
IBM® Smart Analytics System®

Best practices

 ���®

Query optimization in a data
warehouse

Detlev Kuntze

Toni Bollinger

Sascha Laudien

IBM Data Warehousing Center of
Excellence

Published: June 2011

Gregor Meyer

Query optimization best practices Page 2

..................4

...........................5

ouse
5

......................... 5

......................... 6

on keys........... 6

......................... 9

................10

................11

....................... 11

.............................12

.............................13
14

....................... 15

....................... 16

....................... 17

....................... 18

.............................19
20

22

....................... 25

Tools ..29

Design Advisor... 29

Evaluating candidate indexes .. 29

Explain plans with actual cardinalities... 30

Using explain plans to identify potential problems..31

Table of contents

Executive summary ..

Introduction..

Optimization considerations for data wareh
systems ...

Use the computing power of database partitions

Determine how to partition the database..........................

Use collocation as a major driver for choosing distributi

Make the database queries faster by avoiding indexes ...

Database configurations

Physical data modeling
Foreign keys...

Verifying that referential constraints are valid
Benefits of foreign keys ..

Compression ...

Table partitioning..

Multidimensional clustering ...

Materialized query tables (MQTs)......................................

Functional dependencies ...
Guidelines for defining functional dependencies.....................
Benefits of functional dependencies ..

Gathering statistics for optimization............................
Statistical views ...

Query optimization best practices Page 3

....................... 32

....................... 36

.............................36

.............................39

.............................40

.............................42

.............................43

.............................44

.............................45

46

................48

2® for
................48

49

Contributors.. 50

Notices ..51

Trademarks ... 52

Estimated cardinality..

Optimizing the operators in an execution plan................
Table queues ..
Nested loop joins...
Random lookups ...
Merge joins...

..Hash joins ...
Index coverage...
Sorts...

Best practices ...

Conclusion...

Appendix A. Optim™ Query Tuner for DB
Linux®, UNIX®, and Windows®

Further reading ...

Query optimization best practices Page 4

Executive summary

ads to maximize
es techniques for

he scenarios focus on IBM
le database partitions in

a cluster. The scenarios describe optimization methods that can help improve
n this document might not apply to

DB2 optimizer uses
ind a good execution plan.

This paper describes best practices for gathering statistics.
er tuning, you must

provides a list of patterns to look
for in explain plans. Each pattern is paired with recommended actions.

It is assumed that the reader of this document has a basic understanding of the design
and administration of data warehouse databases with DB2 products.

In large data warehouse systems, it is critical to optimize query worklo
system utilization and minimize processing times. This paper describ
the optimization of data warehouse system query workloads. T
Smart Analytics Systems where DB2® software manages multip

performance in a short time. The guidelines i
transactional applications.

The two main tasks for query optimization are as follows:
1. Provide the DB2 optimizer with rich statistical information. The

the statistical information to perform its analysis and f

2. Determine the best query execution plan. If a query needs furth
inspect the explain plan for the query. This paper

Query optimization best practices Page 5

Introduction

alytical queries
iring sub second response

arallel. Queries
ight vary

o the next. This paper examines some characteristics of data
 Analytics System

The DB2 query compiler and its optimizer are a key component for executing each SQL
t optimal execution

sical data model
 this document is

The DB2 compiler uses a cost-based optimizer. Cost estimates rely on statistics about the
vides guidelines for

e complemented
ency constraints

If a query or data modification statement runs slower than expected, the execution plan
d further optimization.

s that contain important
ation. This paper also provides a series of critical patterns that you might see in an
ion plan. Each pattern has an associated action that helps in improving response

house

Use the computing power of database partitions
Transactional workloads typically comprise many short reads and updates, mostly in sub
second response time. Although the database might be large, a single transaction usually
processes only a small amount of data. Data warehousing query workloads consist of
queries that often process and aggregate large amounts of data. Queries tend to be more
complex, for example, they can contain more joins.

The workloads on data warehouse systems can range from complex an
processing terabytes of data to many short tactical queries requ
time. Updates to large volumes of data might have to be processed in p
can be ad hoc, that is, the access pattern is not known in advance and m
significantly from one query t
warehouse workloads in more detail and describes how the IBM Smart
design is optimized for these workloads.

statement efficiently. The best practices in this document help you ge
plans.

This paper first outlines a summary of guidelines for defining the phy
for the database and partitioning the data. However, the main focus of
on the collection of statistics and the analysis of query plans.

data. Therefore it is important to gather rich statistics. This paper pro
collecting statistics with the RUNSTATS command. These guidelines ar
by recommendations for defining foreign keys and functional depend
that help the optimizer better understand the data model.

that the compiler creates can help identify the operations that nee
This paper describes how to extract and analyze execution plan
inform
execut
times.

Optimization considerations for data ware
systems

Query optimization best practices Page 6

These differences lead to the following recommendations:

database partitions to use parallelism for tasks that need a

locate data that is joined together, that is, store it in the same database partition.
Transmitting data between partitions can be expensive in terms of network and other

ing, that is, distributing data across
ce is to keep small tables on a single

on node of the IBM Smart Analytics
titioned across the data nodes.

t:

 more than 10,000,000 rows.

without
tables are frequently used, replicate them across the

partitions on the data nodes.

 Keep tables with up to 10,000 rows on the administration node, without partitioning
an be sent quickly

river for choosing distribution

uld have the

itions.

ds on the slowest
 data than others. Even
data than others.

The second property is important because DB2 partitioning uses a shared-nothing
architecture to scale out. If possible, collocate joined data on the same partition.
Otherwise, a large amount of data might have to be sent across the network, and that
might slow down the query and limit scalability. This property is true for virtually any
database system that uses a shared-nothing architecture for scalability. Collocation is less
critical for smaller databases where all partitions can be kept on the same server and
where database communication does not need a network.

• Distribute data across
significant amount of resources.

• Col

resources.

Determine how to partition the database
In this section, partitioning refers to database partition
the database partitions using hashing. Practical advi
database partition, for example, on the administrati
System. The bigger tables should be par

Recommendation: Use the following guidelines as a starting poin

• Partition tables with

• Keep tables with 10, 000 - 10,000,000 rows on the administration node,
partitioning them. If these

•
them. There is no need to replicate these tables because they c
across the network at query run time.

Use collocation as a major d
keys
What is a good distribution key for partitioning? A distribution key sho
following properties:

• It should distribute data and workload evenly across part

• It should collocate rows that are joined together.

The first property addresses the fact that the run time of a query depen
partition. This partition is usually the one that has to process more
distribution of data ensures that no partition contains much more

Query optimization best practices Page 7

In larger data warehouse systems, collocating data from different t
important for performance than finding the optimal even distribut
tables. To balance the requirem

ables can be more
ion of data within

ents for even distribution and collocation, follow this
stribution keys:

e data model or queries and locate equijoins between the large tables. In a
act table and a

ed for distribution, that is, if
l as possible. Using a
e the distribution key,

 need to use all primary key columns for distribution.

For example,
 fact tables by

e, add a STORE column
rket basket identifier
d enable a collocated

ables that are distributed by using the STORE column.

the skew in the
 values are good

n should not have many rows containing NULL or some other

sible to achieve collocation in all cases. In many cases, an inability to
ins that are used

le if collocation increases

A collocated join requires tables to be in the same partitioning group, even if the tables

al case of a multi-dimension model such as a star schema with one fact table
le dimensions, the procedure for defining distribution keys is simple:

1. Partition the fact table and the biggest dimension by specifying the dimension key as
the distribution key. Choose another large dimension if the distribution is skewed.

2. Replicate the other dimension tables.

procedure for defining di

1. Determine the biggest tables.

2. Check th
simple star schema, an equijoin might be the join between the f
dimension table.

3. Check whether some of the joined columns can be us
they distribute data well. Keep the number of columns as smal
single column is best in most cases. A primary key must includ
but there is no

4. Optional: Distribute smaller tables if doing so enables collocation.
distribute a STORE table by using its primary key if you distribute
using the STORE key.

5. Optional: Add redundant columns to fact tables. For exampl
to a table that contains itemized sales transactions even if the ma
alone might be a primary key. Adding redundant columns woul
join to other t

6. For remaining tables, choose a distribution key that minimizes
distribution of data. Primary keys or columns with many different
candidates. A colum
default value.

It is usually not pos
collocate data is not a problem. Focus on the biggest tables and the jo
most often or include many rows. For these tables, it is acceptab
the distribution skew by 5 - 10%.

are in different table spaces.

In the speci
and multip

Query optimization best practices Page 8

determine whether data is distributed evenly.

 shown in the following example:

The previous procedures require tests to
There are two simple methods for checking this:

• Count the number of rows per partition, as

-- Actual number of row counts per partition
SELECT DBPARTITIONNUM(KEY),COUNT_BIG(*)
FROM THETABLE TABLESAMPLE SYSTEM(10)
GROUP BY ROLLUP(DBPARTITIONNUM(KEY)) ORDER BY 2;

• Check the space allocation by using the SYSIBMADM.A
 example:

DMINTABINFO view, as
shown in the following

 -- Space allocation per partition
SELECT DBPARTITIONNUM, SUM(DATA_OBJECT_L_SIZE) SIZE_KB
FROM SYSIBMADM.ADMINTABINFO
WHERE (TABSCHEMA,TABNAME) = ('THESCHEMA','THETABLE')
GROUP BY ROLLUP(DBPARTITIONNUM) ORDER BY 2;

You can use the information that you collect to determine data distribution, as follows:

ant because DB2
e allocated space is
 an indicator of the

 of all partitions. A
rage size. The largest

ion is two times
table scan on the

 a perfectly balanced table. A partition with much less data than average
does not cause performance problems.

s using 10 – 20%
more rows that average are normal. The table samples should not be too small
because the differences in row counts might become less reliable. For example, with a
5% sample, some partitions might report 10% more rows than other partitions even if
the table is balanced.

You can test the distribution of data with a new partitioning key by using a procedure
such as the following one:

• The size of partitions, which is based on space allocation, is relev

software fetches full pages or extents rather than single rows. Th
an indicator of the I/O load on the partition, and the row count is
CPU load.

• Compare the size of the biggest partition with the average size
table is balanced if the size of each partition is close to the ave
partition, however, limits the performance. For example, if a partit
larger than the average, a table scan might take twice the time of a
same data in

• Partitions using 10 - 20% more space than average and partition

Query optimization best practices Page 9

-- Create a table with the new distribution key
CREATE TABLE TEMP.THETABLE_TESTKEY AS
 (SELECT NEWDISTKEY FROM THETABLE TABLESAMPLE SYSTEM(10))
 DATA INITIALLY DEFERRED REFRESH DEFERRED
 DISTRIBUTE BY HASH (NEWDISTKEY) IN THETABLESPACE;
COMMIT;

UPDATE COMMAND OPTIONS USING C OFF;
ALTER TABLE TABLE TEMP.THETABLE_TESTKEY ACTIVATE NOT LOGGED
INITIALLY;
REFRESH TABLE TEMP.THETABLE_TESTKEY;

-- Then check row counts per partition.

When the number of rows per partition is about the same, the amount of data that
queries fetch per partition might still vary because the selectivity of filter conditions

 that are processed per
e “Explain plans

dexes
selective, that is, they

return few rows. The cost of table scans can be prohibitive. Regular row-based indexes

s larger portions of
 databases also, but there are

important caveats:

e updates.

• Indexes encourage the query compiler to use nested loop joins with index lookups.
ses a table scan,

any lookups are needed per query.

anges to see whether
are fast enough. If they are not fast enough, follow these steps:

1. Consider using table partitioning. If table partitioning is applicable, create no more
than 200 hundred partitions per table.

2. Consider using multidimensional clustering (MDC). Do not make the dimensions too
fine grained, because this can waste space in MDC blocks that are not full. If more
than 20% of space is unused, make the dimensions more coarse grained by using
generated columns.

might vary by partition. You can check the number of rows
partition by creating query plans with section actuals. For details, see th
with actual cardinalities” section.

Make the database queries faster by avoiding in
SQL statements in short queries often use filter conditions that are

address this workload well.

In data warehouse environments, however, queries tend to proces
tables. Regular indexes are useful in data warehouse

• Index maintenance can take a considerable amount of time in larg

Without the index, the optimizer might choose a hash join that u
which can be faster when m

If queries filter on a certain column, run the queries without any ch
the queries

Query optimization best practices Page 10

3. If the previous two techniques are not appropriate or do not sufficiently improve
queries performance, create a regular index.

ware comes with many predefined configurations. This
 that are generally

 optimizing you system.

igible without checking the
r last REFRESH.

Database configurations
IBM Smart Analytics System soft
section provides information about some additional configurations
useful when you are

Recommendation: For simplified testing make MQTs el
time of thei

DB2 UPDATE DB CFG FOR THEDB USING DFT_REFRESH_AGE ANY

Subsequent sections describe how to use the explain tool and Desig
optimizing queries. These tools need several tables. Create the tabl

n Advisor to assist in
es in the

SYSTOOLSPACE table space by using the following stored procedure:

CALL SYSPROC.SYSINSTALLOBJECTS('EXPLAIN','C','',CURRENT SCHEMA)
-- Uses SYSTOOLSPACE by default because the third parameter is
not specified

The explain tool adds rows to the explain tables but does not delete old entries. You can
clean up the tables with a simple DELETE statement, as shown in the following example:

DELETE FROM EXPLAIN_INSTANCE WHERE EXPLAIN_TIME < CURRENT DATE -
2 MONTHS;
-- Cleans up other explain tables automatically by using foreign
keys

The compiler might take several seconds to optimize a query before the execution starts.
ompile times, that

 the total run
ng the following

The db2batch command with the -i complete parameter reports c
is, prepare times. If they are too long, for example, longer than a fraction of
time, consider reducing the effort spent by the optimizer by issui
command:

DB2SET DB2_REDUCED_OPTIMIZATION=YES

There are situations where the compile time for complex queries might be very short, for
example, less than 0.01 second, and it doesn’t always mean that the optimizer reduced its
optimizing efforts. This is the case for example if a query is in the package cache.

If there are many SQL statements that are almost identical except for the values of
literals, the statement concentrator might reduce overall compile time. This method can
work well in transactional databases but it is not recommended for data warehousing,

Query optimization best practices Page 11

where distribution statistics are relevant. Queries with different constants might need

tion: Do not use the statement concentrator in a data warehouse system.

eling
t for physical

 data warehouse databases.

For more general information about physical data modeling, see Best Practices: Data Life

lemanagement/

different query plans.

Recommenda

Physical data mod
This section highlights some key recommendations that are importan
modeling in

Cycle Management:
http://www.ibm.com/developerworks/data/bestpractices/lifecyc

e Partitioning, Table
 MDC: http://www.redbooks.ibm.com/abstracts/sg247467.html

For more details on table partitioning and MDC, see Databas
Partitioning, and

ression:
ression/

For information about data compression, see Best Practices: Deep Comp
http://www.ibm.com/developerworks/data/bestpractices/deepcomp .

ations:

• Define keys of dimension tables as not null, even if you do not formally set the keys
lumns as not null. You

 null easily, as shown in the following example:

Recommend

as primary keys. It is a good idea to also define all joined co
can define columns as not

ALTER TABLE THETABLE ALTER COLUMN THECOL SET NOT NULL

If the query compiler recognizes that a column cannot have null values, more
optimizations become possible.

olumns that you use in
equijoins. Otherwise, the compiler does not consider hash joins.

 for fact tables only

x with a
ed indexes.

Foreign keys
A foreign key relationship is a relationship between two tables where a set of columns in
one of the tables is a primary key and all values of the corresponding columns in the
other table occur in the key columns. Such constraints that are defined by foreign keys
are sometimes called referential constraints. In a data warehousing environment, foreign
key relationships exist typically between the primary key columns of dimension tables
and the corresponding foreign key columns of the fact tables. In a normalized data

• Use the same data type, length, and precision for pairs of c

• Define primary keys for all dimension tables. Define primary keys
if needed.

• Before defining a primary key, create a corresponding unique inde
declarative name. This avoids lengthy names for system-generat

Query optimization best practices Page 12

model, the foreign key relationships occur as references to lookup t
occur between fact tables. For example, a table with itemized s

ables. They can also
ales data might have a

 transaction.

Recommendation: If the database applications ensure the consistency of foreign keys,
MIZATION.

atabase. In the data
 the applications

ite data into the database. Verifying foreign key relationships again in the
t writes the data

tabase as NOT

 keys can give the DB2 optimizer valuable hints as the estimated cardinality gets
NABLE QUERY

is option is the
efault.

a UNIQUE
 it must have a unique

g a foreign key
alues of the

the SALES_FACT table occur in the PROD_ID column of the

foreign key referencing a market basket table that has one entry per

declare the foreign keys as NOT ENFORCED ENABLE QUERY OPTI

The main purpose of foreign keys is to guarantee the integrity of a d
warehouse context, foreign key relationships are generally ensured by
that wr
database causes unnecessary performance overhead. If the process tha
guarantees that the foreign keys are valid, define the relationship in the da
ENFORCED.
Foreign
more precise and redundant joins can be eliminated. Include the E
OPTIMIZATION option in the SQL declaration of the foreign key. Th
d

You must define the referenced column as primary key, or it must have
constraint. You must also define the column as NOT NULL, and
index.

The following example shows the ALTER TABLE statement for creatin
 specifies that all vwith the options described previously. The statement

PROD_ID column of
PRODUCT_DIM table.

CREATE UNIQUE INDEX PRODUCT_DIM__PROD_ID ON PRODUCT_DIM(PROD_ID);
ALTER TABLE PRODUCT_DIM ADD PRIMARY KEY (PROD_ID);

ALTER TABLE SALES_FACT
 ADD CONSTRAINT FK__PROD_ID FOREIGN KEY (PROD_ID)
 REFERENCES PRODUCT_DIM (PROD_ID)
 NOT ENFORCED
 ENABLE QUERY OPTIMIZATION;

Foreign keys give the DB2 optimizer valuable information for sim
Because there is no performance overhead if you specify them wit
ENFORCED optio

plifying queries.
h the NOT

n, you should define all foreign key relationships in a database. This
t the keys are consistent, that is, they have been checked before the database

is updated. If the foreign keys are not consistent, queries might produce incorrect results.

Verifying that referential constraints are valid
If you want to check the validity of a referential constraint, you can temporarily change
the foreign key constraint to ENFORCED. For example, you can set the foreign key
FK__PROD_ID to ENFORCED and then reset it to NOT ENFORCED by issuing the
following two statements:

assumes tha

Query optimization best practices Page 13

ALTER TABLE SALES_FACT ALTER FOREIGN KEY FK__PROD_ID ENFORCED;
-- Check for errors returned by previous statement
ALTER TABLE SALES_FACT ALTER FOREIGN KEY FK__PROD_ID NOT
ENFORCED;

 valid.

 as shown in the
u must temporarily disable query

use query optimization

If the first statement ends successfully, the foreign key relationship is

You can check keys that violate the constraint by using an SQL query,
following example. Before executing such a query, yo
optimization for the constraint because the DB2 optimizer might
to simplify the query in such a way that it does not return any rows.

ALTER TABLE SALES_FACT ALTER FOREIGN KEY FK__PROD_ID DISABLE
QUERY OPTIMIZATION;

SELECT DISTINCT ppd.PROD_ID

FROM SALES_FACT ppd LEFT OUTER JOIN PRODUCT p
ON ppd.PROD_ID = p.PROD_ID
WHERE p.PROD_ID IS NULL;

ALTER TABLE SALES_FACT ALTER FOREIGN KEY FK__PROD_ID ENABLE QUERY
OPTIMIZATION;

Benefits of foreign keys
Foreign keys help the DB2 database manager to detect and remove redunda

Assume that a reporting tool submitted a query that joins a fact tab
d

nt joins

le with all its
imension tables and that the SELECT clause contains only columns from a subset of the

ins with
ntial constraints

ase manager
recognizes that the joins with the unused dimension tables do not add, remove, or alter
the values of any rows in the result set. Therefore, the joins can be removed from the
query.

The following example illustrates how an unnecessary join can be removed. Figure 1
shows a representation of a star schema with PRCHS_PRFL_DTL (Purchase Profile
Details) as the fact table and STORE, PRODUCT, and dimension tables.

dimension tables. In such a case, the DB2 database manager might execute jo
tables that do not contribute to the result of the query. With refere
between the fact and the dimension tables, however, the DB2 datab

TIME as the

Figure 1. Sample star schema data model

Query optimization best practices Page 14

T(PD_ID)
• PRCHS_PRFL_DTL(TIME_ID) references TIME(TIME_ID)

ht select columns of the PRCHS_PRFL_DTL fact table and PRODUCT and
n tables but no columns of the STORE dimension table, as shown in the

The referential constraints are as follows:
• PRCHS_PRFL_DTL(PD_ID) references PRODUC

• PRCHS_PRFL_DTL(STORE_ID) references STORE(STORE_ID)

A query mig
TIME dimensio
following example:

-- Original query
SELECT PD_SUB_DEPT_ID,

COUNT(*) AS NBTRANS,
SUM(NUMBER_OF_ITEMS) AS SUM_NB_ITEMS,
SUM(SALES_AMOUNT) AS SUM_SALES_AMOUNT
FROM TIME T, PRODUCT P, STORE S, PRCHS_PRFL_DTL PPD
WHERE PPD.PD_ID = P.PD_ID AND PPD.TIME_ID = T.TIME_ID AND
PPD.STORE_ID = S.STORE_ID AND P.PD_DEPT_ID = 8
AND T.CDR_YR=2008
GROUP BY P.PD_SUB_DEPT_ID;

The join predicate ppd.STORE_ID = s.STORE_ID is true in all cases, and there is
exactly one row in the STORE table that matches a row in the PRCHS_PRFL_DTL table.

e any other column from the
 in the database, the compiler

r th the STORE table is redundant and eliminates the table. You
c explain plan.

The join can be eliminated because the query does not us
STORE table. Because the foreign key constraint is declared
ecognizes that the join wi
an see the resulting optimized query in the

- Opt d query as sho- imize wn in the explain plan
SEL Q5.PD_SUB_DEPT_ID AS "PD_SUB_DEPT_ID", ECT Q5.$C1

AS "NBTRANS", Q5.$C2 AS "SUM_NB_ITEMS", Q5.$C3 AS
 "SUM_SALES_AMOUNT"

FROM
(SELECT Q4.PD_SUB_DEPT_ID, COUNT(*),

SUM(Q4.NUMBER_OF_ITEMS),
 SUM(Q4.SALES_AMOUNT)
 FROM
 (SELECT Q2.PD_SUB_DEPT_ID, Q3.NUMBER_OF_ITEMS,
 Q3.SALES_AMOUNT
 FROM TIME AS Q1, PRODUCT AS Q2, PRCHS_PRFL_DTL AS Q3
 WHERE (Q1.CDR_YR = 2008) AND (Q2.PD_DEPT_ID = 8)
 AND (Q3.TIME_ID = Q1.TIME_ID) AND (Q3.PD_ID = Q2.PD_ID)
) AS Q4
 GROUP BY Q4.PD_SUB_DEPT_ID) AS Q5

Compression

Compression reduces the need for storage. Compression can also optimize performance
because the DB2 software reads more rows per disk access and keeps more rows in the

Query optimization best practices Page 15

buffer pool. More rows are kept in the buffer pool because the da
are decompressed dynamically when they are used, for e

ta is compressed. Values
xample, in filters or joins.

Compression saves I/O operations but generally takes more CPU cycles.

 waits. Do not add

• Estimate compression ratios with the ADMIN_GET_TAB_COMPRESS_INFO_V97
a ‘EDW’ with the

Recommendations:

• Consider compression when system monitoring shows many I/O

compression if the system is CPU bound.

administration function. For example, analyze all tables in schem
following statement:

SELECT * FROM
TABLE (SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97('EDW', '',
'ESTIMATE'))

Execution might take several minutes for large tables, especially
partitions.

 if there are many

G TABLE ...

whole table rather
tion. Also, issue the

RUNSTATS command after issuing the REORG TABLE command.

e has one compression dictionary per partition. For example, if there
itions, there can be
ion dictionaries,

might differ for each

Table partitioning increases query performance through partition elimination. You can
quickly roll in and roll out data online by using the ATTACH and DETACH clauses in the

 statement.
s, see the following articles:

• http://www.ibm.com/developerworks/data/library/techarticle/dm-

• For optimal compression on large tables, use the command REOR
RESETDICTIONARY. The dictionary is based on a sample of the
than just the first 2 MB used, as with automatic dictionary crea

A compressed tabl
are eight database partitions and a table is defined with 20 table part
160 different compression dictionaries. If there are multiple compress
compression rates partition.

Table partitioning

ALTER TABLE
For overview

0605ahuja2/index.html
• http://www.ibm.com/developerworks/data/library/dmmag/DMMag_2010_Issue3/Dis

tributedDBA/

Recommendations:

Query optimization best practices Page 16

ore than a few hundred partitions in a table, consider using MDC

 of data that have
 when there are only

ifies old or logically
ether with current data in one table. Queries that

ate the partitions

ARTITIONED in

lly. Therefore, there might
d.

ll local indexes are
g through one global index.

artition, create indexes on the new table that match the

TTACH operation. The

hod for large
pply these guidelines

olumns that are useful in filter conditions.
lue.

Each MDC cell, that is, every different combination of dimension values, allocates at least
illed with rows,

ition has its own set of
C cell.

 a query similar to

• If there would be m
instead of table partitioning.

Table partitioning is often used with ranges of dates or other types
many different values. Table partitioning can also help in cases
two or three values. For example, there might be a flag that ident
deleted rows that are stored tog
select current data can run faster because the optimizer can elimin
that do not contain current data in advance.

• Use partitioned indexes when possible. Create an index as NOT P
the following cases:

• A partitioned index is sorted locally, not sorted globa
be another sort operation after individual ranges are scanne

• If there are many short queries that select only a few records, a
evaluated. This can be slower than goin

• When you want to add a p
partitioned index of the existing partitioned table before the A
indexes make the SET INTEGRITY statement step faster.

Multidimensional clustering
Multidimensional clustering (MDC) provides an efficient indexing met
tables. When choosing columns to use as MDC dimensions, try to a
equally:
• Choose c
• Use combinations of columns that have many rows per distinct va

one block equivalent to one extent in the table space. If a block is not f
some space is wasted. Each database partition and each table part

cks per MDblo

If the table exists, you can inspect the size of the MDC cells by using
the following example:

-- Count number of cells and number of rows, split by partitions
SELECT COUNT(*) NBR_CELLS, MIN(n) MIN_ROWS, AVG(n) AVG_ROWS,
MAX(n) MAX_ROWS
FROM (
-- dimA, dimB, … dimensions as in the ORGANIZE BY clause
SELECT DP,TP, DIMA, DIMB, …, COUNT(*) AS n
FROM (SELECT DBPARTITIONNUM(DIMA),DATAPARTITIONNUM(DIMA), DIMA,
DIMB, …,
 FROM THETABLE)
GROUP BY DP,TP, DIMA, DIMB, …
)

Query optimization best practices Page 17

Consider a table that has rows with an average row length of 100 bytes af
compression. The corresponding table space might have a pa

ter
ge size of 16 KB and 32

 block would be calculated as follows:

ll in this example has many more than 5000 records per database partition
ctor of 5 or more to

An alternative method for checking the space usage of a table with MDC is to call the
 ON TABLE parameters, as

pages per extent. The space for an MDC

32 x 16 KB / 100 bytes = approximately 5000 records

Each MDC ce
and per table partition. Preferably, the cells should be bigger by a fa
reduce wasted space.

REORGCHK command with the CURRENT STATISTICS and
shown in the following example:

REORGCHK CURRENT STATISTICS ON TABLE THESCHEMA.THETABLE

The number of cells should be much fewer, about 20% of the number calculated by the
following formula:

 NP / extent size / number of database partitions / number of
table partitions used = number of cells

Where the extent size is the number of pages per extent in the corres
and NP is the estimated sum of the number of pages that contain data over
partitions as reported in the result of REOR

ponding table space
all database

GCHK.

• For a table with MDC, check whether the total number of pages (FP) is close to the
ta (NP). If FP is much higher than NP, space is likely
ks are not filled up.

n has many different values yielding too many small
ase the granularity of cells with a generated column. For example, use a

.

Materialized query tables (MQTs)
The correct design of MQTs depends on the applications. This paper does not describe
detailed best practices for designing MQTs.

ations:
Use compression for MQTs. Update the statistics for MQTs by issuing the
RUNSTATS command.

Recommendations:

number of pages that contain da
being wasted because MDC bloc

• If a candidate MDC dimensio

cells, incre
generated column with INTEGER (Date)/100 instead of Date

Recommend
•

Query optimization best practices Page 18

relevant query to
 Consider automatic MQT matching later, after

 inspect the
 the explain plan for both the query and the SELECT

statement in the MQT definition. Modify the MQT definition to get closer to the

You can force the DB2 optimizer to use a replicated MQT even if its cost estimate is
timizer to use a

replicated MQT, issue the following command:

• Test the performance impact of a new MQT by rewriting the
explicitly refer to the MQT table.
the MQT sufficiently improves performance.

• If the DB2 optimizer does not automatically selects the MQT,

Optimized Statement in

Optimized Statement of the query.

higher than that of the corresponding base table. To force the op

DB2SET DB2_EXTENDED_OPTIMIZATION=FORCE_REPLICATED_MQT_MERGE

The MQTENFORCE optimization profile element provides another method for enforcing
the use of MQTs, as illustrated in the following example:

-- Create the OPT_PROFILE table in the SYSTOOLS schema
CALL SYSPROC.SYSINSTALLOBJECTS('OPT_PROFILES', 'C', '', '');
-- This creates the table SYSTOOLS.OPT_PROFILE.
-- Note that the table name does not have a trailing ‘S’.

INSERT INTO SYSTOOLS.OPT_PROFILE VALUES (
'MYSCHEMA','MQTENFORCE_ALL',
CAST('<OPTPROFILE><OPTGUIDELINES><MQTENFORCE
TYPE="ALL"/></OPTGUIDELINES></OPTPROFILE>'
 AS BLOB(2M))
);

SET CURRENT OPTIMIZATION PROFILE MYSCHEMA.MQTENFORCE_ALL;

The definition TYPE="ALL" enforces the use of both regular MQTs an
It is also possible to list specific MQTs by name. For further detail

d replicated MQTs.
s, see

db2.luw.admin.pehttp://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.
rf.doc/doc/c0024526.html.

Functional dependencies
A functional dependency is a relationship between two columns of a table that can give
the DB2 optimizer valuable information. Functional dependencies usually exist in a
denormalized table between the ID of entities, such as department ID, and their
descriptions, such as department name. Functional dependencies also exist between such
IDs and the ID of the entities at the next hierarchy level, for example, between
department ID and sub-department ID. Foreign keys in a normalized model usually
correspond to functional dependencies in a denormalized model.

Query optimization best practices Page 19

You can define functional dependencies as constraints with s
following, for example. As shown in the statements, you can define fu
dependencies as NOT ENFORCED. If you define the dependencies as
you must make sure (for example, through the ETL pro

tatements similar for the
nctional
NOT ENFORCED,

cess) that relationships that are
described by the functional dependencies are valid. Furthermore, you must define the

t side of the functional dependency as NOT NULL. column on the righ

ALTER TABLE PRODUCT
 ADD CONSTRAINT PD_DEPT__SUB_DEPT_FD CHECK
 (PD_DEPT_ID DETERMINED BY PD_SUB_DEPT_ID)
 NOT ENFORCED
 ENABLE QUERY OPTIMIZATION;

ALTER TABLE PRODUCT
 ADD CONSTRAINT PD_DEPT_FD CHECK
 (PD_DEPT_NM DETERMINED BY PD_DEPT_ID)
 NOT ENFORCED
 ENABLE QUERY OPTIMIZATION;

query. The

f e PD_SUB_DEPT_ID
a

Y ugh an SQL ou can check the validity of a functional dependency thro
y checks the functional dependency between thollowing SQL quer

nd PD_DEPT_ID columns:

SELECT PD_SUB_DEPT_ID, COUNT(*), MIN(PD_DEPT_ID), MAX(PD_DEPT_ID)
FROM (SELECT DISTINCT PD_SUB_DEPT_ID, PD_DEPT_ID
FROM PRODUCT)
GROUP BY PD_SUB_DEPT_ID
HAVING COUNT(*) > 1;

The SQL statement returns those PD_SUB_DEPT_ID column values that have more than
one associated PD_DEPT_ID column value with the number of these PD_DEPT_ID

 It is not necessary to
uery returns rows in

Guidelines for defining functional dependencies

dation: Define functional dependency constraints for all functional
s in a table that can be guaranteed by the process that writes the data.

define functional dependencies for a primary key or a unique index
column because the DB2 database manager recognizes that implicit functional
relationships exist for the other columns of a table.

Because functional dependencies do not cause overhead at run time, you can define them
for all valid functional relationships. The validity must be ensured, for example, by the
ETL process.

values and two sample values (the maximum and minimum).
disable the constraint for query optimization to ensure that the q
case of an invalid functional dependency.

Recommen
relationship
It is not necessary to

Query optimization best practices Page 20

Benefits of functional dependencies

T_ID_YEAR_MQT MQT is defined by using
utes some aggregated values for each

.

You can use functional dependencies to define smaller MQTs.

Assume that the PRCHS_PRFL_SUB_DEP
the following statements. The MQT definition comp

lendar yearcombination of sub-department ID and ca

CREA TABLE PRCHS_PRFL_SUB_DEPT_ID_YEATE R_MQT AS (
 SELECT PD_SUB_DEPT_ID,CDR_YR,
 COUNT(*) AS NBTRANS,
 UM_NB_ITEMS, SUM(NUMBER_OF_ITEMS) AS S
 SALES_AMOUNT SUM(SALES_AMOUNT) AS SUM_

FROM PRCHS_PRFL_DTL PPD, PRODUCT P, TIME T
WHERE PPD.PD_ID = P.PD_ID AND

 PPD.TIME_ID = T.TIME_ID
GROUP BY P.PD_SUB_DEPT_ID, T.CDR_YR

)
DATA INITIALLY DEFERRED REFRESH DEFERRED
IN TS_SD_001;

REFRESH TABLE PRCHS_PRFL_SUB_DEPT_ID_YEAR_MQT;
RUNSTATS ON TABLE SCHEMA.PRCHS_PRFL_SUB_DEPT_ID_YEAR_MQT WITH

DISTRIBUTION AND INDEXES ALL;

C

onsider the following query:

SELECT PD_SUB_DEPT_ID, COUNT(*) AS NBTRANS,
 SUM(NUMBER_OF_ITEMS) AS
 SUM_NB_ITEMS, SUM(SALES_AMOUNT) AS SUM_SALES_AMOUNT

FROM PRCHS_PRFL_DTL PPD, PRODUCT P, TIME T
WHERE PPD.PD_ID = P.PD_ID AND PPD.TIME_ID = T.TIME_ID AND

 P.PD_DEPT_ID = 8 AND T.CDR_YR=2008
GROUP BY P.PD_SUB_DEPT_ID;

The query references the department ID (PD_DEPT_ID = 8) in the WHERE clause.
Values in PD_DEPT_ID can be inferred from the values in PD_SUB_DEPT_ID because of
the functional dependency between the PD_SUB_DEPT_ID and PD_DEPT_ID columns.
Therefore, the PRCHS_PRFL_SUB_DEPT_ID_YEAR_MQT table can be used, and the
optimized statement of this query is as follows:

Query optimization best practices Page 21

SELECT Q4.PD_SUB_DEPT_ID AS "PD_SUB_DEPT_ID", Q4.$C2

AS "NBTRANS", Q4.$C1 AS
 "SUM_NB_ITEMS", Q4.$C0 AS "SUM_SALES_AMOUNT"

FROM
 (SELECT SUM(Q3.SUM_SALES_AMOUNT),

 SUM(Q3.SUM_NB_ITEMS), SUM(Q3.NBTRANS),
 Q3.PD_SUB_DEPT_ID
 FROM
 (SELECT DISTINCT Q2.PD_SUB_DEPT_ID, Q2.SUM_SALES_AMOUNT,
 Q2.SUM_NB_ITEMS, Q2 NS, Q1.PD_DEPT_ID, .NBTRA

Q1.PD_SUB_DEPT_ID
 FROM PRODUCT AS Q1,

PRCHS_PRFL_SUB_DEPT_ID_YEAR_MQT AS Q2
 WHERE (Q1.PD_DEPT_ID = 8) AND

(Q2.CDR_YR = 2008) AND (Q2.PD_SUB_DEPT_ID
 = Q1.PD_SUB_DEPT_ID)) AS Q3
 GROUP BY Q3.PD_SUB_DEPT_ID) AS Q4

Without the functional dependency, you would have to include the PD_DE
column in the SELECT and GROUP BY clauses of the MQT.

PT_ID

C

onsider the following query:

SELECT PD_SUB_DEPT_ID, COUNT(*) AS NBTRANS, SUM(NUMBER_OF_ITEMS)
AS
 SUM_NB_ITEMS, SUM(SALES_AMOUNT)

AS SUM_SALES_AMOUNT
FROM PRCHS_PRFL_DTL PPD, PRODUCT P, TIME T
WHERE PPD.PD_ID = P.PD_ID AND PPD.TIME_ID = T.TIME_ID AND

 P.PD_DEPT_NM = 'Giveaways' AND T.CDR_YR=2008
GROUP BY P.PD_SUB_DEPT_ID;

This query is identical to the previous unoptimized one except that it includes
p.PD_DEPT_NM = 'Giveaways' in the WHERE clause. In this case, the functional
dependency between the PD_DEPT_ID and PD_DEPT_NM columns also makes it
possible to use the MQT. The optimized statement of the query is as follows:

Query optimization best practices Page 22

SELECT Q4.PD_SUB_DEPT_ID AS "PD_SUB_DEPT_ID", Q4.$C2
AS "NBTRANS", Q4.$C1 AS

 "SUM_NB_ITEMS", Q4.$C0 AS "SUM_SALES_AMOUNT"
FROM

 (SELECT SUM(Q3.SUM_SALES_AMOUNT), SUM(Q3.SUM_NB_ITEMS),
 SUM(Q3.NBTRANS),Q3.PD_SUB_DEPT_ID

 FROM
 (SELECT DISTINCT Q2.PD_SUB_DEPT_ID, Q2.SUM_SALES_AMOUNT,
 , Q2 Q2.SUM_NB_ITEMS .NBTRANS, Q1.PD_DEPT_NM,

 Q1.PD_SUB_DEPT_ID
 _PRFL_SUB_DEPT_ID_YE FROM PRODUCT AS Q1, PRCHS AR_MQT AS Q2
 WHERE (Q1.PD_DEPT_NM = 'Giveaways')

AND (Q2.CDR_YR = 2008) AND
 (Q2.PD_SUB_DEPT_ID = Q1.PD_SUB_DEPT_ID)) AS Q3
 GROUP BY Q3.PD_SUB_DEPT_ID) AS Q4

d have to include the additional

PD_DEPT_NM column in the SELECT and GROUP BY clauses of the MQT.

ry execution plan. If
rent from the

chosen operators might be far from optimal. The more
accurate information you collect with the RUNSTATS command, the higher the chances

ecution plan.

tic invocations of the
nvocations are the

Without the functional dependency, you woul

Gathering statistics for optimization

The DB2 compiler needs accurate statistics to select the optimal que
the estimated number of rows in the explain plan is considerably diffe
actual number of rows, the

that the DB2 optimizer can find a good ex

The simplest method for collecting statistics is to enable automa
RUNSTATS command, as shown in the following example. Automatic i
default in DB2 Version 9.7.

DB2 UPDATE DB CFG USING AUTO_RUNSTATS ON

Execution of the RUNSTATS command tends to be CPU intensive. If you prefer to

s performance impact
workload, use the following recommendations.

dations:

• Collect statistics on all tables and keep them current.

• When a RUNSTATS command is completed, issue a COMMIT statement to release

locks on catalog tables.

manually control the invocations of the RUNSTATS command and it
on the production

 Recommen

Query optimization best practices Page 23

• For system tables, issue the following command:

REORGCHK UPDATE STATISTICS ON TABLE SYSTEM

• Use the RUNSTATS command to gather distribution and in

dex statistics:

RUNSTATS ON TABLE SCM.TAB WITH DISTRIBUTION AND SAMPLED
DETAILED INDEXES ALL

If you want to reduce the run time for the RUNSTATS command on a large table,

le and for the indexes. You
s.

potentially losing some precision, use sampling for the tab
can use a smaller table sample for large table

RUNSTATS ON TABLE SCM.TAB WITH DISTRIBUTION AND SAMPLED
DETAILED INDEXES ALL TABLESAMPLE SYSTEM(10)

You can further reduce run time by collecting statistics on a subset
want to minimize the performance

 of columns. If you
impact of running RUNSTATS, issue the command

with options similar to the following example, at a minimum:

RUNSTATS ON TABLE SCM.TAB ON KEY COLUMNS WITH DISTRIBUTION ON
KEY COLUMNS TABLESAMPLE SYSTEM(1)

Specify the ON KEY COLUMNS option in the WITH DISTRIBUTION clause.

s on all columns.

table with 50,000,000 rows
 take several minutes. Sampling would reduce run time to

about 1 minute. Using the option shown in the previous example might reduce the run

If you issue the RUNSTATS command multiple times, statistics are not accumulated. For
 first command in the following command sequence collects distribution

statistics. The second command collects statistics on the index tmp.i0, and the

Otherwise, the RUNSTATS command collects distribution statistic

Running the RUNSTATS command with all details on a large
per database partition might

time to 10 seconds.

example, the

distribution statistics are not retained.

RUNSTATS ON TABLE TMP.TAB0 WITH DISTRIBUTION
RUNSTATS ON TABLE TMP.TAB0 AND INDEXES TMP.I0

Recommendations:

• When you create an index for a populated table for which the RUNSTATS command

had already collected statistics information, add the index statistics while the new

Query optimization best practices Page 24

wing example shows fragments of the CREATE
INDEX statement with the relevant options:
index is being created. The follo

DB2 CREATE INDEX … COLLECT SAMPLED DETAILED STATISTICS

• Store the complete list of the RUNSTATS command options in a profile. Use the

file that contains the profile when invoking the RUNSTATS command. Using a pro
options ensures that you apply the options consistently.

RUNSTATS ON TABLE SCM.TAB … COMPLETE COMMAND … SET PROFILE
ONLY
-- Any time later …
RUNSTATS ON TABLE SCM.TAB USE PROFILE

-- Check profile
SELECT STATISTICS_PROFILE FROM SYSCAT.TABLES WHERE
(TABSCHEMA,TABNAME) = ('SCM','TAB')

ting statistics, see
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.lu
For further guidelines on collecting and upda

w.admin.perf.doc/doc/c0005083.html.

Changes to the number of frequency values and quantiles

The collection of frequency values and quantiles is important when the distribution of

frequency and
ease the value

 the RUNSTATS command.
fault value of the

values of the parameters

column values is skewed, that is, when there are several values with high
many others with low frequency. For some of these cases, it can help to incr
of the NUM_FREQVALUES or NUM_QUANTILES parameter of
The default value of the NUM_FREQVALUES parameter is 10, and the de
NUM_QUANTILES parameter is 20. In the following example, the
are changed:

RUNSTATS ON TABLE tmp.tab WITH DISTRIBUTION ON ALL COLUMNS AND
COLUMNS (skewedcol NUM_FREQVALUES 40 NUM_QUANTILES 40)

If a query filters on one of the frequently occurring column values a
list that the RUNSTATS co

nd this value is in the
mmand collects, the optimizer can precisely estimate the

cardinality of the results. If the RUNSTATS command did not retain the filter value, the
estimate might be too small.

The sample SQL query that is in the eval-num_freqvalues.sql file in the
ISASBP_Query_Optimization_Scripts.zip file returns a list of columns that
might benefit from increased NUM_FREQVALUES parameter values. The query returns
candidates that have a skewed value distribution. Pick those columns that you use in
filters in the production workload.

Query optimization best practices Page 25

Increasing the value of the NUM_QUANTILES parameter is less likely t
performance. The default value for the NUM_QUANTILES parameter gives
accurate estimates in most cases. Cardinality estimates that are base
be conservative, meaning that the actual number of rows is not muc
estimated by the optimizer. You might want to increase the numb
explain plan shows significant differences between estim

o speed up
 reasonably

d on quantiles tend to
h higher than that

er of quantiles if an
ated and actual cardinalities.

 datetime
31’).

ES parameter or
ameter only for specific tables in the RUNSTATS command or

n apply to all tables
 database configuration

s sub-element
n be useful if a column contains lists of values that are

separated by blanks. The RUNSTATS command computes the average length of the
quencies of individual values. For further details, see

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.lu

Increasing the number of quantiles can be relevant for range predicates on
columns that contain extreme sentinel values, such as date(‘9999-12-

Recommendation: Specify non-default values for the NUM_FREQVALU
the NUM_QUANTILES par
profile. Changes to the default values in the database configuratio
and all columns. In most cases, changing the default values in the
does not improve performance.

The RUNSTATS command LIKE STATISTICS column option collect
statistics. These statistics ca

values, but it does not collect fre

w.admin.perf.doc/doc/c0005098.html.

When to issue the RUNSTATS command

Issue the RUNSTATS command when you have inserted or changed a substantial amount

runstats_out_of_date.sh in the
_Optimization_Scripts.zip file reports tables with outdated

and information. Similar logic is used for automatic updates when

d again because it
stering ratios.

s of joins. The
RUNSTATS command determines the distribution of the values of a column within a
table. If a table is joined with other tables, the DB2 optimizer assumes that the
distribution does not change significantly. In a data warehouse scenario, this assumption
is not always realistic.

Consider the execution plan of the following query, illustrated in Figure 2. The query
determines certain aggregated values for the sub-departments of the department with a
value of 8 in the PD_DEPT_ID column before 2008. The query does not define a statistical
view.

of data in the table, for example, more than 30%.

The sample script that is in the file
ISASBP_Query
RUNSTATS comm
AUTO_RUNSTATS is enabled.

After you reorganize a table or an index, issue the RUNSTATS comman
collects information about the physical organization, such as index clu

Statistical views
Statistical views help to improve the cardinality estimates for the result

Query optimization best practices Page 26

SELECT PD_SUB_DEPT_ID,
 COUNT(*) AS NBTRANS,
 SUM(NUMBER_OF_ITEMS) AS SUM_NB_ITEMS,
 SUM(SALES_AMOUNT) AS SUM_SALES_AMOUNT

FROM PRCHS_PRFL_DTL PPD, PRODUCT P, TIME T
WHERE PPD.PD_ID = P.PD_ID AND

 PPD.TIME_ID = T.TIME_ID AND
 P.PD_DEPT_ID = 8 AND
 T.CDR_YR<2008

GROUP BY P.PD_SUB_DEPT_ID;

Figure 2. Explain plan without statistical view

Query optimization best practices Page 27

r estimates the
L tables when the
e is based on the

T table. The actual
 the join in this example is much higher, around 5,000,000

form the join, which is appropriate

view:

Operator 17 at the top of this part of the plan shows that the optimize
cardinality of the join between the PRODUCT and PRCHS_PRFL_DT
value of the PD_DEPT_ID column is 8 to be 134,764 rows. This estimat
distribution of values in the PD_DEPT_ID column in the PRODUC
number of rows in the result of
rows. The query plan has a nested loop join to per
only if the number of rows is not too high.

 improved by the following statistical The plan can be

CREATE OR REPLACE VIEW PRCHS_PRFL_DTL_DEPT_ID_SV AS
SELECT PD_DEPT_ID

FROM prchs_prfl_dtl ppd, product p
WHERE ppd.PD_ID = p.PD_ID;

ALTER VIEW PRCHS_PRFL_DTL_DEPT_ID_SV ENABLE QUERY OPTIMIZATION;

RUNSTATS ON TABLE Schema.PRCHS_PRFL_DTL_DEPT_ID_SV WITH
DISTRIBUTION;

Important: Ensure that you include the WITH DISTRIBUTION parameter when you
issue the RUNSTATS command; otherwise, the command does not compute the
frequencies of the values of the columns in the select-clause.

A section of the new plan is illustrated in Figure 3:

Query optimization best practices Page 28

Figure 3. Explain plan optimized with statistical view

correct
 now chooses a hash join,

50 %.

l views
the view definition. If

 from all database partitions is
 behavior is different from that of running the RUNSTATS command directly on

use the latter reads data from only one database partition.

Recommendation: For statistical views that contain distributed tables, issue the
RUNSTATS command with the TABLESAMPLE SYSTEM parameter and a sample rate of
(100 / number of database partitions)%. In some cases, the DB2 database manager might
replace the TABLESAMPLE SYSTEM parameter with the TABLESAMPLE BERNOULLI
parameter. This is fine, and you can ignore corresponding warnings.

The estimated cardinality for this join is now 4,524,248 rows. This is close to the
cardinality. Because of the higher cardinality, the optimizer
which improves performance for this query by approximately

Performance of the RUNSTATS command on statistica
Running the RUNSTATS command on a statistical view evaluates
any table in the view definition is distributed, the data
used. This
a table beca

Query optimization best practices Page 29

You can further improve the performance of the RUNSTATS comma
number of columns in the select-clause of the statisti

nd by limiting the
cal view definition. For example,

s.

view for a join
the tables of one of its dimensions is to include in the select-

ast the columns that contain the IDs and descriptions of the members of the
els in the dimension.

ign Advisor
n of regular

db2advis

ations are based on
s are considerably

he Design Advisor might not be useful. Collect detailed

y columns. These
y access to data, but they require additional maintenance if

you modify the corresponding table.

 a
ide
ensions might be

Creating a new index to try to optimize a certain workload can take a significant amount
 index, you might
g the explain tool,

tion: Before creating an actual index, use the DB2 Design Advisor
 command to quickly define a virtual index, and then check whether query
e improves.

The db2advis command maintains a table called ADVISE_INDEX that describes the
recommended indexes. The information in this table includes the names of the indexed
columns. The db2advis command also creates statistics for this index that are based on
the statistics of the underlying table. The explain tool uses the entries in the

select only columns that are used in the WHERE clauses of querie

Recommendation: A good initial approach for defining a statistical
between a fact table and
clause at le

rarchy levhie

Tools

Des
Using a set of queries, the Design Advisor can recommend the creatio
indexes, MDC, and MQTs. You invoke the Design Advisor by issuing the
command.

The Design Advisor needs detailed statistics because the recommend
query plans. If the estimated and actual numbers of rows in query plan
different, the results from t
statistics before running the Design Advisor.

The indexes that the Design Advisor recommends often include man
indexes support fast index-onl

For regular indexes that the Design Advisor recommends, check whether you can use
corresponding MDC dimension instead. The Design Advisor can prov
recommendations for MDC dimensions. The recommended MDC dim
too fine grained if the data is partitioned.

Evaluating candidate indexes

of time, depending on the size of the table Also, after you create the
want to check how the index affects explain plans, and before runnin
you should collect statistics, which requires even more time.

Recommenda
db2advis
performanc

Query optimization best practices Page 30

ADVISE_INDEX table if the CURRENT EXPLAIN MODE special register has the value

ETABLE C1 C2, which you want to
use in an index. Issue the db2advis command with a single query that filters on these

EVALUATE INDEXES set.

Consider a table called TH that has two columns, and

columns:

DB2ADVIS -D TESTDB -S "SELECT COUNT(*) FROM THETABLE WHERE C1=0 AND C2=0"
Will likely recommend an index on THETABLE(C1,C2)
Check the new entry in the table ADVISE_INDEX
DB2 SELECT SUBSTR(COLNAMES,1,30) FROM ADVISE_INDEX WHERE
TBNAME='THETABLE'
And generate new explain plan for a query
DB2 SET CURRENT EXPLAIN MODE EVALUATE INDEXES
DB2 ... THE QUERY...
DB2 SET CURRENT EXPLAIN MODE NO
DB2EXFMT -D TESTDB -1

The resulting explain plan might use the virtual index that you defined by using the
db2advis command.

x that you want.
 command does

it either.

2luw/v9r7/topic/com.ibm.db2.luw.admin.db

The db2advis command is not guaranteed to come up with the inde
You can try different constants in the WHERE clause. If the db2advis
not recommend a particular index, the optimizer would probably not use

For general tips on designing indexes, see
http://publib.boulder.ibm.com/infocenter/db
obj.doc/doc/c0020181.html. For information about virtual indexes, see
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.do
c/doc/r0005874.html.

Explain plans with actual cardinalities
returns. You can

actual number of rows that were processed in the query at run

p?topic=/com.ibm.db2

Explain plans include the estimated number of rows that an operator
extend the plans by the
time. For an example, see the following documentation:

• http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.js
.luw.admin.perf.doc/doc/c0056362.html

ublib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admi• http://p
n.perf.doc/doc/c0056464.html

Recommendation: If there are major differences between the estimated and actual
numbers of rows, for example, by a factor of 2 or more, the compiler might not choose
the optimal plan. Make the statistics more precise so that the number of rows that the
optimizer estimates is closer to the actual number.

Query optimization best practices Page 31

The explain plan shows how many rows were processed per partition. You can use this
s partitions.

actuals.sh
ISASBP_Query_Optimization_Scripts.zip file combines all relevant commands

. The table space for

mendation: Make sure that the monitor tables are available on all partitions, by
in the following example:

information to detect skews in the workload acros

The sample script in the gen_explain_ file in the

to run a query and create an access plan with actuals.

Note that the computation of actual cardinalities uses monitor tables
these tables needs to be set up properly.

Recom
issuing a CREATE TABLESPACE statement similar to the one

-- Setup
UPDATE DATABASE CONFIGURATION USING SECTION_ACTUALS BASE;
CREATE TABLESPACE Monitor IN DATABASE PARTITION GROUP
IBMDEFAULTGROUP … ;
CREATE EVENT MONITOR TheEventName FOR ACTIVITIES WRITE TO TABLE
 ACTIVITY (IN MONITOR),
 ACTIVITYSTMT (IN MONITOR),
 ACTIVITYVALS (IN MONITOR),
 CONTROL (IN MONITOR)
 MANUALSTART;

 explain plan might

problems
an can reveal the

zing explain plans and
section refer to

db2exfmt

This section requires a basic understanding of how to generate and read query explain

/publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.pe

If you do not correctly set up the monitor tables, some results in the
be wrong or missing.

Using explain plans to identify potential
If there is a performance problem with a specific query, the explain pl
costly operations. This section provides hints and tips on analy
influencing the optimizer to produce better plans. The examples in this
plans that are generated by the command.

plans. For an overview of the explain facility, see
http:/
rf.doc/doc/c0005134.html. The explain operators are described in the following
documents:
• http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admi

n.explain.doc/doc/r0052023.html
• http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?nav=/3_6_4_5_82

You can gather detailed explain information by combining the following example
commands:

Query optimization best practices Page 32

DB2BATCH –D THEDB -O E EXPLAIN -I COMPLETE –F THEQUERY.SQL
DB2EXFMT –D THEDB -1 > THEQUERY.EXFMT.OUT
GEN_EXPLAIN_ACTUALS.SH THEDB THEQUERY.SQL

The explain plan, TheQuery.exfmt.out, includes lists of columns fo
streams and selected distribution statistics. The gen_explain_a
the ISASBP_Query_O

r input and output
ctuals.sh script in

ptimization_Scripts.zip file uses the db2exfmt command
 of rows that the

 patterns. Each pattern
ain plan that the

erformance problems.
execution.

ted cardinality for an

t kind of issues

Explain plans include a section called Extended Diagnostic Information
immediately following the plan graph. This section might contain warning messages, for
example, about missing statistics for tables or indexes. In the following descriptions of

that such messages have been addressed. In particular, it is

ive only if the estimated number of rows that are
urned at run time.

ity estimates. If the
, which can cause

lity estimates, the
lan. Statistics are used to estimate how many

rows a certain join or other operator returns.

 certain statistics. For
optimizer usually assumes that columns are statistically unrelated.

However, real-life data often contains related attributes. You might need detailed
statistics, including column groups or statistical views, to adjust the estimates. These
refined statistics usually improve not only the performance of a single query but also the
performance of other queries that use the same data.

With DB2 V9.7, you can create explain plans that include the actual number of rows that
were processed by each operator. For more details, see the “Explain plans with actual
cardinalities” section.

to format the explain plan. The output includes the actual number
operators processed at run time.

In this section, the analysis of explain plans is described with
describes combinations of elements that you might find in an expl
db2exfmt command generates. These patterns indicate potential p
There are corresponding actions that can help you optimize query

The patterns refer to two types of issues: issues with the estima
operator and issues with the execution of an operator. Address the firs
first. They usually require more detailed statistical information.

patterns, it is assumed
assumed that statistics are current.

Estimated cardinality
The analysis of query plans is effect
returned per operator is close to the actual number of rows that are ret
Cost-based optimization directly depends on accurate cardinal
cardinality estimates are wrong, the estimated costs are also wrong
poor performance when you run the query. With more precise cardina
compiler can usually generate a better p

The analysis of a particular query might reveal that you must refine
example, the

Query optimization best practices Page 33

Recommendation: Use section actuals information in the EXPLAIN o
db2exfmt command output to analyze query plans and check w
estimates are in line with the

utput together with
hether the cardinality

actual number of rows. Focus on operators where the
 number of rows is very small. estimated

 Rows
 Rows Actual
 RETURN
 (1)
 Cost
 I/O
 |
 3.21948 << The estimated rows used by the optimizer
 301 << The actual rows collected at run time
 DTQ
 (2)
 75.3961
 NA

If the number of actual rows is much higher than estimated number o
run into various performance

f rows, you might
problems. An important example is a nested loop join with

many rows in the left outer branch. This situation leads to many repeated executions of
the operators in the right inner branch. Performance can be much better with a hash or

imated cardinality
 by the number of

tion: After you identify an operator where the actual number of rows and
rom the top down

r of execution to find the nodes where the numbers start to deviate. Try to
imate with more detailed statistics. The left outer branches of NLJOIN

operators are important.

Pattern: NLJOIN operator. The estimated cardinality in the result of the left outer branch
is too low.

merge join. The right inner branch of a nested loop might have an est
of 1 or fewer because these cardinality values are implicitly multiplied
rows in the outer/left branch of the loop.

Recommenda

e
adjust the est

the estimated number of rows are different, walk through the graph, f
and in ord

Query optimization best practices Page 34

 6.6635 << Estimated rows
 1.17031e+07 << Actual rows at run time
 NLJOIN
 (7)
 122.716
 NA
 /-------------------+-------------------\
0.018402 <<estimated 362.107
 33176 <<actual 352.759
 ^NLJOIN FETCH
 (8) (26)
 98.9503 23.7659

tterns in that

 (represented by
ator).

erator. If the filter
ate, increasing the

ATS command might help. For an
inequality or LIKE predicate, increase the value of the NUM_QUANTILES parameter of the
RUNSTATS command. See the example in the “Gathering statistics for optimization”

the corresponding
NSTATS command. If the predicate involves an

expression such as DATE(ts), a generated column might help. See the pattern “Table scan
n.

dicates use
f the tables.

 cardinality estimate that is
lower than the actual number of rows that the join returns. The reason for the lower
estimate is that the compiler assumes that a match on one column is unrelated to a match
on the other column.

Action: You can improve the estimate by using column group statistics. For example,
consider a join such as the following one:

Action: Fix the cardinality estimate in the left outer branch. Look for pa
branch.

Pattern: The estimated cardinality is wrong for the result of a table scan
the TBSCAN operator) or index scan (represented by the IXSCAN oper

Action: Check the filter conditions in the detailed description of the op
factors that are shown in the explain plan are off for an equality predic
value of the NUM_FREQVALUES parameter of the RUNST

section. If you are filtering the table on multiple columns, you can add
column group statistics to the RU

with many rows on input and few rows on output” later in this sectio

Pattern: The estimated cardinality is wrong for the result of a join. The join pre
more than one column in any o

The join columns might be correlated. This usually leads to a

Txn.Cust_Id = Bal.Cust_Id AND Txn.Contract_id = Bal.Contract_Id

Query optimization best practices Page 35

Refine the statistics on both joined tables by issuing the RUNSTATS command:

RUNSTATS ON TABLE MySchema.Txn ON ALL COLUMNS AND COLUMNS
((Cust_Id,Contract_ID))
 WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL;
RUNSTATS ON TABLE MySchema.Bal ON ALL COLUMNS AND COLUMNS
((Cust_Id,Contract_ID))
 WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL;

Pattern: The estimated cardinality is wrong for the result of a join. Som
applied on a

e filtering is
n input table.

mple has a filter on each input table, (Q1.F = 3) and (Q2.ATTR =
ly

The following exa
1001) respective

Optimized Statement:

...
 (SELECT RID
 FROM TMP.FACT AS Q1, TMP.DIM AS Q2
 WHERE (Q1.F = 3) AND (Q2.KEY = Q1.KEY) AND (Q2.ATTR =
1001))
...

3) NLJOIN: (Nested Loop Join)
 Predicate Text:

 (Q2.KEY = Q1.KEY)

filter conditions for both
Optimized Statement section in the explain plan. Include the

filtered columns in the SELECT clause. The WHERE clause uses the join condition but no

Action: Create a sta
outer and inner in the

tistical view on the joined tables. Look at the

filtering.

CREATE VIEW ... AS
SELECT OUTER.FILTERCOLS, INNER.FILTERCOLS FROM OUTER, INNER
WHERE ...THEJOIN...

In the following example, a statistical view is created on the Fact and Dim tables:

CREATE VIEW SV_FACT_DIM AS
SELECT FACT.F, DIM.ATTR FROM FACT,DIM
WHERE FACT.KEY = DIM.KEY

Collect statistics as described in the “Statistical views” section.

Query optimization best practices Page 36

Optimizing the operators in an execution plan
After you sufficiently improve the statistics, you can look for expensiv
query execution plan. In some cases, it might be possible to improve the perform

e operators in the
ance of

the operators by changing the physical design of the tables. The following patterns help

l cardinalities, walk
h, following the path with the highest cost. Check for

the patterns descri ter in this section. Operators with a high cost compared to the
costs of the in itical ones to optimize.

 rows but few output rows.

eful if many rows,
e, more than 50%, match the filter condition. When filter conditions are more

artitioning, MDC,

a column, an index
 this case, a generated column can help. For

 timestamp), a query such as the following
 even if there is an index on the column ts.

you find such cases.

Recommendation: After the estimated cardinalities match the actua
top-down through the explain grap

bed la
puts are cr

Pattern: A table scan has many input

Table scans are common in data warehouse queries. These scans are us
for exampl
restrictive there might be a better access method.

Action: Check whether the filter conditions can be supported by table p
or a regular index.

If a query uses an expression or a type cast (explicit or implicit) on
might not be suitable for query execution. In
example, if you define a table as THETABLE(ts
one might result in a table scan

SELECT COUNT(*) FROM THETABLE WHERE DATE(TS) = ‘2010-10-31’

You can optimize this query by using a generated column:

SET INTEGRITY FOR MYTABLE OFF;
ALTER TABLE THETABLE ADD COLUMN DATE_TS GENERATED ALWAYS AS (
DATE(TS));
SET INTEGRITY FOR THETABLE IMMEDIATE CHECKED FORCE GENERATED;
CREATE INDEX THETABLE_DATE ON MYTABLE(DATE_TS);

This method also works for MDC indexing. You can also use generated columns to make
MDC cells more coarse grained.

Table queues
Table queues with a small amount of data, for example, up to 10,000 rows, are usually
not problematic. A broadcast table queue (BTQ) is used when data from a small
dimension table from the administration node is sent to all data partitions. Table queues

Query optimization best practices Page 37

 significant amount of data often indicate a problem with joins on tables that

hat is, they use the
ing map. Otherwise, you cannot use collocated joins. Standard

implementations of IBM Smart Analytics System use only one partitioning group for

operator details of the explain plan:

that send a
are not collocated.

First, ensure that joined tables are in the same partitioning group, t
same partition

partitioned user data.

The partitioning columns are shown in the

Partition Map ID: 5
Partitioning: (MULT) Multiple Partitions

Partition Column Names:

+1: CUST_KEY

sponds to a particular partition map in the
ng example:

You can find the partitioning group that corre
catalog by using a query similar to the followi

SELECT DBPGNAME FROM SYSCAT.DBPARTITIONGROUPS WHERE PMAP_ID = 5

You can avoid table queues by taking the following actions:

• By replicating data with MQTs

has many rows, for example, 100,000 or more rows.

ll dimension tables that are stored in a single partition on
odes needs data from

TQs usually
e whole table. This

behavior is usually not an issue for small tables but can affect performance when the

Action: Replicate the table with an MQT.

Replication with an MQT creates a new table in a partitioned table space. Replication
copies data to each partition and is done once. The query compiler can automatically use
the replicated table instead of sending data at run time through a table queue.

Example for creating a replicated dimension table:

• By redistributing of a subset of columns with MQTs
• By modifying the distribution key

Pattern: A BTQ on a table

BTQs are often applied for sma
the administration node. A join with a large fact table on the data n
the dimension table in the database partitions on the data nodes. The B
transfer data from a subset of the columns rather than from th

amount of transferred data grows.

Query optimization best practices Page 38

CREATE TABLE Scm.DimTable__repl AS (
 SELECT ...Some or all columns...
 FROM DimensionTable
)
DATA INITIALLY DEFERRED REFRESH DEFERRED
DISTRIBUTE BY REPLICATION IN ts_pd_mqt
COMPRESS YES
NOT LOGGED INITIALLY;
REFRESH TABLE Scm.DimTable__repl;
RUNSTATS ON TABLE Scm.DimTable__repl WITH DISTRIBUTION;

The replicated table does not need all columns of the base table. You can see the required
columns under Output Streams in the details for the table queue operator in the

le with 1,000,000

h MQTs is similar to replication. The main difference is that you define
STRIBUTE BY

 instead of
lication. In both cases, the DB2 agent in each database

partition can read data from local copies in the MQT. There is no need to send the data

ble in the
 the query uses the

explain plan.

Pattern: Directed table queue (DTQ) to partitioned table space on a tab
or more rows.

Action: Collocate tables or redistribute the queued table with an MQT.

Redistribution wit
the MQT with DISTRIBUTE BY (...NEWHASHKEY...) instead of DI
REPLICATION. With redistribution, there is only one copy of the data
multiple copies, as there is with rep

again via the network.

A common way to collocate tables is to add a redundant join. The Item ta
following example is distributed on the ItemID column, but the join in
BasketID column. The tables are not collocated.

CREATE TABLE CUSTOMER (CUSTID BIGINT PRIMARY KEY, ….)
DISTRIBUTED BY (CUSTID);
CREATE TABLE BASKET(BASKETID BIGINT PRIMARY KEY, CUSTID BIGINT,
…)
DISTRIBUTED BY (CUSTID);
CREATE TABLE ITEM(ITEMID BIGINT, BASKETID BIGINT, PRODUCTID INT,
AMOUNT DECIMAL(10,2) …)
DISTRIBUTED BY (ITEMID);

-- Sales amount per customer, not collocated
SELECT CUSTID, SUM(AMOUNT) FROM CUSTOMER C, BASKET B, ITEM I
WHERE B.CUSTID = C.CUSTID AND I.BASKETID=B.BASKETID;

Collocation can be introduced by adding a redundant column, CustID, to the Item table.
A join on the CustID column is also added to the query.

Query optimization best practices Page 39

-- Collocate tables on CustID
CREATE TABLE Item(ItemID bigint, BasketID bigint, CustID
bigint, ProductID int, Amount decimal(10,2) …) DISTRIBUTED BY
(CustID);
-- Sales amount per customer, collocated
SELECT CustID, sum(Amount) FROM Customer C, Basket B, Item I
WHERE B.CustID = C.CustID AND I.BasketID=B.BasketID AND I.CustID
= B.CustID

Pattern: DTQ to coordinator partition, except for trivial processing of the final result.

rom the data
This process is fine if

nalytical queries.

Action: Investigate a DTQ if the amount of data is large or if the cost of the following
gher in the graph, is substantial. Try to parallelize more

uery. For example, check whether you can distribute more tables.

of its left outer input.
 side of the join.

Hash joins or merge joins are often faster than nested loop joins even when there is a

Nested loop joins often occur together with index lookups on the inner/right side. The
perator instead of using

 different.

s in an equijoin to have the same data types. Fixed-
length types with different lengths or precisions, such as CHAR(10) and CHAR(12), do
not match, so the compiler does not use a hash join. Type casts at run time do not make
the hash join eligible. The compiler chooses the NLJOIN or MSJOIN operator instead.
Variable-length types such as VARCHAR(10) and VARCHAR(12) can be mixed in hash
joins.

Action: If data types in joins are different, make columns use the same data type in the
DDL statements of the corresponding tables.

Almost all query plans have a DTQ at the top that sends the result sets f
partitions to the coordinator partition for final sorting or grouping.
the amount of transferred data is small, which is true for most a

operators, that is, operators hi
sections of the q

Nested loop joins
Pattern: The cost of a nested loop join is much higher than the cost
This situation usually occurs when many rows come from the outer/left

suitable regular index on the right/inner table.

optimizer often chooses indexes with corresponding NLJOIN o
the HSJOIN operator.

Action: Try removing the index if it is not critical in other queries.

Pattern: In a nested loop join, the data types of the joined columns are

A hash join requires both column

Query optimization best practices Page 40

he join predicate uses an expression. There can be a

. The compiler
icable if the

on of the T2.Last =
irst +1 predicate does not use an index on the T2.First column. However, the T2.Last

aluated by searching through an index on the T2.First
column.

omputing the
expression in a generated column. For more information, see the “Table scan with
many input rows and few output rows” pattern, earlier in this section.

able partitioning, MDC, or a regular index on the inner table of the join.

Random lookups
Pattern: In the right inner branch of an NLJOIN operator, there is a pair of FETCH and
IXSCAN operators where the FETCH operator does not use prefetching. In this situation,
index lookups can cause random I/O on a table when pages are fetched in an arbitrary
sequence.

Pattern: In a nested loop join, t
TBSCAN operator on the inner/right side.

If a join predicate includes an expression, a hash join does not apply
chooses a nested loop join instead. Existing indexes might not be appl
indexed column is part of the expression. For example, the evaluati
T2.F
-1 = T2.First predicate can be ev

Action: Take one of the following actions:

• Try to rewrite the join predicate, or enable a hash join by prec

• Define t

Query optimization best practices Page 41

Example:

 1
 FETCH
 (3)
 15.2114
 2.01
 /---+----\
 1 1e+007
 IXSCAN TABLE: TMP
 (4) BIGTABLE
 15.1356 Q1
 2
 |
 1e+007
 INDEX: GREGOR
 INDEX1
 Q1

…
…
3) FETCH : (Fetch)
 MAXPAGES: (Maximum pages for prefetch)
 1
 PREFETCH: (Type of prefetch)
 NONE

If such a combination of FETCH and IXSCAN operators is part of th
nested loop join, every index lookup might cau

e inner branch of a
se a new physical I/O operation that reads
.

CAN operator is close to
the actual number of rows. For example, use column group statistics on the columns that
are used in the IXSCAN operator. Check whether you can drop the index or replace it

just one page of the BIGTABLE table from disk

Action: Make sure that the estimated number of rows on the IXS

with MDC. Alternatively, reorganize the table with the index.

REORG TABLE tmp.bigtable INDEX gregor.index1;
RUNSTATS ON TABLE tmp.bigtable WITH DISTRIBUTION AND SAMPLED
DETAILED INDEXES ALL;

After the table is reorganized, the optimizer might extend the index lookup by list
prefetching, which avoids random I/O. List prefetching is implemented by a combination
of SORT and RIDSCN operators. These operators sort the internal row IDs and then fetch
pages from the table in physical order.

Query optimization best practices Page 42

Example with list prefetching:

 10
 FETCH
 (3)
 47.0834
 33.5324
 /---+----\
 10 1e+007
 RIDSCN TABLE: TMP
 (4) BIGTABLE
 15.1409 Q1
 2
 |
 10
 SORT
 (5)
 15.1406
 2
 |
 10
 IXSCAN
 (6)
 15.1396
 2
 |
 1e+007
 INDEX: GREGOR
 INDEX1
 Q1

…
…
3) FETCH : (Fetch)

 MAX RIDS: (Maximum RIDs per list prefetch request)
 512
 PREFETCH: (Type of Prefetch)
 LIST

Merge joins
Pattern: An MSJOIN operator is on top of SORT operator in the graph.

Merge joins can perform well when both input branches are already ordered on the join
column, for example, when rows are read from an index. If additional sorting is required,
a hash join is almost always better than a merge join.

.Action: Check whether there is a data type mismatch preventing an HSJOIN operator
from being used. For more information, see the pattern with the description “In a nested
loop join, the data types of the joined columns are different,” earlier in this section. If
there is no data type mismatch, consider reorganizing the unsorted table with an index.

Query optimization best practices Page 43

put table and another
ge input table. The join returns only a small percentage of the rows from the input

For an HSJOIN operator, the small table is usually in the right branch and is therefore the
e probe table.

 portion of a plan, only one row is selected from the
:

Hash joins
Pattern: There is an HSJOIN or MSJOIN operator with one small in
lar
tables.

build table. The large table usually in the left branch is called th

In the following example of a
DIM_WEEK table, and the join returns less than 2% of its input data

 123346
 124764 Small subset of input data
 ^HSJOIN
 (42)
 501994
 NA
 /-------+--------\
 8.0175e+06 1
 8.10293e+06 1
 TBSCAN BTQ
 (43) (44)
 501700 3.7432
 NA NA
 | |
 3.74816e+08 1
 NA 1
 DP-TABLE: TMP TBSCAN
 BIG_FACT (45)
 Q19 3.71259
 NA
 |
 65
 NA
 TABLE: TMP
 DIM_WEEK

The TBSCAN operator applies some filtering. It uses table partitioning. You can optimize
the table scan further by refining partitioning or by adding MDC. Making table
partitioning very fine grained might require thousands of partitions, and that is usually
not practical. Organizing the table with MDC is a better approach. A regular index might
be less optimal because the base table is large and there are many selected rows.

Action: Consider MDC or table partitioning on the large table. This might turn the join
into an NLJOIN operator with the large table in the right inner branch.

Query optimization best practices Page 44

CAN operator) returns multiple rows. A

tching an index key
s to alleviate this

t insert SORT and RIDSCN operators into
avoid multiple physical reads on the same page, but the

ages than necessary.

Action: Consider reorganizing the index.

ex coverage
ern: There is a combination of IXSCAN and FETCH operators where the number of

rows used by the IXSCAN operator is higher than the number used by the FETCH

Pattern: An index scan (which uses the IXS
FETCH operator is used on the result of the index scan.

This IXSCAN operator requires multiple physical I/Os if the rows ma
are not located together on the same page or extent. The compiler trie
problem by sorting on the page IDs and migh
the query plan. The sorting can
rows might still be spread over more p

Ind
Patt

operator.

Example:

 10.35
 FETCH
 (3)
 39.6932
 5.2372
 /---+----\
 100 1e+006
 IXSCAN TABLE: TMP
 (4) MYTAB
 15.1779 Q1
 2
 |
 1e+006
 INDEX: TMP
 MYINDEX
 Q1

ents. The FETCH
d from the index

do not match
the additional filter condition in the FETCH operator.

Action: Consider covering more columns in the index.

The Design Advisor is good at recommending indexes that cover more search arguments.
In some cases, you can eliminate the access to the table by using an index-only scan. The
index must contain not only the search arguments but also other columns that are fetched
from the table, for example, in an INCLUDE clause. Wider indexes with more columns

This situation indicates that the index does not cover all search argum
operator must read every row corresponding to the IDs that are returne
scan. Many of these rows do not contribute to the final result because they

Query optimization best practices Page 45

table. You must balance the
optimization of queries against the overhead of index maintenance.

me sorting because
re you can

ows to be sorted.

 eliminate or reduce
appear as a result of optimizing another pattern.

ny rows or a SORT

e estimated cost is
ome cases, the

 ordered already and the cost of sorting the data is
ization. SORT

as shown in the
lled for every row coming from the outer table, and

the aggregated cost might still be very high.

Action: Consider creating MDC or a regular index on the sorted columns. Try to achieve
index-only access by including all columns that the query needs. If index-only access is
not practical, reorganize the table with the index.

might require more resources when you update the

Sorts
Sorting can be expensive. Many data warehouse queries require so
they aggregate a large amount of data. There are cases, however, whe
eliminate a SORT operator from a query or reduce the number of r

You should check the previously described patterns before trying to
sorting. A SORT operator might dis

Pattern: There is an expensive SORT operator that is processing ma
operator on the inner side of a nested loop join.

SORT operators that process many rows are often expensive, that is, th
much higher than that on the operator’s input branch in the graph. In s
compiler detects that the input is
estimated to be small. These cases are less important for manual optim
operators in the inner branch of a nested loop join might have a low cost,
explain plan. The SORT operator is ca

Query optimization best practices Page 46

Best practices
• Replicate smaller Recommendation: Distribute large tables across data nodes.

tables that you use frequently.

• Recommendation: Try to collocate joined tables that process large amounts of
data. Increasing the skew on the data distribution of the smaller joined table
by up to 10% is acceptable.

• Recommendation: In a star schema or snowflake data model, choose one

dimension key for distributing the fact table and the dimension table.
Replicate the other dimension tables with MQTs.

• Recommendation: Keep the number of regular indexes small. Use table

partitioning or MDC where applicable.

• Recommendation: Use compression for MQTs. Issue the RUNSTATS command
on MQTs.

• Recommendation: Collect statistics on all tables and keep the statistics current.

• Recommendation: Use the RUNSTATS command to gather distribution and

index statistics by issuing a command similar to the following example:
RUNSTATS ON TABLE SCM.TAB WITH DISTRIBUTION AND SAMPLED
DETAILED INDEXES ALL.

• Recommendation: Define foreign key constraints as NOT ENFORCED for all

foreign key relationships if the application that writes the data can guarantee
its consistency.

• Recommendation: Define functional dependency constraints for all functional

relationships in a table if the application that writes the data can guarantee the
relationships.

• Recommendation: When analyzing a query, generate the explain plan with

section actuals. If there are major differences between the estimated and actual
numbers of rows, for example, by a factor of 2 or more, the compiler might not
choose the optimal plan. Try to make the statistics more precise so that the
number of rows that the optimizer estimates is closer to the actual number.

• Recommendation: After the estimated cardinalities match the actual
cardinalities, walk top-down through the graph, following the path with the
highest cost. Operators with high cost compared to the costs of the inputs are

Query optimization best practices Page 47

critical to be optimized.

Query optimization best practices Page 48

y goals for all
house systems.

M Smart
 workloads. This

or specific large
ted in this paper

o your data and
ler with rich statistical

 execution plan. You can use the second set of
techniques to refine execution plans based on the data and queries in your data
warehouse environments. By following the optimization techniques presented in this

2® for

 product that can
ing high

quality queries and improving database design. Its easy-to-use advisors can help
developers to write more efficient SQL queries.
Although this paper does not describe using Optim Query Tuner to perform the tasks
documented the recommendations, you can use Optim Query Tuner to perform some of
the tasks described. Optim Query Tuner’s graphical interface and advisors can help you
achieve results quickly and efficiently.

Conclusion
Maximizing system utilization and minimizing processing times are ke
large data-processing applications, particularly for large data ware
Optimizing the workloads is a key requirement for achieving these goals. The IB
Analytics System includes configurations to optimize many types of
paper provides valuable techniques for further optimizing workloads f
warehouse systems and environments. The techniques that are presen
focus on generating efficient execution plans that are tailored t
workloads. The first set of techniques helps provide the DB2 compi
information so that it can select an efficient

paper, you can quickly tune and optimize workloads.

Appendix A. Optim™ Query Tuner for DB
Linux®, UNIX®, and Windows®

Optim Query Tuner for DB2 for Linux, UNIX, and Windows is an IBM
help cut cost and improve performance by providing expert advice on writ

Query optimization best practices Page 49

 be found at the following
ctices/

Further reading
• DB2 Best Practices papers on a variety of topics can

web site: http://www.ibm.com/developerworks/db2/bestpra

 System Performance
ractices/systemperformance/

• The Best Practices document Tuning and Monitoring Database
(http://www.ibm.com/developerworks/data/bestp)

ngs in the operating system and in DB2
cations.

• The Best Practices document Physical Database Design
ata/bestpractices/databasedesign/

explains how to monitor and tune setti
instances. The advice applies to all types of database appli

(http://www.ibm.com/developerworks/d)
and MDCs.

 nt DB2 Workload Management
rkloadmanagement

provides general recommendations regarding table partitioning

• The Best Practices docume
(http://www.ibm.com/developerworks/data/bestpractices/wo
/) provides recommendations on the d
workload management environment.

esign and implementation of a DB2

• Technical information about Optim Query Tuner for DB2 for Linux, UNIX, and
Windows can be found at the following web site:
http://www.ibm.com/software/data/optim/query-tuner-luw/

http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://www.ibm.com/developerworks/data/bestpractices/workloadmanagement/
http://www.ibm.com/software/data/optim/query-tuner-luw/
http://www.ibm.com/software/data/optim/query-tuner-luw/

Query optimization best practices Page 50

Contributors

DB2 Performance QA and Data Warehouse
s

 Zuzarte
ation

rrett Fitzsimons
st Practices

er Rizvi

ystem Architect

ues Milman
ta Warehouse

rchitecture

B2 Enablement and Porting Consultant

DB2 and IBM Smart Analytics System
ormation Development

Stephen Addison

Database and Data Warehousing Principal

Serge Boivin
DB2 Information Development

Adriana Zubiri

Benchmark

Calisto
DB2 Query Optimiz

Ga
IBM Data Warehouse Be

Haid

IBM Smart Analytics S

Jacq
Sales & Distribution, Da
A

Juergen Goetz
D

Katherine Kurtz

Inf

Paul McInerney

DB2 Product Development, User-centered
Design

Query optimization best practices Page 51

er countries. Consult
ailable in your area.

ntended to state or imply that only that IBM
m, or service that does
user's responsibility to

uate and verify the operation of any non-IBM product, program, or service.

atents or pending patent applications covering subject matter described in this document. The
 of this document does not grant you any license to these patents. You can send license inquiries, in

IBM Director of Licensing

r country where such provisions
DES THIS

 IMPLIED,
INGEMENT,
ot allow disclaimer of

 apply to you.

egarding the accuracy,
in this publication, or with respect

recommendations
e information contained in this document has not been submitted to any formal IBM test

mendations or
valuate and integrate

ewed by IBM for
y in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.

ir own risk.

ction with the IBM products

ld include technical inaccuracies or typographical errors. Changes are periodically made to
blication. IBM may make

publication at any time

nce only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements will be the same on generally
available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific environment.

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in oth
your local IBM representative for information on the products and services currently av
Any reference to an IBM product, program, or service is not i
product, program, or service may be used. Any functionally equivalent product, progra
not infringe any IBM intellectual property right may be used instead. However, it is the
eval

IBM may have p
furnishing
writing, to:

IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any othe
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVI
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFR
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do n
express or implied warranties in certain transactions, therefore, this statement may not

Without limiting the above disclaimers, IBM provides no representations or warranties r
reliability or serviceability of any information or recommendations provided
to any results that may be obtained by the use of the information or observance of any
provided herein. Th
and is distributed AS IS. The use of this information or the implementation of any recom
techniques herein is a customer responsibility and depends on the customer’s ability to e
them into the customer’s operational environment. While each item may have been revi
accurac
Anyone attempting to adapt these techniques to their own environment does so at the

This document and the information contained herein may be used solely in conne
discussed in this document.

This information cou
the information herein; these changes will be incorporated in new editions of the pu
improvements and/or changes in the product(s) and/or the program(s) described in this
without notice.

Any references in this information to non-IBM Web sites are provided for convenie

Query optimization best practices Page 52

oducts, their published
cts and cannot confirm the

on-IBM products. Questions on the
cts.

rawal without notice,

ion contains examples of data and reports used in daily business operations. To illustrate them as
viduals, companies, brands, and products. All of
ddresses used by an actual business enterprise

ustrate programming
ribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
nforming to the application programming interface for the operating platform for which the
rams are written. These examples have not been thoroughly tested under all conditions. IBM,

grams.

.com are trademarks or registered trademarks of International Business Machines
r IBM trademarked terms are

bol (® or ™), these symbols indicate
is information was published. Such

untries. A current list of IBM
ion” at

Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information concerning non-IBM products was obtained from the suppliers of those pr
announcements or other publicly available sources. IBM has not tested those produ
accuracy of performance, compatibility or any other claims related to n
capabilities of non-IBM products should be addressed to the suppliers of those produ

All statements regarding IBM's future direction or intent are subject to change or withd
and represent goals and objectives only.

This informat
completely as possible, the examples include the names of indi
these names are fictitious and any similarity to the names and a
is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2011. All Rights Reserved.

This information contains sample application programs in source language, which ill
techniques on various operating platforms. You may copy, modify, and dist

programs co
sample prog
therefore, cannot guarantee or imply reliability, serviceability, or function of these pro

Trademarks
IBM, the IBM logo, and ibm
Corporation in the United States, other countries, or both. If these and othe
marked on their first occurrence in this information with a trademark sym
U.S. registered or common law trademarks owned by IBM at the time th
trademarks may also be registered or common law trademarks in other co
trademarks is available on the Web at “Copyright and trademark informat
www.ibm.com/legal/copytrade.shtml

	Executive summary
	Optimization considerations for data warehouse systems
	Use the computing power of database partitions
	Determine how to partition the database
	Use collocation as a major driver for choosing distribution keys
	Make the database queries faster by avoiding indexes

	Database configurations
	Physical data modeling
	Foreign keys
	Verifying that referential constraints are valid
	Benefits of foreign keys

	Compression
	Table partitioning
	Multidimensional clustering
	Materialized query tables (MQTs)
	Functional dependencies
	Guidelines for defining functional dependencies
	Benefits of functional dependencies

	Gathering statistics for optimization
	Statistical views

	Tools
	Design Advisor
	Evaluating candidate indexes
	Explain plans with actual cardinalities

	Using explain plans to identify potential problems
	Estimated cardinality
	Optimizing the operators in an execution plan
	Table queues
	Nested loop joins
	Random lookups
	Merge joins
	Hash joins
	Index coverage
	Sorts

	Conclusion
	Appendix A. Optim™ Query Tuner for DB2® for Linux®, UNIX®, and Windows®
	Contributors

