
IBM® DB2® for Linux®, UNIX®, and Windows®

Best practices
Troubleshooting DB2 servers

Nikolaj Richers
Information Architect
IBM

Amit Rai
Advisory Software Engineer
IBM

Serge Boivin
Senior Writer
IBM

Issued: January 2014

 IBMr

Table of Contents
Troubleshooting DB2 servers...1

Executive summary..4

Introduction...5

Knowing when to contact IBM for help..6

Exchanging information with IBM through EcuRep............................6

Be prepared: configure your data server ahead of time.............................6

Redirect diagnostic data away from the DB2 installation path...........9

For greater diagnostic logging resilience, configure an alternate
diagnostic path..9

Redirect core file dumps and FODC data to a different directory
path...10

Configure for rotating diagnostic and administration notification
logs..11

Regularly archive and delete diagnostic data......................................12

Provide enough free space to store diagnostic data............................13

First steps for troubleshooting..14

First occurrence data capture (FODC)...15

db2diag and administration notification logs......................................16

DB2 tools..18

Operating system tools and log files...20

Monitoring infrastructure...21
Configuring in-memory metrics for troubleshooting.......................................22
Event monitor infrastructure..23
Text reports for monitoring data..24

Minimizing the impact of troubleshooting...26

Collect diagnostic data only where the problem is occurring...........26

Collect only the diagnostic data you need..26

Avoid service delays due to transferring diagnostic data..................26

Scenarios..27

Troubleshooting DB2 servers page 2 of 48

Scenario: Troubleshooting high processor usage spikes....................27
Identifying the problem...27
Diagnosing the cause...28
Resolving the problem...33

Scenario: Troubleshooting sort overflows..33
Identifying the problem...33
Diagnosing the cause...33
Resolving the problem...35

Scenario: Troubleshooting locking issues...36
Identifying the problem...37
Diagnosing the cause...38
Resolving the problem...41

Best practices...44

Further reading...46

Contributors..46

Contacting IBM...46

Notices..47

Trademarks..48

Troubleshooting DB2 servers page 3 of 48

Executive summary
Even in a perfectly engineered world, things can break. Hardware that is not
redundant can fail, or software can encounter a condition that requires intervention.
You can automate some of this intervention. For example, you can enable your DB2
server to automatically collect diagnostic data when it encounters a significant
problem. Eventually, however, a human being must look at the data to diagnose and
resolve the issue. When the need arises, you can use several DB2 troubleshooting tools
that provide highly granular access to diagnostic data.

Troubleshooting DB2 servers page 4 of 48

Introduction
The information and scenarios in this paper show how you can use the DB2
troubleshooting tools to diagnose problems on your server.

In large database environments, the collection of diagnostic data can introduce an
unwanted impact to the system. This paper shows how you can minimize this impact
by tailoring the values of a few basic troubleshooting configuration parameters such
as diagpath, DUMPDIR, and FODCPATH and by collecting data more selectively.

The result? When things do break, you are well prepared to make troubleshooting as
quick and painless as possible.

The following DB2 troubleshooting scenarios are covered in this paper:

• Troubleshooting high processor usage spikes

• Troubleshooting sort overflows

• Troubleshooting locking issues

For each scenario, this paper shows you how to identify the problem symptoms, how
to collect the diagnostic data with minimal impact to your database environment, and
how to diagnose the cause of the problem.

The target audience for this paper is database and system administrators who have
some familiarity with operating system and DB2 commands.

This paper applies to DB2 V10.1 FP2 and later, but many of the features that are
described here are available in earlier DB2 versions as well. For example, some of the
serviceability functionality for large database environments was introduced in DB2
V9.7 FP4, and user-defined threshold detection for problem scenarios was introduced
in DB2 V9.7 FP5. If you are not sure whether specific functionality is supported for
your DB2 version, check the information center for that version.

Troubleshooting DB2 servers page 5 of 48

Knowing when to contact IBM for help
An important part of troubleshooting is knowing when you cannot fix a problem
yourself and you must ask for assistance. If you have a maintenance contract, you can
engage IBM Support when you think that a problem goes beyond the scope of what
you can or want to fix yourself. There might also be some problems that you most
likely cannot fix yourself, such as problems that require diagnostic tools that are not
generally available outside of IBM or problems that indicate a possible product defect.

For information about how to contact IBM and the available support options, see
“Contacting IBM Software Support” in the DB2 information center
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admi
n.trb.doc/doc/t0053716.html) .

Exchanging information with IBM through EcuRep
IBM has set up a standard method that you can use to exchange diagnostic
information, called the Enhanced Customer Data Repository (EcuRep). EcuRep makes
it easy for you to associate the diagnostic data that you upload with a problem
management report (PMR), so that IBM Support personnel can find your data quickly.
To avoid delays, there are naming conventions to follow when you prepare your
diagnostic data for uploading.

For information about how to use EcuRep, see “Enhanced Customer Data Repository
(EcuRep)” (http://www-05.ibm.com/de/support/ecurep/index.htm).

Be prepared: configure your data server ahead of
time
The purpose of configuring parameter and registry variable settings before you
encounter problems is to minimize the impact of diagnostic data collection and to
ensure that diagnostic data is available when you need it. Generally, you want to
control, not suppress, diagnostic data collection. Most importantly, you must control
where diagnostic data is stored, and there must be enough free space to store the
diagnostic data.

To see how your server is configured to behave during diagnostic data collection
when a critical error occurs, issue the db2pdcfg command. The output shows how
your data server responds to critical events such as trap conditions and what the
current state is. Significant events, such as critical errors, trigger automatic data
capture through first occurrence data capture (FODC, sometimes also referred to as
db2cos), which is described elsewhere in this paper.

Sample output from the db2pdcfg command is as follows:

Troubleshooting DB2 servers page 6 of 48

http://www-05.ibm.com/de/support/ecurep/index.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.trb.doc/doc/t0053716.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.trb.doc/doc/t0053716.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/t0053716.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/t0053716.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.trb.doc/doc/t0053716.html

db2pdcfg

Current PD Control Block Settings:

All error catch flag settings cleared.

db2cos is enabled for engine traps.
 PD Bitmap: 0x1000
 Sleep Time: 3
 Timeout: 300
 Current Count: 0
 Max Count: 255

Current bitmap value: 0x0

Instance is not in a sleep state

Thread suspension is disabled for engine traps.

DB2 trap resilience is enabled.
 Current threshold setting : 0 (disabled)
 Number of traps sustained : 0

Database Member 0

 FODC (First Occurrence Data Capture) options:
 Dump directory for large objects (DUMPDIR)=
/home/hbrites2/sqllib/db2dump/
 Dump Core files (DUMPCORE)= AUTO
 Current hard core file size limit = Unlimited
 Current soft core file size limit = 0 Bytes

For more information about the db2pdcfg command, see “db2pdcfg - Configure DB2
database for problem determination behavior command”
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.
doc/doc/r0023252.html).

You typically make configuration changes for troubleshooting in one of two places:

• The DB2 profile registry

• The database manager configuration

For DB2 profile registry variables, there is an important difference between the
methods that you can use to make configuration changes:

• You can make changes permanently by using the db2set command, which
requires an instance restart for changes to become effective.

• You can make changes temporarily by using the db2pdcfg command.
Changes are effective until you restart the instance.

Troubleshooting DB2 servers page 7 of 48

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0023252.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0023252.html

To retrieve information about database manager configuration settings, you issue the
GET DATABASE MANAGER CONFIGURATION command or its abbreviated form, the
GET DBM CFG command.

The command output includes all database manager configuration values. The
following sample output has been abridged to show only values that are related to
problem determination:

Diagnostic error capture level (DIAGLEVEL) = 3
Notify Level (NOTIFYLEVEL) = 3
Diagnostic data directory path (DIAGPATH) =
/home/db2inst2/db2diag1
Alternate diagnostic data directory path (ALT_DIAGPATH) =
/home/db2inst2/db2diag2
Size of rotating db2diag & notify logs (MB) (DIAGSIZE) = 0

The diagnostic error capture error level (indicated by DIAGLEVEL) determines the
level of detail that is recorded in the db2diag log file, and the notify level (indicated by
NOTIFYLEVL) determines the level of detail that is recorded in the notification log file.
The diagnostic data directory path (indicated by DIAGPATH) and the alternate
diagnostic data directory path (indicated by ALT_DIAGPATH) determine where
diagnostic data is stored.

Unless you are guided by IBM Support, do not change the default settings of
parameters or registry variables that are specific to problem determination but are not
described in this paper. For example, do not change the settings of the diaglevel
configuration parameter or other DB2FODC registry variable parameters. If you set the
level of detail for these parameters or registry variables too high, very large amounts
of diagnostic data can be generated in a very short time, which in turn can negatively
affect the performance of your data server. If you set the level of detail too low,
insufficient data to troubleshoot a problem might be available, requiring further
diagnostic data collection before you can diagnose and resolve a problem.

If you notice that the values for configuration parameters such as diaglevel and
notifylevel are not set to the defaults and you are not troubleshooting a problem,
you can use the UPDATE DBM CFG command to reset them to their defaults. In the
following example, with abridged output, the GET DBM CFG command shows that
the diaglevel parameter is set to the highest value possible:

db2 get dbm cfg

Diagnostic error capture level (DIAGLEVEL) = 4

The default value is 3, which captures all errors, warnings, event messages, and
administration notification messages. To reset the value for the diaglevel parameter
to the default, issue the following command:

db2 update dbm cfg using DIAGLEVEL 3

Troubleshooting DB2 servers page 8 of 48

For more information about the diaglevel configuration parameter, see
“diaglevel - Diagnostic error capture level configuration parameter”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/co
m.ibm.db2.luw.admin.config.doc/doc/r0000298.html).

Redirect diagnostic data away from the DB2 installation
path
The diagpath configuration parameter specifies the fully qualified primary path for
DB2 diagnostic data. By default, the DB2 installation path is used. When you
configure your data server, your first action is to point the diagpath parameter to a
separate file system, away from the DB2 installation path.

The reason for redirecting diagnostic data away from the installation path is that the
various types of diagnostic data can use significant amounts of space in the file
system. By default, the db2diag and administration notification logs, core dump files,
trap files, an error log, a notification file, an alert log file, and FODC packages are all
written to the installation path. These files can negatively affect data server
availability if the data fills up all the space in the file system.

Redirect diagnostic data away from the DB2 installation path by using the following
command, replacing /var/log/db2diag with a location on your system:

db2 update dbm cfg using diagpath “/var/log/db2diag”

The different types of diagnostic files are described in more detail in the section
“db2diag and administration notification logs“.

For greater diagnostic logging resilience, configure an
alternate diagnostic path
The alt_diagpath configuration parameter specifies an alternate path for storing
diagnostic information. Set this parameter and the diagpath parameter to different
paths. The path that you specify for the alt_diagpath parameter is used only when
the database manager fails to write to the path that you specified for the diagpath
parameter and improves the likelihood that critical diagnostic information is not lost.

To see the value for the alt_diagpath configuration parameter, issue the following
command:

db2 get dbm cfg

Alternate diagnostic data directory path (ALT_DIAGPATH) =
/home/db2inst2/db2diag2

To change the value of the alt_diagpath configuration parameter permanently,
enter the following command, replacing /var/log/db2diag_alt with a location on
your system:

Troubleshooting DB2 servers page 9 of 48

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.config.doc/doc/r0000298.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.config.doc/doc/r0000298.html

db2 update dbm cfg using ALT_DIAGPATH "/var/log/db2_diag_alt"

For more information about the alt_diagpath configuration parameter, see
“alt_diagpath - Alternate diagnostic data directory path configuration parameter”
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.confi
g.doc/doc/r0058822.html).

Redirect core file dumps and FODC data to a different
directory path
Two types of diagnostic data are created only in response to specific events on your
data server. One type is the FODC package, which stores diagnostic data as a problem
is occurring, and the other is the core file, which preserves a memory image before a
process is terminated. Both FODC packages and core files can require significant
amounts of disk space. By default, both are sent to the directory path that you
specified for the diagpath configuration parameter or, if you did not set a value for
the diagpath parameter, the DB2 installation path.

To reduce the amount of diagnostic data that is sent to the directory path that you
specify for the diagpath parameter, redirect FODC packages and the core file to a
different directory path. You use the following DB2FODC registry variable settings to
change the setting for the FODC packages and core files:

• FODCPATH: Specifies the absolute path name for the FODC package. The size
of a FODC package depends on the type of collection, the operating system,
and the sizes of the files that are collected. The size can reach several
gigabytes.

• DUMPDIR: Specifies the absolute path name of the directory for core file
creation. A core file can become as large as the amount of physical memory of
the machine where the core file is generated. For example, a machine with 64
GB of physical memory requires at least 64 GB of space in the directory path
where the core file will be stored. You can limit the size of the core file, but
you should instead configure core file behavior to point to a file system with
enough space to avoid lost or truncated diagnostic data.

You use the db2set command to make changes to these registry variable settings. For
example, to redirect both FODC packages and core files to the /tmp path
permanently, issue the following db2set command, which takes effect after you
restart the instance:

db2set DB2FODC="DUMPDIR=/tmp"

You can also specify multiple registry variable settings for the db2set command,
separating the settings with a space. For example, to set both the FODCPATH and the
DUMPDIR registry variables at the same time, you can issue the following command,
replacing the variable values with values that apply to your own system:

Troubleshooting DB2 servers page 10 of 48

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.config.doc/doc/r0058822.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.config.doc/doc/r0058822.html

db2set DB2FODC="DUMPDIR=/home/testuser/mydumpdir
FODCPATH=/home/testuser/myfodcdir"

For more information about the registry variables that are supported by the db2set
command, see “General registry variables”
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?
topic=/com.ibm.db2.luw.admin.regvars.doc/doc/r0005657.html).

When you run the db2support command to collect environment data, it searches a
number of paths for FODC packages, including the path that is indicated by the
FODCPATH registry variable. You can specify an additional existing directory for the
db2support command to search for FODC packages by using the -fodcpath
command parameter. For more information about the parameters for the
db2support command, see “db2support - Problem analysis and environment
collection tool command”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admi
n.cmd.doc/doc/r0004503.html).

Configure for rotating diagnostic and administration
notification logs
By default, a single DB2 diagnostic log file and a single notification log file are used.
These log files grow in size indefinitely, which can become problematic if the files fill
all the available space in the file system. A better approach is to use rotating
diagnostic and administration notification logs, configured to work for your particular
system.

When you specify that you want to use rotating diagnostic and notification logs, a
series of rotating diagnostic log files and a series of rotating administration
notification log files are used that fit into the size that you defined for the diagsize
parameter. As log files fill up, the oldest files are deleted, and new files are created.

To see the current diagnostic logging setting, use the GET DBM CFG command:

db2 get dbm cfg

Size of rotating db2diag & notify logs (MB) (DIAGSIZE) = 0

When the value of the diagsize parameter is the default of 0, as shown in the
output, there is only one diagnostic log file, called the db2diag.log file. There is also
only one notification log file, which is named after the instance and has a .nfy file
extension. If configured as in the above example, these files grow in size indefinitely.

To configure for rotating diagnostic and notification logs, set the diagsize
configuration parameter to a nonzero value. The value that you specify depends on
your system. Most importantly, you want to avoid losing information too quickly
because of rapid file rotation (the deletion of the oldest log file) before you can archive
the old files. Generally, set the diagsize parameter to at least 50 MB, and make sure
that there is enough free space in the directory path that you specify for the

Troubleshooting DB2 servers page 11 of 48

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0004503.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0004503.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.db2.luw.admin.regvars.doc/doc/r0005657.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.db2.luw.admin.regvars.doc/doc/r0005657.html

diagpath parameter. Provide the same amount of space in the directory path that
you specify for the alt_diagpath parameter.

For example:

db2 update dbm cfg using diagsize 50

After you configure for rotating diagnostic logs, spend some time observing the
rotation of these files. The DB2 diagnostic and notification log files should be rotated
by the system every seven to 14 days. If they are rotated out too often, increase the
value of the diagsize parameter. If they are rotated too infrequently, decrease the
value of the parameter.

For more information about rotating diagnostic logs, see “DB2 diagnostic (db2diag)
log files”
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.d
oc/doc/c0054462.html).

Regularly archive and delete diagnostic data
Configuring your data server to use rotating diagnostic and notification logs solves
the issue of log files that grow indefinitely. However, you must archive the contents of
older log files before they are rotated out and deleted, so that you can access them if
you need them for troubleshooting.

To archive the log files, use the db2diag -A command.1 To avoid filling up the
diagnostic directory path with the archived diagnostic data, archive the diagnostic log
files to a different file system or to backup storage. After archiving a file, retain the
diagnostic data for two to four weeks, for example, by backing it up to a storage
solution. After this retention period has passed, you can automatically delete the
diagnostic data. If you do not archive the log files to the intended location by
specifying a directory path, make sure that you move the archived diagnostic data to a
different location to free up the space in the diagnostic path.

The following example demonstrates how to archive. The directory listing shows
which db2diag log file is in use. You can tell that this is a rotating diagnostic log file
because a numerical identifier (0) is part of the file name.

-rw-rw-rw- 1 testuser pdxdb2 15881799 Jun 14 14:09 db2diag.0.log

Now issue the db2diag -A command and include a destination path for the
archived logs:

db2diag -A /home/testuser/archive/

db2diag: Moving "/home/testuser/sqllib/db2dump/db2diag.log"
 to "/home/testuser/archive/db2diag.0.log_2012-06-14-15.12.47"

1On operating systems other than Windows operating systems, you can also archive all contents of the diagnostic path into an
archive path by using the db2support -A command. If you use this command to archive everything, make sure that the target
directory path is on a file system that has sufficient free space, equivalent to the amount of data that is in the diagnostic path.

Troubleshooting DB2 servers page 12 of 48

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/c0054462.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/c0054462.html

The following directory listing shows the archived version of the log file:

ls -l /home/testuser/archive/ |grep -i diag

-rw-rw-rw- 1 testuser pdxdb2 15881799 Jun 14 14:09
db2diag.0.log_2012-06-14-15.12.47

Having a good policy for regularly archiving and deleting the diagnostic and
notification logs takes care of diagnostic data that is regularly generated, but it does
not take care of all types of diagnostic data. You might need to remove other types of
data after you no longer need it. For example, if you run the db2support command
to prepare for uploading diagnostic data to the IBM Support site, you end up with a
compressed archive that takes up space. Remember to remove this archive after your
problem report is resolved. You must also manually remover any additional data
dump or FODC packages that are generated.

Provide enough free space to store diagnostic data
Diagnostic data can use substantial amounts of space, and you must ensure that
enough space is available to store this data. How much space is needed depends on
the type of diagnostic data.

Diagnostic and notification logs: For both the primary diagnostic path that you
specify for the diagpath parameter and the alternate diagnostic path that you
specify for the alt_diagpath parameter, provide at least 20% more free space than
the value of the diagsize parameter.

Minimum space for diagnostic and notification logs = value of the diagsize parameter x 1.2

Core file dumps and FODC data: For free space, provide at least twice the amount of
physical memory of the machine, plus 20%. Providing this much space ensures that
you can store at least two full core file dumps or several FODC packages without
running the risk of truncated diagnostic data.

Minimum space for core files and FODC packages = 2 x physical memory x 1.2

For example, if a machine has 64 GB of physical memory, provide a minimum of 154
GB of space for core files and FODC packages in the file system (64 GB x 2 x 1.2 = 154
GB).

Diagnostic data that you are uploading to the IBM Support site: If you run the
db2support command to prepare to upload diagnostic data to the IBM Support site,
make sure that enough space is available. The size of the db2support.zip file depends
on what parameters you specify for the db2support command, but the size of the
db2support.zip file can range from several megabytes to more than tens of gigabytes.
If you do not specify an output path, the resulting compressed archive is stored in the
directory path that you specified for the diagpath parameter.

Troubleshooting DB2 servers page 13 of 48

First steps for troubleshooting
This section explains the initial steps for identifying and diagnosing apparent errors
and performance problems. The purpose of these troubleshooting steps is to
determine the following information:

• What information to collect from DB2 tools and logs and from operating
system tools and logs and what environmental information to collect

• How to use this information in problem investigation

The first step is to characterize the issue by asking the following questions:

• What are the symptoms?

• Where is the problem happening?

• When does the problem happen?

• Under which conditions does the problem happen?

• Is the problem reproducible?

You might also ask include whether there were any recent changes that might be
implicated in the problem. Some problems, such as performance problems or
problems that occur only intermittently or only after some time has elapsed, are much
more open ended and require an iterative approach to troubleshooting.

After you have characterized the issue, you can use a number of tools and logs. In the
sections that follow, the main tools and diagnostic logs are described. These tools
include FODC, DB2 diagnostic and administration notification logs, DB2 tools, and
operating system tools and logs.

The DB2 monitoring infrastructure can also provide a wealth of information about the
health and performance of DB2 servers. Using table functions, you can access a broad
range of real-time operational data (in-memory metrics) about the current workload
and activities, along with average response times. Using event monitors, you can
capture detailed activity information and aggregate activity statistics for historical
analysis.

You can also perform some of the troubleshooting and monitoring tasks that are
covered in this paper by using the IBM InfoSphere® Optim™ and IBM Data Studio
tools. Information about how to use all of these tools is outside the scope of this paper,
but you might consider the following Optim tools:

• IBM InfoSphere Optim Performance Manager (OPM): Provides easy-to-use
performance monitoring. Alert mechanisms inform you of potential problems.
Historical tracking and aggregation of metrics provide information about
system performance trends. For more information, see “IBM InfoSphere Optim

Troubleshooting DB2 servers page 14 of 48

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=/com.ibm.db2.luw.admin.regvars.doc/doc/r0005657.html

Performance Manager”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.lu
w.idm.tools.doc/doc/c0057035.html).

• OPM Extended Insight: Measures end-to-end response time to detect issues
outside your DB2 data server. For more information, see “IBM InfoSphere
Optim Performance Manager Extended Insight”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.lu
w.idm.tools.doc/doc/c0057246.html).

• Optim Query Workload Tuner: Performs deep-dive analysis to identify and
solve many types of query bottlenecks. For more information, see “IBM
InfoSphere Optim Query Workload Tuner for DB2 for Linux, UNIX, and
Windows”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.lu
w.idm.tools.doc/doc/c0057033.html).

First occurrence data capture (FODC)
FODC is the built-in DB2 facility for detecting specific failure scenarios. FODC
automatically captures diagnostic data when a specific error condition occurs, and
you can also use it to manually capture data for a specific problem scenario that you
are observing. FODC minimizes the need to reproduce problem scenarios, because
diagnostic data is collected as the problem first occurs.

By default, FODC invokes a db2cos callout script to collect diagnostic data. The
db2cos callout script is located in the bin directory in the DB2 installation path (in the
sqllib/bin directory, for example). You can modify the db2cos callout script to
customize diagnostic data collection.

In DB2 V9.7 FP5 and later (excluding V9.8), FODC supports defining your own
threshold rules for detecting a specific problem scenario and collecting diagnostic data
in response. You define threshold rules by specifying the -detect parameter for the
db2fodc command. To detect a threshold condition and to trigger automatic
diagnostic data collection when the threshold condition is exceeded multiple times,
create an FODC threshold rule such as the following one:

db2fodc –memory basic -detect free"<=10" connections">=1000"
sleeptime="30" iteration="10" interval="10" triggercount="4"
duration="5" –member 3

"db2fodc": List of active databases: "SAMPLE"

"db2fodc": Starting detection ...

The effect of this threshold rule is as follows. On member 3, detection is performed to
check whether the conditions that are specified by the threshold rules free<=10 and
connections>=1000 are met. These threshold rules specify that the size of the free list
must be 10 or less and the number of connections must be 1000 or more for the
threshold to be detected. FODC memory collection is triggered on member 3 when the
number of times that the threshold conditions are detected reaches the value that is

Troubleshooting DB2 servers page 15 of 48

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.idm.tools.doc/doc/c0057033.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.idm.tools.doc/doc/c0057033.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.idm.tools.doc/doc/c0057246.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.idm.tools.doc/doc/c0057246.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.idm.tools.doc/doc/c0057035.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.idm.tools.doc/doc/c0057035.html

specified by the trigger count. In this example, for FODC collection to be triggered, the
trigger conditions must exist for 40 seconds (triggercount value of 4 x interval
value of 10 seconds = 40 seconds). The detection process sleeps for 30 seconds
between each iteration, and the total time that detection is enabled is 5 hours. When
FODC memory collection is triggered, a new directory whose name is prefixed with
FODC_Memory_ is created in the current diagnostic path.

When the threshold conditions that are defined by the -detect parameter are met
and FODC memory collection is triggered, a message similar to the following one is
displayed in the command window:

"db2fodc": 4 consecutive threshold hits are detected.

"db2fodc": Triggering collection 1.

Messages are also written in the db2diag.log file, as shown in the following example.
To get details about a triggered threshold, you can use tools and scripts to scan the
db2diag.log file and look for the string pdFodcDetectAndRunCollection,
probe:100.

2013-04-02-14.24.54.951556-240 I2341E790 LEVEL: Event
PID : 13279 TID : 47188095859472 PROC : db2fodc
INSTANCE: inst1 NODE : 003
FUNCTION: DB2 UDB, RAS/PD component,
pdFodcDetectAndRunCollection, probe:100
CHANGE :
Hostname: host11 Member(s): 3 Iteration: 1
Thresholds hit 0: free(8)<=10 connections(1010)>=1000
Thresholds hit 1: free(8)<=10 connections(1009)>=1000
Thresholds hit 2: free(9)<=10 connections(1001)>=1000
Thresholds hit 3: free(10)<=10 connections(1005)>=1000

You can also gather diagnostic performance data selectively without defining
threshold rules by using the -cpu, -connections, or -memory parameter. These
parameters are alternatives to collecting diagnostic data more extensively and
expensively with the –perf and –hang parameters when you already have a
preliminary indication of where a problem might be occurring.

As of DB2 V9.7 FP4, FODC collects diagnostic data at the member level to provide
more granular access to diagnostic data. Member-level FODC settings provide greater
control than the instance-level or host-level settings that were supported in previous
releases and fix packs.

db2diag and administration notification logs
DB2 diagnostic and administration notification messages are both logged in the
db2diag log files, making the db2diag log files one of the first places to check if you
suspect a problem. Using the db2diag command, you can analyze the db2diag logs
to extract problem-specific information. For example, you can extract error messages

Troubleshooting DB2 servers page 16 of 48

that are related to health indicators on a specific date by using a command such as the
following one:

db2diag -level Error -time 2012-06-13 -gi message:=health

2012-06-13-14.39.13.850508-240 E15877107A655 LEVEL: Error
PID : 25821308 TID : 772 PROC : db2acd
INSTANCE: test99 NODE : 000
EDUID : 772 EDUNAME: db2acd
FUNCTION: DB2 UDB, Health Monitor, HealthIndicator::update, probe:500
MESSAGE : ADM10500E Health indicator "Log Filesystem Utilization"
 ("db.log_fs_util") breached the "upper" alarm threshold of "85
%"
 with value "89 %" on "database" "mtmelo.SAMPLE ". Calculation:
 "((os.fs_used/os.fs_total)*100);" = "((65226387456 / 73014444032
) *
 100)" = "89 %". History (Timestamp, Value, Formula): "()"

You can also use the db2diag command to merge multiple log files.

You should monitor the administration notification log to determine whether any
administrative or maintenance activities require manual intervention. For example, if
the directory where transaction logs are kept is full, this blocks new transactions from
being processed, resulting in an apparent application hang. In that situation, the DB2
process writes the error ADM1826E to the administration notification log, as shown in
this example:

2013-04-19-13.03.30.699042 Instance:shenli Node:000
PID:13045(db2sysc 0) TID:2970467744 Appid:none
data protection services sqlpgCallGIFL Probe:1540

ADM1826E DB2 cannot continue because the disk used for
logging is full.

The error condition is also written to the db2diag log file, as shown here:

2013-04-19-13.03.30.618650-240 E2656E381 LEVEL:
Error
PID : 13045 TID : 46912603274656 KTID :
13045
PROC : db2sysc 0
INSTANCE: dbinst1 NODE : 000 DB :
SAMPLE
HOSTNAME: host1
EDUID : 49 EDUNAME: db2loggr (SAMPLE) 0
FUNCTION: DB2 UDB, data protection services, sqlpgCallGIFL,
probe:1540
MESSAGE : ADM1826E DB2 cannot continue because the disk used
for logging is full.

Troubleshooting DB2 servers page 17 of 48

DB2 tools
Several DB2 commands are used regularly as troubleshooting tools. The commands
that are described in this section are the ones that you might use most often. The
scenarios in this paper provide examples of how to use these commands.

• db2pd command: The db2pd command is a stand-alone command that you
can use to monitor and troubleshoot a DB2 instance from its database system
memory. The db2pd command collects information without using any engine
resources or acquiring any latches. Because the db2pd command does not
acquire any latches, you can normally retrieve information that is changing
while the db2pd command is collecting information. You can rerun the db2pd
command if results don’t appear to be accurate.

On a slow or non-responsive database system, the db2pd command is one of
the most important tools that you can use. The db2pd command works on a
DB2 engine that might otherwise appear to be hung.

For more information, see “db2pd - Monitor and troubleshoot DB2 database
command”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.l
uw.admin.cmd.doc/doc/r0011729.html).

• db2diag command: This command filters, formats, and archives the
diagnostic information in the db2diag log files. Filtering records in the db2diag
log files can reduce the time that you require to locate the records that you
need when troubleshooting problems. For example, you can use process
information that you obtain from the db2pd command to filter related
diagnostic information in the db2diag log files by using the db2diag
command.

You can archive rotating diagnostic log files to retain diagnostic data that
would otherwise be eventually overwritten and move the files to a different
location for storage.

For more information, see “db2diag - db2diag logs analysis tool command”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.l
uw.admin.cmd.doc/doc/r0011728.html).

• db2top command (UNIX and Linux operating systems): This command uses
the snapshot monitor to provide a single-system view for partitioned database
environments. The db2top command can help you identify performance
problems across the whole database system or in individual partitions. You
can also use the db2top command on single-partition environments.

On large systems, the db2top command can require large amounts of
memory because the global snapshot buffer can grow large. Particularly for
large partitioned environments, you should carefully choose the update
interval so as not to generate excessive traffic and overtax the fast

Troubleshooting DB2 servers page 18 of 48

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0011728.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0011728.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0011729.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0011729.html

communication manager (FCM) buffer shared memory. You specify the
update interval by using the -i command parameter.

For more information, see “db2top - DB2 monitoring tool command”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.l
uw.admin.cmd.doc/doc/r0025222.html).

• db2support command: This command archives all the diagnostic data from
the directory that you specify for the diagpath configuration parameter into
a compressed file archive. You typically use the db2support command to
prepare to upload the data to the IBM Support site or to analyze the diagnostic
data locally. You can limit the amount of data that is collected to a specific time
interval by using the -history or -time parameter, and you can decompress
the compressed file archive.

For more information, see “db2support - Problem analysis and environment
collection tool command”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.l
uw.admin.cmd.doc/doc/r0004503.html).

• db2caem command: This command automates the process of creating and
running an activity event monitor to collect detailed diagnostic and runtime
information about one or more SQL statements. The db2caem command
extracts and formats the information that is captured by the activity event
monitor. The db2support command includes a number of options to collect
the information that is generated by the db2caem command.

For more information, see “db2caem - Capture activity event monitor data
tool command”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.l
uw.admin.cmd.doc/doc/r0057282.html).

You typically run the following commands under the guidance of IBM Support
personnel. The commands are useful to help you gather the required information to
help support personnel assist you in diagnosing and correcting problems.

• db2trc command: This command collects traces through the DB2 trace
facility. The process requires setting up the trace facility, reproducing the
error, and collecting the data. In V9.7 FP4 and later, the db2trcon and
db2trcoff scripts simplify using the db2trc command. The db2trc
command can have a significant performance impact unless you limit what
you trace to specific application IDs or top EDUs.

For more information, see “db2trc - Trace command”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.l
uw.admin.cmd.doc/doc/r0002027.html).

Troubleshooting DB2 servers page 19 of 48

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0002027.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0002027.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0057282.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0057282.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0004503.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0004503.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0025222.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0025222.html

• db2dart command: This command examines databases for architectural
correctness and reports any errors. You typically use it for the following
purposes:

▪ To inspect an entire database, a table space, or a table for correctness

▪ To repair a database

▪ To change a database state

▪ To dump formatted table data from a database, for example, if a database
was corrupted because of a hardware failure and a current backup is not
available,

For more information, see “db2dart - Database analysis and reporting tool
command”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.l
uw.admin.cmd.doc/doc/r0003477.html).

• INSPECT command: This command examines a database for architectural
integrity, checking the pages of the database for page consistency. The
INSPECT command checks that the structures of table objects and structures of
table spaces are valid. Cross-object validation conducts an online consistency
check between the index and the data. The INSPECT command can identify
logical corruption that the db2dart command might not detect.

For more information, see “INSPECT command”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.l
uw.admin.cmd.doc/doc/r0008633.html).

Operating system tools and log files
Diagnosing some problems requires you to look at both DB2 diagnostic data and
operating system diagnostic data, such as problems related to memory, swap files,
CPU, disk storage, and other operating system resources.

On UNIX and Linux operating systems, the following system tools are available:

• vmstat command: This is a good overall tool for showing whether processor
or memory bottlenecks exist. You can run it continuously.

• iostat command: You can use this command to find out whether any disk
I/O bottleneck exists and what the I/O throughput is.

• ps command: This command provides information about the processes that
use the most processor time.

• svmon command (AIX operating systems only): This command provides an
in-depth analysis of memory usage. It provides more detailed information

Troubleshooting DB2 servers page 20 of 48

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008633.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008633.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0003477.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0003477.html

than what the vmstat and ps commands provide, although the performance
impact is slightly higher.

On Windows operating systems, you can use the following system tools and
commands:

• db2pd -vmstat command: Use the db2pd command with the -vmstat
parameter to show whether processor or memory bottlenecks exist.

• db2pd -iostat command: Use the db2pd command with the -iostat
parameter to show whether any disk I/O bottleneck exists.

• Task Manager: You can use this tool to show memory consumption and
processor usage. Alternatively, you can use the db2pd –edus command to
return similar information.

• Process Explorer: This tool is similar to the Task Manager but provides
additional information and functionality for processes.

• Windows Performance Monitor: You can use this tool to monitor system and
application performance in real time and historically. The tool supports data
collection that you can customize, and you can define automatic thresholds for
alerts and actions to take in response. The tool can also generate performance
reports.

 The following operating system error logs, which differ by operating system, can
contain important diagnostic information:

• AIX operating systems: /usr/bin/errpt –a

• HP-UX operating systems: /var/adm/syslog/syslog.log and /usr/sbin/dmesg

• Linux operating systems: /var/log/messages and /usr/sbin/dmesg

• Solaris operating systems: /var/adm/messages and /usr/sbin/dmesg

• Windows operating systems: Event logs and the Dr. Watson log

Monitoring infrastructure
The lightweight, metrics-based monitoring infrastructure that was introduced in DB2
Version 9.7 and is available in DB2 Version 10.5 provides pervasive and continuous
monitoring of both system and query performance. Compared to the older snapshot
and system monitor, the monitoring infrastructure provides real-time in-memory
aggregation and accumulation of metrics within the DB2 system at different levels,
with a relatively low impact on the system.

You can use the DB2 monitoring infrastructure to gain an understanding of the typical
workloads that your data server processes. Understanding your typical workloads is

Troubleshooting DB2 servers page 21 of 48

an important step toward identifying atypical events that require further investigation
or perhaps troubleshooting.

The three focus areas for monitoring information are as follows:

● System: Provides a complete perspective on the application work (database
requests) being performed by the database system, collected through the WLM
infrastructure.

● Activities: Provides a perspective on work being done by specific SQL
statements, collected through the package cache infrastructure.

● Data objects: Provides a perspective on the impact of application work on data
objects, collected through the data storage infrastructure.

The different kinds of information include the following ones:

• Time-spent metrics that identify how the time that is spent breaks down into
time spent waiting (lock wait time, buffer pool I/O time, and direct I/O time)
and time spent doing processing.

• In-memory metrics. SQL table functions provide highly granular access to
these metrics.

• Section explains that show the access plan that was executed for a statement
without the need for recompiling the statement.

• Section actuals, which can shorten the time to discover problem areas in an
access plan when you compare them to the estimated access plan values. You
use the db2caem command to get section actuals.

Configuring in-memory metrics for troubleshooting
The mon_req_metrics, mon_act_metrics, and mon_obj_metrics configuration
parameters control the collection of metrics. By default, these metrics are set to BASE
for new databases that you create in DB2 V9.7 and later. For most situations, the
information that is returned with the BASE setting is sufficient. When troubleshooting,
you might need to set the mon_req_metrics and mon_act_metrics configuration
parameters to EXTENDED to collect more granular, time-based information.

Additionally, there are other configuration parameters, such as the mon_uow_data
parameter, that are set to NONE by default. To collect some of the unit of work
information, you might need to set the values for these parameters. To see the current
values for monitoring-related configuration parameters, you can issue the following
command:

db2 get db cfg | grep MON

Request metrics (MON_REQ_METRICS) = BASE
Activity metrics (MON_ACT_METRICS) = NONE
Object metrics (MON_OBJ_METRICS) =
EXTENDED
Unit of work events (MON_UOW_DATA) = NONE
Lock timeout events (MON_LOCKTIMEOUT) = NONE

Troubleshooting DB2 servers page 22 of 48

Deadlock events (MON_DEADLOCK) =
WITHOUT_HIST
Lock wait events (MON_LOCKWAIT) = NONE
Lock wait event threshold (MON_LW_THRESH) =
5000000
Number of package list entries (MON_PKGLIST_SZ) = 32

For more information about the available configuration parameters and the metrics
that are returned for each parameter setting, see “Configuration parameters” (
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/index.jsp?
topic=/com.ibm.db2.luw.admin.config.doc/doc/c0004555.html).

Event monitor infrastructure
Event monitors in DB2 Version 9.7 and later use a highly scalable, lightweight
infrastructure. Highlights of this architecture are as follows:

• It maximizes parallelism by using one thread per processor core.
• It uses multiple threads for high volume event monitors.
• It does not require a dedicated thread for low volume event monitors.

Fast-writer threads provide the infrastructure for supplementing event information
and output formatting. Formatting of data and output of data are performed
asynchronously from the processing agents. Multiple fast-writer threads make it much
less likely for a backlog to occur in the event monitor queues.

To further reduce the system impact of high-volume event monitors and to reduce
storage requirements, DB2 Version 9.7 introduced a new event monitor target type,
the unformatted event table. You can format the unformatted event table data as
follows:

● Into XML data output by using the EVMON_FORMAT_UE_TO_XML table
function. An example follows:

SELECT evmon.* FROM TABLE (EVMON_FORMAT_UE_TO_XML (NULL,FOR EACH
ROW OF (select * from LOCK order by EVENT_TIMESTAMP where
EVENT_TYPE = 'LOCKWAIT' and EVENT_TIMESTAMP >= CURRENT_TIMESTAMP
. 5 hours)))

● Into relational table data output by using the EVMON_FORMAT_UE_TO_TABLE
procedure. An example follows:

call EVMON_FORMAT_UE_TO_TABLES ('UOW', NULL, NULL, NULL, NULL,
'IBMDB2SAMPLEXML', 'RECREATE_FORCE', -1,'SELECT * FROM UOWTBL
ORDER BY event_timestamp')

Event monitors that use unformatted event tables to store their data include the
following ones:

● Locking event monitor: This provides a consolidated mechanism for capturing
locking data you can use for in-depth analysis. This event monitor replaces the

Troubleshooting DB2 servers page 23 of 48

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.db2.luw.admin.config.doc/doc/c0004555.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/index.jsp?topic=/com.ibm.db2.luw.admin.config.doc/doc/c0004555.html

deadlock event monitor and lock timeout reports. Information about
deadlocks, lock timeouts, and lock waits is returned. You can control the
granularity of the information that is returned at the workload or at the
database level. A statement history is also available. The following statement
creates a locking event monitor:

CREATE EVENT MONITOR MY_LOCKEVMON FOR LOCKING WRITE TO
UNFORMATTED EVENT TABLE (IN USERSPACE1)

● Unit of work event monitor: This replaces the transaction event monitor. You
can control the granularity of the information that is returned at the workload
or at the database level. Data that is captured includes in-memory metrics. The
following statement creates a unit of work event monitor:

CREATE EVENT MONITOR UOWEVMON FOR UNIT OF WORK WRITE TO
UNFORMATTED EVENT TABLE (IN USERSPACE1)

● Package cache event monitor: This captures both dynamic and static SQL
entries when they are removed from the package cache. Entries begin to be
captured as soon as the event monitor is activated. You can control the
granularity of the information that is returned by using the WHERE clause
when you define the event monitor. The WHERE clause for the event monitor
can include one or more of the following predicates (ANDed): the number of
executions, overall aggregate execution time, and evicted entries whose
metrics were updated since last boundary time set using the
MON_GET_PKG_CACHE_STMT function. You can also use the event monitor
definition to control the level of information that is captured; options include
BASE and DETAILED. The following statement shows an example of a package
cache event monitor:

 CREATE EVENT MONITOR MY_PKGCACHE_EVMON FOR PACKAGE CACHE WRITE
TO UNFORMATTED EVENT TABLE (IN USERSPACE1)

Text reports for monitoring data
Similar in purpose to the GET SNAPSHOT command but available through any SQL
interface, monitoring reports are generated by the MONREPORT module. These reports
are provided in the form of result sets that are returned from stored procedures. These
reports can provide helpful monitoring information for pinpointing problem areas
when troubleshooting.

Consider the following example. The users of a new Java application are complaining
about slow performance. Expected results are not being returned within the expected
time frame.

As a first step, you can run the MONREPORT.DBSUMMARY summary report for six
minutes (as an example) to get a picture of the system and application performance
metrics for the database while the application is running. To run the summary report
for six minutes, issue the following command:

db2 “call monreport.dbsummary(360)”

Troubleshooting DB2 servers page 24 of 48

After the report has finished running, you can look at the wait times that are included
in the report to see whether there are any significant delays that might indicate a
problem area. In this example, the summary report includes the following
information:

 -- Detailed breakdown of TOTAL_WAIT_TIME --

 % Total

 TOTAL_WAIT_TIME 100 711546

 I/O wait time
 POOL_READ_TIME 0 323
 POOL_WRITE_TIME 0 0
 DIRECT_READ_TIME 0 0
 DIRECT_WRITE_TIME 0 0
 LOG_DISK_WAIT_TIME 0 134
 LOCK_WAIT_TIME 0 0
 AGENT_WAIT_TIME 0 0
 Network and FCM
 TCPIP_SEND_WAIT_TIME 96 684581
 TCPIP_RECV_WAIT_TIME 4 26510
 IPC_SEND_WAIT_TIME 0 0
 IPC_RECV_WAIT_TIME 0 0
 FCM_SEND_WAIT_TIME 0 0
 FCM_RECV_WAIT_TIME 0 0
 WLM_QUEUE_TIME_TOTAL 0 0

The output shows that most of the wait is happening while data is being sent back to
the client (the value in the TCPIP_SEND_WAIT_TIME row is high). Further
investigation with JDBC tracing reveals an improper override setting by the
Statement.setFetchSize method. After you set the fetch size (FetchSize
parameter) correctly, application performance not only improves but exceeds
expectations.

Other monitoring reports that you might find useful in troubleshooting include the
MONREPORT.CONNECTION, the MONREPORT.CURRENTAPPS, the
MONREPORT.CURRENTSQL, the MONREPORT.PKGCACHE, and the
MONREPORT.LOCKWAIT reports.

Full coverage of the monitoring infrastructure is beyond the scope of this paper,
although the monitoring infrastructure is used in some of the scenarios. For more
information about DB2 monitoring, see “Database monitoring”
(http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admi
n.mon.doc/doc/c0001138.html) in the DB2 Information Center.

Troubleshooting DB2 servers page 25 of 48

http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.mon.doc/doc/c0001138.html
http://publib.boulder.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.mon.doc/doc/c0001138.html

Minimizing the impact of troubleshooting
A system already affected by performance issues might not be able to tolerate much, if
any, additional load, even to collect basic diagnostic data. Configuration as
recommended earlier does not reduce the performance impact of diagnostic data
collection, but it does help you control where diagnostic data is stored. There are
specific things you can do to reduce the performance impact, though.

Collect diagnostic data only where the problem is occurring
To avoid the overhead of unnecessary diagnostic data collection in large database
environments, several troubleshooting commands support options to specify where to
collect data. For example, you can collect data at the member level instead of the host
level if you know that a problem affects only a member, not the host machine. These
options speed up data collection by collecting only relevant information, which
reduces the performance impact of data collection on the system and can shorten the
time that is required to perform problem determination.

For example, to collect FODC data during a performance issue on members 10, 11, 12,
13, and 15, issue the following command:

db2fodc -perf -member 10-13,15

Collect only the diagnostic data you need
You can use FODC collections introduced in V9.7 FP5 to collect diagnostic data only
for the specific type of problem that you encounter rather than collecting more
comprehensive performance data by using the db2fodc command –perf and –hang
parameters. The collections for problems that are related to processor usage, memory,
and connections are lightweight and minimize the performance impact. Use the
collections by specifying the –cpu, -memory, and –connections parameters with
the db2fodc command . For more information, see “Collecting diagnostic data for
specific performance problems”
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.d
oc/doc/p0059590.html).

Avoid service delays due to transferring diagnostic data
Some problems might require you to contact IBM’s technical support, and this means
that a service analyst must look at the diagnostic data that you collected on your
system. Typically, this means that you must use the db2support command and
upload the diagnostic data. If the volume of diagnostic data that you generated on
your system is large, uploading this volume of data to the IBM Support site for
analysis can introduce additional delays before the problem can be diagnosed. In V9.7
FP4 and later, you can use the db2support command with the -unzip parameter to
extract packages locally rather than uploading them to the IBM Support site . In
addition, some tools that service analysts use routinely are now installed when you
install the DB2 software.

Troubleshooting DB2 servers page 26 of 48

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/p0059590.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.trb.doc/doc/p0059590.html

The following command extracts packages from the file db2support.zip:

db2support -unzip db2support.zip
...
Extracting "DB2DUMP/db2diag.log" ...
Extracting "STMM/stmm.0.log" ...
Extracting "EVENTS/db2event.0.log" ...
Extracting "EVENTS/db2optstats.0.log" ...
Extracting "EVENTS/.db2optstats.rotate.lck" ...
Extracting "autopd.zip" ...
Extraction completes.

Scenarios
The following scenarios show how you can apply some of the troubleshooting best
practices. The list of scenarios represents only a small sample of possible scenarios
that you might encounter while troubleshooting a DB2 server. For links to additional
scenarios and recommendations, see the “Additional information” section of this
paper's web page in the DB2 best practices developerWorks community .

Scenario: Troubleshooting high processor usage spikes

Identifying the problem
Users of an application tell you that the response times for the application are
occasionally very slow. Every so often, when the application is waiting on the
dedicated database server, the application slows to a crawl for a while. You are asked
to investigate the cause.

You log on to the database server to do a preliminary investigation. You run some
operating system tools, such as the top command or the Windows Task Manager, to
see what the current processor usage is. As these tools are running, you observe that
the processor usage occasionally spikes to above 90% and remains high for several
minutes before dropping down to what seem to be more typical usage levels:

top - 15:59:54 up 7:27, 6 users, load average: 0.61, 0.19, 0.29
Tasks: 171 total, 1 running, 170 sleeping, 0 stopped, 0 zombie
Cpu(s): 98.0%us, 2.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si,
0.0%st
Mem: 2063588k total, 1163576k used, 900012k free, 98580k buffers
Swap: 0k total, 0k used, 0k free, 741764k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 8806 db2inst1 20 0 600m 192m 151m S 96.6 9.5 21:05.45 db2sysc
 7303 db2inst1 20 0 84588 13m 9m S 1.3 0.7 0:11.05 gnome-
terminal
 6394 root 20 0 49584 25m 7632 S 1.0 1.3 0:28.20 X
 7161 db2inst1 20 0 116m 27m 20m S 0.7 1.4 0:22.44 nautilus
...

Troubleshooting DB2 servers page 27 of 48

In this example, you can see that the user processor usage is 98%, with the bulk of the
high processor usage, 96.6%, coming from the db2sys process. This process is for the
DB2 system controller (on Windows operating systems, look for db2sys.exe). Without
further information, you know only that the problem occurs intermittently and lasts
several minutes. There doesn't seem to be a specific time at which it occurs.

Diagnosing the cause
Intermittent performance issues can be challenging to diagnose because of the
difficulty in collecting the data that is necessary to troubleshoot the cause. This type of
issue is unlikely to trigger automatic diagnostic data collection, and by the time that
you can manually collect data, the issue might have passed, leaving you with little or
no diagnostic data. For an intermittent performance problem, your first step is to set
up a method to capture the diagnostic data that you need, as the problem is occurring.

To capture diagnostic data for the intermittent processor usage spikes that you
observed, you define an FODC threshold rule. An FODC threshold rule is a tool that
waits for the resource conditions that you define to occur. In this case, you have some
preliminary information that points to high processor usage. If you don't know what
system resources are constrained, you can adapt this scenario to collect data about
additional system resources, such as connections and memory. After you set up the
FODC threshold rule, it triggers an FODC collection whenever the threshold
conditions that you specified for processor usage are exceeded, for as many
occurrences of the problem as you specified.

You define a FODC threshold rule for processor usage by using the db2fodc
-detect command. The db2fodc –detect command performs detection at regular
intervals for as long as you tell it to, if you specify a duration. If you do not specify a
duration, detection runs until the threshold conditions are triggered. The term
Threshold conditions in this context refers to both a specific frequency of the problem
and a duration that must be met before a collection is triggered.

The following threshold rule is a good start for detecting processor usage spikes:

$ db2fodc -cpu basic -detect us_sy">=90" sleeptime="30"
iteration="10" interval="10" triggercount="4"
duration="5"

In this case, the threshold rule is used to detect a combined user and system processor
usage rate that is higher than 90%. For FODC collection to be triggered, the threshold
conditions must exist for 40 seconds for each iteration (triggercount value of 4 x
interval value of 10 seconds = 40 seconds). The detection process sleeps for 30
seconds between each iteration. The total time that detection is enabled is 5 hours or
10 iterations of successful detection in total, whichever comes first. If FODC collection
is triggered, a new directory with a name that is prefixed with FODC_CPU_ is created
in the current diagnostic path. Only the lighter-weight, basic collection of diagnostic
data is performed.

Troubleshooting DB2 servers page 28 of 48

Now, assume that detection has been running for a while and the threshold conditions
for processor usage spikes are met, which means that FODC collection is triggered.
During FODC collection, you might see output that is similar to this example:

"db2fodc": Starting detection ...
"db2fodc": "4" consecutive thresholds hits are detected.
"db2fodc": Triggering collection "1".
Script is running with following parameters
COLLECTION_MODE : LIGHT
COLLECTION_TYPE : CPU
COLLECTION_DURATION : 5
COLLECTION_ITERATION : 10
DATABASE/MEMBER : -alldbs
FODC_PATH :
/var/log/db2diag/db2dump/FODC_Cpu_2013-07-14-
11.09.51.739430_0000
db2pd_options : -agent -apinfo -active -tran
-locks -bufferpools -dbptnmem -memset -mempool -sort -fcm hwm
-dyn
SNAPSHOT : 2
STACKTRACE : 2
TRACELIMIT : 20
SNAPSHOT_TYPE : ALL

This output specifies where to look for the diagnostic data for the particular FODC
package (/var/log/db2diag/db2dump/FODC_Cpu_2013-07-14-11.09.51.739430_0000).
The output also provides a bit of information about what types of data are collected.
After the collection is finished, the db2fodc –detect command either stops
running or executes the next iteration after sleeping for some time. The amount of
time to sleep is determined by the value of the sleeptime option if you specify it or 1
second if you do not specify a value. Whether detection continues depends on often
the threshold trigger conditions have been met at this point and how much time has
passed (that is, the values of the iteration and duration options that you used.
As defined in the previous example, detection and FODC collection continue until
either all 10 iterations of detection are complete or the end of the threshold duration is
reached.

Data collected
The diagnostic data that is collected is stored in an FODC package (a directory path).
This path is created inside the path you that specified for the FODCPATH parameter
when you configured your data server. If you did not configure the paths where
diagnostic data is stored ahead of time, see the section “Be prepared: configure your
data server ahead of time“ to learn about how to configure your system.

The contents of the FODC package directory path might look like the following
example:

Troubleshooting DB2 servers page 29 of 48

db2inst1@db2v10:~/sqllib/db2dump/FODC_Cpu_2013-07-14-15.15.40.604026_0000> ls -l
total 40
-rwxrwxrwx 1 db2inst1 db2grp1 1570 Jul 14 15:19 db2fodc.log
drwxrwxrwx 2 db2inst1 db2grp1 4096 Jul 14 17:19 DB2PD_2013-07-14.15.15.40.000000
drwxrwxrwx 5 db2inst1 db2grp1 4096 Jul 14 17:19 FODC_Perf_2013-07-14-
15.15.44.474725_0000
drwxrwxrwx 2 db2inst1 db2grp1 4096 Jul 14 17:19 iostat_2013-07-14.15.15.40.000000
drwxrwxrwx 2 db2inst1 db2grp1 4096 Jul 14 17:19 memory_2013-07-14.15.15.40.000000
drwxrwxrwx 2 db2inst1 db2grp1 4096 Jul 14 17:19 netstat_2013-07-14.15.15.40.000000
drwxrwxrwx 2 db2inst1 db2grp1 4096 Jul 14 17:19 ps_2013-07-14.15.15.40.000000
drwxrwxrwx 2 db2inst1 db2grp1 4096 Jul 14 17:19 vmstat_2013-07-14.15.15.40.000000

Data analysis
An analysis of the output of the vmstat command (FODC_Cpu_2013-07-14-
15.15.40.604026_0000/vmstat_2013-07-14.15.15.40.000000/db2v10.vmstat.out) shows a
combined user and system processor usage rate of 100% , which in turn triggered the
FODC collection:

procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu------
 r b swpd free inact active si so bi bo in cs us sy id wa st
 1 0 0 826496 658380 507952 0 0 0 0 404 338 98 2 0 0 0
 1 0 0 826496 658380 507952 0 0 0 0 394 352 99 1 0 0 0
 1 0 0 826496 658380 507952 0 0 0 0 377 298 100 0 0 0 0
 1 0 0 826496 658380 507952 0 0 0 0 394 330 99 1 0 0 0
 1 0 0 826496 658380 507952 0 0 0 0 382 311 100 0 0 0 0
 2 0 0 851208 658380 483632 0 0 0 0 373 400 97 3 0 0 0
 3 0 0 851812 658420 483064 0 0 0 0 384 620 87 13 0 0 0
 2 0 0 852316 658460 482464 0 0 0 0 376 604 90 10 0 0 0
 2 0 0 852564 658504 481700 0 0 0 0 380 567 91 9 0 0 0
 2 0 0 843388 658556 491224 0 0 0 28 371 584 91 9 0 0 0
 2 0 0 844636 658616 490052 0 0 0 676 411 570 89 11 0 0 0
 1 0 0 852836 658632 481424 0 0 0 0 389 409 98 2 0 0 0
 2 0 0 852836 658636 481424 0 0 0 0 361 317 98 2 0 0 0
 1 0 0 852836 658632 481428 0 0 0 0 354 282 100 0 0 0 0
 1 0 0 852836 658632 481428 0 0 0 8 345 317 100 0 0 0 0
 1 0 0 852836 658636 481428 0 0 0 0 400 324 100 0 0 0 0

Now, investigate the cause of these high processor usage rates. To narrow down the
cause, you must use both the stack trace log and the output of the db2pd command.

Two stack trace logs are created during the FODC collection. These indicate the top
DB2 consumers of processor resources, in descending order over an interval of 30
seconds. The information that is given is for the top coordinator agents (db2agents),
which perform all database requests on behalf of the application.

Here are the top coordinator agents from the stack trace log (FODC_Cpu_2013-07-14-
15.15.40.604026_0000/FODC_Perf_2013-07-14-
15.15.44.474725_0000/StackTrace.0075/StackTrace.log.0):

List of 20 top db2agent (db2ag*) EDUs:
54
57
53
73
77

Troubleshooting DB2 servers page 30 of 48

66
72
70
67
69
75
100
103
98
111
106
105
101
99
104

Look for one or several coordinator agents that use significantly more processor
resources than other agents use, which gives you a clue for the next step. In this
output, db2agent EDU 54 looks promising, based on the amount of processor
resources that it used:

...
54 2863655792 9135 db2agent (SAMPLE) 0 130.200000 1.170000
57 2643454832 9193 db2agent (idle) 0 2.040000 1.070000
53 2864704368 9109 db2agent (idle) 0 1.880000 0.550000
...

You can see that db2agent EDU 54 uses far more resources than the next two
coordinator agents use. The other stack trace log (which is not shown but looks very
similar to the previous sample output) also shows db2agent EDU 54 at the top of the
list.

The db2agent number by itself is only an intermediate bit of information and is not
useful by itself. You can use this information to gain additional insight into the
application that the db2agent is working for, though. Look at the output folder of the
db2pd command and see whether you can correlate the db2agent number with a
specific application ID (alternatively, use the snapshot output for the same purpose).
Several db2pd command output files are created during FODC, each showing similar
output; you need the information from only one of them. Searching for the
coordinator agent 54 in one of the db2pd command output files (FODC_Cpu_2013-07-
14-15.15.40.604026_0000/DB2PD_2013-07-14.15.15.40.000000) yields the following
result:

Address AppHandl [nod-index] AgentEDUID Priority Type State ClientPid Userid ClientNm ...
0x13A37F80 195 [000-00195] 54 0 Coord Inst-Active 8724 db2inst1 db2bp ...

Note the process ID, 8724. This process ID is another important clue and gets you
closer to determining the query statement that is the likely culprit behind the spikes in
processor usage. All you have to do now is to search for additional occurrences of the

Troubleshooting DB2 servers page 31 of 48

same process ID in the db2pd command output. The process ID leads you to the client
application that originated the query and the query statement.

Application :
 Address : 0x13BB0060
 AppHandl [nod-index] : 195 [000-00195]
 TranHdl : 3
 Application PID : 8724
 Application Node Name : db2v10
 IP Address: n/a
 Connection Start Time : (1373840099)Sun Jul 14 15:14:59 2013
 Client User ID : db2inst1
 System Auth ID : DB2INST1
 Coordinator EDU ID : 54
 Coordinator Member : 0
 Number of Agents : 1
 Locks timeout value : NotSet
 Locks Escalation : No
 Workload ID : 1
 Workload Occurrence ID : 1
 Trusted Context : n/a
 Connection Trust Type : non trusted
 Role Inherited : n/a
 Application Status : UOW-Executing
 Application Name : db2bp
 Application ID : *LOCAL.db2inst1.130714221459
 ClientUserID : n/a
 ClientWrkstnName : n/a
 ClientApplName : CLP longquery.db2
 ClientAccntng : n/a
 CollectActData: N
 CollectActPartition: C
 SectionActuals: N

 List of active statements :
 *UOW-ID : 1
 Activity ID : 1
 Package Schema : NULLID #
 Package Name : SQLC2J24
 Package Version : #
 Section Number : 201
 SQL Type : Dynamic
 Isolation : CS
 Statement Type : DML, Select (blockable)
 Statement : SELECT COUNT(*) FROM
 SYSCAT.TABLES, SYSCAT.TABLES, SYSCAT.TABLES, SYSCAT.TABLES,
SYSCAT.TABLES

The culprit is the application longquery.db2, which issues an expensive SELECT
statement whenever it is run. In this case, you could also have used the coordinator
agent number 54 to find the query statement directly, without looking up the process
ID. This works here because the coordinator EDU ID is the same as the db2agent EDU
ID or coordinator agent. There are likely cases where a direct look-up using only the

Troubleshooting DB2 servers page 32 of 48

coordinator agent does not work, so it is useful to be able to correlate a coordinator
agent with a process ID in the db2pd command output.

Resolving the problem
In this case, the users complaining of an intermittent performance slowdown are not
affected by an issue with the application that they are using. Instead, they are affected
by another query that is being run against the DB2 server from time to time. This
other query turns out to be very expensive because it impacts the response times for
everyone else.

How can you address the impact of this other query? You might be able to rewrite the
query so that it becomes less expensive to run. Alternatively, you can use some
standard DB2 workload management practices to run the query in a more controlled
fashion, without using excessive system resources.

There might be cases where it is not easy to determine the cause of a problem. Even if
you cannot resolve an issue yourself, you can set up an FODC threshold rule to collect
the required diagnostic data for different system resources, which you can then
provide to IBM Support for further analysis. IBM Support needs the diagnostic data to
be able to help, especially with intermittent problems. If you have the diagnostic data
ready, you can reduce the amount of time that it takes to diagnose the underlying
issue.

Scenario: Troubleshooting sort overflows

Identifying the problem
Users report a significant increase in query run times, which you are asked to
investigate.

A general performance slowdown that is perceived by users can have many different
causes. In this case, the focus is on the performance impact that a large number of sort
overflows, also known as sort spills, can cause. If you don't know whether sort
overflows are a problem on your system, use this scenario to find out.

Queries often require a sort operation. A sort is performed when no index exists that
would satisfy the sort order or when an index exists, but sorting is determined to be
more efficient. Sort overflows occur when an index is so large that it cannot be sorted
in the memory that is allocated for the sort heap. During the sort overflow, the data to
be sorted is divided into several smaller sort runs and stored in a temporary table
space. When sort overflows that are stored in the temporary table space also require
writing to disk, they can negatively impact the performance of your data server.

Diagnosing the cause
You can use the MON_GET_PKG_CACHE_STMT table function to determine whether a
sort overflow occurred. Try a query such as the following one, which returns not only
information about sorts but also specifies the related SQL statements:

Troubleshooting DB2 servers page 33 of 48

DB2 SELECT TOTAL_SORTS, SORT_OVERFLOWS, TOTAL_SECTION_SORT_TIME,
SUBSTR(STMT_TEXT,1,30) AS STMT_TEXT FROM TABLE (MON_GET_PKG_CACHE_STMT('D',
NULL, NULL, -1))

TOTAL_SORTS SORT_OVERFLOWS TOTAL_SECTION_SORT_TIME STMT_TEXT
-------------------- -------------------- ----------------------- -----------------------------
 0 0 0 SELECT POLICY FROM SYSTOOLS.P
 0 0 0 UPDATE SYSTOOLS.HMON_ATM_INFO
 0 0 0 SELECT COLNAME, TYPENAME FROM
 1 0 0 SELECT IBM.TID, IBM.FID FROM
 0 0 0 UPDATE SYSTOOLS.HMON_ATM_INFO
 0 0 0 SELECT STATS_TIME, INDEXTYPE
 0 0 0 SELECT TABNAME FROM SYSCAT.TA
 0 0 0 UPDATE SYSTOOLS.HMON_ATM_INFO
 0 0 0 SELECT TRIGNAME FROM SYSCAT.
 0 0 0 LOCK TABLE SYSTOOLS.HMON_ATM_
 0 0 0 SELECT CREATE_TIME FROM SYSTO
 1 1 1975263 select c1 from t1 order by c1
 0 0 0 SELECT COUNT(*) FROM SYSTOO
 0 0 0 CALL SYSPROC.SYSINSTALLOBJECT
 0 0 0 UPDATE SYSTOOLS.HMON_ATM_INFO
 2 0 1 DELETE FROM SYSTOOLS.HMON_ATM
 0 0 0 UPDATE SYSTOOLS.HMON_ATM_INFO
 0 0 0 CALL SYSINSTALLOBJECTS('DB2A
 0 0 0 SELECT STATS_LOCK, REORG_LOCK
 0 0 0 SELECT CREATOR, NAME, CTIME F
 0 0 0 UPDATE SYSTOOLS.HMON_ATM_INFO
 0 0 0 SET CURRENT LOCK TIMEOUT 5
 0 0 0 SELECT TABNAME FROM SYSCAT.TA
 0 0 0 SELECT total_sorts, sort_over
 0 0 0 SELECT COUNT(*) FROM SYSTOO
 0 0 0 SELECT ATM.SCHEMA, ATM.NAME,

 26 record(s) selected.

Look at the SORT_OVERFLOWS column in the output; any nonzero value indicates
that a query performed a sort operation that spilled over to disk. In this example, there
is one SELECT statement on table T1 that resulted in a sort overflow. Also, the
TOTAL_SECTION_SORT_TIME column for the same statement indicates that the
section sort operation took a very long time. A section in this context is the compiled
query plan that was generated by the SQL statement that was issued. The unit of
measurement is milliseconds; when converted, the total sort time is around 32
minutes, which makes the query long running.

The MON_GET_PKG_CACHE_STMT table function can return other useful columns that
you can include in your query. For example, the NUM_EXECUTIONS column can
show how often a statement was executed. It might also be useful to return more of
the statement text by modifying the sample query. For more information about
metrics, see “MON_GET_PKG_CACHE_STMT table function - Get SQL statement
activity metrics in the package cache”

Troubleshooting DB2 servers page 34 of 48

(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.rtn.doc/d
oc/r0055017.html).

The db2pd command is also useful in this context, because you can investigate sort
performance while a perceived query performance problem is happening. You do not
have to wait for the monitoring information to be updated before you can begin
troubleshooting the problem. This feature is helpful if your queries are very long
running, as in the example that is used here.

To monitor sort performance with the db2pd command, use the parameters in the
following example:

db2pd -d sample -sort -app -dyn

The following sample output is abridged to highlight how you can determine whether
sort overflows are happening and what applications and SQL statement are involved:

Database Member 0 -- Database SAMPLE -- Active -- Up 2 days 01:36:58 -- Date 04/22/2013 20:34:29
AppHandl [nod-index]
950 [000-00950]
 SortCB MaxRowSize EstNumRows EstAvgRowSize NumSMPSorts NumSpills
 0xE7750430 133 109155368 136 1 187711
 KeySpec
 CHAR:128

 SMPSort# SortheapMem NumBufferedRows NumSpilledRows
 0 16 331 62132341

Applications:
Address AppHandl [nod-index] ... Status C-AnchID ... Appid
0xF15F0060 950 [000-00950] ... UOW-Executing 542 ... *LOCAL.DB2.130420233443

Dynamic SQL Statements:
Address AnchID StmtUID NumEnv ... NumRef NumExe Text
0xE711F560 542 2 1 ... 2 2 select c1 from t1 order by c1

In this case, the NumSpills column indicates that there are sort overflows. The
NumSpilledRows column shows that these sort overflows resulted in writing a large
number of rows to disk.

To determine the application and SQL statement, first use the ApplHandl value, 950
in this example, to locate the application information, and note the value in the C-
AnchID column, here 542. Next, locate the same C-AnchID value in the output for
SQL statements to find the statement text.

Resolving the problem
If the ratio of sort overflows to total sorts is quite high, you might need to change the
value of the sortheap database configuration parameter to make more memory
available for sort operations. You might also consider enabling self-tuning memory to
allow the DB2 system to adjust the sortheap memory automatically. In DB2 Version

Troubleshooting DB2 servers page 35 of 48

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.rtn.doc/doc/r0055017.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.sql.rtn.doc/doc/r0055017.html

9.7 and later, the value of the sortheap parameter defaults to AUTOMATIC, which
enables automatic tuning of the memory that is required for sort operations. If you are
using an earlier DB2 version or if you determine by monitoring sort durations and
sort overflows that the automatic tuning is not always sufficient, you can tune the
value of the sortheap parameter manually. For example, sorting 446,000 records
with a record length of 128 bytes requires 57,088,000 bytes of insert-buffer memory
(446,000 x 128 bytes), equivalent to 14,000 four KB pages. Insert-buffer memory makes
up approximately 50% of sort heap memory internally, so this figure of 14,000 four KB
pages must be doubled to arrive at an approximate value for sort heap memory.
Doubling the number of pages gives a suggested sortheap parameter setting of
28,000 four KB pages.

The sortheap parameter has a relationship with the sheapthresh and
sheapthres_shr parameters. If you modify the sortheap parameter setting, also
modify the value of the sheapthresh parameter to maintain sufficient sort
parallelism. If you set both the sortheap and sheapthresh_shr parameters to
automatic, the self-tuning memory manager (STMM) can keep these settings in tune
with the current workload. Alternatively, you can generally enable self-tuning
memory for the database by using the self_tuning_mem database configuration
parameter, which tunes several parameters affecting memory usage, including for sort
heap memory. In partitioned database environments, some additional considerations
apply when you use self-tuning memory. For information, see “Self-tuning memory in
partitioned database environments”
(http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.perf.
doc/doc/c0023815.html).

There might be no way to avoid sort overflows by increasing the value of the
sortheap parameter, because of the amount of memory that is required. However,
you can still take some actions to minimize the impact of sort overflows. Ensure that
the buffer pool for temporary table spaces is large enough to minimize the amount of
disk I/O that sort overflows cause. Furthermore, to achieve I/O parallelism during the
merging of sort runs, you can define temporary table spaces in multiple containers,
each on a different disk. To assess how well temporary data is used in the buffer pool,
use the db2pd command with the -bufferpool parameter. A section of the output
shows the cache hit ratios of temporary table space data and indexes.

If more than one index is defined on a table, memory usage increases proportionally,
because the sort operation keeps all index keys in memory. To keep memory usage to
a minimum, create only the indexes that you need.

Scenario: Troubleshooting locking issues
This scenario illustrates how to use IBM InfoSphere Optim Performance Manager
(OPM) to investigate the causes of lock wait problems in a DB2 system.

Before you can use OPM to its full potential to investigate and diagnose the cause of
any performance issue, you must establish and save a performance baseline in OPM.
OPM can then compare the baseline with the current metrics and highlight potential

Troubleshooting DB2 servers page 36 of 48

http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.perf.doc/doc/c0023815.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/topic/com.ibm.db2.luw.admin.perf.doc/doc/c0023815.html

issues when certain metrics vary from the established baseline. For more information
about setting a baseline with OPM, see the OPM overview dashboard help.

Identifying the problem

You observe that your DB2 system is not processing the expected number of
transactions, even though there doesn't appear to be a bottleneck with the CPU or
disk. A typical symptom that you might encounter is a high average lock wait time
that is accompanied by low CPU usage.

Figure 1 illustrates such an example. The highlighted section of the OPM Workload
dashboard provides valuable information to help you determine whether the
performance problem is due to lock wait issues.

The Transaction Throughput and Statement Throughput graphs show that the system
was originally working fine with good throughput. At a specific time, the system
experienced a very significant drop in throughput, almost to zero. However, there
was still some activity on the system during that period, as shown by the Row
Throughput and Rows Read per Fetched Row graphs. They show that a high number
of rows were read even though almost no transactions were completed. These
symptoms suggest that one transaction might have held locks and blocked most other
transactions from executing. These symptoms might also indicate that a very large
query was reading a very large number of rows. To diagnose the cause, you must
investigate further.

You can configure OPM to monitor locking events and notify you when particular
events occur or exceed a threshold. You can use the Locking configuration dialog,

Troubleshooting DB2 servers page 37 of 48

Figure 1. Workload dashboard showing likely lock wait problem

which is shown in Figure 2, to monitor certain conditions and control the level of
detail that is collected for lock events.

Diagnosing the cause
You can use the OPM Overview dashboard to help investigate the symptoms more
closely. Figure 3 highlights important information that helps you understand the
problem better.

Troubleshooting DB2 servers page 38 of 48

Figure 2. You can use the Locking configuration dialog to specify locking alerts and
the amount of detail to collect for locking events

The Overview dashboard displays average values across the selected Time Slider
interval, for a wide range of metrics. Two are of particular interest in this scenario.
Both DB2 Lock Wait Time and Average Lock Wait Time metrics show significant
increases from the baseline. These increases provide further evidence of a locking
problem.

You can investigate the problem further with the Locking dashboard. You can access
the Locking dashboard from the Overview dashboard. The Locking dashboard
provides detailed information for all locking events on a separate tab. Figure 4
highlights a section of the Locking dashboard showing locking events.

Troubleshooting DB2 servers page 39 of 48

DB2 Lock Wait time, %

Avg Lock Wait time, ms

Figure 3. Overview dashboard highlighting large lock wait times

The current Maximum Block Time and Lock Wait Alerts metrics are of particular
interest when you compare them with the baseline, which is shown in the dashed
border box in the figure. OPM has recorded a much higher number of lock wait alerts
than is typical. The baseline shows zero lock wait alerts and a very short maximum
block time.

You can investigate the problem further by selecting an individual lock timeout event
from the dashboard and displaying detailed information for it. Figure 5 highlights
some of the key information that is displayed about the lock event after you double-
click to select it.

Troubleshooting DB2 servers page 40 of 48

Baseline comparison

Figure 4. Locking dashboard highlighting large values of Lock Wait Alerts and Block
Time

The lock timeout event details show information for both participants in the lock
event: the owner of the lock and its requestor. To see the lock owner's SQL statement,
select the Statements details. The information includes the complete text of the SQL
statement, the details of the lock that is being held, and the isolation level of the
transaction. In this example, the isolation level is repeatable read (RR). This is the
likely cause of the multiple lock timeout events and slowdown in transaction
throughput. A transaction using the RR isolation level can hold a large number of
locks during a unit of work (UOW) and cause many other transactions to be blocked,
waiting for locks to be released.

Resolving the problem
One possible resolution for the problem that is described in this scenario is to
determine whether you can modify the application so that it does not use the RR
isolation level. This change would reduce the number of locks that the application
holds at one time, therefore reducing the likelihood of lock contention with other
applications.

A DBA typically returns locking problems to the application team for resolution, but
often, it is a challenge is to prove that the delays are caused by locking issues. Now the
DBA can have proof of the locking delays and details for both the blocking application
and the blocked application and their SQL statements.

An alternative way to diagnose a locking issue is based on alerts, if you configure
OPM to monitor locking events and report alerts, as shown in Figure 2. The health
summary indicates databases that have active alerts. For example, in Figure 6, you can

Troubleshooting DB2 servers page 41 of 48

Figure 5. Analyzing the details of a lock timeout alert

see that a locking alert was issued for the database named “Kepler” (highlighted with
a red box).

When you click the red icon, it opens the locking alert list for the database. If you
select a specific alert, you can see the details of the alert, as shown in the following
example.

To drill down into the full details for this event, click Analyze .

Troubleshooting DB2 servers page 42 of 48

Figure 7. Locking alert list and details

Figure 6. OPM health summary shows locking alerts

The event details window provides more information about each participant in the
event. This information helps you pinpoint the cause of the problem and determine a
course of action to correct the issue.

Troubleshooting DB2 servers page 43 of 48

Figure 8. Locking event details

Best practices
• Be prepared by configuring your data server before problems

might occur:

• Redirect diagnostic data away from the DB2 installation
path.

• For greater resilience, configure an alternate diagnostic
path.

• Redirect core file dumps and FODC data to a different
directory.

• Configure for rotating diagnostic and administration
notification logs.

• Set up a process to archive and delete diagnostic data
regularly.

• Provide enough free space to store diagnostic data.

• Minimize the impact of diagnostic data collection:

• Collect data as locally to the problem as possible.

• Collect only the diagnostic data that you need.

• Use the monitoring infrastructure to gain an understanding of the
typical workloads that your data server processes, so that you can
tell when atypical events are happening.

• Use the scenarios in this paper as examples for how you can use
the various troubleshooting and monitoring tools.

• Know when you are faced with a problem that you cannot resolve
on your own and therefore must engage with IBM for technical
support.

Troubleshooting DB2 servers page 44 of 48

Conclusion

The trend is toward more granular diagnostic data collection, especially on large
database systems. On these systems, end-to-end diagnostic data collection is often too
expensive and carries the risk of affecting database availability. To lessen the impact
of diagnostic data collection, DB2 tools such as FODC can collect data about ongoing
problems locally and selectively.

To prepare for a possible problem, it is important that you configure your data server
before problems might occur. Troubleshooting is much easier if the data is readily
available and the impact to the performance of the system is well controlled.

Part of being prepared also means knowing the typical workloads that your data
server processes. If you understand your typical workloads, you are much more likely
to know quickly when an atypical event might be happening that requires further
investigation.

Troubleshooting DB2 servers page 45 of 48

Further reading
• IBM Information Management Best Practices website

(www.ibm.com/developerworks/db2/bestpractices)

• Tuning and Monitoring Database System Performance
(www.ibm.com/developerworks/data/bestpractices/systemperformance)

• IBM DB2 Version 10. 5 Information Center
(pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp)

Contributors
Dmitri Abrashkevich, DB2 Development, IBM

Albert Grankin, Senior Technical Staff Member, IBM

Bill Peck III, DB2 Advanced Support, IBM

Maira Teixeira De Melo, L2 Technical Support, IBM

Contacting IBM
To provide feedback about this paper, write to db2docs@ca.ibm.com .

To contact IBM in your country or region, see the IBM Directory of Worldwide
Contacts at http://www.ibm.com/planetwide .

To learn more about IBM Information Management products, see to
http://www.ibm.com/software/data/ .

Troubleshooting DB2 servers page 46 of 48

http://www.ibm.com/software/data/
http://www.ibm.com/software/data/
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide
mailto:db2docs@ca.ibm.com?subject=DB2%20best%20practices:%20Troubleshooting%20DB2%20servers
mailto:db2docs@ca.ibm.com?subject=DB2%20best%20practices:%20Troubleshooting%20DB2%20servers
http://pic.dhe.ibm.com/infocenter/db2luw/v10r5/index.jsp
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp
http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/data/bestpractices/systemperformance/
http://www.ibm.com/developerworks/db2/bestpractices/
http://www.ibm.com/developerworks/db2/bestpractices/

Notices
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

Without limiting the above disclaimers, IBM provides no representations or warranties
regarding the accuracy, reliability or serviceability of any information or
recommendations provided in this publication, or with respect to any results that may be
obtained by the use of the information or observance of any recommendations provided
herein. The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the implementation
of any recommendations or techniques herein is a customer responsibility and depends
on the customer’s ability to evaluate and integrate them into the customer’s operational
environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained
elsewhere. People attempting to adapt these techniques to their own environment do so
at their own risk.

This document and the information contained herein may be used solely in connection
with the IBM products discussed in this document.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without
notice.

Any references in this information to non-IBM websites are provided for convenience only
and do not in any manner serve as an endorsement of those websites. The materials at
those websites are not part of the materials for this IBM product and use of those websites
is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is
no guarantee that these measurements will be the same on generally available systems.

Troubleshooting DB2 servers page 47 of 48

Furthermore, some measurements may have been estimated through extrapolation.
Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility
or any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE: © Copyright IBM Corporation 2013, 2014. All Rights Reserved.

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and
other IBM trademarked terms are marked on their first occurrence in this information with
a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks
may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml

Windows is a trademark of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of
others.

Troubleshooting DB2 servers page 48 of 48

	Troubleshooting DB2 servers
	Executive summary
	Introduction
	Knowing when to contact IBM for help
	Exchanging information with IBM through EcuRep

	Be prepared: configure your data server ahead of time
	Redirect diagnostic data away from the DB2 installation path
	For greater diagnostic logging resilience, configure an alternate diagnostic path
	Redirect core file dumps and FODC data to a different directory path
	Configure for rotating diagnostic and administration notification logs
	Regularly archive and delete diagnostic data
	Provide enough free space to store diagnostic data

	First steps for troubleshooting
	First occurrence data capture (FODC)
	db2diag and administration notification logs
	DB2 tools
	Operating system tools and log files
	Monitoring infrastructure
	Configuring in-memory metrics for troubleshooting
	Event monitor infrastructure
	Text reports for monitoring data

	Minimizing the impact of troubleshooting
	Collect diagnostic data only where the problem is occurring
	Collect only the diagnostic data you need
	Avoid service delays due to transferring diagnostic data

	Scenarios
	Scenario: Troubleshooting high processor usage spikes
	Identifying the problem
	Diagnosing the cause
	Resolving the problem

	Scenario: Troubleshooting sort overflows
	Identifying the problem
	Diagnosing the cause
	Resolving the problem

	Scenario: Troubleshooting locking issues
	Identifying the problem
	Diagnosing the cause
	Resolving the problem

	Best practices
	Further reading
	Contributors
	Contacting IBM
	Notices
	Trademarks

