were redistributed being
marked invalid. Such tables can only be dropped, which means there is no way to
recover the data in these tables. This is why, for recoverable databases, the

352 Partitioning and Clustering Guide

REDISTRIBUTE DATABASE PARTITION GROUP utility when issued with the NOT
ROLLFORWARD RECOVERABLE option puts all table spaces it touches into the BACKUP
PENDING state. This state forces you to back up all redistributed table spaces at
the end of a successful redistribute operation. With a backup taken after the
redistribution operation, you should not have a need to roll-forward through the
redistribute operation itself.

There is one important consequence of the lack of roll-forward recoverability: If
you choose to allow updates to be made against tables in the database (even tables
outside the database partition group being redistributed) while the redistribute
operation is running, including the period at the end of redistribute where the
table spaces touched by redistribute are being backed up, such updates can be lost
in the event of a serious failure, for example, a database container is destroyed.
The reason that such updates can be lost is that the redistribute operation is not
roll-forward recoverable. If it is necessary to restore the database from a backup
taken before the redistribution operation, then it will not be possible to
roll-forward through the logs in order to replay the updates that were made
during the redistribution operation without also rolling forward through the
redistribution which, as was described above, leaves the redistributed tables in the
UNAVAILABLE state. Thus, the only thing that can be done in this situation is to
restore the database from the backup taken before the redistribution without
rolling forward. Then the redistribute operation can be performed again.
Unfortunately, all the updates that occurred during the original redistribute
operation are lost.

The importance of this point cannot be overemphasized. In order to be certain that
there will be no lost updates during a redistribution operation, one of the
following must be true:
v You must avoid making updates during the operation of the REDISTRIBUTE

DATABASE PARTITION GROUP command, including the period after the command
finishes where the affected table spaces are being backed up.

v The redistribution operation is performed with the QUIESCE DATABASE command
parameter set to YES. You must still ensure that any applications or users that are
allowed to access the quiesced database are not making updates.

v Updates that are applied during the redistribute operation come from a
repeatable source, meaning that they can be applied again at any time. For
example, if the source of updates is data that is stored in a file and the updates
are applied during batch processing, then clearly even in the event of a failure
requiring a database restore, the updates would not be lost since they could
simply be applied again at any time.

With respect to allowing updates to the database during the redistribution
operation, you must decide whether such updates are appropriate or not based on
whether the updates can be repeated after a database restore, if necessary.

Note: Not every failure during operation of the REDISTRIBUTE DATABASE PARTITION
GROUP command results in this problem. In fact, most do not. The REDISTRIBUTE
DATABASE PARTITION GROUP command is fully restartable, meaning that if the utility
fails in the middle of its work, it can be easily continued or aborted with the
CONTINUE or ABORT options. The failures mentioned above are failures that require
the user to restore from the backup taken before the redistribute operation.

Chapter 26. Data redistribution 353

Logged, recoverable redistribution

The original and default version of the REDISTRIBUTE DATABASE PARTITION GROUP
command, this method redistributes data by using standard SQL inserts and
deletes. Extensive logging of all row movement is performed such that the
database is recoverable by restoring it using the RESTORE DATABASE command then
rolling forward through all changes using the ROLLFORWARD DATABASE command.

After the data redistribution, the source table contains empty spaces because rows
were deleted and sent to new database partitions. If you want to free the empty
spaces, you must reorganize the tables. To reorganize the tables, you must use a
separate operation, after the redistribution is complete. To improve performance of
this method, drop the indexes and re-create them after the redistribution is
complete.

Prerequisites for data redistribution
Before data redistribution can be performed successfully for a set of tables within a
database partition group, certain prerequisites must be met.

The following is a list of mandatory prerequisites:
v Authorization to perform data redistribution from the supported data

redistribution interface of choice.
v A significant amount of time during a period of low system activity in which to

perform the redistribution operation.
v All tables containing data to be redistributed as part of a data redistribution

operation must be in a NORMAL state. For example, tables cannot be in LOAD
PENDING state or other inaccessible load table states. To check the states of
tables, establish a connection to each partition in the database partition group
and issue the LOAD QUERY command. The output of this command contains
information about the state of the table. The documentation of the LOAD QUERY
command explains the meaning of each of the table states and how to move
tables from one state to another.

v All tables within the database partition being redistributed must have been
defined with a distribution key. If a new database partition is added to a
single-partition system, data redistribution cannot be performed until all of the
tables within the partitions have a distribution key. For tables that were created
using the CREATE TABLE statement and have definitions that do not contain a
distribution key, you must alter the table by using the ALTER TABLE statement
to add a distribution key before redistributing the data.

v Replicated materialized query tables contained in a database partition group
must be dropped before you redistribute the data. Store a copy of the
materialized query table definitions so that they can be recreated after data
redistribution completes.

v If a non-uniform redistribution is desired a distribution map must be created as
a target distribution map to be used a parameter to the redistribute interface.

v A backup of the database must be created by using the BACKUP DATABASE
command. This backup is not a mandatory prerequisite however it is strongly
recommended that it be done.

v A connection must be established to the database from the catalog database
partition.

v Adequate space must be available to rebuild all indexes either during or after
the data redistribution. The INDEXING MODE command parameter affects when the
indexes are rebuilt.

354 Partitioning and Clustering Guide

v When the NOT ROLLFORWARD RECOVERABLE command parameter is specified,
adequate space should be available for writing status information to control files
used by IBM Service for problem determination. The control files are generated
in the following paths and should be manually deleted when the data
redistribution operation is complete:
– On Linux and UNIX operating systems: diagpath/redist/db_name/

db_partitiongroup_name/timestamp/

– On Windows operating systems: diagpath\redist\db_name\
db_partitiongroup_name\timestamp\

You can calculate the space requirements in bytes for the control files by using
the following formula:
(number of pages for all tables in the database partition group) * 64 bytes
+ number of LOB values in the database partition group) * 600 bytes

To estimate number of LOB values in the database partition group, add the number
of LOB columns in your tables and multiply it by the number of rows in the
largest table.

v When the NOT ROLLFORWARD RECOVERABLE command parameter is not specified,
adequate log file space must be available to contain the log entries associated
with the INSERT and DELETE operations performed during data redistribution
otherwise data redistribution will be interrupted or fail.

Restrictions on data redistribution
Restrictions on data redistribution are important to note before proceeding with
data redistribution or when troubleshooting problems related to data
redistribution.

The following restrictions apply to data redistribution:
v Data redistribution on partitions where tables do not have partitioning key

definitions is restricted.
v When data redistribution is in progress:

– Starting another redistribution operation on the same database partition
group is restricted.

– Dropping the database partition group is restricted.
– Altering the database partition group is restricted.
– Executing an ALTER TABLE statement on any table in the database partition

group is restricted.
– Creating new indexes in the table undergoing data redistribution is restricted.
– Dropping indexes defined on the table undergoing data redistribution is

restricted.
– Querying data in the table undergoing data redistribution is restricted.
– Updating the table undergoing data redistribution is restricted.

v Updating tables in a database undergoing a data redistribution that was started
using the REDISTRIBUTE DATABASE PARTITION GROUP command where the NOT
ROLLFORWARD RECOVERABLE command parameter was specified is restricted.
Although the updates can be made, if data redistribution is interrupted the
changes made to the data might be lost and so this practice is strongly
discouraged.

v When the REDISTRIBUTE DATABASE PARTITION GROUP command is issued and the
NOT ROLLFORWARD RECOVERABLE command parameter is specified:

Chapter 26. Data redistribution 355

– Data distribution changes that occur during the redistribution are not
roll-forward recoverable.

– If the database is recoverable, the table space is put into the BACKUP
PENDING state after accessing the first table within the table space. To
remove the table from this state, you must take a backup of the table space
changes when the redistribution operation completes.

– During data redistribution, the data in the tables in the database partition
group being redistributed cannot be updated - the data is read-only. Tables
that are actively being redistributed are inaccessible.

v For typed (hierarchy) tables, if the REDISTRIBUTE DATABASE PARTITION GROUP
command is used and the TABLE parameter is specified with the value ONLY, then
the table name is restricted to being the name of the root table only. Sub-table
names cannot be specified.

v Data redistribution is supported for the movement of data between database
partitions. For partitioned tables, however, movement of data between ranges of
a data partitioned table is restricted unless both of the following are true:
– The partitioned table has an access mode of FULL ACCESS in the

SYSTABLES.ACCESS_MODE catalog table.
– The partitioned table does not have any partitions currently being attached or

detached.
v For replicated materialized query tables, if the data in a database partition group

contains replicated materialized query tables, you must drop these tables before
you redistribute the data. After data is redistributed, you can recreate the
materialized query tables.

v For database partitions that contain multi-dimensional-clustered tables (MDCs)
use of the REDISTRIBUTE DATABASE PARTITION GROUP command is restricted and
will not proceed successfully if there are any multi-dimensional-clustered tables
in the database partition group that contain rolled out blocks that are pending
cleanup. These MDC tables must be cleaned up before data redistribution can be
resumed or restarted.

v Dropping tables that are currently marked in the DB2 catalog views as being in
the state "Redistribute in Progress" is restricted. To drop a table in this state, first
run the REDISTRIBUTE DATABASE PARTITION GROUP command with the ABORT or
CONTINUE parameters and an appropriate table list so that redistribution of the
table is either completed or aborted.

Determining if data redistribution is needed
Determining the current data distribution for a database partition group or table
can be helpful in determining if data redistribution is required. Details about the
current data distribution can also be used to create a custom distribution map that
specifies how to distribute data.

About this task

If a new database partition is added to a database partition group, or an existing
database partition is dropped from a database partition group, perform data
redistribution to balance data among all the database partitions.

If no database partitions have been added or dropped from a database partition
group, then data redistribution is usually only indicated when there is an unequal
distribution of data among the database partitions of the database partition group.
Note that in some cases an unequal distribution of data can be desirable. For
example, if some database partitions reside on a powerful machine, then it might

356 Partitioning and Clustering Guide

be beneficial for those database partitions to contain larger volumes of data than
other partitions.

Procedure

To determine if data redistribution is needed:
1. Get information about the current distribution of data among database

partitions in the database partition group.
Run the following query on the largest table (alternatively, a representative
table) in the database partition group:
SELECT DBPARTITIONNUM(column_name), COUNT(*) FROM table_name

GROUP BY DBPARTITIONNUM(column_name)
ORDER BY DBPARTITIONNUM(column_name) DESC

Here, column_name is the name of the distribution key for table table_name.
The output of this query shows how many records from table_name reside on
each database partition. If the distribution of data among database partitions is
not as desired, then proceed to the next step.

2. Get information about the distribution of data across hash partitions.
Run the following query with the same column_name and table_name that were
used in the previous step:
SELECT HASHEDVALUE(column_name), COUNT(*) FROM table_name

GROUP BY HASHEDVALUE(column_name)
ORDER BY HASHEDVALUE(column_name) DESC

The output of this query can easily be used to construct the distribution file
needed when the USING DISTFILE parameter in the REDISTRIBUTE DATABASE
PARTITION GROUP command is specified. Refer to the REDISTRIBUTE DATABASE
PARTITION GROUP command reference for a description of the format of the
distribution file.

3. Optional: If the data requires redistribution, you can plan to do this operation
during a system maintenance opportunity.
When the USING DISTFILE parameter is specified, the REDISTRIBUTE DATABASE
PARTITION GROUP command uses the information in the file to generate a new
partition map for the database partition group. This operation results in a
uniform distribution of data among database partitions.
If a uniform distribution is not desired, you can construct your own target
partition map for the redistribution operation. The target partition map can be
specified by using the USING TARGETMAP parameter in the REDISTRIBUTE
DATABASE PARTITION GROUP command.

Results

After doing this investigation, you will know if your data is uniformly distributed
or not or if data redistribution is required.

Redistributing data across database partitions by using the
REDISTRIBUTE DATABASE PARTITION GROUP command

The REDISTRIBUTE DATABASE PARTITION GROUP command is the recommended
interface for performing data redistribution.

Procedure

To redistribute data across database partitions in a database partition group:

Chapter 26. Data redistribution 357

1. Optional: Perform a backup of the database. See the BACKUP DATABASE
command.
It is strongly recommended that you create a backup copy of the database
before you perform a data redistribution that is not roll-forward recoverable.

2. Connect to the database partition that contains the system catalog tables. See
the CONNECT statement.

3. Issue the REDISTRIBUTE DATABASE PARTITION GROUP command.

Note: In previous versions of the DB2 database product, this command used
the NODEGROUP keyword instead of the DATABASE PARTITION GROUP keywords.
Specify the following arguments:

database partition group name
You must specify the database partition group within which data is to
be redistributed.

UNIFORM
OPTIONAL: Specifies that data is to be evenly distributed. UNIFORM is
the default when no distribution-type is specified, so if no other
distribution type has been specified, it is valid to omit this option.

USING DISTFILE distfile-name
OPTIONAL: Specifies that a customized distribution is desired and the
file path name of a distribution file that contains data that defines the
desired data skew. The contents of this file is used to generate a target
distribution map.

USING TARGETMAP targetmap-name
OPTIONAL: Specifies that a target data redistribution map is to be
used and the name of file that contains the target redistribution map.

For details, see the REDISTRIBUTE DATABASE PARTITION GROUP command-line
utility information.

4. Allow the command to run uninterrupted. When the command completes,
perform the following actions if the data redistribution proceeded successfully:
v Take a backup of all table spaces in the database partition group that are in

the BACKUP PENDING state. Alternatively, a full database backup can be
performed.

Note: Table spaces are only put into the BACKUP PENDING state if the
database is recoverable and the NOT ROLLFORWARD RECOVERABLE command
parameter is used in the REDISTRIBUTE DATABASE PARTITION GROUP command.

v Recreate any replicated materialized query tables dropped before
redistribution.

v Execute the RUNSTATS command if the following conditions are met:
– The STATISTICS NONE command parameter was specified in the

REDISTRIBUTE DATABASE PARTITION GROUP command, or the NOT
ROLLFORWARD RECOVERABLE command parameter was omitted. Both of these
conditions mean that the statistics were not collected during data
redistribution.

– There are tables in the database partition group possessing a statistics
profile.

The RUNSTATS command collects data distribution statistics for the SQL
compiler and optimizer to use when choosing data access plans for queries.

358 Partitioning and Clustering Guide

v If the NOT ROLLFORWARD RECOVERABLE command parameter was specified,
delete the control files located in the following paths :
– On Linux and UNIX operating systems: diagpath/redist/db_name/

db_partitiongroup_name/timestamp/

– On Windows operating systems: diagpath\redist\db_name\
db_partitiongroup_name\timestamp\

Results

Data redistribution is complete and information about the data redistribution
process is available in the redistribution log file. Information about the distribution
map that was used can be found in the DB2 explain tables.

Redistributing data in a database partition group
To create an effective redistribution plan for your database partition group and
redistribute your data, issue the REDISTRIBUTE DATABASE PARTITION GROUP
command or call the sqludrdt API.

Before you begin

To work with database partition groups, you must have SYSADM, SYSCTRL, or
DBADM authority.

Procedure

To redistribute data in a database partition group:
v Issue a REDISTRIBUTE DATABASE PARTITION GROUP command in the command line

processor (CLP).
v Issue the REDISTRIBUTE DATABASE PARTITION GROUP command by using the

ADMIN_CMD procedure.
v Call the sqludrdt API

Log space requirements for data redistribution
To successfully perform a data redistribution operation, adequate log file space
must be allocated to ensure that data redistribution is not interrupted. Log space
requirements are less of a concern when you specify the NOT ROLLFORWARD
RECOVERABLE command parameter, since there is minimal logging during that type
of data redistribution.

The quantity of log file space required depends on multiple factors including
which options of the REDISTRIBUTE DATABASE PARTITION GROUP command are used.

When the redistribution is performed from any supported interface where the data
redistribution is roll-forward recoverable:
v The log must be large enough to accommodate the INSERT and DELETE

operations at each database partition where data is being redistributed. The
heaviest logging requirements will be either on the database partition that will
lose the most data, or on the database partition that will gain the most data.

v If you are moving to a larger number of database partitions, use the ratio of
current database partitions to the new number of database partitions to estimate
the number of INSERT and DELETE operations. For example, consider
redistributing data that is uniformly distributed before redistribution. If you are

Chapter 26. Data redistribution 359

moving from four to five database partitions, approximately twenty percent of
the four original database partitions will move to the new database partition.
This means that twenty percent of the DELETE operations will occur on each of
the four original database partitions, and all of the INSERT operations will occur
on the new database partition.

v Consider a nonuniform distribution of the data, such as the case in which the
distribution key contains many NULL values. In this case, all rows that contain a
NULL value in the distribution key move from one database partition under the
old distribution scheme and to a different database partition under the new
distribution scheme. As a result, the amount of log space required on those two
database partitions increases, perhaps well beyond the amount calculated by
assuming uniform distribution.

v The redistribution of each table is a single transaction. For this reason, when you
estimate log space, you multiply the percentage of change, such as twenty
percent, by the size of the largest table. Consider, however, that the largest table
might be uniformly distributed but the second largest table, for example, might
have one or more inflated database partitions. In such a case, consider using the
non-uniformly distributed table instead of the largest one.

Note: After you estimate the maximum amount of data to be inserted and deleted
at a database partition, double that estimate to determine the peak size of the
active log. If this estimate is greater than the active log limit of 1024 GB, then the
data redistribution must be done in steps. For example, use the
STEPWISE_REDISTRIBUTE_DBPG procedure with a number of steps proportional
to how much the estimate is greater than active log limit. You might also set the
logsecond database configuration parameter to -1 to avoid most log space
problems.

When the redistribution is performed from any supported interface where the data
redistribution is not roll-forward recoverable:
v Log records are not created when rows are moved as part of data redistribution.

This behavior significantly reduces log file space requirements; however, when
this option is used with database roll-forward recovery, the redistribute
operation log record cannot be rolled forward, and any tables processed as part
of the roll-forward operation remain in UNAVAILABLE state.

v If the database partition group undergoing data redistribution contains tables
with long-field (LF) or large-object (LOB) data in the tables, the number of log
records generated during data redistribution will be higher, because a log record
is created for each row of data. In this case, expect the log space requirement per
database partition to be roughly one third of the amount of data moving on that
partition (that is, data being sent, received, or both).

Redistribution event log files
During data redistribution event logging is performed. Event information is logged
to event log files which can later be used to perform error recovery.

When data redistribution is performed, information about each table that is
processed is logged in a pair of event log files. The event log files are named
database-name.database-partition-group-name.timestamp.log and
database-name.database-partition-group-name.timestamp.

The log files are located as follows:
v The homeinst/sqllib/redist directory on Linux and UNIX operating systems

360 Partitioning and Clustering Guide

v The db2instprof\instance\redist directory on Windows operating systems,
where db2instprof is the value of the DB2INSTPROF registry variable

The following is an example of the event log file names:
SAMPLE.IBMDEFAULTGROUP.2012012620240204
SAMPLE.IBMDEFAULTGROUP.2012012620240204.log

These files are for a redistribution operation on a database named SAMPLE with a
database partition group named IBMDEFAULTGROUP. The files were created on
January 26, 2012 at 8:24 PM local time.

The three main uses of the event log files are as follows:
v To provide general information about the redistribute operation, such as the old

and new distribution maps.
v Provide users with information that helps them determine which tables have

been redistributed so far by the utility.
v To provide information about each table that has been redistributed, including

the indexing mode being used for the table, an indication of whether the table
was successfully redistributed or not, and the starting and ending times for the
redistribution operation on the table.

Redistributing database partition groups using the
STEPWISE_REDISTRIBUTE_DBPG procedure

Data redistribution can be performed using built-in procedures.

Procedure

To redistribute a database partition group using the
STEPWISE_REDISTRIBUTE_DBPG procedure:
1. Analyze the database partition group regarding log space availability and data

skew using the ANALYZE_LOG_SPACE procedure.
The ANALYZE_LOG_SPACE procedure returns a result set (an open cursor) of
the log space analysis results, containing fields for each of the database
partitions of the given database partition group.

2. Create a data distribution file for a given table using the GENERATE_DISTFILE
procedure.
The GENERATE_DISTFILE procedure generates a data distribution file for the
given table and saves it using the provided file name.

3. Create and report the content of a stepwise redistribution plan for the database
partition group using the STEPWISE_REDISTRIBUTE_DBPG procedure.

4. Create a data distribution file for a given table using the
GET_SWRD_SETTINGS and SET_SWRD_SETTINGS procedures.
The GET_SWRD_SETTINGS procedure reads the existing redistribute registry
records for the given database partition group.
The SET_SWRD_SETTINGS procedure creates or makes changes to the
redistribute registry. If the registry does not exist, it creates it and add records
into it. If the registry already exists, it uses overwriteSpec to identify which of
the field values need to be overwritten. The overwriteSpec field enables this
function to take NULL inputs for the fields that do not need to be updated.

5. Redistribute the database partition group according to the plan using the
STEPWISE_REDISTRIBUTE_DBPG procedure.

Chapter 26. Data redistribution 361

The STEPWISE_REDISTRIBUTE_DBPG procedure redistributes part of the
database partition group according to the input and the setting file.

Example

The following is an example of a CLP script on AIX:

Set the database you wish to connect to

dbName="SAMPLE"

Set the target database partition group name

dbpgName="IBMDEFAULTGROUP"

Specify the table name and schema

tbSchema="$USER"
tbName="STAFF"

Specify the name of the data distribution file

distFile="$HOME/sqllib/function/$dbName.IBMDEFAULTGROUP_swrdData.dst"

export DB2INSTANCE=$USER
export DB2COMM=TCPIP

Invoke call statements in clp

db2start
db2 -v "connect to $dbName"

Analysing the effect of adding a database partition without applying the changes - a ’what if’
hypothetical analysis
#
- In the following case, the hypothesis is adding database partition 40, 50 and 60 to the
database partition group, and for database partitions 10,20,30,40,50,60, using a respective
target ratio of 1:2:1:2:1:2.
#
NOTE: in this example only partitions 10, 20 and 30 actually exist in the database
partition group

db2 -v "call sysproc.analyze_log_space(’$dbpgName’, ’$tbSchema’, ’$tbName’, 2, ’ ’,
’A’, ’40,50,60’, ’10,20,30,40,50,60’, ’1,2,1,2,1,2’)"

Analysing the effect of dropping a database partition without applying the changes
#
- In the following case, the hypothesis is dropping database partition 30 from the database
partition group, and redistributing the data in database partitions 10 and 20 using a
respective target ratio of 1 : 1
#
NOTE: In this example all database partitions 10, 20 and 30 should exist in the database
partition group

db2 -v "call sysproc.analyze_log_space(’$dbpgName’, ’$tbSchema’, ’$tbName’, 2, ’ ’,
’D’, ’30’, ’10,20’,’1,1’)"

Generate a data distribution file to be used by the redistribute process

362 Partitioning and Clustering Guide

db2 -v "call sysproc.generate_distfile(’$tbSchema’, ’$tbName’, ’$distFile’)"

Write a step wise redistribution plan into a registry
#
Setting the 10th parameter to 1, may cause a currently running step wise redistribute
stored procedure to complete the current step and stop, until this parameter is reset
to 0, and the redistribute stored procedure is called again.

db2 -v "call sysproc.set_swrd_settings(’$dbpgName’, 255, 0, ’ ’, ’$distFile’, 1000,
12, 2, 1, 0, ’10,20,30’, ’50,50,50’)"

Report the content of the step wise redistribution plan for the given database
partition group.

db2 -v "call sysproc.get_swrd_settings(’$dbpgName’, 255, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)"

Redistribute the database partition group "dbpgName" according to the redistribution
plan stored in the registry by set_swrd_settings. It starting with step 3 and
redistributes the data until 2 steps in the redistribution plan are completed.

db2 -v "call sysproc.stepwise_redistribute_dbpg(’$dbpgName’, 3, 2)"

Chapter 26. Data redistribution 363

364 Partitioning and Clustering Guide

Chapter 27. Configuring self-tuning memory

Self-tuning memory in partitioned database environments
When using the self-tuning memory feature in partitioned database environments,
there are a few factors that determine whether the feature will tune the system
appropriately.

When self-tuning memory is enabled for partitioned databases, a single database
partition is designated as the tuning partition, and all memory tuning decisions are
based on the memory and workload characteristics of that database partition. After
tuning decisions on that partition are made, the memory adjustments are
distributed to the other database partitions to ensure that all database partitions
maintain similar configurations.

The single tuning partition model assumes that the feature will be used only when
all of the database partitions have similar memory requirements. Use the following
guidelines when determining whether to enable self-tuning memory on your
partitioned database.

Cases where self-tuning memory for partitioned databases is
recommended

When all database partitions have similar memory requirements and are running
on similar hardware, self-tuning memory can be enabled without any
modifications. These types of environments share the following characteristics:
v All database partitions are on identical hardware, and there is an even

distribution of multiple logical database partitions to multiple physical database
partitions

v There is a perfect or near-perfect distribution of data
v Workloads are distributed evenly across database partitions, meaning that no

database partition has higher memory requirements for one or more heaps than
any of the others

In such an environment, if all database partitions are configured equally,
self-tuning memory will properly configure the system.

Cases where self-tuning memory for partitioned databases is
recommended with qualification

In cases where most of the database partitions in an environment have similar
memory requirements and are running on similar hardware, it is possible to use
self-tuning memory as long as some care is taken with the initial configuration.
These systems might have one set of database partitions for data, and a much
smaller set of coordinator partitions and catalog partitions. In such environments,
it can be beneficial to configure the coordinator partitions and catalog partitions
differently than the database partitions that contain data.

Self-tuning memory should be enabled on all of the database partitions that
contain data, and one of these database partitions should be designated as the
tuning partition. And because the coordinator and catalog partitions might be
configured differently, self-tuning memory should be disabled on those partitions.
To disable self-tuning memory on the coordinator and catalog partitions, set the

© Copyright IBM Corp. 2012 365

self_tuning_mem database configuration parameter on these partitions to OFF.

Cases where self-tuning memory for partitioned databases is not
recommended

If the memory requirements of each database partition are different, or if different
database partitions are running on significantly different hardware, it is good
practice to disable the self-tuning memory feature. You can disable the feature by
setting the self_tuning_mem database configuration parameter to OFF on all
partitions.

Comparing the memory requirements of different database
partitions

The best way to determine whether the memory requirements of different database
partitions are sufficiently similar is to consult the snapshot monitor. If the
following snapshot elements are similar on all database partitions (differing by no
more than 20%), the memory requirements of the database partitions can be
considered sufficiently similar.

Collect the following data by issuing the command: get snapshot for database on
<dbname>

Locks held currently = 0
Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 4968
Lock escalations = 0
Exclusive lock escalations = 0

Total Shared Sort heap allocated = 0
Shared Sort heap high water mark = 0
Post threshold sorts (shared memory) = 0
Sort overflows = 0

Package cache lookups = 13
Package cache inserts = 1
Package cache overflows = 0
Package cache high water mark (Bytes) = 655360

Number of hash joins = 0
Number of hash loops = 0
Number of hash join overflows = 0
Number of small hash join overflows = 0
Post threshold hash joins (shared memory) = 0

Number of OLAP functions = 0
Number of OLAP function overflows = 0
Active OLAP functions = 0

Collect the following data by issuing the command: get snapshot for bufferpools
on <dbname>

Buffer pool data logical reads = 0
Buffer pool data physical reads = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Total buffer pool read time (milliseconds) = 0
Total buffer pool write time (milliseconds)= 0

366 Partitioning and Clustering Guide

Using self-tuning memory in partitioned database environments
When self-tuning memory is enabled in partitioned database environments, there is
a single database partition (known as the tuning partition) that monitors the
memory configuration and propagates any configuration changes to all other
database partitions to maintain a consistent configuration across all the
participating database partitions.

The tuning partition is selected on the basis of several characteristics, such as the
number of database partitions in the partition group and the number of buffer
pools.
v To determine which database partition is currently specified as the tuning

partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD(’get stmm tuning dbpartitionnum’)

v To change the tuning partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD(’update stmm tuning dbpartitionnum <partitionnum>’)

The tuning partition is updated asynchronously or at the next database startup.
To have the memory tuner automatically select the tuning partition, enter -1 for
the partitionnum value.

Starting the memory tuner in partitioned database environments

In a partitioned database environment, the memory tuner will start only if the
database is activated by an explicit ACTIVATE DATABASE command, because
self-tuning memory requires that all partitions be active.

Disabling self-tuning memory for a specific database partition
v To disable self-tuning memory for a subset of database partitions, set the

self_tuning_mem database configuration parameter to OFF for those database
partitions.

v To disable self-tuning memory for a subset of the memory consumers that are
controlled by configuration parameters on a specific database partition, set the
value of the relevant configuration parameter or the buffer pool size to
MANUAL or to some specific value on that database partition. It is
recommended that self-tuning memory configuration parameter values be
consistent across all running partitions.

v To disable self-tuning memory for a particular buffer pool on a specific database
partition, issue the ALTER BUFFERPOOL statement, specifying a size value and
the partition on which self-tuning memory is to be disabled.
An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a
particular database partition will create an exception entry (or update an existing
entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog
view. If an exception entry for a buffer pool exists, that buffer pool will not
participate in self-tuning operations when the default buffer pool size is set to
AUTOMATIC. To remove an exception entry so that a buffer pool can be
enabled for self tuning:
1. Disable self tuning for this buffer pool by issuing an ALTER BUFFERPOOL

statement, setting the buffer pool size to a specific value.
2. Issue another ALTER BUFFERPOOL statement to set the size of the buffer

pool on this database partition to the default.
3. Enable self tuning for this buffer pool by issuing another ALTER

BUFFERPOOL statement, setting the buffer pool size to AUTOMATIC.

Chapter 27. Configuring self-tuning memory 367

Enabling self-tuning memory in nonuniform environments

Ideally, data should be distributed evenly across all database partitions, and the
workload that is run on each partition should have similar memory requirements.
If the data distribution is skewed, so that one or more of your database partitions
contain significantly more or less data than other database partitions, these
anomalous database partitions should not be enabled for self tuning. The same is
true if the memory requirements are skewed across the database partitions, which
can happen, for example, if resource-intensive sorts are only performed on one
partition, or if some database partitions are associated with different hardware and
more available memory than others. Self tuning memory can still be enabled on
some database partitions in this type of environment. To take advantage of
self-tuning memory in environments with skew, identify a set of database
partitions that have similar data and memory requirements and enable them for
self tuning. Memory in the remaining partitions should be configured manually.

368 Partitioning and Clustering Guide

Chapter 28. DB2 configuration parameters and variables

Configuring databases across multiple partitions
The database manager provides a single view of all database configuration
elements across multiple partitions. This means that you can update or reset a
database configuration across all database partitions without invoking the db2_all
command against each database partition.

You can update a database configuration across partitions by issuing only one SQL
statement or only one administration command from any partition on which the
database resides. By default, the method of updating or resetting a database
configuration is on all database partitions.

For backward compatibility of command scripts and applications, you have three
options:
v Use the db2set command to set the DB2_UPDDBCFG_SINGLE_DBPARTITION registry

variable to TRUE, as follows:
DB2_UPDDBCFG_SINGLE_DBPARTITION=TRUE

Note: Setting the registry variable does not apply to UPDATE DATABASE
CONFIGURATION or RESET DATABASE CONFIGURATION requests that you make using
the ADMIN_CMD procedure.

v Use the DBPARTITIONNUM parameter with either the UPDATE DATABASE
CONFIGURATION or the RESET DATABASE CONFIGURATION command or with the
ADMIN_CMD procedure. For example, to update the database configurations on
all database partitions, call the ADMIN_CMD procedure as follows:

CALL SYSPROC.ADMIN_CMD
(’UPDATE DB CFG USING sortheap 1000’)

To update a single database partition, call the ADMIN_CMD procedure as
follows:

CALL SYSPROC.ADMIN_CMD
(’UPDATE DB CFG DBPARTITIONNUM 10 USING sortheap 1000’)

v Use the DBPARTITIONNUM parameter with the db2CfgSet API. The flags in the
db2Cfg structure indicate whether the value for the database configuration is to
be applied to a single database partition. If you set a flag, you must also provide
the DBPARTITIONNUM value, for example:

#define db2CfgSingleDbpartition 256

If you do not set the db2CfgSingleDbpartition value, the value for the database
configuration applies to all database partitions unless you set the
DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable to TRUE or you set
versionNumber to anything that is less than the version number for Version 9.5,
for the db2CfgSet API that sets the database manager or database configuration
parameters.

When upgrading your databases to Version 9.7, existing database configuration
parameters, as a general rule, retain their values after database upgrade. However,
new parameters are added using their default values and some existing parameters
are set to their new Version 9.7 default values. Refer to the "DB2 server behavior
changes" topic in Upgrading to DB2 Version 10.1 for details about the changes to

© Copyright IBM Corp. 2012 369

existing database configuration parameters. Any subsequent update or reset
database configuration requests for the upgraded databases will apply to all
database partitions by default.

For existing update or reset command scripts, the same rules mentioned previously
apply to all database partitions. You can modify your scripts to include the
DBPARTITIONNUM option of the UPDATE DATABASE CONFIGURATION or RESET DATABASE
CONFIGURATION command, or you can set the DB2_UPDDBCFG_SINGLE_DBPARTITION
registry variable.

For existing applications that call the db2CfgSet API, you must use the instructions
for Version 9.5 or later. If you want the pre-Version 9.5 behavior, you can set the
DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable or modify your applications to
call the API with the Version 9.5 or later version number, including the new
db2CfgSingleDbpartition flag and the new dbpartitionnum field to update or reset
database configurations for a specific database partition.

Note: If you find that database configuration values are inconsistent, you can
update or reset each database partition individually.

Partitioned database environment variables
DB2CHGPWD_EEE

v Operating system: DB2 ESE on AIX, Linux, and Windows
v Default=NULL, Values: YES or NO
v This variable specifies whether you allow other users to change

passwords on AIX or Windows ESE systems. You must ensure that the
passwords for all database partitions or nodes are maintained centrally
using either a Windows domain controller on Windows, or LDAP on
AIX. If not maintained centrally, passwords may not be consistent across
all database partitions or nodes. This could result in a password being
changed only at the database partition to which the user connects to
make the change.

DB2_FCM_SETTINGS

v Operating system: Linux
v Default=YES, Values:

– FCM_MAXIMIZE_SET_SIZE:[YES|TRUE|NO|FALSE]. The default value for
FCM_MAXIMIZE_SET_SIZE is YES.

– FCM_CFG_BASE_AS_FLOOR: [YES|TRUE|NO|FALSE]. The default value
for FCM_CFG_BASE_AS_FLOOR is NO.

v You can set the DB2_FCM_SETTINGS registry variable with the
FCM_MAXIMIZE_SET_SIZE token to preallocate a default 4 GB of space for
the fast communication manager (FCM) buffer. The token must have a
value of either YES or TRUE to enable this feature.
You can use the DB2_FCM_SETTINGS registry variable with the
FCM_CFG_BASE_AS_FLOOR option to set the base value as the floor for the
fcm_num_buffers and fcm_num_channels database manager configuration
parameters. When the FCM_CFG_BASE_AS_FLOOR option is set to YES or
TRUE, and these parameters are set to AUTOMATIC and have an initial or
starting value, DB2 will not tune them below this value.

DB2_FORCE_OFFLINE_ADD_PARTITION

v Operating system: All

370 Partitioning and Clustering Guide

v Default=FALSE, Values: FALSE or TRUE
v This variable allows you to specify that add database partition server

operations are to be performed offline. The default setting of FALSE
indicates that DB2 database partition servers can be added without
taking the database offline. However, if you want the operation to be
performed offline or if some limitation prevents you from adding
database partition servers when the database is online, set
DB2_FORCE_OFFLINE_ADD_PARTITION to TRUE. When this variable is set to
TRUE, new DB2 database partition servers are added according to the
Version 9.5 and earlier versions' behavior; that is, new database partition
servers are not visible to the instance until it has been shut down and
restarted.

DB2_NUM_FAILOVER_NODES

v Operating system: All
v Default=2, Values: 0 to the required number of database partitions
v Set DB2_NUM_FAILOVER_NODES to specify the number of additional

database partitions that might need to be started on a machine in the
event of failover.
In a DB2 database high availability solution, if a database server fails,
the database partitions on the failed machine can be restarted on another
machine. The fast communication manager (FCM) uses
DB2_NUM_FAILOVER_NODES to calculate how much memory to reserve on
each machine to facilitate this failover.
For example, consider the following configuration:
– Machine A has two database partitions: 1 and 2.
– Machine B has two database partitions: 3 and 4.
– DB2_NUM_FAILOVER_NODES is set to 2 on both A and B.

At START DBM, FCM will reserve enough memory on both A and B to
manage up to four database partitions so that if one machine fails, the
two database partitions on the failed machine can be restarted on the
other machine. If machine A fails, database partitions 1 and 2 can be
restarted on machine B. If machine B fails, database partitions 3 and 4
can be restarted on machine A.

DB2_PARTITIONEDLOAD_DEFAULT

v Operating system: All supported ESE platforms
v Default=YES, Values: YES or NO
v The DB2_PARTITIONEDLOAD_DEFAULT registry variable lets users change the

default behavior of the load utility in an ESE environment when no
ESE-specific load options are specified. The default value is YES, which
specifies that in an ESE environment if you do not specify ESE-specific
load options, loading is attempted on all database partitions on which
the target table is defined. When the value is NO, loading is attempted
only on the database partition to which the load utility is currently
connected.

Note: This variable is deprecated and may be removed in a later release.
The LOAD command has various options that can be used to achieve
the same behavior. You can achieve the same results as the NO setting for
this variable by specifying the following with the LOAD command:

Chapter 28. DB2 configuration parameters and variables 371

PARTITIONED DB CONFIG MODE LOAD_ONLY OUTPUT_DBPARTNUMS x, where x
is the partition number of the partition into which you want to load
data.

DB2PORTRANGE

v Operating system: Windows
v Values: nnnn:nnnn
v This value is set to the TCP/IP port range used by FCM so that any

additional database partitions created on another machine will also have
the same port range.

Partitioned database environment configuration parameters

Communications

conn_elapse - Connection elapse time
This parameter specifies the number of seconds within which a network
connection is to be established between DB2 members.

Configuration type
Database manager

Applies to
DB2 pureScale server (with more than one DB2 member)

Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
10 [0–100]

Unit of measure
Seconds

If the attempt to connect succeeds within the time specified by this parameter,
communications are established. If it fails, another attempt is made to establish
communications. If the connection is attempted the number of times specified by
the max_connretries parameter and always times out, an error is issued.

fcm_num_buffers - Number of FCM buffers
This parameter specifies the number of 4 KB buffers that are used for internal
communications (messages) both among and within database servers.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server or DB2 pureScale database server with local

and remote clients

Parameter type
Configurable Online

372 Partitioning and Clustering Guide

Propagation class
Immediate

Default [range]

32-bit platforms
Automatic [895 - 65300]

64-bit platforms
Automatic [895 - 524288]

v Database server with local and remote clients: 1024
v Database server with local clients: 895
v Partitioned database server or DB2 pureScale database server with local

and remote clients: 4096

Fast communication manager (FCM) buffers are used for both
inter-member and intra-member communications by default.

Important: The default value of the fcm_num_buffers parameter is subject
to change by the DB2 Configuration Advisor after initial database creation.

You can set both an initial value and the AUTOMATIC value for the fcm_num_buffers
configuration parameter. When you set the parameter to AUTOMATIC, FCM monitors
resource usage and can increase or decrease resources if they are not used within
30 minutes. The amount that resources are increased or decreased depends on the
operating system. On Linux operating systems, the number of buffers can be
increased only 25% above the starting value. If the database manager attempts to
start an instance and cannot allocate the specified number of buffers, it decreases
the number until it can start the instance.

If you want to set the fcm_num_buffers parameter to both a specific value and
AUTOMATIC and you do not want the system controller thread to adjust resources
below the specified value, set the FCM_CFG_BASE_AS_FLOOR option of the
DB2_FCM_SETTINGS registry variable to YES or TRUE. The DB2_FCM_SETTINGS registry
variable value is adjusted dynamically.

If you are using multiple logical nodes, one pool of fcm_num_buffers buffers is
shared by all the logical nodes on the same machine. You can determine the size of
the pool by multiplying the value of the fcm_num_buffers parameter by the
number of logical nodes on the physical machine. Examine the value that you are
using; consider how many FCM buffers are allocated on a machine or machines
with multiple logical nodes. If you have multiple logical nodes on the same
machine, you might have to increase the value of the fcm_num_buffers parameter.
The number of users on the system, the number of database partition servers on
the system, or the complexity of the applications can cause a system to run out of
message buffers.

fcm_num_channels - Number of FCM channels
This parameter specifies the number of FCM channels for each database partition.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server orDB2 pureScale database server with local

and remote clients

Chapter 28. DB2 configuration parameters and variables 373

v Satellite database server with local clients

Parameter type
Configurable online

Propagation class
Immediate

Default [range]

UNIX 32-bit platforms
Automatic, with a starting value of 256, 512 or 2048 [128 - 120000]

UNIX 64-bit platforms
Automatic, with a starting value of 256, 512 or 2048 [128 - 524288]

Windows 32-bit
Automatic, with a starting value 10000 [128 - 120000]

Windows 64-bit
Automatic, with a starting value of 256, 512 or 2048 [128 - 524288]

The default starting values for different types of servers are as follows:
v For database server with local and remote clients, the starting value is

512.
v For database server with local clients, the starting value is 256.
v For partitioned database environment servers with local and remote

clients, the starting value is 2048.

Fast communication manager (FCM) buffers are used for both
inter-member and intra-member communications by default. To enable
non-clustered database systems to use the FCM subsystem and the
fcm_num_channels parameter, you had to set the intra_parallel parameter
to YES

An FCM channel represents a logical communication end point between EDUs
running in the DB2 engine. Both control flows (request and reply) and data flows
(table queue data) rely on channels to transfer data between members.

When set to AUTOMATIC, FCM monitors channel usage, incrementally allocating and
releasing resources as requirements change.

max_connretries - Node connection retries
This parameter specifies the maximum number of times an attempt will be made
to establish a network connection between two DB2 members.

Configuration type
Database manager

Applies to
Partitioned database server with local and remote clients

DB2 pureScale server

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
5 [0–100]

374 Partitioning and Clustering Guide

If the attempt to establish communication between two DB2 members fails (for
example, the value specified by the conn_elapse parameter is reached),
max_connretries specifies the number of connection retries that can be made to a
DB2 member. If the value specified for this parameter is exceeded, an error is
returned.

max_time_diff - Maximum time difference between members
This parameter specifies the maximum time difference that is permitted between
members in a DB2 pureScale environment that are listed in the node configuration
file.

Configuration type
Database manager

Applies to
Members with local and remote clients

Parameter type
Configurable

Default [range]

In DB2 pureScale environments
1 [1 - 1 440]

Outside of DB2 pureScale environments
60 [1 - 1 440]

Unit of measure
Minutes

Each member has its own system clock. The time difference between two or more
member system clocks is checked periodically. If the time difference between the
system clocks is more than the amount specified by the max_time_diff parameter,
warnings are logged in the db2diag log files.

In a DB2 pureScale environment, to ensure that members do not drift out of sync
with each other, a Network Time Protocol (NTP) setup is required and periodically
verified on each member. If the NTP daemon is not detected, warnings are logged
in the db2diag log files.

The SQL1473N error message is returned in partitioned database environments
where the system clock is compared to the virtual time stamp (VTS) saved in the
SQLOGCTL.LFH log control file. If the time stamp in the .LFH log control file is less
than the system time, the time in the database log is set to the VTS until the
system clock matches the VTS.

DB2 database manager uses Coordinated Universal Time (UTC), so different time
zones are not a consideration when you set the max_time_diff parameter. UTC is
the same as Greenwich Mean Time.

start_stop_time - Start and stop timeout
This parameter specifies the time, in minutes, within which all database partition
servers must respond to a START DBM or a STOP DBM command. It is also used as the
timeout value during ADD DBPARTITIONNUM and DROP DBPARTITIONNUM operations.

Configuration type
Database manager

Applies to
Database server with local and remote clients

Chapter 28. DB2 configuration parameters and variables 375

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
10 [1 - 1 440]

Unit of measure
Minutes

Member or nodes that do not respond to db2start or db2stop commands within
the specified time will be killed and cleaned up automatically by db2start or
db2stop in a multi member/node instance. The diagnostic messages are logged
into the diagpath defined in the database manager configuration or at its default
value (for example, sqllib/db2dump/ $m on UNIX operating systems).

If a db2start or db2stop operation in a multi-partition database is not completed
within the value specified by the start_stop_time database manager configuration
parameter, the database partitions that have timed out will be killed and cleaned
up automatically. Environments with many database partitions with a low value
for start_stop_time might experience this behavior. To resolve this behavior,
increase the value of start_stop_time.

When adding a new database partition using one of the db2start, START DATABASE
MANAGER, or ADD DBPARTITIONNUM commands, the add database partition operation
must determine whether or not each database in the instance is enabled for
automatic storage. This is done by communicating with the catalog partition for
each database. If automatic storage is enabled, the storage path definitions are
retrieved as part of that communication. Likewise, if system temporary table
spaces are to be created with the database partitions, the operation might have to
communicate with another database partition server to retrieve the table space
definitions for the database partitions that reside on that server. These factors
should be considered when determining the value of the start_stop_time
parameter.

Parallel processing

intra_parallel - Enable intrapartition parallelism
This parameter specifies whether the database manager can use intrapartition
query parallelism.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
NO (0) [SYSTEM (-1), NO (0), YES (1)]

A value of -1 causes the parameter value to be set to YES or NO based on
the hardware on which the database manager is running.

376 Partitioning and Clustering Guide

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Note:

v Parallel index creation does not use this configuration parameter.
v If you change this parameter value, packages might be rebound to the database,

and some performance degradation might occur.
v The intra_parallel setting can be overridden in an application by a call to the

ADMIN_SET_INTRA_PARALLEL procedure. Both the intra_parallel setting
and the value set in an application by the ADMIN_SET_INTRA_PARALLEL
procedure can be overridden in a workload by setting the MAXIMUM DEGREE
attribute in a workload definition.

max_querydegree - Maximum query degree of parallelism
This parameter specifies the maximum degree of intrapartition parallelism that is
used for any SQL statement executing on this instance of the database manager. An
SQL statement will not use more than this number of parallel operations within a
database partition when the statement is executed.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Statement boundary

Default [range]
-1 (ANY) [ANY, 1 - 32 767] (ANY means system-determined)

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

The intra_parallel configuration parameter must be set to YES to enable the
database partition to use intrapartition parallelism for SQL statements. The
intra_parallel parameter is no longer required for parallel index creation.

The default value for this configuration parameter is -1. This value means that the
system uses the degree of parallelism determined by the optimizer; otherwise, the
user-specified value is used.

Note: The degree of parallelism for an SQL statement can be specified at statement
compilation time using the CURRENT DEGREE special register or the DEGREE bind
option.

The maximum query degree of parallelism for an active application can be
modified using the SET RUNTIME DEGREE command. The actual runtime degree used
is the lower of:
v max_querydegree configuration parameter
v Application runtime degree

Chapter 28. DB2 configuration parameters and variables 377

v SQL statement compilation degree

This configuration parameter applies to queries only.

378 Partitioning and Clustering Guide

Part 5. Administrative APIs, commands, SQL statements

© Copyright IBM Corp. 2012 379

380 Partitioning and Clustering Guide

Chapter 29. Administrative APIs

sqleaddn - Add a database partition to the partitioned database
environment

Adds a database partition to a database partition server.

Scope

This API only affects the database partition server on which it is executed.

Authorization

One of the following authorities:
v SYSADM
v SYSCTRL

Required connection

None

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqleaddn (
void * pAddNodeOptions,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgaddn (

unsigned short addnOptionsLen,
struct sqlca * pSqlca,
void * pAddNodeOptions);

sqleaddn API parameters

pAddNodeOptions
Input. A pointer to the optional sqle_addn_options structure. This structure
is used to specify the source database partition server, if any, of the system
temporary table space definitions for all database partitions to be created.
If not specified (that is, a NULL pointer is specified), the system temporary
table space definitions will be the same as those for the catalog partition.

pSqlca
Output. A pointer to the sqlca structure.

sqlgaddn API-specific parameters

addnOptionsLen
Input. A 2-byte unsigned integer representing the length of the optional
sqle_addn_options structure in bytes.

© Copyright IBM Corp. 2012 381

Usage notes

This API should only be used if a database partition server is added to an
environment that has one database and that database is not cataloged at the time
of the add partition operation. In this situation, because the database is not
cataloged, the add partition operation does not recognize the database, and does
not create a database partition for the database on the new database partition
server. Any attempt to connect to the database partition on the new database
partition server results in an error. The database must first be cataloged before the
sqleaddn API can be used to create the database partition for the database on the
new database partition server.

This API should not be used if the environment has more than one database and at
least one of the databases is cataloged at the time of the add partition operation. In
this situation, use the sqlecran API to create a database partition for each database
that was not cataloged at the time of the add partition operation. Each uncataloged
database must first be cataloged before the sqlecran API can be used to create the
database partition for the database on the new database partition server.

Before adding a new database partition, ensure that there is sufficient storage for
the containers that must be created.

The add node operation creates an empty database partition on the new database
partition server for every database that exists in the instance. The configuration
parameters for the new database partitions are set to the default value.

Note: Any uncataloged database is not recognized when adding a new database
partition. The uncataloged database will not be present on the new database
partition. An attempt to connect to the database on the new database partition
returns the error message SQL1013N.

If an add node operation fails while creating a database partition locally, it enters a
clean-up phase, in which it locally drops all databases that have been created. This
means that the database partitions are removed only from the database partition
server being added (that is, the local database partition server). Existing database
partitions remain unaffected on all other database partition servers. If this fails, no
further clean up is done, and an error is returned.

The database partitions on the new database partition server cannot be used to
contain user data until after the ALTER DATABASE PARTITION GROUP statement
has been used to add the database partition server to a database partition group.

This API will fail if a create database or a drop database operation is in progress.
The API can be called again when the operation has completed.

The storage groups storage path definitions are retrieved when the sqleaddn API
has to communicate with the catalog partition for each of the databases in the
instance. Likewise, if system temporary table spaces are to be created with the
database partitions, the sqleaddn API may have to communicate with another
database partition server in the partitioned database environment in order to
retrieve the table space definitions. The start_stop_time database manager
configuration parameter is used to specify the time, in minutes, by which the other
database partition server must respond with the automatic storage and table space
definitions. If this time is exceeded, the API fails. Increase the value of
start_stop_time, and call the API again.

382 Partitioning and Clustering Guide

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqlecran - Create a database on a database partition server
Creates a database only on the database partition server that calls the API.

This API is not intended for general use. For example, it should be used with
db2Restore if the database partition at a database partition server was damaged
and must be re-created. Improper use of this API can cause inconsistencies in the
system, so it should only be used with caution.

Note: If this API is used to re-create a database partition that was dropped
(because it was damaged), the database at this database partition server will be in
the restore-pending state. After recreating the database partition, the database must
immediately be restored on this database partition server.

Scope

This API only affects the database partition server on which it is called.

Authorization

One of the following authorities:
v SYSADM
v SYSCTRL

Required connection

Instance. To create a database at another database partition server, it is necessary to
first attach to that database partition server. A database connection is temporarily
established by this API during processing.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlecran (
char * pDbName,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgcran (

unsigned short reservedLen,
unsigned short dbNameLen,
struct sqlca * pSqlca,
void * pReserved,
char * pDbName);

sqlecran API parameters

pDbName
Input. A string containing the name of the database to be created. Must not
be NULL.

Chapter 29. Administrative APIs 383

pReserved
Input. A spare pointer that is set to null or points to zero. Reserved for
future use.

pSqlca
Output. A pointer to the sqlca structure.

sqlgcran API-specific parameters

reservedLen
Input. Reserved for the length of pReserved.

dbNameLen
Input. A 2-byte unsigned integer representing the length of the database
name in bytes.

Usage notes

When the database is successfully created, it is placed in restore-pending state. The
database must be restored on this database partition server before it can be used.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqledpan - Drop a database on a database partition server
Drops a database at a specified database partition server. Can only be run in a
partitioned database environment.

Scope

This API only affects the database partition server on which it is called.

Authorization

One of the following authorities:
v SYSADM
v SYSCTRL

Required connection

None. An instance attachment is established for the duration of the call.

API include file
sqlenv.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledpan (
char * pDbAlias,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdpan (

unsigned short Reserved1,

384 Partitioning and Clustering Guide

unsigned short DbAliasLen,
struct sqlca * pSqlca,
void * pReserved2,
char * pDbAlias);

sqledpan API parameters

pDbAlias
Input. A string containing the alias of the database to be dropped. This
name is used to reference the actual database name in the system database
directory.

pReserved
Reserved. Should be NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdpan API-specific parameters

Reserved1
Reserved for future use.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pReserved2
A spare pointer that is set to null or points to zero. Reserved for future
use.

Usage notes

Improper use of this API can cause inconsistencies in the system, so it should only
be used with caution.

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqledrpn - Check whether a database partition server can be dropped
Verifies whether a database partition server is being used by a database. A message
is returned, indicating whether the database partition server can be dropped.

Scope

This API only affects the database partition server on which it is issued.

Authorization

One of the following authorities:
v SYSADM
v SYSCTRL

API include file
sqlenv.h

Chapter 29. Administrative APIs 385

API and data structure syntax
SQL_API_RC SQL_API_FN

sqledrpn (
unsigned short Action,
void * pReserved,
struct sqlca * pSqlca);

SQL_API_RC SQL_API_FN
sqlgdrpn (

unsigned short Reserved1,
struct sqlca * pSqlca,
void * pReserved2,
unsigned short Action);

sqledrpn API parameters

Action
The action requested. The valid value is: SQL_DROPNODE_VERIFY

pReserved
Reserved. Should be NULL.

pSqlca
Output. A pointer to the sqlca structure.

sqlgdrpn API-specific parameters

Reserved1
Reserved for the length of pReserved2.

pReserved2
A spare pointer that is set to NULL or points to 0. Reserved for future use.

Usage notes

If a message is returned, indicating that the database partition server is not in use,
use the db2stop command with DROP NODENUM to remove the entry for the database
partition server from the db2nodes.cfg file, which removes the database partition
server from the partitioned database environment.

If a message is returned, indicating that the database partition server is in use, the
following actions should be taken:
1. The database partition server to be dropped will have a database partition on it

for each database in the instance. If any of these database partitions contain
data, redistribute the database partition groups that use these database
partitions. Redistribute the database partition groups to move the data to
database partitions that exist at database partition servers that are not being
dropped.

2. After the database partition groups are redistributed, drop the database
partition from every database partition group that uses it. To remove a database
partition from a database partition group, you can use either the drop node
option of the sqludrdt API or the ALTER DATABASE PARTITION GROUP
statement.

3. Drop any event monitors that are defined on the database partition server.
4. Rerun sqledrpn to ensure that the database partition at the database partition

server is no longer in use.

386 Partitioning and Clustering Guide

REXX API syntax

This API can be called from REXX through the SQLDB2 interface.

sqlugrpn - Get the database partition server number for a row
Beginning with Version 9.7, this API is deprecated. Use the db2GetRowPartNum
(Get the database partition server number for a row) API to return the database
partition number and database partition server number for a row.

If you call the sqlugrpn API and the DB2_PMAP_COMPATIBILITY registry variable is
set to OFF, the error message SQL2768N is returned.

Returns the database partition number and the database partition server number
based on the distribution key values. An application can use this information to
determine on which database partition server a specific row of a table is stored.

The partitioning data structure, sqlupi, is the input for this API. The structure can
be returned by the sqlugtpi API. Another input is the character representations of
the corresponding distribution key values. The output is a database partition
number generated by the distribution strategy and the corresponding database
partition server number from the distribution map. If the distribution map
information is not provided, only the database partition number is returned. This
can be useful when analyzing data distribution.

The database manager does not need to be running when this API is called.

Scope

This API must be invoked from a database partition server in the db2nodes.cfg
file. This API should not be invoked from a client, since it could result in
erroneous database partitioning information being returned due to differences in
code page and endianess between the client and the server.

Authorization

None

API include file
sqlutil.h

API and data structure syntax
SQL_API_RC SQL_API_FN

sqlugrpn (
unsigned short num_ptrs,
unsigned char ** ptr_array,
unsigned short * ptr_lens,
unsigned short territory_ctrycode,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,
unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReserved1,
void * pReserved2);

Chapter 29. Administrative APIs 387

SQL_API_RC SQL_API_FN
sqlggrpn (
unsigned short num_ptrs,
unsigned char ** ptr_array,
unsigned short * ptr_lens,
unsigned short territory_code,
unsigned short codepage,
struct sqlupi * part_info,
short * part_num,
SQL_PDB_NODE_TYPE * node_num,
unsigned short chklvl,
struct sqlca * sqlca,
short dataformat,
void * pReserved1,
void * pReserved2);

sqlugrpn API parameters

num_ptrs
The number of pointers in ptr_array. The value must be the same as the
one specified for the part_info parameter; that is, part_info->sqld.

ptr_array
An array of pointers that points to the character representations of the
corresponding values of each part of the distribution key specified in
part_info. If a null value is required, the corresponding pointer is set to
null. For generated columns, this function does not generate values for the
row. The user is responsible for providing a value that will lead to the
correct partitioning of the row.

ptr_lens
An array of unsigned integers that contains the lengths of the character
representations of the corresponding values of each part of the partitioning
key specified in part_info.

territory_ctrycode
The country/region code of the target database. This value can also be
obtained from the database configuration file using the GET DATABASE
CONFIGURATION command.

codepage
The code page of the target database. This value can also be obtained from
the database configuration file using the GET DATABASE CONFIGURATION
command.

part_info
A pointer to the sqlupi structure.

part_num
A pointer to a 2-byte signed integer that is used to store the database
partition number.

node_num
A pointer to an SQL_PDB_NODE_TYPE field used to store the node
number. If the pointer is null, no node number is returned.

chklvl An unsigned integer that specifies the level of checking that is done on
input parameters. If the value specified is zero, no checking is done. If any
non-zero value is specified, all input parameters are checked.

sqlca Output. A pointer to the sqlca structure.

dataformat
Specifies the representation of distribution key values. Valid values are:

388 Partitioning and Clustering Guide

SQL_CHARSTRING_FORMAT
All distribution key values are represented by character strings.
This is the default value.

SQL_IMPLIEDDECIMAL_FORMAT
The location of an implied decimal point is determined by the
column definition. For example, if the column definition is
DECIMAL(8,2), the value 12345 is processed as 123.45.

SQL_PACKEDDECIMAL_FORMAT
All decimal column distribution key values are in packed decimal
format.

SQL_BINARYNUMERICS_FORMAT
All numeric distribution key values are in big-endian binary
format.

pReserved1
Reserved for future use.

pReserved2
Reserved for future use.

Usage notes

Data types supported on the operating system are the same as those that can be
defined as a distribution key.

Note: CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC data types must be
converted to the database code page before this API is called.

For numeric and datetime data types, the character representations must be at the
code page of the corresponding system where the API is invoked.

If node_num is not null, the distribution map must be supplied; that is, pmaplen field
in part_info parameter (part_info->pmaplen) is either 2 or 8192. Otherwise,
SQLCODE -6038 is returned. The distribution key must be defined; that is, sqld
field in part_info parameter (part_info->sqld) must be greater than zero.
Otherwise, SQLCODE -2032 is returned.

If a null value is assigned to a non-nullable partitioning column, SQLCODE -6039
is returned.

All the leading blanks and trailing blanks of the input character string are stripped,
except for the CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC data types,
where only trailing blanks are stripped.

Chapter 29. Administrative APIs 389

390 Partitioning and Clustering Guide

Chapter 30. Commands

REDISTRIBUTE DATABASE PARTITION GROUP
Redistributes data across the partitions in a database partition group. This
command affects all objects present in the database partition group and cannot be
restricted to one object alone.

This command can be issued only from the catalog database partition. Use the
LIST DATABASE DIRECTORY command to determine which database partition is the
catalog database partition for each database.

Scope

This command affects all database partitions in the database partition group.

Authorization

One of the following authorities is required:
v SYSADM
v SYSCTRL
v DBADM

In addition, one of the following groups of authorizations is also required:
v DELETE, INSERT, and SELECT privileges on all tables in the database partition

group being redistributed
v DATAACCESS authority

Command syntax

�� REDISTRIBUTE DATABASE PARTITION GROUP db-partition-group �

� Action
NOT ROLLFORWARD RECOVERABLE Action Not rollforward recoverable options

�

�

�

* *
,

ONLY
TABLE (table-name)

FIRST

�

* *
,

EXCLUDE (table-name)

�

� * *
STOP AT local-isotime

��

Action:

UNIFORM Add/Drop DB partition
USING DISTFILE distfilename

USING TARGETMAP targetmapfilename
CONTINUE
ABORT

© Copyright IBM Corp. 2012 391

Add/Drop DB partition:

�

,

ADD DBPARTITIONNUM (n)
DBPARTITIONNUMS TO m

�

�

�

,

DROP DBPARTITIONNUM (n)
DBPARTITIONNUMS TO m

Not rollforward recoverable options:

INDEXING MODE REBUILD PRECHECK YES
* * * *

DATA BUFFER n INDEXING MODE DEFERRED PRECHECK NO
PRECHECK ONLY

�

�
QUIESCE DATABASE YES STATISTICS USE PROFILE

* * *
QUIESCE DATABASE NO STATISTICS NONE

Command parameters

DATABASE PARTITION GROUP db-partition-group
The name of the database partition group. This one-part name identifies a
database partition group described in the SYSCAT.DBPARTITIONGROUPS
catalog table. The database partition group cannot currently be undergoing
redistribution.

Note: Tables in the IBMCATGROUP and the IBMTEMPGROUP database
partition groups cannot be redistributed.

NOT ROLLFORWARD RECOVERABLE
When this option is used, the REDISTRIBUTE DATABASE PARTITION GROUP
command is not rollforward recoverable.
v Data is moved in bulk instead of by internal insert and delete operations.

This reduces the number of times that a table must be scanned and accessed,
which results in better performance.

v Log records are no longer required for each of the insert and delete
operations. This means that you no longer need to manage large amounts of
active log space and log archiving space in your system when performing
data redistribution.

v When using the REDISTRIBUTE DATABASE PARTITION GROUP command with the
NOT ROLLFORWARD RECOVERABLE option, the redistribute operation uses the
INDEXING MODE DEFERRED option for tables that contain XML columns. If a
table does not contain an XML column, the redistribute operation uses the
indexing mode specified when issuing the command.

When this option is not used, extensive logging of all row movement is
performed such that the database can be recovered later in the event of any
interruptions, errors, or other business need.

UNIFORM
Specifies that the data is uniformly distributed across hash partitions (that is,

392 Partitioning and Clustering Guide

every hash partition is assumed to have the same number of rows), but the
same number of hash partitions do not map to each database partition. After
redistribution, all database partitions in the database partition group have
approximately the same number of hash partitions.

USING DISTFILE distfilename
If the distribution of distribution key values is skewed, use this option to
achieve a uniform redistribution of data across the database partitions of a
database partition group.

Use the distfilename to indicate the current distribution of data across the
32 768 hash partitions.

Use row counts, byte volumes, or any other measure to indicate the amount of
data represented by each hash partition. The utility reads the integer value
associated with a partition as the weight of that partition. When a distfilename
is specified, the utility generates a target distribution map that it uses to
redistribute the data across the database partitions in the database partition
group as uniformly as possible. After the redistribution, the weight of each
database partition in the database partition group is approximately the same
(the weight of a database partition is the sum of the weights of all hash
partitions that map to that database partition).

For example, the input distribution file might contain entries as follows:
10223
1345
112000
0
100
...

In the example, hash partition 2 has a weight of 112000, and partition 3 (with a
weight of 0) has no data mapping to it at all.

The distfilename should contain 32 768 positive integer values in character
format. The sum of the values should be less than or equal to 4 294 967 295.

If the path for distfilename is not specified, the current directory is used.

USING TARGETMAP targetmapfilename
The file specified in targetmapfilename is used as the target distribution map.
Data redistribution is done according to this file. If the path is not specified,
the current directory is used.

The targetmapfilename should contain 32 768 integers, each representing a valid
database partition number. The number on any row maps a hash value to a
database partition. This means that if row X contains value Y, then every
record with HASHEDVALUE() of X is to be located on database partition Y.

If a database partition, included in the target map, is not in the database
partition group, an error is returned. Issue ALTER DATABASE PARTITION
GROUP ADD DBPARTITIONNUM statement before running REDISTRIBUTE
DATABASE PARTITION GROUP command.

If a database partition, excluded from the target map, is in the database
partition group, that database partition will not be included in the partitioning.
Such a database partition can be dropped using ALTER DATABASE
PARTITION GROUP DROP DBPARTITIONNUM statement either before or
after the REDISTRIBUTE DATABASE PARTITION GROUP command.

CONTINUE
Continues a previously failed or stopped REDISTRIBUTE DATABASE PARTITION
GROUP operation. If none occurred, an error is returned.

Chapter 30. Commands 393

ABORT
Aborts a previously failed or stopped REDISTRIBUTE DATABASE PARTITION GROUP
operation. If none occurred, an error is returned.

ADD

DBPARTITIONNUM n

TO m

n or n TO m specifies a list or lists of database partition numbers which are
to be added into the database partition group. Any specified partition must
not already be defined in the database partition group (SQLSTATE 42728).
This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with ADD DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n

TO m

n or n TO m specifies a list or lists of database partition numbers which are
to be added into the database partition group. Any specified partition must
not already be defined in the database partition group (SQLSTATE 42728).
This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with ADD DBPARTITIONNUM clause specified.

Note:

1. When a database partition is added using this option, containers for
table spaces are based on the containers of the corresponding table
space on the lowest numbered existing partition in the database
partition group. If this would result in a naming conflict among
containers, which could happen if the new partitions are on the same
physical machine as existing containers, this option should not be used.
Instead, the ALTER DATABASE PARTITION GROUP statement should
be used with the WITHOUT TABLESPACES option before issuing the
REDISTRIBUTE DATABASE PARTITION GROUP command. Table space
containers can then be created manually specifying appropriate names.

2. Data redistribution might create table spaces for all new database
partitions if the ADD DBPARTITIONNUMS parameter is specified.

DROP

DBPARTITIONNUM n

TO m

n or n TO m specifies a list or lists of database partition numbers which are
to be dropped from the database partition group. Any specified partition
must already be defined in the database partition group (SQLSTATE
42729). This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with the DROP DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n

TO m

n or n TO m specifies a list or lists of database partition numbers which are
to be dropped from the database partition group. Any specified partition
must already be defined in the database partition group (SQLSTATE

394 Partitioning and Clustering Guide

42729). This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with the DROP DBPARTITIONNUM clause specified.

TABLE tablename
Specifies a table order for redistribution processing.

ONLY
If the table order is followed by the ONLY keyword (which is the default),
then, only the specified tables will be redistributed. The remaining tables
can be later processed by REDISTRIBUTE CONTINUE commands. This is the
default.

FIRST
If the table order is followed by the FIRST keyword, then, the specified
tables will be redistributed with the given order and the remaining tables
in the database partition group will be redistributed with random order.

EXCLUDE tablename
Specifies tables to omit from redistribution processing. For example, you can
temporarily omit a table until you can configure it to meet the requirements for
data redistribution. The omitted tables can be later processed by REDISTRIBUTE
CONTINUE commands.

STOP AT local-isotime
When this option is specified, before beginning data redistribution for each
table, the local-isotime is compared with the current local timestamp. If the
specified local-isotime is equal to or earlier than the current local timestamp, the
utility stops with a warning message. Data redistribution processing of tables
in progress at the stop time will complete without interruption. No new data
redistribution processing of tables begins. The unprocessed tables can be
redistributed using the CONTINUE option. This local-isotime value is specified as a
time stamp, a 7-part character string that identifies a combined date and time.
The format is yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month, day, hour, minutes,
seconds, microseconds) expressed in local time.

DATA BUFFER n
Specifies the number of 4 KB pages to use as buffered space for transferring
data within the utility. This command parameter can be used only when the
NOT ROLLFORWARD RECOVERABLE parameter is also specified.

If the value specified is lower than the minimum supported value, the
minimum value is used and no warning is returned. If a DATA BUFFER value is
not specified, an intelligent default is calculated by the utility at runtime at the
beginning of processing each table. Specifically, the default is to use 50% of the
memory available in the utility heap at the time redistribution of the table
begins and to take into account various table properties as well.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter. The
value of the DATA BUFFER parameter of the REDISTRIBUTE DATABASE PARTITION
GROUP command can temporarily exceed util_heap_sz if more memory is
available in the system.

INDEXING MODE
Specifies how indexes are maintained during redistribution. This command
parameter can be used only when the NOT ROLLFORWARD RECOVERABLE parameter
is also specified.

Valid values are:

Chapter 30. Commands 395

REBUILD
Indexes will be rebuilt from scratch. Indexes do not have to be valid to use
this option. As a result of using this option, index pages will be clustered
together on disk.

DEFERRED
Redistribute will not attempt to maintain any indexes. Indexes will be
marked as needing a refresh. The first access to such indexes might force a
rebuild, or indexes might be rebuilt when the database is restarted.

Note: For non-MDC and non-ITC tables, if there are invalid indexes on the
tables, the REDISTRIBUTE DATABASE PARTITION GROUP command
automatically rebuilds them if you do not specify INDEXING MODE DEFERRED.
For an MDC or ITC table, even if you specify INDEXING MODE DEFERRED, a
composite index that is invalid is rebuilt before table redistribution begins
because the utility needs the composite index to process an MDC or ITC
table.

PRECHECK
Verifies that the database partition group can be redistributed. This command
parameter can be used only when the NOT ROLLFORWARD RECOVERABLE parameter
is also specified.

YES
This is the default value. The redistribution operation begins only if the
verification completes successfully. If the verification fails, the command
terminates and returns an error message related to the first check that
failed.

NO The redistribution operation begins immediately; no verification occurs.

ONLY
The command terminates after performing the verification; no
redistribution occurs. By default it will not quiesce the database. If the
QUIESCE DATABASE command parameter was set to YES or defaulted to a
value of YES, the database remains quiesced. To restore connectivity to the
database, perform the redistribution operation or issue UNQUIESCE DATABASE
command.

QUIESCE DATABASE
Specifies to force all users off the database and put it into a quiesced mode.
This command parameter can be used only when the NOT ROLLFORWARD
RECOVERABLE parameter is also specified.

YES
This is the default value. Only users with SYSADM, SYSMAINT, or
SYSCTRL authority or users who have been granted QUIESCE_CONNECT
authority will be able to access the database or its objects. Once the
redistribution completes successfully, the database is unquiesced.

NO The redistribution operation does not quiesce the database; no users are
forced off the database.

For more information, refer to the QUIESCE DATABASE command.

STATISTICS
Specifies that the utility should collect statistics for the tables that have a
statistics profile. This command parameter can be used only when the NOT
ROLLFORWARD RECOVERABLE parameter is also specified.

396 Partitioning and Clustering Guide

Specifying this option is more efficient than separately issuing the RUNSTATS
command after the data redistribution is completed.

USE PROFILE
Statistics will be collected for the tables with a statistics profile. For tables
without a statistics profile, nothing will be done. This is the default.

NONE
Statistics will not be collected for tables.

Examples

Redistribute database partition group DBPG_1 by providing the current data
distribution through a data distribution file, distfile_for_dbpg_1. Move the data
onto two new database partitions, 6 and 7.
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1

USING DISTFILE /home/user1/data/distfile_for_dbpg_1
ADD DATABASE PARTITION (6 TO 7)

Redistribute database partition group DBPG_2 such that:
v The redistribution is not rollforward recoverable;
v Data is uniformly distributed across hash partitions;
v Indexes are rebuilt from scratch;
v Statistics are not collected;
v 180,000 4 KB pages are used as buffered space for transferring the data.
REDISTRIBUTE DATABASE PARTITION GROUP DBPG_2
NOT ROLLFORWARD RECOVERABLE
UNIFORM
INDEXING MODE REBUILD
DATA BUFFER 180000
STATISTICS NONE

This redistribution operation also quiesces the database and performs a precheck
due to the default values for the QUIESCE DATABASE and PRECHECK command
parameters.

Usage notes
v Before starting a redistribute operation, ensure that the tables are in normal state

and not in "load pending" state or "reorg pending" state. Table states can be
checked by using the LOAD QUERY command.

v When the NOT ROLLFORWARD RECOVERABLE option is specified and the database is a
recoverable database, the first time the utility accesses a table space, it is put into
the BACKUP PENDING state. All the tables in that table space will become
read-only until the table space is backed-up, which can only be done when all
tables in the table space have finished being redistributed.

v When a redistribution operation is running, it produces an event log file
containing general information about the redistribution operation and
information such as the starting and ending time of each table processed. This
event log file is written to:
– The homeinst/sqllib/redist directory on Linux and UNIX operating systems,

using the following format for subdirectories and file name:
database-name.database-partition-group-name.timestamp.log.

– The DB2INSTPROF\instance\redist directory on Windows operating systems
(where DB2INSTPROF is the value of the DB2INSTPROF registry variable), using

Chapter 30. Commands 397

the following format for subdirectories and file name: database-
name.database-partition-group-name.timestamp.log.

– The time stamp value is the time when the command was issued.
v This utility performs intermittent COMMITs during processing.
v All packages having a dependency on a table that has undergone redistribution

are invalidated. It is recommended to explicitly rebind such packages after the
redistribute database partition group operation has completed. Explicit rebinding
eliminates the initial delay in the execution of the first SQL request for the
invalid package. The redistribute message file contains a list of all the tables that
have undergone redistribution.

v By default, the redistribute utility will update the statistics for those tables that
have a statistics profile. For the tables without a statistics profile, it is
recommended that you separately update the table and index statistics for these
tables by calling the db2Runstats API or by issuing the RUNSTATS command after
the redistribute operation has completed.

v Database partition groups containing replicated materialized query tables or
tables defined with DATA CAPTURE CHANGES cannot be redistributed.

v Redistribution is not allowed if there are user temporary table spaces with
existing declared temporary tables or created temporary tables in the database
partition group.

v Options such as INDEXING MODE are ignored on tables, on which they do not
apply, without warning. For example, INDEXING MODE will be ignored on tables
without indexes.

v The REDISTRIBUTE DATABASE PARTITION GROUP command might fail (SQLSTATE
55071) if an add database partition server request is either pending or in
progress. This command might also fail (SQLSTATE 55077) if a new database
partition server is added online to the instance and not all applications are
aware of the new database partition server.

Compatibilities

Tables containing XML columns that use the DB2 Version 9.5 or earlier XML record
format cannot be redistributed. Use the ADMIN_MOVE_TABLE stored procedure
to migrate the table to the new format.

db2nchg - Change database partition server configuration
Modifies database partition server configuration. This includes moving the
database partition server from one machine to another; changing the TCP/IP host
name of the machine; and selecting a different logical port number or a different
network name for the database partition server.

This command can only be used if the database partition server is stopped.

This command is available on Windows operating systems only.

Authorization

Local Administrator

Command syntax

398 Partitioning and Clustering Guide

�� db2nchg /n: dbpartitionnum
/i: instance_name

�

�
/u: username,password /p: logical_port /h: host_name

�

�
/m: machine_name /g: network_name

��

Command parameters

/n:dbpartitionnum
Specifies the database partition number of the database partition server's
configuration that is to be changed.

/i:instance_name
Specifies the instance in which this database partition server participates. If
a parameter is not specified, the default is the current instance.

/u:username,password
Specifies the user name and password. If a parameter is not specified, the
existing user name and password will apply.

/p:logical_port
Specifies the logical port for the database partition server. This parameter
must be specified to move the database partition server to a different
machine. If a parameter is not specified, the logical port number will
remain unchanged.

/h:host_name
Specifies TCP/IP host name used by FCM for internal communications. If
this parameter is not specified, the host name will remain the same.

/m:machine_name
Specifies the machine where the database partition server will reside. The
database partition server can only be moved if there are no existing
databases in the instance.

/g:network_name
Changes the network name for the database partition server. This
parameter can be used to apply a specific IP address to the database
partition server when there are multiple IP addresses on a machine. The
network name or the IP address can be entered.

Examples

To change the logical port assigned to database partition 2, which participates in
the instance TESTMPP, to logical port 3, enter the following command:

db2nchg /n:2 /i:TESTMPP /p:3

db2ncrt - Add database partition server to an instance
Adds a database partition server to an instance.

This command is available on Windows operating systems only.

Chapter 30. Commands 399

Scope

If a database partition server is added to a computer where an instance already
exists, a database partition server is added as a logical database partition server to
the computer. If a database partition server is added to a computer where an
instance does not exist, the instance is added and the computer becomes a new
physical database partition server. This command should not be used if there are
databases in an instance. Instead, the START DATABASE MANAGER command should be
issued with the ADD DBPARTITIONNUM option. This ensures that the database is
correctly added to the new database partition server. It is also possible to add a
database partition server to an instance in which a database has been created. The
db2nodes.cfg file should not be edited since changing the file might cause
inconsistencies in the partitioned database environment.

Authorization

Local Administrator authority on the computer where the new database partition
server is added.

Command syntax

�� db2ncrt /n: dbpartitionnum /u: username,password �

�
/i: instance_name /m: machine_name /p: logical_port

�

�
/h: host_name /g: network_name /o: instance_owning_machine

��

Command parameters

/n:dbpartitionnum
A unique database partition number which identifies the database partition
server. The number entered can range from 1 to 999.

/u:username,password
Specifies the logon account name and password for DB2.

/i:instance_name
Specifies the instance name. If a parameter is not specified, the default is
the current instance.

/m:machine_name
Specifies the computer name of the Windows workstation on which the
database partition server resides. This parameter is required if a database
partition server is added on a remote computer.

/p:logical_port
Specifies the logical port number used for the database partition server. If
this parameter is not specified, the logical port number assigned will be 0.
When creating a logical database partition server, this parameter must be
specified and a logical port number that is not in use must be selected.
Note the following restrictions:
v Every computer must have a database partition server that has a logical

port 0.
v The port number cannot exceed the port range reserved for FCM

communications in the x:\winnt\system32\drivers\etc\ directory. For

400 Partitioning and Clustering Guide

example, if a range of 4 ports is reserved for the current instance, then
the maximum port number is 3. Port 0 is used for the default logical
database partition server.

/h:host_name
Specifies the TCP/IP host name that is used by FCM for internal
communications. This parameter is required when the database partition
server is being added on a remote computer.

/g:network_name
Specifies the network name for the database partition server. If a parameter
is not specified, the first IP address detected on the system will be used.
This parameter can be used to apply a specific IP address to the database
partition server when there are multiple IP addresses on a computer. The
network name or the IP address can be entered.

/o:instance_owning_machine
Specifies the computer name of the instance-owning computer. The default
is the local computer. This parameter is required when the db2ncrt
command is invoked on any computer that is not the instance-owning
computer.

Examples

To add a new database partition server to the instance TESTMPP on the
instance-owning computer SHAYER, where the new database partition server is
known as database partition 2 and uses logical port 1, enter the following
command:

db2ncrt /n:2 /u:QBPAULZ\paulz,g1reeky /i:TESTMPP /m:TEST /p:1 /o:SHAYER /h:TEST

db2ndrop - Drop database partition server from an instance
Drops a database partition server from an instance that has no databases. If a
database partition server is dropped, its database partition number can be reused
for a new database partition server.

This command can only be used if the database partition server is stopped.

This command is available on Windows operating systems only.

Authorization

Local Administrator authority on the machine where the database partition server
is being dropped.

Command syntax

�� db2ndrop /n: dbpartitionnum
/i: instance_name

��

Command parameters

/n:dbpartitionnum
A unique database partition number which identifies the database partition
server.

Chapter 30. Commands 401

/i:instance_name
Specifies the instance name. If a parameter is not specified, the default is
the current instance.

Examples
db2ndrop /n:2 /i=KMASCI

Usage notes

If the instance-owning database partition server (dbpartitionnum 0) is dropped
from the instance, the instance becomes unusable. To drop the instance, use the
db2idrop command.

This command should not be used if there are databases in this instance. Instead,
the db2stop drop dbpartitionnum command should be used. This ensures that the
database partition server is correctly removed from the partition database
environment. It is also possible to drop a database partition server in an instance
where a database exists. The db2nodes.cfg file should not be edited since changing
the file might cause inconsistencies in the partitioned database environment.

To drop a database partition server that is assigned to the logical port 0 from a
machine that is running multiple logical database partition servers, all other
database partition servers assigned to the other logical ports must be dropped first.
Each database partition server must have a database partition server assigned to
logical port 0.

402 Partitioning and Clustering Guide

Chapter 31. SQL language elements

Data types

Database partition-compatible data types
Database partition compatibility is defined between the base data types of
corresponding columns of distribution keys. Database partition-compatible data
types have the property that two variables, one of each type, with the same value,
are mapped to the same distribution map index by the same database partitioning
function.

Table 42 on page 404 shows the compatibility of data types in database partitions.

Database partition compatibility has the following characteristics:
v Internal formats are used for DATE, TIME, and TIMESTAMP. They are not

compatible with each other, and none are compatible with character or graphic
data types.

v Partition compatibility is not affected by the nullability of a column.
v Partition compatibility is affected by collation. Locale-sensitive UCA-based

collations require an exact match in collation, except that the strength (S)
attribute of the collation is ignored. All other collations are considered equivalent
for the purposes of determining partition compatibility.

v Character columns defined with FOR BIT DATA are only compatible with
character columns without FOR BIT DATA when a collation other than a
locale-sensitive UCA-based collation is used.

v Null values of compatible data types are treated identically. Different results
might be produced for null values of non-compatible data types.

v Base data type of the UDT is used to analyze database partition compatibility.
v Timestamps of the same value in the distribution key are treated identically,

even if their timestamp precisions differ.
v Decimals of the same value in the distribution key are treated identically, even if

their scale and precision differ.
v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC or

VARGRAPHIC) are ignored by the system-provided hashing function.
v When a locale-sensitive UCA-based collation is used, CHAR, VARCHAR,

GRAPHIC, and VARGRAPHIC are compatible data types. When other collations
are used, CHAR and VARCHAR are compatible types and GRAPHIC and
VARGRAPHIC are compatible types, but CHAR and VARCHAR are not
compatible types with GRAPHIC and VARGRAPHIC. CHAR or VARCHAR of
different lengths are compatible data types.

v DECFLOAT values that are equal are treated identically even if their precision
differs. DECFLOAT values that are numerically equal are treated identically even
if they have a different number of significant digits.

v Data types that are not supported as part of a distribution key are not applicable
for database partition compatibility. This includes columns whose data type is
BLOB, CLOB, DBCLOB, XML, distinct type based on any of these data types, or
structured type.

© Copyright IBM Corp. 2012 403

Table 42. Database Partition Compatibilities

Operands
Binary
Integer

Decimal
Number

Floating-
point

Decimal
Floating-
point

Character
String

Graphic
String Date Time

Time-
stamp

Distinct
Type

Binary
Integer

Yes No No No No No No No No 1

Decimal
Number

No Yes No No No No No No No 1

Floating-
point

No No Yes No No No No No No 1

Decimal
Floating-
point

No No No Yes No No No No No 1

Character
String

No No No No Yes2 2, 3 No No No 1

Graphic
String

No No No No 2, 3 Yes2 No No No 1

Date No No No No No No Yes No No 1

Time No No No No No No No Yes No 1

Timestamp No No No No No No No No Yes 1

Distinct
Type

1 1 1 1 1 1 1 1 1 1

Note:

1 A distinct type value is database partition compatible with the source data type of the distinct type or with any other
distinct type with the same source data type. The source data type of the distinct type must be a data type that is
supported as part of a distribution key. A user-defined distinct type (UDT) value is database partition compatible with the
source type of the UDT or any other UDT with a database partition compatible source type. A distinct type cannot be
based on BLOB, CLOB, DBCLOB, or XML.

2 Character and graphic string types are compatible when they have compatible collations.

3 Character and graphic string types are compatible when a locale-sensitive UCA-based collation is in effect. Otherwise,
they are not compatible types.

Special registers

CURRENT MEMBER
The CURRENT MEMBER special register specifies an INTEGER value that
identifies the coordinator member for the statement.

For statements issued from an application, the coordinator is the member to which
the application connects. For statements issued from a routine, the coordinator is
the member from which the routine is invoked.

When used in an SQL statement inside a routine, CURRENT MEMBER is never
inherited from the invoking statement.

CURRENT MEMBER returns 0 if the database instance is not defined to support
database partitioning or the IBM DB2 pureScale Feature. The database instance is
not defined to support these environments if there is no db2nodes.cfg file. For a
partitioned database or a DB2 pureScale environment, the db2nodes.cfg file exists
and contains database partition and member definitions.

CURRENT MEMBER can be changed through the CONNECT statement, but only
under certain conditions.

404 Partitioning and Clustering Guide

For compatibility with previous versions of DB2 and with other database products,
NODE can be specified in place of MEMBER.

Examples

Example 1: Set the host variable APPL_NODE (integer) to the number of the
member to which the application is connected.

VALUES CURRENT MEMBER
INTO :APPL_NODE

Example 2: The following command is issued on member 0 and on a 4 member
system in a partitioned database environment. This query will retrieve the
currently connected database member number.
db2 "values current member"

1

0

Chapter 31. SQL language elements 405

406 Partitioning and Clustering Guide

Chapter 32. SQL functions

DATAPARTITIONNUM
The DATAPARTITIONNUM function returns the sequence number
(SYSDATAPARTITIONS.SEQNO) of the data partition in which the row resides.

�� DATAPARTITIONNUM (column-name) ��

The schema is SYSIBM.

column-name
The qualified or unqualified name of any column in the table. Because
row-level information is returned, the result is the same regardless of which
column is specified. The column can have any data type.

If column-name references a column in a view, the expression for the column in
the view must reference a column of the underlying base table, and the view
must be deletable. A nested or common table expression follows the same rules
as a view.

Data partitions are sorted by range, and sequence numbers start at 0. For example,
the DATAPARTITIONNUM function returns 0 for a row that resides in the data
partition with the lowest range.

The data type of the result is INTEGER and is never null.

Notes
v This function cannot be used as a source function when creating a user-defined

function. Because the function accepts any data type as an argument, it is not
necessary to create additional signatures to support user-defined distinct types.

v The DATAPARTITIONNUM function cannot be used within check constraints or
in the definition of generated columns (SQLSTATE 42881). The
DATAPARTITIONNUM function cannot be used in a materialized query table
(MQT) definition (SQLSTATE 428EC).

Examples
v Example 1: Retrieve the sequence number of the data partition in which the row

for EMPLOYEE.EMPNO resides.
SELECT DATAPARTITIONNUM (EMPNO)
FROM EMPLOYEE

v Example 2: To convert a sequence number that is returned by
DATAPARTITIONNUM (for example, 0) to a data partition name that can be
used in other SQL statements (such as ALTER TABLE...DETACH PARTITION),
you can query the SYSCAT.DATAPARTITIONS catalog view. Include the SEQNO
obtained from DATAPARTITIONNUM in the WHERE clause, as shown in the
following example.

SELECT DATAPARTITIONNAME
FROM SYSCAT.DATAPARTITIONS
WHERE TABNAME = ’EMPLOYEE’ AND SEQNO = 0

results in the value 'PART0'.

© Copyright IBM Corp. 2012 407

DBPARTITIONNUM
The DBPARTITIONNUM function returns the database partition number for a row.
For example, if used in a SELECT clause, it returns the database partition number
for each row in the result set.

�� DBPARTITIONNUM (column-name) ��

The schema is SYSIBM.

column-name
The qualified or unqualified name of any column in the table. Because
row-level information is returned, the result is the same regardless of which
column is specified. The column can have any data type.

If column-name references a column in a view, the expression for the column in
the view must reference a column of the underlying base table, and the view
must be deletable. A nested or common table expression follows the same rules
as a view.

The specific row (and table) for which the database partition number is returned
by the DBPARTITIONNUM function is determined from the context of the SQL
statement that uses the function.

The database partition number returned on transition variables and tables is
derived from the current transition values of the distribution key columns. For
example, in a before insert trigger, the function returns the projected database
partition number, given the current values of the new transition variables.
However, the values of the distribution key columns might be modified by a
subsequent before insert trigger. Thus, the final database partition number of the
row when it is inserted into the database might differ from the projected value.

The data type of the result is INTEGER and is never null. If there is no
db2nodes.cfg file, the result is 0.

Notes
v The DBPARTITIONNUM function cannot be used on replicated tables, within

check constraints, or in the definition of generated columns (SQLSTATE 42881).
v The DBPARTITIONNUM function cannot be used as a source function when

creating a user-defined function. Because it accepts any data type as an
argument, it is not necessary to create additional signatures to support
user-defined distinct types.

v Syntax alternatives: For compatibility with previous versions of DB2 products,
the function name NODENUMBER is a synonym for DBPARTITIONNUM.

Examples
v Example 1: Count the number of instances in which the row for a given

employee in the EMPLOYEE table is on a different database partition than the
description of the employee's department in the DEPARTMENT table.

SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E
WHERE D.DEPTNO=E.WORKDEPT
AND DBPARTITIONNUM(E.LASTNAME) <> DBPARTITIONNUM(D.DEPTNO)

v Example 2: Join the EMPLOYEE and DEPARTMENT tables so that the rows of
the two tables are on the same database partition.

408 Partitioning and Clustering Guide

SELECT * FROM DEPARTMENT D, EMPLOYEE E
WHERE DBPARTITIONNUM(E.LASTNAME) = DBPARTITIONNUM(D.DEPTNO)

v Example 3: Using a before trigger on the EMPLOYEE table, log the employee
number and the projected database partition number of any new row in the
EMPLOYEE table in a table named EMPINSERTLOG1.

CREATE TRIGGER EMPINSLOGTRIG1
BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AW NEWTABLE
FOR EACH ROW
INSERT INTO EMPINSERTLOG1
VALUES(NEWTABLE.EMPNO, DBPARTITIONNUM
(NEWTABLE.EMPNO))

Chapter 32. SQL functions 409

410 Partitioning and Clustering Guide

Chapter 33. SQL statements

ALTER DATABASE PARTITION GROUP
The ALTER DATABASE PARTITION GROUP statement is used to add one or more
database partitions to a database partition group, or drop one or more database
partitions from a database partition group.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

Syntax

�� ALTER DATABASE PARTITION GROUP db-partition-name �

� �

,

ADD DBPARTITIONNUM db-partitions-clause
DBPARTITIONNUMS db-partition-options

DROP DBPARTITIONNUM db-partitions-clause
DBPARTITIONNUMS

��

db-partitions-clause:

�

,

(db-partition-number1)
TO db-partition-number2

db-partition-options:

LIKE DBPARTITIONNUM db-partition-number
WITHOUT TABLESPACES

Description

db-partition-name
Names the database partition group. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). It must be a database partition group
described in the catalog. IBMCATGROUP and IBMTEMPGROUP cannot be
specified (SQLSTATE 42832).

ADD DBPARTITIONNUM
Specifies the specific database partition or partitions to add to the database

© Copyright IBM Corp. 2012 411

partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.
Any specified database partition must not already be defined in the database
partition group (SQLSTATE 42728).

DROP DBPARTITIONNUM
Specifies the specific database partition or partitions to drop from the database
partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.
Any specified database partition must already be defined in the database
partition group (SQLSTATE 42729).

db-partitions-clause
Specifies the database partition or partitions to be added or dropped.

db-partition-number1
Specify a specific database partition number.

TO db-partition-number2
Specify a range of database partition numbers. The value of
db-partition-number2 must be greater than or equal to the value of
db-partition-number1 (SQLSTATE 428A9).

db-partition-options

LIKE DBPARTITIONNUM db-partition-number
Specifies that the containers for the existing table spaces in the database
partition group will be the same as the containers on the specified
db-partition-number. The specified database partition must be a partition
that existed in the database partition group before this statement, and that
is not included in a DROP DBPARTITIONNUM clause of the same
statement.

For table spaces that are defined to use automatic storage (that is, table
spaces that were created with the MANAGED BY AUTOMATIC STORAGE
clause of the CREATE TABLESPACE statement, or for which no
MANAGED BY clause was specified at all), the containers will not
necessarily match those from the specified partition. Instead, containers
will automatically be assigned by the database manager based on the
storage paths that are associated with the database, and this might or
might not result in the same containers being used. The size of each table
space is based on the initial size that was specified when the table space
was created, and might not match the current size of the table space on the
specified partition.

WITHOUT TABLESPACES
Specifies that the containers for existing table spaces in the database
partition group are not created on the newly added database partition or
partitions. The ALTER TABLESPACE statement using the db-partitions-clause
or the MANAGED BY AUTOMATIC STORAGE clause must be used to
define containers for use with the table spaces that are defined on this
database partition group. If this option is not specified, the default
containers are specified on newly added database partitions for each table
space defined on the database partition group.

This option is ignored for table spaces that are defined to use automatic
storage (that is, table spaces that were created with the MANAGED BY
AUTOMATIC STORAGE clause of the CREATE TABLESPACE statement,
or for which no MANAGED BY clause was specified at all). There is no
way to defer container creation for these table spaces. Containers will
automatically be assigned by the database manager based on the storage

412 Partitioning and Clustering Guide

paths that are associated with the database. The size of each table space
will be based on the initial size that was specified when the table space
was created.

Rules
v Each database partition specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729).
v Each db-partition-number listed in the db-partitions-clause must be for a unique

database partition (SQLSTATE 42728).
v A valid database partition number is between 0 and 999 inclusive (SQLSTATE

42729).
v A database partition cannot appear in both the ADD and DROP clauses

(SQLSTATE 42728).
v There must be at least one database partition remaining in the database partition

group. The last database partition cannot be dropped from a database partition
group (SQLSTATE 428C0).

v If neither the LIKE DBPARTITIONNUM clause nor the WITHOUT
TABLESPACES clause is specified when adding a database partition, the default
is to use the lowest database partition number of the existing database partitions
in the database partition group (say it is 2) and proceed as if LIKE
DBPARTITIONNUM 2 had been specified. For an existing database partition to
be used as the default, it must have containers defined for all the table spaces in
the database partition group (column IN_USE of
SYSCAT.DBPARTITIONGROUPDEF is not 'T').

v The ALTER DATABASE PARTITION GROUP statement might fail (SQLSTATE
55071) if an add database partition server request is either pending or in
progress. This statement might also fail (SQLSTATE 55077) if a new database
partition server is added online to the instance and not all applications are
aware of the new database partition server.

Notes
v When a database partition is added to a database partition group, a catalog

entry is made for the database partition (see
SYSCAT.DBPARTITIONGROUPDEF). The distribution map is changed
immediately to include the new database partition, along with an indicator
(IN_USE) that the database partition is in the distribution map if either:
– no table spaces are defined in the database partition group or
– no tables are defined in the table spaces defined in the database partition

group and the WITHOUT TABLESPACES clause was not specified.
The distribution map is not changed and the indicator (IN_USE) is set to
indicate that the database partition is not included in the distribution map if
either:
– Tables exist in table spaces in the database partition group or
– Table spaces exist in the database partition group and the WITHOUT

TABLESPACES clause was specified (unless all of the table spaces are defined
to use automatic storage, in which case the WITHOUT TABLESPACES clause
is ignored)

To change the distribution map, the REDISTRIBUTE DATABASE PARTITION
GROUP command must be used. This redistributes any data, changes the
distribution map, and changes the indicator. Table space containers need to be
added before attempting to redistribute data if the WITHOUT TABLESPACES
clause was specified.

Chapter 33. SQL statements 413

v When a database partition is dropped from a database partition group, the
catalog entry for the database partition (see SYSCAT.DBPARTITIONGROUPDEF)
is updated. If there are no tables defined in the table spaces defined in the
database partition group, the distribution map is changed immediately to
exclude the dropped database partition and the entry for the database partition
in the database partition group is dropped. If tables exist, the distribution map is
not changed and the indicator (IN_USE) is set to indicate that the database
partition is waiting to be dropped. The REDISTRIBUTE DATABASE PARTITION
GROUP command must be used to redistribute the data and drop the entry for
the database partition from the database partition group.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NODE can be specified in place of DBPARTITIONNUM
– NODES can be specified in place of DBPARTITIONNUMS
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Example

Assume that you have a six-partition database that has the following database
partitions: 0, 1, 2, 5, 7, and 8. Two database partitions (3 and 6) are added to the
system.
v Example 1: Assume that you want to add database partitions 3 and 6 to a

database partition group called MAXGROUP, and have table space containers
like those on database partition 2. The statement is as follows:

ALTER DATABASE PARTITION GROUP MAXGROUP
ADD DBPARTITIONNUMS (3,6)LIKE DBPARTITIONNUM 2

v Example 2: Assume that you want to drop database partition 1 and add database
partition 6 to database partition group MEDGROUP. You will define the table
space containers separately for database partition 6 using ALTER TABLESPACE.
The statement is as follows:

ALTER DATABASE PARTITION GROUP MEDGROUP
ADD DBPARTITIONNUM(6)WITHOUT TABLESPACES
DROP DBPARTITIONNUM(1)

CREATE DATABASE PARTITION GROUP
The CREATE DATABASE PARTITION GROUP statement defines a new database
partition group within the database, assigns database partitions to the database
partition group, and records the database partition group definition in the system
catalog.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

414 Partitioning and Clustering Guide

Syntax

�� CREATE DATABASE PARTITION GROUP db-partition-group-name �

�

�

ON ALL DBPARTITIONNUMS

,

ON DBPARTITIONNUMS (db-partition-number1)
DBPARTITIONNUM TO db-partition-number2

��

Description

db-partition-group-name
Names the database partition group. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). The db-partition-group-name must not
identify a database partition group that already exists in the catalog
(SQLSTATE 42710). The db-partition-group-name must not begin with the
characters 'SYS' or 'IBM' (SQLSTATE 42939).

ON ALL DBPARTITIONNUMS
Specifies that the database partition group is defined over all database
partitions defined to the database (db2nodes.cfg file) at the time the database
partition group is created.

If a database partition is added to the database system, the ALTER DATABASE
PARTITION GROUP statement should be issued to include this new database
partition in a database partition group (including IBMDEFAULTGROUP).
Furthermore, the REDISTRIBUTE DATABASE PARTITION GROUP command
must be issued to move data to the database partition.

ON DBPARTITIONNUMS
Specifies the database partitions that are in the database partition group.
DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-number1
Specify a database partition number. (A node-name of the form NODEnnnnn
can be specified for compatibility with the previous version.)

TO db-partition-number2
Specify a range of database partition numbers. The value of
db-partition-number2 must be greater than or equal to the value of
db-partition-number1 (SQLSTATE 428A9). All database partitions between
and including the specified database partition numbers are included in the
database partition group.

Rules
v Each database partition specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729).
v Each db-partition-number listed in the ON DBPARTITIONNUMS clause must be

appear at most once (SQLSTATE 42728).
v A valid db-partition-number is between 0 and 999 inclusive (SQLSTATE 42729).
v The CREATE DATABASE PARTITION GROUP statement might fail (SQLSTATE

55071) if an add database partition server request is either pending or in
progress. This statement might also fail (SQLSTATE 55077) if a new database
partition server is added online to the instance and not all applications are
aware of the new database partition server.

Chapter 33. SQL statements 415

Notes
v This statement creates a distribution map for the database partition group. A

distribution map identifier (PMAP_ID) is generated for each distribution map.
This information is recorded in the catalog and can be retrieved from
SYSCAT.DBPARTITIONGROUPS and SYSCAT.PARTITIONMAPS. Each entry in
the distribution map specifies the target database partition on which all rows
that are hashed reside. For a single-partition database partition group, the
corresponding distribution map has only one entry. For a multiple partition
database partition group, the corresponding distribution map has 32768 entries,
where the database partition numbers are assigned to the map entries in a
round-robin fashion, by default.

v Syntax alternatives: The following syntax alternatives are supported for
compatibility with previous versions of DB2 and with other database products.
These alternatives are non-standard and should not be used.
– NODE can be specified in place of DBPARTITIONNUM
– NODES can be specified in place of DBPARTITIONNUMS
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Examples

The following examples are based on a partitioned database with six database
partitions defined as 0, 1, 2, 5, 7, and 8.
v Example 1: Assume that you want to create a database partition group called

MAXGROUP on all six database partitions. The statement is as follows:
CREATE DATABASE PARTITION GROUP MAXGROUP ON ALL DBPARTITIONNUMS

v Example 2: Assume that you want to create a database partition group called
MEDGROUP on database partitions 0, 1, 2, 5, and 8. The statement is as follows:

CREATE DATABASE PARTITION GROUP MEDGROUP
ON DBPARTITIONNUMS(0 TO 2, 5, 8)

v Example 3: Assume that you want to create a single-partition database partition
group MINGROUP on database partition 7. The statement is as follows:

CREATE DATABASE PARTITION GROUP MINGROUP
ON DBPARTITIONNUM (7)

416 Partitioning and Clustering Guide

Chapter 34. Supported administrative SQL routines and views

ADMIN_CMD stored procedure and associated administrative SQL
routines

GET STMM TUNING command using the ADMIN_CMD
procedure

Used to read the catalog tables to report the user preferred self tuning memory
manager (STMM) tuning member number and current STMM tuning member
number.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities or privilege:
v DBADM
v SECADM
v SQLADM
v ACCESSCTRL
v DATAACCESS
v SELECT on SYSIBM.SYSTUNINGINFO

Required connection

Database

Command syntax

�� GET STMM TUNING MEMBER ��

Example
CALL SYSPROC.ADMIN_CMD(’get stmm tuning member’)

The following is an example of output from this query.
Result set 1

USER_PREFERRED_NUMBER CURRENT_NUMBER
--------------------- --------------

2 2

1 record(s) selected.

Return Status = 0

Usage notes
v The user preferred self tuning memory manager (STMM) tuning member

number (USER_PREFERRED_NUMBER) is set by the user and specifies the member on
which the user wants to run the memory tuner. While the database is running,
the tuning member is applied a few times an hour. As a result, it is possible that

© Copyright IBM Corp. 2012 417

the CURRENT_NUMBER and USER_PREFERRED_NUMBER returned are not in sync after an
update of the user preferred STMM member. To resolve this, either wait for the
CURRENT_NUMBER to be updated asynchronously, or stop and start the database to
force the update of CURRENT_NUMBER.

Compatibilities

For compatibility with previous versions:
v DBPARTITIONNUM can be substituted for MEMBER, except when the

DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

UPDATE STMM TUNING command using the ADMIN_CMD
procedure

Update the user preferred self tuning memory manager (STMM) tuning database
member number.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v DBADM
v DATAACCESS
v SQLADM

Required connection

Database

Command syntax

�� UPDATE STMM TUNING MEMBER member-number ��

Command parameter

member-number
member-number is an integer. In a partitioned database environment, if -1 or
a nonexistent member number is used, DB2 will automatically select an
appropriate member on which to run the STMM memory tuner. In a DB2
pureScale environment, if -1 or a nonexistent member number is used, DB2
will randomly select an appropriate member on which to run the STMM
memory tuner.

Example

In a partitioned database environment, update the user preferred self tuning
memory manager (STMM) tuning database partition to member 3.
CALL SYSPROC.ADMIN_CMD(’update stmm tuning member 3’)

Usage notes
v The STMM tuning process periodically checks for a change in the user preferred

STMM tuning member number value. The STMM tuning process will move to
the user preferred STMM tuning member if member-number exists and is an

418 Partitioning and Clustering Guide

active member. Once this command changes the STMM tuning member number
an immediate change is made to the current STMM tuning member number.

v Command execution status is returned in the SQLCA resulting from the CALL
statement.

v This command commits its changes in the ADMIN_CMD procedure.

Compatibilities

For compatibility with previous versions:
v DBPARTITIONNUM can be substituted for MEMBER, except when the

DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Configuration administrative SQL routines and views

DB_PARTITIONS
The DB_PARTITIONS table function returns the contents of the db2nodes.cfg file
in table format.

Note: This table function has been deprecated and replaced by the DB2_MEMBER
and DB2_CF administrative views and DB2_GET_INSTANCE_INFO table function.

Syntax

�� DB_PARTITIONS () ��

The schema is SYSPROC.

Authorization

One of the following authorities is required to execute the routine:
v EXECUTE privilege on the routine
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the
function is automatically created.

Table function parameters

The function has no input parameters.

Examples

Retrieve information from a 4 member partitioned database instance.
SELECT * FROM TABLE(DB_PARTITIONS()) as T

The following is an example of the output from this query:

Chapter 34. Supported administrative SQL routines and views 419

PARTITION_NUMBER HOST_NAME PORT_NUMBER SWITCHNAME
---------------- --------- ----------- -------

0 so1 0 so1-ib0
1 so2 0 so2-ib0
2 so3 0 so3-ib0
3 so4 0 so4-ib0

4 record(s) selected.

In a DB2 pureScale environment, retrieve information from a 3 member and 1
cluster caching facility DB2 pureScale instance.
SELECT * FROM TABLE(DB_PARTITIONS()) as T

The following is an example of the output from this query:
PARTITION_NUMBER HOST_NAME PORT_NUMBER SWITCHNAME
---------------- ---------- ----------- ----------

0 so1 0 so1-ib0
0 so2 0 so2-ib0
0 so3 0 so3-ib0

3 record(s) selected.

Usage notes

For DB2 Enterprise Server Edition and in a partitioned database environment, the
DB_PARTITIONS table function returns one row for each entry in the db2nodes.cfg
file.

In a DB2 pureScale environment, the DB_PARTITIONS table function returns
multiple rows, with the following information in the columns:
v The PARTITION_NUMBER column always contains 0.
v The remaining columns show information for the entry in the db2nodes.cfg file

for the current member.

Information returned

Table 43. Information returned by the DB_PARTITIONS table function

Column name Data type Description

PARTITION_NUMBER SMALLINT partition_number - Partition
Number monitor element

HOST_NAME VARCHAR(256) host_name - Host name
monitor element

PORT_NUMBER SMALLINT The port number for the
database partition server.

SWITCH_NAME VARCHAR(128) The name of a high speed
interconnect, or switch, for
database partition
communications.

420 Partitioning and Clustering Guide

Stepwise redistribute administrative SQL routines

STEPWISE_REDISTRIBUTE_DBPG procedure - Redistribute
part of database partition group

The STEPWISE_REDISTRIBUTE_DBPG procedure redistributes part of the database
partition group according to the input specified for the procedure, and the setting
file created or updated by the SET_SWRD_SETTINGS procedure.

Syntax

�� STEPWISE_REDISTRIBUTE_DBPG (inDBPGroup , inStartingPoint , �

� inNumSteps) ��

The schema is SYSPROC.

Procedure parameters

inDBPGroup
An input argument of type VARCHAR (128) that specifies the name of the
target database partition group.

inStartingPoint
An input argument of type SMALLINT that specifies the starting point to use.
If the parameter is set to a positive integer and is not NULL, the
STEPWISE_REDISTRIBUTE_DBPG procedure uses this value instead of using
the nextStep value specified in the setting file. This is a useful option when you
want to rerun the STEPWISE_REDISTRIBUTE_DBPG procedure from a
particular step. If the parameter is set to NULL, the nextStep value is used.

inNumSteps
An input argument of type SMALLINT that specifies the number of steps to
run. If the parameter is set to a positive integer and is not NULL, the
STEPWISE_REDISTRIBUTE_DBPG procedure uses this value instead of using
the stageSize value specified in the setting file. This is a useful option when you
want to rerun the STEPWISE_REDISTRIBUTE_DBPG procedure with a
different number of steps than what is specified in the settings. For example, if
there are five steps in a scheduled stage, and the redistribution process failed
at step 3, the STEPWISE_REDISTRIBUTE_DBPG procedure can be called to run
the remaining three steps once the error condition has been corrected. If the
parameter is set to NULL, the stageSize value is used. The value -2 can be used
in this procedure to indicate that the number is unlimited.

Note: There is no parameter for specifying the equivalent of the NOT ROLLFORWARD
RECOVERABLE option on the REDISTRIBUTE DATABASE PARTITION GROUP command.
Logging is always performed for row data redistribution performed when the
STEPWISE_REDISTRIBUTE_DBPG procedure is used.

Authorization
v EXECUTE privilege on the STEPWISE_REDISTRIBUTE_DBPG procedure
v SYSADM, SYSCTRL or DBADM

Chapter 34. Supported administrative SQL routines and views 421

Default PUBLIC privilege

In a non-restrictive database, EXECUTE privilege is granted to PUBLIC when the
procedure is automatically created.

Example

Redistribute the database partition group "IBMDEFAULTGROUP" according to the
redistribution plan stored in the registry by the SET_SWRD_SETTINGS procedure.
It is starting with step 3 and redistributes the data until 2 steps in the
redistribution plan are completed.
CALL SYSPROC.STEPWISE_REDISTRIBUTE_DBPG(’IBMDEFAULTGROUP’, 3, 2)

For a full usage example of the stepwise redistribute procedures, refer to
“Redistributing database partition groups using the
STEPWISE_REDISTRIBUTE_DBPG procedure” in the Partitioning and Clustering
Guide.

Usage notes

If the registry value for processState is updated to 1 using the
SET_SWRD_SETTINGS procedure after the STEPWISE_REDISTRIBUTE_DBPG
procedure execution is started, the process stops at the beginning to the next step
and a warning message is returned.

As the SQL COMMIT statement is called by the redistribute process, running the
redistribute process under a Type-2 connection is not supported.

422 Partitioning and Clustering Guide

Part 6. Appendixes

© Copyright IBM Corp. 2012 423

424 Partitioning and Clustering Guide

Appendix A. Install as non-root user

Installing DB2 database servers as a non-root user
Most DB2 database products can be installed as a non-root user.

Before you begin

Before you install any DB2 database product as a non-root user, be aware of the
differences between root installations and non-root installations, and the limitations
of non-root installations. For more information on non-root installation, see
“Non-root installation overview (Linux and UNIX)”.

Prerequisites for installing a DB2 database product as a non-root user are:
v You must be able to mount the installation DVD, or have it mounted for you.
v You must have a valid user ID that can be used as the owner of a DB2 instance.

User IDs have the following restrictions and requirements:
– Must have a primary group other than guests, admins, users, and local
– Can include lowercase letters (a–z), numbers (0–9), and the underscore

character (_)
– Cannot be longer than eight characters
– Cannot begin with IBM, SYS, SQL, or a number
– Cannot be a DB2 reserved word (USERS, ADMINS, GUESTS, PUBLIC, or

LOCAL), or an SQL reserved word
– Cannot use any User IDs with root privilege for the DB2 instance ID, DAS ID

or fenced ID.
– Cannot include accented characters
– If existing user IDs are specified instead of creating new user IDs, make sure

that the user IDs:
- Are not locked
- Do not have expired passwords

v The hardware and software prerequisites that exist for the product you are
installing apply to the non-root user just as they do for root users.

v On AIX Version 5.3, Asynchronous I/O (AIO) must be enabled. It is strongly
recommended the system has I/O Completion Ports (IOCP) enabled.

v Your home directory must be a valid DB2 path.
DB2 installation paths have the following rules:
– Can include lowercase letters (a–z), uppercase letters (A–Z), and the

underscore character (_)
– Cannot exceed 128 characters
– Cannot contain spaces
– Cannot contain non-English characters

© Copyright IBM Corp. 2012 425

About this task

Installing DB2 database products as a non-root user is transparent to the non-root
user. In other words, there is nothing special a non-root user needs to do to install
a DB2 database product, other than being logged being logged in as a non-root
user.

Procedure

To perform a non-root installation:
1. Log in as a non-root user
2. Install your DB2 database product using any of the methods available to you.

Options include:
v The DB2 Setup wizard (GUI install)
v The db2setup command with a response file (silent install)

Note: Since non-root users cannot choose the directory where DB2 database
products are installed, any FILE keyword in your response file is ignored.

3. After the DB2 database product is installed, you must open a new login session
to use the non-root DB2 instance. Alternatively, you can use the same login
session if you set up the DB2 instance environment with $HOME/sqllib/
db2profile (for Bourne shell and Korn shell users) or $HOME/sqllib/db2chsrc
(for C shell users), where $HOME is the non-root user's home directory.

What to do next

After the DB2 database product is installed, verify your operating system user
process resource limits (ulimits). If the minimum ulimit values are not met, the
DB2 engine can encounter unexpected operating resource shortage errors. These
errors can lead to a DB2 database system outage.

426 Partitioning and Clustering Guide

Appendix B. Using backup

Backing up data
Use the BACKUP DATABASE command to take a copy of the database data and store it
on a different medium. This backup data can then be used in the case of a failure
or damage to the original data. You can back up an entire database, database
partition, or only selected table spaces.

Before you begin

You do not need to be connected to the database that is to be backed up: the
backup database utility automatically establishes a connection to the specified
database, and this connection is terminated at the completion of the backup
operation. If you are connected to a database that is to be backed up, you will be
disconnected when the BACKUP DATABASE command is issued and the backup
operation will proceed.

The database can be local or remote. The backup image remains on the database
server, unless you are using a storage management product such as Tivoli Storage
Manager (TSM) or DB2 Advanced Copy Services (ACS).

If you are performing an offline backup and if you have activated the database by
using the ACTIVATE DATABASE command, you must deactivate the database before
you run the offline backup. If there are active connections to the database, in order
to deactivate the database successfully, a user with SYSADM authority must
connect to the database, and issue the following commands:
CONNECT TO database-alias
QUIESCE DATABASE IMMEDIATE FORCE CONNECTIONS;
UNQUIESCE DATABASE;
TERMINATE;
DEACTIVATE DATABASE database-alias

In a partitioned database environment, you can use the BACKUP DATABASE command
to back up database partitions individually, use the ON DBPARTITIONNUM command
parameter to back up several of the database partitions at once, or use the ALL
DBPARTITIONNUMS parameter to back up all of the database partitions
simultaneously. You can use the LIST DBPARTITIONNUMS command to identify the
database partitions that have user tables on them that you might want to back up.

Unless you are using a single system view (SSV) backup, if you are performing an
offline backup in a partitioned database environment, you should back up the
catalog partition separately from all other database partitions. For example, you
can back up the catalog partition first, then back up the other database partitions.
This action is necessary because the backup operation might require an exclusive
database connection on the catalog partition, during which the other database
partitions cannot connect. If you are performing an online backup, all database
partitions (including the catalog partition) can be backed up simultaneously or in
any order.

On a distributed request system, backup operations apply to the distributed
request database and the metadata stored in the database catalog (wrappers,
servers, nicknames, and so on). Data source objects (tables and views) are not
backed up, unless they are stored in the distributed request database

© Copyright IBM Corp. 2012 427

If a database was created with a previous release of the database manager, and the
database has not been upgraded, you must upgrade the database before you can
back it up.

Restrictions

The following restrictions apply to the backup utility:
v A table space backup operation and a table space restore operation cannot be

run at the same time, even if different table spaces are involved.
v If you want to be able to do rollforward recovery in a partitioned database

environment, you must regularly back up the database on the list of nodes. You
must also have at least one backup image of the rest of the nodes in the system
(even those nodes that do not contain user data for that database). Two
situations require the backed-up image of a database partition at a database
partition server that does not contain user data for the database:
– You added a database partition server to the database system after taking the

last backup, and you need to do forward recovery on this database partition
server.

– Point-in-time recovery is used, which requires that all database partitions in
the system are in rollforward pending state.

v Online backup operations for DMS table spaces are incompatible with the
following operations:
– load
– reorganization (online and offline)
– drop table space
– table truncation
– index creation
– not logged initially (used with the CREATE TABLE and ALTER TABLE

statements)
v If you attempt to perform an offline backup of a database that is currently

active, you will receive an error. Before you run an offline backup, you can make
sure that the database is not active by issuing the DEACTIVATE DATABASE
command.

Procedure

To invoke the backup utility:
v Issue the BACKUP DATABASE command in the command line processor (CLP).
v Run the ADMIN_CMD procedure with the BACKUP DATABASE parameter.
v Use the db2Backup application programming interface (API).
v Open the task assistant in IBM Data Studio for the BACKUP DATABASE command.

Example

Following is an example of the BACKUP DATABASE command issued through the
CLP:
db2 backup database sample to c:\DB2Backups

What to do next

If you performed an offline backup, after the backup completes, you must
reactivate the database:

428 Partitioning and Clustering Guide

ACTIVATE DATABASE sample

Related information:

Appendix B. Using backup 429

430 Partitioning and Clustering Guide

Appendix C. Partitioned database environment catalog views

SYSCAT.BUFFERPOOLDBPARTITIONS

Each row represents a combination of a buffer pool and a member, in which the
size of the buffer pool on that member is different from its default size for other
members in the same database partition group (as represented in
SYSCAT.BUFFERPOOLS).

Table 44. SYSCAT.BUFFERPOOLDBPARTITIONS Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier.

DBPARTITIONNUM SMALLINT Member number.

NPAGES INTEGER Number of pages in this buffer pool on this
member.

SYSCAT.DATAPARTITIONEXPRESSION

Each row represents an expression for that part of the table partitioning key.

Table 45. SYSCAT.DATAPARTITIONEXPRESSION Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the partitioned table.

TABNAME VARCHAR (128) Unqualified name of the partitioned table.

DATAPARTITIONKEYSEQ INTEGER Expression key part sequence ID, starting
from 1.

DATAPARTITIONEXPRESSION CLOB (32K) Expression for this entry in the sequence, in
SQL syntax.

NULLSFIRST CHAR (1) v N = Null values in this expression
compare high

v Y = Null values in this expression
compare low

SYSCAT.DATAPARTITIONS

Each row represents a data partition. Note:
v The data partition statistics represent one database partition if the table is

created on multiple database partitions.

Table 46. SYSCAT.DATAPARTITIONS Catalog View

Column Name Data Type Nullable Description

DATAPARTITIONNAME VARCHAR (128) Name of the data partition.

TABSCHEMA VARCHAR (128) Schema name of the table to which this data
partition belongs.

TABNAME VARCHAR (128) Unqualified name of the table to which this
data partition belongs.

© Copyright IBM Corp. 2012 431

Table 46. SYSCAT.DATAPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

DATAPARTITIONID INTEGER Identifier for the data partition.

TBSPACEID INTEGER Y Identifier for the table space in which this
data partition is stored. The null value when
STATUS is 'I'.

PARTITIONOBJECTID INTEGER Y Identifier for the data partition within the
table space.

LONG_TBSPACEID INTEGER Y Identifier for the table space in which long
data is stored. The null value when STATUS
is 'I'.

ACCESS_MODE CHAR (1) Access restriction state of the data partition.
These states only apply to objects that are in
set integrity pending state or to objects that
were processed by a SET INTEGRITY
statement. Possible values are:

v D = No data movement

v F = Full access

v N = No access

v R = Read-only access

STATUS VARCHAR (32) v A = Data partition is newly attached

v D = Data partition is detached and
detached dependents are to be
incrementally maintained with respect to
the content of this partition

v I = Detached data partition whose entry in
the catalog is maintained only during
asynchronous index cleanup; rows with a
STATUS value of 'I' are removed when all
index records referring to the detached
partition have been deleted

v L = Data partition is logically detached

v Empty string = Data partition is visible
(normal status)

Bytes 2 through 32 are reserved for future
use.

SEQNO INTEGER Data partition sequence number (starting
from 0).

LOWINCLUSIVE CHAR (1) v N = Low key value is not inclusive

v Y = Low key value is inclusive

LOWVALUE VARCHAR (512) Low key value (a string representation of an
SQL value) for this data partition.

HIGHINCLUSIVE CHAR (1) v N = High key value is not inclusive

v Y = High key value is inclusive

HIGHVALUE VARCHAR (512) High key value (a string representation of an
SQL value) for this data partition.

CARD BIGINT Total number of rows in the data partition; -1
if statistics are not collected.

OVERFLOW BIGINT Total number of overflow records in the data
partition; -1 if statistics are not collected.

432 Partitioning and Clustering Guide

Table 46. SYSCAT.DATAPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

NPAGES BIGINT Total number of pages on which the rows of
the data partition exist; -1 if statistics are not
collected.

FPAGES BIGINT Total number of pages in the data partition;
-1 if statistics are not collected.

ACTIVE_BLOCKS BIGINT Total number of active blocks in the data
partition, or -1. Applies to multidimensional
clustering (MDC) tables only.

INDEX_TBSPACEID INTEGER Identifier for the table space which holds all
partitioned indexes for this data partition.

AVGROWSIZE SMALLINT Average length (in bytes) of both compressed
and uncompressed rows in this data
partition; -1 if statistics are not collected.

PCTROWSCOMPRESSED REAL Compressed rows as a percentage of the
total number of rows in the data partition; -1
if statistics are not collected.

PCTPAGESAVED SMALLINT Approximate percentage of pages saved in
the data partition as a result of row
compression. This value includes overhead
bytes for each user data row in the data
partition, but does not include the space that
is consumed by dictionary overhead; -1 if
statistics are not collected.

AVGCOMPRESSEDROWSIZE SMALLINT Average length (in bytes) of compressed
rows in this data partition; -1 if statistics are
not collected.

AVGROWCOMPRESSIONRATIO REAL For compressed rows in the data partition,
this is the average compression ratio by row;
that is, the average uncompressed row
length divided by the average compressed
row length; -1 if statistics are not collected.

STATS_TIME TIMESTAMP Y Time at which any change was last made to
recorded statistics for this object. Null if
statistics are not collected.

LASTUSED DATE Date when the data partition was last used
by any DML statement or the LOAD
command. This column is not updated when
the data partition is used on an HADR
standby database. The default value is
'0001-01-01'. This value is updated
asynchronously such that the value might
not reflect usage within the last 15 minutes
and will not change for 24 hours after an
update.

Appendix C. Partitioned database environment catalog views 433

SYSCAT.DBPARTITIONGROUPDEF

Each row represents a database partition that is contained in a database partition
group.

Table 47. SYSCAT.DBPARTITIONGROUPDEF Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR (128) Name of the database partition group that
contains the database partition.

DBPARTITIONNUM SMALLINT Partition number of a database partition that
is contained in the database partition group.
A valid partition number is between 0 and
999, inclusive.

IN_USE CHAR (1) Status of the database partition.

v A = The newly added database partition is
not in the distribution map, but the
containers for the table spaces in the
database partition group have been
created; the database partition is added to
the distribution map when a redistribute
database partition group operation has
completed successfully.

v D = The database partition will be
dropped when a redistribute database
partition group operation has completed
successfully.

v T = The newly added database partition is
not in the distribution map, and it was
added using the WITHOUT
TABLESPACES clause; containers must be
added to the table spaces in the database
partition group.

v Y = The database partition is in the
distribution map.

SYSCAT.DBPARTITIONGROUPS

Each row represents a database partition group.

Table 48. SYSCAT.DBPARTITIONGROUPS Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR (128) Name of the database partition group.

OWNER VARCHAR (128) Authorization ID of the owner of the
database partition group.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

PMAP_ID SMALLINT Identifier for the distribution map in the
SYSCAT.PARTITIONMAPS catalog view.

REDISTRIBUTE_PMAP_ID SMALLINT Identifier for the distribution map currently
being used for redistribution; -1 if
redistribution is currently not in progress.

434 Partitioning and Clustering Guide

Table 48. SYSCAT.DBPARTITIONGROUPS Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Creation time of the database partition
group.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
database partition group.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.PARTITIONMAPS

Each row represents a distribution map that is used to distribute the rows of a
table among the database partitions in a database partition group, based on
hashing the table's distribution

Table 49. SYSCAT.PARTITIONMAPS Catalog View

Column Name Data Type Nullable Description

PMAP_ID SMALLINT Identifier for the distribution map.

PARTITIONMAP BLOB (65536) Distribution map, a vector of 32768 two-byte
integers for a multiple partition database
partition group. For a single partition
database partition group, there is one entry
denoting the partition number of the single
partition.

Appendix C. Partitioned database environment catalog views 435

436 Partitioning and Clustering Guide

Appendix D. Overview of the DB2 technical information

DB2 technical information is available in multiple formats that can be accessed in
multiple ways.

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command-line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2
technical issue that the documentation does not resolve, contact your local IBM
service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 10.1 manuals in PDF format can be
downloaded from www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2012 437

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 50. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-3864-00 Yes April, 2012

Administrative Routines
and Views

SC27-3865-00 No April, 2012

Call Level Interface
Guide and Reference
Volume 1

SC27-3866-00 Yes April, 2012

Call Level Interface
Guide and Reference
Volume 2

SC27-3867-00 Yes April, 2012

Command Reference SC27-3868-00 Yes April, 2012

Database Administration
Concepts and
Configuration Reference

SC27-3871-00 Yes April, 2012

Data Movement Utilities
Guide and Reference

SC27-3869-00 Yes April, 2012

Database Monitoring
Guide and Reference

SC27-3887-00 Yes April, 2012

Data Recovery and High
Availability Guide and
Reference

SC27-3870-00 Yes April, 2012

Database Security Guide SC27-3872-00 Yes April, 2012

DB2 Workload
Management Guide and
Reference

SC27-3891-00 Yes April, 2012

Developing ADO.NET
and OLE DB
Applications

SC27-3873-00 Yes April, 2012

Developing Embedded
SQL Applications

SC27-3874-00 Yes April, 2012

Developing Java
Applications

SC27-3875-00 Yes April, 2012

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-3876-00 No April, 2012

Developing User-defined
Routines (SQL and
External)

SC27-3877-00 Yes April, 2012

Getting Started with
Database Application
Development

GI13-2046-00 Yes April, 2012

438 Partitioning and Clustering Guide

Table 50. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI13-2047-00 Yes April, 2012

Globalization Guide SC27-3878-00 Yes April, 2012

Installing DB2 Servers GC27-3884-00 Yes April, 2012

Installing IBM Data
Server Clients

GC27-3883-00 No April, 2012

Message Reference
Volume 1

SC27-3879-00 No April, 2012

Message Reference
Volume 2

SC27-3880-00 No April, 2012

Net Search Extender
Administration and
User's Guide

SC27-3895-00 No April, 2012

Partitioning and
Clustering Guide

SC27-3882-00 Yes April, 2012

pureXML Guide SC27-3892-00 Yes April, 2012

Spatial Extender User's
Guide and Reference

SC27-3894-00 No April, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-3896-00 Yes April, 2012

SQL Reference Volume 1 SC27-3885-00 Yes April, 2012

SQL Reference Volume 2 SC27-3886-00 Yes April, 2012

Text Search Guide SC27-3888-00 Yes April, 2012

Troubleshooting and
Tuning Database
Performance

SC27-3889-00 Yes April, 2012

Upgrading to DB2
Version 10.1

SC27-3881-00 Yes April, 2012

What's New for DB2
Version 10.1

SC27-3890-00 Yes April, 2012

XQuery Reference SC27-3893-00 No April, 2012

Table 51. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

DB2 Connect Installing
and Configuring DB2
Connect Personal Edition

SC27-3861-00 Yes April, 2012

DB2 Connect Installing
and Configuring DB2
Connect Servers

SC27-3862-00 Yes April, 2012

DB2 Connect User's
Guide

SC27-3863-00 Yes April, 2012

Appendix D. Overview of the DB2 technical information 439

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
Documentation for other versions of DB2 products is found in separate information
centers on ibm.com®.

About this task

For DB2 Version 10.1 topics, the DB2 Information Center URL is
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1.

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 10.1 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

440 Partitioning and Clustering Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v10r1
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates update existing Information Center features and languages.

One benefit of automatic updates is that the Information Center is unavailable
for a shorter time compared to during a manual update. In addition, automatic
updates can be set to run as part of other batch jobs that run periodically.

v Manual updates can be used to update existing Information Center features and
languages. Automatic updates reduce the downtime during the update process,
however you must use the manual process when you want to add features or
languages. For example, a local Information Center was originally installed with
both English and French languages, and now you want to also install the
German language; a manual update will install German, as well as, update the
existing Information Center features and languages. However, a manual update
requires you to manually stop, update, and restart the Information Center. The
Information Center is unavailable during the entire update process. In the
automatic update process the Information Center incurs an outage to restart the
Information Center after the update only.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V10.1
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 10.1 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Appendix D. Overview of the DB2 technical information 441

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system by using a machine that is connected to the internet
and has the DB2 Information Center installed. If many users on your network
will be installing the documentation updates, you can reduce the time required
for individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv10 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 10.1 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

442 Partitioning and Clustering Guide

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
/opt/ibm/db2ic/V10.1 directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check that the selections you want to install,
then click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the doc\bin directory within the installation
directory, and run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the doc/bin directory within the installation directory,
and run the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv10 start

Results

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 database products.
Lessons provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/.

Appendix D. Overview of the DB2 technical information 443

http://publib.boulder.ibm.com/infocenter/db2luw/10r1/

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center, which contains:
v Information about how to isolate and identify problems with DB2

diagnostic tools and utilities.
v Solutions to some of the most common problem.
v Advice to help solve other problems you might encounter with your

DB2 database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows

Terms and conditions
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for
the IBM website.

Personal use: You may reproduce these publications for your personal,
noncommercial use provided that all proprietary notices are preserved. You may
not distribute, display or make derivative work of these publications, or any
portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these publications, or reproduce, distribute
or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

444 Partitioning and Clustering Guide

http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

Rights: Except as expressly granted in this permission, no other permissions,
licenses or rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web
at www.ibm.com/legal/copytrade.shtml

Appendix D. Overview of the DB2 technical information 445

http://www.ibm.com/legal/copytrade.shtml

446 Partitioning and Clustering Guide

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2012 447

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

448 Partitioning and Clustering Guide

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Celeron, Intel SpeedStep, Itanium,

and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix E. Notices 449

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

450 Partitioning and Clustering Guide

Index

A
access plans

indexes
creating additional (partitioned database

environments) 346
Add Database Partition API 381
ADMIN_CMD procedure

commands
GET STMM TUNING 417
UPDATE STMM TUNING 418

administration notification log
database restart operations 267

agents
partitioned databases 329

AIX
DB2 home file system creation 107
distributing commands to multiple workstations 103
environment settings 101
installing

DB2 server products 94
NFS 104
required users

creating 111
ALTER DATABASE PARTITION GROUP statement 411
ALTER NODEGROUP statement

see ALTER DATABASE PARTITION GROUP
statement 411

APIs
sqleaddn 381
sqlecran 383
sqledpan 384
sqledrpn 385
sqlugrpn 387

asynchronous processing 218
attaching data partitions

description 201
authentication

partitioned databases 5
automatic restart

crash recovery 267

B
BACKUP DATABASE command

backing up data 427
backup utility

restrictions 427
boundary ranges

specifying 176

C
capacity

management 138
overview 78

catalog database partitions
partitioned database environments 3, 123

catalog statistics
index cluster ratio 331

catalog tables
stored on catalog database partition 3, 123

catalog views
BUFFERPOOLDBPARTITIONS 431
DATAPARTITIONEXPRESSION 431
DATAPARTITIONS 431
DBPARTITIONGROUPDEF 434
DBPARTITIONGROUPS 434
PARTITIONMAPS 435

change database partition server configuration command 398
clustering

data
multidimensional clustering tables 37

clustering indexes
partitioned tables 313

collocation
table 4, 10

column expressions 46, 189
commands

db2adutl
cross-node recovery examples 273

db2nchg 398
db2ncrt 399
db2ndrop 401
GET STMM TUNING 417
REDISTRIBUTE DATABASE PARTITION GROUP 391
running in parallel 163
UPDATE STMM TUNING 418

communications
connection elapse time 372
fast communication manager (FCM) 100, 139

compatibility
partition 11

configuration
multiple partitions 78

configuration parameters
autorestart 267
conn_elapse 372
fcm_num_buffers 93, 139, 372
fcm_num_channels 373
intra_parallel 376
logarchopt1

cross-node recovery examples 273
max_connretries 374
max_querydegree 377
max_time_diff 375
partitioned database 3, 123
start_stop_time 375
vendoropt

cross-node recovery examples 273
conn_elapse configuration parameter 372
connection concentrator

agents in partitioned database 329
connection elapsed time configuration parameter 372
connections

elapsed time 372
containers

SMS table spaces
adding 156

Coordinated Universal Time
max_time_diff configuration parameter 375

© Copyright IBM Corp. 2012 451

coordinator partitions
details 77

crash recovery
details 267

create database at node API 383
CREATE DATABASE PARTITION GROUP statement 414
CREATE NODEGROUP statement 414
cross-node database recovery examples 273
CURRENT MEMBER special register 404

D
data partition elimination 298
data partitioning 4
data partitions

adding
procedure 220

altering 198
attaching

overview 197, 201
scenario 225

attributes 215
creating 176
detach phases 217
detaching

overview 197, 212
scenario 225

dropping 222
overview 11, 14
range definition 176
rolling in data

overview 197, 201
scenario 225

rolling out data
overview 197, 212
scenario 225

rotating
scenario 224

data representation
distribution

organization schemes 14
partitioned database environments 77

organizing
Informix comparison 19
overview 14

redistribution
database partition groups 359
determining need 356
event logging 360
log space requirements 359
methods 351
overview 351, 357
recovery 360
REDISTRIBUTE DATABASE PARTITION GROUP

command 391
data types

partition compatibility 403
database configuration file

changing 195
database manager

starting 375
stopping 375

database partition compatibility
overview 403

database partition groups
adding partitions 411
creating 414

database partition groups (continued)
data location determination 8
distribution map creation 414
dropping partitions 411
IBMDEFAULTGROUP 173
overview 5
query optimization impact 336
tables 173

database partition servers
dropping 156
enabling communications (UNIX) 141
failed 268
installing using response file

Linux 117
UNIX 117
Windows 115

issuing commands 160, 289
multiple logical database partitions 135
multiple logical partitions 135
recovering from failure 271
specifying 133

database partitions
adding

overview 145
restrictions 147
running system 146
stopped system (UNIX) 149
stopped system (Windows) 147

catalog 3, 123
changing (Windows) 154
database configuration updates 195
managing 145
overview 77
processors

multiple 78
single 78

synchronizing clocks 286
databases

configuring
multiple partitions 369

creating
partitioned database environments 3, 123

data partitioning enabling 3, 123
rebuilding

partitioned 272
DATAPARTITIONNUM scalar function 407
DB_PARTITIONS table function 419
DB2 Information Center

updating 440, 442
versions 440

DB2 pureScale
event monitoring 265

DB2 servers
capacity management 138
installing

Linux 94
UNIX 94
Windows 89

partitioned
Windows 92

DB2 Setup wizard
installing

DB2 servers (Linux)DB2 servers (UNIX) 97
db2_all command

overview 161, 163
partitioned database environments 160, 289
specifying 161

452 Partitioning and Clustering Guide

db2_call_stack command 163
DB2_FCM_SETTINGS registry variable 370
DB2_FORCE_OFFLINE_ADD_PARTITION registry

variable 370
db2_kill command 163
DB2_NUM_FAILOVER_NODES registry variable 370
DB2_PARTITIONEDLOAD_DEFAULT registry variable 370
db2adutl command

cross-node recovery examples 273
db2Backup API

backing up data 427
DB2CHGPWD_EEE registry variable 370
db2nchg command

changing database partition server configurations 154
details 398

db2ncrt command
adding database partition servers 153
details 399

db2ndrop command
details 401
dropping database partition servers 156

db2nlist command 152
db2nodes.cfg file

ALTER DATABASE PARTITION GROUP statement 411
CREATE DATABASE PARTITION GROUP statement 414
creating 124
DBPARTITIONNUM function 408
format 126
netname field 92
updating 133

DB2PORTRANGE registry variable 370
DBPARTITIONNUM function 408
declustering

partial 4, 77
Design Advisor

converting single-partition to multipartition databases 317
detached data partitions

attributes 215
detach phases 217
details 212

detached table partitions
asynchronous 218

dimensions of MDC tables 39
distribution keys

details 9
loading data 235
partitioned database environments 173

distribution maps
details 8

documentation
overview 437
PDF files 437
printed 437
terms and conditions of use 444

drop database on database partition server API 384
drop database partition server from an instance

command 401

E
environment variables

$RAHBUFDIR 163
$RAHBUFNAME 163
$RAHENV 166
rah command 166
RAHDOTFILES 168

error messages
partitioned databases 151

event monitors
creatingin DB2 pureScale environment

for partitioned databases 265
extents

insert time clustering (ITC) tables 67
multidimensional clustering tables 67

F
fast communication manager (Linux and UNIX)

See FCM 100, 139
FCM

channels 373
communications between database partition servers 141
configuration parameters

fcm_num_buffers 372
fcm_num_channels 373

message buffers 93, 139
overview

Linux 100, 139
UNIX 100, 139
Windows 93, 139

port numbers 141
service entry syntax 140

fcm_num_buffers configuration parameter 93, 139
details 372
overview 100, 139

fcm_num_channels configuration parameter
details 373
overview 100, 139

file systems
creating for a partitioned database system

Linux 106
fragment by expression 19
fragment elimination

see data partition elimination 298
free space control record (FSCR)

ITC tables 331
MDC tables 331

functions
scalar

DBPARTITIONNUM 408
NODENUMBER (see functions, scalar,

DBPARTITIONNUM) 408
table

DB_PARTITIONS 419

G
get row distribution number API 387
GET STMM TUNING command 417
global snapshots on partitioned database systems 265

H
hardware

parallelism 78
partitions 78
processors 78

hash partitioning 4
help

SQL statements 440
highlighting conventions xi

Index 453

home file system
AIX 107

how this book is structured vii
HP-UX

installing
DB2 servers 94

Network File System (NFS) 104

I
I/O

parallelism
overview 73

index time clustering (ITC) tables
creating 46, 189
moving data to 46, 189

indexes
cluster ratio 331
clustering

block-based comparison 37
details 313

managing
ITC tables 331
MDC tables 331

matching source table index with target table partitioned
index 210

migrating 182
partitioned database environment 346
partitioned tables

details 307
XML 200

insert time clustering (ITC) tables
block maps 64
deleting from 66
loading 229
lock modes

table and RID index scans 319
logging 52
management of tables and indexes 331
updating 66

installation
database partition servers

response files (Linux) 117
response files (UNIX) 117
response files (Windows) 115

DB2 Enterprise Server Edition 92
DB2 products

as non-root user 425
methods

overview 94
updating AIX environment settings 101

instances
adding partition servers 153
listing database partition servers 152
partition servers

changing 154
dropping 156

inter-partition query parallelism 136
interquery parallelism 73
intra_parallel database manager configuration parameter 376
intra-partition parallelism

enabling 137
optimization strategies 333
used with inter-partition parallelism 73

intraquery parallelism 73

J
joins

methods 338
overview 335
partitioned database environments

methods 338
table queue strategy 337

K
keys

distribution 9
table partitioning 24

L
large objects (LOBs)

partitioned tables 174
licenses

partitioned database environments 77
Linux

default port ranges 141
installing

DB2 servers 94, 97
NFS verification 104
partitioned database system file systems 106
required users 109
verifying partitioned database server installations 120

LOAD command
partitioned database environments 238, 254

load operations
restarting

multi-partition 245
LOAD QUERY command

partitioned database environments 243
load utility

parallelism 229
loading

configuration options 246
database partitions 235, 237
examples

partitioned database environments 251
insert time clustering (ITC) tables 229
multidimensional clustered (MDC) tables 229
partitioned database environments 246
partitioned tables 26, 230

lock modes
insert time clustering (ITC) tables

RID index scans 319
table scans 319

multidimensional clustering (MDC) tables
block index scans 323
RID index scans 319
table scans 319

locks
partitioned tables 327

logarchopt1 configuration parameter
cross-node recovery examples 273

logical database partitions 78
database partition servers 133, 135

logical partitions
multiple 135

logs
space requirements

data redistribution 359

454 Partitioning and Clustering Guide

M
materialized query tables (MQTs)

behavior 184
partitioned databases 344
partitioned tables 184
replicated 29, 344

max_connretries configuration parameter 374
max_querydegree configuration parameter 377
max_time_diff database manager configuration parameter

details 375
maximum query degree of parallelism configuration parameter

details 377
maximum time difference between members configuration

parameter 375
members

maximum time difference among 375
memory

partitioned database environments 367
message buffers

Fast Communications Manager (FCM) 93, 139
migration

indexes 182
partitioned database environments 255

monitoring
data partitions 257
rah processes 170

monotonicity 46, 189
moving data

multidimensional tables 46, 189
MPP environments 78
multidimensional clustering (MDC) tables

block indexes 53, 59
block maps 64
column expressions as dimensions 46, 189
creating 46, 189
deleting from 66
density of values 39
details 37
dimensions 39
DMS table spaces 46, 189
loading 51, 229
lock modes

block index scans 323
table and RID index scans 319

logging 52
maintaining clustering automatically 62
management of tables and indexes 331
moving data to 46, 189
optimization strategies 303
partitioned tables 30, 67, 293
rollout deletion 303
scenarios 56
updating 66

multiple logical partitions
configuring 135

multiple partition configurations 78
multiple-partition databases

converting from single-partition databases 317
database partition groups 5

N
Network File System (NFS)

verifying operation 104
node configuration files

creating 124

node configuration files (continued)
format 126
updating 133

node connection retries configuration parameter 374
NODENUMBER function 408
nodes

connection elapse time 372
synchronization 286

non-root installations
installing 425

notices 447

O
optimization

intra-partition parallelism 333
joins in partitioned database environments 338
MDC tables 303
partitioned tables 298

P
parallelism

backups 73
configuration parameters

intra_parallel 376
max_querydegree 377

hardware environments 78
I/O

overview 73
index creation 73
inter-partition 73
intra-partition

enabling 137
optimization strategies 333
overview 73

load utility 73, 229
overview 73
partitioned database environments 77
partitions 78
processors 78
query 73

partial declustering
overview 77

partitioned databases 265
creating 3, 123
data redistribution 157
database partition groups 5
dropping partitions 152
duplicate machine entries 133
errors when adding database partitions 151
global snapshots 265
installation verification

Linux 120
UNIX 120
Windows 119

join methods 338
join strategies 337
loading data

migration 254
monitoring 243
overview 235, 237
restrictions 238
version compatibility 254

machine list
duplicate entry elimination 133

Index 455

partitioned databases (continued)
machine list (continued)

specifying 132
migrating 254
overview 4, 77
partition compatibility 11, 403
rebuilding databases 272
redistributing data 357, 360
replicated materialized query tables 344
self-tuning memory 365, 367
setting up 3, 113, 123
transactions

failure recovery 268
version compatibility 254

partitioned tables
adding data partitions 197, 220
altering 197, 198
attaching partitions 197, 201
clustering indexes 313
converting 206
creating 175, 176
data ranges 176
detached data partitions 215
detaching data partitions 197, 212, 217, 222
indexes 307
large objects (LOBs) 174
loading 26, 180, 230
locking 327
materialized query tables (MQTs) 184
migrating

pre-Version 9.1 206
tables 180
views 180

mismatches 206
multidimensional clustering (MDC) tables 30, 67, 293
optimization strategies 298
overview 11, 12
reorganizing 257
restrictions 11, 198
rolling in data partitions 197, 201
rolling out data partitions 197
scenarios

attaching and detaching data partitions 225
rolling in and rolling out data partitions 225
rotating data 224

see partitioned tables 11
partitioning keys

overview 24
partitioning maps

creating for database partition groups 414
performance

catalog information 3, 123
points of consistency

database 267
port number ranges

defining
Windows 153

enabling communication
Linux 141
UNIX 141

verifying avalability
Linux 105
UNIX 105

prefix sequences 164
problem determination

information available 444
tutorials 444

procedures
STEPWISE_REDISTRIBUTE_DBPG 361, 421

processors
adding 138

proxy nodes
Tivoli Storage Manager (TSM)

example 273

Q
queries

multidimensional clustering 39
parallelism 73

query optimization
database partition group effects 336

R
rah command

controlling 166
determining problems 168
environment variables 166
monitoring processes 170
overview 160, 161, 163, 289
prefix sequences 164
RAHCHECKBUF environment variable 163
RAHDOTFILES environment variable 168
RAHOSTFILE environment variable 132
RAHOSTLIST environment variable 132
RAHWAITTIME environment variable 170
recursively invoked 163
running commands in parallel 163
setting default environment profile 171
specifying

database partition server list 132
parameter or response to prompt 161

RAHCHECKBUF environment variable 163
RAHDOTFILES environment variable 168
RAHOSTFILE environment variable 132
RAHOSTLIST environment variable 132
RAHTREETHRESH environment variable 163
RAHWAITTIME environment variable 170
range partitioning

DB2 pureScale 34
see data partitions 14
see table partitioning 12

range-clustered tables
advantages 35
guidelines 187
restrictions 36
scenarios 187

ranges
defining for data partitions 176
restrictions 176

recovery
after failure of database partition server 271
crash 267
cross-node examples 273
Tivoli Storage Manager (TSM) proxy nodes example 273
two-phase commit protocol 268

REDISTRIBUTE DATABASE PARTITION GROUP command
without using ADMIN_CMD 391

redistribution of data
database partition groups 359, 361
event log file 360
methods 351

456 Partitioning and Clustering Guide

redistribution of data (continued)
necessity 356
prerequisites 354
procedures 361, 421
restrictions 355

registry variables
DB2_FCM_SETTINGS 370
DB2_FORCE_OFFLINE_ADD_PARTITION 370
DB2_NO_MPFA_FOR _NEW_DB 46, 189
DB2_NUM_FAILOVER_NODES 370
DB2_PARTITIONEDLOAD__DEFAULT 370
DB2CHGPWD_ESE 370
DB2PORTRANGE 370

replicated materialized query tables 29
response files

installation
database partition servers 115, 117

RESTART DATABASE command
crash recovery 267

rollout
deferred detaching 218

S
scalability

environments 78
scenarios

multidimensional clustering (MDC) tables 56
self-tuning memory

partitioned database environments 365, 367
SIGTTIN message 161
single partitions

multiple-processor environments 78
single-processor environments 78

SMP cluster environment 78
snapshot monitoring

data partitions 257
interpreting output for data partitions 257
partitioned database systems 265

Solaris operating systems
installing

DB2 servers 94
verifying that NFS is running 104

special registers
CURRENT MEMBER 404
CURRENT NODE (see special registers, CURRENT

MEMBER) 404
SQL statements

ALTER DATABASE PARTITION GROUP 411
ALTER NODEGROUP (see SQL statements, ALTER

DATABASE PARTITION GROUP) 411
CREATE DATABASE PARTITION GROUP 414
CREATE NODEGROUP (see SQL statements, CREATE

DATABASE PARTITION GROUP) 414
help

displaying 440
sqleaddn API 381
sqlecran API 383
sqledpan API 384
sqledrpn API 385
sqlugrpn API

details 387
start and stop timeout configuration parameter 375
start_stop_time configuration parameter 375
stdin 161
STEPWISE_REDISTRIBUTE_DBPG procedure

details 421

STEPWISE_REDISTRIBUTE_DBPG procedure (continued)
redistributing data 361

synchronization
database partitions 286
node 286
recovery 286

system-managed space (SMS)
table spaces

adding containers 156

T
table partitions

benefits 12
detaching 218
details 12
placement 179

table spaces
creating

database partition groups 30
tables

altering
partitioned tables 220, 222

collocation 4, 10
converting 180
creating

partitioned databases 173
insert time clustering (ITC) 331
join strategies in partitioned databases 337
materialized query 184
migrating to partitioned tables 180
multidimensional clustering (MDC) 30, 37, 67, 293, 331
partitioned

clustering indexes 313
details 12
materialized query tables (MQTs) 184
multidimensional clustering (MDC) tables 30, 67, 293
overview 11

queues 337
range-clustered 35

guidelines 187
restrictions 36
scenarios 187

regular
multidimensional clustering (MDC) comparison 37

termination
load operations

partitioned database environments 245
terms and conditions

publications 444
time

maximum difference between members 375
Tivoli Storage Manager

recovery example 273
transactions

failures
recovery in partitioned database environment 268
reducing impact 267

troubleshooting
online information 444
tutorials 444

tuning partition
determining 367

tutorials
list 443
problem determination 444
pureXML 443

Index 457

tutorials (continued)
troubleshooting 444

two-phase commit
partitioned database environments 268

U
UNION ALL views

converting 180
uniprocessor environments 78
UNIX

default port ranges 141
installing

DB2 Setup wizard 97
partitioned database server installation verification 120
updating node configuration file 133

UPDATE STMM TUNING command
using ADMIN_CMD 418

updates
DB2 Information Center 440, 442
db2nodes.cfg (UNIX) 133
node configuration file 133

users
creating required

AIX 111
Linux 109

utility parallelism 73

V
vendoropt configuration parameter

cross-node recovery examples 273
verification

port range availability
Linux 105
UNIX 105

W
who should use this book vii
Windows

database partition additions 147
installation verification

partitioned database environments 119
installing

DB2 servers (with DB2 Setup wizard) 89

X
XML column path indexes

altering tables 200
XML data

partitioned indexes 307
XML indexes

altering table 200
XML region indexes

altering table 200

458 Partitioning and Clustering Guide

����

Printed in USA

SC27-3882-00

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

10
.1

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Pa
rti

tio
ni

ng
an

d
Cl

us
te

rin
g

Gu
id

e
�
�

�

	Contents
	About this book
	Who should use this book
	How this book is structured
	Highlighting conventions

	Part 1. Planning and design considerations
	Chapter 1. Partitioned databases and tables
	Setting up partitioned database environments
	Database partitioning across multiple database partitions
	Partitioned database authentication considerations
	Database partition groups
	Distribution maps
	Distribution keys
	Table collocation
	Partition compatibility

	Partitioned tables
	Table partitioning
	Data partitions and ranges
	Data organization schemes
	Data organization schemes in DB2 and Informix databases
	Table partitioning keys
	Load considerations for partitioned tables
	Replicated materialized query tables
	Table spaces in database partition groups
	Table partitioning and multidimensional clustering tables
	Table partitioning in a DB2 pureScale environment

	Chapter 2. Range-clustered tables
	Restrictions on range-clustered tables

	Chapter 3. Multi-dimensional clustered (MDC) tables
	Multidimensional clustering tables
	Comparison of regular and MDC tables
	Choosing MDC table dimensions
	Considerations when creating MDC or ITC tables
	Load considerations for MDC and ITC tables
	Logging considerations for MDC and ITC tables
	Block index considerations for MDC and ITC tables

	Block indexes for MDC tables
	Scenario: Multidimensional clustered (MDC) tables
	Block indexes and query performance for MDC tables
	Maintaining clustering automatically during INSERT operations
	Block maps for MDC and ITC tables
	Deleting from MDC and ITC tables
	Updates to MDC and ITC tables
	Multidimensional and insert time clustering extent management
	Table partitioning and multidimensional clustering tables

	Chapter 4. Parallel database systems
	Parallelism
	Partitioned database environments
	Database partition and processor environments

	Part 2. Installation considerations
	Chapter 5. Installation prerequisites
	Installing DB2 database servers using the DB2 Setup wizard (Windows)
	Preparing the environment for a partitioned DB2 server (Windows)
	Fast communications manager (Windows)

	An overview of installing DB2 database servers (Linux and UNIX)
	DB2 installation methods
	Installing DB2 servers using the DB2 Setup wizard (Linux and UNIX)
	Fast communications manager (Linux and UNIX)

	Chapter 6. Before you install
	Additional partitioned database environment preinstallation tasks (Linux and UNIX)
	Updating environment settings for a partitioned DB2 installation (AIX)
	Setting up a working collective to distribute commands to multiple AIX nodes
	Verifying that NFS is running (Linux and UNIX)
	Verifying port range availability on participating computers (Linux and UNIX)
	Creating a file system for a partitioned database system (Linux)
	Creating a DB2 home file system for a partitioned database system (AIX)
	Required users for a DB2 pureScale Feature installation (Linux)
	Creating required users for a DB2 server installation in a partitioned database environment (AIX)

	Chapter 7. Installing your DB2 server product
	Setting up a partitioned database environment
	Installing database partition servers on participating computers using a response file (Windows)
	Installing database partition servers on participating computers using a response file (Linux and UNIX)

	Chapter 8. After you install
	Verifying the installation
	Verifying a partitioned database environment installation (Windows)
	Verifying a partitioned database server installation (Linux and UNIX)

	Part 3. Implementation and maintenance
	Chapter 9. Before creating a database
	Setting up partitioned database environments
	Creating node configuration files
	Format of the DB2 node configuration file
	Specifying the list of machines in a partitioned database environment
	Eliminating duplicate entries from a list of machines in a partitioned database environment
	Updating the node configuration file (Linux and UNIX)
	Setting up multiple logical partitions
	Configuring multiple logical partitions

	Enabling inter-partition query parallelism
	Enabling intra-partition parallelism for queries
	Management of data server capacity
	Fast communications manager
	Fast communications manager (Windows)
	Fast communications manager (Linux and UNIX)
	Enabling communication between database partitions using FCM communications
	Enabling communications between database partition servers (Linux and UNIX)

	Chapter 10. Creating and managing partitioned database environments
	Managing database partitions
	Adding database partitions in partitioned database environments
	Adding an online database partition
	Restrictions when working online to add a database partition
	Adding a database partition offline (Windows)
	Adding a database partition offline (Linux and UNIX)
	Error recovery when adding database partitions
	Dropping database partitions
	Listing database partition servers in an instance (Windows)
	Adding database partition servers to an instance (Windows)
	Changing database partitions (Windows)
	Adding containers to SMS table spaces on database partitions
	Dropping a database partition from an instance (Windows)

	Scenario: Redistributing data in new database partitions
	Issuing commands in partitioned database environments
	rah and db2_all commands overview
	Specifying the rah and db2_all commands
	Running commands in parallel (Linux, UNIX)
	Extension of the rah command to use tree logic (AIX and Solaris)
	rah and db2_all commands
	rah and db2_all command prefix sequences
	Controlling the rah command
	Specifying which . files run with rah (Linux and UNIX)
	Determining problems with rah (Linux, UNIX)
	Monitoring rah processes (Linux, UNIX)
	Setting the default environment profile for rah on Windows

	Chapter 11. Creating tables and other related table objects
	Tables in partitioned database environments
	Large object behavior in partitioned tables
	Creating partitioned tables
	Defining ranges on partitioned tables
	Placement of the data, index and long data of a data partition
	Migrating existing tables and views to partitioned tables
	Converting existing indexes to partitioned indexes

	Partitioned materialized query table (MQT) behavior
	Creating range-clustered tables
	Guidelines for using range-clustered tables
	Scenarios: Range-clustered tables

	Considerations when creating MDC or ITC tables

	Chapter 12. Altering a database
	Altering an instance
	Changing the database configuration across multiple database partitions

	Altering a database

	Chapter 13. Altering tables and other related table objects
	Altering partitioned tables
	Guidelines and restrictions on altering partitioned tables
	Special considerations for XML indexes when altering a table to ADD, ATTACH, or DETACH a partition
	Attaching data partitions
	Guidelines for attaching data partitions to partitioned tables
	Conditions for matching a source table index with a target table partitioned index during ATTACH PARTITION
	Detaching data partitions
	Attributes of detached data partitions
	Data partition detach phases
	Asynchronous partition detach for data partitioned tables
	Adding data partitions to partitioned tables
	Dropping data partitions
	Scenario: Rotating data in a partitioned table
	Scenarios: Rolling in and rolling out partitioned table data

	Chapter 14. Load
	Parallelism and loading
	MDC and ITC considerations
	Load considerations for partitioned tables

	Chapter 15. Loading data in a partitioned database environment
	Load overview–partitioned database environments
	Loading data in a partitioned database environment–hints and tips
	Loading data in a partitioned database environment
	Monitoring a load operation in a partitioned database environment using the LOAD QUERY command
	Resuming, restarting, or terminating load operations in a partitioned database environment
	Load configuration options for partitioned database environments
	Load sessions in a partitioned database environment - CLP examples
	Migration and version compatibility

	Chapter 16. Migration of partitioned database environments
	Migrating partitioned databases

	Chapter 17. Using snapshot and event monitors
	Using snapshot monitor data to monitor the reorganization of a partitioned table
	Global snapshots on partitioned database systems
	Creating an event monitor for partitioned databases, or for databases in a DB2 pureScale environment

	Chapter 18. Developing a good backup and recovery strategy
	Crash recovery
	Recovering from transaction failures in a partitioned database environment
	Recovering from the failure of a database partition server
	Rebuilding partitioned databases
	Recovering data using db2adutl
	Synchronizing clocks in a partitioned database environment

	Chapter 19. Troubleshooting
	Troubleshooting partitioned database environments
	Issuing commands in partitioned database environments

	Part 4. Performance issues
	Chapter 20. Performance issues in database design
	Performance enhancing features
	Table partitioning and multidimensional clustering tables
	Optimization strategies for partitioned tables
	Optimization strategies for MDC tables

	Chapter 21. Indexes
	Indexes in partitioned tables
	Index behavior on partitioned tables
	Clustering of nonpartitioned indexes on partitioned tables

	Chapter 22. Design advisor
	Using the Design Advisor to convert from a single-partition to a multi-partition database

	Chapter 23. Managing concurrency
	Lock modes for MDC and ITC tables and RID index scans
	Lock modes for MDC block index scans
	Locking behavior on partitioned tables

	Chapter 24. Agent management
	Agents in a partitioned database

	Chapter 25. Optimizing access plans
	Index access and cluster ratios
	Table and index management for MDC and ITC tables

	Optimization strategies for intra-partition parallelism
	Joins
	Database partition group impact on query optimization
	Join strategies for partitioned databases
	Join methods for partitioned databases
	Replicated materialized query tables in partitioned database environments

	Creating additional indexes on table columns in a partitioned database environment
	What's Next

	Chapter 26. Data redistribution
	Comparison of logged, recoverable redistribution and minimally logged, not roll-forward recoverable redistribution
	Prerequisites for data redistribution
	Restrictions on data redistribution
	Determining if data redistribution is needed
	Redistributing data across database partitions by using the REDISTRIBUTE DATABASE PARTITION GROUP command
	Redistributing data in a database partition group
	Log space requirements for data redistribution
	Redistribution event log files
	Redistributing database partition groups using the STEPWISE_REDISTRIBUTE_DBPG procedure

	Chapter 27. Configuring self-tuning memory
	Self-tuning memory in partitioned database environments
	Using self-tuning memory in partitioned database environments

	Chapter 28. DB2 configuration parameters and variables
	Configuring databases across multiple partitions
	Partitioned database environment variables
	Partitioned database environment configuration parameters
	Communications
	conn_elapse - Connection elapse time
	fcm_num_buffers - Number of FCM buffers
	fcm_num_channels - Number of FCM channels
	max_connretries - Node connection retries
	max_time_diff - Maximum time difference between members
	start_stop_time - Start and stop timeout

	Parallel processing
	intra_parallel - Enable intrapartition parallelism
	max_querydegree - Maximum query degree of parallelism

	Part 5. Administrative APIs, commands, SQL statements
	Chapter 29. Administrative APIs
	sqleaddn - Add a database partition to the partitioned database environment
	sqlecran - Create a database on a database partition server
	sqledpan - Drop a database on a database partition server
	sqledrpn - Check whether a database partition server can be dropped
	sqlugrpn - Get the database partition server number for a row

	Chapter 30. Commands
	REDISTRIBUTE DATABASE PARTITION GROUP
	db2nchg - Change database partition server configuration
	db2ncrt - Add database partition server to an instance
	db2ndrop - Drop database partition server from an instance

	Chapter 31. SQL language elements
	Data types
	Database partition-compatible data types

	Special registers
	CURRENT MEMBER

	Chapter 32. SQL functions
	DATAPARTITIONNUM
	DBPARTITIONNUM

	Chapter 33. SQL statements
	ALTER DATABASE PARTITION GROUP
	CREATE DATABASE PARTITION GROUP

	Chapter 34. Supported administrative SQL routines and views
	ADMIN_CMD stored procedure and associated administrative SQL routines
	GET STMM TUNING command using the ADMIN_CMD procedure
	UPDATE STMM TUNING command using the ADMIN_CMD procedure

	Configuration administrative SQL routines and views
	DB_PARTITIONS

	Stepwise redistribute administrative SQL routines
	STEPWISE_REDISTRIBUTE_DBPG procedure - Redistribute part of database partition group

	Part 6. Appendixes
	Appendix A. Install as non-root user
	Installing DB2 database servers as a non-root user

	Appendix B. Using backup
	Backing up data

	Appendix C. Partitioned database environment catalog views
	SYSCAT.BUFFERPOOLDBPARTITIONS
	SYSCAT.DATAPARTITIONEXPRESSION
	SYSCAT.DATAPARTITIONS
	SYSCAT.DBPARTITIONGROUPDEF
	SYSCAT.DBPARTITIONGROUPS
	SYSCAT.PARTITIONMAPS

	Appendix D. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and conditions

	Appendix E. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

