
Issued June, 2010

 IBM® Smart Analytics System

Best Practices

Building a Recovery Strategy for an
IBM Smart Analytics System Data

Warehouse

Dale McInnis
IBM DB2 Availability Architect

Garrett Fitzsimons
IBM Smart Analytics System - Best Practices

Richard Lubell
IBM Smart Analytics System - Information
Development

IBMr

Recovery Strategy Best Practices – page 2

Building a Recovery Strategy for an IBM Smart Analytics System Data Warehouse........ 1

Executive summary ... 3

Introduction .. 4

Planning a recovery strategy.. 5

Recovery point objectives and recovery time objectives.......................... 6

Physical data warehouse design.. 7

Data warehouse load method .. 8

Backup size and throughput capacity for recovery 9

Implementing a recovery strategy... 12

System configuration... 12

TSM .. 13

Backup guidelines.. 16

Recovery guidelines... 18

Implementation scenario for a recovery strategy.. 21

Sample backup scenarios .. 22

Sample recovery scenarios.. 26

Administration tools and tasks .. 30

Conclusion .. 32

Appendix A. Configuration of test system .. 33

Appendix B. Configuring a DB2 instance for TSM... 34

Appendix C. Overview of DB2 utilities .. 36

Further reading... 38

Contributors.. 39

Notices ... 40

Trademarks ... 41

Recovery Strategy Best Practices – page 3

Executive summary

This paper is targeted at those involved in planning, configuring, designing, implementing, or
administering a data warehouse based on DB2® Database for Linux®, UNIX, and Windows® software. In
particular, this paper focuses on the IBM ®Smart Analytics System environment with configurations
based on System x® and Power Systems™ servers.

The focus of a backup and recovery plan should be the recovery strategy. Identifying and planning for
the recovery scenarios that are most likely to occur are the key factors in determining the speed with
which you can recover from data loss or corruption. The goal of the recovery strategy should be to
identify what has gone wrong and correct it by using the appropriate granular backup. A backup strategy
should concentrate on online table space backups, which are more flexible than the traditionally larger
full database backups. The backup strategy should also identify and back up active data, thereby
reducing the need to continually back up inactive data. For maximum protection and efficient recovery of
data, begin planning your database recovery strategy at project inception and carry it through each stage
of the project: procurement, sizing, configuration, database design, data load design, and development.

Using the recommendations in this paper will help you develop a strategy that meets current needs but is
also scalable and flexible so that it meets future needs. You can see the impact of a poorly designed
backup and recovery solution not only when you require a recovery, but also in the performance of the
system as a whole. When you use data warehouses which provide input to strategic decision-making and
operational intelligence systems, you must be able to run backup processes concurrently with business
workloads, without negatively affecting those workloads.

The IBM Smart Analytics System product incorporates best practices guidelines in building a stable and
high-performance data warehouse environment. This paper builds on this approach by recommending
that you balance backup processes across all database partitions in your system.

Recovery Strategy Best Practices – page 4

Introduction

This paper covers planning a recovery strategy for an IBM Smart Analytics System data warehouse.1 A
backup strategy will be a natural output of this planning. The focus is on recommendations. An IBM
Smart Analytics System usage scenario is provided; you might have to modify commands that are used
in this scenario for your environment. To use this paper, you should have a working knowledge of DB2
software.

A recovery strategy helps to ensure continuous availability of data. Defining your recovery objectives will
dictate your backup processes. Planning backups and recovery should begin early and concentrate on
recovery speed while maintaining an efficient, flexible, and balanced backup strategy.

This paper does not cover disaster recovery or operating system recovery; these topics are explored in
other resources. Also, disk failures, which you can manage with RAID, and server failures, which you can
manage with high availability architecture, are not covered here. This paper also does not cover offline
backups, instance-level recoveries, and IBM FlashCopy® as components of an overall strategy.

The first section of the paper describes the concept of recovery objectives and considers the design of the
data warehouse and load methods in planning a recovery strategy. This section highlights how decisions
that you make early in the data warehouse project affect the recovery strategy and what the best practices
guidelines are in this area.

The second section of the paper sets out recommendations on how to use configuration as well as backup
and recovery techniques to implement a backup and recovery strategy that is balanced and focuses on the
stated recovery objectives of your environment.

Following these sections is a sample implementation scenario for a backup and recovery strategy, an
overview of monitoring, and appendixes on the configuration of the test system, configuring a DB2
instance for TSM and DB2 utilities.

1 The IBM Smart Analytics System is an evolution of InfoSphere Balanced Warehouse. They are based on the same storage and
database design principles. All content in this paper, applies to IBM Smart Analytics System configurations. In most cases, the
content also usually applies to custom data warehouses that are based on similar design principles, although some changes might
be needed depending on the specific environment.

Recovery Strategy Best Practices – page 5

Planning a recovery strategy

Many environments have a backup strategy that highlights the backup schedule, tape location, archiving,
and retention policy without addressing recovery scenarios. A scenario-driven recovery strategy should
define your backup planning. This section examines how to plan a recovery strategy and how decisions
that you make during the design and development of a data warehouse affect how you back up data and
how long a recovery process takes to run. You should review the effect of decisions on the recovery
strategy at all stages of the implementation of a data warehouse.

These key recommendations are used as input to the recovery strategies that are described throughout
the paper:

• Using full table space backups rather than full database backups. (Recovering a database from
full table space backups became possible with the introduction of the RESTORE REBUILD
command in DB2 9.5 software for Linux, UNIX, and Windows.) You can choose the frequency of
full table space backups for both active and inactive data. This approach compensates for the
added disk space and processor usage of including recovery metadata in the table space backup
image.

• Using online table space backups of active data rather than offline database backups. Online
table space backups support 24-hour data availability needs.

• Using frequent full table space backups rather than less frequent full backups and incremental
backups in conjunction. Frequent full table space backups prioritize recovery speed over backup
speed because fewer and smaller backup images and fewer transaction logs are required to
restore lost data.

• Using IBM Tivoli® Storage Manager (TSM) software to assist in managing the backup and
recovery process. Using TSM is recommended over taking local disk backups because integration
with DB2 software reduces the complexity of managing backup images and transaction logs.

Planning a backup and recovery strategy should involve the following considerations:

• Recovery point objectives and recovery time objectives

• Physical data warehouse design

• Data warehouse load method

• Backup size and throughput capacity for recovery

Recovery Strategy Best Practices – page 6

Recovery point objectives and recovery time objectives
Planning a recovery strategy should begin with a comprehensive set of requirements. These should
include the maximum data loss that is acceptable, the point at which a recovery scenario is triggered, and
the time that is required for each recovery scenario.

Document your recovery objectives and use them as reference points when designing your
backup strategy.

Recovery point objective (RPO) refers to the maximum amount of data loss that is acceptable in a recovery
scenario. This value affects how you configure and manage your transaction logs and how you approach
your backup strategy. This value might be different for a disaster recovery scenario.

Do not plan on meeting your RPO using Point in Time (PIT) recovery. PIT refers to the earliest moment to
which you can recover a database or table space to a consistent state. PIT recovery of a single table space
in an individual database partition is not possible in a database partitioned environment. Recovering a
single table space to the same point in time across the database would require rolling forward to the ends
of logs for all database partitions. If you must perform a PIT recovery, you must do it as a full database
recovery.

Recovery time objective (RTO) refers to the time required to complete the recovery process. An RTO should
state how you calculated the objective. The calculation is based on the following factors:

• When the problem is diagnosed and logged as an issue

• When the logged issue has been researched and accepted as a problem

• When the recovery procedure begins

Determining the RPO and RTO depends on the demands of the data warehouse as decided in the
planning stages. In some environments, maintaining uptime, as specified by the RTO, might be more
critical than suffering a certain amount of data loss, as specified by the RPO. For example, in a single-line-
of-business data warehouse where a table space outage might render the data warehouse unusable, RTO
would take priority. However, RPO might be more important in an enterprise data warehouse
supporting multiple line-of-business feeds, where a single table space outage might impact only a small
number of business users.

Reconcile your recovery objectives with the design and configuration of your data warehouse
to ensure that they are achievable.

The RTO and RPO represent the expected service-level objectives. The more aggressive the RPO and RTO
values, the higher the costs in hardware, tapes, and labor. Plan your strategy so that you are comfortable
with the stated objectives, and reconcile these objectives against your environment to ensure that you can
achieve them. For example, ensure that the hardware that is available can support the recovery times that
you expect. Also, the earlier in the project cycle that you know the objectives, the more likely it is that you
can influence sizing and configuration of hardware to meet these objectives.

Recovery Strategy Best Practices – page 7

Physical data warehouse design
The physical architecture of a data warehouse database must directly support the backup and recovery
strategy. The architecture must help ensure good performance for the data load and applications but still
provide backup and recovery options.

For example, a data warehouse with all tables and indexes in just a few table spaces is not conducive to a
best-practices backup and recovery strategy due to the following factors:

• Poor separation of active from inactive data
• Slower and larger table space backups
• Slower table space recovery speed

Database partitioning distributes rows in a table across many database partitions to form a single large
database. This provides advantages in scalability, load balancing, I/O, and recovery. For added flexibility,
you can also use range partitioning for tables, resulting in subdivided table spaces both within and across
database partitions.

Note: In this paper, a full table space backup refers to a backup for a table space that stretches across
several database partitions. However, a table space failure or a table space recovery might refer to failure
or recovery of a table space that is on a single database partition. Consider the context of the instructions
when determining the type of the table space in question.

Identify pressure points and weaknesses in your environment because these are the most
likely areas to fail, prompting a recovery.

Other considerations for physical data warehouse design are as follows:

• Active and inactive data. The focus of the backup strategy should be active data: “hot” data that
is frequently written and “warm” data that is updated less often. Separate active data from
inactive “cold” data and place each into separate table spaces, then back up table spaces that
contain active data regularly between full database backups.

When cold data is excluded from regular backups, the time required to complete your backups
decreases because fewer backup processes are required. Targeting active data therefore also
reduces backup traffic, facilitating online backups and thereby increasing system availability.

• Range partitioning. Separate range-partitioned data into individual table spaces. This technique
can further separate active from inactive data and decrease backup and recovery time.

• Referential integrity. If tables are referenced across table spaces, restoring one particular table
space might also require you to restore a different referenced table space, increasing recovery
time. To avoid this situation, consider grouping smaller tables that reference each other into the
same table space.

• Compression. Compressed tables do not benefit significantly from backup compression. Also,
backup compression increases processor utilization and backup times significantly. Therefore,

Recovery Strategy Best Practices – page 8

you should not plan to use backup compression where table data is already compressed or if you
have workload concerns.

• Staging tables. Placing staging tables into their own table spaces allows you to exclude the tables
from backups, thereby reducing time for both backup and recovery. Staging tables are used for
loads, so if a failure occurs, you can reload the data into the tables. Do not back up staging tables
or the temporary table space.

• Local and global indexes. Local indexes, which were introduced in DB2 9.7 software, allow for
faster data load and attach of data partitions.
If you use a global index, back up the global index associated with the targeted data table spaces.
You must restore or rebuild the global index when recovering a table space, even when
recovering a table space on a single database partition. Recovering data includes recovering
associated indexes; therefore, index table spaces should follow the same backup schedule as data
table spaces.

Data warehouse load method
You should include recovery planning in the data load design phase. The design of the data load (ETL or
ELT) processes and maintenance of metadata both have a significant effect on the design and execution of
the backup and recovery strategy. Recommendations are as follows.

• Avoid loads directly into the target table. Avoid using the load utility (which you run by issuing
the LOAD command) to load data directly into data warehouse tables, unless the volume of data
is low. If you load data without logging, the table space is placed in a non-recoverable state.
However, setting the COPY parameter of the LOAD command to YES to trigger a table space
backup is not a preferred solution because concurrently running a load and a backup can cause
processor load issues. Instead, load data into a staging table before attaching the data partition to
or inserting the data into the data warehouse. In addition, take advantage of any features
provided by the ETL tools, such as the ability to perform parallel inserts.

• Coordinate backups with the data load. Coordinating data load processes and online backups
avoids exclusivity and locking issues, specifically where non-logged data loads might fail.
Additionally, your backup scripts should check whether backups are completed successfully and
retry the backups if they fail.

• Do not use recovery to correct load errors. Using table space recovery to correct errors in the
data load process will incur downtime. This is a slow and counterproductive way of recovering
from application errors, which should be corrected at source.

Avoid using PIT recovery for ETL applications because the required offline backups are
inefficient.

Recovery Strategy Best Practices – page 9

• Maintain ETL metadata. Most ETL tools and applications maintain metadata that contains
details on the data load. Use this information to determine what tables and table spaces are hot,
warm, or cold with regard to data changes and dynamically focus the backup schedule on those
table spaces that are most active. Work with your ETL team to understand and influence what
metadata is maintained.

A simple example of an ETL metadata table that shows when a table was last written to follows:

ETL run
number Execution start time Execution stop time Table

Rows
inserted

Rows
updated

Rows
deleted

1001 20100402191702 20100402200002 Inventory 230012 0 0
1002 20100402194547 20100402195847 Sales 1900221 0 0
1003 20100402195632 20100402195711 Customer 122 12 0
Figure 1. Example of an ETL metadata table

Rolling out data from a data warehouse
Assume that data will at some point be loaded in error. The simplest mechanism for unloading a wrong,
incomplete, or corrupt file is to delete the data that was loaded. However, deleting millions of rows can
cause problems such as full transaction logs and escalated locks which might compromise the business
workload and the backup and recovery strategy.

If you implemented range partitioning or multidimensional clustering, use the DELETE FROM …
WHERE statement to target reasonably-sized blocks of data at an appropriate time at the data partition
level, ensuring that the number of transactions being logged is minimized. Avoid using this statement in
other situations because it might cause row-level locking and increase the volume of your log files
greatly, thus unacceptably increasing your recovery time. Instead, use one of the following methods:

• Use the LOAD command with the REPLACE parameter to load from an empty file into a
detached data partition.

• Logically mark the rows as deleted. You can then delete them in manageable chunks over time.

• Move valid data to a new table, create indexes, drop the old table, and rename the new table.

• If you are using DB2 9.5 software, use the ALTER TABLE statement, as shown in the following
example, to delete the rows in the table and reload the data:

alter table test.mytable activate not logged initially with empty table

• If you are using DB2 9.7 software, use the TRUNCATE TABLE statement to delete all rows from
the table. The following example empties an unused inventory table regardless of any existing
delete triggers but preserves its allocated space for later reuse.

truncate table inventory reuse storage ignore delete triggers immediate

Backup size and throughput capacity for recovery
A recovery scenario is likely to involve a table space recovery from tape and archive log recovery from
tape or disk. The recovery process can be broken down into the steps of reading the data from tape,

Recovery Strategy Best Practices – page 10

transferring the data through a LAN or network attached storage to the target system, and writing the
data to disk. Understanding these constituent parts assists in your calculations of size and throughput.

Backup image size. To understand the capacity of your system to back up and transfer data, you must
determine the size of your backup images. Estimate the size of a table space backup image by multiplying
the number of pages that are used in the table space by the size of each data page. This estimate will be in
the upper range of the actual backup image size.

Use the following statement to estimate the size of a backup image:

select tablespace_name, snapshot_timestamp, min_recovery_time,
(sum(used_pages+pending_free_pages)* page_size)/(1024*1024) space_used_mb
from table(snapshot_tbs_cfg(' ',-1))
where tablespace _type = 0
group by tablespace_name, snapshot_timestamp, min_recovery_time, page_size

When estimating the size of an offline backup image, account for the PENDING_FREE_PAGES value,
which is the number of pages that become free on a commit or rollback of a transaction. In the previous
example statement, the number of pending-free pages is added to the number of used pages to estimate
the size of an offline backup image. Completion of an offline backup does not automatically refresh the
PENDING_FREE_PAGES value. Force the release of the pending-free pages column by issuing a LIST
TABLESPACES SHOW DETAIL command before you take the database offline to back it up. An online
backup attempts to free pages that are in a pending state, so remove the PENDING_FREE_PAGES value
if you are calculating the size of an online backup image.

If you specify the INCLUDE_LOGS parameter for the BACKUP DATABASE command for an online
backup, the transactions that occur while the backup is running increase the size of the backup image.
TSM uses a similar method for estimating the size of the backup image in order to estimate storage pool
usage.

Throughput capacity. To calculate the throughput capacity, you must know the configuration of the
storage manager that you are using, how much disk space is available, and how many tape drives are
available, as explained in the appendixes. For example, in an IBM Smart Analytics System, IBM LTO4
tape drives have a throughput of 120 MB per second for compressed data. This equates to 7.2 GB per
minute and 432 GB per hour. These are only specifications and represent maximum throughput capacity
rather than actual throughput. When these tape drives are in operation, fibre cable connectivity and
software processes affect actual throughput.

Standard tape cartridge capacity for the LTO 4 is 800 GB. The minimum storage requirement is one tape
drive per data module, but one tape drive per database partition is preferred to increase recovery speed.

Deploy two tape drives per data module to increase recovery speed.

Estimate the recovery time per scenario based on the size of the table space or database to be recovered,
and compare this time against the RTO. Take the following items into consideration:

• Number of tapes. The number of tapes depends on how you configure your storage manager
and the number and type of backup images that the restore utility must access to complete the
recovery.

Recovery Strategy Best Practices – page 11

• Quantity of transaction logs. Based on elapsed time between backups, logs are a rollup of
transactions and their number typically reflects the level of load activity.

• Type of backup used for recovery. If you use a full database backup for a table space recovery,
your recovery is slower because the restore utility must traverse the database backup image to
find data for the table space to be recovered.

Recovery Strategy Best Practices – page 12

Implementing a recovery strategy

Balanced performance across all the database partitions in a data warehouse is a key design goal for all
workloads, including user queries, data loads, backups, data extracts, and logging. Executing backups in
parallel across modules helps ensure this balance.

Best practices recommendations for implementing a recovery strategy cover the following areas:

• System configuration

• TSM

• Backup guidelines

• Recovery guidelines

System configuration
Configure the system to help ensure balance, stability, and performance. Recommendations focus on the
following areas:

• Backup throttling

• Transaction logging

Backup throttling
You can use throttling to help manage processor usage by utilities and by the backup processes
Throttling does not limit I/O resources; consider their availability, because a backup is an I/O-intensive
operation.

You can use the util_impact_lim configuration parameter to set the instance-wide limit on the effect that
all throttled utilities can cumulatively have on the system workload. Allowed values are 1 – 100, where
the value corresponds to a percentage of workload. For example, a value of 20 limits utilities to affecting
the system workload by no more than 20% in total, so if two backups are running with the same priority,
they can affect the system workload by 10% each. The DB2 database manager continually monitors and
adjusts the backup and other utility processes such that the effect on the system workload does not
exceed the configured percentage.

The following statement demonstrates how to set the util_impact_lim parameter so that all utilities
running concurrently cannot consume more than 33% of resources:

update database manager using util_impact_lim 33

You can also use the util_impact_priority configuration parameter to change the throttling priority of a
utility while it is running, as follows:

• You can allow an individual utility to consume a greater percentage of the value assigned to the
util_impact_lim parameter by giving the utility a higher priority.

• You can lessen the effect of a utility on resources by reducing its priority.

Recovery Strategy Best Practices – page 13

• You can remove throttling for an individual utility by setting the value of the parameter to 0. The

following example shows how to remove throttling for a utility with an ID of 92:

set util_impact_priority for 92 to 0

DB20000I The SET UTIL_IMPACT_PRIORITY command completed successfully.

You cannot apply utility throttling to the RESTORE DATABASE command.

Transaction logging
Transaction logs record all changes made to a database. You can use these logs to roll back or replay a
transaction. In a data warehouse environment, it is recommended that you implement archive logging,
which supports online backups, instead of circular logging, which does not support online backups.

How you configure the database parameters that determine the size and number of transaction logs has
the following implications:

• Small transaction logs can reduce the risk of data loss in the event of failure because the logs
contain fewer transactions. Large transaction logs increase the number of records that might be
lost in the event of failure.

• Small logs can increase the number of active logs because large transactions might span multiple
logs.

• Recovery speed is directly affected by the number of archived logs that must be retrieved.

• Large transaction logs use fewer system resources because less log switching takes place.

It is recommended that each database partition have 50 primary logs of 50 MB each (12,800 4 KB pages),
for a total of approximately 2.5 GB of logs allocated per database partition. Modify the number and sizes
of logs depending on your environment, but consider your data volumes and objectives.

Run frequent table space backups to minimize the number of transaction logs that are
required in a recovery scenario.

Archiving transaction logs on a regular schedule can limit data loss. For example, if the recovery point
objective is 60 minutes, manually archive the logs every 30 minutes so as to minimize the risk of losing a
log file in the event of failure.

TSM
TSM, or Tivoli Storage Manager, is an IBM software tool that protects data from hardware failures and
errors by storing data on offline and offsite storage. You should use TSM to manage the storage backup
images, log files, operating system files, source data, scripts, and other important files associated with the
data warehouse. You can also use TSM to schedule the execution of backup scripts.

TSM and DB2
By configuring the DB2 software LOGARCHMETH1 configuration parameter to “TSM”, you can
automatically direct archived log files to TSM rather than to a local disk. You can also direct backups to
TSM by specifying the USE TSM parameter for the BACKUP command. When a backup takes place,

Recovery Strategy Best Practices – page 14

data streams directly to TSM using a TSM connection, and data is saved to a storage pool that can be on
disk or tape, depending on the configuration and policies that you implement. Opening multiple I/O
streams creates parallelism.

In a recovery scenario, be aware of other workloads running and the time required for tape cartridges to
be mounted. If parts of a recovery are running in parallel, queuing delays might occur when two streams
are seeking data that is on the same tape.

TSM and storage
Install TSM client software on each administration and data module and then configure the DB2 software
to archive files to and retrieve them from TSM. The external TSM server must be configured with both
disk and tape storage media. RAID5 is recommended for TSM disk storage.

TSM reclaims disk space when data has been written to tape or has become obsolete as per the
configuration. Because restoring from tape is more time-consuming than restoring from disk, configure
TSM to retain on disk only the data that is most likely to be used in a recovery scenario. You should send
full online database backups directly to tape, with archiving offsite for disaster recovery (DR) purposes.

Specifying the INCLUDE LOGS parameter with the BACKUP DATABASE command to include the logs
with the database backup is recommended because it helps ensure that you can restore to a consistent
state from a single image. When using this tactic, both the database backup and include log backup
processes might attempt to access the same tape drive at the same time. To avoid a deadlock occurring
during a full online backup, create two TSM tape pools: one for backups and one for logs.

TSM will experience problems servicing DB2 requests if disk and tape capacity on the TSM server is
reached. Configure the failarchpath parameter so that logs are archived to local disk space on the data
module in the event of TSM failure due to disk, tape, or network unavailability.

When rolling forward through the logs, the restore process first looks in the active log directory. If the log
file is not found there, the path that the overflowlogpath configuration parameter points to is checked. If
the log file is still not found, the process refers to the log archive path, which in this case is TSM. To speed
up this process, pre-populate the overflowlogpath location with the log files needed by the recovery
process. Use the db2adutl command to determine which logs are required on each database partition, as
detailed in the recovery scenario.

TSM and LAN-free technology

Implementing LAN-free technology is recommended because it removes backup and recovery traffic
from the corporate network by delivering the data directly between the storage area network device and
the TSM tape device in both directions, increasing recovery speed.

LAN-free is suited to transferring large amounts of data such as backups. Short transfers or small files use
LAN-free less efficiently and for this reason it is not recommended for use in archiving transaction logs.
However, you can configure TSM to archive logs over the corporate network and send backup images
directly to tape via LAN-free communications. This process is detailed in Appendix B.

 You should implement LAN-free technology when network throughput becomes an issue, such as when
either the backup or recovery throughput is insufficient to meet service-level objectives. This often occurs
when backup traffic per database partition reaches 100 GB per hour.

Recovery Strategy Best Practices – page 15

Configuring TSM
A TSM server can scale to support hundreds of databases. In the case of a backup strategy that covers
multiple data modules, each with four or eight database partitions, the key considerations for TSM
configuration are as follows:

• Number of connections to TSM
• Number of parallel backups
• Number of I/O sessions per backup
• Number of tape drives per data module

Calculate the number of connections you will need given your environment and backup strategy. For
example, assume that an online backup of a table space across eight database partitions requires eight
connections. If you include logs in the backup image, a further eight connections are required, giving a
total of 16. If your TSM server has the capacity, back up using multiple parallel sessions. If each table
space backup uses two sessions, the total number of connections to TSM doubles from 16 to 32. Ensure
that the number of connections can be supported by your particular implementation of TSM. Similarly,
when backing up to tape, avoid starting more sessions than there are tape disk drives.

In most recovery scenarios, when you perform a restore, the most recent backups are used. Where
applicable, retain the most recent backup images on the TSM disk storage pool to speed up any potential
recovery process. Implement a policy in TSM for archived transaction logs where transaction logs for the
last two backup cycles are retained on disk because this will help to speed up any recovery process. For
operating system files, keep the last three to five versions and integrate this strategy with your operating
system backup and recovery strategy.

For each data module, calculate the peak sizes of table space backups, transaction logs, and operating
system files to back up per database partition, and then multiply by the number of database partitions for
that data module. This will give you the details required for sizing your TSM storage requirements.

TSM and local disk backups
Archiving transaction logs and streaming backup images directly to TSM is recommended over using a
local disk solution where data is backed up to local disk before being archived to TSM. Although a local
disk solution increases backup speed, it also adds complexity at recovery time and can reduce recovery
speed. For example, the recovery history file will record only the local disk location where you store
backup images and transaction logs, without reference to TSM. Therefore, before you use the RECOVER
DATABASE command, you must identify the files that you require and manually extract them from
TSM and place them back on the local disk, increasing risk and reducing recovery speed

Similarly, using the AUTO_DEL_REC_OBJ parameter to specify that old images and log files are to be
automatically deleted does not affect TSM because the DB2 software is not be configured for TSM. Using
local disk backups necessitates manual deletion of old images and log files on both the local disk and in
TSM, adding further risk.

Recovery Strategy Best Practices – page 16

Backup guidelines
Best practices considerations apply to the following areas:

• Table space backups

• Inactive data

• DB2 files in the operating system

• Full database backups

Table space backups
Table space backups are recommended, executed as follows:

• Perform a full online table space backup of hot and warm (active) table spaces twice a week, with
relevant logs. You can also implement incremental table space backups for hot table spaces which
receive a large volume of data daily. To enable incremental backups, set the trackmod
configuration parameter to Yes. A full offline database backup is required to activate this
parameter. Backups of warm data can be less frequent than backups of hot data as per your
discretion.

• Perform a full online database backup of the catalog partition daily, logs included, unless the
catalog partitions hold a large amount of business data. In that case, full table space backups of
the catalog table space might be more appropriate.

Use online backups to minimize downtime.

• Back up operating system files as indicated in the section that follows twice a week in tandem
with table space backups.

• Perform a full online database backup of database partitions quarterly.

• Perform a full table space backup after adding a table space.

• Schedule reruns of failed backups during off-peak periods to avoid imbalance.

• Include relevant global indexes in each table space backup. 2

Perform the full backups of each table space in parallel across nodes, one database partition per node at a
time. When you have completed the backup of the first table space, back up the second table space then
the third until you have backed up all table spaces.

Measure the success of your backup strategy by whether the backups are completed with
minimal effect on resources, rather than by elapsed time.

2 In DB2 9.5, global indexes are restored at the overall table level, not at the database partition level. Local indexes, which were
introduced in DB2 9.7, allow for both the data and index table spaces to be restored at the database partition level.

Recovery Strategy Best Practices – page 17

Minimize the effect of backups on the business workload by backing up one table space per database
partition at a time. Also, run the backups in off-peak periods and when data loads and data extracts are
not running.

Inactive data
Data in a data warehouse typically becomes inactive or “cold” when no longer subject to updates, inserts,
or deletes after a period of time. Review the requirement to continue to include this data in a backup.
Archive cold data backups.

Focus both the backup and recovery strategies on active data. This data might account for just 20
- 25% of the overall data warehouse.

DB2 files in the operating system
There are DB2 files in the operating system that you should include in any backup strategy, some of
which are not included in the backup image. These files exist on each database partition. The following
table shows a list of files that you should back up. All of these files are useful; essential files are indicated
with a “Y” in the third column.

File Description Essential Comment

db2diag.log Diagnostic log, one per database partition N Useful in problem determination

db2nodes.cfg Node configuration file Y Speeds recovery of setup

db2rhist.asc Database recovery history file N
Allows a specific history file to
be referenced

db2tschg.his Table space recovery history file N
Allows a specific history file to
be referenced

dsm.opt
dsm.sys
.kshrc
userprofile

TSM configuration files. as outlined in
Appendix A

Y Speeds recovery of setup

Figure 2. DB2 files that reside on the operating system to back up

You should also backup the following non-essential items to speed recovery of setup:

• Backup, restore, and maintenance scripts

• The output of the following database manager settings, database settings and registry variables:

o get database configuration
o get database manager configuration
o db2set -a
o db2look -d bcudb1 -f -o configuration.sql

Recovery Strategy Best Practices – page 18

Full database backups
You should take a full online database backup quarterly, as stated in the preceding, and also where
recommended during DB2 software upgrades or the addition of data modules or database partitions.
Where an upgrade requires it, an offline backup may be performed.

When performing a full online database backup, continue the practice of maintaining balance. Back up
the first database partition on each data module in parallel followed by the second, and so on.

Recovery guidelines
When a failure occurs and a recovery scenario is identified, you should follow the relevant documented
and tested recovery scenario process. Regardless of the scenario involved, prioritize the restoration of
active data. The best practices for recovery are as follows:

• Use table space recovery.

• Identify corrupt data.

• Classify the recovery scenario.

Use table space recovery
DB2 9.5 introduced the ability to rebuild all or part of a database by using table space backups, with no
full database backup required. Each table space backup image now contains the structure of the entire
database. After you rebuild the structure by using a selected table space backup, restore each table space
in turn (or in parallel as preferred) on each database partition and roll forward to the end of each of the
logs.

The advantages of a recovery strategy that is based on table space backups are as follows:

• Table space recovery targets only lost data, reducing I/O.

• Targeted table space recovery is faster than full database recovery.

• Table space recovery is more granular, which increases flexibility.

In a partitioned database environment, if a table space becomes logically or physically corrupt, it does so
only within the data module on which the table space is located. The time that it takes to recover and roll
forward a single table space on a single database partition from a table space backup is significantly less
than the time that it takes to search through a full, incremental, or delta database backup (or a
combination of those types of backups) and a large volume of transaction logs.

Use tools to speed up the recovery process. You can use the db2adutl command to retrieve logs for
rolling forward while the restore is being processed.

In the case of a full database failure in a partitioned database environment, recover the catalog database
partition first from the last full catalog database partition backup and then recover the remaining
database partitions by using the table space backups. This process is shown in more detail in the sample
scenario in the following chapter.

Recovery Strategy Best Practices – page 19

Identify corrupt data
Data corruption can occur due to failure within the hardware, operating system, or DB2 software layer.
Use the DB2 INSPECT command and db2dart command to analyze the problematic database, table
space, or table.

The following sample command reports on the integrity of the database architecture, including errors:

inspect check database results keep inspect.output

In this case, the output of the command is written to the inspect.output file. To format the contents of
the file, use the db2inspf command.

First determine whether the data corruption exists on disk. If the corruption is in temporary objects or in-
memory only, no recovery is required. If the corruption is local to a table, use the dropped table recovery
process as described in DB2 documentation. If the corruption is confined to a single table space, a table
space recovery will suffice. If the corruption is widespread, a full database restore might be required.
Focus recovery on lost data only.

Classify the recovery scenario
Determine the sequence of table spaces to recover as defined by the recovery scenario. These are the
recovery scenarios that you are most likely to encounter:

• Table space loss. Usually, table space losses are due to data corruption or storage failure. The
quickest recovery method is to recover the affected table spaces rather than the database.
Following best practices database design principles should minimize the number of table spaces
to recover, with other table spaces remaining online and available to the user while the restore is
in progress.

• Table dropped in error. To recover a dropped table, use the dropped table recovery feature. This
feature is available for a table space if the DROP_RECOVERY column in the
SYSCAT.TABLESPACES catalog view is set to Y for that table space. This feature is activated by
default in a partitioned database environment. The process involves a restore and rollforward
operation and an additional step in which the contents of the dropped table are output to a file
that is compatible with the requirements of the IMPORT command. The file is used for later
recovery of the table. In a partitioned database, the dropped table recovery feature is always on
even if dropped table recovery is turned off for non-partitioned tables in one or more table
spaces.

• Database partition loss. Database partition recovery might be required due to a storage failure,
for example, a multiple-disk failure in an environment where RAID is not used. Database
partition recovery involves restoring an individual database partition.

• Catalog partition loss. Catalog partition recovery might be required due to a storage failure; for
example, a multiple-disk failure that exceeds the capacity of the RAID type. Catalog partition
recovery involves restoring the catalog database partition, which you should back up more
frequently than the other database partitions.

• Application errors. The preferred method of recovery from an application error is for the
application to address the issue, for example, by using data unload.

Recovery Strategy Best Practices – page 20

• Full database loss or alternative location restore. The need for a full database or alternative
location restore might arise from a disaster recovery scenario or a requirement to create a copy of
the data warehouse on different hardware. You must restore the catalog database partition first,
followed by all database partitions in parallel.

.

Recovery Strategy Best Practices – page 21

Implementation scenario for a recovery strategy
This section details a backup and recovery strategy for a sample data warehouse that was used for
testing. The sample data warehouse consists of one administration module and two data modules, each
with four database partitions, for a total of eight database partitions. The partitioned database was
installed and configured in line with IBM Smart Analytics System best practices.

The sample data warehouse contains two database partition groups:

• A single-partition database partition group containing the catalog partition. This partition group
contains a single table space that contains relatively small non-partitioned tables, primarily used
for lookup purposes.

• A multi-partition database partition group containing all other database partitions. This database
partition group was created across the eight database partitions and contains 17 table spaces. This
database partition group contains the following tables:

o Large dimension tables, such as customer and inventory tables, were created as hash-
partitioned tables across all database partitions in the group.

o Seven fact tables, which are both range partitioned using a date key and hash partitioned
and are in individual table spaces. Separate table spaces are used for each index.

o A number of materialized query tables (MQTs) in an MQT table space.

The data-load application used a stage-insert approach for loading data into the data warehouse,
ensuring that all writes were logged.

Sample recovery scenarios
The following table summarizes the data warehouse recovery scenarios, the recovery methods and their
effects, and the associated RPO and RTOs. These scenarios are based on the physical design, the data load
method and the tested speed of data transfer for backup and recovery. For details of the commands and
processes, see the appendixes.

Recovery Scenario Recovery Method Impact RTO RPO

Data loss in
partitioned table

Restore the table space in the database
partition, and roll forward to end of logs

Table
space is
offline

n minutes Last transaction

Partitioned table
space loss

Restore the table space in all database
partitions, and roll forward to end of logs

Table
space is
offline

n minutes Last transaction

Partitioned table
loss

Restore the table space in all database
partitions, and roll forward to end of logs

Table
space is
offline

n minutes Last transaction

Database partition
loss

Restore the database partition, and roll
forward to end of logs

Data
module is
offline

n minutes Last transaction

Recovery Strategy Best Practices – page 22

Catalog user table
data loss

Restore the user table space, and roll forward
to end of logs

Table
space is
offline

n minutes Last transaction

Catalog user table
space loss

Restore the user table space, and roll forward
to end of logs

Table
space is
offline

n minutes Last transaction

Catalog user table
loss

Restore the table space, and roll forward to the
PIT when the table was lost, perform the
dropped table recovery process, and then
rollforward to end of logs.

Table
space is
offline

n minutes Last transaction

Catalog system
table loss

Restore the database (catalog) partition, and
roll forward to end of logs.

Database
is offline

n minutes Last transaction

Catalog partition
loss

Restore the database (catalog) partition, and
roll forward to end of logs.

Database
is offline

n minutes Last transaction

Partitioned
database loss

Rebuild the entire database from the table
space backups and roll forward to end of logs

Database
is offline

n minutes Last transaction

Figure 3. Recovery scenarios anticipated in test system

Sample backup scenarios
The backup strategy is based on the recommendations made in this paper. The strategy comprises a daily
backup of the catalog partition, a full backup of all active table spaces on Sunday and Wednesday, and a
full database backup every quarter. All backups are throttled at 33%. Examples using TSM are shown in
this section.

The TSM client was installed on each data module as described in Appendix A. Archive logging was
enabled and configured to use TSM by using the following command:

db2 update db cfg for bcudb1 using LOGARCHMETH1 TSM

where bcudb1 is the name of the database to which the configuration change is being made.

Incremental backups were enabled by setting the trackmod configuration parameter to Yes as shown in
the following example, and by performing a full database backup.

update database manager configuration using TRACKMOD YES

To verify that the transaction logs were being archived to TSM, the following command was issued:

db2pd -log -database bcudb1

Recovery Strategy Best Practices – page 23

Online daily database backup of the catalog partition
The administration module contains only one database partition. The command used to backup to Tivoli
Storage Manager software (“TSM”) is as follows:

Monday ~ Sunday
db2 -v "backup database bcudb1 on dbpartitionnums (0) online use tsm open 2
sessions util_impact_priority 33 include logs"

When the catalog partition is backed up, two I/O sessions are opened between the backup process and
TSM. Because the include logs option is specified, three backup images are created: one per session and
one for the transaction logs.

Querying TSM by using the db2adutl command
Use the db2adutl command to query, delete, extract and verify backup images and logs that you archive
to TSM.

The following sample command verifies the integrity of the backup image of the catalog partition in the
data warehouse.

db2adutl verify full database bcudb1 dbpartitionnum 0 taken at 20100420115405

Sample output is as follows. Note the timestamp because it is used in the delete command later in this
section:

Query for database BCUDB1
Retrieving FULL DATABASE BACKUP information. Please wait.

 FULL DATABASE BACKUP image:
 ./BCUDB1.0.bcuinst2.NODE0000.CATN0000.20100420115405.001, DB Partition Number: 0
 ./BCUDB1.0.bcuinst2.NODE0000.CATN0000.20100420115405.002, DB Partition Number: 0
 ./BCUDB1.0.bcuinst2.NODE0000.CATN0000.20100420115405.003, DB Partition Number: 0

Do you wish to verify this image (Y/N)? Y
Verifying file: ./BCUDB1.0.bcuinst2.NODE0000.CATN0000.20100420115405.001

Read 0 bytes, assuming we are at the end of the image
 ./BCUDB1.0.bcuinst2.NODE0000.CATN0000.20100420115405.002

WARNING only partial image read, bytes read: 16384 of 16781312
Read 0 bytes, assuming we are at the end of the image
 ./BCUDB1.0.bcuinst2.NODE0000.CATN0000.20100420115405.003

Read 0 bytes, assuming we are at the end of the image
Image Verification Complete - successful.

Retrieving INCREMENTAL DATABASE BACKUP information.
 No INCREMENTAL DATABASE BACKUP images found for BCUDB1

Retrieving DELTA DATABASE BACKUP information.
 No DELTA DATABASE BACKUP images found for BCUDB1
bcuinst2@beluga002:~>

Important: The db2adutl command does not support single system view (SSV) backups at this point. You
must therefore issue the command from the data module on which you took the backup.

Delete a backup image by using the db2adutl command, as shown in the following command:

db2adutl delete full database bcudb1 dbpartitionnum 0 taken at 20100420115405

Recovery Strategy Best Practices – page 24

Use the db2adutl command to delete old backup images according to a schedule, such as after the
quarterly full database backups.

You can also use the command to query or extract transaction logs. The following command queries the
logs associated with the catalog database backup:

db2adutl query logs between S0000016.LOG and S0000019.LOG database bcudb1

Sample output is as follows:

Query for database BCUDB1
Retrieving LOG ARCHIVE information.

Log file: S0000016.LOG, Chain Num: 1, DB Partition Number: 3, Taken at: 2010-04-02-11.10.16
Log file: S0000017.LOG, Chain Num: 1, DB Partition Number: 3, Taken at: 2010-04-02-11.10.19
Log file: S0000016.LOG, Chain Num: 1, DB Partition Number: 2, Taken at: 2010-04-02-11.10.20
Log file: S0000016.LOG, Chain Num: 1, DB Partition Number: 4, Taken at: 2010-04-02-11.10.21
Log file: S0000016.LOG, Chain Num: 1, DB Partition Number: 1, Taken at: 2010-04-02-11.10.22
Log file: S0000017.LOG, Chain Num: 1, DB Partition Number: 2, Taken at: 2010-04-02-11.10.22
Log file: S0000018.LOG, Chain Num: 1, DB Partition Number: 3, Taken at: 2010-04-02-11.10.22
Log file: S0000017.LOG, Chain Num: 1, DB Partition Number: 4, Taken at: 2010-04-02-11.10.23
Log file: S0000019.LOG, Chain Num: 1, DB Partition Number: 3, Taken at: 2010-04-02-11.10.24
Log file: S0000018.LOG, Chain Num: 1, DB Partition Number: 4, Taken at: 2010-04-02-11.10.25
Log file: S0000018.LOG, Chain Num: 1, DB Partition Number: 2, Taken at: 2010-04-02-11.10.26
Log file: S0000017.LOG, Chain Num: 1, DB Partition Number: 1, Taken at: 2010-04-02-11.10.27
Log file: S0000019.LOG, Chain Num: 1, DB Partition Number: 4, Taken at: 2010-04-02-11.10.27
Log file: S0000018.LOG, Chain Num: 1, DB Partition Number: 1, Taken at: 2010-04-02-11.10.28
Log file: S0000019.LOG, Chain Num: 1, DB Partition Number: 2, Taken at: 2010-04-02-11.10.28
Log file: S0000019.LOG, Chain Num: 1, DB Partition Number: 1, Taken at: 2010-04-02-11.10.29

The following command extracts the logs that are associated with the catalog database backup:

db2adutl extract logs between S0000016.LOG and S0000019.LOG database bcudb1

Twice-weekly online partitioned table space backups
Twice weekly, each table space is backed up in turn and in parallel across database partitions with only
one backup process executed per data module at a time. The following commands, shown with sample
output, back up the PDTS_IN table space, which is used for the fact tables and the associated PDTS_INI
index table space on all database partitions. The following commands back up the first database partition
on each data node in parallel:

Sunday (Full ~ Partitions 1 and 5)
backup database bcudb1 on dbpartitionnums (1,5) tablespace(pdts_in, pdts_ini)
online use tsm open 2 sessions util_impact_priority 33 include logs
Part Result
---- --
0001 DB20000I The BACKUP DATABASE command completed successfully.
0005 DB20000I The BACKUP DATABASE command completed successfully.
Backup successful. The timestamp for this backup image is : 20100304122637

Sunday (Full ~ Partitions 2 and 6)
backup database bcudb1 on dbpartitionnums (2,6) tablespace(pdts_in, pdts_ini)
online use tsm open 2 sessions util_impact_priority 33 include logs
Part Result
---- --
0002 DB20000I The BACKUP DATABASE command completed successfully.
0006 DB20000I The BACKUP DATABASE command completed successfully.
Backup successful. The timestamp for this backup image is : 20100304123634

Sunday (Full ~ Partitions 3 and 7)
backup database bcudb1 on dbpartitionnums (3,7) tablespace(pdts_in, pdts_ini)
online use tsm open 2 sessions util_impact_priority 33 include logs
Part Result

Recovery Strategy Best Practices – page 25

---- --
0003 DB20000I The BACKUP DATABASE command completed successfully.
0007 DB20000I The BACKUP DATABASE command completed successfully.
Backup successful. The timestamp for this backup image is : 20100304124219

Sunday (Full ~ Partitions 4 and 8)
backup database bcudb1 on dbpartitionnums (4,8) tablespace(pdts_in, pdts_ini)
online use tsm open 2 sessions util_impact_priority 33 include logs
Part Result
---- --
0004 DB20000I The BACKUP DATABASE command completed successfully.
0008 DB20000I The BACKUP DATABASE command completed successfully.
Backup successful. The timestamp for this backup image is : 20100304125102

Quarterly and on demand full online database backups
Quarterly and on demand, a full online backup is achieved by first taking a backup of the catalog
database partition. On completion, the first database partition on both modules is backed up in parallel,
followed by the second, the third, and finally the fourth database partition. This helps maintain balance
across all database partitions. The sequence of commands to back up the database and associated sample
output are as follows:

db2 backup database bcudb1 on dbpartitionnum(0) online use tsm
Part Result
0000 DB20000I The BACKUP DATABASE command completed successfully.
Backup successful. The timestamp for this backup image is: 20100401114743

db2 backup database bcudb1 on dbpartitionnums(1,5) online use tsm
Part Result
0001 DB20000I The BACKUP DATABASE command completed successfully.
0005 DB20000I The BACKUP DATABASE command completed successfully.
Backup successful. The timestamp for this backup image is: 20100401114912

db2 backup database bcudb1 on dbpartitionnums(2,6) online use tsm
Part Result
0002 DB20000I The BACKUP DATABASE command completed successfully.
0006 DB20000I The BACKUP DATABASE command completed successfully.
Backup successful. The timestamp for this backup image is: 20100401115129

db2 backup database bcudb1 on dbpartitionnums(3,7) online use tsm
Part Result
0003 DB20000I The BACKUP DATABASE command completed successfully.
0007 DB20000I The BACKUP DATABASE command completed successfully.
Backup successful. The timestamp for this backup image is: 20100401115603

db2 backup database bcudb1 on dbpartitionnums(4,8) online use tsm
Part Result
0004 DB20000I The BACKUP DATABASE command completed successfully.
0008 DB20000I The BACKUP DATABASE command completed successfully.
Backup successful. The timestamp for this backup image is: 20100401115946

Recovery Strategy Best Practices – page 26

Sample recovery scenarios
The following sections illustrate the steps and related commands involved in applying various recovery
scenarios to the sample data warehouse.

Recovering a table space on a single database partition
The first step is to issue the RESTORE DATABASE command, specifying the table space to restore and
the database partition that is the target of the restore. The following sample command targets database
partition 3, table space PDTS_IN and index table space PDTS_INI. The +3 in the db2 command specifies
the third database partition.

db2_all "<<+3<db2 \"restore database bcudb1 tablespace (pdts_in, pdts_ini) online
use tsm taken at 20100401143616 replace existing \" "

When the restore has completed, issuing the following ROLLFORWARD DATABASE command with
the QUERY STATUS parameter shows that database partition 3 is in rollforward pending state:

rollforward database bcudb1 query status

Sample output is as follows:

Rollforward Status
Input database alias = bcudb1
Number of nodes have returned status = 9

Node Rollforward Next log Log files Last committed transaction
 status to be read processed
---- ----------- ----------- ---------- --------------------------
0 not pending S0000000.LOG-S0000002.LOG 2010-04-01-09.35.31.000000 Local
1 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.37.000000 Local
2 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
3 TBS pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.44.000000 Local
4 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
5 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
6 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
7 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
8 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local

The table spaces in this database partition must be consistent with the table spaces in other database
partitions and, therefore, a rollforward to the ends of the logs is expected. On the database partition being
recovered, the ROLLFORWARD DATABASE command is then issued for the table spaces:

rollforward db bcudb1 to end of logs on dbpartitionnum (3) tablespace (PDTS_IN,
PDTS_INI) online

Sample output from the command is as follows and shows that the rollforward status in no longer
pending:

Rollforward Status
Input database alias = bcudb1
Number of nodes have returned status = 1
Node number = 3
Rollforward status = not pending
Next log file to be read =
Log files processed = -
Last committed transaction = 2010-03-04-13.53.03.000000 UTC
DB20000I The ROLLFORWARD command completed successfully.

Recovery Strategy Best Practices – page 27

Recovering table spaces across all database partitions
In this example, the table space PDTS_IN and its associated index table space PDTS_INI are restored on
all eight database partitions. To do that, a RESTORE DATABASE command is issued in a separate
session for each database partition. The following example shows the command for the first database
partition. The +1 in the db2_all command specifies the first database partition.

db2_all "<<+1<|| db2 \"restore database bcudb1 tablespace (PDTS_IN, PDTS_INI)
online use TSM taken at 20100304122637 replace existing\""
rah: omitting logical node 0

rah: primary monitoring process for db2 is 14932
beluga003: DB20000I The RESTORE DATABASE command completed successfully.
beluga003: db2 "restore db bcudb1 ... completed ok

When you use a RESTORE DATABASE command to recover table spaces across all database partitions,
the number of sessions that you can run in parallel depends on your environment and the number of
database partitions and tape drives available.

After the table space is restored, a ROLLFORWARD DATABASE command is issued to roll forward to
the ends of the logs. Based on twice weekly backup recommendations, no more than two and a half days
of transaction logs should be required. The command is shown here:

rollforward database bcudb1 to end of logs on dbpartitionnum (1 to 8) tablespace
(PDTS_IN, PDTS_INI) online

Sample output from the command is as follows and shows that the rollforward status is no longer
pending for all database partitions:

Rollforward Status
Input database alias = bcudb1
Number of nodes have returned status = 8

Node number Rollforward Next log Log files processed Last committed transaction
 status to be read
----------- ----------- ---------- ------------------- -------------------------
 1 not pending - 2010-03-04-13.53.03.000000 UTC
 2 not pending - 2010-03-04-13.53.06.000000 UTC
 3 not pending - 2010-03-04-13.52.56.000000 UTC
 4 not pending - 2010-03-04-13.53.04.000000 UTC
 5 not pending - 2010-03-04-13.53.21.000000 UTC
 6 not pending - 2010-03-04-13.52.59.000000 UTC
 7 not pending - 2010-03-04-13.53.04.000000 UTC
 8 not pending - 2010-03-04-13.53.03.000000 UTC
DB20000I The ROLLFORWARD command completed successfully.

Recovering a catalog database partition
If the catalog partition is unavailable, the entire database is unavailable because the catalog and
coordinator functions are offline. For this reason, it is recommended that a full online backup take place
daily so that restoring the catalog partition can be as quick and simple as possible. The following
command recovers the catalog database partition:

recover database bcudb1 to end of logs on dbpartitionnum (0)

The sample output from the command shows the log files used to perform the operation. Also note the
status is not pending as the recover command performed both the restore and rollforward process:

Rollforward Status
 Input database alias = bcudb1
 Number of nodes have returned status = 1

Recovery Strategy Best Practices – page 28

 Node number = 0
 Rollforward status = not pending
 Next log file to be read =
 Log files processed = S0000000.LOG - S0000004.LOG
 Last committed transaction = 2010-04-02-07.15.10.000000 Local

Executing the LIST UTILITIES command while the RECOVER DATABASE command is in progress
shows the restore occurring:

list utilities show detail

ID = 92
Type = RESTORE
Database Name = BCUDB1
Partition Number = 0
Description = db
Start Time = 04/02/2010 07:31:30.907354
State = Executing
Invocation Type = User
Progress Monitoring:
 Completed Work = 134275072 bytes
 Start Time = 04/02/2010 07:31:30.907358

Executing the LIST UTILITIES command while the ROLL FORWARD command is in progress shows
the roll forward occurring:

list utilities show detail

ID = 93
Type = ROLLFORWARD RECOVERY
Database Name = BCUDB1
Partition Number = 0
Description = Database Rollforward Recovery
Start Time = 04/02/2010 07:31:58.121968
State = Executing
Invocation Type = User
Progress Monitoring:
 Phase Number [Current] = 1
 Description = Forward
 Completed Work = 13372055 bytes
 Start Time = 04/02/2010 07:31:58.121972
 Phase Number = 2
 Description = Backward
 Completed Work = 0 bytes
 Start Time = Not Started

Recovering a user table space on the catalog database partition
If you must recover a user table space on the catalog database partition, it is recommended that you
restore just the data that is lost instead of restoring the complete catalog database partition, which forces
the database offline. To restore a user table space on the catalog database partition, first issue the
RESTORE command, specifying the table space being restored. The following command restores the table
space SDTS:

restore database bcudb1 tablespace (SDTS) online use TSM taken at 20100304041653
replace existing

When the RESTORE command completes, it will place the table space in a Roll forward pending state.
The following command will roll forward to end of logs for the table space and returns it to a not pending
state:

rollforward database bcudb1 to end of logs on dbpartitionnum (0) tablespace (SDTS)
online

Recovery Strategy Best Practices – page 29

Recovering an entire data module
To recover an entire data module from table space backups, the following process was required. In
testing the first data module, which contains database partitions 1 through 4, was chosen for recovery.
The following command was used to rebuild the data module by using a table space backup image:

recover database bcudb1 to end of logs on dbpartitionnum (1 to 4)

The command generated the following output:

Rollforward Status
Input database alias = bcudb1
Number of nodes have returned status = 4

Node Rollforward Next log Log files processed Last committed transaction
Number status to be read
------ ------------ ---------- -------------------- ---------------------------
1 not pending S0000000.LOG-S0000105.LOG 2010-04-02-07.15.09.000000 Local
2 not pending S0000000.LOG-S0000106.LOG 2010-04-02-07.14.04.000000 Local
3 not pending S0000000.LOG-S0000105.LOG 2010-04-02-07.14.04.000000 Local
4 not pending S0000000.LOG-S0000106.LOG 2010-04-02-07.14.04.000000 Local
DB20000I The RECOVER DATABASE command completed successfully.

Recovering an entire database
There are two methods available to recover an entire database. The first is from the quarterly or ad hoc
full online database backups; the second is from the table space backups. The need to recover an entire
database will most likely occur during a system upgrade. In such an event a full database backup should
have been taken prior to the upgrade taking place and a restore from those backup images would take
place. In the event of a recent full database backup not being available, table space backups would be
used. This section will focus on a table space based recovery.

In the following example, the recovery is done by using table space backups. A single RECOVER
DATABASE command is sufficient to search the recovery history file and restore to the ends of the logs.
The following command recovers the entire database across partitions 0 through 8:

recover db bcudb1 to end of logs

Sample output is as follows:

Rollforward Status
Input database alias = bcudb1
Number of nodes have returned status = 9

Node Rollforward Next log Log files processed Last committed transaction
number status to be read
------ ----------- --------- -------------------- ---------------------------
0 not pending S0000000.LOG-S0000002.LOG 2010-04-01-09.35.31.000000 Local
1 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.37.000000 Local
2 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
3 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.44.000000 Local
4 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
5 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
6 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
7 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local
8 not pending S0000000.LOG-S0000003.LOG 2010-03-29-07.42.36.000000 Local

DB20000I The RECOVER DATABASE command completed successfully.

Recovery Strategy Best Practices – page 30

Administration tools and tasks
There are several ways to view current and historical recovery events. The progress of a backup or
recovery process can be monitored by using the LIST UTILITIES command. History files show what
recovery events have taken place.

Monitoring utilities
Use the LIST UTILITIES command to identify what utilities are running, including the backup and
restore utilities, and how they are progressing. The following sample output, which was produced by
entering list utilities, shows that a backup is in progress on the test system that was used for the
sample data warehouse:

ID = 5
Type = BACKUP
Database Name = BCUDB1
Partition Number = 1
Description = online tablespace PDTS_IN...
Start Time = 03/29/2010 07:42:07.491717
State = Executing
Invocation Type = User
Throttling:
 Priority = 33
Progress Monitoring:
 Estimated Percentage Complete = 3

ID = 5
Type = BACKUP
Database Name = BCUDB1
Partition Number = 5
Description = online tablespace PDTS_IN...
Start Time = 03/29/2010 07:42:07.638023
State = Executing
Invocation Type = User
Throttling:
 Priority = 33
Progress Monitoring:
 Estimated Percentage Complete = 4

Viewing history by using the SYSIBMADM.DB_HISTORY table

Query the SYSIBMADM.DB_HISTORY table to view history information about recoveries and backups,
including when and how long they ran. You can also query the table to view information about logs.

The following sample statement queries recovery history:

selelct dbpartitionnum, start time, end time,
substr(COMMENT,1,20) comment, substr(LOCATION,1,20) location

from sysibmadm.db_history
where operation in ('R') and seqnum = '1' and dbpartitionnum <= 4

order by start time, dbpartitionnum

Sample output is as follows:
DBPARTITIONNUM START_TIME END_TIME COMMENT LOCATION
 0 20100401093833 20100401093843 RESTORE BCUDB1 WITH RF -
 0 20100401102056 20100401102105 RESTORE BCUDB1 WITH RF -
 2 20100401102056 20100401102654 RESTORE BCUDB1 WITH RF -
 3 20100401102056 20100401102657 RESTORE BCUDB1 WITH RF -
 1 20100401102057 20100401102655 RESTORE BCUDB1 WITH RF -
 4 20100401102057 20100401102649 RESTORE BCUDB1 WITH RF -
 6 record(s) selected.

Recovery Strategy Best Practices – page 31

Viewing recovery history files
Recovery history files are maintained for both the database and table space environments. These two
files, db2rhist.asc and db2tschg.his, maintain a record of all transactions that would have an effect on
the recovery process. The table space recovery history file assists the rollforward process in identifying
only those transaction logs that must be replayed for a recovery

You can use the db2LogsForRFwd command to view the contents of the table space recovery history file.
This allows a user to find out which log files are required for a table space rollforward operation

db2logsForRfwd DB2TSCHG.HIS -all

You can also use the LIST HISTORY command to query the database recovery history file for
information on all recovery events. The database history file, located in the database directory, can be
accessed using the LIST HISTORY command as follows:

list history rollforward all for bcudb1

List History File for bcudb1
Number of matching file entries = 1

 Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
 -- --- ------------------ ---- --- ------------ ------------ --------------
 F D 20100401102701 E S0000000.LOG S0000002.LOG
--

An unmaintained recovery file can slow startup, because the DB2 software accesses and parses the
recovery history files on startup, and eventually lead to a full disk as the DB2 software accesses and
parses the recovery history files on startup. You can maintain the history file entries and associated
database and transaction log backup images automatically. Set the rec_his_retentn parameter to the
number of days you wish to retain history. Activate the process by setting the auto_del_rec_obj
parameter to ON.

Note that table space backup images are not currently maintained through this parameter, but you can
manage them by using the db2adutl command. You can automate the removal of table space backup
images by using scripts.

The PRUNE command can be used to manually remove entries from both history files. The following
command removes history files in the active path that were created before the S0000142.LOG file was
created:

prune logfile prior to S0000142.log

Recovery Strategy Best Practices – page 32

Conclusion

Planning a recovery strategy is not a post-implementation task. Understanding how decisions made
during the implementation cycle impact the backup and recovery objectives can help avoid problems
post implementation. By clarifying the recovery objectives early in the project cycle you will be better
positioned to assess the impact of design decisions and configure the system to meet the objectives. In
building a flexible backup and recovery strategy that is focused on protecting your data and maximising
system availability you will be better equipped to adapt to changes in your data warehouse environment
as it grows and matures.

Summary of key recommendations

• Document your recovery objectives and use them as reference points when designing your
backup strategy.

• Reconcile your recovery objectives with the design and configuration of your data warehouse to
ensure that they are achievable.

• Identify pressure points and weaknesses in your environment because these are the most likely
areas to fail, prompting a recovery.

• Avoid using PIT recovery for ETL applications because the required offline backups are
inefficient.

• Deploy two tape drives per data module to increase recovery speed.
• Run frequent table space backups to minimize the number of transaction logs that are required in

a recovery scenario.
• Use online backups to minimize downtime.
• Measure the success of your backup strategy by whether the backups are completed with

minimal effect on resources, rather than by elapsed time.
• Focus both the backup and recovery strategies on active data. This data might account for just 20

- 25% of the overall data warehouse.
• Use tools to speed up the recovery process. You can use the db2adutl command to retrieve logs

for rolling forward while the restore is being processed.

Recovery Strategy Best Practices – page 33

Appendix A. Configuration of test system

The test system that is referenced in this paper is based on an InfoSphere Balanced Warehouse D5100.
The InfoSphere Balanced Warehouse (now called IBM Smart Analytics System) product offers a
preconfigured data warehouse environment providing stability and performance that reflects IBM best-
practices guidelines.

The test system consists of three IBM System x3650 M2 machines, one that was configured for the
administration module and two that were configured for the data modules. The administration module
was configured to have a single database partition containing the catalog and coordinator functions
together with single-partition data warehouse tables. The data modules each comprise four database
partitions that contain partitioned tables.

TSM V6.1 was installed and configured on the DB2 servers. The landing disk was configured to cater for
1.5 times the sizes of the daily logs and backups that were expected on the busiest days, Sunday and
Wednesday. Two tape drives, the recommended number for the environment, were configured.

Recovery Strategy Best Practices – page 34

Appendix B. Configuring a DB2 instance for TSM
The following procedure shows how to configure TSM on modules where the DB2 software is installed in
an environment similar to the test environment that was used for this paper.

1. Configure the TSM client on the servers where the DB2 software is running, as follows:

a. Log in to the data module as root, and navigate to where you installed the TSM client.

b. In the /opt/tivoli/tsm/client/api/bin64 directory, copy the file, dsm.opt.smp, to the

dsm.opt file, and copy the sample xxx file, dsm.sys.smp, to the dsm.sys file.

c. Add the data module as a stanza entry in the dsm.opt file, as shown in the following example:

**
* IBM Tivoli Storage Manager *
*
* Sample Client User Options file for UNIX (dsm.opt.smp) *
**
This file contains an option you can use to specify the TSM
server to contact if more than one is defined in your client
system options file (dsm.sys). Copy dsm.opt.smp to dsm.opt.
If you enter a server name for the option below, remove the
leading asterisk (*).
**
* Servername Point to beluga002 LAN or beluga002 LAN-free as required
SERVERNAME beluga002

d. Modify the dsm.sys file as shown in the following example, including adding an entry for
LAN-free backups by setting the ENABLELANFREE parameter to YES:

**
* IBM Tivoli Storage Manager *
*
* Sample Client System Options file for UNIX (dsm.sys.smp) *
**
This file contains the minimum options required to get started
using TSM. Copy dsm.sys.smp to dsm.sys. In the dsm.sys file,
enter the appropriate values for each option listed below and
remove the leading asterisk (*) for each one.
If your client node communicates with multiple TSM servers, be
sure to add a stanza, beginning with the SERVERNAME option, for
each additional server.
**
SERVERNAME beluga002 LAN
COMMMETHOD TCPip
TCPPORT 1500
TCPSERVERADDRESS xxx.xxx.xxx.xxx
PASSWORDACCESS generate
ENABLELANFREE NO

SERVERNAME beluga002_LAN-free
COMMMETHOD TCPip
TCPPORT 1500
TCPSERVERADDRESS xxx.xxx.xxx.xxx
PASSWORDACCESS generate
ENABLELANFREE YES

2. Set up the instance environment, as follows:

a. Log in to each instance as the instance owner,

Recovery Strategy Best Practices – page 35

b. Add the following entries to the ~/.kshrc file in the home directory (for 64-bit DB2, replace bin

with bin64):

export DSMI_DIR=/opt/tivoli/tsm/client/api/bin64
export DSMI_CONFIG=/opt/tivoli/tsm/client/api/bin64/dsm.opt
export DSMI_LOG=$HOME/sqllib/db2dump

c. In the ~/sqllib/ directory, create a file called userprofile that contains the three entries

that you added to the ~/.kshrc file.

3. Test TSM server and TSM client connectivity, as follows:

a. Log in to each data module as root, and run the following export commands:

export DSMI_DIR=/opt/tivoli/tsm/client/api/bin64
export DSMI_CONFIG=/opt/tivoli/tsm/client/api/bin64/dsm.opt
export DSMI_LOG=homeFileSystem of instanceID/sqllib/db2dump

b. From ~instanceID/sqllib/adsm directory, issue the following command:

./dsmapipw

c. When prompted for a password, enter the appropriate password.

d. From the ~instanceID/sqllib/db2dump directory, issue the following command:

chown instanceID:instanceGroup dsierror.log

TSM is now configured and ready to be used for backup and recovery commands.

Recovery Strategy Best Practices – page 36

Appendix C. Overview of DB2 utilities

The restore, rollforward and recover utilities are used to perform data recovery.

The RESTORE DATABASE command restores a database or table space from the contents of a backup
image. The ROLLFORWARD command reapplies transactions that were committed after a backup was
made or while the backup process of an online backup was executing. The RECOVER utility performs
the necessary restore and rollforward operations to recover a database to a specified time based on
information found in the recovery history file.

Refer to the DB2 user guides for further reading.

Restore utility
You can use a full database backup image to recover a version of the database, as shown in the following
example:

restore database bcudb1 use TSM taken at 20100209134904

Use the REBUILD parameter of the RESTORE DATABASE command to rebuild part or all of an entire
database by using only table space backups and logs (alternatively, you can use full and incremental
backup images). The recovery history files are referenced to determine the location of the backups and
logs; these backups and logs must be in the expected location for the rebuild to succeed.

You can also recover an entire database by using the rebuild feature to restore each table space and then
roll forward to the ends of the logs. As you restore and roll forward each table space, it becomes available
for use. If a backup for a table space is unavailable, the associated table space is placed in the drop
pending state, from which you can drop or restore the table space later.

SYSADM, SYSCTRL, or SYSMAINT authority is needed to restore into an existing database, and
SYSADM or SYSCTRL authority is required to restore to a new database.

Roll forward utility
Rollforward recovery builds on a version recovery by using log files to recover a database or table space
to a specific point in time. In an online backup and recovery strategy this utility will be used to roll
forward to the end of the logs included in the backup image.

The following command would be issued after the restore command in the previous section:

rollforward database bcudb1 to end of logs and complete

Recover utility
The RECOVER DATABASE command combines the effects of the RESTORE DATABASE and
ROLLFORWARD DATABASE commands by using the history files to identify which backup images
and logs to use to complete a recovery. This process makes the RECOVER DATABASE command better
suited to a database partition, data module, or full database recovery.

Recovery Strategy Best Practices – page 37

You can replace the sample commands that were shown for the rollforward recovery with the following
command:

 recover database bcudb1 to end of logs

A crash recovery is an abnormal termination of a DB2 instance due to a power failure or other
unexpected event. In a crash recovery, incomplete transactions are committed if possible; otherwise, they
are rolled back. If a crash occurs and the AUTOSTART configuration parameter is set to ON, the first
database connection attempt triggers the crash recovery.
Recommended best practice is to set AUTOSTART to OFF so that you can assess and manage the
recovery process as per your recovery objectives.

Recovery Strategy Best Practices – page 38

Further reading

• “Developing a backup and recovery strategy” topic

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2
.luw.admin.ha.doc/doc/c0005945.html

• “Database Physical Design” DB2 best-practices paper

http://www.ibm.com/developerworks/data/bestpractices/databasedesign/

• “Unleashing the power of table partitioning in your DB2 Warehouse” article

http://www.ibm.com/developerworks/data/library/techarticle/dm-
1006tablepartitioning/index.html

• Tape systems Web page (contains information about LTO tape drives)

http://www-03.ibm.com/systems/storage/tape/

• “Compatibility of online backup and other utilities” topic

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admi
n.ha.doc/doc/c0021554.html

• “LAN-free DB2 Backups to TSM Recommendation” technote

http://www-01.ibm.com/support/docview.wss?uid=swg21287060

• “System commands” topic

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?nav=/3_6_2_4

• Tivoli Storage Manager (TSM) overview

http://publib.boulder.ibm.com/infocenter/tsminfo/v6/index.jsp?topic=/com.ibm.itsm.s
rv.doc/c_tsmintro.html/

Recovery Strategy Best Practices – page 39

Contributors
John Bell

IBM Senior Data Warehouse Architect
Sermsak Sukjirawat

WW Smart Analytics System Practices, IM Software Services
Lydia Siu

DB2 Data Warehouse QA Team
Ilker Ender

DB2 Data Warehouse QA Team
Joyce Coleman

IBM Smart Analytics System - Development
Katherine Kurtz

IBM Smart Analytics System Best Practices Manager
Simon Woodcock

Infosphere Warehouse Technical Sales Consultant
Nela Krawez

IBM Smart Analytics System Solutions Development
Haider Rizvi

IBM Smart Analytics System Architect

Recovery Strategy Best Practices – page 40

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties
regarding the accuracy, reliability or serviceability of any information or recommendations
provided in this publication, or with respect to any results that may be obtained by the use of
the information or observance of any recommendations provided herein. The information
contained in this document has not been submitted to any formal IBM test and is distributed
AS IS. The use of this information or the implementation of any recommendations or
techniques herein is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Anyone attempting to adapt
these techniques to their own environment do so at their own risk.

This document and the information contained herein may be used solely in connection with
the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web sites is
at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific
environment.

Recovery Strategy Best Practices – page 41

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: © IBM Corporation 2010. All Rights Reserved.

The information contained in this publication is provided for informational purposes only.
While efforts were made to verify the completeness and accuracy of the information
contained in this publication, it is provided AS IS without warranty of any kind, express or
implied. In addition, this information is based on IBM’s current product plans and strategy,
which are subject to change by IBM without notice. IBM shall not be responsible for any
damages arising out of the use of, or otherwise related to, this publication or any other
materials. Nothing contained in this publication is intended to,
nor shall have the effect of, creating any warranties or representations from IBM or its
suppliers or licensors, or altering the terms and conditions of the applicable license
agreement governing the use of IBM software.

References in this publication to IBM products, programs, or services do not imply that they
will be available in all countries in which IBM operates. Product release dates and/or
capabilities referenced in this presentation may change at any time at IBM’s sole discretion
based on market opportunities or other factors, and are not intended to be a commitment
to future product or feature availability in any way. Nothing contained in these materials is
intended to, nor shall have the effect of, stating or implying that any activities undertaken by
you will result in any specific sales, revenue growth, savings or other results.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and
distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may
also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

