IBM® DB2® for Linux®, UNIX®, and Windows®

Best Practices
Implementing DB2® Workload Management in a
Data Warehouse

<||I

Authors
Paul Bird
Senior Technical Staff Member
Optim & DB2® Development
IBM Toronto Laboratory

Rimas P. Kalesnykas
DB2 Information Developer
IBM Toronto Laboratory

© Copyright IBM Corp. 2011

iii

iv Implementing DB2® Workload Management

Contents
Executive summary.

Introduction . C e

A short review of DB2 workload management .
DB2 workload management and DB2 workload
manager . .
Prerequisite concepts and termmology

Rationale: DB2 workload management

best practices goals and objectives.
Overview
Achieving a stable predlctable system
Signs of a healthy system.
Managing system capac1ty with DBZ workload
management . e

Design: Configuring DB2 workload
management in stages .
Why stages? .
Stage 0: Default DBZ workload management
configuration .
Stage 1: Untuned best pract1ces workload
management configuration .
Best practices configuration template
Template description .
Template work class def1n1t1ons
Template threshold definitions .

Stage 2: Tuned best practices workload management
. 20

configuration .

Stage 3: Advanced workload management
configurations .
Implementation t1mellne .

Implementation: Reaching a stage 2
workload management configuration.
Transition from stage 0 to stage 1 . .
Guidelines for determining initial concurrency
threshold values for step 6
Determining capacity .
Allocating capacity . .
Transitioning from stage 1 to stage 2 .
Guidelines for transitioning to a stage 2
configuration .

Gathering detailed momtormg 1nformat1on for

adjusting work class definitions
Adjusting work class definitions

Gathering detailed monitoring information for

adjusting concurrency threshold values .
Adjusting concurrency threshold values .
Final steps to complete a stable stage 2
configuration . .
Protective measures
Creating workloads.

© Copyright IBM Corp. 2011

.1

a1

N

[e>RNe RN

. 10

. 15
.15

.15

. 16
.17
.17
.19

. 19

.21
.22

. 25
.25

.27
. 28
. 30
.32

. 32

. 32

. 34

. 35
. 35

. 38
. 39
.41

Monitoring: Maintaining a stable stage

2 configuration .

Monitoring system health.

Monitoring activity behaviors .
Awareness of threshold violations . .
Watching for drift from the baseline norms.

Monitoring system behaviors .
Monitoring resource consumption .
Monitoring estimated cost distribution

Additional monitoring situations .

Other operational considerations .
Space management with the statistics event
monitor. .

Event monitor ma1ntenance .

Analyzing statistical data by running sample SQL
..53

scripts .

Advanced configurations: Stage 3
scenarios .

Scenario: Regulating incoming work .
Scenario: Protected work .

Scenario: Production shifts

Scenario: Tiered service offerings .
Scenario: Non-CPU contention .

Conclusion.
Further reading .
Contributors

Appendix A. DB2 workload

management and monitoring highlights

for DB2 for Linux, UNIX, and Windows
Version 9.7 .

Appendix B. Creating prereqwsﬂe
event monitors

Appendix C. DDL scripts for
transitioning from stage 0 to stage 1.

Appendix D. Techniques for adjustlng
work class definitions .

Analyzing activity event monitor data

A lumpy distribution . .

No entries in a service subclass.

Minimal entries in a service subclass .

U-shaped distribution in a service subclass .
Queries with similar estimated costs .

. 43
. 43
. 45
. 45
. 46
. 47
. 48
. 49
. 49
. 51

. 51

. 52

. 55
. 55
. 56
.59
. 60
. 62

. 65

. 67

. 69

.71

. 73

. 75

. 81
. 81
. 87
. 88
. 89
. 90
. 96

Appendix E. SQL for transitioning from
stage1tostage2.99

Appendix F. SQL for maintaining a
stable stage 2 configuration 109

Appendix G. Alternative approaches

to statistical data analysis. 127
Alternative approach to determining I/O impact 127

vi Implementing DB2® Workload Management

Example SQL for post-processing of statistics event
monitor data

Extracting data .

Post-processing data .

Aggregating historical data .

Index .

Notices .

. 127
. 128
. 131
. 134

. 135

. 137

Executive summary

The objective of this document is to guide anyone new to the implementation of
workload management within the DB2 for Linux, UNIX, and Windows product
through the step-by-step process needed to establish an initial configuration that is
designed to help ensure the stability and predictability of the database system as a
whole.

The following are the two main lessons learned from experience with regards to
workload management:

1. Having a workload management plan or configuration in place for your system
provides the following significant advantages:

¢ A database system cannot become swamped and unresponsive due to low
priority, complex work consuming too much resource

* The root cause of many issues in DB2 environments are resolved with the
implementation of workload management principles

2. A workload management configuration that is too complex makes a system
difficult to monitor and manage

* The "Keep It Simple, Silly" (KISS) principle is still the best approach, and
complexity should be added only when needed

This document presents a set of definitions representing the different stages of
maturity for a workload management configuration in a DB2 for Linux, UNIX, and
Windows database. These stages range from stage 0 through to the advanced stage
3 configuration. A specific configuration template and process is provided as part
of these best practices to enable customers to progress from a stage 0 configuration
to a stage 2 configuration. General descriptions and advice are also given about
common stage 3 scenarios.

It is recommended that all DB2 customers, with a data warehouse, implement at
least a stage 2 workload management configuration and this goal is the primary
focus of this document. A stage 2 configuration focuses on stabilizing the overall
system behavior. Some customers might require a more advanced, stage 3
configuration to address their specific application performance objectives or to
support their business and IT philosophies regarding how users are serviced.

© Copyright IBM Corp. 2011 1

2 Implementing DB2® Workload Management

Introduction

The focus of this document is to describe how best to implement a successful
workload management solution using DB2 for Linux, UNIX, and Windows,
Version 9.7.4 or higher. The contents of this document reflect the latest experiences
of IBM® field personnel and customers within the data warehouse arena from
which the vast majority of reported feedback for DB2 workload management has
been received.

Using a staged approach, this document guides you through the steps needed to
implement the best practices workload management configuration on DB2 for
Linux, UNIX, and Windows with sufficient controls to help ensure a stable,
predictable system for most data warehouse environments. This initial
configuration is intended to be a good base upon which additional tuning and
configuration changes can be implemented, as needed, for you to achieve your
specific workload management objectives.

The document assumes a novice beginner and describes the individual steps and
mechanisms at each point. A more experienced user can condense many of the
listed steps to move from stage 1 to stage 2, making the transition in days of
elapsed time rather than weeks as the suggested timeline indicates in a later
section.

Although you can use SQL DDL statements to directly interact with the DB2
database manager, the IBM Optim ' Performance Manager 4.1.1 product provides a
simplified interface through its detailed configuration editor which can be used to
make the interactions less onerous.

The steps outlined in this document are focused on the efficiency of the system as
a whole, regardless of where the work itself comes from. It is important to note
that achieving the goal of a stable system might not necessarily also result in the
achievement of any individual application service-level agreement (SLA) or specific
performance objectives for queries. These more granular objectives might require
subsequent changes to the workload management configuration, such as outlined
in the section on stage 3 scenarios, which is outside the main scope of this
document.

This paper is not a tutorial on DB2 workload management capabilities and does
not attempt to provide comprehensive guidance in addressing all possible
scenarios where DB2 workload management might be employed. It also does not
cover all features within the DB2 product that might be of use in controlling
resource consumption. The scope of this paper is focused on describing the system
stabilization approach in some detail and provides some general guidance for
common advanced scenarios.

A short review of DB2 workload management

A general definition for database workload management is the process or act of
monitoring and controlling work executing on a database system in order to make
efficient use of system resources in addition to achieving any performance
objectives assigned to that work. Such a broad definition also encompasses much
of the original effort put into designing and implementing a successful database
system in the first place because they share the same end goals.

© Copyright IBM Corp. 2011 3

A more pragmatic definition for workload management might be the process or act
of monitoring and controlling the competition between work for system resources
by imposing the business priorities and performance objectives, identified for each
of the competitors, onto the decisions made by the database system. It is important
that workload management is viewed as a complement, not a substitute, for
following the other best practices provided for designing and implementing a
successful database. You cannot use workload management techniques to put a
good-looking facade over a bad design.

Using this definition, one could also assert that any effort to implement workload
management needs to encompass both monitoring and control aspects because
both are critical to a successful implementation. Monitoring provides you with the
operational awareness of how the database and individual workloads are
progressing so that you can keep things running smoothly. Control gives you the
tools you need to manage resource consumption by the different workloads
running on the database.

Workload management is an item of concern for almost all databases, not just
those databases classified as data warehouse systems. Workload conflicts and
resource contentions do not discriminate based on the (sometimes arbitrary)
category assigned to your particular database. Any time there is more than one
type of workload or class of users accessing a database, you have the potential for
conflict or a desire to provide differentiation in the level of service that each
receives from the database. Unless your database is host to only a single workload
with a single class of user, then some form of workload management is of interest
to you, even if it is just the monitoring aspect.

DB2 workload management and DB2 workload manager

4

From a DB2 for Linux, UNIX, and Windows perspective, DB2 Version 9.5
contained a major investment in workload management. A new infrastructure and
a set of capabilities was provided to better enable the implementation of successful
workload management solutions in a wide variety of customer environments. This
infrastructure is generically referred to as the DB2 workload management
infrastructure. It incorporates both a core set of capabilities and a set of capabilities
that are only available under license; the licensed set of capabilities are referred to
as DB2 workload manager (DB2 WLM).

The core technology is always present and active when a DB2 database is active
such that all work executing within a DB2 database is executing within a specific
workload management configuration, even if it is only the default configuration
provided by the DB2 database manager. When you install DB2 Version 9.5 or later,
you are automatically using the new DB2 workload management capabilities in the
form of the default workload and service classes that are installed as part of every
DB2 database; the default workload management configuration is available to all
DB2 database manager customers. You are able to use all of the workload
management monitoring capabilities with this default configuration.

The set of DB2 workload manager capabilities, controlled by license, allow you to
customize the default DB2 workload management configuration to better reflect
the organization and priorities of your business. You need to have the license
prerequisite for DB2 workload manager in DB2 Version 9.5 and Version 9.7 to
create any or all of the following:

¢ A DB2 workload
e A DB2 service class

Implementing DB2® Workload Management

e A DB2 threshold
* A DB2 work action set

For detailed information about the significant enhancements to DB2 workload
management and the monitoring capabilities associated with workloads,
thresholds, and service classes for DB2 for Linux, UNIX, and Windows, Version 9.7,
see Appendix A, “DB2 workload management and monitoring highlights for DB2
for Linux, UNIX, and Windows Version 9.7,” on page 71.

Prerequisite concepts and terminology

The reader of this document, at a minimum, must have a conceptual familiarity
with the key components that comprise workload management function in the DB2
product and the terminology used throughout this best practices paper.

It is not in the scope of this paper to give detailed background information about
workload management with DB2 workload manager. This detailed information can
be obtained from the DB2 Version 9.7 Information Center.

The following are the key components of DB2 workload management functions:

activity
A database entity that uses database resources during its lifetime, which
can span one or more requests. A cursor and a procedure are examples of
activities. The DB2 workload management infrastructure explicitly
recognizes a specific subset from the domain of all possible database
activities, specifically the LOAD utility, the CALL SQL statement, all DML
SQL statements, and all DDL SQL statements. For these recognized
activities, full support for monitoring and controlling them is provided by
DB2 workload management. For all other unrecognized activities, they are
mapped directly to the service class defined in the workload definition and
they are not acted upon by any of the other capabilities within DB2
workload management.

DB2 workload
One or more database activities or requests working within a service class
or a database.

A database transaction is mapped to a DB2 workload based on a
user-defined set of transaction attributes (connection attributes are
considered a part of database transaction attributes). The workload acts as
the primary point of monitoring and control for transactions submitting
work to a database. Also, the workload directs any incoming work from
mapped transactions to a specific DB2 service class for execution. The
terms transaction and unit of work are equivalent.

DB2 service class
An entity that acts as the primary point for monitoring, control, and
resource assignment for work executing within a database.

There are two levels of service classes that together form a simple,
hierarchical model:

Superclass
A grouping mechanism for subclasses within a database. Resources
and settings of a service superclass are shared by all related service
subclasses.

Introduction 5

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/c0052594.html

6

Subclass
A grouping mechanism for database activities within a service
superclass. All user work processed in a database executes within
the context of a DB2 service subclass.

DB2 threshold
A threshold is a mechanism provided as the primary method for automatic
monitoring and enforcement of acceptable behavior for the execution of
work. Some thresholds monitor specific aspects of work execution such as
resource consumption or time spent executing, and other thresholds control
the degree of concurrency allowed at any one time. Thresholds can be
applied at different levels of a database including per workload and per
service class.

DB2 work action set
The work action set, with its companion the work class set, provides the
ability to discriminate between different types of database activities and
treat them differently for monitoring purposes, or control purposes, or
both. Thresholds can be applied using a work action set on a workload or
a database; when a work action set is defined on a service superclass,
incoming work can be mapped to service subclasses with finer granularity.

Identification of best practices configuration steps

Wherever specific best practices configuration steps are provided in this paper, the
steps are marked with a light bulb icon in the left margin, as shown here, and each
step has been classified into the following types for your convenience:

Data collection step:
Create event monitors and collect monitoring data that is required for
analysis. This step includes changes to workload management DDL related
to specifying what monitoring data to collect.

Analysis step:
View and analyze the collected monitoring data. Make workload
management tuning decisions.

Implementation step:
Alter a workload management configuration to change how work is
controlled or classified, guided by your analysis of the collected monitoring
data.

Implementing DB2® Workload Management

Rationale: DB2 workload management best practices goals
and objectives

Overview

© Copyright IBM Corp. 2011

At some point in time, most data warehouses run into a situation where the
demands or performance expectations of the business exceed the capacity of the
database system. Not all organizations want to face this fact or make the business
priority decisions needed to survive it. These decisions involve either investing in a
larger, more powerful system, or deciding how much of the existing system
resources are to be consumed by each of the different types of work running on
that system. Sometimes, the business just needs to survive on the existing,
constrained system in order to buy time for the new system to be funded and
installed.

It is at this point where workload management enters the picture. With advanced
planning, workload management capabilities make it possible to dictate the
behavior of the system and make it more predictable, even when demand exceeds
capacity.

There are two perspectives that need to be taken into account when planning and
designing your workload management system, as depicted in Figure 1 on page 8.
The business perspective encompasses processes and applications being used by
different parts of your business with different demands and performance
expectations or objectives. The system perspective deals with the realities of
managing your system efficiently.

8

Business Perspective System Perspective

Business process DB2 database manager
Application A Processing class 1
‘ P (Highest priority)
Competing
perspectives

Processing class 2
(High priority)

‘ Application B

Business process

Processing class N
(Lowest priority)

‘ Application C

‘ Application D

Figure 1. Business versus system perspectives

The challenge of workload management is to map the business perspective to the
system perspective while, at the same time, meeting the business performance
objectives. The best strategy is to first focus on managing the system capacity as
efficiently as possible, regardless of where the work comes from. After you have a
stable, predictable system configuration, then you can begin to look at controlling
access to the system based on business priorities.

Achieving a stable, predictable system

The primary goal and main theme of this workload management best practices
paper is to document the required configuration to achieve a stable, predictable
system. From this foundation, you can significantly extend your system
configuration to reach advanced goals to satisfy your business needs.

The first goal of workload management is to keep your system in the optimal
performance range and away from excessive demand. Excessive demand results in
work spending more time fighting other work for access to the same resources. As
a result, all work takes longer to complete.

To achieve a stable, predictable system, the goal is to maximize the output of the
system without overloading its capacity; that is, we want to prevent the inefficient
use of the key system resources (for example, CPU, I/O, and memory) in order to
maximize the throughput of the system by finding the optimal zone, as depicted in
the theoretical example in Figure 2 on page 9.

Implementing DB2® Workload Management

100 | |

. / \
70 /
60 /

50

|
|
|
|
o /L |
|
|
|
|
|

30 /
o+~

System efficiency (%)

10

________.//

Under-utilized Optimal Optimal System
failure

Amount of work

Legend

=== Throughput

Figure 2. Example of the optimal zone for a system

Since the actual work present on the system, at any one time, varies in terms of its
volume and impact on system resources, the demand for one or more of the key
system resources (for example, CPU, I/O, memory, and storage) can also be
volatile. As soon as demand exceeds supply, the throughput of the system suffers.
To make the performance of the database system more predictable, the goal is to
level out the peaks in resource demand to avoid reaching resource limits. To
smooth out the use of system resources, it is necessary to control the mix of work
executing on the system, especially when dealing with work that is more
demanding, or larger, than other work. Larger work has much more impact than
smaller work. For example, one complex statement on some systems can consume
more resources than 10 medium statements.

The most effective action that can be taken, in terms of controlling overall resource
consumption, is to control when work is allowed to start execution because
minimal resources are consumed before execution starts. This gatekeeper approach is
effective for all key resources, not just CPU. Also, in current database systems, the
resource impact of any piece of work is magnified with the addition of parallelism;
delaying the start of execution for any SQL statement also delays the start of any
parallel processing done for that statement.

Another approach often used to control resources is to slow down, or starve, a
piece of work that is executing to allow other work to use those resources.

Typically, this is related to CPU access; mechanisms, such as agent priority and
AIX® WLM or Linux WLM, control access to the CPU. While effective in some

Rationale: DB2 workload management best practices goals and objectives 9

10

scenarios, slowing down work sometimes has unexpected (bad) consequences due
to secondary effects on the systems. The following consequences can be a result:

* Higher overall memory utilization because more memory is active at the same
time
* Extended lock wait for other work waiting on locks held by the slowed work

* More resource consumption in operating system context switching due to the
increased number of threads running.

Overall, experience has shown that it is typically better to delay starting new work
rather than slow it down.

Signs of a healthy system

In general, there are system characteristics that are optimal for a typical data
warehouse in terms of maintaining system responsiveness.

The following are the core system characteristics that can signify a healthy system:
* Run queue length is less than 10
* Overall CPU utilization is around 80-95%, with system CPU usage below 10-20%

— The target value for system CPU usage varies by platform. For example, the
target is less than 10% on Linux and less than 20% on AIX operating systems.

* Memory utilization is below 100% (that is, no paging)
* 1/0 waits are 10% or less

* System workload is evenly balanced across all members (that is, no skew or
uneven resource demands)

Although these characteristics are only guidelines, they offer a set of objectives that
are a reasonable starting point for laying down an initial workload management
configuration in a data warehouse. In addition, these guidelines are applicable on a
machine by machine basis. You must consider that an entire database system might
appear healthy when data is aggregated, but one partition might be unhealthy.

Managing system capacity with DB2 workload management

In this simple conceptual example that is illustrated in Figure 3 on page 11, we
have determined that running more than 10 large DML statements at any one time
is detrimental to the health of the system and we impose a limit on the number of
those statements that can run concurrently.

Implementing DB2® Workload Management

Business process DB2 database manager

Resource consumption
‘ Application A pie chart

Large DML
—> statements

<+——o Medium DML
statements

Small DML
statements

Database limit = 10 large DML statements

‘ Application B

Figure 3. Managing system capacity

The natural location within the DB2 database manager for resource allocations is
the DB2 service class. The activity level concurrency threshold
(CONCURRENTDBCOORDACTIVITIES) is an effective gatekeeper mechanism. By
defining a CONCURRENTDBCOORDACTIVITIES threshold with a limit of 10 on
the service class in which the large queries run, we can ensure that no more than
10 queries start executing at any one time, protecting the system.

Concurrency thresholds do not rule out the use of other techniques. For example,
AIX WLM can be used to cap the CPU used by low priority work as a whole,
meanwhile a concurrency threshold on this same work controls its I/O and
memory impact on the system. As an additional benefit, work in the capped
service class runs more efficiently when concurrency controls are also in place
because we can then control the demands placed on the (Iimited) CPU resources
that are made available to that service class.

Figure 4 on page 12 shows an implementation which uses a work action set to

isolate the large DML statements into a separate service subclass and then imposes
a concurrency threshold of 10 on that subclass.

Rationale: DB2 workload management best practices goals and objectives 11

DB2 database manager

Service superclass
Business process
m------- » Default
1 subclass
1
H Application A
Work
. Small DML
> o g subclass
set
H Application B
1
' Large DML
"""" > subclass
CT=10

Legend

CT = Concurrency threshold

Figure 4. Managing system capacity with DB2 workload management

For a real-world example, Figure 5 on page 13 shows the actual results achieved at
a large retail customer that used the same type of approach as used in the
preceding simple example. As one can see, the system became more responsive
across almost all types of queries as fewer statements were allowed to execute
concurrently. The only exception is the tuned WLM case for the 70,000 - 100,000
timerons estimated cost class shows that its response time degraded. This case was
due to an explicit decision by the customer to move resources elsewhere because
slower response times in that category were deemed to be acceptable when
compared to the improvements in the other areas that those resources provided. In
this case, an important point about workload management is illustrated: workload
management does not magically make everything run faster. Instead, with
workload management, you get to choose the priorities of the system and directly
control the trade-offs made between different work executing on the system.

12 Implementing DB2® Workload Management

Elapsed time
in seconds

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

| N | II:ID | 1

Classes of query by estimated cost

Legend

B No workload management
[] Initial workload management

[Tuned workload management

Figure 5. Real-world results from a large retail data warehouse

Rationale: DB2 workload management best practices goals and objectives 13

14 Implementing DB2® Workload Management

Design: Configuring DB2 workload management in stages

Why stages?

This best practices paper identifies and defines four stages in the evolution of a
DB2 workload management configuration (see the following table) that are very
helpful in framing discussions.

Table 1. Stages of DB2 workload management configuration

Stage Name Objective

0 Default workload management
configuration

1 Untuned workload management Learning about your system
configuration

2 Tuned workload management Stabilizing your system
configuration

3 Advanced workload management Dealing with unique aspects
configuration

It is recommended that all DB2 for Linux, UNIX, and Windows customers with a
data warehouse implement a stage 2 workload management configuration at a
minimum. Many of you will likely progress to a stage 3 implementation for your
business to address unique performance requirements, or strategic requirements, or

both.

The following sections provide a more detailed description of each stage in this
new taxonomy.

Stage 0: Default DB2 workload management configuration

A stage 0 DB2 workload management configuration consists of the default
workload management configuration established when a database is first created in
DB2 for Linux, UNIX, and Windows for both Versions 9.5 and 9.7.

Figure 6 on page 16 shows the default DB2 execution environment for such a
database. This configuration has no immediate objective other than to separate user
and system work for monitoring purposes.

© Copyright IBM Corp. 2011 15

User requests DB2 database manager

Requests —
Requests —
Default Default user
—_—> .
Requests workload service class
Default maintenance
service class
Requests —
ﬁ Requests —
System requests
_ Default system
@ Requests v service class

Figure 6. Default DB2 workload management configuration

Within this default configuration, all user connections to a DB2 database are
mapped to a DB2 workload. A default workload definition,
SYSDEFAULTUSERWORKLOAD, is provided for this purpose. This workload
guides all incoming work for the database to be executed in the default user
service class, SYSDEFAULTUSERCLASS. All system work executes in the default
system service class, SYSDEFAULTSYSTEMCLASS. All background maintenance
work, initiated by the DB2 database manager, runs in the
SYSDEFAULTMAINTENANCECLASS service class.

Stage 1: Untuned best practices workload management configuration

16

A stage 1 untuned best practices workload management configuration is the result
of transforming the default stage 0 workload management configuration with the
creation of a new service superclass and six subclasses. You can do this
transformation by applying the template configuration described as part of this
best practices paper. All work is mapped into their respective service subclass,
based on their estimated cost and type of activity, using a DB2 work class set.

Implementing DB2® Workload Management

The objectives of this stage 1 untuned workload management configuration are the
following;:

1. To focus on core database system stability by ensuring incoming demand does
not exceed capacity, based on rough guidelines from field experience

2. To gain a better understanding of the nature of the business work being
executed on the database and its timing through baseline monitoring. This
feedback is used to help tune the template settings to better reflect the actual
environment.

The stage 1 untuned workload management configuration consists of a template
approach that was created from the key elements identified and experiences gained
from successful implementations in a number of customer environments. The basic
framework consists of identifying different classes of incoming work, placing
controls on resource consumption by the larger pieces, and detecting outliers.

Best practices configuration template

The best practices configuration template is designed to provide a structure that
functions well for all warehouse environments and consists of a series of
predefined service classes and thresholds. It is intended to help stabilize the
performance characteristics of the warehouse (that is, achieving a stage 2 tuned
workload management configuration) while providing a solid foundation for
additional customization (that is, a stage 3 workload management configuration).

The best practices template uses the estimated cost of each SQL statement to help
classify it. If your workload is one where the estimated cost of the work does not
correlate, even roughly, with the relative size of the impact of the work on the
system, then the template approach espoused in this document will not work for
you. To use this template with such a workload, you must use the available
reoptimization techniques to align estimated costs with impact. For additional
information about this reoptimization technique, see: “Queries with similar
estimated costs” on page 96.

If you are unable to use such techniques for your workload, then consider using an
alternative approach to workload management. Alternative approaches include
using concurrency control for the work on the database system as a whole,
regardless of the expected impact, or the priority aging technique, discussed in the
DB2 Information Center, perhaps supplemented with AIX WLM hard limits on
CPU resource usage.

Template description

The best practices workload management configuration template consists of a
single DB2 service superclass that contains a series of DB2 service subclasses. Each
service subclass represents a distinct type of work that is usually found in a typical
DB2 warehouse environment.

The distinct groups of identified work consist of the following:
* ETL activities (for example, LOAD)
* Five different classes of DML statement queries:

— Trivial

— Minor

- Simple

- Medium

- Complex

Design: Configuring DB2 workload management in stages 17

18

The template defines a DB2 work class set with a unique work class definition
representing each of the preceding groupings. It also defines and associates a DB2
work action set based on these work class definitions on the new service superclass
to map incoming work into the appropriate service subclasses that matches its
grouping. All other work is left to execute in the default service subclass of the
new service superclass and includes the following items:

e DDL and DCL statements
* CALL statements (but not the DML within them)
* Miscellaneous database requests: PREPARE, BIND, DESCRIBE, and others

* Other utilities: REORG, RUNSTATS, and others (that is, all utilities except
LOAD)

The deployment of the initial template configuration modifies the
SYSDEFAULTUSERWORKLOAD default user workload provided with the DB2
database manager, such that it now guides all incoming work to point to the new

DB2 service superclass.

Figure 7 depicts an overall schematic of the template configuration.

DB2 database manager

User requests Service superclass

— Default subclass
Requests —

> LOAD

Requests 0
—> Trivial DML

Work Minor DML
Default) |
Requests T workicad [T action
set
—> Simple DML
Requests — —> Medium DML
—> Complex DML

Requests —

(I 1 R T I
-

Default user
service class

Figure 7. Template for the stage 1 untuned workload management configuration

The template configuration also contains a number of DB2 threshold definitions for
both activity timeout and concurrency thresholds. The concurrency thresholds are
created in a disabled state in the sample DDL statements provided as part of the
best practices template and are activated during the implementation process. The

Implementing DB2® Workload Management

activity timeout thresholds are enabled by the template, but only to collect
information about any violations; they do not stop any activities that exceed the

defined limit.

Template work class definitions

A number of work class definitions are provided as part of the best practices

configuration template.

The following table shows the expected execution time for the different classes as
well as the range of estimated cost values (in timerons) used to identify the
different classes of DML statements. Experience in the field has shown that these
values serve as a good general starting point for the best practices workload
management configuration. A later section describes how to adjust these values to
be more appropriate for your system.

Table 2. Template work class definitions

Estimated cost:

Expected execution |Bottom timeron Estimated cost: Top
Work class time value timeron value
LOAD Unknown N/A N/A
TRIVIAL_COST_DML < 1 second 0 5000
MINOR_COST_DML < 60 seconds 5000 30,000
SIMPLE_COST_DML < 5 minutes 30,000 300,000
MEDIUM_COST_DML < 1 hour 300,000 5,000,000
COMPLEX_COST_DML | > 1 hour 5,000,000 Unbounded

Template threshold definitions
A number of predefined DB2 thresholds are provided with the best practices

template.

The ACTIVITYTOTALTIME threshold is used to identify any activity that is
running longer than the specified period of time. Such activities might be
misclassified or misbehaving work on the database. The following
ACTIVITYTOTALTIME activity thresholds are enabled by default in the template:

Table 3. Template activity threshold definitions

Threshold name

Domain (service
subclass)

ACTIVITYTOTALTIME
threshold criteria

Threshold action

WLMBP_TRIVIAL_DML_ TRIVIAL_DML 1 minute Collect activity data &
TIMEOUT continue
WLMBP_MINOR_DML_ MINOR_DML 1 minute Collect activity data &
TIMEOUT continue
WLMBP_SIMPLE_DML_ SIMPLE_DML 5 minutes Collect activity data &
TIMEOUT continue
WLMBP_MEDIUM_DML_ MEDIUM_DML 60 minutes Collect activity data &

TIMEOUT

continue

WLMBP_COMPLEX_DML _
TIMEOUT

COMPLEX_DML

240 minutes (4 hours)

Collect activity data &
continue

Design: Configuring DB2 workload management in stages

19

The following CONCURRENTDBCOORDACTIVITIES concurrency thresholds are
disabled by default in the template:

Table 4. Template concurrency threshold definitions

Domain (service Concurrency Queued activity Threshold
Threshold name subclass) limit limit action
WLMBP_ETL_ ETL (LOAD) 4 Unbounded None!
CONCURRENCY
WLMBP_MINOR_DML_ MINOR_DML 40 Unbounded None!
CONCURRENCY
WLMBP_SIMPLE_DML_ SIMPLE_DML 16 Unbounded None!
CONCURRENCY
WLMBP_MEDIUM_DML _ MEDIUM_DML 8 Unbounded None!
CONCURRENCY
WLMBP_COMPLEX_DML,_ COMPLEX_DML 4 Unbounded None!
CONCURRENCY

! With the UNBOUNDED queued activity limit, this threshold can never be
violated.

These definitions are created in the disabled state as they must be modified to fit
both the capacity of the system on which the database warehouse is running and
also the actual population of the different groups of work running on the system.
This modification is described in the next section.

Stage 2: Tuned best practices workload management configuration

A stage 2 tuned best practices workload management configuration is the result of
tuning and customizing the stage 1 untuned best practices configuration. Tuning
and customization is accomplished by adding active concurrency thresholds to
more closely model the actual working environment. A stage 2 configuration also
includes establishing a monitoring regime and is a stable configuration, subject to
normal periodic reviews as discussed in a later section.

The objectives of this stage 2 tuned best practices configuration are the following:
1. To achieve a more optimal implementation of a stable, predictable system

2. To identify and deal with any misclassified or misbehaving work in the
database

3. To identify the primary sources of work, with accompanying DB2 workload
definitions, to allow more enhanced monitoring of performance and resource
consumption at the level of the individual sources. This objective is a precursor
to further stage 3 customization.

In the example of a stage 2 configuration shown in Figure 8 on page 21, a number
of changes have been made to the original best practices template configuration as
a result of the process of making the transition from a stage 1 configuration to a
stage 2 configuration. A number of customized individual DB2 workloads have
been added to separate sets of connections from each other for monitoring and
control purposes. The default DB2 workload has been prevented from submitting
any work to the system so that any connections mapped to it return an error when
work is submitted. All of the workloads still point to the standard service
superclass introduced as part of the stage 1 configuration, but the original template
subclasses have been modified and unneeded ones have been eliminated. Finally,

20 Implementing DB2® Workload Management

two concurrency thresholds have been enabled, one on the Complex DML service

subclass and the other on the LOAD service subclass to limit the amount of

resources that they can consume.

User requests

DB2 database manager

Requests

Requests

Requests

Requests

Requests

) L T T

Workload W1

Workload W2

Workload W3

Default
workload

—@

Service superclass

— —> Default subclass
— —> LOAD
Limit = 1
—> —t> Trivial DML
—> Simple DML
> Medium DML
—> Complex DML
Limit=5
Stop
Default user

service class

Figure 8. Stage 2: Tuned best practices workload management configuration

Stage 3: Advanced workload management configurations

A stage 3 workload management configuration is any configuration that exceeds or
differs significantly from a stage 2 configuration.

Typically, these extensions to a stage 2 configuration are required when dealing

with unique requirements that go beyond basic system stability. Examples of such
requirements include the following:

* Guaranteeing consistent throughput for one application above all others by

introducing the use of AIX WLM hard limits

* Offering different levels of service to end users depending on their funding
arrangements

For detailed information about some common stage 3 scenarios and suggested best
practices configurations, see: “Advanced configurations: Stage 3 scenarios” on page

55.

Design: Configuring DB2 workload management in stages

21

Implementation timeline

22

One last aspect that must be discussed, as part of the new taxonomy for describing
DB2 workload management configurations, is the expected timeline for
implementation. The actual elapsed time depends on the effort and focus put on
workload management, as well as the complexity of the environment being
managed and business requirements being imposed upon it.

Although this discussion describes one possible timeline that can be followed, it is
not, by any means, meant to be an authoritative example. Many of the steps for
advancing from one stage to the next can be condensed or extended as needed.
The timeline, depicted in Figure 9, is presented as an example of how you might
expect the steps and tasks involved to flow over time.

Stage 0 Stage 1 Stage 2 ... Stage 3 ...
| | | :

At half year increments review and 1
make adj‘ustments —_ >
First Half Year review workload characteristics
make adjustments as necessary [S N
\ \ \

At Q1 bring in specific adjustments

T

1

1

1

1

1

1

1

1

1

| based on observation —_—
| |
1
1
1
1
1
1
1
1
1
1
1

During Month 2 make
~ 1 adjustment

During Week 3 make

~ 1 adjustment 3
\

During Week 2 make
~ 3 adjustments —_—

v

During Week 1 make%
~ 3 adjustments

1
Observe queuing, execution timing,

end-user response times ———
.

v

1

Apply initial workload management

settings —p
|

Review stats or I

Turn on collection s=——p

Figure 9. Implementation timeline

Every database starts at a stage 0 configuration as soon as you install or upgrade
to a release of DB2 for Linux, UNIX, and Windows that is at Version 9.5 or later. At
some point, the best practices workload management template configuration is
applied to reach a stage 1 configuration. This stage 1 configuration is followed by a
time of monitoring and customization efforts to fine-tune that configuration to
reach a comfortable stage 2 configuration. This effort can proceed rapidly at first,
but the finer adjustments might need to wait for the demand from longer business
cycles and infrequent workloads to be observed before reaching completion (for
example, monthly or quarterly reports). If nothing further is needed from the
workload management template configuration, a steady-state condition at stage 2
exists in which ongoing monitoring can proceed with suggested biannual checkups

Implementing DB2® Workload Management

to make sure that no further adjustments are needed. More advanced stage 3
configurations can be explored to address unresolved or new requirements.

Design: Configuring DB2 workload management in stages 23

24 Implementing DB2® Workload Management

Implementation: Reaching a stage 2 workload management
configuration

This section focuses on the step by step actions needed to move a database from a
stage 0 default workload management configuration to a fully customized stage 2
configuration. This effort is presented as two distinct phases for the sake of clarity.
The first phase deals with the steps needed to reach a stage 1 configuration by
laying down the best practices template configuration. The second phase addresses
the steps needed to reach a stage 2 configuration by customizing the template to
better reflect the environment in which it exists.

The following is an overview of the major activities required to take the workload
management configuration in a database from a stage 0 configuration to a stage 2
configuration:

1. Apply the best practices workload management configuration template to your
system (see: “Template description” on page 17).

2. Collect baseline monitoring information for estimated cost distribution for SQL
statements on your system.

3. Adjust template work class definitions (and service classes if needed) to better
reflect the real types and distribution of work in your environment.

4. Collect baseline monitoring information for resource consumption by service
subclass on your system.

5. Adjust the concurrency thresholds defined on the different service subclasses to
better reflect the resource allocation that you want for each one.

6. Define activity thresholds to detect misclassified or misbehaving queries and
prevent them from threatening the system.

7. Establish a monitoring regime to ensure the ongoing fitness of your final stage
2 configuration for your system.

After the best practices workload management configuration template has been
customized for your environment, continue monitoring on an ongoing basis
with activities 1 through 6 being repeated as needed to keep the configuration
tuned with respect to any changes in the environment.

Transition from stage 0 to stage 1

This transition phase covers the steps needed to move from a stage 0 configuration
(default DB2 workload management environment in DB2 for Linux, UNIX, and
Windows Version 9.7) to a stage 1 best practices template configuration with active
concurrency thresholds in place to control the mix of work executing on the
database.

To transition from stage O to stage 1, follow these steps:

© Copyright IBM Corp. 2011 25

26

Data collection step: Enable the collection of request and activity metrics
within the DB2 database manager by setting the mon_req_metrics and
mon_act_metrics database configuration parameters to BASE or higher.

Implementation step: If you are using the IBM Optim Performance Manager
(Optim PM) 4.1.1 or earlier, turn off the Optim PM collection of workload
management statistics. As a result, the Optim PM will not contain these
statistics within its repository for this period and the statistics will not be
available for display.

Data collection step: Create the following event monitors with all event groups

defined and use a table space available on all members (you must create a table
space across all members, if one does not exist):

* Activity
* Statistics
e Threshold violations

Note: For your convenience in creating these event monitors, you can use the
sample DDL scripts that are provided in Appendix B, “Creating prerequisite
event monitors,” on page 73.

Implementation step: Activate the activity event monitor by issuing the
following example command:

SET EVENT MONITOR DB2ACTIVITIES STATE 1

Activate the statistics event monitor by issuing the following example
command:

SET EVENT MONITOR DB2STATISTICS STATE 1

Activate the threshold violations event monitor by issuing the following
example command:

SET EVENT MONITOR DB2THRESHOLDS STATE 1

Implementation step: Apply the best practices workload management template
configuration by executing the DDL script, provided in Appendix C, “DDL
scripts for transitioning from stage 0 to stage 1,” on page 75, on the database.

Analysis step: Calculate the recommended initial concurrency values for your
system. For initial guidance, see: Table 4 on page 20 and “Guidelines for
determining initial concurrency threshold values for step 6” on page 27.

Implementation step: Alter the concurrency thresholds to reflect the calculated
values.

Implementation step: Alter the concurrency thresholds to enable them.

Note: If you are not comfortable enabling all of the thresholds at once, you can
choose to enable the concurrency thresholds one at a time.

Enabling concurrency thresholds can change the current response time
characteristics of work by causing them to wait if sufficient numbers are
mapped to a subclass with a concurrency threshold applied. The application of
thresholds is intended to bring the mix of work and related resource
consumption into the wanted alignment without regard for the response time
characteristics of that work.

If you choose to enable the concurrency thresholds one at a time, start by
enabling the threshold for the COMPLEX_DML service subclass first, followed
by enabling the threshold for the MEDIUM_DML service subclass, and so on.
Issuing the following example statement to enable a concurrency threshold:
ALTER THRESHOLD threshold-name ENABLE

If the impact of the enabled threshold is too disruptive, you can disable the
threshold by issuing the following example statement:

Implementing DB2® Workload Management

ALTER THRESHOLD threshold-name DISABLE

Note: Disabling a concurrency threshold results in the slow release of any
existing queued activities as currently executing activities complete. New
activities entering the system will bypass the threshold completely. If there are
queued activities in the threshold, you can release them all at the same time
before disabling the threshold by first issuing the following example statement
where x is equal to a value greater than the current number of executing
activities and the number of queued activities:
ALTER THRESHOLD threshold-name WHEN
CONCURRENTDBCOORDACTIVITIES > x PERFORM ACTION

9. Data collection step: To begin the collection of data by the statistics event
monitor, enable automatic collection of the workload management statistics
every 60 minutes by setting the value of the wim_collect_int database
configuration parameter to 60. The suggested collection duration of 60 minutes
is not a strict rule. Longer or shorter collection times are also acceptable.

After completing these steps, the database system will now have an active stage 1
workload management configuration in place. Although the stage 1 workload
management configuration is not tuned for the uniqueness of your environment, if
implemented with the template concurrency thresholds active, it already helps to
ensure that the database system remains relatively stable throughout any variation
in workload.

Note: The one caveat to the previous statement about system stability is that the
existence of many misclassified activities can still endanger system stability at this
point because the activity thresholds allow the misclassified activities to continue
execution even after they are detected. This issue is addressed during the transition
to a stage 2 configuration.

This database can now be monitored for the information required to make the
necessary adjustments to reach a stage 2 workload management configuration.

Guidelines for determining initial concurrency threshold
values for step 6

The objective of the concurrency thresholds applied to some of the service
subclasses in the best practices template configuration is to constrain the amount of
resource consumed by the work in that class. The concurrency thresholds used in
the best practices template are evaluated immediately before the execution of
individual activities (for example, SQL statements and LOAD) that enter each
service subclass. As such, the thresholds decide when a statement can begin
execution and thus, begin consuming system resources. Such thresholds are
sometimes referred to as gatekeeper thresholds in that they control the start of
execution, but not subsequent behaviors of an activity after it has started

execution.

Obviously, the amount of resource available and the types of work competing for
that resource vary with each production environment. With a generic template
such as the one described in this paper, it is necessary to make certain assumptions
and to provide guidance on how to adjust those assumptions to produce
concurrency threshold values more appropriate for the target environment.

Implementation: Reaching a stage 2 workload management configuration 27

28

This section provides guidance on how to modify the assumptions underlying the
default concurrency values, as shown in the table of template concurrency
threshold definitions, in such a way that the resultant concurrency values are better
suited for the target environment.

There are two elements that can be adjusted to produce more suitable values:

* The total amount of concurrency allowed on the system (the capacity, from a
concurrency perspective)

* The amount of concurrency to be allocated to each different type of work (the
share of the overall capacity that is given to each query group)

In order to provide a simple way to determine a set of initial concurrency
threshold values that are appropriate to the underlying system, this document
introduces the concept of calculating a theoretical concurrency limit, or capacity, for
a given system. Then, using a concurrency budget approach, you allocate portions
of that limit across the different subclasses defined in the template. The relatively
simple techniques outlined here are intended to allow for a reasonable set of initial
concurrency threshold values to be set during the process of transitioning to a
stage 1 configuration. These initial values can then be better tuned based on actual
resource consumption patterns in each service subclass during the transition to a
stage 2 configuration.

One last important note to make about concurrency thresholds is that they do not
each control the same amount of resource consumption. The individual
concurrency units, or tickets, each represent one activity execution of the type of
work in the service subclass on which the concurrency threshold is defined. The
resource impact of these tickets can vary immensely. To further illustrate this
important point, let us consider the following example: an activity in the
TRIVIAL_DML service subclass might read only one row by using one DB2 agent
during its entire execution, while an activity in the COMPLEX_DML service
subclass could process millions of rows by using dozens of DB2 agents. The net
impact of letting one more activity run in the COMPLEX_DML service subclass is
far larger than letting one more activity run in the TRIVIAL_DML subclass. A more
generic way of stating this relationship is to say that one activity in the
TRIVIAL_DML service subclass has only a portion of the impact on resources that
one activity in the MEDIUM_DML service subclass has, and an even smaller
portion of the impact of one activity in the COMPLEX_DML service subclass.

Thus, adjustments of concurrency levels across the different service subclasses
must account for this significant difference in resource impact by the individual
activities. Effectively, this means that in order to allow one more complex query to
run concurrently, it is necessary to reduce the concurrency levels of the other
classes by more than one query.

The best practices recommendation for setting the initial values is to follow the
concurrency budget approach described in the following section and leave the finer
adjustments until the later part of the tuning methodology. At that time, more
discussion is provided on how to work with consideration for this disproportional
impact (see: “Adjusting concurrency threshold values” on page 35).

Determining capacity

As mentioned previously, the first step in identifying a good initial set of values
for the concurrency thresholds that are defined on the template service subclasses
is to determine a hypothetical overall limit, or capacity for concurrency.

Implementing DB2® Workload Management

Determining the overall capacity, from a concurrency perspective, is a somewhat
subjective process and varies by platform and operating system. Our experience
has shown that a good, rough estimate of the concurrency levels appropriate for
any machine is a multiple between 10 — 12 times the number of cores available to
the DB2 database on a data module (as defined in an IBM Smart Analytics
System). That is, the best initial estimate of the overall concurrency level suited for
the entire database is based on the number of cores available on the physical
machine that is dedicated to the database for data storage, regardless of the
number of database partitions on that machine.

This initial concurrency level estimate can be best explained by working through
the following example: the 7700 IBM Smart Analytics System has a standard data
module with 16 cores which is then divided across 8 database partitions, each
partition with 2 cores for their dedicated use. Using the estimation technique and a
conservative 10x factor, the deemed capacity of the database as a whole is 160
concurrent activities (16 cores x 10 = 160). As long as the I/O demands on the
database system are balanced across all members (that is, there is no data skew),
then this formula has proven successful at predicting a good initial concurrency
limit to use for allocation across service classes.

The important thing to note here is that the suggested estimation technique takes
advantage of an observed indirect relationship between a good concurrency level
for a database as a whole and the physical attributes for one component of that
system. It is not an actual statement of how many things each processor can
handle or how many items will be on the system when this concurrency level is
used. You must keep in mind that the concurrency thresholds, used in the
template, operate as the gatekeeper for new activities entering the system and they
determine when the application request for a SQL statement (or LOAD) is allowed
to start executing. The actual concurrency seen by the operating system, in terms
of DB2 agents (that is, operating system threads) executing on behalf of that single
activity, and the pattern of low-level processing requests made to the system, can
vary greatly depending on the complexity of the activity after it starts to execute.
The actual concurrency and pattern of processing requests will often exceed a 1:1
ratio, with the parent activity controlled by the concurrency threshold (for
example, letting 1 statement start executing often causes >1 concurrent DB2 agents
to begin processing on the system).

The values given for the concurrency thresholds in the supplied DDL script (see:
Appendix C, “DDL scripts for transitioning from stage 0 to stage 1,” on page 75)
are based on using a default 10x multiplier for an 8 core data module. Our
rationale behind choosing this approach was that it was acceptable to under-utilize
any given system with the initial template, but not to allow over-utilization. The
following table gives a quick reference for the different IBM Smart Analytics
System models that are offered at the time of publication of this best practices
paper. Note that the 5600 model has a lower multiplier to reflect the lower
performance characteristics of that model.

Table 5. Lookup table for IBM Smart Analytics System capacity

Initial capacity

Number of cores per estimate (theoretical

IBM Smart Analytics
System model

physical data
module

Initial multiplier

limit = number of
cores x multiplier)

5600

6 x 2.93GHz (x3650

M2)

5x

30

Implementation: Reaching a stage 2 workload management configuration

29

30

Table 5. Lookup table for IBM Smart Analytics System capacity (continued)

Initial capacity

Number of cores per estimate (theoretical
IBM Smart Analytics | physical data limit = number of
System model module Initial multiplier cores x multiplier)
5600 S 8 x 2.93GHz (x3650 | 5x 40

M2)
7600 R1.2 4 x 5.0 GHz 10x 40

(Power550)
7600 R1.2 Upgraded |8 x 5.0 GHz 10x 80

(Power550)
7700 R1.1 16 x 3.55 GHz 10x 160

(Power740)

Deciding on whether to use a 10x, 11x, 12x, or higher multiplier requires a
judgement call that takes into account the operating characteristics of the system
while the full workload is running, and then deciding if more work can be
executed on the system. Keeping in mind that the objective for a healthy system is
CPU utilization between 85-100% (with under 10-20% of that devoted to system
use), you can use the following guideline that explains how to adjust the multiplier
after the initial default 10x multiplier has been used to set the concurrency
threshold level.

As a guideline, evaluate peak CPU utilization, over the course of a day or more,
for a specific data module with active concurrency thresholds in place. Use the
following suggested multipliers, depending on the observed peak CPU utilization
level:

* If peak CPU utilization is under 65%, consider using 12x as the multiplier

* If peak CPU utilization is between 65% and 85%, consider using 11x as the
multiplier

Again, it must be emphasized that changing the multiplier affects not just CPU
utilization, but also memory and 1/O utilization. Thus, all aspects of performance
need to be considered as the multiplier value is changed. If the performance of the
individual activities degrades or other resources are exhausted when the multiplier
is increased, it is recommended to revert to the previous multiplier value and
make smaller adjustments, if further tuning is still desired.

Allocating capacity

After you have established the theoretical limit on overall concurrency for a given
database system based on the techniques described in the previous section, the
next exercise is to allocate that capacity across the different service subclasses
defined as part of the best practices template workload management configuration.

The best practice technique used is a concurrency budget in which a percentage of
the overall capacity is assigned to each specific subclass and the relevant
concurrency threshold, if any, is set to reflect that portion of the overall limit. The
best practices template configuration uses the following concurrency budget to
allocate the overall concurrency limit of 80, assumed for the template service class
definitions.

Implementing DB2® Workload Management

Table 6. Template budget allocation for concurrency

Concurrency
Service subclass | budget Initial concurrency Individual activity
name allocation values (10x on 8 cores) |resource impact
Default Shared 10% 8 (shared) Negligible
ETL 5% 4 Moderate
TRIVIAL_DML Shared 10% 8 (shared) Negligible
MINOR_DML 50% 40 Minimal
SIMPLE_DML 20% 16 Light
MEDIUM_DML 10% 8 Moderate
COMPLEX_DML |5% 4 Heavy

At this point in the overall process, it is recommended that the concurrency budget
is used as presented. There will be an opportunity to adjust the concurrency
threshold values at a later point based on the actual resource consumption by the
work in each service subclass.

There are several things of interest to be pointed out with this budget approach:

* Although they are not themselves controlled by concurrency limits, the impact
of the work being processed in the Default and TRIVIAL_DML service
subclasses must still be acknowledged and accounted for in the budget. These
two subclasses have been allocated to share 10% of the overall capacity to ensure
that the resources consumed by that work are represented.

¢ The ETL service subclass was assigned 5% and has a concurrency of four loads
that are allowed to be executing at any one time. Be reminded that this
concurrency value is rather arbitrary because the use of the load utility varies
greatly among customers and the load utility can be used for different purposes,
such as loading staging tables versus loading base tables. When adjusting the
concurrency value, be aware that experience has shown that executing more
than eight loads at a time often leads to degradation in the performance of the
individual loads (they all slow down). At some point, this performance
degradation outweighs the time spent waiting on the concurrency threshold and
it is better to not let more loads run concurrently.

¢ The MINOR_DML service subclass has been allocated a large percentage of the
concurrency limit, despite the fact that the work consists of very small,
individual statements. This concurrency limit is not in place to control the
average consumption level by work executed in this class, but rather to control
the peak usage when a flood of work of this type arrives at the same time.
Experience has shown that this class of work typically represents a significant
portion of the work asked of a database system and has a high volatility in
terms of arrivals, requiring a control to be put in place to handle those moments.

* Complex queries have been allocated 5% of the budget with a concurrency of 4
given as a result. These queries are often the largest ones to hit the system and
actually use the most resources per executing item. Experience has shown that
very few systems can run well with more than 10 complex queries running on
them at the same time.

Implementation: Reaching a stage 2 workload management configuration 31

Transitioning from stage 1 to stage 2

32

This transition phase covers the steps needed to move from a stage 1 untuned best
practices template configuration to a fully customized stage 2 tuned configuration.
This transition is done by adjusting the work class definitions and the service
classes, as necessary, to better reflect the actual mix of work on the database, and
then, if you want, adjusting the resource consumption of each service class by
adjusting concurrency threshold values.

To transition from stage 1 to stage 2, follow these steps:

1. Data collection step: Gather detailed monitoring information for each service
subclass on the distribution of estimated costs.

2. Analysis and implementation step: Use this estimated cost distribution to
adjust the work class definitions in the DB2 work class set.

3. Data collection step: Gather detailed monitoring information for each service
subclass on the distribution of resource consumption.

4. Analysis and implementation step: Use this resource consumption information
to adjust the concurrency threshold values to have real resource consumption
better reflect the levels you want.

After completing these steps, the database system now has an active, customized
stage 2 configuration that can help ensure that the performance of the database
system remains stable and predictable. In addition, the stage 2 configuration
provides a solid foundation on which to build a more advanced stage 3
configuration, if that is what you want.

Guidelines for transitioning to a stage 2 configuration

This section provides more detailed information about the steps related to
transitioning to a stage 2 configuration.

Guidelines are provided for the following steps:

¢ Step 1: “Gathering detailed monitoring information for adjusting work class
definitions”

* Step 2: “Adjusting work class definitions” on page 34

* Step 3: “Gathering detailed monitoring information for adjusting concurrency
threshold values” on page 35

* Step 4: “Adjusting concurrency threshold values” on page 35

Gathering detailed monitoring information for adjusting work
class definitions

The first phase in the process of transitioning to a stage 2 configuration is to adjust
the work class definitions to better reflect the actual work running on your system.

Implementing DB2® Workload Management

To make these decisions, it is necessary to collect the range of estimated costs for
each service subclass and examine how the values are distributed across the
existing range of values defined in the work class set provided with the template
(see: Table 2 on page 19).

To get the distribution of actual estimated costs, you can use the activity event
monitor' to collect the coordinator perspective for all work executed in each target
service class by setting the COLLECT ACTIVITY DATA attribute for that service
class to COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS. This
action causes detailed information to be collected by the activity event monitor for
each activity that is executed in the service class. This information provides details
about the execution time, origin, statement text (if applicable), and estimated costs,
in addition to other items.

Although it is desirable to collect all the SQL statements that are executed, this
collection might not be feasible due to time or system resources. The important
objective here is to acquire a (very) good representation of the mix and range of
work that runs in the service class so that any conclusions drawn from the data are
valid for all SQL statements to which they apply.

To examine the distribution of values from data in the activity event monitor, you
can use a simple SQL statement to categorize and count the different estimated
costs in order to create an overall distribution representing the complete range of
estimated costs encountered (see: “Analyzing activity event monitor data” on page
81). This information is then used to decide what adjustments, if any, are needed to
the original work class definitions provided in the template.

An alternative source of estimated cost information is the statistics event monitor
that was enabled as part of stage 1 baseline monitoring. The information collected
within the statistics event monitor represents the set of monitoring information for
each defined workload management entity since the last time statistics were
collected from each database member. For additional information about using the
statistics event monitor alternative, see: “Analyzing activity event monitor data” on
page 81.

Note: When using the estimated cost histogram from the statistics event monitor,
consider the following points:

* The histogram does not record estimated costs for nested DML statements.
Nested DML statements are those statements issued from within a stored
procedure (a routine invoked by a CALL statement), or those statements issued
from within a UDF (a routine invoked by another DML statement). If the work
being analyzed includes such DML statements, then the activity event monitor is
the best way to analyze that work, as well as providing insight into what
statements are invoked and in what contexts.

* The scale of the individual bins in the histogram data is logarithmic, which
means that the range of estimated cost values that appear in the bins to the right
are significantly larger than that appearing in bins to the left. This logarithmic
scaling needs to be accounted for during the analysis phase. One example of
how the logarithmic scale can affect analysis is when many entries appear in a
bin giving the impression of a homogenous workload. If that bin is a
higher-order bin (one representing a wide range of possible values), then that

1. The following sections primarily refer to the activity and statistics event monitors as sources for the information needed to make
tuning decisions. The following document reference is valuable when looking at the different monitor elements:
http:/ /publib.boulder.ibm.com/infocenter/db2luw /v9r7 / topic/com.ibm.db2.luw.admin.mon.doc/doc/r0007595.html

Implementation: Reaching a stage 2 workload management configuration 33

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.mon.doc/doc/r0007595.html

34

impression might be false. If most of the work appears in a high-order bin or
bins, it is possible to customize a histogram template by using the CREATE
HISTOGRAM TEMPLATE statement. By changing the range of values,
represented by each bin, in such a way that the population is moved towards
the lower-order bins, you can get a better idea of the underlying distribution of
the work.

Adjusting work class definitions

This section describes how to analyze the distribution of work in the predefined
work classes that are provided as part of the best practices template configuration.
The objective here is to help to ensure that the population distribution in any
service class is fairly homogeneous and closely grouped with any unused or lightly
used work classes merged into the surrounding ones.

After a picture (ideally in the form of a histogram) of the estimated costs
distribution has been created, it must be analyzed to see what adjustments, if any,
are needed to achieve the goal of having the work in the service subclass represent
a closely grouped set of queries in terms of their individual levels of resource
consumption.

The goal is to get a relatively homogenous population of queries (resource impacts
are of a similar magnitude) in each of the different service subclasses so that the
effect of any concurrency threshold, and the effect on other queries, is predictable.
If queries are not of the same impact magnitude in each service subclass, the effect
of concurrency control can be unpredictable and unstable because system
performance would vary with the impact magnitude of the items allowed to
execute. In illustration, if a service subclass contained work that had both 1X and
2X impact magnitudes on resources, the system would be less stressed when a 1X
item was run and more stressed when a 2X item was run.

More details on the basic techniques that are used during this analysis are outlined
in Appendix D, “Techniques for adjusting work class definitions,” on page 81.

Handling ETL work that does not use LOAD

The ETL service subclass was introduced to accommodate the normal data ingest
processing that occurs in a data warehouse. In the best practices template, any
LOAD invocation is identified and mapped to the ETL service subclass on the
assumption it is part of ETL processing. In some scenarios, this work is done by
using methods other than LOAD, such as using INSERT statements, so that work
does not end up being mapped to this service subclass.

In such cases, the typical implementation would do one of the following:

* Create a unique workload for the ETL process and define it to submit work
directly to the ETL service subclass (not to the WLMBP_MASTER service
superclass), bypassing the mapping by the work action set

* Create a unique ETL workload and a new ETL2 service superclass, making the
workload direct all the work to the new ETL service superclass. If there is a
mixture of different work types (for example, SQL queries and LOAD) used as
part of the ETL process, then the same overall methodology and template
described in this document can be applied within the new ETL service
superclass to monitor and control (if you want) the different types of work.

This implementation allows the resources for the ETL process to still be tracked
and controlled independently of other work. This approach can also be used if
the LOAD utility was used by other work outside of the ETL process and there

Implementing DB2® Workload Management

was a desire to track them separately. In that case, the non-ETL LOAD work
would be mapped to the ETL service subclass in the template, while the ETL
process work would be in the new, separate ETL2 service superclass.

Gathering detailed monitoring information for adjusting
concurrency threshold values

The next phase of the transition process to a stage 2 configuration is to evaluate
and, if you want, adjust the levels of resource consumption by each service class in
your workload management configuration. It is important that the information for
this step is freshly gathered after all work class definition changes have been
made. Fresh information is a requirement because the content of each service class,
or rather the relative nature of their impact on resources, figures heavily in the
overall decision process.

The following two sets of information are required in order to do this work:
* System-level monitoring of the entire data module

* Specific monitoring of each DB2 service class aggregated across all members on
that same data module

At this stage, you can choose to look at only a representative data module for this
monitoring in order to keep things simple. Use the same data module you used to
determine the theoretical system concurrency limit (see: “Guidelines for
determining initial concurrency threshold values for step 6” on page 27).

System level monitoring can be achieved by using the vmstat command to obtain
the system and user utilization of the CPU resources on the target data module. To
get the service class perspective on CPU utilization, the recommended approach is
to use the statistics event monitor data that is being collected at a regular interval
and use the total_cpu_time monitor element.

In order to get the system and DB2 monitoring information in a synchronized
interval, the most effective way is to schedule a script to run on the target data
module (for example, a cron job) to collect vmstat information every 30 minutes.
Start the script to run at the top of the next hour in order to align its results with
the time interval used by automatic statistics collection provided by the DB2
database manager”. For an example script, see: “Sample E1: Sample script for
collecting vmstat data” on page 99.

Adjusting concurrency threshold values

After the work class definitions have been modified to better reflect the actual
work running on the database, it is now necessary to review and adjust the
concurrency thresholds. Using fresh, new monitoring information from the
database, the concurrency threshold levels are adjusted, as needed, to bring actual
resources consumption by each service subclass closer to the levels that you want.

The objective here is to get to a satisfactory allocation of system resources, based
on actual monitoring metrics, versus the theoretical budget allocation done during
the stage 1 transition process steps. The reality of the actual workload needs to be
recognized and the levels of resource consumption, specifically the CPU resources
in this case, adjusted based on the response times being seen by the different work

2. Starting with DB2 Version 9.7 Fix Pack 1, the workload management statistics collection interval is synchronized relative to a fixed
start time (a day of the week and an hour of the day), rather than relative to when the DB2 database was activated.

Implementation: Reaching a stage 2 workload management configuration 35

36

classes versus the performance expectations for each class. Resource consumption
is adjusted by changing the concurrency threshold values used in each service
subclass.

One very important aspect to keep in mind when adjusting concurrency values is
that the concurrency levels reflect the class of work in the service class that they
are imposed upon. That is, concurrency values are relative values, not absolute.
Thus, you cannot exchange one concurrency ticket from the TRIVIAL_DML service
subclass and move it to the COMPLEX_ DML service subclass because the relative
impact on the system of one additional complex query outweighs that of one less
trivial query by many times. The impact on the system, when modifying
concurrency threshold values between the different service classes in this best
practices configuration, is not proportional.

The following table gives illustrative guidance on how to adjust concurrency levels
while keeping the disproportional impact fact in mind. As an example, decreasing
the value of the concurrency threshold on the COMPLEX_DML service subclass
theoretically allows you to raise the concurrency threshold on the SIMPLE_ DML
service subclass by 4. Conversely, you need to decrease the concurrency limit of the
SIMPLE_DML service subclass by 4 in order to increase the COMPLEX_DML
service subclass limit by 1.

Table 7. Relative impacts of adjusting concurrency threshold levels between service
subclasses

From (row)/To

(column) MINOR_DML |(SIMPLE_DML |MEDIUM_DML | COMPLEX_DML
MINOR_DML 1 04 0.2 0.1

SIMPLE_DML 2.5 1 0.5 0.25
MEDIUM_DML 5 2 1 0.5
COMPLEX_DML |10 4 2 1

Again, this table of relative impacts is provided only as a conceptual guide. The
actual relative impact depends on the actual workload in each service class. In the
end, the overriding guidance is to simply adjust concurrency levels slowly and in

small increments while observing the net effects after each change.

The process of evaluating and adjusting concurrency threshold levels, based on the
monitoring information gathered, consists of the following steps:

1. Analysis step: Using the vmstat data, calculate the total consumed CPU time,
in seconds, for the target data module by using the following formula:

(60 minutes * 60 seconds) * (system CPU utilization + user CPU utilization)

2. Analysis step: By using the statistics information gathered in the statistics
event monitor, calculate the total CPU consumed by each service class across all
members defined on the target data module in the following way:

Implementing DB2® Workload Management

SELECT SUM(delta of extracted TOTAL_CPU_TIME from

XML_DETAILS column from previous collection interval and this one)
FROM event monitor

WHERE service class is on data module

GROUP BY service class name

For an example SQL script, see: “Sample E2: Calculating the CPU consumed
per service class” on page 100.

Analysis step: Calculate the percentage of CPU consumption of each service
class, relative to the whole, by using the following formula:

(Total CPU time consumed by a service class on target data module

during the last 60 minutes) / (Total CPU time consumed on target

data module during the last 60 minutes) * 100

Analysis step: Determine which service classes should get more or less CPU
resources based on their current performance. For each service subclass which
has an active concurrency threshold defined on it, look at its response time
metrics as reflected in the lifetime average (check the LIFETIME_AVG output
column after running the following sample script: “Sample E2: Calculating the
CPU consumed per service class” on page 100). Assuming that there are not
any extenuating circumstances such as statements encountering lock waits or
I/0 waits, then the shown response time reflects the result of the current
amount of CPU being consumed. In a service subclass, providing work with
access to more CPU might improve its overall performance. However, CPU
access is not a panacea for performance woes; make an adjustment
incrementally and one service subclass at a time to fully evaluate the impact of
the change that was made.

» If CPU utilization is less than 100% and the work in the service class is
experiencing short wait times (check the TOTAL_WAIT_TIME output column
after running the following sample script: “Sample E2: Calculating the CPU
consumed per service class” on page 100), you can try increasing the CPU
resources available to that service subclass until 100% CPU utilization is
reached.

* If 100% CPU utilization has been reached, providing more CPU to one
service class requires removing it from another service class, potentially
further slowing down that set of work. Determine which service class can
have CPU removed from it to supply the other one with more CPU access.
CPU access can be adjusted in a 1:1 manner, such that taking 5% of CPU
away from the COMPLEX_DML service subclass allows you to directly apply
5% of CPU to the MEDIUM_DML service subclass, and so on.

Analysis step: Based on the results of the previous step, adjust the amount of
CPU consumed by each service subclass by using the following guidelines:

* If CPU consumption is higher or lower than you want, then check if the
concurrency thresholds were influencing the result by checking that the value
of the queue_time_total monitor element, for the relevant concurrency
threshold on the service class for the last 60 minutes, is greater than zero.

— If the value of the queue_time_total monitor element is zero, then the
concurrency threshold did not restrict CPU consumption during this
interval

— If the value of the queue_time_total monitor element is not zero, then the
concurrency threshold is indeed restricting CPU consumption. The value
of the queue_size_top monitor element for the relevant concurrency
threshold gives some indication of the degree of restriction by showing
how large the queue was, at its deepest, for the concurrency threshold.

 If CPU consumption is too high, then you want to reduce concurrency to
reduce CPU consumption.

Implementation: Reaching a stage 2 workload management configuration 37

— If a concurrency threshold was not in place on this service subclass, or the
existing one was not taking any action (that is, queue_time_total = 0),
then you can set the threshold value to 1 less than the highest level of
observed concurrency (as per the value of the concurrent_act_top
monitor element seen for this service class) so that the concurrency
threshold begins to have an effect.

— If there is an existing concurrency threshold which is taking action (that is,
queue_total_time > 0), then you can lower that threshold value by 1 or
more to reduce CPU consumption. If the concurrency threshold is already
set at 1, then you are done (that is, you are out of concurrency options
and you have to look at more advanced stage 3 options, such as using
hard limits from AIX WLM).

* If CPU consumption is lower than you want, then you are going to increase
concurrency to increase CPU consumption.

— If a concurrency threshold was not in place on this service subclass or the
existing one was not taking any action (that is, queue_total_time = 0),
then you are done; the current CPU resource consumption is the true
consumption for this service subclass.

Note: If you want to move the unused CPU capacity, by way of AIX
WLM configuration, to another subclass based on this low CPU
consumption information, you might want to put a concurrency threshold
in place that has a concurrency value which is the same as the value of
the concurrent_act_top monitor element. This action helps to ensure that
future concurrency in this service subclass does not exceed the level
currently seen in the monitoring data, helping to ensure that the moved
CPU capacity is not requested later by this service subclass.

— If there is an existing concurrency threshold that is taking action (that is,
queue_total_time > 0), then the concurrency value can be raised to allow
more work to begin executing in this service subclass. However, remember
that workload management is a zero-sum problem, so any increase in
concurrency in one place must generally be balanced with a relatively
disproportional decrease elsewhere in the configuration to keep the system
stable.

6. Data collection, analysis, and implementation step: Repeat monitoring and
adjustment processes until you are satisfied with the general allocation of
resources within the system as a whole.

In addition to CPU resource consumption, it is also possible to use a similar
approach to monitoring and adjusting concurrency levels for the consumption of
other resources, such as I/O and memory, if these resources are contentious for
your specific environment and workload.

Adjust concurrency threshold for the ETL service subclass

The process of adjusting the concurrency threshold value for the ETL service
subclass is identical to the one used for the other subclasses.

Final steps to complete a stable stage 2 configuration

38

After you have completed the transition to a customized stage 2 workload
management configuration based on the best practices template presented in this
document, you should now have a database system that is more stable and
predictable than when you started, with performance that is consistent and
acceptable.

Implementing DB2® Workload Management

What remains to be done is to establish a set of ongoing operational monitoring
processes and reports. This monitoring information, collected over time and across
different business cycles, provides you with pertinent information about the
performance of the system and the ongoing suitability of your workload
management configuration to your database workload.

Implementing an ongoing monitoring regime is highly recommended because a
database system is a dynamic entity whose behavior and demands can change
over time. Every business experiences change due to growth or internal weekly,
monthly, and quarterly business cycles of their own which often place different
demands on their underlying database systems. Any of these naturally occurring
factors could result in requiring further tuning of your workload management
configuration. For a more detailed discussion about what aspects to consider for an
ongoing monitoring regime, see “Monitoring: Maintaining a stable stage 2
configuration” on page 43.

The following points summarize two other aspects of the workload management
configuration that can also be investigated at this point and are discussed in more
detail in following sections:

* DPutting protective measures in place to detect and prevent misbehaving queries
from disrupting the system

* Defining additional DB2 workloads to provide a finer granularity of control and
awareness to your configuration

Finally, sometimes there are additional requirements or objectives for workload
management that require a configuration that is more advanced than the
configuration established for stage 2. These advanced configurations are generically
referred to as stage 3 workload management configurations and encompass a wide
variety of differences. For initial thoughts and guidance on how your stage 2
configuration can be modified to accommodate a set of the most commonly
encountered stage 3 scenarios, see: “Advanced configurations: Stage 3 scenarios”
on page 55.

Protective measures

On some systems, there is an occasional SQL statement which varies greatly, in one
behavior or another, from the norm established by other SQL statements in the
same service class. Such variance can badly affect the response time for an
individual statement or the system as a whole. This section discusses some
techniques that can be put in place by using DB2 thresholds to help detect these
variants (sometimes referred to as rogue or outlaw queries) and, if necessary, stop
them.

A number of activity thresholds were implemented as part of the best practices
template configuration to identify and collect details about activities that were
behaving abnormally when compared to the expected behaviors for the work in
each service class. With the availability of real monitoring data such as that
collected during the tuning of the stage 2 workload management configuration, it
is now possible to adjust the template activity threshold values to better reflect the
realities of the actual workload running against the database.

To do this adjustment, we need to compare the initial activity threshold values of
the template to the distribution of values in the monitoring data for each DB2
service class. Similar to the method used to adjust the concurrency threshold
values, this work must be done after the adjustments to the estimated cost ranges
used for mapping to service subclasses and concurrency threshold values have

Implementation: Reaching a stage 2 workload management configuration 39

40

occurred and fresh monitoring information has been gathered based on these
modifications. The primary reason for this requirement is that the
ACTIVITYTOTALTIME threshold encompasses time spent waiting on concurrency
thresholds and this time will vary as the workload management configuration is
tuned.

Because the template activity thresholds are for the ACTIVITYTOTALTIME
threshold, examine the coordinator partition for work in each service class over the
period of monitoring to check the average and high water mark values of the
lifetime monitor elements. This examination can be done from the activity event
monitor data by using the difference between the individual time_created and
time_completed monitor elements for statements whose estimated cost would place
it in the same service subclass (see: “Sample D1: Determining estimated cost
distribution based on activity event monitor data” on page 82).

From the statistics event monitor data, the same thing can be done by using the
coord_act_lifetime_avg and the coord_act_lifetime_top monitor elements. If the
statements being monitored are nested SQL statements, such as those invoked from
within stored procedures, then you have to use the activity event monitor
approach because these metrics do not reflect nested SQL times. For an example
SQL script, see: “Sample E3: Determining the maximum activity lifetime value
from statistics event monitor data” on page 106. More detailed distribution
information can be found in the CoordActLifetime histogram information gathered
for the specific service class over the monitoring period. The following document
link is a useful reference for information to understand histograms better:

http:/ /www.thekguy.com /histograms.html.

The key objective to keep in mind when adjusting the activity threshold values for
ACTIVITYTOTALTIME, or indeed any threshold, is that you want to be informed
about only truly abnormal events and not the normal outliers that occur in any
processing system. That is, if the range of values seem acceptable in the monitoring
information, then the value that you use for the activity threshold must be greater
than the highest outlier value (perhaps by a significant amount, such as at least
50% greater). Essentially, you want a value that definitely informs you about the
existence of that activity so that you can act on it, such as doing in-depth
postmortem analysis, or stopping it, or both.

The final aspect to consider, regarding the activity thresholds that the template
defines, is the following question: Must the thresholds continue to be defined as
CONTINUE, or can they be altered to implement the STOP EXECUTION action?
The choice depends on how disruptive such outliers are to the stability of the
system and whether you choose to implement more resource-specific thresholds
such as CPUTIME and SQLROWSREAD. Because the ACTIVITYTOTALTIME
threshold covers both the active and passive phases of execution of an activity
such as waiting on a lock or on a concurrency threshold, it typically is not an
effective reflection of the true impact of an activity on the system. As a result, it is
generally best to leave the action as CONTINUE and implement more specific
thresholds as discussed next.

After the template activity thresholds are modified to reflect the actual work, you
can consider adding additional activity thresholds on each service class to catch
abnormal or unexpected behavior in other aspects, such as the following (typically,
the first two activity thresholds listed here are of interest to most DBAs):

* Excessive CPU consumption by using the CPUTIME threshold (see the
act_cpu_time_top monitor element)

Implementing DB2® Workload Management

http://www.thekguy.com/histograms.html

* Excessive /O consumption by using the SQLROWSREAD threshold (see the
act_rows_read_top monitor element)

* Excessive system temporary table space consumption by using the
SQLTEMPSPACE and AGGSQLTEMPSPACE thresholds (see the
temp_tablespace_top and the agg_temp_tablespace top monitor elements’)

* Excessive network traffic through the SQLROWSRETURNED threshold (see the
rows_returned_top monitor element)

* Detecting inefficient applications through the use of the
CONNECTIONIDLETIME and UOWTOTALTIME thresholds imposed on the
service superclass (see the client_idle_wait_time and the uow_total_time_top
monitor elements)

Although the previous discussion assumed that any thresholds being defined
would be applied to a specific service subclass, you can decide to apply these
thresholds directly to a specific service subclass, the service superclass, or to the
database as a whole. The important thing to remember is that the values used in
the threshold definition must be derived from monitoring data which reflects the
full range of statements to which it will be applied. For example, if you are
applying a CPUTIME threshold to the database as a whole, you need to look at the
CPU values for all statements running on the database.

If you want to apply such thresholds to only a subset of the work running within
the service class, create unique DB2 workload definitions for the subset (as
discussed in a following section) and then applying the thresholds directly to that
workload rather than on the database as a whole or a specific service class.

A note about using the REMAP ACTIVITY

At the time of publication (contemporary with DB2 Version 9.7 Fix Pack 4), the
DB2 workload management best practices do not recommend the use of the
REMAP ACTIVITY action that is available for some activity thresholds, such as
CPUTIMEINSC and SQLROWSREADINSC. It is recommended to use the STOP
EXECUTION action to terminate any disruptive queries.

The rationale for this recommendation is that although the REMAP action does
allow you to place activities into the proper service class when they have been
misclassified due to an incorrect estimated cost, this action has no effective impact
on resource consumption (at this time) when using concurrency thresholds. These
thresholds do not react or account for remapped activities when determining
concurrency levels. The result is that when an activity is remapped into a new
service class with a concurrency threshold, the control on resource consumption,
that you want, is not enforced.

Creating workloads

Creating workloads is a separate, but important part of the stage 2 customization
process. A finer granularity of control and awareness is introduced into the
workload management configuration by identifying the primary sources of work
using DB2 workload definitions.

Note: It is also beneficial to create workloads in stage 1, but it is not a prerequisite.
You can get an early start on this workload creation phase during the stage 1
configuration, if you want.

3. Note that these monitor elements are only updated by activities that have a temporary table space threshold applied to them.

Implementation: Reaching a stage 2 workload management configuration 41

42

By creating a DB2 workload for each unique set of connections representing a
particular application or business entity, it becomes possible to monitor their
impact on the system separate from all others and also impose additional or
unique threshold values on activities entering the system from that workload. The
values of different connection attributes can be pulled from the execution data
previously collected in the activity event monitor and analyzed to see if there are
any connections of ongoing interest. For an example SQL script, see: “Sample E4:
Viewing connection attributes and DB2 workload assignments from activity event
monitor data” on page 107.

To validate what connections are mapped to each workload definition, you can
look at the workload_id monitor element in the activity event monitor output (for a
sample SQL script, see: “Sample E4: Viewing connection attributes and DB2
workload assignments from activity event monitor data” on page 107).

Many administrators define unique workloads covering the vast majority of their
business and then use the SYSDEFAULTUSERWORKLOAD default user workload,
provided with the DB2 database manager, as a way to identify any unknown or
new work. Administrators can then choose to either block such work from entering
by disallowing access from the default workload, or, more commonly, collect
detailed activity information about this type of work when it occurs. In addition,
administrators can tightly restrict resource use, by the work as a whole, by
mapping the default user workload back to the original default user service class
and applying a concurrency threshold value of 1 to that service class.

It is important to ensure that all new workloads, with the possible exception of
SYSDEFAULTUSERWORKLOAD that was discussed earlier, continue to map to the
WLMBP_MASTER service superclass introduced as part of the best practices
workload management template. This mapping of the new workloads ensures that
their work is classified and controlled within the service classes and concurrency
thresholds that were introduced by this best practices process.

Important: Workloads are only allowed to be used by users authorized to use
them. To allow a new workload to be used by users intended to use it, a user who
holds ACCESSCTRL, SECADM, or WLMADM authority must grant the USAGE
privilege on that workload to the user, group, or role by using the GRANT USAGE
ON WORKLOAD statement. To have all users considered, grant USAGE to the
PUBLIC group.

Implementing DB2® Workload Management

Monitoring: Maintaining a stable stage 2 configuration

Monitoring is a critical part of maintaining a system that has reached a stable stage
2 workload management implementation in order to ensure that the system
continues to remain healthy over time. Although there will be other monitoring
requirements imposed on the system by the business for accounting and tracking
reasons, this section presents some general guidelines and suggestions to develop a
good, ongoing monitoring regime to maintain a stable workload management
configuration.

There are three fundamental objectives underlying the proposed monitoring
regime:
* Watching for signs that the system remains in a healthy state

* Investigating and resolving any individual activities that are identified as
disruptive (also referred to as rogue or outlaw queries)

* Watching for changes in resource consumption patterns (both estimated and
actual)

The first objective is met by a simple monitoring of the key attributes that
represent a healthy, responsive system to ensure that they all remain in the optimal
range over time. For additional information, see: “Monitoring system health.”

The second objective is achieved by looking at any output from the DB2 activity
threshold definitions created to act as guardians over activity behaviors. These
guardian activity thresholds identify any activities behaving in an abnormal
manner relative to the established norms of their peers in a specific service
subclass. For more information, see: “Monitoring activity behaviors” on page 45.

The third objective is satisfied by establishing an ongoing monitoring process
which watches both the health of the system as a whole, and the range of
estimated costs and resource consumption within each service subclass. The results
of this monitoring can be used to identify any overall change trends before they
become disruptive to the system. They can also be used to adjust the baseline
values used by the activity threshold definitions to identify abnormal activity. For
more information, see: “Monitoring system behaviors” on page 47.

In addition to the ongoing monitoring needed to achieve these objectives, there are
often requirements to provide on demand insight into what is going on within the
confines of the database system at any one moment in time. For some suggestions

and examples for such situations, see: “Additional monitoring situations” on page

49.

Finally, for some other helpful thoughts and guidance on the topic of monitoring,
with respect to workload management, see: “Other operational considerations” on
page 51.

Monitoring system health

Monitoring your database system for signs of health is an important maintenance
routine. The key indicators of a healthy system and guidelines on how to monitor
them are provided here.

© Copyright IBM Corp. 2011 43

44

As described at the beginning of this best practices paper, the following are the key
indicators that can be monitored to determine if the system is still in a healthy
state:

* Run queue length is less than 10
* Overall CPU utilization is around 80-95%, with system CPU usage below 10-20%

— The target value for system CPU usage varies by platform. For example, the
target is less than 10% on Linux and less than 20% on AIX operating systems.

* Memory utilization is below 100% (that is, no paging)
* 1/0 waits are 10% or less

* System workload is evenly balanced across all members (that is, no skew or
uneven resource demands)

The first three indicators are available through standard operating system
interfaces such as the vmstat command on UNIX, AIX, and Linux systems, and
perfmon on the Windows operating system. It is also possible to use the
ENV_SYS_RESOURCES administrative view provided with the DB2 database
manager to obtain some of the metrics that you want. However, as of DB2 for
Linux, UNIX, and Windows Version 9.7 Fix Pack 4, it does not provide all of the
metrics, hence requiring the use of additional interfaces as well. Use of the vmstat
interface provides all of the required metrics in one invocation.

The monitoring requirement for these key indicators is simply to detect when the
values are not within the target range for extended periods of time, without
requiring a second-by-second view of their behavior. Ideally, a daemon or a
repetitively scheduled script (such as a cron job) is established to acquire these
values at a regular time interval and to store them for later analysis. This script can
also proactively send alerts to the system operators to inform them when the
current values significantly exceed the ideal values. For an example script, see:
“Sample E1: Sample script for collecting vmstat data” on page 99.

This information is best collected with a time interval that is granular enough to
give insight into small periods of less-than-ideal behavior and still large enough to
allow sufficient history to be stored to cover periods of time where the data is not
being actively analyzed (for example, over weekends and holidays). There is also a
desire to coordinate this information with other information being gathered from
the system, such as the workload management statistics. This coordination helps to
pinpoint possible contributors to a problem, if it occurs. For this reason, use the
same maximum interval as the one used for collecting data to the statistics event
monitor, while the minimum interval can be much smaller, such as every minute.

The last piece of key information to watch for is any indication of skew in the
demands on resources being made on the different members (also known as
database partitions) of a partitioned database system. Noteworthy is any member
on which there is a significantly larger or different demand for resources than on
any of the other members. Excluding the administration member where
applications connect to submit their work, all the other members in a partitioned
database environment using the IBM Smart Analytics System methodology are
typically designed to be identical in capacity and with equal portions of the data
upon them; this design is done under the assumption and expectation that the
resource demands upon them will also be identical. When the resource demands
are not identical, this observation is often a sign that either there is a skew in the
amount of data present, or that the application work is biased in the data it is
accessing and the distribution of data might need to be revisited.

Implementing DB2® Workload Management

To search for signs of uneven resource demands on the members, the following
sample report can be used to look within the workload management statistics data:
“Sample F2: Database summary of work characteristics by service subclass” on
page 111.

Monitoring activity behaviors

Once thresholds have been put in place to watch for unusual behavior patterns,
there are two types of reports that become useful:

* Reports that help you maintain awareness and begin resolution of any activities
that violate the thresholds

* Reports that help you watch for a change in the established norms for activity
behavior over time so that the threshold definitions remain relevant

Awareness of threshold violations

Being aware of threshold violations is one of the key monitoring tasks to help
control unusual activity behaviors through early detection. After violations have
been detected, you can begin to resolve the underlying cause.

A useful type of report to help with this task is one based on the existence of
threshold violations, as recorded by the threshold violations event monitor, and
linking the violation data together with any relevant activity data from the activity
event monitor. For an example SQL script of a summary report, see: “Sample F1:
Summary report on threshold violations” on page 109. For information about how
to receive email notifications whenever threshold violations occur, see: “How to
generate email notifications for threshold violations” at http://
publib.boulder.ibm.com/infocenter/db2luw /v9r7 /topic/
com.ibm.db2.luw.admin.wlm.doc/doc/t0057200.html.

After you have identified that threshold violations have occurred, the next step is
to attempt to resolve the underlying cause of the violations or to prevent, as early
as possible, any processing capacity from being wasted by badly behaving
statements. If activity data has been collected with the threshold violation, then
this information can be used to evaluate what might have contributed to the
behavior. The following information is key to such efforts:

Compilation environment
To see the environment used to compile the statement, use the
COMPILATION_ENV table function on the COMP_ENV_DESV field in the
ACTIVITYSTMT table of the activity event monitor.

Execution metrics
These metrics reflect when the activity ran and what its behavior was
during execution.

Important: Activity details collected by a threshold violation are recorded
on only the coordinator member, even if the violation occurred at a
different member and if the ON ALL DATABASE PARTITIONS subclause
is used as part of the COLLECT ACTIVITY DATA clause in the threshold
definition. This means that any execution metrics captured in the event
monitor by the threshold reflect only the perspective of the coordinator
member. For a full database perspective, it is necessary to use the
COLLECT ACTIVITY DATA clause on the connection (by using the
WLM_SET_CONN_ENYV procedure), workload, or appropriate service class
before execution of the SQL statement in question.

Monitoring: Maintaining a stable stage 2 configuration 45

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/t0057200.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/t0057200.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/t0057200.html

46

¢ If using the DB2 Version 9.7 metrics controlled by the mon_act_metrics
database configuration parameter, then the contents of the
ACTIVITYMETRICS table can be analyzed (this table was introduced for
the activity event monitor in DB2 Version 9.7 Fix Pack 4).

¢ If using the traditional system monitor switches and the STATEMENT
monitor switch is ON, then the contents of the ACTIVITY table can be
analyzed.

Access plan
The access plan is chosen by the SQL compiler to satisfy the SQL statement
that is being executed.

If the SECTION key word is used in the COLLECT ACTIVITY DATA
clause in the threshold definition, then the section is written out to the
SECTION_ENV column of the ACTIVITYSTMT table of the event monitor
when that threshold is violated. The access plan information in this column

can be made available to the normal Explain table mechanisms through the
use of the EXPLAIN_FROM_ACTIVITY procedure.

Note: If section actuals are being gathered, the section captured by a
reactive threshold contains only information from the coordinator member
perspective. For more information about section actuals, see: “Capturing
and accessing section actuals” at http://publib.boulder.ibm.com/
infocenter /db2luw /v9r7 /topic/com.ibm.db2.luw.admin.perf.doc/doc/
c0056362.html.

The level of activity information available is determined by the setting of the
COLLECT ACTIVITY DATA clause in the threshold definition with different tables
in the event monitor being populated depending on the settings used in this
clause. For additional information about what activity event monitor tables are
affected by the different settings, see: “Logical data groups affected by COLLECT
ACTIVITY DATA settings” at http://publib.boulder.ibm.com/infocenter/db2luw /
vIr7 /topic/com.ibm.db2.luw.admin.mon.doc/doc/r0051558.html.

Watching for drift from the baseline norms

The behaviors of database activities can change gradually over time. Establishing
one or more reports that report back on activity behaviors allow you to observe if
there are any qualitative changes to the behaviors for activities.

Once detected, it then becomes an exercise to determine if the change is caused by
some correctable situation within the application or database. Also a consideration
is a fundamental change in the nature of the set of activities that is being watched,
which might require an adjustment to the corresponding threshold definitions to
decrease or increase their sensitivity.

The following is a list of key behavior attributes to be monitored for substantive
changes over time:

 Concurrency rate

* CPU consumption

* 1/O consumption

* Estimated cost

* Rows returned to application
* Lock wait

e Activity lifetime

Implementing DB2® Workload Management

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.perf.doc/doc/c0056362.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.perf.doc/doc/c0056362.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.perf.doc/doc/c0056362.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.mon.doc/doc/r0051558.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.mon.doc/doc/r0051558.html

e Unit of work duration

To have continuous monitoring of these characteristics, use of the statistics event
monitor is recommended. Although the activity event monitor provides a large
amount of information per statement execution and can be used to satisfy many
other monitoring needs, it has a higher resource consumption in terms of
processing and storage costs. The statistics event monitor collects more coarse,
aggregate information, but at a much lighter overall cost. Both can be used
together in many ways. For example, you can capture detailed activity data for a
key low volume subset of work, and use the aggregate activity information to
provide a global monitoring presence.

A reasonable interval for collecting statistical information is any interval in the
range between 15 to 60 minutes. The actual interval period depends on the value,
to your organization, of the increased granularity of insight versus the increased
resource consumption costs (primarily in storage).

Two sample SQL scripts are provided for reports with a database perspective based
on the information collected by the statistics event monitor (see: “Sample F2:
Database summary of work characteristics by service subclass” on page 111 and
“Sample F3: Database summary of work characteristics by workload” on page 114).
Similar reports can be produced based on the contents of the activity event
monitor by using standard SQL (use MIN and MAX aggregate functions on the
fields of interest), but, unless activity data is captured at all members, such reports
reflect only the coordinator member perspective of the work (resource
consumption metrics are incomplete).

Two additional sample SQL scripts are provided for reports based on the
information collected by the statistics event monitor and with a per member
perspective (see: “Sample F4: Member summary of work characteristics by service
subclass” on page 117 and “Sample F5: Member summary of work characteristics
by workload” on page 122). These reports are often the next step in the process of
deciding if a behavior change is localized to one member or systemic. The specific
prerequisite monitor settings are identified for all of the reports.

Monitoring system behaviors

In addition to watching the key health indicators for the system and looking for
abnormal activity behavior which might threaten system stability, monitoring
system behaviors is another important part of the overall monitoring framework to
put in place to help ensure the ongoing appropriateness of your workload
management configuration.

The monitoring of system behaviors is focused on the following:

¢ Watching for changes in resource consumption or response time across service
subclasses that might affect the targeted resource allocations

* Watching for changes in the estimated costs of incoming work that might affect
the distribution of work across subclasses

The first objective is met by watching the rate of CPU and I/O resource
consumption and the response time characteristics for each service subclass to see
if there is a significant increase or decrease in either. When such changes are
detected, then the same methodology used in the section entitled “Adjusting
concurrency threshold values” on page 35 must be followed to adjust the
configuration.

Monitoring: Maintaining a stable stage 2 configuration 47

Note: It is important to confirm that any changes have stabilized (that is, have
become constant) before adjusting the configuration.

The second objective is best satisfied by watching the distribution of estimated
costs within each service subclass and the database as a whole to see if any of the
scenarios arise that are discussed in the following topic and appendix: “Adjusting
work class definitions” on page 34 and Appendix D, “Techniques for adjusting
work class definitions,” on page 81.

The expectation for these reports is not to spur improvised, repetitive changes to
the workload management configuration in either of the aspects mentioned earlier.
Rather, the expectation is primarily to detect any unexpected dramatic changes that
might require action in the midst of gathering information to be used at the next
regularly scheduled review of the workload management configuration.

Monitoring resource consumption

Two resources of most concern to database administrators are CPU and I/O. The
monitoring goal is to know the actual consumption per service subclass over a
period. The objective of this monitoring is to identify any service subclass whose
resource consumption begins to change significantly because the result of this
change is either a reduction in resources that are available to other service classes,
or a surplus of resources that can be given for use elsewhere.

Of particular concern are those service subclasses that are not currently constrained
by a concurrency threshold, because either a concurrency threshold does not exist
for it, or the service subclass is not reaching its concurrency limit. Such behavioral
changes need to be watched for their overall impact on the system. An increase in
resource consumption can result in changed behavior in the other service classes; A
decrease in resource consumption can lead to an opportunity to raise the
concurrency limits of other service classes.

As in the previous section, the statistics event monitor presents a lightweight way
to monitor the CPU and 1/0O resources being consumed by each service class
through the total_cpu_time and rows_read metrics captured by the statistics event
monitor in the DETAILS_XML column of the SCSTATS table*. For an example of
such reports from database and member perspectives, see: “Sample F2: Database
summary of work characteristics by service subclass” on page 111 and “Sample F4:
Member summary of work characteristics by service subclass” on page 117.

Also of interest, although not directly applicable to the stage 2 workload
management configuration, is the perspective of which workloads are consuming
resources. This perspective can be achieved in a similar manner as previously
described for service classes, except that you use the WLSTATS table. Such
information is useful in determining if one or more workloads might need to be
regulated in a manner similar to that described in the stage 3 “Regulating
incoming work” scenario. For an example of such reports from database and
member perspectives, see: “Sample F3: Database summary of work characteristics
by workload” on page 114 and “Sample F5: Member summary of work
characteristics by workload” on page 122.

4. Although the rows_read metrics provides a rough approximation of the I/O impact, for an alternative way to determine I/O
impact that is based on pages read or written, see: Appendix G, “Alternative approaches to statistical data analysis,” on page 127.

48 Implementing DB2® Workload Management

Monitoring estimated cost distribution

Changes in the distribution of estimated costs can happen over time due to a
number of factors such as changes in the access plan, the amount of data affected,
or the SQL statement itself. While changes in the resource consumption patterns
are of a more immediate concern for the day-to-day maintenance of a stable
database system, changes in the estimated costs indicate a change in demands
being made on your system and potentially changes in population for the different
service subclasses created as part of the best practices methodology. As such, they
are an early indicator that perhaps a review of the workload management
configuration is required to ensure continued stability.

Although changes in the high water mark for individual queries can be detected
through use of the COST_ESTIMATE_TOP value in the SCSTAT table of the
statistics event monitor, these changes do not give you information about shifts in
the general population. To get this information, it is necessary to know about all of
the costs that were encountered during the monitoring interval. Information about
the costs can be obtained in the following two ways:

* Using the activity event monitor on each service subclass, in the same manner as
described in the earlier stages of this best practices document, to collect
information about each SQL statement executed.

« If DML SQL statements are not issued from within a CALL statement (nested
SQL statements do not exist in your environment), the use of the COLLECT
AGGREGATE ACTIVITY DATA clause with the EXTENDED value on each
service subclass results in a histogram of the encountered estimated costs.

For more information regarding how to evaluate the distribution of estimated
costs, see: “Gathering detailed monitoring information for adjusting work class
definitions” on page 32.

Additional monitoring situations

Ad hoc monitoring

Aside from any regular background monitoring, there is often a need, during daily
operations, for active, on-demand insight into what is occurring within the
database system at the current time to resolve or better understand an issue. A
number of features are provided within the DB2 database manager to provide such
insight. This section highlights a few of these features that can be used to answer
common questions or deal with common scenarios.

To determine what is currently running on the system, the MON_CURRENT_SQL
and MON_CURRENT_UOW views are good places to start your investigation.
These views, as listed in Table 8, provide the salient identification and resource
consumption details about all the work running on the system at the time of your
investigation. From this information, more detailed or targeted queries can be
framed to drive out the critical details needed to resolve the situation at hand.

Table 8. Sources of information for different areas of interest

Obtain historical
Area of interest | Obtain current information information
Requests WLM_GET_SERVICE_CLASS_AGENTS_V97 Statement event
table function monitor

Monitoring: Maintaining a stable stage 2 configuration 49

50

Table 8. Sources of information for different areas of interest (continued)

Area of interest

Obtain current information

Obtain historical
information

Activities (SQL)

One or more of the following:
* MON_CURRENT_SQL view

* MON_GET_ACTIVITY_DETAIL table function

* MON_GET_PKG_CACHE_STMT table
function

* WLM_GET_WORKLOAD_OCCURRENCE_
ACTIVITIES_V97 table function

Activity event monitor

Transactions

One or more of the following:
* MON_CURRENT_UOW view
* MON_GET_UNIT_OF_WORK table function

Unit of work event
monitor

Connections

One or more of the following:
* MON_CONNECTION_SUMMARY view
* MON_GET_CONNECTION table function

e WLM_GET_SERVICE_CLASS WORKLOAD_
OCCURRENCES_V97 table function

Connection event
monitor

Workloads

One or more of the following:
* MON_WORKLOAD_SUMMARY view
* MON_GET_WORKLOAD table function

« WLM_GET_SERVICE_CLASS_WORKLOAD_
OCCURRENCES_V97 table function

* WLM_GET_WORKLOAD_STATS_V97 table
function

Statistics event
monitor

Service
subclasses

One or more of the following:

* MON_SERVICE_SUBCLASS_SUMMARY view

* MON_GET_SERVICE_SUBCLASS table
function

* WLM_GET_SERVICE_CLASS_AGENTS_V97
table function

* WLM_GET_SERVICE_SUBCLASS_STATS_v97
table function

Statistics event
monitor

One or more of the other table functions, contained in Table 8 on page 49, can also
be used to build customized queries or scripts to dive down into many of the
details of what is currently occurring within the database system. When
deep-diving for details, the following are the key identification fields (column
names) to be used to join between the output of the various table functions:

e« APPLICATION_HANDLE
* UOW_ID (where applicable; must be used with APPLICATION_HANDLE)

* ACTIVITY_ID (where applicable; must be used with UOW_ID and
APPLICATION_HANDLE)

Given the use of concurrency thresholds in the workload management best
practices, you might also be interested in the current state of activities that might
be queued. For an example that explains how to get information about queued
activities, see: “Example: Determining which activities are queued by a WLM
threshold and their queue order” at http://publib.boulder.ibm.com/infocenter/
db2luw /v9r7 /topic/com.ibm.db2.luw.admin.wlm.doc/doc/c0056919.html.

Implementing DB2® Workload Management

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/c0056919.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.wlm.doc/doc/c0056919.html

As noted earlier in this document, the activity event monitor is the best way to
collect detailed historical information about the execution of SQL statements. In
addition to using the COLLECT ACTIVITY DATA clause as an explicit way to
indicate in the workload management configuration that you want to gather this
information, you can also get this detailed information through the use of the
following stored procedures:

* WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure to explicitly
identify the activity of interest

* WLM_SET_CONN_ENYV stored procedure to modify the collection settings of
any connection, without the need for a separate workload definition, to cause
the data to be collected

Other operational considerations

Space

This section points out a few other key considerations that must be taken into
account when implementing an ongoing monitoring regime.

management with the statistics event monitor

One aspect of the statistics event monitor that could become an issue on systems
with a large number of workload management entities that are collecting aggregate
activity data is the histogrambin table. This table can experience a large amount of
growth even with just the monitoring configuration suggestions provided with this
best practices document.

Although these histograms are collected at every member for each workload
management entity which has specified that aggregate activity data is to be
collected, for the histograms of general interest (that is, Coord ActQueueTime,
CoordActExecTime, CoordActLifetime, and Coord ActEstCost), we care about only
the data gathered at the coordinator member where the connections are established
by the applications.

The following is a list of some space management techniques that can be used to
manage the amount of space consumed by the histogram data:

* If available, apply compression to the histogrambin table. In fact, all of the tables
in the statistics event monitor respond well to compression.

* Schedule a script to regularly prune the histogram data from non-coordinator
members. This histogram pruning is in addition to any existing process to prune
the event monitor data as a whole and can be done on a more frequent basis to
accommodate your unique storage restrictions.

 If you are copying the data to a different location, copy only the histogrambin
information from the coordinator members. If you are not sure which are the
coordinator members, then merge the data across all of the partitions using the
following example SQL statement and copy the result:

SELECT PARTITION_KEY, BIN_ID, BOTTOM, HISTOGRAM_TYPE, SUM(NUMBER_IN_BIN),
SERVICE_CLASS_ID, STATISTICS_TIMESTAMP, TOP,
WORK_ACTION_SET ID, WORK_CLASS_ID, WORKLOAD_ ID
FROM HISTOGRAMBIN_DB2STATISTICS
GROUP BY PARTITION_KEY, BIN_ID, BOTTOM, HISTOGRAM_TYPE,
SERVICE_CLASS_ID, STATISTICS_TIMESTAMP, TOP,
WORK_ACTION_SET ID, WORK_CLASS_ID, WORKLOAD ID;

* If you know which members are the coordinator members, then define a table
space that only exists on these members and create a separate event monitor that
only captures the histogram table in that table space. Then, merge the output of
the two event monitors as needed when accessing (or copying) the data.

Monitoring: Maintaining a stable stage 2 configuration 51

52

For an example of this last point, assuming the existence of a TS_COORD_ONLY
table space that exists only on coordinator members, the following statements
are modified versions of the sample DDL statement provided elsewhere in this
document. These versions create two event monitors; one event monitor
gathering all of the information, except histogram data, on all members, and one
gathering only histogram data existing on coordinator members:

CREATE EVENT MONITOR DB2STATISTICS1

FOR STATISTICS

WRITE TO TABLE
SCSTATS (TABLE SCSTATS_DB2STATISTICS IN TS_MONITORING),
WCSTATS (TABLE WCSTATS_DB2STATISTICS IN TS_MONITORING),
WLSTATS (TABLE WLSTATS_DB2STATISTICS IN TS_MONITORING),
QSTATS (TABLE QSTATS_DB2STATISTICS IN TS_MONITORING),

CONTROL (TABLE CONTROL_DB2STATISTICS IN TS_MONITORING);

CREATE EVENT MONITOR DB2STATISTICS2
FOR STATISTICS
WRITE TO TABLE
HISTOGRAMBIN (TABLE HISTOGRAMBIN_DB2STATISTICS IN TS_COORD_ONLY),
CONTROL (TABLE CONTROL_DB2STATISTICS IN TS_COORD_ONLY);

Event monitor maintenance

When requested, the DB2 database manager generates and outputs data to an
event monitor, but it does not manage that data once it has been written to disk. It
is the responsibility of the event monitor owner to manage the data in terms of a
backup or archival policy, if any, and how long the data is kept.

There are a number of ways to manage the data, but there are some common
guidelines that apply to all approaches. The most important thing to remember is
that while an event monitor is active, it holds an intention exclusive (IX) table lock
on any tables to which it is writing information to prevent those tables from being
dropped while it is using them. As a result, any action that potentially collides
with that lock can have undesirable consequences, such as negatively impacting
system performance or interfering with your monitoring capabilities. Such actions
include the following:

* Backup

* Mass deletion by using an unbounded DELETE statement (due to lock
escalation)

¢ Truncation of the table

The easiest way to deal with this potential collision is to set up your event monitor
so that it foggles between two event monitors with only one being active at a time.
That is, after the second event monitor is activated, the first one is deactivated and
then the actions that you want are performed upon the data of the first event
monitor at that time. While there is some chance for duplicate events being
recorded during the brief moment when both event monitors were active at the
same time, these duplicates can be removed to keep the data clean.

If this approach is not what you want, then a single event monitor can be left
active with subsets of data being extracted to a secondary site where it can be
analyzed or backed up as you want and then deleted. This data collection can be
done by using SELECT and DELETE statements with predicates that restrict the
data being considered to a limited subset of data (to avoid lock escalation) from
the past (to avoid collision with any new rows being inserted). When deleting,
consider setting a lock timeout before issuing the DELETE statement (for example,
SET CURRENT LOCK TIMEOUT 60) to automatically resolve any collision
between the delete statement and the normal event monitor operations. If

Implementing DB2® Workload Management

increasing the lock timeout period does not resolve the problem, try deleting
smaller subsets of the data such as the records for shorter time periods. This
approach requires fewer locks, which reduces the chance of lock escalation (and
collision) occurring.

Analyzing statistical data by running sample SQL scripts

Although the example SQL scripts, that are provided in this document, are
designed to run directly against the statistics event monitor tables, the scripts are
more a matter of convenience, rather than a recommended statistical analysis
method, for the following reasons:

* Performance of the queries can be poor, when a large number of rows exist, due
to redundant calculations and the lack of indexes

* There is the potential for lock conflict when new records are being inserted by
an active statistics event monitor

For this reason, it is recommended that statistics event monitor data analysis occur
on data that is not actively being accessed by the event monitor. It is also
recommended that the data has been modified, to better support the analysis
phase, through the introduction of indexes and precalculation of any common
information needed by that analysis. For some examples of SQL scripts that might
be of use in such endeavours, see: Appendix G, “Alternative approaches to
statistical data analysis,” on page 127.

Monitoring: Maintaining a stable stage 2 configuration 53

54 Implementing DB2® Workload Management

Advanced configurations: Stage 3 scenarios

As defined previously, a stage 3 workload management configuration is simply
any configuration that exceeds or differs significantly from a stage 2 configuration.
These significant extensions are required when dealing with unique requirements
that go beyond basic system stability. It is during the transition to a stage 3
configuration that the unique business challenges and corporate perspectives or
strategies of each individual DB2 implementation begin to heavily influence the
workload management configuration, making it difficult to provide a common
stage 3 configuration template for use by all.

Instead, this document provides a brief description of the most common stage 3
workload management scenarios encountered, along with some guidance on the
general best practices implemented when a similar scenario is encountered.

Scenario: Regulating incoming work

After reaching a stable stage 2 workload management configuration and the
overall mix of work allowed on the system at any one time has been determined, it
is now possible to decide how much of that mix, and the system resources
assigned to each work type, can be consumed by any specific application or
business area. That is, you can now begin to look at controlling the demands put
on the system by individual sources of work.

This control plan usually involves a business discussion about the budget
allocation of database resources to be consumed by the individual business
processes or applications. This discussion has the outcome of improving the
performance of some of the business processes or applications based on their
relative importance to the business as a whole. In other words, you are deciding
the fair share resource allocations between the competing processes and
applications.

The natural location within DB2 workload management for controlling how much
work any individual source can submit to the database is the DB2 workload as
shown in Figure 10 on page 56. By identifying the source of work with a specific
DB2 workload definition, not only can you monitor the performance and demands
of that work, but you can also control the quantity and type of work the workload
definition can submit.

© Copyright IBM Corp. 2011 55

Business process DB2 database manager

Resource consumption
‘ Application A pie chart

Large DML
—> statements

<+——o Medium DML
statements

Small DML
statements

Database limit = 10 large DML statements

‘ Application B

Note: Application B is restricted to 2 large DML queries at a time

Figure 10. Allocating portions of work across different business areas

For example, by applying a work action set to a workload, we can impose
concurrency restrictions on the type of work allowed to be submitted, meanwhile
keeping the overall system perspective simple. Figure 11 shows an example of how
allocation of resource consumption across business areas can be introduced without
changing the service class definitions introduced previously.

Business process DB2 database manager

Service superclass

Application A —_ Workload A —-
I
I
! ittt hd Default
I 1
1
i
1
Work ! Work
action (RN action --» Small DML
set : set
g Bt T
Business process i i !
I Limit=2Llarge | i
| N e + Large DML
. |
Application B — Workload B . Limit = 10

Figure 11. Example of allocating consumption between business areas

Scenario: Protected work

56

This scenario features a specific set of work that is favored and is to be protected
from the resource demands of other work. In some cases, this same protected work
is also given first preference whenever excess resources are available.

This type of scenario often arises whenever a mission-critical, performance-
sensitive application coexists with other less critical applications on the same
database system. In such cases, the priority is to ensure the responsiveness of the

Implementing DB2® Workload Management

critical application, regardless of the type of work it is submitting, while making
the resource needs of other work a secondary consideration.

When you have such a situation, the recommended course of action is to start by
following the process to reach a stable stage 2 configuration and to create a unique
workload definition or definitions to allow individual control and monitoring of
the critical application. The rationale behind this guidance is that the impact of the
best practices template on the critical application depends entirely on the type of
work being submitted. If the work submitted falls into those service subclasses that
do not have concurrency limits placed upon them, then the performance attributes
of the critical application might be satisfactory without any additional
modifications to the existing configuration.

However, if the critical application is not making its performance objectives within
the standard best practices template configuration, then it is necessary to pull that
work out of the service superclass of the best practices template configuration,
place the work of the critical application into its own service superclass and isolate
it from the others, as depicted in Figure 12.

DB2 database manager

User requests .
Service superclass
Critical
Requests —_— application —> Default subclass
workload
Service superclass
Requests
’—’ Default subclass
Requests ~ ——— — LOAD
> Default
workload — Trivial DML
Requests —
> Minor DML
EE— Simple DML
Requests —
E— Medium DML
> Complex DML
Default user
service class

Figure 12. Critical application workload isolated in its own service superclass

Advanced configurations: Stage 3 scenarios 57

58

In this configuration, it is possible on AIX platforms to further enforce the isolation
of CPU resources between the different service superclasses by using AIX WLM
hard limits. Using these controls, you can strictly control the amount of CPU
resources consumed by one or both of the two service superclasses shown in
Figure 12 on page 57. By creating and associating an AIX service superclass with
one or both of the DB2 service superclasses, it is possible to favor one superclass
over the other, or help to ensure that both get consistent access to CPU resources.

In Figure 13 and Figure 14, we have a simplified representation of the basic
scenario. We have the service class containing the favoured work to be protected
and one or more of the other service classes. Figure 13 shows that if other service
classes are limited by an AIX WLM hard limit, then the critical or favored work is
guaranteed a minimum amount of CPU with the ability to access the rest of the
system.

Favored work has access
to 100% of resources

Favored service class

Hard limit of X% placed on
Other service class(es) other work reserves (100-X%)
as minimum for favored work

Figure 13. Critical or favored work can access all system resources

In Figure 14, we have the case where both the favored service class and the other
ones are limited by AIX WLM hard limits, then both are guaranteed a consistent
CPU resource allocation.

|

Protected work has guaranteed
Protected service class access to Y% of resources at all
times with no latency

L

Other work is limited to

Other service class(es) (100-Y)% of overall resources

L

Figure 14. Consistent throughput scenario

For more information about using AIX WLM hard limits, see the best practices
supplement: “Integrating DB2 Workload Management with Operating System
Workload Management” in the 0S_WLM. pdf file that is included in the best practices
.zip package. The use of soft limits (also known as shares) on AIX or Linux is
typically not useful in these scenarios because such controls are only effective
when the overall system CPU utilization is quite high. Otherwise, soft limits are
not active, whereas hard limits are active at all times, regardless of the CPU
utilization rate.

Implementing DB2® Workload Management

Scenario: Production shifts

Another common scenario that goes beyond the standard stage 2 configuration is
one where a business encounters one or more periods of significantly different
demands being placed on their database system. The simplest example of such a
situation is the transformation from a daytime online environment to an overnight
batch environment. Other examples can include changes in system usage by
different parts of the enterprise due to the demands of monthly or quarterly
business cycles, such as quarterly reporting requirements. Effectively, any known
and predictable change in the mix of work, priorities, or performance demands
made on the database system could require a change in the current workload
management configuration to recognize the new conditions and expectations.

The term production shifts was coined to identify such scenarios, with each unique
set of demands being considered as a different shift.

In such situations, the following challenges are encountered:
¢ Determining the best workload management configuration for each shift

* Switching the workload management configuration for the system at the start of
each shift

If all of the target environments consist of work that maps well to the underlying
assumptions of the best practices (the workload consists primarily of DML
statements whose costs correspond with the resource impacts), then the initial
recommendation for addressing the first challenge is to treat each shift as a unique
exercise and to follow the best practices methodology to achieve a stable stage 2
configuration for each set of conditions. The result gives you the two different
configurations that you want to have in place on your system at different times.

After you have defined the set of configurations that is to be used during the
different shifts and the time frames in which each configuration is to be running
on the system, then the final challenge is how to best transition between the
different configurations. Best practices in this area recommend the use of the
extensive ALTER capabilities available with DB2 workload management to
minimize disruptions to the system. Using the various ALTER statements, it is
possible to make the following changes online with minimal impact to the system:

* Altering a workload definition to point to a different service class

+ Altering a service class definition

* Altering limits for an activity or concurrency threshold

* Altering a threshold, workload, or service class to enable or disable them

If you are using AIX WLM or Linux WLM capabilities, you can alter the
definitions of these entities outside of the DB2 database manager, but in a
partitioned database environment, an alteration requires changes on each and
every member involved in the database. Coordinating such changes across many
members can be difficult. An alternative, and vastly simpler, approach is to
predefine a set of unique OS WLM definitions for each shift, each with its own
external correlation token or tokens. When the change is needed, alter, with the
ALTER SERVICE CLASS statement, the involved DB2 service classes to use a
different external correlation token.

The workload management tooling provided in the Optim Performance Manager

(Optim PM) can be used to create more complex scripts for altering configurations.
You can create more complex scripts by defining the first configuration to Optim

Advanced configurations: Stage 3 scenarios 59

PM and then altering that configuration to the other settings. Optim PM produces
the necessary script to transition between the two configurations.

Scenario: Tiered service offerings

60

In some environments, business strategy has led to the desire to offer database
users different levels of service based on either their importance to the business or
ability to pay. Typically, the different levels of service are distinguished by different
levels of resources made available to the level of service.

For example, a premium service level is offered with capped access to 60% of the
system resources, a standard service level with capped access to 30%, and a
substandard service level of capped access to only 10%. The result is that
applications in different service levels experience different levels of performance.

The best practices recommendation is to duplicate the best practices template for

each tier of service, as shown in Figure 15, and follow the general methodology
outlined in this document.

DB2 database manager

User requests Premium service superclass
Workloads

—p

Requests

Requests

—»
—»
——»
Regqular service superclass
Requests 1 1 >
—»
Requests

Requests —_

(R T T T
v

Economy service superclass

1!

\4

Figure 15. Tiered service offerings

Implementing DB2® Workload Management

The major difference is that the overall system capacity, calculated as a starting
point for concurrency, needs to be suballocated across the different service classes
before the concurrency thresholds can be set on the individual service subclasses
within each superclass. For example, if the system is calculated to support a
concurrency of 180, 100 of that could be assigned to the Premium service
superclass, 60 to the Regular service superclass, and the remaining 20 to the
Economy service superclass. Using these initial system capacities for each service
superclass, the standard methodology can be used, although different budget
approaches can be taken within each service class to allocate the assigned capacity
across the service subclasses.

The one caveat to this approach is that while the overall concurrency numbers of
the different work types cannot exceed the overall system capacity, the demands
on the system might come from different service superclasses at any one time. The
result of subdividing the overall capacity between the different service superclasses
is a configuration that is less flexible to a fluctuating workload. In such cases, it
might be desirable to have slightly higher concurrency limits (or even none) on
one or more of the service subclasses in each service superclass, and then apply a
database-level concurrency control on the same work to reflect the system capacity.

For this approach to work, it is necessary that all of the participating service
subclasses contain work of the same estimated cost range. For example, if the
overall configuration is designed to accommodate six complex queries (queries that
have an estimated cost that falls into the complex range), then a work action set is
defined at the database level to impose a concurrency threshold of 6 on queries
with an estimated cost in the complex range. The concurrency thresholds on the
individual service subclasses that represent that same range in each service
superclass can be set to values different from 6, if you want’. Such an arrangement
controls the overall use of the system by complex queries, and the participation of
the individual corresponding subclasses can be curtailed as you want.

One other consideration that needs to be thought about is the mapping of
workloads to service superclasses in a tiered service system. In the simplest of
cases, each application or business unit maps to only one service level, resulting in
single workloads being used to represent both the business entity and the mapping
to the service level. In more complicated cases, different aspects of each business
application or unit map to different service levels. This environment requires a
workload to be defined for each relationship between an outside entity and a
service level, with connections (or transactions) being mapped to the appropriate
workload for the service level. That is, if an ACCOUNTS application had two
types of database interactions, one with the Premium level and one with the
Economy level, then two workloads need to be created for the ACCOUNTS
application, one pointing to the Premium service superclass and one pointing to
the Economy service superclass. In addition, appropriate changes need to be made
within the ACCOUNTS application context to ensure that transactions or
connections are mapped to the appropriate workload. Also, summary reports, of
database activity for the ACCOUNTS application, need to be aware of the existence
of multiple workloads representing that application within the database and
integrate the different data into one cohesive report.

5. Note that the concurrency threshold imposed on the complex work by the database work action set is evaluated first before the
relevant service subclass concurrency threshold is evaluated. For this reason, it is important to be careful when having service
class concurrency thresholds with limits lower than the database one since this might result in queries that are permitted to
execute by the database threshold being made to wait by the service class threshold. The best practice is to have the database
threshold be more restrictive than the service class one.

Advanced configurations: Stage 3 scenarios 61

Scenario: Non-CPU contention

62

Although this best practices document has been focused on the control and
allocation of CPU resources between the different types of work being processed
by a database system, there are cases where the contention between work is caused
by resources other than the CPU. This non-CPU contention can be caused by
contention between two or more applications for system resources such as 1/0,
memory (for example, sort memory), or even storage (for example, system
temporary table space). That is, two or more workloads are colliding over access to
a non-CPU resource and this collision is affecting the efficiency of the system.

If you are unable to address the contention for non-CPU resources in any other
way, it is possible to use a workload management configuration to help in such a
situation. By taking advantage of the gatekeeper aspect of the concurrency
thresholds, it is possible to indirectly control the demands made on resources,
other than the CPU, by adjusting the concurrency limits. Work that is not
executing, because it is queued in the concurrency threshold, will not be making
demands on the contentious resource. For example, low priority work is
consuming too much sort memory and affecting the performance of higher priority
work (perhaps by causing its sorts to spill to disk). By lowering the overall
concurrency of the low priority work with a concurrency threshold, you can reduce
its overall demands on sort memory because sort memory is only allocated for the
low priority work after its execution has started.

The following is a rough outline of the steps required to address contention for
non-CPU resources by using concurrency controls in DB2 workload management:

1. Identify what resource is in contention and obtain monitoring information for it
from the different workloads and service classes in your configuration.

2. Identify what type of work is causing the contention. If it is the execution of
SQL statements or the LOAD utility, continue; otherwise, stop because you
cannot resolve this issue by using concurrency thresholds that only act on
recognized activities. For more information about these recognized activities,
see: “Prerequisite concepts and terminology” on page 5.

3. If the problem is systemic (that is, involving all workloads), then adjust the
configuration, as a whole, as was done for CPU. Review the section about
adjusting concurrency threshold values by using the consumption rate for the
resource in question rather than just the CPU resource. See: “Adjusting
concurrency threshold values” on page 35.

4. If the problem is not systemic, then identify which specific connections or
transactions are competing for the resource and determine their business
priority relative to each other.

5. Create a separate DB2 workload for each competing (or over-consuming)
connection or transaction to allow that work to be monitored and controlled
differently than all the others.

6. Identify if a specific class of work is responsible for the contention (for
example, large queries consuming lots of sort space).

7. If the problem is caused by a specific set of work, perform the following
actions on the lower priority DB2 workload definition:

a. Create a DB2 work class set with one work class definition identifying the
specific problematic subset of activities. For example, if the problem set is
large queries, define a work class for large queries.

b. Create a DB2 work action set on the lower priority DB2 workload definition
that implements a concurrency threshold on the problematic work class

Implementing DB2® Workload Management

defined in the previous step. This action limits the concurrency level of all
activities that match this work class definition coming from connections that
map to this workload.

8. If the problem is not limited to a specific class of work, perform the following
actions on the lower priority DB2 workload definition:

a. Create a DB2 work class set with one work class definition of type ALL.

b. Create a DB2 work action set on the lower priority DB2 workload definition
that implements a concurrency threshold on that one work class defined in
the previous step. This action limits the concurrency level of all recognized
activities coming from connections that map to this workload, regardless of
their different individual work types.

Advanced configurations: Stage 3 scenarios 63

64 Implementing DB2® Workload Management

Conclusion

The workload management best practices presented in this paper are motivated by
the goal of achieving more consistent and predictable performance for a database
system deployed in a data warehouse environment. The objective of this document
was to provide a standardized methodology that can be used by our customers to
achieve that goal.

To this end, this document introduced an approach to achieving a customized
stage 2 workload management configuration for a DB2 for Linux, UNIX, and
Windows Version 9.7 database. This approach consists of the application of a
template stage 1 workload management configuration to the target database,
accompanied by a description of the steps needed to customize that template to
better fit the actual work being executed on the target database.

After being established, this stage 2 workload management configuration can help
reduce the volatility in performance that is experienced when the demands on the
database exceed the available capacity by controlling the specific mix of work
allowed to execute at any one time. To maintain this configuration, this document
outlines a suggested monitoring regime to be put in place after the stage 2
configuration has been achieved. This monitoring regime aids in the future
detection of change and in any subsequent increment tuning that might be
required to compensate for that change.

For those customers with more advanced workload management requirements for
their database systems, we have briefly outlined a set of common scenarios that
have been encountered where more advanced, stage 3 workload management
configurations have been required to address the requirements. Although the intent
of this paper was not to provide specific guidance in these cases, it is hoped that
the examples are of some aid to any customer contemplating such changes.

In the end, like many other parts of any IT environment, a database workload
management configuration will ultimately reflect the unique business objectives
and priorities of each enterprise. A standard approach to workload management,
such as laid out in this document, can be extremely helpful to those customers
who might be inexperienced or new to the topic, particularly in getting started and
dealing with basic issues. Having a solid foundation, from which to begin to
address more advanced requirements, reduces the set of issues and concerns that
must be dealt with when grappling with the topic of workload management. If
you follow the field-tested best practices outlined here for DB2 workload
management, you will be off to a successful start to implementing workload
management in your database environment.

© Copyright IBM Corp. 2011 65

66 Implementing DB2® Workload Management

Further reading

Additional information about DB2 workload management and related topics is
provided here and can be used for both introductory and supplemental purposes
with respect to the contents of this document.

Best practices for DB2 for Linux, UNIX, and Windows
http:/ /www.ibm.com/developerworks/data/bestpractices/db2luw/

DB2 9.7 documentation
http:/ /publib.boulder.ibm.com/infocenter/db2luw /v9r7/index.jsp

DB2 9.7: Using Workload Manager features (Tutorial)
http:/ /www.ibm.com/developerworks/data/tutorials/dm-
0908db2workload /index.html

DB2 Workload Management Histograms,

Part 1: A gentle introduction to histograms
http:/ /download.boulder.ibm.com/ibmdl/pub/software/dw/dm/
db2/dm-0810mcdonald /dm-0810mcdonald-pdf.pdf

Part 2: Understanding the six histograms of DB2 workload management
http:/ /download.boulder.ibm.com/ibmdl/pub/software/dw/dm/
db2/dm-0810mcdonald2/dm-0810mcdonald2-pdf.pdf

Part 3: Visualizing and deriving statistics from DB2 histograms using
SQL http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/
db2/dm-0810mcdonald3/dm-0810mcdonald3-pdf.pdf

White paper: Workload Management with MicroStrategy Software and IBM DB2
9.5 http:/ /public.dhe.ibm.com/software/data/sw-library/db2/papers/
wlm_msi_db29.5.pdf

SAP and DB2 for LUW: Exploitation of DB2’s Workload Management in an SAP
Environment
https:/ /www.sdn.sap.com/irj/scn/go/portal / prtroot/docs/library /uuid /
d046£3£5-13c5-2b10-179d-80b6ae7b9657

IBM Smart Analytics System
http:/ /www-01.ibm.com/software/data/infosphere/smart-analytics-
system/

© Copyright IBM Corp. 2011 67

http://www.ibm.com/developerworks/data/bestpractices/db2luw/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp
http://www.ibm.com/developerworks/data/tutorials/dm-0908db2workload/index.html
http://www.ibm.com/developerworks/data/tutorials/dm-0908db2workload/index.html
http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald/dm-0810mcdonald-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald/dm-0810mcdonald-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald2/dm-0810mcdonald2-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald2/dm-0810mcdonald2-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald3/dm-0810mcdonald3-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald3/dm-0810mcdonald3-pdf.pdf
http://public.dhe.ibm.com/software/data/sw-library/db2/papers/wlm_msi_db29.5.pdf
http://public.dhe.ibm.com/software/data/sw-library/db2/papers/wlm_msi_db29.5.pdf
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/d046f3f5-13c5-2b10-179d-80b6ae7b9657
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/d046f3f5-13c5-2b10-179d-80b6ae7b9657
http://www-01.ibm.com/software/data/infosphere/smart-analytics-system/
http://www-01.ibm.com/software/data/infosphere/smart-analytics-system/

68 Implementing DB2® Workload Management

Contributors

Significant contributions were made to the theme and content of this workload
management best practices paper by the following contributors:

John Bell
IBM Distinguished Engineer

Data Warehouse Architect

Kevin Beck
Software Developer

Data Warehouse Edition Development - Workload Management
Acknowledgements
We wish to acknowledge the valuable contributions of the following people who
helped to improve the quality of this workload management best practices paper:
Maksym Petrenko
Malcom Zung
Challen Pride-Thorne
Sandra Seenauth
Garrett Fitzsimons
Paul McInerney
Serge Boivin
Eric Koeck
Karen McCulloch
Patrice Turpin
Scott Walkty
Steve Rees
Katherine Kurtz
Arun Lakhana
Eric Sirois

Jackie Chong

© Copyright IBM Corp. 2011 69

70 Implementing DB2® Workload Management

Appendix A. DB2 workload management and monitoring
highlights for DB2 for Linux, UNIX, and Windows Version 9.7

The release of DB2 for Linux, UNIX, and Windows Version 9.7 continued the major
investments in workload management and monitoring infrastructure in the DB2
engine with both the DB2 Version 9.7 and subsequent fix pack releases. Significant
enhancements were made to workloads, thresholds, and service classes. In
addition, the DB2 Version 9.7 release officially deprecated the Query Patroller
product and the DB2 Governor and they will be discontinued in a future release.

As a high-level summary, the DB2 Version 9.7 release contained the following;:

The option to integrate DB2 service classes with Linux WLM

Support for defining DB2 thresholds directly on DB2 workloads

Support for the collection of aggregate activity data for DB2 workloads

Changes to the behavior of the CONCURRENTDBCOORDACTIVITIES threshold

The introduction of new DB2 thresholds for CPU and I/O consumption by SQL
statements (for example, CPUTIME, SQLROWSREAD)

The introduction of a new DB2 threshold for the aggregate consumption of
system temporary table space by all Data Manipulation Language (DML)
statements in a specific service class (AGGSQLTEMPSPACE)

Support for a new REMAP action within (specific) DB2 thresholds to move
activities between different subclasses (CPUTIMEINSC, SQLROWSREADINSC)

The introduction of a new service class attribute to influence buffer pool 1/O
behaviors (BUFFERPOOL PRIORITY)

Support for the collection of the new in-memory metrics, including wait time
metrics, at the activity, workload, and service class levels, with corresponding
MON_* table functions introduced to provide access

Numerous enhancements to the DB2 workload management table functions and
event monitors

In addition to the preceding enhancements, the DB2 for Linux, UNIX, and
Windows Version 9.7 Fix Pack 1 release added the following:

Support for the definition of work action sets directly on DB2 workloads with
the ability to apply thresholds or collect aggregate activity data with a work
action

Changes to synchronize the automated collection of workload management
statistics to a standard start time

The introduction of a tool to help in the migration from Query Patroller to DB2
workload management

The introduction of a new DB2 threshold to limit the length of time that a unit
of work can remain active (UOWTOTALTIME)

Support for the collection of the new component time metrics at the activity,
workload, and service class levels

Support for the collection of sections, executable form of SQL statements, as part
of the activity event monitor for use with the new Explain from section
capabilities which include capture of section actuals

Subsequent fix packs have added the following features:

© Copyright IBM Corp. 2011

71

* WLM_SET_CONN_ENV and WLM_GET_CONN_ENYV procedures to allow the
control of workload management monitoring information at the individual
connection level (DB2 Version 9.7 Fix Pack 2)

* Add the event_activitymetrics logical data group to the activity event monitor to
provide easy SQL access to the new DB2 Version 9.7 metrics in a separate table
(DB2 Version 9.7 Fix Pack 4)

* An enhancement to the WLM_COLLECT_STATS procedure to provide a new
input parameter to have it wait until all event monitor records have been
flushed to disk before it returns, as well as a new output parameter to return a
timestamp for statistics that were recently collected (DB2 Version 9.7 Fix Pack 4)

72 Implementing DB2® Workload Management

Appendix B. Creating prerequisite event monitors

Sample scripts are provided in this appendix to create prerequisite event monitors
after reaching the stage 1 best practices template configuration.

In order to follow the methodology laid out in this document, it is necessary to
create the following event monitors:

e Activity
e Statistics
e Threshold violations

These event monitors are required to be created in a table space that is present on
all members, including the administration partition. Typically, this table space
would include any regular table space created in the IBMDEFAULTGROUP
database partition group. On IBM Smart Analytics System configurations, the event
monitors can be created in the existing TS_MONITORING table space which is
created across all members.

The following is an IBM Smart Analytics System example of the DDL that can be
used (for an editable version of this SQL script, you can use the
sample_create_evmon.sql file included in the best practices .zip file):

-- Script to create event monitors used by the DB2 Workload Management

-- Best Practices for Data Warehouses

-- NOTES:

-- 1) Replace TS_MONITORING tablespace name if not appropriate for your
-- environment with the name of a tablespace that is accessible by all
-- database members

-- 2) This DDL is compatible with DB2 9.7.4 for Linux, Unix, and Windows.
-- - If used with a version below this, remove the ACTIVITYMETRICS

-- table from the DB2ACTIVITIES event monitor definition.

-- - If used with a version higher than this, consult the DB2

-- documentation for any new enhancements to any of these event

-- monitors that may be of interest to you.

-- Create the statistics event monitor
CREATE EVENT MONITOR DB2STATISTICS
FOR STATISTICS
WRITE TO TABLE
SCSTATS (TABLE SCSTATS_DB2STATISTICS IN TS_MONITORING),
WCSTATS (TABLE WCSTATS DB2STATISTICS IN TS _MONITORING),
WLSTATS (TABLE WLSTATS_DB2STATISTICS IN TS_MONITORING),
QSTATS (TABLE QSTATS_DB2STATISTICS IN TS_MONITORING),
HISTOGRAMBIN (TABLE HISTOGRAMBIN DB2STATISTICS IN TS_MONITORING),
CONTROL (TABLE CONTROL_DB2STATISTICS IN TS_MONITORING);

-- Create the threshold violations event monitor
CREATE EVENT MONITOR DB2THRESHOLDS
FOR THRESHOLD VIOLATIONS
WRITE TO TABLE
THRESHOLDVIOLATIONS (TABLE THRESHOLDVIOLATIONS DB2THRESHOLDS
IN TS_MONITORING),
CONTROL (TABLE CONTROL_DB2THRESHOLDVIOLATIONS IN TS_MONITORING);

© Copyright IBM Corp. 2011 73

-- Create the activity event monitor

CREATE EVENT MONITOR DB2ACTIVITIES
FOR ACTIVITIES
WRITE TO TABLE
ACTIVITY (TABLE ACTIVITY_DB2ACTIVITIES IN TS_MONITORING),
ACTIVITYMETRICS (TABLE ACTIVITYMETRICS DB2ACTIVITIES IN TS_MONITORING),
ACTIVITYSTMT (TABLE ACTIVITYSTMT DB2ACTIVITIES IN TS_MONITORING),
ACTIVITYVALS (TABLE ACTIVITYVALS DB2ACTIVITIES IN TS _MONITORING),
CONTROL (TABLE CONTROL_DB2ACTIVITIES in TS_MONITORING);

74 Implementing DB2® Workload Management

Appendix C. DDL scripts for transitioning from stage 0 to
stage 1

Stage 1 template script

The following is an example script that you can use to transition your stage 0
default configuration to a stage 1 best practices template configuration (for an
editable version of this SQL script, you can use the
sample_create_wlm_bp_template.sql file included in the best practices .zip file):

-- Script of DDL statements needed to lay down initial template as prescribed by
-- the DB2 Workload Management Best Practices for Data Warehouses

-- Change to special administration workload for this connection while running
-- this script in order to bypass any existing workload management configuration
-- rules

SET WORKLOAD TO SYSDEFAULTADMWORKLOAD;

-- Create disabled superclass for workload management best practices for
-- warehouse template
CREATE SERVICE CLASS "WLMBP_MASTER" DISABLE;

-- Create disabled service subclass for COMPLEX DML statements

-- with extended aggregate data being gathered

CREATE SERVICE CLASS "COMPLEX_DML" UNDER "WLMBP_MASTER"
COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

-- Create disabled service subclass for MEDIUM DML statements

-- with extended aggregate data being gathered

CREATE SERVICE CLASS "MEDIUM_DML" UNDER "WLMBP_MASTER"
COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

-- Create disabled service subclass for SIMPLE DML statements

-- with extended aggregate data being gathered

CREATE SERVICE CLASS "SIMPLE_DML" UNDER "WLMBP_MASTER"
COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

-- Create disabled service subclass for MINOR DML statements

-- with extended aggregate data being gathered

CREATE SERVICE CLASS "MINOR DML" UNDER "WLMBP_MASTER"
COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

-- Create disabled service subclass for TRIVIAL DML statements

-- with extended aggregate data being gathered

CREATE SERVICE CLASS "TRIVIAL_DML" UNDER "WLMBP_MASTER"
COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

-- Create disabled service subclass for ETL work (e.g. LOAD)
-- with extended aggregate data being gathered
CREATE SERVICE CLASS "ETL" UNDER "WLMBP_MASTER"

COLLECT AGGREGATE ACTIVITY DATA EXTENDED DISABLE;

-- Create set of work class definitions for incoming work
CREATE WORK CLASS SET "WLMBP_WORK_CLASSES"
(
-- Define as trivial cost, any DML statement
-- with estimated cost between 0 and 5,000 timerons
WORK CLASS "TRIVIAL_COST DML"
WORK TYPE DML
FOR TIMERONCOST FROM 0.0 TO 5000.0,

-- Define as minor cost, any DML statement
-- with estimated cost between 5,000 and 30,000 timerons

© Copyright IBM Corp. 2011 75

76

WORK CLASS "MINOR_COST DML"
WORK TYPE DML
FOR TIMERONCOST FROM 5000.0 TO 30000.0,

-- Define as simple cost, any DML statement
-- with estimated cost between 30,000 and 300,000 timerons
WORK CLASS "SIMPLE_COST_DML"
WORK TYPE DML
FOR TIMERONCOST FROM 30000.0 TO 300000.0,

-- Define as medium cost, any DML statement
-- with estimated cost between 300,000 and 5,000,000 timerons
WORK CLASS "MEDIUM_COST_DML"
WORK TYPE DML
FOR TIMERONCOST FROM 300000.0 TO 5000000.0,

-- Define as complex cost, any DML statement
-- with estimated cost above 5,000,000 timerons
WORK CLASS "COMPLEX_COST_DML"
WORK TYPE DML
FOR TIMERONCOST FROM 5000000.0 TO UNBOUNDED,

-- Define as DDL, any DDL statement
WORK CLASS "DDL"
WORK TYPE DDL,

-- Define as Load, any invocation of the Load utility
WORK CLASS "LOAD"
WORK TYPE LOAD,

-- Define as Call, any CALL statement
WORK CLASS "CALL"
WORK TYPE CALL
)s

-- Create disabled activitytotaltime threshold for trivial subclass
CREATE THRESHOLD "WLMBP_TRIVIAL_DML_TIMEOUT"
FOR SERVICE CLASS "TRIVIAL_DML" UNDER "WLMBP_MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN ACTIVITYTOTALTIME > 1 MINUTE
COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS
CONTINUE;

-- Create disabled activitytotaltime threshold for minor subclass
CREATE THRESHOLD "WLMBP_MINOR_DML_TIMEOUT"
FOR SERVICE CLASS "MINOR_DML" UNDER "WLMBP_MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN ACTIVITYTOTALTIME > 1 MINUTE
COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS
CONTINUE;

-- Create disabled activity concurrency threshold for minor subclass
CREATE THRESHOLD "WLMBP_MINOR _DML_CONCURRENCY"
FOR SERVICE CLASS "MINOR_DML" UNDER "WLMBP_MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN CONCURRENTDBCOORDACTIVITIES > 40 AND QUEUEDACTIVITIES UNBOUNDED
CONTINUE;

-- Create disabled activitytotaltime threshold for simple subclass
CREATE THRESHOLD "WLMBP_SIMPLE DML_TIMEOUT"
FOR SERVICE CLASS "SIMPLE_DML" UNDER "WLMBP_MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN ACTIVITYTOTALTIME > 5 MINUTES
COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS
CONTINUE;

-- Create disabled activity concurrency threshold for simple subclass

Implementing DB2® Workload Management

CREATE THRESHOLD "WLMBP_SIMPLE_DML_CONCURRENCY"
FOR SERVICE CLASS "SIMPLE DML" UNDER "WLMBP _MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN CONCURRENTDBCOORDACTIVITIES > 16 AND QUEUEDACTIVITIES UNBOUNDED
CONTINUE;

-- Create disabled activitytotaltime threshold for medium subclass
CREATE THRESHOLD "WLMBP_MEDIUM_DML_TIMEOUT"
FOR SERVICE CLASS "MEDIUM DML" UNDER "WLMBP _MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN ACTIVITYTOTALTIME > 1 HOUR
COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS
CONTINUE;

-- Create disabled activity concurrency threshold for medium subclass
CREATE THRESHOLD "WLMBP_MEDIUM_DML_CONCURRENCY"
FOR SERVICE CLASS "MEDIUM_DML" UNDER "WLMBP_MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN CONCURRENTDBCOORDACTIVITIES > 8 AND QUEUEDACTIVITIES UNBOUNDED
CONTINUE;

-- Create disabled activitytotaltime threshold for complex subclass
CREATE THRESHOLD "WLMBP_COMPLEX_DML_TIMEOUT"
FOR SERVICE CLASS "COMPLEX_DML" UNDER "WLMBP_MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN ACTIVITYTOTALTIME > 4 HOURS
COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS
CONTINUE;

-- Create disabled activity concurrency threshold for complex subclass
CREATE THRESHOLD "WLMBP_COMPLEX_DML_CONCURRENCY"
FOR SERVICE CLASS "COMPLEX DML" UNDER "WLMBP _MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN CONCURRENTDBCOORDACTIVITIES > 4 AND QUEUEDACTIVITIES UNBOUNDED
CONTINUE;

-- Create disabled activity concurrency threshold for ETL subclass
CREATE THRESHOLD "WLMBP_ETL_CONCURRENCY"
FOR SERVICE CLASS "ETL" UNDER "WLMBP_MASTER"
ACTIVITIES ENFORCEMENT DATABASE
DISABLE
WHEN CONCURRENTDBCOORDACTIVITIES > 4 AND QUEUEDACTIVITIES UNBOUNDED
CONTINUE;

-- Create disabled work action set for template service superclass which maps
-- key work types to appropriate service subclass
CREATE WORK ACTION SET "WLMBP_WORK_ACTIONS"
FOR SERVICE CLASS "WLMBP_MASTER"
USING WORK CLASS SET "WLMBP_WORK_CLASSES"
(
-- Direct trivial cost DML to the Trivial DML subclass and allow any nested SQL
-- statement to be re-evaluated
WORK ACTION "MAP_TRIVIAL_COST_DML"
ON WORK CLASS "TRIVIAL COST_DML"
MAP ACTIVITY WITHOUT NESTED TO "TRIVIAL_DML",

-- Direct minor cost DML to the Minor DML subclass and allow any nested SQL
-- statement to be re-evaluated
WORK ACTION "MAP_MINOR_COST_DML"
ON WORK CLASS "MINOR_COST_DML"
MAP ACTIVITY WITHOUT NESTED TO "MINOR_DML",

-- Direct simple cost DML to the Simple DML subclass and allow any nested SQL
-- statement to be re-evaluated
WORK ACTION "MAP_SIMPLE_COST_DML"
ON WORK CLASS "SIMPLE_COST_DML"

Appendix C. DDL scripts for transitioning from stage 0 to stage 1

77

MAP ACTIVITY WITHOUT NESTED TO "SIMPLE_DML",

-- Direct medium cost DML to the Medium DML subclass and allow any nested SQL
-- statement to be re-evaluated
WORK ACTION "MAP_MEDIUM_COST_DML"
ON WORK CLASS "MEDIUM_COST_DML"
MAP ACTIVITY WITHOUT NESTED TO "MEDIUM_DML",

-- Direct complex cost DML to the Complex DML subclass and allow any nested SQL
-- statement to be re-evaluated
WORK ACTION "MAP_COMPLEX_COST_DML"
ON WORK CLASS "COMPLEX_COST_DML"
MAP ACTIVITY WITHOUT NESTED TO "COMPLEX_DML",

-- Direct Loads to the ETL subclass and allow any nested SQL to be re-evaluated
WORK ACTION "MAP_LOAD"
ON WORK CLASS "LOAD"
MAP ACTIVITY WITHOUT NESTED TO "ETL"

-- DDL and CALL statements as well as other requests not explicitly mentioned
-- above will fall through and execute in the default service subclass of the
-- WLMBP_MASTER service superclass

)
DISABLE;

-- Enable template service superclass
ALTER SERVICE CLASS "WLMBP_MASTER" ENABLE;

-- Enable Complex DML service subclass
ALTER SERVICE CLASS "COMPLEX_DML" UNDER "WLMBP_MASTER" ENABLE;

-- Enable Medium DML service subclass
ALTER SERVICE CLASS "MEDIUM_DML" UNDER "WLMBP_MASTER" ENABLE;

-- Enable simple DML service subclass
ALTER SERVICE CLASS "SIMPLE DML" UNDER "WLMBP_MASTER" ENABLE;

-- Enable Minor DML service subclass
ALTER SERVICE CLASS "MINOR_DML" UNDER "WLMBP_MASTER" ENABLE;

-- Enable Trivial DML service subclass
ALTER SERVICE CLASS "TRIVIAL_DML" UNDER "WLMBP_MASTER" ENABLE;

-- Enable ETL service subclass
ALTER SERVICE CLASS "ETL" UNDER "WLMBP_MASTER" ENABLE;

-- Enable work action set for template service superclass
ALTER WORK ACTION SET "WLMBP_WORK ACTIONS" ENABLE;

-- Enable the activitytotaltime thresholds

ALTER THRESHOLD "WLMBP_TRIVIAL_DML_TIMEOUT" ENABLE;
ALTER THRESHOLD "WLMBP_MINOR_DML_TIMEOUT" ENABLE;
ALTER THRESHOLD "WLMBP_SIMPLE DML TIMEOUT" ENABLE;
ALTER THRESHOLD "WLMBP_MEDIUM_DML_TIMEOUT" ENABLE;
ALTER THRESHOLD "WLMBP_COMPLEX_DML_TIMEOUT" ENABLE;

-- Optional: You can enable the concurrency thresholds now (by removing the
-- comment prefix "--" in front of each ALTER statement) or at a Tater time

-- ALTER THRESHOLD "WLMBP_MINOR_DML_CONCURRENCY" ENABLE;
-- ALTER THRESHOLD "WLMBP_SIMPLE_DML_CONCURRENCY" ENABLE;
-- ALTER THRESHOLD "WLMBP_MEDIUM_DML_CONCURRENCY" ENABLE;
-- ALTER THRESHOLD "WLMBP_COMPLEX_DML_CONCURRENCY" ENABLE;
-- ALTER THRESHOLD "WLMBP_ETL_CONCURRENCY" ENABLE;

78 Implementing DB2® Workload Management

-- The next statement activates the new workload management configuration for
-- use on your system by redirecting the standard default user workload to the
-- new workload management best practices template configuration created above.

-- Alter default user workload to point to template service superclass and to
-- gather extended aggregate activity data
ALTER WORKLOAD "SYSDEFAULTUSERWORKLOAD" SERVICE CLASS "WLMBP_MASTER"

COLLECT AGGREGATE ACTIVITY DATA EXTENDED;

-- Change back to standard workload selection for this connection
SET WORKLOAD TO AUTOMATIC;

Stage 1 template drop script

The following is an example script that you can use to remove the stage 1 best
practices template configuration (for an editable version of this SQL script, you can
use the sample_drop_wim_bp_template.sql file included in the best practices .zip
file):

-- Script of DDL statements needed to remove initial template prescribed by

-- the DB2 Workload Management Best Practices for Data Warehouses

-- This script is designed to remove the original, unmodified template. If you
-- have made modifications to the template some statements may return errors if
-- template objects have been removed and you may need to add new statements if
-- new objects have been created.

-- Change to special administration workload for this connection while running
-- this script in order to bypass any existing workload management configuration
-- rules

SET WORKLOAD TO SYSDEFAULTADMWORKLOAD;

—_—— kkkkkhhkhhkhkhkhhkhkhkhhhhkhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhdhhhhhdhhkhhhhhhhhhhhhkhhhkhxd
-- The next statement de-activates the workload management best practices

-- template configuration on your system by redirecting the standard default

-- user workload back to the original DB2 user service superclass

-- Alter default user workload to point to template service superclass and to

-- gather extended aggregate activity data

ALTER WORKLOAD "SYSDEFAULTUSERWORKLOAD" SERVICE CLASS "SYSDEFAULTUSERCLASS"
COLLECT AGGREGATE ACTIVITY DATA NONE;

-- Drop all activitytotaltime thresholds
DROP THRESHOLD "WLMBP_TRIVIAL_DML_TIMEOUT";
DROP THRESHOLD "WLMBP_MINOR_DML_TIMEOUT";
DROP THRESHOLD "WLMBP_SIMPLE_DML_TIMEOUT";
DROP THRESHOLD "WLMBP_MEDIUM DML_TIMEOUT";
DROP THRESHOLD "WLMBP_COMPLEX_DML_TIMEOUT";

-- Disable all concurrency thresholds

ALTER THRESHOLD "WLMBP_MINOR_DML_CONCURRENCY" DISABLE;
ALTER THRESHOLD "WLMBP_SIMPLE_DML_CONCURRENCY" DISABLE;
ALTER THRESHOLD "WLMBP_MEDIUM DML_CONCURRENCY" DISABLE;
ALTER THRESHOLD "WLMBP_COMPLEX_DML_CONCURRENCY" DISABLE;
ALTER THRESHOLD "WLMBP_ETL_CONCURRENCY" DISABLE;

-- The following statements may return an error if there is still user work
-- queued in the concurrency threshhold being dropped. If this occurs, wait
-- until the work is no Tonger queued and try the statement again.

-- Drop all concurrency thresholds

Appendix C. DDL scripts for transitioning from stage 0 to stage 1 79

80

DROP THRESHOLD "WLMBP_MINOR_DML_CONCURRENCY";
DROP THRESHOLD "WLMBP_SIMPLE_DML_CONCURRENCY";
DROP THRESHOLD "WLMBP_MEDIUM_DML_CONCURRENCY";
DROP THRESHOLD "WLMBP_COMPLEX_DML_CONCURRENCY";
DROP THRESHOLD "WLMBP_ETL_CONCURRENCY";

-- Drop template work action set
DROP WORK ACTION SET "WLMBP_WORK_ACTIONS";

-- Drop template work class set

DROP WORK CLASS SET

-- Disbale and drop
ALTER SERVICE CLASS
ALTER SERVICE CLASS
ALTER SERVICE CLASS
ALTER SERVICE CLASS
ALTER SERVICE CLASS
ALTER SERVICE CLASS

"WLMBP_WORK_CLASSES";

all service subclasses under template superclass
"COMPLEX_DML" UNDER "WLMBP_MASTER" DISABLE;
"MEDIUM_DML" UNDER "WLMBP_MASTER" DISABLE;
"SIMPLE_DML" UNDER "WLMBP_MASTER" DISABLE;
"MINOR DML" UNDER "WLMBP_MASTER"DISABLE;
"TRIVIAL_DML" UNDER "WLMBP_MASTER" DISABLE;
"ETL" UNDER "WLMBP_MASTER" DISABLE;

-- The following statements may return an error if there is still user work
-- present in the service class being dropped. If this occurs, wait until the

-- work is complete
DROP SERVICE CLASS
DROP SERVICE CLASS
DROP SERVICE CLASS
DROP SERVICE CLASS
DROP SERVICE CLASS
DROP SERVICE CLASS

-- Disable and drop
ALTER SERVICE CLASS
DROP SERVICE CLASS

and try the statement again.
"COMPLEX_DML" UNDER "WLMBP_MASTER";
"MEDIUM DML" UNDER "WLMBP_MASTER";
"SIMPLE_DML" UNDER "WLMBP_MASTER";
"MINOR_DML" UNDER "WLMBP_MASTER";
"TRIVIAL_DML" UNDER "WLMBP_MASTER";
"ETL" UNDER "WLMBP_MASTER";

template service superclass
"WLMBP_MASTER" DISABLE;
"WLMBP_MASTER";

-- Change back to standard workload selection for this connection
SET WORKLOAD TO AUTOMATIC;

Implementing DB2® Workload Management

Appendix D. Techniques for adjusting work class definitions

This appendix covers some techniques that can be used for evaluating and
adjusting the estimated cost ranges used in the work class definitions provided in
the best practices template configuration to better match the actual workload being
placed upon the system.

For the work class definitions used in the best practices template, see “Template
work class definitions” on page 19.

As a reminder, the objective of these steps is to review the distribution of estimated
costs, gathered over time, for each service subclass with an eye to identifying
boundary values and the distribution of work within that service subclass. With
this information, the initial template values can be adjusted to help ensure that the
overall objective of having relatively homogeneous groups of work (in terms of
estimated cost) within each service subclass is achieved so that system performance
volatility is reduced when under concurrency control.

Finally, since real-life is often much more complicated, the steps outlined in the
following sections are provided simply as general guidelines on how you can
ensure the relative uniformity of work within a service subclass. The goal is not to
achieve perfection, but rather simplify and tweak the standard best practices
template to help ensure a good fit for your actual database workload. There has to
be balance between the number of service subclasses, and the granularity of
control that they provide over the mix of work executing on the system, versus the
increasing complexity of your workload management configuration.

The overriding philosophy to keep in mind while doing this exercise is to err on
the side of not changing anything if it is not obvious what to do. If a situation is
encountered which is not easily mapped to one of the following scenarios,
remember that the effects of a less than desirable spread of estimated costs for
work within a service subclass are not in themselves disastrous and might not be
noticed on many systems.

This in-depth material supports the best practices documentation in “Adjusting
work class definitions” on page 34.

Analyzing activity event monitor data

After you have collected data in the activity event monitor that represents all or a
good subset of the overall work to be run on your system, it is possible to analyze
this data. Analysis of the data will determine how the work will interact with the
best practices template and what is the natural distribution of the estimated cost
values for your workload.

An SQL query can be used to determine how the captured work maps to the target
service subclasses in the predefined best practices template, as well as provide a
relatively granular perspective of the estimated cost distribution. For a sample SQL
script, see: “Sample D1: Determining estimated cost distribution based on activity
event monitor data” on page 82.

It is possible to gather an estimated cost histogram from the data gathered by the
statistics event monitor if the service classes have been set to use the EXTENDED

© Copyright IBM Corp. 2011 81

82

option of the COLLECT AGGREGATE ACTIVITY DATA clause. Although this data
does not contain detailed information about individual entries, but does show the
overall distribution of estimated costs for incoming SQL statements that execute in
each service subclass. For a sample SQL script, see: “Sample D2: Determining
estimated cost distribution based on statistics event monitor data” on page 84.

The following is a list of key things to remember about this data:

* The data represents the coordinator statement perspective and does not contain
costs for nested SQL statements such as those invoked from within a stored
procedure.

* The bins in the histogram information represent a logarithmic scale (higher bins
represent much larger ranges than lower bins) and any analysis on that data
must take this scale into account when adjusting service subclasses.

* If an insufficient distribution across the bins is discovered (all the values are
falling into one bin), it is possible to adjust the template scale to provide better
focus and distribution information. You can zoom the scale of the histogram
template in or out to get the resolution that you want on the distribution
information by using the CREATE TEMPLATE and ALTER TEMPLATE
statements.

Sample D1: Determining estimated cost distribution based on
activity event monitor data

This SQL query evaluates all the individual entries in the activity event monitor
based on the estimated costs of each statement that was executed and, based on a
predetermined set of ranges, reports on the counts in each range. This query only
considers DML statements since those are the only ones with estimated costs
provided by the SQL Compiler.

SQL text:
For an editable version of this SQL script, you can use the sampleD1.sq]l
file included in the best practices .zip file.

-- Query to classify data captured in activity event monitor by best practices
-- work class definition and by estimated cost range.

WITH

-- Classify all DML statements captured by what class of DML statement they
-- would be considered by the workload management best practices. Also calculate
-- Tifetime for each.
V1 AS
(SELECT CASE
WHEN QUERY_COST_ESTIMATE < 5000 THEN 'TRIVIAL'
WHEN QUERY_COST_ESTIMATE BETWEEN 5000 AND 30000 THEN 'MINOR'
WHEN QUERY_COST_ESTIMATE BETWEEN 30000 AND 300000 THEN 'SIMPLE'
WHEN QUERY_COST_ESTIMATE BETWEEN 300000 AND 5000000 THEN 'MEDIUM'
WHEN QUERY_COST_ESTIMATE > 5000000 THEN 'COMPLEX'
END AS TARGET_WORKCLASS,
QUERY_COST_ESTIMATE,
(TIME_COMPLETED - TIME_STARTED) AS LIFETIME_DURATION
FROM ACTIVITY_DB2ACTIVITIES
WHERE ACTIVITY_TYPE IN ('READ_DML','WRITE_DML')
AND PARTITION_NUMBER = COORD_PARTITION_NUM),

-- Identify the pre-determined cost range for each statement
V2 AS
(SELECT TARGET_WORKCLASS,
CASE
WHEN QUERY_COST_ESTIMATE < 1000 THEN '000K_TO_1K'
WHEN QUERY_COST_ESTIMATE BETWEEN 1000
AND 2000 THEN '001K_TO_2K'
WHEN QUERY_COST_ESTIMATE BETWEEN 2000
AND 3000 THEN '002K_TO_3K'
WHEN QUERY_COST_ESTIMATE BETWEEN 3000

Implementing DB2® Workload Management

WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY COST ESTIMATE
WHEN QUERY COST ESTIMATE
WHEN QUERY COST ESTIMATE
WHEN QUERY COST ESTIMATE
WHEN QUERY COST ESTIMATE
WHEN QUERY COST ESTIMATE
WHEN QUERY_COST ESTIMATE
WHEN QUERY_COST ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST ESTIMATE
WHEN QUERY_COST ESTIMATE
WHEN QUERY_COST ESTIMATE
WHEN QUERY_COST ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE
WHEN QUERY_COST_ESTIMATE

WHEN QUERY_COST_ESTIMATE

END AS TIMERON_RANGE,
QUERY_COST_ESTIMATE,
LIFETIME_DURATION

FROM V1)

-- Select the summary by work class with cost range distribution within that

AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND
BETWEEN
AND

4000 THEN '003K_TO_4K'

4000

5000 THEN '004K_TO_5K'

5000
10000 TH
10000
20000 TH
20000
30000 TH
30000
40000 TH
40000
50000 TH
50000
100000 T
100000
150000 T
150000
200000 T
200000
300000 T
300000
400000 T
400000
500000 T
500000
1000000
1000000
2000000
2000000
3000000
3000000
4000000
4000000
5000000
5000000
6000000
6000000
7000000
7000000
8000000
8000000
9000000
9000000
10000000
10000000
20000000
20000000
30000000
30000000
40000000
40000000
50000000
50000000
60000000
60000000
70000000
70000000
80000000
80000000
90000000
90000000

100000000 THEN '096M_TO_100M'

10000000

500000000 THEN '106M_TO_500M'

50000000

1000000000 THEN '500M_TO_1006M'
> 1000000000 THEN 'LARGER_THAN_1000M'

-- class as well as min/max lifetime information

SELECT

TARGET_WORKCLASS,
TIMERON_RANGE,
COUNT(*) AS COUNT,

Appendix D. Techniques for adjusting work class definitions

EN '005K_TO_10K'

EN '010K_TO_20K'

EN '020K_TO_30K'

EN '030K_TO_40K'

EN '040K_TO_50K'

HEN '050K_TO_100K'

HEN '100K_TO_150K'

HEN '150K_TO_200K'

HEN '200K_TO_300K'

HEN '300K_TO_400K'

HEN '400K_TO_500K'

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

0

0

'500K_TO_1M'
'001M_TO_2M'
'002M_TO_3M'
'003M_TO_4M'
'004M_TO_5M'
'005M_TO_6M'
'006M_TO_7M'
'007M_TO_8M'
'008M_TO_9M'
'009M_TO_10M'
'010M_TO_20M"
'020M_TO_30M"
'030M_TO_40M'
'040M_TO_50M"
'050M_TO_60M"
'060M_TO_70M'
1070M_TO_80M

'080M_TO_90M'

83

MIN(LIFETIME_DURATION) AS MIN_LIFETIME_DURATION,
MAX (LIFETIME_DURATION) AS MAX_LIFETIME_DURATION
FROM V2
GROUP BY TARGET_WORKCLASS, TIMERON_RANGE
ORDER BY TARGET_WORKCLASS, TIMERON_RANGE;

Example output:

TARGET_WORKCLASS TIMERON_RANGE COUNT MIN_LIFETIME_DURATION MAX_LIFETIME_DURATION

MINOR 005K_TO_10K 530 101.932650 2644.595745
MINOR 010K_TO_20K 482 101.980664 1355.888548
MINOR 020K_TO_30K 86 101.843665 1246.850287
SIMPLE 030K_TO_40K 4 1219.134137 1752.144699
SIMPLE 040K_TO_50K 4 846.780529 1947.717285
SIMPLE 050K_TO_100K 9 502.923738 727.903279
SIMPLE 100K_TO_150K 2 600.377285 838.094614
SIMPLE 150K_T0_200K 1 534.224289 534.224289
TRIVIAL 000K_TO_1K 4060 100.367369 3457.374693
TRIVIAL 001K_TO_2K 1113 100.429077 3130.020908
TRIVIAL 002K_T0_3K 646 100.312853 3011.584925
TRIVIAL 003K_TO_4K 357 101.201110 4655.836927
TRIVIAL 004K_TO_5K 227 102.513602 2827.666814

13 record(s) selected.

Sample D2: Determining estimated cost distribution based on
statistics event monitor data

This SQL query evaluates all the individual entries in the activity event monitor
based on the estimated costs of each statement that was executed and, based on a
predetermined set of ranges, reports on the counts in each range. This query only
considers DML statements since those are the only ones with estimated costs
provided by the SQL Compiler.

SQL text:
For an editable version of this SQL script, you can use the sampleD2.sq]l
file included in the best practices .zip file.

-- This query produces a readable summary of the estimated cost distribution
-- data available for each service class collecting aggregate activity data.
-- The data is merged across all collections to produce an overall summary.
SELECT SUBSTR(PARENTSERVICECLASSNAME,1,32) AS SERVICE_SUPERCLASS_NAME,
SUBSTR(SERVICECLASSNAME,1,32) AS SERVICE_SUBCLASS_NAME,
BIN_ID,
MIN(BOTTOM) AS BIN_BOTTOM_COST,
MAX (TOP) AS BIN_TOP_COST,
SUM(NUMBER _IN_BIN) AS BIN_COUNT
FROM HISTOGRAMBIN_DB2STATISTICS AS H, SYSCAT.SERVICECLASSES AS S
WHERE H.SERVICE_CLASS_ID = S.SERVICECLASSID
AND H.SERVICE_CLASS_ID != 0
AND HISTOGRAM_TYPE IN ('CoordActEstCost')
GROUP BY PARENTSERVICECLASSNAME, SERVICECLASSNAME, BIN_ID
ORDER BY PARENTSERVICECLASSNAME, SERVICECLASSNAME, BIN_ID;

Example output:

SERVICE_SUPERCLASS_NAME SERVICE_SUBCLASS_NAME BIN_ID BIN_BOTTOM_COST BIN_TOP_COST BIN_COUNT

WLMBP_MASTER COMPLEX_DML 1 0 1 0
WLMBP_MASTER COMPLEX_DML 2 1 2 0
WLMBP_MASTER COMPLEX_DML 3 2 3 0
WLMBP_MASTER COMPLEX_DML 4 3 5 0
WLMBP_MASTER COMPLEX_DML 5 5 8 0
WLMBP_MASTER COMPLEX_DML 6 8 12 0
WLMBP_MASTER COMPLEX_DML 7 12 19 0
WLMBP_MASTER COMPLEX_DML 8 19 29 0
WLMBP_MASTER COMPLEX_DML 9 29 44 0
WLMBP_MASTER COMPLEX_DML 10 44 68 0
WLMBP_MASTER COMPLEX_DML 11 68 103 0
WLMBP_MASTER COMPLEX_DML 12 103 158 0
WLMBP_MASTER COMPLEX_DML 13 158 241 0
WLMBP_MASTER COMPLEX_DML 14 241 369 0
WLMBP_MASTER COMPLEX_DML 15 369 562 0
WLMBP_MASTER COMPLEX_DML 16 562 858 0
WLMBP_MASTER COMPLEX_DML 17 858 1309 0
WLMBP_MASTER COMPLEX_DML 18 1309 1997 0
WLMBP_MASTER COMPLEX_DML 19 1997 3046 0

84 Implementing DB2® Workload Management

WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
COMPLEX_DML
ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL

ETL
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML

20 3046
21 4647
22 7089
23 10813
24 16493
25 25157
26 38373
27 58532
28 89280
29 136181
30 207720
31 316840
32 483283
33 737162
34 1124409
35 1715085
36 2616055
37 3990325
38 6086529
39 9283913
40 14160950
41 21600000
1 0
2 1
3 2
4 3
5 5
6 8
7 12
8 19
9 29
10 44
11 68
12 103
13 158
14 241
15 369
16 562
17 858
18 1309
19 1997
20 3046
21 4647
22 7089
23 10813
24 16493
25 25157
26 38373
27 58532
28 89280
29 136181
30 207720
31 316840
32 483283
33 737162
34 1124409
35 1715085
36 2616055
37 3990325
38 6086529
39 9283913
40 14160950
41 21600000
1 0
2 1
3 2
4 3
5 5
6 8
7 12
8 19
9 29
10 44
11 68
12 103
13 158
14 241
15 369
16 562
17 858
18 1309
19 1997
20 3046
21 4647
22 7089
23 10813
24 16493
25 25157
26 38373
27 58532

Appendix D. Techniques for adjusting work class definitions

4647
7089
10813
16493
25157
38373
58532
89280
136181
207720
316840
483283
737162
1124409
1715085
2616055
3990325
6086529
9283913
14160950
21600000
-1

1

2

3

5

8

12

19

29

44

68

103

158

241

369

562
858
1309
1997
3046
4647
7089
10813
16493
25157
38373
58532
89280
136181
207720
316840
483283
737162
1124409
1715085
2616055
3990325
6086529
9283913
14160950
21600000
-1

1

2

3

5

8

12

19

29

44

68

103

158

241

369

562

858
1309
1997
3046
4647
7089
10813
16493
25157
38373
58532
89280

w

[}

[SEcNoNoNoNololoNclololcRolo ol ool oo Rolo oo oo o Rolo ool oo o Ro o ool oo oo o oo oo Ro oo oo oo RoRo o oo oo o R o o oo o N o R RN TSN RN o o N oRo o oo R o o RoRo o o RoRo N o Ro R o)

85

WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

86 Implementing DB2® Workload Management

MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MEDIUM_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
MINOR_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML
SIMPLE_DML

28
29
30
31
32
33
34
35
36
37
38
39
40
41

—
CDOONOCTEWN -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

—
DOOENOCTE WN -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

89280
136181
207720
316840
483283
737162

1124409
1715085
2616055
3990325
6086529
9283913
14160950
21600000
0

1

2

3

5

8

12

19

29

44

68

103

158

241

369

562

858
1309
1997
3046
4647
7089

10813

16493

25157

38373

58532

89280
136181
207720
316840
483283
737162

1124409
1715085
2616055
3990325
6086529
9283913
14160950
21600000

OAWN = O

12

19

29

44

68

103
158
241
369
562
858
1309
1997
3046
4647
7089
10813
16493
25157
38373
58532
89280
136181
207720
316840
483283
737162
1124409
1715085

136181
207720
316840
483283
737162
1124409
1715085
2616055
3990325
6086529
9283913
14160950
21600000
-1

1

2

3

5

8

12

19

29

44

68

103

158

241

369

562

858
1309
1997
3046
4647
7089
10813
16493
25157
38373
58532
89280
136181
207720
316840
483283
737162
1124409
1715085
2616055
3990325
6086529
9283913
14160950
21600000
-1

1

2

3

5

8

12

19

29

44

68

103

158

241

369

562

858
1309
1997
3046
4647
7089
10813
16493
25157
38373
58532
89280
136181
207720
316840
483283
737162
1124409
1715085
2616055

11
160

=N oY
SR E R, N

N
[cEcNoNoRoRoNoNoRoR oo RoRolo o ool o RoRoN oo RoR o RN

o=}
—
N
©

7868
4910
2042

w
=
[No-NoNoNo No oo Yo Ro o Jo kRN o NoNo o oo o No No N o o No o o No o No o Ro No S o o Ro o o § N

W =
o
=

449
108
138

77

coo oo

WLMBP_MASTER SIMPLE_DML 36 2616055 3990325 0
WLMBP_MASTER SIMPLE_DML 37 3990325 6086529 0
WLMBP_MASTER SIMPLE_DML 38 6086529 9283913 0
WLMBP_MASTER SIMPLE_DML 39 9283913 14160950 0
WLMBP_MASTER SIMPLE_DML 40 14160950 21600000 0
WLMBP_MASTER SIMPLE_DML 41 21600000 -1 0
WLMBP_MASTER TRIVIAL_DML 1 0 1 7780946
WLMBP_MASTER TRIVIAL_DML 2 1 2 291323
WLMBP_MASTER TRIVIAL_DML 3 2 3 29700
WLMBP_MASTER TRIVIAL_DML 4 3 5 0
WLMBP_MASTER TRIVIAL_DML 5 5 8 899511
WLMBP_MASTER TRIVIAL_DML 6 8 12 736615
WLMBP_MASTER TRIVIAL_DML 7 12 19 692754
WLMBP_MASTER TRIVIAL_DML 8 19 29 1687141
WLMBP_MASTER TRIVIAL_DML 9 29 44 596125
WLMBP_MASTER TRIVIAL_DML 10 44 68 472569
WLMBP_MASTER TRIVIAL_DML 11 68 103 143499
WLMBP_MASTER TRIVIAL_DML 12 103 158 155808
WLMBP_MASTER TRIVIAL_DML 13 158 241 77685
WLMBP_MASTER TRIVIAL_DML 14 241 369 34033
WLMBP_MASTER TRIVIAL_DML 15 369 562 45917
WLMBP_MASTER TRIVIAL_DML 16 562 858 25083
WLMBP_MASTER TRIVIAL_DML 17 858 1309 20389
WLMBP_MASTER TRIVIAL_DML 18 1309 1997 20533
WLMBP_MASTER TRIVIAL_DML 19 1997 3046 16640
WLMBP_MASTER TRIVIAL_DML 20 3046 4647 11319
WLMBP_MASTER TRIVIAL_DML 21 4647 7089 1198
WLMBP_MASTER TRIVIAL_DML 22 7089 10813 0
WLMBP_MASTER TRIVIAL_DML 23 10813 16493 0
WLMBP_MASTER TRIVIAL_DML 24 16493 25157 0
WLMBP_MASTER TRIVIAL_DML 25 25157 38373 0
WLMBP_MASTER TRIVIAL_DML 26 38373 58532 0
WLMBP_MASTER TRIVIAL_DML 27 58532 89280 0
WLMBP_MASTER TRIVIAL_DML 28 89280 136181 0
WLMBP_MASTER TRIVIAL_DML 29 136181 207720 0
WLMBP_MASTER TRIVIAL_DML 30 207720 316840 0
WLMBP_MASTER TRIVIAL_DML 31 316840 483283 0
WLMBP_MASTER TRIVIAL_DML 32 483283 737162 0
WLMBP_MASTER TRIVIAL_DML 33 737162 1124409 0
WLMBP_MASTER TRIVIAL_DML 34 1124409 1715085 0
WLMBP_MASTER TRIVIAL_DML 35 1715085 2616055 0
WLMBP_MASTER TRIVIAL_DML 36 2616055 3990325 0
WLMBP_MASTER TRIVIAL_DML 37 3990325 6086529 0
WLMBP_MASTER TRIVIAL_DML 38 6086529 9283913 0
WLMBP_MASTER TRIVIAL_DML 39 9283913 14160950 0
WLMBP_MASTER TRIVIAL_DML 40 14160950 21600000 0
WLMBP_MASTER TRIVIAL_DML 41 21600000 -1 0

246 record(s) selected.

A lumpy distribution

In most cases, you will discover that the distribution of work across the service
subclasses, introduced by the best practices template, is widely and unevenly
spread.

As mentioned in the opening section of this appendix, if none of the scenarios
highlighted in the following sections are applicable to your distribution of
estimated costs for work such as depicted in Figure 16 on page 88, it is acceptable
to not adjust the default mapping behavior of the template and proceed to the next
step in the overall process.

In the example depicted in Figure 16 on page 88, changes to the work classes and
service classes are not necessary.

Appendix D. Techniques for adjusting work class definitions 87

Number of queries

U0Da

nnﬂﬂnnu

L,

0

o [

=]

Trivial

Minor

Simple

Estimated cost

Medium

Complex

Figure 16. Lumpy distribution of estimated costs for work

No entries in a service subclass

88

If entries are not found in a service subclass, then remove the work class definition
and its associated service subclass by expanding the estimated cost boundary and
concurrency thresholds of the next, more expensive work class to include this class.
The rationale for this action is that it is better to have more control imposed rather
than less. The best practices configuration paradigm asserts more control on

heavier work.

Number of queries

_HDUD

11101

H

Trivial

Minor

Simple

Estimated cost

Medium

Complex

Figure 17. Empty service subclass distribution of estimated costs for work

Implementing DB2® Workload Management

Number of queries

1N DTN

Trivial Simple Medium Complex

Estimated cost

Figure 18. Modified empty service subclass distribution of estimated costs for work

For example, if queries were not found in the MINOR_DML service subclass, do
the following:

1. Adjust the work action set

¢ Remove the MAP_MINOR_COST_ DML work action
2. Adjust the work class set

* Remove the MINOR_COST_DML work class

¢ Modify the lower estimated cost boundary of the SIMPLE_COST_DML work
class to be equal to the lower boundary of the former MINOR_COST_DML
work class
3. Adjust the DB2 concurrency thresholds
* Add the value of the concurrency threshold on MINOR_DML service
subclass to the value of the concurrency threshold in the SIMPLE_DML
service subclass’®
4. Adjust the DB2 service subclasses
¢ Remove all activity and concurrency thresholds defined on the MINOR_DML
service subclass

e Remove the MINOR_DML service subclass

Minimal entries in a service subclass

If there are minimal entries in a service subclass, consider removing the service
subclass in a manner similar to that described in the preceding section, except that
you have the option of where to merge the entries in the class depending on where
the few entries exist.

You also have the option of simply leaving the service subclass as it is. This option
is never an incorrect decision.

6. We add the concurrency values at this point because we are still approaching this from the perspective of an initial concurrency
budget and we have just merged the two divisions into one. Later on, we will look at adjusting the concurrency values based on
actual resource consumption and response times.

Appendix D. Techniques for adjusting work class definitions 89

Number of queries

S gD

Trivial Minor Simple Medium Complex

Estimated cost

Figure 19. Minimal service subclass distribution of estimated costs for work

If you want to collapse service classes, then perform one of the following general
rules of thumb:

e If the few entries exist only towards the upper end of the class as depicted in
Figure 19, merge the class up as in the previous example.

* If the entries exist towards the lower end of the class, then merge downwards.

* If they exist in both the upper and lower ends as depicted in Figure 20, then

follow the same approach as described in the next section dealing with
U-shaped distributions.

Number of queries

TP ITANAR

Trivial Simple Medium Complex

Estimated cost

Figure 20. Modlified minimal service subclass distribution of estimated costs for work

U-shaped distribution in a service subclass

90

This scenario is more difficult to determine as there is not always a clean gap
between population centers. As before, simply leaving the service subclass alone is
also a valid choice.

If the distribution of entries in a service subclass appears to have two or more
distinct population centers around which other values cluster, then you are dealing

Implementing DB2® Workload Management

with a U-shaped distribution as depicted in Figure 21. Distinct populations in this
context means that the two population centers have at least a magnitude of

difference in their cost estimates and with few queries, if any, with cost estimates
falling between these centers. There is a significant gap between the two clusters.

Number of queries

_HDUD H

Estimated cost

Figure 21. U-shaped distribution of estimated costs for work

The usual recommended treatment is to either adjust the class definition to reduce
the number of centers in this class to one by moving one of them into a different
class, or to remove the class completely by moving both centers to other service
subclasses. A third option is to introduce a new subclass for one of the population
centers.

The rationale for removing any split between the population centers is that
concurrency thresholds are most effective in producing a stable, predictable system
when the individual pieces of work that they control have a roughly equivalent
impact on the system. The aim is to have stable and predictable demand from that
service subclass. Having what would essentially be two different types of queries
(in terms of resource consumption) in the same service subclass could result in an
uneven and unpredictable impact on the system resources. This effect is more
noticeable in the service subclasses with more costly work within them.

If the service class is merged with another existing one or a new service subclass is
introduced, it is necessary to divide the concurrency allocation for the original
service subclass with the other affected service classes. The best way to do this
division is to divide the percentage allocated for that class between the other two
classes by using some proportional means based on the population being moved,
and then recalculate the concurrency values as was first done in “Allocating
capacity” on page 30.

A general rule of thumb on what action might be appropriate for a U-shaped
distribution, based on the service subclass in which it occurs, is something like the
following:

e TRIVIAL_DML: Leave as-is

* MINOR_DML: Leave as-is, or merge

e SIMPLE_DML: Merge

e MEDIUM_DML: Introduce a new service subclass

Appendix D. Techniques for adjusting work class definitions 91

¢ COMPLEX_DML: Introduce a new service subclass

Scenario 1

n _ | _

2

@

S

T

‘s

@

-g |] |]

=]

§ U0onol o RoRONUULO000D
Trivial Minor Simple Medium Complex

Estimated cost

Figure 22. Scenario 1: U-shaped distribution of estimated costs for work

For example, if a number of queries are found clustered in the bottom and top of
the MINOR_DML service subclass as depicted in Figure 22, do the following’:

1. Adjust the work action set

a. Remove the MAP_MINOR_COST_DML work action
2. Adjust the work class set

a. Remove the MINOR_COST_DML work class

b. Modify the upper estimated cost boundary of the TRIVIAL_COST_DML
work class to be equal to the median value of the (former)
MINOR_COST_DML work class

c. Modify the lower estimated cost boundary of the SIMPLE_COST_DML
work class to be equal to the median value of the (former)
MINOR_COST_DML work class

3. Adjust the DB2 concurrency thresholds

a. Because the TRIVIAL_DML service subclass has no concurrency threshold
in place initially and the number of queries is small, add the full value of
the MINOR_DML service subclass concurrency threshold to the value of the
concurrency threshold in the SIMPLE_DML service subclass

4. Adjust the DB2 service subclasses

a. Remove all activity and concurrency thresholds defined on the
MINOR_DML service subclass

b. Remove the MINOR_DML service subclass as depicted in Figure 23 on page
93

7. Note that it is equally valid to approach this situation and implement the solution outlined in the next section where you leave
the MINOR_DML service subclass to represent one of the two population centers and absorb the other into the adjacent service
subclass.

92 Implementing DB2® Workload Management

Number of queries

HDUDH

L1l

I

Trivial

Simple

Estimated cost

Medium

Complex

Figure 23. Scenario 1: Modified U-shaped distribution of estimated costs for work

Scenario 2

If one of the population centers is large and the other small as depicted in
Figure 24, then it can be beneficial to merge the small cluster into surrounding
service subclasses and leave this class solely for the larger population center.

Number of queries

HDUD

ol

I

Trivial

Minor Simple

Estimated cost

Medium

Complex

Figure 24. Scenario 2: U-shaped distribution of estimated costs for work

For example, if two such population centers (one large and one small) are found in
the MINOR_DML service subclass with the smaller population center being near
the upper end, do the following:

1. Adjust the work class set as depicted in Figure 25 on page 94
a. Modify the upper estimated cost boundary of the MINOR_COST_DML
work class to be less than the lowest value of the smaller population center
at the upper end of the range

b. Modify the lower estimated cost boundary of the SIMPLE_COST_DML
work class to be equal to the same value chosen in the previous step

2. Adjust the DB2 concurrency thresholds

Appendix D. Techniques for adjusting work class definitions 93

a. Determine the proportion of the work being moved from the MINOR_DML
service subclass to the SIMPLE_DML service subclass, based on population
ratio, and adjust the initial budget allocation to reflect the movement of this
amount from the MINOR_DML to the SIMPLE_DML service subclass.

1) Assume 10% movement of the population

2) Initial concurrency budget allocation for MINOR_DML was 50% and
SIMPLE_DML was 20%

3) Adjusted concurrency budget allocation for MINOR_DML is 45% and
SIMPLE_DML is 25%

4) Initial concurrency threshold value for MINOR_DML was 40 and
SIMPLE_DML was 16

5) Adjusted concurrency threshold value for MINOR_DML is 36 and
SIMPLE_DML is 20

b. Adjust the concurrency threshold on the MINOR_DML service subclass to
the adjusted value (36) for that class

c. Adjust the concurrency threshold on the SIMPLE_DML service subclass to
the adjusted value (20) for that class

Number of queries

el DonanlDD0LEER

Trivial Minor Simple Medium Complex

Estimated cost

Figure 25. Scenario 2: Modified U-shaped distribution of estimated costs for work

Scenario 3

If the population centers are both of significant size as depicted in Figure 26 on
page 95, then it can be beneficial to create a service subclass to separate the
populations. When doing this separation, it is necessary to divide the concurrency
between the two new service subclasses based on their proportional population by
using the technique described in the previous example based on the methodology
introduced in “Allocating capacity” on page 30.

94 Implementing DB2® Workload Management

Number of queries

Loaaatantntlll a1l

Trivial Minor Simple Medium Complex

Estimated cost

Figure 26. Scenario 3: U-shaped distribution of estimated costs for work

For example, if two large population centers are found in the MEDIUM_DML
service subclass, do the following:

1. Adjust the work class set

a. Modify the upper estimated cost boundary of the MEDIUM_COST_DML
work class to be less than the lowest value of the large population center at
the upper end of the range

b. Create the MEDIUM_COMPLEX_ COST_DML work class with a lower
estimated cost value equal to the value of the previous step, and an upper
value equal to the original upper value of the MEDIUM_COST_DML work
class range

2. Adjust the DB2 service subclasses as depicted in Figure 27 on page 96
a. Create the MEDIUM_COMPLEX_DML service subclass
3. Adjust the work action set
a. Create a MAP_MEDIUM_COST DML work action for the
MEDIUM_COMPLEX_COST_DML work class in the work action set to map
any work of that class into the new MEDIUM_COMPLEX_DML service
subclass
4. Adjust the DB2 concurrency thresholds
a. Determine the proportion of the work being moved from the
MEDIUM_DML service subclass to the new MEDIUM_COMPLEX_DML
service subclass, based on population ratio, and adjust the initial budget

allocation to reflect the movement of this amount from the MEDIUM_DML
to the MEDIUM_COMPLEX_DML service subclass

1)

w N

)
)
)

N

Assume 65% movement of the population
Initial budget allocation for MEDIUM_DML service subclass was 10%
Adjusted budget allocation for MEDIUM_DML service subclass is 3.5%

Initial budget allocation for MEDIUM_COMPLEX_DML service subclass
is 6.5%
Initial concurrency value for MEDIUM_DML service subclass was 8

Adjusted concurrency threshold value for MEDIUM_DML service
subclass is 3

Initial concurrency threshold value for MEDIUM_COMPLEX_DML
service subclass is 5

Appendix D. Techniques for adjusting work class definitions 95

b. Adjust the concurrency threshold on MEDIUM_DML service subclass to the
adjusted value (3) for that class

c. Create a concurrency threshold for the new MEDIUM_COMPLEX_DML
service subclass with the calculated initial value (5)

5. Create activity thresholds with values appropriate for the population in the
MEDIUM_COMPLEX_DML service subclass

Number of queries

aalieonannanflll UL

Trivial Minor Simple Medium L Complex

. Medium_Complex
Estimated cost - P

Figure 27. Scenario 3: Modified U-shaped distribution of estimated costs for work

Queries with similar estimated costs

In some cases, you might discover that the estimated cost histogram for a service
class has a single bin where the vast majority of statements are tightly packed. This
tight packing is referred to as a unimodal spike.

A unimodal spike can happen for the following reasons:

* The range of estimated cost represented by that particular bin encompasses a
wider range of values than other points in the histogram and gives the
misleading appearance of uniformity to a set of statements in that range.

* The statements being executed are indeed alike in terms of estimated cost.

The primary challenge when facing a unimodal spike scenario is to determine if
the set of statements represented by the spike are consistent with a cost-based
approach to classifying statements that is the underlying assumption of the
methodology in this best practices document.

To do this, we need answers to the following three questions:

1. Is there a relatively constant relationship between the estimated cost and the
actual amount of resources consumed by the statements when they are
executed?

2. Is the actual resource consumed by the statements of a fundamentally different
magnitude than the estimated costs would have led us to expect?

3. Can these statements potentially threaten the stability of the system?

The first question is answered by looking at the range of resource demands made
by the work in the target service subclass to see if they are relatively close to each

96 Implementing DB2® Workload Management

other. For example, as long as the statements all use roughly the same amount of
CPU and I/0 when they execute, then the relationship can be said to be constant.
However, if you see actual CPU and 1/0O costs that are an order of magnitude
different than each other (for example, 0.1 second of CPU time versus 1.0 second of
CPU time), then these statements might be problematic. The important word in the
previous sentence is magnitude, because we are looking for significant differences in
resource consumption.

Statements that use host variables or parameter markers can sometimes display
this type of variance in their runtime behavior, despite having the same estimated
cost. In cases where the statement uses a host variable or parameter marker, the
SQL compiler makes an estimate based on the default value assumptions for data
type of the host variable. At execution time, if the actual value supplied is in
variance with the compiler assumption, then the resource impact will vary from
the estimated cost®.

Using the captured activity event monitor data, examine the statement text for
those statements that would be mapped to the suspect service subclass (that is, the
one containing the unimodal spike) based on their estimated cost to see if they are
indeed using host variables or parameter markers. If they do, then by capturing
activity event monitor data on all database members for these same statements and
aggregating this information for each execution, which reflects the overall impact
of the statement, you will be able to tell if the resource demands vary widely from
one execution to another. For example, if a statement uses host variables or
parameter markers, select minimum and maximum values for the rows_read and
total_cpu_time metrics for the same statement text to determine the range of
resource consumption for each. If the statements use host variables or parameter
markers and have a wide (an order of magnitude) range of impact, then the
statements might cause problems depending on which way they vary (answering
the second question) and how many of these outliers exist (answering the third
question).

The second question is resolved by comparing the actual resource consumed by
these problematic statements to the impact originally expected for work in the
target service subclass (the one where these statements were mapped based on
their estimated cost). Perhaps the best way to do this is to try and find an analog
value by comparing the relative size of the actual resource impact (for example,
CPU and I/0) of the suspect statements to the resource consumption of statements
in the neighboring service subclasses. In other words, we want to be able to
answer the question: Is one typical statement in problematic service class Y
equivalent to one typical statement from service subclass X, where X is one of the
other existing service subclasses (other than Y)?

If the actual CPU and I/0O resource impact is equivalent to the resource impact
that occurs in a lower cost estimates service subclass than the one to which the
problem statements are being mapped, then we are less concerned because the
concurrency controls already in place are able to manage this disparity. As an
example, this case occurs when statements map to the SIMPLE_DML service
subclass based on their cost, but their actual resource impact is equivalent to work
running in the MINOR_DML service subclass. The concurrency control on the
SIMPLE_DML service subclass is actually more restrictive than if the work had
been run in the MINOR_DML service subclass.

8. This variance typically happens when there is a non-uniform distribution of data around the values being provided at run time,
where some values have a very large number of associated rows and some have a very small number.

Appendix D. Techniques for adjusting work class definitions 97

98

If the actual impact is equivalent to that which occurs in a higher cost service
subclass, then we need to be concerned that the concurrency controls are not
sufficient. As an example, this case occurs when statements map to the
SIMPLE_DML service subclass based on their cost, but their actual resource impact
is equivalent to work running in the MEDIUM_DML service subclass. The
concurrency control on the SIMPLE DML service subclass would tend to be less
restrictive than if the work had been run in the MEDIUM_DML service subclass
which would allow more resources to be consumed than perhaps desired. Again,
the degree of concern when this situation arises depends on the answer to how
many of these problematic statements exist (the third question).

The answer to the third question essentially boils down to figuring out (roughly)
how many of these problematic statements exist at any one time and how large an
impact that they have individually. In general, we need to be more concerned
about large impact (that is, equivalent to medium or complex SQL) statements all
of the time and smaller impact statements only when there is a significant number
of them. That is, the system might be able to successfully accommodate an
additional, unexpected medium-sized query at that point in time, but not 10 of
them.

If statements of concern are found during this investigation and they exist in
numbers that can potentially threaten system stability, one of the following actions
might remedy the situation:

* Use the REOPT ALWAYS options of the BIND command to force compilation at run
time by using the supplied input values.

* If the statements come from a common source, create a workload and direct this
work to a separate service superclass with its own control settings.

* Implement activity thresholds to catch and stop such variants. For more
information, see: “Protective measures” on page 39.

Implementing DB2® Workload Management

Appendix E. SQL for transitioning from stage 1 to stage 2

Sample SQL scripts for transitioning from the stage 1 to the stage 2 best practices
configuration.

Sample E1: Sample script for collecting vmstat data

The intent of this script is to collect key vmstat data from the targeted system and
store it for later analysis in conjunction with gathered DB2 monitoring information.
Although this data is needed for only the target data module during the transition
from a stage 1 to a stage 2 best practices workload management configuration, it
can also be run on all member systems in a partitioned database environment and
then merged to present an overall perspective about the system.

This script can be run (with minor modifications) by itself or as part of an ongoing
cron job on any Linux or UNIX system. To have it run every 60 minutes and align
with the automatic collection of internal workload management statistics data
within the DB2 database manager (controlled by the wim_collect_int database
configuration parameter), the crontab file contains an entry similar to the
following:

0,60 * * * x myscript
where myscript represents the script to be run every 60 minutes.

If you do not want this data being collected forever, modify the above entry to
terminate invocation at the time desired or remove it when the need for collection
no longer exists. If you want the collection to be ongoing, be sure to implement a
script or process to remove unwanted data, after analysis has occurred, to prevent
the file size becoming prohibitively large.

Script text:
For an editable version of this script, you can use the sampleEl.script file
included in the best practices .zip file.

#!/bin/ksh

#

This script takes selected columns from vmstat output and inserts
them into a file for later analysis. The columns extracted below
will vary depending on the version vmstat you use and the

environment. On some platforms, the timestamp output is not an

option for vmstat and the script will have to insert the time from
another source.

#

As an example, this script assumes AIX and a non-LPAR environment,
so the columns used are:

$18 timestamp

$1 kthr r (Average number of runnable kernel threads)

$2 kthr b (Average number of waiting kernel threads)

$6 page pi (Pages paged in from paging space)

$7 page po (Pages paged out to paging space)

$14 cpu us (user time %)

$15 cpu sy (system time %)

$16 cpu id (idle time %)

$17 cpu wa (idle time due I/0 wait %)

#

But if you ran this same command in a shared processor LPAR

environment, the script would have to be modified to use these columns:
$20 timestamp

$1 kthr r (Average number of runnable kernel threads)

$2 kthr b (Average number of waiting kernel threads)

$6 page pi (Pages paged in from paging space)

$7 page po (Pages paged out to paging space)

© Copyright IBM Corp. 2011 99

$14 cpu us (user time %)

$15 cpu sy (system time %)

$16 cpu id (idle time %)

$17 cpu wa (idle time due I/0 wait %)

#

If running on another operating system other than AIX non-LPAR, then

adjust the PARSEDATA Tine appropriately. Some other common examples

are provided here:

#

Linux

PARSEDDATA="echo $RAWDATA | awk '{print $18,$1,$2,$7,$8,$13,$14,$15,$16}"'"
#

AIX LPAR

PARSEDDATA="echo $RAWDATA | awk '{print $20,$1,$2,$6,$7,$14,$15,$16,$17}'"
#

#

DATE="date '+%y%m%d %H:%M:%S~
HOSTNAME="hostname -s~
FILENAME='vmstat_data. ' echo $HOSTNAME™

Invoke vmstat with the timestamp option (-t) and ask for 1 second
interval report. Read last Tine and parse for columns of interest.

RAWDATA="vmstat 1 1 | tail -n 1°

AIX non-LPAR
PARSEDDATA="echo $RAWDATA | awk '{print $18,$1,$2,$6,$7,$14,$15,$16,$17}'"

append output to data file
echo $DATE $PARSEDDATA >> $FILENAME

exit 0

Example output:
111024 15:06:25 95 0 0 0 21 6 73 1

Sample E2: Calculating the CPU consumed per service class

This SQL query calculates the delta CPU consumed by each service class on each
member and aggregates it over the specified period of time. For the purposes of
the use described in the best practices methodology, look at only the sum of the
CPU consumption for all of the members on the same physical data module. This
data can be obtained by modifying the SQL to consider only those members, or
calculating it by hand based on the results of this query.

SQL text:
For an editable version of this SQL script, you can use the sampleE2.sq]
file included in the best practices .zip file.

-- Query to extract and aggregate CPU TIME from statistics event monitor
-- per member on database per day. Include other metrics also used during
-- analysis steps.

WITH

-- Determine when each member last started in order for delta metric calculations
MEMBER_START_TIMES AS
(SELECT DISTINCT SCSTATS.PARTITION_NUMBER, STATISTICS TIMESTAMP,
MAX (MESSAGE_TIME) AS FIRSTCONNECT_ TIME

FROM CONTROL_DB2STATISTICS AS CONTROL, SCSTATS_DB2STATISTICS AS SCSTATS
WHERE MESSAGE = 'FIRST_CONNECT'

AND CONTROL.PARTITION_NUMBER = SCSTATS.PARTITION_NUMBER

AND STATISTICS_ TIMESTAMP > MESSAGE_TIME
GROUP BY SCSTATS.PARTITION_NUMBER, STATISTICS TIMESTAMP),

-- Determine how to calculate deltas for each row
DELTA_METHOD AS
(SELECT SCSTATS.PARTITION_NUMBER,
SCSTATS.STATISTICS_TIMESTAMP,
-- If previous row was gathered after last member start, determine delta

100 Implementing DB2® Workload Management

-- by subtraction
CASE
WHEN (LAG(SCSTATS.STATISTICS_TIMESTAMP, 1,
TIMESTAMP_FORMAT ('2007-10-01 23:59:59"',
"YYYY-MM-DD HH24:MI:SS'))
OVER (PARTITION BY SCSTATS.PARTITION_NUMBER
ORDER BY SCSTATS.STATISTICS_TIMESTAMP))
>=
(SELECT FIRSTCONNECT_TIME
FROM MEMBER_START_TIMES AS REF
WHERE REF.PARTITION_NUMBER = SCSTATS.PARTITION_NUMBER
AND REF.STATISTICS_TIMESTAMP
= SCSTATS.STATISTICS_TIMESTAMP)

THEN 'Y
ELSE 'N'
END AS SUBTRACT_FROM_PREV_ROW
FROM SCSTATS_DB2STATISTICS AS SCSTATS
GROUP BY SCSTATS.PARTITION_NUMBER, SCSTATS.STATISTICS_TIMESTAMP
ORDER BY SCSTATS.PARTITION_NUMBER, SCSTATS.STATISTICS_TIMESTAMP),

-- extract wanted metrics from DETAILS_XML column in service class statistics
V1 AS
(SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,
METRIC_NAME, VALUE
FROM SCSTATS_DB2STATISTICS,
TABLE (MON_FORMAT_XML_METRICS_BY_ROW(DETAILS_XML))
WHERE METRIC_NAME IN ('TOTAL_CPU_TIME', 'TOTAL_WAIT_TIME')),

-- Pivot data into table format
V2 AS
(SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,
MAX (DECODE (METRIC_NAME, 'TOTAL_CPU_TIME', VALUE))
AS TOTAL_CPU_TIME,
MAX (DECODE (METRIC_NAME, 'TOTAL_WAIT TIME', VALUE))
AS TOTAL_WAIT_TIME
FROM V1
GROUP BY STATISTICS_TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME),

-- Calculate delta values for the extracted values based on delta calculation
-- method
V3 AS
(SELECT V2.STATISTICS_TIMESTAMP, V2.PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,
CASE
WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN TOTAL_CPU_TIME - LAG(TOTAL_CPU_TIME, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE TOTAL_CPU_TIME
END AS TOTAL_CPU_TIME,
CASE
WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN TOTAL WAIT TIME - LAG(TOTAL_WAIT TIME, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE TOTAL_WAIT_TIME
END AS TOTAL_WAIT_TIME
FROM V2, DELTA_METHOD
WHERE V2.PARTITION_NUMBER = DELTA_METHOD.PARTITION_NUMBER
AND V2.STATISTICS_TIMESTAMP = DELTA METHOD.STATISTICS_TIMESTAMP),

-- Aggregate extracted metrics to get total consumption per service class
-- per member per day
V4 AS

(SELECT DATE(SCSTATS.STATISTICS TIMESTAMP) AS INTERVAL_DATE,

Appendix E. SQL for transitioning from stage 1 to stage 2

101

SCSTATS.PARTITION_NUMBER,
SUBSTR(SCSTATS.SERVICE_SUPERCLASS_NAME, 1,32)
AS SERVICE_SUPERCLASS_NAME,
SUBSTR(SCSTATS.SERVICE_SUBCLASS_NAME,1,32) AS SERVICE_SUBCLASS_NAME,
SUM(V3.TOTAL_CPU_TIME) AS TOTAL_CPU_TIME,
SUM(V3.TOTAL_WAIT TIME) AS TOTAL_WAIT_TIME,
MAX (SCSTATS.COORD_ACT LIFETIME_AVG) AS LIFETIME_AVG,
MAX (SCSTATS.COORD_ACT_LIFETIME_TOP) AS LIFETIME_MAX
FROM SCSTATS_DB2STATISTICS AS SCSTATS, V3
WHERE SCSTATS.STATISTICS_TIMESTAMP = V3.STATISTICS_TIMESTAMP
AND SCSTATS.SERVICE_SUPERCLASS NAME = V3.SERVICE_SUPERCLASS NAME
AND SCSTATS.SERVICE_SUBCLASS_NAME = V3.SERVICE_SUBCLASS_NAME
AND SCSTATS.PARTITION NUMBER = V3.PARTITION NUMBER
GROUP BY DATE(SCSTATS.STATISTICS_TIMESTAMP),
SCSTATS.PARTITION_NUMBER,
SCSTATS.SERVICE_SUPERCLASS_NAME,
SCSTATS.SERVICE_SUBCLASS_NAME)

-- Report final results

SELECT =

FROM V4

ORDER BY INTERVAL_DATE,
PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME;

Example output:

INTERVAL_DATE PARTITION_NUMBER SERVICE_SUPERCLASS_NAME SERVICE_SUBCLASS_NAME
10/20/2011 10 SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS
10/20/2011 10 SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS
10/20/2011 10 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS
10/20/2011 10 WLMBP_MASTER COMPLEX_DML
10/20/2011 10 WLMBP_MASTER ETL

10/20/2011 10 WLMBP_MASTER MEDIUM_DML
10/20/2011 10 WLMBP_MASTER MINOR_DML
10/20/2011 10 WLMBP_MASTER SIMPLE_DML
10/20/2011 10 WLMBP_MASTER SYSDEFAULTSUBCLASS
10/20/2011 10 WLMBP_MASTER TRIVIAL_DML
10/20/2011 20 SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS
10/20/2011 20 SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS
10/20/2011 20 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS
10/20/2011 20 WLMBP_MASTER COMPLEX_DML
10/20/2011 20 WLMBP_MASTER ETL

10/20/2011 20 WLMBP_MASTER MEDIUM_DML
10/20/2011 20 WLMBP_MASTER MINOR_DML
10/20/2011 20 WLMBP_MASTER SIMPLE_DML
10/20/2011 20 WLMBP_MASTER SYSDEFAULTSUBCLASS
10/20/2011 20 WLMBP_MASTER TRIVIAL_DML
10/20/2011 30 SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS
10/20/2011 30 SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS
10/20/2011 30 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS
10/20/2011 30 WLMBP_MASTER COMPLEX_DML
10/20/2011 30 WLMBP_MASTER ETL

10/20/2011 30 WLMBP_MASTER MEDIUM_DML
10/20/2011 30 WLMBP_MASTER MINOR_DML
10/20/2011 30 WLMBP_MASTER SIMPLE_DML
10/20/2011 30 WLMBP_MASTER SYSDEFAULTSUBCLASS
10/20/2011 30 WLMBP_MASTER TRIVIAL_DML
10/20/2011 40 SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS
10/20/2011 40 SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS
10/20/2011 40 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS
10/20/2011 40 WLMBP_MASTER COMPLEX_DML
10/20/2011 40 WLMBP_MASTER ETL

10/20/2011 40 WLMBP_MASTER MEDIUM_DML
10/20/2011 40 WLMBP_MASTER MINOR_DML
10/20/2011 40 WLMBP_MASTER SIMPLE_DML
10/20/2011 40 WLMBP_MASTER SYSDEFAULTSUBCLASS
10/20/2011 40 WLMBP_MASTER TRIVIAL_DML
10/21/2011 10 SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS
10/21/2011 10 SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS
10/21/2011 10 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS
10/21/2011 10 WLMBP_MASTER COMPLEX_DML
10/21/2011 10 WLMBP_MASTER ETL

10/21/2011 10 WLMBP_MASTER MEDIUM_DML
10/21/2011 10 WLMBP_MASTER MINOR_DML
10/21/2011 10 WLMBP_MASTER SIMPLE_DML
10/21/2011 10 WLMBP_MASTER SYSDEFAULTSUBCLASS

102 Implementing DB2® Workload Management

10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011

WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML

Appendix E. SQL for transitioning from stage 1 to stage 2

103

104

10/23/2611
10/23/2011
10/23/2611
10/23/2011
10/23/26011
10/23/2011
10/23/2611
10/23/2011
10/23/2611
10/23/2011
10/23/2611
10/23/2011
10/23/26011
10/23/2011
10/23/26011
10/23/2011
10/23/2611
10/23/2011
10/23/2611
10/23/2011
10/23/2611
10/23/2011
10/23/2611
10/23/2011
10/23/26011
10/23/2011
10/23/2611
10/23/2011
10/23/26011
10/23/2011
10/23/26011
10/23/2011

TOTAL_CPU_

TIME

TOTAL_WAIT_TIME

WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

LIFETIME_AVG

SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML

LIFETIME_MAX

106704777
287693
4847566
17254

0

383977
3957955
692286
5887718297
519176059
7129145
353750
1271981

0

0

4589
312137
163820
747306013
3381723
7138197

0

1370473

0

0

9592
1256513
120012
763389488
3215259
7207650

0

3421679

0

0

841734
140354
454107
771141497
5702104
203145321
594724

0

Implementing DB2® Workload Management

6540669
2026
116184
90431

0

471556
9004764
3679570
214174636
914588220
302553
13659
19799
48672

0

42850
3439399
2047096
45689523
310035711
293841

0

20709
53965

0

38413
4124180
2106774
46899223
320188161
301957

0

19466
32289

0

336566
4068548
2182522
48673873
332305497
11582957
0

0

5823

0
279884
405912
284552

195524

0

295393
74425709
24607626
14882935716
2049210624
7657356
32133

0

0

0

1990160
17117670
2290176
5881246549
64473686
7724815

0

0

0

0

522130
15143195
206547
5869541349
52627692
7685600

0

0

2307

0

8662531
64400780
3928648
5916400767
66111089
289358897
821277

0

346556

0

418519
159820231
285164682
20107078363
3305198279
5215671

0

0

27507

0

33589145
138876245
21819191
10690633282
534089481
5248892

0

0

10842

0

261086
115234395
6818931
10651771861
467447171
5238245

0

0

0

0

121943
105132934
5958238
10421611163
309020504
25537305
85210

688157

0

1775624
86458716
6821937
523964689
4098016790
1749450
6148

0

296411

0

869638
31032065
2811091
122267483
1567362052
1477124

0

0

302117

0

678387
29309475
2634596
86109132
1563555146
1405801

0

0

334794

0

1013182
35289653
2589308
93862152
1503418504
12238238

0

0

780827

0

4394890
163739501
57251917
636797136
5213304935
363795

0

0

348636

0

2961423
52637926
14828942
213714550
2001975980
371974

0

0

366035

0

1806819
52783373
11565758
139805401
1957975092
351706

0

0

353719

0

1689048
44401368
11214203
116122315
1670049841
1719464

0

12792
0
175382
22263
200997
-1

583

-1

-1

-1

0

0
0
0
0
-1

0
-1
-1
-1

7488

0
256698
35854
1187717
-1

756

-1

-1

-1

35102
0
216402
1032808
253347
-1
1902433
-1

-1

-1

0

0
0
0
0
-1

37322

0
510703
1604595
1187717
-1
2815836
-1

Appendix E. SQL for transitioning from stage 1 to stage 2

105

0 0 -1 -1

28111 85654 1511 2779

0 0 0 0

0 0 0 0

15642733 34551345 52741 813009
20625470 8717787 182720 735245
2505357225 65263905 -1 -1
407796627 525696489 414 2097374
549625 18036 -1 -1

0 0 -1 -1

0 0 -1 -1

0 49331 0 0

0 0 0 0

0 0 0 0

28275381 13773358 0 0
2901046 1324477 0 0
1390676358 25235079 -1 -1
118305406 204464021 0 0
536013 17525 -1 -1

0 0 -1 -1

0 0 -1 -1

0 56800 0 0

0 0 0 0

0 0 0 0
32238350 14952813 0 0
10808186 2473607 0 0
1366045132 13298611 -1 -1
30006553 192317610 0 0
537782 19828 -1 -1

0 0 -1 -1

0 0 -1 -1

0 50851 0 0

0 0 0 0

0 0 0 0

15518907 12811813 0 0
13188937 2411070 0 0
1398755710 10947642 -1 -1
51630861 162752964 0 0

160 record(s) selected.

Sample E3: Determining the maximum activity lifetime value from
statistics event monitor data

This SQL query calculates the maximum lifetime observed for an activity at any
service class from the data available in the statistics event monitor.

SQL text:
For an editable version of this SQL script, you can use the sampleE3.sql
file included in the best practices .zip file.

-- Query to determine the Tongest activity time seen in each service class
SELECT DATE(STATISTICS_TIMESTAMP) AS INTERVAL_DATE,
SUBSTR(SERVICE_SUPERCLASS_NAME,1,32) AS SERVICE_SUPERCLASS_NAME,
SUBSTR(SERVICE_SUBCLASS_NAME,1,32) AS SERVICE_SUBCLASS_NAME,
MAX (COORD_ACT_LIFETIME_AVG) AS LIFETIME_AVG,
MAX (COORD_ACT_LIFETIME_TOP) AS LIFETIME_MAX
FROM SCSTATS_DB2STATISTICS
GROUP BY DATE(STATISTICS TIMESTAMP), SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_ NAME
ORDER BY DATE(STATISTICS_TIMESTAMP), SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME;

Example output:

INTERVAL_DATE SERVICE_SUPERCLASS_NAME SERVICE_SUBCLASS_NAME LIFETIME_AVG LIFETIME_MAX

10/20/2011 SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS -1 -1
10/20/2011 SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS -1 -1
10/20/2011 SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS -1 -1
10/20/2011 WLMBP_MASTER COMPLEX_DML 2208 5823
10/20/2011 WLMBP_MASTER ETL 0 0
10/20/2011 WLMBP_MASTER MEDIUM_DML 24711 279884
10/20/2011 WLMBP_MASTER MINOR DML 15877 405912
10/20/2011 WLMBP_MASTER SIMPLE_DML 81197 284552
10/20/2011 WLMBP_MASTER SYSDEFAULTSUBCLASS -1 -1

106 Implementing DB2® Workload Management

10/20/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/21/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/22/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011
10/23/2011

WLMBP_MASTER

TRIVIAL_DML

SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS

SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML

SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS

SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML

SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS

SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

40 record(s) selected.

SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML

578

-1

-1

-1
12792
0
175382
22263
200997
-1

583

-1

-1

-1
7488

0
256698
35854
1187717
-1

700813
-1

-1

-1
35102

0
216402
1032808
253347
-1
1902433
-1

-1

-1
37322

0
510703
1604595
1187717
-1
2815836
-1

-1

-1

2779

0

0
813009
735245
-1
2097374

Sample E4: Viewing connection attributes and DB2 workload
assignments from activity event monitor data

This SQL query shows the set of critical connection attributes for each activity, as
well as the DB2 workload definition to which it was assigned.

SQL text:
For an editable version of this SQL script, you can use the sampleE4.sq]
file included in the best practices .zip file.

-- This query shows the connection attributes of all transactions that mapped
-- to each workload definition based on the information in the activity event

-- monitor

SELECT DISTINCT COORD_PARTITION_NUM AS ADMIN_NODE,

WORKLOAD_ID, WORKLOADNAME,

ADDRESS,

APPL_NAME AS APPLNAME,

SESSION_AUTH_ID AS SESSION_USER,
TPMON_ACC_STR AS CLIENT_ACCTNG,
TPMON_CLIENT_USERID AS CLIENT_USERID,
TPMON_CLIENT_APP AS CLIENT_APPLNAME,
TPMON_CLIENT_WKSTN AS CLIENT_WRKSTNNAME

FROM ACTIVITY DB2ACTIVITIES, SYSCAT.WORKLOADS AS REFERENCE

WHERE WORKLOAD_ID = REFERENCE.WORKLOADID
AND PARTITION_NUMBER = COORD_PARTITION_NUM
ORDER BY WORKLOAD_ID, COORD_PARTITION_NUM;

Example output:

ADMIN_NODE WORKLOAD_ID WORKLOADNAME

ADDRESS

APPLNAME

10 1 SYSDEFAULTUSERWORKLOAD
10 1 SYSDEFAULTUSERWORKLOAD
10 1 SYSDEFAULTUSERWORKLOAD
10 1 SYSDEFAULTUSERWORKLOAD
10 1 SYSDEFAULTUSERWORKLOAD
10 1 SYSDEFAULTUSERWORKLOAD
10 1 SYSDEFAULTUSERWORKLOAD
10 1 SYSDEFAULTUSERWORKLOAD
10 1

deletes
fltables
selects
supdates
uptables
db2bp
db2bp
db2bp

SYSDEFAULTUSERWORKLOAD 300.300.300.300 db2jcc_application

Appendix E. SQL for transitioning from stage 1 to stage 2 107

SESSION_USER CLIENT_ACCTNG CLIENT_USERID CLIENT_APPLNAME CLIENT_WRKSTNNAME
SVTPDB2

SVTPDB2

SVTPDB2

SVTPDB2

SVTPDB2

SVTPDB2 CLP sampleFl.sql

SVTPDB2 CLP sampleF2.sql

SVTPDB2 CLP sampleF4.sql

SVTPDB2 henry

9 record(s) selected.

108 Implementing DB2® Workload Management

Appendix F. SQL for maintaining a stable stage 2

configuration

Sample F1: Summary report on threshold violations

This SQL query presents a simple summary report on the threshold violation data
present in the thresholds event monitor.

SQL text:

For an editable version of this SQL script, you can use the sampleFl.sql
file included in the best practices .zip file.

-- Query to present a summary of all threshold violations present
-- in the threshold violations event monitor data
SELECT TIME_OF_VIOLATION,
-- if threshold is still defined in catalogs, report its name
COALESCE (THRESHOLDNAME, 'UNKNOWN(' || VIOL.THRESHOLDID || ')') AS THRESHOLD_ NAME,
VIOL.THRESHOLD_ACTION,
VIOL.THRESHOLD_MAXVALUE AS MAX_VALUE,
VIOL.ACTIVITY_COLLECTED AS COLLECTED,
VIOL.APPL_ID,
VIOL.UOW_ID,
VIOL.ACTIVITY_ID,
-- If the activity data is present, provide user authorization ID
CASE
WHEN (VIOL.ACTIVITY_COLLECTED = 'Y')
THEN COALESCE(SESSION_AUTH_ID, 'NOT AVAILABLE')
ELSE NULL
END AS SESSION_USER,
-- If the activity data is present, report the first 100 bytes of text
CASE
WHEN (ACTIVITY_COLLECTED = 'Y')
THEN COALESCE(SUBSTR(STMT_TEXT, 1, 100), 'NOT AVAILABLE')
ELSE NULL
END AS TEXT_FRAGMENT
FROM THRESHOLDVIOLATIONS_DB2THRESHOLDS AS VIOL, SYSCAT.THRESHOLDS AS CAT,
ACTIVITY_DB2ACTIVITIES AS ACT, ACTIVITYSTMT_DB2ACTIVITIES AS DATA
WHERE VIOL.THRESHOLDID = CAT.THRESHOLDID
AND VIOL.APPL_ID = ACT.APPL_ID
AND VIOL.UOW_ID = ACT.UOW_ID
AND VIOL.ACTIVITY_ID = ACT.ACTIVITY_ID
AND VIOL.APPL_ID = DATA.APPL_ID
AND VIOL.UOW_ID = DATA.UOW_ID
AND VIOL.ACTIVITY_ID = DATA.ACTIVITY_ID
ORDER BY TIME_OF_VIOLATION;

Example output:

© Copyright IBM Corp. 2011

TIME_OF_VIOLATION THRESHOLD_NAME THRESHOLD_ACTION MAX_VALUE

2011-10-20-12.10.35.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.160.52.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.10.57.000000 WLMBP_MINOR_DML_TIMEQUT Continue 60
2011-10-20-12.11.18.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.12.08.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.12.53.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.14.43.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.17.04.000000 WLMBP_MINOR_DML_TIMEOUT Continue 60
2011-10-20-12.18.17.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.19.10.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.19.51.000000 WLMBP_MINOR_DML_TIMEOUT Continue 60
2011-10-20-12.20.12.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.20.57.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.23.58.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.24.37.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.24.48.000000 WLMBP_MINOR_DML_TIMEQOUT Continue 60
2011-10-20-12.24.53.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-20-12.29.01.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
2011-10-23-02.03.53.000000 WLMBP_MINOR_DML_TIMEOUT Continue 60
2011-10-23-02.04.16.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60

109

110

2011-10-23-02.04.26.

2011-10-23-02.04.41

2011-10-23-02.06.36.

2011-10-23-02.06.42

2011-10-23-02.07.56.
2011-10-23-02.07.56.

2011-10-23-02.08.23

2011-10-23-02.08.40.
2011-10-23-02.08.55.

2011-10-23-02.10.17

2011-10-23-02.12.15.
2011-10-23-02.12.25.
2011-10-23-02.12.29.

2011-10-23-02.12.32

COLLECTED APPL_ID

<< << <<<<=<=<<=<=<=<=<=<=<-=<

*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.

*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.
*N10.svtpdb2.

000000 WLMBP_MINOR_DML_TIMEOUT Continue 60
.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
.000000 WLMBP_MINOR_DML_TIMEOUT Continue 60
000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
.000000 WLMBP_MINOR_DML_TIMEOUT Continue 60
000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
000000 WLMBP_MINOR_DML_TIMEOUT Continue 60
.000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
000000 WLMBP_TRIVIAL_DML_TIMEOUT Continue 60
.000000 WLMBP_MINOR_DML_TIMEOUT Continue 60
UOW_ID ACTIVITY_ID SESSION_USER

111020161448 6 1 SVTPDB2

111020161556 1 44 SVTPDB2

111020161513 3 1 SVTPDB2

111020161507 7 1 SVTPDB2

111020161617 3 1 SVTPDB2

111020161709 1 45 SVTPDB2

111020161810 2 1 SVTPDB2

111020161938 4 1 SVTPDB2

111020162058 1 38 SVTPDB2

111020161856 11 1 SVTPDB2

111020162201 4 1 SVTPDB2

111020162220 2 1 SVTPDB2

111020162309 1 40 SVTPDB2

111020162535 1 49 SVTPDB2

111020162547 6 1 SVTPDB2

111020162549 2 1 SVTPDB2

111020162605 3 1 SVTPDB2

111020162933 1 32 SVTPDB2

111101135049 1 45 SVTPDB2

111101134955 1 26 SVTPDB2

111101135634 2 1 SVTPDB2

111101135422 1 17 SVTPDB2

111101101519 11 1 SVTPDB2

111101135052 6 1 SVTPDB2

111101101519 12 1 SVTPDB2

111101134955 4 1 SVTPDB2

111101143128 11 1 SVTPDB2

111101131530 3 1 SVTPDB2

111101135052 16 1 SVTPDB2

111101144709 1 45 SVTPDB2

111101145051 10 1 SVTPDB2

111101134955 8 1 SVTPDB2

111101145350 3 1 SVTPDB2

111101145601 1 45 SVTPDB2

< <<=<<=<<=<=<=<=<=<=<=<=<=<-¢

#N10.svtpdb2.

TEXT_FRAGMENT

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

1 FROM "T3LVL2"."TABLE91"
1 FROM "T3LVL2"."TABLE61"
1 FROM "T3LVL2"

1 FROM "T3LVL2"."TABLE59"
1 FROM "T3LVL2"."TABLE48"
1 FROM "T3LVL2"."TABLE9O"
1 FROM "T3LVL2"."TABLE65"
1 FROM "T3LVL2"."TABLE13"

FOR UPDATE OF "Co11492_DUP", "Co11491_DUP", "Col11483_UNQ", "Co11494
FOR UPDATE OF "Co11023_DUP", "Co11033_UNQ", "Co11031_DUP", "Co11030

."TABLE3" FOR UPDATE OF "Co120_DUP", "Col21_UNQ", "Col22_UNQ", "Col23_UNQ", "C

FOR UPDATE OF "Co11000_UNQ", "Col1010_UNQ", "Co11004_UNQ", "Co11006
FOR UPDATE OF "Col1777_DUP", "Co1789_DUP", "Co1805_UNQ", "Col1784_DUP
FOR UPDATE OF "Col11452_DUP", "Col1455_DUP", "Col11458_DUP", "Col1469
FOR UPDATE OF "Co11080_UNQ", "Co11077_UNQ", "Col1083_UNQ", "Co11087
FOR UPDATE OF "Col221_DUP", "Col211_UNQ", "Co1202_DUP", "Col1216_UNQ

DISTINCT "Co1501_DUP" FROM "T3LVL2"."TABLE29" FETCH FIRST 10 ROWS ONLY
"T3LVL2"."TABLE6O"

1 FROM
1 FROM
1 FROM
1 FROM

"T3LVL2".

“T3LVL2"."TABLE56" | | | |
“T3LVL2"."TABLES7" FOR UPDATE OF "Co11383_UNQ", "Co11386_DUP", "Co11393_UNQ", "Co11382
COUNT(*) FROM "T3LVL2"."TABLE92" FOR READ ONLY WITH RR

1 FROM "T3LVL2"."TABLE56" FOR UPDATE OF "Co1982_DUP", "C01987_UNQ", "C01988_DUP", "Co1979_DUP
1 FROM "T3LVL2"."TABLE12" FOR UPDATE OF "Col181_UNQ", "Co1187_UNQ", "Col185_UNQ", "Col194_UNQ
1 FROM "T3LVL2"."TABLE96" FOR UPDATE OF "Col11577_DUP", "Col1576_DUP", "Col1571_DUP", "Co11586
DISTINCT "Col1125_DUP" FROM "T3LVL2"."TABLE70" FETCH FIRST 10 ROWS ONLY

FOR UPDATE OF "Col11014_DUP", "Co11013_DUP"

"TABLE3" FOR UPDATE OF "Col22_UNQ", "Col19_UNQ", "Col23_UNQ", "Col21_UNQ", "C

FOR UPDATE OF "Co1986_DUP", "Co1973_UNQ", "Co1976_DUP", "Co1989_DUP

COUNT(*) FROM "T3LVL2"."TABLEG" FOR READ ONLY

"Co186_DUP", "Col81_UNQ", "Col90 _DUP", "Col89_DUP", "Col88_UNQ", "Col85 DUP", "Col83_UNQ", "C
1 FROM "T3LVL2"."TABLE95" FOR UPDATE OF "Co11566 UNQ", "Col1570_UNQ", "Coll568 UNQ", "Col1567
COUNT(*) FROM "T3LVL2"."TABLES1" FOR READ ONLY

"Co189_DUP", "Col83_UNQ",
1 FROM "T3LVL2"."TABLE92"
"Co189_DUP", "Col83_UNQ",
"Co186_DUP", "Col81_UNQ",

Implementing DB2® Workload Management

"Co180_UNQ", "Col82_UNQ", "Col86_DUP", "Co188 UNQ", "Col81_UNQ" FRO
FOR UPDATE OF "Col1518 DUP", "Col1519_UNQ", "Col1537_UNQ", "Co11536
"Co180_UNQ", "Col82_UNQ", "Col86_DUP", "Col88_UNQ", "Col81_UNQ" FRO
"Co190_DUP", "Col89_DUP", "Col188_UNQ", "Co185 DUP", "Col83_UNQ", "C

SELECT 1 FROM "T3LVL2"."TABLEG1" FOR UPDATE OF "Co11022_DUP", "Col1035 UNQ", "Col1032_DUP", "Col1031
SELECT "Co1352_DUP", "Co1362_DUP", "Col350_UNQ", "Col351 _UNQ", "Col357_DUP", "Col366_DUP", "Col356_U
SELECT 1 FROM "T3LVL2"."TABLE92" FOR UPDATE OF "Co11518_DUP", "Col1519_UNQ", "Col1537 UNQ", "Col1536
SELECT 1 FROM "T3LVL2"."TABLE10" FOR UPDATE OF "Co1134_UNQ", "Co1117_DUP", "Co1105 DUP", "Co1106_DUP
SELECT 1 FROM "T3LVL2"."TABLE65" FOR UPDATE OF "Col1088 DUP", "Col1078_UNQ", "Co11089_UNQ", "Col1087
SELECT "Co186_DUP", "Col81_UNQ", "Col190_DUP", "Co189_DUP", "Col88_UNQ", "Col85_DUP", "Col83_UNQ", "C
SELECT 1 FROM "T3LVL2"."TABLE23" FOR UPDATE OF "Col415_UNQ", "Co1427_DUP", "CoT410_UNQ", "Co1419_UNQ
SELECT COUNT(*) FROM "T3LVL2"."TABLE6" FOR READ ONLY

7521 record(s) selected.

Sample F2: Database summary of work characteristics by
service subclass

This SQL query extracts key information about different characteristics of work
that executed in each service subclass and summarizes it across all members. This
information contains aggregate database metrics for resource consumption
(summed across all members) as well as individual member high water marks for
different characteristics (value shown is the highest value encountered at any

member).

SQL text:

For an editable version of this SQL script, you can use the sampleF2.sql
file included in the best practices .zip file.

-- Query to summarize basic characteristics of work executed in each
-- service class from a database perspective from the statistics event
-- monitor data

WITH

-- Determine when each member Tast started in order for delta metric calculations
MEMBER_START_TIMES AS

(SELECT DISTINCT SCSTATS.PARTITION_NUMBER, STATISTICS_TIMESTAMP,
MAX (MESSAGE_TIME) AS FIRSTCONNECT_TIME
FROM CONTROL_DB2STATISTICS AS CONTROL, SCSTATS_DB2STATISTICS AS SCSTATS
WHERE MESSAGE = 'FIRST_CONNECT'
AND CONTROL.PARTITION_NUMBER = SCSTATS.PARTITION_NUMBER
AND STATISTICS_TIMESTAMP > MESSAGE_TIME
GROUP BY SCSTATS.PARTITION_NUMBER, STATISTICS_TIMESTAMP),

-- Determine how to calculate deltas for each row

DELTA_METHOD AS

(SELECT SCSTATS.PARTITION_NUMBER,
SCSTATS.STATISTICS_TIMESTAMP,

-- If previous row was gathered after last member start, determine delta
-- by subtraction

CASE
WHEN (LAG(SCSTATS.STATISTICS_TIMESTAMP, 1,
TIMESTAMP_FORMAT ('2007-10-01 23:59:59"',
'YYYY-MM-DD HH24:MI:SS'))
OVER (PARTITION BY SCSTATS.PARTITION_NUMBER
ORDER BY SCSTATS.STATISTICS_TIMESTAMP))
>=
(SELECT FIRSTCONNECT_TIME
FROM MEMBER_START_TIMES AS REF
WHERE REF.PARTITION_NUMBER = SCSTATS.PARTITION_NUMBER
AND REF.STATISTICS_TIMESTAMP
= SCSTATS.STATISTICS_TIMESTAMP)

THEN "Y'
ELSE 'N'
END AS SUBTRACT_FROM_PREV_ROW
FROM SCSTATS_DB2STATISTICS AS SCSTATS
GROUP BY SCSTATS.PARTITION_NUMBER, SCSTATS.STATISTICS_TIMESTAMP
ORDER BY SCSTATS.PARTITION_NUMBER, SCSTATS.STATISTICS_TIMESTAMP),

-- extract wanted metrics from DETAILS_XML column in service class statistics

V1 AS

(SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,

METRIC_NAME, VALUE

Appendix FE. SQL for maintaining a stable stage 2 configuration 111

FROM SCSTATS_DB2STATISTICS,
TABLE (MON_FORMAT_XML_METRICS_BY_ROW(DETAILS_XML))
WHERE METRIC_NAME IN ('TOTAL_CPU_TIME', 'ROWS_READ',
"ACT_RQSTS_TOTAL', 'ACT_COMPLETED_TOTAL')),

-- Pivot data into table format
V2 AS
(SELECT STATISTICS_ TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,
MAX (DECODE (METRIC_NAME, 'ACT_RQSTS_TOTAL', VALUE))
AS ACT_RQSTS_TOTAL,
MAX (DECODE (METRIC_NAME, 'ACT_COMPLETED_TOTAL', VALUE))
AS ACT_COMPLETED_TOTAL,
MAX (DECODE (METRIC_NAME, 'TOTAL_CPU_TIME', VALUE))
AS TOTAL_CPU_TIME,
MAX (DECODE (METRIC_NAME, 'ROWS_READ', VALUE)) AS TOTAL_ROWS_READ
FROM V1
GROUP BY STATISTICS_TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME),

-- Calculate delta values for the extracted values based on delta calculation
-- method
V3 AS
(SELECT V2.STATISTICS_TIMESTAMP, V2.PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,

WHEN (SUBTRACT FROM PREV ROW = 'Y')
THEN ACT_RQSTS_TOTAL - LAG(ACT_RQSTS_TOTAL, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE ACT_RQSTS_TOTAL
END AS ACT RQSTS_TOTAL,
CASE
WHEN (SUBTRACT FROM_PREV ROW = 'Y')
THEN ACT_COMPLETED_TOTAL - LAG(ACT COMPLETED TOTAL, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS TIMESTAMP)
ELSE ACT_COMPLETED_TOTAL
END AS ACT_COMPLETED_TOTAL,
CASE
WHEN (SUBTRACT FROM_PREV ROW = 'Y')
THEN TOTAL_CPU_TIME - LAG(TOTAL_CPU_TIME, 1, 0)
OVER (PARTITION BY V2.PARTITION NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE TOTAL_CPU_TIME
END AS TOTAL_CPU_TIME,
CASE
WHEN (SUBTRACT FROM_PREV ROW = 'Y')
THEN TOTAL_ROWS_READ - LAG(TOTAL_ROWS_READ, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS TIMESTAMP)
ELSE TOTAL_ROWS_READ
END AS TOTAL_ROWS_READ
FROM V2, DELTA_METHOD
WHERE V2.PARTITION_NUMBER = DELTA_METHOD.PARTITION_NUMBER
AND V2.STATISTICS_ TIMESTAMP = DELTA METHOD.STATISTICS_TIMESTAMP)

-- Summarize all metrics by day across all members

SELECT DATE(SOURCE.STATISTICS TIMESTAMP) AS INTERVAL_DATE,
SOURCE.SERVICE_SUPERCLASS NAME,
SOURCE.SERVICE_SUBCLASS_NAME,
SUM(SOURCE.COORD_ACT_COMPLETED _TOTAL) AS COORD_REQ COMPLETED,
SUM(SOURCE.COORD_ACT_REJECTED_TOTAL) AS COORD_REQ_REJECTED,
SUM(SOURCE.COORD_ACT_ABORTED_TOTAL) AS COORD_REQ_ABORTED,
SUM(V3.ACT_COMPLETED _TOTAL) AS TOTAL_ACTIVITIES,
SUM(V3.ACT_RQSTS_TOTAL) AS TOTAL_REQUESTS,

112 Implementing DB2® Workload Management

SUM(V3.TOTAL_CPU_TIME) AS TOTAL_CPU_TIME,
SUM(V3.TOTAL_ROWS_READ) AS TOTAL_ROWS_READ,

MAX (SOURCE
MAX (SOURCE
MAX (SOURCE.
MAX (SOURCE .
MAX (SOURCE.
MAX (SOURCE .
MAX (SOURCE
MAX (SOURCE .
MAX (SOURCE.
MAX (SOURCE .
MAX (SOURCE.
MAX (SOURCE .

FROM SCSTATS_DB2STATISTICS AS SOURCE, V3
WHERE SOURCE.STATISTICS_TIMESTAMP = V3.STATISTICS_TIMESTAMP

AND SOURCE.PARTITION_NUMBER = V3.PARTITION_NUMBER

AND SOURCE.SERVICE_SUPERCLASS_NAME = V3.SERVICE_SUPERCLASS_NAME
AND SOURCE.SERVICE_SUBCLASS_NAME = V3.SERVICE_SUBCLASS_NAME

GROUP BY DATE(SOURCE.

STATISTTCS_TIMESTAMP),

SOURCE.SERVICE_SUPERCLASS_NAME,
SOURCE.SERVICE_SUBCLASS_NAME

ORDER BY DATE(SOURCE.

STATISTICS_TIMESTAMP),

SOURCE . SERVICE_SUPERCLASS_NAME,
SOURCE. SERVICE_SUBCLASS_NAME;

Example output:

INTERVAL_DATE SERVICE_SUPERCLASS_NAME

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS
SYSDEFAULTUSERCLASS
WLMBP_MASTER

WLMBP_MASTER

WLMBP_MASTER

WLMBP_MASTER

WLMBP_MASTER

WLMBP_MASTER

WLMBP_MASTER

10/20/2611
10/20/2011
10/20/26011
10/20/2011
10/20/26011
10/20/2011
10/20/2611
10/20/2011
10/20/2611
10/20/2011

COORD_REQ_COMPLETED

COORD_REQ_REJECTED

COORD_

.ACT_ROWS_READ_TOP) AS ROWS_READ_TOP,
.ACT_CPU_TIME_TOP) AS CPU_TIME_TOP,
CONCURRENT_ACT_TOP) AS MAX_CONCURRENT,
UOW_TOTAL_TIME_TOP) AS UOW_TIME_TOP,
ROWS_RETURNED_TOP) AS ROWS_RETURNED_TOP,
COST_ESTIMATE_TOP) AS EST COST_TOP,
.COORD_ACT_EST_COST_AVG) AS COORD_COST_AVG,
COORD_ACT_LIFETIME_TOP) AS COORD_LIFE_TOP,
COORD_ACT_LIFETIME_AVG) AS COORD_LIFE_AVG,
COORD_ACT_EXEC_TIME_AVG) AS COORD_EXEC AVG,
COORD_ACT_QUEUE_TIME_AVG) AS COORD_QUEUE_AVG,
COORD_ACT_INTERARRIVAL TIME_AVG) AS COORD_INTERARRIVAL AVG

SERVICE_SUBCLASS_NAME

SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML

REQ_ABORTED

TOTAL_ACTIVITIES

120957
1987982

TOTAL_REQUESTS

TOTAL_CPU_TIME

1962
22973
6651
121451
5573407

CPU_TIME_TOP

128179769
641443
10911699
17254

0

1239892
5666959
1430225
8169555295
531475145

MAX_CONCURRENT UOW_TIME_TOP

1990

0
805114
1207285

172 41439

0 0

2 626

0 0

0 0

0 0

23 0

29 0

346 2109746

1933 0
ROWS_READ ROWS_READ_TOP

1126587 -1

169 -1

95259 -1

8 8

0 0

29376 1594

406598 20222

82065 2098

804156 -1

16079637 1575884

ROWS_RETURNED_TOP

-1 -1
-1 -1
-1 -1
0 0
0 0
0 102
0 477

Appendix E. SQL for maintaining a stable stage 2 configuration

113

385339 8 0 99

-1 13 -1 -1
24883934 60 0 1103
EST_COST_TOP COORD_COST_AVG COORD_LIFE_TOP COORD_LIFE_AVG
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
45277628 45277628 5823 2208
0 0 0 0
2196364 450347 279884 24711
29705 10277 405912 15877
282657 231222 284552 81197
-1 -1 -1 -1
4993 31 700813 578
COORD_EXEC_AVG COORD_QUEUE_AVG COORD_INTERARRIVAL_AVG
-1 -1 -1
-1 -1 -1
-1 -1 -1
2208 0 1363084
0 0 0
5817 0 257195
5039 0 22074
9436 0 87423
-1 -1 -1
390 0 15

10 record(s) selected.

Sample F3: Database summary of work characteristics by
workload

This SQL query extracts key information about different characteristics of work
that was submitted for execution by each workload and summarizes it across all
members. This information contains aggregate database metrics for resource
consumption (summed across all members) as well as individual member high
water marks for different characteristics (value shown is the highest value
encountered at any member).

SQL text:
For an editable version of this SQL script, you can use the sampleF3.sql
file included in the best practices .zip file.

-- Query to summarize basic characteristics of work executed from each
-- workload from a database perspective from the statistics event
-- monitor data

WITH

-- Determine when each member Tast started in order for delta metric calculations
MEMBER_START_TIMES AS
(SELECT DISTINCT WLSTATS.PARTITION_NUMBER, STATISTICS TIMESTAMP,
MAX (MESSAGE_TIME) AS FIRSTCONNECT_TIME

FROM CONTROL_DB2STATISTICS AS CONTROL, WLSTATS_ DB2STATISTICS AS WLSTATS
WHERE MESSAGE = 'FIRST_CONNECT'

AND CONTROL.PARTITION_NUMBER = WLSTATS.PARTITION_NUMBER

AND STATISTICS_TIMESTAMP > MESSAGE_TIME
GROUP BY WLSTATS.PARTITION_NUMBER, STATISTICS TIMESTAMP),

-- Determine how to calculate deltas for each row
DELTA_METHOD AS
(SELECT WLSTATS.PARTITION_NUMBER,
WLSTATS.STATISTICS_TIMESTAMP,
-- If previous row was gathered after last member start, determine delta
-- by subtraction
CASE
WHEN (LAG(WLSTATS.STATISTICS_TIMESTAMP, 1,
TIMESTAMP_FORMAT ('2007-10-01 23:59:59',

114 Implementing DB2® Workload Management

"YYYY-MM-DD HH24:MI:SS'))
OVER (PARTITION BY WLSTATS.PARTITION_NUMBER
ORDER BY WLSTATS.STATISTICS_TIMESTAMP))
>=
(SELECT FIRSTCONNECT_TIME
FROM MEMBER_START_TIMES AS REF
WHERE REF.PARTITION_NUMBER = WLSTATS.PARTITION_NUMBER
AND REF.STATISTICS_TIMESTAMP
= WLSTATS.STATISTICS_TIMESTAMP)

THEN 'Y
ELSE 'N'
END AS SUBTRACT_FROM_PREV_ROW
FROM WLSTATS_DB2STATISTICS AS WLSTATS
GROUP BY WLSTATS.PARTITION_NUMBER, WLSTATS.STATISTICS TIMESTAMP
ORDER BY WLSTATS.PARTITION_NUMBER, WLSTATS.STATISTICS_TIMESTAMP),

-- extract wanted metrics from DETAILS_XML column in workload statistics
V1 AS
(SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
WORKLOAD_NAME,
METRIC_NAME, VALUE
FROM WLSTATS_DB2STATISTICS,
TABLE (MON_FORMAT_XML_METRICS_BY_ROW(DETAILS_XML))
WHERE METRIC_NAME IN ('TOTAL_CPU_TIME', 'ROWS_READ',
'ACT_RQSTS_TOTAL', 'ACT_COMPLETED_TOTAL')),

-- Pivot data into table format
V2 AS
(SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
WORKLOAD_NAME,
MAX (DECODE (METRIC_NAME, 'ACT_RQSTS_TOTAL', VALUE))
AS ACT_RQSTS_TOTAL,
MAX (DECODE (METRIC_NAME, 'ACT_COMPLETED_TOTAL', VALUE))
AS ACT_COMPLETED_TOTAL,
MAX (DECODE (METRIC_NAME, 'TOTAL_CPU_TIME', VALUE))
AS TOTAL_CPU_TIME,
MAX (DECODE (METRIC_NAME, 'ROWS_READ', VALUE)) AS TOTAL_ROWS_READ
FROM V1
GROUP BY STATISTICS_TIMESTAMP, PARTITION_NUMBER, WORKLOAD_NAME),

-- Calculate delta values for the extracted values based on delta calculation
-- method
V3 AS
(SELECT V2.STATISTICS_TIMESTAMP, V2.PARTITION_NUMBER,
WORKLOAD_NAME,
CASE
WHEN (SUBTRACT_FROM_PREV_ROW = 'Y'")
THEN ACT_RQSTS_TOTAL - LAG(ACT_RQSTS_TOTAL, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
WORKLOAD_NAME
ORDER BY V2.STATISTICS TIMESTAMP)
ELSE ACT_RQSTS_TOTAL
END AS ACT_RQSTS_TOTAL,

WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN ACT_COMPLETED TOTAL - LAG(ACT_COMPLETED_TOTAL, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
WORKLOAD_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE ACT_COMPLETED_TOTAL
END AS ACT_COMPLETED_TOTAL,
CASE
WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN TOTAL_CPU_TIME - LAG(TOTAL CPU_TIME, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
WORKLOAD_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE TOTAL_CPU_TIME
END AS TOTAL_CPU_TIME,
CASE
WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN TOTAL_ROWS_READ - LAG(TOTAL_ROWS_READ, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
WORKLOAD_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)

Appendix E. SQL for maintaining a stable stage 2 configuration

115

116

ELSE TOTAL_ROWS_READ
END AS TOTAL_ROWS_READ

FROM V2, DELTA_METHOD

WHERE VZ.PARTITION_NUMBER =
AND V2.STATISTICS_TIMESTAMP =

DELTA_METHOD.PARTITION_NUMBER
DELTA_METHOD.STATISTICS_TIMESTAMP)

-- Summarize all metrics by day for each workload across all members

SELECT DATE(SOURCE.STATISTICS TIMESTAMP) AS INTERVAL_DATE,

SOURCE.WORKLOAD_NAME,
SUM(SOURCE.COORD_ACT_COMPLETED_TOTAL) AS COORD_REQ COMPLETED,
SUM(SOURCE.COORD_ACT_REJECTED_TOTAL) AS COORD_REQ_REJECTED,
SUM(SOURCE.COORD_ACT_ABORTED_TOTAL) AS COORD_REQ_ABORTED,
SUM(V3.ACT_COMPLETED_TOTAL) AS TOTAL_ACTIVITIES,
SUM(V3.ACT_RQSTS_TOTAL) AS TOTAL_REQUESTS,
SUM(V3.TOTAL_CPU_TIME) AS TOTAL_CPU_TIME,

SUM(V3. TOTAL ROWS_READ) AS TOTAL RONS READ,

MAX (SOURCE .

MAX (SOURCE.ACT_ROWS_| READ_TOP
MAX (SOURCE.ACT_CPU TIME TOP)
MAX (SOURCE. LOCK _| WAIT TIME_TO
MAX (SOURCE . UOW_ TOTAL TIME_TO

MAX (SOURCE.

MAX(SOURCE.COST ESTIMATE_TOP

MAX (SOURCE .
MAX (SOURCE.
MAX (SOURCE .
MAX (SOURCE.
MAX (SOURCE .
MAX (SOURCE.

) AS ROWS_READ TOP
AS CPU TIME TOP
P) AS LOCKWAIT _TOP,
P) AS UOW_TIME TOP

ROWS_| RETURNED TOP) AS ROWS_ RETURNED _TOP,

) AS EST_ CoST _TOP,

FROM WLSTATS_| DB2STATISTICS AS SOURCE, V3
WHERE SOURCE .’ STATISTICS_TIMESTAMP =

AND SOURCE.PARTITION_NUMBER =

AND SOURCE.WORKLOAD_NAME = V3.WORK
GROUP BY DATE(SOURCE.STATISTICS_TIMESTAMP),
SOURCE.WORKLOAD_NAME
ORDER BY DATE(SOURCE.STATISTICS_TIMESTAMP),
SOURCE.WORKLOAD_NAME ;

Example output:

INTERVAL_DATE WORKLOAD_NAME

CONCURRENT WLO_TOP) AS CONCURRENT UOW_TOP,

COORD_ACT_ EST COST_AVG) AS COORD COST_AVG,

COORD ACT LIFETIME _TOP) AS COORD LIFE TOP

COORD ACT LIFETIME_AVG) AS COORD_LIFE_AVG
COORD_ACT_EXEC_TIME_AVG) AS COORD_EXEC_AVG,
COORD_ACT_QUEUE_TIME_AVG) AS COORD QUEUE AVG,

COORD ACT INTERARRIVAL_TIME_AVG) AS COORD_INTERARRIVAL_AVG

V3.STATISTICS_TIMESTAMP

V3.PARTITION_NUMBER

LOAD_NAME

COORD_REQ_COMPLETED COORD_REQ_REJECTED

10/20/2011
10/20/26011

COORD_REQ_ABORTED

SYSDEFAULTADMWORKLOAD
SYSDEFAULTUSERWORKLOAD

TOTAL_ACTIVITIES

208

2109675

TOTAL_REQUESTS

TOTAL_CPU_TIME

253 1761031

211

CONCURRENT_UOW_T

208

0164 5726284

OP ROWS_READ_TOP

CPU_TIME_TOP

8717612715

2059
17488033

LOCKWAIT_TOP

UOW_TIME_TOP

65 1575884

ROWS_RETURNED_TOP

-1

EST_COST_TOP

-1

24883934

485035296

COORD_COST_AVG

6425

COORD_LIFE_TOP

-1
7428

COORD_LIFE_AVG

-1

-1

1103 45277628

COORD_EXEC_AVG

70

COORD_INTERARRIV

-1
0813

AL_AVG

2 record(s) selected.

Implementing DB2® Workload Management

Sample F4: Member summary of work characteristics by service

subclass

This SQL query extracts key information about different characteristics of work
that executed in each service subclass and summarizes it per individual DB2
member. This information contains aggregate member metrics for resource

consumption as well as individual high water marks for different characteristics

(value shown is the highest value encountered at the member).
SQL text:

For an editable version of this SQL script, you can use the sampleF4.sql

file included in the best practices .zip file.

-- Query to summarize basic characteristics of work executed in each

-- service class from an individual member perspective from the statistics event

-- monitor data

WITH

-- Determine when each member last started in order for delta metric calculations

MEMBER_START_TIMES AS
(SELECT DISTINCT SCSTATS.PARTITION_NUMBER, STATISTICS TIMESTAMP,
MAX (MESSAGE_TIME) AS FIRSTCONNECT_TIME

FROM CONTROL_DB2STATISTICS AS CONTROL, SCSTATS_DB2STATISTICS AS SCSTATS

WHERE MESSAGE = 'FIRST_CONNECT'
AND CONTROL.PARTITION_NUMBER = SCSTATS.PARTITION_NUMBER
AND STATISTICS_TIMESTAMP > MESSAGE_TIME

GROUP BY SCSTATS.PARTITION_NUMBER, STATISTICS TIMESTAMP),

-- Determine how to calculate deltas for each row
DELTA_METHOD AS
(SELECT SCSTATS.PARTITION_NUMBER,
SCSTATS.STATISTICS_TIMESTAMP,
-- If previous row was gathered after last member start, determine delta
-- by subtraction
CASE
WHEN (LAG(SCSTATS.STATISTICS TIMESTAMP, 1,
TIMESTAMP_FORMAT('2007-10-01 23:59:59',
'YYYY-MM-DD HH24:MI:SS'))
OVER (PARTITION BY SCSTATS.PARTITION_NUMBER
ORDER BY SCSTATS.STATISTICS TIMESTAMP))
>=
(SELECT FIRSTCONNECT TIME
FROM MEMBER_START_TIMES AS REF
WHERE REF.PARTITION_NUMBER = SCSTATS.PARTITION_NUMBER
AND REF.STATISTICS_TIMESTAMP

= SCSTATS.STATISTICS_TIMESTAMP)

THEN 'Y'
ELSE 'N'
END AS SUBTRACT_FROM_PREV_ROW
FROM SCSTATS_DB2STATISTICS AS SCSTATS
GROUP BY SCSTATS.PARTITION_NUMBER, SCSTATS.STATISTICS_TIMESTAMP
ORDER BY SCSTATS.PARTITION_NUMBER, SCSTATS.STATISTICS_TIMESTAMP),

-- extract wanted metrics from DETAILS_XML column in service class statistics

V1 AS

(SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,
METRIC_NAME, VALUE

FROM SCSTATS_DB2STATISTICS,

TABLE (MON_FORMAT_XML_METRICS_BY_ROW(DETAILS_XML))
WHERE METRIC_NAME IN ("TOTAL_CPU_TIME', 'ROWS_READ',
'ACT_RQSTS_TOTAL', 'ACT_COMPLETED_TOTAL')),

-- Pivot data into table format
V2 AS
(SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,

Appendix E. SQL for maintaining a stable stage 2 configuration

117

118

FROM V1

MAX (DECODE (METRIC_NAME, 'ACT_RQSTS_TOTAL', VALUE))
AS ACT_RQSTS_TOTAL,
MAX (DECODE (METRIC_NAME, 'ACT_COMPLETED_TOTAL', VALUE))
AS ACT_COMPLETED_TOTAL,
MAX (DECODE (METRIC_NAME, 'TOTAL_CPU_TIME', VALUE))
AS TOTAL_CPU_TIME,
MAX (DECODE (METRIC_NAME, 'ROWS_READ', VALUE)) AS TOTAL_ROWS_READ

GROUP BY STATISTICS_TIMESTAMP, PARTITION_NUMBER,

-- Calculate
-- method
V3 AS
(SELECT

FROM V2,
WHERE V2.

AND V2.STATISTICS TIMESTAMP =

-- Summarize

SERVICE_: SUPERCLASS NAME, SERVICE SUBCLASS_NAME) ,
delta values for the extracted values based on delta calculation

V2.STATISTICS TIMESTAMP, V2.PARTITION NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,
CASE
WHEN (SUBTRACT FROM_PREV ROW = 'Y')
THEN ACT_RQSTS_TOTAL - LAG(ACT_RQSTS_TOTAL, 1, 0)
OVER (PARTITION BY V2.PARTITION NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE ACT RQSTS_TOTAL
END AS ACT_RQSTS_TOTAL,
CASE
WHEN (SUBTRACT FROM_PREV ROW = 'Y')
THEN ACT_COMPLETED TOTAL - LAG(ACT COMPLETED TOTAL, 1, 0)
OVER (PARTITION BY V2.PARTITION NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS TIMESTAMP)
ELSE ACT_COMPLETED_TOTAL
END AS ACT_COMPLETED_TOTAL,
CASE
WHEN (SUBTRACT FROM_PREV ROW = 'Y')
THEN TOTAL_CPU_TIME - LAG(TOTAL_CPU_TIME, 1, 0)
OVER (PARTITION BY V2.PARTITION NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS TIMESTAMP)
ELSE TOTAL_CPU_TIME
END AS TOTAL_CPU_TIME,

WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN TOTAL_ROWS_READ - LAG(TOTAL_ROWS_READ, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE TOTAL_ROWS_READ
END AS TOTAL_ROWS_READ
DELTA_METHOD
PARTITION_NUMBER = DELTA_METHOD.PARTITION_NUMBER
DELTA_METHOD.STATISTICS_TIMESTAMP)

all metrics by day for each member

SELECT DATE(SOURCE.STATISTICS TIMESTAMP) AS INTERVAL_DATE,
SOURCE.PARTITION_NUMBER AS MEMBER_ID,
SOURCE.SERVICE_SUPERCLASS_NAME,
SOURCE.SERVICE_SUBCLASS_NAME,

SUM(SOURCE. COORD_ACT_COMPLETED_TOTAL) AS COORD_REQ_COMPLETED,
SUM(SOURCE. COORD_ACT_REJECTED_TOTAL) AS COORD_REQ REJECTED,
SUM(SOURCE. COORD_ACT_ABORTED_TOTAL) AS COORD_REQ_ABORTED,
SUM(V3.ACT_COMPLETED_TOTAL) AS TOTAL_ACTIVITIES,
SUM(V3.ACT_RQSTS_TOTAL) AS TOTAL REQUESTS,
SUM(V3.TOTAL_CPU_TIME) AS TOTAL CPU_TIME,
SUM(V3.TOTAL_ROWS_READ) AS TOTAL_ROWS_READ,

MAX (SOURCE.ACT ROWS_READ_TOP) AS ROWS_READ_TOP,

MAX (SOURCE.ACT_CPU_TIME_TOP) AS CPU_TIME_TOP,

MAX (SOURCE . CONCURRENT_ACT TOP) AS MAX_CONCURRENT,

MAX (SOURCE..UOW_TOTAL_TIME_TOP) AS UOW_TIME_TOP,

MAX (SOURCE.ROWNS_RETURNED_TOP) AS ROWS_RETURNED_TOP,

MAX (SOURCE.COST_ESTIMATE_TOP) AS EST COST_TOP,

MAX (SOURCE.COORD_ACT_EST_COST_AVG) AS COORD_COST AVG,

MAX (SOURCE . COORD_ACT_LIFETIME_TOP) AS COORD_LIFE_TOP,

MAX (SOURCE.COORD_ACT_LIFETIME_AVG) AS COORD_LIFE_AVG,

Implementing DB2® Workload Management

MAX (SOURCE.COORD_ACT_EXEC_TIME_AVG) AS COORD_EXEC_AVG,
MAX (SOURCE.COORD_ACT_QUEUE_TIME_AVG) AS COORD_QUEUE_AVG,

MAX (SOURCE . COORD_ACT_INTERARRIVAL TIME_AVG) AS COORD_INTERARRIVAL_AVG

FROM SCSTATS_DB2STATISTICS AS SOURCE, V3
WHERE SOURCE.STATISTICS_TIMESTAMP = V3.STATISTICS_TIMESTAMP

AND SOURCE.PARTITION_NUMBER = V3.PARTITION_NUMBER

AND SOURCE.SERVICE_SUPERCLASS_NAME = V3.SERVICE_SUPERCLASS_NAME
AND SOURCE.SERVICE_SUBCLASS_NAME = V3.SERVICE_SUBCLASS_NAME
GROUP BY DATE(SOURCE.STATISTICS_TIMESTAMP),
SOURCE.PARTITION_NUMBER,
SOURCE.SERVICE_SUPERCLASS_NAME,
SOURCE.SERVICE_SUBCLASS_NAME
ORDER BY DATE(SOURCE.STATISTICS_TIMESTAMP),
SOURCE.PARTITION_NUMBER,
SOURCE.SERVICE_SUPERCLASS_NAME,
SOURCE.SERVICE_SUBCLASS_NAME;

Example output:

INTERVAL_DATE MEMBER_ID

10/20/2011
10/20/26011
10/20/2011
10/20/2611
10/20/2011
10/20/2611
10/20/2011
10/20/2611
10/20/2011
10/20/26011
10/20/2011
10/20/2611
10/20/2011
10/20/2611
10/20/2011
10/20/2611
10/20/2011
10/20/26011
10/20/2011
10/20/2611
10/20/2011
10/20/26011
10/20/2011
10/20/2611
10/20/2011
10/20/2611
10/20/2011
10/20/2611
10/20/2011
10/20/26011
10/20/2011
10/20/26011
10/20/2011
10/20/26011
10/20/2011
10/20/26011
10/20/2011
10/20/26011
10/20/2011
10/20/2011

COORD_REQ_COMPLETED COORD_REQ_REJECTED

30
30
30
30
30
30
30
30
40
40
40
40
40
40
40
40
40
40

SERVICE_SUPERCLASS_NAME

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

SYSDEFAULTMAINTENANCECLASS
SYSDEFAULTSYSTEMCLASS

SYSDEFAULTUSERCLASS
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER
WLMBP_MASTER

COORD_REQ_ABORTED

SERVICE_SUBCLASS_NAME

SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
SYSDEFAULTSUBCLASS
COMPLEX_DML

ETL

MEDIUM_DML
MINOR_DML
SIMPLE_DML
SYSDEFAULTSUBCLASS
TRIVIAL_DML

TOTAL_ACTIVITIES

1987982
99

0

0

0

[cNooNooNoNoNoNoNoNoNoNoNol

210974

o
[eNoNolile oo NoNo oo Nol

Appendix E. SQL for maintaining a stable stage 2 configuration

119

120

[cNooNoooloNoNolile o oo oo oo oo o o o No o Nol

TOTAL_REQUESTS

[coloooooooolooooloooooooBoloNBo ool

TOTAL_CPU_TIME

[eojoooolloolooooolooloNoooNo oo oo o Nol

TOTAL_ROWS_READ

ROWS_READ_TOP

o

Nl
[cNooNoooloNoNolile oo oo oo No oo o o o o o Nol

111
1925
504

0
669583
123

0

13

200

0

111
1925
504

0
673517
123

0

13

200

0

113
1926
509

0
677704

CPU_TIME_TOP

106704777
287693
4847566
17254

0

383977
3957955
692286
5887718297
519176059
7129145
353750
1271981

0

0

4589
312137
163820
747306013
3381723
7138197

0

1370473

0

0

9592
1256513
120012
763389488
3215259
7207650

0

3421679

0

0

841734
140354
454107
771141497
5702104

MAX_CONCURRENT UOW_TIME_TOP

1126587
169
95181

0

0

5893
154461
36146
738102
5675310
0

0

26

0

0

8779
49049
10597
19494
3081026
0

0

26

0

0

4450
112104
17201
22089
3537366
0

0

26

8

0

10254
90984
18121
24471
3785935

1594
7443
905
-1

1575884

ROWS_RETURNED_TOP

Implementing DB2® Workload Management

-1
-1
-1

0

0
1461
5795
424

167050
1005594
169711
-1
24883934
-1

-1

-1

0

0

2495
161517
127922
-1
779283

3283
1207285
77636
-1
367183
-1

-1

-1

0

0
805114
23192
385339
-1
1046691

EST_COST_TOP

) =

[coRoNoRololoNoNolhVoloNoloNoNoNoN ool VWoloNoNoRoNoRoNo ol o RO e RN I

COORD_COST_AVG

-1
45277628
0
2196364
29705
282657
-1

4993

-1

-1

-1

0

0
0
0
0
-1

-1
45277628
0
450347
10277
231222
-1

31

-1

-1

-1

0

0
0
0
0
-1
0
-1

-1
-1

279884
405912
284552
-1
700813
-1

-1

-1

0

0
0
0
0
-1
0
-1

-1
-1

Appendix F. SQL for maintaining a stable stage 2 configuration

121

COORD_EXEC_AVG COORD_QUEUE_AVG COORD_INTERARRIVAL_AVG

-1 -1 -1
-1 -1 -1
-1 -1 -1
2208 0 1363084
0 0 0
5817 0 257195
5039 0 22074
9436 0 87423
-1 -1 -1
390 0 15
-1 -1 -1
-1 -1 -1
-1 -1 -1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
-1 -1 -1
0 0 0
-1 -1 -1
-1 -1 -1
-1 -1 -1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
-1 -1 -1
0 0 0
-1 -1 -1
-1 -1 -1
-1 -1 -1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
-1 -1 -1
0 0 0

40 record(s) selected.

Sample F5: Member summary of work characteristics by
workload

This SQL query extracts key information about different characteristics of work
that were submitted for execution by each workload and summarizes it per
individual DB2 member. This information contains aggregate member metrics for
resource consumption as well as individual high water marks for different
characteristics (value shown is the highest value encountered at the member).

SQL text:
For an editable version of this SQL script, you can use the sampleF5.sq]
file included in the best practices .zip file.

-- Query to summarize basic characteristics of work executed from each

-- workload from an individual perspective from the statistics event
-- monitor data

WITH

-- Determine when each member last started in order for delta metric calculations
MEMBER_START_TIMES AS
(SELECT DISTINCT WLSTATS.PARTITION_NUMBER, STATISTICS_TIMESTAMP,
MAX (MESSAGE_TIME) AS FIRSTCONNECT_TIME

FROM CONTROL_DB2STATISTICS AS CONTROL, WLSTATS_DB2STATISTICS AS WLSTATS
WHERE MESSAGE = 'FIRST_CONNECT'

AND CONTROL.PARTITION_NUMBER = WLSTATS.PARTITION_NUMBER

AND STATISTICS_TIMESTAMP > MESSAGE_TIME

122 Implementing DB2® Workload Management

GROUP BY WLSTATS.PARTITION_NUMBER, STATISTICS TIMESTAMP),

-- Determine how to calculate deltas for each row
DELTA_METHOD AS
(SELECT WLSTATS.PARTITION_NUMBER,
WLSTATS.STATISTICS_TIMESTAMP,
-- If previous row was gathered after last member start, determine delta
-- by subtraction
CASE
WHEN (LAG(WLSTATS.STATISTICS TIMESTAMP, 1,
TIMESTAMP_FORMAT('2007-10-01 23:59:59',
"YYYY-MM-DD HH24:MI:SS'))
OVER (PARTITION BY WLSTATS.PARTITION_NUMBER
ORDER BY WLSTATS.STATISTICS TIMESTAMP))
>=
(SELECT FIRSTCONNECT_TIME
FROM MEMBER_START_TIMES AS REF
WHERE REF.PARTITION_NUMBER = WLSTATS.PARTITION_NUMBER
AND REF.STATISTICS_TIMESTAMP
= WLSTATS.STATISTICS_TIMESTAMP)

THEN 'Y!
ELSE 'N'
END AS SUBTRACT_FROM_PREV_ROW
FROM WLSTATS_DB2STATISTICS AS WLSTATS
GROUP BY WLSTATS.PARTITION_NUMBER, WLSTATS.STATISTICS_TIMESTAMP
ORDER BY WLSTATS.PARTITION_NUMBER, WLSTATS.STATISTICS_TIMESTAMP),

-- extract wanted metrics from DETAILS_XML column in workload statistics
V1 AS
(SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
WORKLOAD_NAME,
METRIC_NAME, VALUE
FROM WLSTATS_DB2STATISTICS,
TABLE (MON_FORMAT_XML_METRICS_BY_ROW(DETAILS_XML))
WHERE METRIC_NAME IN ('TOTAL_CPU_TIME', 'ROWS_READ',
"ACT_RQSTS_TOTAL', 'ACT_COMPLETED_TOTAL')),

-- Pivot data into table format
V2 AS
(SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
WORKLOAD_NAME,
MAX (DECODE (METRIC_NAME, 'ACT_RQSTS_TOTAL', VALUE))
AS ACT_RQSTS_TOTAL,
MAX (DECODE (METRIC_NAME, 'ACT_COMPLETED_ TOTAL', VALUE))
AS ACT_COMPLETED_TOTAL,
MAX (DECODE (METRIC_NAME, 'TOTAL_CPU_TIME', VALUE))
AS TOTAL_CPU_TIME,
MAX (DECODE (METRIC_NAME, 'ROWS_READ', VALUE)) AS TOTAL_ROWS_READ
FROM V1
GROUP BY STATISTICS TIMESTAMP, PARTITION_NUMBER, WORKLOAD_NAME),

-- Calculate delta values for the extracted values based on delta calculation
-- method
V3 AS
(SELECT V2.STATISTICS TIMESTAMP, V2.PARTITION_NUMBER,
WORKLOAD_NAME,
CASE
WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN ACT_RQSTS_TOTAL - LAG(ACT_RQSTS_TOTAL, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
WORKLOAD_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE ACT_RQSTS_TOTAL
END AS ACT_RQSTS_TOTAL,
CASE
WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN ACT_COMPLETED_TOTAL - LAG(ACT_COMPLETED TOTAL, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,
WORKLOAD_NAME
ORDER BY V2.STATISTICS_TIMESTAMP)
ELSE ACT_COMPLETED_TOTAL
END AS ACT_COMPLETED_TOTAL,

WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN TOTAL_CPU_TIME - LAG(TOTAL_CPU_TIME, 1, 0)

Appendix F. SQL for maintaining a stable stage 2 configuration

123

124

OVER (PARTITION BY V2.PARTITION_NUMBER,

WORKLOAD_NAME

ORDER BY VZ.STATISTICg_TIMESTAMP)

ELSE TOTAL_CPU_TIME
END AS TOTAL_CPU_TIME,

CASE

WHEN (SUBTRACT_FROM_PREV_ROW = 'Y')
THEN TOTAL_ROWS_READ - LAG(TOTAL_ROWS_READ, 1, 0)
OVER (PARTITION BY V2.PARTITION_NUMBER,

WORKLOAD_NAME

ORDER BY V2.STATISTICS_TIMESTAMP)

ELSE TOTAL_ROWS_READ
END AS TOTAL_ROWS_READ
FROM V2, DELTA_METHOD
WHERE V2.PARTITION_NUMBER = DELTA_METHOD.PARTITION_NUMBER
AND V2.STATISTICS_TIMESTAMP = DELTA_METHOD.STATISTICS_TIMESTAMP)

-- Summarize all metrics by day for each member

SELECT DATE(SOURCE.STATISTICS_TIMESTAMP) AS INTERVAL_DATE,
SOURCE.PARTITION_NUMBER AS MEMBER_ID,
SOURCE.WORKLOAD_NAME,
SUM(SOURCE.COORD_ACT_COMPLETED_TOTAL) AS COORD_REQ COMPLETED,
SUM(SOURCE.COORD_ACT_REJECTED_TOTAL) AS COORD_REQ_REJECTED,
SUM(SOURCE.COORD_ACT_ABORTED_TOTAL) AS COORD_REQ_ABORTED,

SUM(V3.ACT_COMPLETED TOTAL) AS TOTAL_ACTIVITIES,
SUM(V3.ACT_|

RQSTS_TOTAL) AS TOTAL_REQUESTS,

SUM(V3.TOTAL_CPU_TIME) AS TOTAL_CPU_TIME,
SUM(V3.TOTAL_ROWS_READ) AS TOTAL_ROWS_READ,
CONCURRENT_WLO_TOP) AS CONCURRENT_UOW_TOP,

MAX (SOURCE .
MAX (SOURCE .
MAX (SOURCE .
MAX (SOURCE.
MAX (SOURCE .
MAX (SOURCE.
MAX (SOURCE .
MAX (SOURCE .
MAX (SOURCE .
MAX (SOURCE .
MAX (SOURCE .
MAX (SOURCE .
MAX (SOURCE .

Example output:

INTERVAL_DATE MEMBER_ID WORKLOAD_NAME

ACT ROWS_READ_TOP) AS ROWS_READ_TOP,

ACT_CPU_TIME_TOP) AS CPU_TIME_TOP,

LOCK_WAIT_TIME_TOP) AS LOCKWAIT_TOP,
UOW_TOTAL_TIME_TOP) AS UOW_TIME_TOP,

ROWS_RETURNED_TOP) AS ROWS_RETURNED_TOP,

COST_ESTIMATE_TOP) AS EST COST_TOP,

COORD_ACT_EST_COST_AVG) AS COORD_COST AVG,
COORD_ACT_LIFETIME_TOP) AS COORD_LIFE_TOP,
COORD_ACT_LIFETIME_AVG) AS COORD_LIFE_AVG,
COORD_ACT_EXEC_TIME_AVG) AS COORD_EXEC_AVG,
COORD_ACT_QUEUE_TIME_AVG) AS COORD_QUEUE_AVG,
COORD_ACT_INTERARRIVAL_TIME_AVG) AS COORD_INTERARRIVAL AVG
FROM WLSTATS_DB2STATISTICS AS SOURCE, V3
WHERE SOURCE.STATISTICS_TIMESTAMP = V3.STATISTICS_TIMESTAMP
AND SOURCE.PARTITION_NUMBER = V3.PARTITION NUMBER
AND SOURCE.WORKLOAD_NAME = V3.WORKLOAD_NAME
GROUP BY DATE(SOURCE.STATISTICS TIMESTAMP),
SOURCE . PARTITION_NUMBER,
SOURCE . WORKLOAD_NAME
ORDER BY DATE(SOURCE.STATISTICS_TIMESTAMP),
SOURCE . PARTITION_NUMBER,
SOURCE . WORKLOAD_NAME ;

COORD_REQ_COMPLETED COORD_REQ_REJECTED

TIME

1471331
6414969663
97679
752098184
97172
769092465
94849

10/20/2011 10 SYSDEFAULTADMWORKLOAD 208
16/20/2011 10 SYSDEFAULTUSERWORKLOAD 2109675
10/20/2011 20 SYSDEFAULTADMWORKLOAD 0
16/20/2011 20 SYSDEFAULTUSERWORKLOAD 0
10/20/2011 30 SYSDEFAULTADMWORKLOAD 0
160/20/2011 30 SYSDEFAULTUSERWORKLOAD 0
10/20/2011 40 SYSDEFAULTADMWORKLOAD 0
16/20/2011 40 SYSDEFAULTUSERWORKLOAD 0
COORD_REQ_ABORTED TOTAL_ACTIVITIES TOTAL_REQUESTS TOTAL_CPU_
0 208 253
2331 2110164 3697592
0 0 0
0 0 672215
0 0 0
0 0 676143
0 0 0
0 0 680334

TOTAL_ROWS_READ

Implementing DB2® Workload Management

CONCURRENT_UOW_TOP ROWS_READ_TOP

CPU_TIME_TOP

781452403

[cNoNoNoNoNo ool

2059
6701006
0
3167504
0
3691332
0
3928191

LOCKWAIT_TOP

UOW_TIME_TOP

-1
1575884

-1
24883934

1207285
-1
1046691

EST_COST_TOP

480241242

0
485035296
0
484681891
0
484575096

COORD_COST_AVG

-1
64257428
-1

0

-1

0

-1

0

COORD_LIFE_TOP

COORD_LIFE_AVG

452776

COORD_EXEC_AVG

-1
28
-1

0
-1

0
-1

-1
700813
-1

0

-1

0

-1

0

COORD_INTERARRIVAL_A

VG

-1

8 record(s) selected.

Appendix F. SQL for maintaining a stable stage 2 configuration

125

126 Implementing DB2® Workload Management

Appendix G. Alternative approaches to statistical data
analysis

This appendix is a compendium of useful topics on the subject of analyzing
statistics event monitor data with an alternative approach.

Alternative approach to determining I/O impact

The rows_read metric provides a rough measure of the relative amount of access to
the buffer pool or buffer pools, but it does not reflect the actual row size consumed
and, therefore, the volume or amount of I/O performed. A more natural unit of
measurement for buffer pool I/0O is the page.

The following formulae can be used to measure I/O impact at the page level (for
example, how many page accesses were made):
Pages read =
pool_temp xda_1_reads + pool_temp_data_1_reads + pool_temp_index_1_reads +
pool xda_1 reads + pool data_1 reads + pool_index_1 reads
Pages written =
pool_xda_writes + pool_data_writes + pool_index_writes

Direct I/0 requests =
direct_writes + direct_reads

The component metrics used in these formulae are also available in the details_xml
column and, if desired, can be extracted in the same manner as metrics such as
total_cpu_time are extracted in the sample SQL statements that are provided.

Example SQL for post-processing of statistics event monitor data

As mentioned in the main body of this document, we do not recommend that you
analyze the data in the statistics event monitor while it is being actively accessed
by the event monitor because a potential conflict can occur. It is also desirable to
supplement the raw information with indexes and the results of any common
calculations to improve the performance of the analysis.

Although it is possible to simply shut down the statistics event monitor and add
indexes before performing any analysis of the data, it is the usual goal of
monitoring to be seamless and to provide a history over time so that trends and
old behaviors can be explored. In such cases, a history of statistical information is
kept and various forms of reports and analyses are run on that data at different
points in time for different reasons. To this end, some example steps and SQL are
provided here to outline the different aspects of managing the statistics event
monitor data through its lifetime of usefulness.

There are many approaches to doing this work, such as using range partitioned
tables to make management easier. The examples shown in this section are not
intended as a best practice, by any means, and are provided solely for inspirational
purposes as you consider your own need and use of historical statistics data.

The discussion that follows assumes that we have an implementation along the
following lines:

* A defined monitoring table space across all administration nodes and all data
nodes with sufficient space to hold statistical data collected over a full day

© Copyright IBM Corp. 2011 127

* Two statistics event monitors created with all tables present and using the table
space mentioned in the preceding point

— Only one of these statistics event monitors is defined as AUTOSTART to
ensure that a statistics event monitor is always started when the database is
activated. The other one is defined as MANUALSTART.

* The wim_collect_int database configuration parameter is set to a value of 60
(collecting statistics every hour)

* For all workloads and service classes of significant interest, their definition has
been set to COLLECT AGGREGATE ACTIVITY DATA BASE

With this environment outlined in the preceding list, we always have statistical
information being gathered from all workload management entities every hour to
the active statistics event monitor. In order to create and manage a history of this
data, we need to gather it from the event monitor at regular intervals and place it
into a set of historical tables. We do this by toggling the two event monitors so that
the inactive one becomes active to take over the monitoring duties and the active
one becomes inactive so that its data can be analyzed. If the database is brought
down for some reason, then we are assured that the AUTOSTART statistics event
monitor is present and collecting data.

The gathering of event monitor data, as described earlier, can be done using an
approach similar to the following steps:

1. Create a statistics_evmon_mgmt script to do the following tasks:

a. Determine which event monitor is active (that is, which is the primary
event monitor)

b. If there is data in the inactive secondary event monitor tables, then do the
following steps. This scenario, where we have two event monitors with
data, occurs when the MANUALSTART event monitor definition was
actively collecting when the database was brought down because it would
not be the one to automatically start when the database was restarted.

1) Extract the data (see: “Extracting data”)

2) Truncate all the tables for the secondary event monitor
3) Commit

Activate the inactive secondary event monitor

Deactivate the active primary event monitor

® o 0

Extract the data from the primary event monitor (see: “Extracting data”)
f. Truncate all the tables for the primary event monitor
g. Commit

2. Define a cron job to run the statistics_evmon_mgmt script at some time after
midnight, but before 1 AM which is the next scheduled collection of statistics
by the DB2 database manager (for example, between 00:15 and 00:45)

3. Perform any post-processing on the extracted data, as required

Extracting data

128

The basic job of the extraction is to copy the data to a set of historical tables where
it can eventually be analyzed. As such, the minimum that needs to be done is to
simply copy over the raw data to a duplicate table.

For most analyses, we usually want to extract data from the DETAILS_XML
column and calculate deltas from that data. We also want to store this extra data so
that the work has to be done only once. When these other activities occur is for

Implementing DB2® Workload Management

you to decide, but we assume that the process to get the metrics out of the
DETAILS_XML column happens during the extraction time while deltas are done
during the post-processing phase.

The following DDL statement provides an idea of an initial historical table for the
service class statistics from the DB2 for Linux, UNIX, and Windows Version 9.7 Fix
Pack 4 statistics event monitor:

CREATE TABLE HISTORICAL_SCSTATS

-- original SCSTATS columns
PARTITION_KEY INTEGER NOT NULL,
ACT_CPU_TIME_TOP BIGINT NOT NULL,
ACT_REMAPPED_IN BIGINT NOT NULL,
ACT_REMAPPED OUT BIGINT NOT NULL,
ACT_ROWS_READ_TOP BIGINT NOT NULL,
AGG_TEMP_TABLESPACE_TOP BIGINT NOT NULL,
CONCURRENT_ACT_TOP INTEGER NOT NULL,
CONCURRENT_CONNECTION_TOP INTEGER NOT NULL,
CONCURRENT_WLO_TOP INTEGER NOT NULL,
COORD_ACT_ABORTED_TOTAL BIGINT NOT NULL,
COORD_ACT_COMPLETED_TOTAL BIGINT NOT NULL,
COORD_ACT_EST_COST_AVG BIGINT NOT NULL,
COORD_ACT_EXEC_TIME_AVG BIGINT NOT NULL,
COORD_ACT_INTERARRIVAL_TIME_AVG BIGINT NOT NULL,
COORD_ACT_LIFETIME_AVG BIGINT NOT NULL,
COORD_ACT_LIFETIME_TOP BIGINT NOT NULL,
COORD_ACT_QUEUE_TIME_AVG BIGINT NOT NULL,
COORD_ACT_REJECTED _TOTAL BIGINT NOT NULL,
COST_ESTIMATE_TOP BIGINT NOT NULL,
DETAILS XML BLOB(1048576) LOGGED NOT COMPACT NOT NULL,
LAST_WLM_RESET TIMESTAMP NOT NULL,
PARTITION_NUMBER SMALLINT NOT NULL,
REQUEST_EXEC_TIME_AVG BIGINT NOT NULL,
ROWS_RETURNED_TOP BIGINT NOT NULL,
SERVICE_CLASS_ID INTEGER NOT NULL,
SERVICE_SUBCLASS_NAME VARCHAR(128) NOT NULL,
SERVICE_SUPERCLASS_NAME VARCHAR(128) NOT NULL,
STATISTICS_TIMESTAMP TIMESTAMP NOT NULL,
TEMP_TABLESPACE_TOP BIGINT NOT NULL,
UOW_TOTAL_TIME_TOP BIGINT NOT NULL,

-- control column
ROW_PROCESSED CHAR(1),

-- extracted columns
ACT_RQSTS_TOTAL BIGINT NOT NULL,
ACT_COMPLETED_TOTAL BIGINT NOT NULL,
ACT_ABORTED_TOTAL BIGINT NOT NULL,
ACT_REJECTED TOTAL BIGINT NOT NULL,
TOTAL_CPU_TIME BIGINT NOT NULL,
ROWS_READ BIGINT NOT NULL

)s

In the preceding example, the historical table contains all the original fields from
the SCSTATS event monitor table, a set of columns for metrics extracted from the
DETAILS_XML column, and a control column to be used later in post-processing.
A similar table can be defined for the WLSTATS table, while the remaining
WCSTATS, QSTATS, and HISTOGRAMBIN statistics event monitor tables do not
need the control or extracted data columns because they do not contain such
information at this time.

To populate the HISTORICAL_SCSTATS table, the following INSERT statement
pulls data from the statistics event monitor and extracts the raw metrics from the
DETAILS_XML column during that process. This latter step can also be done in the
post-processing stage, if the time taken to do the extract was considered too long:

Appendix G. Alternative approaches to statistical data analysis 129

INSERT INTO HISTORICAL SCSTATS
WITH
V1 AS (SELECT STATISTICS TIMESTAMP, PARTITION NUMBER,
SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME,
METRIC_NAME, VALUE
FROM SCSTATS_DB2STATISTICS,
TABLE (MON_FORMAT XML _METRICS BY_ ROW(DETAILS XML))
WHERE METRIC_NAME IN ('ACT_RQSTS_TOTAL®, 'ACT_COMPLETED TOTAL',
'ACT_ABORTED TOTAL', 'ACT REJECTED TOTAL',
'TOTAL_CPU_TIME', 'ROWS_READ')),

-- Pivot data into table format
EXTRACTED AS (SELECT STATISTICS_TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME,
MAX (DECODE (METRIC_NAME, 'ACT_RQSTS_TOTAL', VALUE))
AS ACT_RQSTS_TOTAL,
MAX (DECODE (METRIC_NAME, 'ACT_COMPLETED TOTAL', VALUE))
AS ACT_COMPLETED_TOTAL,
MAX(DECODE(METRIC_NAME, "ACT_ABORTED_TOTAL', VALUE))
AS ACT_ABORTED_TOTAL,
MAX(DECODE(METRIC_NAME, "ACT_REJECTED_TOTAL', VALUE))
AS ACT_REJECTED_TOTAL,
MAX (DECODE (METRIC_NAME, 'TOTAL_CPU_TIME', VALUE))
AS TOTAL_CPU_TIME,
MAX (DECODE (METRIC_NAME, 'ROWS_READ', VALUE)) AS ROWS_READ
FROM V1
GROUP BY STATISTICS_TIMESTAMP, PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME)

SELECT SCSTATS.=*,
INI,
EXTRACTED.ACT_RQSTS_TOTAL,
EXTRACTED.ACT_COMPLETED_TOTAL,
EXTRACTED.ACT_ABORTED_TOTAL,
EXTRACTED.ACT_REJECTED_TOTAL,
EXTRACTED.TOTAL_CPU_TIME,
EXTRACTED.ROWS_READ
FROM SCSTATS_DB2STATISTICS AS SCSTATS,
EXTRACTED
WHERE SCSTATS.STATISTICS_TIMESTAMP = EXTRACTED.STATISTICS_TIMESTAMP
AND SCSTATS.PARTITION_NUMBER = EXTRACTED.PARTITION_NUMBER
AND SCSTATS.SERVICE_SUPERCLASS_NAME = EXTRACTED.SERVICE_SUPERCLASS_NAME
AND SCSTATS.SERVICE_SUBCLASS_NAME = EXTRACTED.SERVICE_SUBCLASS_NAME;

A similar statement can be used to extract from the WLSTATS event monitor table
while the other statistics event monitor tables can be extracted with simple INSERT
over sub-select statements (for example, INSERT INTO HISTORICAL_WCSTATS
SELECT WCSTATS.* FROM WCSTATS_DB2STATISTICS AS WCSTATS) because
they do not contain a DETAILS_XML column with additional in-depth metrics.

The extract process must also capture one other set of information to allow us to
perform proper delta calculations for the extracted metrics. The way that the delta
value is calculated depends on whether the previous statistics row exists and is
from the same contiguous database activation. This information is derived from
data contained in the CONTROL table of the statistics event monitor in the form of
FIRSTCONNECT messages. For all the data being extracted from the event
monitor tables, we want to know the relationship of the statistics timestamp (when
statistics were collected) and the nearest preceding FIRSTCONNECT message
(when the database last came up before the collection). From this, we can decide
the correct delta calculation method later on during post-processing of the
extracted data.

130 Implementing DB2® Workload Management

To store this control information, we can create a simple historical table with the
following SQL example:

CREATE TABLE HISTORICAL_TIMEDATA

PARTITION_NUMBER SMALLINT NOT NULL,
STATISTICS TIMESTAMP TIMESTAMP NOT NULL,
FIRSTCONNECT TIME TIMESTAMP NOT NULL

)s

CREATE UNIQUE INDEX TIMEDATA_INDEX1 ON HISTORICAL_TIMEDATA

PARTITION_NUMBER,
STATISTICS TIMESTAMP,
FIRSTCONNECT TIME

)s

We can then populate the historical table, with the data being extracted, using the
following SQL statement example:

INSERT INTO HISTORICAL_TIMEDATA
SELECT SCSTATS.PARTITION_NUMBER, STATISTICS_TIMESTAMP,
MAX (MESSAGE_TIME) AS FIRSTCONNECT TIME
FROM CONTROL_DB2STATISTICS AS CONTROL, SCSTATS_DB2STATISTICS AS SCSTATS
WHERE MESSAGE = 'FIRST_CONNECT'
AND CONTROL.PARTITION_NUMBER = SCSTATS.PARTITION_NUMBER
AND STATISTICS_TIMESTAMP > MESSAGE_TIME
GROUP BY SCSTATS.PARTITION_NUMBER, STATISTICS_TIMESTAMP;

This one table can be used by all the tables because the control table is shared
across the event monitor and the same statistics timestamp is used for all rows in
any table produced by the same statistics collection.

Post-processing data

This final stage is intended to prepare the data for future analysis by creating
desired indexes, precalculating any common formulae, and producing the delta
values for any metrics extracted from the DETAILS_XML column for the SCSTATS
or WLSTATS tables. This processing can be done at any time after extraction and
affects only the historical tables, not the actual statistics event monitor tables.

In our simple example, we need to calculate only the delta values for the extracted
data. Let us assume that we choose to put the calculated deltas into a separate
HISTORICAL_SCSTATS_DELTAS table from the raw, extracted data using the
following SQL example:

CREATE TABLE HISTORICAL_SCSTATS_DELTAS

(
PARTITION_NUMBER SMALLINT NOT NULL,
SERVICE_SUPERCLASS _NAME VARCHAR(128) NOT NULL,
SERVICE_SUBCLASS_NAME VARCHAR(128) NOT NULL,
STATISTICS_TIMESTAMP TIMESTAMP NOT NULL,
DELTA_ACT RQSTS_TOTAL BIGINT DEFAULT 0,
DELTA_ACT_COMPLETED TOTAL BIGINT DEFAULT 0,
DELTA_ACT_ABORTED_TOTAL BIGINT DEFAULT 0,
DELTA_ACT REJECTED_TOTAL BIGINT DEFAULT 0,
DELTA_TOTAL_CPU_TIME BIGINT DEFAULT 0,
DELTA_ROWS_READ BIGINT DEFAULT 0

)s

To calculate the deltas, we take advantage of the ROW_PROCESSED control
column to find the new rows in the HISTORICAL_SCSTATS table which need to
have their delta values calculated from the metrics extracted from the
DETAILS_XML column. You can use the following SQL example:

Appendix G. Alternative approaches to statistical data analysis 131

INSERT INTO HISTORICAL_SCSTATS_DELTAS
WITH
V1 AS (SELECT PARTITION_NUMBER, STATISTICS TIMESTAMP, FIRSTCONNECT TIME
FROM HISTORICAL_TIMEDATA),

V2 AS (SELECT SCSTATS.PARTITION_NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME,
SCSTATS.STATISTICS_TIMESTAMP,
CASE
WHEN LAG(SCSTATS.STATISTICS TIMESTAMP, 1,
TIMESTAMP_FORMAT ('2007-10-01 23:59:59",
'YYYY-MM-DD HH24:MI:SS'))
OVER (PARTITION BY SCSTATS.PARTITION NUMBER,
SERVICE_SUPERCLASS_NAME,
SERVICE_SUBCLASS_NAME
ORDER BY SCSTATS.STATISTICS TIMESTAMP)
>= FIRSTCONNECT TIME
THEN 'Y
ELSE 'N'
END AS SUBTRACT_FROM_PREV_ROW
FROM SCSTATS_DB2STATISTICS AS SCSTATS, V1
WHERE SCSTATS.PARTITION NUMBER = V1.PARTITION NUMBER
AND SCSTATS.STATISTICS TIMESTAMP = V1.STATISTICS TIMESTAMP
ORDER BY PARTITION NUMBER, SERVICE_SUPERCLASS NAME,
SERVICE_SUBCLASS_NAME, STATISTICS TIMESTAMP)

SELECT SCSTATS.PARTITION NUMBER,
SCSTATS.SERVICE_SUPERCLASS_NAME,
SCSTATS.SERVICE_SUBCLASS_NAME,
SCSTATS.STATISTICS TIMESTAMP,

-- CALCULATE ACT_RQSTS_TOTAL DELTA

CASE
-- WHEN PREVIOUS ROW WAS COLLECTED AFTER THE LAST MEMBER ACTIVATION
WHEN (V2.SUBTRACT FROM PREV ROW = 'Y')
-- THEN SUBTRACT FROM THE PREVIOUS ROW
THEN ACT_RQSTS_TOTAL - LAG(ACT_RQSTS_TOTAL, 1, 0)
OVER (PARTITION BY SCSTATS.PARTITION NUMBER,
SCSTATS.SERVICE_SUPERCLASS_NAME,
SCSTATS.SERVICE_SUBCLASS_NAME
ORDER BY SCSTATS.STATISTICS TIMESTAMP)
-- ELSE RETURN ORIGINAL VALUE
ELSE ACT RQSTS_TOTAL
END AS DELTA_ACT_RQSTS_TOTAL,

-- CALCULATE ACT_COMPLETED_TOTAL DELTA

CASE
-~ WHEN PREVIOUS ROW WAS COLLECTED AFTER THE LAST MEMBER ACTIVATION
WHEN (V2.SUBTRACT FROM PREV ROW = 'Y')
-- THEN SUBTRACT FROM THE PREVIOUS ROW
THEN ACT_COMPLETED_TOTAL - LAG(ACT_COMPLETED TOTAL, 1, 0)
OVER (PARTITION BY SCSTATS.PARTITION NUMBER,
SCSTATS.SERVICE_SUPERCLASS_NAME,
SCSTATS.SERVICE_SUBCLASS_NAME
ORDER BY SCSTATS.STATISTICS TIMESTAMP)
-~ ELSE RETURN ORIGINAL VALUE
ELSE ACT_COMPLETED_TOTAL
END AS DELTA_ACT_COMPLETED TOTAL,

-- CALCULATE ACT_ABORTED_TOTAL DELTA
CASE

-- WHEN PREVIOUS ROW WAS COLLECTED AFTER THE LAST MEMBER ACTIVATION
WHEN (V2.SUBTRACT_FROM_PREV_ROW = 'Y')

132 Implementing DB2® Workload Management

-- THEN SUBTRACT FROM THE PREVIOUS ROW
THEN ACT_ABORTED_TOTAL - LAG(ACT_ABORTED TOTAL, 1, 0)
OVER (PARTITION BY SCSTATS.PARTITION NUMBER,
SCSTATS.SERVICE_SUPERCLASS_NAME,
SCSTATS.SERVICE_SUBCLASS_NAME
ORDER BY SCSTATS.STATISTICS TIMESTAMP)
-~ ELSE RETURN ORIGINAL VALUE
ELSE ACT_ABORTED TOTAL
END AS DELTA_ACT_ABORTED TOTAL,

-- CALCULATE ACT_REJECTED_TOTAL DELTA

CASE
-- WHEN PREVIOUS ROW WAS COLLECTED AFTER THE LAST MEMBER ACTIVATION
WHEN (V2.SUBTRACT FROM_PREV_ROW = 'Y')
-~ THEN SUBTRACT FROM THE PREVIOUS ROW
THEN ACT_REJECTED TOTAL - LAG(ACT REJECTED_TOTAL, 1, 0)
OVER (PARTITION BY SCSTATS.PARTITION_NUMBER,
SCSTATS.SERVICE_SUPERCLASS_NAME,
SCSTATS.SERVICE_SUBCLASS_NAME
ORDER BY SCSTATS.STATISTICS TIMESTAMP)
-- ELSE RETURN ORIGINAL VALUE
ELSE ACT REJECTED_TOTAL
END AS DELTA_ACT_REJECTED TOTAL,

-- CALCULATE TOTAL_CPU_TIME DELTA

CASE
-~ WHEN PREVIOUS ROW WAS COLLECTED AFTER THE LAST MEMBER ACTIVATION
WHEN (V2.SUBTRACT FROM PREV_ROW = 'Y')
-~ THEN SUBTRACT FROM THE PREVIOUS ROW
THEN TOTAL_CPU_TIME - LAG(TOTAL CPU_TIME, 1, 0)
OVER (PARTITION BY SCSTATS.PARTITION NUMBER,
SCSTATS.SERVICE_SUPERCLASS_NAME,
SCSTATS.SERVICE_SUBCLASS_NAME
ORDER BY SCSTATS.STATISTICS TIMESTAMP)
-- ELSE RETURN ORIGINAL VALUE
ELSE TOTAL_CPU_TIME
END AS DELTA_TOTAL_CPU_TIME,

-- CALCULATE ROWS_READ DELTA

CASE
-~ WHEN PREVIOUS ROW WAS COLLECTED AFTER THE LAST MEMBER ACTIVATION
WHEN (V2.SUBTRACT FROM PREV ROW = 'Y')
-~ THEN SUBTRACT FROM THE PREVIOUS ROW
THEN ROWS_READ - LAG(ROWS_READ, 1, 0)
OVER (PARTITION BY SCSTATS.PARTITION NUMBER,
SCSTATS.SERVICE_SUPERCLASS_NAME,
SCSTATS.SERVICE_SUBCLASS_NAME
ORDER BY SCSTATS.STATISTICS TIMESTAMP)
-- ELSE RETURN ORIGINAL VALUE
ELSE ROWS_READ
END AS DELTA_ROWS_READ
FROM HISTORICAL_SCSTATS AS SCSTATS, V2
WHERE SCSTATS.PARTITION NUMBER = V2.PARTITION NUMBER
AND SCSTATS.SERVICE_SUPERCLASS NAME = V2.SERVICE_SUPERCLASS_ NAME
AND SCSTATS.SERVICE_SUBCLASS NAME = V2.SERVICE_SUBCLASS_NAME
AND SCSTATS.STATISTICS TIMESTAMP = V2.STATISTICS TIMESTAMP
AND SCSTATS.ROW_PROCESSED = 'N';

After this statement has successfully been executed so that all of the new rows
have been processed, we then update all of the control column values in the
HISTORICAL_SCSTATS table with a statement such as this:

UPDATE HISTORICAL_SCSTATS SET ROW_PROCESSED = 'Y' WHERE ROW_PROCESSED = 'N';

Appendix G. Alternative approaches to statistical data analysis

133

The final step in post-processing of the data involves the creation of indexes to
help improve the performance of the queries used to analyze the statistical data.
Although any number of indexes might be relevant (it depends on what analysis is
being done), all of the historical tables benefit from an index similar to the
following definition because they are common grouping identifiers:

CREATE INDEX SCSTATS_INDEX1 ON HISTORICAL_SCSTATS (and HISTORICAL_SCSTATS DELTA)

PARTITION NUMBER,
SERVICE_SUPERCLASS NAME,
SERVICE_SUBCLASS_NAME,
STATISTICS_TIMESTAMP

)s

A similar index, using the workload name instead of the service class name, can be
useful on any data from the WLSTATS event monitor table.

Aggregating historical data

134

Depending on your needs, you might choose to indefinitely keep all of the
individual rows generated per statistics collection and then delete the data when it
is no longer needed. In other cases, although you might want to keep the data
around for a longer period, you might not want or need such granularity, or have
the storage available to keep it. In that case, you could choose to aggregate the
individual collection data into rows representing the data for a coarser unit of
time, such as a day, week, or month.

An example of such an approach might have us keeping the individual per hour
collection data available for the last 2 weeks, keeping the 3™ and 4™ most recent
weeks of data aggregated from a per hour perspective up to a per day perspective.
Older months can be further aggregated from a per day perspective up to a per
week perspective, and then kept available for 6 months before discarding or
archiving the data.

Implementing DB2® Workload Management

Index
A

achieving stable system 8
acknowledgements 69
adjusting concurrency threshold values 35
adjusting stage 1 concurrency thresholds
guidelines 27
adjusting work class definitions 34
allocating capacity for concurrency 30
analyzing statistical data
running sample SQL scripts 53
appendixes
alternative approaches to statistical data analysis 127
aggregating historical data 134
determining I/O impact 127
extracting data 128
post-processing data 131
SQL for post-processing statistics data 127
creating prerequisite event monitors 73
DB2 workload management and monitoring highlights for
DB2 Version 9.7 71
DDL scripts transitioning from stage 0 to stage 1 75
SQL for maintaining a stable stage 2 configuration 109
SQL for transitioning from stage 1 to stage 2 99
techniques for adjusting work class definitions
analyzing activity event monitor data 81
empty service class 88
lumpy distribution 87
minimal entries in service subclass 89
overview 81
queries with similar estimated costs 96
U-shaped distribution in a service subclass 90

best practices configuration template 17

C

conclusion 65
contributors 69
creating workloads 41

D

DB2 workload management and DB2 workload manager 4
determining capacity for concurrency 29

E

executive summary 1
extracting data 128

F

further reading 67

© Copyright IBM Corp. 2011

G

gathering detailed monitoring information
adjusting concurrency thresholds 35
adjusting work class definitions 33

implementation timeline 22
introduction 3

M

managing system capacity
DB2 workload management 10
monitoring
activity behaviors 45
additional situations 49
awareness of threshold violations 45
drift from the baseline norms 46
estimated cost distribution 49
event monitor maintenance 52
maintaining stable stage 2 43
other operational considerations 51
resource consumption 48
space management
using statistics event monitor 51
system behaviors 47
system health 44

N

notices 137

O

overview 7

P

post-processing data 131
prerequisite concepts and terminology 5
protective measures 39

R

reaching stage 2 configuration 25

S

short review of DB2 workload management 4
signs of healthy system 10
stage 0

default configuration 15
stage 1

untuned best practices configuration 17
stage 2

tuned best practices configuration 20

135

stage 2 configuration
final steps 39
stage 2 transition guidelines 32
stage 3
advanced configurations 21
stage 3 scenarios
non-CPU contention 62
overview 55
production shifts 59
protected work 56
regulating incoming work 55
tiered service offerings 60

T

template description 17
template threshold definitions 19
template work class definitions 19
transition

stage 0 to stage 1 25
transitioning

stage 1 to stage 2 32

w

why stages? 15

136 Implementing DB2® Workload Management

Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to websites not owned by IBM are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2011 137

138

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 977
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

Implementing DB2® Workload Management

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

* Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

* Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle, its affiliates, or both.

* UNIX is a registered trademark of The Open Group in the United States and
other countries.

¢ Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

* Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 139

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

140 Implementing DB2® Workload Management

Printed in USA

	Contents
	Executive summary
	Introduction
	A short review of DB2 workload management
	DB2 workload management and DB2 workload manager
	Prerequisite concepts and terminology

	Rationale: DB2 workload management best practices goals and objectives
	Overview
	Achieving a stable, predictable system
	Signs of a healthy system
	Managing system capacity with DB2 workload management

	Design: Configuring DB2 workload management in stages
	Why stages?
	Stage 0: Default DB2 workload management configuration
	Stage 1: Untuned best practices workload management configuration
	Best practices configuration template
	Template description
	Template work class definitions
	Template threshold definitions

	Stage 2: Tuned best practices workload management configuration
	Stage 3: Advanced workload management configurations
	Implementation timeline

	Implementation: Reaching a stage 2 workload management configuration
	Transition from stage 0 to stage 1
	Guidelines for determining initial concurrency threshold values for step 6
	Determining capacity
	Allocating capacity

	Transitioning from stage 1 to stage 2
	Guidelines for transitioning to a stage 2 configuration
	Gathering detailed monitoring information for adjusting work class definitions
	Adjusting work class definitions
	Gathering detailed monitoring information for adjusting concurrency threshold values
	Adjusting concurrency threshold values

	Final steps to complete a stable stage 2 configuration
	Protective measures
	Creating workloads

	Monitoring: Maintaining a stable stage 2 configuration
	Monitoring system health
	Monitoring activity behaviors
	Awareness of threshold violations
	Watching for drift from the baseline norms

	Monitoring system behaviors
	Monitoring resource consumption
	Monitoring estimated cost distribution

	Additional monitoring situations
	Other operational considerations
	Space management with the statistics event monitor
	Event monitor maintenance
	Analyzing statistical data by running sample SQL scripts

	Advanced configurations: Stage 3 scenarios
	Scenario: Regulating incoming work
	Scenario: Protected work
	Scenario: Production shifts
	Scenario: Tiered service offerings
	Scenario: Non-CPU contention

	Conclusion
	Further reading
	Contributors
	Appendix A. DB2 workload management and monitoring highlights for DB2 for Linux, UNIX, and Windows Version 9.7
	Appendix B. Creating prerequisite event monitors
	Appendix C. DDL scripts for transitioning from stage 0 to stage 1
	Appendix D. Techniques for adjusting work class definitions
	Analyzing activity event monitor data
	A lumpy distribution
	No entries in a service subclass
	Minimal entries in a service subclass
	U-shaped distribution in a service subclass
	Queries with similar estimated costs

	Appendix E. SQL for transitioning from stage 1 to stage 2
	Appendix F. SQL for maintaining a stable stage 2 configuration
	Appendix G. Alternative approaches to statistical data analysis
	Alternative approach to determining I/O impact
	Example SQL for post-processing of statistics event monitor data
	Extracting data
	Post-processing data
	Aggregating historical data

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	M
	N
	O
	P
	R
	S
	T
	W

	Notices

