IBM® Smart Analytics System®

Best practices

Query optimization in a data
warehouse

Gregor Meyer
Detlev Kuntze
Toni Bollinger

Sascha Laudien

IBM Data Warehousing Center of

Excellence
Published: June 2011

Query optimization best practices Page 2

Table of contents
Executive SUMMATYccoveeernnenrensnensensnensecsensecssensecsseesaeesd
TN OAUCH ON . aueeecieeereeeeeeeeeneseeesssssessscsssssssssscssssssssssssssssssssae D

Optimization considerations for data warehouse

Systems oooooooooooooooooooooo0ooo000.0o.ooo.oooooooooooooo00.ooo.o00.000.000.000.000.0005

Use the computing power of database partitionsccccccceviiinnnne. 5
Determine how to partition the database.............cccccccoviiiiiiiinnne. 6
Use collocation as a major driver for choosing distribution keys........... 6
Make the database queries faster by avoiding indexes...............c.cc.c....... 9
Database configurationsccieennenncnecnecsncnncneen 10
Physical data modelingcccceueeuevivcnensensnsensecsucnncne 11
FOreign Keys. ..o 11
Verifying that referential constraints are validcccccoeoeennnnnecciccneenene. 12

Benefits of foreign Keys ... 13
COMPTESSION ...t 14
Table partitionNing..........ccccoviviniiiiiiii e 15
Multidimensional clusteringcccccoeveeiviiiniiiiiinicicece, 16
Materialized query tables (MQTS).......cccceeuiiiinniiiiiiiiiiccicce, 17
Functional dependencies ... 18
Guidelines for defining functional dependencies................oooocoeerresoocerrsssroe 19

Benefits of functional dependencies...........cccccevvreucccccininnnnreeeeeeceeeaes 20

Gathering statistics for optimization...........cccceveeeeeeen. 22

Statistical VIEWS ..ot 25
TOOIS s 29
Design AdVISOT.......c.cucuiuiiiiiiiiiiiiicc s 29
Evaluating candidate indexesc.ccccccoiiviviiiiinniniciiccas 29
Explain plans with actual cardinalities...........ccccoeiiiiiiiniinns 30

Using explain plans to identify potential problems..31

Estimated cardinality.........cccocooeiiiiiiiiiiicc 32

Optimizing the operators in an execution plan.........c.cccccecccvveciniiennne. 36

Table QUEUES ... 36

Nested LoOP JOINScoviuiiiieiieicctce e 39

Random 100KUPS ..o 40

METEE JOINS ...voviiiiiiictc s 42

HASH JOINS ...t 43

INdeX COVETAZE.....ooviiiiiiiii s 44

SOTES ..ttt 45

Best practicesueniiieniiniiniiniiniiniinicennenenneneene 46

L€70) 1 T4l 11 153 102 o OO 48
Appendix A. Optim™ Query Tuner for DB2® for

Linux®, UNIX®, and Windows®cccceeeeeeerrrvnnnnennenes 48

Further readingccoveveveversecnncsucsiscncnsensensensecsucncnn 49

COoNtIIDULOTS. ... 50

INOLICES ueeurritretiirintiitinicnenrcnenrenesnesesnessesnessesssessesssens 51

TTAACINATS e e e e e et e e e e e e ee e eereeeeeseeaenenenees 52

Query optimization best practices Page 4

Executive summary

In large data warehouse systems, it is critical to optimize query workloads to maximize
system utilization and minimize processing times. This paper describes techniques for
the optimization of data warehouse system query workloads. The scenarios focus on IBM
Smart Analytics Systems where DB2® software manages multiple database partitions in
a cluster. The scenarios describe optimization methods that can help improve
performance in a short time. The guidelines in this document might not apply to
transactional applications.

The two main tasks for query optimization are as follows:

1. Provide the DB2 optimizer with rich statistical information. The DB2 optimizer uses
the statistical information to perform its analysis and find a good execution plan.
This paper describes best practices for gathering statistics.

2. Determine the best query execution plan. If a query needs further tuning, you must
inspect the explain plan for the query. This paper provides a list of patterns to look
for in explain plans. Each pattern is paired with recommended actions.

It is assumed that the reader of this document has a basic understanding of the design
and administration of data warehouse databases with DB2 products.

Query optimization best practices Page 5

Introduction

The workloads on data warehouse systems can range from complex analytical queries
processing terabytes of data to many short tactical queries requiring sub second response
time. Updates to large volumes of data might have to be processed in parallel. Queries
can be ad hoc, that is, the access pattern is not known in advance and might vary
significantly from one query to the next. This paper examines some characteristics of data
warehouse workloads in more detail and describes how the IBM Smart Analytics System
design is optimized for these workloads.

The DB2 query compiler and its optimizer are a key component for executing each SQL
statement efficiently. The best practices in this document help you get optimal execution
plans.

This paper first outlines a summary of guidelines for defining the physical data model
for the database and partitioning the data. However, the main focus of this document is
on the collection of statistics and the analysis of query plans.

The DB2 compiler uses a cost-based optimizer. Cost estimates rely on statistics about the
data. Therefore it is important to gather rich statistics. This paper provides guidelines for
collecting statistics with the RUNSTATS command. These guidelines are complemented
by recommendations for defining foreign keys and functional dependency constraints
that help the optimizer better understand the data model.

If a query or data modification statement runs slower than expected, the execution plan
that the compiler creates can help identify the operations that need further optimization.
This paper describes how to extract and analyze execution plans that contain important
information. This paper also provides a series of critical patterns that you might see in an
execution plan. Each pattern has an associated action that helps in improving response
times.

Optimization considerations for data warehouse
systems

Use the computing power of database partitions

Transactional workloads typically comprise many short reads and updates, mostly in sub
second response time. Although the database might be large, a single transaction usually
processes only a small amount of data. Data warehousing query workloads consist of
queries that often process and aggregate large amounts of data. Queries tend to be more
complex, for example, they can contain more joins.

Query optimization best practices Page 6

These differences lead to the following recommendations:

e Distribute data across database partitions to use parallelism for tasks that need a
significant amount of resources.

e Collocate data that is joined together, that is, store it in the same database partition.
Transmitting data between partitions can be expensive in terms of network and other
resources.

Determine how to partition the database

In this section, partitioning refers to database partitioning, that is, distributing data across
the database partitions using hashing. Practical advice is to keep small tables on a single
database partition, for example, on the administration node of the IBM Smart Analytics
System. The bigger tables should be partitioned across the data nodes.

Recommendation: Use the following guidelines as a starting point:
e Partition tables with more than 10,000,000 rows.

e Keep tables with 10, 000 - 10,000,000 rows on the administration node, without
partitioning them. If these tables are frequently used, replicate them across the
partitions on the data nodes.

e Keep tables with up to 10,000 rows on the administration node, without partitioning
them. There is no need to replicate these tables because they can be sent quickly
across the network at query run time.

Use collocation as a major driver for choosing distribution
keys

What is a good distribution key for partitioning? A distribution key should have the
following properties:

e It should distribute data and workload evenly across partitions.
e Itshould collocate rows that are joined together.

The first property addresses the fact that the run time of a query depends on the slowest
partition. This partition is usually the one that has to process more data than others. Even
distribution of data ensures that no partition contains much more data than others.

The second property is important because DB2 partitioning uses a shared-nothing
architecture to scale out. If possible, collocate joined data on the same partition.
Otherwise, a large amount of data might have to be sent across the network, and that
might slow down the query and limit scalability. This property is true for virtually any
database system that uses a shared-nothing architecture for scalability. Collocation is less
critical for smaller databases where all partitions can be kept on the same server and
where database communication does not need a network.

Query optimization best practices Page 7

In larger data warehouse systems, collocating data from different tables can be more
important for performance than finding the optimal even distribution of data within
tables. To balance the requirements for even distribution and collocation, follow this
procedure for defining distribution keys:

1. Determine the biggest tables.

2. Check the data model or queries and locate equijoins between the large tables. In a
simple star schema, an equijoin might be the join between the fact table and a
dimension table.

3. Check whether some of the joined columns can be used for distribution, that is, if
they distribute data well. Keep the number of columns as small as possible. Using a
single column is best in most cases. A primary key must include the distribution key,
but there is no need to use all primary key columns for distribution.

4. Optional: Distribute smaller tables if doing so enables collocation. For example,
distribute a STORE table by using its primary key if you distribute fact tables by
using the STORE key.

5. Optional: Add redundant columns to fact tables. For example, add a STORE column
to a table that contains itemized sales transactions even if the market basket identifier
alone might be a primary key. Adding redundant columns would enable a collocated
join to other tables that are distributed by using the STORE column.

6. For remaining tables, choose a distribution key that minimizes the skew in the
distribution of data. Primary keys or columns with many different values are good
candidates. A column should not have many rows containing NULL or some other
default value.

It is usually not possible to achieve collocation in all cases. In many cases, an inability to
collocate data is not a problem. Focus on the biggest tables and the joins that are used
most often or include many rows. For these tables, it is acceptable if collocation increases
the distribution skew by 5 - 10%.

A collocated join requires tables to be in the same partitioning group, even if the tables
are in different table spaces.
In the special case of a multi-dimension model such as a star schema with one fact table

and multiple dimensions, the procedure for defining distribution keys is simple:

1. Partition the fact table and the biggest dimension by specifying the dimension key as
the distribution key. Choose another large dimension if the distribution is skewed.

2. Replicate the other dimension tables.

Query optimization best practices Page 8

The previous procedures require tests to determine whether data is distributed evenly.
There are two simple methods for checking this:

e Count the number of rows per partition, as shown in the following example:

-- Actual nunmber of row counts per partition
SELECT DBPARTI TI ONNUM KEY) , COUNT_BI (*)

FROM THETABLE TABLESAMPLE SYSTEM 10)

GROUP BY ROLLUP(DBPARTI TI ONNUM KEY)) ORDER BY 2;

e Check the space allocation by using the SYSIBMADM.ADMINTABINFO view, as
shown in the following example:

-- Space allocation per partition
SELECT DBPARTI TI ONNUM SUM DATA OBJECT L_SI ZE) SI ZE_KB
FROM SYSI BMADM ADM NTABI NFO
WHERE (TABSCHEMA, TABNAME) = (' THESCHEMA' , ' THETABLE')
GROUP BY ROLLUP(DBPARTI TI ONNUM) ORDER BY 2;

You can use the information that you collect to determine data distribution, as follows:

e The size of partitions, which is based on space allocation, is relevant because DB2
software fetches full pages or extents rather than single rows. The allocated space is
an indicator of the I/O load on the partition, and the row count is an indicator of the
CPU load.

o Compare the size of the biggest partition with the average size of all partitions. A
table is balanced if the size of each partition is close to the average size. The largest
partition, however, limits the performance. For example, if a partition is two times
larger than the average, a table scan might take twice the time of a table scan on the
same data in a perfectly balanced table. A partition with much less data than average
does not cause performance problems.

e Partitions using 10 - 20% more space than average and partitions using 10 — 20%
more rows that average are normal. The table samples should not be too small
because the differences in row counts might become less reliable. For example, with a
5% sample, some partitions might report 10% more rows than other partitions even if
the table is balanced.

You can test the distribution of data with a new partitioning key by using a procedure
such as the following one:

Query optimization best practices Page 9

-- Create a table with the new distribution key

CREATE TABLE TEMP. THETABLE_TESTKEY AS
(SELECT NEWDI STKEY FROM THETABLE TABLESAMPLE SYSTEM 10))
DATA | NI TI ALLY DEFERRED REFRESH DEFERRED
DI STRI BUTE BY HASH (NEWDI STKEY) | N THETABLESPACE;

COW T;

UPDATE COMIVAND OPTI ONS USI NG C OFF;

ALTER TABLE TABLE TEMP. THETABLE TESTKEY ACTI VATE NOT LOGGED
I NI TI ALLY;

REFRESH TABLE TEMP. THETABLE_TESTKEY,;

-- Then check row counts per partition.

When the number of rows per partition is about the same, the amount of data that
queries fetch per partition might still vary because the selectivity of filter conditions
might vary by partition. You can check the number of rows that are processed per
partition by creating query plans with section actuals. For details, see the “Explain plans
with actual cardinalities” section.

Make the database queries faster by avoiding indexes

SQL statements in short queries often use filter conditions that are selective, that is, they
return few rows. The cost of table scans can be prohibitive. Regular row-based indexes
address this workload well.

In data warehouse environments, however, queries tend to process larger portions of
tables. Regular indexes are useful in data warehouse databases also, but there are
important caveats:

¢ Index maintenance can take a considerable amount of time in large updates.

¢ Indexes encourage the query compiler to use nested loop joins with index lookups.
Without the index, the optimizer might choose a hash join that uses a table scan,
which can be faster when many lookups are needed per query.

If queries filter on a certain column, run the queries without any changes to see whether
the queries are fast enough. If they are not fast enough, follow these steps:

1. Consider using table partitioning. If table partitioning is applicable, create no more
than 200 hundred partitions per table.

2. Consider using multidimensional clustering (MDC). Do not make the dimensions too
fine grained, because this can waste space in MDC blocks that are not full. If more
than 20% of space is unused, make the dimensions more coarse grained by using
generated columns.

Query optimization best practices Page 10

3. If the previous two techniques are not appropriate or do not sufficiently improve
queries performance, create a regular index.

Database configurations

IBM Smart Analytics System software comes with many predefined configurations. This
section provides information about some additional configurations that are generally
useful when you are optimizing you system.

Recommendation: For simplified testing make MQTs eligible without checking the
time of their last REFRESH.

DB2 UPDATE DB CFG FOR THEDB USI NG DFT_REFRESH AGE ANY |

Subsequent sections describe how to use the explain tool and Design Advisor to assist in
optimizing queries. These tools need several tables. Create the tables in the
SYSTOOLSPACE table space by using the following stored procedure:

CALL SYSPROC. SYSI NSTALLOBJECTS(' EXPLAIN ,' C ,'"', CURRENT SCHEMR)
-- Uses SYSTOOLSPACE by default because the third paraneter is
not specified

The explain tool adds rows to the explain tables but does not delete old entries. You can
clean up the tables with a simple DELETE statement, as shown in the following example:

DELETE FROM EXPLAI N_| NSTANCE WHERE EXPLAI N_TI ME < CURRENT DATE -
2 MONTHS;

-- Cleans up other explain tables automatically by using foreign
keys

The compiler might take several seconds to optimize a query before the execution starts.
The db2bat ch command with the -i conpl et e parameter reports compile times, that
is, prepare times. If they are too long, for example, longer than a fraction of the total run
time, consider reducing the effort spent by the optimizer by issuing the following
command:

DB2SET DB2_REDUCED OPTI M ZATI ONEYES |

There are situations where the compile time for complex queries might be very short, for
example, less than 0.01 second, and it doesn’t always mean that the optimizer reduced its
optimizing efforts. This is the case for example if a query is in the package cache.

If there are many SQL statements that are almost identical except for the values of
literals, the statement concentrator might reduce overall compile time. This method can
work well in transactional databases but it is not recommended for data warehousing,

Query optimization best practices Page 11

where distribution statistics are relevant. Queries with different constants might need
different query plans.

Recommendation: Do not use the statement concentrator in a data warehouse system.

Physical data modeling

This section highlights some key recommendations that are important for physical
modeling in data warehouse databases.

For more general information about physical data modeling, see Best Practices: Data Life
Cycle Management:
http://www.ibm.com/developerworks/data/bestpractices/lifecyclemanagement/

For more details on table partitioning and MDC, see Database Partitioning, Table
Partitioning, and MDC: http://www.redbooks.ibm.com/abstracts/sg247467.html

For information about data compression, see Best Practices: Deep Compression:
http://www.ibm.com/developerworks/data/bestpractices/deepcompression/.

Recommendations:

e Define keys of dimension tables as not null, even if you do not formally set the keys
as primary keys. It is a good idea to also define all joined columns as not null. You
can define columns as not null easily, as shown in the following example:

| ALTER TABLE THETABLE ALTER COLUMN THECOL SET NOT NULL H

If the query compiler recognizes that a column cannot have null values, more
optimizations become possible.

e Use the same data type, length, and precision for pairs of columns that you use in
equijoins. Otherwise, the compiler does not consider hash joins.

e Define primary keys for all dimension tables. Define primary keys for fact tables only
if needed.

e Before defining a primary key, create a corresponding unique index with a
declarative name. This avoids lengthy names for system-generated indexes.

Foreign keys

A foreign key relationship is a relationship between two tables where a set of columns in
one of the tables is a primary key and all values of the corresponding columns in the
other table occur in the key columns. Such constraints that are defined by foreign keys
are sometimes called referential constraints. In a data warehousing environment, foreign
key relationships exist typically between the primary key columns of dimension tables
and the corresponding foreign key columns of the fact tables. In a normalized data

Query optimization best practices Page 12

model, the foreign key relationships occur as references to lookup tables. They can also
occur between fact tables. For example, a table with itemized sales data might have a
foreign key referencing a market basket table that has one entry per transaction.

Recommendation: If the database applications ensure the consistency of foreign keys,
declare the foreign keys as NOT ENFORCED ENABLE QUERY OPTIMIZATION.

The main purpose of foreign keys is to guarantee the integrity of a database. In the data
warehouse context, foreign key relationships are generally ensured by the applications
that write data into the database. Verifying foreign key relationships again in the
database causes unnecessary performance overhead. If the process that writes the data
guarantees that the foreign keys are valid, define the relationship in the database as NOT
ENFORCED.

Foreign keys can give the DB2 optimizer valuable hints as the estimated cardinality gets
more precise and redundant joins can be eliminated. Include the ENABLE QUERY
OPTIMIZATION option in the SQL declaration of the foreign key. This option is the
default.

You must define the referenced column as primary key, or it must have a UNIQUE
constraint. You must also define the column as NOT NULL, and it must have a unique
index.

The following example shows the ALTER TABLE statement for creating a foreign key
with the options described previously. The statement specifies that all values of the
PROD_ID column of the SALES_FACT table occur in the PROD_ID column of the
PRODUCT_DIM table.

CREATE UNI QUE | NDEX PRODUCT_DIM_PROD | D ON PRODUCT_DI M PROD_I D) ;
ALTER TABLE PRODUCT_DI M ADD PRI MARY KEY (PROD_I D);

ALTER TABLE SALES_FACT
ADD CONSTRAI NT FK__PROD_| D FOREI GN KEY (PROD_I D)
REFERENCES PRCDUCT DI M (PRCD_I D)
NOT ENFORCED
ENABLE QUERY CPTI M ZATI ON;

Foreign keys give the DB2 optimizer valuable information for simplifying queries.
Because there is no performance overhead if you specify them with the NOT
ENFORCED option, you should define all foreign key relationships in a database. This
assumes that the keys are consistent, that is, they have been checked before the database
is updated. If the foreign keys are not consistent, queries might produce incorrect results.

Verifying that referential constraints are valid

If you want to check the validity of a referential constraint, you can temporarily change
the foreign key constraint to ENFORCED. For example, you can set the foreign key
FK__PROD_ID to ENFORCED and then reset it to NOT ENFORCED by issuing the
following two statements:

Query optimization best practices Page 13

ALTER TABLE SALES FACT ALTER FOREI GN KEY FK__PROD | D ENFORCED;
-- Check for errors returned by previous statenent

ALTER TABLE SALES FACT ALTER FOREI GN KEY FK__PRCD | D NOT
ENFORCED,;

If the first statement ends successfully, the foreign key relationship is valid.

You can check keys that violate the constraint by using an SQL query, as shown in the
following example. Before executing such a query, you must temporarily disable query
optimization for the constraint because the DB2 optimizer might use query optimization
to simplify the query in such a way that it does not return any rows.

ALTER TABLE SALES_FACT ALTER FOREI GN KEY FK__PRCD_| D DI SABLE
QUERY OPTI M ZATI ON;

SELECT DI STI NCT ppd. PROD | D
FROM SALES_FACT ppd LEFT OQUTER JO N PRODUCT p
ON ppd. PROD_ID = p. PROD_ID
VWHERE p. PROD_ID I'S NULL;

ALTER TABLE SALES FACT ALTER FOREI GN KEY FK__PRCD | D ENABLE QUERY
OPTI M ZATI ON,

Benefits of foreign keys

Foreign keys help the DB2 database manager to detect and remove redundant joins

Assume that a reporting tool submitted a query that joins a fact table with all its
dimension tables and that the SELECT clause contains only columns from a subset of the
dimension tables. In such a case, the DB2 database manager might execute joins with
tables that do not contribute to the result of the query. With referential constraints
between the fact and the dimension tables, however, the DB2 database manager
recognizes that the joins with the unused dimension tables do not add, remove, or alter
the values of any rows in the result set. Therefore, the joins can be removed from the

query.

The following example illustrates how an unnecessary join can be removed. Figure 1
shows a representation of a star schema with PRCHS_PRFL_DTL (Purchase Profile
Details) as the fact table and STORE, PRODUCT, and TIME as the dimension tables.

[STORE [TIME T PRODUCT

F= PRCHS_PRFL_DTL

Figure 1. Sample star schema data model

Query optimization best practices Page 14

The referential constraints are as follows:

e PRCHS_PRFL_DTL(PD_ID) references PRODUCT(PD_ID)

e PRCHS_PRFL_DTL(TIME_ID) references TIME(TIME_ID)

e PRCHS_PRFL_DTL(STORE_ID) references STORE(STORE_ID)

A query might select columns of the PRCHS_PRFL_DTL fact table and PRODUCT and
TIME dimension tables but no columns of the STORE dimension table, as shown in the
following example:

-- Oiginal query
SELECT PD_SUB_DEPT_I D,
COUNT(*) AS NBTRANS,
SUM NUMBER_COF_I TEMS) AS SUM NB_I TEMS,
SUM SALES AMOUNT) AS SUM SALES AMOUNT
FROM TI ME T, PRODUCT P, STORE S, PRCHS PRFL_DTL PPD
VWHERE PPD. PD_ID = P.PD_ID AND PPD. TIME_ID = T. TI ME_I D AND
PPD. STORE_ID = S. STORE_ID AND P. PD DEPT_ID = 8
AND T. CDR_YR=2008
GROUP BY P. PD_SUB_DEPT_I D

The join predicate ppd. STORE_| D = s. STORE_| Dis true in all cases, and there is
exactly one row in the STORE table that matches a row in the PRCHS_PRFL_DTL table.
The join can be eliminated because the query does not use any other column from the
STORE table. Because the foreign key constraint is declared in the database, the compiler
recognizes that the join with the STORE table is redundant and eliminates the table. You
can see the resulting optimized query in the explain plan.

-- Optimzed query as shown in the explain plan
SELECT 6. PD_SUB DEPT_ID AS "PD SUB DEPT I D', 6. $Cl
AS "NBTRANS', (b.$C2 AS "SUM NB | TEMS", (b.$C3 AS
" SUM_SALES AMOUNT"
FROM
(SELECT 4. PD_SUB _DEPT_I D, CQUNT(*),
SUM 4. NUMBER_OF_| TEMS) ,
SUM 4. SALES AMOUNT)
FROM
(SELECT . PD_SUB _DEPT_I D, (B. NUMBER_COF_| TEMS,
@B. SALES_AMOUNT
FROM TI ME AS Ql, PRODUCT AS @2, PRCHS PRFL_DTL AS 3
VWHERE (QL. CDR_YR = 2008) AND (Q2.PD _DEPT_ID = 8)
AND (@B.TIME_ID = QL. TIME_LID) AND (@B.PD_ID = Q. PD_I D)
) AS A
GROUP BY (4. PD_SUB DEPT_ID) AS b

Compression

Compression reduces the need for storage. Compression can also optimize performance
because the DB2 software reads more rows per disk access and keeps more rows in the

Query optimization best practices Page 15

buffer pool. More rows are kept in the buffer pool because the data is compressed. Values
are decompressed dynamically when they are used, for example, in filters or joins.
Compression saves I/O operations but generally takes more CPU cycles.

Recommendations:

e Consider compression when system monitoring shows many 1/O waits. Do not add
compression if the system is CPU bound.

e Estimate compression ratios with the ADMIN_GET_TAB_COMPRESS_INFO_V97
administration function. For example, analyze all tables in schema ‘EDW’ with the
following statement:

SELECT * FROM
TABLE (SYSPROC. ADM N_GET_TAB_COVPRESS | NFO VO7(' EDW, ',
' ESTI MATE'))

Execution might take several minutes for large tables, especially if there are many
partitions.

e For optimal compression on large tables, use the command REORG TABLE . ..
RESETDI CTI ONARY. The dictionary is based on a sample of the whole table rather
than just the first 2 MB used, as with automatic dictionary creation. Also, issue the
RUNSTATS command after issuing the REORG TABLE command.

A compressed table has one compression dictionary per partition. For example, if there
are eight database partitions and a table is defined with 20 table partitions, there can be
160 different compression dictionaries. If there are multiple compression dictionaries,
compression rates might differ for each partition.

Table partitioning

Table partitioning increases query performance through partition elimination. You can

quickly roll in and roll out data online by using the ATTACHand DETACH clauses in the

ALTER TABLE statement.

For overviews, see the following articles:

e http://www.ibm.com/developerworks/data/library/techarticle/dm-
0605ahuja2/index.html

e http://www.ibm.com/developerworks/data/library/dmmag/DMMag 2010 Issue3/Dis
tributedDBA/

Recommendations:

Query optimization best practices Page 16

e If there would be more than a few hundred partitions in a table, consider using MDC
instead of table partitioning.

Table partitioning is often used with ranges of dates or other types of data that have
many different values. Table partitioning can also help in cases when there are only
two or three values. For example, there might be a flag that identifies old or logically
deleted rows that are stored together with current data in one table. Queries that
select current data can run faster because the optimizer can eliminate the partitions
that do not contain current data in advance.

o Use partitioned indexes when possible. Create an index as NOT PARTITIONED in
the following cases:

e A partitioned index is sorted locally, not sorted globally. Therefore, there might
be another sort operation after individual ranges are scanned.

o If there are many short queries that select only a few records, all local indexes are
evaluated. This can be slower than going through one global index.

¢ When you want to add a partition, create indexes on the new table that match the
partitioned index of the existing partitioned table before the ATTACH operation. The
indexes make the SET INTEGRITY statement step faster.

Multidimensional clustering

Multidimensional clustering (MDC) provides an efficient indexing method for large
tables. When choosing columns to use as MDC dimensions, try to apply these guidelines
equally:

e Choose columns that are useful in filter conditions.

e Use combinations of columns that have many rows per distinct value.

Each MDC cell, that is, every different combination of dimension values, allocates at least
one block equivalent to one extent in the table space. If a block is not filled with rows,
some space is wasted. Each database partition and each table partition has its own set of
blocks per MDC cell.

If the table exists, you can inspect the size of the MDC cells by using a query similar to
the following example:

-- Count nunber of cells and nunber of rows, split by partitions
SELECT COUNT(*) NBR_CELLS, M N(n) M N_ROA5, AVG(n) AVG ROA5,
MAX(n) MAX_ROWS

FROM (
-- dimA dinB, ..dinensions as in the ORGANI ZE BY cl ause
SELECT DP, TP, DI MA, DI MB, .., COUNT(*) AS n

FROM (SELECT DBPARTI TI ONNUM DI MA) , DATAPARTI TI ONNUM DI MA) , DI MA,
D MB, ..

FROM THETABLE)
GROUP BY DP, TP, DI MA, DI MB,

)

Query optimization best practices Page 17

Consider a table that has rows with an average row length of 100 bytes after
compression. The corresponding table space might have a page size of 16 KB and 32
pages per extent. The space for an MDC block would be calculated as follows:

32 x 16 KB / 100 bytes = approximately 5000 records

Each MDC cell in this example has many more than 5000 records per database partition
and per table partition. Preferably, the cells should be bigger by a factor of 5 or more to
reduce wasted space.

An alternative method for checking the space usage of a table with MDC is to call the
REORGCHK command with the CURRENT STATI STI CS and ON TABLE parameters, as
shown in the following example:

RECRGCHK CURRENT STATI STI CS ON TABLE THESCHEMA. THETABLE H

The number of cells should be much fewer, about 20% of the number calculated by the
following formula:

NP / extent size / nunmber of database partitions / nunber of
table partitions used = nunber of cells

Where the extent size is the number of pages per extent in the corresponding table space
and NP is the estimated sum of the number of pages that contain data over all database
partitions as reported in the result of REORGCHK.

Recommendations:

e For a table with MDC, check whether the total number of pages (FP) is close to the
number of pages that contain data (NP). If FP is much higher than NP, space is likely
being wasted because MDC blocks are not filled up.

e If a candidate MDC dimension has many different values yielding too many small
cells, increase the granularity of cells with a generated column. For example, use a
generated column with INTEGER (Date)/100 instead of Date.

Materialized query tables (MQTs)

The correct design of MQTs depends on the applications. This paper does not describe
detailed best practices for designing MQTs.

Recommendations:
e Use compression for MQTs. Update the statistics for MQTs by issuing the
RUNSTATS command.

Query optimization best practices Page 18

o Test the performance impact of a new MQT by rewriting the relevant query to
explicitly refer to the MQT table. Consider automatic MQT matching later, after
the MQT sufficiently improves performance.

o If the DB2 optimizer does not automatically selects the MQT, inspect the
Optimized Statement in the explain plan for both the query and the SELECT
statement in the MQT definition. Modify the MQT definition to get closer to the
Optimized Statement of the query.

You can force the DB2 optimizer to use a replicated MQT even if its cost estimate is
higher than that of the corresponding base table. To force the optimizer to use a
replicated MQT, issue the following command:

DB2SET DB2_EXTENDED_OPTI M ZATI ON=FORCE_REPLI CATED_MJT_MERGE H

The MQTENFORCE optimization profile element provides another method for enforcing
the use of MQTs, as illustrated in the following example:

-- Create the OPT_PROFILE table in the SYSTOOLS schema

CALL SYSPROC. SYSI NSTALLOBJECTS(' OPT_PRCFILES' , 'C, '', "');
-- This creates the tabl e SYSTOOLS. OPT_PROFI LE.

-- Note that the table name does not have a trailing ‘S .

| NSERT | NTO SYSTOOLS. OPT_PROFI LE VALUES (
" MYSCHEMA' , ' MQTENFORCE_ALL' ,
CAST(' <OPTPROFI LE><OPTGUI DELI NES><MQJTENFORCE
TYPE="ALL"/ ></ OPTGUI DELI NES></ OPTPROFI LE>'
AS BLOB(2M)
)

SET CURRENT OPTI M ZATI ON PROFI LE MYSCHEMA. MOTENFORCE_ALL,;

The definition TYPE="ALL" enforces the use of both regular MQTs and replicated MQTs.
It is also possible to list specific MQTs by name. For further details, see
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.pe
rf.doc/doc/c0024526.html.

Functional dependencies

A functional dependency is a relationship between two columns of a table that can give
the DB2 optimizer valuable information. Functional dependencies usually exist in a
denormalized table between the ID of entities, such as department ID, and their
descriptions, such as department name. Functional dependencies also exist between such
IDs and the ID of the entities at the next hierarchy level, for example, between
department ID and sub-department ID. Foreign keys in a normalized model usually
correspond to functional dependencies in a denormalized model.

Query optimization best practices Page 19

You can define functional dependencies as constraints with statements similar for the
following, for example. As shown in the statements, you can define functional
dependencies as NOT ENFORCED. If you define the dependencies as NOT ENFORCED,
you must make sure (for example, through the ETL process) that relationships that are
described by the functional dependencies are valid. Furthermore, you must define the
column on the right side of the functional dependency as NOT NULL.

ALTER TABLE PRODUCT
ADD CONSTRAI NT PD_DEPT__SUB_DEPT_FD CHECK
(PD_DEPT_| D DETERM NED BY PD_SUB_DEPT_| D)
NOT ENFORCED
ENABLE QUERY CPTI M ZATI ON;

ALTER TABLE PRODUCT
ADD CONSTRAI NT PD_DEPT_FD CHECK
(PD_DEPT_NM DETERM NED BY PD DEPT | D)
NOT ENFORCED
ENABLE QUERY CPTI M ZATI ON;

You can check the validity of a functional dependency through an SQL query. The
following SQL query checks the functional dependency between the PD_SUB_DEPT_ID
and PD_DEPT_ID columns:

SELECT PD_SUB_DEPT D, COUNT(*), M N(PD_DEPT ID), MAX(PD DEPT | D)
FROM (SELECT DI STINCT PD_SUB_DEPT I D, PD DEPT ID
FROM PRODUCT)
GROUP BY PD_SUB DEPT I D
HAVI NG COUNT(*) > 1;

The SQL statement returns those PD_SUB_DEPT_ID column values that have more than
one associated PD_DEPT_ID column value with the number of these PD_DEPT_ID
values and two sample values (the maximum and minimum). It is not necessary to
disable the constraint for query optimization to ensure that the query returns rows in
case of an invalid functional dependency.

Guidelines for defining functional dependencies

Recommendation: Define functional dependency constraints for all functional
relationships in a table that can be guaranteed by the process that writes the data.

It is not necessary to define functional dependencies for a primary key or a unique index
column because the DB2 database manager recognizes that implicit functional
relationships exist for the other columns of a table.

Because functional dependencies do not cause overhead at run time, you can define them
for all valid functional relationships. The validity must be ensured, for example, by the
ETL process.

Query optimization best practices Page 20

Benefits of functional dependencies

You can use functional dependencies to define smaller MQTs.

Assume that the PRCHS_PRFL_SUB_DEPT_ID_YEAR_MQT MQT is defined by using
the following statements. The MQT definition computes some aggregated values for each
combination of sub-department ID and calendar year.

CREATE TABLE PRCHS PRFL_SUB_DEPT | D _YEAR MJT AS (
SELECT PD_SUB_DEPT | D, CDR_YR,
COUNT(*) AS NBTRANS,
SUM NUMBER OF | TEMS) AS SUM NB_| TEMS,
SUM SALES_AMOUNT) AS SUM SALES_AMOUNT
FROM PRCHS_PRFL_DTL PPD, PRODUCT P, TIME T
WHERE PPD.PD ID = P.PD_| D AND
PPD.TIME_ID = T. TIME_I D
GROUP BY P.PD_SUB DEPT I D, T.CDR YR

)
DATA | NI TI ALLY DEFERRED REFRESH DEFERRED
IN TS_SD 001;

REFRESH TABLE PRCHS_PRFL_SUB_DEPT | D_YEAR MJT;
RUNSTATS ON TABLE SCHEMA. PRCHS_PRFL_SUB_DEPT | D_YEAR MJT W TH
DI STRI BUTI ON AND | NDEXES ALL;

Consider the following query:

SELECT PD_SUB_DEPT_ID, COUNT(*) AS NBTRANS,
SUM NUMBER OF | TEMS) AS
SUM NB_| TEMS, SUM SALES_AMOUNT) AS SUM SALES_AMOUNT
FROM PRCHS_PRFL_DTL PPD, PRODUCT P, TIME T
WHERE PPD. PD ID = P.PD ID AND PPD. TIME_ID = T.TI ME_I D AND
P. PD_DEPT_ID = 8 AND T. CDR_YR=2008
GROUP BY P. PD_SUB DEPT | D;

The query references the department ID (PD_DEPT_I D = 8) in the WHERE clause.
Values in PD_DEPT _ID can be inferred from the values in PD_SUB_DEPT _ID because of
the functional dependency between the PD_SUB_DEPT_ID and PD_DEPT_ID columns.
Therefore, the PRCHS_PRFL._SUB_DEPT_ID_YEAR_MQT table can be used, and the
optimized statement of this query is as follows:

Query optimization best practices Page 21

SELECT Q4. PD_SUB DEPT ID AS "PD SUB DEPT ID', Q4. $C2
AS "NBTRANS', Q4.$Cl AS
"SUM NB_| TEMS", Q4.$C0 AS " SUM SALES AMOUNT"
FROM
(SELECT SUM Q3. SUM SALES_AMOUNT) ,
SUM Q8. SUM NB_I TEMS), SUM GB. NBTRANS)
3. PD_SUB_DEPT_I D
FROM
(SELECT DI STINCT Q2. PD_SUB_DEPT I D, Q. SUM SALES_AMOUNT,
Q. SUM NB_| TEMS, Q2. NBTRANS, QL. PD_DEPT_I D,
QL. PD_SUB_DEPT I D
FROM PRODUCT AS Qt,
PRCHS_PRFL_SUB_DEPT | D_YEAR MJT AS @
WHERE (QL. PD DEPT_ID = 8) AND
(Q. CDR_YR = 2008) AND (. PD_SUB DEPT_ID
= QL. PD_SUB DEPT_ID)) AS B
GROUP BY 3. PD SUB DEPT ID) AS Q4

Without the functional dependency, you would have to include the PD_DEPT_ID
column in the SELECT and GROUP BY clauses of the MQT.

Consider the following query:

SELECT PD_SUB_DEPT I D, COUNT(*) AS NBTRANS, SUM NUMBER OF | TEMB)
AS

SUM NB_I TEMS, SUM SALES_AMOUNT)

AS SUM _SALES_AMOUNT

FROM PRCHS_PRFL_DTL PPD, PRODUCT P, TIME T

WHERE PPD.PD ID = P.PD_ | D AND PPD. TIME_ID = T. TI ME_I D AND

P. PD_DEPT_NM = ' G veaways' AND T. CDR YR=2008

GROUP BY P.PD_SUB_DEPT | D;

This query is identical to the previous unoptimized one except that it includes

p. PD_DEPT_NM = ' G veaways' in the WHERE clause. In this case, the functional
dependency between the PD_DEPT_ID and PD_DEPT_NM columns also makes it
possible to use the MQT. The optimized statement of the query is as follows:

Query optimization best practices Page 22

SELECT Q4. PD_SUB_DEPT I D AS "PD SUB DEPT_ID', Q4.$C2
AS "NBTRANS', Q4.$Cl AS
"SUM NB_| TEMS", Q4. $C0 AS "SUM SALES AMOUNT"
FROM
(SELECT SUM @3. SUM SALES_AMOUNT), SUM Q3. SUM NB_| TEMVS),
SUM Q8. NBTRANS) , 8. PD_SUB_DEPT | D
FROM
(SELECT DI STINCT Q. PD_SUB_DEPT_ID, Q. SUM SALES_AMOUNT,
Q. SUM NB_| TEMS, Q2. NBTRANS, QL. PD_DEPT_NM
QL. PD_SUB_DEPT I D
FROM PRODUCT AS Ql, PRCHS PRFL_SUB DEPT | D YEAR MJT AS Q@
WHERE (QL. PD_DEPT_NM = ' G veaways')
AND (Q.CDR_YR = 2008) AND
(. PD_SUB DEPT_ID = QL. PD_SUB_DEPT_ID)) AS (B
GROUP BY Q3. PD SUB DEPT ID) AS Q4

Without the functional dependency, you would have to include the additional
PD_DEPT_NM column in the SELECT and GROUP BY clauses of the MQT.

Gathering statistics for optimization

The DB2 compiler needs accurate statistics to select the optimal query execution plan. If
the estimated number of rows in the explain plan is considerably different from the
actual number of rows, the chosen operators might be far from optimal. The more
accurate information you collect with the RUNSTATS command, the higher the chances
that the DB2 optimizer can find a good execution plan.

The simplest method for collecting statistics is to enable automatic invocations of the
RUNSTATS command, as shown in the following example. Automatic invocations are the
default in DB2 Version 9.7.

DB2 UPDATE DB CFG USI NG AUTO RUNSTATS ON |

Execution of the RUNSTATS command tends to be CPU intensive. If you prefer to
manually control the invocations of the RUNSTATS command and its performance impact
on the production workload, use the following recommendations.

Recommendations:
e Collect statistics on all tables and keep them current.

e When a RUNSTATS command is completed, issue a COMMIT statement to release
locks on catalog tables.

Query optimization best practices Page 23

e For system tables, issue the following command:

| REORGCHK UPDATE STATI STI CS ON TABLE SYSTEM |

e Use the RUNSTATS command to gather distribution and index statistics:

RUNSTATS ON TABLE SCM TAB W TH DI STRI BUTI ON AND SAMPLED
DETAI LED | NDEXES ALL

If you want to reduce the run time for the RUNSTATS command on a large table,
potentially losing some precision, use sampling for the table and for the indexes. You
can use a smaller table sample for large tables.

RUNSTATS ON TABLE SCM TAB W TH DI STRI BUTI ON AND SAMPLED
DETAI LED | NDEXES ALL TABLESAMPLE SYSTEM 10)

You can further reduce run time by collecting statistics on a subset of columns. If you
want to minimize the performance impact of running RUNSTATS, issue the command
with options similar to the following example, at a minimum:

RUNSTATS ON TABLE SCM TAB ON KEY CCOLUWMNS W TH DI STRI BUTI ON ON
KEY COLUWNS TABLESAMPLE SYSTEM 1)

Specify the ON KEY COLUMNS option in the W TH DI STRI BUTI ON clause.
Otherwise, the RUNSTATS command collects distribution statistics on all columns.

Running the RUNSTATS command with all details on a large table with 50,000,000 rows
per database partition might take several minutes. Sampling would reduce run time to
about 1 minute. Using the option shown in the previous example might reduce the run
time to 10 seconds.

If you issue the RUNSTATS command multiple times, statistics are not accumulated. For
example, the first command in the following command sequence collects distribution
statistics. The second command collects statistics on the index tmp.i0, and the
distribution statistics are not retained.

RUNSTATS ON TABLE TMP. TABO W TH DI STRI BUTI ON
RUNSTATS ON TABLE TMP. TABO AND | NDEXES TMP. | O

Recommendations:

e When you create an index for a populated table for which the RUNSTATS command
had already collected statistics information, add the index statistics while the new

Query optimization best practices Page 24

index is being created. The following example shows fragments of the CREATE
INDEX statement with the relevant options:

H DB2 CREATE | NDEX ... COLLECT SAMPLED DETAI LED STATI STI CS

e Store the complete list of the RUNSTATS command options in a profile. Use the
profile when invoking the RUNSTATS command. Using a profile that contains the
options ensures that you apply the options consistently.

RUNSTATS ON TABLE SCM TAB ... COWLETE COWVMAND ... SET PROFI LE
ONLY

-- Any tine later ..

RUNSTATS ON TABLE SCM TAB USE PROCFI LE

-- Check profile
SELECT STATI STI CS_PRCFI LE FROM SYSCAT. TABLES WHERE
(TABSCHEMA, TABNAME) = (' SCM , ' TAB')

For further guidelines on collecting and updating statistics, see
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.lu
w.admin.perf.doc/doc/c0005083.html.

Changes to the number of frequency values and quantiles

The collection of frequency values and quantiles is important when the distribution of
column values is skewed, that is, when there are several values with high frequency and
many others with low frequency. For some of these cases, it can help to increase the value
of the NUM_FREQVALUES or NUM_QUANTI LES parameter of the RUNSTATS command.
The default value of the NUM_FREQVALUES parameter is 10, and the default value of the
NUM_QUANTI LES parameter is 20. In the following example, the values of the parameters
are changed:

RUNSTATS ON TABLE tnp.tab W TH DI STRI BUTI ON ON ALL COLUMNS AND
COLUMNS (skewedcol NUM FREQVALUES 40 NUM QUANTI LES 40)

If a query filters on one of the frequently occurring column values and this value is in the
list that the RUNSTATS command collects, the optimizer can precisely estimate the
cardinality of the results. If the RUNSTATS command did not retain the filter value, the
estimate might be too small.

The sample SQL query that is in the eval - num f r eqval ues. sql file in the

| SASBP_Query Optim zation_Scripts. zi p file returns a list of columns that
might benefit from increased NUM_FREQVALUES parameter values. The query returns
candidates that have a skewed value distribution. Pick those columns that you use in
filters in the production workload.

Query optimization best practices Page 25

Increasing the value of the NUM_QUANTI LES parameter is less likely to speed up
performance. The default value for the NUM_QUANTI LES parameter gives reasonably
accurate estimates in most cases. Cardinality estimates that are based on quantiles tend to
be conservative, meaning that the actual number of rows is not much higher than that
estimated by the optimizer. You might want to increase the number of quantiles if an
explain plan shows significant differences between estimated and actual cardinalities.
Increasing the number of quantiles can be relevant for range predicates on datetime
columns that contain extreme sentinel values, such as date(‘9999-12-31").

Recommendation: Specify non-default values for the NUM_FREQVALUES parameter or
the NUM_QUANTI LES parameter only for specific tables in the RUNSTATS command or
profile. Changes to the default values in the database configuration apply to all tables
and all columns. In most cases, changing the default values in the database configuration
does not improve performance.

The RUNSTATS command LI KE STATI STI CS column option collects sub-element
statistics. These statistics can be useful if a column contains lists of values that are
separated by blanks. The RUNSTATS command computes the average length of the
values, but it does not collect frequencies of individual values. For further details, see
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.lu
w.admin.perf.doc/doc/c0005098.html.

When to issue the RUNSTATS command

Issue the RUNSTATS command when you have inserted or changed a substantial amount
of data in the table, for example, more than 30%.

The sample script that is in the r unst at s_out _of _dat e. sh file in the

| SASBP_Query_Qptim zati on_Scripts. zi p file reports tables with outdated
RUNSTATS command information. Similar logic is used for automatic updates when
AUTO RUNSTATS is enabled.

After you reorganize a table or an index, issue the RUNSTATS command again because it
collects information about the physical organization, such as index clustering ratios.

Statistical views

Statistical views help to improve the cardinality estimates for the results of joins. The
RUNSTATS command determines the distribution of the values of a column within a
table. If a table is joined with other tables, the DB2 optimizer assumes that the
distribution does not change significantly. In a data warehouse scenario, this assumption
is not always realistic.

Consider the execution plan of the following query, illustrated in Figure 2. The query
determines certain aggregated values for the sub-departments of the department with a
value of 8 in the PD_DEPT_ID column before 2008. The query does not define a statistical
view.

Query optimization best practices

Page 26

SELECT PD_SUB_DEPT | D,
COUNT(*) AS NBTRANS,
SUM NUMBER OF | TEMS) AS SUM NB_| TEMS,
SUM SALES_AMOUNT) AS SUM SALES_AMOUNT
FROM PRCHS_PRFL_DTL PPD, PRODUCT P, TIME T
WHERE PPD.PD ID = P.PD_| D AND
PPD. TIME_ID = T.TIME_I D AND
P.PD_ DEPT_ID = 8 AND
T. CDR_YR<2008
GROUP BY P. PD_SUB_DEPT | D;

MLJOING 71134 764 BT

FETCH(39) 444 77

TESCAMCZ21] 303 RIDSCRC41) 444 .77

QOPT PRCHS_PRFL_DTL I

[SORT(ES) 303) (SOHTHS) 444.??)

T T

FETCH(25) 303 ICSCARNAS) 444 .77

FPD_PD_ID

QOPT PRCHS _PRFL_DTL .

RIDSCMCS0) 5303 GOPT PRODUCT

SORT(32) 303

[HSCANCS4) 303

|_PD_DEPT

CIOPT PRODUCT

Figure 2. Explain plan without statistical view

Query optimization best practices Page 27

Operator 17 at the top of this part of the plan shows that the optimizer estimates the
cardinality of the join between the PRODUCT and PRCHS_PRFL_DTL tables when the
value of the PD_DEPT _ID column is 8 to be 134,764 rows. This estimate is based on the
distribution of values in the PD_DEPT_ID column in the PRODUCT table. The actual
number of rows in the result of the join in this example is much higher, around 5,000,000
rows. The query plan has a nested loop join to perform the join, which is appropriate
only if the number of rows is not too high.

The plan can be improved by the following statistical view:

CREATE OR REPLACE VI EW PRCHS PRFL_DTL_DEPT | D SV AS
SELECT PD DEPT_I D

FROM prchs_prfl _dtl ppd, product p

WHERE ppd.PD ID = p. PD I D

ALTER VI EW PRCHS_PRFL_DTL_DEPT_| D_SV ENABLE QUERY OPTI M ZATI ON;

RUNSTATS ON TABLE Schema. PRCHS_PRFL_DTL_DEPT I D SV W TH
DI STRI BUTI ON;

Important: Ensure that you include the WITH DI STRI BUTI ON parameter when you
issue the RUNSTATS command; otherwise, the command does not compute the
frequencies of the values of the columns in the select-clause.

A section of the new plan is illustrated in Figure 3:

Query optimization best practices Page 28

(HSJOINH 7 4,524,243)

(TEISC.&NH 9) 41,757 480 TQUELEL21)

\ !

GOPT PRCHS_PRFL_DTL (FETCH(EE) 303) RICrd

RIDSCMC2E) 303

SORT(30) 303
[XSCANE2) 303

|_PD_DEPT

CIOPT PRODIUCT

CIOPT.PRODUCT

Figure 3. Explain plan optimized with statistical view

The estimated cardinality for this join is now 4,524,248 rows. This is close to the correct
cardinality. Because of the higher cardinality, the optimizer now chooses a hash join,
which improves performance for this query by approximately 50 %.

Performance of the RUNSTATS command on statistical views

Running the RUNSTATS command on a statistical view evaluates the view definition. If
any table in the view definition is distributed, the data from all database partitions is
used. This behavior is different from that of running the RUNSTATS command directly on
a table because the latter reads data from only one database partition.

Recommendation: For statistical views that contain distributed tables, issue the
RUNSTATS command with the TABLESAMPLE SYSTEMparameter and a sample rate of
(100 / number of database partitions)%. In some cases, the DB2 database manager might
replace the TABLESAMPLE SYSTEMparameter with the TABLESAMPLE BERNOULLI
parameter. This is fine, and you can ignore corresponding warnings.

Query optimization best practices Page 29

You can further improve the performance of the RUNSTATS command by limiting the
number of columns in the select-clause of the statistical view definition. For example,
select only columns that are used in the WHERE clauses of queries.

Recommendation: A good initial approach for defining a statistical view for a join
between a fact table and the tables of one of its dimensions is to include in the select-
clause at least the columns that contain the IDs and descriptions of the members of the
hierarchy levels in the dimension.

Tools

Design Advisor

Using a set of queries, the Design Advisor can recommend the creation of regular
indexes, MDC, and MQTs. You invoke the Design Advisor by issuing the db2advi s
command.

The Design Advisor needs detailed statistics because the recommendations are based on
query plans. If the estimated and actual numbers of rows in query plans are considerably
different, the results from the Design Advisor might not be useful. Collect detailed
statistics before running the Design Advisor.

The indexes that the Design Advisor recommends often include many columns. These
indexes support fast index-only access to data, but they require additional maintenance if
you modify the corresponding table.

For regular indexes that the Design Advisor recommends, check whether you can use a
corresponding MDC dimension instead. The Design Advisor can provide
recommendations for MDC dimensions. The recommended MDC dimensions might be
too fine grained if the data is partitioned.

Evaluating candidate indexes

Creating a new index to try to optimize a certain workload can take a significant amount
of time, depending on the size of the table Also, after you create the index, you might
want to check how the index affects explain plans, and before running the explain tool,
you should collect statistics, which requires even more time.

Recommendation: Before creating an actual index, use the DB2 Design Advisor
db2advi s command to quickly define a virtual index, and then check whether query
performance improves.

The db2advi s command maintains a table called ADVISE_INDEX that describes the
recommended indexes. The information in this table includes the names of the indexed
columns. The db2advi s command also creates statistics for this index that are based on
the statistics of the underlying table. The explain tool uses the entries in the

Query optimization best practices Page 30

ADVISE_INDEX table if the CURRENT EXPLAI N MODE special register has the value
EVALUATE | NDEXES set.

Consider a table called THETABLE that has two columns, C1 and C2, which you want to
use in an index. Issue the db2advi s command with a single query that filters on these
columns:

DB2ADVI S -D TESTDB -S "SELECT COUNT(*) FROM THETABLE WHERE C1=0 AND C2=0"
WII likely recommend an i ndex on THETABLE(CL, C2)

Check the new entry in the table ADVI SE_| NDEX

DB2 SELECT SUBSTR(COLNAMES, 1, 30) FROM ADVI SE_| NDEX WHERE

TBNAME=" THETABLE'

And generate new explain plan for a query

DB2 SET CURRENT EXPLAI N MODE EVALUATE | NDEXES

DB2 ... THE QUERY...

DB2 SET CURRENT EXPLAI N MODE NO

DB2EXFMI - D TESTDB -1

The resulting explain plan might use the virtual index that you defined by using the
db2advi s command.

The db2advi s command is not guaranteed to come up with the index that you want.
You can try different constants in the WHERE clause. If the db2advi s command does
not recommend a particular index, the optimizer would probably not use it either.

For general tips on designing indexes, see
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.db
obj.doc/doc/c0020181.html. For information about virtual indexes, see
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sqgl.ref.do
¢/doc¢/r0005874.html.

Explain plans with actual cardinalities

Explain plans include the estimated number of rows that an operator returns. You can
extend the plans by the actual number of rows that were processed in the query at run
time. For an example, see the following documentation:

e http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2
Juw.admin.perf.doc/doc/c0056362.html

e http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admi
n.perf.doc/doc/c0056464.html

Recommendation: If there are major differences between the estimated and actual
numbers of rows, for example, by a factor of 2 or more, the compiler might not choose
the optimal plan. Make the statistics more precise so that the number of rows that the
optimizer estimates is closer to the actual number.

Query optimization best practices Page 31

The explain plan shows how many rows were processed per partition. You can use this
information to detect skews in the workload across partitions.

The sample script in the gen_expl ai n_act ual s. sh file in the
| SASBP_Query_Optim zation_Scripts. zi p file combines all relevant commands
to run a query and create an access plan with actuals.

Note that the computation of actual cardinalities uses monitor tables. The table space for
these tables needs to be set up properly.

Recommendation: Make sure that the monitor tables are available on all partitions, by
issuing a CREATE TABLESPACE statement similar to the one in the following example:

-- Setup
UPDATE DATABASE CONFI GURATI ON USI NG SECTI ON_ACTUALS BASE;
CREATE TABLESPACE Monitor | N DATABASE PARTI TI ON GROUP
| BVDEFAULTGROUP ... ;
CREATE EVENT MONI TOR TheEvent Nane FOR ACTI VI TI ES WRI TE TO TABLE
ACTIVITY (IN MONI TOR),
ACTI VI TYSTMT (I N MONI TOR) ,
ACTI VI TYVALS (I N MONI TOR),
CONTROL (1IN MONI TOR)
MANUAL START;

If you do not correctly set up the monitor tables, some results in the explain plan might
be wrong or missing.

Using explain plans to identify potential problems

If there is a performance problem with a specific query, the explain plan can reveal the
costly operations. This section provides hints and tips on analyzing explain plans and
influencing the optimizer to produce better plans. The examples in this section refer to
plans that are generated by the db2exf nt command.

This section requires a basic understanding of how to generate and read query explain

plans. For an overview of the explain facility, see

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.pe

rf.doc/doc/c0005134.html. The explain operators are described in the following

documents:

e http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admi
n.explain.doc/doc/r0052023.html

e http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?nav=/3 6 4 5 82

You can gather detailed explain information by combining the following example
commands:

Query optimization best practices Page 32

DB2BATCH —D THEDB -O E EXPLAIN -1 COWPLETE —F THEQUERY. SQL
DB2EXFMI' —D THEDB -1 > THEQUERY. EXFMI. OUT
GEN_EXPLAI N_ACTUALS. SH THEDB THEQUERY. SQL

The explain plan, TheQuery. exf nt . out, includes lists of columns for input and output
streams and selected distribution statistics. The gen_expl ai n_act ual s. sh script in
the | SASBP_Query_Optim zation_Scripts. zi p file uses the db2exf nt command
to format the explain plan. The output includes the actual number of rows that the
operators processed at run time.

In this section, the analysis of explain plans is described with patterns. Each pattern
describes combinations of elements that you might find in an explain plan that the
db2exf nt command generates. These patterns indicate potential performance problems.
There are corresponding actions that can help you optimize query execution.

The patterns refer to two types of issues: issues with the estimated cardinality for an
operator and issues with the execution of an operator. Address the first kind of issues
first. They usually require more detailed statistical information.

Explain plans include a section called Ext ended Di agnostic I nfornmation
immediately following the plan graph. This section might contain warning messages, for
example, about missing statistics for tables or indexes. In the following descriptions of
patterns, it is assumed that such messages have been addressed. In particular, it is
assumed that statistics are current.

Estimated cardinality

The analysis of query plans is effective only if the estimated number of rows that are
returned per operator is close to the actual number of rows that are returned at run time.
Cost-based optimization directly depends on accurate cardinality estimates. If the
cardinality estimates are wrong, the estimated costs are also wrong, which can cause
poor performance when you run the query. With more precise cardinality estimates, the
compiler can usually generate a better plan. Statistics are used to estimate how many
rows a certain join or other operator returns.

The analysis of a particular query might reveal that you must refine certain statistics. For
example, the optimizer usually assumes that columns are statistically unrelated.
However, real-life data often contains related attributes. You might need detailed
statistics, including column groups or statistical views, to adjust the estimates. These
refined statistics usually improve not only the performance of a single query but also the
performance of other queries that use the same data.

With DB2 V9.7, you can create explain plans that include the actual number of rows that
were processed by each operator. For more details, see the “Explain plans with actual
cardinalities” section.

Query optimization best practices Page 33

Recommendation: Use section actuals information in the EXPLAI N output together with
db2exfnt command output to analyze query plans and check whether the cardinality
estimates are in line with the actual number of rows. Focus on operators where the
estimated number of rows is very small.

Rows
Rows Act ual
RETURN
(1
Cost
I1/0O
|
3.21948 << The estinated rows used by the optim zer
301 << The actual rows collected at run tine
DTQ
(2
75. 3961
NA

If the number of actual rows is much higher than estimated number of rows, you might
run into various performance problems. An important example is a nested loop join with
many rows in the left outer branch. This situation leads to many repeated executions of
the operators in the right inner branch. Performance can be much better with a hash or
merge join. The right inner branch of a nested loop might have an estimated cardinality
of 1 or fewer because these cardinality values are implicitly multiplied by the number of
rows in the outer/left branch of the loop.

Recommendation: After you identify an operator where the actual number of rows and
the estimated number of rows are different, walk through the graph, from the top down
and in order of execution to find the nodes where the numbers start to deviate. Try to
adjust the estimate with more detailed statistics. The left outer branches of NLJOIN
operators are important.

Pattern: NLJOIN operator. The estimated cardinality in the result of the left outer branch
is too low.

Query optimization best practices Page 34

6. 6635 << Estinmated rows
1.17031e+07 << Actual rows at run tine

NLJO N
(7
122. 716
NA
R R \
0. 018402 <<esti mat ed 362. 107
33176 <<act ual 352. 759
ANLJO N FETCH
(8 (26)
98. 9503 23. 7659

Action: Fix the cardinality estimate in the left outer branch. Look for patterns in that
branch.

Pattern: The estimated cardinality is wrong for the result of a table scan (represented by
the TBSCAN operator) or index scan (represented by the IXSCAN operator).

Action: Check the filter conditions in the detailed description of the operator. If the filter
factors that are shown in the explain plan are off for an equality predicate, increasing the
value of the NUM_FREQVALUES parameter of the RUNSTATS command might help. For an
inequality or LIKE predicate, increase the value of the NUM_QUANTI LES parameter of the
RUNSTATS command. See the example in the “Gathering statistics for optimization”
section. If you are filtering the table on multiple columns, you can add the corresponding
column group statistics to the RUNSTATS command. If the predicate involves an
expression such as DATE(ts), a generated column might help. See the pattern “Table scan
with many rows on input and few rows on output” later in this section.

Pattern: The estimated cardinality is wrong for the result of a join. The join predicates use
more than one column in any of the tables.

The join columns might be correlated. This usually leads to a cardinality estimate that is
lower than the actual number of rows that the join returns. The reason for the lower
estimate is that the compiler assumes that a match on one column is unrelated to a match
on the other column.

Action: You can improve the estimate by using column group statistics. For example,
consider a join such as the following one:

|| Txn. Cust _Id = Bal.Cust_Id AND Txn. Contract_id = Bal.Contract _I|d

Query optimization best practices Page 35

Refine the statistics on both joined tables by issuing the RUNSTATS command:

RUNSTATS ON TABLE MySchema. Txn ON ALL COLUWNS AND COLUWNS
((Cust_Id,Contract _ID))

W TH DI STRI BUTI ON AND SAMPLED DETAI LED | NDEXES ALL;
RUNSTATS ON TABLE MySchenma. Bal ON ALL COLUWNS AND COLUWNS
((Cust_1d,Contract _ID))

W TH DI STRI BUTI ON AND SAMPLED DETAI LED | NDEXES ALL;

Pattern: The estimated cardinality is wrong for the result of a join. Some filtering is
applied on an input table.

The following example has a filter on each input table, (QL. F = 3) and (Q. ATTR =
1001) respectively

Optim zed Statenent:

(SELECT $RI

FROM TMP. FACT AS QL, TMP.DIM AS @@

WHERE (QL.F = 3) AND (Q@.KEY = QL. KEY) AND (Q.ATTR =
1001))

3) NLJO N (Nested Loop Join)
Predi cate Text:

(@. KEY = QL. KEY)

Action: Create a statistical view on the joined tables. Look at the filter conditions for both
outer and inner in the Opt i m zed St at ement section in the explain plan. Include the
filtered columns in the SELECT clause. The WHERE clause uses the join condition but no
filtering.

CREATE VIEW ... AS
SELECT QUTER FI LTERCOLS, | NNER. FI LTERCOLS FROM QUTER, | NNER
WHERE ... THEJON. ..

In the following example, a statistical view is created on the Fact and Dim tables:

CREATE VI EW SV_FACT_DI M AS
SELECT FACT.F, DI M ATTR FROM FACT, DI M
WHERE FACT. KEY = DI M KEY

Collect statistics as described in the “Statistical views” section.

Query optimization best practices Page 36

Optimizing the operators in an execution plan

After you sufficiently improve the statistics, you can look for expensive operators in the
query execution plan. In some cases, it might be possible to improve the performance of
the operators by changing the physical design of the tables. The following patterns help
you find such cases.

Recommendation: After the estimated cardinalities match the actual cardinalities, walk
top-down through the explain graph, following the path with the highest cost. Check for
the patterns described later in this section. Operators with a high cost compared to the
costs of the inputs are critical ones to optimize.

Pattern: A table scan has many input rows but few output rows.

Table scans are common in data warehouse queries. These scans are useful if many rows,
for example, more than 50%, match the filter condition. When filter conditions are more
restrictive there might be a better access method.

Action: Check whether the filter conditions can be supported by table partitioning, MDC,
or a regular index.

If a query uses an expression or a type cast (explicit or implicit) on a column, an index
might not be suitable for query execution. In this case, a generated column can help. For
example, if you define a table as THETABLE(ts timestamp), a query such as the following
one might result in a table scan even if there is an index on the column ts.

SELECT COUNT(*) FROM THETABLE WHERE DATE(TS) = ‘2010- 10- 31’ |

You can optimize this query by using a generated column:

SET | NTEGRI TY FOR MYTABLE OFF;
ALTER TABLE THETABLE ADD COLUWN DATE TS GENERATED ALWAYS AS (
DATE(TS));

SET | NTEGRI TY FOR THETABLE | MVEDI ATE CHECKED FORCE GENERATED;
CREATE | NDEX THETABLE_DATE ON MYTABLE(DATE_TS);

This method also works for MDC indexing. You can also use generated columns to make
MDC cells more coarse grained.

Table queues

Table queues with a small amount of data, for example, up to 10,000 rows, are usually
not problematic. A broadcast table queue (BTQ) is used when data from a small
dimension table from the administration node is sent to all data partitions. Table queues

Query optimization best practices Page 37

that send a significant amount of data often indicate a problem with joins on tables that
are not collocated.

First, ensure that joined tables are in the same partitioning group, that is, they use the
same partitioning map. Otherwise, you cannot use collocated joins. Standard
implementations of IBM Smart Analytics System use only one partitioning group for
partitioned user data.

The partitioning columns are shown in the operator details of the explain plan:

Partition Map ID: 5
Partitioning: (MJULT) Miltiple Partitions

Partiti on Col uitm Nanes:

You can find the partitioning group that corresponds to a particular partition map in the
catalog by using a query similar to the following example:

SELECT DBPGNAME FROM SYSCAT. DBPARTI TI ONGROUPS WHERE PVAP_ID = 5 H

You can avoid table queues by taking the following actions:

e By replicating data with MQTs
e By redistributing of a subset of columns with MQTs
¢ By modifying the distribution key

Pattern: A BTQ on a table has many rows, for example, 100,000 or more rows.

BTQs are often applied for small dimension tables that are stored in a single partition on
the administration node. A join with a large fact table on the data nodes needs data from
the dimension table in the database partitions on the data nodes. The BTQs usually
transfer data from a subset of the columns rather than from the whole table. This
behavior is usually not an issue for small tables but can affect performance when the
amount of transferred data grows.

Action: Replicate the table with an MQT.
Replication with an MQT creates a new table in a partitioned table space. Replication
copies data to each partition and is done once. The query compiler can automatically use

the replicated table instead of sending data at run time through a table queue.

Example for creating a replicated dimension table:

Query optimization best practices Page 38

CREATE TABLE Scm Di mfabl e__repl AS (
SELECT ... Some or all colums...
FROM Di nensi onTabl e

)

DATA | NI TI ALLY DEFERRED REFRESH DEFERRED

DI STRI BUTE BY REPLI CATION IN ts_pd_nmqt

COWPRESS YES

NOT LOGGED | NI Tl ALLY;

REFRESH TABLE Scm Di niTabl e__repl ;

RUNSTATS ON TABLE Scm Di nTabl e repl W TH DI STRI BUTI ON;

The replicated table does not need all columns of the base table. You can see the required
columns under Qut put St r eans in the details for the table queue operator in the
explain plan.

Pattern: Directed table queue (DTQ) to partitioned table space on a table with 1,000,000
Or Mmore rows.

Action: Collocate tables or redistribute the queued table with an MQT.

Redistribution with MQTs is similar to replication. The main difference is that you define
the MQT with DISTRIBUTE BY (...NEWHASHKEY...) instead of DISTRIBUTE BY
REPLICATION. With redistribution, there is only one copy of the data instead of
multiple copies, as there is with replication. In both cases, the DB2 agent in each database
partition can read data from local copies in the MQT. There is no need to send the data
again via the network.

A common way to collocate tables is to add a redundant join. The Item table in the
following example is distributed on the ItemID column, but the join in the query uses the
BasketID column. The tables are not collocated.

CREATE TABLE CUSTOMVER (CUSTI D Bl G NT PRI MARY KEY, ...)
DI STRI BUTED BY (CUSTI D) ;
CREATE TABLE BASKET(BASKETI D Bl G NT PRI MARY KEY, CUSTID BI G NT,

)

DI STRI BUTED BY (CUSTID);

CREATE TABLE | TEM | TEM D Bl G NT, BASKETI D BI G NT, PRODUCTI D | NT,
AMOUNT DECI MAL(10, 2) ..)

DI STRI BUTED BY (I TEM D) ;

-- Sal es ampbunt per custoner, not coll ocated
SELECT CUSTI D, SUM AMOUNT) FROM CUSTOMER C, BASKET B, | TEM I
WHERE B. CUSTI D = C. CUSTI D AND | . BASKETI D=B. BASKETI D;

Collocation can be introduced by adding a redundant column, CustID, to the Item table.
A join on the CustID column is also added to the query.

Query optimization best practices Page 39

-- Collocate tables on CustlD

CREATE TABLE Item Item D bigint, BasketlD bigint, CustlD

bi gint, ProductlD int, Anpunt decimal (10,2) .) D STRI BUTED BY
(CustID);

-- Sal es ampbunt per custoner, coll ocated

SELECT Cust| D, sun{Anpunt) FROM Customer C, Basket B, Item |
VWHERE B. Cust| D = C. Cust| D AND | . Basket | D=B. Basket I D AND |. Cust| D
= B.CustID

Pattern: DTQ to coordinator partition, except for trivial processing of the final result.

Almost all query plans have a DTQ at the top that sends the result sets from the data
partitions to the coordinator partition for final sorting or grouping. This process is fine if
the amount of transferred data is small, which is true for most analytical queries.

Action: Investigate a DTQ if the amount of data is large or if the cost of the following
operators, that is, operators higher in the graph, is substantial. Try to parallelize more
sections of the query. For example, check whether you can distribute more tables.

Nested loop joins

Pattern: The cost of a nested loop join is much higher than the cost of its left outer input.
This situation usually occurs when many rows come from the outer/left side of the join.

Hash joins or merge joins are often faster than nested loop joins even when there is a
suitable regular index on the right/inner table.

Nested loop joins often occur together with index lookups on the inner/right side. The
optimizer often chooses indexes with corresponding NLJOIN operator instead of using
the HSJOIN operator.

Action: Try removing the index if it is not critical in other queries.

Pattern: In a nested loop join, the data types of the joined columns are different.

A hash join requires both columns in an equijoin to have the same data types. Fixed-
length types with different lengths or precisions, such as CHAR(10) and CHAR(12), do
not match, so the compiler does not use a hash join. Type casts at run time do not make
the hash join eligible. The compiler chooses the NLJOIN or MSJOIN operator instead.
Variable-length types such as VARCHAR(10) and VARCHAR(12) can be mixed in hash
joins.

Action: If data types in joins are different, make columns use the same data type in the
DDL statements of the corresponding tables.

Query optimization best practices Page 40

Pattern: In a nested loop join, the join predicate uses an expression. There can be a
TBSCAN operator on the inner/right side.

If a join predicate includes an expression, a hash join does not apply. The compiler
chooses a nested loop join instead. Existing indexes might not be applicable if the
indexed column is part of the expression. For example, the evaluation of the T2.Last =
T2 First +1 predicate does not use an index on the T2.First column. However, the T2.Last
-1=T2.First predicate can be evaluated by searching through an index on the T2.First
column.

Action: Take one of the following actions:

e Try to rewrite the join predicate, or enable a hash join by precomputing the
expression in a generated column. For more information, see the “Table scan with
many input rows and few output rows” pattern, earlier in this section.

e Define table partitioning, MDC, or a regular index on the inner table of the join.

Random lookups

Pattern: In the right inner branch of an NLJOIN operator, there is a pair of FETCH and
IXSCAN operators where the FETCH operator does not use prefetching. In this situation,
index lookups can cause random I/O on a table when pages are fetched in an arbitrary
sequence.

Query optimization best practices Page 41

Example:
1
FETCH
(3
15. 2114
2.01
ff=o=tes20
1 1e+007
| XSCAN TABLE: TMP
(4) Bl GTABLE
15. 1356 QA
2
|
1e+007
I NDEX: GREGCOR
| NDEX1
Q

3) FETCH : (Fetch)
MAXPAGES: (Maxi mum pages for prefetch)
1
PREFETCH: (Type of prefetch)
NONE

If such a combination of FETCH and IXSCAN operators is part of the inner branch of a
nested loop join, every index lookup might cause a new physical I/O operation that reads
just one page of the BIGTABLE table from disk.

Action: Make sure that the estimated number of rows on the IXSCAN operator is close to
the actual number of rows. For example, use column group statistics on the columns that
are used in the IXSCAN operator. Check whether you can drop the index or replace it
with MDC. Alternatively, reorganize the table with the index.

RECRG TABLE t np. bi gt abl e | NDEX gregor. i ndex1;
RUNSTATS ON TABLE t np. bi gt abl e W TH DI STRI BUTI ON AND SAMPLED
DETAI LED | NDEXES ALL;

After the table is reorganized, the optimizer might extend the index lookup by list
prefetching, which avoids random I/O. List prefetching is implemented by a combination
of SORT and RIDSCN operators. These operators sort the internal row IDs and then fetch
pages from the table in physical order.

Query optimization best practices Page 42

Example with list prefetching:

10
FETCH
(3
47.0834
33. 5324
flanadoaoa)

10 1e+007
RIDSCN TABLE: TMWP
(4 Bl GTABLE
15. 1409 Q

2

|

10
SORT
(5
15. 1406

2

|

10
| XSCAN
(6)

15. 1396
2

|

1e+007
| NDEX: GREGOR
| NDEX1

QL

3) FETCH : (Fetch)

MAX RIDS: (Maxi mum RI Ds per |ist prefetch request)
512

PREFETCH: (Type of Prefetch)
LI ST

Merge joins
Pattern: An MSJOIN operator is on top of SORT operator in the graph.

Merge joins can perform well when both input branches are already ordered on the join
column, for example, when rows are read from an index. If additional sorting is required,
a hash join is almost always better than a merge join.

.Action: Check whether there is a data type mismatch preventing an HSJOIN operator
from being used. For more information, see the pattern with the description “In a nested
loop join, the data types of the joined columns are different,” earlier in this section. If
there is no data type mismatch, consider reorganizing the unsorted table with an index.

Query optimization best practices Page 43

Hash joins

Pattern: There is an HSJOIN or MSJOIN operator with one small input table and another
large input table. The join returns only a small percentage of the rows from the input
tables.

For an HSJOIN operator, the small table is usually in the right branch and is therefore the
build table. The large table usually in the left branch is called the probe table.

In the following example of a portion of a plan, only one row is selected from the
DIM_WEEK table, and the join returns less than 2% of its input data:

123346
124764 < Snmal | subset of input data
AHSJO N
(42)
501994
NA
[------- R \
8. 0175e+06 1
8. 10293e+06 1
TBSCAN BTQ
(43 (44
501700 3.7432
NA NA
| I
3.74816e+08 1
NA 1
DP- TABLE: TMP TBSCAN
Bl G FACT (45)
Q19 3. 71259
NA
I
65
NA
TABLE: TMP
DI M V\EEK

The TBSCAN operator applies some filtering. It uses table partitioning. You can optimize
the table scan further by refining partitioning or by adding MDC. Making table
partitioning very fine grained might require thousands of partitions, and that is usually
not practical. Organizing the table with MDC is a better approach. A regular index might
be less optimal because the base table is large and there are many selected rows.

Action: Consider MDC or table partitioning on the large table. This might turn the join
into an NLJOIN operator with the large table in the right inner branch.

Query optimization best practices Page 44

Pattern: An index scan (which uses the IXSCAN operator) returns multiple rows. A
FETCH operator is used on the result of the index scan.

This IXSCAN operator requires multiple physical I/Os if the rows matching an index key
are not located together on the same page or extent. The compiler tries to alleviate this
problem by sorting on the page IDs and might insert SORT and RIDSCN operators into
the query plan. The sorting can avoid multiple physical reads on the same page, but the
rows might still be spread over more pages than necessary.

Action: Consider reorganizing the index.

Index coverage

Pattern: There is a combination of IXSCAN and FETCH operators where the number of
rows used by the IXSCAN operator is higher than the number used by the FETCH
operator.

Example:
10. 35
FETCH
(3
39. 6932
5.2372
R
100 1e+006
| XSCAN TABLE: TMP
(4) MYTAB
15.1779 QA
2
|
1e+006
| NDEX: TMP
MYl NDEX
Q

This situation indicates that the index does not cover all search arguments. The FETCH
operator must read every row corresponding to the IDs that are returned from the index
scan. Many of these rows do not contribute to the final result because they do not match
the additional filter condition in the FETCH operator.

Action: Consider covering more columns in the index.

The Design Advisor is good at recommending indexes that cover more search arguments.
In some cases, you can eliminate the access to the table by using an index-only scan. The
index must contain not only the search arguments but also other columns that are fetched
from the table, for example, in an INCLUDE clause. Wider indexes with more columns

Query optimization best practices Page 45

might require more resources when you update the table. You must balance the
optimization of queries against the overhead of index maintenance.

Sorts

Sorting can be expensive. Many data warehouse queries require some sorting because
they aggregate a large amount of data. There are cases, however, where you can
eliminate a SORT operator from a query or reduce the number of rows to be sorted.

You should check the previously described patterns before trying to eliminate or reduce
sorting. A SORT operator might disappear as a result of optimizing another pattern.

Pattern: There is an expensive SORT operator that is processing many rows or a SORT
operator on the inner side of a nested loop join.

SORT operators that process many rows are often expensive, that is, the estimated cost is
much higher than that on the operator’s input branch in the graph. In some cases, the
compiler detects that the input is ordered already and the cost of sorting the data is
estimated to be small. These cases are less important for manual optimization. SORT
operators in the inner branch of a nested loop join might have a low cost, as shown in the
explain plan. The SORT operator is called for every row coming from the outer table, and
the aggregated cost might still be very high.

Action: Consider creating MDC or a regular index on the sorted columns. Try to achieve
index-only access by including all columns that the query needs. If index-only access is
not practical, reorganize the table with the index.

Query optimization best practices Page 46

@ Best practices

Recommendation: Distribute large tables across data nodes. Replicate smaller
tables that you use frequently.

Recommendation: Try to collocate joined tables that process large amounts of
data. Increasing the skew on the data distribution of the smaller joined table
by up to 10% is acceptable.

Recommendation: In a star schema or snowflake data model, choose one
dimension key for distributing the fact table and the dimension table.
Replicate the other dimension tables with MQTs.

Recommendation: Keep the number of regular indexes small. Use table
partitioning or MDC where applicable.

Recommendation: Use compression for MQTs. Issue the RUNSTATS command
on MQTs.

Recommendation: Collect statistics on all tables and keep the statistics current.

Recommendation: Use the RUNSTATS command to gather distribution and

index statistics by issuing a command similar to the following example:
RUNSTATS ON TABLE SCM TAB W TH DI STRI BUTI ON AND SAMPLED

DETAI LED | NDEXES ALL.

Recommendation: Define foreign key constraints as NOT ENFORCED for all
foreign key relationships if the application that writes the data can guarantee
its consistency.

Recommendation: Define functional dependency constraints for all functional
relationships in a table if the application that writes the data can guarantee the
relationships.

Recommendation: When analyzing a query, generate the explain plan with
section actuals. If there are major differences between the estimated and actual
numbers of rows, for example, by a factor of 2 or more, the compiler might not
choose the optimal plan. Try to make the statistics more precise so that the
number of rows that the optimizer estimates is closer to the actual number.

Recommendation: After the estimated cardinalities match the actual
cardinalities, walk top-down through the graph, following the path with the
highest cost. Operators with high cost compared to the costs of the inputs are

Query optimization best practices Page 47

| critical to be optimized.

Query optimization best practices Page 48

Conclusion

Maximizing system utilization and minimizing processing times are key goals for all
large data-processing applications, particularly for large data warehouse systems.
Optimizing the workloads is a key requirement for achieving these goals. The IBM Smart
Analytics System includes configurations to optimize many types of workloads. This
paper provides valuable techniques for further optimizing workloads for specific large
warehouse systems and environments. The techniques that are presented in this paper
focus on generating efficient execution plans that are tailored to your data and
workloads. The first set of techniques helps provide the DB2 compiler with rich statistical
information so that it can select an efficient execution plan. You can use the second set of
techniques to refine execution plans based on the data and queries in your data
warehouse environments. By following the optimization techniques presented in this
paper, you can quickly tune and optimize workloads.

Appendix A. Optim™ Query Tuner for DB2® for
Linux®, UNIX®, and Windows®

Optim Query Tuner for DB2 for Linux, UNIX, and Windows is an IBM product that can
help cut cost and improve performance by providing expert advice on writing high
quality queries and improving database design. Its easy-to-use advisors can help
developers to write more efficient SQL queries.

Although this paper does not describe using Optim Query Tuner to perform the tasks
documented the recommendations, you can use Optim Query Tuner to perform some of
the tasks described. Optim Query Tuner’s graphical interface and advisors can help you
achieve results quickly and efficiently.

Query optimization best practices Page 49

Further reading

DB2 Best Practices papers on a variety of topics can be found at the following
web site: http://www.ibm.com/developerworks/db2/bestpractices/

The Best Practices document Tuning and Monitoring Database System Performance
(http://www.ibm.com/developerworks/data/bestpractices/systemperformance/)
explains how to monitor and tune settings in the operating system and in DB2
instances. The advice applies to all types of database applications.

The Best Practices document Physical Database Design
(http://www.ibm.com/developerworks/data/bestpractices/databasedesign/)
provides general recommendations regarding table partitioning and MDCs.

The Best Practices document DB2 Workload Management
(http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement
/) provides recommendations on the design and implementation of a DB2

workload management environment.

Technical information about Optim Query Tuner for DB2 for Linux, UNIX, and
Windows can be found at the following web site:
http://www.ibm.com/software/data/optim/query-tuner-luw/

http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://www.ibm.com/software/data/optim/query-tuner-luw/
http://www.ibm.com/software/data/optim/query-tuner-luw/

Contributors

Query optimization best practices Page 50

Adriana Zubiri
DB2 Performance QA and Data Warehouse
Benchmarks

Calisto Zuzarte
DB2 Query Optimization

Garrett Fitzsimons
IBM Data Warehouse Best Practices

Haider Rizvi
IBM Smart Analytics System Architect

Jacques Milman
Sales & Distribution, Data Warehouse
Architecture

Juergen Goetz
DB2 Enablement and Porting Consultant

Katherine Kurtz
DB2 and IBM Smart Analytics System
Information Development

Paul McInerney

DB2 Product Development, User-centered
Design

Stephen Addison
Database and Data Warehousing Principal

Serge Boivin
DB?2 Information Development

Query optimization best practices Page 51

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties regarding the accuracy,
reliability or serviceability of any information or recommendations provided in this publication, or with respect
to any results that may be obtained by the use of the information or observance of any recommendations
provided herein. The information contained in this document has not been submitted to any formal IBM test
and is distributed ASIS. The use of this information or the implementation of any recommendations or
techniques herein is a customer responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have been reviewed by IBM for
accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Anyone attempting to adapt these techniques to their own environment does so at their own risk.

This document and the information contained herein may be used solely in connection with the IBM products
discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements will be the same on generally
available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific environment.

Query optimization best practices Page 52

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise
is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2011. All Rights Reserved.

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are
marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate
U.S. registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

	Executive summary
	Optimization considerations for data warehouse systems
	Use the computing power of database partitions
	Determine how to partition the database
	Use collocation as a major driver for choosing distribution keys
	Make the database queries faster by avoiding indexes

	Database configurations
	Physical data modeling
	Foreign keys
	Verifying that referential constraints are valid
	Benefits of foreign keys

	Compression
	Table partitioning
	Multidimensional clustering
	Materialized query tables (MQTs)
	Functional dependencies
	Guidelines for defining functional dependencies
	Benefits of functional dependencies

	Gathering statistics for optimization
	Statistical views

	Tools
	Design Advisor
	Evaluating candidate indexes
	Explain plans with actual cardinalities

	Using explain plans to identify potential problems
	Estimated cardinality
	Optimizing the operators in an execution plan
	Table queues
	Nested loop joins
	Random lookups
	Merge joins
	Hash joins
	Index coverage
	Sorts

	Conclusion
	Appendix A. Optim™ Query Tuner for DB2® for Linux®, UNIX®, and Windows®
	Contributors

