
 ���®

IBM® DB2® for Linux®, UNIX®, and Windows®

Data security best practices
A practical guide to implementing

row and column access control

Walid Rjaibi, CISSP
IBM Senior Technical Staff Member
Security Architect for
DB2 for Linux, UNIX, and Windows

Issued: April 2012

A practical guide to implementing row and column access control Page 2 of 27

1. Introduction .. 3

2. Traditional row and column access control methods................................. 3

2.1 Database views... 3

2.2 Application-based security... 4

2.3 Label-based access control (LBAC) ... 4

3. Row permissions and column masks.. 5

3.1 Row permissions definition.. 6

3.2 Column masks definition.. 7

3.3 Supporting functions and variables .. 8

3.3 Row permissions enforcement... 9

3.4 Column masks enforcement... 11

3.5 Application exceptions.. 13

4. Managing dependencies and secure objects .. 14

4.1 SQL packages.. 14

4.2 Secure user-defined functions.. 15

4.3 Secure triggers .. 15

4.4 Automatic data movement ... 16

5. Usage scenario.. 17

6. Best practices... 20

6.1 Dependencies.. 20

6.2 Data movement .. 20

6.3 Three-tier application models .. 21

6.4 Performance.. 21

6.5 Problem determination ... 22

7. Conclusion .. 23

Further reading... 24

Reviewers .. 25

A practical guide to implementing row and column access control Page 3 of 27

 1. Introduction

To comply with various government regulations and industry standards from countries
around the world, organizations need to implement procedures and methods to ensure
that information is adequately protected. These regulations and standards stipulate that
an individual is allowed access only to the subset of that information that is needed to
perform their job. For example, according to the US Health Insurance Portability and
Accountability Act (HIPAA), a doctor is authorized to view the medical records of their
own patients but not the records of other patients. Similarly, according to the Payment
Card Industry Data Security Standard (PCI DSS), access to cardholder data such as the
credit card number must be restricted by business need-to-know. For information stored
in relational databases, the ability to control data access at the row and column levels
satisfies this requirement.

This paper starts by reviewing traditional methods for tackling the row and column
access control problem and introduces the new row permission and column mask
concepts as an elegant and more effective alternative to the traditional methods. After
that, new permission and mask dependencies are discussed along with the introduction
of secure functions and secure triggers. A use scenario illustrates how to use row
permissions and column masks to meet required access controls. Lastly, this paper
provides you with a set of best practices to follow when using row permissions and
column masks.

2. Traditional row and column access control methods

Three traditional methods have been used to implement row and column access control:
database views, application-based security, and label-based access control (LBAC).

2.1 Database views
For each database table that requires protection, the following steps summarize the
typical steps to implement row and column access control by using database views.

1. The database developer creates either a single view that includes all the security
rules that affects all the users of the table or creates separate views for each user
or group of users.

2. The database developer grants the appropriate privileges on the view or views.
3. The database developer revokes access to the base table from all users and

groups.
4. If multiple views are created for different users or groups, the application

architect ensures that the application contains logic to route user queries to
appropriate views based on their identity, their group membership, or both.

5. The database developer and the application architect test the implementation.

A practical guide to implementing row and column access control Page 4 of 27

Database views work well when the number of different restrictions is small or the
restrictions affect only large and easily identified groups of users. However, when these
conditions are not true, then a number of issues arise with the use of views:

• View definitions might become complex when trying to contain all the
restrictions in one view. This complexity can strain system limits and can make
maintenance of the view difficult. If an alternate approach of defining many
simple views that each implement restrictions for a specific set of users is used to
ease view definition maintenance, then routing user requests to the correct view
becomes an issue. In this case, database developers often choose to resolve the
request in the application, not in the database.

• If a user can bypass the view when accessing data, for example by having direct
access to the underlying tables, then the restrictions are not enforced.

• Users with DATAACCESS authority still have full access to the data.

2.2 Application-based security
For each database table that requires protection, the following steps summarize the
typical steps to implement row and column access control in an application.

1. The application fetches all the data into the application memory then applies
custom logic to filter out the result set based on the user identity. Alternatively,
the application builds some or all of the filtering logic into the actual SQL
statement to submit to the database so that some or all of that filtering logic is
performed by the database.

2. The database developer and the application architect test the implementation.

While application-based security might seem attractive, this approach suffers from
several drawbacks:

• The security policy is exposed to application programmers.
• The approach is error prone and requires extensive code reviews.
• Application changes are required to reflect changes in the security policy.
• Data is protected only when it is accessed through the application. This

protection limitation hampers the ability to use tools like ad hoc query and
report generation tools on the data.

• Users with DATAACCESS authority still have full access to the data.

2.3 Label-based access control (LBAC)
For each database table that requires protection, the following steps summarize the
typical steps to implement row and column access control by using LBAC.

1. The database security administrator (a user with SECADM authority) creates the
security label component and security policy objects that are needed to map the
security requirements into security labels.

2. The database security administrator creates the security label objects needed for
user access to the protected tables.

A practical guide to implementing row and column access control Page 5 of 27

3. The database security administrator grants security labels and exemptions to
appropriate users.

4. The database developer alters the table to add a security label column and
associates a security policy object with the table.

5. The database developer and the application architect test the implementation.

While LBAC is a strong security model, it is rarely suitable for commercial customers
because it requires data to be classified and has a set of fixed security rules, namely, the
no read up rule and the no write down rule. LBAC and multilevel security (MLS) are
generally targeted at intelligence and defense customers, which is where MLS originated.
For more information about MLS and its associated rules, see the paper listed in the
references section.

3. Row permissions and column masks

Row permissions and column masks are two new database concepts that are introduced
to address the shortcomings of traditional row and column access control methods. They
represent a second layer of security that complements the current table-privileges
security model. More specifically, the table-privileges security model is applied first to
determine whether a user is allowed to access the table. If the user is allowed access to
the table, row permissions are applied next to determine what specific rows of the table
the user has access to. Column masks are then applied to determine whether the user
sees the actual or masked value in the column or a masked value thereof. For example,
row permissions ensure that when Dr. Jane Smith queries the patients table, she sees only
rows that represent patients under her care. Other patients are nonexistent as far as she is
concerned. Similarly, a column mask defined on the phone number column of that same
table ensures that Dr. Jane Smith sees only phone numbers for patients who consented to
share their phone numbers with her. For other patients, the phone number would be set
to NULL or masked out according to the column mask definition.

One key advantage of row permissions and column masks is that no database user is
inherently exempted from them, not even higher level authorities such as users with
DATAACCESS authority. The ability to manage row permissions and column masks
within a database is vested solely in the user with database security administrator
authority (SECADM). Thus, row permissions and column masks ensure that users with
DATAACCESS authority can no longer freely access all data in the database.

Another key advantage of row permissions and column masks is that they ensure that
table data is protected regardless of how that table is accessed by using SQL such as
through an application, through ad hoc query tools, or through report generation tools.

Lastly, a third key advantage of row permissions and column masks is that no
application changes are required to take advantage of them. That is, row and column
access control is transparent to existing applications. However, row permissions and
column masks represent an important paradigm shift in the sense that it is no longer
what is being asked but rather who is asking what. That is, result sets for the same query
change based on the context in which the query was asked and no warnings or errors are

A practical guide to implementing row and column access control Page 6 of 27

returned. Application designers and database administrators need to be aware that
database queries do not see all of the data in the table unless users are granted specific
permissions to do so.

3.1 Row permissions definition
A row permission is a database object that expresses a row access-control rule for a
specific table. The rule is an SQL search condition that describes what set of rows a user
has access to.

3.1.1 Authorization
The database security administrator authority (SECADM) is required to create, alter, or
drop a row permission object.

3.1.2 SQL syntax
The SQL syntax for creating a row permission follows.

 >>-CREATE-+------------+-PERMISSION--permission-name--ON--table-name-------->
 '-OR REPLACE-'

 >----+------------------------------+--------------------------------------->
 | .--AS--. |
 '--+------+--correlation-name--'
 .-DISABLE-.
 >----FOR ROWS WHERE--search-condition--ENFORCED FOR ALL ACCESS-+---------+-><
 '-ENABLE--'

The main parameters of this SQL syntax are:

• table-name: This is the name of the table for which the row permission applies. It
cannot identify a nickname, a created or declared temporary table, a view, an
alias, a synonym, a typed table, or a catalog table.

• search-condition: This is the actual row-level access control rule. It specifies a
condition that can be either true or false for a row of the table. Generally, the
search-condition follows the same rules as a WHERE clause in a subselect SQL
statement.

• DISABLE or ENABLE: This represents the state of the row permission object. A
disabled row permission is not enforced while an enabled row permission is
enforced. For more information, see section 3.3.

Row permission definitions are recorded in the SYSCAT.CONTROLS catalog view.
Depending on its specific definition, the row permission might have a dependency on
one or more database objects. This dependency is also recorded. For example, if the row
permission refers to a user-defined function in its search-condition expression, this
dependency is recorded in the SYSCAT.CONTROLDEP catalog view.

A practical guide to implementing row and column access control Page 7 of 27

Example 1
The following row permission creates a rule that limits access to rows in the PAYROLL
table to only during normal business hours.

 CREATE PERMISSION payrollp
 ON PAYROLL
 FOR ROWS WHERE CURRENT TIME BETWEEN ‘8:00’ AND ’17:00’
 ENFORCED FOR ALL ACCESS ENABLE;

3.2 Column masks definition
A column mask is a database object that expresses a column access-control rule for a
specific column in a specific table. The rule is an SQL CASE expression that describes
what users should see when they access the column.

3.2.1 Authorization
The database security administrator authority (SECADM) is required to create, alter, or
drop a column mask object.

3.2.2 SQL syntax
The SQL syntax for creating a column mask follows.

 >>-CREATE-+------------+-MASK--mask-name--ON--table-name--------------->
 '-OR REPLACE-'

 >----+------------------------------+---------------------------------->
 | .--AS--. |
 '--+------+--correlation-name--'
 .-DISABLE-.
 >----FOR COLUMN--column-name--RETURN—cases-expression--+---------+----><
 '-ENABLE--'

The main parameters of this SQL syntax are:

• table-name: This is the name of the table for which the column mask applies. It
cannot identify a nickname, a created or declared temporary table, a view, an
alias, a synonym, a typed table, or a catalog table.

• column-name: This is the specific column in table table-name for which the mask
applies. It cannot identify a LOB column or a distinct type column that is based
on a LOB, an XML column, or a column referenced in an expression that defines
a generated column.

• case-expression: This is the actual column-level access control rule. It specifies a
CASE expression to be evaluated to determine the value to return for the
column. The result of the CASE expression is returned in place of the column
value in a row. The result data type, null attribute, and length attribute of the
CASE expression must be identical or promotable to (in the case of the result
data type) to those of column-name. If the data type of column-name is a user-
defined data type, the result data type of the CASE expression must be the same
user-defined data type.

A practical guide to implementing row and column access control Page 8 of 27

• DISABLE or ENABLE: This represents the state of the column mask object. A
disabled column mask is not enforced while an enabled column mask is
enforced. For more information, see section 3.4.

Like row permission definitions, column mask definitions are also recorded in the
SYSCAT.CONTROLS catalog view. Depending on its specific definition, the column
mask might have a dependency on one or more database objects. This dependency is also
recorded. For example, if the column mask refers to a user-defined function in its case-
expression, this dependency is recorded in the SYSCAT.CONTROLDEP catalog view.

Example 2
The following column mask creates a rule that limits access to the salary column in the
PAYROLL table only to users in the HR role. The NULL value is returned for users who
are not members in the HR role.

 CREATE MASK salarym
 ON PAYROLL
 FOR COLUMN salary RETURN
 CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER, ‘HR’)= 1
 THEN salary
 ELSE NULL
 END
 ENABLE;

3.3 Supporting functions and variables
To provide more flexibility when defining row and column access control rules, the
following built-in SQL functions give you different levels of control that depend on
various user attributes:

• VERIFY_ROLE_FOR_USER: Use this function where access is allowed based on
membership in a database role.

• VERIFY_GROUP_FOR_USER: Use this function where access is allowed based on
membership in an external group.

• VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER: Use this function where access is
allowed based on membership in a database role that is acquired through a
trusted context.

Example 3
The following row permission creates a rule that limits access to rows in the PAYROLL
table to only during normal business hours and only users who are members of the HR
role.

 CREATE PERMISSION payrollp
 ON PAYROLL
 FOR ROWS WHERE CURRENT TIME BETWEEN ‘8:00’ AND ’17:00’
 AND VERIFY_ROLE_FOR_USER(USER, ‘HR’)= 1

ENFORCED FOR ALL ACCESS ENABLE;

Additionally, the following database-managed session variables give you even more
fine-grained control when defining row and column access control rules:

A practical guide to implementing row and column access control Page 9 of 27

• SYSIBM.TRUSTED_CONTEXT: This variable represents the name of the trusted

context associated with the current trusted connection.
• SYSIBM.CLIENT_IPADDR: This variable represents the current client IP address.
• SYSIBM.CLIENT_HOST: This variable represents the current client host name.
• SYSIBM.ROUTINE_SCHEMA: This variable represents the schema name of the

currently executing routine.
• SYSIBM.ROUTINE_SPECIFIC_NAME: This variable represents the specific name of

the currently executing routine.
• SYSIBM.ROUTINE_TYPE: This variable represents the type of the currently

executing routine (P = Stored procedure, F = Function).
• SYSIBM.ROUTINE_MODULE: This variable represents the module name of the

currently executing routine.
• SYSIBM.PACKAGE_NAME: This variable represents the name of the currently

executing package.
• SYSIBM.PACKAGE_SCHEMA: This variable represents the schema of the currently

executing package.
• SYSIBM.PACKAGE_VERSION: This variable represents the version of currently

executing package.

Example 4
The following row permission creates a rule that limits access to rows in the PAYROLL
table to only during normal business hours, by users who are members of the HR role,
and using the HR application which is identified by a stored procedure called
HRPROCS.PROC1.

 CREATE PERMISSION payroll-table-rules
 ON PAYROLL
 FOR ROWS WHERE CURRENT TIME BETWEEN ‘8:00’ AND ’17:00’
 AND VERIFY_ROLE_FOR_USER(USER, ‘HR’)= 1
 AND ROUTINE_SPECIFIC_NAME = ‘PROC1’
 AND ROUTINE_SCHEMA = ‘HRPROCS’
 AND ROUTINE_TYPE = ‘P’
 ENFORCED FOR ALL ACCESS ENABLE;

3.3 Row permissions enforcement
In order for a row permission R1 defined on a table T1 to be enforced, the following
criteria must be met:

• Row-level access control must be activated for table T1.
• Row permission R1 must be in the enabled state.
• Table T1 must be accessed within a context where row permissions apply.

3.3.1 Activating row-level access control
Row-level access control must be explicitly activated on a table in order for enabled row
permissions defined on that table to be enforced. The activation of row-level access
control on a table is performed through an extension to the ALTER TABLE SQL
statement as follows:

A practical guide to implementing row and column access control Page 10 of 27

 ALTER TABLE T1
 ACTIVATE ROW ACCESS CONTROL;

The activation of row-level access control on a table results in the automatic creation of a
database-managed row permission that represents a false predicate (“1 = 0”). This
particular row permission is stored in the SYSCAT.CONTROLS catalog view and can be
easily recognized by its schema and name. Its schema is the same as the schema of the
table on which it is defined and its name contains the prefix
SYS_DEFAULT_ROW_PERMISSION. The effect of this database-managed row
permission is that after row-level access control is activated on a table, rows in that table
are not accessible unless some row permission is defined and enabled on that table. This
latter row permission then allows access to some or all of the rows in that table
depending on the criteria specified in its search condition. When more than one single
row permission is defined and enabled, a row access-control search condition is derived
by applying the logical OR operator to the search condition in each of these row
permissions. This derived search condition acts as a filter to the table before any user
specified operations such as predicates, grouping, or ordering are processed.

Similarly, the deactivation of row-level access control on a table is performed through
another extension to the ALTER TABLE SQL statement as follows:

 ALTER TABLE T1
 DEACTIVATE ROW ACCESS CONTROL;

The database security administrator authority (SECADM) is required to either activate or
deactivate row-level access control on a table.

3.3.2 Enabling a row permission
The state of a row permission can be specified at the time when that row permission is
created. It can be explicitly set to enabled or disabled at that time. The default state is
disabled. Additionally, the state of a row permission can be changed to either enabled or
disabled through the new ALTER PERMISSION SQL statement as follows.

 >>--ALTER PERMISSION--permission-name--+--ENABLE--+---><
 '—DISABLE--'

The database security administrator authority (SECADM) is required to either enable or
disable row permissions.

3.3.3 Row permissions application context
Row permissions defined on a table are applied when that table is accessed through the
following SQL statements: SELECT, INSERT, UPDATE, DELETE, and MERGE.

SELECT statement
When the table for which row-level access control is activated is referenced in a SELECT
statement, all enabled row permissions that were created for the table, including the
database-managed row permission, are implicitly applied by the DB2 database manager
to control which rows in the table are accessible. A row access-control search condition is

A practical guide to implementing row and column access control Page 11 of 27

derived by applying the logical OR operator to the search condition in each enabled row
permission. This derived search condition acts as a filter to the table before any user
specified operations such as predicates, grouping, or ordering are processed.

INSERT statement
When you issue an INSERT statement against a table for which row-level access control
is activated, the rules specified in all the enabled row permissions defined on that table
determine whether the row can be inserted. To be inserted, the row must conform to the
enabled row permissions that are defined on the table. A conformant row is a row that, if
inserted, can be retrieved back by using a SELECT statement by the same user. This
behavior is identical to how an insert into a symmetric view works. In other words, you
cannot insert a row that you cannot select.

UPDATE statement
When you issue an UPDATE statement against a table for which row-level access control
is activated, the rules specified in all the enabled row permissions that are defined on that
table determine whether the row can be updated. Enabled row permissions are used as
follows during UPDATE operations:

1. The enabled row permissions filter the set of rows to be updated. In other words,
you cannot update rows that you cannot select.

2. The updated rows (if any) must conform to the enabled row permissions. A
conformant updated row is a row that can be retrieved back using a SELECT
statement by the same user. This is identical to how an update of a symmetric
view works. In other words, you cannot update a row such that you can no
longer select that row.

DELETE statement
When a DELETE statement is issued against a table for which row-level access control is
activated, the rules specified in all the enabled row permissions that are defined on that
table determine which rows can be deleted. The enabled row permissions filter the set of
rows to be deleted. In other words, you cannot delete rows that you cannot select.

MERGE statement
A MERGE statement can be thought of as both an INSERT and an UPDATE operation.
The processing of a MERGE follows the processing of INSERT and UPDATE.

3.4 Column masks enforcement
In order for a column mask M1 defined on column C1 of table T1 to be enforced, the
following criteria must be met:

• Column-level access control must be activated for table T1.
• Column mask M1 must be in the enabled state.
• Table T1 must be accessed within a context where column masks apply.
• Column C1 must be accessed within a context where column masks apply.

A practical guide to implementing row and column access control Page 12 of 27

3.4.1 Activating column-level access control
Column-level access control must be explicitly activated on a table in order for enabled
column masks defined on that table to be enforced. The activation of column-level access
control on a table is performed through an extension to the ALTER TABLE SQL
statement as follows:

 ALTER TABLE T1
 ACTIVATE COLUMN ACCESS CONTROL;

Similarly, the deactivation of column-level access control on a table is performed through
another extension to the ALTER TABLE SQL statement as follows:

 ALTER TABLE T1
 DEACTIVATE COLUMN ACCESS CONTROL;

The database security administrator authority (SECADM) is required to either activate or
deactivate column-level access control on a table.

3.4.2 Enabling a column mask
The state of a column mask can be specified at the time when that column mask is
created. It can be explicitly set to enabled or disabled at that time. The default state is
disabled. Additionally, the state of a column mask can be changed to either enabled or
disabled through the new ALTER PERMISSION SQL statement as follows.

 >>--ALTER MASK--mask-name--+--ENABLE--+---><
 '—DISABLE--'

The database security administrator authority (SECADM) is required to either enable or
disable row permissions.

3.4.3 Column masks application context
Column masks defined on a table are applied when that table is accessed through a
SELECT statement. They determine the values in the final result table. If a column has a
column mask and the column appears in the outermost select list, the column mask is
applied to the column to produce the values for the final result table. If the column does
not appear in the outermost select list but it participates in the final result table, the
column mask is applied to the column in such a way that the masked value is included in
the result table of the materialized table expression or view so that it can be used in the
final result table.

In general, a column mask is applied in the following contexts:

• The outermost SELECT clause or clauses of a SELECT or SELECT INTO
statement, or if the column does not appear in the outermost select list but it
participates in the final result table, the outermost SELECT clause or clauses of
the corresponding materialized table expression or view where the column
appears.

• The outermost SELECT clause or clauses of a SELECT FROM INSERT, SELECT
FROM UPDATE, or SELECT FROM DELETE operation.

A practical guide to implementing row and column access control Page 13 of 27

• The outermost SELECT clause or clauses that are used to derive the new values
for an INSERT, UPDATE, or MERGE statement, or a SET transition-variable
assignment statement. The same applies to a scalar-fullselect expression that
appears in the outermost SELECT clause or clauses of the preceding statements,
the right side of a SET host-variable assignment statement, the VALUES INTO
statement, or the VALUES statement.

The application of column masks does not interfere with the operations of other clauses
within the statement such as the WHERE, GROUP BY, HAVING, SELECT DISTINCT,
and ORDER BY. The rows returned in the final result table remain the same, except that
the values in the resulting rows might be masked by the column masks. As such, if the
masked column also appears in an ORDER BY sort-key, the order is based on the original
column values and the masked values in the final result table might not reflect that order.
Similarly, the masked values might not reflect the uniqueness enforced by SELECT
DISTINCT.

In general, column masks are not applied when the masked column appears in the
following contexts:

• WHERE clauses
• GROUP BY clauses
• HAVING clauses
• SELECT DISTINCT
• ORDER BY clauses

3.5 Application exceptions
It is important that row permissions and column masks do not compromise database
integrity. Consequently, row permissions and column masks are not applied during any
internal operation performed by the database system itself for its own housekeeping.
These internal operations include:

• Populating temporal history tables.
• Populating EXPLAIN tables.
• Populating EVENT monitor tables.
• Refreshing a materialized query table (MQT).
• Populating a staging table.
• Accessing a temporal history table to service an AS OF query.
• Accessing an MQT as part of a query reroute optimization.
• Accessing a table as part of evaluating a row-permission search condition.
• Primary key, unique key, and check constraint scans.
• Referential integrity (RI) scans of a parent or child table.
• Transition variables and transition tables in triggers.

Database integrity can be compromised if row permissions are applied in these contexts.
For example, deleting a parent row typically requires deleting any child rows in a
parent/child RI constraint. If a child row is not visible due to the database system
applying a row permission for its own internal RI scan, that invisibility would result in

A practical guide to implementing row and column access control Page 14 of 27

an orphan row that is a violation of the RI constraint. Similarly, updating a row in a
temporal table implies inserting the old version of that row in the corresponding history
table. If the old version of the row cannot be inserted due to the database system
applying a row permission for this internal insert operation database integrity would be
compromised.

Row permissions and column masks apply to SQL operations only. This restriction
means that row permissions and column masks are not applied for non-SQL utilities
such as LOAD, REORG and RUNSTATS. Row permissions and column masks are
applied for utilities that use SQL such as EXPORT.

4. Managing dependencies and secure objects

Row permissions and column masks definition and enforcement must coexist in
harmony with other key database objects to maintain a balance between security,
integrity, and performance. This section discusses how row permissions and column
masks coexist in harmony with SQL packages, user-defined functions, and triggers.

4.1 SQL packages
Defining row permissions or column masks on a table, or activating row-level or column-
level access control on a table have implications on any SQL package or cached dynamic
SQL sections that depend on that same table. Enabled row permissions and column
masks are enforced by having the SQL compiler incorporate them into the section (that is,
access plan) that it generates for any SQL statement that affects the table on which those
row permissions and column masks are defined and for which row-level or column-level
access control is activated. Consequently, it is paramount that those sections remain in
sync with row permissions and column masks at all times to ensure that SQL access to
the table always follows the security policy. The following actions against a table T1
invalidate any SQL package or cached dynamic SQL sections that depend on that table:

• Activating row-level access control on T1.
• Activating column-level access control on T1.
• Deactivating row-level access control on T1.
• Deactivating column-level access control on T1.

Additionally, the following actions that affect row permissions and column masks
associated with a table for which row-level or column-level access control is activated
invalidate any SQL package or cached dynamic SQL sections that depend on that table:

• Creating an enabled row permission.
• Creating an enabled column mask.
• Dropping an enabled row permission.
• Dropping an enabled column mask.
• Altering the state of a row permission.
• Altering the state of a column mask.

A practical guide to implementing row and column access control Page 15 of 27

Creating row permissions and column masks before activating row-level or column-level
access control for a table is the recommended sequence to avoid multiple invalidations of
packages and dynamic cached statements that reference the table.

4.2 Secure user-defined functions
When a user-defined function (UDF) appears in a predicate that affects a table for which
row-level access control is activated, table data could be leaked through that UDF if the
row permissions defined on that table are evaluated after the UDF predicate. For
example, a user might not be authorized to see some row R1 in the table. By the time the
row permissions are evaluated to discard row R1 for that user, the UDF could have read
that row and done something with it such as sending it to the user in an email. To avoid
such data leakage, the database system always evaluates any UDF predicate affecting a
table for which row level access control is activated after the row permissions defined on
that table are evaluated.

While executing the UDF predicate after the row permissions is appropriate for security
reasons, it might not necessarily be appropriate for performance since forcing the UDF
predicate to execute last limits the optimizer plan-selection options. To provide a balance
between security and performance, a user with database security administrator authority
(SECADM) or a delegate can declare the function as secure if they trust the UDF. This
way, the DB2 database manager trusts the function and does not force it to be evaluated
last. The UDF is evaluated in whatever order the optimizer deems necessary for best
performance.

The CREATE FUNCTION SQL statement now allows declaring a function secure.
Additionally, the new ALTER FUNCTION SQL statement alters the secure attribute of an
existing function.

Example 5
The following SQL statement alters an existing function to mark it secure.

 ALTER FUNCTION Func1
 SECURED;

Changing the secure attribute of a function on which an SQL package or a cached
dynamic SQL section depends might result in the invalidation of that package. This
invalidation happens when that function is used in a predicate that affects a table for
which row-level access control is activated as the secure attribute affects the optimizer
plan selection.

4.3 Secure triggers
Triggers are used to maintain database integrity. To do so, trigger transition variables
and transition tables must not be subject to row permissions defined on a triggering table
for which row-level access control is activated. Otherwise, the trigger would not be able

A practical guide to implementing row and column access control Page 16 of 27

to serve its database integrity purpose. However, not subjecting those transition variables
and transition tables to row permissions defined on the triggering table might open
opportunities for data leakage. For example, an SQL statement in the trigger action might
access sensitive data in the transition variables or transition tables. Consequently, a
balance between security and integrity is needed. To provide such balance, the concept of
a secure trigger is introduced. A user with database security administrator authority
(SECADM) or a delegate can declare the trigger as secure to indicate that it is acceptable
to create such a trigger on a table for which row-level access control is activated.

You can declare a trigger secure with the CREATE TRIGGER SQL statement.
Additionally, you can alter the secure attribute of an existing trigger with the new
ALTER TRIGGER SQL.

Example 6
The following SQL statement alters an existing trigger to mark it secure.

 ALTER TRIGGER Trigg1
 SECURED;

4.4 Automatic data movement
In some situations, data can be moved automatically by the database system from one
table to another as a result of a database operation. For example, a refresh of a
materialized query table (MQT) moves data from the base tables to that MQT. When a
staging table is defined for an MQT, data from the base tables can also be moved to that
staging table.

When row-level or column-level access control is activated for a base table, it is important
to ensure that the sensitive data in that base table does not suddenly lose that protection
when it is automatically moved to another table. To ensure that the protection is not lost,
the database system automatically activates row-level access control on the subject table.
This automatic activation ensures that direct access to the subject table sees no rows until
either a user with database security administrator authority (SECADM) explicitly creates
row permissions that allow access or deactivates the row-level access control on the
subject table. More specifically, the automatic activation of row-level access control for a
subject table happens in these situations:

• The creation of an MQT that is based on one or more tables for which row-level
or column-level access control is activated. The MQT is the subject table.

• The creation of a staging table for an MQT that is based on one or more tables
for which row-level or column-level access control is activated. The staging
table is the subject table.

• The activation of row-level or column-level access control on a base table that is
used in the definition of an MQT. The MQT and the staging table (if one is
defined) are the subject tables.

• The creation of a history table for a temporal table for which row-level or
column-level access control is activated. The history table is the subject table.

A practical guide to implementing row and column access control Page 17 of 27

• The activation of row-level or column-level access control on a temporal table
for which a history table exists. The history table is the subject table.

• The detaching of a partition from a partitioned table for which row-level or
column-level access control is activated. The detached partition is the subject
table.

Do not deactivate row-level access control on the subject table. Rather, define row
permissions that ensure that the data continues to be protected as it was in the source
tables. After all, the data was protected in the source tables for a reason. Additionally, it
is recommended that you follow the same approach for data that you explicitly move
yourself from one table to another to ensure continuous protection as the data moves
from one table to another. This approach also applies to cases where the data moves from
one database to another. The db2look utility can be used to extract row permission
definitions in order to mimic them in another database such as a replicated database.

5. Usage scenario

This scenario presents ExampleBANK, a banking institution with a large customer base
spanning many branches, as a user of row permissions and column masks.
ExampleBANK uses row permissions and column masks to ensure that their database
policies reflect company requirements for privacy and security, as well as management
business objectives. These requirements can be summarized as follows:

• Tellers can see only their own branch customers
• Customer service representative and telemarketers can see all customers
• The account number is accessible by customer service representatives only when

they are using the account update application. This application is identified
through stored procedure ACTPROCS.PROCUPD. Otherwise, only the last four
digits of the account number are visible. The rest of the digits are replaced with
X.

Customer information is stored in a table called CUSTOMER and bank employee
information is stored in a table called INTERNAL_INFO. The SQL statements for
creating these two tables follow:

 CREATE TABLE EXAMPLEBANK.CUSTOMER (
 ACCOUNT VARCHAR(19),
 NAME VARCHAR(20),
 INCOME INTGER,
 BRANCH CHAR(1)
);

 CREATE TABLE EXAMPLEBANK.INTERNAL_INFO (
 HOME_BRANCH CHAR(1),
 EMP_ID VARCHAR(10)
);

Tellers, customer service representatives, and telemarketers are members in database
roles TELLER, CSR, and TELEMARKETER respectively. SELECT privilege to the

A practical guide to implementing row and column access control Page 18 of 27

CUSTOMER table is granted to these three roles. Users Amy, Pat, and Haytham are a
teller, a customer service representative, and a telemarketer respectively. Additionally,
EXECUTE privilege on procedure ACTPROCS.PROCUPD is granted to the CSR role. The
SQL statements for setting up these roles are as follow:

 CREATE ROLE TELLER;
 GRANT SELECT ON EXAMPLEBANK.CUSTOMER TO ROLE TELLER;
 GRANT ROLE TELLER TO USER AMY;

 CREATE ROLE CSR;

GRANT SELECT ON EXAMPLEBANK.CUSTOMER TO ROLE CSR;
GRANT EXECUTE ON PROCEDURE ACTPROCS.PROCUPD TO ROLE CSR;

 GRANT ROLE CSR TO USER PAT;

 CREATE ROLE TELEMARKETER;
 GRANT SELECT ON EXAMPLEBANK.CUSTOMER TO ROLE TELEMARKETER;
 GRANT ROLE TELEMARKETER TO USER HAYTHAM;

We assume that tables CUSTOMER and INTERNAL_INFO are populated and their
content is as follows:

ACCOUNT NAME INCOME BRANCH
1111-2222-3333-4444 Alice 22,000 A
2222-3333-4444-5555 Bob 71,000 B
3333-4444-5555-6666 Carl 123,000 B
4444-5555-6666-7777 David 172,000 C

 Table 1: CUSTOMER table

EMP_ID HOME_BRANCH
Amy A
Pat B
Haytham C

 Table 2: INTERNAL_INFO table

To implement the first rule that states that tellers can see only customers of the teller’s
own branch, a user with database security administrator authority (SECADM) creates the
following row permission object. The user with SECADM authority uses the
VERIFY_ROLE_FOR_USER function to ensure that the user is a member of the TELLER
role.

 CREATE PERMISSION EXAMPLEBANK.TELLER_ROW_ACCESS
 ON EXAMPLEBANK.CUSTOMER
 FOR ROWS WHERE
 VERIFY_ROLE_FOR_USER (USER, ‘TELLER’) = 1 AND
 BRANCH = (SELECT HOME_BRANCH FROM EXAMPLEBANK.INTERNAL_INFO
 WHERE EMP_ID = USER)
 ENFORCED FOR ALL ACCESS
 ENABLE;

To implement the second rule that states that customer service representatives and
telemarketers can see all customers, a user with database security administrator authority
(SECADM) creates the following row permission object. The user with SECADM

A practical guide to implementing row and column access control Page 19 of 27

authority uses the VERIFY_ROLE_FOR_USER function to ensure that the user is a
member of the CSR or TELEMARKETER roles.

 CRE LEBANK.CSR_ROW_ACCESS ATE PERMISSION EXAMP
 ON EXAMPLEBANK.CUSTOMER
 FOR ROWS WHERE
 VERIFY_ROLE_FOR_USER (USER, ‘CSR’) = 1 OR
 VERIFY_ROLE_FOR_USER (USER, ‘TELEMARKETER’) = 1
 ENFORCED FOR ALL ACCESS
 ENABLE;

To implement the third rule that states that the account number column can be accessed
only by customer service representatives and only when they are using the account
update application, a user with database security administrator authority (SECADM)
creates the following column mask object. The user with SECADM authority uses the
VERIFY_ROLE_FOR_USER function to ensure that the user is a member of the CSR role
and the routine session variables to ensure that the user is using the account update
application.

 CREATE MASK EXAMPLEBANK.CSR_COLUMN_ACCESS
 ON EXAMPLEBANK.CUSTOMER
 FOR COLUMN account RETURN
 CASE WHEN (VERIFY_ROLE_FOR_USER(SESSION_USER, ‘CSR’)= 1
 AND ROUTINE_SPECIFIC_NAME = ‘PROCUPD’
 AND ROUTINE_SCHEMA = ‘ACTPROCS’
 AND ROUTINE_TYPE = ‘P’)
 THEN account
 ELSE 'xxxx-xxxx-xxxx-‘ || SUBSTR(ACCOUNT,13,4)
 END
 ENABLE;

Now that both rules are implemented, the user with database security administrator
authority (SECADM) must activate row-level access control and column-level access
control on the CUSTOMER table so that these three rules are enforced:

 ALTER TABLE EXAMPLEBANK.CUSTOMER
 ACTIVATE ROW ACCESS CONTROL
 ACTIVATE COLUMN ACCESS CONTROL;

Now that row-level access control and column-level access control are both activated,
any SQL access to the CUSTOMER table automatically respects the three rules. For
example, when Amy issues SELECT * FROM EXAMPLEBANK.CUSTOMER, she can see
only rows for customers from branch A, which is where Amy works. The account
number is masked out.

ACCOUNT NAME INCOME BRANCH
XXXX-XXXX-XXXX-4444 Alice 22,000 A

 Table 3: Output for user Amy

However, when Haytham issues the exact same query as Amy, he can see all the rows in
the table which is in accordance with the second rule (that is, Haytham is a telemarketer).
The account number is still masked out.

A practical guide to implementing row and column access control Page 20 of 27

ACCOUNT NAME INCOME BRANCH
XXXX-XXXX-XXXX-4444 Alice 22,000 A
XXXX-XXXX-XXXX-5555 Bob 71,000 B
XXXX-XXXX-XXXX-6666 Carl 123,000 B
XXXX-XXXX-XXXX-7777 David 172,000 C

 Table 4: Output for user Haytham

 Lastly, when the same query is issued by user Pat through the account update
application, all the rows are returned and the account number is not masked out.

ACCOUNT NAME INCOME BRANCH
1111-2222-3333-4444 Alice 22,000 A
2222-3333-4444-5555 Bob 71,000 B
3333-4444-5555-6666 Carl 123,000 B
4444-5555-6666-7777 David 172,000 C

 Table 5: Output for user Pat using the account update application

Any other user who is not authorized by the rules defined on the CUSTOMER table sees
no rows when they attempt to access that table.

6. Best practices

This section outlines a set of recommendations to follow when implementing row-level
access control by using the new row permission concept.

6.1 Dependencies
Creating, altering, and dropping row permissions or column masks as well as the
activation and deactivation of row-level access control or column-level access control on
a table have a consequence on existing SQL packages and dynamic cached SQL
statements. To avoid multiple invalidations of these objects, create row permissions and
column masks before activating row-level access control and column-level access control
on the table for which those row permissions and column masks were created. Ideally,
create, verify, and test the enforcement of row permissions and column masks on a test
system, then use the db2look tool to extract the row permission and column masks
definitions from the test system and apply them to the production system.

6.2 Data movement
Data can be moved from a source table to a target table as part of its lifecycle. When row-
level access control or column-level access control is activated for the source table, take
care to ensure that the sensitive data in that table does not suddenly lose that protection
when it is moved to the target table. When this movement is done automatically by the
database system, the database system itself automatically activates row-level access
control on the target table. Do not deactivate row-level access control on this target table.

A practical guide to implementing row and column access control Page 21 of 27

Rather, define row permissions and column masks to ensure that the data continues to be
protected as it was in the source table. Additionally, follow the same approach for data
that you explicitly move yourself from one table to another to ensure continuous
protection. This also applies to cases where the data moves from one database to another.
Use the db2look utility to extract row permission and column mask definitions in order
to mimic them in another database such as a replicated database.

6.3 Three-tier application models
In a three-tier application model, a generic user ID is typically used to access the database
for all requests by all users. Using a generic ID creates a challenge for database security
implementations since all the database sees for access control and auditing purposes is
that single generic user ID. For an effective database security implementation in three-tier
environments, use row permissions with trusted context database objects. With trusted
contexts, a mid-tier application can assert the user identity to the database so that it is
that user identity that is used for access control and auditing purposes. Trusted contexts
are supported by IBM WebSphere Application Server and IBM Cognos software. In those
environments, leveraging trusted contexts is a configuration setting on the application
server side. For more information about trusted contexts, see the trusted contexts paper
listed in the Further reading section.

Another potential security issue in three-tier application models is data caching. Some
mid-tier applications might cache a query result and reuse that result to service the same
query in the future. This caching is problematic when the user identity is not taken into
account when reusing the query result as different users might not necessarily have
access to the same information in the database. Even when the user identity is taken into
account, data caching could still be problematic if the query results cache is not kept in
sync with changes to row permissions and column masks in the database. Carefully think
through any data caching at the mid-tier layer when designing three-tier applications.

6.4 Performance
What is the performance impact of activating row level access control or column level
access control on a table? There is no easy answer to this question as the performance
varies depending on the row permissions and column masks associated with the table.
For example, suppose that you have a simple table T1 and you create a row permission
that represents a simple predicate like A = 5. Now, when you activate row-level access
control on T1, a SELECT statement on T1 would run internally with the additional
predicate A =5, which could actually be faster than when row-level access control is
deactivated. So, in this case the performance improves with row-level access control
active. However, if the predicate was some complex expression involving some user-
defined functions, performance is reduced. So, performance depends on the nature of the
row permissions defined on the table.

A better comparison to make is to compare the performance of row permissions and
column masks to enforcing the same security rules in an alternative way such as
enforcing them in the application. Consider the following recommendations regardless of
how you determine the performance impact:

A practical guide to implementing row and column access control Page 22 of 27

• User-defined function: Secure user-defined functions do not limit the optimizer

search space. Thus, a user with database security administrator authority
(SECADM) or their delegate should mark such functions secure if they are
trusted.

• Objects in a row permission search condition or in a column mask case
expression: Treat these objects (such as tables, indexes, and functions) following
the usual performance best practices. For example, run the RUNSTATS
command regularly on tables referenced in the search condition or case
expression so that the statistics are up to date. Similarly, create appropriate
indexes on such tables and run REORG operations on those tables and indexes
should be done as required.

6.5 Problem determination
Often, database administrators are required to examine the access plans generated by the
optimizer to investigate performance issues. They typically use the EXPLAIN facility to
perform this investigation. By default, the output of the EXPLAIN facility represents the
optimized statement, including any applicable row permissions and column masks
associated with tables for which row-level access control or column-level access control is
activated. In situations where you want to examine the optimized statements without
any applicable row permissions and column masks, use the new NORCAC option of the
EXPLAIN facility. When this new explain mode is set, the EXPLAIN facility explains the
access plan as if row permissions and column masks were not present.

Additionally, database administrators might sometimes need to know what row
permissions and column masks are applicable for a particular table or a particular SQL
statement. This information can be easily derived from the catalog tables. For example, to
determine what row permissions are applicable for the EXAMPLEBANK.CUSTOMER
table, the following SQL query can be used:

 SELECT CONTROLSCHEMA, CONTROLNAME, RULETEXT
 FROM SYSCAT.CONTROLS WHERE
 TABSCHEMA = ‘EXAMPLEBANK’ AND
 TABNAME = ‘CUSTOMER’ AND
 CONTROLTYPE = ‘R’ AND
 ENABLE = ‘Y’

You can determine what row permissions and column masks are applicable for a
particular SQL statement by first determining what tables are involved in the statement
and then determining what row permissions and column masks apply for each table.

A practical guide to implementing row and column access control Page 23 of 27

7. Conclusion

Row permissions and column masks are new powerful database security features that
address the shortcomings of traditional row and column access control methods. Row
permissions and column masks are based on SQL expressions and therefore provide
greater flexibility. They are also transparent to applications and provide data-centric
security that is managed solely by users with database security administrator authority
(SECADM). Row permissions and column masks can be applied to meet the security and
privacy requirements that arise in several areas, including regulatory compliance, multi-
tenancy, database hosting, and data consolidation. They should be an important part of
any database security strategy.

A practical guide to implementing row and column access control Page 24 of 27

Further reading
• DB2 Trusted Contexts: Making Security and Compliance Easier, IDUG Solutions

Journal, Volume 14, Number 2, 2007

• A Multi-Purpose Implementation of Mandatory Access-control in Relational
Database Management Systems, in Proceedings of the international conference
on Very Large Databases (VLDB), 2004

• Information Management best practices:
http://www.ibm.com/developerworks/data/bestpractices/

• DB2 for Linux, UNIX, and Windows best practices:
http://www.ibm.com/developerworks/data/bestpractices/db2luw/

http://www.ibm.com/developerworks/data/bestpractices/
http://www.ibm.com/developerworks/data/bestpractices/db2luw/

A practical guide to implementing row and column access control Page 25 of 27

Reviewers
Tim Vincent

IBM Fellow
 VP and CTO, Information Management

Paul Bird
Senior Technical Staff Member

 Optim & DB2 for Linux, UNIX, and Windows

Eric Alton
Software Developer

 DB2 for Linux, UNIX, and Windows

Mihai Iacob
Software Developer

 DB2 for Linux, UNIX, and Windows

Greg Stager
Software Developer

 DB2 for Linux, UNIX, and Windows

Yu-Ping Ding
Software Developer

 DB2 for Linux, UNIX, and Windows

Harley Boughton
Software Developer

 DB2 for Linux, UNIX, and Windows

Mokhtar Kandil
Software Development Manager
DB2 for Linux, UNIX, and Windows

Paolo Cirone
Information Developer
DB2 for Linux, UNIX, and Windows

Michael Tiefenbacher
Data Management Specialist
LIS.TEC GmbH

A practical guide to implementing row and column access control Page 26 of 27

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties
regarding the accuracy, reliability or serviceability of any information or recommendations
provided in this publication, or with respect to any results that may be obtained by the use of
the information or observance of any recommendations provided herein. The information
contained in this document has not been submitted to any formal IBM test and is distributed
AS IS. The use of this information or the implementation of any recommendations or
techniques herein is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Anyone attempting to adapt
these techniques to their own environment do so at their own risk.

This document and the information contained herein may be used solely in connection with
the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web sites is
at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific
environment.

A practical guide to implementing row and column access control Page 27 of 27

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2012. All Rights Reserved.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and
distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may
also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

	Further reading
	Reviewers

