IBM PureData for Operational Analytics

Best practices

Transforming IBM Industry Models
into a production data warehouse

Austin Clifford David Murphy Garrett Fitzsimons
DB2 Warehouse QA specialist ~ DB2 Development lead Best practices specialist for
IBM Dublin Lab IBM Dublin Lab warehouse & appliances

IBM Dublin Lab
Pat Meehan Ronan O’Suilleabhain ~ Sami Abed
Senior IT Specialist Integration & deployment ~— DB2 Kernel developer
IBM Dublin Lab specialist, Industry Models IBM Dublin Lab

IBM Dublin Lab

Issued: October 2012

Transforming IBM Industry Models into a production data warehouse..... 1

EXeCUtive SUMMATYcoooviiiiiiiiieiiieicc e 4
INtrodUCtION ... 5
Using industry models............cooviiiiiiiiiiice, 6
Implementing an industry model as a physical database........................ 7
Understanding database design challenges............cccccoeeiiiininiiinnnne. 8

Scoping the logical model and transforming into a physical data model... 9

Scoping the logical model...........cccooiiiiiiiiiiiiic, 9
Preparing the physical data model for deployment as a partitioned
database........cveuiie e 11

Starting with database partition groups.........ccceeveveieiiiiiiiiinnns 11

Implementing a table space strategy..........ccccveevireiiniiniiiiiciniccnee, 12

Customizing keys and data types..........ccovveiiiiiniiiiiii 14
Using report specifications to influence your physical data model............ 16

An excerpt from the Solvency II physical data model............................ 16

Interpreting Solvency II example reports as database design decisions

Optimizing the database architecture and design for your environment. 19

Choosing distribution Keys...........cccovuiiiiininiiiiiiiiiiiicccas 19
Choosing MDC tables and columns...........cccoeeiiviiiniiiiininiccnes 20
Partitioning large tables for query performance and manageability ... 22
Indexing for performance ... 23
Using partitioned MQTs to enhance query performance...................... 26
Enabling and evaluating compression..............cccceeevevnieiccninininieccnniennes 27
Replicating nonpartitioned tablesccoccoviiiiiiiniiniiiiiicee 28
Ingesting data into the database ..., 29
Using temporal tables to effectively manage changeccccccevevnnne. 33
Implementing system-period temporal time for a dimension table..... 33

Implementing business-period temporal time for a dimension table.. 35

Best practices for deploying IBM Industry Models Page 2 of 50

CONCIUSION ...ttt 37
Best practices.........coiviiiiiiiiii 38
Appendix A. Test environment ..., 39
Appendix B Sample Queriescccccovvuiiiiiiiiniiiniiiie 40
Query for report example 1: Assets by region, by counterparty, by
Credit Tating......ccoiviiiiiiiicc e 40
Query for report example 2: Asset valuations drill down by dimension
FIIEET oo 46
Appendix C Sample Solvency II IBM Cognos reportcccccueueiiirurucnnnee. 47
Further reading..........cccooviiiiiiii 48
ContribUtOTS ... 48
INOICES ottt 49
Trademarks ... 50

Best practices for deploying IBM Industry Models Page 3 of 50

Executive summary

Implementing an industry model can help accelerate projects in a wide variety of
industry sectors by reducing the effort required to create a database design optimized for
data warehousing and business intelligence.

IBM Industry Models cover a range of industries which include banking, healthcare,
retail, and telecommunications. The example that is chosen in this document is from a
subset of the IBM Insurance Information Warehouse model pertaining to Solvency II (SII)
regulations.

Many of the most important partitioned database design decisions are dependent on the
queries that are generated by reporting and analytical applications. This paper explains
how to translate reporting needs into database design decisions.

This paper guides you through the following recommended process for transforming a
logical data model for dimensional warehousing into a physical database design for
production use in your environment. The key phases of this process are:

e Create a subset of the data model subset from the supplied logical data model

e Prepare the physical data model for deployment as a partitioned DB2 database

e Refine the physical data model to reflect your reporting and analytics needs

e Optimize the database architecture and design for a production environment
Implement a database architecture that is aligned with best practices for warehousing
before tuning your database design to reflect performance needs for reports and queries.

When you have created and populated the test database can you further optimize the
database design to reflect the anticipated query, ingest and maintenance workload.

A poorly designed database and architecture can lead to poor query performance and a
need for outages to accommodate maintenance operations. Using the recommendations
in this paper can help you transform an IBM Industry Model dimensional warehouse
solution into a partitioned database that is ready for production use.

Best practices for deploying IBM Industry Models Page 4 of 50

Introduction

IBM Industry Models provide you with an extensive and extensible data model for your
industry sector. Use the logical data model as provided by IBM to build a physical model
that is customized for your reporting requirements then deploy and populate a best-
practice partitioned-database production environment.

This paper does not discuss data modeling concepts but instead focuses on what you
must do to transform a non-vendor-specific logical data model into a best-practice
production DB2 partitioned database.

This paper is targeted at people involved in transforming the dimensional data
warehouse logical data model into a production partitioned database that is based on
DB2e Database for Linuxe, UNIXe, and Windowse software v10.1.

The goal of the IBM Insurance Information Warehouse model in addressing Solvency II is
to facilitate reporting in line with European Union directives and internal business
requirements. A subset of tables from the dimensional layer, together with a sample SII-
based Cognos report, is referenced throughout the paper. The test environment used is
described in appendix A.

The first section of this paper looks at the deployment pattern and the main design
challenges that you must address when you implement an industry model. The process
of identifying and manipulating the components of the industry model that are relevant
to your business is outlined.

The second section of the paper looks at transforming the logical data model into a
physical data model that is aligned with best practices for a partitioned DB2 database.

The third section of the paper shows how to translate reporting requirements into
database design choices that help shape the physical data model.

The fourth section of the paper describes how to optimize the database design to reflect
the specific needs of your production environment. The temporal feature and continuous
data ingest utility, both introduced in DB2 Version 10.1, are described in the context of
how they might influence your database design decisions.

The IBM PureData for Operational Analytics System implements best practices for data
warehouse architecture that uses DB2 software. The shared-nothing architecture of the
IBM PureData for Operational Analytics System provides a platform that emphasizes
performance, scalability, and balance. The paper “Best Practices: Physical database
design for data warehouse environments”, referenced in the Further reading section,
covers the recommendations for data warehouse database design in detail.

Best practices for deploying IBM Industry Models Page 5 of 50

Using industry models

An industry model is a comprehensive set of predesigned models that form the basis of a
business and software solution. An industry models solution consists of a set of industry-
specific integrated models that are optimized for business challenges in a particular
sector. Domain areas include data warehousing, business intelligence, business process
management, service-oriented architecture, business terminology, and business glossary
templates.

Solvency II (SII), a European Union directive on insurance regulation, and the associated
Pillar 3 reporting requirements are extensively covered by the IBM Insurance
Information Warehouse (IIW) data models. This paper uses the SII coverage within the
IIW model to show how best practices in data warehousing for DB2 can be applied to an
industry model.

Industry Models

Analytical
Requirements

' 3

Vocabulary

Supportive

r N

Data Models

Figure 1 The dimensional warehouse model within the context of industry models

To choose the entities or scope of the logical data model that are relevant to your
business, first determine your specific reporting requirements.

Best practices for deploying IBM Industry Models Page 6 of 50

Implementing an industry model as a physical database

Implementing a logical data model as a physical database presents technical challenges.
There are several steps through which you create and optimize your physical database
for production use.

Scoping the logical
model and transfomming
into a physical model

Changing the
physical
data model into a
partitioned DB2
database
architecture

Create and populate

the physical
database

Refining the physical
data model design to
reflect reporting

needs

Optimize
database design

Apply optimizations to

the physical data model

Figure 2 Typical deployment patterns for creating a physical database

The phases that are involved in this process include:
e Scoping the logical model and transforming it into a physical model

Map reporting requirements to the logical data model to determine the scope of
the model. Include only those entities and attributes for which you have a
reporting requirement.

e Preparing the physical data model for deployment as a partitioned DB2 database

Update the physical data model to be compatible with the target partitioned
database architecture.

¢ Refining the physical data model to reflect your individual reporting needs

Use the details of individual report specifications to help you further define the
physical database model.

e Optimizing the database architecture and design for a production environment

Create and populate the physical database to determine final database design
optimizations that are based on actual query and maintenance workloads that
must be applied back into the physical data model.

Best practices for deploying IBM Industry Models Page 7 of 50

Understanding database design challenges

The logical data model as provided contains no vendor specific database features. You
must implement the features of your database software in the physical data model.
Focus your data warehouse design decisions on the following elements:

¢ Query performance — efficient query performance minimizes resource usage.

Use database partitioning, materialized query tables (MQT), multidimensional
clustering (MDC), and table range partitioning (RP) to help maximize query
performance across all database partitions.

o Intelligent table space design- the ability to manage, move, and archive data as
it ages.

Intelligent table space design facilitates data archiving, support for multi-
temperature storage, flexibility in backup and recovery strategies.

e Data ingest - ingest data with minimal effect on data availability.

Implement an architecture in which data ingest and data backup can operate
concurrently.

¢ Online maintenance operations — architect and design for concurrent database
operations.

Reduce the number of operations that are needed to maintain data availability
and query performance and enable online database operations.

Focus on performance, scalability, and balance when you design your database
environment.

The following information must be available or determined before you can begin to
optimize your database design:

e The volume of data predicted for each fact and dimension table initially and over
the lifecycle of the database for each table.

Know which fact and dimension tables are largest to finalize your distribution
keys.

e Data lifecycle and multi-temperature requirements.

The length of time data must be retained within the database. Maintaining data
for queries and for regulatory compliance influences how you might partition
your tables or configure storage groups.

e Sample queries from reports or analytics applications that reflect anticipated or
real queries to be submitted in production.

This method helps to determine MDC, MQT, indexing, and distribution key
selection requirements.

e Stated objectives for backup and restore operations.

Aggressive backup and restore time objectives can determine that certain tables
are placed in separate table spaces.

Best practices for deploying IBM Industry Models Page 8 of 50

Scoping the logical model and transforming into a
physical data model

Scoping the industry model is the process of selecting the business objects that you need
from the logical data model to build a valid physical data model. The physical data
model must reflect your analytical and reporting needs.

As a pre-requisite to the scoping phase, you must model your business requirements and
map these to analytical requirements. The quality and availability of your data sources
must also be understood and assessed. However, these tasks are outside the scope of this
document which focuses on the implementation of a production physical database.

When you complete the process of scoping, you can transform your logical data model
into a physical data model by selecting a menu option in IBM InfoSphere® Data
Architect.

IBM InfoSphere Data Architect is a data modeling tool that you can used to scope,
transform, and customize the data models that are supplied in the Industry Models
solutions. The examples in this paper reference InfoSphere Data Architect and you can
reference the Further reading section for more details about the product.

Scoping the logical model

The logical data model is designed to meet all aspects of reporting for an industry sector.
Your enterprise might not need all of the objects that are provided. Scoping is the
process, by using InfoSphere Data Architect or other modeling tools, of selecting those
entities from the logical data model that align with your analytical requirements.

Refine your logical data model scope to address only your current data and reporting
needs. This targets just those tables accessed by ETL, queries and maintenance
operations.

When you scope the industry model to create your logical data model, use these steps
with InfoSphere Data Architect:

e Create a diagram into which you can drag those entities that you need to address
your warehousing and reporting needs.

Creating a diagram for your logical data model avoids directly changing the base
model. This method allows you to more easily accept future industry model
upgrades.

¢ Navigate through the Aggregate Facts section and drag the aggregate facts that
you need into your new diagram.

Aggregate facts are related to the supporting fact tables which can be identified
and included when you are completing the scoping process. Supporting entities
can be identified under the heading “DWM Source”.

Best practices for deploying IBM Industry Models Page 9 of 50

e Use InfoSphere Data Architect to identify and include all related entities (fact
and dimensions tables) in the diagram.

Avoid manually moving individual related entities because this can affect the
integrity of the resulting database. Let InfoSphere Data Architect identify and
automatically add all related entities; you can then prune those entitles that you
do not need.

Transforming the logical data model into a physical data model

Since the logical data model applies to all databases, minimize the database architecture
and design changes that you make to the logical data model. Instead, implement those
changes in the physical data model. This strategy provides the following benefits:

o Easier upgrade strategy for future releases of industry models as only semantic
differences will exist between your model and the industry model.

e Focus technical modeling effort on the physical data model and retain a logical
data model that is suited for all databases.

® More easily control changes, in both the logical and physical data models, by
assigning clear roles to each model. The logical model functions as a semantic
master while the physical model is the technical master.

Entities can be added to the diagram at a later stage and merged into an existing physical
data model by using the compare and merge functionality in InfoSphere Data Architect.
Select this approach to build your physical data model incrementally over time.

Apply architecture and database design changes that are specific to DB2 databases to
the physical database model rather than the logical data model to help accommodate
future upgrades.

Transform your logical data model into a physical data model by selecting a blank area in
the diagram and, from the InfoSphere Data Architect main menu, selecting Data >
Transform > Physical Data Model.

When prompted for further details, select the DB2 database version that you require, for
example DB2 V10.1. Use the default settings that are provided and complete the
transformation process. Validate your DB2 installation and the physical data model by
generating the DDL to create a test database.

Best practices for deploying IBM Industry Models Page 10 of 50

Preparing the physical data model for deployment as
a partitioned database

The physical data model is a representation of your logical data model that is compatible
with DB2. However, the model does not yet reflect a partitioned database environment
or specifically, a data warehouse architecture and design.

Several best practice recommendations for data warehousing can be applied to the
physical data model before you generate DDL that is suitable for a partitioned database
environment. These improvements include the following items:

¢ Introducing database partition groups
¢ Implementing a table space strategy

e Customizing data types

¢ Implementing surrogate keys

Refer to the Further reading section and the best practices paper called “Physical database
design for data warehouse environments” for detailed explanations and examples.

Starting with database partition groups

In a partitioned database, database partition groups determine which table spaces and,
by effect, which table and index objects are partitioned or nonpartitioned.

Minimize the number of database partition groups and avoid overlapping database
partition groups on the same data host to avoid adding complexity to resource
allocation and monitoring.

Adhere to the following defaults implemented in an IBM PureData for Operational
Analytics System build when you are creating and using database partition groups:

e Create just two new database partition groups; one for tables you want to
partition and one for tables you do not want to partition.

There are no performance gains to be made from having multiple database
partition groups. Collocated queries are not supported where tables are in
different database partition groups.

e Avoid overlapping database partition groups.

Create the nonpartitioned database partition group on the coordinator database
partition and create the partitioned database partition group across each data
host.

e Decide which tables you want to partition and which tables do not contain
enough rows to be partitioned. Place these tables in the appropriate database
partition group.

Best practices for deploying IBM Industry Models Page 11 of 50

For example, a dimension table such as Country Of Origin would not
contain enough rows to be considered for partitioning. The overhead of
partitioning a small table would exceed any performance benefit.

Implementing a table space strategy

Intelligent table space design, with table partitioning, unlocks many features available in
the DB2 software:

¢ Balanced table space size and growth enables more efficient backup performance
and a more flexible backup and recovery strategy.

For example, in a recovery scenario you can focus on recovering table data. You
can opt to rebuild indexes, refresh MQTs, replicate tables, and restore older table
data as separate operations.

e Table space maintenance operations can be targeted at active data rather than
entire tables which include active and inactive data.

For example, operations such as REORG can be targeted at just those table spaces
that contain active data.

e Data lifecycle operations can take place online.

For example, when data partitions are detached (rolled-out), the dedicated table
space can be removed and the space can be reclaimed immediately.

e Multi-temperature database strategy is possible as individual table spaces can be
moved from one storage layer to another as an online operation.

For example, when table partitioning is implemented, inactive data can be
moved as an online operation to less expensive storage, releasing storage
capacity for more active data to be placed on.

Intelligent table space design facilitates concurrent database maintenance operations
and helps avoid costly reorganization tasks in production

Correcting a poor table space design strategy post production can have a negative effect
on resource usage and data availability:

e Significant resources are needed to physically move data from one table space to
another post production.

e Having too few table spaces restricts your flexibility in performing data-specific
backup and restore operations, performing maintenance operations on specific
ranges of data or tables, and managing the data lifecycle.

e Having too many table spaces creates unnecessary overhead to the database
manager when you activate the database and maintain recovery history. It can
also require too many database operations to be issued in parallel to complete
tasks.

Best practices for deploying IBM Industry Models Page 12 of 50

Table 1 describes how to

design a good table space design strategy that gives you the

flexibility you need to meet your service level objectives for all workloads.

Table type

Table space strategy

Largest fact table,
largest associated
dimension table,
mission critical tables

Create a separate table space for each table and for each data
partition. Create a separate table space for indexes in line with
each table and data partition. This process enables table level
recovery from a backup.

Medium sized
partitioned tables

Logically group medium sized dimension tables that are part of
the same fact table star or snowflake schema; a group of five
tables is adequate. Create a separate table space for this group
of tables and a separate table space for the associated indexes.

Small sized partitioned
tables

Group all small-sized dimension tables. Create a separate table
space for the group and a separate table space for the indexes
that are associated with these tables.

Partitioned
materialized query
tables

Create a separate table space for MQTs and a separate table
space for indexes on MQTs. Use this method to determine a
separate backup and recovery strategy for the aggregation layer

Replicated tables

Create a separate table space for replicated tables and a separate
table space for indexes.

Temporal history tables

Create a separate table space to hold temporal history tables.

Nonpartitioned tables

Create a separate table space for data and for indexes in the
nonpartitioned database partition group. This separates user
data from catalog data on the catalog database partition.

Staging tables

Create a separate table space for staging tables and for other
non-production tables.

Table 1 Guidelines for implementing a table space strategy

Assigning tables to table spaces

The process of placing tables into table spaces is made easier by adhering to the table

space strategy in table 1.
strategy.

Assign each table by type to the appropriate table space

As a general guideline, replicate all non-collocated dimension tables but where non-
collocated dimension tables are over 10m rows then consider partitioning these tables to

avoid long refresh times.

Create partitioned tables
database partition group

as hash partitioned tables and assign them to the partitioned

Place table data and index data in separate table spaces to provide more flexibility
when you are designing your operational maintenance and data lifecycle strategy

Best practices for deploying IBM Industry Models

Page 13 of 50

Specific distribution keys can be assigned later during optimization but must always be
identified and assigned before production use. Changing the distribution key requires
you to drop and re-create the table.

Customizing keys and data types

The physical data model, when generated, uses default keys, constraints, and data type
values that you need to modify based on your source data and your approach to data
ingest. Consider the recommendations in the following areas:

Primary keys
The logical data model implements a composite primary key on fact tables. The primary
key includes all dimension foreign keys that make the primary key unique.

Remove the primary key from the fact tables on the physical data model. The fact tables
in the logical data model have many dimension keys and these keys can affect data ingest
performance negatively. Replace these keys with MDC and the non-unique composite
indexing strategy that is proposed in this paper.

Referential constraints

Since the logical data model is suitable for any database, referential constraints are
created by default as enforced constraints. Enforced constraints can increase the effect on
resources when ingesting data and this can result in slower ingest speeds and reduced
query performance.

In a warehousing environment, change these constraints to informational constraints
because informational constraints can be used by the DB2 optimizer when compiling
access plans and this use helps improve query performance.

Use informational constraints instead of enforced constraints to minimize the effect of
unique index maintenance when you are populating fact tables.

Identity keys and surrogate keys

The logical data model implements identity keys for the primary key, whose purpose is
as a surrogate key, on each dimension table.

For dimension entities, the logical data model defines certain attributes as primary and
surrogate keys.

Within the physical data model, use GENERATED BY DEFAULT AS IDENTITY for
identity columns. This allows the ingest utility to supply its own values for the surrogate
keys, if required, in the input data rather than letting DB2 generate them. If input values
are not supplied, then DB2 generates them.

Supplying its own values for such columns can facilitate data ingest in creating parent-
child relationships, since the key of the parent is known and already supplied.

Best practices for deploying IBM Industry Models Page 14 of 50

The tools that are used to ingest data into the data warehouse generally influence where
the surrogate keys get assigned during the ingest process.

e When you are using an engine-based ETL tool such as IBM DataStage®, you can
generate surrogate key values within the ETL engine or by using sequences.

e When you are using the ingest utility with dimension tables, use identity keys to
determine your surrogate key and omit the identity key column from the ingest
column list.

Refine data types

The physical data model, when generated from your logical data model, uses default
data-type settings for integer and character columns. Use the following guidelines to
refine the default values but avoid overpruning column lengths. Modifying these values
in production can incur the need to reorganize data which can be costly.

¢ Change the default CHAR(x) data type to CHAR(18) for those columns you
anticipate to be no more than 18 characters long.

e Change the default CHAR(x) data type to VARCHAR(y) for those columns you
anticipate to be greater than 18 characters long.

e Ensure that the modified data types of columns that are used in table joins match
for optimal query access plans.

e Use the BIGINT data type where you expect the values in the columns to be
greater than the capacity of the integer data type.

e Use the DATE data type for the primary key of the date and time dimension. This
use enables you to implement a table partitioning strategy that is based on
calendar date. In addition, the DB2 optimizer can eliminate entire table partitions
(ranges of data within a table) based on a date predicate and this elimination can
help improve query performance.

Use the DATE data type for the primary key on the date and time dimension table. This
method enables data partitions to be date-based and facilitates query performance.

Best practices for deploying IBM Industry Models Page 15 of 50

Using report specifications to influence your physical
data model

The characteristics of your database design can be further improved by analyzing the
physical data model from the perspective of your analytical and reporting requirements.

Review your report specifications with a view to identifying and contrasting what you
see with the details of the underlying dimensional database. Consider how even
distribution of data, collocated queries, and parallelism of the query workload across the
partitioned database can be achieved.

e Contrast the granularity of the report with the granularity of data in your
database.

For example, if the granularity of the database fact table is 1 or more transactions
per day, and the granularity of the report compares daily totals, then the data in
the fact table is a candidate for aggregation before it is presented to the report.

e Look at what dimensions are used to aggregate data on your report.

For example, data might be aggregated by country, or by credit rating.
Examining these dimensions can help you identify suitable candidate columns to
be used as distribution keys. Parameters that are used frequently in reports can
affect the degree of parallelism in queries and are therefore unsuitable as
distribution keys.

e Examine the report parameters and filters and the order in which they are used.

Report parameters can be viewed as dimension filters. For example, a frequently
used report that contains few parameters can help determine both your MDC
columns for the fact tables and potential inclusion in any MQTs.

An excerpt from the Solvency II physical data model

Figure 3 below shows an excerpt from the SII data model. The center of the diagram
shows the key fact tables and the rest of the diagram shows the dimension tables.

Collateral asset category 0 Crganisation # Credit rating A Currency # Financial asset registration

i Asset category #] Geographic Area #- Financial services role @] Financial asset # Fund

[Investment holding Fact @ QRT Investments @] Investrments Fact

it rati ini di i [0 Geographic Area Mini Dimension
#0 Category #01 Calendar date [Credit rating mini dimensicn grap

¢ Agreement collection & Organisation mini dimensicn O Financial services rele mini dimension

Figure 3 Excerpt from data model showing fact and dimension entities

Best practices for deploying IBM Industry Models Page 16 of 50

The SII data model presents data at the granular level of month; there is a single row for
an asset or investment for each given month. From a dimensional perspective, this means
that the fact tables are periodic snapshot tables, representing a position at the end of the
month.

Table 2 lists the fact tables and the largest dimension table, shown in figure 3, associated
with each fact table.

Obiject type Description

SLVC_INV_HLDG_FCT Transaction fact table contains “investment holding fact”
data at the granularity of one row per month.

AGRM_COLL “Agreement collection” is the largest dimension table that is
associated with the investment holding fact table.

SLVC_AST_VAL_FCT Transaction fact table holds “asset valuation” at the
granularity of one row per asset per month.

FNC_AST “Financial asset” is the largest dimension table that is
associated with the asset valuation fact table.

QRT_INV Aggregate transaction table “QRT Investments” is a union
of the two fact tables.

TM_DIMENSION Time dimension.

SLVC_RPT_AST_CGY_ID |Solvency report “Asset Category” dimension table.

CR_RTG_ID “Credit Rating” dimension table.

CNTRY_OF_CUSTODY_O |“Country of Custody” dimension table.

F_AST_ID

ISSUR_OF_INV_ID “Issuer of Investment” counterparty dimension table.

Table 2 List of Solvency II data model tables referenced in this paper

Interpreting Solvency 11 example reports as database design
decisions

The example reports referenced in this paper present information about the holding of
assets and investments for the month or series of months specified. The time periods that
are compared could include the same assets, or have some assets that are removed, or
have new assets that are introduced which triggers changes to asset prices, ratings, and
so on.

The two example report requirements that are used to refine the physical data model and
database design are:

e Parent report: Assets by region, by counterparty, by credit rating

e Child report: Asset drill through by dimension

Best practices for deploying IBM Industry Models Page 17 of 50

Parent report: Assets by region by counterparty by credit rating
report

The business question answered by this report is; “How exposed am I geographically by
issuers of bonds in different parts of the world and what their credit rating is?”

The base query for this report is a UNION of both the Assets and the Investments fact
tables. The report aggregates the data by region (country of origin,) by counterparty, by
credit rating, and provides filters on these and other dimensions.

The following design points can be determined from this report:
¢ Distribution keys

Use the report specification to help in choosing candidate distribution keys.
Using the filters in this report could lead to queries that limit the number
database partitions used in parallel to perform the query.

e Table partitioning

Table partitioning by date is the most effective method for backup, restore, aging,
and archiving. Since the data and report both use month, this is the most suitable
option to use for partitioning the fact table.

e Materialized query tables (MQTs)

This is a summary report and an ideal candidate for an MQT. The data model
provides a table, QRT_INV (quantitative reporting templates) as a template for
reports against these tables. It is recommended that you replace the provided
QRT_INV table with two separate MQTs, one for each side of the UNION clause.

Child report: Asset drill-through by dimension report

This report is effectively a drill-through report from within the previous report. The
business problem that is addressed by this report is; “From within the first report, I want
to see the composition of the aggregated metrics for an entry on the first report”.

This report is more granular than the previous report and allows you to interrogate the
data set right down to the granularity of the fact table and analyze data to the level of
financial asset. The report has parameters that allow data to be filtered on individual
region, counterparty, or credit rating. The following design points can be determined
from this report:

e Distribution

Since this report involves a query which joins the “Financial asset valuations”
fact to the large “Financial Asset” dimension, collocation is an important design
goal. The primary key for “Financial asset” and “Investment holding”
dimensions could be an ideal distribution key to help collocate the fact with its
largest dimension and help ensure an even distribution of data.

e Multidimensional clustering (MDC)

The most commonly used dimension filter columns are good candidates for
defining the MDC columns for the fact tables.

Best practices for deploying IBM Industry Models Page 18 of 50

Optimizing the database architecture and design for
your environment

Optimizing a database is an iterative process and you must ensure that sufficient test
data that reflects the target production environment is available.

When you are optimizing your database design, it is critical that you qualify each
optimization by ensuring that the intended change is performing as expected in isolation
and in parallel with other expected workloads. The examples in this section include
references to how you can use the explain plan tools to determine whether your
optimizations succeed.

When you implement and successfully test changes to the database, apply the changes
back into the physical data model.

This section looks at how to optimize the database that supports the reports described.
The main design decisions are based on:

e Choosing distribution keys for partitioned tables
e Choosing MDC tables and MDC columns

e Choosing tables to be range partitioned

¢ Indexing for performance

e Identifying candidates for MQTs

Choosing distribution keys

Since the report does not filter by individual “Financial asset”, the primary key of the
“Financial assets” dimension table (FNC_AST.FNC_AST_ ID) would be an ideal
distribution key for the “Asset valuation” fact table to help ensure an even distribution of
data across each database partition and promote parallelism in the query workload. The
aggregation of data effectively removes the detail of individual assets on which the table
is based.

For example, the column FNC_AST_ ID makes sense as a distribution key for both the
“Financial assets” (FNC_AST) and “Asset value" (SLVC_AST_VAL_FCT) because the
following criteria are fulfilled:

e The distribution key is not used as a filter condition in the reports. This choice
prevents a query from requesting data on a single database partition only and
artificially limiting performance.

e Collocated queries for the target reports are achieved by partitioning both the
fact and the chosen dimension on the primary key of the dimension table.

e Facilitate an even distribution of data by using the most granular dimension or
the dimension that is closest to the granularity of the transaction table.

Best practices for deploying IBM Industry Models Page 19 of 50

Design your database to support collocated queries within the constraint of having no
more than 10% skew in the distribution of data across the partitioned database

In order to achieve an even distribution over each database partition, the distribution key
must contain a relatively high number of distinct values (that is, cardinality) and the fact
table must have an even distribution of data for the chosen distribution key. These
choices help avoid an uneven distribution or skew which occurs when the database
partition with the greatest number of rows has 10% more rows than the average row
count across all database partitions.

Choosing MDC tables and columns

All fact tables are candidates for multidimensional clustering since the advantages
gained in query performance and the reduction in maintenance operations are
significant. Choosing columns that are not used in the filters of your most frequent
queries can have a negative effect on query performance. Changing your MDC columns
requires a rebuild of the table so choose and test your MDC strategy in line with report
development before you introduce the strategy into production.

Use multidimensional clustering tables to organize data in all fact tables to reduce the
need for regular indexes and associated maintenance operations

An MDC table physically groups data pages that are based on the values for one or more
specified dimension columns. Effective use of MDC can significantly improve query
performance because queries access only those pages that have rows with the correct
dimension values.

Consider the following tasks when you are choosing MDC columns:

e Create MDC tables on the columns that have low cardinality in order to have
enough rows to fill an entire cell.

e Create MDC tables that have an average of five cells per unique combination of
values in the clustering keys.

e Use generated columns to “coarsify” or reduce the number of distinct values for
MDC dimensions in tables that do not have column candidates with suitable low
cardinality.

Avoid including all filter dimensions in the MDC ORGANIZE BY clause. Although this
practice increases the flexibility of reporting, the number of cells can also be increased,
resulting in sparsely populated MDC tables.

To determine whether the chosen columns are suitable as dimension columns in the fact
table, use the following query to calculate the density of the cells columns that are based
on an average unique cell count per unique value combination greater than 5. Table
statistics must be current to return meaningful data.

SELECT CASE
WHEN (a.npages/extentsize)/
(SELECT COUNT(1) as num_distinct _values

Best practices for deploying IBM Industry Models Page 20 of 50

FROM (SELECT 1 FROM QRT_DWM.SLVC_AST_VAL_FCT GROUP BY
DIM_SLVC RPT_AST CGY_ID, DIM CR RTG ID)) > 5

THEN

"These columns are good candidates for dimension columns*
ELSE

*Try other columns for MDC® END

FROM syscat.tables a,syscat.datapartitions d,syscat.tablespaces b
WHERE a.TABNAME="SLVC_AST_VAL_FCT" AND a.tabschema="QRT_DWM"
AND a.tabschema = d.tabschema AND a.tabname = d.tabname

AND d.tbspaceid=b.tbspaceid

AND d.datapartitionid = 0

The two most commonly used columns in the sample fact tables are asset category
(SLVC_RPT_AST_CGY_ID) and credit rating (CR_RTG_ID) for the “Asset valuation”
report. These columns plus the time dimension (TM_DIMENSION_ID) were used as the
MDC columns for the SLVC_AST_VAL_FCT fact table for the following reasons:

e These columns were the most frequently used columns in the report for filtering.

e The cardinality of the two columns was suitable for MDC cell population and
could be coarsified.

e The time dimension was included as an MDC column to help reduce locking
contention with data-ingest operations and to enable roll-in, roll-out capability.

Coarsification

Coarsification, within a DB2 database, is the process of creating a generated column to
decrease the granularity of dimensions where your estimates show that the resulting
MDC table would be sparsely populated.

A sparsely populated MDC table exists where the number of rows per cell (chosen MDC
dimension columns) is less than the number of pages in a block (16 * 16K pages in an IBM
PureData for Operational Analytics System). Since DB2 allocates 1 block per cell, it is
important that each cell contains a healthy number of rows to avoid slower query
performance through increased disk I/O.

Use generated columns where required to avoid creating sparsely populated MDC
tables

For example, if using the earlier code sample does not identify column candidates with
suitable low cardinality, then look to coarsify existing columns. For example, coarsifying
the asset category and credit rating columns to reduce the cardinality in order to increase
the number of rows per cell would create a more efficient MDC table.

Create a generated column in the fact table using the frequently used filter columns in
the report. Use a divisible number that creates a suitable MDC candidate column as
shown in the sample SQL statement above. The new column can then be added to the
table as an MDC column, for example:

DIM_SLVC_RPT_AST_CGY_ID SMALLINT GENERATED ALWAYS AS
(SLVC_RPT_AST_CGY_ID/10),

Best practices for deploying IBM Industry Models Page 21 of 50

| DIM_CR_RTG_ID SMALLINT GENERATED ALWAYS AS (CR_RTG_ID/100) |

Partitioning large tables for query performance and
manageability

Use table partitioning to separate ranges of data within a table into data partitions to take
advantage of DB2 features.

From a dimensional data warehouse perspective, a report or analytical query typically
reads a large volume of rows in order to return a few rows. An efficient design must look
to minimize the number of rows that are read to just those rows that are needed.

Build on an intelligent table space design strategy by partitioning your largest fact
tables to facilitate query performance and enable flexibility when performing
maintenance operations.

For example, by partitioning the fact table SLVC_AST_VAL_FCT by month, the following
capabilities are enabled:

e Use the time dimension to determine ranges of data per month as the DATE
column was used on the time dimension key.

The DB2 optimizer can eliminate a data partition where the date range of the
query does not match the date range of the data partition. This can help
significantly reduce the number of rows read for a query.

e Define each index on the fact table as a partitioned index (option in InfoSphere
Data Architect) and include the range partitioning key.

Index maintenance can take place at data partition level and be targeted at active
data partitions.

e Define end dates for each data partition as EXCLUSIVE so that the first day in the
subsequent month can be specified as the end of the period range.

This method is clearer and less prone to error than manually determining the
correct end of month date.

e Assign each table (range) partition to a separate table space; for example
“February 2012” is assigned to the PD_AST_VAL_FEB2012 table space.

This increases visibility and flexibility in maintenance operations, backup and
recovery, and data lifecycle management. Aged data can easily be detached from
the database helping to maintain a balance between active and inactive data.

The following DDL excerpt was generated from the physical data model and shows the
part of the CREATE TABLE statement that included the table partitioning syntax. Data
partitions were created for January, February, March, and so on, for 2012 with a separate
data partition for rows that exist for dates before and after the ranges specified.

PARTITION BY RANGE (TM_DIMENSION_ID)
¢

Best practices for deploying IBM Industry Models Page 22 of 50

PART PAST STARTING(MINVALUE)

ENDING("2012-01-01") EXCLUSIVE IN PD_AST VAL _PAST,
PART PART_2012 JAN STARTING("2012-01-01%)
ENDING("2012-02-01") EXCLUSIVE IN PD_AST_VAL_JAN2012,
PART PART_2012 FEB STARTING ("2012-02-01%)
ENDING("2012-03-01") EXCLUSIVE IN PD_AST VAL FEB2012,
PART PART 2012 MAR STARTING ("2012-03-01")
ENDING("2012-04-01") EXCLUSIVE IN PD_AST_VAL_MAR2012,
-— Syntax shortened: Months April to December removed.
PART PART_2012 DEC STARTING ("2013-01-01%)
ENDING(MAXVALUE) IN PD_AST VAL _FUTURE);

The first and last ranges are defined as starting from MINVALUE and running to
MAXVALUE to prevent boundary violations.

Using DB2 V10.1, range partitioning can be aligned with multi-temperature storage
groups. Additionally, range partitioning facilitates filtering at the granularity of the
partition (month) by using partition elimination. Refer to the Further reading section for a
link to the paper “DB2 V10.1 Multi-temperature data management recommendations” .

Confirming data partition elimination in SELECT statements

Use the EXPLAIN PLAN statement to determine that data (range) partitions are being
referenced in your queries. For example, the following explain plan output from a report
query indicates that the query identified a specific data partition (range) to satisfy the
query before the I/O operations take place.

Range 1)
Start Predicate: (Q6.TM_DIMENSION_ID = ®12/01/2011")
Stop Predicate: (Q6.TM DIMENSION_ID = "12/01/2011%)

Indexing for performance

The use of MDC on fact tables reduces your need to create multiple indexes on fact
tables. Instead, use indexing to facilitate query performance when columns that are not
used in the MDC are referenced. The DB2 optimizer can take advantage of singular or
composite indexes on foreign keys.

MDC facilitates access to data in multiple dimensions by organizing the data in
dimensional blocks, which also reduces the requirement to reorganize the tables.

Indexes are primarily used to enhance query performance, but also can be used to govern
how data is organized on dimension tables or to enforce unique constraints. In a data
warehouse environment, focus on query performance by using these techniques:

e Use indexes for query performance only; constraints should be checked and
enforced by the ETL process and made aware to the DB2 optimizer using
informational constraints.

e Use partitioned indexes over global indexes to minimize query cost and index
maintenance.

Best practices for deploying IBM Industry Models Page 23 of 50

Enhancements in DB2 V10.1 that allow the optimizer to recognize data warehouse
queries and use of a zigzag join can help improve performance and require a specific
design pattern. A zigzag join can occur where a fact table and two or more dimension
tables in a star schema are joined.

Use composite indexes to include those foreign keys that are used in query joins,
including MDC columns

To enable the optimizer to use a zigzag join:

o Create a primary key on each dimension table in the physical data model to
enforce uniqueness and provide an index for the optimizer to use. Primary keys
on the parent table are also a mandatory requirement for foreign key constraints
(informational or enforced) with the fact table.

¢ Create a composite index on the fact table that includes all frequently used join
columns, including MDC columns. Refine the columns that are used during the
query optimization process; the explain plan output helps identify the columns
needed.

Using the Explain facility to determine zigzag join usage

To facilitate the zigzag join access plans over dimension keys not included in the MDC
columns, a non-unique composite index is created over all the foreign keys to the
dimension tables that are referenced in the example reports. For example:

CREATE INDEX QRT_DWM.IDX_SLVC_AST VAL_FCT ON

"QRT_DWM'."*SLVC_AST VAL_FCT" ("'SLVC_RPT_AST_CGY_ID", "CR_RTG_ID",
"ISSUR_OF_INV_ID", "ISSUR_CNTRY_LGL_SEAT ID",
""CNTRY_OF_CUSTODY_OF AST_ID", "TM_DIMENSION_ID') PARTITIONED;

To ensure that zigzag join operator is being achieved, use the EXPLAIN PLAN statement
and the db2exfmt command to examine the access plan for the query and look for the
ZZ]JOIN operator in the access plan graph produced. For example:

EXPLAIN PLAN FOR <SELECT statement>

db2exfmt -d modeldb5 -t -g

The following is a snippet of the explain plan output that shows the ZZJOIN operator.
The output also shows a BTQ (Broadcast Table Queue) that would be a possible
candidate for table replication.

|
0.0633706
ZZJOIN
(12)
57.4938
24
0 S e o S S +
3.31022 1 .06757 0.0179323
TBSCAN TBSCAN 1 XSCAN

 13) (18) (23)

Best practices for deploying IBM Industry Models Page 24 of 50

46.1982
22

|
3.31022
TEMP
C 14)
46.1969
22
l
3.31022
BTQ
C 15)
46.1853
22

I
3.31022
FETCH

(16)
46.1597

/-——+-——-\

1000 1000
IXSCAN TABLE:QRT_DWM
(17) GEO_AREA
8.86251 Q2

2

|

1000
INDEX: QRT_DWM
GEO_AREA_PK

Q2

4.52372

TEMP DP-INDEX]

 19)
4.52241 Q6

6.77185
1 1

[
50318
QRT_DWM
TEST_INDEX

I
1.06757

1
|
1.06757
BTQ

(C 20)
4.51201
1

I
1.06757
FETCH

(21)
4.48722

S \

122 122

IXSCAN TABLE: QRT_DWM
(22) SLVC_RPT_AST_CGY
0.00777168 Q4

0

[

122

INDEX: QRT_DWM
SLVC_RPT_AST_CGY_PK

Q4

Best practices for deploying IBM Industry Models

Page 25 of 50

Using partitioned MQTs to enhance query performance

Use materialized query tables (MQTs) to enhance query performance by precomputing
expected aggregation queries. When you are creating an aggregation layer:

Remove columns from the MQTs that are not included in your report query to
improve the performance of the MQT REFRESH operation and allow the MQT to
be used in multiple contexts.

Since columns are not removed from the underlying tables, columns can be
added to the MQT at a future point in time if needed.

Do not write queries directly against the MQTs.

Designing and implementing MQT is an iterative process even after the data
warehouse goes live particularly if self-service analysis queries are used.

Where possible, implement partitioned MQTs by using the same distribution
keys, MDC columns, compression setting, and range partitioning as the
underlying fact table.

This method helps ensure that the MQT is more favorable to the optimizer for
query rewrite.

Include RUNSTATS for MQTs into your overall statistics collection strategy and
always refresh statistics for an MQT after you refresh the MQT.

Defining MQTs for the sample reports and data model

For the sample reports, a nested MQT strategy was chosen and applied to the physical
data model. By nesting MQTs, the refresh of one MQT uses the contents of another MQT,
helping to reduce the refresh time for MQTs.

Two MQTs were created for each side of the select (union) statement that was
used in the parent report. Each MQT aggregated fact table data only.

By creating separate MQTs for each side of the union clause, other reports and
other MQTs that reference the fact tables can take advantage of the MQTs.

An MQT was created for the child report which aggregates the asset fact data by
the dimensions in the report. This MQT include dimension columns for each
report filter in addition to the aggregated fact data.

The design goal for this MQT is to achieve ‘nested MQTSs’; the refresh operation
for this MQT uses the fact table MQTs to help maximize performance and
efficiency when it is maintaining MQTs.

In our test environment, the asset dimension that is aggregated in the MQT, and the
MQT had roughly 500,000 rows, compared to the 10,000,000 rows in the assets fact table.
These numbers represents a 20:1 consolidation ratio, which is in line with the data
warehouse best practice recommendation of greater than 10:1 consolidation, to allow the
optimizer to favor the MQT over the source fact table.

Best practices for deploying IBM Industry Models Page 26 of 50

Using Explain Plan to determine MQT optimizations
Use the DB2 explain plan tools to help ensure that the MQTSs you created are being used
by the optimizer.

Confirm that the DB2 optimizer is identifying the changes that you made to the
database before you apply the changes back into the physical model

Confirm that the optimizer is rewriting the query to use the MQT created by running the
query with the EXPLAIN PLAN statement and then using the db2exfmt command to
format the resulting access plan. For example:

| EXPLAIN PLAN FOR <SELECT statement used in report> \

Issue the db2exfmt command against the target database:

[db2exfmt -d modeldb5 -t —g |

Confirm that the MQT is being used by looking at the resulting access plan graph or by
the comments in the “Extended Diagnostic Information” section of the formatted plan. In
the following example MQTs were identified by the optimizer in preparing a plan for the

query:

Extended Diagnostic Information:

Diagnostic ldentifier: 1

Diagnhostic Details:EXP0148W The following MQT or statistical view
was considered In query matching: "QRT_DWM"."QRT_INV_AST_ VAL"™.
Diagnostic ldentifier: 2

Diagnostic Details: EXP0148W The following MQT or statistical
view was considered in query matching: "QRT_DWM™. "QRT_INV_HLDG".
Diagnostic ldentifier: 3

Diagnostic Details: EXP0149W The following MQT was used (from
those considered) in query matching: "QRT_DWM™.
""MQT_REPORT1_AST".

Diagnostic ldentifier: 4

Diagnostic Details: EXP0149W The following MQT was used (from
those considered) in query matching: "QRT_DWM™."QRT_INV_HLDG".

The cost for the access preceding plan, which leverages MQTs, showed a significant
improvement over the cost without the MQT, and results in a similar increase in query
performance.

Enabling and evaluating compression

Enabling compression can help reduce storage needs and increase query performance
through reduced I/O and dimensional databases are suited to enabling compression
given data patterns generated by conformed dimensions.

e At design time, compress all tables and indexes.

e Evaluate compression ratios during testing by using representative data.

Best practices for deploying IBM Industry Models Page 27 of 50

The following query against the SYSCAT . TABLES catalog view shows the average row
compression ratio that is achieved for the SLV_AST_VAL_FACT table. It shows that 77%
of the pages are saved through compression which represents an average compression
ratio of 5.34.

SELECT substr(TABNAME,1,30), AVGROWCOMPRESSIONRATIO,
PCTPAGESSAVED FROM SYSCAT.TABLES WHERE TABNAME="SLVC_AST_VAL_FCT"

The following query against the SYSCAT . INDEXES catalog view shows the percentage of
pages that are saved for each index. For example, the composite index
SLVC_AST_VAL_FCT_IN1 saved 64% of the pages in this index.

SELECT substr(indname,1,30) as INDNAME, substr(TABNAME,1,30) AS
TABNAME, substr(colnames,1,50) AS COLNAMES, PCTPAGESSAVED FROM
syscat. indexes WHERE TABNAME = "SLVC_AST_VAL_ FCT*®

Replicating nonpartitioned tables

Replicating nonpartitioned tables places a copy of the table on to each database partition.
This method enables collocated queries with partitioned fact tables, avoiding
unnecessary communication between data hosts which takes place as uncompressed data
exchanges.

Because the fact table can be collocated through sharing the distribution key with a single
“major” dimension table (in this case FNC_AST) only, replicate the other dimension
tables that are involved in the report queries to achieve collocation across the entire
query. For example, the GEO_AREA table is replicated by using the following DDL:

CREATE TABLE REPL_GEO_AREA AS (SELECT * FROM GEO_AREA)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE ENABLE

QUERY OPTIMIZATION MAINTAINED BY SYSTEM DISTRIBUTE BY REPLICATION
IN PD_REPL_DIM_TBL;

Use the MAINTAINED BY SYSTEM and REFRESH IMMEDIATE options where the
number of rows in the nonpartitioned table is relatively small and subject to relatively
few changes. When a replicated table contains many rows and is subject to many changes
consider employing the REFRESH DEFERRED option to retain control of resources used.

Always update statistics for an MQT after you issue a REFRESH or SET INTEGRITY
command against the table. For example:

H RUNSTATS ON TABLE <TABLENAME> FOR SAMPLED DETAILED INDEXES ALL H

Best practices for deploying IBM Industry Models Page 28 of 50

Ingesting data into the database

Tools including IBM DataStage, InfoSphere SQL Warehousing (SQW), and the DB2 load
utility are documented and provide various features for ETL processing. Where data
cleansing and transformations are needed, the choice exists to perform these tasks within
the database layer or outside of the database layer.

A staging area within the database is commonly used to hold data for validation,
cleansing, and transformation before transferring the data into the production tables.
Create the staging layer in the physical data model and place the tables within the same
database partition groups but in a separate schema and in a separate table space.

Staging tables are used under one or more of the following conditions:

e The data is not table ready — significant transformations or data cleansing is
needed.

e The business is not ready — you want to avoid making the data available until the
business asks for it or an event occurs. However, you want to have the data
ready to insert into the production tables.

e Data referencing — data from different data sources must be cross referenced
before inserted into the production tables.

In contrast to the DB2 load utility the DB2 ingest client utility, available in DB2 V10.1, can
be used to populate the database with logged transactions and without the necessity to
use staging tables and without off-lining target production tables.

Ingest provides a scalable solution for ingesting data into a partitioned database because
data can be prepared on the client and directed to individual database partitions,
avoiding any bottleneck through the coordinator database partition.

The ingest utility has a number of features that make it an effective way to get data into
the production database:

* You need other applications to access or update the table while it is being
populated.

e The input file contains fields that you want to transform or skip over.

* You need to use MERGE or DELETE functionality.

* You need to recover and continue on when the utility gets a recoverable error.
Use the ingest utility to populate the staging and production tables as a concurrent

operation; ingest inserts data as a logged operation, is concurrent with backup, query,
and other database operations and helps maintain a recoverable database.

For example, in populating the fact table SLVC_AST_VAL_FCT the following ingest
command was used:

H INGEST FROM source_SLVC_AST_VAL_FCT.del format DELIMITED

Best practices for deploying IBM Industry Models Page 29 of 50

restart new (
$f _CO_ID BIGINT external,
$f_CNTRY_OF_CUSTODY_OF_AST _ID BIGINT external)
merge into SLVC_AST_VAL_FCT
on (CO_ID = $f_CO_ID)
when matched and (CNTRY_OF_CUSTODY_OF_AST_ID =
$f_CNTRY_OF_CUSTODY_OF_AST_ID) and (ESR_CCY_ID = "USD")
then
update set UNIT_PRC = UNIT_PRC * 0.0024
when matched and (UNIT_PRC > 20) then
update set UNIT_PRC = 20
when matched and (CR_RTG_ID = "BBB") then
delete

The example that is shown illustrates:

e A conditional expression is used to merge data for specific rows. This
demonstrates how the INGEST command can combine operations and use
expressions to offload some of the analysis and data cleansing work that other
processes perform in a staging table.

e The RESTART NEW parameter of the INGEST command determines a new
instance of the ingest process. The RESTART CONTINUE parameter is used to
restart an ingest process from the position where it stopped; the ingest utility
maintains a restart position for each ingest process.

When you are using the ingest utility, choose the COMMIT COUNT or COMMIT_PERIOD
options as a method for committing rows to the database. These options can be specified

by:

e The number of rows that are ingested before a commit

| INGEST SET COMMIT_COUNT 100 \

e The length of time in seconds between commits

| INGEST SET COMMIT_PERIOD 90 \

The following example shows how an ingest process when interrupted can be restarted
following an interruption:

INGEST FROM source SLVC AST VAL FCT.del format DELIMITED
restart new "update SLVC_AST VAL_FCT 001" (
$f CO_ID BIGINT external,
$Ff_CNTRY_OF CUSTODY_OF AST_ID BIGINT external,
$f_UNIT_PRC DECIMAL external)
update SLVC_AST VAL _FCT
set UNIT_PRC = $F UNIT_PRC where CO_ID = $f CO_ID and
CNTRY_OF CUSTODY_OF AST ID <> $f CNTRY_OF CUSTODY_OF AST ID

<CTRL-C> Interrupt occurs

ingest from source_SLVC AST VAL _FCT.del format DELIMITED
restart continue "update SLVC_AST_VAL_FCT_001" (

Best practices for deploying IBM Industry Models Page 30 of 50

$T CO_ID BIGINT external,
$f_CNTRY_OF _CUSTODY_OF AST_ID BIGINT external,
$f_UNIT_PRC DECIMAL external)
update SLVC_AST VAL_FCT

set UNIT_PRC = $f _UNIT_PRC

where CO_ID = $f CO_ID and

CNTRY_OF_CUSTODY_OF_AST_ID <>

$f_CNTRY_OF_CUSTODY_OF AST_ID

where:
o “source_SLVC_AST _VAL_FCT.del” is the name of the source text file
e “update_SLVC_AST_VAL_FCT_001" is the named recoverable ingest job

The ingest job resumes from the point of last commit, according to settings specified by
either the COMMIT_COUNT or COMMIT_PERIOD.

When used with the temporal feature, a full history of changes can be recorded in the
temporal history table.

Use identity columns for the dimension table primary keys and omit that primary key
column from the column specification list in the ingest control file.

The simple example below shows how the ingest utility can be used to populate the date
dimension in the sample industry data model used.

INGEST FROM file source date dim.del format DELIMITED ($v_year
INTEGER EXTERNAL, $v_loopDate BIGINT external) restart off
INSERT INTO TM_DIMENSION (
CDR_DT, CDR_YR, CDR_QTR, DAY OF WK, CDR_MTH, CDR_MTH_NM,
WK_NUM_IN_CDR_YR, DAY_NUM_IN_CDR_YR, DAY_NUM_IN_CDR_MTH, WEEKDAY,
PBLC_HOL)
VALUES (
DATE(cast($v_loopDate as INTEGER)),
YEAR(date(cast($v_loopDate as INTEGER))),
CASE month(date(cast($v_loopDate as INTEGER)))
when 1 then concat("Ql ", cast(YEAR(date(cast($v_loopDate
as INTEGER))) as char(4)))
when 2 then concat("Ql ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))
when 3 then concat("Ql ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))
when 4 then concat("Q2 ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))
when 5 then concat("Q2 ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))
when 6 then concat("Q2 ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))
when 7 then concat("Q3 ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))
when 8 then concat("Q3 ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))

Best practices for deploying IBM Industry Models Page 31 of 50

when 9 then concat("Q3 ", cast(year(date(cast($v_loopDate
INTEGER))) as char(4)))
when 10 then concat("Q4 ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))
when 11 then concat("Q4 ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))
when 12 then concat("Q4 ", cast(year(date(cast($v_loopDate
as INTEGER))) as char(4)))
else null
end,
dayname(date(cast($v_loopDate as INTEGER))),
month(date(cast($v_loopDate as INTEGER))),
monthname(date(cast($v_loopDate as INTEGER))),
week(date(cast($v_loopDate as INTEGER))),
dayofyear(date(cast($v_loopDate as INTEGER))),
day(date(cast($v_loopDate as INTEGER))),
CASE dayofweek(date(cast($v_loopDate as INTEGER)))
when 1 then "N*
when 7 then "N*
else "Y*
END,
INI)

a

"

Where:

e The file, source_date_dim.del, simply contains the numbers 1 to 365 to
represent each day in the year.

e CDR_DT is the primary key with a data type of DATE

Best practices for deploying IBM Industry Models Page 32 of 50

Using temporal tables to effectively manage change

Using temporal tables, the database can store and retrieve time-based data without more
application logic. For example, a database can store the history of a table (deleted rows or
the original values of rows that were updated) so you, or your auditors, can understand
the history of a row in a table or retrieve data as of a specific point in time.

DB2 supports three types of temporal tables:
e System-period temporal tables (STTs).
DB2 transparently keeps a history of updated and deleted rows over time.
e Application-period temporal tables (ATTs).

New SQL constructs allow users to insert, query, update, and delete data in the
past, present, or future. DB2 automatically applies temporal constraints and
"row-splits" to correctly maintain the application-supplied business time, also
known as valid time.

e Bitemporal tables (BTTs).

This combination enables applications to manage the business validity of their
data while DB2 keeps a full history of any updates and deletes. Every BTT is also
an STT and an ATT.

Using temporal tables can help you track data changes over time and provide an efficient
way to address Solvency II auditing and compliance requirements.

The temporal data feature is described in detail in the best practices paper titled “Best
practices: Temporal data management with DB2” which is referenced in the Further reading
section.

Implementing system-period temporal time for a dimension
table

This example implements the STT feature to the agreement collection dimension
(AGRM_COLL) to record all changes to the table at a system date level.

To enable STT for the agreement collection table the following CREATE TABLE statement
would be used where the columns VLF_FM_DT (Valid From Date), VLF_TO_DT (Valid To
Date), and VLD_TX_START (Valid Transaction Start) are added to the table and the
keyword PERIOD SYSTEM_T IME determines the columns to be used:

CREATE TABLE "QRT_DWM™."*AGRM_COLL"™ (

"AGRM_COLL_ID"™ BIGINT NOT NULL GENERATED ALWAYS AS IDENTITY
(START WITH 1 INCREMENT BY 1 MINVALUE 1 MAXVALUE
9223372036854775807 NO CYCLE CACHE 20 NO ORDER),

"ANCHOR_ID'" BIGINT, *"CGY_SCM_NUM"™ VARCHAR(20),

"DSC" VARCHAR(256), "EFF_FM_DT" TIMESTAMP, “EFF_TO_DT" TIMESTAMP,

Best practices for deploying IBM Industry Models Page 33 of 50

“END_DT" DATE, "EXT_REFR" VARCHAR(20), "MX_SZ" INTEGER,

"NM" VARCHAR(20), "ONLY_RULE_DRVN' CHAR(1), "REFRESH DT" DATE,
"STRT_DT" DATE, "TP" VARCHAR(20),

"VLD_FM_DT'* TIMESTAMP(12) GENERATED ALWAYS AS ROW BEGIN NOT NULL,
"VLD_TO_ DT TIMESTAMP(12) GENERATED ALWAYS AS ROW END NOT NULL,
"VLD_TX_START" TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION
START ID IMPLICITLY HIDDEN, PERIOD SYSTEM_TIME(VLD FM_DT,
VLD_TO_DT)

)
DISTRIBUTE BY HASH(CAGRM_COLL_ID) DATA CAPTURE NONE
COMPRESS YES IN TS_PDPG_MED_DIMENSIONS;

The temporal feature is enabled by issuing the following command which specifies the
history table to be used:

ALTER TABLE ""QRT_DWM™.'"*AGRM_COLL™ ADD VERSIONING USE HISTORY
TABLE "QRT_DWM™.""AGRM_COLL_HISTORY"

When creating the history table:
e Use the same distribution key as the parent dimension table
e Use the same compression state

e Use a separate table space to contain the history table

The temporal history table should use the same attributes and characteristics as the
parent table for which you are enabling the temporal feature

Using temporal to determine system-period temporal state

Use the system-period temporal table to facilitate ‘as of reporting and to determine when
data changed and what the before and after column values were.

The SQL statement below uses the system-period temporal table to return the values of a
specific column, EXT_REFR (External Reference) for a specific time frame:

SELECT AGRM_COLL_ID, REFRESH DT, EXT_REFR, VLD_FM_DT, VLD_TO DT
FROM QRT_DWM.AGRM_COLL

FOR SYSTEM_TIME FROM *2010-01-01" TO "2012-10-01"

WHERE AGRM_COLL_ID = 9741

The output from the SQL statement shows that three versions of the row exist for the
time-period with varying values for the column retrieved:

AGRM_COLL_ID REFRESH_DT EXT_REFR VLD_FM_DT
VLD_TO DT
9741 04/07/2011 RQF-28/W 2010-01-01-
00.00.00.000000000000 2012-09-13-08.21.28_143129000000
9741 04/07/2011 RQF-26/X 2012-09-13-
08.21.28.143129000000 2012-09-13-08.23.03 818945000000

Best practices for deploying IBM Industry Models Page 34 of 50

9741 04/07/2011 RQF-28/W 2012-09-13-
08.23.03.818945000000 9999-12-30-00.00.00.000000000000

The following SQL statement uses the system-period temporal table to return the values
of a specific column, EXT_REFR (External Reference) as of a specific time:

SELECT AGRM_COLL_ID, REFRESH_DT, EXT_REFR, VLD_FM_DT, VLD_TO_DT
FROM QRT_DWM.AGRM_COLL
FOR SYSTEM_TIME AS OF "2012-10-01" WHERE AGRM_COLL_ID = 9741

The output from the SQL statement shows that three versions of the row exist for the
time-period with varying values for the column retrieved:

AGRM_COLL_ID REFRESH_DT EXT_REFR VLD_FM_DT
VLD_TO DT

9741 04/07/2011 RQF-28/W 2012-09-13-08.23.03.818945000000
9999-12-30-00.00.00.000000000000

9741 04/07/2011 ABCDEFG 2012-09-13-08.21.28.143129000000
2012-09-13-08.23_03.818945000000

9741 04/07/2011 RQF-28/W 2012-09-13-08.23.03.818945000000
9999-12-30-00.00.00.000000000000

Implementing business-period temporal time for a dimension
table

Use business time and application-period temporal tables, if you need to describe when
information is valid in the real world, outside of DB2.

When you create a temporal table to include business period temporal time, you are
allowing DB2 software to create multiple rows for a dimension table where each row
represents data for an effective business date range.

For example, to apply business period temporal time for the Agreement Collection
dimension, using the existing columns EFF_FM_DT and EFF_TO_DT, the following create
table statement would be generated:

CREATE TABLE "QRT_DWM'."'AGRM_COLL" (

"AGRM_COLL_ID" BIGINT NOT NULL GENERATED ALWAYS AS IDENTITY
(START WITH 1 INCREMENT BY 1 MINVALUE 1 MAXVALUE
9223372036854775807 NO CYCLE CACHE 20 NO ORDER),

""ANCHOR_ID" BIGINT, "CGY_SCM_NUM" VARCHAR(20),

"DSC" VARCHAR(256), "EFF_FM _DT" DATE NOT NULL, "EFF_TO_ DT DATE
NOT NULL, "END_DT" DATE, "EXT_REFR" VARCHAR(20), "MX_SZ" INTEGER,
"NM" VARCHAR(20), "ONLY_RULE_DRVN" CHAR(1), "REFRESH_DT" DATE,
"STRT_DT"* DATE, "TP" VARCHAR(20),

PERIOD BUSINESS_TIME(EFF_FM_DT, EFF_TO_DT)

)
DISTRIBUTE BY HASHCAGRM_COLL_ID) DATA CAPTURE NONE
COMPRESS YES IN TS_PDPG_MED_DIMENSIONS;

Best practices for deploying IBM Industry Models Page 35 of 50

To accommodate multiple rows per dimension key, the business temporal columns are
added to the primary key on the dimension table to make a composite primary key.

The effect of this is that the foreign key on the fact table that is aligned with the
dimension table cannot be enforced as there can be more than one row in the dimension
table for the row in the fact table.

When implementing business-period temporal time for a dimension table, remove the
foreign key on the associated fact table.

Best practices for deploying IBM Industry Models Page 36 of 50

Conclusion

Deploying an industry model solution in a partitioned DB2 database can be successfully
achieved by following the recommendations in this paper.

When you implement a logical data model it is important that you scope only those
entities that relate to your business requirements. Add other entities as your business
needs change and grow. This helps to reduce your initial workload in getting the
database into production and avoids implementing a database with many empty tables.

Before you make detailed database design decisions implement database architecture in
line with best practice recommendations. This helps to avoid costly outages in your
production environment when data movement or maintenance operations need to take
place.

When you build a partitioned database for a data warehouse environment, incorporate
features available in the DB2 software. These include multi-dimensional clustering, table
partitioning, compression and partitioned indexes.

When you optimize your database design for production use ensure that you use a
partitioned database environment populated with relevant data and use queries
generated from specific reporting requirements and intended data ingest and database
maintenance operations.

Good database architecture and design decisions applied to your physical data model

result in a production data warehouse that can accommodate business needs for
reporting, data availability, regulatory compliance and growth.

Best practices for deploying IBM Industry Models Page 37 of 50

Apply architecture and database design changes specific to DB2
databases to the physical database model rather than the logical
data model to help accommodate future upgrades

Refine your logical data model scope to address only your
current data and reporting needs. This targets just those tables
accessed by ETL, queries and maintenance operations.

Minimize the number of database partition groups and avoid
overlapping database partition groups on the same data host to
avoid adding complexity to resource allocation and monitoring

Employ intelligent table space design to facilitate concurrent
database maintenance operations and help avoid costly
reorganization tasks in production

Place table data and index data in separate table spaces to
provide more flexibility for operational maintenance and data
lifecycle strategy

Use information constraints instead of enforced constraints to
minimize the effect of unique index maintenance when you are
populating fact tables

Use the DATE data type for the primary key on the date/time
dimension table. This method enables data partitions to be date-
based and facilitates query performance.

Use multi-dimensional clustering tables to organize data in all
fact tables to reduce the need for regular indexes and associated
maintenance operations

Use composite indexes to include those foreign keys that are used
in query joins, including MDC columns

Confirm that the DB2 optimizer is identifying the changes that
you made to the database before you apply the changes back into
the physical model

Best practices for deploying IBM Industry Models Page 38 of 50

Appendix A. Test environment

The test environment used in the research and development of this paper was an IBM
PureData for Operational Analytics System which has a shared-nothing architecture.
InfoSphere Warehouse V10.1 containing DB2 V10.1 was installed. The database was
populated with over 1 TB of data to test the concepts and recommendations in this paper
at scale.

Figure 4 illustrates the architecture of the IBM PureData for Operational Analytics
System. The administration host contained five database partitions; one for the
coordinator database partition, and four data database partitions. Two data hosts with
eight database partitions on each data host completed the partitioned database.

Administration host Data host 1 Data host 2
Coordinator Database| , , . | Databaze Databaze| _ ., . |Database Database | , , , |Database
database partifion 0 partition partition partition partition parfition partition
1 4 5 12 13 20
IBMDEFAULTGROUP
1 | | [N | | 111 | |
IBMTEMPGROUP
| | | 111 | | | 1] [|
SDOPG POPG
IBMCATGROUP
DWECONTROLGROUP

Figure 4 IBM PureData for Operational Analytics System database architecture

Best practices for deploying IBM Industry Models Page 39 of 50

Appendix B Sample Queries

This section lists the main queries that were used by sample reports in this paper.

Query for report example 1: Assets by region, by counterparty,

by credit rating
This is the query similar to that used by the IBM Cognos report and submitted to DB2:

-—QUERY for selecting Investment Holdings.

SELECT

SLVC_INV_HLDG_FCT.SLVC_RPT_AST_CGY_ID AS "CIC",
SLVC_RPT_AST_CGY.TP AS "ID Code Type",
SLVC_RPT_AST_CGY.NM AS *SIl1 Category Name™,

"Asset Custody Country'.CNTRY AS "Country of Custody",
"Counterparty' _.AGRM_REFR AS "Counterparty Issuer Name",
CR_RTG.EXT_REFR AS "External rating”,

CDR_DT.CDR_YR, CDR_DT.CDR_MTH,
SUM(SLVC_INV_HLDG_FCT.QTY) AS "Quantity",
SUM(SLVC_INV_HLDG_FCT.SLVC_11_VAL) AS "Unit SII price",
SUM(SLVC_INV_HLDG_FCT.ACQ _COST) AS "Acquisition cost",
SUM(SLVC_INV_HLDG_FCT.QTY * SLVC_INV_HLDG_FCT.SLVC_I11_VAL) AS
“"Total SI1I price",

SUM(SLVC_INV_HLDG_FCT.ACR_INT) AS "Accrued Interest™
FROM

SLVC_INV_HLDG_FCT, SLVC_RPT_AST_CGY, FNC_SERVICES RL AS
"Counterparty",

GEO_AREA AS "Asset Custody Country', CR_RTG, CDR DT
WHERE

SLVC_INV_HLDG_FCT.SLVC_RPT_AST CGY_ID =
SLVC_RPT_AST_CGY.SLVC RPT_AST _CGY_ID AND
SLVC_INV_HLDG_FCT.ISSUR_OF INV_ID =
“Counterparty.FNC_SERVICES_RL_ID AND
SLVC_INV_HLDG_FCT.CNTRY_OF_CUSTODY_OF AST ID = 'Asset Custody
Country' .GEO_AREA ID AND

SLVC_INV_HLDG_FCT.CR_RTG_ID = CR_RTG.CR_RTG_ID AND
SLVC_INV_HLDG_FCT.TM_DIMENSION ID = CDR_DT.CDR_DT
GROUP BY

SLVC_INV_HLDG_FCT.SLVC_RPT_AST_CGY_ID,
SLVC_RPT_AST_CGY.TP, "Asset Custody Country'.CNTRY,
"Counterparty" .AGRM_REFR, SLVC RPT_AST CGY.NM,
CR_RTG.EXT_REFR, CDR DT.CDR_YR, CDR_DT.CDR_MTH

UNION ALL

-— SELECT statement for selecting Asset Valuations looks like:
SELECT

--SLVC_AST VAL _FCT.FNC_AST_ID,

SLVC_AST _VAL_FCT.SLVC_RPT_AST_CGY_ID AS "CIC",
SLVC_RPT_AST_CGY.TP AS "ID Code Type",
SLVC_RPT_AST_CGY.NM AS "SIl Category Name',

"Asset Custody Country'.CNTRY AS "Country of Custody",
"Counterparty' _.AGRM_REFR AS "Counterparty Issuer Name",
CR_RTG.EXT_REFR AS "External rating”,

CDR_DT.CDR_YR, CDR_DT.CDR_MTH,

null AS "Quantity",

Best practices for deploying IBM Industry Models Page 40 of 50

SUM(SLVC_AST_VAL_FCT.UNIT_PRC) AS "Unit SII price",
null AS "Acquisition cost",
SUM(SLVC_AST_VAL_FCT.UNIT_PRC) AS "Total Sll price",
null AS "Accrued Interest"

FROM

SLVC_AST_VAL_FCT, SLVC_RPT_AST_CGY, FNC_SERVICES RL AS
"Counterparty",

GEO_AREA AS "Asset Issuer Country', GEO AREA AS "Asset Custody
Country', CR_RTG, CDR_DT

WHERE

SLVC_AST_VAL_FCT.SLVC RPT_AST CGY_ID =
SLVC_RPT_AST_CGY.SLVC _RPT_AST CGY_ID AND
SLVC_AST_VAL_FCT.ISSUR_OF_INV_ID =

"Counterparty" .FNC_SERVICES _RL_ID AND
SLVC_AST_VAL_FCT.CNTRY_OF CUSTODY_OF AST_ID = "Asset Custody
Country' .GEO_AREA ID AND

SLVC_AST VAL _FCT.CR_RTG_ID = CR_RTG.CR_RTG_ID AND
SLVC_AST_VAL_FCT.TM_DIMENSION_ID = CDR_DT.CDR_DT

GROUP BY

--SLVC_AST VAL _FCT.FNC_AST_ID,
SLVC_AST_VAL_FCT.SLVC RPT_AST CGY_ID,
SLVC_RPT_AST_CGY.TP, "Asset Custody Country'".CNTRY,
"Counterparty' .AGRM_REFR, SLVC RPT_AST_CGY.NM,
CR_RTG.EXT_REFR, CDR_DT.CDR_YR, CDR _DT.CDR_MTH;

Materialized query table for asset valuations

This is the MQT created for the asset valuation side of the SQL statement that was
submitted in the previous example. The DB2 optimizer rewrites the query plan for the
SQL statement to take advantage of the MQT where a more efficient plan is estimated.

CREATE TABLE QRT_DWM.QRT_INV_AST VAL AS (
SELECT
SLVC_AST_VAL_FCT.SLVC_RPT_AST_CGY_ID,
SLVC_AST_VAL_FCT.CR_RTG_ID,
SLVC_AST_VAL_FCT.ISSUR_OF_INV_ID,
SLVC_AST_VAL_FCT.ISSUR_CNTRY_LGL_SEAT_ID,
SLVC_AST_VAL_FCT.CNTRY_OF CUSTODY_OF AST_ID,
SLVC_AST_VAL_FCT.TM_DIMENSION_ID,
SLVC_AST_VAL_FCT.DIM_SLVC_RPT_AST_CGY_ID,
SLVC_AST _VAL_FCT.DIM_CR_RTG_ID,
SUM(UNIT_PRC) as UNIT_PRC

FROM SLVC_AST VAL_FCT

GROUP BY
SLVC_AST_VAL_FCT.SLVC_RPT_AST_CGY_ID,
SLVC_AST_VAL_FCT.CR_RTG_ID,
SLVC_AST_VAL_FCT.ISSUR_OF INV_ID,
SLVC_AST_VAL_FCT.ISSUR_CNTRY_LGL_SEAT_ID,
SLVC_AST_VAL_FCT.CNTRY_OF CUSTODY OF AST_ID,
SLVC_AST_VAL_FCT.TM_DIMENSION_ID,
SLVC_AST_VAL_FCT.DIM_SLVC_RPT_AST_CGY_ID,
SLVC_AST_VAL_FCT.DIM_CR_RTG_ID

)
DATA INITIALLY DEFERRED REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM

Best practices for deploying IBM Industry Models Page 41 of 50

COMPRESS YES
ORGANIZE BY DIMENSIONS ((DIM_SLVC_RPT_AST_CGY_ID),
(DIM_CR_RTG_ID))

DISTRIBUTE BY HASH(SLVC_RPT_AST_CGY_ID)

PARTITION BY RANGE (TM_DIMENSION_ID)

(C

PART PAST STARTING(MINVALUE)

ENDING(*2010-01-01") EXCLUSIVE IN TS_PD MQT_QRT_INV,
PART PART_2010_JAN STARTING("2010-01-01")
ENDING("2010-02-01") EXCLUSIVE IN TS_PD_MQT_QRT_INV,
PART PART_2010_FEB STARTING ("2010-02-01")
ENDING(*2010-03-01") EXCLUSIVE IN TS_PD_MQT_QRT_INV,

PART PART_2011_NOV STARTING ("2011-11-01")
ENDING("2011-12-01") EXCLUSIVE IN TS_PD_MQT_QRT_INV,
PART PART 2011 DEC STARTING ("2011-12-01")
ENDING("2012-01-01") EXCLUSIVE IN TS_PD_MQT_QRT_INV,
PART PART_FUTURE STARTING ("2012-01-01")
ENDING(MAXVALUE) IN TS_PD_MQT_QRT_INV);

To prepare the MQT for use after the initial take-on of historical data into the warehouse
from operational sources, use the LOAD FROM CURSOR approach which is a fast
method for populating the table; a logged operation is not needed here.

DECLARE C_CUR CURSOR FOR
(SELECT

SLVC_AST VAL_FCT.SLVC_RPT_AST_CGY_ID,
SLVC_AST _VAL_FCT.CR_RTG_ID,
SLVC_AST_VAL_FCT.ISSUR_OF_INV_ID,
SLVC_AST_VAL_FCT.ISSUR_CNTRY_LGL_SEAT_ID,
SLVC_AST VAL_FCT.CNTRY_OF CUSTODY OF AST_ID,
SLVC_AST_VAL_FCT.TM_DIMENSION_ID,
SLVC_AST_VAL_FCT.DIM_SLVC_RPT_AST_CGY_ID,
SLVC_AST_VAL_FCT.DIM_CR_RTG_ID,
SUM(UNIT_PRC) as UNIT_PRC

FROM SLVC_AST VAL_FCT

GROUP BY
SLVC_AST_VAL_FCT.SLVC_RPT_AST_CGY_ID,
SLVC_AST _VAL_FCT.CR_RTG_ID,
SLVC_AST_VAL_FCT.ISSUR_OF_INV_ID,
SLVC_AST_VAL_FCT.ISSUR_CNTRY_LGL_SEAT_ID,
SLVC_AST_VAL_FCT.CNTRY_OF_CUSTODY_OF AST_ID,
SLVC_AST_VAL_FCT.TM_DIMENSION_ID,
SLVC_AST_VAL_FCT.DIM_SLVC_RPT_AST_CGY_lID,
SLVC_AST VAL_FCT.DIM_CR_RTG_ID);

LOAD FROM C_CUR OF CURSOR REPLACE
INTO QRT_DWM.QRT_INV_AST_VAL NONRECOVERABLE;

SET INTEGRITY FOR QRT_DWM.QRT_INV_AST_VAL ALL IMMEDIATE
UNCHECKED;

After the initial data taken and the warehouse is in production, the following approach
can use the range partitioned configuration of the MQT to refresh only the new data that
was ingested for the current monthly reporting period:

Best practices for deploying IBM Industry Models Page 42 of 50

1. Drop the staging table

| DROP TABLE MQT_STAGE.QRT_INV_AST_VAL_STAGE;

2. Re-create the staging table

CREATE TABLE MQT_STAGE.QRT_INV_AST VAL_STAGE

LIKE QRT_DWM.QRT_INV_AST VAL

COMPRESS YES

DISTRIBUTE BY HASH(SLVC_RPT_AST_CGY_ID)

ORGANIZE BY DIMENSIONS ((DIM_SLVC_RPT_AST_CGY_ID),
(DIM_CR_RTG_ID))

IN TS_PD_MQT_QRT_INV;

3. Populate the staging table

INSERT INTO MQT_STAGE.QRT_INV_AST VAL_STAGE
SELECT
SLVC_AST_VAL_FCT.SLVC_RPT_AST_CGY_ID,
SLVC_AST _VAL_FCT.CR_RTG_ID,

SLVC_AST _VAL_FCT.ISSUR_OF INV_ID,
SLVC_AST_VAL_FCT.ISSUR_CNTRY_LGL_SEAT_ID,
SLVC_AST_VAL_FCT.CNTRY_OF_CUSTODY_OF AST_ID,
SLVC_AST_VAL_FCT.TM_DIMENSION_ID,
SLVC_AST_VAL_FCT.DIM_SLVC_RPT_AST_CGY_ID,
SLVC_AST VAL_FCT.DIM_CR_RTG_ID,
SUM(UNIT_PRC) as UNIT_PRC

FROM SLVC_AST_VAL_FCT

WHERE TM_DIMENSION_ID = "2011-11-01"

GROUP BY

SLVC_AST VAL_FCT.SLVC_RPT_AST_CGY_ID,
SLVC_AST_VAL_FCT.CR_RTG_ID,
SLVC_AST_VAL_FCT.ISSUR_OF INV_ID,
SLVC_AST_VAL_FCT.ISSUR_CNTRY_LGL_SEAT_ID,
SLVC_AST_VAL_FCT.CNTRY_OF CUSTODY OF AST_ID,
SLVC_AST_VAL_FCT.TM_DIMENSION_ID,
SLVC_AST_VAL_FCT.DIM_SLVC_RPT_AST_CGY_ID,
SLVC_AST VAL_FCT.DIM_CR_RTG_ID;

4. Remove the original MQT from the table

| ALTER TABLE QRT_DWM.QRT_INV_AST_VAL DROP MATERIALIZED

QUERY;

5. Attach the new MQT data partition

ALTER TABLE QRT_DWM.QRT_INV_AST VAL ATTACH PARTITION
PART_2011_NOV

STARTING ("2011-11-01")

ENDING("2011-12-01") EXCLUSIVE

FROM MQT_STAGE.QRT_INV_AST_VAL_STAGE;

6. Set Integrity for the entire MQT

Best practices for deploying IBM Industry Models

Page 43 of 50

SET INTEGRITY FOR QRT_DWM.QRT_INV_AST VAL
ALLOW WRITE ACCESS IMMEDIATE CHECKED INCREMENTAL;

7. Reintroduce the MQT to the target table

ALTER TABLE QRT DWM.QRT_INV_AST VAL ADD MATERIALIZED QUERY
SELECT

SLVC_AST VAL_FCT.SLVC_RPT_AST_CGY_ID,
SLVC_AST_VAL_FCT.CR_RTG_ID,
SLVC_AST_VAL_FCT.ISSUR_OF_INV_ID,
SLVC_AST_VAL_FCT.ISSUR_CNTRY_LGL_SEAT_ID,
SLVC_AST_VAL_FCT.CNTRY_OF_CUSTODY_OF AST_ID,
SLVC_AST_VAL_FCT.TM_DIMENSION_ID,
SLVC_AST_VAL_FCT.DIM_SLVC_RPT_AST_CGY_ID,
SLVC_AST_VAL_FCT.DIM_CR_RTG_ID,
SUM(UNIT_PRC) as UNIT_PRC

FROM SLVC_AST VAL _FCT

GROUP BY

SLVC_AST VAL_FCT.SLVC_RPT_AST_CGY_ID,
SLVC_AST_VAL_FCT.CR_RTG_ID,
SLVC_AST_VAL_FCT.ISSUR_OF INV_ID,
SLVC_AST_VAL_FCT.ISSUR_CNTRY_LGL_SEAT_ID,
SLVC_AST_VAL_FCT.CNTRY_OF_CUSTODY_OF AST_ID,
SLVC_AST_VAL_FCT.TM_DIMENSION_ID,
SLVC_AST_VAL_FCT.DIM_SLVC_RPT_AST_CGY_ID,
SLVC_AST_VAL_FCT.DIM_CR_RTG_ID)

DATA INITIALLY DEFERRED REFRESH DEFERRED;

8. Set integrity and collect statistics for the target table

SET INTEGRITY FOR QRT_DWM.QRT_INV_AST_VAL ALL IMMEDIATE
UNCHECKED;

RUNSTATS ON TABLE QRT_DWM.QRT_INV_AST_VAL FOR SAMPLED DETAILED
INDEXES ALL

Create a materialized query table dimensional joins

An additional MQT is created to materialize the dimensional joins for report 1, which
looks like the following on the assets side:

CREATE TABLE MQT_REPORT1 AST AS (

SELECT

SLVC_AST_VAL_FCT.SLVC_RPT_AST_CGY_ID,

SLVC_RPT_AST_CGY.TP, SLVC RPT_AST _CGY.NM, "Asset Custody
Country' _CNTRY, *"Counterparty'_AGRM _REFR, CR_RTG.EXT_REFR,
CDR_DT.CDR_YR, CDR _DT.CDR_MTH, SLVC AST VAL FCT.TM_DIMENSION_ID,
SUM(SLVC_AST_VAL_FCT.UNIT_PRC) AS "Unit SII price",
SUM(SLVC_AST_VAL_FCT.UNIT_PRC) AS "Total SIl price"”

FROM

SLVC_AST VAL_FCT, SLVC RPT_AST CGY, FNC_SERVICES RL AS
"Counterparty",

GEO_AREA AS "Asset Custody Country', CR_RTG, CDR DT

WHERE

Best practices for deploying IBM Industry Models Page 44 of 50

SLVC_AST_VAL_FCT.SLVC_RPT_AST CGY_ID =
SLVC_RPT_AST_CGY.SLVC _RPT_AST _CGY_ID AND

SLVC_AST VAL_FCT.ISSUR_OF INV_ID =

"Counterparty .FNC_SERVICES_RL_ID AND
SLVC_AST_VAL_FCT.CNTRY_OF _CUSTODY_OF_AST_ID = "Asset Custody
Country' .GEO_AREA ID AND
SLVC_AST VAL _FCT.CR_RTG_ID = CR_RTG.CR_RTG_ID AND
SLVC_AST VAL _FCT.TM _DIMENSION_ID = CDR_DT.CDR DT
GROUP BY

--SLVC_AST_VAL_FCT.FNC_AST_ID,
SLVC_AST_VAL_FCT.SLVC RPT_AST _CGY_ID,
SLVC_RPT_AST_CGY.TP, "Asset Custody Country'.CNTRY,
"Counterparty' .AGRM_REFR, SLVC RPT_AST CGY.NM,
CR_RTG.EXT_REFR, SLVC_AST VAL FCT.TM_DIMENSION_ID,
CDR_DT.CDR_YR, CDR_DT.CDR_MTH

)

DATA INITIALLY DEFERRED REFRESH DEFERRED
ENABLE QUERY OPTIMIZATION MAINTAINED BY SYSTEM
COMPRESS YES

DISTRIBUTE BY HASH(SLVC_RPT_AST_CGY_ID)
PARTITION BY RANGE (TM_DIMENSION_ID)

¢

PART PAST STARTING(MINVALUE)

ENDING("2010-01-01") EXCLUSIVE IN TS_PD_MQT_QRT_INV,
PART PART_2010_JAN STARTING("2010-01-01")
ENDING("2010-02-01") EXCLUSIVE IN TS_PD_MQT_QRT_INV,
PART PART_2010_FEB STARTING ("2010-02-01")
ENDING("2010-03-01") EXCLUSIVE IN TS_PD_MQT_QRT_INV,

PART PART_ 2010 _NOV STARTING ("2010-11-01")
ENDING("2010-12-01") EXCLUSIVE IN TS_PD_MQT_QRT_INV,
PART PART_2010 DEC STARTING ("2010-12-01")
ENDING(*2012-01-01") EXCLUSIVE IN TS_PD MQT_QRT_INV,
PART PART_FUTURE STARTING ("2012-01-01")
ENDING(MAXVALUE) IN TS_PD_MQT_QRT_INV);

To prepare MQT_REPORT1_AST for use, issue the REFRESH command and the
RUNSTATS command for the table. The same REFRESH techniques can be used in the
same way they were used for QRT_DWM.QRT_INV_AST_VAL.

REFRESH TABLE MQT_REPORT1_AST
RUNSTATS ON TABLE QRT_DWM_MQT_REPORT1_AST FOR SAMPLED DETAILED
INDEXES ALL

Importantly, however, the refresh operation on MQT_REPORT1_AST is rewritten by the
optimizer to use the QRT_DWM.QRT_INV_AST_VAL aggregate MQT, which improves
the performance of the refresh operation. In this way the REFRESH operations of these
two MQTs are nested.

Best practices for deploying IBM Industry Models Page 45 of 50

Query for report example 2: Asset valuations drill down by

dimension filter

This is a query similar to that used by the second IBM Cognos report and submitted to
DB2:

SELECT

FNC_AST.AST_NM as "Asset Name',

FNC_AST.DSC as "Asset Description™,
SLVC_AST_VAL_FCT.SLVC_RPT_AST_CGY_ID AS "CiC",

SLVC_RPT_AST CGY.TP AS "ID Code Type",

SLVC_RPT_AST_CGY.NM AS "SIl Category Name™,

"Asset Custody Country'.CNTRY AS "Country of Custody',
"Counterparty' .AGRM_REFR AS "‘Counterparty Issuer Name™,
CR_RTG.EXT_REFR AS "External rating",
SLVC_AST_VAL_FCT.UNIT_PRC

FROM

SLVC_AST VAL _FCT, FNC _AST, SLVC RPT_AST CGY, FNC_SERVICES RL AS
"Counterparty', GEO _AREA AS "Asset Custody Country', CR_RTG ,
CDR_DT

WHERE

SLVC_AST VAL FCT.SLVC RPT AST CGY_ID =

SLVC _RPT_AST CGY.SLVC RPT_AST CGY_ID AND
SLVC_AST_VAL_FCT.ISSUR_OF_INV_ID =

"Counterparty" .FNC_SERVICES_RL_ID AND
SLVC_AST_VAL_FCT.CNTRY_OF CUSTODY_OF AST ID = "Asset Custody
Country' .GEO_AREA_ID AND

SLVC _AST VAL FCT.CR_RTG_ID = CR_RTG.CR_RTG_ID AND
SLVC_AST_VAL_FCT.FNC_AST_ID = FNC_AST.FNC_AST_ID AND
SLVC_AST_VAL_FCT.TM_DIMENSION_ID = CDR_DT.CDR_DT AND

SLVC _RPT_AST CGY.NM = "Government bonds®™ AND

"Asset Custody Country'.CNTRY = "El Salvador®™ AND
CR_RTG.EXT_REFR = "BB" AND

CDR_DT.CDR_YR = 2011 AND CDR_DT.CDR_MTH = 10;

Best practices for deploying IBM Industry Models Page 46 of 50

http:SLVC_RPT_AST_CGY.NM

Appendix C Sample Solvency II IBM Cognos report

The IBM Cognos report presented here simply showcases the report referenced in this
paper for reference.

i & dubxpcvm193.mul.ieibm.com/cognos10/explore/explore.htm

File Edit View Settings Run Help

DEHE/ Xoad kB 7-Z- 64 Bz~
[:] Rovzt Columns: : Context fiter:
N - : v s
by Tt #| Agreement colle. .. #| Solvency invest... &l
@ Clandlyss ﬂ Solvency 1 value Quantity Acquisition cost Accrued interest |
[7
-
Contract between two parties concerning the seling of an asset at a reference price during a snl 4,808.23 3,207.54 5119.73 561.15 IEl
|
Equipment for the own use of the undertaking | 8,509.02 7,922.22 7,085.19 724.31
Investment funds mainly invested in bonds | 4,596.67 5,117.83 5,887.8 738.94
Put options with currendes or other currencies dependent security as underlying | 7,414.39 7,208.45 5,020.52 735.42
Structured notes mainly exposed to commodity risk | 6,113.51 6,698.02 4,528.58 533.01
Collateralised securities mainly exposed to catastrophe or weather risk | 5,247.47 6,088.92 4,753.39 377.3
Contract between two parties concerning the buying of an asset at a reference price during agl 6,438.26 6,328.94 5628.34 661.36
Swaps mainly exposed to mortality risk | 6,491.94 5,689.65 5,412.77 416.47
|
Short e debt securities (orignalmaluriy lesser then 1 year), e.g. ceificate of deposit, ban) 5,094,67 4,962 7,666.59 499,63
Real estate for the own use of the undertaking | 5,180.46 4,343.02 6,947.02 504.76
Put options mainly exposed to catastrophe or weather risk | 6,161.22 5,137.85 4,549,22 498.82
Futures with bonds or other interest rate dependent security as underlying | 4,983.49 4,835.84 4,791.64 440.54
More. | e
% & Agreement collection{All) | 4,999,182.28 5,020,617.85 5,006,136.8% 558,019.71 ﬂ
B - [Wsompie Report |

Figure 5 Sample IBM Cognos report for sample parent report

Best practices for deploying IBM Industry Models Page 47 of 50

Further reading

Governing and managing enterprise models

http://www.ibm.com/developerworks/rational/library/10/governingandmanagin

genterprisemodels-series/index.html

DB2 for Linux, UNIX, and Windows best practices:
http://www.ibm.com/developerworks/data/bestpractices/db2luw/

Best practices for DB2 data warehouse environments:

http://www.ibm.com/developerworks/data/bestpractices/db2luw/#analytics

Best practices: Temporal data management with DB2:

http://www.ibm.com/developerworks/data/bestpractices/temporal/index.html

Best practices: DB2 V10.1 multi-temperature data management:

http://www.ibm.com/developerworks/data/library/long/dm-
1205multitemp/index.html

Best practices: Storage optimization with deep compression:

http://www.ibm.com/developerworks/data/bestpractices/deepcompression/inde
x.html

Scoping the IBM Industry Model for banking using Enterprise Model Extender
and InfoSphere Data Architect:

http://www.ibm.com/developerworks/data/tutorials/dm-
1003bankindustrymodel/

IBM PureData System for Operational Analytics:

http://www-01.ibm.com/software/data/puredata/analytics/operational/

Contributors

Pat G O’Sullivan
Senior Technical Staff Member, Industry Models Architecture, IBM
Dublin Lab

Richard Lubell
Information Development for DB2 appliances and warehousing, IBM
Dublin Lab

Paul O’Sullivan
Insurance data modeling architect, IBM Dublin Lab

Best practices for deploying IBM Industry Models Page 48 of 50

http://www.ibm.com/developerworks/rational/library/10/governingandmanagingenterprisemodels-series/index.html
http://www.ibm.com/developerworks/data/library/long/dm-1205multitemp/index.html
http://www.ibm.com/developerworks/data/bestpractices/deepcompression/index.html
http://www.ibm.com/developerworks/data/tutorials/dm-1003bankindustrymodel/
http://www-01.ibm.com/software/data/puredata/analytics/operational
http://www.ibm.com/developerworks/data/bestpractices/temporal/index.html
http://www.ibm.com/developerworks/data/bestpractices/db2luw/#analytics
http://www.ibm.com/developerworks/data/bestpractices/db2luw

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not grant you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties
regarding the accuracy, reliability or serviceability of any information or recommendations
provided in this publication, or with respect to any results that may be obtained by the use of
the information or observance of any recommendations provided herein. The information
contained in this document has not been submitted to any formal IBM test and is distributed
AS IS. The use of this information or the implementation of any recommendations or
techniques herein is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Anyone attempting to adapt
these techniques to their own environment does so at their own risk.

This document and the information contained herein may be used solely in connection with
the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at those
websites are not part of the materials for this IBM product and use of those websites is at your
own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific
environment.

Best practices for deploying IBM Industry Models Page 49 of 50

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2012. All Rights Reserved.

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and
distribute these sample programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs conforming to the
application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceabillity, or function of these
programs.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may
also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Best practices for deploying IBM Industry Models Page 50 of 50

www.ibm.com/legal/copytrade.shtml

